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Abstract

Polydimethylsiloxane Tensile Mechanical Properties and Membrane

Deflection Theory

Patrick A. Roman
OGI School of Science and Engineering

Oregon Health and Science University

Supervising Professor: Dr. Sean Kirkpatrick, Ph.D.

Recent advances in Micro Electro Mechanical Systems (MEMS), semiconductor
sensor and actuator chip based technology, have incorporated many non-standard silicon
processing materials in their design. The use of materials such as polymers in
conjunction with standard CMOS processing and materials has enabled many new
MEMS sensors and actuators to be created. Even though the design enabling flexibility
of polymers maybe very high, the processing and implementation of polymers for a given
application is often more complex than what is encountered with standard engineering
materials due to their ubiquitous qualities. The main focus of this thesis is to investigate
both the tensile mechanical properties of Polydimethylsiloxane (PDMS), a material
increasingly used in MEMS, and large deflection membrane theory in an effort to provide

more accurate tensile mechanical material properties and analytical membrane models for
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MEMS application design with PDMS. Batch material processing and the elastomer
behavior of PDMS creates numerous mechanical testing issues, while its amorphous
molecular structure requires that it be analyzed in a different manner than crystalline
materials. This difference is primarily addressed through the use of true strain
definitions. Fundamental works of membrane mechanical theory have focused on
standard engineering materials due to the applications and available materials of the day,
thus providing inadequate analytical models for elastomers. A new theory, The new
spherical cap model, is developed for large deflection circular membranes made of
elastomers, which incorporates an appropriate true strain definition using the membrane
radius of curvature, accounting for large deflections. Experimental results suggest that
this theory accurately predicts elastomer circular membrane behavior and may be used to
simulate circular membranes made of crystalline materials as well. Static and dynamic
stress-strain experiments and analysis are performed upon uniaxial tensile samples, and
static load- deflected, or bulge tested, circular and square membrane experiments and
analysis are performed; both to develop the material properties of PDMS unique to those
tests. PDMS tan 8, Poisson’s ratio, stress relaxation time, and stress deformation were
also investigated. Methods for PDMS fabrication, uniaxial and biaxial testing, analysis
and results are explained. The results show varied PDMS tensile elastic modulus values
for static and dynamic uniaxial tensile and membrane deflection tests; Esqnc = 2.18
+0.184MPa, Egpnamic = 1.45 +0.250Mpa, Enemprane = 1.08 £0.250Mpa, respectively. The
PDMS loss factor, tan & = 0.03, and Poisson’s ratio v = 0.47. These results display
elastic constant strain rate dependence of varied PDMS tensile applications and agree
with numerous published works on PDMS mechanical properties and MEMS elastomer

membrane actuators.
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Chapter 1

Introduction

Micro Electro Mechanical Systems (MEMS), or Micro Systems Technology
(MST), has undergone vast development in the past decade [1,2]. As the computing and
semiconductor industries matured over the past decade MEMS research grew, and the
feasibility of varied and more complex on-chip micron scale sensor and actuator systems
has become a reality [2]. Recent research contributions to MEMS advancement has been
the development of non traditional semiconductor processes and materials. The
combined application of these processes and materials has enabled the fabrication of
MEMS sensors and actuators with previously unattainable performance from traditional
silicon based semiconductor processes alone [2,3]. MEMS devices incorporating non
traditional processes and or materials include: micro motors, micro gears, micro turbines,
membrane actuators, microfluidics systems, micro optics, thermal and hygrometric
sensors; nearly all new MEMS devices today [4,5,6]. MEMS design structures which
have benefited significantly from the introduction of new materials and processes into
MEMS design and fabrication include plates, membranes, and diaphragms [7-65]. A
significant benefit to MEMS applications with these design structures comes from the use
of low modulus (E~1MPa) materials, such as Parylene, Polyethylene, and
Polydimethylsiloxane (silicone rubber). These materials enable a greater range of
structure mobility and design possibilities based on their material properties as compared

to silicon and more standard engineering materials (metals). Polymeric materials have




revolutionized MEMS microfluidic design and applications, in spite of limited
fundamental research on the mechanical properties of these materials. However, there
can be significant problems in the use of non-silicon polymer based processes and
materials in MEMS design, fabrication, and use, due to their ubiquitous properties.

MEMS microfluidic systems and micro total analysis systems (uTAS) have
developed to serve as “lab on a chip” chemical analysis and biochemical assay
distribution systems [29,30]. These systems consist of micron sized flow channels and
chambers, connected to pumping systems and check valves for flow control. Often the
entire system may be fabricated from a single polymer [29]. However, it is the pumps
and check valves of these systems that make use of the unique material properties of the
polymer used. Most of the MEMS microfluidic pump and check valve systems employ
plate and membrane mechanics as their operating physics. Polymers used in plate and
membrane mechanics behave very differently from metals and other MEMS fabrication
materials. In fact a microfluidic system fabricated of standard CMOS materials does not
yield a practical solution for most microfluidics applications. Through the use of
polymers, specifically in the pumping diaphragms and check valves, very large
deflections are possible, which would otherwise be impossible employing standard
fabrication materials. It is through these large membrane deflections that large amounts
of fluid may be moved, and flow channels closed; controlling flows. The unique
molecular structure of some polymers, specifically the elastomer group, enables
extremely large tensile elongations, coupled with the ability to return to their original
shape with little plastic deformation. Large deflections in membrane mechanics are
dominated by tensile forces [66]. Through the great flexibility of polymers and their
ability to withstand large tensile elongations, polymer membranes are able to achieve
deflections which are not possible with other fabrication materials, thus increasing
potential applications.

In this thesis, circular and square membranes of the elastomer
polydimethylsiloxane (PDMS) were primarily investigated in connection with the tensile

mechanical properties of PDMS and the resulting effects on large deflection membrane




mechanical behavior, in an effort to reach a greater understanding of PDMS as an

engineering material for MEMS applications.

1.1 Membranes

Plates, membranes, and diaphragms take many forms in society today. These
forms can be force summing devices for low pressure applications [66] or balloon
actuators for jet aircraft aerodynamic control [42]. Shapes and sizes can vary
substantially, from the weatherproofing membrane of a building roof to a man hole sewer
cover [68]. Thus, the theories used to describe plates and membranes vary greatly. In
theory, plates and membranes may be analogous, while a diaphragm is considered a
device employing plate theory for its function. Generally a plate has a thickness 120"
and greater of its smallest span, while a membrane is a thin plate that has a thickness
1/20™ and less of its smallest span [68]. Membranes typically undergo deflections many
times larger than their original thickness, and when mounted horizontally cannot support
their own weight without deflecting [66]. A membrane is a flat plate incapable of
conveying bending moments or shear forces, thus unable to support a load without
deflection. In this sense, a membrane may be thought of as a two-dimensional analog of
a flexible string [66,84]. The main focus of this thesis is the load-deflection relationship
of circular and square polymer membranes.

Plates, membranes, and diaphragms have been investigated in depth by many
researchers since the original theory was developed by the French mathematician
LaGrange in the 1800’s [66]. The fundamental theory has been most notably covered by
Timoshenko and Woinowsky-Krieger [69], and Roark and Young [67], who developed
the fundamental theory to provide analytical solutions for numerous plate and membrane
configurations for engineering use. The primary method for the application of plate and
membrane theory developed is the energy method [69]. The energy method derives a
solution for plate deflection behavior by first assuming the functional shape of a deflected
plate by a load, and then calculating and minimizing the potential energy of the system to

fit the initial assumption [69, 47]. The application of the energy method as described by




Timoshenko and Woinowsky-Krieger [69] for circular and square membranes will be
discussed in 1.2.1, as it is relevant to this work. Further development upon the work of
Roark and Young [67] and Timoshenko and Woinowsky-Krieger [69] was done by Di
Giovanni [66], Ugural [68], Maier-Schneider et a/ [48], and Hohlfelder [70]. All of the
authors discuss both theoretical and practical applications of plate and membrane theory
for circular and square membranes, and how it may be used analytically, practically in
experimental work, and in the design of diaphragm devices. Included in Di Giovanni
[66] are experimental data and designs for corrugated plates, and computer methods for
designing plates, membranes, and diaphragms. These works have proved invaluable

throughout the production of this thesis.

1.2 MEMS Membranes

Membranes are used in numerous MEMS devices, primarily as actuators, but also
as sensors [7-65]. MEMS plates and membranes have been used in pressure sensors [31-
38], microphones [39-40], acrodynamic balloon actuators [41-45], in the material testing
of thin films [46-52], as deformable mirrors [53-62], as mass flow meters, and as thermal
and hygrometric sensors [63-65]. The most prolific application of MEMS membranes
are as the functional components of microfluidic valves and pumps [7-30]. These
MEMS devices serve in many new applications throughout a number of different
industries, facilitated by their small size, and relatively low cost due to semiconductor
batch fabrication. Plate and membrane based MEMS devices have been used as blood
pressure sensors for a single blood vessel [33], microfluidic channel pressure and flow
sensors [32], as deformable mirrors for optical correction [54-57], mirrors for fiber optic
network switching [62], and manifold air pressure (MAP) sensors for automobile atr/fuel
mixture control systems [1], as aerodynamic controls for fighter jet aircraft [42], and as
check valves and pump actuators in micro total analysis systems (uTAS), lab on a chip
based chemical analysis and biochemical assay distribution systems [29,30]. Due to the

nature of planar semiconductor processing, which incorporates thin film deposition,




plates and membranes are a logical design platform for MEMS, facilitating the previously
mentioned devices.

Of particular interest to this work are MEMS microfluidics and the investigation
of the mechanical properties of thin films by way of load—deflection testing of MEMS
membranes [46-51]. The microfluidic membrane pumps and valves developed by Yang
et al [7-12] and Sim et al [13,14] are most similar to the research presented herein. The
thin film mechanical property membrane tests of Tabata et al [47], Maier-Schneider et al
et al [48], Pan et al [49], Lin and Hohlfelder [70], and Vlassak [71], are also of
significant interest. The research conducted by the groups applying membrane
load—deflection theory to circular and square plates having large deflections and very
small thickness is applied herein to elastomer membranes, which are common

microfluidic design structures and the subject of this work.

1.2.1 Mechanics

Membrane behavior is very different from plate behavior for circular and square
structures uniformly loaded and rigidly fixed at the edges. Unlike plates, membranes
develop negligible bending stress when exposed to a uniform external load, with the
resistance to loading developing with the cube of the deflection of the membrane, see Fig.
1.1 and equation 1.1. Plates are dominated by a linear relation of load—deflection for
small displacements, generally the maximum deflection being half the plate thickness
[67,68,69]. The purpose for the development of membrane mechanics is to obtain
analytical models that very accurately describe the load-deflection behavior of bulk and
thin film membranes. These models also enable the determination of thin film
mechanical properties and residual stress inherent in manufacturing and testing.
Membrane load—deflection theory is the foundation for bulge testing, which has proven to
be a successful method used to test semiconductor and MEMS material properties [70].
Equation 1.1 is a generalized bulge equation that may be applied to any membrane
geometry, where c; and ¢, are constants that account for membrane shape and Poisson’s

ratio [70].
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Much of the membrane deflection theory literature was developed assuming the
application of standard engineering materials, such as metals, having Poisson’s ratio
values of 0.25 to 0.35, resulting in inadequate approximations for non-traditional
materials, such as elastomers with higher values of Poisson’s ratio, from 0.4 and higher.
Presently more accurate or exact theoretical models allow the selection of Poisson’s ratio
values, hence improving analytical approximations.

Andreeva [66] developed a general solution to model the load—deflection
relationship of circular membranes. This solution expresses the membrane shape and
Poisson’s ratio as a constant determined analytically, while other general solutions
assume a value for this constant based on an assumed Poisson’s ratio value. Hohlfelder
[70] developed a general solution for circular membrane load—deflection based on
Hencky [70] and Timoshenko’s work, as well as incorporating residual stress into the
solution [70]. This solution expresses the membrane shape and Poisson’s ratio as
analytically determined constants. These membrane shape constants, ¢; and ¢;, are of
considerable interest relative to the load—deflection theory, as a common application is
the “bulge test”, which is used to determine the tensile mechanical properties of micron
scale thin film materials [47,48,49,70,71]. These constants vary according to membrane
shape and Poisson’s ratio and may have a significant effect upon the accuracy of the
analytical model. Among the different groups cited various membrane theory derivation
methods are used, producing different results for these constants, see table 1.1 [70]. This
thesis outlines the most suitable circular and square membrane theories for PDMS based

on the literature review, theoretical, and experimental investigation.




Table 1.1.: Constants for the generalized bulge equation [70]

Geometry Model Cy c2
Circular Spherical cap 4 8/3
. Energy minimization
Circular (Lin)70 4 (7-v)/3
Circular Finite element (Pan)® 4 8/3 * (0.974-0.233v)
8
Cireular Finite element 4 3 (1.015-0.247v)
(Hohlfelder)” ey(v)= =
Analytical+energy
Square minimization 3.393 1.996-0.613v
(Vlassak/Timoshenko)’"
Square Finite element (Pan)* 341 1.981-0.585v
Finite element+energy 1.994(1-0.247v)
Square minimization 345 c,(v) = (1-v)
(Maier-Schneider et al)*® ~Y

Many groups have investigated circular and square membrane theory and its
application in the determination of material properties and membrane large deflection
behavior. Tabata et al [47] performed membrane load—deflection tests of square MEMS
membranes to determine the mechanical properties of LPCVD silicon nitride and found
good agreement between the analytical and experimental results. They were investigating
the quantification of the residual stress and Young’s modulus of thin film membranes
from silicon planar processing. Substantial amounts of residual stress can be introduced
by the planar processing of MEMS and thin film depositions. The membrane theory of
Tabata et al [47] was based upon the work of Timoshenko et al [69].

Yang et al [7-12] performed membrane load—deflection testing using square
silicone rubber membranes and applied the membrane theory of Timoshenko et al [69].
They found good initial agreement for plots of load versus deflection with some
experimental data points lying outside of the theoretical curve at the highest load versus
deflection levels. Yang’s group attributed this to plastic deformation of the silicone

rubber membrane material.




Pan et al [49] did a similar study of circular and square polyamide membranes,
which included finite element model (FEM) correction of the analytical model membrane
shape constants. Their study resulted in a more accurate analytical model, providing this
group with a more reliable load-deflection test for determining material properties.
Maier-Schneider et a/ [48] performed an analytical study of the Pan et al [49] and Tabata
et al [47] experiment and FEM analysis. This study included the development of a new
and expanded analytical solution of Timoshenko et a/ [69] square membrane theory,
further expressing the membrane shape constants c¢; and ¢; as a function of Poisson’s
ratio, and compared the results to the two groups. This analysis resulted in a ~ 1% error
between Pan et al [49] and the Maier-Schneider et al [48] new analytical solution, and
excellent agreement with experimental results. The Maier-Schneider et al [48] new
analytical solution claims to be a more accurate solution for square membrane deflection
than the original Timoshenko et al [69] theory for a Poisson’s ratio of 0.25. This solution
more accurately represents true membrane shape, and is the analytical model used for
square membranes in this thesis.

Hohlfelder’s aluminum circular membrane experimental results yielded values of
1.5% error in comparison to his approximate circular membrane theory derived from
Hencky [70] and Timoshenko et a/ [69]. Thus providing the Nix et al/ [70, 72] group
with a more tractable and accurate circular membrane solution. Further development of
the circular bulge equation, through investigation and personal communications with
Hohlfelder [70], provides a more accurate large deflection analytical model, which is
explained herein.

These new load—deflection analytical models for circular and square membranes
result in a more accurate calculation of the residual stress and Young’s modulus of
material films, as well as in the prediction of membrane load—deflection behavior. These
solutions also show their practical limitations when compared to experimental results,
making clear which theoretical models are most applicable to what materials.

The original plate and membrane theories of Timoshenko and Woinowsky-

Krieger [69] have been expanded and developed for circular and square geometries by




Pan et al [49], Maier-Schneider et al [48], Hencky and Hohlfelder [70], and in this work.
The new analytical solutions for circular and square membranes by Hohlfelder [70] and
Maier-Schneider et al [48] respectively, are developed and discussed herein. These new
solutions are used to analytically define membrane load—deflection behavior in this thesis
for the determination of elastomer membrane elastic modulus and residual stress. A new
theory for large deflections of circular elastomer membranes based on a pressurized

sphere is also proposed.

1.2.1.1 Membrane load-deflection nomenclature

Table 1.2 below lists relevant nomenclature for working with membrane load-

deflection mechanics.

Table 1.2: Membrane mechanics nomenclature

E Young’s modulus
M | Biaxial modulus = E/(1-v)
Oix Biaxial stress Oy = Gy = O
£y | Biaxial strain g = &y =¢
v Poisson’s ratio
c;,c2 | Membrane shape constants
Membrane deflection
Film thickness
Membrane radius
Membrane radius of curvature
Pressure
G, Membrane residual stress

N R [~

1.2.1.2 Circular membrane mechanics

Circular membrane load—deflection theory was most accurately described by
Hencky, and practically developed for the bulge test by Beams et a/ [70]. Both models
similarly describe the system, the bulge test being the more simple of the two models.
The Nix group [70, 71,72] further developed Henky’s theory for application to the bulge

test for thin film material property and residual stress investigation.




10

2
—% t
' !
]
]
}
1
]

‘tg;/ I——_R —1 |

Ou

Circular membrane: no deflection Deflected membrane: hemispherical cap

Fig. 1.1. — Circular membrane schematic

The bulge test is based on the derivation of the stress in a pressurized thin-walled sphere.
This problem is found in most engineering mechanics texts and provides the foundation
for the bulge test as a spherical cap, see Fig. 1.1, for approximating the load deflection of
circular membranes [70]. Given that the model is a sphere, equi-biaxial stress is
considered (Oxx = Oyy), and a balance of forces is applied. The Nix group derivation is as

follows [72]:

P(JrRz) = 0(27R)t (1.2)
resulting in,
_PR (1.3)
2t

By definition a membrane has no bending stress. This is due to the thin film

thickness being much smaller than the deflection of the membrane (t<<#), which agrees
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well with the theory of the spherical cap model, which assumes that the membrane has
only equi-biaxial tension. Observing Fig. 1.1 it is assumed that when pressurized, the cap
is under uniform load, equi-biaxial stress, and of equal radius [70]. Once pressurized the
membrane is deflected to a height 4, which is used to determine R, the membrane radius

of curvature, which is calculated by using Pythagorean’s theorem.

(R-h)?+a*>=R* (1.4)
Rearranging,
2 (1.5)

rRt.a
2 2h
For deflections 4 is much smaller than the membrane radius a, which is typical for linear

elastic materials.

2 1.6
B S (.9
2h

Substituting equation (1.5) into (1.2) gives:

Pa’ (1.7)
4ht

Equation (1.5) defines the biaxial stress of the spherical cap model.
Defining the strain of the membrane as a function of the radius of curvature using a linear

elastic engineering strain definition yields:

Al RO-a RO (1.8)

The angle 6 below the membrane is given by:
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3 1.9
L L
6
Substituting (1.9) into (1.8) we arrive at:
RO 0° (1.10)
£ i |
6

a* 2K (L.1T)

Given the stress-strain relationship of a membrane in biaxial tension,

o = Me (1.12)

Substituting equations (1.7) and (1.11) into the above equation and solving for pressure:

puland L)
5 o

Equation (1.13) is the spherical cap bulge equation for a membrane in tension without

residual stress. Residual stress may be accounted for by modifying (1.12),

o=Me+0, (1.14)

Inserting equatons (1.7) and (1.11) into (1.14) and again solving for pressure yields:
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3 1.15
RN WU .19
a 3 a

This is the spherical cap bulge equation for a circular membrane [70]. Although this
model maybe greatly simplified in comparison to exact solutions, it is a reasonable
approximation for load-deflection behavior of a circular membrane system with residual
stress [70]. A more exact solution by Timoshenko [69] develops the differential
equations describing this problem at length, and Hencky [70] derived an exact solution
very similar to the common shell solution found in many texts. However, the Hencky
{70] model applies boundary conditions about the outer edge to limit transverse strain in
order to more accurately describe membrane behavior, and neither model readily
accounts for residual stress which is present in experimental tests. Based on the work of
Hencky and Vlassak [70.71], Hobhlfelder developed a general solution by describing two
cases; the modulus dominated regime and the residual stress dominated regime.

For a circular membrane the modulus dominated regime assumes no residual
stress in the thin film, therefore the mechanics are dominated by membrane elasticity.

This yields a general case modulus dominated solution of [70]:

p_S (v ek (1.16)
-

where,

§(1.015 ~0.247v) (17)

_3
Cz(v)— (l—v)

Equation (1.17) is a relation describing the membrane shape constant and how it varies

with (v).
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Considering the residual stress dominated case, membrane behavior is governed
to residual strains in the thin film. The general case solution of a residual stress
dominated membrane is [70]:

(1.18)

P=4‘L;’
a

A general case solution may be developed in which residual stress in the
membrane is neither dominant nor negligible. This is done by superposing the two
solutions to the limiting cases. This gives the solution for the general case circular
membrane load—deflection analytical model resulting in, The bulge equation for a
circular window [70]:

Ot Eth? (1.19)
P= 4;02—]1 + CZ(V)—aT

where,

§(1.015 -0.247v)
¢, (v)=3 (1.20)

-v)

Although this is not an exact solution, it was found to be within 1.5% of Hencky’s

solution for a circular aluminum membrane [70].

The bulge equation for a circular window by Hohlfelder [70] accurately describes
the physical system for linear elastic materials within the elastic stress-strain region, and
enables the determination of thin film material properties and residual stress, which is
present when working with membranes. The above theory is one of the models used
herein for approximating circular membrane performance.

Considering the derivation of the spherical cap model and its close approximation
to exact solutions for circular membrane behavior as applied to linear elastic materials, an
mvestigation into its application to non-linear elastic materials has been pursued. As can
be found in most strength of materials texts, tensile strain definitions can have a
significant impact upon material property characterization [73,74]. Based on this

premise, a suitable tensile strain definition must be chosen to approximate any given
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material performance. Each material behaves in a different manner under the same
loading conditions due to material composition and molecular structure. Numerous strain
definitions have been developed by using different strain or stretch ratios to provide
accurate elongation approximations for all materials [73,74,103]. Most engineering

materials use the engineering strain definition:

Al (1.21)

While (1.21) describes engineering materials very well, and is the definition used in the
spherical cap method, assuming 4 is small so equation (1.6) is assumed, its ability to
describe elastomers is poor. This is due to the model being tailored to engineering
material or small strain analysis, and the ability of elastomers to elongate up to 600% of
their original length before failure. To date only the standard engineering strain
definition has been applied to the spherical cap model, limiting R to the form shown in
equation (1.6) [75]. Therefore, an investigation assuming the exact form of R in equation
(1.5) and applying it to the engineering strain definition, and true strain definitions was
performed to better approximate the load-deflection behavior of elastomer membranes
[74,75]. Applying equation (1.5). to the engineering strain definition from equation (1.8),
as defined by Cauchy infinitesimal [74,75], yields:

(1.22)

This is the engineering strain definition as a function of R [75].
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True strain, as defined by Cauchy [74,75,103], is:

_ N (1.23)
I, +Al

Er

Applying the true strain definition to the spherical cap model. From equation (1.8):
Al=RB-a (1.24)

and
l,=a (1.25)

Substituting (1.24) and (1.25) into (1.23) yields:

RO -a a (1.26)

0 =sin" = (1.27)
R
Substituting (1.27) into (1.26) yields:
(1.28)
£, =1- a
Rsin" <
R

This is the true strain definition applied to the spherical cap model.
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The Almansi true strain definition is [74,103]:

(Al+1) =17 (1.29)
2Al+1,)

€4

Applying the Almansi true strain definition to the spherical cap model by inserting (1.24)
and (1.25) into (1.29) yields,

2 1.30
(Rsin'l %) —azl (50

This is the Almansi true strain definition for the spherical cap model.
Now the new engineering and true strain definitions are applied to the spherical

cap model following Nix [72]. Given the biaxial modulus:

_E (1.31)
B

By inserting equations (1.3), (1.31), and (1.22) into equation (1.14):
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Solving for pressure:
(1.32)

This is the spherical cap model with engineering strain as a function of R [75].
The true strain spherical cap model is determined by inserting equations (1.3), (1.31), and

(1.28) into equation (1.14) yielding:

PR E a
2t 1-v

Rsin' 2
R

Rearranging to solve for pressure:

(1.33)

1-—2 _lio, 2t
. a
Rsin™ —
R

This is the Cauchy true strain spherical cap model.

The Almansi true strain spherical cap model is determined by inserting equations (1.3),

(1.31), and (1.30) into (1.14) yielding:




2

Rsin 2} — 42
m_ £ |

2t - 1-v a 2 * UO
2(12 sin™ *)
R
Rearranging to solve for pressure:
2\’ T
(Rsin‘l E) -a’
: — |+ 0, |2t
-v
Z(Rsin‘l —)
P =
R

This is The new spherical cap model.
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(1.34)

Equations (1.32), (1.33), and (1.34) are the new analytical models for circular membrane

large deflection. Figure 1.2 below is a plot of a PDMS circular membrane bulge test

experimental data and compares the different analytical models previously outlined. This

plot demonstrates the difference between the various analytical models and their ability to

accurately approximate the experimental data.
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Fig 1.2. - Plots of circular membrane theory

1.2.1.3 Square Membrane Mechanics

Square membranes are different from circular, assuming the same radius and
thickness, square membranes have 21% more material, see Fig. 1.3. This is significant in
that the predominant force acting on a membrane is tension, therefore there is more strain
for a given pressure as compared to a circular membrane [68]. The stress-strain field is
also very different from a circular membrane, as equibiaxial stress and strain can no
longer be assumed. When pressurized, square membranes develop a circular bulge,
going from their initial square shape and becoming more circular in the center, while the
perimeter and corners assume a different shape [68]. This is especially evident for
elastomer membranes, as seen in Fig. 1.3 and 2.11. The theory describing the physical

system of square membrane load-deflection is not as simple as the spherical cap model
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for circular membranes. Most solutions were developed using differential equations and
focus on membranes made of linear elastic materials, under small deflections. The
complexity of square membrane theory and an analytical model that accurately
approximates elastomer membrane load-deflection performance is further compounded
by the large deflections achieved by elastomer materials, and has yet to developed.
Therefore, the most accurate square membrane solution from the literature search is used

herein.

