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ABSTRACT

This dissertation aims to shed light on some of the key questions and lesser known
aspects of the mechanism of peptidylglycine alpha-hydroxylating monooxygenase
(PHM). PHM, a dicopper containing enzyme, comes under the category of the type
family of monooxygenases and participates in activation of the peptides and neuro
hormones by amidating their C-terminus. PHM catalyzes the first of the two-step
amidating reaction by production of a hydroxylated intermediate, which undergoes
dismutation to yield an amidated product.

Structurally PHM is made up of two domains, each of which houses a copper
center, separated by 11A solvent-filled cleft. The copper centers, CuH and CuM, serve
different and distinct functions in the course of the catalytic cycle. The CuM-site serves
as the oxygen binding and catalytic center whereas; the CuH-site serves as electron
storing and transferring site. Chapter 3 in the thesis is a study of characterization of
PHM mutants which possess only one of the copper sites. The H242A mutant (CuH-site
only) and H107AH108A (CuM-site only) were produced, purified and reconstituted in
the lab and used for studying the copper sites individually in order to analyze their roles
in detail. The EXAFS and EPR studies on the Cu(ll) forms of the copper sites were

consistent with the previously determined ligand set of Cu(ll)His30 and Cu(ll)His,0, for
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CuH-site and CuM-site respectively. The Cu(l) form of the copper sites unearthed
interesting changes. While the H107AH108A (CuM-site only) mutant corroborated with
the previously reported results of coordinating two histidines and a methionine at all
pHs, the CuH-site was two coordinate at neutral pH and on lowering the pH was able to
coordinate to a methionine S ligand and become three coordinate. FTIR studies on the
single-site mutants were able to confirm that the 2092 cm™ could be assigned with
confidence to the CuM-CO adduct. Hetero-bimetallic PHM was also created using silver
and copper. It was established by EXAFS studies on the HI07AH108A and M1091 mutant
that the silver bound only to the M-site, allowing a new opportunity to study the CuH-
site without disruption of the CuM site.

Chapter 4 deals with the interesting aspect of the long distance electron transfer
(ET) from CuH-site to CuM-site and the key players which facilitate this process. Two
electrons are transferred in the course of the catalytic cycle. The formation of the CuM-
superoxo intermediate is preceded by transfer of the first electron (reductive phase)
whereas the second electron transfer follows the formation of the CuM-OOH
intermediate (catalytic phase). Kinetic studies using stopped-flow and a novel
chromophoric agent, N,N-dimethyl amino-p-phenylenediamine. (DMPD), were
employed on the WT PHM and its various mutants (H107A, H108A and H172A). H108

was found to play a vital role in the reductive phase electron transfer pathway. The
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results strongly indicate that the reductive phase and catalytic phase ET pathways are
different and suggest a bifurcated ET pathway in PHM. It is proposed that the reductive
phase ET is made up of H108, water molecule and substrate while the H172 and Y79 form
the catalytic phase ET pathway.

The final chapter of the thesis consists of the various preliminary studies done in a bid
to trap the CuM-oxygen intermediate. Stopped-flow studies were performed with the WT
PHM at 4°C in the presence of high concentrations of oxygen. Azide, a structural analog of
oxygen, was used as the reporter agent. Different experimental conditions were tested,
including use of the mechanism based inhibitor of PHM, 4-phenyl-3-butanoic acid (PBA). An
absorbing species at 350 nm was consistently detected. Various control reactions
performed pointed to the absorbing species being a PHM oxygen adduct. Previous studies
on copper-oxygen model complexes support the notion that the absorbing species at 350
nm could be a CuM-peroxo complex. However, further studies are required in order to

study and characterize the PHM-oxygen complex.



CHAPTER 1. INTRODUCTION

Biologically active peptides rival hormones for their role as signaling agents in the body,
and as neurotransmitters to nearby cells [1]. Many bioactive peptides are synthesized
from their inactive precursor forms by a set of posttranslational modifications. Among
the many types of posttranslational modifications, amidation is considered to be the
most important [2]. The amidation reaction is catalyzed by peptidylglycine a-amidating
monooxygenase (PAM; EC 1.14.17.3), a bifunctional enzyme. The following section
describes in detail, the importance of amidation, and the early discoveries which helped
in characterizing PAM’s vital role.

