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1 Introduction

1.1 Background

Chronic myeloid leukemia (CML) is a hematological malignancy characterized by unregulated
growth of myeloid cells in the bone marrow. The chronic phase of the disease is typified
by an overproduction of haematopoietic stem cells (HSCs) which further develop into the
various myeloid progenitor cell types and eventually lead to an excess accumulation of
normally functioning and replicating myeloid cells in the blood stream. Progression from
chronic phase to blast crisis leads to a rapid accumulation of primitive myeloid and lymphoid
blast cells in the blood stream. The most prominent feature of CML cases is the famous
“Philadelphia chromosome” translocation between chromosomes 9 and 22, present in nearly
all cases and the most well known example in medicine of a genetic abnormality linked to
disease[1-3|. This translocation results in the BCR/ABL fusion oncogene, which expresses
a constitutively active tyrosine kinase. The aberrant tyrosine kinase resulting from this
fusion has proven to be the primary driver of leukemogenesis in CML, acting through the

activation of numerous pathways promoting cellular proliferation.

A major advance in the treatment of CML, and one of the first examples of direct molec-
ular targeting for treatment of cancers, was achieved with the development of Imatinib
mesylate, which inactivates the BCR/ABL fusion protein, inhibiting its spurious tyrosine
phosphorylation. Imatinib has been uniquely successful in halting CML amongst patients
in the chronic phase of the disease, with a 5 year overall survival rate of 85%[4]. Prior to
the development of targeted BCR/ABL inhibition as a treatment approach for CML, the
best available treatment options were either stem cell transplantation or drug intervention
with interferon-c, which offered a highly variable extension in survival times and significant
side effects. Despite this success a significant percentage of chronic phase patients acquire
resistance to imatinib treatment over time, inevitably transitioning to more advanced stages

with poor treatment options. The leading known cause of acquired imatinib resistance



is the acquisition of point mutations in the kinase domain(KD) of BCR/ABL, changing
the steric conformation of the binding site for imatinib and thus disrupting its ability
to inhibit phosphorylation[5]. Kinase domain mutations account for roughly 50-60% of
resistance cases[6], and this avenue of aquisition for Imatinib resistance is generally classified
as BCR/ABL-dependent. Second-generation tyrosine kinase inhibitors(TKIs) have been
developed which are able to effectively block BCR/ABL activity even in the presence of select
KD point mutations, as in the case of the E255V P-loop mutation salvaged by Dasatinib
and the higly resistant T315I ATP-binding site mutation, which is effectively treated with
Ponatinib[7]. Despite the fact that each of these second generation TKIs are susceptible
to their own specific resistant point mutations, they offer a reasonable salvage therapy for

patients exhibiting BCR/ABL-dependent resistance to imatinib.

No comparable second-line therapeutic options are available for the remaining half of imatinib
resistant cases. For these “BCR/ABL-independent” cases clear molecular mechanisms have
remained elusive. Amplification of the BCR/ABL gene, which would increase the necessary
dosage of imatinib required for effective treatment, has been observed in select cases[8].
Mutations or amplifications leading to over or under expression of transmembrane transporter
proteins such as ABCB1 and HOCT1 have been observed at high rates in non-BCR/ABL
resistant cases. These may indicate mechanisms reducing the bioavailability of imatinib[9,10].
While the preceding examples are not due to disruption of imatinib with the BCR/ABL
fusion protein, they could still be described as BCR/ABL-dependent because they act to

reduce the dosing of the drug and interrupt effective targeting of BCR/ABL.

There are more cases in which imatinib (or other TKIs) binding efficiency to the BCR/ABL
fusion protein is not inhibited and the genetic causes are not understood. Recent evi-
dence has shown that these BCR/ABL-independent mechanisms of resistance may act
through alternative activation of the same terminal downstream pathways seen in canonical
BCR/ABL mediated CML progression, even as BCR/ABL expression is being effectively
neutralized. One such study has identified putative imatinib “sensitizing genes”, which when

underexpressed lead to upregulation of PRKCH and activation of the c-RAF kinase, which



phosphorylates RAF and recapitulates the RAF/MEK/ERK pathway activation seen in

CML cases prior to imatinib treatment[11].

There are numerous downstream pathways, some already known to play a central role
in CML progression, which may be acting as mediators of CML relapse in BCR/ABL-
independent TKI resistance. One of the most important canonical CML pathways is the
aforementioned Ras/RAF/MEK/ERK cascade, which transmits cell-surface signalling from
various growth factors (i.e. EGFR and FGF), to the nucleus of the cell for transcriptional
regulation. Another key pathway involved in CML progression is the JAK/STAT receptor
signalling cascade, which regulates transcription in response to cell-surface signalling[12].
There are also cell-intrinsic signalling pathways, such as the PI3K/AKT pathway, which
play an important role in CML progression[13]. AKT has numerous downstream targets
involved in CML and other cancers, such as mTOR, FOX0, and CREB. Many other cancer
related signalling pathways have been implicated in CML progression, or in other related
myeloid malignancies, and may also be involved in BCR/ABL-independent resistance. For
example, Wnt//-catenin signaling has been shown to be important for the growth of CML

primary cells in in-vitro experiments[14].

The preceding examples are just some of the cancer associated signaling pathways which
may act to re-trigger leukemia progression in BCR/ABL-independent cases. It is possible
that many BCR/ABL-independent pathways are also active in BCR/ABL-dependent cases.
Therefore, the identification of pathways involved in BCR/ABL-independent resistance is
crucial for understanding the molecular mechanisms of CML relapse in all cases of TKI
resistance. This knowledge will not only offer actionable targets for salvage treatment in
Independent cases, but may also indicate possible compound therapies for more permanent

treatment of dependent resistance cases exhibiting BCR/ABL point mutations.



1.2 Research Question

Due to the complexity of BCR/ABL-independent TKI resistance, a central question is
whether relapse acts through the canonical BCR/ABL CML pathways seen in dependent
cases, or through a different set of genes and pathways. To answer this question, both
RNA-seq and Whole Exome Sequencing data was collected and analyzed as part of a
large retrospective study of CML patients with acquired resistance to imatinib and other
related TKI inhibitors. RNA-seq and Whole Exome sequencing are both next generation
sequencing approaches which allow for the high-throughput, cost-effective characterization
of an individual’s entire mRNA transcript profile (RNAseq) or protein coding region of the
genome (WES)[15]. This study was comprised of 244 samples (123 WES, 121 RNAseq)
collected from seven different clinical locations across the United States and Europe. These
samples represented 130 unique patients, 70 of which had samples collected for both data
types, 36 for WES only, and 24 for RNAseq only.

