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1 Introduction

1.1 Background

Chronic myeloid leukemia (CML) is a hematological malignancy characterized by unregulated

growth of myeloid cells in the bone marrow. The chronic phase of the disease is typified

by an overproduction of haematopoietic stem cells (HSCs) which further develop into the

various myeloid progenitor cell types and eventually lead to an excess accumulation of

normally functioning and replicating myeloid cells in the blood stream. Progression from

chronic phase to blast crisis leads to a rapid accumulation of primitive myeloid and lymphoid

blast cells in the blood stream. The most prominent feature of CML cases is the famous

“Philadelphia chromosome” translocation between chromosomes 9 and 22, present in nearly

all cases and the most well known example in medicine of a genetic abnormality linked to

disease[1–3]. This translocation results in the BCR/ABL fusion oncogene, which expresses

a constitutively active tyrosine kinase. The aberrant tyrosine kinase resulting from this

fusion has proven to be the primary driver of leukemogenesis in CML, acting through the

activation of numerous pathways promoting cellular proliferation.

A major advance in the treatment of CML, and one of the first examples of direct molec-

ular targeting for treatment of cancers, was achieved with the development of Imatinib

mesylate, which inactivates the BCR/ABL fusion protein, inhibiting its spurious tyrosine

phosphorylation. Imatinib has been uniquely successful in halting CML amongst patients

in the chronic phase of the disease, with a 5 year overall survival rate of 85%[4]. Prior to

the development of targeted BCR/ABL inhibition as a treatment approach for CML, the

best available treatment options were either stem cell transplantation or drug intervention

with interferon-α, which offered a highly variable extension in survival times and significant

side effects. Despite this success a significant percentage of chronic phase patients acquire

resistance to imatinib treatment over time, inevitably transitioning to more advanced stages

with poor treatment options. The leading known cause of acquired imatinib resistance
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is the acquisition of point mutations in the kinase domain(KD) of BCR/ABL, changing

the steric conformation of the binding site for imatinib and thus disrupting its ability

to inhibit phosphorylation[5]. Kinase domain mutations account for roughly 50-60% of

resistance cases[6], and this avenue of aquisition for Imatinib resistance is generally classified

as BCR/ABL-dependent. Second-generation tyrosine kinase inhibitors(TKIs) have been

developed which are able to effectively block BCR/ABL activity even in the presence of select

KD point mutations, as in the case of the E255V P-loop mutation salvaged by Dasatinib

and the higly resistant T315I ATP-binding site mutation, which is effectively treated with

Ponatinib[7]. Despite the fact that each of these second generation TKIs are susceptible

to their own specific resistant point mutations, they offer a reasonable salvage therapy for

patients exhibiting BCR/ABL-dependent resistance to imatinib.

No comparable second-line therapeutic options are available for the remaining half of imatinib

resistant cases. For these “BCR/ABL-independent” cases clear molecular mechanisms have

remained elusive. Amplification of the BCR/ABL gene, which would increase the necessary

dosage of imatinib required for effective treatment, has been observed in select cases[8].

Mutations or amplifications leading to over or under expression of transmembrane transporter

proteins such as ABCB1 and HOCT1 have been observed at high rates in non-BCR/ABL

resistant cases. These may indicate mechanisms reducing the bioavailability of imatinib[9,10].

While the preceding examples are not due to disruption of imatinib with the BCR/ABL

fusion protein, they could still be described as BCR/ABL-dependent because they act to

reduce the dosing of the drug and interrupt effective targeting of BCR/ABL.

There are more cases in which imatinib (or other TKIs) binding efficiency to the BCR/ABL

fusion protein is not inhibited and the genetic causes are not understood. Recent evi-

dence has shown that these BCR/ABL-independent mechanisms of resistance may act

through alternative activation of the same terminal downstream pathways seen in canonical

BCR/ABL mediated CML progression, even as BCR/ABL expression is being effectively

neutralized. One such study has identified putative imatinib “sensitizing genes”, which when

underexpressed lead to upregulation of PRKCH and activation of the c-RAF kinase, which
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phosphorylates RAF and recapitulates the RAF/MEK/ERK pathway activation seen in

CML cases prior to imatinib treatment[11].

There are numerous downstream pathways, some already known to play a central role

in CML progression, which may be acting as mediators of CML relapse in BCR/ABL-

independent TKI resistance. One of the most important canonical CML pathways is the

aforementioned Ras/RAF/MEK/ERK cascade, which transmits cell-surface signalling from

various growth factors (i.e. EGFR and FGF), to the nucleus of the cell for transcriptional

regulation. Another key pathway involved in CML progression is the JAK/STAT receptor

signalling cascade, which regulates transcription in response to cell-surface signalling[12].

There are also cell-intrinsic signalling pathways, such as the PI3K/AKT pathway, which

play an important role in CML progression[13]. AKT has numerous downstream targets

involved in CML and other cancers, such as mTOR, FOX0, and CREB. Many other cancer

related signalling pathways have been implicated in CML progression, or in other related

myeloid malignancies, and may also be involved in BCR/ABL-independent resistance. For

example, Wnt/β-catenin signaling has been shown to be important for the growth of CML

primary cells in in-vitro experiments[14].

The preceding examples are just some of the cancer associated signaling pathways which

may act to re-trigger leukemia progression in BCR/ABL-independent cases. It is possible

that many BCR/ABL-independent pathways are also active in BCR/ABL-dependent cases.

Therefore, the identification of pathways involved in BCR/ABL-independent resistance is

crucial for understanding the molecular mechanisms of CML relapse in all cases of TKI

resistance. This knowledge will not only offer actionable targets for salvage treatment in

Independent cases, but may also indicate possible compound therapies for more permanent

treatment of dependent resistance cases exhibiting BCR/ABL point mutations.
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1.2 Research Question

Due to the complexity of BCR/ABL-independent TKI resistance, a central question is

whether relapse acts through the canonical BCR/ABL CML pathways seen in dependent

cases, or through a different set of genes and pathways. To answer this question, both

RNA-seq and Whole Exome Sequencing data was collected and analyzed as part of a

large retrospective study of CML patients with acquired resistance to imatinib and other

related TKI inhibitors. RNA-seq and Whole Exome sequencing are both next generation

sequencing approaches which allow for the high-throughput, cost-effective characterization

of an individual’s entire mRNA transcript profile (RNAseq) or protein coding region of the

genome (WES)[15]. This study was comprised of 244 samples (123 WES, 121 RNAseq)

collected from seven different clinical locations across the United States and Europe. These

samples represented 130 unique patients, 70 of which had samples collected for both data

types, 36 for WES only, and 24 for RNAseq only.

This type of study, with data pooled from many different centers, has significant limitations.

Due to variation in laboratory protocols, highly heterogenous clinical covariates (TKIs used,

duration of treament, etc), and the inability to structure sample processing from the very

beginning of the experimental pipeline in order to avoid aquisition of batch effects, the

resulting dataset contain significant technical variation. As a result careful consideration

must be taken to ensure that problematic samples are identified and if possible properly

normalized.

As is often the case with studies based on data collected in clinical settings, the vast majority

of the samples used for sequencing lacked matched normal germline samples. This creates a

serious issue of scale in identified mutations and candidate genes that will be used as input

for downstream analysis. Therefore, a strategy for filtering the variants/genes down to a

more reasonable scale, based on a rational set of criteria, must be developed.

Aim1: Devise strategy for dealing with data shortcomings (retrospective/uneven protocols,
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unmatched samples); identifying potential problem samples(or areas of bias) and developing

a framework for filtering of mutations.

Aim2: Identify putative driver genes and functionally linked networks of genes important

to BCR/ABL-Independent TKI resistance in CML using the HotNet2 network analysis

algorithm.
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2 Batch Effect Detection

2.1 Introduction

In recent years, issues with poor reproducibility have risen to the forefront of consciousness

amongst scientists, with the results of numerous studies being called into question after

re-analysis or attempted replication[16]. This has been of particular concern for biomedical

scientists utilizing computational approaches and high-throughput datasets. In many cases

these problematic studies can be attributed to mistakes in data-processing and/or failure to

identify systemic effects introduced by experimental artifacts, or so-called “batch effects”,

unrelated to any biological variables of interest.

Even small errors in data processing, such as mislabeled sample tubes or 1-off excel table

data entry errors, can have striking effects on downstream analyses and lead to mistakes not

just in direction of future research but in treatment of patients within clinical trials, as in

the famous Duke University Anil Potti example[17]. In that case, a column assignment error

led to the mislabeling of several samples and eventually to the assignment of patients to

incorrect arms of a clinical cancer trial, an example of an exceedingly simple error with very

serious outcomes.

In the case of “batch effects”, it has been known for some time that high-throughput

sequencing based expression assays such as microarrarys are highly sensitive to a wide array

of common experimental and extra-experimental factors; from the batch of reagents used, to

the manufacturing lot of the chips, to the specific technician involved, to even atmospheric

conditions on the day the hybridization was performed [18]. Though perhaps diminished, this

same sensitivity has been demonstrated in the case of next-generation sequencing technologies

such as RNAseq. These sorts of batch effects are often inadvertantly introduced due to a

lack of careful planning around the timing of data collection or experimental procedures.

With NGS assays requiring multiple steps in the sample preparation pipeline, from collection
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of primary tissue samples to RNA extraction to sequencing library preparation, it is easy

for one or multiple of these steps to be done on different days, potentially with different

reagents and by a different technician, for different groups of samples. This can easily lead

to the creation of unanticipated batch variation.

While many of these batch effects can be prevented by careful planning, in retrospective

studies such as ours which attempt to pool samples from a large number of collaborating

labs, certain steps in the experimental pipeline may be beyond our control to properly

structure. Furthermore, data pertaining to these factors may not be uniformly available or

even recorded in all cases. Even in the best of cases, the potential batch introducing factors

are not always known in advance. For this reason, many of the tools for identifying batch

effects are exploratory data visualizations, which allow for open-ended discovery of aggregate

patterns in the data, unexpected under normal assumptions. One such method commonly

used for this purpose is Principal Component Analysis (PCA), a dimensional reduction

technique which can be used to identify the subset of genes or other features exhibiting

the greatest variance across a complex multi-dimensional dataset. PCA has been used

extensively as a statistical tool in microarray and NGS gene expression studies to identify

and normalize for sources of noise[19], and in more recent years has been shown to have

great utility as a visual tool for identification of strong batch effects which segregate samples

when evaluated on the first several prinicipal components[20,21]. Many other visualization

assays for NGS data have been developed for this sort of exploratory data analysis(EDA).

Though normalization techniques have become standard practice when dealing with NGS

data, they have limited success in correcting for the systemic bias introduced by batch

effects[22]. Since standard methods of normalization are typically inadequate in correcting

for batch effects, more successful approaches such as ComBat[23] or Frozen SVA[24] explicitly

incorporate any identified batch variables into their models in order to reduce the effect of the

batch factor. Many of these approaches are dependent on the identification of batch variables

prior to formal analysis. Additionally, the success of more sophisticated methods of batch

correction are limited by the degree of statistical confounding between the batch variables
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and the primary experimental variables of interest. One of the most common causes of batch

effects is the tendency to collect experimental samples before controls, leading to correlation

between changes in experimental components (new reagents, sequencing batches[25], etc)

and experimental class. A high degree of confounding of this sort creates a scenario in

which it is nearly impossible to distinguish differences between the groups of interest from

differences introduced by the batch effect. For this reason, it is imperative to identify if any

batch effects are present and if so determine the degree of confounding present in order to

assess if the batch effects can be modeled appropriately.

2.2 Results and Discussion

IBS Clustering Plots

Identity-by-state (IBS) clustering[26] was performed on genotyping results from the Genome

Analysis Toolkit (GATK)[27] for all the samples in our study cohort. IBS analysis calculates

the degree of genetic similarity between all the possible pairings of samples, in this case by

comparing all of the variant loci included in the genotyping output. Heirarchical clustering

can then be performed on the IBS scores in order to infer the genetic similarity of the

different samples. This is useful in checking for samples exhibiting similarity that would

be expected, such as serial samples from the same patient, or for identifying unexpectedly

similar sample pairs arising from other sources, such as mislabeled samples or batch effects.

An example of this is shown in Figure 1 below, which shows the IBS clustering for the WES

genotyping. While none of the serial samples in the WES group were mispaired, several

unrelated samples clustered together, indicating potential cross-contamination. These three

samples are shown in the central region of Figure 1, with dendrogram splines marked in

green. These samples were subsequentely excluded from any eventual analyses.

IBS clustering was also performed on the genotyping data for the cohort’s RNAseq samples,
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Figure 1: Identity-By-State relatedness clustering of WES samples. Samples with den-
drograms highlighted in green show pattern of unexpectedly high relatedness, indicating
potential cross-contamination issue.
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shown in Figure 2. One example of mispaired serial samples from the same patient can be

seen, with dendrogram splines highlighted in red. Additionally, when annotated with clinical

variables, it was noticed that the genotypes for the majority of the RNAseq samples coming

from the Fred Hutchinson Cancer Center clustered together. This group of clustered samples

is marked with green dendrogram splines in Figure 2. While the clustering coefficient is not

as strong as in the potential cross-contamination issue shown in Figure 1, the grouping by

source was unexpected and was an indicator of some other possible batch effect influencing

the sequence results for samples from this location.

Figure 2: Identity-By-State relatedness clustering of RNA-seq samples. Samples with
dendrograms highlighted in green show pattern of unexpected relatedness, indicating potential
batch effect. 2 samples with dendrograms marked in red are sample pair from the same
patient which failed to cluster together, indicating potential mislabeling issue.

Feature Count Boxplots
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The EDAseq R Bioconductor package[28] contains a number of visualization functions useful

for conducting exploratory data analysis on RNAseq data for the purpose of discovering

potential sources of bias. The first thing that was examined was the overall distribution

of gene expression for each sample, vizualized using boxplots in Figure 3 below. While

many individual genes may be expressed at different levels between samples, the overall

distribution of gene counts should be similar for all samples. Contrary to that expectation, a

number of samples exhibited a distinct pattern with extreme outlier genes and concomitantly

lower interquartile ranges(IQR) for the remainder of their genes.

Figure 3: Unordered FeatureCounts BoxPlots - Distribution of log gene counts, for all
genes with mean > 10 across entire sample cohort. A number of samples exhibit a distinct
distributional pattern with extreme outliers and lowered IQRs.

Ordering the samples by clinical variables, we could examine whether any particular clinical

covariates appeared to be strongly correlated with this expression pattern. When sample

source is used as the covariate for grouping samples, shown in Figure 4, it is clear that

almost all of the samples exhibiting this pattern came from the same source, indicating a

potential batch effect. The source for the samples exhibiting this batch effect was the Fred

Hutchinson Cancer Center, mirroring the pattern seen in the IBS clustering of Figure 2.
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Figure 4: Ordered FeatureCounts BoxPlots - Distribution of log gene counts, for all genes
with mean > 10 across entire sample cohort, ordered by sample source.
The expression pattern noted in Figure 3 is clearly correlated with sample source, indicating
possible batch issue.

