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Abstract 

Vision Based Bayesian State Estimation of Unmanned Aerial Vehicles 

- A Preliminary Study 

Pradeep Papanna Nanjappa 

M.S., Oregon Health & Science University 

June 2003 

Thesis Advisor: Dr. Xubo Song. 

The goal of this study was to arrive at a method to estimate the physical state of a 

scaled helicopter model using images taken from a stationary camera on the ground. The 

state would consist of the [XYZ] coordinates and orientation of the helicopter in space. 

The end was achieved by using the Direct Linear Transform to calibrate the given camera 

and obtain the transformation matrices and camera calibration parameters. By using these 

results, the ideal projection is calculated. And by using the methods below, the actual 

projection was obtained. The difference between these projections was modeled as a 

Gaussian distribution and plugged Into a Bayesian framework to estimate the actual state 

of the helicopter. The different schemes tried out for locating the actual projections of the 

model as mentioned below gave a range of possibilities and results. Color coded markers 

placed on the helicopter at strategic locations was one of the schemes. Pictures were 

taken of the thus prepared helicopter and the color information in the image was used to 

automatically recognize the markers as features on the object. These color images were 

processed by suitably thresholding the RGB values which make up the color information 

of the individual pixels to locate the positions of the markers in the images. Another 

scheme that was used was the application of the Harris Comer Detector to detect the 

viii 



positions of a completely different set of markers. The third method tried out to Iocate the 

positions of the markers in the image was Template Matching. All three methods are for 

locating point features in the images. Although with a lesser degree of accuracy, these 

methods allow us the flexibility of estimating the ground truth of the helicopter visually 

without actually using any onboard instruments like the gyroscope or a GPS receiver to 

do so. 



Chapter 1

Introduction

1.1 Introduction

A Bayesian approach to integrating estimation, image processing and control is attempted.

The controller requires an estimate of the state of the system Xk' corresponding to the

position, attitude, velocities as well as any physical model parameters. The basic idea is

to propagate an estimate of the density of the state given a sequence of images

10k = {Io,ll' 12, ,lk },

P(Xk 11/) = P(Xk I//-1) . P(lk IXk)
P(lk 110k-l)

where

P(Xk I 10k-!) = fp(Xk IXk-I) .P(Xk-l , 10k-I )dx k-I

and the normalizing constant P(lk 110k-I) is given by,

P(lk I10k-!) = fP(Xk I10k-!). P(lk Ixk)dxk

P(Xk 110k) - Probability of the state, given image.

P(Xk 110k-I) - Probability of the state, given previous image.

P(lk IXk) - Probability of the image, given the state.

P(lk 110k-I) - Probability of the image, given the previous image.

This recursion specifies the current state density as a function of the previous density and

the most recent (observed) data. The observation density P(lk IXk) represents the 'image

1
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likelihood' and describes the probability of observing the image given the current state.

This relates to the geometry of the vehicle projected onto the image plane. The

probability of the state given the image is what is achieved in this work.

This is done in the following sections.

1. Preparing the model with suitable markers for detection.

2. Coding the Direct Linear Transfonn in Matlab.

3. Calibrating the camera used in the experiment.

4. Processing the images to locate the markers.

The following equation gives the observation density modeled as a Gaussian distribution.

P(I Ix) =exp( - ~2 ~[p(i) - P '(i)Y )
Where,

p ,(i) is the detected image coordinate.

P(i) is the actual image coordinate.

So P(l Ix) will be the probabilistic deviation between the following-

1. Ideal Observation given the state.

2. Actual Observation.

The procedure of calibrating the camera, deriving the transfonnation matrices and

applying them to get the projection of the point features will give the Ideal Observation.

And the process of detecting the markers will give the Actual Observation.

All the coding for this work was done using Matlab. Thus only the development of the

schemes was in focus. The real time implementation of these procedures is an area to be

explored.
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1.2 Background

The material presented in this section is the brief summary of the study undertaken to

arrive at the procedures covered in the following sections.