This type of study, with data pooled from many different centers, has significant limitations.
Due to variation in laboratory protocols, highly heterogenous clinical covariates (TKIs used,
duration of treament, etc), and the inability to structure sample processing from the very
beginning of the experimental pipeline in order to avoid aquisition of batch effects, the
resulting dataset contain significant technical variation. As a result careful consideration
must be taken to ensure that problematic samples are identified and if possible properly

normalized.

As is often the case with studies based on data collected in clinical settings, the vast majority
of the samples used for sequencing lacked matched normal germline samples. This creates a
serious issue of scale in identified mutations and candidate genes that will be used as input
for downstream analysis. Therefore, a strategy for filtering the variants/genes down to a

more reasonable scale, based on a rational set of criteria, must be developed.

Aim1: Devise strategy for dealing with data shortcomings (retrospective/uneven protocols,



unmatched samples); identifying potential problem samples(or areas of bias) and developing

a framework for filtering of mutations.

Aim?2: Identify putative driver genes and functionally linked networks of genes important
to BCR/ABL-Independent TKI resistance in CML using the HotNet2 network analysis

algorithm.



2 Batch Effect Detection

2.1 Introduction

In recent years, issues with poor reproducibility have risen to the forefront of consciousness
amongst scientists, with the results of numerous studies being called into question after
re-analysis or attempted replication[16]. This has been of particular concern for biomedical
scientists utilizing computational approaches and high-throughput datasets. In many cases
these problematic studies can be attributed to mistakes in data-processing and/or failure to
identify systemic effects introduced by experimental artifacts, or so-called “batch effects”,

unrelated to any biological variables of interest.

Even small errors in data processing, such as mislabeled sample tubes or 1-off excel table
data entry errors, can have striking effects on downstream analyses and lead to mistakes not
just in direction of future research but in treatment of patients within clinical trials, as in
the famous Duke University Anil Potti example[17]. In that case, a column assignment error
led to the mislabeling of several samples and eventually to the assignment of patients to
incorrect arms of a clinical cancer trial, an example of an exceedingly simple error with very

serious outcomes.

In the case of “batch effects”, it has been known for some time that high-throughput
sequencing based expression assays such as microarrarys are highly sensitive to a wide array
of common experimental and extra-experimental factors; from the batch of reagents used, to
the manufacturing lot of the chips, to the specific technician involved, to even atmospheric
conditions on the day the hybridization was performed [18]. Though perhaps diminished, this
same sensitivity has been demonstrated in the case of next-generation sequencing technologies
such as RNAseq. These sorts of batch effects are often inadvertantly introduced due to a
lack of careful planning around the timing of data collection or experimental procedures.

With NGS assays requiring multiple steps in the sample preparation pipeline, from collection



of primary tissue samples to RNA extraction to sequencing library preparation, it is easy
for one or multiple of these steps to be done on different days, potentially with different
reagents and by a different technician, for different groups of samples. This can easily lead

to the creation of unanticipated batch variation.

While many of these batch effects can be prevented by careful planning, in retrospective
studies such as ours which attempt to pool samples from a large number of collaborating
labs, certain steps in the experimental pipeline may be beyond our control to properly
structure. Furthermore, data pertaining to these factors may not be uniformly available or
even recorded in all cases. Even in the best of cases, the potential batch introducing factors
are not always known in advance. For this reason, many of the tools for identifying batch
effects are exploratory data visualizations, which allow for open-ended discovery of aggregate
patterns in the data, unexpected under normal assumptions. One such method commonly
used for this purpose is Principal Component Analysis (PCA), a dimensional reduction
technique which can be used to identify the subset of genes or other features exhibiting
the greatest variance across a complex multi-dimensional dataset. PCA has been used
extensively as a statistical tool in microarray and NGS gene expression studies to identify
and normalize for sources of noise[19], and in more recent years has been shown to have
great utility as a visual tool for identification of strong batch effects which segregate samples
when evaluated on the first several prinicipal components[20,21]. Many other visualization

assays for NGS data have been developed for this sort of exploratory data analysis(EDA).

Though normalization techniques have become standard practice when dealing with NGS
data, they have limited success in correcting for the systemic bias introduced by batch
effects[22]. Since standard methods of normalization are typically inadequate in correcting
for batch effects, more successful approaches such as ComBat[23] or Frozen SVA[24] explicitly
incorporate any identified batch variables into their models in order to reduce the effect of the
batch factor. Many of these approaches are dependent on the identification of batch variables
prior to formal analysis. Additionally, the success of more sophisticated methods of batch

correction are limited by the degree of statistical confounding between the batch variables



and the primary experimental variables of interest. One of the most common causes of batch
effects is the tendency to collect experimental samples before controls, leading to correlation
between changes in experimental components (new reagents, sequencing batches[25], etc)
and experimental class. A high degree of confounding of this sort creates a scenario in
which it is nearly impossible to distinguish differences between the groups of interest from
differences introduced by the batch effect. For this reason, it is imperative to identify if any
batch effects are present and if so determine the degree of confounding present in order to

assess if the batch effects can be modeled appropriately.

2.2 Results and Discussion

IBS Clustering Plots

Identity-by-state (IBS) clustering[26] was performed on genotyping results from the Genome
Analysis Toolkit (GATK)[27] for all the samples in our study cohort. IBS analysis calculates
the degree of genetic similarity between all the possible pairings of samples, in this case by
comparing all of the variant loci included in the genotyping output. Heirarchical clustering
can then be performed on the IBS scores in order to infer the genetic similarity of the
different samples. This is useful in checking for samples exhibiting similarity that would
be expected, such as serial samples from the same patient, or for identifying unexpectedly

similar sample pairs arising from other sources, such as mislabeled samples or batch effects.