2.2.1 GC Issues

Several additional exploratory visualizations of interest were examined in order to see if any

unusual patterns were present in our RNAseq samples. Lowess(locally-weighted polynomial)

regression of log gene counts against both gene length and GC content (Figure 5) for all

samples was performed, in order to determine if any bias was present. While there was

no discernible bias indicated by the gene length plots, a number of samples exhibited an

unusual trend between gene GC content and gene count, shown in the GC content plot.

The samples exhibiting an unusual relationship between log gene counts and GC content are

isolated and shown below in Figure 6. The four samples exhibiting the steeper negative

slope pattern are all samples from Fred Hutchinson Cancer Center, the same source as the

samples exhibiting the batch effect identified in the boxplot graphs.
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Figure 5: Bias Plots - Loess regression of log gene counts against gene length (left panel)
and GC content (right panel).

Figure 6: GC Bias Plot Outliers - Loess regression of log gene counts against GC content,
highlighting outlier samples with unusual GC content/expression relationship.
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2.2.2 FASTQC Plots

In followup to the observation that several of the Fred Hutchinson batch effect samples

exhibited an unusual relationship between overall GC content and gene counts, I examined

potential GC-bias in more detail by looking at the GC content of raw reads rather than

gene-level summary data. The FASTQC set of quality control tools[29] provides a number of

measures for evaluating raw RNAseq read files. One of the included analysis modules is Per

Sequence GC Content (PSGCC), which graphs the observed distribution of read counts for

different values of mean read GC content. This observed distribution is overlayed with the

expected theoretical normal distribution which would be observed in the case of an unbiased

sequencing library. Sharp, unexpected peaks in the observed distribution may be indicative

of specific contaminants or strongly overrepresented sequences, and FASTQC will issue a

failure flag if more than 30% of the reads deviate from the theoretical normal distribution.

Among the batch effect (Fred Hutchinson) samples, 17 of the 18 (94.4%) samples were flagged

for failure on the PSGCC Content module, whereas only 31 of 103 (30.1%) normal samples

(those not exhibiting the batch effect distribution pattern in the FeatureCount boxplot

graphs) were flagged. Examining the PSGCC graphs more closely, the samples from the

batch effect group all exhibit a strongly abherrant distribution of mean GC content, with

numerous sharp peaks. In contrast, for normal samples, the mean GC content distributions

closely match the expected theoretical distribution, even in the case of the normal samples

which were flagged for failure. Examples of PSGCC Content graphs for both normal and

batch effect samples are shown in Figure 7.

This abherrant GC distribution almost perfectly matches the pattern shown in the Fea-

tureCount boxplot graphs. In fact, the two samples which do not fit the batch effect

sample/source pattern shown in Figure 2 do conform with this observed GC-bias pattern.

The one batch sample which did not fail the FASTQC Per Sequence GC Content module,

15-00446, is also the only sample from Fred Hutchinson that did not display the FeatureCount

boxplot motif of extreme outlier genes. Conversely, the only sample which displayed this
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04−00129 14−00011

06−00203 14−00770

Figure 7: FASTQC Per Sequence GC Content (PSGCC) graphs for a selection of normal
(non-batch) and batch samples. The observed distribution of read counts for different values
of mean read GC content is shown in red. The expected theoretical normal distribution
which would be observed in the case of an unbiased sequencing library is overlayed in blue.
Top panel are normal samples, bottom panel are batch samples. Note: Sample 14-00011
failed PSGCC module
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pattern but was not from the Fred Hutchinson group, 05-00225, also displayed the unusual

distribution of mean GC content. FeatureCount boxplots highlighting these two samples

and their PSGCC graphs are shown in Figure 8 below.

15−00446 05−00225

Figure 8: FeatureCounts Boxplots and FASTQC Per Sequence GC Content (PSGCC) graphs
for two samples lacking distribution pattern/source batch correlation. Single sample from
Fred Hutchinson(FH) lacking boxplot outlier pattern (15-00446) highlighted in blue, with
matched PSGCC graph shown in bottom left panel. Single non-FH sample displaying
boxplot outlier pattern (05-00225) is highlighted in red, with matched PSGCC graph shown
in bottom right panel.

Looking at the complete FASTQC reports for the samples, a majority of the batch effect

samples were also flagged by FASTQC’s Overrepresented Sequences module. The overrepre-

sented sequences from the batch samples were pooled and NCBI’s Nucleotide Blast tool[30]

was used to search for potential source transcripts. The top BLAST results returned for
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the overrepresented sequences, which were present in all of the batch samples (excluding

sample 15-00446), are shown in Supplemental Table 5 in the Supplemental section. Ex-

cluding matches to cloning vector sequences, all of the hits were for sequences related to the

hemoglobin beta subunit.

2.2.3 Globin Genes

Top outlier genes were then extracted for all of the batch samples, and searched for those

annotated to globin genes. This returned nine globin outlier genes, shown in Table 1 below.

Table 1: Fred Hutchinson Outlier Globin Genes

Ensemble Gene ID HUGO ID Description

ENSG00000206172 HBA1 hemoglobin, alpha 1

ENSG00000257017 HP haptoglobin

ENSG00000244734 HBB hemoglobin, beta

ENSG00000188536 HBA2 hemoglobin, alpha 2

ENSG00000206177 HBM hemoglobin, mu

ENSG00000213934 HBG1 hemoglobin, gamma A

ENSG00000196565 HBG2 hemoglobin, gamma G

ENSG00000223609 HBD hemoglobin, delta

ENSG00000169877 AHSP alpha hemoglobin stabilizing protein

Of these, Hemoglobin Beta and the two Hemoglobin Alpha Subunit genes were present

as extreme outliers in nearly all of the batch samples. Highlighting these three genes in

Figure 9 below, the correlation between expression of these three globin genes and the

FeatureCounts boxplot pattern is clear.

In fact, the expression pattern for these three globin genes nicely matches the two obvious

exceptions to the Fred Hutchinson batch pattern. As noted earlier, sample 15-00446 from

17



Figure 9: FeatureCounts BoxPlots - Select globin genes highlighted. The samples exhibiting
the batch/outlier pattern (Fred Hutch, with 2 noted exceptions) are highlighted in red. The
globin alpha and beta 1/2 genes in all samples are highlighted in blue. This clearly shows
correlation between batch/outlier pattern and abundance of transcripts for these 3 globin
genes.

the batch group was the one sample which did not fail the FastQC Per Sequence GC Content

module, and it also was the only batch sample lacking the extreme outlier pattern in the

FeatureCount boxplots. As can be seen in Figure 9, this was the single batch sample with

expression of the three flagged globin genes within the main distribution of gene counts.

The other exception to the batch pattern was sample 05-00225, which both displayed the

extreme outlier gene pattern in the FeatureCount boxplots but also displayed the abherrant

Per Sequence GC Content distribution. In this case, the expression level for the three flagged

globin genes matches the extreme outliers and explains both patterns. Based on these

observations, it was clear that overrepresentation of these globin genes was the source of the

observed distributional pattern, which strongly correlates with the sample source from Fred

Hutchinson Cancer Center.

The identification of highly expressed globin genes as a common feature of this batch effect

group offered a potential experimental source of the observed pattern. Depletion of globin

transcripts has become a standard step in preparation of peripheral blood samples collected

for NGS studies, in order to prevent these highly abundant transcripts from saturating

the available sequencing primers and being disproportionately represented in downstream
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sequencing data[31].

Followup examination of the clinical data confirmed that the RNA samples from Fred

Hutchinson were isolated from whole blood cells, unlike the peripheral mononuclear blood

cells harvested in the samples from the other sites. As a result the red blood cells were not

removed prior to cell lysis during sample prep. This could account for a higher level of initial

globin transcripts present in these samples. However, while the difference in cell sample

isolate correlates perfectly with the sample source, it does not explain the two samples

(15-00446 and 05-00225) which do not fit the batch effect/source pattern. Whatever the

source, excess globin transcripts are clearly the cause of the batch effect initially observed in

Figure 3, introducing potential technical bias to the samples affected, primarily from Fred

Hutchinson Cancer Center.

2.2.4 Dropped Genes

The presence of excess globin transcripts during sample prep for this batch of samples may

have had a profound effect on the level of sequencing across the entire set of transcribed

genes, beyond the presence of these highly expressed globin genes. This is evident in the

noticeably lower IQRs for many of the featureCount boxplots of the batch samples, shown

in Figure 4. It has been noted that without proper globin depletion, globin transcripts in

peripheral blood samples can comprise as much as 50-75% of total mRNA present, and lead

to a proportional monopolization of the resultant sequencing reads[31]. One potential effect

of this is the biased dropping of low expression genes[32] from the batch samples, which

have not been properly globin depleted. Selective dropping of genes from one group in our

primary variable of interest (resistance type) could seriously confound any potential analysis

between the two groups, such as differential expression or pathway enrichment analysis.

Despite the greater dynamic range afforded by RNAseq technology for detecting transcripts

in comparison with microarrays, low expression genes are disproportionately effected by the
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random sampling process in NGS[33] and thus exhibit less accurate observed gene counts.

In many cases, these noisy low expression genes may fall below the threshold of detection,

resulting in the appearance of no expression. Therefore, it is expected that across our entire

sample cohort we would observe a number of samples with zero read counts for particularly

low expression genes.

Given that fact, a gene with zero read counts for all or nearly all of the samples in a specified

group (such as samples from one source) may simply be the result of random sampling of all

the zero count samples for that gene. However, the dominance of the globin gene transcripts

during sequencing may shift the expression levels of all the remaining genes downward,

pushing more genes close to the threshold of detection and artefactually increasing the

number of samples exhibiting zero read counts.

In order to identify whether genes are being “dropped” from the batch group that one would

not expect to occur by random sampling, the binomial probability of each individual gene

(with zero gene counts for at least one sample within the batch group) being absent through

chance was calculated, seperately for each sample source. Due to the differences in size

between the different groups, the dropped genes from groups with fewer samples do not have

the possibility of binomial probilities as small as for groups with more samples, because of

the smaller n in PrBin(X = k) =
(n

k

)
pk(1− p)n−k). This means that a comparison of the

binomial probabilities of “dropped genes” between two source groups with unequal number,

is not perfectly even. For this reason, the best comparison of dropped genes is done by

specifying the single group of interest and then randomly subdividing the remaining samples

into equally sized groups. This is shown for the batch samples (those exhibiting the globin

outlier and GC bias patterns) in Figure 10. The large number of dropped genes with very

low binomial probability of random selection for the batch group is striking when compared

with the remaining samples randomly subdivided into six equal groups.

This visualization of dropped genes supports the notion that this batch effect, linked to the

presence of the three Globin outlier genes, does in fact lead to potentially biased elimination
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Figure 10: Dropped Genes - Log binomial probabilities of a gene having k samples identified
as having zero read counts for gene across designated sample group(Fred Hutchinson), with
remaining samples randomly assigned to equally sized groups.
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of low-expression genes from the batch group samples.

2.2.5 Differential Expression

Having identified globin transcript contamination during sample prep as the likely culprit of

the batch effect, and a clear pattern of bias between batch and normal samples for both the

three outlier globin genes and the low expression dropped genes, the full distribution of genes

was examined more closely to assess whether removal of the genes identified as biased could

allow for normalization of the batch effect. It is common practice to filter low expression

genes out before performing Differential Expression analysis[34]. If the bias introduced to

the batch samples is primarily focused in the low expression genes which will be eliminated

by this filtering step, it may be possible to use standard methods of normalization to adjust

global expression levels of the remaining genes.

First, Principal Component Analysis was used to plot all of the samples using their gene

expression in the first and second principal components, in order to visualize the clustering

of the samples both with and without the genes biased by the batch effect. The principal

components visualizations are shown in Figure 11 below. The top row left panel shows the

PCA with all genes included, and the top row middle panel shows the same visualization with

the three globin outlier genes and the “dropped” genes removed. As a control comparison,

the top row right panel shows the PCA with samples colored by Gender rather than batch

status. As can be clearly seen, the samples seperate fairly distictly into two primary groups,

indicating that the batch variable is exerting a strong influence on the set of genes which

display the most variance across the entire dataset. Furthermore, this effect is virtually

unchanged after elimation of the globin outlier and dropped genes, suggesting that the bias

introduced by the batch effect is present across the entire distribution of genes.

The next natural step is to evaluate whether standard normalization procedures can globally

adjust the expression levels in a way that corrects for this apparent bias, if in fact it is simply
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an issue of scaling for the remaining genes. PCA graphs after the use of three standard

normalization scaling methods[28], which adjust the global expression values in order to

equalize across samples using the median, upper quantile, and full quantile as equalizing

measures, respectively, are shown in the bottom row of Figure 11. Even after normalization

the batch and normal samples are clearly segregated by both the first and second principle

components, indicating a significant bias in the expression data for the batch group, even

with the globin outlier and dropped genes removed.

Figure 11: Principle Components Visualization - Unnormalized data shown in top row.
Samples colored by Gender in top-left PCA plot, male (red) and female (yellow). All other
PCA plots colored by batch status, batch (green) and normal (blue). Top-center plot shows
PCA with all genes retained. Top-right plot shows PCA with globin outlier and dropped
genes removed. Bottom row shows PCA plots for data normalized using Median, Full
Quartile, and Upper Quartile normalization, all with globin outliers and dropped genes
removed.

Simple evaluation using principal components visualization seemed to suggest that the gene

expression of samples identified in the batch group was biased, even with the globin outlier

genes and “dropped” genes removed, and that this bias is not easily corrected by standard

methods of normalization. In order to more quantitatively assess this bias, I performed

differential expression analysis comparing the batch and normal groups using the edgeR

package[34]. Differential expression between sample groups divided by an unimportant
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variable should result in little or no significantly differentially expressed genes, provided

the sample groups are reasonably even in size. For this reason patient gender, which also

showed no clear pattern of seperation in the PCA plots, was selected as a control differential

expression variable. The entire table of DE results is shown in Table 2 below.

When comparing the batch and normal groups, the number of differtially expressed genes

identified is extremely high, from 50-52% of the total genes depending on the normalization

method used. The full dataset contains a large degree of heterogeneity for various clinical

variables and is quite imbalanced in terms of sample size (batch(n=18) vs normal(n=105)).

