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Abstract 

Our ability to therapeutically manage breast tumors has been revolutionized by the use of 

drugs targeting the activity of the estrogen and HER2 receptors. However, the efficacy of 

these treatments is restricted to tumors expressing/overexpressing these receptors, leaving 

the 18% of patients that lack ER and HER2 receptor expression minimal options for therapy. 

In particular, triple negative (TN) breast cancer patients are limited to a small set of 

chemotherapeutics for treatment options. Many small molecule kinase inhibitors are 

currently under clinical investigation for treatment of TN tumors, but despite targeting 

pathways shown to be commonly upregulated in this subtype, clinical success with these 

single agent targeted therapies has been poor. In this work we attempt to better understand 

the resistance mechanisms underlying the innate resistance of TN tumors to targeted kinase 

inhibitors. It is now widely appreciated that most tumors show intratumoral genomic 

heterogeneity due to a process of branched evolution. In this work we also demonstrate that  

triple negative tumors have high phenotypic heterogeneity, harboring multiple distinct cell 

states within a single tumor. Furthermore, we show that these tumor cell phenotypes are 

plastic, and cells can transition to drug-tolerant states upon therapeutic challenge with a wide 

range of targeted agents. This intratumoral heterogeneity and phenotypic plasticity likely 

supports the poor clinical successes of small molecule kinase inhibitor trials in TN patients. In 

order to improve future management of these tumors, we present two distinct therapeutic 

strategies that circumvent these resistance mechanisms and effectively kill heterogeneous 
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triple negative breast cancers. This includes combination therapy using targeted therapeutics 

in combination with epigenetic reader protein inhibitors, or the use of pharmacological 

activators of Protein Phosphatase 2a (PP2A), both of which showed promising efficacy in 

heterogeneous breast cancers. These studies provide new tools to detect heterogeneous 

breast tumors and provide new therapeutic strategies to treat these aggressive cancers. 

 

1 Introduction 
 

Breast cancer is the most diagnosed cancer in women in the United States, with a predicted 

250,000 new cases to be diagnosed in 2017 and 40,000 new breast cancer deaths1. While 

these are numbers are dramatic, significant advances in our ability to manage invasive female 

breast cancer with surgery and systemic therapy have resulted in a continual reduction of 

annual breast cancer deaths for the last two decades2. A major contributor to our improved 

ability to manage this disease was the development of targeted therapeutics against the 

estrogen (ER) and ErbB2 (HER2) receptors. However, due to the intertumoral 

heterogeneity of breast cancer*, improvements in therapy have not been equally shared across 

the disease. Many tumors lack expression of ER and HER2, making them ineligible for use of 

ER and HER2-targeted agents. This leaves minimal treatment options for the approximately 

                                                   

* Intertumoral heterogeneity refers to the diversity in tumor phenotype between different patients’ tumors, or between 
multiple tumors of one patient. Differences have been described on many levels, genomics, histology, molecular 
expression, and more. 
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one sixth of invasive female breast cancer patients with triple negative (TN) breast cancers, 

which lack hormone receptor (ER, PR) expression and HER2 overexpression3–6. These TN 

patients are limited to a small set of chemotherapeutic agents for treatment, and many of 

these patients will fail on first line and second line chemotherapy.  As a result of the lack of 

alternative therapies, we find that triple negative tumors have higher rates of residual risk 

than other breast cancers and have higher rates of early relapse3,7,8.  

In order to improve this situation there is a large effort to identify and characterize 

targeted therapeutics for the treatment of triple negative tumors, and many such agents are 

currently under clinical trial investigation for use in triple negative breast cancer. TN tumors 

commonly show aberrant activation of the PI3K and MAPK pathways through various 

mechanisms, making them great candidates for the use of MEK and PI3K inhibitor therapy9–

12. These agents have show strong antiproliferative efficacy in TN models in vitro and in 

vivo5,11,13, however, the success of these agents in the clinical setting has been limited, with no 

pathological complete responses and very few partial responses recorded in the numerous 

recently-concluded or ongoing MEK and PI3K pathway inhibitor trials14–17. Despite evidence 

that TN tumors utilize MAPK/MEK/ERK and PI3K pathway signaling for survival and 

proliferation, these tumors are often innately resistant to inhibitors of these pathways, or 

show a short window of benefit followed by rapid acquisition of drug resistance18.  

It is evident that TN tumors possess intrinsic mechanisms of resistance that allow 

them to tolerate targeted therapy. A major contributor to this drug resistance is intratumoral 

heterogeneity, or the cell-to-cell diversity within a single tumor. Tumor cells with distinct 
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genomic aberrations and existing in distinct “cell states” or “phenotypes” * can coexist within 

a single tumor. Because genomic and phenotypic differences can impart distinct sensitivity to 

therapy, cellular subpopulations with distinct genomic or phenotypic features can survive 

therapy through a process of Darwinian selection19–22. Further, tumor cell states are plastic, 

and tumor cells can transition between states through epigenomic change, allowing them to 

adapt to therapy by converting to a drug tolerant state23–25. These mechanisms represent 

major hurdles to the success of cytotoxic and targeted therapies in triple negative breast 

cancer, and will require the identification of novel therapeutic strategies that overcome these 

resistance mechanisms in order to improve our therapeutic management of subset of breast 

cancer patients. 

Improving our therapeutic management of TN tumors will first require methods to 

measure cell state heterogeneity in order to identify heterogeneous tumors, which relatedly, 

have a high propensity for cell state transitions. Next, we must identify inhibitor 

combinations that target tumor cell survival and proliferation while simultaneously 

preventing adaptive cell-state plasticity; or alternatively, we must discover and develop 

agents that can simultaneously target all present tumor cell phenotypes without eliciting cell-

state transition.  

The research described herein details our efforts to develop systems to measure cell 

state heterogeneity within primary breast tumors and various models of breast cancer. We 

                                                   

* These terms are used interchangeably throughout the literature and this work 
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show that cells-state heterogeneity is indeed pronounced in triple negative tumors, and in 

particular in the basal-like subtype. Basal-like cancers also show pronounced cell state 

plasticity, particularly when exposed to targeted therapeutic stress, supporting a link 

between cell-state heterogeneity and plasticity. In addition to our heterogeneity quantitation 

efforts, we present a comprehensive study that identifies therapeutic strategies to manage 

heterogeneous and plastic basal-like breast cancer using combinations of kinase inhibitors 

with inhibitors of epigenetic reader proteins. These drug combinations apply antiproliferative 

stress while preventing adaptive cell-state transitions, resulting in complete cell kill in vitro as 

well as basal-like tumor regression in vivo. Finally, we present an alternative strategy for 

effective treatment of heterogeneous TN tumors using activators of Protein Phosphatase 2A 

(PP2A). Pharmacologic reactivation of PP2A leads to the inhibition of multiple oncogenic 

pathways and kills heterogeneous TN cell lines and mouse models without eliciting 

phenotypic selection or adaptive cell-state transitions. These studies outline new methods to 

identify phenotypically heterogeneous tumors and provide two successful strategies to 

manage this aggressive form of breast cancer.  
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1.1 Intertumoral heterogeneity in breast cancer 

1.1.1 Breast cancer subtypes 

Breast cancer is a heterogeneous disease. This sentence has lead so many publications and 

presentations that it has achieved colloquial status in this field, yet it continues to be used as a 

nod to the profound diversity of tumors found in this disease. Many classification systems 

have been developed historically to make sense of the intertumoral heterogeneity and to 

categorize tumors into subtypes that share phenotypic features and tumor behavior. Breast 

cancer patients are first classified by gender, age, tumor size, lymph node involvement, and 

tumor histology. Histological assessment involves interrogation for tumor grade, 

invasiveness, and histological type. There are many distinct breast cancer lesions based on 

histology, including precursor lesions * , mesenchymal tumors, intraductal proliferative 

lesions, and benign proliferative lesions, which together encompass over 60 distinct 

histological classifications by World Health Organization standards26. The majority of breast 

cancers are invasive ductal carcinomas, occurring in female patients. These tumors are the 

most commonly lethal form of the disease, and the focus of most breast cancer research 

including this work. Immunohistochemical assays to identify molecular marker expression 

have also become standard practice in order to improve the stratification of tumors into 

subtypes that express the estrogen receptor (ER), progesterone receptor (PR), and ErbB2 

                                                   

* Ductal Carcinoma in Situ (DCIS) or Lobular Carcinoma in Situ (LCIS) 
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(HER2) receptor27–29. This clinical assay divides tumors into a hormone receptor positive 

subtype (ER+, PR+/-, ~65-80% of breast cancer), HER2-receptor positive (15-30%)*, and 

Triple Negative (~10-25%)3–5,30. These IHC-based subtypes have strong prognostic power, 

with distinct patterns of overall survival31, proliferative rates, sites of metastasis32, and rates 

of relapse31,33,34. Examination of additional IHC markers including Ki67, p53, and EGFR can 

enhance subtype resolution and has become standard practice in many clinics35,36. 

With the advent of DNA microarray technology and next generation sequencing, 

tumors can now be profiled using thousands of expressed genes. Analysis of large tumor 

cohorts has revealed that tumors often fall into reoccurring patterns of molecular 

expression37, which have been termed the intrinsic subtypes of breast cancer. These subtypes 

include Luminal A, Luminal B, HER2-enriched (HER2E), Normal-like, Basal-like, and 

Claudin-low38,39. These molecular subtypes often show have high overlap with the IHC-

defined subtypes, as each intrinsic subtype has characteristic ER, PR and HER2 expression 

status, however, these overlaps are imperfect. For example, 80% of basal-like tumors are 

triple negative, whereas 70% of triple negative tumors are basal-like. These inconsistencies 

can be extremely important for treatment decisions, and its recommended to profile a 

patient tumor both by IHC receptor staining and by gene expression analysis and molecular 

subtyping40, which can be done through DNA microarray analysis or RNA-sequencing, using 
                                                   

* Strong HER2 IHC positivity is used as a surrogate for existence of the Ch17q12 amplicon containing the HER2 gene, 
which can alternately be identified by gene amplification with Fluorescent In Situ Hybridization. IHC “Positive” = strong 
membrane staining (3+) in >10% of tumor cells. HER2 is often expressed in tumor cells but not at a level to be 
considered “+” in this assay 
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ER+	/	PR+	
>10%	Nuclear	Staining	

ER-	/	PR-	Hormone	Receptors:	

HER2	Receptor:	 HER2+	
Strong	membrane	staining	
>10%	Cells,	or	ISH	amp		

HER2-	 HER2-	HER2+	
Strong	membrane	staining	
>10%	Cells,	or	ISH	amp		

IHC	Subtype:	 ER/PR+	HER2-	 ER+	HER2+	 ER-	HER2+	 Triple	NegaEve	

Modern	Molecular	
Subtypes:	

Luminal	
	A	

Luminal		
B	

Luminal		
HER2	

HER2E	 Basal	
	Like	

Claudin		
Low	

7	TNBC	Molecular	Subtypes:	 BL1		BL2		IM		LAR		M		MSL	UNS		

fresh-frozen or formalin-fixed paraffin-embedded (FFPE) tissue. from  for. Further 

refinement of these intrinsic subtypes is continually ongoing to optimally separate tumors 

into groups with similar tumor behavior and therapeutic vulnerabilities, such as efforts to 

split luminal and basal HER2-enriched tumors41, or to split TN tumors to seven distinct 

subtypes5, as these further-segregated subtypes show distinct drug sensitivity and clinical 

behavior. 

 

 

 

 

 
Figure 1-1 Breast cancer subtypes 

A schematic portraying the intertumoral heterogeneity of female invasive breast tumors, first 
appreciated hormone receptor status, HER2 receptor status, IHC subtype based on these molecular 
markers, the currently appreciated molecular subtypes of breast cancer, and a recently developed TN 
subtype classification system. Subtypes vertically situated underneath each other have relatedness 
across the different classification systems, such as ER+/PR+/HER2- tumors being predominantly 
Luminal A, however complete overlap in these classification systems is never observed. ER, estrogen 
receptor; PR, progesterone receptor; BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; 
LAR, luminal androgen receptor; M, mesenchymal; MSL, mesenchymal stem-like; UNS, unstable. 
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1.1.2 Subtype targeted therapy 

The use of chemotherapeutic agents is approved in all invasive breast cancers and involves a 

mix of anthracyclines (“A”, Doxorubicin, Epirubicin), Taxols or taxoteres (“T”, Paclitaxel, 

Docetaxel), and cychophosphamide (“C”, cytoxan)*. Most chemotherapeutics are dosed as a 

combination or schedule of agents such as A+T, or A+C à T. While effective in some 

patients, tumors often become resistant to these treatments and eventually progress on 

therapy. To improve our therapeutic management of breast cancers, newer “targeted” 

therapies have been developed in the last few decades that selectively bind and modulate a 

particular molecular target. The initial developments of breast cancer targeted therapy 

focused on highly expressed oncogenic receptors that promote breast cancer proliferation, 

which coincidentally were the same receptors originally used to stratify patients. Estrogen 

receptor targeting agents include inhibitors of the estrogen production enzyme aromatase42, 

or drugs that bind and modify or downregulate the function of the estrogen receptor43.  

Similarly, agents have been developed that antagonize HER2 receptor activity through 

blocking receptor dimerization, or through competing for kinase substrate. The discovery 

and clinical implementation of these ER and HER2-targeted therapeutics has greatly 

improved overall survival in ER+ and HER2+/HER2E breast cancers, respectively44,45. 

                                                   

* Platinum agents (Cisplatinum), 5-fuorouracil, and methotrexate are additional options for patients, which are similarly 
used in “cocktails” or sequences. 
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Additionally, other targeted agents including CD4/6 and mTOR inhibitors have been 

approved for use in ER+ breast cancer in combination with aromatase inhibitors46,47. 

Triple negative breast cancers are a heterogeneous mixture of different tumor types. 

The two major molecular subtypes are basal-like (80% of TN tumors) and claudin-low (15% 

of TN tumors)38. TN tumors have distinct epidemiology, occurring in younger women and 

having higher rates of incidence in women of African American decent4. Further, TN tumors 

show distinct clinical behavior, having worse overall survival48 and distinct high rates of 

relapse within the first few years of treatment7,34. Interestingly, triple negative tumors show 

increased sensitivity to chemotherapeutic agents compared to ER+ tumors49, however, 

patients that do not achieve pathologic complete response (pCR) show significantly worse 

overall survival compared to other subtypes7.  This suggests that ineffective chemotherapy 

regiments leaves TN tumors in a more aggressive phenotype, and due to a lack of alternative 

treatment options to continue therapy, we observe a poor overall survival in these patients 

that fail first line therapy. These results highlight the need for new effective therapies for TN 

tumors, and understanding how to optimally use the currently approved therapeutics as to 

avoid treatment failure. 

Many academic labs and pharmaceutical companies are working hard to alleviate the 

issue of limited treatment options for this patient population. Recurrent genomic aberrations 

in the disease, including mutations in TP53, PI3K, RB1, PTEN, and BRCA1, as well as common 

copy number alterations leading to gains in AKT3 and EGFR, and loss in INPP4B6,50–53, all 
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converge to deregulate proliferation and survival pathway activity in TN tumors. This 

includes hyperactive PI3K and MAPK pathways due to recurrent PI3K, PTEN, and INPP4B 

mutations and EGFR amplification in this subtype9,10,54. These recurrent genomic aberrations 

and high MAPK/PI3K pathway activity make TN tumors a prime candidate for the use of 

targeted therapies against key kinases of the PI3K and MAPK pathways. Accordingly, 

numerous Phase I clinical trials are underway to establish the therapeutic dose to assess 

MAPK and PI3K pathway inhibitors in advanced TN breast cancers, including MEK1/2, 

PI3K, AKT, and mTOR targeted agents14–16,55–57. 

Unfortunately, no beneficial TN tumor responses in these studies have been 

observed. There were no reports of complete response (CR), pathological complete response 

(pCR), partial response (PR), or stable disease (SD) in any TN patients. While tumor 

response was not the primary endpoint of these Phase I trials, and these advanced TN patients 

had already failed one or more lines of therapy, the lack of efficacy of these small-molecule 

kinase inhibitor is nonetheless discouraging. Kinase inhibitor combination therapies may 

provide a better opportunity for success in triple negative patients by simultaneously 

targeting multiple oncogenic pathways and/or preventing compensatory signaling. However, 

the success of MEK + PI3K inhibitor trials have still been limited for TN patients. In two 

different studies examining MEK inhibitors in combination with PI3K inhibitors in advanced 

solid tumors there were no reported positive outcomes for the TN patients in the studies58,59. 

Further, a more directed Phase II study examining the MEK inhibitor Trametinib in 
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combination with the AKT inhibitor GSK2141795 did report 2/31 patients achieving PR on 

Trametinib alone, and 1/16 achieving a PR on the combination treatment17, a lack of 

improvement over kinase inhibitor monotherapy. 

 

1.1.3 Targeted therapies on the horizon for triple negative breast cancer 

Thankfully, better TN tumor responses have been observed in studies examining 

small molecule kinase inhibitors in combination with chemotherapeutic agents. An 

institution-wide examination of the ongoing Phase I clinical trials in TN patients at MD 

Anderson demonstrated that significantly better clinical responses are achieved with targeted 

therapeutics + chemotherapy * , compared to either therapy alone, and compared to 

combinations of targeted agents57. 12 of 106 total treated patients had either PR, CR, or 

stable disease > 6 months, and 11/12 of these responders were in the chemotherapy + 

targeted therapy group. Further, a recent trial of the mTOR inhibitor Everolimus + 

Paclitaxel† showed promising antitumor efficacy, with all but one (22/23) TN patient 

experiencing stable disease or partial response to the combination treatment, and 2 patients 

having a complete responses and 7 patients having pathological complete responses, defined 

by the disappearance of the tumor by imaging (CT scan, CT/MRI, chest X-Ray), versus 

disappearance of invasive cancer cells in the breast and lymph nodes by pathological FFPE 

                                                   

* Targeted agents included mTOR inhibitors, a PI3K inhibitor, or an AKT inhibitor + FGFR inhibitor 
† Paclitaxel is a chemotherapeutic of the taxane family, which suppress microtubule dynamics and inhibit cell division 
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examination, respectively. These results emphasize the potential of combination therapy 

using kinase inhibitors with chemotherapy to treat TN tumors, while also highlighting the 

ineffectiveness of kinase inhibitors used as single agents of or as combinations to treat this 

disease.  

It is apparent that although TN tumors have attractive biomarkers predicting 

sensitivity to pathway-targeted therapeutics, they additionally possess mechanisms to resist 

these agents. While kinases inhibitors show promise at enhancing the effects of chemotherapy 

in TN tumors, this strategy is not effective in all patients and alternative treatments are 

needed to better manage TN patient tumors. It is therefore critical that we determine the 

mechanisms leading to kinase inhibitor resistance in triple negative tumors and develop 

therapeutic strategies that circumvent these resistance mechanisms, unlocking the antitumor 

efficacy of our diverse arsenal targeted agents. 

 

1.2 Intratumoral heterogeneity in breast cancer 

1.2.1    Clonal heterogeneity 

Heterogeneity in breast cancer extends beyond differences between patient tumors. 

Heterogeneity is also observed on the cellular level within single tumors. Tumor cell-to-cell 

differences exist across many measurable cellular control systems including the genome, 

methylome, chromatin architecture, transcriptional state, and microRNA expression state. 



 

27 

 

Genomic, or “clonal”, heterogeneity arises as transformed cells proliferate and genomic 

instability imparts de novo mutations or other genetic aberrations within tumor cell progeny. 

If these genomically-distinct progeny are sufficiently fit to exist within the tumor 

environment, clonal expansion occurs, leading to a process of branched evolution in the 

tumor.  Indeed, multiregional sampling of breast tumors has demonstrated that branched 

genomic evolution occurs in breast tumorigenesis and most tumors are multiclonal at the 

time of resection21,60. Heritable changes in DNA methylation can also lead to subpopulations 

of cells with distinct gene enhancement or suppression61 and tumors can similarly show 

branched evolution of this epigenomic identity. 

 

1.2.2    Cell state heterogeneity 

Intratumoral heterogeneity is also observed in cellular phenotype, where tumor cells within a 

single tumor can occupy distinct cell states. While there is no one shared definition of a 

tumor cell “state” or “phenotype”, it is widely considered to describe a repeatedly observed 

phenotype in a cell population that has a distinct molecular marker expression pattern (cell 

surface antigens, cytokeratins, hormone receptors etc.)62,63, a distinct gene expression 

pattern (cells within a state will cluster based on gene expression)64,65, and a distinct open 

chromatin architecture (accessible and repressed gene landscape)66,67. Due to these different 

systems of relatedness, tumor cell state heterogeneity can be assessed on many analysis 

platforms as long as they support single cell quantitation, these include: 
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immunohistochemistry (IHC) with single cell segmentation (marker expression), flow 

cytometry and mass cytometry* (marker expression), single-cell RNA sequencing (gene 

expression), and single cell Assay-for-Transposase-Accessible Chromatin (ATAC) 

sequencing†68 (open chromatin architecture). These assays allow for the interrogation of 

phenotypic marker expression (IHC, flow and mass cytometry), gene expression (single-cell 

RNA sequencing) and chromatin architecture (ATAC sequencing), respectively. Importantly, 

these heterogeneities can arise within a single genomic clone69,70, and each clone can show 

variations in their cell state heterogeneity. 

Intratumoral heterogeneity does not evolve to be a chaotic mixture of different cell 

identities, rather, tumors repeatedly have discrete patterns of cell state diversity. Tumor cells 

commonly occupy aberrant versions of the normal cell states found in that organ system71, 

including stem-like states, lineage committed progenitors, differentiated cells of the tissue, 

and often expressing mixed phenotypic markers of these cell states22,63,72. The majority of 

past studies describing non-uniformity in tumor cell states have focused on describing 

subpopulations of cells with enhanced tumor initiating capacity51,73, self-renewal74–77, and 

drug resistance20,23,78, termed “cancer stem cells” (CSCs)79. Many groups have also described 

non-uniformity in mesenchymal cell identity in solid tumors, indicative of epithelial-to-

mesenchymal transition22,73,80. Basal-luminal cell state heterogeneity is also observed in 
                                                   

* Mass cytometry is like flow cytometry, but uses metal-tagged-antibodies and time-of flight spectrometry to read protein 
levels in single cells, allowing for simultaneous measurement of 30+ markers per cell. 
† ATAC sequencing uses a custom transposase to insert PCR primers into open chromatin, allowing for PCR 
amplification and sequencing of the open chromatin regions in a cell, showing what DNA is accessible to be expressed. 
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breast, lung, and bladder cancers72,81–83, and neuroendocrine-ductal heterogeneity in 

observed prostate and pancreatic cancers84,85.  

Descriptions of intratumoral cell-state heterogeneity in breast cancer have included 

cells with relatedness to mammary stem cells, luminal progenitors, differentiated basal 

(myoepithelial) cells, differentiated luminal cells, and mesenchymally-transitioned cells 

22,38,51,67,72,86. Tumor cell states are often appreciated according to well-studied “axes of 

differentiation”, where a given cell can be within the spectrum of being more stem-like or 

more differentiated, more epithelial or more mesenchymal, or more basal or more luminal 

(Fig 1-2). Cell-to-cell differences are also appreciated regarding expression of therapy-

relevant targets, including the estrogen receptor87 and HER2 receptor88.  

 

Figure 1-2 Axes of differentiation 
in breast cancer  

A schematic showing the different axes of 
differentiation where breast tumor cells 
show phenotypic differences. A given 
breast tumor cell can exist in this three 
dimensional space with distinct identity 
on all three axes.  

Adapted by permission from Wiley Periodicals Inc: 
WIREs Systems Biology and Medicine (Granit et 
al., WIREs, 2014), copyright (2014) 
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FIGURE 1 | Axes of differentiation in the normal and cancerous breast. (a) Alignment of breast cancer subtypes (bottom) on a combined linear
axis representing linked differentiation states: stem cell to differentiated, basal to luminal, and mesenchymal to epithelial. (b) The same
differentiation axes, now positioned in a three dimensional scale, with spheres illustrating potential positions of breast cancer subtypes. The red
sphere represents tumors containing cells with high plasticity, which are able to transition (arrows) between differentiation states (e.g., Claudin-low
tumors). The green sphere represents tumors with low plasticity, such as Luminal tumors.

interrelatedness, and allow description of intermediate
and mixed differentiation states.

In this review we discuss the different views of
the differentiation state of breast cancers, assessing
the insights obtained from gene expression signature
analyses, experimental findings, and patient data.
We discuss the interrelationships between basal and
luminal identity, EMT, normal stem and progenitor
cells and breast cancer stem cells, and the biological
implications of the links between these states.