-
»x

Z

Square membrane: No deflection Square membrane: Deflected

Fig. 1.3. - Square membrane schematic

Square and rectangular membrane load-deflection theory was originally described
by Timoshenko et al [69] employing the energy method [48]. The energy method derives
a solution for plate deflection behavior by first assuming the functional shape of a
deflected plate by a load, and then calculating and minimizing the potential energy of the
system to fit the initial assumption [69, 47]. Unfortunately, early assumptions for the
functional shape of a plate deflected by a load, a square plate to spherical cap, were

inaccurate. The inaccuracy was due to mathematical simplification of the problem to
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facilitate ease of computation at the expense of accuracy [49] . However, with the
interest of determining the residual stress of thin films and their material properties, very
accurate analytical models are desired. Maier-Schneider et al further developed the
energy method theory of Timoshenko er al [49,69] for linear elastic materials by
expanding the functional shapes of square plate load—deflection, thus improving the
accuracy of the model. Maier-Schneider et al [48] developed this improved analytical
solution using the computational software program MATHEMATICA, and is within
1.2% error with FEM solutions developed by Pan et al [49]. The new analytical solution

for square membrane load—deflection developed by Maier-Schneider ef al 1s:

t (E 1.35
P=¢, e, 0= () 03
where ¢;=3.45 and
()= 1.9941-0.247()] | (1.36)

t-v)

This solution for square membrane mechanics enables the determination of thin film
material properties and residual stress, it is the most accurate solution known to date, and

1s the theory used herein to approximate square membrane load—deflection behavior.

1.3 MEMS Materials

Materials used for MEMS fabrication vary widely and are steadily increasing in
number. This is due to new applications of MEMS with existing materials and new
materials. Due to the application of MEMS as “chip level sensors and actuators”
integrated into ICs, fabrication is done primarily employing bulk CMOS IC planar
processing. The fabrication techniques used for MEMS employ standard CMOS
processing as well as new MEMS processing techniques, such as LIGA, SCREAM, and
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MOSIS, used to facilitate more complex MEMS structures and devices. In standard
CMOS fabrication and specific MEMS processing techniques the process usually begins
with a bulk substrate. The most common materials used are silicon, bulk metals,
polymers, and ceramics [77] Planar processing uses two dimensional lithographic
techniques for patterning and incorporates layering and removal of materials for the third
dimension. Materials used for layering are silicon dioxide, metal films, polymers, and
ceramics. Many of these materials are well suited for MEMS applications, are standard
processing materials, and have well known material properties. However, some
materials have non-typical material properties which can offer enhanced performance, or
enable particular MEMS sensory and actuation applications previously unavailable using

standard processing materials, this is the case for PDMS MEMS membranes.

1.3.1 Metals

The use of metals in MEMS fabrication is vast. The ability to deposit thin metal
films by electro-plating or thermal evaporation, is particularly suited for the fabrication of
MEMS membranes. Plate and membrane mechanics were developed for practical use
assuming metal as the material of choice. Metals are crystalline solids whose forms
consist of a crystal lattice molecular structure, where each metal atom occupies its
ordered space within the structural array forming a three dimensional material [77,78].
Metals crystallize in different structures and unit cells of atoms are formed, the most
common being face-centered cubic, body-centered cubic, and close-packed hexagonal.
When the unit cell is repeated in all directions a crystal lattice is formed. Fig. 1.4
displays a body-centered cubic unit cell and crystal lattice. It is the atomic make up and

resulting crystalline structure that give metals their individual material properties [80].




24

Body-centered cubic unit cell Body-centered cubic crystal lattice

Fig. 1.4. - Metallic body-centered cubic crystalline solid structures

Plate and membrane theory developed by Timoshenko et al [69], Hencky, Di
Giovanni, and others assumes the use of materials having a Poisson’s ratio of v=0.25 to
v = 0.35, these values of Poisson’s ratio are typical for most metals [67,72,75]. Given
that the theory was developed assuming material properties of common metals, the
analytical solutions perform well for those materials. Metal films perform in a specific
manner as plates and membranes, as governed by their material properties. The
mechanical response, load-deflection, of a metal plate clamped at the edges and subject to
a uniform load have been well documented [67, 68,69]. Plate deflection is linear up to ~
30% of the plate thickness as dominated by pure bending theory, which dictates that an
inflection circle of the plate be located at 57.73% of the plate radius [66]. Non-linearity
is introduced when plate deflections greater than ~ 30% of the thickness are present,
resulting in the inflection circle being pushed to the perimeter of the plate [66]. The
result is a plate that is now governed by membrane load—deflection theory, the degree of
which may introduce large amounts of hysteresis and plastic deformation. Metal plates
and membranes are most often used as force summing devices or pressure sensors, due to

their crystalline structure, linear elastic behavior, low hysteresis, ease of fabrication, and
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resistance to vibration [66]. Metal plates used as pressure sensors produce highly linear

and reproducible response for their design range, deflection ~ 30% of the plate thickness.

1.3.2 Polymers

Polymers have had an enormous impact upon MEMS research and the emerging
MEMS industry. The use of polymers has made particular MEMS applications and
devices a reality. Many of the MEMS applications to benefit from polymer use are
microfluidics systems, hygrometers, accelerometers, and aerodynamic controllers [7-30,
64,99.42]. Many of these applications would otherwise be impossible implementing
standard CMOS fabrication materials and processes. The benefits of polymer use for
MEMS applications are numerous. Polymers are used both as substrates and layering
materials in MEMS fabrication. There is a vast selection of polymers in industry today
yielding a wide range of material property selection. Elastic modulus values for
polymers can vary from ~ 1 MPa for synthetic rubbers to ~ 4 GPa for polyamide nylon.
Polymers with soft amorphous elastomer structures are favorable for MEMS applications
due to their ability to withstand large deformations with low stress, which match
favorably with low power MEMS actuation techniques [1,4,5]. Elastomers are polymers
which exhibit large deformation at room temperature with non-plastic deformation when
loading is released [3]. At room temperature typical elastomeric polymers, such as
natural rubber and PDMS, have elastic modulus values of ~ 10° N/m?, while glassy and
crystalline polymers have elastic modulus values which are three orders of magnitude
higher, ~ 10° N/m? [2]. This difference is due to the molecular structure and respective
glass transition temperature (7g) of the different polymers [2,3].

Cured polymers consist of long chain polymer molecules which are cross-linked.
Glassy and crystalline polymers may have a molecular structure somewhat similar to the
structure of crystalline metals in Fig. 1.4, while elastomers consist of amorphous cross-
linked structures as shown in Fig. 1.5. Semi-crystalline polymers are composed of both
amorphous and crystalline molecular structures, to lesser and greater degrees, depending

upon the material in question. Both amorphous and semi-crystalline polymers are
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considered visco-elastic materials due to their ability to behave like viscous fluid like gels
and crystalline materials, with each molecular structure contributing its unique
relationship to a given material’s stress-strain curve [94]. Under relaxed conditions
elastomer molecular structure is amorphous, making it an ubiquitous material which is
difficult to characterize. When loaded the long chains disentangle and orient in the
direction of the load, this is called strain crystallization, and is the typical elastic response
of elastomer materials [80]. Semi-crystalline polymers have both an amorphous and
crystalline elastic response to loading, which varies depending on the material. Semi-
crystalline polymers are generally more rigid in stress-strain tests compared to
elastomers, given their partial crystalline molecular structure. Standard tensile tests of
typical crystalline polymers have a linear elastic stress-strain curve, without deforming,
due to their ordered molecular structure, acting much like metals. This behavior is linear
in the sense that the stress-strain relationship is a straight line until the yield point, where
the material starts to deform, deviating from the straight line in a non-linear fashion.
Elastomers and semi-crystalline polymers may have a similar linear stress-strain curve in
standard tensile tests, depending on the material. The elastomer amorphous molecular
structure having a linear elastic stress-strain curve until strain crystallization begins, thus
changing to a non-linear stress-strain curve. Assuming that the breaking point is not
reached, elastomers return to their original shape once loading is released and without
substantial deformation, unlike semi-crystalline materials. Elastomers are unique in this
behavior. These fundamental material properties of elastomers may be manipulated by

varying the cross-link density of the polymer molecules [80,84].
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Fig. 1.5. - Polymer molecular structures

Elastomers are gel like and amorphous due to their respective glass transition
temperature. The glass transition temperature of a polymer may be considered analogous
to the freezing point of a liquid. As the temperature is reduced, the amount of free
volume in the polymer is also reduced, thus restricting molecular motion. Elastomers
have glass transition temperatures well below room temperature, PDMS has a 7g ~ -127°
C [2,3,17,18]. Due to the intrinsic molecular structure, molecules of elastomeric
polymers readily slide past each other when subjected to an external load, generating
heat. This may result in significant energy loss when materials are dynamically loaded,
creating a mechanical hysteresis loop. The hysteresis is due to stress relaxation,
molecules sliding past each other in the polymer, and is more evident at slow strain rates,
due to the molecules having more time to disentangle. The measure of the energy lost is
defined as tan 9, or “loss factor”. The tan & of a material is a representation of energy
loss due to mechanical hysteresis and stress softening [88]. For elastomers, this energy
loss is often in the form of heat, which may have a cumulative effect on the given
application and therefore is an important material property to be included in material

selection data [11,17].




28

Amorphous elastomers are capable of very large elongations, up to 600% or more
of the original sample length, with a corresponding reduction in cross section, [14,17].
Poisson’s ratio is the lateral strain over the longitudinal strain for a material subjected to
an axial load with resulting elongation, and is an important mechanical property to be
included in simulation models. Poisson’s ratio is typically from 0.25 to 0.35 for most
metals, and is well above 0.35 for most amorphous elastomers [12,17]. Many polymers
may be made to suit a wide range of material property requirements and MEMS
processing needs. Once a polymer is chosen for a particular application often the
material properties and processing technique are tailored to optimize the application
requirements. Most other fabrication materials do not have such a dynamic range of

material property manipulation.

1.3.2.1 Polyethylene
Polyethylene, a polyolefin plastic discovered in 1933 by E. Fawcett and R.

Gibson of the Imperial Chemical Industries Laboratories (England), was the first
synthetic polymer. Over the last seventy years polyethylene has been improved, costs
less to manufacture, and is used in nearly every industry and consumer product today.
Polyethylene is made in three primary methods; gas-phase, solution, and slurry (liquid-
phase), through addition reactions of ethylene [94]. Generally these reactions consist of
ethylene monomer molecules being polymerized in a pressurized environment containing
ethylene, and a catalyst. Varying the pressure and temperature of the process
environment yields different grades of polyethylene, each with different material
properties, such as LDPE, MDPE, and HDPE; corresponding to low, medium, and high
polymerization densities. LDPE polymerization processes result in producing
polyethylene molecules with many long chain side branches off of the main polymer
chain molecule. Processes that produce MDPE and HDPE yield polyethylene with
reduced side branches. It is these side branches that affect the ability of the polymer
molecules to pack closely together and the resulting bulk density of the material.

Recently LLDPE (linear low density polyethylene) has been produced using a low
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pressure process. This is different from LDPE in that it has many short chain side
branches and fewer long chain branches off the main polymer chain molecule. The low
pressure process is more economical and is used as a standard process for most LDPE
applications, such as food service films and plastic bags, today. Polyethylene is a material
that has amorphous and crystalline regions. The crystalline regions consist of portions of
the polymer chains aligning in ordered microscopic polyhedral-shaped spherulite crystals.
While the amorphous regions are in no particular molecular order. HDPE may consist of
up to ~ 90% crystalline regions, as compared to LDPE with up to ~ 40% crystalline
regions. It is the close packing of the polymer molecules in the crystalline regions that
give an increased density to the material, where the amorphous regions have a reduced
structural order and density. Due to the coexistence of the amorphous and crystalline
molecular packing regions, polyethylene is considered a semi-crystalline material, as
shown in Fig. 1.5. Tensile stress—strain response is typically a short curvilinear elastic
region with a lengthily cold draw region, due to the amorphous and crystalline packed
molecular structure undergoing strain crystallization [94]. Polyethylene may be
manufactured as a film for food service and packaging applications, pellets for raw
material, and stock extrusions for industry. Typically it is injection molded, spin or blow
molded, and extruded to form milk containers, fleece pullovers, kayaks, writing
instruments, electrical wire insulation, automobile interior and exterior components, and
innumerable packaging and industrial applications. Polyethylene may also be reused and
recycled for remanufacture in new products [81,94].

Polyethylene film was of particular interest as a reference material for this thesis.
Linear low density polyethylene (LLDPE) film, manufactured by GLAD, was used to
provide a known material for comparison to PDMS. LLDPE is an amorphous semi-
crystalline plastic made from a low pressure polymerization process, having range of
elastic modulus values E = 50-300 MPa for all Polyethylenes, and a Poisson’s ratio v =
0.4 [94,104]. Static uniaxial tensile specimens and membranes were made from the
LLDPE film; GLAD wrap. The uniaxial tensile specimens were used to determine the

elastic modulus of LLDPE and the membranes were used to produce load-deflection data.
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Both sets of specimens were used to verify the test setups and to give a known material

reference for PDMS material property tests.

1.3.2.2 Polydimethylsiloxane (PDMS)

Polydimethylsiloxane is an elastomeric polymer or synthetic rubber, and the
material of investigation for this thesis. PDMS was developed in the mid twentieth
century as a replacement for natural rubber and is the most common elastomer in use
today. PDMS or silicone rubber is different from other elastomers in that it consists of
silicon and oxygen in the form of siloxane to form its main flexible backbone polymer
molecules [80,82]. It is the structure and combination of these molecules that gives the
flexible elastomeric nature of PDMS and its non-standard mechanical properties.
Elastomer molecular structure when strained goes from an amorphous gel like state to a
more crystalline state. This is called strain crystallization. Due to the change in
molecular structure, large elongations result. Elastomers are capable of great elongations
while strained, and are able to return to their initial state with little or no plastic
deformation when the strain is released. Therefore, PDMS stress-strain behavior is linear
to non-linear or varies as a function of the strain, thus the elastic modulus varies as a
function of the strain. These phenomenon also have a significant effect upon the
Poisson’s ratio of PDMS.

Vulcanization of PDMS is most commonly done by room temperature
vulcanization (RTV). PDMS may come in the one-component form, where the cross
linking component is manufactured into the base compound and vulcanization occurs
upon use with exposure to atmospheric moisture. In this case, curing occurs from the
outside-in with time, and is the form that most silicone sealants are found today. Another
common type of RTV of PDMS is the two-component system, where the cross linking
component is added to the base compound just before use, giving uniform curing
throughout [80]. Variations in the mixing ratio and curing process of the two-component
system have a significant impact upon the PDMS mechanical properties. Upon

polymerization PDMS is inert, taste and odorless, resistant to biological and ultra-violet




31

degradation, stable over a temperature range of -60° C to 300° C in air, and non reactive
with most materials [80]. Applicationé of PDMS silicone rubber include, automobile
ignition cables, gaskets, sealants, o-rings, static seals, food and medical grade tubing,
human prosthesis implants and augmentation, contact lenses, electrical component
insulators, and as a MEMS fabrication material. PDMS is a very common and
economical industrial material, which is stable after processing, has a vast range of
applications and flexible processing capabilities. It is these characteristics along with its

mechanical properties that make it a popular choice for many MEMS applications.

1.4 Motivation

Plate and membrane mechanics have been investigated for numerous ends,
and for a number of different geometries and materials in MEMS research. However,
the load-deflection mechanical response of circular and square PDMS membranes, with
accurately defined material properties, has yet to be fully characterized. These are
investigated herein to provide more accurate large deflection elastomer mechanical
models for MEMS design applications of elastomer membranes and PDMS in varying

applications.



Chapter 2

Experimental procedures and techniques

To investigate the tensile mechanical properties and membrane load-deflection
mechanical response of PDMS a number of experiments and modeling was conducted.
Dynamic and static uniaxial tension tests were performed to determine tensile mechanical
properties. Static membrane bulge tests were conducted to determine the mechanical
response of circular and square membranes under static uniform load, and to derive the
membrane biaxial modulus. The results of these tests provided accurate tensile
mechanical property data for PDMS in varied tensile applications, which was used in

analytical membrane deflection models to simulate membrane deflection experiments.
2.1 Mechanical testing

Mechanical testing consisted of static and dynamic uniaxial tensile tests as well
as circular and square membrane testing. The purpose of the tensile testing was to
characterize the tensile mechanical properties of the polymers investigated; PDMS and
LLDPE. The mechanical properties of particular interest are the elastic modulus (E), loss
factor (Tan 6), Poisson’s ratio (v), and stress relaxation (7). For obtaining tensile test
data three types of tests were conducted; static uniaxial tension, dynamic uniaxial tension,

and video dimensional analysis (VDA) for determining Poisson’s ratio. Stress relaxation
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and deformation tests of PDMS tensile samples were conducted to verify PDMS
relaxation time and the feasibility of the membrane testing technique, as well as to
determine relative amounts of plastic deformation at a particular stress level. The
purpose of the membrane testing was to characterize the specific load-deflection response
of PDMS and LLDPE for circular and square geometries. These tests also provide
residual stress (oy) and biaxial modulus (M) material properties. Membrane testing
experimental results also serve to validate membrane analytical models. All mechanical
tests were performed on a Materials Testing Systems, Eden Prarie, Mn USA, (MTS)

Tytron servo-pneumatic tensile testing machine, Fig. 2.1.

Fig. 2.1. - MTS Tytron mechanical tester
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2.1.1 PDMS material processing

Industrial grade polydimethylsiloxane, manufactured by Silicones, Inc., of High
point, North Carolina USA, [P-125, RTV-2 PDMS silicone rubber], was used to
fabricate all PDMS films and test samples [8§3]. PDMS [P-125, RTV-2] is a common
industrial grade, two part (base and activator) silicone rubber. A curing agent (activator),
or polymerization catalyst, is added to the (base) polymer to form the final material.
Varying the mixture ratio of base to activator varies the degree of base polymerization
and the resulting final material properties of the PDMS [84]. Various curing techniques
may also be added to the material processing, such as degassing the mixture and or heat
curing, to further drive the polymerization reaction to completion. A common

manufacturer recommend mixture and curing process was used to fabricate all samples.

2.1.2 Polyethylene (LLDPE) film

Polyethylene (LLDPE) film was used for the fabrication of tensile samples to
provide a tensile test reference for the experimental test setup. This film was chosen for
its similar mechanical properties to PDMS, film uniformity (~ 0.0254e-3 m thick),
availability, and low cost. The LLDPE film used is commercially known as GLAD wrap,
a film invented in 1966 by GLAD Products of Australia for food packaging [85]. Glad
wrap is made from hard polyethylene resin with a cast film extrusion machine, and is
commercially available at most food stores in the USA [85]. The tensile specimens were

punched from LLDPE film sheet.
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2.1.3 Tensile specimen fabrication

Tensile specimens were fabricated from PDMS and LLDPE film sheets. Three
sizes of PDMS tensile samples were prepared for the tensile tests, Fig. 2.2. A4 size
samples were used for dynamic uniaxial tensile testing, B size samples were used for

static uniaxial tensile testing, and C size samples were used for Poisson’s ratio testing.

Tensile test specimens

Necked region W=6mm

Sample A
Id— 24 mm—bl

—— A

Sample B

e —

.
Poisson's ratio sample W=8mm

Sample C

Fig. 2.2. - Tensile specimens

For the 4 samples the PDMS was prepared by thoroughly mixing 10 parts base to
1 part activator by weight. Air bubbles were removed twice, sequentially in a vacuum
chamber, and the PDMS allowed to cure in flat molds (2-mm thick) at room temperature
for 24 hours. Rectangular C samples of this material batch were used in determining
Poisson’s ratio. The B samples were made with the same PDMS mixture ratio by weight,

but spread to form very thin sheets and cured at room temperature for 24 hours without




exposure to a vacuum. A special jig was constructed using a variable height silk
screening squeegee, Parafilm, and shim material. Parafilm was taped to a very flat work
surface and a layer of PDMS, ~ 0.1016e-3 m thick, was squeegeed on the Parafilm.
Parafilm is a wax type standard laboratory film used to seal test tubes and etc. It was
used as a base for the PDMS film due to its non-adhesion to PDMS, and it could be rolled
up and stored for later use. Once the PDMS batches were fully cured, after 24 hours or
more, A, and B size tensile specimens were then fabricated with their respective punch,
Fig. 2.3, to provide a necked region in accordance with industry uniaxial tensile testing
standard (ASTM D 412-98a) for elastomer polymers [86]. LLDPE B size samples were
also punched. Rectangular C samples were cut to size Fig. 2.2. Testing standard (ASTM
D 412-98a) dictates that dumbbell specimens be punched from thin sheets of the material
to be tested. Two different punches were used to fabricate the 4 and B size dumbbell

specimens, (Fig. 2.3). Each test sample was of uniform shape and thickness.

Dumbbell punch - A size Dumbbell punch - B size

Fig. 2.3. - Tensile specimen punches
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2.1.4 Membrane fabrication PDMS and LLDPE

Membrane fabrication was achieved through the use of fabricated PDMS and
LLDPE films previously noted in section 2.1.1 and 2.1.2, in conjunction with the
membrane block Fig. 2.4. The film to be tested was placed between the two
disassembled sections of the membrane block, with a small amount of membrane pre-
tension to eliminate sag. The two sections were then fastened together, resulting in
clamped edge circular and square film membranes with an air tight seal, Fig. 2.4. Any
remaining film extending from the edges of the membrane block was trimmed away. The
membrane block was designed to create clamped edge circular and square membranes of
the same radius, » = 9.525mm, from the film sheets. These sheets are readily changed to
facilitate ease of testing. For deflection measurement purposes, each membrane was

marked with a black dot in the center to aid in aligning the probe to the membrane.
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Fig. 2.4. - Membrane block and membranes
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2.1.5 Tensile test procedures

Three types of tensile tests were performed to determine the tensile mechanical
properties of PDMS using an MTS Tytron servo-pneumatic uniaxial tensile testing
machine. These tests are; static uniaxial tension, dynamic uniaxial tension, and video
dimensional analysis (VDA) for determining Poisson’s ratio. LLDPE was tested in static
uniaxial tension only. The static and dynamic tension tests performed were at particular
rates of strain, and measurements were recorded in real time. The static uniaxial tests
were performed at € = 0.741/sec, while the dynamic uniaxial tests were tested over a
strain rate range of £ = 0.033/sec to € = 0.256/sec for the 4 samples, and € = 0.317/sec
to £ = 0.823/sec for the B samples.

The PDMS specimens did not reach the breaking point due to elastomer
elongation capability ~ 600%, and the limited displacement range of the MTS tester.
When the samples were returned to their original gauge length, minimal deformation was
observed, which may have been due to sample to grip slippage and/or plastic deformation
in the samples. There is an element of strain rate dependence in the results obtained,
which is typically encountered in elastomer polymer testing due to their viscoelastic
nature and amorphous molecular structure. This is less significant in LLDPE due to
testing the specimens solely in static uniaxial tension. However, the breaking point was
reached for the LLDPE samples, given the more crystalline LLDPE material molecular
structure.

2.1.5.1 Equipment description

Tensile testing was performed with an MTS Tytron servo pneumatic tensile
testing machine. The MTS Tytron is a specialized tensile testing machine which
incorporates a horizontal air bearing uniaxial test frame, a linearly variable displacement
transducer (LVDT) actuator, an array of force transducers, computer software control,

and data acquisition capability. The MTS Tytron was configured to have a working
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LVDT displacement of ~ 70 +0.1mm with a set of compression clamps, one on the
LVDT and the other on the force transducer, to hold tensile samples at either end, Figs.
2.1,2.5. Testing may be done using the machine in manual control mode or computer
controlled. Test recipes may be programmed to execute testing and data acquisition. The
MTS Tytron is primarily used with very small test samples for sensitive or non-
destructive tests. The entire system operates on an isolated air cushion table. The MTS
Tytron is a sophisticated and accurate tensile testing machine, which made the work of

this investigation possible.