Another comparison was made restricting the samples used to only include those from the

more clinically relevant Chronic Phase of the disease, as these are the most likely samples to

be used in any two-group comparisons. The samples used were also restricted to those from

the BCR/ABL-independent Imatinib resistant group in order to ensure that any differential

expression seen was not due to this variable rather than batch status. Even with this

comparison, in which sample group size is more even and other major disease variables have

been restricted to a single class, the total number of DE genes is still approximately 15%

of the total genes. By comparison, for the control differtial expression analysis, comparing

groups based on Gender, the number of DE genes is negligibly small (0.2-1.2%).
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Table 2: edgeR Differential Expression Totals

Batch vs Normal

No Norm Upper Quant Full Quant Median

All Samples

Total 19176

DE(-1) 3643 4778 4012 3860

DE(+1) 5986 4832 5867 6071

DE(0) 9547 9566 9297 9245

Ind/CP Only

Total 19176

DE(-1) 1284 1619 — —

DE(+1) 1400 1319 — —

DE(0) 16492 16238 — —

Male vs Female

No Norm Upper Quant Full Quant Median

All Samples

Total 19176

DE(-1) 58 52 — —

DE(+1) 164 142 — —

DE(0) 18954 18982 — —

Ind/CP Only

Total 19176

DE(-1) 10 18 — —

DE(+1) 36 22 — —

DE(0) 19136 19136 — —
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In addition to a very large number of significant DE genes, the batch vs normal DE comparison

also includes a large number of outliers with extremely small p-values. These highly significant

DE genes represent genes expressed across the distribution of gene expression read counts.

This is shown clearly in Figure 12, which highlights the top 50 most significant DE genes

identified for the batch vs normal comparison. The presence of this large number of highly

significant DE genes, in genes across the distribution of expression levels, demonstrates the

presence of a strong, systematic bias introduced by the batch effect.

Figure 12: FeatureCounts Boxplots - Top 50 differentially expressed genes between batch
and normal samples highlighted in blue. DE analysis with edgeR restricted to BCR-ABL
Independent and Chronic Phase samples only.

Given the systematic bias introduced by the batch effect, the most important issue is one

of statistical confounding with our primary variable of interest, Imatinib resistance. The

batch pattern is almost entirely confounded with our resistance variable, with 16/18 batch

samples in the BCR/ABL-independent group. While there are more sophisticated methods

of normalization, which allow for explicit modeling of technical factors like batch variables,

this level of confounding between an experimental variable and batch effect variable is

fundamentally uncorrectable and can lead to erroneous analysis, as has been shown in several

studies[35].
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2.3 Conclusion

The gene count distributional pattern exhibiting extreme outliers shown in Figure 4, and

it’s correlation with sample source, revealed a serious batch effect attributable to excess

globin transcripts during sample preparation for sequencing. This overabundance of globin

sequences created a bias in the batch samples, leading not only to the dropping of many

low expression genes in the batch group below the threshold of detection, but also to the

appearance of strong differential expression in a large proportion of genes surveyed, across

the range of expression levels.

This clearly illustrates the way in which systemic bias can be introduced by minor differences

in sample preparation protocol, in this case inconsistent handling of globin transcript

depletion. Furthermore, when these sources of bias, or batch effects, are not identified by

careful exploratory analysis at the onset of a project, it is possible for any downstream analysis

to be strongly skewed as a result. While some analysis methodologies allow for normalization

of technical variation without explicit pre-specification of the causitive variables, these

methods are still severely limited if the batch variable is highly confounded with the primary

variable of study, as in this case. The batch effect identified here is a perfect illustration of

the need for careful exploratory analysis in NGS studies, particularly when pooling samples

where every step of sample generation cannot be made uniform.
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3 Genotyping Variant Filtering and Dimensional Reduction

3.1 Introduction

With the exception of certain well known inherited mutations such as the BRCA1/2 genes

strongly linked to breast and ovarian cancer[36,37], cancer-causing mutations are largely

considered to arise from new mutations to somatic tissues as opposed to mutations inherited

from germline tissues. For this reason, most genomic studies of cancers and methods

developed for the analysis of cancer genomes have focused on somatic variants. The most

widely used method for distinguishing germline from somatic variants in NGS experiments

is the collection and analysis in parallel of a matched normal tissue sample from the same

patient. Unfortunately, matched normal samples are rarely aquired in the clinical settings

under which many cancer study samples are initially collected, due to reasons ranging from

the need for additional consent paperwork in aquiring germline samples, to increased lab

and sequencing costs[38]. Additionally, the issue of collecting appropriate “matched normal”

samples for blood cancers is further complicated by the circulating nature of the tumor

cells whereby contamination of normal tissues by leukemic cells can be an issue.[39]. As

a result for studies such as this one, which pool samples from leukemia patients collected

in a clinical setting, matching normal samples are largely unavailable and the ability to

differentiate somatic from germline mutations is curtailed. A further issue created by the

inability to distinquish somatic and germline mutations is the size of the resulting variant

lists. Since much bioinformatic software for analysis of cancer variants has been designed on

datasets with matched normal samples to allow somatic calls, these methods are subsequently

tested and validated on dramatically smaller variant/gene lists, raising potential issues of

performance and validity on larger-scale data.

Apart from using match normal samples, one of the best remaining metrics that can be

used to filter out potential germline variants is the use of single-nucleotide polymorphisms

(SNPs) common to the general population that are annotated in various databases. The
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assumptions behind this approach are twofold; both that the human reference genome is

a somewhat inaccurate and static snapshot of the normal human gene sequence, due to

its haploid nature and the small number of individuals the reference was built from, and

that there is diversity across the human population at numerous loci sequences, which are

benign and play no role in disease. For these reasons, a number of resources have been

developed to pool data from published research and across different human populations, in

order to compile population catalogs of commonly seen variants and if possible provide an

estimate of their frequency in the populace. Two of the most commonly used population

catalogs, NCBI’s dbSNP[40] and the 1000 Genomes Project[41], have been used together

extensively for filtering of germline variants. While allele frequencies (AF) are included in

dbSNP based on their prevalence in the original 1000 Genomes cohort, these AFs only offer

a very loose estimate of true frequency in the population and are of limited use for filtering.

Furthermore, the dbSNP and 1000G databases pool data from a number of sources and

sequencing methodologies, and it understood that some poor quality variants and somatic

variants are present in these datasets, raising the rate of false negative variants which will

be erroneously filtered out. A far more powerful population catalog released in the last few

years is the Exome Aggregation Consortium (ExAC) dataset[42], which provides variant

data from 60,706 whole exome sequenced samples, expanding both the number of variants

included and number of samples used to estimate frequency by an order of magnitude.

This provides a powerful tool for fine-tune filtering of potential germline variants based on

population frequency.

Additional criteria for filtering of variants is often based on inclusion in certain more

specifically curated variant databases. Several examples of these are the clinVar[43] and

COSMIC[44] databases, which catalog previously identified pathogenic variants and cancer-

causing variants, respectively. Functional annotation of variants can also be used to decide

which variants to retain, for example restricting inclusion to those variants predicted to have

specific downstream effects according to tools such as Ensemble’s Variant Effect Predictor[45].

While the use of these annotations allows for significant reduction in the number of variants

retained and therefore a focus on variants more likely to be relevant for various reasons,
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there is an inherent tradeoff to such filtering choices which somewhat undercuts the powerful

open-ended discovery framework of NGS studies. For example, in restricting subsequent

analysis to only variants with previously known phenotypic or disease etiologic effects, or to

those with a narrow range of predicted functional impacts, the ability to discover and utilize

truly novel gene mutations is sharply limited.

In addition to the issue of distinguishing germline versus somatic variants, there are numerous

sources of artefactual variant calls which arise in NGS studies. Examples of these are miscalled

bases on the 3’ ends of reads and in homopolymeric regions, alignment errors in regions

of low mappability, and uneven coverage due to GC bias or primer border regions in PCR

library preps[46]. Many of these issues can be dealt with by filtering based on minimum

mapping quality, read depth, and presence in regions of poor mappability, filters which

are in fact standard components of common genotyping pipelines such as the Genome

Analysis Toolkit (GATK)[27] used in this study. However, further post-genotyping filtering

based on some of these metrics may be necessary in order to make certain that variants are

not introducing inaccuracy or bias when evaluated in the context of cohort or group-level

mutational frequencies, rather than individual samples alone. For example, while a variant

may be retained in the genotyping output if it passes these minimum quality metrics in

at least one sample, it may be lacking good quality or valid genotypes at the same loci

in all the other samples, rendering any cohort-level measure such as mutational frequency

meaningless.

Given this complexity selecting variants in cancer studies lacking matched normal samples,

careful strategies must be devised for filtering variants in order to eliminate as many

potentially artifactual variants as possible, increase the proportion of somatic variants

remaining, and reduce the total variant/gene totals down to levels appropriate for the desired

analysis methods.
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3.2 Results and Discussion

3.2.1 Filtering Totals

The genotyping results (SNVs and Indels) for the CML Imatinib Resistance project cohort

contain approximately 1 million variants, called using GATK’s genotyping pipeline[27].

Without matched normal samples to distinguish germline from somatic variants, we need

alternative criteria to reduce the number of variants/genes included in our downstream

analysis. The total variants undoubtedly include both a large number of false positives arising

due to technical artifacts, and also a mix of relatively few important “driver” mutations and

many symptomatic “passenger” mutations. In both cases, a filtering scheme to minimize

these potential sources of noise would be advantageous. Additionally HotNet2, which deals

with gene-level mutation data, was originally run on data covering approximately 12K genes,

and filtering our dataset down to a comparable scale was deemed desirable.

Filtering Steps

In order to reduce the degree of symptomatic background genetic heterogeneity and focus

on samples more relevant to the aquisition of imatinib resistance and secondary leukemia

progression, the sample cohort was restricted to those designated as Chronic Phase, and

to those clearly categorized with either a BCR/ABL-independent or BCR/ABL-dependent

resistance subtype. This reduced the set of WES samples selected from the total genotyping

data set to a total of 41 samples(BCR/ABL-independt n=26, BCR/ABL-dependent n=15).

Variants were then filtered out based on several criteria at the cohort level.

1. Variants with all samples within the cohort having overall read depth at variant locus

less than 10 reads were filtered out.

2. Variants present in the ExAc database at an allele frequency greater than 0.1% were
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filtered out.

The total number of variants filtered out at the cohort level for either uniformly insufficient

read depth and for presence in the ExAc database at several potential allele frequency(AF)

thresholds is shown in Table 3 below. An ExAc database AF threshold of 0.01 was chosen.

Table 3: Cohort Level Filtering Totals

Filtered Out Remaining

Total 966108

Filtered out variants for which all samples have read depth < 10 286142 679966

Filtered out for ExAc AF > 0.05 119693 592074

Filtered out for ExAc AF > 0.01 87892 560273

Filtered out for ExAc AF > 0.001 147251 532715

The cohort was then split into BCR-ABL-independent and dependent groups. Only those

variants with at least one valid, non-reference genotype call in the group were retained.

Further secondary filters were applied, either to the entire cohort or seperately to the

groups, in order to eliminate variants with missing genotypes or insufficient read depth,

which may be an indication of variants called at sites with poor coverage and which can

complicate the accurate calculation of variant frequency within the groups.

1. Variants with any missing genotypes were filtered out.

2. Variants with overall read depth less than 10 reads for any sample in the group at the

variant locus were filtered out.

Filter Scheme
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Figure 13: Overall filtering scheme. Primary steps are: 1) Minimal read depth across
cohort 2) Either absence from ExAc database or presence below designated allele frequency
threshold of 0.01 3) Missing Genotype filter 4) Read Depth filter 5) Selection based on
Variant Effect Predictor(VEP) annotation and/or presence in COSMIC database.
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Variant Classes

Variants were annotated with Ensemble’s Variant Effect Predictor(VEP)[45] and a single

“most deleterious” transcript and corresponding VEP functional consequence category were

determined using the vcf2maf perl script. Variants were further grouped into three classes

of VEP functional consequence, for further selection after filtering.

Class 1 (Severe protein coding consequence)

• frameshift variant

• stop lost

• stop gained

• start lost

Class 2 (Further coding variants)

• missense variant

• splice region variant

• splice donor variant

• splice acceptor variant

• coding sequence variant

• stop retained variant

• incomplete terminal codon variant

• initiator codon variant

• inframe deletion

• inframe insertion

• protein altering variant
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Class 3 (Regulatory Variants)

• Nonsense-mediated decay(NMD) transcript variant

• 3’prime UTR variant

• 5’prime UTR variant

• TF binding-site variant

• non-coding transcript exon variant

• non-coding transcript variant

• mature miRNA variant

3.2.2 Evaluating Secondary Filtering Step Thresholds

The purpose of the secondary filters (missing genotypes (MG) and read depth < 10 (RD)) is

to eliminate variants with missing or low confidence data which will add noise or complicate

calculation of gene-level mutational frequency. However the use of a hard cutoff (only

one sample having a missing genotype or read depth less than 10 at the variant locus) is

potentially too strict and may filter out many variants with nearly complete genotype calls

and/or sufficient read depth across most samples, which we may wish to keep. In total,

450,401 variants were filtered out when using the strict cutoffs for these filters ( > 0 samples

with missing genotypes or read depth < 10 at a particular locus). Additionally, if relaxed

secondary filtering thresholds are used we need to evaluate whether those filters should

be applied at the level of the entire sample cohort or at the group level after splitting the

samples into BCR-ABL Independent and Dependent groups.

Filtering at Group or Cohort Level

One question about the secondary filtering steps is whether to filter at the group or cohort

level. In order to assess this, the variants were filtered both ways and the distributions of
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filtered variants were plotted, with the variants grouped into those present in both groups or

only in one. If filtering is done at the group level and a large number of variants are filtered

for one group but not both, this could create the appearance of a difference in mutational

frequency between the two resistance groups for a particular gene which is an artifact of

these secondary filters. If present, this could introduce bias to our downstream network

analysis.
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Figure 14: MG Filter Distribution-Independent Group: This shows the number of variants
filtered out using an MG filter cutoff of zero, binned by how many missing genotypes each
variant has across the Group. Resistance group membership is shown using bar color;
variants filtered out from both groups (red), variants present but unfiltered in the opposite
group (green) and variants unique to the group(blue).

In the distribution of variants filtered for missing genotypes(MG) in the BCR-ABL Inde-

pendent group, shown in Figure 14, there are a sizable number of variants filtered out

which are also present in the opposite (Dependent) group, but which are not filtered in that

group (shown in green). Furthermore, in the distribution of variants filtered for low read

depth(RD), shown in Figure 15, there again are a sizable number of variants filtered out

which are present in the Dependent group, but which are not filtered in that group.
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Figure 15: RD Filter Distribution-Independent Group: This shows the number of variants
filtered out using an RD filter cutoff of zero, binned by how many sample genotypes each
variant has with read depth < 10 across the Group. Resistance group membership is shown
using bar color; variants filtered out from both groups (red), variants present but unfiltered
in the opposite group (green) and variants unique to the group(blue).
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Similarly, in the distribution of variants filtered for missing genotypes in the BCR-ABL

Dependent group, shown in Figure 16, there are a number of variants filtered out which

are also present in the opposite (Independent) group, but which are not filtered in that

group (shown in green). In the distribution of variants filtered for low read depth, shown

in Figure 17, there are a small number of variants filtered out which are also present in

the Independent group, but which are not filtered in that group.

These group-level filtered variant distributions show a substantial number of variants which

are present in both groups, but only filtered from one group (green). This could lead to

issues of bias between the two groups in the lists of mutated genes retained, particularly in

those variants filtered for low read depth. Furthermore, due to the difference in sample size

between the two groups, it will be difficult to pick a relaxed threshold for the filters that

would be consistent between the two groups. For these reasons, filtering at the cohort level

is more appropriate. The downside is that this approach will be slightly more conservative,

since it eliminates the green variants from both groups.