An example of this is shown in Figure 1 below, which shows the IBS clustering for the WES
genotyping. While none of the serial samples in the WES group were mispaired, several
unrelated samples clustered together, indicating potential cross-contamination. These three
samples are shown in the central region of Figure 1, with dendrogram splines marked in

green. These samples were subsequentely excluded from any eventual analyses.

IBS clustering was also performed on the genotyping data for the cohort’s RNAseq samples,
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Figure 1: Identity-By-State relatedness clustering of WES samples. Samples with den-
drograms highlighted in green show pattern of unexpectedly high relatedness, indicating
potential cross-contamination issue.



shown in Figure 2. One example of mispaired serial samples from the same patient can be
seen, with dendrogram splines highlighted in red. Additionally, when annotated with clinical
variables, it was noticed that the genotypes for the majority of the RNAseq samples coming
from the Fred Hutchinson Cancer Center clustered together. This group of clustered samples
is marked with green dendrogram splines in Figure 2. While the clustering coefficient is not
as strong as in the potential cross-contamination issue shown in Figure 1, the grouping by
source was unexpected and was an indicator of some other possible batch effect influencing

the sequence results for samples from this location.
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Figure 2: Identity-By-State relatedness clustering of RNA-seq samples. Samples with
dendrograms highlighted in green show pattern of unexpected relatedness, indicating potential
batch effect. 2 samples with dendrograms marked in red are sample pair from the same
patient which failed to cluster together, indicating potential mislabeling issue.

Feature Count Boxplots
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The EDAseq R Bioconductor package[28] contains a number of visualization functions useful
for conducting exploratory data analysis on RNAseq data for the purpose of discovering
potential sources of bias. The first thing that was examined was the overall distribution
of gene expression for each sample, vizualized using boxplots in Figure 3 below. While
many individual genes may be expressed at different levels between samples, the overall
distribution of gene counts should be similar for all samples. Contrary to that expectation, a
number of samples exhibited a distinct pattern with extreme outlier genes and concomitantly

lower interquartile ranges(IQR) for the remainder of their genes.

Read Counts Distribution, Filtered for mean > 10

log(Mean Counts)

4000000000+ 000+ 040+ 000+ 000+ 004000+ 104000+ 4000+ 4000000+ 000000+ 000+ GO000000000- 0000+ 400000000+ 0 + + 400000000000+ 4000000000000

Figure 3: Unordered FeatureCounts BoxPlots - Distribution of log gene counts, for all
genes with mean > 10 across entire sample cohort. A number of samples exhibit a distinct
distributional pattern with extreme outliers and lowered IQRs.

Ordering the samples by clinical variables, we could examine whether any particular clinical
covariates appeared to be strongly correlated with this expression pattern. When sample
source is used as the covariate for grouping samples, shown in Figure 4, it is clear that
almost all of the samples exhibiting this pattern came from the same source, indicating a
potential batch effect. The source for the samples exhibiting this batch effect was the Fred

Hutchinson Cancer Center, mirroring the pattern seen in the IBS clustering of Figure 2.
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Read Counts Distribution, Filtered for mean > 10

log(Mean Counts)
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Figure 4: Ordered FeatureCounts BoxPlots - Distribution of log gene counts, for all genes
with mean > 10 across entire sample cohort, ordered by sample source.

The expression pattern noted in Figure 3 is clearly correlated with sample source, indicating
possible batch issue.

2.2.1 GC Issues

Several additional exploratory visualizations of interest were examined in order to see if any
unusual patterns were present in our RNAseq samples. Lowess(locally-weighted polynomial)
regression of log gene counts against both gene length and GC content (Figure 5) for all
samples was performed, in order to determine if any bias was present. While there was
no discernible bias indicated by the gene length plots, a number of samples exhibited an

unusual trend between gene GC content and gene count, shown in the GC content plot.

The samples exhibiting an unusual relationship between log gene counts and GC content are
isolated and shown below in Figure 6. The four samples exhibiting the steeper negative
slope pattern are all samples from Fred Hutchinson Cancer Center, the same source as the

samples exhibiting the batch effect identified in the boxplot graphs.
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Figure 5: Bias Plots - Loess regression of log gene counts against gene length (left panel)
and GC content (right panel).
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Figure 6: GC Bias Plot Outliers - Loess regression of log gene counts against GC content,
highlighting outlier samples with unusual GC content/expression relationship.
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2.2.2 FASTQC Plots

In followup to the observation that several of the Fred Hutchinson batch effect samples
exhibited an unusual relationship between overall GC content and gene counts, I examined
potential GC-bias in more detail by looking at the GC content of raw reads rather than
gene-level summary data. The FASTQC set of quality control tools[29] provides a number of
measures for evaluating raw RNAseq read files. One of the included analysis modules is Per
Sequence GC Content (PSGCC), which graphs the observed distribution of read counts for
different values of mean read GC content. This observed distribution is overlayed with the
expected theoretical normal distribution which would be observed in the case of an unbiased
sequencing library. Sharp, unexpected peaks in the observed distribution may be indicative
of specific contaminants or strongly overrepresented sequences, and FASTQC will issue a

failure flag if more than 30% of the reads deviate from the theoretical normal distribution.

Among the batch effect (Fred Hutchinson) samples, 17 of the 18 (94.4%) samples were flagged
for failure on the PSGCC Content module, whereas only 31 of 103 (30.1%) normal samples
(those not exhibiting the batch effect distribution pattern in the FeatureCount boxplot
graphs) were flagged. Examining the PSGCC graphs more closely, the samples from the
batch effect group all exhibit a strongly abherrant distribution of mean GC content, with
numerous sharp peaks. In contrast, for normal samples, the mean GC content distributions
closely match the expected theoretical distribution, even in the case of the normal samples
which were flagged for failure. Examples of PSGCC Content graphs for both normal and

batch effect samples are shown in Figure 7.