2.1.5.2  Static uniaxial tension test procedure

The static uniaxial tensile test resembled the standard industry tensile test (ASTM
D 412-98a) used for determining the stress-strain behavior of elastomers in tension [86].
However, due to the lack of a suitable extensometer, displacement measurements were
taken from the LVDT grip actuator movement. With the force transducer zeroed,
fabricated standard tensile specimens, B type, Fig. 2.2, were loaded into the grips of the
MTS Tytron tester, and slack was removed. At a measured gauge length of 18.1 mm
with a force of 0 N, the specimens were uniaxially displaced 50 mm in 1s, yielding a
strain rate of, ¢ = 0.741/sec, Fig. 2.5. Time, displacement, and force were recorded.
Difficulties encountered in testing elastomers in this manner were; grip slippage,
specimen tearing at grips, large deformation of specimen at grip section, and premature
failure due to sample imperfections. These are common occurrences in elastomer tensile
testing [87]. Successful test results were obtained through technique and patience. In
total, 10 satisfactory static uniaxial tensile tests of each material were performed to

determine the static uniaxial elastic modulus of PDMS and LLDPE.
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B sample loaded in tester B sample elongated ~ 50 mm

Fig. 2.5. - Displaced uniaxial PDMS tensile specimen

2.1.5.3 Dynamic uniaxial tension test procedure

Dynamic tensile testing consisted of the initial specimen loading technique, a very small
pre-straining, € = 0.17, of the specimen to eliminate slack, with corresponding oscillation
about that pre-strain at a set displacement and frequency. Testing in this manner yields
data that enables the determination of the tan 6 as a function of frequency for the
material. This is important data in the selection of dynamic design applications, which
may have a cumulative effect upon a given design. PDMS was the only material tested in
this manner. Dynamic testing was performed on two sizes of PDMS specimens, 4 and B
Fig. 2.2, to observe the effects of film thickness upon the mechanical properties. Fifty
samples were tested in total at frequencies ranging of 0.5Hz, 1.0Hz, 2.0Hz, 3.0Hz, 4.0Hz,
and 5.0Hz. The 4 samples had a dynamic stress range from 1.4e5 to 2.1e5 Pa and a
strain range of 0.155 to 0.185, while the B samples dynamic stress range of 0.3e6 to 1.6e6

Pa and a strain range of 0.230 to 0.470. Five samples were tested at each frequency.
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2.1.1.4 Poisson’s ratio (VDA) test procedure

Poisson’s ratio was determined using video dimensional analysis (VDA), using
three rectangular type C samples, Fig. 2.2. Each sample was loaded in the MTS Tytron
grips and subjected to axial tension in 2mm increments from 0 to 48 mm. VDA was used
to determine the axial and lateral change in the sample by measuring the sample at each
increment. The VDA system was calibrated with a standard metric scale. Force and

displacement (axial and lateral) were recorded.

2.1.1.5 PDMS stress relaxation and deformation test procedure

Stress relaxation of PDMS was done using B samples loaded into the MTS tester
and strained, while recording time and load. Two groups of three samples strained to 0.3
and 0.6 in 1s, yielding strain rates of ¢ = 0.3/sec and £ = 0.6/sec, respectively, and then
held at that strain for 60s. This data enables the determination of a relaxation time for the
two strain levels, accounting for the viscous portion of the viscoelastic material
characteristics, 0.3 true strain being in the linear region of the PDMS stress-strain curve,
and 0.6 true strain in the non-linear region, from Fig. 3.1. The relaxation time for PDMS
at a given strain level allows the determination of the amount of time that is required to
reach static equilibrium for a given loading scenario. This was important to know to
validate membrane deflection measurements.

Deformation of the samples tested at a true strain of 0.6 was quantified by
measuring the overall length of the samples with calipers immediately after they were
removed from the test grips, and consecutively over a period of one week. This was done
to observe the total plastic deformation of the samples and their ability to recover from

the test. Twelve B samples were tested in total.
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2.1.6 Membrane testing

Membrane testing, or bulge testing, was performed to determine the load—
deflection mechanical response of PDMS and LLDPE circular and square film
membranes. Membrane testing of this type is typically achieved using an apparatus
similar to what is shown in the schematic of Fig. 2.6. A flat membrane is pressurized
with air from the back side with a syringe. The syringe enables the control of the applied
pressure, which is monitored by the pressure sensor. Once a membrane is pressurized it

deflects, enabling measurement of the deflection at the center of the membrane.
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Membrane bulge test schematic

Fig. 2.6. — Membrane bulge test schematic

Membrane testing was done using the MTS Tytron tester in conjunction with a special
test apparatus constructed for load-deflection testing of films; the membrane block Fig.

2.8. The membrane block creates clamped edge circular and square membranes of the
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same radius, » = 9.525mm, from film sheets. The test consists of pressurizing the
backside of a membrane and measuring the resulting membrane center deflection. Bulge
test data not only provides characteristic membrane load-deflection mechanical response,
but through analysis, membrane residual stress (o), material biaxial modulus (M) and the

elastic modulus (£) may be determined.

2.1.11 Equipment description

For membrane testing a special test apparatus (the membrane block) was
constructed and mounted to the MTS Tytron tester. The membrane block in conjunction
with the LVDT of the tester produces the loading and deflection measurement of the
membrane, Fig. 2.7. By mounting a film layer between the two sections of the membrane
block, clamped edge circular and square film membranes from simple films are produced,
Fig. 2.8. An air pressurization system of a syringe, pressure gauge (0 — 30 in.w.g. =
7,472.6 Pa), tubes, and valves enables pressurization of the membranes, individually or
simultaneously, Fig. 2.9. The MTS tester had a special vibrating tip attached to the

LDVT which facilitates membrane deflection measurement, Fig. 2.7.




Fig. 2.7. - Membrane testing apparatus

Fig. 2.8. - Membrane block
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Pressurization syringe, metering valves Pressurization meters, valves, and tubing

Fig. 2.9. - Membrane block pressurization system

2.1.1.2 Membrane test procedure

Membrane testing was performed by first assembling the membrane block with a
PDMS or LLDPE film, Fig. 2.8. The membrane block assembly was then mounted to the
MTS tester as shown in Fig. 2.7. Next the pneumatics were connected to the membrane
block and the membranes pressurized. Deflection was measured with the vibrating tip
attached to the LVDT. The tip was gently set into motion and slowly advanced toward
the center of the membrane with the LVDT. Tip vibration stopped as the tip advanced
and contacted the center of the deflected membrane. An averaged value of three
deflection readings was recorded for each data point, afterwards the membrane pressure

was released to zero. This was repeated for the entire pressure range of the membranes,
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from 0 ~ 7,500 Pa. This measurement technique was found to be convenient and
successful given the relative scale of the experiment and components. The PDMS
membranes were tested at 250 Pa per datum, while the LLDPE membranes were tested at
500 Pa per datum. This was due to the lower deflections of LLDPE as compared to
PDMS. Fig. 2.10 and 2.11 show circular and square PDMS membrane deflection.

Fig. 2.10. - Membrane block and deflected membrane
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Fig. 2.11. - Square and circular deflected membranes at equal pressure, respectively.

2.2  Analytical methods and Modeling

Analytical methods were used to analyze the tensile specimen and membrane
experimental data. Methods were chosen based on the literature search, and further
developed into analytical models to approximate the experimental tensile specimen

stress-strain and membrane bulge test physical systems.

2.2.1 Description of analytical software and techniques

Tensile specimen and membrane mechanical response data from all experiments

were analyzed with analytical methods and models built in Matlab. Matlab 1s a high-
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performance programming language for technical computing. Matlab utilizes data and
computation arrays which enable the building of sophisticated analysis models in familiar
mathematical notation [88]. Experimental data may be imported to analysis programs
from text data files, entered by user input, or incorporated as a part of a program. Tensile
specimen data were imported from specimen test files created during experimentation,
while membrane data were made a part of the analysis programs. Matlab programs
provide a comprehensive view of experimental data range analysis through the plotting of
analysis results. Plots with curve fitting capabilities and equations aid in further defining

the results.

2.2.2 Tensile specimen analytical methods

Tensile specimen data was analyzed with the following stress-strain method for
PDMS and LLDPE.
Stress calculation, as defined by Euler [74,103]. Assumes constant volume and strains

£,/ Exx=Ez/ Exx.
o, =(5) Y 2.1

(L +AL) (2.2)

L-L AL (2.3)
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For materials which exhibit large elastic strains, such as PDMS, true stress, (o ), and

true strain, (€. ), in the sense of Euler and Cauchy respectively, are typically used to

develop a more accurate stress-strain behavior model [73,74,89,102,103]. Assuming

constant volume in the true stress relation and using the true strain definition gives an

accurate representation of the stress-strain relationship to loading for the large

deformations of elastomers. This method was used to determine static uniaxial tension

and dynamic elastic modulus values, and tan 6 values. Tables 2.1 and 2.2 below

summarize the results from the static and dynamic uniaxial tension tests.

Table 2.1 - PDMS and LLDPE elastic modulus — static uniaxial test results

Test Gunas Erag Linear elastic
modulus
Static uniaxial
. +0. . +U. +0.
PDMS 1.26 £0.16 Mpa 0.342 +0.026 2.18 +0.184 MPa
Static uniaxial
LLDPE 3.33 +0.22 MPa 0.020 +0.000 166 £6.270 MPa
Table 2.2: PDMS dynamic elastic modulus — dynamic uniaxial test results
- Average
Test Omax Emax Dyn?mlc linear dynamic
elastic modulus
modulus
Dynamic 4 | 0.27+0.05MPa | 0.18 £0.015 | 1.49+0.143 Mpa
1.45 £0.250 MPa
Dynamic B 0.42+ 0.10 MPa 0.30 £0.002 | 1.39 £0.381 Mpa
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2.1.3 Poisson’s ratio analytical method

Poisson’s ratio is defined as lateral strain over longitudinal strain for a material
subjected to an axial load with resulting elongation [73,89]. The method used to
calculate Poisson’s ratio utilized true strain definitions from equation (2.3) to best
approximate the elastomer behavior of PDMS as shown below. Poisson’s ratio of

LLDPE was obtained from the literature search, and has a value of, v= 0.4.

Poisson’s ratio for elastomers:

AL (2.4)
Elateral LD + AL
VY = =
Elongitudinal AL
L,+AL

The average Poisson’s ratio of PDMS was 0.47 +0.028, for the entire range of axial true

strain.

2.1.4 Stress relaxation analytical method

Stress relaxation was quantified for PDMS uniaxial tensile specimens with
The following analytical method:

Stress relaxation time:
t (2.5)

log( ﬂ’—)
o

Where ¢ is the specimen loading time (sec) to initial stress o0y, and o is the selected stress

T =

test level [77]. Tests where 0y and o are the same value is characteristic of materials with
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long relaxation times; linear elastic materials and the elastomer linear elastic stress-strain

region. Table 2.3 displays the results for the two tests below.

Table 2.3: PDMS stress relaxation results

Test Emax | Test time (s) O o Relaxation time (s)
Stress _
Relaxation A | -39 60 s 1.0 MPa | 1.0 MPa 0.0s
Stress
Relaxation B | 60 60's 5.1 Mpa | 3.8 MPa 7.82's

2.1.5 Tan § analytical method
The tan & or loss factor for dynamic tensile specimens was analyzed by the

following method [77].
The loss factor given by the equation below [101]:

' 2.6
tan6=i=£, (26)
wt E

Where E’ is the real modulus, or storage modulus, in-phase with the stress and defined
as:
 WE @7
1+ w?t?)

1

and £ is the imaginary modulus, or the out-of-phase strain component, defined as:

wtE” (2.8)

C (l+w’T?)

E’ is the complex or dynamic modulus.
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Due to the amorphous structure, molecules of elastomer polymers readily slide
past each other, resulting in energy loss when these materials are dynamically loaded.
This effect creates a mechanical hysteresis loop. The measure of the energy lost is
defined as the tan d or loss factor [90]. The amount of energy lost may also be a function
of the amount of strain for these materials, given their strain crystallization behavior

[80,90]. The tan § as a function of frequency for PDMS was (tan é = 0.03 +0.015) for
the frequency range of 0.5 to 5 Hz.

2.1.6 Membrane analytical methods and models

Circular and square membrane data was analyzed with the following analytical
methods and models. Biaxial stress and strain definitions from the equations of large
deflection circular membrane theory discussed in section 1.2.1.2 were used to analyze
membrane experimental data. The Almansi true strain definition as applied to membrane
deflection theory in conjunction with spherical cap stress were used due to their accurate
approximation of the experimental systems, and are defined below:

Circular membrane biaxial stress:

PR (1.3)

g,=0, =—
RGN

Circular membrane Almansi biaxial true strain:

2 1.30
(Rsin“%) —aZ] (1-39)
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Applying the new Almansi biaxial true strain definition and biaxial stress, allows
the determination of the membrane biaxial modulus (M) and residual stress (0y). The
residual stress is due to membrane pre tensioning to eliminate sag during testing, and
appears as an offset in the biaxial stress-strain plots, where the slope of the plot is the
biaxial modulus [91]. The membrane elastic modulus may then be calculated from the
following equation [92}:

E
1-v)

Membrane biaxial modulus: M = (1.31)

rearranging for £ we get: E = (1 -V )M 2.9
Where E is the membrane elastic modulus.

Once the membrane elastic modulus and residual stress are determined, they may
be used in the circular and square analytical models. The models used to simulate the
experimental data of PDMS and LLDPE were as follows.

New circular membrane analytical model:
The new spherical cap model
[ a 2 1
Rsin™ —| -a°
E R
+0, |2t

1-v 2
Z(Rsin'l 3)
R

R

(1.34)

where,

2
R=_Z.+§; (135)
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Maier-Schneider et a/ square membrane analytical model:

t L
P=c, ‘Z(h)+c2(v)a4 (n) (1.36)
where ¢, =3.45 and
1.994[1-0.247
c,(v) = [ ()] (137)

(1-v)

The development of The new spherical cap model for circular membranes, as
shown in equation (1.34) and discussed in section 1.2.1.2, represents membrane
deflection as a function of membrane radius of curvature, and was used to simulate
PDMS and LLDPE circular membrane load-deflection experiments. Equation (1.36) by
Maier-Schneider et al is the analytical model used for square membrane experiment

simulation. Table 2.4 below displays the results from the circular membrane tests.

Table 2.4: Circular membrane biaxial stress-strain and modulus results

Material OxxMax €xxMax M E Oy
PDMS 0.427 MPa 0.21 2.03 MPa | 1.08 £0.250 MPa | 0.038 Mpa
LLDPE 2.75 MPa 0.020 127 MPa | 76.0 +6.110 MPa | 0.427 MPa




Chapter 3
Results

3.1 Tensile tests
3.1.1 Static uniaxial testing of PDMS and LLDPE

Data from the B sample static uniaxial tests, analyzed using Euler and Cauchy
true stress and true strain for PDMS and LLDPE, yielded an elastic modulus of 2.18
+0.184 MPa, up to a strain of 0.375 for PDMS, and an elastic modulus of 166 +6.270
MPa for LLDPE. The behavior of the stress-strain curve shown in Fig. 3.1 for PDMS, is
nearly linear for low stress values at or below 1.25 MPa, representing the elastic stress-
strain region. This behavior agrees with published results for elastomeric polymers
[82,90,93,98,100]. A fifth order approximation of the non-linear performance of PDMS
in uniaxial tension is also given in Fig. 3.1, and was chosen as a best fit approximation.
The stress—strain curve of LLDPE in Fig. 3.2 depicts typical polyolefin plastic behavior.
There is not a straight line for the initial section of the curve, therefore as a standard
linear approximation, a secant is drawn from the origin to where the curve intersects 2%
strain to obtain an elastic modulus value [81,94]. The elastic tensile modulus also falls
within the range of tensile modulus values of 50 — 300 MPa for LLDPE, giving
confidence in both PDMS and LLDPE experimental test procedures and results [94,104].

55
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x10° PDMS, Static uniaxial tension - true stress vs true strain
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Fig. 3.1. - Stress-strain curve (true strain), and elastic modulus for PDMS tested in static uniaxial tension.
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Fig. 3.2 - Stress-strain curve (true strain), and elastic modulus for LLDPE tested in static uniaxial tension.
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Table 3.1 below gives a summary of the PDMS and LLDPE elastic modulus
values. Non-linear approximations of PDMS stress-strain may be made utilizing the fifth

order equation in Fig. 3.1.

Table 3.1.: PDMS and LLDPE elastic modulus — static uniaxial test results

Linear elastic

Test Omax Emax
modulus

Static uniaxial
PDMS 1.26 £0.16 Mpa 0.342 +0.026 2.18 +0.184 MPa

Static uniaxial
LLDPE 3.33 +0.22 MPa 0.02 +0.000 166 £6.270 MPa

3.1.2 Dynamic uniaxial testing of PDMS

Dynamic testing of samples 4 and B was done in two groups respectively, to
observe the effects of varying sample size and initial strain on the mechanical properties.
A Students t-test was performed on the two groups and yielded an o = 0.0763, which
determined that the elastic modulus of the two groups were not statistically different.
Fig. 3.3 shows a typical plot of stress versus strain for the dynamic tests, where an A
sample was cycled sinusoidally between true strains of 0.155 and 0.185 at 1.0 Hz. The
shape of the plots depicts mechanical hysteresis loops for the 4 samples, with the open
center areas in the plots representing the amount of energy lost, per volume of material,
during cyclic loading [82]. The size of the hysteresis loop is a visual representation of
the magnitude of the loss factor or tan 8. The two plots correspond to true and
engineering strain as defined by Cauchy and Green respectively, and display the

differences that may be encountered analyzing non-Hookian materials [74].
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Fig. 3.3 - Dynamic testing stress-strain plot

Dynamic testing of the 4 samples was done at an initial strain of 0.17 oscillating =1mm
of displacement about that point at frequencies from 0.5Hz to 5Hz, yielding strain rates of
£ = 0.086/sec to 0.86/sec, and an elastic modulus of 1.49 +0.143 MPa. Testing of the B
type samples was performed at an initial strain of 0.37 oscillating +5mm of displacement
about that point at frequencies from 0.5Hz to 5Hz, yielding strain rates of £ = 0.115/sec
to 1.16/sec, yielding an elastic modulus of 1.39 £0.381 MPa for the smaller PDMS
dynamic test samples. Fig. 3.4 displays the elastic modulus for both dynamic tests versus
frequency. An average elastic modulus of 1.45 MPa +0.250 MPa was obtained. Over the
strain rates tested, the modulus of PDMS appears to be independent of strain rate for the
given strain range and test frequencies. Table 3.2 below summarizes the dynamic

modulus results between the 4 and B samples for PDMS tested in the linear elastic

region.
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Table 3.2.: PDMS dynamic elastic modulus — dynamic uniaxial test results

Dynamic linear Average

Test Omax Emax yna dynamic
elastic modulus

modulus

Dynamic A | 0.27x0.11 MPa | 0.18 £0.003 | 1.49+0.143 Mpa
1.45 £0.250 MPa

Dynamic B | 0.42+0.11 MPa | 0.30 £0.0006 | 1.39 +0.381 Mpa

3.0E+6 1
2.5E46

2.0E+6 -+

1.5E+6 - /Eb E = 1.45MPa

\m,/ 1t E=

E (MPa)

1.0E+6

5.0E+5 -1

0.0E+0 T T T T v 1
o] 1 2 3 4 5 6
Frequency (Hz)

Fig. 3.4. - Elastic modulus versus Frequency for PDMS 4 ([J) and B (O) samples (E = 1.45 £0.250 MPa)

Fig. 3.5 displays the tan & of the PDMS A samples versus frequency as (tan 6 = 0.03
+0.015) for the frequency range of 0.5 to 5 Hz. This result agrees with published tan &

results for elastomers at room temperature [96].
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Fig. 3.5. - tan § versus Frequency for PDMS 4 samples (tan é = 0.03 £0.015)

3.1.3 PDMS Poisson’s ratio (v)

Axial and lateral displacement data from Poisson’s ratio testing was analyzed
using true strain. Fig. 3.6 shows the Poisson’s ratio of PDMS to be a constant value of
0.47 £0.028, for the entire range of axial strain. This value is well above the Poisson’s

ratio for most metals and agrees with Poisson’s ratio values for elastomers [82,96].
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Fig. 3.6. - Plot of PDMS Poisson’s ratio versus Axial strain (v = 0.47 +0.028)

3.1.4 Stress relaxation and deformation of PDMS

Stress relaxation and deformation tests of B type tensile specimens of PDMS were
performed. This was done to observe the initial stress relaxation in specimens strained to
30%, & = 0.3/sec and 60%, § = 0.6/sec true strain, to aid in confirming the validity of
the test setup for membrane deflection measurement; stepped static pressurization with
deflection measurement. Average stress relaxation times were determined for strain
levels of 30% and 60%, inside and outside the linear regions of the stress-strain curve for
PDMS, respectively. Full stress relaxation times were not determined due to the sample
testing time being limited to 60 seconds. Samples strained to 30% with a testing stress of
1.0 MPa had no detectible difference between the initial stress and the test stress for the
60 second test, Fig. 3.7, see table 3.3 [77,90]. This suggests that there is minimal
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molecular motion in the samples, resulting in a long relaxation time for PDMS at this
strain level. For samples strained to 60% true strain the initial stress was much higher
than the testing stress, thus yielding an relaxation time of 7.82 seconds with no noticeable
change thereafter, Fig. 3.8, which suggests a long relaxation time for PDMS at 60% strain
as well. The apparent long relaxation time for PDMS at the tested stress and strain levels
suggest that the static pressurization and deflection method used for membrane testing is
valid, as the resulting strain for those tests was ~ 20% true strain for the membranes
tested. Complete stress relaxation values for PDMS under these test conditions would
have required the tests to be carried out over a much longer period of time to achieved
accurate stress relaxation values. However, this test provides sufficient information to
validate the membrane deflection measurement method. Figure 3.9 displays a decaying
exponential fit for the stress relaxation curve at a true strain of 0.6, which enables the
extrapolation of longer relaxation times if desired. Table 3.3 summarizes the stress
relaxation results.

Stress deformation was investigated for the samples tested at a true strain of 0.6
only, due to the large strain level and difference in the testing and relaxing stresses. This
was done to determine the relative amount of permanent plastic deformation in the
samples from the test and the ability of the samples to recover over time. The average
total plastic deformation of the 24mm B samples tested was 0.135mm +0.022mm, which
is approximately 0.5% total elongation. Figure 3.10 displays the plasic deformation in
relation to the sample initial length of 2dmm. A decaying exponential fit is also shown in
Fig. 3.10, which enables the determination of selected time or deformation values. The
large standard deviations in Fig. 3.10 are due to the inaccuracy of measuring sample total
length with manual calipers. Some error may have also been introduced to sample total

length by the gripping technique compressing the ends of the samples during testing.
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Fig. 3.7. - Plot of PDMS stress relaxation at true strain = 30%
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Fig. 3.9 - Plot of PDMS stress relaxation at true strain = 60%
Decaying exponential curve fit: o= 0 exp (-/t), where tv="7.82 seconds
Table 3.3.: PDMS stress relaxation results
Test €max Test time (s) O (o] Relaxation time 7t (s)
Stress
. 0.30 60s 1.0 Mpa | 1.0 Mpa 0.0s
Relaxation A P P
Stress
0.60 60 s 5.1 Mpa | 3.8 Mpa 7.82s

Relaxation B
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PDMS, B sample deformation from true strain = 0.6
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Fig. 3.10. - Plot of PDMS stress deformation at true strain = 60%

Decaying exponential curve fit: Y = Y, exp (-t/t), where T = 7.1E4 seconds

3.2 Membrane tests

Data from the circular and square membrane bulge test experiments for PDMS
and LLDPE depict the characteristic curves of load—deflection mechanical response for
these membranes. Fig. 3.11 and 3.12 display the experimental results for the circular and
square membranes tested in the membrane block for the PDMS and LLDPE films. Three

sets of membranes, circular and square, were tested for each material.
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Fig. 3.11 and 3.12, display typical circular and square membrane load-deflection
mechanical response of the membranes tested. The error bars indicate the standard
deviation at each point. The square membranes have larger deflection uniformly
throughout the loading range compared to the circular membranes, at the same pressure,
due to dominating membrane tensile mechanics coupled with the greater area of the

square membranes.

3.2.1 Membrane biaxial stress-strain

Circular membrane experimental data analyzed with large deflection membrane
theory was used to develop biaxial stress-strain plots. Pressure and deflection values
were converted to stress and strain by using the Almansi true strain definition and
equations (1.3) and (1.30) respectively, as discussed in section 2.1.6. Fig. 3.13 and 3.14
are biaxial stress-strain plots for representative PDMS and LLDPE circular membrane
samples. From these plots it is possible to determine the amount of residual stress in the
membrane, added during loading of the film, and the biaxial modulus at the center
deflection point of the membrane [70,91]. A standard linear curve fit with the equation

of a line in the form of*

y=mx+b

yields m as the slope, or the biaxial modulus (M), and b the y-offset as the residual stress
(00)-
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Analyzing the experimental data in this manner allows the determination of the
elastic modulus (E) from the biaxial modulus (M) utilizing equation (2.9). The elastic
modulus (E) and the residual stress (oy) are useful input values for circular and square
membrane analytical models. The plot for LLDPE was limited to 2% strain to remove
the effects of plastic deformation in the determination of the membrane elastic modulus
[94]. Table 3.4 contains biaxial stress-strain average elastic modulus and residual stress

values for the PDMS and LLDPE circular membrane samples tested.

Table 3.4.: Circular membrane biaxial stress-strain results

Material 0xxMax 8xxMax M E O'o

PDMS | 0.427MPa | 0.21 2.03 MPa | 1.08 £0.250 MPa | 0.038 Mpa

LLDPE | 2.75MPa | 0.020 127 MPa | 76.0+6.110 MPa | 0.427 Mpa

3.2.2 Membrane analytical Models

Circular and square membrane analytical model results were developed using
Matlab, and were designed to simulate the experimental membrane tests. For circular
membranes The new spherical cap model was used, while the Maier-Schneider et al
model was used for square membranes. The new spherical cap model 1s designed for
materials capable of large elongations, while the Maier-Schneider et al model is designed
for more traditional linear elastic materials. Elastic modulus and residual stress data from
the biaxial stress-strain tests was input to meet model material property and test condition

requirements.
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3.2.3 Circular membrane analytical models

Fig. 3.15 displays PDMS bulge test experimental results from a sample circular

membrane and compares the results to a number of membrane analytical models.