When first the outline of the problem was presented by my advisor, it seemed to be a very

interesting project to work on. Starting to work on it, one of the first tasks was to cut

down the problem into as many subsections as possible and deal with the subsections

individually. It was decided to first break up the task into two major portions. The first

work needed to be done was to calibrate the camera which was available for the purpose,

and the next task was to somehow get an estimate of the observed position of the flying

helicopter. To do this it was necessary to arrive at some scheme to represent the contours

of the helicopter in a mathematical way so as to facilitate obtaining the ground truth. It

was clear that if some prominent contours of the helicopter like, for example, the cockpit

outline were discemable enough, then such surface contours could be represented

mathematically using piecewise cubic polynomials or B-Splines or some active contour

models like Snakes. And once the contours were parameterized in this way, then to obtain

the respective projections on any plane in 3D space was not a difficult problem. The

projected polynomial curves were meant to be matched with the new polynomial curves

obtained from the latest image frame and to find a match between them.

These ideas were investigated and a lot of practical limitations were encountered. The

task of preparing the piecewise polynomials for representation of the complex contours of

the helicopter cockpit and other surface curves and to make the process automated was

beyond the scope of this project time frame. The computational complexities would not

have permitted the procedure to be anywhere near 'Real-Time' capable. Most of the time,

the helicopter was flown without the cockpit casing without which there was practically

no regular surface contour which could be represented tractably by mathematical means.
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So it was necessary to adopt a different approach to recognize the helicopter in any given

image. Methods in literature (Gatrell, L., Hoff, W. and Sklair, C. (1991), Cho, Y., Lee,

W.J. and Neumann, U. (1998), Sklair, c., Hoff, W. and Gatrell, L. (1991), Leonid

Naimark & Eric Foxlin (2002)) use fiducial markers for similar purposes. This idea was

adapted to the present problem.
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1.3 Preparation of the model

The scaled model of the helicopter was prepared to enable the images to be processed to

obtain the location of certain points on the helicopter. These strategic points, for reasons

pertaining to the DLT method [Shapiro, R. (1978)], were chosen to be non-collinear and

so as to form a volume on the model. Six such control points were marked using Red

colored tape. A color picture is shown below.

Figure 1.3.1: Helicopter prepared with the control points seen in red.

A second set of markers which does not use the color information was prepared and

positioned on the helicopter as shown in the figure.
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Figure 1.3.2: Model with a different set of markers for Comer Detection

Also shown next is the scale drawing which was made of the helicopter to enable the

correct measurement of the coordinates of the markers on the helicopter.

Po;013
......

P~ot4 Poio,"

<,

+- Po;ot2

~
! ~

=
Po;011

Figure!.3.3: Scale drawing of the Helicopter Skeleton (side view)



This scale drawing is used to obtain the exact physical coordinates of any point on the 

model. Now we obtain the XYZ coordinates of each of the control points and note them 

for the purpose of calibration. 

The origin is chosen to be the point of the bend in the landing strut of the helicopter. The 

six points chosen on the body are shown in the figure above. The XYZ coordinates of all 

points are tabulated below. 

X cms 
I I I 

Y cms 

Origin 
I I I 

Z cms 

I I I 

0 

Point 1 

Point 2 

Point 3 

Point 4 

I I I 1 I 

Table 1.3.1 : XYZ coordinates of the six Control Points on the model 

2.5 5 

Point 5 

Point 6 

0 

0.5 

16 

-4 

23 

0 

8 1 

8 3 

10 

16 

18.5 

6.5 

8 

8.5 

23 

10 

7.5 

7.5 



Chapter 2 

Camera Calibration 

Camera Calibration [R. Y. Tsai (1987), T.A. Clarke and J.G. Fryer (1998), 2. Zhang 

(2000), Z. Zhang (1999) ] in a broad sense is the procedure carried out to give us the 

relationships between the real world coordinate system and the camera coordinate system. 