This abherrant GC distribution almost perfectly matches the pattern shown in the Fea-
tureCount boxplot graphs. In fact, the two samples which do not fit the batch effect
sample/source pattern shown in Figure 2 do conform with this observed GC-bias pattern.
The one batch sample which did not fail the FASTQC Per Sequence GC Content module,
15-00446, is also the only sample from Fred Hutchinson that did not display the FeatureCount

boxplot motif of extreme outlier genes. Conversely, the only sample which displayed this
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Figure 7: FASTQC Per Sequence GC Content (PSGCC) graphs for a selection of normal
(non-batch) and batch samples. The observed distribution of read counts for different values
of mean read GC content is shown in red. The expected theoretical normal distribution
which would be observed in the case of an unbiased sequencing library is overlayed in blue.
Top panel are normal samples, bottom panel are batch samples. Note: Sample 14-00011
failed PSGCC module
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pattern but was not from the Fred Hutchinson group, 05-00225, also displayed the unusual
distribution of mean GC content. FeatureCount boxplots highlighting these two samples

and their PSGCC graphs are shown in Figure 8 below.

Read Counts Distribution, Filtered for mean > 10
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Figure 8: FeatureCounts Boxplots and FASTQC Per Sequence GC Content (PSGCC) graphs
for two samples lacking distribution pattern/source batch correlation. Single sample from
Fred Hutchinson(FH) lacking boxplot outlier pattern (15-00446) highlighted in blue, with
matched PSGCC graph shown in bottom left panel. Single non-FH sample displaying
boxplot outlier pattern (05-00225) is highlighted in red, with matched PSGCC graph shown
in bottom right panel.

Looking at the complete FASTQC reports for the samples, a majority of the batch effect
samples were also flagged by FASTQC’s Overrepresented Sequences module. The overrepre-
sented sequences from the batch samples were pooled and NCBI’s Nucleotide Blast tool[30]

was used to search for potential source transcripts. The top BLAST results returned for

16



the overrepresented sequences, which were present in all of the batch samples (excluding
sample 15-00446), are shown in Supplemental Table 5 in the Supplemental section. Ex-
cluding matches to cloning vector sequences, all of the hits were for sequences related to the

hemoglobin beta subunit.

2.2.3 Globin Genes

Top outlier genes were then extracted for all of the batch samples, and searched for those

annotated to globin genes. This returned nine globin outlier genes, shown in Table 1 below.

Table 1: Fred Hutchinson Outlier Globin Genes

Ensemble Gene ID HUGO ID Description

ENSG00000206172 HBAT1 hemoglobin, alpha 1
ENSG00000257017 HP haptoglobin

ENSG00000244734 HBB hemoglobin, beta
ENSG00000188536 HBA2 hemoglobin, alpha 2
ENSG00000206177 HBM hemoglobin, mu

ENSG00000213934 HBG1 hemoglobin, gamma A
ENSG00000196565 HBG2 hemoglobin, gamma G
ENSG00000223609 HBD hemoglobin, delta
ENSG00000169877 AHSP alpha hemoglobin stabilizing protein

Of these, Hemoglobin Beta and the two Hemoglobin Alpha Subunit genes were present
as extreme outliers in nearly all of the batch samples. Highlighting these three genes in
Figure 9 below, the correlation between expression of these three globin genes and the

FeatureCounts boxplot pattern is clear.

In fact, the expression pattern for these three globin genes nicely matches the two obvious

exceptions to the Fred Hutchinson batch pattern. As noted earlier, sample 15-00446 from
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Figure 9: FeatureCounts BoxPlots - Select globin genes highlighted. The samples exhibiting
the batch/outlier pattern (Fred Hutch, with 2 noted exceptions) are highlighted in red. The
globin alpha and beta 1/2 genes in all samples are highlighted in blue. This clearly shows
correlation between batch/outlier pattern and abundance of transcripts for these 3 globin
genes.

the batch group was the one sample which did not fail the FastQC Per Sequence GC Content
module, and it also was the only batch sample lacking the extreme outlier pattern in the
FeatureCount boxplots. As can be seen in Figure 9, this was the single batch sample with
expression of the three flagged globin genes within the main distribution of gene counts.
The other exception to the batch pattern was sample 05-00225, which both displayed the
extreme outlier gene pattern in the FeatureCount boxplots but also displayed the abherrant
Per Sequence GC Content distribution. In this case, the expression level for the three flagged
globin genes matches the extreme outliers and explains both patterns. Based on these
observations, it was clear that overrepresentation of these globin genes was the source of the
observed distributional pattern, which strongly correlates with the sample source from Fred

Hutchinson Cancer Center.

The identification of highly expressed globin genes as a common feature of this batch effect
group offered a potential experimental source of the observed pattern. Depletion of globin
transcripts has become a standard step in preparation of peripheral blood samples collected
for NGS studies, in order to prevent these highly abundant transcripts from saturating

the available sequencing primers and being disproportionately represented in downstream
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sequencing data[31].

Followup examination of the clinical data confirmed that the RNA samples from Fred
Hutchinson were isolated from whole blood cells, unlike the peripheral mononuclear blood
cells harvested in the samples from the other sites. As a result the red blood cells were not
removed prior to cell lysis during sample prep. This could account for a higher level of initial
globin transcripts present in these samples. However, while the difference in cell sample
isolate correlates perfectly with the sample source, it does not explain the two samples
(15-00446 and 05-00225) which do not fit the batch effect/source pattern. Whatever the
source, excess globin transcripts are clearly the cause of the batch effect initially observed in
Figure 3, introducing potential technical bias to the samples affected, primarily from Fred

Hutchinson Cancer Center.

2.2.4 Dropped Genes

The presence of excess globin transcripts during sample prep for this batch of samples may
have had a profound effect on the level of sequencing across the entire set of transcribed
genes, beyond the presence of these highly expressed globin genes. This is evident in the
noticeably lower IQRs for many of the featureCount boxplots of the batch samples, shown
in Figure 4. It has been noted that without proper globin depletion, globin transcripts in
peripheral blood samples can comprise as much as 50-75% of total mRNA present, and lead
to a proportional monopolization of the resultant sequencing reads[31]. One potential effect
of this is the biased dropping of low expression genes[32] from the batch samples, which
have not been properly globin depleted. Selective dropping of genes from one group in our
primary variable of interest (resistance type) could seriously confound any potential analysis

between the two groups, such as differential expression or pathway enrichment analysis.