Looking then at the distributions of filtered variants when doing the secondary filtering at

the Cohort level, it is possible to distinguish those variants present in both groups from

those present in only one. In this case, those variants only filtered from one group may

be of interest since we are interested in comparing the two resistance groups, and variants

which were present in only one group may be of particular interest. In the distribution

of variants filtered for missing genotypes at the cohort level, shown in Figure 18, the

majority of variants are present in both groups, but there are quite a few present in only

one group(shown in green or blue). In the distribution of variants filtered for low read

depth at the cohort level, shown in Figure 19, the majority of variants are present in both

groups, but there are quite a few present in only one group(shown in green or blue).

Looking at both the distributions in Figure 18 and Figure 19, it is clear that the number

of variants filtered out for each value of the filter cutoff decreases as the cutoff is raised

(loosened). This indicates that filtering with the strict MG/RD cutoffs of zero, which
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Figure 16: MG Filter Distribution-Dependent Group: This shows the number of variants
filtered out using an MG filter cutoff of zero, binned by how many missing genotypes each
variant has across the Group. Resistance group membership is shown using bar color;
variants filtered out from both groups (red), variants present but unfiltered in the opposite
group (green) and variants unique to the group(blue).
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Figure 17: RD Filter Distribution-Dependent Group: This shows the number of variants
filtered out using an RD filter cutoff of zero, binned by how many sample genotypes each
variant has with read depth < 10 across the Group. Resistance group membership is shown
using bar color; variants filtered out from both groups (red), variants present but unfiltered
in the opposite group (green) and variants unique to the group(blue).
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removes a total of 450,401 variants, filters out a very large number of variants that would

pass a somewhat loosened criteria. Furthermore, while there are a large number of variants

present in only one group which are filtered out, the number decreases significantly as the

cutoffs are raised, indicating that the downsides to filtering at the cohort level would be

minimized at loosened filter cutoffs.
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Figure 18: MG Filter Distribution-Whole Cohort: This shows the number of variants filtered
out using an MG filter cutoff of zero, binned by how many missing genotypes each variant
has across the Cohort. Resistance group membership is shown using bar color; variants
filtered out from both groups (red), variants which were only present in the Independent
group (green) and variants which were only present in the Dependent group(blue).

Relaxed Filter Cutoffs

With gene-level mutational frequencies (MF) used as input for the HotNet2 network analysis,

the effect of relaxing the MG and RD filter thresholds should be evaluated based on the

change to the resulting number of mutated genes and their respective MFs. In order to

evaluate the gene-level impact of using MG/RD thresholds with varying strictness, the
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Figure 19: RD Filter Distribution-Whole Cohort: This shows the number of variants filtered
out using an RD filter cutoff of zero, binned by how many sample genotypes each variant
has with read depth < 10 across the Cohort. Resistance group membership is shown using
bar color; variants filtered out from both groups (red), variants which were only present
in the Independent group (green) and variants which were only present in the Dependent
group(blue).
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change in the number of retained genes when varying the threshold from 1-41 (with RD

threshold varied from 1-41 as well), when compared with the most strict MG threshold

value of zero missing genotypes was calculated.

The two changes of interest are the overall number of genes retained, and the number of

genes with altered mutational frequency. The total number of genes retained and the total

number of genes with changed MFs, both in all VEP categories (Figure 20) and those

annotated to the first two classes of VEP consequence categories (Figure 21), are shown

below.

It is clear looking at Figure 20 that the overall number of mutated genes retained (~19-25K),

if all VEP categories are included, is considerably higher than the number of genes used in

the HotNet2 paper (~12K).

Looking at the total number of mutated genes and the number of genes with changed MF

for variants only within our top two designated VEP classes, shown in Figure 21, the range

of total mutated genes(~7-9K) is within a more reasonable range for the HotNet2 algorithm.

Due to the way in which gene-level mutational frequency is calculated, as the missing

genotype filter threshold is relaxed and more variants are retained, the mutational frequency

for genes already present will only increase. Given this fact, the mutational frequencies

of genes with variants filtered out using the missing genotype or read depth criteria are

potentially underestimating the MF.

Under that assumption, relaxing the MG/RD filter cutoffs would potentially improve the

accuracy of our MF estimates for genes already retained when using MG and RD cutoffs

of zero. However, the other effect of loosening the cutoffs is the inclusion of new genes

not present using the strict threshold. While many of these genes may be important, once

the MG threshold is lowered considerably this means that the number of valid genotypes

in the total Cohort becomes small and any mutational frequency calculation becomes less
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Figure 20: Mutated Genes or Different Filter Cutoff Combinations (All VEP Categories)
- This shows the total number of genes retained after filtering, and the number of genes
present for RD=0 with changed mutational frequency when the MG/RD cutoffs are varied.
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Figure 21: Mutated Genes or Different Filter Cutoff Combinations (Variant Classes 1/2)
- This shows the total number of genes retained after filtering, and the number of genes
present for RD=0 with changed mutational frequency when the MG/RD cutoffs are varied.
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meaningful. Therefore it seems that an MG threshold that improves the estimates of

existing gene MFs and increases the number of genes retained, without relaxing so far that

the MFs of new genes added are too imprecise, is desirable. Looking at Figure 20 and

Figure 21, there is a clear saturation point around MG threshold of 20 at which almost

no more genes have changed MFs, and very few new genes are added. Based on this data an

MG threshold of 20 seems a good choice for achieving the desired tradeoff.

Furthermore, looking at the combined effect of varying the two filters, it is clear that at more

strict (ie lower) RD filter cutoffs, the changes due to varying the MG filter is minimized,

with an almost flat relationship between total genes and MD cutoff at RD cutoff of zero.

One explanation for this is a high degree of overlap between the variants filtered by each

criteria seperately. In fact, if the variants are filtered under two cases, one with MG:0/RD:41

and the other with MG:41/RD:0, in order to get all the variants filtered out at the most

strict cutoff by each filter, we find that of the 281652 variants filtered out for MG of zero,

278977(99.05%) are also filtered out by the RD filter if no MG filter is applied. This indicates

that while there is not a clear relationship between the number of missing genotypes and

mean read depth in the remaining samples, there is a more general relationship between

the presence of missing genotypes and the presence of sample genotypes with low read

depth. This means that if the MG filter cutoff is relaxed, most of the variants with missing

genotypes retained will be filtered out by the RD filter. Thus the full distribution of variants

filtered out for different RD cutoffs and the corresponding mean read depth amongst the

remaining samples is more accurately shown in Figure 22.

Given this, evaluation of a suitable relaxed RD filter cutoff should be done with the proposed

MG cutoff of 20, shown in Figure 23.

Looking at the distribution closely, one can see that at an RD threshold of 30, the number

of outlier variants with mean read depth (among the remaining sample genotypes) above 30

drops off considerably. This therefore seems like a good alternative filtering threshold for

the RD filter.
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Figure 22: Read Depth Filter and Mean Read Depth Distribution (MG=41, RD=0) - Left
Panel: The number of variants filtered out using an RD filter cutoff of zero, binned by how
many sample genotypes each variant has with read depth < 10 across the Cohort. Right
Panel: Boxplots of the mean read depths for the variants are shown, for each bin of variants
shown in left panel figure.

47



1 3 5 7 9 12 15 18 21 24 27 30 33 36 39

Mean Read Depth Distribution − Variants filtered for Failed Depth
MG=20

Number of Sample Genotypes with Read Depth < 10 Across Cohort

M
ea

n 
R

ea
d 

D
ep

th

10
20
30
40
50

100

150

Figure 23: Mean Read Depth Distribution (MG=20, RD=0) - Boxplots of the variant mean
read depths, for variants binned by number of sample genotypes with read depth < 10 across
the Cohort. Cutoffs for mean read depth of 30 and RD cutoff of 25 shown in red.
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3.2.3 Final Filtering Results

Bias in Filtered Variants

Utilizing the relaxed secondary filter cutoffs or MG=20 and RD=30, one final point of

concern is whether filtering in this way biases our analysis by disproportionately filtering

out variants which are only present in one BCR-ABL Imatinib resistance group. In order to

address this, I plotted the distributions of variants filtered for the MG/RD filters, shown

below.
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Figure 24: Missing Genotype Filter and Read Depth Filter Distributions (MG=20, RD=30)
Left Panel: The number of variants filtered out using an MG filter cutoff of zero, binned
by how many missing genotypes each variant has across the Cohort. Right Panel: The
number of variants filtered out using an RD filter cutoff of zero, binned by how many sample
genotypes each variant has with read depth < 10 across the Cohort.

The total number of variants filtered within each category, either both groups or individually,

is shown in Figure 25 below.
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Figure 25: Final Filtered Variants BCR-ABL Resistance Groups - Total numbers of variants
filtered out using filter cutoffs of MG=20 and RD=30, subsetted by resistance group
membership; variants filtered out from both groups (red), variants present in only the
Independent Group (green), present only in the Dependent Group (blue). The variants
present only in the Dependent Group, normalized for sample size, are shown in Purple.
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Looking at Figure 25, it is clear that the number of filtered variants present only in the

Independent or Dependent groups are proportional and nearly the same when the number

of variants in the Dependent group is normalized to account for the difference in sample size

(n=26 vs n=15). This shows that there is no discernible bias between the resistance groups

in the variants filtered out using these criteria.

Gene-Level Totals

With the filtering choices of MG=20 and RD=30, the total number of mutated genes

retained are shown in Table 4 below.

Table 4: Gene Totals after Filtering

BCR-ABL Independent

Total Genes 22232

Top 2 VEP Classes 9356

Present in COSMIC 2436

BCR-ABL Dependent

Total Genes 21892

Top 2 VEP Classes 7172

Present in COSMIC 1841

3.3 Conclusion

Lacking matched normal samples, reducing the number of variants to a more manageable

number and attempting to eliminate as many germline variants as possible is an inherently

difficult task. Filtering out variants based on allele frequency in the ExAC database was the

best approach for removing potential common germline variants, even though some somatic

variants were no doubt inadvertantly filtered out as well. Aside from this, cutoffs for the
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number of samples within the sample cohort either missing a valid genotype call or lacking

sufficient read depth were chosen in order to strike a balance between inclusion of as many

variants/genes as possible and ensuring that the resulting gene-level mutational frequencies

were of reasonable quality. Finally, the variants were filtered two different ways based on

functional and phenotypic annotation, allowing for variants from either only the top two

designated tiers of VEP functional classifications, or from all VEP classes but restricted to

only those variants present in the COSMIC database of known somatic cancer variants.

While the choices for filtering made here are necessarily ad hoc, they highlight the importance

of considering the context of how the data (genotypes) will be used in the proposed analysis

(cohort-wide measures, 2 group) in order to carefully make decisions about how to select

variants. Many of the quality metrics which are built into standard pipelines such as the

GATK genotyping pipeline used here, are evaluated on a per-sample basis. In the case of

genotyping data, a single sample passing all the quality metrics with a non-WT genotype at

a particular locus is enough for that variant to be included in the dataset. If however, the

final value of interest is measured across the cohort or group, as in gene-level mutational

frequency, it needs to be ensured that all samples meet these standards. In doing so, one

needs to consider whether using a strict cutoff will filter out too many variants or bias

the variants filtered out between groups if the cohort is being split into several analysis

groups, as in this case. These factors highlight the complexity of making rational choices for

filtering, and the need for careful consideration of how those filtering choices will map onto

the proposed study design.
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4 HotNet Functional Network Analysis

4.1 Introduction

The advent of massively parallel next-generation sequencing (NGS) technologies has radically

lowered the cost of speculative sequencing projects, leading to a huge expansion in cancer

genome characterization. With the ability to characterize whole genomes or exomes across a

cohort of patients, it is now possible to identify somatic variants important to cancers in

a de novo fashion, in contrast to prior approaches with microarray or targeted sequencing.

NGS approaches are accompanied with their own sets of analytic challenges, however. One

limitation for using traditional biostatistical methods on these datasets is the disproportionate

ratio between the number of parameters or variables being investigated (commonly genes

or transcripts) and the number of samples available. This P>>n inversion requires great

care for devising tests of statistical significance and avoiding issues of multiple testing.

Another common pitfall is that of correlation, between genes or pathways. For example,

many competitive gene set tests such as the widely used Gene Set Enrichment Analysis

(GSEA) algorithm, which identifies pre-defined sets of genes with significant differences

in gene expression between two disease states, assume independence of genes[47]. These

approaches require resampling procedures to adjust significance, which are not appropriate

when applied to studies with small sample numbers[48].

Most cancers are ultimately the result of somatic mutations acquired over the course of a

lifetime, either through replication errors or as a result of environmental and other epigenetic

factors. This makes it difficult to distinguish genetic mutations with an important role in the

etiology of a particular cancer, i.e. “driver mutations”, from the numerous benign somatic

mutations acquired concurrently. Additionally the acquisition of “passenger mutations”,

those arising after the onset of cancer as a byproduct of the increased mutational rate

seen in unregulated cell division and proliferation, further muddies the water. Instead of

a few important genes mutated at high frequency, most cancers exhibit a high degree of
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mutational heterogeneity, with numerous genes mutated at low frequency[49]. This so-called

“long-tail” phenomenon poses a serious challenge to identification of important “driver genes”,

which may be perturbed through myriad disjoint mutations when compared across a cohort

of patients. Methods that ignore frequency of specific mutations in favor of identifying

the parsimonious collection of genes perturbed by these mutations offer a better approach.

One such approach is to identify groups of genes that are significantly mutated across

patient samples when evaluated as a group rather than individually. A method utilizing this

approach, the HotNet2 algorithm[50], was used in this study. HotNet2 identifies significantly

mutated groups of genes with related downstream function by creating a network of variants.

Network nodes represent the variants and edges representing putative interactions identified

by a pre-specified protein interaction network. Gene scores for weighting of the nodes can

either use across sample variant frequency or other metrics of significance. A heat diffusion

algorithm then iteratively transfers “heat” between the nodes. Groups of genes that have

both high frequency of mutations and/or interacting protein products will form highly

significant gene subnetworks, which may represent groups of genes acting in a common

regulatory pathway perturbed in the cancer. The extrapolation of a gene set testing approach

onto a protein interaction network adds an additional dimension that is typically absent in

curated gene set lists. The representation as a network allows for methods of discovering

important sets or “subnetworks”, which avoid the multiple testing issues that plague a naïve

gene set testing approach.

4.2 Results and Discussion

4.2.1 Heat Diffusion Parameter β

The B heat diffusion parameter was determined for each of the three protein-protein

interaction (PPI) networks (STRING, iRefindex, and consensusPathDB) using the procedure

described in the Methods: B Determination section. The maximum influence cutoff β

value was determined for 100 vertice genes for each PPI, and the distribution of all 100 β
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values is shown in Figure 26 below.
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Figure 26: Distribution of Inflection Point Maximum Influence Cutoff Beta Values - The
maximum inflection points for the selected vertice genes were predominately 0.50, with a
small number at 0.45.