In other words, camera calibration enables us to obtain the focal length, image aspect 

ratios and their scaling ratios, i.e., how many pixels is a definite distance measure in the 

object space converted to in the image plane, and also it enables us to understand how the 

camera is aligned, in terms of tilt and distance, with respect to the object world. The 

Direct Linear Transform discussed below is a method which carries out the camera 

calibration. The DLT works by defining a world coordinate reference frame and a camera 

coordinate reference frame and distills the implicit relationships between various intrinsic 

and extrinsic properties in the framework into eleven DLT parameters. As explained later, 

six known points are chosen on the model. These six points' XYZ coordinates are 

measured and fixed. Then the DLT is applied using these six known points to get the 

eleven DLT parameters. These eleven DLT parameters when solved, give the intrinsic 

camera parameters like the focal length, image scaling factors and location of the 

principal point. The eleven DLT parameters are also solved to obtain extrinsic camera 

parameters like the transformation matrices. 



2.1 Direct Linear Transform 

Figure 2.1.1 : Line drawing showing the DLT reference frames 

Two reference frames are defined. Object Space Reference Frame (XYZ-system) and the 

Image Plane Reference Frame (IJV-system). The camera maps a point 0 in the object 

space to image I in the image plane. [x,y,z] is the object space coordinates of point 0. 

[u,v] is the image plane coordinates of the image I. Assuming another axis W in the 

image plane perpendicular to the plane, [u,v,w] is the image space reference frame. N is 

the projection center. In the object space reference frame, the coordinates of N will be 

assumed to be [ x, , yo , z,  1. 

A vector 'A' drawn from N to 0 will be [ x  - x,, y - yo,  z - z,]. The 3-d position of 

point I in the image space reference frame will be [u,v,O] . P is the principal point. The 

line drawn from the projection center N to the image plane parallel to the w-axis and 

perpendicular to the image plane is called the principal axis. The principal point is the 

intersection of the principal axis with the image plane. The principal distance d is the 

distance between points P&N. 



If the image plane coordinates of the principal point are [uo,vo,O] , the position of point N 

in the image space reference frame becomes [uo,vo,d] . A vector 'B' drawn from point N 

to I is [u -uo,v -vo,-dl. Since points 0, I & N are collinear, vectors A & B form a 

single straight line which is equivalent to the vector expression, 

where c is a scaling factor. 

A & B are originally described in the object space reference frame and Image space 

reference frame, respectively. In order to directly relate the coordinates, it is necessary to 

describe them in a common reference frame which is chosen to be the image space 

reference frame. 

To do this, we assume a transformation matrix consisting of the euclidean angles which is 

where - 

cosy 0 sin y 

-siny 0 cosy 



cos vcos I9 -cos @sin 0 + sin @sin lycos 0 sin @sin 0 + cos @sin vcos 0 

cos vsin 0 cos 4cos0 + sin @sin lysin 0 -sin @cos8 + cos@sin vsin I9 - (2) 
-sin ly sin @cos ly cos ~ C O S  ly I 

the above matrix T can be represented as 

Applying this transformation to the A matrix in (I), 



from (4), we obtain 

By substituting ( 5 )  for c in (4), we get 

u,  v, uo & vo are the image plane coordinates in actual units. The camera digitization 

system uses different length units. So to accommodate this, 

where [Au ,Av 1 are the unit conversion factors for the u and v axes. 

rearranging for u, v & x, y, z we get 



d d if d = - , d = - and D = -(xor,, + yo',, + z0r,,) , then the coefficients L, -4,  are 
av " a, 

given as - 



The above coefficients are called the DLT coefficients. DLT stands for Direct Linear 

Transform. 

Rearranging (S), we obtain - 

where 

R = ~ ~ + & ~ y + ~ , z + l  

(9) can be written as - 



This is for one control point on the object. To solve for the coefficients Z, - I.,, , we have 

to have an over determined system. So we expand (I  1) to include more control points. 

Expanding (1 1 )  for n control points - 



(12) is basically in the form of - 

This equation can be solved in many different ways to obtain the DLT coefficients 

4 -41. 



2.2 Transformation Matrix & Camera Parameters 

From the 11 DLT coefficients, 

Similarly, again from the 11 DLT coefficients, 



Where, 

uo & vo are the positions of the Principal Point. 

du & dv are the Focal lengths. 

T is the Transformation Matrix. 



2.3 Reconstruction 

As a means of verification of the DLT method, it is possible to reconstruct the locations 

of the control points in space. i.e., their XYZ coordinates. The following procedure does 

that. The attached Matlab code in the appendix, when executed, shows that this method 

works to a fairly good accuracy. 