1.1 Discovery of PAM and Early Findings
As already mentioned, amidation is an important post translational modification
required by many proteins to attain full biological activity [1][2][3][4]. Amidated
peptides regulate growth, appetite, digestion, bone mass, blood volume, stress
response, pain, circadian rhythms and many other endocrine functions
[5][6][71[8][9][10]. Although they were discovered in the early fifties [11], their
significance was only unearthed two decades later [12]. It has been speculated that the
key role of amidation is to prevent ionization of the COOH terminus of the peptide,

rendering the peptide hydrophobic, which in turn results in tighter binding of the



peptide to its receptor [13]. Amidation also increases the half-life of the peptides by
making them resistant to ubiquitination [14]. The process of amidation takes place in
the presence of copper [15], oxygen and a strong reductant, which is usually ascorbate
[16]. Once the importance of this post translational modification was established,
amidating enzymes were purified from many sources such as bovine neurointermediate
pituitary, frog skin, rat medullary thyroid carcinoma and brain [17][18][19][20][21]. The
properties of the purified enzyme, catalyzing amidation, resembled that of a
monooxygenase, this led to categorization of the amidating enzyme as petidylglycine a-
amidating monooxygenase (PAM) (EC 1.14.17.3) [17]. PAM was capable of amidating
peptides possessing neutral amino acids at the C-terminus, but it acted preferentially on
peptides which had either glycine or alanine at the C-terminus [22][23][24]. It was
discovered by Merkler et al. that the ratio of the product (amidated peptide) and the
ascorbate consumed was 1:1 [25]. The amide moiety was found to be derived from the
terminal glycine of the peptide [12].

Amidation was indicated to be a two-step process when a reactionary
intermediate was trapped by Bradbury et al [26]. The reaction took place in two steps.
The first step, which is stereospecific in nature [27], leads to the formation of a
hydroxylated intermediate. This occurs due to the addition of the hydroxyl group on the
a-carbon of the COOH of the terminal glycine [28], with the oxygen in hydroxylated
group derived from O, [25]. This hydroxylated intermediate undergoes dealkylation to

yield an a-amidated peptide and glyoxalate as a byproduct [29], as seen in Figure 1-1
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Figure 1-1 Schematic representation of the mechanism of amidation.

Initially the hydroxylated intermediate was thought to be short-lived but subsequent
experiments were successful in trapping this intermediate, dispelling its transient status
[29][30].

In 1990, a hydroxy glycine amidating alkylase (HGAD) was isolated by Katapodis
et al., which was capable of catalyzing the conversion of a-hydroxybenzoylglycine to
benzamide [20]. When HGAD and PAM were purified separately, each fraction exhibited
low amidation activity. However, combining these two protein fractions led to the
restoration of full PAM activity. This result, along with the presence of a stable
hydroxyglycine intermediate, indicated participation of a second protein factor in the
enzymatic pathway.

Eipper et al. were able to demonstrate the conversion of a-N-acetyl-Tyr-Val-Gly
to its amidated form by addition of a protein factor present in the secretory granules of

the anterior pituitary of rat. They called this factor stimulator of PAM or SPAM [31]. A



strong correlation between the high PAM activity and high levels of SPAM was observed
[32]. The SPAM enzyme is now referred to as PAL (Peptidyl Amidating Lyase). It was
proposed that the monooxygenase domain and the dealkylating domain were produced
in form of a single enzyme which underwent tissue specific endoproteolytic cleavage to
form two separate soluble enzymes [20]. This theory was further supported by the
observation that the dealkylating enzyme was able to amidate a hydroxylated peptide,
produced by the moonooxygenase enzyme [20][30]. The first enzyme was named
peptidylglycine a-hydroxylating monooxygenase (PHM) after the substrate
hydroxylation reaction catalyzed by it, while the second enzyme is named
peptidylhydroxyglycine a-amidating lyase (PAL) due to its ability to cleave the N-C
peptide bond.

In bovine neurointermediate pituitary, these enzymes are generated by the
endoproteolytic cleavage of a 108 kDa precursor [33]. The bifunctional enzyme is also
found as a single, 75 kDa protein in rat medullary thyroid carcinoma and adult rat atrium
cells, suggesting that the need for one enzyme with two functions or two separate
enzymes may be tissue specific [34][25]. Additionally, no bifunctional PAM enzyme has
been identified in D. melanogaster or in sea anemone, although separate genes
encoding PHM and PAL have been found [35][36]. This suggested that the two proteins
were originally separate enzymes which became joint entities with evolution. The next

two sections describe the function and structure of PAL and PHM, respectively.