4.2.2 Minimum Edge Weight Parameter δ

The ideal δ edge weight parameter value was determined for each protein-protein interaction

network (PPI), by calculating delta values which are unlikely to return large connected

subnetworks when running our dataset on permuted versions of the PPIs, as described in the
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Methods: Delta Determination section. The selected delta values for all the HotNet

runs is shown below in Table 5

Table 5: Delta edge weight parameter values chosen

AllVars COSMIC

BCR-ABL Independent

iRefindex 0.00637 0.00216

STRING 0.00508 0.00152

consensusPath 0.01065 0.00216

BCR-ABL Dependent

iRefindex 0.00612 0.00200

STRING 0.00526 0.00149

consensusPath None 0.00212

4.2.3 Significant Subnetworks

Subnetworks of mutated genes were identified using the HotNet2 algorithm, separately for the

BCR/ABL-independent and BCR/ABL-dependent groups, for each of the three pre-selected

protein-protein interaction networks (STRING, iRefindex, and consensusPathDB). This

was repeated on the smaller variant subset identified as present in the COSMIC database,

for a total of 12 HotNet2 runs. All significant subnetworks are listed in Supplemen-

tary Tables 1-4. Overlap between significant subnetworks for HotNet2 runs on different

PPIs were identified using the procedure described in Methods: Cross-PPI Consensus

Identification.

There are numerous genes identified in these results which exhibit pathway memberships and

functional annotations rich in cancer-related hallmarks informative to our context. Out of the

total subnetworks identified, eight of the significant subnetworks for the independent group
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are highlighted here, six of which comprise two larger overlap networks. The highlighted

independent subnetworks are shown in Table 6 and Table 7.
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Table 6: Significant Subnetworks of Note - All Variants. Genes discussed in text highlighted
in red.

PPI Genes Pathways pval

Net1 iRefindex CYP3A5 DHRS7 ETV 5 FAIM3 HOXD9 ERK RhoA FGF8 IL12/Stat4

FoxM1

0.01

Net2 STRING AFF1 ASXL2 ATP6V0A4 ATP6V1D

ATP6V1E1 ATP6V1H BPTF CASP5

CASZ1 CBFA2T2 CCNT2 CD34 CDHR1

CECR2 DAP DMXL1 EIF4G2 GPR87

HOXD9 KAT6B MAP1S MEIS3 MLLT1

MLLT3 MST1 PPA2 PROM1 RASSF1

RHCG TET2 TM4SF5 TSHZ2 VAX1

ZNF462

p53 SMAD2/3/4 Wnt FoxO In-

tegrin RhoA

0.00

Net3 iRefindex AFF1 CCNT2 CHD1 MLLT1 MLLT3

RFX5

p53 SMAD2/3/4 0.02

Net4 STRING ADAMTS9 ATAD2 DARS DARS2

DCLK2 DSPP FBLN7 KARS KCNK1

NFIC PLK5 RBMS1 RCN1 RFX1 RFX5

RRBP1 SENP1 SENP7 SP100 SPATA4

SULT1A1 THADA TSPAN8 UBA2

USP34 WARS

wnt FOXA1 o-glycosylation

SUMO/SUMOylation

Interferon-gamma

0.01

Net5 iRefindex GABRB2 PCSK9 RCN1 RHOT1 RHOT2

TRAK1 TRAK2

Rho GTPase 0.04

Net6 STRING B3GNT3 BCAM FUT2 FUT3 GALNT1

ISM2 MSLN MUC12 MUC16 MUC17

MUC20 MUC21 MUC4 MUC5B MUC6

MUC7 PRDM16 SETBP1 UCP1

O-linked glycosylation 0.00
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Table 7: Significant Subnetworks of Note - COSMIC Variants. Genes discussed in text
highlighted in red.

PPI Genes Pathways pval

Cos1 STRING BRD2 CARD11 DCHS2 DKC1 DNAH17

DYNC1LI2 EP400 ERAP1 FBXO2 FYB

GPAM GPD2 HLA-A HLA-B HLA-C

HLA-DQB1 HLA-DRB1 HLA-DRB5 IRF2

JUP RUVBL1 SH2B3 SIRPA

Interferon alpha/beta/gamma

TCR signalling EGFR1

IL12/STAT4 Integrin c-myc

beta-catenin/TCF complex

IL1/IL6 BCR NF-kappaB

IKK Wnt

0.02

Cos2 consPath ATG12 ATN1 AUTS2 CARD11 CEP170B

CNOT1 CTBP2 DDX20 EHMT1 EPSTI1

ETV3 FCGBP FYB GIGYF2 MIER2

NEB NOL4 PCGF6 POTEF PRDM6

PRRC2A PSPH RB1CC1 RERE RING1

RPS29 SAFB2 SRA1 STYXL1 TFAP2A

TGIF1 TNRC6B TNXB TRIM39 TRIM5

ULK2 USP2 WBP11 WBP2NL ZBTB33

mTOR p53 PDGF Integrin

signaling SUMOylation

MAPK6/4 PIP3 AKT

signaling Wnt Interferon

NF-kappaB TNFAlpha

SMAD2/3/4 TGF-beta

EGFR1

0.02

Cos3 STRING ACAN ADAMTS12 ADAMTS7

B3GNT3 COMP FUT3 GALNT1

MSLN MUC12 MUC16 MUC17 MUC20

MUC21 MUC4 MUC5B MUC6 MUC7

o-glycosylation Integrin sig-

nalling

0.02
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The first of the multimeric overlap networks, comprised of subnetworks Net1-5 in Table 6,

is shown in Figure 28.

Figure 28: Master Network 1 - Subnetworks with overlapping gene membership. iRefindex
subnetwork Net1 shown in gold. STRING subnetwork Net2 shown in red. iRefindex
subnetwork Net3 shown in green. STRING subnetwork Net4 shown in blue. iRefindex
subnetwork Net5 shown in purple. Red graph edges denote overlap.

Of particular note in Net1 is the ETV5 gene, which encodes a transcription factor involved

in downregulation of the MEK/ERK pathway central to CML progression[51]. It is also

involved in regulation of the RhoA, FGF8, IL12, Stat4, and FoxM1 signalling pathways,

all of which are involved in cancer regulation/progression. RhoA and the STAT family of

transcription factors in particular also play important known roles in CML[52,53].
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Net2 contained several genes with relevant known molecular roles. RASSF1, KAT6B and

CCNT2 are all members of the p53 pathway. RASSF1 is a tumor suppressor that inhibits

RAS[54]. Silencing by methylation of the RASSF1A isoform has been linked to tumorigenesis

in numerous cancers[55]. MST1 has links to Integrin, RhoA, and FoxO signaling. FoxO in

particular acts as a hub for many other signaling pathways, including the aforementioned

RAS/RAF/MEK/ERK pathway. In fact, the MST1 kinase is a downstream target of

the RASSF1A isoform, after RASSF1A’s interaction with RAS, stimulating the apoptotic

cascade[55]. Furthermore, mutations involving KAT6B, MST1, and CCNT2 have all been

shown to play roles in acute myeloid leukemia (AML). CCNT2 has been shown to act as an

inhibitor of myeloid differentiation in AML, via post-transcriptional targeting by the miR-29

family of micro-RNAs[56]. TET2 is a dioxegynase involved in DNA demethylation and

acts as a tumor suppresor. It is commonly mutated in myeloid malignancies such as AML

and chronic myelomonocytic leukemia (CMML). TET2 has also been shown in previous

studies to be preferentially mutated in BCR/ABL-independent imatinib resistant cases of

CML[57,58]. In this study both TET2 and RASSF1 exhibited markedly higher mutational

frequencies in the BCR/ABL-independent group compared with the BCR/ABL-dependent

group (TET2 - Ind: 6/26 Dep: 1/15, RASSF1 - Ind: 18/26 Dep: 5/15). Net3 also contains

the CCNT2 gene.

Net4 also contained a number of interesting genes, USP34, SP100, NFIC, and ADAMTS9.

USP34 plays a role in regulation of the Wnt/β-catenin signaling pathway, through activation

of the β-catenin destruction complex. SP100 is a nuclear antigen which acts as a tumor

suppresor and activator of the the Interferon-γ signaling pathway[59]. Interferon-γ induces

phosphorylation and activation of the JAK/STAT cascade and has been shown to attenuate

TKI sensitivity in CML cells[60]. NFIC is a nuclear transcription factor, a member of the

FOXA1 transcription factor network which play an important regulatory role in breast and

prostate cancers. ADAMTS9 is a metalloproteinase that acts as a tumor suppressor in a

variety of cancers, primarily through epigenetic regulation. In gastric cancer, ADAMTS9

has been shown to inhibit the AKT/mTor pathway[61]. ADAMTS9 has also been shown

to act as a tumor suppressor in multiple myeloma cell lines, with cell proliferation directly
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linked to ADAMTS9’s promoter methylation status[62]. ADAMTS9 exhibited a markedly

higher mutational frequency in the Independent group compared with the Dependent group

(Ind: 7/26 Dep: 2/15).

Net5 identified RHOT1 and RHOT2, which encode members of the mitochondrial Rho-

GTPase family. These GTPases are similar to the RhoA and Ras Rho-GTPases which play

a prominent role in CML progression. Rhot1 has been shown to promote proliferation in

pancreatic cancer via suppression of SMAD4, which is a key mediator of the TGF-β pathway

and Wnt/β-catenin signaling[63].

The second highlighted subnetwork is shown in Figure 29.

Net6 identified B3GNT3 and GALNT1. Both are involved in O-linked glycosylation of

MUCINS. MUCINS 4-21 are also present in the subnetwork. Several Mucins are known

to play roles in many varieties of cancer. Mucin4 has been demonstrated to be a target of

TGF-β in pancreatic cancer, and has been linked to the MapKinase/ERK and RAF/ERK

pathways in epithelial carcinomas[64]. Overexpression of the related Mucin1 has been found

in several myeloid cancers such as multiple myeloma (MM), AML, and blast phase CML[65].

Another gene of particular interest in Net6 is SETBP1. SETBP1 has been identified as

an important oncogene in myeloid cancers, but its function remains poorly understood.

Consistent mutations in the SETBP1 gene were found in a study of atypical Chronic Myeloid

Leukemia (aCML)[66]. This type of CML is particularly interesting because it lacks the

BCR/ABL fusion gene and is a logical target for candidate mechanisms of BCR/ABL-

independent TKI resistance. SETBP1 mutations have also been found in other leukemias

such as chronic myelomonocytic leukemia, secondary acute myeloid leukemia, and juvenile

myelomonocytic leukemia. In all of these myeloid cancers, SETBP1 appears to play a role in

triggering secondary leukemogenesis, and is usually preceded by the presence of mutations

in a small subset of other genes (ASXL1, SRFS2, CBL, RUNX1, TET2)[67]. Of these top

co-occuring mutated genes, TET2 was present in Net2. ASXL2, a closely related paralog of
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Figure 29: STRING subnetwork(Net6) containing genes with numerous roles in O-linked
glycosylation, and known leukemia oncogene SETBP1
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ASXL1, was also present in Net2. SETBP1, similarly to TET2, is mutated almost exclusively

in the Independent group.

Figure 30: Master Network 2 - COSMIC subnetworks(Cos1-2) with overlapping gene
membership. ConsensusPathDB network shown in blue, STRING network in red. Red
graph edges denote overlap.

A very large number of the genes in the subnetworks Cos1-2 (Table 7 and Figure 30) play

interesting roles in cancer pathways either central to or implicated in CML progression,

such as Interferon-α/β/γ, TCR, EGFR, IL/STAT, Wnt, NF-κB, and β-catenin signaling

pathways. Interestingly, CARD11 is shared by both subnetworks. CARD11 is an intermediate

component of BCR signaling and downstream activation of NF-κB, PI-3 kinase, and the
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ERK-MAP kinase cascades, all of which are involved in canonical CML tumorigenesis[68].

CARD11 mutations constitutively activate NF-κB signaling in the activated B cell-like

(ABC) subtype of diffuse large B cell lymphomas (DLBCL)[69]. CARD11 has also been

shown to act as a mediator of tumor suppresion by NF-κB in CML.

Figure 31: COSMIC STRING subnetwork(Cos3) containing genes with numerous roles in
O-linked glycosylation.

Subnetwork Cos3, shown in Figure 31 contained the genes ADAMTS12, ADAMTS7. These

ADAMTS genes encode metalloproteinases which have been implicated in various cancers.

ADAMTS12 is involved in colorectal cancer via epigenetic silencing, similarly to ADAMTS9

in multiple myeloma[70]. ADAMTS7 has been found in the urine of prostate and bladder
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cancer patients and is proposed to be a biomarker of disease progression[71]. ADAMTS12 acs

as a tumor suppressor, by inhibiting the RAS-ERK signaling pathway[70]. This subnetwork

also contains the B3GNT3, GALNT1, and MUCIN genes from Net6.

The highlighted subnetworks contained many genes from signaling pathways that are known

drivers of CML tumorigenesis and progression. Of these, several genes in particular stand

out.

TET2, RASSF1, and CARD11 are all known tumor suppressor genes, and SETBP1 is an

important myeloid oncogene. SETBP1 mutations have been implicated as a triggering

mechanism of secondary leukemia in several myeloid cancers, including atypical CML. TET2

complements SETBP1, and occur almost exclusively in BCR/ABL-Independent Imatinib

resistant CML patients. A close paralog of one of the other co-occuring genes, ASXL2

was also present in the same subnetwork as TET2 (Net2). RASSF1 and the associated

MST1 (also Net2) are key components of proliferative and apoptotic pathways involved in

CML progression. CARD11 is a regulator of NF-κB, and plays a role in mediating NF-κB

signaling’s tumor suppressing activity in CML. TET2, SETBP1, and RASSF1 are also

mutated at a higher rate in the BCR/ABL-independent group in this study.

The subnetworks Cos3 and Net6 contained a number of genes with roles in O-linked

glycosylation, either as substrates or as key mediators of glycosylation. Glycosylation states

regulate signaling pathways in many cancers, including myeloid varieties. For example

abherrent regulation of the Fucosyltransferase 7 enzyme, which terminally caps glycan

chains, has been been linked to adult T-cell leukemia[72].

Truncated O-linked glycan structures have been found in numerous cancers and are commonly

associated with Mucin genes. Mucins act as regulators of signaling pathways by interacting

with cell surface kinases and other receptors. They are also defined by a tandem repeat

domain enriched with serine, proline, and threonine residues. This “mucin-domain” acts as a

substrate for abundant O-linked glycosylation. MUC4 glycan truncation has been proposed to
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stimulate downstream pathways such as ERK and PI3K by allowing interaction between the

Erb-B2 Kinase and EGF-like domains, which are normally blocked by competitive interaction

with MUC4[73]. ADAMTS12 and ADAMTS7, which were identified in subnetwork Cos3,

are the only two known ADAMTS proteins with “mucin-like” domains. These domains are

a likely target of extensive O-glycosylation[74,75].