BREAST EPITHELIAL LINEAGES
AND THEIR GENE EXPRESSION
SIGNATURES: THE LUMINAL, THE
BASAL, AND THE STEM CELL
The mammary gland is organized as a tree-like
structure of epithelial ducts embedded in stroma.4

Units containing lobular structures are interconnected
by these ducts, which are composed of two main
distinct cell layers: an inner luminal layer containing
cuboid cells, and an outer layer of basal, myoepithelial
cells, which allow duct contraction (Figure 2(a)). The
luminal and basal layers express different markers,
including distinct cytokeratins. During pregnancy,
luminal cells differentiate into milk-secreting alveolar
cells.

In recent years there has been a concerted effort
to dissect the lineage hierarchy of the mammary
epithelium and identify stem and progenitor cell popu-
lations within it. This resulted in the landmark finding
that cells within the basal/myoepithelial lineage can
function as multipotent mammary stem cells (MaSCs),
which are capable of generating multilineage func-
tional mammary epithelia in vivo.17,18,20,21 These cells
have thus been viewed as representing the top of the
hierarchy of the mammary epithelium, giving rise to
more restricted lineage-specific progenitors, and being

responsible for the continuous generation of all mam-
mary epithelial lineages in the adult4 (Figure 2(b)).
It currently remains unclear whether cells possessing
mammary stem cell potential in the basal layer are dis-
tinct from differentiated, non-stem cell basal cells, or
whether stem cell potential is a general characteristic
of cells in this layer (Figure 2(c)).

The luminal compartment has been shown to
contain mature differentiated luminal cells, which
are unable to generate structures, as well as a
subpopulation of luminal progenitor cells capable
of giving rise to structures containing luminal
cells17,18,20,21 (Figure 2(a) and (b)). Both ER-
expressing and ER-negative cells are present in the
luminal layer, the former comprising 30–50% of
cells30; the overlap between these two subpopulations
and the functional division to mature luminal and
luminal progenitor cells remains somewhat poorly
defined. It is clear, however, fewer of the progenitor
cells express the ER21 and that the ER-negative
fraction is more proliferative30; there is evidence
that both ER-negative and ER-positive progenitor cell
populations exist23 (Figure 2(b)).

Lineage tracing experiments in the mouse
have offered a modified view of the differentiation
hierarchy in the breast: while basal cells do indeed
possess the inherent potential to regenerate the full
mammary epithelium and its two layers, in the
adult gland they do not appear to contribute to
the luminal layer, but, rather, cells in each of the
two layers replenish themselves.22 Thus, a potential
modification of the hierarchical model is that only
during embryogenesis MaSCs of the primordial
mammary epithelium contribute to both lineages,
while in the adult, gland growth and maintenance is
performed by lineage restricted progenitors, yet some
or all basal cells retain bipotent MaSC potential.31

Interestingly, when transplanted in the presence of
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1.2.3 Darwinian selection 

Due to the cell-to-cell differences in genomics, cellular differentiation state, and target 

molecule expression, intratumoral heterogeneity can produce differences in sensitivity to 

cytotoxic and targeted therapeutic agents. This allows a process of Darwinian selection to 

occur during therapy, whereby drug resistant cell populations with distinct genomic or 

phenotypic features are selected by therapy as other sensitive subpopulations die off, 

eventually leading acquired resistance and eventually, progression on therapy19,89.  

Therapeutically-relevant genomic differences amongst tumor cells can include 

mutations in drug target genes themselves, rendering the drug ineffective in clones harboring 

this abberation90. Clonal genetic differences can also involve mutational activation of 

oncogenes or inactivation of tumor suppressors, which can similarly lead to drug resistance 

by altering the signaling network and bypassing the effect of therapy19. A recent longitudinal 

sequencing study by Yates et al.21 examining breast tumor genomics before and after 

neoadjuvant chemotherapy revealed that breast tumors evolve in a process of branched 

evolution, generating distinct genomic clones throughout tumor lifespan, becoming 

multiclonal at the time of analysis by multiregional sequencing. Further, certain clonal 

“branches” are selected by therapy, whereas others die off during treatment.  
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Figure 1-3: Branched evolution and clonal 

selection in TN tumors. 

Adapted from Yates et al, Nature Medicine, 201521, a 
phylogenetic tree showing the clonal diversity in a triple 
negative patient tumor. The patient was treated with 
neoadjuvant chemotherapy combination of epirubicin and 
docetaxel, clones that were lost in post-treatment 
samples are outlined in purple, clones that were unique 
to post-treatment samples are outlined in red, and clones 
that persisted through treatment are outlined in black. 

Adapted by permission from Macmillan Publishers Ltd: Nature Medicine 
(Yates et al., Nat Med., 2015), copyright (2015) 
 

 

Similarly, tumor cell states can provide distinct drug sensitivities due to their 

differences in expression of target molecule expression (HER2, ER)87,88 or drug efflux 

pumps91,92, as well differences in pathway activity. Consistent with this we observe 

differences in drug sensitivity between breast cancer subtypes that occupy distinct 

differentiation states5,13. In a recent study by Gomez-Miragaya et al.78 they demonstrate that 

patient-derived triple negative breast tumors contain distinct subpopulations of cells with 

high CD49f expression that have increased innate resistance to taxane therapies, and are 

quickly selected for by repeated docetaxel dosing as tumors become resistant to treatment. 

This is consistent with other reports of cell-state selection following therapy, including 

mesenchymal cells and CSC-like cells20,22. 

 

TN	Tumor	
Tx	=	Epi	+	Docetaxel	
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1.3 Cell state plasticity in breast cancer 

1.3.1 Cell state plasticity in normal breast development and tissue 

maintenance 

Unlike the genomic differences distinguishing tumor cell clones, the underlying signaling 

network structure and open chromatin architecture that support distinct cell states in tumors 

are dynamic and plastic; cells can switch states through a reversible transition process. These 

transitions are not a novel property gained through carcinogenesis, though arguably 

enhanced71,93, but instead are conserved differentiation, dedifferentiation, and transition 

processes that exist in embryogenesis, development, and in the adult to support wound 

healing and tissue maintenance94.  

In the developing mouse fetus, the mammary gland starts as an offshoot of the ventral 

ectoderm which forms ductal sprouts around embryonic day 1695. At day 16.5, this 

previously dormant rudiment becomes highly active, where cells enter an active mammary 

stem state and begin to proliferate and invade the mammary fatpad, elongating the ductal 

network. Following this rapid morphogenesis, the mammary gland slowly matures until 

puberty, where another rapid elongation phase occurs. A mammary stem cell (MASC) 

population with bipotent potential persists throughout life, however, the MASC phenotype is 

variable at different stages in life; fetal mammary stem cells (fMASC) and adult mammary 

stem cells (aMASC) have many divergent features51,95–97. While fMASC in humans have yet to 
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be described, mammary gland development in the human is thought to follow a similar path 

as mouse mammary gland development, and aMASCs from adult mice and adult humans 

show strong similarities in gene expression98. During development in the human, mammary 

stem cells differentiate into luminal and myopepithelial-lineage restricted progenitors, which 

are populated throughout the branched ductal network, and asymmetrically divide to 

produce differentiated luminal* or myopepithelial cell progeny, respectively. Additionally, 

epithelial cells are often called upon to undergo EMT to generate mesenchymal states, which 

is necessary to carry out mammary gland restructuring during various stages in development 

including puberty, pregnancy, and wound healing99. EMT is a reversible process, as 

mesenchymal cells can undergo mesenchymal-to-epithelial transition back to epithelial 

identity. Unlike the well-described bidirectionality of EMT, differentiation from a more 

stem-like state to a mature cell state is generally regarded as a unidirectional process. 

However, studies have demonstrated that particular cellular stresses can elicit a reverse 

transit of differentiated cells back to more multipotent states in many tissue systems94 and it is 

likely that breast progenitors and even differentiated cell types may possess this 

dedifferentiation capacity given the right cellular signals. Following tissue injury, where 

wound healing requires the regeneration of the MASC population in the newly formed tissue, 

it is hypothesized that dedifferentiation of non-stem breast cells facilitates this process94.  

                                                   

* Differentiated luminal cells of the breast include both ductal cells and alveolar cells. Alveolar cells are primarily located 
at terminal end buds of ducts and are the specialized secretory cell of the organ. 
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1.3.2 The regulation of chromatin, transcription factors, and cell state 

Control over cellular differentiation involves the epigenetic regulation of the genome through 

DNA methylation and histone modifications, enabling enhancement or suppression of key 

differentiation regulators and genes, including cell-fate determining transcription factors. 

Specification of tissue lineages from the germ layers during embryogenesis uses DNA 

methylation to restrict gene expression to tissue-specific programs100. Changes in DNA 

methylation continue to support cellular differentiation throughout life, but cell 

specialization/differentiation within specific tissue lineages, e.g. the mammary epithelium, is 

primarily carried out through regulating the open chromatin architecture of the genome66,101. 

Changes in chromatin condensation and “openness” can direct transcriptional machinery to 

particular promoters and enhancers. Open chromatin architecture changes can be controlled 

by regulating the location and activity of histone modification enzymes, which enhance or 

restrict chromatin accessibility through regulating enhancing acetylation of histone lysine 

residues, or methylation of histone lysine and arginine residues, which can be either 

enhancing or repressive102–104. As well, regulation of histone-modification reader proteins like 

the bromodomain and extraterminal (BET) family can dictate which open regions undergo 

chromatin looping and transcriptional initiation105,106, adding another level of gene expression 

control. This allows the cell to rapidly alter gene expression patterns through chromatin 

dynamics, allowing for cell-state transitions in response to stress like wound healing, or to 

support tissue maintenance and development (see 1.3.1)107. This control over gene 



 

35 

 

expression through chromatin dynamics is observed in basal mammary epithelial cells, where 

“bivalent” activating and repressive histone modifications are found on the ZEB1 gene locus, 

and allow for rapid acquisition of a ZEB1-expressing state through further addition of 

activating histone marks108. Many fate-determining transcription factors (TFs) are believe to 

exist in this bivalent state at their enhancers and promoters, allowing for quick gene 

expression change by tipping the prevalence of activating or repressive histone marks in 

either direction109. Chromatin state regulation of such cell-fate determining transcription 

factors gives the cell a tunable and reversible system to control cell differentiation. In this 

mammary gland, particular sets of transcription factors control lineage differentiation, 

including the luminal differentiation drivers ESR1, FOXA1, and GATA3, and the 

myopepithelial differentiation drivers TP63, SLUG, and EGR1103,110,111. Furthermore, 

epigenetic regulation of the EMT-promotional TFs ZEB1, SNAIL, and TWIST, allow for 

control over mesenchymal transition99,112,113. Many of these factors work in positive feedback 

loops, enhancing their own expression to maintain cell state114. Even the activity of singular 

TFs can have robust control over cell state. Dravis et al115 show that SOX10 expression alone 

can promote transition from a more differentiated epithelial state into a stem-like, 

multipotent state in fetal mammary cells by increases in SOX10 expression alone. Further 

increases in SOX10 expression then stimulate transition from this stem-like epithelial state to 

a mesenchymal, motile state.  
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1.3.3 The influence of therapy on tumor cell state 

Particular cancers and cancer subtypes show high rates of cell state heterogeneity, including 

glioblastoma, small cell lung cancer, colorectal cancer, and triple negative breast 

cancer22,63,64,67,83,116. Cell lines derived from patients with these cancers show an increased 

propensity for cell-state transition. Cell sorting experiments in TN cell lines demonstrate 

that distinct cell basal, luminal, and stem-like cell states co-exist in these cultures, and that 

following cell-state isolation, the isolated cell-state will recapitulate cell-state heterogeneity 

over time through cell-state transitions72,93. This process of stochastic state transition 

maintains a particular equilibrium of cell-states under normal growth conditions, with the 

ratio of states at equilibrium being specific to each cell line67,69,117,118.  

The plasticity of cancer cell states is exemplified when the cell population is exposed 

to extrinsic stresses, including signals and stresses from the microenvironment119,120, as well 

as therapeutic stress. Upon exposure to cytotoxic and targeted therapies, cancer cells can 

transition to distinct drug tolerant persister (DTP) states and survive the therapy in a low-

proliferative state24,25,67,121,122. This transition is rapid, occurring after just 72-hr of treatment 

in numerous studies24,25,121,122 and detectable at 12hr by imagining our studies67, and 

detectable by gene-level epigenetic changes as early as 1hr post treatment in a study by 

Zawitowski et al.18, who demonstrate these gene-level epigenetic changes continue to 

increase over the course of a week. Despite the rapid acquisition of the DTP phenotype, cells 
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appear to maintain this state indefinitely* as long as drug pressure is sustained24,67. It is 

important to note that this drug tolerance mechanism is independent of clonal selection due 

to genetic resistance, and in these long-term drug exposure experiments both mechanisms 

were evident, with the population at large surviving in a low-proliferative DTP state, but 

clones of proliferative cells also emerging and expanding that harbored resistance-conferring 

mutations upon sequencing analysis24.   

Consistent with the epigenetic mechanisms involved in cellular control over 

differentiation state in normal tissue systems (see 1.3.2), we find that therapy-induced cell-

state plasticity evokes similar epigenetic processes. Changes in chromatin modifier enzyme 

activity are observed following chemotoxic and targeted therapy including the activation of 

the KDM family of histone demethylases in response to temezolomide in glioblastoma and in 

response to EGFR-targeted therapy in in lung cancer24,122, as well as histone acetyl transferase 

activity in response to targeted MEK inhibitors in breast cancer18. Further, therapeutic stress 

also stimulated the activity of the Bromodomain and Extraterminal (BET) family of histone 

acetyl-reader proteins in response to HER2-targeted therapy123, PI3K-targeted therapy124, 

and MEK-targeted therapy18 in breast cancer cell lines. This included the BET family member 

BRD4, which has also been shown to possess both histone acetyl reader functions and histone 

acetyl-transferase (HAT) activity125. Transition to a new cell state requires dynamic 

chromatin remodeling, involving the opening of chromatin to activate new genes as well as 
                                                   

* DTP cells remained until all long-term culture experiments were ended, this was 3 weeks in our study67 and “weeks” in 
another study24.  
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the condensation of chromatin to inactivate of currently expressed genes. It is therefore likely 

that drug-induced state transitions involve the activity of many chromatin-modifier protein 

families including histone de-acetylates (HDACs) and histone methyl-transferees in addition 

to the histone acetyl-transferases and histone demethylases mentioned above.  

A recent study by Zawistowki et al18 details the gene level changes in histone 

modifications as targeted MEK inhibitors induce an adaptive transcriptional responses in 

breast cancer cells. They demonstrate that in response to MEK inhibitors, TN breast cancer 

cell lines up-regulate numerous kinases to maintain cell survival signaling. These gene 

expression changes involve the regulation of gene enhancer histone acetylation, and histone 

demethylation, and involve the activity of BRD4, histone acetyl-transferase p300, histone 

methyl-transferase JMJD6. While their study focused on changes in compensatory kinase 

gene activation and did not assess cellular differentiation state, they used the same therapeutic 

agents and cell line models as our study, and the kinetics of these epigenetic changes align 

with our observations of DTP state transition and open chromatin architecture remodeling67. 

Further, therapeutic inhibition of BRD4 similarly attenuated the state changes in their study 

similar to our observations. Together, these results suggest that chromatin-state changes on 

enhancers of both kinase genes and fate-determining transcription factor genes are co-

occurring during the transition to a drug tolerant persister state. 
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1.3.4 Therapeutic strategies to combat plasticity 

To improve the efficacy of targeted therapy in TN tumors it is critical that we suppress cell-

state transitions. Due to the involvement of numerous epigenetic modifier and reader 

proteins in adaptive chromatin remodeling, many groups have found success through 

pharmacological targeting of the epigenetic enzymes that support enhancer activation. 

Sharma et al24 and Banelli et al122 demonstrate that KDM-family histone demethylases activity 

support the DTP formation in treated NSCLC cell lines and glioblastoma cell lines, 

respectively, and that small-molecule HDAC inhibitors function to inhibit KDM activity, 

suppressing DTP formation and improve cell kill. 

Targeting the activity of BET proteins is also an effective strategy to prevent DTP 

generation. Numerous drug companies are developing small molecule BET inhibitors. These 

drugs compete with acetylated histone residues for BRD2/3/4 binding, inhibiting the 

epigenetic reader function of these enzymes. These agents show great potential at preventing 

adaptive enhancer remodeling and transition to DTP states18,67,123,124. 

Finally, drug strategies that involve the simultaneous inhibition of multiple signaling 

pathways can be successful at treating heterogeneous and plastic tumors. The proper 

selection of kinase-targeted inhibitors, which would inhibit the full spectrum of 

subpopulation dependencies, will in theory be effective at heterogeneous tumor inhibition. 

However, in practice, each two-drug combination tested in our study67 still produced drug 

tolerant persisting cells. Consistent with this, dual kinase inhibitor combinations have not 
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shown great success in clinical trials of TN patients57–59. This may be due to two agents being 

insufficient at fully covering the necessary pathways to inhibit all cancer cell subpopulations, 

which may be alleviated by increasing the number of administered drugs, but we are limited 

in the number of simultaneous drugs that can be dosed due to drug side effects and toxicity, 

making it impractical to research 3 or 4-drug combinations. Sequential therapies may offer 

more promise, where one drug is administered followed by a second agent that targets the 

adaptive pathway changes leading to DTP formation. Supporting this concept, administering 

a SRC inhibitor within the first 24 hours of applying taxane therapy can greatly improve cell 

kill and tumor regression25.  

An orthogonal approach to achieve simultaneous inhibition of numerous signaling 

pathways may be through the use of pharmacologic activators Protein Phosphatase 2A 

(PP2A). PP2A functions to dephosphorylate a broad range of cellular signaling molecules, 

including kinases in the MAPK and PI3K pathways, c-Myc, Src, and the apoptosis regulators 

BAD and BCL2. In a normal cell, PP2A counteracts the activities of cellular kinases through 

dephosphorylating kinase targets or the kinases themselves, adding a second level of control 

to signaling pathway activity126,127. During tumorigenesis, however, most cancers lose the 

expression or activity of PP2A128,129, leading to unchecked oncogenic pathway signaling.  

Because of this, the pharmacologic activation PP2A results in rapid dephosphorylation and 

inactivation of proliferative and survival signaling mediators, resulting in cancer cell 

cytotoxicity and tumor growth inhibition in various cancers130–133. Due to the simultaneous 

inhibition of numerous signaling pathways, we proposed that PP2A activators may 
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circumvent TN tumor resistance due to Darwinian selection and cell-state plasticity. We 

show here that two distinct strategies of PP2A activation results in robust cytotoxicity of TN 

cell lines without evidence of phenotypic selection or induction of phenotypic plasticity. 

Furthermore, these PP2A activators effectively inhibited tumor growth in TN mouse models, 

demonstrating the potential of these activators to treat heterogeneous and plastic breast 

cancers.  

 

Figure 1-4: PP2A targets and activating 

agents. 

A schematic showing a reduced network of the 
proteins regulated by PP2A (red lines). Also 
included are the endogenous inhibitors of PP2A: 
SET and CIP2A.  Therapeutic agents that activate 
PP2A are also shown, including OP449, which 
competes for SET binding, relieving endogenous 
PP2A repression, as well as the small-molecule 
activators of PP2A: DT061 and DT1154.  

 
 
 
 
 
 
 

1.4 Summary 

Breast cancers display heterogeneity from a macro to micro level, with profound tumor-to-

tumor differences and cell-to-cell differences in single tumors. Additionally, we now 

appreciate that tumor cells are phenotypically plastic and can adapt to therapeutic stress 
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through adaptive cell-state transitions. This heterogeneity and plasticity has only been well-

studied in the last decade, and there is still much to be discovered about the heterogeneity 

between, and within tumors. Further, there is much to discover about how tumor cells elicit 

changes to the chromatin landscape and undergo cell-state transitions. Standard of care 

treatment strategies were established before many of these discoveries on intratumoral 

heterogeneity and cell-state plasticity occurred. Resultantly, current clinical practices do not 

properly appreciate the mechanisms of resistance that intratumoral heterogeneity and 

plasticity present. In order to improve the therapeutic management of triple negative tumors, 

we need to adapt our clinical protocols so that they appropriately target the heterogeneity 

found within tumors, without selecting for- or inducing aggressive and deadly tumor 

subpopulations. This will first require the implementation of better strategies to measure 

clonal and phenotypic heterogeneity in tumors to identify those patients that are prone to 

these resistance mechanisms. Additionally, significant research into new drug combinations, 

drug sequences, or novel multi-targeted drugs will be needed to develop therapies that best 

manage these heterogeneous and plastic tumors.  
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2 Measuring cell state heterogeneity in breast cancer 
 

Tyler Risom, Koei Chin, Juha Rantala, Nick Kendsersky, Lacey Dobrolecki, Mike Lewis, 

Joe Gray, Rosalie Sears  

 

The data presented in this chapter is taken from a manuscript titled Measuring and Managing 
Cell State Plasticity in Basal-Like Breast Cancer to Improve Therapeutic Control, which is in 
review at Nature Communications. I designed the experiments detailed in this chapter with 
mentoring from the other authors. Mike Lewis and Lacey Dobroloecki prepared the patient-
derived xenograft TMAs. I personally performed every experiment and analyzed the data.  
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2.1 Abstract 

Tumor cells exhibit an enhanced trait of phenotypic plasticity, and are prone to 

differentiation state transitions both stochastically and in response to extrinsic signals. In 

breast cancer, this plasticity results in the coexistence of tumor cells with diverse cellular 

phenotypes within the same tumor, known as intratumoral phenotypic heterogeneity. As this 

heterogeneity may support therapeutic resistance and tumor behavior including metastasis 

and invasion, it is critical that we develop systems to quantify this heterogeneity in order to 

identify heterogeneous tumors and treat them appropriately. By utilizing markers of cellular 

differentiation with multi-color immunofluorescence, and novel methods of automated single 

cell image-analysis, we have developed a system to measure phenotypic heterogeneity in 

primary breast tumors, animal models of breast cancer, and breast cancer cell lines. We used 

this system to demonstrate that tumors of the triple negative and basal-like subtypes possess 

higher levels of phenotypic heterogeneity than other subtypes. Advancement of the image-

based and gene expression-based metrics of phenotypic heterogeneity used in this work will 

provide useful tools for the identification of patients with high intratumor heterogeneity that 

may require alternative treatment strategies.  
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2.2 Introduction 

Intratumoral cell-state heterogeneity is observed in many cancers, where within a single 

tumor, tumor cells can occupy different cell states marked by distinct molecular expression 

patterns relating to unique cell function. Historically, this has focused on identifying tumor 

cells with enhanced self-renewal and tumorigenic potential, or “cancer stem cells” 

(CSCs)51,74,78,8651,73,77,85 , but studies have also described the non-uniformity in mesenchymal 

cell-state identity22,83,134, and diversity in cell states resembling normal differentiated states in 

the cancer’s respective tissue of origin51,72,75. This heterogeneity is pronounced in certain 

cancers and cancer subtypes including glioblastoma64,70,135, small cell lung cancer83,119, colon 

cancer65, and HER2+ and triple negative breast cancers, and studies have shown cell lines 

derived from these tumors not only show this heterogeneity in vitro67,70,93,117,118, but the 

distinct cell states have the capacity to recapitulate cell state heterogeneity if isolated and 

allowed to grow over time70,93,118. These observations draw a direct link between cell state 

plasticity and cell state heterogeneity, suggesting that heterogeneity is a consequence of an 

enhanced capacity to exist in, and transition between, distinct cell states. 

Cell state heterogeneity and plasticity have important implications regarding cancer 

therapy. Distinct cancer cell states show specificity in drug sensitivity5,80,93, suggesting that 

Darwinian selection of particular drug-resistant cell states can occur during treatment.  

Consistent with this, particular state enrichments are observed post-therapy20,22,116. 
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Furthermore, cell-state plasticity can allow cells to transition to “drug tolerant persister” 

states that survive therapeutic stress18,67,70,108,136–138, again leading to acquired resistance. 

Due to the therapeutic implications of cell-state heterogeneity and its known 

correlations to specific subtypes of cancer, cell state heterogeneity may represent a powerful 

metric to better improve patient tumor diagnosis, prognosis, and treatment selection. 

Consistent with this, an 2006 study demonstrated significant differences in overall survival 

comparing tumors that show heterogeneity basal and luminal cell state identity, versus 

tumors that were more homogeneously basal or luminal81. These findings support efforts to 

develop new imaging systems that can quantify single cell phenotypes within patient tumors 

and calculate a metric of cell-state heterogeneity. In this study we develop an 

immunofluorescent (IF) imaging protocol and image analysis pipeline that allows for the 

measurement of single cell phenotypes within numerous primary breast cancers and breast 

cancer models. We focus on heterogeneity in differentiation states defined by the expression 

of luminal, basal, and mesenchymal cell state markers, and employ the Shannon Diversity 

index88,116,139 as a metric of cell-state heterogeneity. Using this system, we are able to 

demonstrate that the triple negative and basal-like subtypes are enriched for cell-state 

heterogeneity, and that this heterogeneity is conserved within in vitro and in vivo in models of 

triple negative breast cancer. We also explore a novel method to calculate differentiation-

state heterogeneity based on gene expression levels, which may be a provide an alternative 



 

47 

 

tool to assess tumor heterogeneity particularly in cases where tissue sections are unavailable 

for imaging analysis but tumor RNA exists. 