1.1.1 PAL

1.1.1.1 Reaction Mechanism
Amidation of the hydroxylated intermediate occurs via the N-C bond cleavage of the
terminal glycine residue by the PAL (EC 4.3.2.5). The optimum pH for PAL with substrate
a-acetyl-tyr-val-gly a hydroxyglycine was around 5, and the K., about 38 uM [37].The
activity of PAL was inhibited by the metal chelator EDTA, suggesting involvement of a
metal [29][37][[39]. Reconstituting the apo protein with zinc metal restored some of its
activity, which indicated that PAL is a zinc dependent metalloenzyme [40].

It is now known that zinc binds in the active site of PAL by three histidines (H585,
H690 and H786) and an acetate ion bound as a monodentate ligand [40][41]. Since its
removal causes total elimination of the lyase activity of PAL, it was proposed that Zn(ll)
might play a catalytic role or a structural role in PAL activity. However, since addition of
zinc is only able to restore some of the activity, it might play an important structural role

as well [40].

1.1.1.2 PAL Structure

The crystal structure of the catalytic core of PAL folds as a six-bladed B propeller. The
blades are positioned around a central cavity. Each blade consists of four antiparallel B-
strands, with the first strand at the center of the propeller and the last at the edge
(Figure 1-2 a). The “cup” of the B propeller encompasses the active site and is made by

the loops connecting strands 4 of one blade to strand 1 of the next blade and loops



connecting strands 2 and 3 of each blade.

Figure 1-2 Crystal structure of PALcc. Reprinted with permission from Chufdn et al.
(Structure, 2009, 17(7)). Copyright (2009) Elsevier Ltd. PDB identifier: 3FVZ, resolution:
2.35A

A) The PAL enzyme folds as a six-bladed propeller. The Zn(ll) and the Ca(ll) ions are
indicated as blue, and green balls, respectively.

B) The zinc(ll) ion is in close proximity to the essential tyrosine, Y654, and a key arginine,
R706, and is coordinated in a very distorted tetrahedral polyhedron liganded by three
histidines and one acetate bound in a monodentate fashion. The gray mesh represents
the 2F,-F; electron density contoured at 10.

The first blade provides a tryptophan (Trp538) that not only creates a hydrophobic
pocket for the substrate, but may also provide the surface for interaction with the PHM
domain. The central cavity houses a calcium ion required for structural integrity and a
zinc ion for catalytic activity. The PAL substrate binds close to the zinc, which is
coordinated by three histidines, a conserved tyrosine (Tyr654) and arginine (Arg706)
(Figure 1-2 b). The disulfide linkages play an important role in the structural integrity of

PAL. The N- and the C-termini are positioned close to each other with the C-terminus

tethered to the membrane.



1.1.2 PHM

1.1.2.1 Reaction Mechanism
The first step of amidation begins with the hydroxylation of the a-carbon of the C-
terminal glycine. The enzyme catalyzing this step is PHM (EC 1.4.17.3), containing two
coppers as cofactors. The hydroxyl group was found to be derived from molecular
oxygen by a study which involved isotopic labelling of the molecular oxygen by o)
[42][38][43]. The catalytic cycle starts with the binding of the two molecules of
ascorbate, which reduces the copper centers to the cuprous state and releases two
molecules of semidehydroascorbate as a byproduct [38]. This is followed by the
equilibrium ordered binding of the peptidylglycine substrate and oxygen [44]. Eventually,
a CuO, " (copper-superoxo intermediate) is proposed to be formed [57][46][47][48]. This
superoxo intermediate is speculated to be responsible for abstraction of the H-atom by
a hydrogen tunneling mechanism from the a-C position on the peptidylglycine substrate,
forming a copper-peroxo intermediate (Cu-O-OH) and a substrate radical [49][50].
Hydroxylation is believed to be accomplished by peroxide O-O bond cleavage and
radical rebound to the substrate radical, which also includes the transfer of a second
electron from one of the copper center to the other [49][50]. The rate limiting step for
the PHM-catalyzed hydroxylation of the peptide precursors was found to be the
cleavage of the aC-H bond by kinetic isotopic studies [51].

The enzyme bound copper plays a central role in the PHM chemistry. It is not

only responsible for activation of oxygen but also for the formation of the hydroxylated



intermediate [39]. The enzyme works at its maximum activity only when both the
coppers are bound to the enzyme [52]. PHM shares 30% homology as well as an
identical active site structure with dopamineB-monooxygenase (DBM) [53][54][55]. Both
the enzymes possess type 2 copper centers which undergo redox cycling during the
course of one catalytic cycle, with the concomitant production of product [56][38][57].
Binding studies with carbon monoxide CO, an O, analog, showed that the CO bound only
to one of the copper of the two, providing evidence that the two coppers were
inequivalent [55]. Based on the results by various studies, an activity model was
developed for DBM in which the two inequivalent centers served different functions.
One of the copper centers, termed CuM, was involved in the oxygen binding and
catalysis, while the second, CuH, was associated with electron transfer. This model was

also found to be true for PHM [58][59].