Despite the greater dynamic range afforded by RNAseq technology for detecting transcripts

in comparison with microarrays, low expression genes are disproportionately effected by the
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random sampling process in NGS[33] and thus exhibit less accurate observed gene counts.
In many cases, these noisy low expression genes may fall below the threshold of detection,
resulting in the appearance of no expression. Therefore, it is expected that across our entire
sample cohort we would observe a number of samples with zero read counts for particularly

low expression genes.

Given that fact, a gene with zero read counts for all or nearly all of the samples in a specified
group (such as samples from one source) may simply be the result of random sampling of all
the zero count samples for that gene. However, the dominance of the globin gene transcripts
during sequencing may shift the expression levels of all the remaining genes downward,
pushing more genes close to the threshold of detection and artefactually increasing the

number of samples exhibiting zero read counts.

In order to identify whether genes are being “dropped” from the batch group that one would
not expect to occur by random sampling, the binomial probability of each individual gene
(with zero gene counts for at least one sample within the batch group) being absent through
chance was calculated, seperately for each sample source. Due to the differences in size
between the different groups, the dropped genes from groups with fewer samples do not have
the possibility of binomial probilities as small as for groups with more samples, because of
the smaller n in PrBin(X = k) = (})p"(1 — p)"~*). This means that a comparison of the
binomial probabilities of “dropped genes” between two source groups with unequal number,
is not perfectly even. For this reason, the best comparison of dropped genes is done by
specifying the single group of interest and then randomly subdividing the remaining samples
into equally sized groups. This is shown for the batch samples (those exhibiting the globin
outlier and GC bias patterns) in Figure 10. The large number of dropped genes with very
low binomial probability of random selection for the batch group is striking when compared

with the remaining samples randomly subdivided into six equal groups.

This visualization of dropped genes supports the notion that this batch effect, linked to the

presence of the three Globin outlier genes, does in fact lead to potentially biased elimination
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Figure 10: Dropped Genes - Log binomial probabilities of a gene having k samples identified
as having zero read counts for gene across designated sample group(Fred Hutchinson), with
remaining samples randomly assigned to equally sized groups.
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of low-expression genes from the batch group samples.

2.2.5 Differential Expression

Having identified globin transcript contamination during sample prep as the likely culprit of
the batch effect, and a clear pattern of bias between batch and normal samples for both the
three outlier globin genes and the low expression dropped genes, the full distribution of genes
was examined more closely to assess whether removal of the genes identified as biased could
allow for normalization of the batch effect. It is common practice to filter low expression
genes out before performing Differential Expression analysis[34]. If the bias introduced to
the batch samples is primarily focused in the low expression genes which will be eliminated
by this filtering step, it may be possible to use standard methods of normalization to adjust

global expression levels of the remaining genes.

First, Principal Component Analysis was used to plot all of the samples using their gene
expression in the first and second principal components, in order to visualize the clustering
of the samples both with and without the genes biased by the batch effect. The principal
components visualizations are shown in Figure 11 below. The top row left panel shows the
PCA with all genes included, and the top row middle panel shows the same visualization with
the three globin outlier genes and the “dropped” genes removed. As a control comparison,
the top row right panel shows the PCA with samples colored by Gender rather than batch
status. As can be clearly seen, the samples seperate fairly distictly into two primary groups,
indicating that the batch variable is exerting a strong influence on the set of genes which
display the most variance across the entire dataset. Furthermore, this effect is virtually
unchanged after elimation of the globin outlier and dropped genes, suggesting that the bias

introduced by the batch effect is present across the entire distribution of genes.

The next natural step is to evaluate whether standard normalization procedures can globally

adjust the expression levels in a way that corrects for this apparent bias, if in fact it is simply
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an issue of scaling for the remaining genes. PCA graphs after the use of three standard
normalization scaling methods[28], which adjust the global expression values in order to
equalize across samples using the median, upper quantile, and full quantile as equalizing
measures, respectively, are shown in the bottom row of Figure 11. Even after normalization
the batch and normal samples are clearly segregated by both the first and second principle
components, indicating a significant bias in the expression data for the batch group, even

with the globin outlier and dropped genes removed.
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Figure 11: Principle Components Visualization - Unnormalized data shown in top row.
Samples colored by Gender in top-left PCA plot, male (red) and female (yellow). All other
PCA plots colored by batch status, batch (green) and normal (blue). Top-center plot shows
PCA with all genes retained. Top-right plot shows PCA with globin outlier and dropped
genes removed. Bottom row shows PCA plots for data normalized using Median, Full
Quartile, and Upper Quartile normalization, all with globin outliers and dropped genes
removed.

Simple evaluation using principal components visualization seemed to suggest that the gene
expression of samples identified in the batch group was biased, even with the globin outlier
genes and “dropped” genes removed, and that this bias is not easily corrected by standard
methods of normalization. In order to more quantitatively assess this bias, I performed
differential expression analysis comparing the batch and normal groups using the edgeR

package[34]. Differential expression between sample groups divided by an unimportant
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variable should result in little or no significantly differentially expressed genes, provided
the sample groups are reasonably even in size. For this reason patient gender, which also
showed no clear pattern of seperation in the PCA plots, was selected as a control differential

expression variable. The entire table of DE results is shown in Table 2 below.

When comparing the batch and normal groups, the number of differtially expressed genes
identified is extremely high, from 50-52% of the total genes depending on the normalization
method used. The full dataset contains a large degree of heterogeneity for various clinical
variables and is quite imbalanced in terms of sample size (batch(n=18) vs normal(n=105)).
Another comparison was made restricting the samples used to only include those from the
more clinically relevant Chronic Phase of the disease, as these are the most likely samples to
be used in any two-group comparisons. The samples used were also restricted to those from
the BCR/ABL-independent Imatinib resistant group in order to ensure that any differential
expression seen was not due to this variable rather than batch status. Even with this
comparison, in which sample group size is more even and other major disease variables have
been restricted to a single class, the total number of DE genes is still approximately 15%
of the total genes. By comparison, for the control differtial expression analysis, comparing

groups based on Gender, the number of DE genes is negligibly small (0.2-1.2%).
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Table 2: edgeR Differential Expression Totals