 

 

2.3 Results 

2.3.1 Differentiation-state heterogeneity in primary breast cancers and 

patient derived cell lines 

We examined the relationship between differentiation-state heterogeneity and breast tumor 

subtype in primary patient samples, patient derived xenografts (PDX), and breast cancer cell 

lines.  We measured single cell expression of Cytokeratin 19 (K19), Cytokeratin 14 (K14), 

and Vimentin (VIM) to define distinct differentiation states, and to serve as an operational 

metric of cell state heterogeneity. These intermediate filament markers are preferentially 

expressed in the luminal, myopepithelial (basal), and mesenchymal cell states of the normal 

breast, respectively51,117,118,140–142. We first profiled treatment-naïve tumors of varying 

hormone receptor status, including “luminal” (ER+/PR-/HER2-), HER2+ (ER+/-/PR-

/HER2+) and triple-negative (TN, ER-/PR-/HER2-) tumors using immunofluorescent 

imaging and automated single cell image quantitation, multiple tumor regions were analyzed 

if possible (Fig. 2-1a, b). Nuclei were detected using a DNA counterstain (DAPI) and a 

cytoplasmic signal detection mask was extended from each nucleus to measure cytoplasmic 
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marker expression. Single cell data was then analyzed with cytometry software, where gates 

for single cells and marker positivity were determined based on marker-negative controls. All 

epithelial-marker positive cells (K19+ or K14+) were considered to be tumor derived, 

excluding histologically determined normal structures and DCIS lesions. Cell phenotype is 

calculated based on expression of the three markers, and the cell phenotypes are mapped in 

an X/Y dot plot to visualize cell-state heterogeneity in the tissue (Fig. 2-1b, bottom). We 

calculated the frequency of differentiation states within each tumor region and the diversity 

of these states using the Shannon diversity index (Fig. 2-1c). Using this method, we found 

that luminal tumours and the HER2+/ER+ tumours were almost exclusively comprised of a 

K19+/K14-/VIM- differentiation-state (Appendix A-2). In contrast, most TN tumors 

contained numerous K19, K14, and VIM-defined differentiation states, including robust 

proportions of epithelial tumor cells expressing more than one of these differentiation state 

markers. It is important to note that a low rates of K19+/VIM+ false positivity was observed 

within all tumors due to the close proximity of K19+ tumor cells and VIM+ stroma. A 

subpopulation of K19+/K14+/VIM- cells was observed in most HER2+/ER- tumors (2/3) 

whereas all other HER2+ tumors were K19-dominant like the luminal group. As a result, the 

mean Shannon diversity index was significantly higher in TN tumors that in non-TN tumors 

(Fig. 2-1d). We next examined 31 molecularly-profiled PDX tumors143 to examine the 

relationship between differentiation-state heterogeneity and molecular subtype. Patients 

were of varying hormone receptor status and molecular subtype (Fig. 2-1e, f, Appendix A-

3). The PDX models allowed us to distinguish tumor cells through the use of human-specific 
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antibodies against nuclear protein Ku80, expanding the measurable tumor subpopulations to 

also include K19-/K14-/VIM+ cells, and tumor cells that lacked expression of our 

differentiation marker set. We observed robust heterogeneity within these PDX models, 

likely related to the overrepresentation of TN and basal-like tumors in the set (Fig. 2-1f). 

Once again, the Shannon diversity index was significantly higher in TN tumors compared to 

non-TN tumors (Fig. 2-1g), consistent with our observations in primary patient samples. 

Further, tumors of the basal-like molecular subtype had significantly higher Shannon diversity 

indices than HER2-Enriched (HER2E) subtype tumors (Fig. 2-1h).  
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Figure 2-1: Differentiation-state heterogeneity is enriched in triple negative 

and basal-like subtype tumors. 

(A) A schematic showing the cell segmentation and image cytometry steps involved in single cell 
phenotype determination from tumor images. (B) Representative IF images of treatment-naïve 
primary breast cancers of different hormone receptor status: “luminal” (ER-/PR-/HER2-), HER2+ 
(ER-/PR-/HER2+), and triple negative (ER-/PR-/HER2-). Showing K19 (blue), VIM (red), K14 
(green) and DAPI nuclear counterstain (yellow). Accompanying phenotype maps of cell states 
identified by image cytometry are displayed below each image. (C) The frequency of six epithelial 
cell states is shown for each tumor region in a vertical scatterplot with accompanying Shannon 
diversity index and the status of ER, PR, and HER2 receptor positivity shown below, based on 
pathologist IHC standards. Luminal (L), HER2+ (H), and TN (T) tumor regions are arranged left to 
right by increasing Shannon index, regions of the same tumor denoted by “a, b, c” e.g. L2a, L2b, 
L2c. (D) Graph comparing Shannon index between tumors of different hormone receptor subtype 
(multiple regions of individual tumors are averaged if available), *P < 0.05, **P < 0.01. SEM 
shown. (E) IF images of PDX tumors with low and high Shannon indices stained for DAPI (white), 
Ku80 (yellow), K19 (blue), K14 (green) and VIM (red), scale bars = 100µm.  (F) The frequency of 
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eight tumor cell states based on K19, K14 and VIM expression is shown for 31 patient-derived 
xenograft tumors in a vertical scatterplot with accompanying Shannon index, patient ER, PR and 
HER2-receptor status, and intrinsic molecular subtype denoted by color: HER2E (purple), basal-
like (cyan). Tumors are arranged left to right by increasing Shannon index. 

 

2.3.2 Differentiation-state heterogeneity in breast cancer cell lines  

We next examined differentiation-state heterogeneity in breast-cancer cell lines 

(BCCLs) using high-content immunofluorescent of luminal B, HER2+, basal-like, and 

claudin-low cell lines (Fig. 2-2a). DAPI signal was again used to identify single nuclei and the 

nuclei shape was expanded to measure cytoplasmic signal, here however, the nuclear region 

was excluded from cytoplasmic signal measurements (Fig. 2-2b). Signal intensity of K19, 

K14, and VIM was measured in each cell cytoplasm mask, and cellular mean fluorescent 

intensities (MFI) were plotted on bivariate dot plots showing the MFI distribution of each cell 

line (Fig. 2-2c). Marker positivity gates were established using cell lines that lacked K19, 

K14, or VIM expression as negative controls, and the frequency of eight differentiation states 

was calculated along with the Shannon diversity index for each cell line (Fig. 2-2d). IF and 

image cytometry profiling of these lines supported our observations in the primary cancers 

and PDX tumors: triple negative cell lines had significantly higher diversity indices than non-

TN lines, and both TN molecular subtypes (basal-like and claudin low) showed significantly 

higher diversity indices compared to luminal B and HER2E subtype BCCLs (Fig. 2-2e). Cell 

state heterogeneity persisted in 3-dimensional culture as well as in orthotopic xenografts of 

these cell lines (Fig. 2-2f).  
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Figure 2-2: Breast cancer cell lines model the differentiation state heterogeneity 

observed in their tumor subtype of origin. 

(A) IF images of BCCLs with differing molecular subtypes stained for DAPI (yellow), K19 (blue), 
K14 (green) and VIM (red), scale bars = 100µm. (B) A schematic showing the method of single 
cell segmentation and cytoplasmic signal quantitation in IF images of cell lines. (C) Bivariate dot 
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plots comparing K14 vs. VIM (top) and K19 vs VIM (bottom) are shown showing single cell 
identity of BCCLs of the Luminal B, HER2+, claudin-low, and basal-like. (D) The frequency of 
eight cell states based on K19, K14, and VIM expression is shown for each BCCL in a vertical 
scatterplot with accompanying Shannon index and molecular subtype denoted by color: luminal B 
(yellow), HER2+ (purple), basal-like (cyan), claudin-low (orange). Triple negative (TN) status is 
marked by black squares. Cell lines are arranged left to right by increasing Shannon index. (E) 
Graph of Shannon index, comparing TN and non-TN BCCLs, as well as different molecular 
subtypes. *P < 0.05, **P < 0.01, ***P < 0.001, ns = not significant, SEM shown. (F) Images 
showing the HER2+ cell line JIMT1 and basal-like line HCC1143 grown on 2D plastic, grown in 
3D on matrigel, and grown in orthotopic xenografts. All stained with K19 (blue), K14 (green), and 
VIM (red). 

 

2.3.3 Assessing differentiation-state heterogeneity through gene 

expression 

We next examined expanded sets of luminal-, basal-, and mesenchymal-marker gene 

expression in RNAseq data from BCCLs144. We focused on the expression of 20-gene gene 

sets for each lineage, including those demonstrated to be specific to the luminal or 

myopepithelial differentiations states of the normal breast, as well as 20 classic epithelial-to-

mesenchymal transition markers51,103,117,118,141,142,145–148 (Fig. 2-3a). We performed 

unsupervised clustering on 44 BCCLs originally derived from patient samples using these 60 

genes. Consistent with our imaging, claudin low lines clustered with dominant mesenchymal 

gene expression, and luminal B lines, as well as the majority of HER2+ lines, clustered with 

dominant expression of luminal genes. Basal-like lines expressed myopepithelial-specific 

(basal) genes, but also showed high levels of luminal gene expression and mesenchymal gene 

expression. We calculated the cumulative Z-score mean of the luminal, myopepithelial, and 



 

54 

 

EMT geneset expression to serve as a metric of molecular differentiation-state heterogeneity 

(Fig. 2-3b), and the basal-like lines showed significantly higher values of this metric 

compared to all other groups (Fig. 2-3c). Further, basal-like lines showed significantly lower 

variance between geneset means compared to all other subtypes (Fig. 2-3c). The HER2+ 

lines showed a bimodal distribution in geneset variance. A recent gene expression analysis of 

hundreds of breast cancers by The Cancer Genome Atlas revealed that two very distinct 

molecular subtypes exist in human HER2+ tumors, one with more luminal features and 

commonly ER+ termed luminal-HER2 (L-HER2), and another set of tumors that show 

higher basal gene expression and are rarely ER+, termed HER-enriched (HER2E). We 

separated the HER2+ cells lines based on their L-HER2 and HER2E subtype149 and observed 

that HER2E cell lines showed significantly lower variance between lineage genesets (Fig. 2-

3e). Finally we tested the concordance between our heterogeneity calculations from imaging 

and gene expression analysis. We compared the Shannon diversity index from 

K19/K14/VIM differentiation-state heterogeneity determined in imaging studies (Fig. 2-2d), 

to the variance between lineage geneset averages, and observed a significant inverse 

relationship between the two metrics (Fig. 2-3f, R2=0.356, P = 0.011). Cell lines with high 

Shannon diversity indices in the imaging analysis had low variance in 

luminal/basal/mesenchymal geneset averages, and vice versa. Further, molecular subtypes 

grouped in this bivariate analysis, basal-like lines showing low variance and high Shannon 

indices, and luminal and L-HER2 lines having high variance and low Shannon indices. 
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Figure 2-3: Heterogeneity in luminal, basal, and mesenchymal geneset 

expression correlates with image based cell-state heterogeneity metrics. 

(A) Heatmap of BCCL gene expression of 20 luminal, 20 myopepithelial, and 20 EMT-correlated 
genes. BCCLs are arranged by unsupervised clustering. Cell line molecular subtype is denoted by 
color: orange, claudin-low; cyan, basal-like; yellow, luminal B; purple, HER2+, grey, not 
determined. (B) Graph of the mean normalized gene expression value (Z-score) of the luminal (L, 
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blue), basal (B, green), and mesenchymal (M, red) genesets are displayed in each cell line with 
standard deviation of expression. Cell lines are arranged in descending order (left to right) 
according to the mean Z-score of all genesets. Cell line subtype is denoted by color as in B. (C) 
Graph of the cumulative Z-score of the luminal, myopepithelial, and EMT genesets in BCCLs of 
different molecular subtype, *P < 0.05, **P < 0.01, ****P < 0.0001, ns = not significant, SEM 
shown. (D) Graph of the variance between the mean geneset expression of the luminal, 
myopepithelial, and EMT genesets in BCCLs of different molecular subtype, asterisks denote 
significant difference in geneset variance *P < 0.05, **P < 0.01, ***P < 0.001, ns = not significant, 
SEM shown. (E) Graph of the variance between HER2+ cell lines that are either of the L-HER2 or 
HER2E molecular subtypes. Asterisks denote significant difference in geneset variance **P < 0.01. 
(F) A scatterplot comparing BCCL Shannon diversity index presented in Fig. 2d to the variance 
between basal, luminal and mesenchymal genesets presented in D. A linear regression with 
significantly non-zero slope P = 0.011 is shown on the graph. 

 

2.4 Discussion 

In this study we develop an operational metric of cell-state heterogeneity based on the 

expression of luminal, basal, and mesenchymal differentiation-state markers. These markers 

are preferentially expressed in normal differentiation states in the breast and additionally 

mark non-uniformities in tumor cell differentiation within breast tumors38,72,150. We used 4-

color immunofluorescent imaging, single-cell segmentation, and cytometry software to 

calculate the frequency of distinct differentiation-states in each tumor. As a metric of 

heterogeneity of these states, we employed the Shannon Diversity index, which was initially 

developed by Claude Shannon in the 1960s in order to calculate the entropy, or diversity, of 

a system with multiple species139. This equation has been successfully used to measure species 

diversity in bacteria151, animals species152, and recently, in tumor states. Using our image 

analysis pipeline we are able to demonstrate that differentiation-state heterogeneity is not 

evenly distributed in the breast cancer patient population, with luminal (ER+/PR+/HER2-) 
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tumors showing low levels of differentiation-state heterogeneity, being near-homogenously 

composed of tumor cells in a luminal cell state expressing K19, whereas HER2+/ER- 

tumors had higher heterogeneity due to the common existence of a K19+/K14+ 

subpopulation, and triple negative tumors having the highest levels of heterogeneity, 

harboring tumor cells that are positive for K19, K14, VIM, and combinations of these 

markers.  

Analysis of the breast cancer cell lines supported our conclusions from primary 

patient samples, showing enriched levels of differentiation-state heterogeneity in the triple 

negative and basal-like subtypes. Further, the cell lines gave us an opportunity to examine the 

relationship between transcriptional heterogeneity in differentiation marker expression, and 

heterogeneity in differentiation marker expression measured by immunofluorescence (IF). 

We found that variance between the mean-expression of the luminal, basal, and 

mesenchymal genesets significantly correlated with the Shannon diversity index calculated 

from our imaging assays. This gene expression based metric may be a useful tool to validate 

heterogeneity observed in imaging assays, or serve as a surrogate in cases where tumor 

sections are not available. Interestingly, this variance metric proved particularly useful at 

distinguishing the L-HER2 and HER2E molecular subtypes of HER2+ breast cancer. Where 

L-HER2 lines showed significantly higher variance, and HER2E lines having very low 

variance in gene expression between luminal, basal, and mesenchymal genesets. This geneset 

variance metric may prove useful to separate these subtypes clinically, or restrospecitvely in 
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gene expression studies of patients tumors where L-HER2 / HER2E separation might reveal 

meaningful findings.  

Taken together, the analysis systems and results presented here lay a foundation to 

improve upon for the quantitation of intratumoral phenotypic heterogeneity. As we continue 

to better understand the relationships between cell state heterogeneity, cell state plasticity, 

tumor behavior, and therapeutic resistance, these methods will become increasingly 

important for the optimal diagnosis and treatment of breast cancer patients. 
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3 Managing drug-induced differentiation-state plasticity in 
basal-like breast cancer to improve therapeutic control 

 

Tyler Risom, Ellen M. Langer, Margaret P. Chapman, Juha Rantala, Mariano J. Alvarez, 

Andrew Fields, Nicholas D. Kendsersky, Carl R. Pelz, Katherine Johnson-Camacho, Lacy 

Dobrolecki, Koei Chin, Anil J Aswani, Nicholas J Wang, Paul Spellman, Andrea Califano, 

Mike Lewis, Claire J. Tomlin, Andrew Adey, Joe W. Gray, Rosalie C. Sears 

 

The data presented in this chapter are taken from a manuscript titled “Measuring and 
Managing Cell State Plasticity in Basal-Like Breast Cancer to Improve Therapeutic Control”, 
which is in review at Nature Communications. I designed the experimental approach in this 
manuscript with Juha Rantala, Joe Gray, and Rosalie Sears. I performed the majority of 
experiments with the exception the following collaborative work: drug screen heterogeneity 
measurements were performed with Juha Rantala, cell state mathematical modeling with 
Margaret Chapman and Claire Tomlin, VIPER analysis of RNAseq data with Mariano Alvarez 
and Andrea Califano, and sciATACseq with Andrew Fields and Andrew Adey. With 
exception to collaborative work, I analyzed all of the data and produced all final figures for 
publication. I wrote the manuscript with feedback and editing from the other authors. 
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3.1 Abstract 

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic 

plasticity and is associated with poor therapeutic control using cytotoxic and targeted 

therapies. We show here that cell-state heterogeneity defined by expression of 

differentiation-state markers is high in triple-negative and basal-like breast cancer subtypes, 

and that drug tolerant persister (DTP) cell populations with altered differentiation-state 

marker expression emerge during treatment with a wide range of pathway-targeted 

therapeutic compounds. Our findings indicate that the DTP states arise through cell-state 

transition, rather than by Darwinian selection of preexisting drug-resistant subpopulations, 

and these transitions involve dynamic remodeling of the open chromatin architecture. 

Increased activity of a number of chromatin modifier enzymes was observed in DTP cells, 

including upregulation of the BRD4 network. Consistent with this, we show that co-

treatment with the PI3K/mTOR inhibitor BEZ235 and the BET inhibitor JQ1 prevented 

changes to the open chromatin architecture and inhibited the acquisition of a DTP state, 

resulting in ubiquitous cell death in vitro and tumour xenograft regression in vivo. 
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3.2 Introduction 

The mammary gland contains a diverse repertoire of epithelial cell states that rely on 

chromatin dynamics for specification103,153. Throughout development these states include 

distinct fetal and adult stem cell states, lineage-restricted luminal and myoepithelial 

progenitors, mature luminal and myopepithelial states, and mesenchymal-transitioned 

cells51,95,118,146,148. While DNA methylation plays a predominant role in early lineage 

distinction in the maturing embryo100, cell differentiation from stem cell states in the adult is 

primarily carried out through dynamic changes in histone modifications at promoters and 

distal regulatory elements102–104, altering the open chromatin architecture and providing 

enhanced expression of new lineage and differentiation genes154,155. These chromatin 

dynamics are critical for the specialized cell state heterogeneity that maintains normal 

mammary gland function.  

Tumors that arise from the complex epithelial compartment of the mammary gland 

are also phenotypically diverse. Breast tumors can evolve to represent numerous molecular 

subtypes that share similarities with normal mammary cell states41,51,118. Many breast tumors 

also display intratumoral phenotypic heterogeneity22,63,72,116 and are populated with tumor 

cells in functionally distinct cell states. Different cell states can possess distinct drug 

sensitivities5,13,22,23,121, making cell-state heterogeneity a challenge for therapeutic 

management of breast tumors.  
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An additional challenge, which may be even harder to address, is the inherent 

plasticity of tumor cell states93,156,157. Cytotoxic and targeted therapies have been shown to 

trigger the transition to drug-tolerant persister (DTP) cell states that can survive under drug 

pressure at a low-proliferative state24,25,121, leading to incomplete responses to therapy and/ 

or recurrence. Recent findings demonstrate that dynamic chromatin remodeling processes, 

similar to those employed in normal cell fate determination, can underlie these transitions to 

drug-tolerant states24,70,158. While it is well established that evasion of therapeutic control can 

occur through Darwinian selection of genetically diverse cellular subpopulations19,159, 

mounting evidence implicates dynamic chromatin remodeling as an equally important driver 

of therapeutic tolerance, which must be addressed to improve clinical outcomes. 

Understanding, therefore, which breast tumor subtypes have high cell state heterogeneity and 

propensity for cell-state plasticity, whether specific therapeutics trigger DTP transitions, and 

what targetable epigenomic processes underlie these transitions will be critical steps to 

improving our management of heterogeneous breast tumors. 

Here we use models of phenotypically heterogeneous breast cancers to investigate how 

cell-state heterogeneity and plasticity contribute to the generation of drug-tolerant persister 

states. We identify multiple classes of targeted therapeutics that steer initially heterogeneous 

cell populations to more homogeneous, but drug-tolerant persister states, and use gene 

expression profiling to identify upregulated signaling and epigenetic pathway activity in the 

DTP states. This strategy identified the upregulation of BRD4 activity in the DTPs generated 
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from MEK and PI3K/mTOR targeted therapies. We demonstrate that inhibition of the 

bromodomain and extraterminal (BET) family of proteins by JQ1 can prevent the global 

change in open chromatin architecture that accompanies DTP state formation during 

PI3K/mTOR inhibitor response, and moreover, combination of PI3K/mTOR and BET 

inhibitors drives complete cell kill of basal-like breast cancer cell lines in vitro, and tumor 

regression of orthotopic xenografts in vivo. Our study demonstrates that triple negative (TN) 

and basal-like breast cancers show high cell-state heterogeneity and plasticity, and advances 

our understanding of how drug combinations targeting chromatin dynamics can improve our 

ability to manage these aggressive subtypes of breast cancer. 

 

3.3 Results 

3.3.1 Targeted therapies generate distinct drug-tolerant persister states 

Differentiation-state heterogeneity is enriched in the triple negative and basal-like subtypes of 

breast cancer, where cells coexists in distinct differentiation states defined by basal, luminal 

and mesenchymal marker expression (Chapter 2)67. We investigated the impact of high 

differentiation-state heterogeneity in basal-like, triple-negative breast cancers towards 

response to targeted therapy. We used high-content imaging to assess changes in cell number 

as well as K19, K14, and VIM expression in the heterogeneous basal-like cell lines HCC1143 

and SUM149PT following a 72hr treatment with 119 pathway-targeted therapeutic 
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compounds, examining 7-doses of each compound (Fig. 3-1a). Most drugs had incomplete 

cytotoxicity at max doses and altered differentiation-state marker expression in the remaining 

cell populations. We used K-means clustering to identify compounds for which DTPs 

exhibited similar patterns of K19/K14/VIM expression. Figure 2a shows six general 

response groups in HCC1143 where compounds produced drug-tolerant populations with: 

(A) increased K14 expression, (B) increased K19 and VIM expression, (C) increased 

expression of all markers at high dose, (D) increased expression of all markers across doses, 

(E) minimal change in marker expression, or (F) variable, non-dose-dependent response. 

Importantly, compounds with the same molecular target or related pathway targets clustered 

together. For example, inhibitors targeting MEK and BRAF grouped together within the 

K14-enriched cluster (Group A), inhibitors targeting mTOR and PI3K grouped within the 

K19/VIM-enriched cluster (Group B), inhibitors targeting the ErbB receptors, Src family 

kinases, or Aurora kinases enriched all markers (Groups C and D), and inhibitors of Flt3 and 

other related receptor-tyrosine-kinase families had minimal influence on cell proliferation or 

differentiation-marker expression, likely due to the lack of reliance of breast cancer cells on 

these kinases (Group E). A similar array of phenotypic responses was observed in SUM149PT 

following screening, and drug targets clustered into similar groups as HCC1143 (Fig. 3-S1). 
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Figure 3-1: Targeted therapies enrich distinct drug-persisting differentiation 
states. 

(A) Heatmaps show the change in K19, VIM, and K14 expression compared to DMSO control wells 
as a Z-score (left), and change in proliferation (right, percent of control) of HCC1143 cells following 
72hr exposure to 7 doses of 119 targeted therapeutics. Phenotypic responses were clustered using 
K=6 supervised K-means clustering. Select drugs from each cluster and their primary therapeutics 
target(s) are labeled to the right. (B) IF images of HCC1143 cells following 72hr treatment with 
increasing doses of MEK inhibitors Trametinib and AZD6244 and the PI3K/mTOR inhibitors 
BEZ235 and PI103, or a DMSO control, showing K19 (blue), K14 (green) and VIM (red), scale bars 
= 100µm. (C) Graphs of therapy-induced changes in cell number and mean-cell MFI of K19 (blue, 
right axis, as Z-score), VIM (red), and K14 (green), in HCC1143 cells following 72hr incubation 
with increasing doses of the MEK inhibitor Trametinib, or PI3K/mTOR inhibitor BEZ235. The 
projected maximum level of inhibition, or Einf, is shown for each drug. (D) Heatmaps of the change 
in mean-cell MFI (Z-Score) for K8, K19, K5, K14 and VIM is shown for 8 basal-like BCCLs 
following 72hr incubation with 250nM or 2500nM of Trametinib (left) or BEZ235 (right). 
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Unsupervised clustering, using data from both agents, was used to group cell lines based on 
phenotypic response. (E) GSEA results as a volcano plot of Normalized Enrichment core (NES, x-
axis) vs. FDRq (-log, y-axis) examining 32 genesets related to mammary cell states and breast cancer 
subtypes, enrichment compared between DMSO and 1µM Trametinib (left), or DMSO and 1µM 
BEZ235 (right) in HCC1143 cells treated for 6d. Select top-enriched genesets are labeled. 