X 10‘3 PDMS membrane large deflection theory, E=1.272MPa, Rs=0.034MPa
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Fig. 3.15. - PDMS bulge test experiment simulated with different models

The new spherical cap model provides the best fit to the PDMS membrane
experimental data compared to the other analytical models. The same comparison of
experimental results and analytical models was done for an LLDPE membrane as shown

in Fig. 3.16, with the same result.
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X 10‘3 LDPE membrane large deflection theory, E=72MPa Rs=.55MPa
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Fig. 3.16. - LLDPE bulge test experiment simulated with different models

While the new spherical cap model best represents the PDMS circular membrane
of all models compared, with large differences clearly seen between the models, the same
comparison for the LLDPE membrane yields less discrepancy between the models. The
alignment of the models for the LLDPE membrane experimental results is due to the
much reduced amount of strain in the LLDPE membrane, gx = 0.0275 ,compared to, €
= 0.18, for the PDMS membrane, see table 3.4. This substantiates the fact that initial
membrane theory was developed for linear elastic materials, and that it is inadequate for
simulating materials capable of large non-plastic elongations. Fig. 3.16 also shows the
ability of the new spherical cap model to approximate more crystalline material model
performance, thus providing a new circular membrane deflection model for potential use

with all material types. Fig. 3.17 and 3.18 display the new circular membrane deflection




analytical model fit to experimental data for PDMS and LLDPE circular membranes.
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Fig. 3.17. - PDMS analytical model fit to circular membrane bulge test experimental results.
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Fig. 3.18. - LLDPE analytical model fit to circular membrane bulge test experimental results.
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The analytical results compared to the experimental bulge test data from PDMS
and LLDPE circular membranes agree well for the systems investigated. However, the
LLDPE circular membranes plastically deformed during the experiment as they were
loose upon release of pressure, while the PDMS membranes remained taught, indicatiﬁg

no noticeable deformation.

3.2.4 Square membrane analytical model

The Maier-Schneider et al square membrane analytical model was used to
produce analytical results for comparison to PDMS and LLDPE square membrane bulge
test experimental data. This is the most accurate square membrane theory to date from
the literature search conducted herein. Development of a new square membrane theory
for elastomeric materials requires further research due to the complexity of the physical
system. Elastic modulus (E) and residual stress (op) values generated from the biaxial
stress-strain tests were input to the square membrane analytical models for analysis. It
was assumed that the residual stress was the same for both circular and square
membranes as assembled in the membrane block. Fig. 3.19 and 3.20 display the
theoretical results in comparison to the experimental data. The analytical model results
for the PDMS square membrane do not agree well with the experimental data. This is
most likely due to the theory having been developed for linear elastic materials, as
opposed to elastomeric materials such as PDMS, which have the ability to achieve great
elongations ~ 600% without plastically deforming. Fig. 3.19 most resembles the
performance of the PDMS circular membrane results analyzed with the spherical cap
analytical model as displayed in Fig. 3.15. Thus showing a similarity between the square
analytical and original spherical cap models, and their inability to accurately simulate the

experimental results.
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Fig. 3.19. - Square analytical model fit to PDMS square membrane bulge test experimental results.
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Fig. 3.20. - Square analytical model fit to LLDPE square membrane bulge test experimental results.
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The Maier-Schneider et al analytical model agrees well with LLDPE membranes;
a more linear elastic material with smaller elastic deflections, for the square membrane
experimental data of this system, up to a pressure of ~ 6.5 KN/m?, or a biaxial strain of

£ = 0.0275.




Chapter 4

Discussion

The main focus of this thesis was the investigation of the tensile mechanical
properties of PDMS and large deflection membrane theory, in an effort to provide more
accurate tensile mechanical material properties and analytical membrane models for
MEMS application design with PDMS. The discussion is comprised of a comparison of
data from the tensile and membrane tests, the experimental bulge test data, the analytical
model results, and other researcher’s published results. The areas of interest for the
discussion are the tensile mechanical material properties; elastic modulus (E), tan §, and
Poisson’s ratio (v), for polydimethylsiloxane (PDMS) and linear low density
polyethylene (LLDPE). The analytical membrane theories and how they describe the
systems and materials tested is also discussed. Finally, a table is given summarizing the

polydimethylsiloxane (PDMS) tensile mechanical properties from this work.

4.1 Comparison of data

4.1.1 Tensile test versus Membrane test

Tensile testing as a method of material characterization is well established in
fields of science and engineering for materials with crystalline molecular structure, such

as steel and aluminum. The material properties and stress-strain relationships for
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materials of this type are well documented, as many of these materials are used in
engineering design, resulting in industrial application. Therefore, it is paramount that the
material properties be well characterized for designers to properly select and accurately
predict material performance for a given application. Numerous test methods have been
developed and standardized to obtain accurate material property data for a variety of
materials. The standard tensile test (ASTM E8) for determining the stress-strain
relationship of steel is an industrial standard and a universally accepted test method [97].
A similar test method for tensile testing elastomers, standard (ASTM D 412-98a), was
used herein to develop the tensile mechanical properties of PDMS and LLDPE, see
section 2.1. Both tests make use of dumbbell specimen uniaxial tension elongation with
end gripping. While these tensile methods are similar, there are inherent differences in
the materials, which limit the usefulness of the elastomer stress-strain data. Due to the
amorphous molecular structure of PDMS, grip end effects and test strain rate have a
profound effect on the stress-strain relationship developed during testing. The main
function of dumbbell specimen design is to focus the tensile load on the necked section of
the dumbbell, away from the grips. For accurate results a contact or optical extensometer
is commonly used in the necked section to provide localized strain measurements,
therefore isolating grip end effects [102]. While the use of an extensometer is practical
for crystalline materials, their use for testing elastomers is difficult due to the amorphous
molecular structure, thus contributing to the difficulties of elastomer material
characterization. Therefore, tensile elongation and strain were measured from grip end
displacement. For PDMS elastomer specimens, as the elongation and strain increase
during the tensile test, the ends of the dumbbell begin to deform. Deformation of this
type is clearly evident in Fig. 2.5, as compared to the initial specimen shape as seen in
Fig. 2.1 and 2.5. This phenomenon is a function of the dumbbell geometry, strain rate,
and amount of tensile elongation. Fig. 4.1 below, depicts the typical stress-strain curve of

a tested B type PDMS uniaxial tensile specimen.
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Fig. 4.1. - Stress-strain relationship and Elastic Modulus for PDMS tested in uniaxial tension. Non-linear
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This is a fairly characteristic curve for an elastomer material [82,90]. However,
the PDMS curve appears to have distinct linear and non-linear regions, which is similar
and yet different from the curve for rubbery elastomers shown in Fig. 4.2 [82]. This may
be due to test specimen end effects, the gripping technique, or the test strain rate &=
0.8/sec, but is most likely the inherent molecular structure elastic response specific to
PDMS. The PDMS linear region tensile modulus, £ = 2.18 MPa, generated from the
static and dynamic uniaxial tensile tests performed. The PDMS loss factor, tan 6 = 0.03,
and Poisson’s ratio v = 0.47. Poisson’s ratio is in close agreement with published results
for PDMS of the same consistency, while the tan § value is unique to this work, but
acceptable for a material of this type [96]. In general, the results presented may be
affected by the manual difficulties in performing these tests combined with test strain
rate, and specimen end effects, respectively. This made clear the need for a comparative
test with a different material.

The LLDPE tensile tests had a much different result. The specimen end effects
were much less of a factor as specimen deformation occurred only in the necked region.
This was most likely due to the more deformation resistant crystalline molecular structure
of LLDPE [81]. The LLDPE linear region tensile modulus, £ = 166 MPa, generated
from the static uniaxial tensile tests performed. This result is within the published range
of values £ = 50 — 300 MPa for all Polyethylenes [104], and is appropriate for LLDPE
within that range, thus giving more confidence in the static uniaxial testing results of both
materials.

Membrane testing, or bulge testing, was conducted to investigate the load-
deflection mechanical response of PDMS circular and square membranes for MEMS
applications. Further research made clear the use of the bulge test to derive the elastic
modulus and membrane residual stress from material films. This gave further elastic
modulus comparison information. Bulge testing is an easy test to conduct, using sheet
film materials and the specially fabricated membrane block, as discussed in section 2.1.6.
Many of the difficulties and potential errors associated with elastomer uniaxial tensile

testing previously mentioned are not encountered in the bulge test. The simplicity of the
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test combined with the ability to derive the test material elastic modulus and residual
stress makes the bulge test a favored test method, and useful for result comparison.
Biaxial stress-strain plots were made from PDMS and LLDPE circular membrane load-
deflection experimental data, and the membrane elastic modulus and residual stress
derived, see sections 2.2.6 and 3.2.1. Table 4.1 below compares the tensile and

membrane test results.

Table 4.1: Comparison of tensile and membrane elastic modulus results

Material Test Omax Emax E
Tensile 1.26 +0.16 Mpa | 0.342 =0.026 | 2.18 £0.184 MPa
POMS Membrane | 0.45 £0.03 MPa | 0.180 £0.060 | 1.08 +0.250 MPa
Tensile 3.33 £0.22 MPa | 0.020 =0.000 | 166 £6.270 MPa
LLDPE

Membrane | 2.75 20.15 MPa | 0.020 £0.000 | 76.0 £6.110 MPa

From table 4.1, there is a substantial amount of difference between the results of
the tensile tests and the membrane tests conducted herein. However, considering the
difficulties associated with polymer mechanical testing and the rather unsophisticated
deflection measurement techniques employed, the results are not only within reason, but
are very close to published elastic modulus values for these materials, see table 4.2. The
elastic modulus values of the membrane and static uniaxial tensile tests have a similar
variance in this comparison under the same test conditions for both materials. This is
most likely due to the greater strain rate dependence of the uniaxial tensile tests. This
problem is attributed to the amorphous molecular structure of both materials. The
membrane tests are a more static test, reducing strain rate dependence, and providing a
simple and more accurate elastic modulus testing method, for similar static applications
of these materials. The differences in the elastic modulus results for the same material,
display the varying “elastic” performance of these materials, due to their molecular

structure.
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4.1.2 Analytical results versus Experimental membrane results

Fig. 4.3, displays PDMS bulge test experimental results from a sample circular
membrane and compares the results to a number of membrane analytical models. There
is a large variation in the results produced by each model as compared to the
experimental results, therefore underlining the need of the development of the new
spherical cap model. The differences between these models is in the fundamental
membrane strain definition and how it is applied as a function of the radius of curvature
of the membrane load-deflection equation; as defined in the circular membrane

mechanics section 1.2.1.2.

x10° PDMS membrane large deflection theory, E=1.272MPa, Rs=0.034MPa
8 T T T T T T T T
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Fig. 4.3 - PDMS bulge test experiment simulated with different models
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The new large deflection theory, The new spherical cap model, based upon the
Almansi true strain definition is clearly the analytical model that best describes the load-
deflection response of PDMS circular membranes as displayed by the experimental data,

Fig. 4.4.

X 10° PDMS Circular Membrane - Almans) strain, E=1.272MPa, Rs=0.034MPa
8 T T T T T T T T
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i

Fig. 4.4 - PDMS analytical model fit to circular membrane bulge test experimental results.

The same analytical model comparison of Fig. 4.4 was done with LLDPE
membranes, Fig. 4.5. This comparison shows much less difference between the
analytical models for LLDPE. This is most likely due to the smaller strain level in the
LLDPE membrane compared to the PDMS membrane. There is good agreement with the
analytical and experimental results for LLDPE. Given the apparent ability of the new
spherical cap model to approximate both amorphous and semi-crystalline material bulge

test performance, use with all material types is proposed as a new universal circular
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membrane deflection analytical model. Further testing and validation is needed to prove

this proposed application.

x10° LDPE membrane large deflection theory, E=72MPa Rs=.55MPa
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Fig. 4.5 - LLDPE bulge test experiment simulated with different models.

The analytical model results for the PDMS square membrane do not agree well
with the experimental data, Fig. 3.19. This is most likely due to the theory having been
developed for crystalline materials, instead of amorphous elastomeric materials such as
PDMS, which have the ability to achieve great elongations ~600% without plastically
deforming. There is better agreement between the analytical and experimental results for
the LLDPE square membrane, Fig. 3.20, confirming the functional pairing of a correct
strain model and material. Further research is needed to develop a square membrane

large deflection model for elastomeric materials.
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4.2 Comparison of PDMS results versus other researcher’s results

Polydimethylsiloxane, silicone rubber, and other similar elastomers have
seen increasing use in the field of MEMS [7-30]. The advantages polymers offer in
processing flexibility and material property manipulation are main criteria for there
selection. The use of polymers in MEMS micro fluidics and other MEMS membrane
applications has prioritized the need to characterize elastomer material mechanical
properties and resulting behavior in mechanical systems. Many groups have investigated
characterizing the mechanical properties of PDMS, and have used PDMS for varied
MEMS applications. Similar polymers, such as Parylene, low density polyethylene, and
numerous commercially available RTV silicone rubbers have also been investigated. For
these assorted polymers, each demonstrates very similar membrane load-deflection
behavior from the results presented, which is characteristic for low modulus polymer
materials, Fig. 3.15 [7,8,9,10]. However, no group has specifically investigated PDMS
circular and square membrane load-deflection mechanics and the material properties
derived. PDMS membranes are desirable for MEMS actuator applications for their large
displacement capability due to the molecular structure of PDMS. Therefore it is required
to have accurate material property data for a specific PDMS process to realistically
simulate PDMS membrane actuator performance. For this investigation a common
mixing ratio (10:1 base to activator), or cross-link polymerization ratio, and curing
process was used. Varying batch polymerization results may be easily obtained from
addition cure RTV polymers, due to the process dependent polymer cross-linking. It is
this feature of elastomers that makes them very useful, as well as frequently ubiquitous
from a mechanical property perspective. Table 7 displays PDMS material property
results from this work and from other research groups [84,98,99,100]. Varied
fabrication, testing, and analysis methods were used to obtain these contrasting results for

PDMS.



Table 4.2 - PDMS Mechanical Property values from various Research groups
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Research group E Test type Tan 6 v
Lotters et al, 1997 0.75 Mpa Shear <<0.001 -
Armani et al, 2003 0.75 Mpa Beam bending - 0.5

Yang et al, 1999 0.51 Mpa Membrane - -

Hosokawa et al, 2001 | 2.20 Mpa Tensile static - 0.5
Qi et al, 2000 1.99 Mpa Tensile static - 0.49
2.18 Mpa Tensile static 0.03 0.47
This work, 2004 1.45 Mpa | Tensile dynamic - -
1.04 Mpa Membrane - -

Comparing these elastic modulus values for PDMS, there is confidence in the

results generated from this work, given their close proximity and uniformity. The PDMS

circular membrane test results have less dynamic components and strain rate dependence

than the uniaxial static and dynamic tensile test results, and fewer testing difficulties.

This may explain some of the variation in the tensile test results in table 4.2. The circular

membrane test is a more accurate method for determining the elastic modulus of PDMS

for static tensile applications, while the dynamic test values are more suited for

applications similar to those tests. It is this strain dependent behavior that makes PDMS

and other polymers perform differently in varying applications [94]. These phenomenon

should be considered when designing applications for the use of PDMS and similar

polymers. This work agrees closely with other published test techniques and their results.




Chapter 5

Conclusions

The elastomer polymer Polydimethylsiloxane (PDMS) is a material that has
become very popular for MEMS applications due to its processing and material property
flexibility, low cost, and availability. However, it is a ubiquitous material from
processing, material property characterization, and performance perspectives.

Many PDMS processing techniques exist which ultimately influence the material
properties and resulting application performance [84]. It is the relationship between the
processing technique and the polymerization reaction that determines the amount of
cross-linking and the resulting polymer material properties. Monomer base to catalyst
activator ratio forms the basis of the amount of polymerization. For this work a common
base to actuator ratio of 10 to 1 parts by weight was used. Variable polymerization is
generally a good phenomenon, increasing application flexibility through customizing
material properties, it may also add difficulty in the ability to reach or maintain consistent
material properties and application performance. There may be variance in polymer
material properties from batch processing, not only due to the process itself, but in the
raw materials supplied; the two part monomer and catalyst components of the polymers
themselves, and what manufacturer is being used. PDMS has a manufacturer
recommended shelf life of approximately six months. This is due to the PDMS monomer
base polymerizing over time with vibration, exposure to heat and oxygen [83].

Therefore, it is recommended that PDMS be stored in a sealed container in a cooled,
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stable environment. Once polymerized or fully cured, PDMS may be considered inert,
changing only with exposure to extreme temperatures (-60° C to 300° C in air) and
swelling with exposure to some solvents [80].

The polymerized molecular structure of PDMS is considered amorphous and
changes with strain, going from amorphous to semi-crystallization, compounding the
difficulties of material characterization and introducing strain rate dependence in testing.
This change in structure occurs through alignment of the polymer chains in the loading
direction [80]. It was found that this material behavior had numerous impacts upon
tensile tests and results. Initial difficulties were encountered with specimen loading in
the tester grips, while during testing specimen end effects and slippage may have
contributed erroneously to the results. The molecular structure of PDMS also yielded
distinct linear and non-linear stress-strain regions in uniaxial tensile test results. The
linear region modulus of PDMS from static uniaxial tensile testing was, £ = 2.18 MPa up
to a true strain € = 0.342, the stress-strain curve becoming non-linear after that point with
significant strain crystallization, failure was not attained. The PDMS linear elastic
modulus is a higher value than published results, most likely due to the strain rate of the
test, and the true stress and true strain analysis used to simulate the material behavior. To
obtain a more accurate uniaxial tensile modulus, static uniaxial testing should be done
with extensometers. The results generated from the dynamic uniaxial tensile tests were
an average, E = 1.45 Mpa for the 4 and B samples. This test gives a more realistic “in-
situ” elastic modulus value for PDMS. The lower modulus value may be due to stress
conditioning of the material during the cyclic testing [80]. This varying range of the
PDMS elastic modulus displays the strain dependent behavior that makes PDMS and
other polymers perform differently in varied applications [94]. These phenomenon
should be considered when designing applications for the use of PDMS and similar
polymers. The LLDPE tensile tests were also dependent upon strain rate and end effects.
LLDPE yielded an elastic modulus of, £ ~ 166 MPa, an acceptable value for LLDPE,
thus validating the test procedure and confirming the PDMS results.
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Heat was generated by the PDMS molecules sliding past each other during tensile
testing, and was most significant in the dynamic uniaxial tensile tests as the specimens
were cyclically strained, strain energy was lost in the form of heat. This energy loss was
quantified by the loss factor or tan § = 0.03 over a test frequency range of 0.5 Hz, 1.0
Hz, 2.0 Hz, 3.0 Hz, 4.0 Hz, and 5 Hz., which is an appropriate value for a low loss rubber
up to 100 Hz [96]. Poisson’s ratio using video dimensional analysis was found to be, v =
0.47.

Bulge testing of PDMS circular and square membranes was performed to
investigate their mechanical load-deflection performance for MEMS applications. The
bulge test is a static mechanical test that is easy to perform and yields membrane elastic
modulus and residual stress results. Through in depth investigation of circular membrane
deflection theory and PDMS experimental results, a new circular membrane analysis and
large deflection theory was developed; The new spherical cap model. Biaxial stress-
strain analysis, as defined below as a function of membrane radius of curvature, enable

the derivation of the elastic modulus and residual stress of circular membranes.

2
Membrane radius of curvature, R = —;i+ ;—h (1.5)
. .. PR :
Circular membrane biaxial stress, 0,, =0, = > from equation (1.3).
a 2
(R sin™ E) - az}
Circular membrane Almansi biaxial true strain, £ =¢, = (1.30)

yy a 2
Z(R sin™ ——)
R

The elastic modulus and residual stress values for PDMS circular membranes were found
to be, E = 1.08 MPa and o) = 0.038 MPa, which agree with published results. These

elastic constants may then be used in the new large deflection circular membrane theory.
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The new spherical cap model:

2
E (Rsin"%) -a’
1-v .. 4a g
2| Rsin™ —
R

P- - (1.32)

+0, 2t

The new spherical cap model provides an accurate elastomer circular membrane
load-deflection analytical model. Application of this model to semi-crystalline material
circular LLDPE membranes produced results indicating the use of this new theory for
small and large deflecting materials. The square membrane theory of Maier-Schneider et
al approximated the experimental results of LLDPE very well, but poorly for PDMS.
MEMS applications that may benefit from this new theory are, aerodynamic control
membrane actuators for jet aircraft, micro mirrors mounted on polymer membrane
structures for optical coherence tomography applications, and in-situ semiconductor
CMOS thin film material testing. Applications may also include the investigation of
biological material properties, and nondestructive material testing.

Further research may include, the application of The new spherical cap model
universally for all material types in the bulge test, and the development of the Almansi

true strain definition for square membrane theory for use with elastomers.



Appendix A

Experimental data

A.1 Uniaxial tensile test data description

Tensile test data was collected in real time with the MTS data acquisition system
and saved to data files, specimen.dat, for each sample tested. These files were then
edited to remove headings to provide 3 columns of the collected experimental data; time,
axial displacement, axial force, for analysis with Matlab. Typically these files contain
data collected at 1 millisecond intervals. The data described was collected for the static
and dynamic uniaxial tests, as well as the stress relaxation tests. Examples of the test

data files and analysis files are shown in part below.

A.1.1 MTS specimen.dat test data file; example

MTS793MPT/ENU|1]2].|/|:|1]0[0]A

Data Acquisition Time: 10.443115
Sec

Time Axial Displacement Axial Force

Sec mm N

0.16430664 -0.0033624831 -0.0083912509

0.17431641 -0.001680776 0.0041976348

0.18432617 -0.001680776 0.0041976348

0.19433594  0.030271659 0.02517911

0.2043457  0.43051797 0.0083939293

0.21435547 0.99557155 -0.0083912509
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A.1.2

0.22436523 1.2865069  0.016786519
0.234375 1.446269 0.075534649
0.24438477 1.8162446  0.071338356
0.25439453  2.2770324  0.041964289
0.2644043  2.5763762  0.046160586
0.27441406 2.8000433 0.058749467
0.28442383 3.1532018  0.054553177
0.29443359 3.4962702  0.02517911
0.30444336 3.4004128  0.067142054
0.31445313 3.1498384  0.10071243
0.32446289 3.2137432  0.092319831
0.33447266 3.4155481 0.041964289
0.34448242 3.3785505 0.046160586
0.35449219 3.2053347  0.054553177
0.36450195 3.215425 0.071338356
0.37451172  3.3566883 0.062945768
0.38452148 3.3802323  0.075534649
0.39453125 3.2911017  0.083927236
0.40454102 3.2524226  0.067142054
Edited specimen.dat file for Matlab analysis; example
1.3674316 10.007325  2.6006777
1.3774414 10.00229 2.5922909
1.3874512 10.014039  2.5964844
1.3974609 10.03586 2.5964844
1.4074707 10.039217  2.5922909
1.4174805 10.03586 2.6132579
1.4274902 10.03586 2.6132579
1.4375 10.047609  2.6174512
1.4475098 10.05768 2.6174512
1.4575195 10.061037  2.6216447
1.4675293 10.054323 2.6342247
1.4775391 10.06943 2.6174512
1.4875488 10.074466  2.6132579
1.4975586 10.074466  2.6216447
1.5075684 10.079501 2.6132579
1.5175781 10.089572  2.6090646
1.5275879 10.087893 2.6174512
1.5375977 10.09125 2.6174512
1.5476074 10.101322 2.6174512
1.5576172 10.103001 2.6132579
1.567627 10.106358 2.6174512
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1.5776367
1.5876465
1.5976563
1.607666
1.6176758
1.6276855
1.6376953
1.6477051
1.6577148
1.6677246
1.6777344
1.6877441
1.6977539
1.7077637
1.7177734
1.7277832

10.116428
10.121464
10.121464
10.128179
10.138249
10.136571
10.146642
10.149999
10.153356
10.158392
10.168463
10.173498
10.178534
10.186926
10.193641
10.195319

A.2 Poisson’s ratio tést data

2.6132579
2.6216447
2.6258378
2.6216447
2.6174512
2.6258378
2.6300311
2.638418
2.6258378
2.6258378
2.6258378
2.6174512
2.6342247
2.638418
2.6300311
2.6216447
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Poisson’s ratio testing of PDMS was done by collecting three sets of uniaxial

notation g/ stands for sample gauge length or original length.

Table. A.1 —PDMS Poisson’s ratio data set A

Test A

glitx=19.45mnyix=4.33mm

gly=8.45mm

gldis mm X dismm Y dismm Force (N)
0 4.3 7.8 0.00
4 5.3 7.2 2.20
8 6.2 6.6 3.60
12 6.5 6.2 4.93
16 7.2 5.8 6.38
20 8.0 5.6 8.25
24 8.7 5.3 10.32
28 9.5 5.2 13.00
32 10.0 5.0 14.70
36 11.0 4.2 16.60
40 11.4 4.6 18.25
44 11.8 4.6 19.58
48 12.5 4.2 20.80

No failure in

displacement data. Video dimensional analysis was used to measure axial displacements
as the samples were incrementally displaced. Data was recorded manually; cross head

displacement, sample axial displacement, sample width displacement, and load. The



Table. A.2 — PDMS Poisson’s ratio data set B

TestB
gItx=19.25mm gIx=5.42mm_ gly=7.80mm
gldis mm X dis mm Y dis mm Force (N)
0 5.4 7.6 0.00
4 6.9 6.9 1.90
8 7.7 6.2 3.37
12 8.3 6.0 4.70
16 9.5 5.4 6.24
20 10.7 5.3 7.88
24 11.9 5.0 9.89
28 12.9 4.7 12.66
32 14.0 4.5 14.60
36 14.2 4.3 16.25
40 15.2 4.2 18.40
44 15.7 4.2 20.06
48 16.4 4.1 21.50

No failure in sample

Table. A.3 — PDMS Poisson’s ratio data set C

Test C
1tx=19.40mm glx=4.33mm_ gly=7.65mm
gldis mm X dis mm Y dis mm Force (N)

0 3.8 7.3 0.00
4 4.7 6.6 2.07
8 5.8 6.1 3.45
12 6.2 5.7 4.78
16 7.1 5.4 6.27
20 8.0 5.2 8.16
24 8.7 4.7 NA

28 9.8 4.6 12.26
32 10.4 4.5 14.60
36 11.0 4.2 17.50
40 11.3 4.1 18.70
44 11.5 3.9 20.60
48 11.8 3.9 NA

No failure in sample
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A.3 Membrane deflection test data

Membrane deflection data was collected as circular and square PDMS and
LLDPE membranes were incrementally pressurized. The tables below are comprised of
an average of three deflection measurements for one deflection data point for each
pressure level. A set of three membranes were tested for each material , data collection

was done manually.