Batch vs Normal

No Norm Upper Quant Full Quant Median

All Samples

Total 19176

DE(-1) 3643 4778 4012 3860
DE(+1) 5986 4832 5867 6071
DE(0) 9547 9566 9297 9245

Ind/CP Only

Total 19176

DE(-1) 1284 1619 — —
DE(+1) 1400 1319 — —
DE(0) 16492 16238 — —

Male vs Female

No Norm Upper Quant Full Quant Median

All Samples

Total 19176

DE(-1) 58 52 — —
DE(+1) 164 142 — —
DE(0) 18954 18982 — —

Ind/CP Only

Total 19176

DE(-1) 10 18 — —
DE(+1) 36 22 — —
DE(0) 19136 19136 — —
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In addition to a very large number of significant DE genes, the batch vs normal DE comparison
also includes a large number of outliers with extremely small p-values. These highly significant
DE genes represent genes expressed across the distribution of gene expression read counts.
This is shown clearly in Figure 12, which highlights the top 50 most significant DE genes
identified for the batch vs normal comparison. The presence of this large number of highly
significant DE genes, in genes across the distribution of expression levels, demonstrates the

presence of a strong, systematic bias introduced by the batch effect.

Read Counts Distribution, Filtered for mean > 10
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Figure 12: FeatureCounts Boxplots - Top 50 differentially expressed genes between batch
and normal samples highlighted in blue. DE analysis with edgeR restricted to BCR-ABL
Independent and Chronic Phase samples only.

Given the systematic bias introduced by the batch effect, the most important issue is one
of statistical confounding with our primary variable of interest, Imatinib resistance. The
batch pattern is almost entirely confounded with our resistance variable, with 16/18 batch
samples in the BCR/ABL-independent group. While there are more sophisticated methods
of normalization, which allow for explicit modeling of technical factors like batch variables,
this level of confounding between an experimental variable and batch effect variable is
fundamentally uncorrectable and can lead to erroneous analysis, as has been shown in several

studies[35].
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2.3 Conclusion

The gene count distributional pattern exhibiting extreme outliers shown in Figure 4, and
it’s correlation with sample source, revealed a serious batch effect attributable to excess
globin transcripts during sample preparation for sequencing. This overabundance of globin
sequences created a bias in the batch samples, leading not only to the dropping of many
low expression genes in the batch group below the threshold of detection, but also to the
appearance of strong differential expression in a large proportion of genes surveyed, across

the range of expression levels.

This clearly illustrates the way in which systemic bias can be introduced by minor differences
in sample preparation protocol, in this case inconsistent handling of globin transcript
depletion. Furthermore, when these sources of bias, or batch effects, are not identified by
careful exploratory analysis at the onset of a project, it is possible for any downstream analysis
to be strongly skewed as a result. While some analysis methodologies allow for normalization
of technical variation without explicit pre-specification of the causitive variables, these
methods are still severely limited if the batch variable is highly confounded with the primary
variable of study, as in this case. The batch effect identified here is a perfect illustration of
the need for careful exploratory analysis in NGS studies, particularly when pooling samples

where every step of sample generation cannot be made uniform.
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3 Genotyping Variant Filtering and Dimensional Reduction

3.1 Introduction

With the exception of certain well known inherited mutations such as the BRCA1/2 genes
strongly linked to breast and ovarian cancer[36,37], cancer-causing mutations are largely
considered to arise from new mutations to somatic tissues as opposed to mutations inherited
from germline tissues. For this reason, most genomic studies of cancers and methods
developed for the analysis of cancer genomes have focused on somatic variants. The most
widely used method for distinguishing germline from somatic variants in NGS experiments
is the collection and analysis in parallel of a matched normal tissue sample from the same
patient. Unfortunately, matched normal samples are rarely aquired in the clinical settings
under which many cancer study samples are initially collected, due to reasons ranging from
the need for additional consent paperwork in aquiring germline samples, to increased lab
and sequencing costs[38]. Additionally, the issue of collecting appropriate “matched normal”
samples for blood cancers is further complicated by the circulating nature of the tumor
cells whereby contamination of normal tissues by leukemic cells can be an issue.[39]. As
a result for studies such as this one, which pool samples from leukemia patients collected
in a clinical setting, matching normal samples are largely unavailable and the ability to
differentiate somatic from germline mutations is curtailed. A further issue created by the
inability to distinquish somatic and germline mutations is the size of the resulting variant
lists. Since much bioinformatic software for analysis of cancer variants has been designed on
datasets with matched normal samples to allow somatic calls, these methods are subsequently
tested and validated on dramatically smaller variant/gene lists, raising potential issues of

performance and validity on larger-scale data.

Apart from using match normal samples, one of the best remaining metrics that can be
used to filter out potential germline variants is the use of single-nucleotide polymorphisms

(SNPs) common to the general population that are annotated in various databases. The
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assumptions behind this approach are twofold; both that the human reference genome is
a somewhat inaccurate and static snapshot of the normal human gene sequence, due to
its haploid nature and the small number of individuals the reference was built from, and
that there is diversity across the human population at numerous loci sequences, which are
benign and play no role in disease. For these reasons, a number of resources have been
developed to pool data from published research and across different human populations, in
order to compile population catalogs of commonly seen variants and if possible provide an
estimate of their frequency in the populace. Two of the most commonly used population
catalogs, NCBI’s dbSNP[40] and the 1000 Genomes Project[41], have been used together
extensively for filtering of germline variants. While allele frequencies (AF) are included in
dbSNP based on their prevalence in the original 1000 Genomes cohort, these AFs only offer
a very loose estimate of true frequency in the population and are of limited use for filtering.
Furthermore, the dbSNP and 1000G databases pool data from a number of sources and
sequencing methodologies, and it understood that some poor quality variants and somatic
variants are present in these datasets, raising the rate of false negative variants which will
be erroneously filtered out. A far more powerful population catalog released in the last few
years is the Exome Aggregation Consortium (ExAC) dataset[42], which provides variant
data from 60,706 whole exome sequenced samples, expanding both the number of variants
included and number of samples used to estimate frequency by an order of magnitude.
This provides a powerful tool for fine-tune filtering of potential germline variants based on

population frequency.