 

We analyzed compounds associated with the K14-enriched and K19/VIM-enriched 

groups in more detail since these left cells in substantially different aggregated states of 

differentiation-marker expression. We evaluated responses of HCC1143 cells after 72hr 

treatment with escalating doses of two MEK inhibitors, Trametinib and AZD6244 (K14-

enriched cluster, A), and two dual-specificity PI3K/mTOR inhibitors, BEZ235 and PI103 

(K19/VIM-enriched cluster, B). As observed in the drug screen, these agents left sizeable 

DTP populations that had distinct differentiation marker expression. The MEK inhibitors 

produced DTP cells with large cytoplasmic volume and high expression of K19 and K14, and 

reduced cellular VIM levels (Fig. 3-1b). Conversely, the PI3K/mTOR inhibitors reduced 

K14 expression, and produced distinct DTP cells with high K19 and VIM expression. These 

divergent effects of MEK and PI3K/mTOR inhibition on DTP differentiation-state were also 

observed in SUM149PT cells, and with additional basal markers including Cytokeratin 5 (K5) 

and Cytokeratin 17 (K17), and luminal marker Cytokeratin 8 (K8, Fig. 3-2). We measured 

the effects of MEK and PI3K/mTOR inhibitors on cell viability and differentiation-state 

identity across larger dose ranges and found that both inhibitors produced large DTP 

populations indicated by high projected maximal inhibition “Einf” values, and an observable 
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plateau in the dose response curve (Fig. 3-1c, Fig. 3-3a). These analyses also showed that 

MEK inhibition drove increases in cellular mean-fluorescent intensities (MFI) of K14 and 

K19, and reductions in VIM, while PI3K/mTOR inhibitors caused mean cell MFI reductions 

in K14 and increases in K19 and VIM. To determine the conservation of these phenotypic 

responses to therapy we assayed an expanded set of basal-like cell lines with diverse genetic 

backgrounds and different baseline differentiation-state heterogeneities (see Ch. 2). We 

measured the change in mean-cell MFI of K8, K19, K14, K5 and VIM in eight basal-like 

BCCLs treated with low and high dose of Trametinib and BEZ235 (Fig. 3-1d). Unsupervised 

clustering of phenotypic responses to these agents showed that the majority of these basal-like 

lines shared a similar phenotypic response: Trametinib enriched a K19/K5/K14-high 

basoluminal state with lower K8 and VIM levels, and BEZ235 enriched a state marked by low 

basal cytokeratin expression and increased levels of K19 expression in most lines, and K8 in 

HCC1937. Assessment of the phenotypic response to these drugs in luminal-B and claudin-

low cell lines showed that Trametinib and BEZ235 affect cell proliferation, but the cells 

remain in their respective K19+/K14-/VIM- and K19-/K14-/VIM+ differentiation states 

following treatment (Fig. 3-3b). 
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Figure 3-2: MEK and PI3K/mTOR inhibitors have opposing influence on basal 
differentiation in drug-persisting cells 

Images of HCC1143 and SUM149PT under DMSO control conditions or following 72hr of 1µM 
Trametinib of 1µM BEZ235, showing DAPI, K8, K5, K17 and a 4-color merged image, scale bars = 
100µm 
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To confirm that the differentiation-state enrichments following MEK or 

PI3K/mTOR inhibitors were altering broader gene programs, and not just the expression of 

our cytokeratin marker sets, we performed RNA-sequencing and subsequent Geneset 

Enrichment Analysis (GSEA) on treated cell populations testing for enrichment of 32 curated 

genesets from the molecular signature database160 and additional studies relating to normal 

breast cell states98,103,141, breast cancer subtypes33,38,161,162, and breast cancer 

proliferation38,163. Consistent with the increased basal cytokeratin expression observed by IF 

following Trametinib treatment, we observed significant enrichment of genesets specific to 

the Basal A subtype of breast cancer161, basal BCCLs162, and myopepithelial cells of the 

normal breast141 (Fig. 3-1e, Fig. 3-3c). We also observed enrichment of genesets specific to 

human luminal progenitor cells and murine fetal mammary stem cells, two related 

progenitor/stem states98 that show dual expression of basal and luminal markers51,95, 

consistent with the enrichment of the K19hi/K14hi differentiation-state following Trametinib. 

Consistent with the reduction of basal cytokeratin expression, and the mixed 

luminal/mesenchymal markers in BEZ235 DTPs, we observed enrichment of genesets 

relating to luminal progenitors98, mesenchymal BCCLs162, the normal-like subtype of breast 

cancer33, and adult mammary stroma98 (Fig. 3-1e, 3-3d). Finally, consistent with the reduced 

proliferation following treatment with these drugs, both treatments induced significant de-

enrichment of proliferation genesets, and BEZ235 treatment resulted in enrichment of 

apoptosis and cell death genesets (Fig. 3-1e, 3-3c, d). 
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Figure 3-3: MEK and PI3K/mTOR enrich distinct DTP differentiation-states in 

basal-like cell lines 

(A) Graphs of therapy-induced changes in cell number and mean-cell MFI of K19 (blue, right axis, as 
Z-score), VIM (red), and K14 (green), in HCC1143 cells following 72hr incubation with increasing 
doses of the MEK inhibitor PD0325901, or PI3K/mTOR inhibitor PI103. The projected maximum 
level of inhibition, or Einf, is shown for each drug. (B) Images of two basal-like cell lines (HCC1143 
and SUM149PT), two Claudin-low lines (BT549 and HS578T), or two Luminal B cell lines (T47D 
and MCF7) following 72h treatment with the nearest-to-IC50 dose of Trametinib, BEZ235, or 
DMSO, dose displayed on image. K19 (blue), VIM (red), and K14 (green) shown, scale bars = 
100µm. (C) Select top-enriched genesets are shown for 6day Trametinib treated HCC1143 cells vs. 
DMSO with Normalized Enrichment Score (NES), Nominal P-value (p-value), and FDR q-value 
(FDRq) shown. (D) Select top-enriched genesets are shown for 6day BEZ235 treated HCC1143 
cells vs. DMSO  

 

3.3.2 Cell state dynamics during therapy 

We next explored the dynamics of therapy-induced differentiation-state changes and the 

roles of state-selective proliferation, state-selective cell death, and cell-state transition in the 

phenotypic response to targeted therapy. We defined four prominent, drug-induced 

differentiation-states as 1) cells that expressed high levels of K14, “K14hi”, 2) cells that 

express high levels of VIM and low levels of K14, “VIMhi”, 3) cells the express high levels of 

only K19 and low levels of K14 and VIM, “K19hi”, and 4) cells that express low levels of all 

markers, “K19low/VIMlow/K14low” (with “high” defined as a cell with MFI exceeding the 

average MFI in DMSO wells and “low” being values below the DMSO average). We 

measured the frequency of these states over time following treatment with 1µM Trametinib 

or 1µM BEZ235 in HCC1143 cells. Trametinib induced a significant increase in the 
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frequency of the K14hi state while significantly reducing the frequency of the other three 

states over time (Fig. 3-4a). Conversely, BEZ235 induced a significant increase in the K19hi 

state and a robust reduction of the K14hi state over time. We reasoned that differential 

growth between K14hi and K14low states under drug pressure might explain the observed state 

enrichments, and tested this possibility by pulsing 5-ethynyl-2”-deoxyuridine (EdU) 12-hours 

prior to fixation of each 12-hr timepoint in order to mark cells that have recently transitioned 

through S-phase. Both drugs had a strong cytostatic influence, reducing the rate of EdU 

incorporation to near zero levels with Trametinib, and reduced to a third-of-control levels 

with BEZ235 (Fig 3-4b). Cells remained in this low proliferative state as long as drug 

pressure was maintained (tested to 21 days, Fig. 3-5b). Importantly, no significant 

differences in S-phase frequency were observed between cells expressing high or low levels 

of K14, K19, or VIM, except for one timepoint with Trametinib treatment where VIMhi and 

VIMlow EdU rates differed, which we attributed to noise (Fig. 3-4b, c). Mass cytometry 

experiments supported these observations, showing minimal differences in IdU incorporation 

frequency between cells expressing high and low values of luminal and basal markers 

following Trametinib or BEZ235 (Fig. 3-5c-e). In light of these results suggesting that all 

differentiation-states share a similar cytostatic response to each therapy, we investigated 

whether differential cell death rates may enable the differentiation-state enrichments 

following Trametinib or BEZ235 treatments. We examined the rates of total cell death 

throughout the 72hr treatment by measuring positivity for the membrane impermeable 

fluorescent dye YO-PRO-1 and found that BEZ235 induced significant gains in cell death at 
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36hr onwards, and Trametinib only showed significant gains in cell death compared to 

control at 48 and 72hr (Fig. 3-4d). Notably, these significant gains in cell death occurred 

after significant changes in differentiation-state frequencies were found, which started at 12hr 

of treatment (see Fig. 3-4a). We were limited in our ability to examine state-specific cell 

death due to non-specific antibody staining in dying cells and the loss of adherent-cell 

morphology. As an alternative approach, we tested the necessity of cell death for the 

observed phenotypic outcomes by combining Trametinib or BEZ235 with Z-VAD-FMK, an 

inhibitor of caspase-mediated cell death. Z-VAD-FMK treatment significantly reduced cell 

death in the DMSO control condition and reduced cell death in Trametinib treated cells by 

82% and BEZ235-treated cells by 71% when combined (Fig. 3-4e) Despite this, drug-

induced differentiation-state composition at 72hr was nearly identical to wells treated with 

Trametinib or BEZ235 alone Fig. 3-4f). These results argue against a dominant role for state-

selective cytostasis or cytotoxicity and suggest cell-state transition is the likely driver of 

differentiation-state enrichment following Trametinib and BEZ235.  
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Figure 3-4: Cell state transitions underlie DTP-state enrichment. 

(A) Graphs show the change in frequency (vs DMSO) of four differentiation states defined as K14hi 
(green), VIMhi/K14low (red), K19hi/VIMlow/K14low (blue), and K19low/VIMlow/K14low (grey) 
following exposure to 1µM Trametinib or 1µM BEZ235. Asterisks depict significant gains or losses 
in state frequency vs. 0hr, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001, n=15 with SD. 
(B) Graphs showing the percent of EdU+ cells expressing high or low levels of K14, K19, or VIM 
following treatment with 1µM Trametinib or BEZ235, *P < 0.05, ns = not significant, SEM shown. 
(C) IF image showing both K14hi and K14low cells positive for EdU-incorporation following 36hr of 
Trametinib treatment, with EdU (white), DAPI (blue), K14 (green), and VIM (red) shown, scale bar 
= 100µm. (D) Graph showing the percent of dying cells (YO-PRO-1+) following treatment with 
1µM Trametinib or BEZ235. Asterisks denote significant differences compared to DMSO control, 
*P < 0.05, n=8 with SEM. (E) Graphs show the percent of dying cells (YO-PRO1+), and the 
frequency of cells of four differentiation states (as in a) following 72hr exposure to 500nM 
Trametinib, 500nM BEZ235, or DMSO +/- the pan-caspase inhibitor Z-VAD-FMK (50µM). ***P 
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≤ 0.001, ****P ≤ 0.0001. No significant (ns) differences in differentiation-state frequency were 
observed +/- Z-VAD-FMK, color denoting differentiation state (as in a), n=12 with SD. (F) 
Corresponding IF images of remaining HCC1143 cells in e following 72hr exposure to Trametinib, 
BEZ235 or DMSO +/- Z-VAD-FMK. K19 (blue), K14 (green), and VIM (red), DAPI not shown, 
scale bars = 100µm. (G) A schematic describing a computational model of cell-state behavior where 
cells can transition between a K14hi and a K14low cell state, undergo death in either state, or 
proliferate in either state. (H) Simulated fold change of K14hi (bright green) and K14low (grey) cell-
state proportions over 72 hours following treatment with 1µM Trametinib (vs. DMSO) with average 
endpoint values denoted as ySim. Simulations were generated from 15 replicate initial conditions 
using models of HCC1143 cell population dynamics, identified to test two potential drivers of 
differentiation-state enrichment. K14hi Darwinian selection (left): Trametinib kills only K14low cells, 
and cell-state transition is inhibited. Transition-mediated (right): Trametinib kills K14low and K14hi cells 
in equal proportions, and cell-state transition is allowed. Experimentally observed average fold 
change (vs DMSO) of K14hi (dark green) and K14low (black) cell-state proportions is overlaid with 
endpoint values denoted yObs. (I) IF images of HCC1143 cells following 6 days of 1µM Trametinib 
or 1µM BEZ235, then following 17 days of culture without drug. K19 (blue), K14 (green) and VIM 
(red), scale bars = 100µm. 

 

To further evaluate the influence of state-selective death or cell-state transitions on 

drug-induced differentiation-state enrichment, we designed a computational tool that utilized 

our timecourse data to identify a cell-state dynamical model of proliferation, death, or 

transition between K14hi and K14low states (Fig. 3-4g). By comparing our data to model 

predictions under special constraints, for example with state-specific cell death, we tested if 

K14hi Darwinian selection or cell-state transition were more influential in Trametinib-

induced differentiation-state enrichment. For all trials, cell-state proliferation rates were set 

equal since we had measured that directly with our EdU+ analysis (Fig. 3-4b). For a baseline, 

cell death measured following DMSO treatment was allocated evenly between K14high and 

K14low states. To test the hypothesis of state-specific selection of K14hi cells, we allocated cell 
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death following Trametinib entirely to the K14low state, and cell-state transition was 

disallowed. Conversely, to test the transition-mediated hypothesis, cell death following 

Trametinib was allocated evenly between K14high and K14low states and cell-state transition 

was permitted. Under the Darwinian selection hypothesis, computational simulations 

predicted very little divergence between K14hi and K14low subpopulations over time, which 

was inconsistent with our experimental observations (Fig. 3-4h, left). However, under the 

alternative hypothesis in which cell-state transitions were enabled, simulated Trametinib-

induced dynamics of HCC1143 cells predicted differentiation-state enrichment similar to the 

experimental observations (Fig. 3-4h, right). The transition-mediated hypothesis also 

recapitulated closer to observed K14hi and K14low values in simulations of BEZ235 response 

(Fig. 3-5f). Together, these data implicate cell state transition as the driver of DTP-state 

aggregation following Trametinib and BEZ235. Finally, if the enrichment of specific cell 

states occurred through state transitions, we would expect that these therapy-induced states 

would be reversible and cells would return to heterogeneity following withdrawal of the 

drugs. Indeed, we observed that cells moved back to control-levels of heterogeneity within 

17 days of drug withdrawal, and regained their pre-treatment sensitivity to BEZ235 and 

Trametinib, supporting once again a transition-mediated mechanism (Fig. 3-4i, Fig. 3-5g-i). 
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Figure 3-5: Further examination of DTP cell kinetics following Trametinib and 

BEZ235. 

(A) Schematic showing how high expression of a given marker is determined from DMSO 
population values. (B) Graph showing EdU incorporation rates in HCC1143 cells every 3-4 days 
while being maintained on 1µM Trametinib or 1µM BEZ235 for 21 days, with the incorporation rate 
of DMSO shown for the first 3 days of growth. (C) Dot plots showing mass cytometry results 
comparing single cell IdU and K14 levels following 72hr of 1µM Trametinib, 1µM BEZ235, or a 
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DMSO control. (D) Graph showing the percent of cells expressing high levels of the luminal marker 
CLDN4, basal markers K14 and K17, or mesenchymal marker VIM following 72hr of 1µM 
Trametinib or BEZ235, measured by mass cytometry. (E) Graph showing the frequency of IdU+ 
cells in cells also expressing high and low values of CLDN4, K14, K17, and VIM from d. (F) 
Simulated fold change of 1µM BEZ235-treated HCC1143 cells vs. DMSO using the model presented 
in Fig. 3g with two separate hypotheses: K14low Darwinian selection (left) where all cell death 
occurs in K14hi cells and cells cannot transition between states, cell-state transition (right) where 
cell death is distributed evenly between states and cells can transition between states. Observed and 
simulated values at 72hr are shown to the right of both plots. (G) Graph showing the cell state 
composition of 4 differentiation states vs. DMSO, as in Figure 3a, following 72hr of 1µM Trametinib 
or 1µM BEZ235 treatment then drug washout, examining cell state composition every 3-4 days for 
17 days, n=4 with SD. (H) Dose response curves showing sensitivity to BEZ235 in untreated cells, 
or cells treated with Trametinib or BEZ235 then recovered from drug washout for 30 days. ns = not 
significant, full dose response compared using two-way ANOVA, examining ‘interaction’. (I) Same 
as in h examining sensitivity to Trametinib in untreated or inhibitor-recovered cells. 

 

3.3.3 Drug combinations reduce therapeutic escape 

We sought to take advantage of the aggregation of DTP cell identity following BEZ235 and 

Trametinib treatment with the hypothesis that these enriched states may more heavily rely on 

specific pathways for survival. We identified upregulated pathways by measuring gene 

expression profiles in DTP cells after 6 days of treatment with Trametinib or BEZ235 

through RNA-seq and used the Virtual Inference of Protein-activity by Enriched Regulon 

(VIPER) algorithm164. By using the set of transcripts most associated to each regulatory 

protein as endogenous multiplexed reporter assays, VIPER infers the differential activity of 

such regulatory proteins between two conditions. We used VIPER to identify regulatory 

protein changes in BEZ235 or Trametinib treated HCC1143 cells compared to a DMSO 

control, then mapped these VIPER-inferred protein activity signatures onto multiple 
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pathway-ontology databases using the DAVID functional annotation tool165 (Fig. 3-6a, b). 

These analyses suggested that cells remaining after treatment with a PI3K/mTOR inhibitor 

had increased pathway activities including MAPK, anti-apoptotic, and NFkB, while those 

remaining after treatment with a MEK inhibitor had increased pathway activities including 

PI3K, integrin, FGF and JNK (Fig. 3-6b). Both drug tolerant populations shared enrichment 

of JAK-STAT, Notch, TGF and Ras pathway regulators. We identified upregulated and 

targetable proteins in each of these pathways, and evaluated the anti-proliferative synergy 

using inhibitors against these targets. This included in BEZ235 combinations with ABT737 

(BCL2 mimetic), SCH772984 (ERKi), and Trametinib. As well as being evaluated with 

BEZ235, Trametinib was combined with SP600125 (JNKi), EHOP-16 (RACi), and both 

drugs were evaluated with combined TG101384 (JAK2i) and DAPT (γ-secretase inhibitor). 

This strategy identified synergistic drug combinations, indicated by combination indices166 

below 1 at 75% (CI75) and 90% (CI90) inhibitory doses in HCC1143 and SUM149PT cells 

(Fig 3-7a, b). 
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Figure 3-6: Targeting DTP states using VIPER informed pathway analysis. 

(A) Schematic showing how RNAseq information is analyzed to identify targetable pathway 
regulators using VIPER and DAVID pathway ontology using the KEGG and Biocarta databases. (B) 
Plots show enriched pathways identified by the DAVID pathway annotation tool, using upregulated 
VIPER regulators in BEZ235 and Trametinib DTPs as input. P-value (-log) is plotted against FDR 
values (-log). Select pathways are labeled, and druggable targets within those pathways are listed. 

 

Direct combination of BEZ235 and Trametinib resulted in the best combination 

indices, and this combination significantly increased apoptosis (Fig. 3-7c) and significantly 

reduced S-phase transition as indicated by reduced EdU-incorporation rates (Fig. 3-7d). 

Despite these encouraging metrics of drug synergy, 100% cell death was never obtained, 

except with EHOP-16, which showed high single agent toxicity. We investigated the 
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Trametinib and BEZ235 combo-persisting cell states by assessing K19, K14, and VIM 

expression by immunofluorescence in three basal-like cell lines, HCC1143, SUM149PT and 

HCC70, following treatment with combined Trametinib and BEZ235. Figure 3-7f shows that 

the combo DTP populations in all three cell lines were enriched for a K19hi state. We 

measured the frequency of the four differentiation-marker defined cell states (as in Fig. 3-2a) 

in response to Trametinib + BEZ235 in HCC1143 cells and found a significant time-

dependent increase in the frequency of the K19hi state and a significant decrease in VIMhi 

state. There was no change in K14hi state, which included cells that maintained high 

expression of both K19  and K14 (Fig. 3-7g). GSEA results showed that enriched genesets 

following Trametinib + BEZ235 were a mixture of those observed with either single agent, 

with few genesets uniquely enriched by combo treatment. (Fig. 3-7h). Together, the GSEA 

results along with the minimal change in K14 expression suggest that the two drugs maintain 

divergent effects on the myopepithelial program. In this DTP state, the combo-treated cells 

showed decreased sensitivity to numerous FDA-approved cytotoxic therapies (Fig. 3-8b). 

Similar to the single agent treatments, acquisition of this DTP state did not involve state-

selective cytostasis, and cells could remain in this DTP state with minimal proliferation for 

three weeks (Fig. 3-8c, d). However, this state was reversible, and the cell population moved 

back to control levels of differentiation-state heterogeneity and control levels of sensitivity to 

Trametinib + BEZ235 combination treatment upon drug withdrawal (Fig. 3-8e-g). 
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Figure 3-7: Drug combinations 
targeting DTP-enriched pathways 
still leave persisting cells of distinct 
identity. 

(A) Graphs of combination indices (CI) from 
drug combinations including BEZ235 (left) 
or Trametinib (right) and agents targeting 
upregulated pathway regulators in DTP states 
identified by VIPER analysis. CIs were 
calculated at 75% (CI75), and 90% (CI90) 
dose inhibitory values from replicate 
colorimetric proliferation assays, n=3 with 
SEM. (B) Graph showing the percent of 
dying cells (YO-PRO-1+) in HCC1143 cells 
following the addition of 1µM BEZ235, 1µM 
Trametinib, the combination of the two 
drugs, or a DMSO control. Asterisks denote 
significant gains in percent cell death in 
combination-treated cells, *P < 0.05, **P < 
0.01, ***P < 0.001, ****P < 0.001, n=4 
with SEM. (C) Graphs show the percent of 
HC1143 cells positive for EdU following 
treatment with 1µM Trametinib, 1µM 
BEZ235, a combination of agents, or DMSO 
control. Asterisks denote significant 
reduction in %EdU+ in combination treated 
cells, *P < 0.05, n=4 with SD. (D) Graphs 
compare the maximal inhibition (EMax, as 
%control proliferation) for single agent 
BEZ235, Trametinib, the agents from a, or 
combinations thereof. n=3 with SEM. (E) IF 
images of three basal-like cell lines before 
and after exposure to 72hr of the indicated 
doses of BEZ235 + Trametinib showing K19 

(blue), VIM (red), and K14 (green) expression, DAPI not shown, scale bars = 100µm. (F) Graphs 
show the fold change in frequency (vs. DMSO) of four differentiation states in HCC1143, as in Fig. 
3a,b, following addition of 1µM BEZ235 + 1µM Trametinib. Asterisks depict significant gains or 
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losses in state frequency vs. 0hr, *P ≤ 0.05, n=15 with SD. (G) GSEA results as a volcano plot of 
Normalized Enrichment core (NES, x-axis) vs. FDRq (-log, y-axis) examining 32 genesets related to 
mammary cell states and breast cancer subtypes, enrichment compared between DMSO and 1µM 
Trametinib/BEZ235 combination in HCC1143 cells treated for 6d. Select top-enriched genesets are 
labeled. 
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Figure 3-8: Combination therapy leaves distinct drug-persisting cells that are 
broadly drug-tolerant and can proliferate and recapitulate heterogeneity upon 
drug removal. 