Table A.4 — PDMS membrane deflection data

PDMS membrane testing
Raw data - Fuil pressure range 0 - 30 in.w.g. (membrane thicknesses - 1 =.004, 2=.003, t3=.0035, tavg=.0035)

Square 1 Round 1 Square 2 Round 2 Square 3 Round 3
Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection
inwg mm inwg mm inwg mm inwg mm inwg mm inwg mm
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.9 0.5 1.0 0.5 1.1 0.5 1.1 0.5 1.0 0.5 1.0
1.0 1.3 1.0 1.3 1.0 1.6 1.0 1.5 1.0 1.4 1.0 1.2
2.0 1.8 2.0 1.7 2.0 2.1 2.0 2.0 2.0 1.9 2.0 1.7
3.0 2.1 3.0 2.0 3.0 2.5 3.0 2.4 3.0 23 3.0 2.0
4.0 2.6 4.0 2.2 4.0 29 4.0 27 4.0 2.7 4.0 2.2
5.0 2.9 5.0 25 5.0 3.2 5.0 3.0 5.0 29 5.0 2.5
6.0 3.0 6.0 2.6 6.0 3.5 6.0 3.2 6.0 3.2 6.0 2.6
7.0 33 7.0 2.9 7.0 3.8 7.0 34 7.0 34 7.0 2.9
8.0 34 8.0 3.0 8.0 4.0 8.0 3.6 8.0 3.7 8.0 3.0
9.0 3.8 9.0 3.1 9.0 4.4 9.0 3.9 9.0 3.9 9.0 3.2
10.0 4.0 10.0 3.3 10.0 4.6 10.0 4.1 10.0 4.0 10.0 3.3
11.0 441 11.0 3.4 11.0 49 11.0 43 11.0 4.2 11.0 3.5
12.0 4.3 12.0 3.6 12.0 5.1 12.0 4.6 12.0 4.4 12.0 3.7
13.0 4.4 13.0 3.7 13.0 54 13.0 4.7 13.0 4.6 13.0 3.8
14.0 4.7 14.0 3.8 14.0 5.6 14.0 5.0 14.0 4.8 14.0 3.9
15.0 4.8 15.0 4.0 15.0 5.9 15.0 5.2 15.0 5.0 15.0 4.0
16.0 50 16.0 4.1 16.0 6.1 16.0 5.4 16.0 5.2 16.0 4.1
17.0 5.1 17.0 4.2 17.0 6.4 17.0 5.6 17.0 5.4 17.0 4.3
18.0 5.3 18.0 4.3 18.0 6.5 18.0 5.8 18.0 5.5 18.0 4.4
19.0 5.3 19.0 4.4 19.0 6.8 19.0 6.0 19.0 5.7 19.0 4.6
20.0 5.6 20.0 4.6 20.0 7.2 20.0 6.3 20.0 5.9 20.0 4.7
21.0 58 21.0 47 21.0 7.5 21.0 6.4 21.0 6.1 21.0 4.8
22.0 59 22.0 4.8 22.0 7.7 22.0 6.8 22.0 6.3 22.0 4.9
23.0 6.2 23.0 4.9 23.0 8.1 23.0 7.0 23.0 6.5 23.0 5.0
24.0 6.4 24.0 5.1 24.0 8.2 24.0 7.2 24.0 6.8 24.0 5.2
25.0 6.5 25.0 5.1 25.0 8.6 25.0 7.5 25.0 6.9 25.0 5.3
26.0 6.6 26.0 5.4 26.0 9.0 26.0 7.7 26.0 7.2 26.0 5.4
27.0 6.8 27.0 5.5 27.0 9.3 27.0 7.9 27.0 7.4 27.0 5.5
28.0 7.1 28.0 5.5 28.0 9.6 28.0 8.2 28.0 7.6 28.0 5.6
29.0 7.3 29.0 5.7 29.0 9.9 29.0 8.6 29.0 7.9 29.0 5.8
30.0 75 30.0 5.8 30.0 10.3 30.0 8.9 30.0 8.1 30.0 6.0




Table. A.5 - LLDPE membrane deflection data

LDPE membrane testing
Full pressure range 0 - 30 in.w.g.

LDPE film thickness tavg=.001in, made by Glad.
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Square 1 Round 1 Square 2 Round 2 Square 3 Round 3
Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection | Pressure | Deflection
inwg mm inwg mm inwg mm inwg mm inwg mm inwg mm
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.5 1.0 04 1.0 0.6 1.0 0.5 1.0 0.5 1.0 0.4
2.0 0.8 2.0 0.6 2.0 0.7 2.0 0.7 2.0 0.6 2.0 0.6
4.0 1.0 4.0 0.8 4.0 1.1 4.0 0.8 4.0 0.9 4.0 0.8
6.0 1.2 6.0 1.0 6.0 1.2 6.0 1.0 6.0 1.1 6.0 0.9
8.0 1.3 8.0 1.1 8.0 1.4 8.0 1.2 8.0 1.3 8.0 1.1
10.0 1.5 10.0 1.2 10.0 14 10.0 1.3 10.0 1.4 10.0 1.2
12.0 1.6 12.0 1.3 12.0 1.5 12.0 14 12.0 1.5 12.0 1.3
14.0 1.7 14.0 1.4 14.0 1.7 14.0 14 14.0 1.6 14.0 14
16.0 1.8 16.0 1.5 16.0 1.7 16.0 1.5 16.0 1.7 16.0 1.5
18.0 1.9 18.0 1.6 18.0 1.8 18.0 1.6 18.0 1.9 18.0 1.6
20.0 2.0 20.0 1.7 20.0 1.9 20.0 1.6 20.0 1.9 20.0 1.7
22.0 21 22.0 1.8 22.0 2.1 22.0 1.7 22.0 2.0 220 1.7
24.0 21 24.0 19 24.0 2.1 24.0 1.8 24.0 21 24.0 1.8
26.0 23 26.0 2.0 26.0 22 26.0 19 26.0 2.1 26.0 1.8
28.0 24 28.0 2.0 28.0 2.3 28.0 2.0 28.0 2.3 28.0 1.9
30.0 2.5 30.0 2.1 30.0 23 30.0 2.0 30.0 24 30.0 2.0

A.4 PDMS stress deformation test data

Stress deformation data was generated by measuring the overall length of samples

strained for one minute at 60% true strain, and then released. Manual dial calipers were

used to measure the samples over a period of one week.

PDMS stress deformation data

Table. A.6 — PDMS stress deformation test data

B sample pre test length = 24mm

s I Day O Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
ample Lo(mm)L{(mm) [L(mm)|[L(mm)|L(mm)|[L(mm)|L(mm)]|L(mm)
1 24 24.22 24.02 24.18 24.18 24.13 24.13 24.13

2 24 24.19 24.08 24.13 24.13 24.15 24.13 24.10

3 24 24.18 24.18 24.13 24.10 24.10 24.18 24.15

4 24 24.22 24.13 24.13 24.13 24.13 24.13 24.13

5 24 24.21 24.10 24.18 24.15 24.13 24.15 24.13

6 24 24.16 24.13 24.18 24.13 24.13 24.13 24.13

7 24 24.20 24.13 24.18 24.13 24.18 24.13 24.18

8 24 24.21 24.05 24.13 24.13 24.13 24.13 24.18

9 24 24.18 24.18 24.18 24.13 24.15 24.13 24.13
10 24 24.23 24.20 24.18 24.18 24.13 24.13 24.13
11 24 24.19 24.07 24.13 24.13 24.13 24.13 24.13
12 24 24.20 24.15 24.13 24.18 24.10 24.13 24.13




Appendix B

Data analysis programs

B.1 Matlab programs

All experimental data analysis programs were written using Matlab. Matlab is a
high-performance programming language for technical computing that utilizes data and
computation arrays which enable the building of sophisticated analysis models in familiar
mathematical notation [88]. Tensile specimen data was imported from specimen test files
created during experimentation, while membrane data was made a part of the analysis

programs.

B.1.1 Static uniaxial tensile test analysis programs

B.1.1.1 PDMS Static uniaxial tension analysis program

$Program for plotting Cauchy true stress vs true strain of viscoelastic materials
%(polymers).

% Filename: [PDMS_staticauchy true.m] Patrick Roman 11/13/03
-+

$Plot MTS data (Time, Stroke, Load)

$Reset Matlab

clear all

close all

¥Sample dimensions

W=2e-3;

T=.08e-3; %$input('Input thickness of specimen in meters>'); %Specimen thickness
Gauge=18.1;

$Calculating xsect area

X section = W*T; %Cross-sectional area of test specimen

¥0pening data file.txt
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fid=fopen('C:\WINDOWS\Desktop\Thesis3\Matlab
programs\Static UTT\TpdmsII data\Tpdmsf.txt');

d = fscanf(fid, '%g %g %g',[3,inf]);

fclose(£fid);

d=d';

jsize=size(d);

Time=d(:,1);

Displacement=d(:,2);

Load=d(:,3);

%Calculating stress and true strain (Cauchy)

Stress C=Ioad/X section;

Strain Eng=(Displacement)./(Gauge);

Straintrue Cauchy=(Displacement)./(Gauge+Displacement);
$L~Gauge+Displacement;

$Lo=Gauge;

talmansiStrain=(L. 2-10."2)./ (2*L."2);

AlmansiStrain=( ( (Gauge+Displacement)."2)-Gauge."2)./(2*((Gauge+Displacement)."2));

$Calculating true Stress (Euler)

tAssumes constant volume and that strainyy/strainxx=strainzz/strainxx
$Stresstrue=stretch ratio(lambda)*Engineering Stress;
lambda=(Gauge+Displacement ) . /Gauge;

Stresstrue Euler=(lambda).*Stress C;

$Plotting stress vs strain

$figure(1l);plot(Strain Eng,Stress C,'q.', 'markersize’,.25);legend( 'Tpdmsf');title( 'PDM
%S in Uniaxial Tension - Stress vs Strain ');

thold on

$plot(Strain Eng,Stresstrue Euler, 'r.', 'markersize',.25);legend( ' Tpdmsf$');title( 'PDMS
%in Uniaxial Tension - Stress vs Strain ');

hold on

plot(Straintrue Cauchy,Stresstrue Fuler, 'r+', 'markersize',2);
title('PDMS, Static uniaxial tension - true stress vs true strain ');
legend( ' Tpdmsf ')

hold on

$plot (Straintrue Cauchy,Stress C, 'm.', 'markersize’',.25);legend( ' Tpdnsf');
title('PDMS in Uniaxial Tension - Stress vs Strain ');

hold on

$plot (AlmansiStrain,Stresstrue Euler, 'b.', 'markersize’,.25);legend( 'Tpdsmsf2');title(’
PDMS in Uniaxial Tension - Stress vs Strain ');

%Axis labels

xlabel('True strain');ylabel('True stress (MPa)')

%Setting plot range

axis([0 .9 -.5e6 2.5e7])

3fitting straight line

x=[0:.1:.9]);

n=2.2e6;

b=-.05e6;

y=m*x+b;

$adding fit to plot

fiqure(1)

hold on

plot (x,y,'k")

%adding label

text(.65,.3e7, 'E=2.2MPa’')
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B.1.1.2 LLDPE Static uniaxial tension analysis program

% LLDPE

_%$Program for plotting Cauchy true stress vs true strain of
viscoelastic %materials (polymers).

$Patrick Roman 02/05/02

$Plot MTS static data (Time, Stroke, Load)

%Reset Matlab

clear all

close all

$Sample dimensions

W=2e-3;

T=.025E-3;%input( 'Input thickness of specimen in meters>'); %Specimen
thickness

Gauge=18.5;

$Calculating xsect area

X _section = W*T; %Cross-sectional area of test specimen

%0pening data file.txt

$C:\PATRICK\Masters\Thesis general\Materials Researcha\Test
data_all\Patrick\P_E\pe4

fid = fopen('C:\directory\Matlabprograms\Static UTT\PE data\pel3.txt');
d = fscanf(fid, '¥g %9 %9',[{3,inf});

fclose(fid);

d=d’

jsize=size(d);

Time=d(:,1);

Displacement=d(:,2);

Load=d(:,3);

%Calculating Engineering stress

Stress=Load/X_section;
% ________
%Calculating true Stress (Euler)

$Assumes constant volume and that strainyy/strainxx=strainzz/strainxx
$Stresstrue=stretch ratio(lambda)*Engineering Stress;
lambda=(Gauge+Displacement)./Gauge;

Stresstrue Euler=(lambda).*Stress;

% ____________ ——
$Calculating true Strain (Cauchy)

True Strain=(Displacement)./(Gauge+Displacement);
$cnt=0;

$for i=1l:length(Strain)

%if Strain(i)>0

%cnt=cnt+1;

%Strain_s(cnt)=Strain(i);

$Stress_s(cnt)=Stress(i);

$end

%end

$Plotting True stress vs True strain

plot (True_Strain,Stresstrue_Euler, 'r+');

legend( 'Tpdmsd');

title('PDMS in Uniaxial Tension - Stress vs Strain ');
$Setting plot range

axis([-0.1 .5 Oe6 35e6])

$Axis labels




xlabel('Strain');

ylabel('Stress (MPa)');

$fitting straight line
x=[0:.02:.35];

m=165e6;

b=0e5;

y=m*x+b;

tadding fit to plot

figure(l)

hold on

plot (x,y,'bl")

$adding label

text(.3,3.25e7, 'E=165MPa’)
$plotting 2% strain limit

x1=.02;

y1=[0:.5e6:.75e7];

plot (x1,yl,'k-', 'markersize’',12)
text(.03,.15e7,'2% strain’', 'fontsize',7)

B.1.2 PDMS dynamic uniaxial tension analysis programs

B.1.2.1 Phasediffibb.m

%Plot dynamic data (Time, Stroke, Load) and calculate phase difference
and tan delta for

$selected cycles

%Also calculates True Stress (in terms of Cauchy) and True Strain
%This program should be run with Box.m in the same directory

%DO NOT USE IF EXTENSOMETER DATA COLLECTED. USE PHASEDIFF2.M FOR THAT
%USE THIS SCRIPT ONLY FOR DATA THAT WAS GENERATED UNDER STROKE CONTROL
%SJ Kirkpatrick 03/12/01

%

$User called functions - Box

close all

clear all

$Modifiy below before each run

fprintf (1,'\ttest\n'); %Sample name

fprintf (1,' \tOPERATOR - Patrick Roman 6 Nov 2001\n');

fid = fopen('C:\PATRICK\Masters\Materials Research\PDMS research\PDMS
tests\Dpdms1\DPDMSDAR1\pdmst 3d.txt');

d = fscanf(fid,'%g %g %g',[(3,inf]);

fclose(fid);

d=q4d’';

lengl=size(d);

leng=round((lengl(1))/10);

W=6e-3%input(’'Input width of specimen in meters>'); %Specimen width
T=input('Input thickness of specimen in meters>'); %Specimen thickness
Gauge=48%input ('Input gauge length in mm>'); %Gauge length

X _section = W*T; %Cross-sectional area of test specimen

Time=d(:,1);

99




Time(l,:)=(1];
Displacement=d(:,2);Displacement(1l,:)=[1];
Load=d(:,3);Load(1l,:)=[1];
figure(l);plot(Displacement,Load, 'r'});
xlabel( 'Displacement (mm)’');ylabel('Load (N)');
$print

Strain (Displacement./Gauge);

Stress = Load./X_ section;

3filtering of stress & Strain
Stress=filtfilt(ones(1,4),4,Stress);
Strain=filtfilt(ones(1,4),4,Strain);
figure(2);

plot(Strain,Stress);

title('Stress-Strain Plot of Polydimethylsilioxane (PDMS)');

xlabel('Strain ');

ylabel('Stress (N/m"2)');

grid on

$print

%grid on

figure(3);

plot(Time,Strain, 'g-');
title('Strain as function of time');
xXlabel('Time, (s)');
ylabel('Strain');

figure(4);

plot(Time,Stress, 'g-');
title('Stress as function of time');
xlabel('Time, (s)');
ylabel('Stress');

figure(5);
plotyy(Time,Strain,Time,Stress);
grid on

xlabel('Time, s');

ylabel('Strain');

grid on
Strainnorm=Strain./max(Strain);
Stressnorm=Stress./max(Stress);
figure(6);
plotyy(Time,Strainnorm,Time,Stressnorm);
grid on

xlabel ('Time, s');ylabel('Strain');
$Calculate E as a function of strain
for ii = 1l:leng-1

i= 10*(ii-1) + 1;

J=i+10;

sigma=Stress(i:j);
deltastress(ii,l)=max(sigma)-min(sigma);
meanstress{ii,l)=mean(sigma);

end;

for ii = 1l:leng-1

i= 10*(ii-1) + 1;
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j=i+10;

sigma=Strain(i:j);
deltastrain(ii,l)=max(sigma)-min(sigma);
meanstrain(ii,l) = mean(sigma);

end;

for ii = 1l:leng-1

i= 10*(ii-1) + 1;

j=i+10;

sigma=Time(i:j);
deltatime(ii,l)=max(sigma)-min(sigma);
end

Strain rate=deltastrain./deltatime;

E = deltastress./deltastrain;

E(l,:)=[1]:

meanstrain(l,:)=[1;

meanstress(1,:)=(];

Strain_rate(l,:)=[];

figure(?);

plot(meanstrain,E, 'ro');
xlabel('Strain’');

ylabel('E(\epsilon)’');

grid off;%print

Em=mean(E);

StandardDeviation=std(E,1);

figure(8);
plot(meanstrain,Strain rate, 'ro');
xlabel('Strain');

ylabel('Strain rate, \epsilon/s');%print
$figure(9);

plot(Strain rate,E,'r-"});

axis([0 0.7 0.4e6 2.5e6});
xlabel('Strain rate, \epsilon/s');
%ylabel( 'E(\epsilon) ')

len = length(Time);

relmax = max(Strainnorm) / max(Stressnorm);
if (abs(relmax)>2)

refscale = 2°(( relmax < (2.7(-10:10)) ).* ...
( 2*relmax > (2.7(-10:10)) )*((1:21))'-12);
else

refscale = 1;

end;

% define the initial axis scaling vector
axisvec = [0 Time(len) min([Stressnorm; Strainnorm/refscale}))*1.1 ...
max([Stressnorm; Strainnorm/refscalej)*1l.17};
done=0;

while (~done)

figure(10);

subplot(2,1,1);

plot(Time, Stressnorm,'b');

hold on

plot (Time, Strainnorm/refscale,’'r’');
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plot([0 max(Time)], [0 0], ':m')

xlabel ('time (seconds)');

ylabel (['Strain',' (red) and Stress (blue)']);

axis(axisvec)

$ axis([0 max(Time) min(Strainnorm/refscale)+.5

max(Strainnorm/refscale)])

[stime, spos] = ginput (1);

plot([stime stime], [min([Stressnorm; Strainnorm/refscalel),

max([Stressnorm; Strainnorm/refscale])], ':k*')

$fprintf (1, 'Click to the right of the test cycles \n\n'};
[ftime, fpos] = ginput (1);

plot([ftime ftime], [min([Stressnorm; Strainnorm/refscale]),

max([Stressnorm; Strainnorm/refscale])], ':k*')

% check that these are in the right order

if (ftime<stime)

tmptime = ftime;

ftime = stime;

stime = tmptime;

clear tmptime;

end;

axisvec = [stime-0.l*ftime ftime*l.1l ...

min([Stressnorm; Strainnorm/refscale])*1l.1 max(([Stressnorm;

Strainnorm/refscale))*1.1];

axis(axisvec)

hold off

$fprintf (1, 'Check that selected data is at the same vertical
...level\n');

subplot (2,1,2)

box ([15 0], 20,'k")

axis off

axis ([0 90 -20 20})

hold on

box ([15 0], 15, 'y')

box ([45 0], 20, ’'k')

box ([45 01, 15, 'y')

box ([75 01, 20, 'k')

box ([75 01, 15, 'y')

hold off

text (30, 16, '... then click below to ');

text (10, -16, 'reselect');

text (30, -16, 'zoom out, then reselect');

text (65, -16, 'accept selection’);

[x, y] = ginput(1);

if ( (x>=30) & (x<60) ) % zoom out

axisvec = [0 Time(len) min([Stressnorm;Strainnorm/refscale})*1.1
..max([Stressnorm; Strainnorm/refscale])*1.1];

end;
if ( (x>=60) ) % done
done = 1;

axisvec = [0 Time(len) min([Stressnorm; Strainnorm/refscale])*1.1
...max([Stressnorm; Strainnorm/refscale])*1.1];
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subplot (2,1,1)

$title (['Total Data Set: ', fname]);

axis(axisvec); % put the whole data set back up
end

end;

¢fprintf (1, 'calculating ... \n');

% find where in the data the user clicked

s_ind = 1;

while (Time(s_ind)<stime)

s_ind = s_ind+1;

end;

f ind = 1;

while (Time(f_ ind)<ftime)

f ind = £ ind+1;

end;

% define the allowable offset from zero as a fraction of the max value
dev = 0.001;

totrefshift = 0;
totposshift = 0;
done = 0;

while (~done)

refavg = mean(Strainnorm);
posavg = mean(Stressnorm);

% now find the crossing times
refcrossind = [];

poscrossind = [];

tposcross = [];

trefcross = [];

upcross = 0

downcross = 0;

i=s_ind;

while (i<f _ind-1) % find reference crossings

if ( (Strainnorm(i)>refavg) & (Strainnorm(i+l)<=refavg) &
«.+.(~upcross) ) % a downward crossing

trefcross = [trefcross interpl([Strainnorm(i:i+1)], [Time(i:i+1)],

....refavg)];

refcrossind = [refcrossind i];

downcross = 1 & (~upcross); % do only downward crossings
end;

if ( (Strainnorm(i)<refavg) & (Strainnorm(i+l)>=refavg) &
...{~downcross) )% an upward crossing

trefcross = [trefcross interpl((Strainnorm(i:i+l)],
«+.[Time(i:i+1)], refavg)];

refcrossind = [refcrossind i];

upcross = 1 & (~downcross); % do only upward crossings
end;

i=1i+1;

end;

i=refcrossind(1);

while (i<f _ind-1) % find position crossings

if ( downcross & ( (Stressnorm(i)>posavg) &
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(Stressnorm{i+l)<=posavg) ) ) % a downward crossing

tposcross = [tposcross interpl([Stressnorm(i:i+1)], ...[Time(i:i+l)],
posavg)];

poscrossind = [poscrossind i];

end;

if ( upcross & ( (Stressnorm(i)<posavg) & (Stressnorm(i+l)>=posavg) )
% an upward crossing

tposcross = [tposcross interpl([Stressnorm(i:i+1l)], ...[Time(i:i+1)],
posavg}];

poscrossind = [poscrossind 1]

end;

i=1i+1;

end;

numcycles = length(refcrossind);%instead of floor(length

... (poscrossind)/2)~-1; % this is really 1 + the number of cycles
refcrossind = refcrossind(1l:numcycles); % keep no more ref than pos
%cycles

trefcross = trefcross(l:numcycles);

tposcross = tposcross(l:numcycles);

% examine averages to see if data needs to be centered about zero
refavg = sum(Strainnorm(refcrossind(1l):refcrossind(numcycles))) / ...
(refcrossind(numcycles)-refcrossind(1l)};

posavg = sum(Stressnorm(poscrossind(l):poscrossind(numcycles))) / ...
(poscrossind(numcycles)-poscrossind(1));

refavgdev=
abs(refavg)/max(Strainnorm(refcrossind(1l):refcrossind(numcycles)));
posavgdev =

abs(posavg) / max(Stressnorm(poscrossind(1l):poscrossind(numcycles)));
done = ( (refavgdev<dev) & (posavgdev<dev) );

% try and center the data about zero

if (~done)

% fprintf(l, ['Selected data not centered about ' ...

'(within %.2f percent of) zero.\n'], dev*100);

fprintf(l, ['\t(reference average=%.4f = %.2f percent, \n' ...

'\t position average=%.4f = %.2f percent)\n'], ...

refavg, refavgdev*100, posavg, posavgdev*100);

fprintf(1l, 'Centering data...\n');

Strainnorm = Strainnorm - refavg;

Stressnorm = Stressnorm - posavg;

totrefshift = totrefshift + refavg;

totposshift = totposshift + posavg;

end;

end;

% announce how much fudging we've done

fprintf (1, ['To center selected data about zero, ', ...