Additional criteria for filtering of variants is often based on inclusion in certain more
specifically curated variant databases. Several examples of these are the clinVar[43] and
COSMIC[44] databases, which catalog previously identified pathogenic variants and cancer-
causing variants, respectively. Functional annotation of variants can also be used to decide
which variants to retain, for example restricting inclusion to those variants predicted to have
specific downstream effects according to tools such as Ensemble’s Variant Effect Predictor[45].
While the use of these annotations allows for significant reduction in the number of variants

retained and therefore a focus on variants more likely to be relevant for various reasons,
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there is an inherent tradeoff to such filtering choices which somewhat undercuts the powerful
open-ended discovery framework of NGS studies. For example, in restricting subsequent
analysis to only variants with previously known phenotypic or disease etiologic effects, or to
those with a narrow range of predicted functional impacts, the ability to discover and utilize

truly novel gene mutations is sharply limited.

In addition to the issue of distinguishing germline versus somatic variants, there are numerous
sources of artefactual variant calls which arise in NGS studies. Examples of these are miscalled
bases on the 3’ ends of reads and in homopolymeric regions, alignment errors in regions
of low mappability, and uneven coverage due to GC bias or primer border regions in PCR
library preps[46]. Many of these issues can be dealt with by filtering based on minimum
mapping quality, read depth, and presence in regions of poor mappability, filters which
are in fact standard components of common genotyping pipelines such as the Genome
Analysis Toolkit (GATK)[27] used in this study. However, further post-genotyping filtering
based on some of these metrics may be necessary in order to make certain that variants are
not introducing inaccuracy or bias when evaluated in the context of cohort or group-level
mutational frequencies, rather than individual samples alone. For example, while a variant
may be retained in the genotyping output if it passes these minimum quality metrics in
at least one sample, it may be lacking good quality or valid genotypes at the same loci
in all the other samples, rendering any cohort-level measure such as mutational frequency

meaningless.

Given this complexity selecting variants in cancer studies lacking matched normal samples,
careful strategies must be devised for filtering variants in order to eliminate as many
potentially artifactual variants as possible, increase the proportion of somatic variants
remaining, and reduce the total variant/gene totals down to levels appropriate for the desired

analysis methods.
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3.2 Results and Discussion

3.2.1 Filtering Totals

The genotyping results (SNVs and Indels) for the CML Imatinib Resistance project cohort
contain approximately 1 million variants, called using GATK’s genotyping pipeline[27].
Without matched normal samples to distinguish germline from somatic variants, we need
alternative criteria to reduce the number of variants/genes included in our downstream
analysis. The total variants undoubtedly include both a large number of false positives arising
due to technical artifacts, and also a mix of relatively few important “driver” mutations and
many symptomatic “passenger” mutations. In both cases, a filtering scheme to minimize
these potential sources of noise would be advantageous. Additionally HotNet2, which deals
with gene-level mutation data, was originally run on data covering approximately 12K genes,

and filtering our dataset down to a comparable scale was deemed desirable.

Filtering Steps

In order to reduce the degree of symptomatic background genetic heterogeneity and focus
on samples more relevant to the aquisition of imatinib resistance and secondary leukemia
progression, the sample cohort was restricted to those designated as Chronic Phase, and
to those clearly categorized with either a BCR/ABL-independent or BCR/ABL-dependent
resistance subtype. This reduced the set of WES samples selected from the total genotyping
data set to a total of 41 samples(BCR/ABL-independt n=26, BCR/ABL-dependent n=15).

Variants were then filtered out based on several criteria at the cohort level.

1. Variants with all samples within the cohort having overall read depth at variant locus
less than 10 reads were filtered out.

2. Variants present in the ExAc database at an allele frequency greater than 0.1% were
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filtered out.

The total number of variants filtered out at the cohort level for either uniformly insufficient
read depth and for presence in the ExAc database at several potential allele frequency(AF)
thresholds is shown in Table 3 below. An ExAc database AF threshold of 0.01 was chosen.

Table 3: Cohort Level Filtering Totals

Filtered Out Remaining

Total 966108
Filtered out variants for which all samples have read depth < 10 286142 679966
Filtered out for ExAc AF > 0.05 119693 592074
Filtered out for ExAc AF > 0.01 87892 560273
Filtered out for ExAc AF > 0.001 147251 532715

The cohort was then split into BCR-ABL-independent and dependent groups. Only those

variants with at least one valid, non-reference genotype call in the group were retained.

Further secondary filters were applied, either to the entire cohort or seperately to the
groups, in order to eliminate variants with missing genotypes or insufficient read depth,
which may be an indication of variants called at sites with poor coverage and which can

complicate the accurate calculation of variant frequency within the groups.

1. Variants with any missing genotypes were filtered out.
2. Variants with overall read depth less than 10 reads for any sample in the group at the

variant locus were filtered out.

Filter Scheme
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Variant Filtering Scheme

All Cohort Samples (Chronic Phase, BCR-ABL-independent/dependent, n=41)
Total Variants: 966108

|

| All Samples read depth < 10 |

J

ExAc AF > 0.01
I Missing at least n valid genotype calls I
| Read depth < 10 in at least n samples |

|

| VEP Class and COSMIC Inclusion ‘

Figure 13: Overall filtering scheme. Primary steps are: 1) Minimal read depth across
cohort 2) Either absence from ExAc database or presence below designated allele frequency
threshold of 0.01 3) Missing Genotype filter 4) Read Depth filter 5) Selection based on
Variant Effect Predictor(VEP) annotation and/or presence in COSMIC database.



Variant Classes

Variants were annotated with Ensemble’s Variant Effect Predictor(VEP)[45] and a single
“most deleterious” transcript and corresponding VEP functional consequence category were
determined using the vcf2maf perl script. Variants were further grouped into three classes

of VEP functional consequence, for further selection after filtering.