(A) Graphs showing Trametinib + BEZ235 treatment-induced changes in cell number (black line, 
left axis) and population mean-cell intensities (Z-scores, right axis) of K19 (blue), VIM (red), and 
K14 (green) in HCC1143 following 72hr incubation with increasing doses of two different 
PI3K/mTORi + MEKi combinations, n=3 with SD. (A) Graphs showing the sensitivity of 
HCC1143 cells to numerous cytotoxic agents following 72h pre-treatment of DMSO, or 72h pre-
treatment with 1µM BEZ235 + 1µM Trametinib, followed by 72h incubation with the cytotoxic 
agent. (A) Graph showing the frequency of EdU positive cells that also express high or low levels of 
K14, K19, or VIM in HCC1143 cells following 72hr treatment with 1µM Trametinib + 1µM 
BEZ235. ns = not significant, n=2, SD on technical replicates shown. (A) Graphs showing cell 
number and EdU incorporation rates in HCC1143 cells every 3-4 days while being maintained on 
1µM Trametinib + 1µM BEZ235 for 21 days, with the cell number and EdU incorporation rate of 
the DMSO control population shown for the first 3 days of growth. (A) Immunofluorescent images 
of HCC1143 cells treated with 1µM Trametinib + 1µM BEZ235, or DMSO, for 6 days, and then 
following 17 days of culture after drug washout. (f) Graph showing cell state composition of 4 
differentiation as a fold change vs. DMSO, as in Figure 3a, b, following 72hr of 1µM Trametinib + 
BEZ235 treatment then drug washout, examining cell state composition every 3-4 days for 17 days, 
n=4 with SD. (g) Dose response curves showing sensitivity to BEZ235 + Trametinib combination 
treatment in untreated cells, or cells treated with combination for 72hr then recovered from drug 
washout for 30 days. ns = not significant, full dose response compared using two-way ANOVA, 
examining ‘interaction’. 

 

 

3.3.4 Inhibiting differentiation-state transitions with BET inhibition 

Since we determined that DTP states arise through state transitions and having failed to find a 

targeted combination that achieved 100% cell kill, we sought to explore different therapeutic 

strategies. Reasoning that cell-state transitions leading to DTP states requires changes to the 

chromatin landscape to enhance and express new genes, we looked for enhanced chromatin 

modification enzyme activity upon the differentiation-state transitions induced by Trametinib 
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and BEZ235 using GSEA of RNA-seq data. Trametinib and BEZ235 DTPs both showed 

significant enrichment of genesets related to high BRD4167,168, KDM5B169, and EZH272 

activity (Fig. 3-9a). We tested the possibility that BET protein-mediated chromatin 

regulation supports drug-induced transitions by combining the BET inhibitor JQ1 with 

Trametinib and BEZ235. While treatment with JQ1 or the kinase inhibitors as single agents 

could not achieve complete cell kill, the combination of JQ1 and BEZ235 resulted in 

complete cell kill in all four basal-like cell lines and prevented the formation of a drug 

tolerant persister population (Fig. 3-9b). This was evidenced by lack of a dose-response curve 

plateau with JQ1 + BEZ235, significant increases in maximal inhibition and negative 

projected maximal inhibition (Einf) values for all basal-like lines tested, indicative of the 

ability to kill all cells. Luminal B cell lines, however, which previously showed minimal cell-

state heterogeneity and therapy-induced differentiation-state transition (see Fig. 2-2), did not 

show a significant increase in maximal inhibition and had positive Einf values for the JQ1 + 

BEZ235 combination (Fig. 3-9c). Accordingly, drug synergy analysis showed strong synergy 

between JQ1 and BEZ235 in all basal-like lines, resulting in CI75 and CI90 values <0.5, 

whereas these drugs had an antagonistic relationship in Luminal B lines with CI75 and CI90 

values near or above 1 (Fig. 3-9d). Trametinib + JQ1 also produced synergistic CI values and 

increases in Emax in basal-like cell lines (Fig. 3-10a, b), however, the combination was not 

able to completely kill HCC1143 cells at maximum dosing, lacked synergy at CI90, and had 

positive Einf values, suggesting an inability to enact complete cell kill in this basal-like line. 

The triple combination of Trametinib, BEZ235, and JQ1 did, however, enact complete cell 



 

86 

 

kill and prevent DTP formation in HCC1143 (Fig. 3-10c). This synergistic relationship 

between JQ1 and the MEK and PI3K/mTOR inhibitors is consistent with observed 

significant gains in cell death (Fig. 3-9e) and significant reduction of proliferation (Fig. 3-9f).  

 

 

 

 

 

 

 

 

 

Figure 3-9: BET inhibitor combinations improve cell kill and suppress DTP 
transition. 

(A) GSEA results as a volcano plot of Normalized Enrichment core (NES, x-axis) vs. FDRq (-log, y-
axis) examining 25 chromatin modifier enzyme activity-related genesets, enrichment compared 
between DMSO and 1µM BEZ235 (left), or DMSO and 1µM Trametinib (right) in HCC1143 cells 
treated for 6d. Select top-enriched genesets are labeled. (B) Dose-response curves show the efficacy 
of BEZ235 alone (red), JQ1 alone (blue), or a combination of the two agents (purple, equimolar 
ratio) in four basal-like cell lines using a colorimetric proliferation assay. E-infinity (Einf) values of 
single agent BEZ235 (red) and BEZ235 + JQ1 (purple) are displayed. Asterisks depict significant 
gains in Emax comparing BEZ235 to BEZ235 + JQ1, *P < 0.05, **P < 0.01, ***P < 0.001, ****P 
< 0.001, ns = not significant, n=5 with SEM. (C) Same as b showing two Luminal B cell lines. (D) 
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Graph showing combination indices for the BEZ235 + JQ1 drug combination at 75% (CI75), and 
90% (CI90) inhibitory doses for 4 basal-like and 2 luminal B BCCLs, n=5 with SEM. (E) Graph 
showing the percent of dying cells (YO-PRO-1+) in HCC1143 following the addition of 1µM 
BEZ235, 1µM Trametinib, 2µM Jq1, the combinations of these agents, or a DMSO control. 
Asterisks denote significant gains in percent cell death in combination-treated cells vs. single agent 
BEZ235 or Trametinib, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001, n=3 with SEM. (F) 
Graph showing the percent of Ki67 positive HCC1143 cells following 72hr of DMSO, 2µM JQ1, 
1µM Trametinib, 1µM BEZ235, or combinations with JQ1. Asterisks denote significant difference in 
Ki67+ frequency, ****P < 0.0001, n=16 with SD. (G) IF images of HCC1143 cells following 72hr 
exposure to DMSO, 400nM BEZ235, 400nM Trametinib, 8µM JQ1, or the combination of these 
agents. K19 (blue), K14 (green), and VIM (red), DAPI not shown, scale bars = 100µm. (H, I) 
Graphs show total cell number and the frequency of K14hi cells following the treatments outlined in 
e. Asterisks denote significant change in the frequency of K14hi cells, or cell number, *P < 0.05, 
***P < 0.001, ****P < 0.001, n=27 with SD. 

 

We next analyzed the influence of JQ1 on differentiation-state marker expression in 

HCC1143 cells treated at sub-lethal doses with Trametinib, BEZ235, JQ1, or combinations 

thereof (Fig. 3-9g). JQ1 again significantly reduced cell number when combined with these 

agents and it suppressed the magnitude of differentiation-state transitions, maintaining a 

significantly lower frequency of the K14hi cell state when used in combination with 

Trametinib, and maintaining a significantly higher frequency of the K14hi state when used in 

combination with BEZ235 (Fig. 3-9h, i).  
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Figure 3-10: JQ1 shows synergy with Trametinib and Trametinib + BEZ235 
combinations. 

 (A) Graph showing the combination indices of Trametinib + JQ1 at 75% inhibitory values (CI75) 
and 90% inhibitory values (CI90) for four basal-like cell lines, n=3 with SEM. (B) Dose-response 
curves of Trametinib, JQ1, and Trametinib + JQ1 in four basal-like cell lines. Asterisks denote 
significant gains in Emax between Trametinib and Trametinib + JQ1, **P < 0.01, ****P < 0.0001, 
n=4 with SEM. (C) A representative dose response curve of BEZ235 + Trametinib, JQ1 alone, and 
the three drugs in combination in HCC1143 cells. (D) Graph showing the percent of Ki67 positive 

HCC1143 cells following 72hr of DMSO, 2μM JQ1, 1μM Trametinib, 1μM BEZ235, or 
combinations with JQ1. Asterisks denote significant difference in Ki67+ frequency, ****P < 
0.0001, n=16 with SD. 

 

3.3.5 JQ1 prevents chromatin accessibility changes associate with DTP 

generation 

We used single cell combinatorial indexing Assay for Transposase Accessible Chromatin 

sequencing (sciATAC-seq170) to better understand how BEZ235 and Trametinib are affecting 

the open chromatin architecture to induce DTP states, and how BET protein inhibition might 
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affect this process. Latent semantic indexing followed by t-distributed Stochastic Neighbor 

Embedding (t-SNE) was performed to visualize global chromatin architecture differences at 

single cell resolution between DMSO, BEZ235, and Trametinib treated HCC1143 cells (Fig. 

3-11a). This analysis revealed that BEZ235 and Trametinib greatly change the landscape of 

accessible chromatin regions, inducing distinct state-space enrichment in the t-SNE space. 

Interestingly, small subpopulations of DMSO cells occupy these BEZ235 and Trametinib 

regions, consistent with therapeutic-enrichment of a particular chromatin architecture that 

exists under normal growth conditions. To better understand the contribution of these 

chromatin accessibility changes to DTP state-transition, we looked for changes in 

transcription factor (TF) accessibility by examining TF DNA-binding-motif prominence 

within the open chromatin regions of BEZ235- and Trametinib-DTP cells using 

chromVAR171. We found that the drugs had profound effects on accessibility of specific TF 

motifs: BEZ235 enriched sites were high in AP1, ATF, and TCF DNA-binding motifs (Fig. 3-

11b). Consistent with the mixed luminal and mesenchymal gene expression programs in 

BEZ235 DTPs (see Fig. 3-1e) we also found increased accessibility of the EMT-promoting 

TFs ZEB1, TWIST1/2, SNAI1/2, and luminal lineage TFs ESR1, PGR and GATA3. 

Trametinib DTPs conversely showed enrichment of the SP/KLF family of TFs, Homeobox 

TFs, and the myopepithelial lineage specific TF EGR1103 and other EGR family members 

(Fig. 3-11b). NFkB and Rel motifs were enriched in both DTPs.  
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Figure 3-11: Changes in open 
chromatin architecture underlie 
DTP transition and are inhibited 
by JQ1. 

(A) t-SNE plot of all cells following 72hr 
of 1µM BEZ235, 1µM Trametinib, or a 
DMSO control in HCC1143, calculated 
from sciATAC-seq results. Single cells are 
colored based on treatment, BEZ235 
(magenta), Trametinib (cyan), DMSO 
(grey) (B) A dot plot showing enriched 
DNA-binding protein motifs in the open 
chromatin sites following BEZ235 or 
Trametinib treatment, normalized to 
DMSO values. Select related transcription 
factor motifs are enlarged, colored, and 
labeled. (C) t-SNE plot of all cells 
following 72hr of 1µM JQ1 (yellow), 
1µM BEZ235 (magenta), JQ1 + BEZ235 
(maroon), or a DMSO control (grey), 
calculated as in a. (D) Line graph showing 
the level of motif enrichment for six 
groups of transcription factors is shown 
for DMSO, BEZ235, JQ1, and JQ1 + 
BEZ235 treatments. (E) Graph of GSEA 
results showing the NES of transcription 
factor activity-related genesets shown to 
be significantly enriched (p < 0.05) 
following 72hr of BEZ235 treatment, with 
the subsequent NES of that geneset in 
JQ1-treated, and BEZ235 + JQ1-treated 
cells shown adjacently. (F) IF images 
showing K18 (blue), K14 (green), and 
GATA3 (red) expression in HCC1143 
cells following 72hr treatment with 
DMSO, 1µM BEZ235, 2µM JQ1, or 
BEZ235 + JQ1, scale bars = 100µm. (G) 
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Graph showing the frequency of GATA3+ cells in HCC1143 following the treatments in f, asterisks 
depict significant differences in GATA3+ frequency, *P < 0.05, **P < 0.01, ****P < 0.001, n=3 
with SEM. (H) Graph of GSEA results showing the NES of breast phenotype genesets shown to be 
significantly enriched (p < 0.05) following 72hr of BEZ235 treatment, with the subsequent NES of 
that geneset in JQ1-treated, and BEZ235 + JQ1-treated cells shown adjacently. (I) A graph shows 
the change in tumor volume over time of HCC70 xenografts treated with a vehicle control (black 
line), BEZ235 (40mg/kg QD, red line), JQ1 (50mg/kg QD, blue line), or BEZ235 + JQ1 (purple 
line). Asterisks denote significant difference in tumour volume between combination treated 
tumours and other groups, denoted by color: BEZ235, red; JQ1, blue; vehicle, black. *P < 0.05, 
**P < 0.01, ***P < 0.001, n=8 with SEM. (J) Graph showing the frequency of K14+ human 
(KU80+) tumour cells in each HCC70 xenograft following treatment with BEZ235, JQ1, the 
combination of agents, or vehicle control, n=8 with SEM. 

 

We used sciATAC-seq to further assess how BET inhibition with JQ1 suppresses 

DTP-state enrichment by BEZ235. Figure 3-5c again shows that BEZ235 enriches a distinct 

open-chromatin state space as compared to DMSO but that combination with JQ1 inhibits 

this change, resulting in open chromatin architecture equivalent to single agent JQ1 and 

highly overlapping with the DMSO-treated population (Fig. 3-11c). In accordance with this 

inhibition of chromatin alterations, JQ1 combination with BEZ235 normalized the changes in 

TF-motif accessibility, bringing motif enrichment levels back to near-DMSO values (Fig. 3-

11d, Fig. 3-12a, b). The prevention of TF accessibility with BEZ235 + JQ1 combinations 

was consistent with reduced expression of TF-activity-related genesets measured by GSEA: 

decreases in AP1, SNAIL, GATA3, NFKB, and TCF motif accessibility in BEZ235 + JQ1 

treated cells relative to BEZ235 treated cells correlates with de-enrichment of genesets 

related to FRA1172, SNAI1173 and GATA3174 overexpression in mammary cancer cells, NFkB 

activity-related genesets, and a WNT activity signature160 (Fig. 3-11e). 
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Figure 3-12: JQ1 prevents BEZ235-driven changes in open chromatin 
architecture and TF accessibility. 

(A) Figure 6c is presented again for reference for the following plots. (B) t-SNE plot showing 
sciATACseq results of HCC1143 cells treated with BEZ235, JQ1, BEZ235 + JQ1 or a DMSO 
control. Each single cell point is colored based on the level of DNA-binding motif enrichment of the 
listed transcription factor 

 

We further assessed GATA3 gene expression and protein level changes and found 

that BEZ235 drove increases in GATA3 expression and increased nuclear GATA3 protein 

levels, whereas Trametinib reduced these levels (Fig. 3-11f, Fig. 3-13a-d). Consistent with 

the effects of JQ1 combination on GATA3 motif accessibility, JQ1 prevented the increases in 

GATA3 mRNA and protein expression when combined with BEZ235 (Fig. 3-11g, Fig. 3-13 

e-f).  
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Figure 3-13: JQ1 prevents open chromatin architecture changes that support 
DTP state formation. 

(A) GATA3 motif enrichment in the open chromatin regions of DMSO, Trametinib, or BEZ235 
treated HCC1143 cells is shown on a t-SNE plot of single cells using sciATACseq. The treatment for 
each individual cell is displayed by color in Figure 6a, red indicates increased motif enrichment, and 
blue indicates reduced motif enrichment. (B) Graph showing changes in GATA3 gene expression as 
a fold change vs. DMSO following 6d of 1µM BEZ235 or 1µM Trametinib treatment. (C) IF images 
showing single cell expression of GATA3 (red), K19 (blue) and K14 (green) following 72 of 1µM 
BEZ235, 1µM Trametinib, or a DMSO control. Scale bars = 100µm. (D) Graph showing the 

quantitation of the frequency of GATA3+ cells in HCC1143 following 72 of 1μM BEZ235, 1µM 
Trametinib, or a DMSO control. (E) A dot plot showing DNA-binding protein motif enrichment 
analysis between BEZ235 and BEZ235 + JQ1, both normalized to DMSO motif enrichment levels. 
(F) Histograms showing mean-nuclei intensities of GATA3 in HCC1143 cells following 72hr 
treatment with DMSO (grey), 2µM JQ1 (yellow), 1µM BEZ235 (pink), or BEZ235 + JQ1, the gate 
for GATA3 positivity is shown. (G) Graph of GSEA results showing the NES of breast phenotype 
genesets shown to be significantly enriched (p < 0.05) following 72hr of Trametinib treatment, with 
the subsequent NES of that geneset in JQ1-treated, and Trametinib + JQ1-treated cells shown 
adjacently 

 

JQ1 combinations with BEZ235 also prevented the enrichment of breast phenotype 

genesets associated with the BEZ235 DTP state (Fig. 3-11h, for BEZ235 alone see Fig. 3-1e). 

Importantly, geneset enrichment related to loss of proliferation and increased apoptosis did 

not reverse with JQ1 combinations, and were enriched in all drug treated conditions (Fig. 3-

11h). This prevention of DTP-specific geneset enrichment was also observed with 

Trametinib and JQ1 combinations (Fig, 3-12g).  

Since we found dramatic inhibition of BEZ235-induced state changes by JQ1 along 

with synergistic gains in cell death and reductions in proliferation more prominently than 

with Trametinib + JQ1, we tested the efficacy of the BEZ235 + JQ1 combination in vivo in 
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an orthotopic xenograft model using the tumour-forming basal-like HCC70 cells. The 

BEZ235 + JQ1 combination significantly reduced tumour volume compared to either single 

agent  (Fig. 3-11i, Fig. 3-14a), consistent with the synergy observed in vitro with this line 

(Fig. 3-9b, d). Furthermore, immunofluorescent staining of the control and treated tumors 

showed that BEZ235 treatment alone reduced the number of K14 expressing cells, while 

combination treatment of BEZ235 + JQ1 prevented the K14low-state aggregation (Fig. 3-11j, 

Fig. 3-14b). These results are similarly consistent with our observations across basal-like cell 

lines in vitro (Fig. 3-1d, 3-9g-i), supporting the utility of JQ1 to prevent BEZ235-induced 

DTP transitions in vivo. 

 

 

 

 

 

Figure 3-14: JQ1 combines with BEZ235 in vivo to reduce tumor volume and 
suppress cell-state transitions. 

(A) A waterfall plot shows the change in individual tumor volume, comparing treatment initiation 
size to size at resection (treatment day 21). Bars are colored by treatment: Vehicle (black), BEZ235 
(magenta), JQ1 (yellow), BEZ235 + JQ1 (maroon). (B) Representative IF images of HCC70 
xenograft tumors treated with vehicle, BEZ235, JQ1, or the combination of JQ1 + BEZ235 showing 
DAPI (blue), human specific marker Ku80 (red) and K14 (green), scale bars = 100µm 
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3.4 Discussion 

Our overall goal in this study was to develop therapeutic strategies to more effectively treat 

breast tumours that exhibit intratumoral phenotypic heterogeneity and plasticity.  

Examination of the phenotypic response of heterogeneous basal-like cell lines to 119 

pathway-targeted inhibitors revealed that most drugs are ineffective at inducing complete 

cytotoxicity, and leave residual cells with altered expression of differentiation-state markers. 

These findings align with multiple studies where targeted therapeutic challenge drives cells 

into low-proliferative, drug-tolerant persister “DTP” states24,70,122. Indeed we found that 

MEK and PI3K/mTOR inhibitors, as well as the combination of these agents, drove basal-

like cell lines into distinct DTP states with reduced proliferation that can persist under high-

dose inhibitor for weeks. Contrary to a model of Darwinian selection, and consistent with 

these previous studies of reversible drug tolerance24,70,122, cells that were grown out of these 

DTP states regained differentiation-state heterogeneity, and when later re-challenged with 

inhibitor they showed no significant differences in drug sensitivity compared to treatment-

naïve cells. Furthermore, no differentiation-state specific cytostasis or cell death was evident 

in our experiments, indicating cell-state transitions are the major driver of DTP phenotype 

acquisition. Computational modeling efforts (see Fig. 3-4h, 3-5f) further supported that 

state-transitions are necessary to generate the observed DTP state aggregation by MEK and 

PI3K/mTOR inhibitors.  
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DTP state-transition in basal-like breast cancer cell lines involved the rewiring of the 

signaling network, and VIPER analyses identified many upregulated kinases in Trametinib 

and BEZ235 DTP cells known to cancer cell survival, consistent with previous work 

characterizing kinome rewiring following targeted MEK and PI3K inhibition in breast 

cancer124,175,176. In addition to these pathway alterations, our imaging assays detail profound 

alterations in cancer cell differentiation status as cells acquire MEK and PI3K/mTOR DTP 

states. Basal-like cell lines have been shown to have a high propensity for differentiation-state 

transition under normal growth conditions93, and our work demonstrates that this inherent 

plasticity is exemplified upon therapeutic challenge. These effects on differentiation were 

target dependent, and MEK and PI3K/mTOR inhibitors had a divergent influence on the 

frequency of cells in a K19+/K14+ cell state. Trametinib aggregated cells in this bilineage 

state through induction of myopepithelial gene expression programs, and enriched luminal 

progenitor and fetal mammary stem cell genesets98, representing two distinct mammary cell 

states with mixed expression of basal and luminal markers51,95,115. Consistent with this, 

Trametinib DTPs showed high EZH2 geneset enrichment, a histone methyltransferase shown 

to promote bilineage content in basal-like BCCLs including basal and luminal progenitor gene 

expression programs72. BEZ235 DTPs, conversely, were depleted of basal marker expression 

and had mixed luminal/mesenchymal gene expression programs. Single cell indexed 

ATACseq analysis of these distinct DTP states provided mechanistic insight into these 

differentiation-state transitions, revealing that the acquisition of DTP states involved dramatic 

open chromatin architecture changes that altered the chromatin accessibility, and activity, of 
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known cell-fate determining transcription factors. These factors included EGR1 in 

Trametinib DTPs, and AP1, ZEB1, SNAI1 and GATA3 in BEZ235 DTPs, consistent with the 

role of these TFs in basal, mesenchymal and luminal differentiation in breast 

cells72,103,148,172,174. Taken with our imaging and gene expression analyses, these sciATAC-seq 

results suggest that targeted therapeutics may often invoke large-scale epigenomic transitions 

in basal-like breast cancer cells, restructuring the chromatin to allow specific TF access, and 

invoking gene regulatory programs that promote distinct cellular differentiation and drug 

tolerance. 

Chromatin modifier enzymes appear to be critical in this epigenomic transition to 

DTP states. MEK and PI3K/mTOR DTP states both showed increases in genesets relating to 

epigenetic modifier enzymes known to control DNA accessibility, including the BET family 

epigenetic reader proteins, histone demethylase KDM5B, and histone methyltransferase 

EZH2. Accordingly, we found that targeted BET inhibition with JQ1 could suppress the DTP 

transitions promoted by Trametinib and BEZ235 on both an imaging and transcriptional 

level. Further, we found that combination with JQ1 suppressed the chromatin architecture 

changes and subsequent changes to TF accessibility and activity that supported BEZ235 DTP 

identity. The inhibition of DTP state-acquisition by JQ1 when combined with MEK or 

PI3K/mTOR inhibitors resulted in significant gains in cell death, reduction of proliferation, 

and tumor regression when BEZ235 and JQ1 were combined in vivo. This aligns with 

previous work demonstrating antiproliferative synergy between MEK and PI3K pathway 
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targeted inhibitors and BET inhibitors. These studies demonstrate that targeted BET 

inhibition can prevent compensatory kinase upregulation supporting drug tolerance123,124 by 

preventing BRD4 association with compensatory kinase gene enhancers18. Taken with our 

findings that JQ1 prevents a more global phenotypic transition to drug-induced DTP states 

with distinct open chromatin architecture, TF access, and cellular differentiation, it is likely 

that BRD4-supported drug tolerance mechanisms involve not only compensatory kinase gene 

enhancement, but also enhancer formation for many regulatory proteins including the pivotal 

TFs profiled in this study. Further, it remains to be explored how the targeting of other 

ongoing chromatin modifier processes in these DTP states may prevent their formation, such 

as the observed increases in histone demethylase and methyltransferase activities, including 

EZH2, which was greatly enriched in Trametinib-persisting HCC1143 cells where JQ1 

combinations were not as effective at enacting complete cell kill. 