Several genes were present in both subnetworks Cos3 and Net6 which play important roles

as mediators of proper O-glycan formation. GALNT1 is a GalNAc-transferase enzyme and

initiates the the initial glycan structure by adding N -acetylgalactosamine (GalNAc) to serine

and threonine residues in the mucin domain. B3GNT3 encodes a B-1,3-GlcNAc-transferase

which extends these by adding N -acetylglucosamine to GalNAc. The FUT2 and FUT3 genes

encode fucosyltransferase enzymes that terminate extension of the glycan chain.

In summary these subnetworks contain two families of proteins, the MUCINs and ADAMTSs,

with similar protein domains heavily modified by O-linked glycosylation. These glycosylation

target genes also have been linked to regulation of the RAS/RAF/ERK pathway central to

CML progression. These subnetworks also contain a group of genes which are key components

of the O-glycan synthesis machinery. These results suggests a possible role for dysregulated

glycosolation as a potential driver of CML reactivation in BCR/ABL-independent TKI

resistance.

4.3 Conclusion

The results of this HotNet analysis identified a number of significant subnetworks containing

genes involved in key CML signaling pathways. They identified several functionally connected

genes of particular relevance in our study, a number of which were mutated almost exclusively

in the BCR/ABL-Independent patients. TET2, SETBP1, RASSF1, MST1, ASXL2 and

CARD11 are all known tumor suppressor genes (or closely associated genes) with prominent

roles in other related myeloid disorders. These represent candidate driver genes worthy of
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further study in BCR/ABL-Independent CML.

A novel set of genes connected to glycosylation pathways in BCR/ABL-independent CML

progression was also identified. These genes (GALNT1, B3GNT3, FUT2, FUT3, MUC4,

ADAMTS7, ADAMTS12), representing both targets and key mediators of O-linked glycosy-

lation, are potential driver genes in BCR/ABL-Independent CML imatinib resistance and

warrant additional study.
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5 Methods and Materials

5.1 Sequencing

A total of 127 Whole Exome Sequencing(WES) samples were sequenced at OHSU and Oregon

State University(OSU) sequencing centers. Seventy-two of the samples were sequenced at

OSU Sequencing Core(Sample Group CML1). Of these, 69 samples were single end sequenced

as three FlowCells - three samples on each lane. Three samples (04-00129, 03-00230, 15-

00114) initially failed (Low Library Size) as part of FlowCell1 and these were re-sequenced

paired end but only the R1 data - single end was used for downstream processing. There

were 55 Legacy CML samples that were sequenced by OHSU Sequencing core and these were

single end sequenced. For each flowcell and each sample, the FASTQ files were aggregated

into single files for reads one and two, and trimmed by three bases on the 5’ end and five

bases on the 3’ end. The Nimblegen Seqcap Target Enrichment Kit was used for sequence

capture on all samples.

Table 8: WES Sequencing Totals

Sample Group Sample Total Chemistry Instrument Sequencing Core

3 (Legacy) 14 Nimblegen HiSeq 2000 OHSU

5 (Legacy) 9 Nimblegen HiSeq 2000 OHSU

6 (Legacy) 3 Nimblegen HiSeq 2000 OHSU

7 (Legacy) 29 Nimblegen HiSeq 2000 OHSU

CML1 72 Nimblegen HiSeq 3000 OHSU

A total of 124 RNAseq samples were sequenced at the New York Genome Sequencing

center (NYGC). Note that NYGC core provided the data in two batches. The first batch is

referred to as CML1, the second batch is called CML2. There are only CML tumor samples.

Paired end 125 cycle reads were generated. The NYGC core used the KAPA Total RNASeq

Strand-Specific RNA Library Preparation Kit for sequence capture on all samples.
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Table 9: RNASeq Sequencing Totals

Sample Group Sample Total Chemistry Instrument Sequencing Core

CML1 103 KAPA Total RNASeq N/A NYGC

CML2 21 KAPA Total RNASeq N/A NYGC

5.2 Alignments/Post-process/Read Summarization

5.2.1 WES

BWA MEM version 0.7.10-r789[76] was used to align read pairs for each sample-lane FASTQ

file. The Genome Analysis Toolkit v3.3 and bundled Picard v1.120.1579[27] were used for

alignment post-processing. The files contained within the Broad’s bundle 2.8 were used

including their version of the build 37 human genome (These files were downloaded from:

ftp://ftp.broadinstitute.org/bundle/2.8/b37/). Note: Nimblegen Intervals available as

Nimblegen_SeqCap_EZ_v3.bed were used for all the steps below. The following steps were

performed per sample-lane SAM file generated by BWA:

• The SAM files were sorted and converted to BAM via SortSam

• CollectMultipleMetrics was used to obtain Alignment Metrics for each Sample.

• MarkDuplicates was run, marking both lane level standard and optical duplicates

• The reads were realigned around indels from the reads–RealignerTargetCreator/IndelRealigner.

• Base Quality Score Recalibration

The resulting BAM files were then aggregated by sample and an additional round of

MarkDuplicates was carried out at the sample level.
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5.2.2 RNAseq

Full alignments of reads was perfomed using Subjunc aligner(1.5.0-p1)[77]. BAM files

obtained from Subjunc were used as inputs into featureCounts(1.5.0-p1)[78] and reads

summarization was performed. Note: subjunc was run with following options: Reference

used: human_g1k_v37.fasta (Source: ftp://ftp.broadinstitute.org/bundle/2.8/b37/ ) Note:

During this process these reads were trimmed by 3 on the 5’ end and 5 on the 3’ end * Refer-

ence indexing: subread-buildindex -o human_g1k_v37 human_g1k_v37.fasta * Alignments:

subjunc -i path/to/reference/ -u -r fastq1 -R fastq2 –gzFASTQinput -o outputBAMFilename

-I 5 -n 10 -T

featureCounts was run with following options: Annotation File used: Homo_sapiens.GRCh37.75.gtf

(Source: ftp://ftp.ensembl.org/pub/release-75/gtf/homo featureCounts -a annotation_file

-o output -F GTF -t exon -g gene_id -s 2 -C -T 10 -p -B BAM_files –> Subjunc alignments

have uniquely mapped reads.

5.3 Genotyping

GATK’s Unified Genotyper[79] was used for generation of both WES and RNAseq genotypes,

seperately. Prior to genotyping, an additional round of Indel realignment was carried out.

VCF files, one for SNVs, another for Indels were obtained at the end of genotyping.

5.4 Relatedness Analysis/Clustering

Identity-by-State(IBS) relatedness analysis was performed on WES and RNAseq samples,

using the SNPrelate Bioconductor R package[26]. SNV calls from the genotyping results for

WES and RNAseq cohorts, obtained using GATK’s Unified Genotyper, were used as input.

Indels were not included. The SNPrelate package’s clustering function uses the UPGMA
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unweighted heirarchical method.

5.5 RNAseq Exploratory Analysis

Exploratory data vizualizations of gene-level expression data, using the featureCounts

gene counts summaries for the RNAseq samples as input, was done using a custom script

EDASeq_Ext.r. This script extends the functionality of a number of plotting functions

included in the EDASeq Bioconductor R package[28].

5.5.1 Dropped Genes

Also included in the EDASeq_Ext.r script are two functions for visualizing unusual patterns

of dropped(absent) genes within a particular group of samples. These functions are entirely

of my own design and the concept is as follows:

Due to the noisiness of absolute gene counts from NGS for low expression genes, we would

expect genes expressed at low levels across our entire sample cohort to display a pattern of

absentness amongst many samples due to the expression in those samples dropping below

the level of detection. Therefore, a gene expressed at very low levels will have a mix of low

gene counts and zero read counts across the entire sample cohort. If a subset of samples

is randomly selected, they may all (or nearly all) by chance have zero read counts for a

particular gene.

Given a specified group of samples, say all the samples with a particular value for one

specified clinical covariate (referred to here as batch group), genes with no read counts in

a large number of samples across the entire batch group may be a result of random chance

due to sampling or instead be the result of a systematic shift downward in the sequencing

coverage of low expression genes.
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In order to identify whether genes are being dropped from the batch group that wouldn’t

be expected randomly, these functions calculate the binomial probability of each individual

gene with samples having zero read counts within the batch group being absent through

chance, and then visualizes these dropped genes and their probabilities. For a given gene

we can calculate the chance that the specified group contains k zeros entirely by chance as

follows:

1. The probability of any single randomly selected sample having zero read counts by

chance, is simply the total number of samples with zero read counts (z) divided by

the total number of samples (N):

p = z/N

2. The probability of having k zeros across the specified sample group of size n is equal

to the binomial probability:

PrBin(X = k) =
(
n

k

)
pk(1− p)n−k

Plotting the binomial probability of dropped genes with p-values above a specified threshold

in this way allows one to compare the number and improbability of dropped genes across

different groups given a specified clinical covariate, in order to discern any groups exhibiting

any obvious batch effect of unusual dropped genes.

Due to the differences in size between the different groups, the dropped genes from groups

with fewer samples do not have the possibility of binomial probilities as small as for groups

with more samples, because of the smaller n in PrBin(X = k) =
(n

k

)
pk(1 − p)n−k). This

means that a comparison of the binomial probabilities of “dropped genes” between two

groups with different sample sizes is not perfectly even. Due to this, a good followup

comparison of dropped genes is done by specifying the single group of interest and then

randomly subdividing the remaining samples into equally sized groups. Both versions of

this dropped gene visualization function are included in the EDASeq_Ext.r script.
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5.5.2 FastQC/BLAST

FastQC v0.11.4[29] was used to generate Quality Control reports on FASTQ raw read output

files for all RNAseq samples. The Per Sequence GC Content and Overrepresented Sequence

analysis module results were extracted for closer examination. The overrepresented sequences

were pooled and submitted for BLAST sequence matching using NCBI’s Nucleotide Blast

tool[30].

5.5.3 Differential Expression

Differential expression (DE) analysis was performed using the edgeR Bioconductor pack-

age[34]. Median, Upper Quantile, and Full Quantile normalization of gene counts was

performed using the EDASeq package, prior to DE analysis. For each type of normalization,

within-sample normalization of gene counts by GC content was performed, followed by

between-sample normalization of gene counts. The normalized gene count values were then

passed as an offset to edgeR’s generalized linear model. Raw p-values were adjusted to

account for multiple-testing, holding the false discovery rate (FDR) at 5%.

5.6 Genotype Variant Filtering

5.6.1 Variant Effect Predictor

Variants were annotated functional consequence predictions using Version 78 of Ensemble’s

Variant Effect Predictor[45]. Version 1.6.6 of the vcf2maf.pl annotation tool was used

to create a Mutation Annotation Format(MAF) file, with predicted “most deleterious”

transcript, ExAc version 0.3.1, and Cosmic version 80 annotations.
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5.7 HotNet2 Analysis

5.7.1 Beta Determination

The B heat diffusion parameter for each of the three selected PPIs(STRING, iRefindex,

consensusPathDB) was determined using the description of parameter selection given in

Supplemental Section 1.4.1 of the HotNet2 paper[50]. A total of 100 genes were selected as

a representative sample for each connectivity vertice point (representing maximum, 75th

percentile, median, and 25th percentile values for their betweenness connectivity in the

network). For each gene the influence on all other nodes in the network after diffusion was

calculated, for 20 values of β from 0.05 to 0.95. The influence drop off point was then chosen

by finding the maximum influence value that nearly all (97.5 percent) of the first-order nodes

meet. This was done for all the values of beta, and the inflection point beta value having

the highest influence cutoff drop point was chosen.

5.7.2 Delta Determination

The second major parameter needed for the HotNet2 algorithm, aside from the β diffusion

parameter, is the δ, or minimum edge weight parameter, which determines which edges

will be cropped out of the network after the diffusion step is performed. Determination

of an ideal δ parameter value is done for each PPI, by calculating δ values which are

unlikely to return large connected subnetworks when running our data on the permuted

versions of the PPIs. So for each resistance group dataset (BCR/ABL-independent and

BCR/ABL-dependent) and each PPI (STRING, iRefindex, consensusPathDB), the HotNet2

delta estimation calculates the δ threshold at which all strongly connected components

identified are smaller than or equal to a specified maximum size. This was done for four

sizes: 5, 10, 15, and 20, and then repeated for all 100 permuted PPI networks, following the

recommendations of the HotNet2 paper[50].
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The heuristic used in the HotNet2 paper to determine one final value of δ for the HotNet2

run used is as follows:

1. Determine the median δ value for each max connencted component size, from all 100

permuted networks.

2. Run HotNet2 on all four median δ values.

3. Choose the smallest δ value with the largest number of statistically significant (P <

0.05) network sizes k.

5.7.3 Protein-Protein Interaction Networks

Three protein-protein interaction networks were used as the influence networks. In all

three PPIs, self-edges were excluded. Only proteins with corresponding HUGO(hgnc)

nomenclature gene names were retained.

iRefindex

Version 14 of iRefindex was used. This was significantly more current than the version used

in the HotNet2 paper (v9). In order to mirror the selections made in the HotNet2 paper, cer-

tain interactions were excluded; (MI:0403(colocalization), MI:0208(genetic interaction),and

MI:0914(association).

STRING

Version 10.0 of the STRING Consortium protein interaction database was used. High confi-

dence interactions were selected by filtering for entries with combined score of Scoretotal > 0.7.
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ConsensusPathDB

Version 31 of the ConsensusPathDB database of human protein-protein interactions was

used. The biomaRt Bioconductor package was used to retrieve matching hgnc gene names

for the uniprot_swissprot protein names provided by consensusPathDB.

Table 10: Protein-protein interaction network gene and edge totals.

PPI Total Genes Total Edges

iRefindex 15495 160065

STRING 14337 292301

consPathDB 15240 195900

5.7.4 Subnetwork Significance Calculation

Statistical significance was calculated using HotNet’s findComponents.py module. The

statistical significance calculation is not for the specific gene networks output by the HotNet2

algorithm, but is an estimate of the probability of seeing the n clusters of size k observed,

using random permutations of the heat input data.

5.7.5 Cross-PPI Consensus Identification

Overlap in gene membership between significant subnetworks for HotNet2 runs on different

PPIs, but with the same resistance type (BCR/ABL-independent, BCR/ABL-dependent) and

filter schemes (COSMIC-only, all Variants), were identified in order to highlight subnetworks

with consensus across HotNet runs.

In addition to pairwise matches representing shared gene membership between two sub-

networks, multimeric networks of overlapping subnetworks can occur. Multimeric overlap

77



networks represent more than two subnetworks connected by direct and indirect links. An

example of a multimeric network with three members would be: subnetwork A overlaps with

subnetwork B, and subnetwork B overlaps with subnetwork C, but with disjoint overlap

genes.

In order to account for multimeric overlap networks, and identify the most parsimonious

set of overlap networks (both pairwise and/or multimeric) to account for the relationship

in gene membership between the subnetworks, the NetworkX network analysis toolset was

used.