Class 1 (Severe protein coding consequence)

o frameshift variant
e stop lost
e stop gained

e start lost

Class 2 (Further coding variants)

e missense variant

e splice region variant

e splice donor variant

e splice acceptor variant

e coding sequence variant

e stop retained variant

e incomplete terminal codon variant
e initiator codon variant

o inframe deletion

e inframe insertion

e protein altering variant
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Class 3 (Regulatory Variants)

o Nonsense-mediated decay(NMD) transcript variant
e 3’prime UTR variant

e 5’prime UTR variant

o TF binding-site variant

e non-coding transcript exon variant

e non-coding transcript variant

o mature miRNA variant

3.2.2 Evaluating Secondary Filtering Step Thresholds

The purpose of the secondary filters (missing genotypes (MG) and read depth < 10 (RD)) is
to eliminate variants with missing or low confidence data which will add noise or complicate
calculation of gene-level mutational frequency. However the use of a hard cutoff (only
one sample having a missing genotype or read depth less than 10 at the variant locus) is
potentially too strict and may filter out many variants with nearly complete genotype calls
and/or sufficient read depth across most samples, which we may wish to keep. In total,
450,401 variants were filtered out when using the strict cutoffs for these filters ( > 0 samples
with missing genotypes or read depth < 10 at a particular locus). Additionally, if relaxed
secondary filtering thresholds are used we need to evaluate whether those filters should
be applied at the level of the entire sample cohort or at the group level after splitting the

samples into BCR-ABL Independent and Dependent groups.

Filtering at Group or Cohort Level

One question about the secondary filtering steps is whether to filter at the group or cohort

level. In order to assess this, the variants were filtered both ways and the distributions of
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filtered variants were plotted, with the variants grouped into those present in both groups or
only in one. If filtering is done at the group level and a large number of variants are filtered
for one group but not both, this could create the appearance of a difference in mutational
frequency between the two resistance groups for a particular gene which is an artifact of
these secondary filters. If present, this could introduce bias to our downstream network

analysis.

30000 - Filtered in both groups

Present but unfiltered in Dependent Group

Unique to Independent Group

20000 -

10000 -

Variants with Missing Genotypes

Missing Genotype Distribution — Independent Group(ExAc AF < 0.01
== =

1 1 1
0 5 10 15 20 25
Number of Missing Genotypes across Group

0 -
|

Figure 14: MG Filter Distribution-Independent Group: This shows the number of variants
filtered out using an MG filter cutoff of zero, binned by how many missing genotypes each
variant has across the Group. Resistance group membership is shown using bar color;
variants filtered out from both groups (red), variants present but unfiltered in the opposite
group (green) and variants unique to the group(blue).

In the distribution of variants filtered for missing genotypes(MG) in the BCR-ABL Inde-
pendent group, shown in Figure 14, there are a sizable number of variants filtered out
which are also present in the opposite (Dependent) group, but which are not filtered in that
group (shown in green). Furthermore, in the distribution of variants filtered for low read
depth(RD), shown in Figure 15, there again are a sizable number of variants filtered out

which are present in the Dependent group, but which are not filtered in that group.
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Failed Depth Distribution — Independent Group (ExXAc AF < 0.01)
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Figure 15: RD Filter Distribution-Independent Group: This shows the number of variants
filtered out using an RD filter cutoff of zero, binned by how many sample genotypes each
variant has with read depth < 10 across the Group. Resistance group membership is shown
using bar color; variants filtered out from both groups (red), variants present but unfiltered
in the opposite group (green) and variants unique to the group(blue).
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Similarly, in the distribution of variants filtered for missing genotypes in the BCR-ABL
Dependent group, shown in Figure 16, there are a number of variants filtered out which
are also present in the opposite (Independent) group, but which are not filtered in that
group (shown in green). In the distribution of variants filtered for low read depth, shown
in Figure 17, there are a small number of variants filtered out which are also present in

the Independent group, but which are not filtered in that group.

These group-level filtered variant distributions show a substantial number of variants which
are present in both groups, but only filtered from one group (green). This could lead to
issues of bias between the two groups in the lists of mutated genes retained, particularly in
those variants filtered for low read depth. Furthermore, due to the difference in sample size
between the two groups, it will be difficult to pick a relaxed threshold for the filters that
would be consistent between the two groups. For these reasons, filtering at the cohort level
is more appropriate. The downside is that this approach will be slightly more conservative,

since it eliminates the green variants from both groups.

Looking then at the distributions of filtered variants when doing the secondary filtering at
the Cohort level, it is possible to distinguish those variants present in both groups from
those present in only one. In this case, those variants only filtered from one group may
be of interest since we are interested in comparing the two resistance groups, and variants
which were present in only one group may be of particular interest. In the distribution
of variants filtered for missing genotypes at the cohort level, shown in Figure 18, the
majority of variants are present in both groups, but there are quite a few present in only
one group(shown in green or blue). In the distribution of variants filtered for low read
depth at the cohort level, shown in Figure 19, the majority of variants are present in both

groups, but there are quite a few present in only one group(shown in green or blue).

Looking at both the distributions in Figure 18 and Figure 19, it is clear that the number
of variants filtered out for each value of the filter cutoff decreases as the cutoff is raised

(loosened). This indicates that filtering with the strict MG/RD cutoffs of zero, which
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Missing Genotype Distribution — Dependent Group (ExAc AF < 0.01)
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Figure 16: MG Filter Distribution-Dependent Group: This shows the number of variants
filtered out using an MG filter cutoff of zero, binned by how many missing genotypes each
variant has across the Group. Resistance group membership is shown using bar color;
variants filtered out from both groups (red), variants present but unfiltered in the opposite
group (green) and variants unique to the group(blue).
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Failed Depth Distribution — Dependent Group (ExAc AF < 0.01)
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Figure 17: RD Filter Distribution-Dependent Group: This shows the number of variants
filtered out using an RD filter cutoff of zero, binned by how many sample genotypes each
variant has with read depth < 10 across the Group. Resistance group membership is shown
using bar color; variants filtered out from both groups (red), variants present but unfiltered
in the opposite group (green) and variants unique to the group(blue).
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removes a total of 450,401 variants, filters out a very large number of variants that would
pass a somewhat loosened criteria. Furthermore, while there are a large number of variants
present in only one group which are filtered out, the number decreases significantly as the
cutoffs are raised, indicating that the downsides to filtering at the cohort level would be

minimized at loosened filter cutofls.

Missing Genotype Distribution — Whole Cohort (ExAc AF < 0.01)
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Figure 18: MG Filter Distribution-Whole Cohort: This shows the number of variants filtered
out using an MG filter cutoff of zero, binned by how many missing genotypes each variant
has across the Cohort. Resistance group membership is shown using bar color; variants
filtered out from both groups (red), variants which were only present in the Independent
group (green) and variants which were 