Together, the findings in this work and related studies support the idea that inhibiting 

mechanisms of chromatin dynamics will be necessary to improve targeted therapy efficacy in 

triple negative and basal-like breast cancers. We propose that combination therapies which 

combine a state-transitioning drug (e.g. BEZ235) with a repressor of chromatin dynamics 

represents a powerful option for the treatment of basal-like tumours. While targeted BET 

inhibition is an effective option for these combinations and can greatly increase the 

cytotoxicity of both MAPK and PI3K pathway-targeted agents, other epigenetic targets must 

be considered for optimal efficacy in specific cases. We believe that the advancement of these 
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combinations will be critical to improving our management of tumors with high cell-state 

heterogeneity and plasticity. 
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4.1 Abstract 

Single agent kinase inhibitors have shown limited success in Triple Negative breast cancer 

patients, in part due to enhanced cell-state plasticity in this subtype, resulting in the 

generation of drug tolerant cell states following challenge with kinase inhibitors. This 

resistance can be overcome through pairing kinase inhibitors with epigenetic reader protein 

inhibitors, and we detail this success of this combination therapy in Chapter 3. However, due 

to the diverse genetic landscape of TN tumors, these strategies may be ineffective in some 

patients who possess mutations in these epigenetic protein targets, or resistance may arise 

through yet unknown mechanisms. To best manage TN tumors we must expand our 

therapeutic arsenal to include diverse therapeutic strategies are similarly efficacious in 

phenotypically heterogeneous and plastic TN tumors. The simultaneous targeting of multiple 

kinases offers an attractive approach, however, small molecule multi-kinase inhibitors have 

resulted in pronounced toxicity in normal cells, limiting their advancement. Pharmacological 

activators of PP2A offer a unique, safe, strategy to simultaneously repression many kinase 

targets with minimal detrimental effects on normal cells by re-activating endogenous 

phosphatases that have been specifically repressed in tumor cells. Here I demonstrate the 

efficacy of these pharmacological activators of PP2A at treating heterogeneous and plastic TN 

cell lines and tumor models. I show that these agents inhibit proliferation, induce 

cytotoxicity, and inhibit tumor growth, all while avoiding drug-induced differentiation-state 

plasticity, highlighting their potential as an additional strategy to manage TN tumors. 
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4.2 Introduction 

Cell transformation to an oncogenic state involves the accumulation of genetic mutations, 

copy number alterations, translocations, and epimutations in order to establish oncogene 

activation and tumor suppressor inactivation177, leading to unchecked proliferation in the 

malignant state. These overactive proliferation and survival pathways use kinases as a major 

conductor pathway signaling, and the majority of efforts to develop targeted therapies against 

cancer cells have focused on inhibiting these kinases. These strategies included developing 

drugs that compete for ATP binding to the catalytic kinase domain of these proteins, or drugs 

that covalently bind and modify kinase function178. Accordingly, 28 kinase-targeted therapies 

have now been approved for use as cancer therapy with dozens more in clinical 

development179. These kinase inhibitors (KIs) show strong enzymatic inhibition of their target 

kinases and robust antiproliferative efficacy on cancer cell lines in vitro and tumor xenografts 

in vivo.  However, resistance to these agent is prevalent, and most cause considerable 

toxicity, resulting in the relatively low number of FDA-approved kinase inhibitors at this 

current date180.  

Resistance can occur though genetic alterations of the drug target90, “bypass signaling” 

by which compensatory pathway circumvent the biological effect of drug target 

inhibition123,124,175, through cell-state transition to a new state where the drug target is not 

influential on survival24,67,121, or by many other mechanisms (see chapter 1.2, 1.3). While KI 

combinations or schedules may circumvent some of these resistance mechanisms, the 
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addition of more drugs comes at a high cost of increased side effects and toxicity181,182, 

particularly when using the near-maximum-tolerated doses prescribed by FDA guidelines. 

For these reason we see many patients having to switch therapy due to lack of efficacy, or due 

to adverse medical events from kinase inhibitor side effects. New therapeutic strategies are 

therefore needed to circumvent the resistance mechanisms and treatment-ending toxicities 

associated with clinical kinase inhibitor use.  

 Pharmacologic activators of Protein Phosphatase 2A may provide this solution. Kinase 

activity is highly dependent on the post-translational modifications, including activating 

phosphorylation marks that promote protein activity. Active kinases then phosphorylate and 

activate subsequent kinases*, leading to the continuation of the signaling cascade. Endogenous 

phosphatases, like PP2A, represent a regulatory mechanism to control these signaling 

cascades by dephosphorylating kinases, which primarily inactivates or dampens their activity. 

While there are 538 protein kinases in the genome183, there are only ~200 phosphatases, 

which cover the dephosphorylating functions of both protein and lipid substrates184. Because 

of this, protein phosphatases are promiscuous, often having many substrate targets. PP2A is 

no exception, and is the major serine-threonine phosphatase in the cell that subsequently 

regulates many signaling pathways, including the PI3K pathway, MAPK pathway, MYC 

signaling, apoptosis signaling, SRC signaling and more126. It utilizes a repertoire of unique 

target-specific β subunits to obtain target selectivity, while having a conserved catalytic (C) 

                                                   

* Site-specific phosphorylation can also be repressive, by which phosphatase activity increases enzyme activity. 



 

106 

 

and structural subunit (A) that travel amongst these β subunits for binding, formation of the 

heterotrimeric holoenzyme, and phosphatase function126,185. 

 In malignant cells, which have characteristically hyperactive kinase signaling, it not 

surprising that we find inactivation of endogenous phosphatase function, including PP2A. 

This can occur through genetic alteration of one of the 17 PP2A complex genes, through 

post-translational modification of the PP2A catalytic subunit, or through increased expression 

of endogenous inhibitors of PP2A including the SET (inhibitor 2 of PP2A, I2PP2A) or CIP2A 

(cancerous inhibitor of PP2A) proteins131,185. Indeed reduced levels of PP2A are observed in 

many tumor types131,132,186,187, which often coincides with higher expression of 

SET129,131,132,188 and CIP2A128,189.  

Due to its multi-pathway regulatory activity in the cell, reactivation of PP2A in 

cancer cells can lead to loss of proliferation and enhanced cytotoxicity. This has been 

demonstrated through increasing levels of active PP2A in cancer cells by inhibiting SET and 

CIP2A through both RNA interference and pharmacological inhibition by such agents as the 

SET inhibitor OP449128,132,132,188,190. Further, direct pharmacological activators of PP2A, 

including forskolin and FTY720, can elicit similar responses and result in increased PP2A 

activity and cell death in many different malignancies191–194. While these preclinical studies 

have provided a strong proof-of principle that pharmacologic activation of PP2A represents a 

promising option for cancer therapy, many of these therapeutics have low potential as clinical 
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trial candidates due to poor target specificity, required dose, pharmacokinetics, and 

pharmacodynamics. 

A recent discovery that phenothiazines induce potent cytotoxicity in lymphoma 

through increasing PP2A activity133 has spurred the development of a new class of small-

molecule activators of PP2A (SMAPs)195. These agents induce a conformational change in the 

A subunit and result in increased activity of the heterotrimeric complex130 and result in 

potent cancer cell killing in vitro and antitumor activity in vivo130,185. Due to their 

simultaneous inhibition of multiple oncogenic pathways, SMAPs represent a promising 

strategy to treat triple negative breast cancer tumors, which possess high cell state 

heterogeneity and plasticity and show resistance to most single-agent KIs and chemotherapy 

through cell state transition and bypass of target inhibition129,184. In this study, we profile the 

antiproliferative and cytotoxic potential of SMAPs to treat these heterogeneous and plastic 

triple negative breast cancers. We show that both indirect activation of PP2A via SET 

inhibition, and direct PP2A-activation by SMAPS are able to completely kill TN cell lines in 

vitro.  Further, phenotypic analysis of cells at sub-lethal doses of SMAPs reveals that the cell-

state plasticity associated with adaptive inhibitor resistance is not elicited by these PP2A 

activators, conversely all phenotypic subpopulations of cells are equally affected. We present 

the robust antitumorigenic activity of SMAPs in murine models of TN breast cacner, and 

further show that SMAPs kill all phenotypic subpopulations in tumor-derived cell lines from 

these murine models. Finally, we use an unbiased drug screening approach to identify 
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targeted therapies that synergize with PP2A activators, which may be useful for future 

enhancement of clinical efficacy by combination therapy with SMAPs + KIs. Together, these 

findings identify a novel method that can potentially better mange tumors with high rates of 

cell-state heterogeneity and plasticity, like triple negative breast cancer. 
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4.3 Results 

4.3.1 Activators of PP2A effectively inhibit proliferation and induce 

cytotoxicity in triple negative cell lines  

We first examined the effect of the indirect and direct activators of PP2A on triple negative 

breast cancer cell viability. OP449 is an inhibitor of SET, and endogenous-inhibitor of PP2A 

activity, which has elevated expression in most breast cancers132. OP449 effectively killed all 

triple negative breast cancer cell lines examined which included four basal-like lines 

(MDAMB468, HCC1143, BT20, HCC1937) and four claudin-low lines (BT549, HCC38, 

MDAMB231, MDAMB436) at IC50 concentrations ranging from 700nM - 2µM (Fig. 4-1a). 

Consistent with this, the small molecule activator of PP2A, DT061, induced complete cell 

kill in all TN lines examined, which included 8 basal-like lines (Fig. 4-1b), and 5 claudin-low 

lines (Fig. 4-1c). We examined the level of cell death throughout treatment with DT1154, an 

analog of DT061, in three basal-like lines and found that cell death was robustly enhanced by 

DT1154 and increased with therapeutic dose (Fig. 4-1d).  

 

 

 

 

 



 

110 

 

 

 

 

 

 

 

 

 

Figure 4-1: Activators of PP2A induce complete cytotoxicity in triple negative 

cell lines 

(A) Growth inhibition curves are shown for 8 triple negative breast cancer cell lines 

following 72hr treatment with OP449 at increasing doses, including four basal-like (BL) and 

four claudin-low (CL) lines. (B) Growth inhibition curves are shown for 8 basal-like breast 

cancer cell lines following 72hr treatment with DT061 at increasing doses. (C) Growth 

inhibition curves are shown for 5 basal-like breast cancer cell lines following 72hr treatment 

with DT-061 at increasing doses. (D) Graphs show the effect of DT1154 on cell proliferation 

(blue) and cell death (red, as area under the curve of YOPRO1+ objects over 72hr) in three 

basal-like cell lines at increasing doses. 
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4.3.2 SMAPs effectively kill all differentiation states in heterogeneous TN 

cell lines and tumor models 

We next investigated the influence of SMAPs on cellular differentiation-states, using high 

content imaging of control and sub-lethally treated basal-like cell lines with DT1154. Using 

cell segmentation, quantitation of cellular marker expression, and image cytometry (Fig.2-

2a, b), we calculated the frequencies of differentiation states in four basal-like cell lines 

before and after treatment. Differentiation states were based on cellular expression of the 

luminal Cytokeratins 19 and 18 (K19, K18), basal markers Cytokeratin 14 and 5 (K14, K5), 

and the mesenchymal marker vimentin (VIM). Consistent with previous studies67,117,118 (Fig. 

2-2) we found that basal-like cell lines harbored distinct subpopulations of cells in basal, 

luminal, mesenchymal, and mixed differentiation states, each line possessing a distinct ratio 

of these states under normal growth conditions (Fig. 4-2a-d). Unlike the phenotypic 

influence of kinase-targeted therapies on these lines (see Fig. 3-1), DT1154 treatment 

resulted in only minor shifts in the frequencies of differentiation states, with no major 

expansion or loss of an existing pre-treatment state.  

 We next examined the effects of SMAPs DT061 and DT1154 in vivo, in a genetically 

engineered mouse model of heterogeneous triple negative breast cancer, using different 

dosing schemes. Lsl-Myc;PTENflox/-;Blg-Cre mice generate aggressive triple negative tumors 

(Appendix C1a) that showed intertumoral heterogeneity in histology (Appendix C1b), gene 

expression patterns (Appendix C1c, d), and intratumoral heterogeneity in differentiation 
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state marker expression inducing cell-to-cell differences in Cytokeratin 14 (K14) and 

Cytokeratin 8/18 (K8/18) expression (Fig. 4-2e). DT061 and DT1154 were both effective 

and inhibiting tumor growth in all tumors, and in all dosing schemes (Fig. 4-2f). To further 

assess the phenotypic influence of SMAP therapy on these tumors, we used an irradiated-

fibroblast co-culture system to establish viable tumor-derived cell lines (Fig. 4-2g). These 

lines showed similar in vitro intratumoral cell-state heterogeneity as the lsl-Myc;PTENflox/-

;Blg-Cre tumors in vivo: cells with distinct K18+, K14+, and K18/K14+ identity coexisted 

in culture. We treated these lines with DT-1154 and assessed the effects on cell proliferation 

and surviving cell phenotype at sub-lethal doses. Consistent with the efficacy of DT061 in 

vivo, and the effects of DT1154 on cell line phenotype, these tumor-derived cultures were 

both sensitive to DT1154 and showed minimal changes in cell-state frequencies at sub-lethal 

doses of drug (Fig. 4-2h-j). 
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Figure 4-2: SMAPs effectively kill all differentiation states in heterogeneous TN 

cell lines and tumor models. 

(A) Immunofluorescent images of four basal-like cell lines treated for 72hr with DT1154 at 

the doses shown (all >IC50) or with DMSO, cells are stained for K19 (blue), VIM (red), and 

K14 (green), DAPI is not shown, scale bars = 100μM (B) Change in cell number and 

differentiation state frequency is show in the four cell lines in (A) comparing DMSO to 

DT1154 treatment with the doses in (A). (C) Same as in (A) but stained with K18 and K5. 

(D) Quantitation of cell number and differentiations state as in (B) from images in (C). (E) 

Immunofluorescent images of lsl-Myc:PTENfl/fl:Blg-Cre tumors stained with DAPI (blue), 

K14 (red), and K18 (green), with a higher zoom inset, scale bars = 100μM. (F) Graph 

showing the change in Myc:PTENflox/-:Blg-Cre tumor volume over time following treatment 

with drug vehicle, DT061 dosed QD at 50mg/kg,  DT061 dosed BID at 15mg/kg, or 

DT1154 dosed weekly at 200mg/kg. (G) A schematic showing how Myc:PTENflox/-:Blg-Cre 

tumor-derived cell lines are established. Tumors are surgically excised, mechanically minced 

and chemically disaggregated, and grown in co-culture with irradiated human mammary 

fibroblasts. Immunofluorescent images of three tumor derived cell lines in culture are shown, 

stained with K8/18, VIM, and K14, DAPI not shown, scale bars = 100μM. (H) Graph 

showing the antiproliferative efficacy of DT1154 in three Myc:PTENflox/-:Blg-Cre tumor-

derived cell lines, 72hr treatment. (I) Immunofluorescent images of tumor-derived cell lines 

following 72hr treatment with DMSO or the shown doses of DT1154, cells are stained with 

K14 (green), K8/18 (blue), and VIM (red), scale bars = 100μM. (J) Differentiation-state 

frequencies based on expression of K8/18 and K14 are shown in tumor-derived cell lines 

treated 72hr with DMSO or the shown concentration of DT1154.  

 



 

115 

 

4.3.3 PP2A activators and kinase inhibitors act synergistically to inhibit 

TN cell proliferation 

Both the SMAPs and indirect activators of PP2A (OP449) show promising antitumor efficacy 

in GEMM models (Appendix C1d). However, tumor regression was not achieved with single 

agent SMAP therapy and tumors slowly expanded. To improve the efficacy of PP2A 

activators in vivo so that we can achieve tumor regression, we rationalized that activators of 

PP2A and small-molecule targeted kinase inhibitors may be synergistic when used in 

combination, as this will reduce the active pool of kinases through increased phosphatase 

activity, while simultaneously inhibiting the function of the active kinase pool with kinase 

inhibitors. We used an unbiased drug-screening approach to identify targeted kinase 

inhibitors that synergize with PP2A activation. Triple negative breast cancer cell lines were 

either treated with a near-IC50 dose of OP449, or a DMSO control, then grown in multiple 

384-well plates containing 7 doses of 119 pathway-targeted therapies. At 72hr we assessed 

cell viability through the use of a colorimetric assay. After replicate runs in five triple 

negative cell lines, we found that many targeted agents can enhance the efficacy of PP2A 

activators including those targeting the PI3K, PKC, AURK, EGFR, JAK/STAT pathways 

(Fig. 4-3a). In particular we found that targeted antagonists of PI3K pathway signaling, 

including PI3K, AKT, and mTOR inhibitors were highly effective enhancing antiproliferative 

efficacy (Fig. 4-3b), and had synergistic relationships  (<1) with OP449 based on synergy 

calculations using the Chou and Talalay method166 (Fig. 4-3c).  
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Figure 4-3: PP2A activators and kinase inhibitors act synergistically to inhibit 

TN cell proliferation. 

(A) A heatmap showing the change in kinase inhibitor efficacy (by fold change in IC50) when 

triple negative cell lines are co-treated with OP449, versus co-treatment with DMSO. 

Increasing orange color denotes increased combination efficacy. Inhibitor target is shown to 

the right. N= 3 (B) Three dimensional bar plots show the change in cell proliferation when 

OP449 and the shown PI3K-pathway inhibitors are combined in a drug matrix, 

representative of three individual runs. (C) A bar plot shows the average combination index 

obtained from triplicate dose-escalation studies using OP449 + BKM120, OP449 + INK128, 

or OP449 + GDC0068 in 8 triple negative cell lines and one normal line.  
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4.4 Discussion 

Triple negative breast cancer is in need of new effective therapies. Currently there are only a 

few chemotherapeutic drugs that are approved for use in triple negative patients, and while 

effective at achieving pathological complete responses in approximately a third of TN 

tumors49, most TN tumors are innately resistant to these drugs or acquire resistance during 

therapy. Many companies are evaluating small-molecule targeted KIs in TN breast cancer, as 

these tumors commonly have deregulated PI3K, MAPK, and growth factor signaling, 

however, patient responses to these agents as monotherapy have be poor14–16,55–57.  

Combination therapies add some promise, showing better responses with combination of 

chemo + KIs, or dual KI therapy, but success is still limited and increased toxicities and 

adverse medical events often remove patients from these trials57. This resilience to targeted 

and chemotoxic stress is related to the high rates of clonal heterogeneity21,60 and cell-state 

heterogeneity in TN tumors (Ch. 2). This can support acquired resistance through Darwinian 

selection of drug resistant phenotypes. Further, our examination of the antiproliferative and 

phenotypic influence of a broad set of targeted therapeutics in TN cell lines revealed that 

most drugs elicited cell-state transitions to drug tolerant persisting states through adaptive 

chromatin remodeling67. These mechanisms of resistance likely drive the poor clinical 

response of this disease and highlight the need for new therapeutic strategies that are well 

tolerated and circumvent these mechanisms of resistance. 
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Pharmacological activators of PP2A may represent a unique solution to this need128. 

PP2A simultaneously regulates the activity of many proliferative and survival pathways 

including PI3K, ERK, SRC, and MYC signaling, but is commonly down-regulated in cancer 

cells via mutation, post-translational modification, or increased expression of the endogenous 

inhibitors of PP2A, SET and CIP2A126. Indeed TN tumors show enhanced expression of 

CIP2A and SET, and low activity of PP2A128,132, and we demonstrate here that two distinct 

therapeutic strategies of PP2A activation are highly efficacious at completely killing TN cell 

populations in vitro. Further, unlike the adaptive cell-state transitions elicited by targeted 

kinase inhibitors18,67,175, we demonstrate that small-molecule PP2A activator DT1154 inhibits 

TN cell line proliferation, and increases cell death, with no evidence of cell state selectivity 

or induction of cell-state transitions. Consistent with this, the SMAP DT-061 was highly 

effective at inhibiting tumor growth in a murine model of heterogeneous triple negative 

breast cancer. We generated cell line cultures from these mice an again observed that 

DT1154 could induce 100% cytotoxicity without eliciting differentiation-state change.  

These SMAPs were effective in vivo and well tolerated by the mice, however, tumor 

regression was not achieved, and treated tumors still slowly proliferated. To improve the 

efficacy of these agents we tested the effect of combinations with targeted kinase inhibitors, 

as this strategy might simultaneously attack the enzymatic function and activation of key 

kinases in TN tumors. Indeed we found that numerous KIs synergistically enhanced the 
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efficacy of the PP2A activator OP449, including inhibitors targeting different kinases in the 

PI3K pathway.  

While targeted kinase inhibitors were one believed to hold great promise for the 

treatment of TN tumors, and initial in vitro studies were encouraging, the results coming 

from recently concluded or ongoing clinical trials are unfortunately showing limited 

responses in patients. Despite targeting overactive kinases in the tumor cell, numerous 

intrinsic resistance mechanisms in TN tumors including cell-state heterogeneity and plasticity 

result in these poor outcomes and highlight the need for new therapeutic strategies. 

Activators of PP2A offer an orthogonal approach to the suppression of oncogenic signaling 

pathways in TN tumors by restoring the phosphatase activity of PP2A. These drugs are highly 

effective in vitro and in vivo in TN models, and can be further enhanced by simultaneous 

kinase inhibition. These results have spurred pharmaceutical company interest, and a 

collaboration between Dual therapeutics and Bristol Meyers Squibb is currently optimizing 

the pharmacokinetic and pharmacodynamic properties of these SMAPs, which will soon enter 

clinical trails and hopefully provide a much-needed new tool for TN tumor management.  
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5 Materials and Methods 
 

5.1 Cell Lines 

All human cell lines were obtained from the American Type Culture Collection (ATCC) 

other than JIMT1 (DSMZ), SUM149PT (Asterand), and SUM159PT (Asterand). Cell lines 

were cultured according to supplier protocol with supplemental 10µg/ml penicillin and 

streptomycin (Thermo) and regularly tested to ensure cultures were negative for 

mycoplasma. Cell line genotype was confirmed by STR profiling to ensure accurate identity. 

All lines were maintained at 37°C in a 5% CO2 atmosphere and cultured at a cellular 

confluence below 80%.  

 

5.2 Reagents 

Primary antibodies: Cytokeratin 19 (Dako, Clone RCK108), Cytokeratin 14 (Abcam, Clone 

LL002), Vimentin (Cell Signaling, Clone D21H3), Cytokeratin 5 (Abcam, Clone EP1601Y), 

Cytokeratin 17 (Thermo, clone E3), Claudin 4 (R&D Systems, clone 382321), Cytokeratin 8 

(K8, Abcam, Clone M20), Ku80 (Cell Signaling, clone C48E7), Ki67 (DAKO, clone MIB-

1), GATA3 (Cell Signaling, Clone D13C9), Cytokeratin 18 (Cell Signaling, clone DC10). 

Cytokeratin 8/18 (Fitzgerald) 
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 Secondary antibodies (All LifeTech unless noted): goat-anti-mouseIgG1-Alexa647, goat-anti-

mouse IgG3-Alexa488, goat-anti-mouseIgG2a-Alexa488, goat-anti-mouseIgG2b-Alexa488, 

donkey-anti-rabbit-Alexa568, donkey-anti-goat-Alexa647, goat-anti-rabbit-dylight755 

(Thermo). 

Small molecule inhibitors: All drugs, unless otherwise noted, were purchased from Selleckchem 

including (+)-JQ1 for in vitro experiments. BEZ235 was purchased from LC Laboratories and 

(+)-JQ1 for in vivo studies was provided by Jay Bradner at the Dana-Farber Institute of 

Harvard, Cambridge MA. All in vitro inhibitor stocks were solubilized in DMSO and stored as 

10mM stock solutions at -80°C. OP449 was provided from Dale Christensen at Oncotide 

Pharmaceuticals. DT061 and DT1154 were provided by Dr. Goutham Narla at Dual 

Therapeutics.  

 

5.3 Image cytometry and heterogeneity metrics 

5.3.1 Image cytometry of primary patient tumors 

All samples were formalin-fixed, paraffin embedded sections of treatment-naïve primary 

breast tumour samples of hormone-receptor-defined subtypes: luminal (ER+/PR+/HER2-, 

n=6), HER2+ (ER-/PR-/HER2+, n=3, ER+/PR+/HER2+, n=1), and triple negative (ER-

/PR-/HER2-, n=9). Tumor specimens were obtained from three sources: Tumors with 

multiple analyzed regions (L1-3, H1-3, T1-3) were from surgical blocks obtained from the 
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OHSU Knight BioLibrary, five samples were core biopsy specimens (L4-6, H4, T4) obtained 

from the OHSU Knight BioLibrary, and five samples were from a tissue microarray of triple 

negative breast cancers surgical blocks created under IRB-approved protocols with patient 

consent from the University of California, San Francisco. With pathologist assistance, areas of 

high tumour cellularity and low immune infiltrate or stromal density were identified for the 

focus of immunofluorescent analysis. Cut sections of 5µm were de-parafinized in xylene and 

passed through a series of graded alcohols. Antigen retrieval was performed in a 0.1M 

sodium citrate buffer pH 6 (Sigma) under heat and pressure, followed by blocking with a 5% 

donkey serum (Sigma), 5% goat serum (Vector Laboratories), 1% BSA (Fisher) blocking 

buffer. Sections were incubated overnight at 4°C with a primary antibody solution against 

K19 (1:300), K14 (1:300), and VIM (1:200) diluted in 1% BSA, 2.5% donkey serum, 2.5% 

goat serum. Sections were washed in PBS with 0.1% Tween (Fisher) and secondary antibody 

staining was performed at room temperature for 1hr with AlexaFluor secondary antibodies 

against primary host species (1:200, LifeTech) in 1% BSA and 5% animal serum. 1µg/ml 

4’,6-Diamidino-2-phenylindole nuclear counterstain (DAPI, LifeTech) was added to 

secondary staining buffers. Surgical specimens were imaged on a Zeiss Axio Microscope 

capturing 3-by-3 tiled regions (9 images) at 20X magnification. Core biopsies were imaged 

with single 10x regions, and the TMA was imaged on the Zeiss AxioScan.Z1 platform using 

5x5 tiled regions at 10X magnification. All tiled images were stitched in ZenBlue software. 