Rearranging (8) for x, y, z, we obtain, 

(15) is equivalent to the matrix expression 

Expanding (16) for m camera positions: 



where R(i) = T (i) X + L(i) Y + L(i) z + 1"'-'9 10 11

(17) is basically in the form of -

A.x =B - (18)

x =A-IB - (19)

This equation can be solved in many different ways to obtain the (x, y, z) coordinates.

20



Chapter 3

Image Processing

The following image processing techniques are investigated here, Comer Detection [H.

Asada and M. Brady. (1986)], Template matching by cross correlation and Color

Thresholding. The goal of these methods is to facilitate the detection of point features in a

given image of the helicopter. By detecting these point features, it is possible for us to

obtain the Actual Observation which is required in the Bayesian estimator discussed

earlier.

3.1 Harris Corner Detector

The Harris Comer Detector [J. Harris and M. Stephens. (1988)] works as follows.

Consider the following matrix

M=
( ~~)2

(~~)( ~~ J

( ~~) ( ~~ J

(~~J

- (1)

where I (x, y) is the grey level intensity of the image. If at a certain point the two eigen

values of the matrix M are large, then a small motion in any direction will cause an

important change of gray level. This indicates that the point is a comer. The comer

response function is given by:

C =det(M) - k(traceM)2 - (2)

where k is a parameter set to 0.04 as suggested by Harris. Comers are defined as the local

maxima of the comemess function. To avoid the comers due to image noise, the images

are smoothed with a Gaussian filter. The smoothing is done on the images containing the

squared derivatives rather than the input images.

21
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The derivatives of the images are obtained using operators such as the Sobel operator or

the Prewitt operator shown below.

r

-l

SobelOperator- -2

l-l

0 1

]

0 2

0 1

0 1

]

0 1

0 1r

-l

PrewittOperator- -1
-1

The comer extracted image usually has far more comers then necessary for our use. So it

is necessary to suitably threshold the C value to obtain the comers we need. The results

are shown in the figures below.

comers detected

50

100

150

450

100 200 300 400 500 600

Figure 3.1.1: Harris Comer Detector -Red crosses show the locations of detected comers.
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3.1.1 Discussion

This method has the advantages that it is simple to implement and it is robust with respect

to the variations in the orientation of the helicopter. It is possible to detect the markers

regardless of which direction the model is aligned. The disadvantages being that it is not

robust with respect to noise. False corners can easily and incorrectly be detected in the

presence of noise in the image. And also it is essential that the lighting and brightness of

the image be maintained optimally and constantly in all the frames of the video stream.

Lighting affects the cornerness strength detected by the Harris detector. The contrast for

the markers is necessary to be maintained.
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3.2 Template Matching

COlTelationcan also be used to locate features within an image; in this context cOlTelation

is called template matching. A separate image of the pattern of the marker is prepared or

cropped from the input image. These two images are then cross-colTelated to obtain peaks

at the locations where the markers are located. This method is also fairly effective as

shown in the images below. When the helicopter changes its orientation, the template has

to be appropriately transformed with the affine transformation for images. Thus the affine

transformed template can be rotated by the angles in the allowable range and matched.

Figure 3.2.1: Original Image for Template Matching

I::J
Figure 3.2.2: Enlarged image of the marker used for cross-colTelation.
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Figure 3.2.3: Cross-correlated image

Markers Detected

¥
"""~,,. ,J:

Figure 3.2.4: Template Matching-Red crosses show the locations of the markers detected.
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3.2.1 Discussion

Cross-correlation is one of the most intuitive approaches one can think of. The advantage

of this method is the simplicity of implementation. The drawback with this scheme is that

it can become computationally intensive when we have to match all the spatially

transformed images of the marker with the given image. All reasonable possibilities have

to be tried before arriving at a suitable match. This process can be made faster by

estimating the next state of the model and constraining the possibilities accordingly. The

following spatial transforms can be applied to the marker image to make it possible for

cross correlation with the helicopter image when it is oriented in different directions.