The procedure is as follows:

1. All of the pairwise matches (gene overlap) between subnetworks from different PPI

runs were identified.

2. An undirected NetworkX network object was created, with the matches between

subnetworks designated as edges, and the subnetworks as nodes.

3. The NetworkX connected_component_subgraphs() module was used to identify all of

the subgraphs on the graph.

5.8 Work Contributions

Dan Bottomly and Sashi Challa made critical contributions to this work; in performing the

alignments, read summarization, and genotyping of the raw sequencing data for this study,

and for generously sharing valuable analysis code. The McWeeney laboratory provided

insight and assistance throughout, including input on the filtering criteria workflow. In

the Druker lab, Christopher Eide spearheading this project and sharing his unparalleled

knowledge of CML, and Samantha Savage for all of her work gathering clinical information

from so many disparate sources. All other work described was performed by Adam Therneau.
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Supplemental

Supplemental Table 1: Significant HotNet Subnetworks: BCR/ABL-Independent Group
(All Vars)

PPI Genes pval

consPath CDHR2 FIGN LANCL1 MYO7A MYO7B PCDH15

USH1C USH2A

0.01

consPath ASPH CCDC180 CNDP1 COX7A2 HRC MANEA

OLFM1 PDGFRL SCD5 TRDN

0.04

iRef GALNT1 PPFIA2 PPFIA3 PTPRF SEC23A SEC24D 0.02

iRef CYP3A5 DHRS7 ETV5 FAIM3 HOXD9 0.01

iRef ANK3 AP3B1 ARHGEF10L CENPU PTPRN2

SCN2A SPTBN4

0.04

iRef KRT20 KRT80 PLEKHA5 PLEKHA6 PROM1 0.01

iRef POLA1 POLE RAD17 RBMS1 0.04

iRef ACAN MMP19 MMP20 MMP8 TNFAIP6 UMOD 0.02

iRef CSHL1 MAML2 MAML3 NOTCH4 RAI1 SSX3

ZNF496

0.04

iRef BAIAP2L1 GRID2IP IQSEC2 SHANK3 0.04

iRef ADAMTS12 ADAMTS7 COL9A1 COMP 0.04

iRef ASPH CASQ2 HRC PDGFRL TRDN 0.01

iRef COL17A1 KAZN LAD1 PPL 0.04

iRef CLEC4M ITGAM LRP1B MMP12 PLAUR SRPX2 0.02

iRef CNOT1 CNOT2 CNOT6L TNRC6A TNRC6B 0.01

iRef AP1G1 AP1S1 ASB10 KIF13A 0.04
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iRef ABCA9 ATP6V1E1 ATP6V1H DEDD 0.04

iRef HLA-B HLA-C KIR3DL1 LILRB1 TAP2 0.01

iRef MUL1 USP32 USP6 VPS35 0.04

iRef CRCP INTS4 KIAA0513 NBL1 SCAMP1 ZMIZ2 0.02

iRef PDS5A PDS5B STAG1 STAG2 0.04

iRef ABLIM1 APBA1 CNTNAP3 KCNJ12 LIN7A 0.01

iRef AFF1 CCNT2 CHD1 MLLT1 MLLT3 RFX5 0.02

iRef DEFA5 PRSS1 PTPN4 SPINK5 TST 0.01

iRef FOXE1 PLCB3 TRPM6 TRPM7 0.04

iRef GABRB2 PCSK9 RCN1 RHOT1 RHOT2 TRAK1

TRAK2

0.04

iRef CNTRL MAP2K3 MAP3K4 TAOK1 0.04

STRING CPSF3L CSTF2T INTS4 INTS7 KIAA0513 PAPOLG

RALGAPA1 RBBP6 SON WDR33 ZC3H4 ZC3H6

ZNF292

0.00

STRING CCDC39 CCDC40 DNAH1 DNAH12 DNAH14

DNAH17 DNAH5 DNAH7 DNAL1 DYNC1LI1

DYNC1LI2 DYNC2H1 OSBPL1A

0.00

STRING ARMC4 ATG12 ATG2A ATG2B ATG3 ATG4C

C9orf72 RB1CC1 SLC22A18 SMCR8 TBC1D32 ULK2

ZDHHC15 ZDHHC20

0.00
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STRING AFF1 ASXL2 ATP6V0A4 ATP6V1D ATP6V1E1

ATP6V1H BPTF CASP5 CASZ1 CBFA2T2 CCNT2

CD34 CDHR1 CECR2 DAP DMXL1 EIF4G2 GPR87

HOXD9 KAT6B MAP1S MEIS3 MLLT1 MLLT3

MST1 PPA2 PROM1 RASSF1 RHCG TET2 TM4SF5

TSHZ2 VAX1 ZNF462

0.00

STRING COL11A1 COL18A1 COL20A1 COL21A1 COL22A1

COL24A1 COL25A1 COL4A4 COL4A5

0.02

STRING APBA1 APBA2 APPBP2 ASPM BAIAP2L1 C16orf70

CARD10 CDH23 CIT EPS8 FGF12 FGFRL1 FUBP1

IMMT KIF14 KIF17 KIF20B KIF25 KIFC2 KLC1

LAIR1 LIN7A MAPK8IP2 MPP1 MYO15A MYO7A

NCAPD3 NCAPG2 OTOG PCDH15 PDZD7 SMC4

TECTA TUBD1 USH1C USH2A VEZT WDR62

0.04

STRING ADAMTS9 ATAD2 DARS DARS2 DCLK2 DSPP

FBLN7 KARS KCNK1 NFIC PLK5 RBMS1 RCN1

RFX1 RFX5 RRBP1 SENP1 SENP7 SP100 SPATA4

SULT1A1 THADA TSPAN8 UBA2 USP34 WARS

0.01

STRING ALG2 ANXA11 CC2D1A CHMP5 CHMP6 IST1 LYST

MVB12A PDCD6IP RHPN2 SGSM3 UEVLD USP2

VPS37C VTA1 ZFYVE1

0.00

STRING ANKRD28 ANKRD33 ATXN1 ATXN1L ATXN3

C10orf2 CACNA1A CIC MPV17 PLEKHG4 POLG

PPP6R3 SCN9A TNIP3 USP36

0.00

STRING ACE ACE2 ACSS2 ALDH3B2 APOL4 BCKDHA

CNDP1 COMT DBH DBT DLAT HAL LDHAL6B

LDHB METTL2B MMADHC MUT OGDH PCCA

PDHA1 SLC36A1 SLC6A18 TRIM11

0.01
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STRING ACIN1 AGMO CLASRP CLK4 CRLS1 CYP20A1

CYP4F11 CYP4F2 CYP4F3 CYP4Z1 CYP7B1 DGKB

LBR NDUFAF4 NDUFAF5 NDUFAF6 NDUFAF7

PHLDB2 RBM23 SLC25A41 SRPK1 SRSF10

0.00

STRING ANK3 CNTN3 CNTNAP2 LGI1 NRCAM PTPRN2

SCN2A SPTBN4 SPTBN5

0.02

STRING B3GNT3 BCAM FUT2 FUT3 GALNT1 ISM2 MSLN

MUC12 MUC16 MUC17 MUC20 MUC21 MUC4

MUC5B MUC6 MUC7 PRDM16 SETBP1 UCP1

0.00

STRING AGAP3 AP1G1 AP1S1 AP3B1 AP3S1 AP4B1 ATF5

CMYA5 COPB1 DTNBP1 ECD ERN1 MIA3 SAR1B

SEC23A SEC24D SEC31A SGIP1 SLC2A8

0.00

STRING CUL2 DTL GLMN KLHL13 KLHL3 LHX6 OXSR1

SLC22A13 SLC22A14 SLC47A2 WNK1 WNK4

ZMYM3 ZMYM4 ZMYM6 ZNF280C ZNF280D

0.00

STRING CTBP2 ELAC2 EXOG KANK1 PPP1R15A SEPSECS

TGIF1 ZBTB14 ZFYVE9 ZNF217

0.01

STRING ACTR8 BRD8 CHD8 EP400 EPC1 HMGA1 INO80C

INO80D KANSL1 KAT8 MGA

0.00

Supplemental Table 2: Significant HotNet Subnetworks: BCR/ABL-Independent Group
(COSMIC Vars)

PPI Genes pval

STRING ATAD5 CEP164 CRB2 DNA2 ERCC8 HUS1 MRE11A

MSH3 ORC2 ORC4 PLAA PMS2 POLE RAD17

SETD1B SLC13A2 SMURF2 STAM2 TOP1MT

TP53BP1 UBXN11 USP8 WDR90

0.02
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STRING ACAN ADAMTS12 ADAMTS7 B3GNT3 COMP

FUT3 GALNT1 MSLN MUC12 MUC16 MUC17

MUC20 MUC21 MUC4 MUC5B MUC6 MUC7

0.02

STRING BRD2 CARD11 DCHS2 DKC1 DNAH17 DYNC1LI2

EP400 ERAP1 FBXO2 FYB GPAM GPD2 HLA-A

HLA-B HLA-C HLA-DQB1 HLA-DRB1 HLA-DRB5

IRF2 JUP RUVBL1 SH2B3 SIRPA

0.02

consPath A2ML1 CELA1 IVL L2HGDH LOR LPA MMP12

SPRR3

0.04

consPath BCL6B GPRIN2 HOXA1 KRTAP10-1 KRTAP12-4

KRTAP4-7 LCE4A PCSK5

0.04

consPath ATG12 ATN1 AUTS2 CARD11 CEP170B CNOT1

CTBP2 DDX20 EHMT1 EPSTI1 ETV3 FCGBP

FYB GIGYF2 MIER2 NEB NOL4 PCGF6 POTEF

PRDM6 PRRC2A PSPH RB1CC1 RERE RING1

RPS29 SAFB2 SRA1 STYXL1 TFAP2A TGIF1

TNRC6B TNXB TRIM39 TRIM5 ULK2 USP2WBP11

WBP2NL ZBTB33

0.02

iRef CELA1 IVL LOR LPA MMP12 PRSS3 SPRR3 0.04

iRef ATG12 CTBP2 DDX6 EHMT1 EPSTI1 NEB NOL4

PRDM6 PSPH RB1CC1 RPS29 SAFB2 SOX13

STYXL1 TFAP4 TFCP2L1 TGIF1 ULK2

0.02

iRef CCDC150 DTNBP1 ISCU NUP153 NUP62 P4HA3

SSC5D

0.04

Supplemental Table 3: Significant HotNet Subnetworks: BCR/ABL-Dependent Group (All
Vars)
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PPI Genes pval

STRING ACTR8 AFF1 ANKRD17 ASXL2 ATP6V0A4

ATP6V0D1 ATP6V1D ATP6V1E1 ATP6V1G2

ATP6V1H BPTF BRD8 CASZ1 CBFA2T2 CD34

CECR2 CHD8 DMXL1 ENKUR EP400 FAN1 GPR87

HOXD9 INO80C INO80D KANSL1 KAT6B KAT8

KMT2C KMT2E MADCAM1 MAP1S MEIS3 MGA

MLLT1 MLLT3 MST1 MTMR10 NKX2-3 PMS1

PMS2 PPA2 PROM1 RHCG SELL SETD1B TRPC1

TRPM1 TRPM3 TRPM7 VAX1 WDR90 ZNF462

0.01

STRING JPH3 LIPN PCSK5 PCSK7 PCSK9 VPS13A VPS13B

VPS13C

0.02

STRING ANXA5 ARL13B IFT88 PKD1 PKHD1 RPGR RP-

GRIP1 TBCD

0.02

STRING AGAP3 COPB1 ECD MIA3 SAR1B SEC16A SEC23A

SEC24D SEC31A

0.03

STRING ACE ACE2 ALDH3B2 CNDP1 COMT DBH HAL

METTL2B UROC1

0.03
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STRING ABCD3 AGFG2 AHNAK ANXA2R AP1G1 AP1S1

AP3B1 AP3S1 AP5B1 APPBP2 BAIAP2 BAIAP2L1

CARD10 CASP5 CDH23 CMYA5 DAP DCP1B

DDHD1 DEDD DIAPH1 DIAPH3 DNAJC6 DN-

MBP DOCK4 DTNBP1 EIF4G2 ELMO2 ELMO3

ENAH EPS15L1 EPS8 ESRP1 ESRP2 FLG FMN1

FMN2 FUBP1 HDLBP HRNR IMMT INF2 IVL

KAZN KIAA0319 KIF13A KIF17 KIF25 KIFC2 KLC1

KLK5 KRT10 KRT18 KRT2 KRT77 KRT8 KRT9

LIN7A LOR LRRC3C LRRC4B MAL MN1 MPV17

MUL1 MYO15A MYO7A NR6A1 NUMBL OTOG

OTUD4 PCDH15 PLXNB3 POLG PPFIA2 PPFIA3

PPFIBP1 PPFIBP2 PPHLN1 PPL PTPRF RAB36

RAB38 ROBO1 ROM1 RPTN S100A10 SCN9A

SEC63 SH3D19 SH3YL1 SLC5A7 SNAP91 SORL1

SPG11 SPIRE2 SPRR3 SYTL3 TBC1D24 TCHH TN-

FRSF11A TRAF5 TUBD1 TXNDC5 UBXN11 USH1C

USH2A USP32 USP4 USP48 USP53 USP6 VPS35

YTHDF2 ZFC3H1 ZFYVE26

0.01

STRING ASPM ATAD5 ESCO1 KIF20B NCAPD3 NCAPG2

SMC1A SMC4 WDR62

0.03

STRING CPSF3L INTS4 INTS7 KIAA0513 PAPOLG RAL-

GAPA1 RBBP6 SON ZC3H6

0.03

STRING COG3 COG5 COG6 COG7 DPY19L2 GOLGA2

GOLGA3 RUSC2 SPATA16

0.03

STRING RCN1 SENP1 SENP7 SULT1A1 THADA TSPAN8

UBA2 USP34

0.02
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STRING ATAD2 DCLK2 HIVEP2 RBMS1 RFX1 RFX5 RRBP1

SPATA4

0.02

STRING CDON FNDC1 IGDCC4 IQSEC2 LRRC4C NEO1

NTNG1 PRTG

0.02

iRef HLA-A HLA-B HLA-C LILRB1 TAP2 0.04

iRef CP DMTN DYNC1LI2 PROC PROCR 0.04

iRef CUX1 ELAC2 GOLGA5 RECQL4 RECQL5 0.04

iRef ADAM10 SH3D19 SH3YL1 SOS2 TSPAN33 0.04

iRef CSHL1 MAML2 MAML3 NOTCH4 RAI1 0.04

iRef AP1G1 AP1S1 ASB10 EBLN2 KIF13A 0.04

iRef CLEC4M ITGAM LRP1B MMP12 PLAUR 0.04

Supplemental Table 4: Significant HotNet Subnetworks: BCR/ABL-Dependent Group
(COSMIC Vars)