TIFFs with original signal were exported for analysis in Cell Profiler196 software. The Cell 
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Profiler pipeline included: DAPI smoothing using the Gaussian filter method, primary object 

identification from smoothed DAPI using the adaptive thresholding Otsu method on default 

settings, with clumped objects being distinguished and divided using the intensity setting. 

Primary object area, shape, and DAPI intensity were measured. Primary objects were then 

expanded a fixed pixel distance, and mean signal intensity for all other channels was 

measured in this expanded cellular region. Cells touching the image border were excluded 

from analysis. Spreadsheet outputs were then analyzed in FlowJo software (FlowJo LLC). 

Single cells were gated by nuclear area and shape, and single cell positivity for K19, K14, and 

VIM were determined by gating using tumors negative for each marker as controls. Gate 

shape was optimized to minimize false positivity from nonspecific channel bleed-through. 

Cell identity was then mapped onto X vs. Y location dot plots called “state maps”, and these 

digital reconstitutions of cellular phenotypes in the tumor were consistent with visually called 

phenotypes in tumor images. Regions encompassing normal ductal structures, or DCIS 

lesions, were identified with pathologist assistance and omitted from analysis.  

 

5.3.2 Image cytometry of patient derived xenograft tumors 

Tissue microarray slides with 31 patient derived xenografts and 3 normal breast tissue 

controls were provided by Mike Lewis at Baylor College of Medicine, Houston TX. Spots 

were approximately 4mm x 4mm and arranged across three slides. Tumors are described in 

detail in a separate publication143 and at www.bcxenograft.org, including molecular subtype 
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and patient ER/PR/HER2 IHC status, mouse passage number for the tumors ranged from 4-

8 passages. Slides were prepared and stained as detailed above (Image Cytometry of Primary 

Tumor Samples) with antibodies against K19 (1:300), K14 (1:300), VIM (1:200), and Ku80 

(1:100). Secondary antibodies included the addition of goat-anti-rabbit-dylight755 marking 

Ku80 nuclei, all 1:200. Slides were imaged on the Zeiss AxioScan.Z1 platform, where 

circular scan areas were hand-drawn around all TMA spots and regions were imaged as 5x5 

tiled regions at 10X magnification, stitched, and exported from ZenBlue software. Images 

were analyzed in CellProfiler including: DAPI smoothing, primary object identification from 

smoothed DAPI using the adaptive thresholding Otsu method on default settings, with 

clumped objects being distinguished using the intensity setting and divided using the 

propagation setting. Primary object area, shape, mean DAPI intensity and mean Ku80 

intensity was measured in this nuclear area. Primary objects were then expanded a fixed pixel 

distance, and mean signal intensity for all other channels was quantified in this expanded 

cellular region. Cells touching the image border were excluded from analysis. Spreadsheet 

outputs were then analyzed in FlowJo software. Single human tumor cells were gated based 

on positivity for Ku80, and single cell positivity for K19, K14, and VIM were determined by 

gating, using tumors negative for each marker as controls. TMA regions with compromised 

tissue fidelity were omitted from the analysis. HCC70 xenografts (Fig. 6) were imaged on 

the Zeiss Axio platform and analyzed using this method. 
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5.3.3 Image cytometry of cancer cell lines 

Cancer cell lines were plated in appropriate media and allowed to adhere overnight, followed 

by various experimental treatments. At endpoint, cells were fixed by adding equal volume of 

4% paraformaldehyde (Electron Microscopy Sciences) solution with 1mM MgCl2 (Sigma) to 

the well media. Wells were then washed with PBS and permeabilized in a 0.3% Triton-X100 

solution (Thermo). Primary antibodies were diluted in PBS with 2% BSA and incubated 

overnight at 4°C. Cells were subsequently washed with PBS-Tween and incubated 1hr at 

room temperature in a secondary labeling solution including 1µg/ml DAPI and combinations 

of secondary antibodies against primary host species (1:300 in 2%BSA). Wells were then 

washed with PBS-Tween, filled halfway with PBS, and either imaged immediately or stored 

at 4°C. Cell imaging for Figure 1-4 was performed on the Olympus ScanR Platform at 10X 

magnification capturing 4 images per well in 384well plates, and 9 images-per-well in 96 

well plates. Single-cell nuclear and cytoplasmic fluorescent intensities were calculated using 

the Olympus ScanR Analysis Software: the DAPI-positive region of each cell was used as a 

boundary to quantitate nuclear signal, and a 10pixel annulus around the nucleus was used to 

quantitate cytoplasmic signal, omitting nuclear signal. Cells touching the border of the image 

were removed from analysis. Imaging for Fig. 2d, and Fig. 5 and 6 was performed on the 

INCELL 6000 platform (GE Biosciences) using the GE INCELL Analyzer analysis software to 

calculate cytoplasmic and nuclear signal in identical methodology as described above. FlowJo 

analysis software was used to identify cell phenotype. Marker positivity was defined using 
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marker-negative controls, which including VIM/K14-negative luminal B cell lines, and 

K14/K19-negative claudin low lines for cell line phenotyping (Fig. 1i). “High” expression 

was defined as mean-cell mean-fluorescent-intensities exceeding the in mean-cell MFI in 

DMSO wells. For image presentation in the figures the same image brightness and contrast 

settings were applied across all experimental samples and conditions within an experiment. 

 

5.3.4 Calculating heterogeneity 

The Shannon diversity index is used as a metric of cell-state heterogeneity throughout this 

work. Cell state frequencies were calculated using flow cytomertry software (FLowJo) as 

described above. For each tumor, patient derived xenograft, or cell line, the proportion of 

each cell state was calculated by dividing cell state number by the total cell number in the 

population (Pi). The Shannon diversity index (H’) was then calculated by multiplying Pi by 

the natural log of Pi, for each cell state, then summing these numbers. 

 

 



 

127 

 

5.4 Gene expression analyses 

5.4.1 Cell line expression analysis  

In Fig. 2-3, publically available breast cancer cell line gene expression data144 was queried for 

the expression of three sets of 20 genes preferentially expressed in luminal and 

myopepithelial cells, identified by sorting experiments in normal breast 

tissue51,103,117,118,141,145,146, as well as 20 mesenchymal/EMT-transition genes142,147,148. Pearson 

coefficient clustering and heatmap generation was performed using GENE-E software (Broad 

Institute). Cell line subtype was determined through previously described 4-class (Luminal, 

Basal-like, Claudin-low, HER2+) intrinsic subtyping13. 

 

5.4.2 RNA-sequencing 

Two RNAseq runs were analyzed in this dissertation and presented in Chapter 3, and will be 

detailed separately. RNA sequencing data presented in Fig. 3-1 to 3-3 was obtained as 

follows: Total RNA was isolated with TRIzol (Invitrogen) from HCC1143 cells following 

treatment with PBS + 0.05% DMSO (Sigma), 1µM Trametinib, 1µM BEZ235, or 1µM of 

both agents in combination (1:1), following a 6 day incubation with d drug replenished at day 

3. cDNA libraries were generated using the Agilent SureSelect Strand Specific RNA kit 

(Agilent) using 150ng total RNA input and following the manufacturers protocol. cDNA 

Libraries were sequenced on the Illumina HiSeq 2000 using 50bp single end reads, grouping 
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8 samples per lane. Base calling was performed using Illumina RTA (v1.13.48) and 

conversion to FASTQ was performed using CASAVA (v1.8.2, Illumina). Reads were then 

trimmed to 44 bases, discarding the first 4 bases, the next 44 bases were kept. Trimmed 

reads were aligned to the hg19 genomes using Bowtie software (v1.0.0) allowing up to 3 

mismatches and require best unique matches. Custom R scripts were used to count tags that 

aligned to the exons of UCSC RefSeq gene models to calculate RPKM values.  

 

For the second RNAseq analysis presented in Figure 3-5, HCC1143 cells were treated in 

triplicate with 1µM Trametinib, 1µM BEZ235, 1µM JQ1, Trametinib + JQ1, BEZ235 + 

JQ1, or a DMSO control for 72hr. Total RNA was isolated using the QIAGEN RNeasy mini 

kit according to manufacturer instructions. RNA was run on the Bioanalyzer (Agilent) to 

verify integrity. cDNA libraries were constructed with the Illumina Trueseq Sample Prep Kit 

v2 according to manufacturers instructions, using150ng of total RNA input. cDNA libraries 

were sequenced on the NextSeq500 using 75bp single-end reads, grouping 9 samples per 

lane. Base calling was performed using Illumina RTA (v2.4.11) and de-multiplexing and 

conversion to FASTQ was performed using Bcl2fastq (v2.17.1.14, Illumina). Reads were 

then trimmed to 44 bases, discarding the first 4 bases, the next 44 bases were kept. Trimmed 

reads were aligned to the hg19 genomes using Bowtie197 software (v1.0.0) allowing up to 3 

mismatches and require best unique matches. Custom R scripts were used to count tags that 

aligned to the exons of UCSC RefSeq gene models to calculate RPKM values. All RNAseq 
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FASTQ and RPKM .txt files can be found on the GEO omnibus under accession number 

GSE82032. 

 

5.4.3 Geneset enrichment analysis 

All genesets analyzed in Chapter 3 are available online67. Genesets present in the molecular 

signature database (MSigDB, Broad Institute) were taken as is and are available at 

www.broadinstitute.org/gsea/msigdb/collections.jsp. A collection of 32 breast phenotype-

related genesets was compiled and included genesets from study examining overlap in gene 

expression from historical mammary gland population-sorting experiments98, a study 

examining intrinsic subtypes of breast cancer161, a study profiling the claudin-low subtype of 

breast cancer38, a study examining classical myopepithelial markers141, and study examining 

the epigenetic determinants of the human breast103. A second compilation including 25 

chromatin modifier enzyme activity-related genesets was compiled from MSigDB as well as a 

study examining BRD4 binding sites in basal-like breast cancer cell lines168, a study examining 

gene expression changes following ectopic BRD4 expression in a mammary cancer line167, 

and a study examining gene expression changes following ectopic expression or knockdown 

of EZH272. A final set of 13 transcription factor activity-related genesets was compiled from 

MSigDB genesets and studies examining ectopic FRA1 expression in breast cancer cell lines, 

ectopic GATA3 expression in MDAMB231 cells, ZEB1 overexpression and knockdown in 

lung cancer cell lines, and a study examining change with ectopic expression of SNAI1 in the 
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transformed breast cell line MCF10A173. To reduce geneset size for optimal GSEA results, 

genesets were compiled of the most statistically significant upregulated or down-regulated 

genes, limiting size to 500 genes. Genesets generated from Affymetrix DNA microarray 

experiments used the NetAffx Query tool for Affymetrix gene ID conversion 

(Affymetrix.com). 

 

5.5 Measuring drug efficacy 

5.5.1 Therapeutic screening and synergy analysis 

Drug screening plates used in Fig. 3-1 and Fig. 4-3 were designed and created as previously 

described198. Briefly, 96-well master plates with 7-point dilutions of 119 inhibitors at 10x 

concentration were plated into three, 384-well plates at 5ul drug per well using the EP 

Motion automated dispensing system (Eppendorf). Control wells with equal volumes of 

DMSO (Sigma) were also included. 384-well plates are kept at -20°C until use, at which 

point they were thawed for 1 hour at 37°C and spun down at 800g. Cells were plated 

directly into warm drug plates using EP Motion (Eppendorf) automated pipettor in 50uL 

media. Plates were sealed with AeraSeal (Excel Scientific) and incubated for 72hr at 37°C in 

a 5% CO2 atmosphere. The CellTiter 96 kit was used at to measure cell viability, calculated 

as a percent of proliferation comparing experimental values to a negative control (DMSO), 

after subtracting positive control signal (cell-free media). The FDA-approved cytotoxic 
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therapy screen (Supplementary Fig. 17b) was constructed as previously described19, 

containing agents purchased from Cayman, Sigma and Selleckchem, and analyzed as 

described above. Follow up experiments, including all other dose-response curve generating 

experiments in this work, were performed in 384 or 96-well plates using the CellTiter 96 

kit, with each condition run in triplicate wells, placed in distinct areas of the plates to 

normalize for edge effects. Combination indices (CI) were calculated from replicate, fixed-

ratio, dose escalation experiments using the Chou and Talalay method166 with Compusyn 

software (Combosyn). CI values were reported at 75% and 90% inhibitory values (CI75, 

CI90, respectively).  

 

5.5.2 Cell death assays 

Cells were plated and allowed to adhere overnight. The next morning cells were treated with 

inhibitors and incubated with 250nM YOPRO1 dye (Thermo). Time course imaging was 

performed on the IncuCyte ZOOM Live Cell Imaging System (Essen Bioscience), taking 

phase images and green channel fluorescence images every 12 hours throughout the a 72hr 

treatment course. Green objects per image were quantified in the Incucyte software. Total 

cells per image were measured from phase images using a custom Cell Profiler pipeline. 

Briefly, this pipeline included: Color to gray image conversion, edge enhancement using the 

LoG method, image smoothing using a Gaussian filter setting, and primary object (cell) 
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identification using the automatic threshold strategy and distinguishing and dividing clumped 

objects by intensity.  

 

5.5.3 Cell cycle analysis 

Cells were plated in six identical plates and allowed to adhere overnight. The next morning 

all plates were treated identically with inhibitors, and one plate was incubated with 5-

Ethynyl-2’-deoxyuridine (EdU, Sigma) for 12 hours at a concentration of 10µM. At the 12-

hour mark, this plate was fixed, and EdU was added to a second plate. Every 12 hours a 

subsequent plate was fixed and another was pulsed with EdU to capture the next timepoint. 

Cell fixation and permeabilized were carried out as described above (Image Cytometry of 

Cancer Cell Lines). Wells were then treated with a reaction buffer containing 2mM CuSO4 

(Sigma), 8µM AlexaFluor Azide 647 (LifeTech), and 100mM sodium ascorbate (Sigma) in 

PBS and incubated 1hr. After washing with PBS, cells were stained for K19, K14, and VIM, 

imaged, and analyzed as outlined above (Image Cytometry of Cancer Cell Lines) using 

nuclear detection of 647-channel signal to quantify cellular EdU levels.  

 

5.6 Computational modeling 

This section will briefly explain the generation of the computational model to assess drug-

induced cell state dynamics of HCC1143 cells under two distinct hypothesis, Darwinian 
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selection, or transition-mediated state enrichment, presented in Figure 3-3. Further 

explanation of the mathematics and programs used to run the model are available in 

Appendix A. The data to construct the model was from measurements of total cell number, 

number of cells in each state, and number of cells dying using a the YOPRO1 assay described 

above in 15 replicate wells taken every 12 hours over a 72-hour horizon (Fig. 3-3a, d). These 

models assumed that each cell at each instant could be either dead or alive, and if alive, 

expressed either K14hi or K14low. Under each hypothesis, the number of K14hi live cells, 

K14low live cells, and dead cells over time under drug treatment were estimated based on 

state-selective death criteria. For example, for the K14hi Darwinian selection scenario, the 

number of K14hi live cells under Trametinib was set to the measured K14hi cell count, 

whereas the number of K14low live cells under Trametinib was set to the measured K14low cell 

count minus the estimated dead cell count (Appendix A). The number of dead cells was 

estimated by multiplying measurements of cell death proportion and population total 

(Supplementary Note). Under both hypothesis, the quantities of K14hi and K14low live cells 

over time under DMSO were estimated by distributing death equally between the measured 

K14hi and K14low cell counts (Appendix A). The time course training data for each 

hypothesis-agent pair (e.g. K14hi Darwinian selection and Trametinib) were fed into a 

constrained l2-regularized least-squares program with alternating minimization (as some 

measurements were illegible) to learn locally optimal dynamics (CVX optimization 

package199). Linear time-invariance was assumed because additional complexity was expected 

to overfit the data (Appendix A). Model parameters are time-averaged rates of division, 
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death, and transition of K14hi and K14low live cells; refer to Chapman et al. for details200. In 

the optimization program, these parameters were constrained according to hypothesis-

specific assumptions on cell-state transition and death. Under the K14hi Darwinian selection 

scenario, for example, Trametinib-induced rates of cell-state transition and K14hi death were 

set to zero (Appendix A). Evolution of HCC1143 cell populations following drug treatment 

(or DMSO) was simulated by propagating the hypothesis-specific models forward in time 

from appropriate initial conditions. The initial condition for each drug treatment simulation 

was the number of K14hi live cells, K14low live cells, and dead cells in each drug-treated well 

estimated at time zero. The initial condition for the baseline simulation was the average of 

such numbers over all DMSO wells. Change in subpopulation proportion (vs. DMSO) was 

computed from the simulated evolution of HCC1143 cell populations over time (Fig. 3-3h, 

3-3e, Appendix A). MATLAB software (MathWorks) was used for all computational 

modeling. 

 

5.7 VIPER analysis 

The gene expression (raw counts) was normalized by the library size (total number of reads 

mapped to transcripts) and transformed to stabilize the variance by fitting the dispersion 

using a negative-binomial distribution as implemented in the DESeq package from 

Bioconductor201. To reduce the impact of systematic variability, affecting mainly low 

expressed genes, we focus our analysis only on mid-to-high expressed genes. The threshold 
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to identify low expressed genes was defined by the data as follows: we fit a mixture of two 

Gaussian models to the probability density of expression, and used them to compute the 

likelihood ratio (LR) of high expression. Low expressed genes (LR < 1) were not considered 

for further analysis. While this procedure trimmed the expression profile to 10,313 genes, it 

should not affect the quality of VIPER results, as we have previously shown the analysis is 

strongly robust to partial signature representation164. Gene expression signatures were 

computed by comparing each perturbed sample vs. DMSO vehicle control. The VIPER 

algorithm, available from Bioconductor 

(http://bioconductor.org/packages/release/bioc/html/viper.html) was then used to 

estimate the relative activity of 5,087 regulatory proteins, including transcription factors and 

signaling proteins. This analysis was based on a transcriptional regulatory model assembled by 

the ARACNe algorithm202 from 1,047 breast carcinoma tumours profiled by The Cancer 

Genome Atlas (TCGA). The regulatory model is available from figshare 

(https://dx.doi.org/10.6084/m9.figshare.2750698). Top upregulated and Down-regulated 

VIPER hits were analyzed with DAVID pathway ontology analysis against the KEGG, 

BIOCARTA, REACTOME, and PANTHER databases. All VIPER results are present in 

Supplementary Table 3. 
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5.8 Single cell ATAC-seq library construction and analysis 

Single cell combinatorial indexing ATAC-seq libraries were prepared following the exact 

protocol described in Cusanovich et. al. 2015170 using flow sorting at each stage of nuclei 

partitioning as opposed to dilution. All treatments were multiplexed in the same transposase-

based indexing plate with the wells of the plate corresponding to each treatment condition. 

Indexing at this level has the distinct advantage of preventing any potential cell collisions 

from occurring between cells from two separate conditions as the treatment condition is 

encoded in the transposase barcode prior to pooling and redistribution. After combinatorial 

indexing library construction, all PCR wells were pooled and assessed on a Bioanalyzer High 

Sensitivity DNA chip (Agilent) prior to sequencing on an Illumina NextSeq 500 according to 

protocols outlined in Amini et. al. 2014203. Sequence reads were demultiplexed using SCI-

seq software provided in Vitak et. al. 2017204 prior to alignment using bowtie2197. PCR read 

duplicates were removed on a cell-level basis, again using SCI-seq software. Index 

combinations were then filtered to exclude background reads and to only retain those 

containing at least 1000 uniquely aligned sequence reads with a mapping quality of at least 

10. The combined alignment file was then used for peak calling using MACS2205 with default 

parameters. Reads and peaks were then used to construct a counts matrix as described in 

Cusanovich et. al. 2015170 and filtered to retain only cells with at least 1000 on-target reads, 

and sites that contain reads from at least 50 cells which was then used to perform latent 

semantic indexing (LSI), retaining dimensions 1 through 15. On the LSI matrix we then 
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carried out t-distributed Stochastic Neighbor Embedding (t-SNE)206. To compute 

transcription factor deviation scores we used chromVAR171 using the transcription factor 

motif collection provided by the tool and plotted deviation z-scores on the respective LSI t-

SNE visualizations. 

 

5.9 Animal studies 

All mice were handled in accordance with the OHSU Institutional Animal Care and Use 

Committee (IACUC) guidelines. 

 

5.9.1 Assessing JQ1 + BEZ235 

A total of 2x106 HCC70 cells in 50% Matrigel (Corning) + 50% complete media (RMI1640 

+ 10% FBS) were bilaterally injected into the left and right fourth mammary glands of 4-6 

week old nonobese-diabetic (NOD)/SCID/γ-chain null (NSG) mice. Tumours were allowed 

to grow until tumours reached 100mm3, at which point all mice were randomized into 

treatment groups. Each group included four mice, with a total of eight tumors per group, 

based on other xenograft studies this was sufficient to detect mean differences in tumor size 

between groups greater than 1 standard deviation at 5% significance (using two-tailed 

student’s t-test) with 95% power. Following randomization, treatment commenced with the 

following agents: 40mg/kg NVP-BEZ235 by oral gavage (OG), 50mg/kg JQ1 by 
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intraperitoneal injection, a combination of the two agents, or OG control vehicle (10% 1-

methyl-2-pyrrolidone/90% PEG300) and IP vehicle (10% DMSO in 2-Hydroxypropyl-B-

cyclodextrin, 10% w:v in water). Treatments were performed once daily, for 21 days. Single 

agent cohorts received vehicle by OG (JQ1 cohort) or vehicle by IP (BEZ235 cohort). 

Caliper measurements and tumour volume calculations were performed every 2-3 days using 

the V = (L x W2)/2 equation. Mice were euthanized following the 21-day treatment period 

according to IACUC protocol and tumors were harvested, formalin fixed, paraffin 

embedded, sectioned and immunofluorescently interrogated (see Analysis of primary tumor 

samples). Investigators were not blinded when assessing tumor volumes and were blinded 

during immunofluorescent analysis. 

 

5.9.2 SMAP studies in Lsl-Myc:PTENfl/fl:Blg-Cre mice 

Blg-Cre mice were crossed with ROSA26-Floxed-Stop-Myc mice (RFS-Myc). These Blg-

Cre:RFS-Myc mice were then crossed with PTENflox/- mice received from Dr. Akira Suzuki. 

Blg-Cre:RFS-Myc, PTENflox/- , and Blg-Cre:RFS-Myc:PTENflox/-  female mice were then 

allowed to complete two cycles of pregnancy and lactation at which point they were 

examined for tumor development twice per week by palpation. Once tumor size reached a 

diameter of 5mm by caliper measurement, mice were enrolled into study and randomly 

assigned into one of four treatment groups: 1) Vehicle (1:10 Solutol and 1:10 N,N-

Dimethylacetamide in H20 ) administered BID by oral gavage. 2) 50mg/kg DT061 
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administered BID by oral gavage. 3) 15mg/kg DT061 administered BID by oral gavage. 4) 

200mg/kg DT1154 administered BID by oral gavage. All treatments were for 30 days, 

tumors were measured by caliper every other day, tumor volume was calculated as  

V=1/2(Length x Width2)  

 

5.9.3 Tumor-derived cell line establishment 

Tumors were surgically resected from Blg-Cre:RFS-Myc:PTENflox/-  mice and mechanically 

chopped into pieces approximately 1-2mm in size. Tumor pieces were then transferred to a 

Erlenmeyer flask with magnetic stir bar and incubated in an enzymatic disaggregation 

solution for 20 minutes: 2.5 mg/mL collagenase (Worthington), 0.1 mg/mL DNAse I 

(Sigma), 1.0mg/mL hyaluronidase in EBSS (Worthington); 0.45 uM filter-sterilized. 