1.1.2.2 PHM Structure

Structurally, the WT PHM is a prolate ellipsoid (55 A by 45 A by 25 A) and is composed of
two nine-stranded B-sandwich domains. Each domain is 150 residues in length and binds
a copper atom [35](Figure 1-3). The two domains possess similar topologies with each
domain composed of a common eight-stranded anti parallel motif. The interior of the
domains is composed of hydrophobic residues and lacks any charged residues. The two
domains are closely associated through a hydrophobic surface interface that buries

500 AZ of surface area from each domain. The rest of the interface consists of an inter-

domain space (~10 A), fully accessible to solvent.



Figure 1-3 A representation of the PHMcc fold. Adapted with permission from Prigge et
al. (Science, 1997, 278 (5341)). Copyright (1997) The American Association for the
Advancement of Science. PDB identifier:1PHM, resolution: 1.90 A.

The backbone is shown in grey with the copper atoms in green spheres. The strands are
numbered arrows and the cylinder is a 3, helix. The side chains of the ligands to the two
copper atoms are colored by atom type (carbon is gray, nitrogen is blue and sulfur is
yellow)

Domain | is a B sandwich, composed of two anti-parallel sheets, one containing
four strands and the other containing five strands. The three disulfide bridges (shown in
yellow in Figure 1-3 ) help in anchoring the loops to the domain without linking the two
B sheets together. Domain | binds one copper, CuH, at its active site. The CuH is ligated
to three histidines (H107, H108 and H172). H107 and H108 are located at the beginning

of the strand 5, whereas the H172 is at the end of strand 9 [55]. The geometry of the

CuH site can be described as square pyramidal [63].
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Domain Il consists of one four-stranded antiparallel B sheet and one five-
stranded mixed B sheet. The two disulfide bridges connect strands from one sheet to
the strands of another sheet. The domain Il also contains two small anti-parallel strands
(14, 18 and 12, 20) and binds the second catalytic copper, CuM, which is ligated to two
histidines (H242& H244) and a methionine (M314) (Figure 1-4). The histidines are found
at the end of strand 14 while the methionine is found at the beginning of strand 21. The
coordination of the CuM site is tetrahedral [61]. All of the six copper ligands are
conserved among PHM and the DBM sequences and mutagenesis of any of the ligands
leads to loss of the activity of PHM [62][63][64]. The copper centers are 11 A apart from
each other.

It is important to note that although the CuH is the electron transfer site and
CuM is the oxygen binding site [62][55], structurally the CuH site resembles the oxygen
binding site and the CuM site is most similar to the electron transfer site of other copper
containing proteins [65]. These distinctive features highlight the unusual case of PHM.
EXAFS data have shown large changes in coordination on reduction of the copper
centers. The CuH changes from 4 or 5-coordination site of tetragonal geometry to a 2-
coordinate one, with one of the histidines becoming undetectable by EXAFS. The CuM
changes from a 4 or 5-coordinate trigonal site to a trigonal or tetrahedral one with an

estimated ~0.4 A movement of the M314 ligand [66][67][68].
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Figure 1-4 Structure of CuM and CuH sites of PHMcc. Reprinted with permission from
Chufdn et al. (J. Am. Chem. Soc, 2010, 132(44))0. Copyright (2010) American Chemical
Society. PDB identifier:1PHM, resolution:1.90 A.

An important aspect of the PHM structural chemistry was determining how the
substrate bound near the CuM-site. Amzel et al. reported the three-dimensional
structure of oxidized PHM catalytic core with the substrate N-a-acetyl-3,5-
diiodotyrosine (K, = 3 uM) [35]. Several conserved active site residues (R240, Y318, and
N316) and one water molecule form hydrogen bonds with the peptide backbone of the
bound substrate, anchoring it in the inter-domain cleft (Figure 1-5). It was found that

the binding of the substrate did not perturb the geometry or decrease the distance

between the copper sites. However, N316 rotates (4,, = 30°) and forms a new
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hydrogen bond with the peptide backbone after breaking a hydrogen bond with Y318
[35].