1. Image rotation.

2. Affine transform for images.

Image rotation by the desired angle is achieved by applying the rotation transform to each

of the pixels in the image. The image rotation transform in 2-D is

r

cose sine 0

]

-sine cose 0

0 0 1

where e is the angle of rotation desired.

Figure 3.2.1.1: Rotated image of the marker.

Affine transformation is achieved by sequentially applying rotation, translation, and shear

on images to obtain the objective.

Figure 3.2.1.2: Affine transformed image of the marker.
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3.3 Color Thresholding

The idea here is to use the color coding and representation information in the image to

achieve our end of locating the markers in the image. Each pixel in a color image is

associated with an ordered triplet consisting of the intensities of each of the primary

constituent colors, red, green and blue (RGB information). It is possible to access these

individual color intensity values from the image pixel. Intuitively, we know that red,

green and blue colored markers will have the highest value of R, G & B values

respectively. For example a pixel representing a red marker will have high value ofR and

low values for G and B. So appropriate thresholds are applied for each of the R, G, B

values for each pixel to obtain the set of pixels representing the red marker. In a similar

manner, thresholding is applied to the image to obtain the blue and green markers too.

The following pictures show the results of the above scheme.

r ~~ ~ ,"

~.. ~

~ '"

~ ~.

ii1
.!i'. ;,f

t
'Ii

~

~ ~

~? 1

Figure 3.3.1: Picture showing the Red, Green and Blue markers.



Figure 3.3.2: Image showing the location of the Red marker.

Figure 3.3.3: Image showing the location of the Green marker.

28



Figure 3.3.4: Image showing the location of the Blue marker.
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Chapter 4 

Conclusion 

The above methods so far discussed, enable us to obtain the observation density value 

needed to be plugged into the Bayesian estimator. 

The following equation gives the observation density modeled as a Gaussian distribution. 

Where, 

p'(i) is the detected image coordinate. 

p(i) is the actual image coordinate. 

So P(I I x)  will be the probabilistic deviation between the following - 

1. Ideal Observation given the state. 

2. Actual Observation. 
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Appendix 

Matlab Codes for Specific Routines 

The following is the Matlab code for the DLT method. 

File DLTva1ues.m 

% Ground  T r u t h  

x l  = 5 ;  y l  = 2 . 5 ;  z l  = 0 . 3 ;  

x 2  = 1 6 ;  y 2  = 1 0 ;  22 = 6 . 5 ;  

x 3  = -4;  y 3  = 1 6 ;  23 = 8 ;  

x 4 = 2 3 ;  y 4 = 1 8 . 5 ;  2 4 = 8 . 5 ;  

x 5 = 8 1 ;  y 5 = 2 3 ;  2 5  = 7 . 5 ;  

x 6 = 8 3 ;  y 6 = 1 0 ;  26 = 7 . 5 ;  

% P i c t u r e  1 

p l u l  = 26 ;  p l v l  = 1 7 ;  

p l u 2 = 9 8 ;  p l v 2 = 6 4 ;  

p l u 3  = -35 ;  p l v 3  = 1 0 7 ;  

p l u 4  = 1 4 6 ;  p l v 4  = 1 2 5 ;  

p l u 5  = 472 ;  p l v 5  = 1 5 0 ;  

p l u 6  = 4 7 5 ;  p l v 6  = 82 ;  

% P i c t u r e  2 

p 2 u l  = 2 8 ;  p 2 v 1  = 1 8 ;  

p2u2  = 93  ; p2v2 = 6 7 ;  

p2u3  = -42 ;  p2v3  = 1 1 0 ;  

p2u4  = i 3 5 ;  p 2 v 4  = 1 2 8 ;  

p2u5  = 433 ;  p 2 v 5  = 1 5 2 ;  

p2u6 = 441 ;  p2v6  = 87 ;  



% P i c t u r e  3 

p 3 u l  = 27; p 3 v l  = 1 2 ;  

p3u2 = 1 0 1 ;  p3v2 = 4 8 ;  

p3u3 = - 4 ;  p3v3  = 8 9 ;  

p3u4 = 1 3 5 ;  p3v4  = 1 0 1 ;  

p3u5  = 468 ;  p 3 v 5  = 1 2 2 ;  

p3u6  = 477 ;  p 3 v 6  = 50 ;  