Tumor slurry was then strained through a 70uM filter into a 50ml collection vial and put on 

ice. Remaining tissue in the filter was then transferred back to the Erlenmeyer flask and 

incubated with TrypsinLE at 37deg. C for 10 minutes. Slurry was then strained through a 

70uM filter and added to the 50ml collection vial. Cells were spun down at 300xG for 5 

minutes. Liquid was aspirated from the pellet and the cell pellet was reconstituted in 4mL “F” 

media (detailed below). 1ml of cells was added to a P100 dish with 1E6 irradiated human 

mammary fibroblasts (irradiated fibroblasts were provided by Dr. Ellen Langer at Oregon 

Health and Science University). Cell cultures were monitored for growth, when epithelial 
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colonies (marked by cuboidal morphology) gained 80% confluence, cells were passaged. 

During passaging, cultures are washed with PBS, then incubated in 1mL 0.25% TrypsinLE 

trypsin for 1min, this mL trypsin of trypsin is then aspirated and primarily contains 

fibroblasts. Remaining cells are then washed with 1mL PBS, and 1mL fresh trypsin is then 

added and allowed to incubate for 5min at 37deg. C. Cells are then triturated and split 1:4 

into new P100s with the addition of 1E6 irradiated HMFs per p100. For in vitro drug assays, 

irradiated fibroblasts are again selectively trypsinized and discarded, cells are washed, then 

trypsinized and plated into 96-well microplates at 5000 cell/well without additional 

fibroblasts. 

 

5.10   Statistical analysis 

All statistical analyses were performed using GraphPad Prism software (V5, GraphPad 

Software Inc). Data is presented as mean with standard error when showing averages across 

biological replicates, or mean with standard deviation within representative experiments, all 

experiments were repeated at least three independent times. The number of replicates was 

chosen based on prior knowledge of specific experimental variability. For determining 

significance, replicate data was first tested with the D’Agostino & Pearson omnibus normality 

test. Normally distributed data was compared with the two-tailed students T-test, or paired 

student’s T-test for paired data. Non-normally distributed data was compared using the 

Mann-Whitney test, or the Wilcoxon matched-pairs signed rank test for paired data.  
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6 Conclusions and Future Directions 
 

Breast cancer is a heterogeneous disease with pronounced differences between patient 

tumors. Systems have been established to better classify the intertumoral heterogeneity of the 

disease, and the creation of breast tumor subtypes based on shared patterns of gene 

expression and molecular features has aided in the identification of targeted therapies that are 

effective against particular subtypes. However, some tumor subtypes, like triple negative 

breast cancer, lack shared features that can be exploited for therapy. Further, TN tumors also 

possess high levels of intratumoral heterogeneity on a genomic and phenotypic level, and 

these tumor cell phenotypes are plastic, allowing both Darwinian selection and adaptive 

resistance to occur during treatment. These properties make TN tumors particularly resistant 

to single agent therapeutics, and the initial results of clinical trials using single agent small 

molecule kinase inhibitors indeed show poor responses in TN patients14–16,55–57.  

 

6.1 Improving clinical assessment of intratumoral heterogeneity  

To improve the treatment of heterogeneous and plastic tumors, we must first develop and 

implement diagnostic systems that can identify heterogeneous tumors. Multiregional 

sequencing of surgically resected tumors has been proven to be an effective method to 

characterize the clonal heterogeneity within in a tumor21,60,207, however, this method requires 
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removal of the tumor and cannot predict the genotype of residual disease. Alternatively, 

circulating tumor DNA represents a useful source of genomic information that can be 

collected less invasively208,  and longitudinally, in order to monitor clonal evolution in the 

tumor209.  

Techniques to profile cell-state heterogeneity in tumors include immunohistochemical 

analysis of tissue slides, flow or mass cytometry from tumor cell suspensions, or single cell 

epigenetic or transcriptomic profiling of tumor cells, all of which require significant tumor 

mass for evaluation. Immunohistochemical analysis may represent the easiest procedure to 

implement into current clinical practice, as collection of FFPE tissue sections is already 

standard practice for histological assessment.  In this work I present a system that can use this 

tissue source to measure intratumoral phenotypic heterogeneity by multi-color 

immunofluorescence staining and automated image analysis. We demonstrate that 

phenotypic heterogeneity can be quantified using the Shannon diversity index, which allowed 

for comparisons of intratumoral phenotypic heterogeneity amongst different molecular 

subtypes and tumors of different hormone and HER2-receptor expression status. This study 

demonstrated that the triple negative and basal-like subtypes have the highest levels of cell-

state heterogeneity, while luminal tumors have the lowest. And while the number of patient 

samples examine in the study was low, these results nonetheless demonstrate the potential of 

immunofluorescent image cytometry systems to quantify differences in tumor heterogeneity 

between, and within subtypes. Improving this heterogeneity assay by including expanded sets 
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of cell-state markers and refining cell segmentation strategies will improve the ability to 

quantify cell-state heterogeneity. Applying this system to large tumor cohorts with known 

patient treatment data and clinical outcomes may reveal the utility of this heterogeneity 

metric to diagnose disease, predict outcomes, and guide treatment decisions.  

  

6.2 Rethinking current treatment paradigms for heterogeneous 

tumors: moving towards “management”, not cures 

Intratumoral clonal heterogeneity, intratumoral cell-state heterogeneity, and cell-state 

plasticity are major challenges in our ability to therapeutically manage triple negative tumors. 

Tumor clones or phenotypes can sometimes function symbiotically if they have 

complementary paracrine signaling210,211, but there is mounting evidence that clonal 

heterogeneity produces competition for resources within the tumor, which can be an 

inhibitory force on tumor growth and metastasis212 and can even result in tumor collapse211. 

Therefore, the current paradigm of using maximum tolerated doses (MTD) of cytotoxic 

therapy in order to enact complete cell kill and “cures” can be more detrimental to patient 

outcomes than using no treatment at all. Breast tumors, and TN tumors in particular, are a 

heterogeneous mixture of tumor clones and phenotypes with distinct environmental fitness 

and drug sensitivities, all of which compete for a limited pool of nutrients, oxygen, and 

territory. Curative strategies often eliminate all chemosensitive cells in the tumor, removing 
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the competitive landscape that keeps the drug resistant, and often more aggressive and 

metastatic tumor subpopulations at bay159,212,213. This  “competitive release”214  provides the 

proper environment for aggressive drug-resistant clones to now overtake the tumor, and 

leaves few strategies to combat the growth of the remaining disease. These selected clones or 

phenotypes often harbor distinct genetic or phenotypic features that make them broadly 

resistant to therapy, such as selection of clones with P53 mutations that have enhanced 

resistance to stress-induced apoptosis215, or selection of cell state that have high expression of 

multi-drug resistance (MDR) transporters, reducing the efficacy of many therapeutic agents 

through increased drug efflux216,217. Triple negative patients have a unique attribute that 

tumors that become resistant to neoadjuvant chemotherapy have worse overall survival then 

other subtypes that progressed on treatment7. This is consistent with the idea that due to 

intratumoral heterogeneity in this subtype, strategies attempting curative neoadjuvant 

chemotherapy with maximum tolerated dosing may actually put the patient at great risk if 

unsuccessful. Consistent with this, studies using mathematical modeling of tumor evolution 

under different therapeutic pressures demonstrate that selection of resistant clones through 

MTD therapy is an ineffective strategy for heterogeneous tumor management, and leads to 

outgrowth of aggressive phenotypes with increased metastatic potential212,218,219 

Due to the implications of intratumoral heterogeneity, we must re-strategize our 

approach to manage these tumors. Instead of using maximal doses of therapy in attempts to 

achieve a cure, we must appreciate the competitive landscape of clonal and phenotypic 
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subpopulations vying for resources within the tumors and use lower, more intermittent 

doses. Supporting this, the implementation of breaks in treatment, or “drug holidays”, have 

been shown to allow the tumor to regain therapeutic sensitivity, improving response with the 

next dose, and slowing down the acquisition of drug resistance24,138,220. These findings were 

discovered in melanoma, but a recent study by Gomez-Miragay et al78 in triple negative 

breast cancer demonstrates that expanding the period between chemotherapy treatments 

improves responses in patient-derived breast tumors.  

 

6.3 New approaches to treat heterogeneous and plastic breast 

tumors 

In addition to improving current treatment regiments by altering dosing and dose intervals, 

the development of new therapeutic approaches can greatly benefit TN tumor management. 

In this work we highlight the pitfalls of single agent kinase-targeted therapeutics in 

heterogeneous and plastic breast cancers like TN breast cancer. Small molecule kinase 

inhibitor monotherapies show some antiproliferative efficacy in TN models, but consistently 

generate a drug-tolerant persisting cell population. We demonstrate that this is the result of 

adaptive cell-state transitions, supported by chromatin modifier protein activity and changes 

in the open chromatin architecture. Consistent with this, inhibiting BET protein activity 

prevents these drug-induced chromatin changes, and maintains the cells in a kinase-inhibitor-
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sensitive state. Accordingly, combination treatment with the mTOR/PI3K inhibitor BEZ235 

and the BET inhibitor JQ1 robustly induced cell death in vitro and tumor regression in vivo67. 

This strategy of combining a plasticity-promoting kinase inhibitor with an inhibitor of 

adaptive chromatin remodeling has proven to be an effective option to treat phenotypically 

heterogeneous and plastic tumors, and is supported by numerous recent studies examining 

different KI/BETi combiantions18,123,124.   

 Small molecule activators of PP2A (SMAPs) represent an orthogonal approach to 

treating heterogeneous and plastic breast tumors. Pharmacological reactivation of PP2A in 

breast cancer cells results in profound cell death in many cancer types, and we demonstrate 

that these effects are shared across different cell states in heterogeneous triple negative breast 

cancer models. This is due to the wide range of kinases and other protein that are regulated 

by PP2A, including MYC, AKT, RAF, ERK, SRC, and BAD, amongst many others. Unlike 

multi-targeted kinase inhibitors, these SMAPs are well tolerated in normal cells, with no 

adverse side effects being observed in our treated animal models. This class of drugs shows 

promise for treatment of heterogeneous and plastic breast cancers and may provide an 

effective strategy to alternate with KI/BETi combinations, or to use in the case of innate or 

acquire resistance to KI/BETi therapy. 
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6.3.1 Advancing Kinase Inhibitor and BET inhibitor combination therapy 

The BET family, and more particularly, BRD4, is an effective target to inhibit adaptive state 

changes and improve kinase inhibitor efficacy. This is due to BRD4’s role in multiple steps of 

allowing new genes to be expressed in a cell: supporting chromatin architecture changes, de 

novo enhancer formation, and transcriptional elongation. BRD4 can acetylate histones in a 

Histone 3 globular domain lysine residue, K122, which stimulates nucleosome eviction from 

DNA, resulting in changes in open chromatin and allowing new gene enhancer or promoter 

access125. Further, BRD4 also has well-studied epigenetic reader functions, where its two 

bromodomains are used to bind acetylated lysine residues on histones and allow for mediator 

complex docking, and chromatin looping of this enhancer machinery to the transcriptional 

start site (TSS) of target genes221,222. Once looped to the TSS, BRD4 further functions as a 

kinase in Positive Transcription Elongation Factor b (P-TEFb) complex, functioning to 

phosphorylate the C-terminal domain of RNA Polymerase II, stimulating the release from 

transcriptional pause and elongation of RNA synthesis105,106. Due to the many roles that 

BRD4 plays in de novo enhancer formation and gene expression it may be the ideal therapeutic 

target to inhibit adaptive resistance. However, BRD4’s involvement in these many 

mechanisms may make its pharmacological targeting less tolerable in normal cells of the 

body. Indeed some side effects of BET inhibitors are observed in animal models and in early 

clinical trials, including a reduction of secretory cell functions (pancreatic β-cells), adipocyte 

counts, and differentiated immune cells presence in animal models treated with BET 
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inhibitors223. Related to these cell-level changes, we observe side effects of increased 

diarrhea, hyperilirubinemia, and reductions in blast counts in human patients treated with the 

BET inhibitor OTX015 in Phase Ib trials224. 

It will be important to understand what mechanisms are antagonized by BET 

inhibitors during the prevention of adaptive resistance to kinase inhibitors. Our work 

demonstrates that changes in open chromatin architecture, survival-signaling gene 

expression, and state-transition are all inhibited when JQ1 is dosed with BEZ235. These 

effects could result from the repression of open chromatin change, the repression of de novo 

enhancer formation, the repression of P-TEFb function and transcriptional pause-release, or a 

complex combination of these mechanisms. To better understand the contribution of these 

mechanisms we can use sciATAC-seq to test whether the newly opened chromatin sites 

during drug response are at known gene enhancer locations of genes that increase expression 

during KI treatment. This can be performed by performing sciATA-seq in cell lines that have 

had their gene enhancer locations mapped* on the ENCODE database225, such as SUM149PT, 

for which we also have RNA-seq data following drug treatment with BEZ235 and 

Trametinib. This will allow us to determine if gene expression changes are linked to the 

opening of enhancers. We could employ chromatin immunoprecipitation (ChIP) using anti-

BRD4 antibodies to show that upregulated genes have BRD4-bound enhancers in KI-treated 

                                                   

* Various assays including 5C, ChIA-PET, and Hi-C are used to determine what enhancer regions connect to what 
promoter regions.  
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cells, but not in KI/BETi-treated cells, which would support a gene-enhancement role for 

BRD4, particularly if BRD4 was present at promoters as a factor in P-TEFb in both 

treatments. Assays that examine nascent gene transcription, such as the global run-on 

sequencing assay (GRO-seq)226 or precision nuclear run-on and sequencing assay (PRO-

seq)227, could also be combined with ChIP at earlier timepoints to demonstrate that BRD4 is 

localizing to gene enhancers or gene promoters where nascent transcription is occurring. 

Higher prevalence of BRD4 at enhancers would argue for an enhancer-mediated mechanism 

of BRD4-supported gene expression, whereas more prevalence of BRD4 at gene promoters 

would argue for a P-TEFb-mediated mechanism of BRD-4-supported gene expression. 

Further, examining whether pharmacological inhibitors of chromatin modifier proteins, 

and/or P-TEFb complex member inhibitors in combination with kinase inhibitors phenocopy 

the effect of KI/BETi combinations will elucidate the mechanisms of BRD4. Testing the 

effect of combined BEZ235 with inhibitors of histone acetyltransferases18, histone 

deacetylases24,122,228, histone methytransferases229,230, or histone demethylases18,231 via 

sciATAC-seq and gene expression analyses will test whether repression of open chromatin 

architecture change is the main mechanism by which JQ1 inhibitors synergizes with BEZ235. 

Similarly, combinations of BEZ235 with inhibitors of the P-TEFb complex kinases CDK7 or 

CDK9 may elucidate the impact of the JQ118 RNA Polymerase kinase function on adaptive 

resistance. Most convincingly, however, would be to employ dominant negative versions of 

BRD4 where different domains are selectively mutated, including the bromodomain regions, 

histone acetyl-transferase domain, or kinase domain.  Testing how these mutant BRD4 
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proteins affect adaptive response to kinase inhibitors will show which domain functions are 

critical to adaptive resistance in response to kinase inhibition.  

 

Figure 6-1: Schematic of PI3K/mTOR inhibitor-induced changes in 
heterogeneous basal-like cell lines. 

A cartoon depicting the enrichment of drug-tolerant persister identity upon treatment of 
heterogeneous basal-like breast cancer cell lines with the PI3K/mTOR inhibitor BEZ235. 
This drug induces robust changes in chromatin architecture, transcription factor access and 
activity via geneset expression, as well as increased compensatory pathway gene expression, 
and differentiation gene expression including increases in luminal and mesenchymal markers. 
JQ1 antagonizes these chromatin changes and de novo enhancer formation, resulting in 
increased apoptosis, reduced proliferation, and repressed phenotype transitions when dosed 
in combination with BEZ235.  
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6.3.2 Advancing Small molecule activators of PP2A 

Novel therapeutic mechanisms that can simultaneously inhibit numerous oncogenic signaling 

pathways are promising for the treatment of heterogeneous and plastic breast tumors. Such 

multi-pathway inhibitory agents would leave few options for compensatory pathway signaling 

to bypass the therapeutic effect. However, the lack of safety with multi-kinase small molecule 

inhibitors is usually a point of failure for their development, as observed with kinase 

inhibitors that have large target spectrums like staurosporine derivatives232. While effective at 

killing cancer cells, these drugs simultaneously inhibit many pathways in normal cells and 

lead to toxicity, making them impractical for cancer therapy. Activators of PP2A offer a 

solution to this issue by inducing multi-pathway downregulation in cancer cells, but are well 

tolerated in normal cells. Most tumors have evolved to possess mechanisms of PP2A 

repression, supporting hyperactivity of cell survival and proliferation pathways in the cancer. 

We show here that reactivation of PP2A in heterogeneous and plastic breast cancer cells 

promotes robust tumor cell cytotoxicity, and importantly, equally affects the different 

phenotypic subpopulations of cells present in culture. Further, these drugs were very 

effective at inhibiting tumor growth in vivo in genetically engineered mouse models, and were 

well tolerated in the animals, with no observed side effects of therapy. This speaks to the 

specificity of the inhibitory function of these agents only occurring in cells where PP2A has 

been endogenously repressed. In normal cells where PP2A is already active and maintaining a 

regulated phospho-signaling landscape, enhancement of activity with these agents does not 
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appear to have detrimental effects on cell viability. Due to this broad cell state potency, 

antitumor efficacy, and lack of toxicity in normal cells, PP2A activators represent a 

promising tool for the treatment of heterogeneous and plastic breast cancers will hopefully be 

clinically evaluated in this disease in the near future.   

 

Figure 6-2: PP2A targets and 

pharmacological activators. 

A schematic showing a reduced network of the 
proteins regulated by PP2A (red lines). Also 
included are the endogenous inhibitors of PP2A: 
SET and CIP2A.  Therapeutic agents that activate 
PP2A are also shown, including OP449, which 
competes for SET binding, relieving endogenous 
PP2A repression, as well as the small-molecule 
activators of PP2A: DT061 and DT1154.   
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8 Appendix - Extended description of computational 
modeling 

 

The purpose of this supplement is to explain in greater detail how fold change was simulated 

using timecourse data and mathematical modeling (Fig. 3-3). Notation is presented, and a 

description of the dynamical system follows. Then, we summarize model identification 

details and show how to compute model-derived fold change. 

 

All mathematical modeling and supplemental methods were designed and written by 

Margaret Chapman with additional instruction from Claire Tomlin. 

 

I. Notation 

Symbols and definitions are below. All terms are agent-specific (e.g., DMSO, Trametinib). 

Gain is the discrete-time analog of rate. Terms labeled ρ are parameters of the system 

dynamics200. 

Symbol 
Definition 

#K14lo
obs observed number of K14low cells via image cytometry 

#K14hi
obs observed number of K14high cells via image cytometry 

fdead
obs observed fraction of dead cells via YO-PRO-1 

#K14lo
live, tr number of K14low live cells for model training 

#K14hi
live, tr number of K14high live cells for model training 

#deadtr number of dead cells for model training 
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ρhD death gain, K14high 

ρlD death gain, K14low 

ρh→l transition gain from K14high to K14low 

ρl→h transition gain from K14low to K14high 

ρh cell division gain, K14high 

ρl cell division gain, K14low 

#K14lo
live, sim number of K14low live cells generated via dynamics simulation 

#K14hi
live, sim number of K14high live cells generated via dynamics simulation 

#deadsim number of dead cells generated via dynamics simulation 

 

II. Dynamical system 

A linear time-invariant dynamical system was chosen to model cell-state interactions, x[k+1] 

= A·x[k], where state vector x = (number of K14high live cells, number of K14low live cells, 

number of dead cells)T ϵ ℝ3, [k, k+1) is a 12-hour interval, and dynamics matrix A ϵ ℝ3x3 is 

parameterized as follows:* 

A =
ρh - ρh→l - ρhD ρl→h 0

ρh→l ρl - ρl→h - ρlD 0
ρhD ρlD 1

. 

Values of the dynamics parameters were identified using training data computed from 

timecourse data in a manner specified by hypothesis (e.g., K14high Darwinian selection) and 

agent (Sec. III). Thus, there is a unique dynamics matrix for each (hypothesis, agent) pair. 

Propagating a given matrix N time steps forward from initial condition, x0 ϵ ℝ3, yields state 
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vector at time N, x N  = AN·x0. For each (hypothesis, agent) pair, quantities of K14high live 

cells, K14low live cells, and dead cells were generated over time in this way via the 

appropriate dynamics matrix. 

 

III. On training data and parameter constraints for model identification 

Recall that dynamical models were generated from timecourse data to test if K14high 

Darwinian selection or cell-state transition were the likely driver of Trametinib-induced 

differentiation-state enrichment. The tables below summarize training data computations and 

parameter constraints for such models under each hypothesis. The “mixture” hypothesis was 

included for completeness—to predict the effect of the conservative death distribution with 

switching permitted (Fig. 3-3, 3-4). Additional practical constraints (omitted below) were 

enforced, e.g., nonnegative gains200. 

K14hi Darwinian selection hypothesis 

Agent Assumptions on cell-state 
death & transition 

How to compute training data for model 
identification from timecourse observations 

Parameter 
constraints 

Trametinib  All death in K14low 

No switching 

#deadtr = fdead
obs · ( #K14lo

obs + #K14hi
obs ) 

#K14lo
live, tr = #K14lo

obs - #dead 

#K14hi
live, tr = #K14hi

obs 

ρhD = 0 

ρh→l = ρl→h = 0 

ρh = ρl 

DMSO Equal death K14high & K14low 

No switching 

#deadtr = fdead
obs · (#K14lo

obs + #K14hi
obs) 

#K14lo
live, tr = (1 - fdead

obs) · #K14lo
obs 

#K14hi
live, tr = (1 - fdead

obs) · #K14hi
obs 

ρhD = ρlD; 

ρh→l = ρl→h = 0 

ρh = ρl 

 

Cell-state transition hypothesis 
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Agent Assumptions on cell-state 
death & transition 

How to compute training data for model 
identification from timecourse observations 

Parameter 
constraints 

Trametinib  Equal death K14high & K14low 

Yes switching 

#deadtr = fdead
obs · (#K14lo

obs + #K14hi
obs) 

#K14lo
live, tr = (1 - fdead

obs) · #K14lo
obs 

#K14hi
live, tr = (1 - fdead

obs) · #K14hi
obs  

ρh = ρl 

DMSO Same as above Same as above Same as above 

IV. How to compute simulated fold change 

Our computational models provided simulated quantities of K14high live cells, K14low live cells, 

and dead cells. Image cytometry provided measured quantities of K14high cells (live & dead) 

and K14low cells (live & dead); phenotypes of dead cells were unobservable. Thus, the 

simulated values were processed further to quantify K14high cells (live & dead) and K14low 

cells (live & dead) for direct comparison with biology (Fig. 3-3h). These steps are detailed 

below. 

Let agent i ϵ {Trametinib, DMSO} and phenotype p ϵ {K14hi, K14lo}. For each time k ϵ {0, 

12, …, 72} hr, simulated fold change of phenotype p at time k is the ratio, 

 [ fractionsim 
p
]time k, Trametinib

[ fractionsim
p

 ]time k, DMSO
, in which simulated phenotype p fraction is defined as: 

[ fractionsim 
K14lo]time k, agent i =  #K14sim

lo

#K14live, sim
hi + #K14live, sim

lo  + #deadsim
 

time k, agent i
 (1a) 

[ fractionsim 
K14hi]time k, agent i =  #K14sim

hi

#K14live, sim
hi + #K14live, sim

lo  + #deadsim
 

time k, agent i
. (1b) 

The denominator of (1), cell population total, is obtained directly via dynamics simulation. 

The numerator of (1) is the in silico quantity of phenotype p cells (live & dead) at time k after 
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initial treatment with agent i, which requires additional computation based on (hypothesis, 

agent) pair. 

Under K14high Darwinian selection hypothesis, death is allocated to the weaker cell state, 

K14low, in entirety under Trametinib: 

 #K14simlo  time k, Trametinib=   #K14live, sim
lo  + #deadsim time k, Trametinib

  (2) 

 #K14simhi  time k, Trametinib=   #K14live, sim
hi  

time k, Trametinib
    (3) 

However, under the cell-state transition hypothesis, Trametinib-induced death is evenly 

distributed between cell states: 

 #K14simlo  time k, Trametinib=  
 #K14live, sim

lo

1 - fractionsim
dead  

time k, Trametinib
   (4) 

 #K14simhi  time k, Trametinib=  
 #K14live, sim

hi

1 - fractionsim
dead  

time k, Trametinib
,   (5) 

such that simulated dead fraction at time k under agent i is: 

[ fractionsim
dead ]time k, agent i=  

#deadsim
#K14live, sim

hi  + #K14live, sim
lo  + #deadsim

 
time k, agent i

. (6) 

For both hypotheses, because K14high and K14low should be similarly fit in absence of therapy, 

death is evenly distributed between cell states under DMSO. Replace Trametinib in (4) and 

(5) with DMSO, and the computation follows. 

 