'\n\t%.3f was added to Stress and \n'

'\t%.3f was added to Strain\n'],totposshift, totrefshift);

% using all selected cycles, averaged, find the gain and phase
tphase = 0;

tperiod = 0;

for i=l:numcycles-1

0P o of oP o
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tphase = tphase + tposcross(i)-trefcross(i);

tperiod = tperiod + trefcross(i+l)-trefcross(i);

end;

tphase = tphase / (numcycles-1);

tperiod = tperiod / (numcycles-1);

magnitude = (max(Stressnorm(poscrossind(l):poscrossind{numcycles))) -
...min(Stressnorm(poscrossind(1l) :poscrossind({numcycles)))) /
(max(Strainnorm(refcrossind(1l):refcrossind(numcycles))) - ...
min(Strainnorm(refcrossind(1):refcrossind(numcycles)))});

phase = 360 * tphase / tperiod;

tandelta=tan(phase*0.017453);

Estore=E. *cos (phase*0.017453);

Estorem=abs (mean(Estore));

Estoresd=std(Estore,l);

Eloss=E.*sin(phase*0.017453);

Elossm=abs(mean(Eloss));

Elosssd=std(Eloss,1);

% plot the final range of data to be used

subplot (2,1,2)

plot(Time(refcrossind(l) :poscrossind(numcycles)+1l), ...
Stressnorm(refcrossind(1l):poscrossind(numcycles)+1l), 'b.');

hold on

plot (Time(refcrossind(l):poscrossind(numcycles)+1l), ...
Strainnorm(refcrossind(l):poscrossind(numcycles)+1)/refscale, 'r'});
plot({Time(refcrossind(l))-tperiod*0.1
Time(poscrossind(numcycles)+1l)+tperiod*0.1],[0 0], ':k')

plot (trefcross, zeros(l,numcycles), '+k');

plot (tposcross, zeros(l,numcycles), 'ok');

axisvec2 = [trefcross(l)-tperiod*0.1 tposcross(numcycles)+tperiod*(.1l
...min([Strainnorm(refcrossind(1l) :poscrossind(numcycles))/refscale;
Stressnorm(refcrossind(1l):poscrossind(numcycles))])*1.1 ...
max([Strainnorm(refcrossind(1l):poscrossind(numcycles))/refscale;
Stressnorm(refcrossind(1l):poscrossind(numcycles))])*1.1];
axis(axisvec2);

title ([num2str(numcycles-1),' cycles selected, ', ...'centered and
scaled, crossing points shown'])

xlabel ('time (seconds)');

ylabel (['Strain’',' (red) and Stress (blue)']);%print

text ((0.05*axisvec2(2)+0.95*axisvec2(1l)),(0.25*%axisvec2(4)+1.25*axisvec

2(3)),{'f = ',num2str(1l/tperiod), 'Hz Mag ratio = ...
', num2str(magnitude), ... 'phase diff = ',num2str(phase),’' deg'l]l);
hold off

fprintf (1, 'From an average over %d complete cycles:\n', numcycles-1);
fprintf (1, '\tThe frequency is %.2f Hz\n', 1/tperiocd);

fprintf (1, '\tMagnitude ratio is %6.4f \n', magnitude);

fprintf (1, '\tPhase difference is %6.4f degrees\n', phase);

fprintf (1, '\tTan delta is %.4f\n', tandelta);

disp(sprintf('Modulus (mean +/- SD) = %5.3e +/- %5.3e Nm"-2 (average
slope as function of strain)', Em, StandardDeviation}))
disp(sprintf('\tMaximum Slope = %5.3e Nm"-2', max(E)))
disp(sprintf('\tMinimum Slope = %5.3e Nm"-2', min(E)))
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disp(sprintf('Storage modulus (mean +/- SD) = %5.3e +/- %5.3e Nm"-2',
Estorem, Estoresd))

disp(sprintf('Loss modulus (mean +/- SD)
Elossm, Elosssd))

disp(sprintf('Maximum Engineering Stress = %5.3e Nm"-2',max(Stress)))
disp(sprintf( 'Minimum Engineering Stress %$5.3e Nm"-2',min(Stress)))
disp(sprintf('Maximum Percent Engineering Strain = %5.3e

%' ,max(Strain)*100))

disp(sprintf('Minimum Percent Engineering Strain
%' ,min(Strain)*100))

%Routine for true stress and true strain
%Calculate true Strain

for i=1:1008;

Gaugetrue=(Gauge+Displacement);
Straintrue=(Displacement./Gaugetrue);

end

%

%Calculate true Stress

3Assumes constant volume and that strainyy/strainxx=strainzz/strainxx
$Stresstrue=stretch ratio(lambda)*Engineering Stress;
lambda=Gaugetrue./Gauge;

for i=1:1008;

Stresstrue=lambda.*Stress;

end

figure(11l);plot(Straintrue,Stresstrue,’'r+');legend ('True, -
Engineering');

hold on

plot(Strain,Stress, 'b-");%title( 'Stress-Strain Plot');

xlabel('Strain ');ylabel('Stress {(N/m"2)');%print
disp(sprintf('Maximum True Stress = %5.3e Nm"-2', max(Stresstrue)))
disp(sprintf( 'Minimum True Stress $5.3e Nm"-2' ,min(Stresstrue)))
disp(sprintf( 'Maximum Percent True Strain = %5.3e

%' ,max(Straintrue)*100))

disp(sprintf('Minimum Percent True Strain = %5.3e
%',min(Straintrue)*100))

figure(1l2);plot(meanstress,E, 'ro');
xlabel('Stress');ylabel('E(\sigma)');

%$5.3e +/- %5.3e Nm"-2',

]

$5.3e
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B.1.2.2 Box.m

% This program should reside in the main program and data file
directory

function box(center, size, color)

(c) 1997 M. E. Brokowski

BOX(CENTER, SIZE, COLOR)

Draws a filled square in the current graph window. The square
is centered at CENTER, which is an x,y pair. SIZE is the side
length and COLOR is specifyable as it is in FILL.

% [11 ul ur 1r)

£fill ([center(l)-size/2 center(l)-size/2 center(l)+size/2 ...
center(l)+size/2),[center(2)-size/2 center(2)+size/2 ...
center(2)+size/2 center(2)-size/2), color);

00 of oP o° oP

B.1.3 Stress relaxation program

$ PDMS stress relaxation program ————-—————- Patrick Roman 01.24.04
clear all

close all

fid = fopen('C:\WINDOWS\Desktop\pdms_sr data\pdms_sr002.txt');

d = fscanf(fid, '%g %g %g',[3,inf]);

fclose(£fid);

d=d';

jsize=size(d);

Time=d(:,1);

Displacement=d(:,2);

Load=d(:,3);

$Sample dimensions

W=2e-3;

T=,11E-3;%input('Input thickness of specimen in meters>'); %Specimen
thickness

Gauge=18.5;

$Calculating xsect area

X_section = W*T; %Cross-sectional area of test specimen

$Calculating ENGR stress and ENGR strain

Stress=Load/X_section;

%_—_ —— e o e o s o — e e —

$Calculating true Stress (Euler)

$Assumes constant volume and that strainyy/strainxx=strainzz/strainxx
$Stresstrue=stretch ratio(lambda)*Engineering Stress;
lambda=(Gauge+Displacement) ./Gauge;
Stresstrue_Euler=(lambda).*Stress;

% =

figure(1l);plot(Time,Stresstrue Euler,'r+');title('PDMS, B sample stress
relaxation at true strain = 0.6');

%;legend('PDMS SRO01')

$Setting plot range

$axis([0 65 0 2.5E6])

%$Axis labels

xlabel('Time (sec)');ylabel('True stress (N/m"2)')

hold on
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%Curve fitting decaying exponential
x=(0:63);
y=6.5e6*exp(-.1275*x-2)+4.9e6;
plot(x,y,'k")

axis([0 65 Oe6 8eb6])

B.1.4 Stress deformation program

$Plastic deformation of PDMS: stress relaxation curve fitting
%with a decaying exponential
close all
clear all
$data set
dataA=[

0 24

1 24.199

2 24.118

3 24.155

4 24.142

5 24.133

6 24.136

7 24.138);

stdl={0
0.020207259
0.055732043
0.026111648
0.025524795
0.021373305
0.01505042
0.022613351];

day = dataA(:,1)

Elongation = dataA(:,2)

%Plotting data (you don't need this stuff

% errorbar will plot the data AND the errorbars
$plot(day,Elongation, 'ro')

$axis([0 8 24.4 24.5])

thold on

%Curve fit

errorbar (day,Elongation,stdl, 'ro')

hold on

x=(0:8);

y=24.1375+exp(-x~1.7);

plot(x,y);title('PDMS, B sample deformation from true strain
$Axis labels

xlabel('Time (Days)');ylabel('Elongation (mm)')

% Comparing SR to deformation test---=---omomem e

]
[=]
.
[+

~
~e

$dataB={(

%10 24.0485
%15 24.0475
%20 24.0465

%25 24.046




30 24.046
%35 24.0455
%40 24.045
%45 24.045
%50 24.045
%55 24.045
$60 24.045];

$Time = dataB(:,1)
$ElongationB = dataB(:,2)

¢fiqure(2);plot(Time,ElongationB, 'ro');
$axis([-10 70 24.042 24.,054])

$hold on

%std1B=[{0.0005

$0.0005

$0.0005

$0.0005

%0.0005

$0.0005

%$0.0005

3%0.0005

$0.0005

£0.0005

$0.0005

$0.0005];

$Curve fit

$errorbar (Time,ElongationB,stdlB, 'ro')
$hold on

$xXB=(0:65);
¢yB=.006*exp(-.07*xB-.004)+24.045;
$yB=24.0455+exp(-xB-1)

¥plot(xB,yB);

$title('PDMS, B sample elongation at true strain = 0.6');
$Axis labels

$xlabel('Time (sec)');ylabel('Elongation (mm)')}

B.1.S Membrane analysis programs

B.1.5.1 PDMS circular membrane biaxial stress-strain program

$This program analyzes circular bulge test data for visoelastic
materials

%

$Patrick Roman 07/08/03

$Bulge test data for circular membrane

close all

clear all

$Copied PDMS data from experiment (Circular)

data=(

0.0 0.000

0.5 0.957
1.0 1.244
2.0 1.683
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3.0 2.024
4.0 2.232
5.0 2.489
6.0 2.635
7.0 2.857
8.0 3.035
9.0 3.180
10.0 3.348
11.0 3.464

12.0 3.675
13.0 3.789
14.0 3.875
15.0 4.000
16.0 4.120

17.0 4.270
18.0 4.380
19.0 4.560
20.0 4.670

21.0 4.800

22,0 4.939

23.0 5.020

24.0 5.200

25.0 5.292

26.0 5.440

27.0 5.524

28.0 5.642

29.0 5.839

30.0 5.967];

%Experimental data plot

Deflection = data(:,2)*le-3; %converts to meters
Pressure = data(:,1)*248.84; %converts inwg to N/m"2
figure(1)

plot(Deflection,Pressure, 'ro')

title('PDMS Circular membrane experimental - Pressure vs Deflection');
ylabel('Pressure (N/m"2)')

xlabel ('Deflection (m)')

%$System geometries and variables

a=9.52e~3 %average membrane radius (mm)
%¥P=(0:100:7465); %Pressure load (Pa or N/M"2)
t=.089e-3; %Membrane thickness

v=.47; %Poisson's ratio

g¢defining R

R=( (Deflection/2)+(a”2./(2*Deflection)));

$Defining Biaxial stress

Bstress=( (Pressure.*R)/(2*t));

%Defining Biaxial strain
test=(((R.*asin(a./R))."2)-(a"2))./(((R.*asin(a./R))."2)*2);
figure(4)

s=length(Bstress);

plot(test(2:s),Bstress(2:s), 'r+')

title('PDMS Circular membrane - Biaxial stress vs Biaxial strain');
ylabel('Biaxial Stress (N/m"~2)')

xlabel('Biaxial Strain')
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B.1.5.2 LLDPE circular membrane biaxial stress-strain program

%This program analyzes circular bulge test data for visoelastic
materials

%

$Patrick Roman 07/08/03

3Bulge test data for circular membrane

close all

clear all
%Copied LLDPE data from experiment (Circular)
data={

0.0 0.000
1.0 0.549
2.0 0.739
4.0 0.848
6.0 0.992
8.0 1.163
10.0 1.282
12.0 1.371

14.0 1.408

16.0 1.492

18.0 1.571

20.0 1.625}; %—————-————=-~ data cut here for 2% strain analysis
%22.0 1.709

%$24.0 1.778

%$26.0 1.830

%28.0 1.884

$30.0 1.966];

$Experimental data plot

Deflection = data(:,2)*le-3; %converts to meters

Pressure = data(:,1)*248.84; %converts inwg to N/m"2

figure(l)

plot(Deflection,Pressure, 'ro')

title('PDMS Circular membrane experimental - Pressure vs Deflection');
ylabel('Pressure (N/m"2)')

xlabel('Deflection (m)')

$System geometries and variables

a=9.52e-3 %average membrane radius (mm)

%¢P=(0:100:7465); %Pressure load (Pa or N/M"2)

t=.025e~-3; %Membrane thickness

v=.4; %Poisson's ratio

$defining R

R=((Deflection/2)+(a"2./(2*Deflection)));

$Defining Biaxial stress

Bstress=( (Pressure.*R)/(2*t));

$Defining Biaxial strain Almansi
test=(((R.*asin(a./R))."2)-(a"2))./(((R.*asin(a./R))."2)*2); %almansi
figure(4)

s=length(Bstress);

plot{test(2:s),Bstress(2:s), 'r+')

$Setting plot range

axis([0 .03 Oeb6 4.5e6])

title('LLDPE Circular membrane - Biaxial stress vs Biaxial strain');
ylabel('Biaxial Stress (N/m"2)')




xlabel('Biaxial Strain')

$adding straight line fit
x=[0:.0025:.03];

m=120e6;

-b=.61e6;

y=m*x+b;

$adding fit to plot

$hold on

tplot (x,y,'bl")

$adding label

text(.3,3.25e7, 'E=165MPa"')
$plotting 2% strain limit
x1=.02;

y1={0:.25e6:3.5e6];

hold on

plot (x1,yl,'k-', 'markersize',12)
text(.018,1e6, 'ex = 2% strain', 'fontsize',7)

B.1.5.3 PDMS circular membrane program

$Membrane analysis program (Circular)

$Better fitting program using varying

$radius of curvature and more accurate strain definitions.

$Patrick Roman 07.13.03

$This program fits experimental load - deflection data for bulge tests
$0f silicone membranes. Material elastic modulus and residual stress
$are determined. Circular membranes are analyzed.

$SI units only

close all

clear all

% Membrane geometry and constants

a=9.52e-3 %average membrane radius (mm)

P=(0:100:7465); %Pressure load (Pa or N/M"2)

t=0.089e-3; %Membrane thickness

v=0.47; %Poisson's ratio

$Copied PDMS data from experiment (Circular) - data set #3

data=[

0.0 0.000

0.957

1.244

1.683

2.024

2,232

2.489

2.635

2.857

3.035

3.180

0.0 3.348
1.0 3.464
2.0 3.675
13.0 3.789
14.0 3.875

=000 WN RO
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15.0 4.000

16.0 4.120

17.0 4.270

18.0 4.380

19.0 4.560

20.0 4.670

21.0 4.800

22.0 4.939

23.0 5.020

24.0 5.200

25.0 5.292

26.0 5.440

27.0 5.524

28.0 5.642

29.0 5.839

30.0 5.967];
CPressure=data(:,1)*248.84;
CDeflection=data(:,2)*le-3;

§=============== Hohlfelder Spherical cap Model ========s========
§========membrane constants
Clc=4

C2c=((8/3)/(1-v))
$Fitting Circular membrane experimental data to spherical cap bulge

%$eqn.

CRc = 3.7e4;

Ec = 1.272e6 %Circular membrane Elastic modulus

Cscap=( ( 4*CRc*t*CDeflection)/a"2+(C2c*Ec*t*CDeflection.”3)/a"4);
% Hohlfelder Circular membrane theory =

% ENGINEERING STRAIN with constant radius of curvature

$Constant calculation (Circular membrane)

Clc=4

C2c=(8/3)*(1.015-.247*v)/(1-v)

$Fitting Circular membrane experimental data to Hohlfelder circular

tbulge eqn.
CRc = 3.7e4;
Ec = 1.272e6 %Circular membrane Elastic modulus

CPressurefit=( (
4*CRc*t*CDeflection)/a”2+(C2c*Ec*t*CDheflection.”3)/a"4);

§=============== Hohlfelder Circular membrane theory (Non

%$linear)

% ENGINEERING STRAIN....... with varying radius of curvature
%Radius of curvature varying with deflection (strain Eng)

$Strain Eng=((R.*asin(a./R)/a)-1); $Hohlfelder non linear strain
%definition

R=CDeflection/2+(a"2)./(2*CDeflection); %Radius of curvature

R(1)=0;

$Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane
¥experimental data #3

CRce = 3.7e4;%Residual stress

Ece 1.272e6 %Circular membrane Elastic modulus

$Peng=(( (Ece/(l-v) )*( R.*asin(a./R)/a -1 )+CRce)*2*t }./R;
AA=Ece/(1-v);

BB=R.*asin(a./R})/a;

Peng=(AA* (BB-1)+CRce)*2*t./R;

§=============== Modified Hohlfelder Circular membrane theory (Non
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$linear)===== ===

% TRUE STRAIN....... with varying radius of curvature

$Radius of curvature varying with deflection (strain True)

%Strain True=(l-(a./(R.*asin(a./R)})); $Roman non linear strain
¢definition

%R=( ((CDeflection./2)+(a"2))/((2*CDheflection))); %Radius of curvature
$Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane
$experimental data #3

CRct = 3.7e4;%Residual stress

Ect 1.272e6 %$Circular membrane Elastic modulus

Ptrue= (( (Ect/(l-v) )* (1-(a./(R.*asin(a./R)))) +CRct)*2*t)./R;

R o o o B o B O T e = o L S e e
% More TRUE STRAIN....... with varying radius of curvature
R e R e e = S T o e S S S e e
$Almansi true strain $;

CRctA = 3.7e4;%Residual stress

EctA = 1.272e6 %Circular membrane Elastic modulus
Al=(R.*asin(a./R))."2;

A=(Al-a"2)./(2*Al);

B=EctA/(1-v);

PtrueA=(B*A+CRctA)*2*t,/R;

%Green true strain %;
CRctG = 3.7e4;%Residual stress
EctG = 1.272e6 %$Circular membrane Elastic modulus

Al=(R.*asin(a./R))."2;

A=(Al-a"2)./(2*a"2);

B=Ect/(1-v);

PtrueG=(B*A+CRct)*2*t./R;$%

e e Plotting

figure(1)

plot(data(:,1)*248.84,data(:,2)*1le-3,'bo')% experimental data

hold on

plot(CPressurefit,CDeflection, 'k~')%;

legend( 'Theory')

title('PDMS Circular Membrane - E=1.272MPa, Rs=0.034MPa’,’'fontsize',8);
xlabel('Pressure (N/m"2)','fontsize’,8)

ylabel('Deflection (m)','fontsize',8)

axis([0 8500 0 8e-3})

figure(2)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo')% experimental data

hold on

plot (CPressurefit,CDeflection, 'k-')%;legend( ' Theory')

hold on

plot(Cscap,Cheflection, 'm-')%;legend( ' Theory')

hold on

Peng(l)=0 %forces first point to 0 ,infinitive is due to h=0 division
plot(Peng,CDeflection, 'g-")

title('PDMS Circular Membrane - E=1.272MPa, Rs=0.034MPa’','fontsize’',8);
xlabel( 'Pressure (N/m"2)', 'fontsize',8)

ylabel('Deflection (m)','fontsize',8)
axis([0 8500 0 8e-3])
figure(3)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo')% experimental data
hold on
plot(CPressurefit,CDeflection, 'k:')%;legend( ' Theory')
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hold on

plot(Cscap,CDeflection, 'k--')%;legend( ' Theory')

hold on

Peng(1)=0 %forces first point to 0 ,infinitive is due to h=0 division
plot(Peng,CDeflection, 'k-.")

hold on

Ptrue(1)=0

plot(Ptrue,CDeflection, 'k."', 'markersize’',4"’)

hold on

tplot (PtrueA,CDeflection, 'r-")

hold on

PtrueA(1)=0 %forces first point to 0 ,infinitive is due to h=0 division
plot({PtrueA,CDeflection, 'k-")

¥plot (PtrueG,CDheflection, 'c-")

tplot (Ptrue,CDheflection, 'r-"')

title('PDMS membrane large deflection theory, E=1.272MPa,
Rs=0.034MPa’, 'fontsize',8);

xlabel('Pressure (N/m"2)', ' 'fontsize',8)

axis([0 8500 0 8e-3}1)

ylabel('Deflection (m)','fontsize',8)

figure(4)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo')% experimental data
hold on

plot(PtrueA,CDheflection, 'k-')

$plot(Ptrue,CDeflection, 'g-")

title('PDMS Circular Membrane - Almansi strain, E=1.272MPa,
Rs=0.034MPa’', 'fontsize',8);

xlabel('Pressure (N/m"2)','fontsize',8)

axis([0 8500 0 8e-3])

ylabel('Deflection (m)', 'fontsize',8)

B.1.5.4 LLDPE circular membrane program

fMembrane analysis program (Circular)

%Better fitting program using varying

$radius of curvature and more accurate strain definitions.

$Patrick Roman 07.13.03

$This program fits experimental load - deflection data for bulge tests
%0of silicone membranes. Material elastic modulus and residual stress
%are determined. Circular membranes are analyzed.

$SI units only

close all

clear all

% Membrane geometry and constants

a=9.52e-3 %average membrane radius (mm)

P=(0:100:7465); %$Pressure load (Pa or N/M"2)

t=0.025e-3; %Membrane thickness

v=0.4; %Poisson's ratio

%Copied LLDPE data from experiment (Circular) - data set #3

data=[

0.0 0.000

1.0 0.404




2.0 0.560
4.0 0.806
6.0 0.946
8.0 1.083
10.0 1.200
12.0 1.327

14.0 1.426

16.0 1.483

18.0 1.550

20.0 1.650

22.0 1.709

24.0 1.778

26.0 1.830

28.0 1.884

30.0 1.966];
CPressure=data(:,1)*248.84;
CDheflection=data(:,2)*1le-3;

g=============== Hohlfelder Spherical cap Model
$========membrane constants
Clc=4

C2c=((8/3)/(1-v))

¢Fitting Circular membrane experimental data to spherical cap bulge
%eqn.