% P i c t u r e  4 

p 4 u l  = 2 : ;  pA71 = 1 0 ;  

p4u2 = 9 3 ;  p 4 ~ 2 = 4 9 ;  

p4u3  = -12 ;  p4v3  = 94 ;  

p4u4 = 1 2 9 ;  p4v4  = 1 0 0 ;  

p4u5  = 4 5 5 ;  p 4 v 5  = 98; 

p4u6  = 4 5 8 ;  p4v6 = 32;  

% P i c t u r e  5 

p 5 u l = 2 5 ;  p 5 v l = 1 1 ;  

~ 5 ~ 2  = 8 9 ;  ~ 5 ~ 2 ~ 5 5 ;  

p5u3  = -25 ;  p5v3  = 94 ;  

p5u4 = 1 2 6 ;  p5v4 = 1 0 8 ;  

p5u5  = 426 ;  p5v5  = 1 2 4 ;  

p5u6  = 426 ;  p5v6 = 6 7 ;  



% P i c t u r e  6 

p 6 u l = 1 9 ;  p 6 v l = 1 3 ;  

p6u2 = 61;  p6v2 = 60;  

p6u3  = -40;  p6v3  = 86; 

p6u4 = 91;  p6v4 = 1 1 2 ;  

p6u5  = 320;  p6v5  = 1 4 4 ;  

p6u6 = 3 1 8 ;  p6v6 = 9 6 ;  

% P i c t u r e  7 

p 7 u l = 2 3 ;  ~ 7 ~ 1 ~ 2 1 ;  

p 7 ~ 2 = 6 8 ;  p 7 ~ 2 = 8 9 ;  

p7u3 = -55;  p7v3  = 1 0 3 ;  

p7u4  = 1 0 0 ;  p 7 ~ 4  = 1 5 2 ;  

p7u5  = 356;  p7v5 = 223;  

p7u6 = 3 5 4 ;  ~ 7 v 6  = 1 7 1 ;  

% P i c t u r e  8 

p 8 u l  = 27: p 8 ~ l  = 9 ;  

p8u2 = 1 0 0 ;  p8v2 = 53;  

p8u3 = -15;  p 8 ~ 3  = 1 0 1 ;  

p8u4 = 1 1 0 ;  p8v4 = 1 0 4 ;  

p e u 5  = 476;  p8v5  = 1 0 1 ;  

p8u6 = 474;  pSv6 = 38;  



% P i c t u r e  9 

p 9 u l  = 2 3 ;  p 9 v l  = 6 ;  

p g u 2 = 9 6 ;  p 9 ~ 2 = 4 1 ;  

pgu3  = -1; p9v3  = 94;  

p9u4 = 1 3 2 ;  p 9 v 4  = 90;  

p9u5  = 4 6 6 ;  p 9 v 5  = 6 3 ;  

p9u6 = 4 6 6 ;  p 9 ~ 6  = -5;  



File DLTparams.m 

x y z  = [ 5  2 . 5  0 . 5 ;  

1 6  1 0  6 .5 ;  

-4  1 6  8; 

2 3  1 8 . 5  8 . 5 ;  

8 1  23 7.5; 

83 10 7 . 5 : ;  



C O -  



File DLTrec0n.m 

% The DLT coefficients obtained for all pictures 

% iu,vj of tie 3rd control point in the different image y . 7 i e ~ ~ ~ .  







The following is the Matlab code for color marker detection 

File ThreshRed.m 

%Routine t3 identify the Red marker 

I = irnresdl1c3l.jpg'); 

RI = I(:,:,l); 

figure ; 

imshow ( I ) ; 

%figure; 

Birnshow (RI) ; 

[m,n] = size(R1); 

thresRi = zeros im, n) ; 

k = 0: 

x = 0; 

y = 0; 

for i = i:n 

for j = ~ : n  

lf ((I(l,j,2) <= 150; & [ Z ( i , j , 3 j  <= 150) & ( R Z i : . , j )  >= 250)) 

thxesRI(1, j) = 2 5 6 ;  

else 

thresRI (i, j ) = 0; 

end 

end 

end 

figure ; 

imshow i tkresRI! ; 
redavgx = x / k; 

redavgy = v / k; 

redavgx 

redavgy 



Fiie ThreshGreen.m 

%Routiris to identify the Green marker 
$-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