PPI Genes pval

consPath AKNA ATG12 ATN1 AUTS2 BCL6B CENPJ

CEP170B CNOT1 CTBP2 DAZAP1 DDX20 DDX6

EHMT1 EPSTI1 ESRRA GIGYF2 GPRIN2 HOXA1

KRTAP10-1 KRTAP12-4 KRTAP4-7 LCE4A LYST

MEGF8 MIER2 NEB NOL4 PCGF6 PCSK5 PRRC2A

PSPH RB1CC1 RC3H1 RPS29 SAFB2 SAP130

STYXL1 TFAP4 TGIF1 TNRC6B ULK2 WBP11

ZBTB33 ZNF462 ZNF609

0.04
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iRef ATG12 ATN1 BCL6B CENPJ CNOT1 CTBP2 DDX20

DDX6 DHX57 EHMT1 EIF4E EPSTI1 ESRRA

FUBP1 GIGYF1 GIGYF2 GPRIN2 HOXA1 IMMT

KAT6B KRTAP10-1 KRTAP12-4 KRTAP4-7 LCE4A

LYST MEGF8 MKNK2 NEB NOL4 PABPC1 PCSK5

PRRC2A PSPH RB1CC1 RPS29 SAFB2 SAP130

STYXL1 TFAP4 TGIF1 TNRC6B UBXN11 ULK2

WBP11 WDFY3 ZNF462

0.02

STRING BRD2 BRIX1 CARD11 DCHS2 DKC1 DNAH17

DYNC1LI2 EP400 ERAP1 FBXO2 FYB GPAM GPD2

HLA-A HLA-B HLA-C HLA-DQB1 HLA-DRB1 HLA-

DRB5 IRF2 JUP KCTD19 NOP9 PA2G4 PRMT8

RPF1 RUVBL1 SH2B3 SIRPA SOX4

0.04

Supplemental Table 5: Top BLAST Hits for Overrepresented Sequences Present in All Batch
Samples

BLAST Hit E-Score

1 Homo sapiens beta-globin (HBB) gene, complete cds 5.68487e-16

2 Cloning vector pTT-PB-hTERT-puro, complete se-

quence

5.68487e-16

3 Cloning vector pTT-PB-SOKM-puro, complete se-

quence

5.68487e-16

4 Homo sapiens hb, hbb gene for beta globin, complete

cds, note: HbHofu 126(GTG&gt;GAG)

5.68487e-16

5 Homo sapiens clone BT009B hemoglobin beta chain

(HBB) gene, partial cds

5.68487e-16

6 PREDICTED: Nomascus leucogenys hemoglobin sub-

unit beta (LOC100580975), transcript variant X3,

mRNA

5.68487e-16
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7 PREDICTED: Nomascus leucogenys hemoglobin sub-

unit beta (LOC100580975), transcript variant X2,

mRNA

5.68487e-16

8 PREDICTED: Nomascus leucogenys hemoglobin sub-

unit beta (LOC100580975), transcript variant X1,

mRNA

5.68487e-16

9 Cloning vector pTT-PB-SOKMLNpuro, complete se-

quence

5.68487e-16

10 Homo sapiens isolate BT048B beta globin (HBB) gene,

partial cds

5.68487e-16

11 Homo sapiens isolate BT047B beta globin (HBB) gene,

partial cds

5.68487e-16

12 Homo sapiens isolate BT046B beta globin (HBB) gene,

partial cds

5.68487e-16

13 Homo sapiens isolate BT045B beta globin (HBB) gene,

partial cds

5.68487e-16

14 Homo sapiens isolate BT033B beta globin (HBB) gene,

partial cds

5.68487e-16

15 Homo sapiens isolate BT031B beta globin (HBB) gene,

partial cds

5.68487e-16

16 Homo sapiens isolate BT011B beta globin (HBB) gene,

partial cds

5.68487e-16

17 Homo sapiens isolate BT010B beta globin (HBB) gene,

partial cds

5.68487e-16

18 Homo sapiens isolate HC2B beta globin (HBB) gene,

partial cds

5.68487e-16

19 Homo sapiens beta globin (HBB) gene, partial sequence 5.68487e-16

20 PREDICTED: Pan troglodytes hemoglobin, beta

(HBB), mRNA

5.68487e-16
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21 PREDICTED: Pongo abelii hemoglobin, beta (HBB),

transcript variant X2, mRNA

5.68487e-16

22 PREDICTED: Pongo abelii hemoglobin, beta (HBB),

transcript variant X1, mRNA

5.68487e-16

23 PREDICTED: Pan paniscus hemoglobin subunit beta

(LOC100976465), mRNA

5.68487e-16

24 Expression vector pFUSE-HEAVY, complete sequence 5.68487e-16

25 Expression vector pFUSE-LIGHT, complete sequence 5.68487e-16

26 Homo sapiens hemoglobin, beta (HBB) gene, complete

cds

5.68487e-16

27 Homo sapiens beta globin gene, exon 3 and partial cds 5.68487e-16

28 Expression vector pFUSE-rFc2-adapt-scFv, complete

sequence

5.68487e-16

29 Expression vector pFUSE-mFc2-adapt-scFv, complete

sequence

5.68487e-16

30 Expression vector pFUSE-hFc2-adapt-scFv, complete

sequence

5.68487e-16

31 Cloning vector pnlslacZ-ACN, complete sequence 5.68487e-16

32 Cloning vector pAP-ACN, complete sequence 5.68487e-16

33 Homo sapiens beta-globin Showa Yakushiji variant

(HBB) gene, HBB-Showa Yakushiji allele, exon 3 and

partial cds

5.68487e-16

34 Homo sapiens beta globin region (HBB); and

beta globin locus transcript 3 (non-protein coding)

(BGLT3); and hemoglobin subunit beta (HBB); and

hemoglobin subunit delta (HBD); and hemoglobin sub-

unit epsilon 1 (HBE1); and hemoglobin subunit gamma

1 (HBG1); and hemoglobin subunit gamma 2 (HBG2),

RefSeqGene on chromosome 11

5.68487e-16
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35 Pongo abelii BAC clone CH276-201O10 from chromo-

some unknown, complete sequence

5.68487e-16

36 Homo sapiens beta globin chain (HBB) gene, complete

cds

5.68487e-16

37 Cloning vector pAAV-EF1alpha-hFAH.AOS2, com-

plete sequence

5.68487e-16

38 Leontopithecus chrysomelas beta-globin gene, intron 2

and 3&apos; flanking region

5.68487e-16

39 Homo sapiens isolate HbC-Dgn83 beta globin (HBB)

gene, complete cds

5.68487e-16

40 Homo sapiens isolate HbC-Dgn99 beta globin (HBB)

gene, complete cds

5.68487e-16

41 Homo sapiens isolate HbC-Dgn66 beta globin (HBB)

gene, complete cds

5.68487e-16

42 Homo sapiens isolate HbC-Ghn117 beta globin (HBB)

gene, complete cds &gt;gi|71727260|gb|DQ126320.1|

Homo sapiens isolate HbC-Ghn133 beta globin (HBB)

gene, complete cds &gt;gi|71727262|gb|DQ126321.1|

Homo sapiens isolate HbC-Ghn40 beta globin (HBB)

gene, complete cds &gt;gi|71727264|gb|DQ126322.1|

Homo sapiens isolate HbC-S782 beta globin (HBB)

gene, complete cds

5.68487e-16

43 Homo sapiens isolate HbC-Ghn195 beta globin (HBB)

gene, complete cds

5.68487e-16
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44 Homo sapiens isolate HbC-Dgn06 beta globin (HBB)

gene, complete cds &gt;gi|71727232|gb|DQ126306.1|

Homo sapiens isolate HbC-Dgn31a beta globin (HBB)

gene, complete cds &gt;gi|71727234|gb|DQ126307.1|

Homo sapiens isolate HbC-Dgn31b beta globin (HBB)

gene, complete cds &gt;gi|71727236|gb|DQ126308.1

5.68487e-16

45 Homo sapiens isolate HbA-Dgn99 beta globin (HBB)

gene, complete cds

5.68487e-16

46 Homo sapiens isolate HbA-Ivc18 beta globin (HBB)

gene, complete cds

5.68487e-16

47 Homo sapiens isolate HbA-Dgn58 beta globin (HBB)

gene, complete cds

5.68487e-16

48 Homo sapiens isolate HbA-G37 beta globin (HBB)

gene, complete cds

5.68487e-16

49 Homo sapiens isolate HbA-Dgn66 beta globin (HBB)

gene, complete cds

5.68487e-16

50 Homo sapiens isolate HbA-Cmn087 beta globin (HBB)

gene, complete cds

5.68487e-16

51 Homo sapiens isolate HbA-Ghn117 beta globin (HBB)

gene, complete cds

5.68487e-16

52 Homo sapiens isolate HbA-Ivc04 beta globin (HBB)

gene, complete cds

5.68487e-16

53 Homo sapiens isolate HbA-Ivc16 beta globin (HBB)

gene, complete cds

5.68487e-16

54 Homo sapiens isolate HbA-G08 beta globin (HBB)

gene, complete cds

5.68487e-16

55 Homo sapiens isolate HbA-Dgn52 beta globin (HBB)

gene, complete cds

5.68487e-16
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56 Homo sapiens isolate HbA-Sen10 beta globin (HBB)

gene, complete cds

5.68487e-16

57 Homo sapiens isolate HbA-G25 beta globin (HBB)

gene, complete cds

5.68487e-16

58 Homo sapiens isolate HbA-Ivc11 beta globin (HBB)

gene, complete cds

5.68487e-16

59 Homo sapiens isolate HbA-Ghn009 beta globin (HBB)

gene, complete cds

5.68487e-16

60 Homo sapiens isolate HbA-Ghn017 beta globin (HBB)

gene, complete cds

5.68487e-16

61 Homo sapiens isolate HbA-Nov24 beta globin (HBB)

gene, complete cds

5.68487e-16

62 Homo sapiens isolate HbA-JK1033 beta globin (HBB)

gene, complete cds

5.68487e-16

63 Homo sapiens isolate HbA-Cmn097 beta globin (HBB)

gene, complete cds

5.68487e-16

64 Homo sapiens isolate HbA-Dgn67 beta globin (HBB)

gene, complete cds

5.68487e-16

65 Homo sapiens isolate HbA-Dgn06 beta globin (HBB)

gene, complete cds

5.68487e-16

66 Homo sapiens isolate HbA-Sen50 beta globin (HBB)

gene, complete cds

5.68487e-16

67 Homo sapiens isolate HbA-Cmr15 beta globin (HBB)

gene, complete cds &gt;gi|71727182|gb|DQ126281.1|

Homo sapiens isolate HbA-Gna27 beta globin (HBB)

gene, complete cds &gt;gi|71727184|gb|DQ126282.1|

Homo sapiens isolate HbA-S782 beta globin (HBB)

gene, complete cds

5.68487e-16
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68 Homo sapiens isolate HbA-Dgn83 beta globin (HBB)

gene, complete cds

5.68487e-16

69 Homo sapiens isolate HbA-Sen31 beta globin (HBB)

gene, complete cds

5.68487e-16

70 Homo sapiens isolate HbA-Ghn133 beta globin (HBB)

gene, complete cds

5.68487e-16

71 Homo sapiens isolate HbA-Ghn195 beta globin (HBB)

gene, complete cds

5.68487e-16

72 Homo sapiens isolate HbA-Dgn37 beta globin (HBB)

gene, complete cds &gt;gi|71727168|gb|DQ126274.1|

Homo sapiens isolate HbA-Ghn023 beta globin (HBB)

gene, complete cds &gt;gi|71727170|gb|DQ126275.1|

Homo sapiens isolate HbA-Ghn40 beta globin (HBB)

gene, complete cds

5.68487e-16

73 Homo sapiens isolate HbA-Sen42 beta globin (HBB)

gene, complete cds

5.68487e-16

74 Homo sapiens isolate HbA-Cmr13 beta globin (HBB)

gene, complete cds

5.68487e-16

75 Homo sapiens isolate HbA-Ivc05 beta globin (HBB)

gene, complete cds

5.68487e-16

76 Homo sapiens hemoglobin beta (HBB) gene, HBB-

Hinsdale allele, exon 3 and partial cds

5.68487e-16

77 Homo sapiens hemoglobin beta mRNA, complete cds 5.68487e-16

78 Homo sapiens hemoglobin beta chain (HBB) gene,

HBB-HB Camden allele, partial cds

5.68487e-16

79 Homo sapiens beta-globin beta thalassemia variant

(HBB) gene, complete sequence

6.92559e-15

80 Homo sapiens beta globin chain gene, complete cds 5.68487e-16
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81 Homo sapiens beta globin mutant (HBB) gene, com-

plete cds

5.68487e-16

82 Homo sapiens partial HBB gene for hemoglobin beta

chain, hyperunstable truncated variant, exon 3, isolate

0523762

5.68487e-16

83 Homo sapiens hemoglobin subunit beta (HBB), mRNA 5.68487e-16

84 Homo sapiens chromosome 11, clone CTD-2643I7, com-

plete sequence

5.68487e-16

85 Homo sapiens beta globin chain variant (HBB) gene,

HBB-O-Arab allele, complete cds

5.68487e-16

86 Homo sapiens chromosome 11, clone RP11-1205H24,

complete sequence

5.68487e-16

87 Human messenger RNA for beta-globin 5.68487e-16

88 Pithecia pithecia beta globin gene, complete cds 5.68487e-16

89 Pongo pygmaeus beta-globin gene, exon 3 and partial

cds

5.68487e-16

90 Homo sapiens beta-globin gene, complete cds 5.68487e-16

91 Homo sapiens beta-globin (HBB) gene, with a 1 bp

(g) insertion mutation FS21G at base 279 resulting in

beta-thalassemia, (J00179 bases 61971-63802)

5.68487e-16

92 Homo sapiens beta-globin (HBB) gene, with a 1 bp

(t) insertion mutation FS10C at base 246 resulting in

beta-thalassemia (J00179 bases 61971-63802)

5.68487e-16

93 Homo sapiens beta-globin (HBB) gene, with a to c

allele 28 bp 5&apos; to exon 1, (J00179 bases 61971-

63802)

5.68487e-16

94 Homo sapiens beta-globin (HBB) gene, with c to a

mutation 88 bp 5&apos; to exon 1, (J00179 bases

61971-63802)

5.68487e-16
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95 Homo sapiens beta-globin (HBB) gene, with c to t allele

90 bp 5&apos; exon 1, (J00179 bases 61971-63802)

5.68487e-16

96 Homo sapiens beta-globin (HBB) gene, with t to c mu-

tation L114P resulting in dominant beta-thalassemia

intermedia, (J00179 bases 61971-63802)

5.68487e-16

97 Homo sapiens beta-globin (HBB) gene, with a one bp

(c) deletion mutation FS45L at base 481, (J00179 bases

61971-63802)

5.68487e-16

98 Homo sapiens beta-globin (HBB) gene, with g to a

mutation W37X resulting in premature stop and beta-

thalassemia (J00179 bases 61971-63802)

5.68487e-16
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