CRc = .55e6;

Ec 72e6 %Circular membrane Elastic modulus

Cscap=( ( 4*CRc*t*CDeflection)/a”2+(C2c*Ec*t*CDeflection.”3)/a"4);
%= === Hohlfelder circular bulge equation =======

% ENGINEERING STRAIN........ with constant radius of curvature
%Constant calculation (Circular membrane)

Clc=4

C2c=(8/3)*(1.015-.247*v)/(1-v)

$Fitting Circular membrane experimental data to Hohlfelder circular

It

%bulge eqn.
CRc = .55e6;
Ec = 72e6 %Circular membrane Elastic modulus

CPressurefit=( ( 4*CRc*t*CDeflection)/a"2+...
(C2c*Ec*t*CDeflection."3)/a"4);
==== Hohlfelder Circular membrane theory (Non %linear)====s==========

% ENGINEERING STRAIN....... with varying radius of curvature
%Radius of curvature varying with deflection (strain Eng)

$Strain Eng=((R.*asin(a./R)/a)-1); tHohlfelder non linear strain
$definition

R=CDeflection/2+(a"2)./(2*CDheflection); %Radius of curvature

R(1)=0;

$Fitting Hohlfelder Non linear circular bulge Egn to Circular membrane
texperimental data #3

CRce = .55e6;%Residual stress

Ece = 72e6 %Circular membrane Elastic modulus

%Peng=(( (Ece/(l-v) )*( R.*asin(a./R)/a -1 )+CRce)*2*t )./R;
AA=Ece/(1-v);

BB=R.*asin(a./R)/a;

Peng=(AA* (BB-1)+CRce)*2*t./R;

$= Modified Hohlfelder Circular membrane theory (Nonlinear)========
% TRUE STRAIN....... with varying radius of curvature
%Radius of curvature varying with deflection (strain True)
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$Strain True=(l-(a./(R.*asin(a./R))));%Roman non linear strain
$definition

$R=( ((CDeflection./2)+(a"2))/((2*CDeflection))); %Radius of curvature
§Fitting Hohlfelder Non linear circular bulge Egn to Circular membrane
$experimental data #3

CRct = .55e6;%Residual stress

Ect 72e6 %Circular membrane Elastic modulus

Ptrue= (( (BEct/(l-v) )* (1-(a./(R.*asin(a./R)))) +CRct)*2*t)./R;

R R o 0 o T o B

% More TRUE STRAIN....... with varying radius of curvature

R R i o A o o o L e o O B I B o e e s
$Cauchy true strain %;

$Almansi true strain $;

CRctA = .55e6;%Residual stress

EctA = 72e6 %Circular membrane Elastic modulus

Al=(R.*asin(a./R}))."2;
A=(Al-a"2)./(2*Al);
B=EctA/(1-v);
PtrueA=(B*A+CRCctA)*2*t./R;

$Green true strain %;
CRctG = .55e6;%Residual stress
EctG = 72e6 %Circular membrane Elastic modulus

Al=(R.*asin(a./R))."2;

A=(Al-a"2)./(2*%a"2);

B=Ect/(1-v);

PtrueG=(B*A+CRct)*2*t./R;%

R et e L Lt Plotting

figure(1)

plot(data(:,1)*248.84,data(:,2)*le-3, 'bo’')% experimental data
hold on

plot (CPressurefit,CDeflection, 'k-')%;legend(’'Theory')

title( 'LLDPE Circular Membrane - E=72MPa Rs=.55MPa’, 'fontsize',8);
Xlabel('Pressure (N/m"2)’','fontsize',8)

ylabel('Deflection (m)','fontsize',8)

axis([{0 8500 0 3e-3])

figure(2)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo’')% experimental data
hold on

plot(CPressurefit,CDeflection, 'k-')%;legend( ' Theory')

hold on

Peng(l)=0 %forces first point to 0 ,infinitive is due to h=0 division
plot (Peng,CDeflection, 'g-")

title( 'LLDPE Circular Membrane - E=72MPa Rs=.55MPa’, 'fontsize',8);
xlabel('Pressure (N/m"2)','fontsize’,8)

ylabel('Deflection (m)', 'fontsize',8)

axis([0 8500 0 3e-3])

figure(3)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo')% experimental data
hold on

plot (CPressurefit,CDeflection, 'k:')%;legend( ' Theory')

hold on

Peng(1)=0 %$forces first point to 0 ,infinitive is due to h=0 division
plot(Peng,CDeflection, 'k~-.")

hold on

Ptrue(1l)=0
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plot(Ptrue,CDheflection, 'k.")

hold on

plot(Cscap,Cheflection, 'k—-")

hold on

PtrueA(1l)=0 %forces first point to 0 ,infinitive is due to h=0 division
plot(PtrueA,CDeflection, 'k-")

$plot (PtrueG,Cheflection, 'c-")

3plot(Ptrue,CDeflection, 'r-')

title(' LLDPE membrane large deflection theory, E=72MPa
Rs=.55MPa’', 'fontsize',8);

xlabel( 'Pressure (N/m"2)','fontsize’,8)

axis([0 8500 0 3e-3])

ylabel('Deflection (m)', 'fontsize',8)

figure(4)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bo’')% experimental data

hold on

plot(PtrueA,CDeflection, 'k-")

¥plot (Ptrue,CDeflection, 'g-")

title('LLDPE Circular Membrane - Almansi strain, E=72MPa
Rs=.55MPa’', 'fontsize',8);

xlabel('Pressure (N/m"2)', 'fontsize’,8)

axis([0 8500 0 3e-3])

ylabel('Deflection (m)','fontsize',8)

B.1.5.5 PDMS square membrane program

$Membrane analysis program (Square)

%Patrick Roman 07.13.03

$This program fits experimental load - deflection data for bulge tests
$0f silicone membranes. Material elastic modulus and residual stress
tare determined. Square membranes are analyzed.
%SI units only

close all

clear all

% Variables

a=9.52e-3 %average membrane radius (mm)
$P=(0:100:7465); %Pressure load (Pa or N/M"2)
$E1=1.45e6; %Elastic Modulus of PDMS material
t=.08%e-3; $Membrane thickness

v=.47; %Poisson’'s ratio

$Es= 1.04e6 %Square membrane elastic modulus
%SRs= 3.8e4 %S5quare membrane residual stress
$Deiter et al - Square membrane Bulge equation
$Constant C2 calculation (SQUARE membrane)
C25=1.994%(1-.271*v)/(1-v)

$C2s=4.3

% (Square membrane) Deflection calculation
ghs=((P*a"4)./(C2s*El*t))."(1/3);

%elastic modulus (square)
$Est=((P*a"4)./(C2s*t*hs."3));

%Copied data PDMS from experiment (Square)
data=|[




0.000
0.987
1.433
1.908
2.276
2.700
2.912
3.228
3.400
3.667
3.875
4.023
4.230
4.409
4.611
14.0 4.755
15.0 5.000
16.0 5.180
17.0 5.361
18.0 5.512
19.0 5.715
20.0 5.880
21.0 6.077
22.0 6.286
23.0 6.468
24.0 6.794
25.0 6.920
26.0 7.154
27.0 7.419
28.0 7.557
29.0 7.875
30.0 8.139];

HREREPOOSIOOOMBWNEFEOO
« s e s . F—
(=Nl NeNeNoNoNaol Nl

[T
WNHO-
oo

(=]

(=]

SPressure=data(:,1)*248.84; %converts inwg to N/m"2
Sheflection=data(:,2)*1le-3; %converts to meters

$figure(1l)

%plot (SPressure,SDeflection, 'bs') %experimental data plot
¢hold on

$plot(P,hs, 'rs') %analytical theory plot

$title('PDMS 3 Square Membrane - Pressure vs Deflection');
$xlabel('Pressure (N/m"2)')

$ylabel('Deflection (m)')

$Square bulge equation

2z=(1:25);

a = 9.52e-3 saverage membrane radius (mm)

P = (0:7465); %Pressure load (Pa or N/M"2)

$E1 = 0.000le6; %Elastic Modulus of PDMS material
t = 0.09e-3; $Membrane thickness

v = 0.47; %Poisson_'s ratio

Es = 1.272e6; %Square membrane elastic modulus
SRs = 0.034e6;%Square membrane residual stress

C2s = 1.94*(1-.271*v)/(1-v)
$global data

¥start=[SRs Es];
$results=fmins('ftting’',start);
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%Es results(2);

$SRs = results(1l);

SPressurefit=( ( 3.45*SRs*t*SDeflection)/a"2+....
(C2s*Es*t*SDeflection.”3)/a"4);

figure(2)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bs')% experimental data
hold on

plot(SPressurefit,SDeflection, 'r-')%;legend( ' 'Theory')
%title(sprintf('SRs=%5.5f Es=%5.5f',SRs,Es))

title('PDMS Square Membrane - E=1.272MPa, Rs=0.034MPa’', 'fontsize',8);
xlabel('Pressure (N/m"2)','fontsize',8)

ylabel('Deflection (m)', 'fontsize',8)

axis([0 8500 0 10e-3])

B.1.5.6 LLDPE square membrane program

% POLYETHYLENE LLDPE

$Membrane analysis program (Square)

$Patrick Roman 04.14.03

$This program plots the load deflection of Square membranes.
$Fitting is possible to determine E and the residual stress of LLDPE.
$experimental data set 3 was used for LLDPE at t=.001" or .025e-3 M
$SI units only

close all

clear all

% Variables

a=9.52e-3 %average membrane radius (mm)

P=(0:100:7465); %Pressure load (Pa or N/M"2)

El=1.45e6; %Elastic Modulus of PDMS material

t=.025e-3; $Membrane thickness

v=.4; %Poisson's ratio

$Constant C2 calculation (Circular membrane)
C2¢c=(8/3)*(1.015-.247*v)/(1-v)

%C2c=6.1

% (Circular membrane) Deflection calculation
he=((P*a"4)./(C2c*El*t))."(1/3);

%elastic modulus (circular)

Ec=((P*a"4)./(C2c*t*hc."3));

$Copied PDMS data from experiment (Square)

data=[

0.0 0.000
1.0 0.478
2.0 0.631
4.0 0.940
6.0 1.133
8.0 1.292
10.0 1.408
12.0 1.507
14.0 1.586
16.0 1.704
18.0 1.850
20.0 1.930
22.0 2.000
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24.0 2.081

26.0 2.123

28.0 2.250

30.0 2.3601;
SPressure=data(:,1)*248.84;
Sheflection=data(:,2)*1le-3;
$Square bulge equation

$zz=(1:25);

a = 9.52e-3 %average membrane radius (mm)

$P = (0:7465); %Pressure load (Pa or N/M"2)

$E1 = 0.0001le6; %Elastic Modulus of PDMS material
t = 0.025e-3; %$Membrane thickness

v = 0.4; %Poisson_'s ratio

C2s = 1.94*(1-.271*v)/(1-v)

Es = 72e6; %Square membrane elastic modulus

SRs = .55e6;%Square membrane residual stress

¢global data

$start=[{SRs Es];

$results=fmins('ftting’',start);

%¥Es = results(2);

%$SRs = results(l);

SPressurefit=( ( 3.45*SRs*t*SDeflection)/a”2+...
(C2s*Es*t*SDeflection.”3)/a"4);

figure(2)

plot(data(:,1)*248.84,data(:,2)*1le-3, 'bs')% experimental data
hold on

plot (SPressurefit,SDeflection, 'k-"')%;legend( ' Theory')
%title(sprintf('SRs=%5.5f Es=%5.5f',SRs,Es))

title( 'LLDPE Square Membrane - E=72MPa, Rs=0.55MPa’,’'fontsize',8);
xlabel( 'Pressure (N/m"2)','fontsize’,8)

ylabel( 'Deflection (m)', 'fontsize',8)

axis([0 8500 0 3.5e-31})




Appendix C

Analysis program results

C.1 Data analysis results

Data analysis results generated by the Matlab analysis programs in appendix B
were expressed in numeric and graphical forms. This appendix contains program

numerical output values and example graphical results for the analysis performed.

C.1.1 Dynamic uniaxial tension 4 sample numeric results

The results below were generated by the Matlab program (Phasediff1bb.m). This
program was designed to analyze dynamic uniaxial tension test data. The results are
listed for each 4 sample run and correspond to the text data file name and dynamic
frequency at which the samples were tested. For example, the result below of
Pdmst 025.txt corresponds to the sample tested at 0.25Hz of the “4” group of samples.
The next result Pdmst 05.txt corresponds to the sample tested at 0.5Hz of the “4”
group of samples, and so on increasing in test frequency. There are five groups of

samples, one group for each of the five samples tested per frequency.
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PDMS Dynamic uniaxial tension analysis — Matlab results
Matlab program (phasedifflbb.m)
A samples — [Group A]

Pdmst_025.txt

OPERATOR - Patrick Raman 20 Aug 2001
To center selected data about zero,
0.873 was added to Stress and
0.909 was added to Strain
Fran an average over 1 canplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0327
Phase difference is 358.2839 degrees
Tan delta is -0.0301
Modulus (mean +/- SD) = 2.377et+006 +/- 6.060e+006 Nm"-2 (average slope as function of strain)
Maximun Slope = 9.650e+007 Nm"-2
Minimum Slope = 3.501e+005 Nm*-2
Storage modulus (mean +/- SD) = 2.376e+006 +/- 6.057e+006 Nm -2
Loss modulus (mean +/- SD) = 7.144e+004 +/- 1.821e+005 Nm"-2
Maximum Engineering Stress = 2.608e+005 Nm*-2
Minimum Engineering Stress = 2.027e+005 Nm™~2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximm True Stress = 3.205e+005 Nm"-2
Minimum True Stress = 2.407e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001

Pdst_05.txt

OPERATCR - Patrick Raman 20 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.15e-3
Input gauge length in mm>48
To center selected data about zero,
0.902 was added to Stress and
0.909 was added to Strain
Fram an average over 3 camplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0240
Phase difference is 356.1869 degrees
Tan delta is -0.0668
Modulus (mean +/- SD) = 1.806e+006 +/- 1.411e+006 Nn"-2 (average slope as function of strain)
Maximm Slope = 1.516e+007 Nm"-2
Minimum Slope = 4.542e+005 Nn"-2
Storage modulus (mean +/- SD) = 1.802e+006 +/- 1.408e+006 Nm"-2
Loss modulus (mean +/- SD) = 1.203e+005 +/- 9.396e+004 Nm*-2
Maximum Engineering Stress = 3.430e+005 Nm"-2
Minimun Engineering Stress = 2.773e+005 Nm™-2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximm True Stress = 4.216e+005 Nm"-2
Minimm True Stress = 3.293e+005 Nm"“-2
Maximum Percent True Strain = 1.865e+001
Minimm Percent True Strain = 1.578e+001




Pdnst_1.txt

OPERATOR - Patrick Raman 20 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.54e-3
Input gauge length in mm>48
To center selected data about zero,
0.901 was added to Stress and
0.909 was added to Strain
Fram an average over 4 camplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0728
Phase difference is 355.3822 degrees
Tan delta is -0.0809
Modulus (mean +/-~ SD) = 1.598e+006 +/- 3.401e+005 Nm“-2 (average slope as function of strain)
Maximmn Slope = 3.951e+006 Nm™-2
Minimum Slope = 6.718e+005 Nm"-2
Starage modulus (mean +/- SD) = 1.593e+006 +/- 3.390e+005 Nm“-2
Ioss modulus (mean +/- SD) = 1.288e+005 +/- 2.741e+004 Nm"-2
Maximum Engineering Stress = 3.343e+005 Nm"-2
Minimum Engineering Stress = 2.679e+005 Nn"-2
Maximum Percent Engineering Strain = 2.293e+001
Minimm Percent Engineering Strain = 1.873e+001
Maximum True Stress = 4.110e+005 Nm*-2
Minimum True Stress = 3.181e+005 Nm™-2
Maximum Percent True Strain = 1.866e+001
Minimumm Percent True Strain = 1.577e+001

Pdmst_2.txt

OPERATOR - Patrick Raman 20 Ang 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.4e-3
Input gauge length in mr>48
To center selected data about zero,
0.786 was added to Stress and
0.908 was added to Strain
Fram an average over 3 camplete cycles:
The frequency is 2.00 Hz
Magnitude ratio is 1.8897
Phase difference is -2.7011 degrees
Tan delta is -0.0472
Modulus (mean +/- SD) = 1.244e+006 +/- 1.453e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.612e+006 Nm"-2
Minimum Slope = 8.304e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.243e+006 +/- 1.451e+005 Nm“-2
Loss modulus (mean +/- SD) = 5.863e+004 +/- 6.845e+003 Nm"-2
Maximm Engineering Stress = 1.540e+005 Nm"-2
Minimum Engineering Stress = 9.436e+004 Nm"-2
Maximum Percent Engineering Strain = 2.295e+001
Minimum Percent Engineering Strain = 1.873e+001
Maximum True Stress = 1.892e+005 Nm“-2
Minimum True Stress = 1.121e+005 Nm*-2
Maximum Percent True Strain = 1.871e+001
Minimm Percent True Strain = 1.573e+001
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Pamst_3.txt

OPERATCR - Patrick Raman 20 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.29%e-3
Input gauge length in mo>48
To center selected data about zero,
0.793 was added to Stress and
0.910 was added to Strain
Fram an average over 3 camplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 2.0004
Phase difference is -3.2299 degrees
Tan delta is -0.0564
Modulus (mean +/- SD) = 1.227eH006 +/- 1.057e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.517e+006 Nm"-2
Minimum Slope = 1.036e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.225e+006 +/- 1.055e+005 Nm"-2
Loss modulus (mean +/- SD) = 6.913e+004 +/- 5.954e+003 Nm -2
Maximm Engineering Stress = 1.392e+005 Nn"-2
Minimm Engineering Stress = 8.236e+004 Nm"-2
Maximum Percent Engineering Strain = 2.296e+001
Minimum Percent Engineering Strain = 1.875e+001
Maximum True Stress = 1.712e+005 Nm"-2
Minimum True Stress = 9.780e+004 Nm“-2
Maximum Percent True Strain = 1.873e+001
Minimm Percent True Strain = 1.564e+001

PAmst_4.txt

OPERATCR - Patrick Raman 20 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.14e-3
Input gauge length in mm>48
To center selected data about zero,
0.779 was added to Stress and
0.909 was added to Strain
Fran an average over 2 camplete cycles:
The frequency is 4.00 Hz
Magnitude ratio is 2.0630
Phase difference is -2.1375 degrees
Tan delta is -0.0373
Modulus (mean +/- SD) = 1.405e+006 +/- 9.337e+004 Nn"-2 (average slope as function of strain)
Maximum Slope = 1.600e+006 Nm"“-2
Minimum Slope = 1.214e+006 Nm™-2
Storage modulus (mean +/- SD) = 1.404e+006 +/- 9.330e+004 Nm™-2
Ioss modulus (mean +/- SD) = 5.242e+004 +/- 3.482e+003 Nm"-2
Maximum Engineering Stress = 1.592e+005 Nm"-2
Minimum Engineering Stress = 9.319e+004 Nm"-2
Maximm Percent Engineering Strain = 2.289%e+001
Minimum Percent Engineering Strain = 1.876e+001
Maximm True Stress = 1.957e+005 Nm"-2
Minimm True Stress = 1.108e+005 Nm"-2
Maximum Percent True Strain = 1.886e+001
Minimum Percent True Strain = 1.556e+001
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Pdmst_5.txt

OPERATOR - Patrick Raman 20 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.68e-3
Input gauge length in nm>48
To center selected data about zero,
0.602 was added to Stress and
0.903 was added to Strain
Fram an average over 2 camplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 4.3662
Phase difference is 351.4361 degrees
Tan delta is -0.1507
Modulus (mean +/- SD) = 8.415e+005 +/~ 1.150e+004 Nm*-2 (average slope as function of strain)
Maximm Slope = 8.659e+005 Nm™-2
Minimum Slope = 8.102e+005 Nm"-2
Storage modulus (mean +/- SD) = 8.321e+005 +/- 1.138e+004 Nm"-2
Ioss modulus (mean +/- SD) = 1.254e+005 +/- 1.714e+003 Nm-2
Maximum Engineering Stress = 4.618e+004 Nm™-2
Minimm Engineering Stress = -1.374e+004 Nm"-2
Maximum Percent Engineering Strain = 2.307e+001
Minimum Percent Engineering Strain = 1.745e+001
Maximum True Stress = 5.683e+004 Nn"-2
Minimum True Stress = -1.613e+004 Nm"-2
Maximum Percent True Strain = 1.885e+001
Minimum Percent True Strain = 1.485e+001

A samples - [Group B]
Pdmst_025b.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.36e-3
Input gauge length in mr>48
To center selected data about zero,
0.859 was added to Stress and
0.909 was added to Strain
Fram an average over 3 conplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.1307
Phase difference is 358.2384 degrees
Tan delta is -0.0309
Modulus (mean +/- SD) = 2.328e+006 +/- 7.008e+006 Nm"-2 (average slope as function of strain)
Maximum Slope = 9.403e+007 Nm"-2
Minimum Slope = 1.293e+005 Nm*-2
Storage modulus (mean +/- SD) = 2.327e+006 +/- 7.005e+006 Nm"-2
Loss modulus (mean +/- SD) = 7.181e+004 +/- 2.162et+005 Nm"-2
Maximum Engineering Stress = 1.653e+005 Nm™-2
Minimum Engineering Stress = 1.239%e+005 Nm"-2
Maximum Percent Engineering Strain = 2.292e+001
Minimmn Percent Engineering Strain = 1.874e+001
Maximun True Stress = 2.032e+H005 Nn"-2
Minimum True Stress = 1.472e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001
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Pdmst_05.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.22e-3
Input gauge length in mu>48
To center selected data about zero,
0.885 was added to Stress and
0.909 was added to Strain
Fran an average over 4 cawplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 0.9510
Phase difference is —0.0009 degrees
Tan delta is -0.0000
Modulus (mean +/- SD) = 1.808e+006 +/- 1.582e+006 Nm*-2 (average slope as function of strain)
Maximum Slope = 2.100e+007 Nn*-2
Minimm Slope = 4.642e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.808e+006 +/~ 1.582e+006 Nm"-2
Loss modulus (mean +/- SD) = 2.772e+001 +/- 2.426e+001 Nm"-2
Maximm Engineering Stress = 3.583e+005 Nm"-2
Minimm Engineering Stress = 2.837e+005 Nm"-2
Maximum Percent Engineering Strain = 2.293e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximum True Stress = 4.404e+005 Nm"-2
Minimum True Stress = 3.368e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimm Percent True Strain = 1.578e+001

Pdmst_1.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.48e-3
Input gauge length in mm>48
To center selected data about zero,
0.875 was added to Stress and
0.908 was added to Strain
Fram an average over 2 camplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0106
Phase difference is 0.2422 degrees
Tan delta is 0.0042
Modulus (mean +/- SD) = 1.503e+006 +/- 3.310e+005 Nm™-2 (average slope as function of strain)
Maximm Slope = 3.850e+}06 Nm"-2
Minimm Slope = 6.774e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.503e+006 +/- 3.310e+005 Nm"-2
Ioss modulus (mean +/- SD) = 6.354e+003 +/- 1.399e+003 Nm"-2
Maximun Engineering Stress = 3.329e+005 Nm™-2
Minimm Engineering Stress = 2.589e+005 Nm"-2
Maximm Percent Engineering Strain = 2.293e+001
Minimm Percent Engineering Strain = 1.873e+001
Maximum True Stress = 4.092e+005 Nu™-2
Minimum True Stress = 3.074e+005 Nm"-2
Maximum Percent True Strain = 1.866e+001
Minimm Percent True Strain = 1.577e+001




Pdust_2.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.17e-3
Input gauge length in mm>48
To center selected data about zero,
0.769 was added to Stress and
0.908 was added to Strain
Fram an average over 1 camplete cycles:
The freguency is 2.00 Hz
Magnitude ratio is 2.0530
Phase difference is -3.0966 deqrees
Tan delta is -0.0541
Modulus (mean +/- SD) = 1.367e+006 +/- 1.640e+005 Nm*-2 (average slope as function of strain)
Maximum Slope = 1.977e+006 Nm"-2
Minimum Slope = 9.652e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.365e+006 +/- 1.637e+005 Nw*-2
Loss modulus (mean +/— SD) = 7.382e+004 +/- 8.858e+003 Nm™-2
Maximum Engineering Stress = 1.501e+005 Nm"-2
Minimum Engineering Stress = 8.636e+004 Nm"-2
Maximum Percent Engineering Strain = 2.295e+H001
Minimum Percent Engineering Strain = 1.873e+001
Maximm True Stress = 1.845e+005 Nm"-2
Minimun True Stress = 1.025e+005 Nm"-2
Maximun Percent True Strain = 1.870e+001
Minimum Percent True Strain = 1.573e+001

[

Pamst_3.txt

OPERATCR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.23e-~3
Input gauge length in mu>48
To center selected data about zero,
0.787 was added to Stress and
0.910 was added to Strain
Fram an average over 2 carplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 2.0042
Phase difference is -2.5072 degrees
Tan delta is -0.0438
Modulus (mean +/- SD) = 1.350e+006 +/- 1.298e+005 Nm*-2 (average slope as function of strain)
Maximm Slope = 1.671e+006 Nm™-2
Minimm Slope = 1.002e+006 Nn"-2
Storage modulus (mean +/- SD) = 1.349e+006 +/- 1.297e+005 Nm"-2
Loss modulus (mean +/~ SD) = 5.907e+004 +/- 5.677e+003 Nm*-2
Maximum Engineering Stress = 1.540e+005 Nu"-2
Minimam Engineering Stress = 9.333e+004 Nm"-2
Maximum Percent Engineering Strain = 2.295e+001
Minimm Percent Engineering Strain = 1.874e+001
Maximum True Stress = 1.893e+005 Nm"-2
Minimumn True Stress = 1.108e+005 Nm"-2
Maximmm Percent True Strain = 1.87Se+)01
Minimm Percent True Strain = 1.564e+001

nwowod
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Pdust_4.txt

OPERATOR - Patrick Raman 27 Ang 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>l.2e-3
Input gauge length in mm>48
To center selected data about zero,
0.782 was added to Stress and
0.910 was added to Strain
Fram an average over 3 camplete cycles:
The frequency is 4.00 Hz
Magnitude ratio is 2.0980
Phase difference is -2.4435 degrees
Tan delta is -0.0427
Modulus (mean +/-~ SD) = 1.305et+006 +/- 9.352e+004 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.514e+006 Nm"-2
Minimm Slope = 1.118e+006 Nu"-2
Storage modulus (mean +/- SD) = 1.304e+006 +/- 9.343e+004 Nm"-2
Loss modulus (mean +/- SD) = 5.565e+004 +/- 3.987e+003 Nm"-2
Maximum Engineering Stress = 1.439e+005 Nm"-2
Minimum Engineering Stress = 8.213e+004 Nm"-2
Maximm Percent Engineering Strain = 2.289%+001
Minimum Percent Engineering Strain = 1.876e+001
Maximum True Stress = 1.770e+005 Nm"-2
Minimum True Stress = 9.761e+004 Nm*-2
Maximum Percent True Strain = 1.885e+001
Minimum Percent True Strain = 1.556e+001

Pdust._5.txt

QOPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.45e-3
Input gauge length in mm>48
To center selected data about zero,
0.842 was added to Stress and
0.910 was added to Strain
Fram an average over 3 canplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.4333
Phase difference is -2.0229 degrees
Tan delta is -0.0353
Modulus (mean +/- SD) = 1.608e+006 +/- 1.036e+005 Nn“-2 (average slope as function of strain)
Maximm Slope = 1.794e+006 Nm"-2
Minimum Slope = 1.476e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.607e+006 +/- 1.035e+005 Nm"~2
Toss modulus (mean +/~ SD) = 5.677e+004 +/- 3.657e+003 Nm"-2
Maximun Engineering Stress = 2.592e+005 Nm"-2
Minimum Engineering Stress = 1.845e+005 Nm"-2
Maximum Percent Fngineering Strain = 2.289%e+001
Minimun Percent Engineering Strain = 1.874e+001
Maximum True Stress = 3.190e+005 Nm"-2
Minimm True Stress = 2.192e+005 Nm"-2
Maximum Percent True Strain = 1.886e+001
Minimum Percent True Strain = 1.554e+001
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A samples - [Group C]

Pdmst_025c. txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.53e-3
Input gauge length in mr>48
To center selected data about zero,
0.857 was added to Stress and
0.909 was added to Strain
Fram an average over 1 camplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0514
Phase difference is 0.2303 degrees
Tan delta is 0.0040
Modulus (mean +/- SD) = 2.136e+006 +/- 5.911e+006 Nm"—2 (average slope as function of strain)
Maximm Slope = 8.491e+007 Nm™-2
Minimum Slope = 1.303e+005 Nm*-2
Storage modulus (mean +/~ SD) = 2.136e+006 +/~ 5.911e+006 Nm"-2
Loss moculus (mean +/- SD) = 8.587e+003 +/- 2.376e+004 Nn"-2
Maximum Engineering Stress = 1.726e+005 Nm"-2
Minimum Engineering Stress = 1.308e+005 Nm™-2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.875e+001
Maximum True Stress = 2.121e+005 Nm"*-2
Minimm True Stress = 1.553e+005 Nm*-2
Maximum Percent True Strain = 1.865e+001
Minimumm Percent True Strain = 1.578e+001