I = imread('cpl.jpg'): 

%RI = I(.,:,3); 

figure; 

imshow ( I ) ; 

%figure, 

Bimshow(R1) ; 

[m.n] = size(R1); 

thresRI = zeros!m,n); 

k  = 0; 

X = 0, 

y  = 0; 

for 1 = 1 : ~  

for j = 1:n 

if ((I(i, j,l) c= 2C9) b /T(i. j:3) <= 200) & ( I ( i ,  j . 2 )  >= 2 3 C ) )  

thresRI (:-, j L = 2 5 E ;  

e ~ s e  

thresRI(i, j )  = 3; 

end 

if (~hr~sRI(1,j) =- ?56 :  

y = y + 1 ;  

x = x + 7 ;  

k = k + l ;  

e.1~ 

end 

end 

figure; 

inshcw (rh-esRI 1 ; 

greeT.avgx = x / k; 

greenavgy = y i k; 

greenavgx 

greenavgy 



File ThreshB1ue.m 

%Routine to identify the Blue marker 

I = imread('c~l.jpg'); 

RI = I(:, : , 3 ) ;  

figure; 

imshow ( I ) ; 

%figure, 

% imshow (RI ) : 

im,nj = size (RI) ; 

thresRI = zeros (m, n) ; 

k = 0 ;  

X = 0; 

y = 0: 

for i = 2:m 

for j = 1:n 

if ((I(i,j,2) <= 230) & (I(i,j,l) <= 200) & (I(i, j,3) >= 25C)) 

thresRI (i, j )  = 256; 

else 

t*re~P.i (i, 7 i = 0 ; 

en's! 

if (i?;esRI(l, j) =-: 2561 

y = y + L ;  

x = x +  j; 

k = k + l ;  

~ n d  

end 

end 

figure ; 

imshow (thzesRI) ; 

blueavgx = x / k: 

blueavgy = L- / k; 

blueavgx 

blueavw 



The following is :he Matlab code for comer detection 

File C0rnerDetect.m 

I = imread('DLTcp1-BW.jpgf): 

figure ; 

imshow (I j ; 

im = I; 

sigma = 0.355; 
thresh = 3C0C; 

radius = 1; 

dx = [-1 0 i: -1 0 1; -1 0 11/3; 

dy = d x ' ;  

Ix = conv2;im.. cix, 'same'); 

Iy = conv2 (im, dy, ' same ' , ; 
g = fspecial ( 'qaussiac' ,rax(i, fi:i(6;'slgma) ) , sigma) ; 

%g I-: fspecial,'gauesian','r. sicgci:: 

1x2 - con J: 1 I:<. '.2, g, ' same , ; 

Iy2 = conv2 (Iy. '2 g, 'sa,.xel), 

Ixy = c:n-r2(I~.~Ty, .g, ' s m e ' )  

cim = (Ix . *  Iy - Ixy.^2) - 0.04 * ((Ix + Iyj.^2); 

sze = 2*radius+l: 

mrr = ordfilt2;cim,szeA2,0nes(sz~)); 

cim = (cir,==mx\&;cimrthresh) ; 



The following is the Matlab code for image correlation 

File DetectbyC0rr.m 

bw = imread('DLTcp1-SW.jpgS); 

%figure, i~ahowibw); 

a = imread('ChecksMark.jpg'!; 

%figure, inshow(a); 

C = xcorr2 (double (bw) ,double (a) ) ; 

%C = real(ifft2(fft2(bw) . *  fft2(rot99(a,2),480,640))); 
figure, imshow(C, [ I )  %Display by scaling. 

% max(C(:)) %Find max pixel value in C .  

figure, imshow(C > 1Q000009: ; SD;sp:ay showing pixels over threshold. 

Cthresh = (C > 10000000): 

[r. C] = find (Cthr esh) ; 

figure ; 

imshow (bw) ; 

colomap (gray) ; 

hold on; 

plot(c,r, 'ri'); 

title!'Xarkers Qetected'); 