The binding-site is tailored to bind the peptide substrates. Several conserved
amino acids of the active site, R240, Y318, N316 and a water molecule form hydrogen
bonds with the backbone of the peptide substrate and anchor it in the inter-domain
cleft (Figure 1-5) [35]. Besides these, several other residues, including M314 [55], were

found to have extensive contact with the substrate.
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Figure 1-5 PHMcc-substrate complex. Adapted with permission from Prigge et al.
(Science, 1997, 278 (5341)). Copyright (1997) The American Association for the
Advancement of Science. PDB:1PHM, resolution:1.90 A.

(A) Representation of N-a-acetyl-3,5-diiodotyrosylglycine bound in PHMcc active site.
PHMicc backbone is shown in grey, the coppers represented by green spheres, and other
atoms colored by atom type. The electron density of a difference map contoured at 70 is
shown as red mesh, indicating the positions of the electron-dense iodine atoms.

(B) Contact map depicting residues that interact with bound peptide. The H-bond
interactions are indicated by dotted lines.
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1.1.2.3 Pre-Catalytic Enzyme Complex

The study of the pre-catalytic complex was undertaken to shed light on the mechanism
of hydroxylation. This required determining the structure of PHM in presence of
substrate, ascorbate and molecular oxygen. This complex was stabilized by using N-
acetyl-diiodo-tyrosyl-D-threonine (IYT) as a substrate. Calculations indicated that due to
lower stability of the slow substrate radical, the hydrogen abstraction step is
considerably slowed down, making it possible to trap the pre-catalytic enzyme complex
[69].

As seen in Figure 1-6 and Figure 1-7 the O, molecule binds to the CuM with an
end-on n' geometry in the pre-catalytic complex. The Cu-O-O bond angle is 110° and the
0-0 distance was refined to a value of 1.23 A (Figure 1-7). The hydrogen abstraction has
been proposed to take place once the pre catalytic complex has formed. The structure
suggests that the thermal rotation of the bound O, by about 110° could place itin
proximity of the glycine pro-S hydrogen. This would facilitate both the electron transfer

and hydrogen abstraction step.
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Figure 1-6 The pre-catalytic complex of PHM with bound peptide and dioxygen. Adapted
with permission from Prigge et al. (Science, 2004, 304 (5672)). Copyright (2004) The
American Association for the Advancement of Science. PDB identifier:1SDW,
resolution:1.85 A.

The 2F,-F. electron density (contoured at 1.50) is shown for dioxygen and the IYT peptide.
Substrate and protein atoms are colored by atom type. The water molecule is
represented by a red sphere and molecular oxygen by a red rod. Dotted lines indicate
hydrogen bonds and bonds to the copper atoms (green).

Abstracted Hydrogen

Figure 1-7 A structure-based model of substrate dioxygen interaction. Adapted with
permission from Prigge et al. (Science, 2004, 304 (5672)). Copyright (2004) The American
Association for the Advancement of Science. PDB identifier:1SDW, resolution:1.85 A.

The molecular oxygen is represented by a red rod. Dotted lines indicate hydrogen bonds
and bonds to the copper atoms (green).
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Two of the most important, but least understood, aspects of PHM chemistry are
the nature of the copper-oxygen intermediate and the long-distance electron transfer
(ET) from CuH to the CuM-site. The next section provides a background and summary of
developments in the field of copper-oxygen complexes.

1.1.1 Copper-Oxygen Complexes
The study of the copper complexes with activated oxygen is an important field not only
for biological reactions catalyzed by copper enzymes, but also for reactions in synthetic
chemistry and catalytic oxidation chemistry. Two basic copper sites activate oxygen for
insertion into the substrate: mononuclear and dinuclear [70] and four principal binding
modes are established for the interaction of copper complexes with dioxygen [71]. The
mononuclear Cu(l) complex with oxygen forms adducts such as superoxide and peroxide

which are either n!/end-on or n?/side-on complex as seen in Figure 1-8.

End-on, n! Side-on, n?

+ L0+
Superoxo Cu—O\ Cu_ |
o -0

— 2+ L0 ]2+
Peroxo Cu 0\ cu’ 1 cu
O—-—Cu o By

Figure 1-8 Copper superoxo and peroxo complexes.

The dinuclear copper oxygen complexes bind the oxygen between the two copper

atoms. This has the benefit of avoiding formation of the free superoxide radical. The
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binding is either end-on/p-1, 2 peroxo dicopper (Il) complex or side-on/u-n?: n? peroxo
dicopper(ll) complex [72].

Figure 1-9 shows the possible reaction pathways for generating the series of the
copper-active complexes. The S and P in CuS and CuP stand for the superoxo and peroxo
complex. The superscripts in CuSt and CuS® stand for oxygen bound in an end-on and
side-on fashions, respectively. In many cases the mononuclear copper-dioxygen 