[}

Pdnst_05.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Inpat thickness of specimen in meters>1.20e-3
Input gauge length in mm>48
To center selected data about zero,
0.878 was added to Stress and
0.909 was added to Strain
Fram an average over 1 camplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0213
Phase difference is 359.5977 degrees
Tan delta is -0.0071
Modulus (mean +/- SD) = 1.896e+006 +/- 1.716e+006 Nn"~2 (average slope as function of strain)
Maximum Slope = 2.683e+007 Nm"-2
Minimm Slope = 4.981e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.896e+006 +/- 1.716e+006 Nm"-2
Loss modulus (mean +/- SD) 1.351e+004 +/- 1.223e+004 Nm"™-2
Maximum Engineering Stress = 3.490e+005 Nm"-2
Minimm Engineering Stress = 2.733e+005 Nm"-2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximum True Stress = 4.290e+005 Nm"-2
Minimm True Stress = 3.245e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001
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Pdust_1.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.38e-3
Input gawge length in mr>48
To center selected data about zero,
0.880 was added to Stress and
0.908 was added to Strain
Fran an average over 2 carmplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 0.9622
Phase difference is 0.6369 degrees
Tan delta is 0.0111
Modulus (mean +/- SD) = 1.515e+006 +/- 2.269e+005 Mn*-2 (average slope as function of strain)
Maximm Slope = 2.370e+006 Nm"-2
Minimum Slope = 7.241e+005 Nn*-2
Storage modulus (mean +/- SD) = 1.515e+006 +/- 2.269e+005 Nm"-2
Loss modulus (mean +/- SD) = 1.684e+004 +/- 2.522e+003 Nm"-2
Maximum Engineering Stress = 3.604e+005 Nm"-2
Minimum Engineering Stress = 2.850e+005 Nm™-2
Maximum Percent Engineering Strain = 2.293e+001
Minimum Percent Engineering Strain = 1.873e+001
Maximum True Stress = 4.431e+005 Nm™-2
Minimm True Stress = 3.384e+005 Nm™-2
Maximum Percent True Strain = 1.866e+001
Minimum Percent True Strain = 1.577e+001

Pdust_2.¢xt

OPERATCR — Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.42e-3
Input gauge length in mm>48
To center selected data about zero,
0.786 was added to Stress and
0.908 was added to Strain
Fran an average over 1 cawplete cycles:
The frequency is 2.00 Hz
Magnitude ratio is 1.9266
Phase difference is -2.0905 degrees
Tan delta is -0.0365
Modulus (mean +/- SD) = 1.246e+006 +/- 1.412e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.546e+006 Nm"~2
Minimm Slope = 8.540e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.245e+006 +/- 1.41le+005 Nm™-2
Loss modulus (mean +/- SD) = 4.545e+004 +/- 5.149e+003 Nm*-2
Maximum Engineering Stress = 1.491e+005 Nm"-2
Minimum Engineering Stress = 9.023e+004 Nm"-2
Maximum Percent Engineering Strain = 2.295e+001
Minimun Percent Engineering Strain = 1.873e+001
Maximum True Stress = 1.833et+005 Nm™-2
Minimm True Stress = 1.072e+005 Nm*-2
Maximun Percent True Strain = 1.870e+001
Minimm Percent True Strain = 1.571e+001
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Pamst_3.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.2le-3
Input gauge length in mu>48
To center selected data about zero,
0.774 was added to Stress and
0.910 was added to Strain
Fram an average over 1 carplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 2.1212
Phase difference is -1.2756 degrees
Tan delta is -0.0223
Modulus (mean +/- SD) = 1.320et006 +/- 1.276e+005 Nm*-2 (average slope as function of strain)
Maxdmum Slope = 1.687e+006 Nm"-2
Minimm Slope = 1.092e+006 Nm -2
Storage modulus (mean +/- SD) = 1.320e+006 +/~ 1.276e+005 Nm"-2
Loss modulus (mean +/- SD) = 2.939e+004 +/- 2.841e+003 Nm"-2
Maximum Engineering Stress = 1.418e+005 Nm"-2
Minimm Engineering Stress = 8.145e+004 Nm"-2
Maximum Percent Engineering Strain = 2.295e+001
Minimm Percent Engineering Strain = 1.869e+001
Maximum True Stress = 1.743e+005 Nm™-2
Minimm True Stress = 9.667e+004 Nm™-2
Maximm Percent True Strain = 1.873e+001
Minimm Percent True Strain = 1.566e+001

Pdmst_4.txt

OPERATOR ~ Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.18e-3
Input gauge length in mm>48
To center selected data about zero,
0.799 was added to Stress and
0.911 was added to Strain
Fram an average over 3 carplete cycles:
The frequency is 4.00 Hz
Magnitude ratio is 1.8677
Phase difference is -2.4176 degrees
Tan delta is -0.0422
Modulus (mean +/- SD) = 1.387e+006 +/- 9.710e+004 Nm*-2 (average slope as function of strain)
Maximum Slope = 1.594e+006 Nm™-2
Minimum Slope = 1.18%e+006 Nm™-2
Storage modulus (mean +/- SD) = 1.385e+006 +/- 9.701e+004 Nm -2
Ioss modulus (mean +/- SD) = 5.848e+004 +/- 4.096e+003 Nn"-2
Maximum Engineering Stress = 1.741e+005 Nm"-2
Minimm Engineering Stress = 1.060e+005 Nm"-2
Maximun Percent Engineering Strain = 2.288e+001
Minimum Percent Engineering Strain = 1.877e+001
Maximmn True Stress = 2.141e+005 Nn"-2
Minimm True Stress = 1.260e+005 Nm"-2
Maxdmum Percent True Strain = 1.886e+001
Minimum Percent True Strain = 1.555e+001
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Pdust_5.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.37e-3
Input gauge length in mm>48
To center selected data about zero,
0.828 was added to Stress and
0.910 was added to Strain
Fram an average over 2 camplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.6587
Phase difference is 357.9089 degrees
Tan delta is -0.0366
Modulus (mean +/- SD) = 1.700et006 +/- 2.435e+004 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.773e+006 Nm™-2
Minimum Slope = 1.643e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.699e+006 +/- 2.434e+004 Nm"-2
Loss modulus (mean +/— SD) = 6.222e+004 +/- 8.912e+002 Nm -2
Maximm Engineering Stress = 2.214e+005 Nm™-2
Minimum Engineering Stress = 1.474e+005 Nm"-2
Maximum Percent Engineering Strain = 2.290e+001
Minimumm Percent Engineering Strain = 1.867e+001
Maximum True Stress = 2.725e+005 Nm"-2
Minimm True Stress = 1.750e+005 Nm"-2
Maximum Percent True Strain = 1.882e+001
Minimum Percent True Strain = 1.559e+001

A samples - [Group D]

Pdust_025d. txt

OPERATOR — Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.5le-3
Input gauge length in mm>48
To center selected data about zero,
0.874 was added to Stress and
0.909 was added to Strain
Fran an average over 2 conplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0800
Phase difference is 0.7833 degrees
Tan delta is 0.0137
Modulus (mean +/- SD) = 2.364e+006 +/- 9.119e+006 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.943e+008 Nm*-2
Minimum Slope = 1.522e+005 Nm"-2
Storage modulus (mean +/- SD) = 2.363e+H006 +/- 9.118e+006 Nm -2
Loss modulus (mean +/- SD) = 3.231e+004 +/- 1.247e+005 Nm"-2
Maximum Engineering Stress = 1.438e+005 Nm™-2
Minimum Engineering Stress = 1.075e+005 Nu"-2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.875e+001
Maximm True Stress = 1,767e+005 Nm"-2
Minimm True Stress = 1.276e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001
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Pdmst_05.txt

OPERATOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.73e-3
Input gauge length in mm>48
To center selected data about zero,
0.876 was added to Stress and
0.909 was added to Strain
Fram an average over 1 carmplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 0.9739
Phase difference is 360.0956 degrees
Tan delta is 0.0016
Modulus (mean +/- SD) = 1.401e+006 +/- 1.183e+006 Nn"-2 (average slope as function of strain)
Maximm Slope = 2.091e+007 Nm™-2
Minimum Slope = 3.863e+005 Nm™-2
Storage modulus (mean +/- SD) = 1.401e+006 +/- 1.183e+006 Nm"-2
Loss modulus (mean +/- SD) = 2.190e+003 +/~ 1.848e+003 Nm"-2
Maximum Engineering Stress 782e+005 Nm"-2
Minimum Engineering Stress = 2.183e+005 Nm"-2
Maximm Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximum True Stress = 3.419e+005 Nm"-2
Minimum True Stress = 2.593e+005 Nm™-2
Maximum Percent True Strain = 1.865e+001
Minimm Percent True Strain = 1.578e+00

2.
2.

[

Pdmst._1.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.48e-3
Input gauge length in mm>48
To center selected data about zero,
0.881 was added to Stress and
0.909 was added to Strain
Fran an average over 1 camplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 0.9810
Phase difference is -1.7521 degrees
Tan delta is -0.0306
Modulus (mean +/- SD) = 1.545e+006 +/- 3.909e+005 Nn"-2 (average slope as function of strain)
Maximum Slope = 4.042e+006 Nm"-2
Minimm Slope = 7.627e+005 Nm“-2
Storage modulus (mean +/- SD) = 1.544e+006 +/- 3.907e+005 Nm"-2
Loss modulus (mean +/- SD) = 4.724e+004 +/- 1.195e+004 Nm™-2
Maximum Engineering Stress = 3.412e+005 Nm"-2
Minimum Engineering Stress = 2.637e+005 Nm"“-2
Maximum Percent Engineering Strain = 2.293e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximm True Stress = 4.193e+005 Nm"-2
Minimum True Stress = 3.203e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+00
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Pdmst_2.txt

COPERATOR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.25e-3
Input gauge length in mm>48
To center selected data about zero,
0.764 was added to Stress and
0.908 was added to Strain
Fram an average over 1 camplete cycles:
The frequency is 2.00 Hz
Magnitude ratio is 2.0295
Phase difference is -0.1312 degrees
Tan delta is -0.0023
Modulus (mean +/- SD) = 1.317e+006 +/- 1.510et005 Nn™-2 (average slope as function of strain)
Maximum Slope = 1.753e+006 Nm"-2
Minimm Slope = 7.924e+005 Nn"-2
Storage modulus (mean +/- SD) = 1.317e+006 +/- 1.510e+005 Nm™-2
Ioss modulus (mean +/- SD) = 3.017e+003 +/- 3.457e+002 Nm*-2
Maximun Engineering Stress = 1.483e+005 Nm“-~2
Minimun Engineering Stress = 8.545e+004 Nm"-2
Maximum Percent Engineering Strain = 2.296e+001
Minimum Percent Engineering Strain = 1.873e+001
Maximum True Stress = 1.823e+005 Nm"-2
Minimm True Stress = 1.016e+005 Nm"-2
Maximum Percent True Strain = 1.870e+001
Minimun Percent True Strain = 1.573e+001

Pdmst_3.txt

OPERATOR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.55e-3
Input gauge length in mw>48
To center selected data about zero,
0.813 was added to Stress and
0.909 was added to Strain
Fram an average over 2 camwplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.7123
Phase difference is -2.2899 degrees
Tan delta is -0.0400
Modulus (mean +/- SD) = 1.303e+006 +/— 1.179e+005 Nm*-2 (average slope as function of strain)
Maximum Slope = 1.619e+006 Nm*-2
Minimum Slope = 1.095e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.302e+006 +/- 1.179e+005 Nm"“-2
Ioss modulus (mean +/- SD) = 5.207e+004 +/- 4.713e+003 Nm™-2
Maximmm Engineering Stress = 1.712e+005 Nm"-2
Minimm Engineering Stress = 1.105e+005 Nm"-2
Maximun Percent Engineering Strain = 2.296e+001
Minimum Percent Engineering Strain = 1.870e+001
Maximum True Stress = 2.105e+005 Nm"-2
Minimum True Stress = 1.311e+005 Nm"-2
Maximum Percent True Strain = 1.876e+001
Minimum Percent True Strain = 1.566e+001
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Pdrst_4.txt

OPERATCOR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.08e-3
Input gauge length in mm>48
To center selected data about zero,
0.692 was added to Stress and
0.910 was added to Strain
Fram an average over 2 camplete cycles:
The frequency is 4.00 Hz
Magnitude ratio is 3.0725
Phase difference is 356.2377 degrees
Tan delta is -0.0659
Modulus (mean +/- SD) = 1.288e+006 +/- 9.848e+004 Nm"-2 (average slope as function of strain)
Maximumm Slope = 1.528e+006 Nm“-2
Minimm Slope = 1.106e+006 Nm*-2
Storage modulus (mean +/- SD) = 1.285e+006 +/- 9.826e+004 Nn"-2
Loss modulus (mean +/- SD) = 8.464e+004 +/- 6.472e+003 Nm"-2
Maximum Engineering Stress = 9.732e+004 Nm"-2
Minimm Engineering Stress = 4.057e+004 Nm"-2
Maximmm Percent Engineering Strain = 2.289e+001
Minimum Percent Engineering Strain = 1.844e+001
Maximm True Stress = 1.199%e+005 Nm"-2
Minimum True Stress = 4.815e+004 Nm"-2
Maximum Percent True Strain = 1.884e+001
Minimm Percent True Strain = 1.557e+001

Pdmst_5.txt

OPERATOR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.60e-3
Input gauge length in mm>48
To center selected data about zero,
0.834 was added to Stress and
0.910 was added to Strain
From an average over 3 complete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.5177
Phase difference is -2.4947 degrees
Tan delta is -0.0436
Modulus (mean +/- SD) = 1.652e+006 +/- 7.861e+004 Nm"-2 (average slope as
function of strain)
Maximum Slope 1.739e+006 Nm"-2
Minimum Slope 1.421e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.650e+006 +/- 7.854e+004 Nm"-2
Loss modulus (mean +/- SD) = 7.190e+004 +/~ 3.422e+003 Nm"-2
Maximum Engineering Stress 2.376e+005 Nm"-2
Minimum Engineering Stress = 1.651e+005 Nm"-2
Maximum Percent Engineering Strain = 2.289e+001
Minimum Percent Engineering Strain = 1.878e+001
Maximum True Stress = 2.929e+005 Nm"-2
Minimum True Stress = 1.961le+005 Nm"-2
Maximum Percent True Strain = 1.886e+001
Minimum Percent True Strain 1.555e+001
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A samples — [Group E]
Pdmst_025e.txt

OPERATOR - Patrick Raman 27 Aug 2001
Inpat width of specimen in meters>6e-3
Input thickness of specimen in meters>1.65e-3
Input gauge length in mm>48
To center selected data about zero,
0.860 was added to Stress and
0.909 was added to Strain
Fram an average over 1 camplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0976
Phase difference is 360.4245 degrees
Tan delta is 0.0073
Modulus (mean +/- SD) = 1.847e+006 +/- 4.985e+006 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.090e+008 Nm*-2
Minimum Slope = 1.737e+005 Nn*-2
Storage modulus (mean +/- SD) = 1.847e+006 +/- 4.985¢+006 Nm"-2
Loss modulus (mean +/- SD) = 1.349e+004 +/- 3.641e+004 Nm"-2
Maximum Engineering Stress = 1.602e+005 Nm"-2
Minimm Engineering Stress = 1.210e+005 Nm"-2
Maximum Percent Engineering Strain = 2.293e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximum True Stress = 1.969%e+005 Nm*-2
Minimum True Stress = 1.437e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001

Pdust._05.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.72e-3
Input gauge length in nm>48
To center selected data about zero,
0.876 was added to Stress and
0.909 was added to Strain
Fram an average over 1 camplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 0.9706
Phase difference is 358.9593 degrees
Tan delta is -0.0183
Modulus (mean +/- SD) = 1.518e+006 +/- 1.491eH)06 Nm"-2 (average slope as function of strain)
Maximm Slope = 2.281e+007 Nm™-2
Minimm Slope = 1.913e+005 Nm*-2
Storage modulus (mean +/- SD) = 1.518e+006 +/- 1.491e+006 Nm"-2
Loss modulus (mean +/- SD) = 2.773e+004 +/- 2.723e+004 Nm"-2
Maximum Engineering Stress = 2.895e+005 Nm"-2
Minimum Engineering Stress = 2.272e+005 Nm"-2
Maximum Percent Engineering Strain = 2.292e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximm True Stress = 3.557e+005 Nm“-2
Minimum True Stress = 2.698e+005 Nm™-2
Maximum Percent True Strain = 1.865e+001
Minimum Percent True Strain = 1.578e+001
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Pdmst_1.txt

OPERATOR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.26e-3
Input gauge length in mm>48
To center selected data about zero,
0.875 was added to Stress and
0.909 was added to Strain
Fram an average over 2 canplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0094
Phase difference is -1.2587 degrees
Tan delta is -0.0220
Modulus (mean +/- SD) = 1.407e+006 +/- 2.966e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 3.407e+006 Nm -2
Minimum Slope = 3.842e+005 Nm™-2
Storage modulus (mean +/- SD) = 1.407e+006 +/- 2.965e+005 Nm™-2
Ioss modulus (mean +/- SD) = 3.091e+004 +/- 6.515e+003 Nm"-2
Maximum Engineering Stress = 3.157e+005 Nm"-2
Minimum Engineering Stress = 2.465e+005 Nm"-2
Maximum Percent Engineering Strain = 2.293e+001
Minimum Percent Engineering Strain = 1.874e+001
Maximum True Stress = 3.879e+005 Nm"-2
Minimum True Stress = 2.927e+005 Nm"-2
Maximum Percent True Strain = 1.865e+001
Minimm Percent True Strain = 1.578e+001

Pdust_2.txt

OPERATCR ~ Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.19e-3
Input gauge length in mw>48
To center selected data about zero,
0.694 was added to Stress and
0.690 was added to Strain
Fran an average over 4 camplete cycles:
The frequency is 2.00 Hz
Magnitude ratio is 1.2324
Phase difference is 357.3667 degrees
Tan delta is -0.0461
Modulus (mean +/- SD) = 1.355e+006 +/~ 3.114e+005 Nm™-2 (average slope as function of strain)
Maximum Slope = 3.805e+006 Nm"-2
Minimm Slope = 5.504e+005 Nu"-2
Storage modulus (mean +/- SD) = 1.354eH)06 +/- 3.111e+005 Nm"-2
Loss modulus (mean +/- SD) = 6.239%e+004 +/- 1.434e+004 Nm™-2
Maximm Engineering Stress = 3.629e+005 Nm"-2
Minimum Engineering Stress = 4.408e+003 Nm"-2
Maximum Percent Engineering Strain = 3.033e+001
Minimun Percent Engineering Strain = 2.704e+000
Maximam True Stress = 4.731e+005 Nm"-2
Minimm True Stress = 4.522e+003 Nm“-2
Maximm Percent True Strain = 2.338e+001
Minimum Percent True Strain = 2.512e+000
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Pdrst_3.txt

OPERATCR - Patrick Raman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.44e-3
Input gauge length in rm>48
To center selected data about zero,
0.799 was added to Stress and
0.909 was added to Strain
Fram an average over 2 carplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.8010
Phase difference is -1.3640 degrees
Tan delta is -0.0238 ‘
Modulus (mean +/- SD) = 1.319e+006 +/- 1.187e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.659e+006 Nm™-2
Minimum Slope = 1.090e+006 Nm™-2
Starage modulus (mean +/- SD) = 1,319e+006 +/- 1.187e+005 Nm"-2
Loss modulus (mean +/- SD) = 3.140e+004 +/- 2.826e+003 Nm"-2
Maximum Engineering Stress = 1.672e+005 Nm"-2
Minimmn Engineering Stress = 1.048e+005 Nm"-2
Maximum Percent Engineering Strain = 2.296e+001
Minimum Percent Engineering Strain = 1.872e+001
Maximum True Stress = 2.056e+005 Nm"-2
Minimm True Stress = 1.245e+005 Nm™-2
Maximum Percent True Strain = 1.876e+001
Minimum Percent True Strain = 1.567e+00

Py

Pdust_4.txt

OPERATOR -~ Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1.2le-3
Input gauge length in mm>48
To center selected data about zero,
0.766 was added to Stress and
0.910 was added to Strain
Fran an average over 3 camplete cycles:
The frequency is 4.00 Hz
Magnitude ratio is 2.2043
Phase difference is -1.7998 degrees
Tan delta is -0.0314
Modulus (mean +/~ SD) = 1.285e+006 +/- 8.885e+004 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.475e+006 Nm"~2
Miniman Slope = 1.017e+006 Nn*-2
Staorage modulus (mean +/- SD) = 1.284e+006 +/- 8.88le+004 Nm"-2
Loss modulus (mean +/- SD) = 4.035e+004 +/- 2.791e+003 Nm*-2
Maximum Engineering Stress = 1.344et005 Nm"-2
Minimum Engineering Stress = 7.278e+004 Nm"-2
Maximum Percent Engineering Strain = 2.288e+001
Minimum Percent Engineering Strain = 1.856e+001
Maximum True Stress = 1.655e+005 Nu"-2
Minimum True Stress = 8.629%¢+004 Nm™-2
Maximum Percent True Strain = 1.886e+001
Miniman Percent True Strain = 1.556e+001
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Pdmst_5.txt

OPERATOR - Patrick Roman 27 Aug 2001
Input width of specimen in meters>6e-3
Input thickness of specimen in meters>1l.2le-3
Input gauge length in mm>48
To center selected data about zero,
0.787 was added to Stress and
0.910 was added to Strain
From an average over 3 complete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.9784
Phase difference is -3.7930 degrees
Tan delta is -0.0663
Modulus (mean +/~ SD) = 1,289e+006 +/- 2.78le+004 Nm"-2 (average slope as
function of strain)
Maximum Slope = 1.352e+006 Nm"-2
Minimum Slope = 1.223e+006 Nm"-2
Storage modulus (mean +/- SD) = 1.286e+006 +/- 2.775e+004 Nm"-2
Loss modulus (mean +/- SD) 8.526e+004 +/- 1.840e+003 Nm"-2
Maximum Engineering Stress 1.635e+005 Nm"-2
Minimum Engineering Stress 9.935e+004 Nm"-2
Maximum Percent Engineering Strain = 2.289%e+001
Minimum Percent Engineering Strain = 1.873e+001
Maximum True Stress = 2.014e+005 Nm"-2
Minimum True Stress = 1.180e+005 Nm"-2
Maximum Percent True Strain = 1.885e+001
Minimum Percent True Strain = 1.557e+001

Wt uu

C.1.2 Dynamic uniaxial tension B sample numeric results

The results below were generated by the Matlab program (Phasedifflbb.m). This
program was designed to analyze dynamic uniaxial tension test data. The results are
listed for each B sample run and correspond to the text data file name and dynamic
frequency at which the samples were tested. For example, the result below of
Dpdms_1A.txt corresponds to the first “4” sample tested at 0.1Hz. Five samples were
tested, A through E for each frequency. The next result set Dpdms_1B.txt corresponds
to the next sample of the 0.1Hz group tested at 0.1Hz, and so on increasing in test
frequency. There are six groups of samples with five sample per group per test

frequency.




PDMS Dynamic uniaxial tension analysis — Matlab results
Matlab program (phasedifflbb.m)

B samples — [0.1Hz]

Dpdms Test2 Analysis log Roman — 11/18/01

Dpdus_1A

To center selected data about zero,
0.545 was added to Stress and
0.666 was added to Strain
Fran an average over 9 camplete cycles:
The frequency is 0.10 Hz
Magnitude ratio is 1.0578
Phase difference is -1099.0397 degrees
Tan delta is -0.3447
Modulus (mean +/- SD) = 1.813e+007 +/- 8.003e+007 Nm"-2 (average slope as function of strain)
Maximam Slope = 1.006e+009 Nm™-2
Minimum Slope = 3.450e+005 Nm™-2
Storage modulus (mean +/- SD) = 1.714e+007 +/- 7.566e+007 Nm™-~2
Ioss modulus (mean +/- SD) = 5.909e+006 +/- 2.608e+007 Nm"-2
Maximum Engineering Stress = 1.099e+006 Nm"-2
Minimum Engineering Stress = 2.506e+005 Nm"-2
Maximum Percent Engineering Strain = 9.097e+(01
Minimun Percent Engineering Strain = 3.030e+001
Maximum True Stress = 2.086e+006 Nm"-2
Minimm True Stress = 3.268e+005 Nm™-2
Maximum Percent True Strain = 4.764e+001
Minimum Percent True Strain = 2.325e+001

Dpdus_18

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data about zero,
0.598 was added to Stress and
0.667 was added to Strain
From an average over 11 camplete cycles:
The frequency is 0.10 Hz
Magnitude ratio is 1.0601
Phase difference is -1119.8915 degrees
Tan delta is -0.8353
Modulus (mean +/- SD) = 1.676e+007 +/- 7.964e+007 Nm"-2 (average slope as function of strain)
Maxcimum Slope = 1.441e+009 Nm™-2
Minimm Slope = 2.354e+005 MNm"-2
Storage modulus (mean +/— SD) = 1.287e+007 +/- 6.112e+007 Nm™-2
Loss modulus (mean +/— SD) = 1.075e+007 +/- 5.106e+007 Nn*-2
Maximum Engineering Stress = 1.001e+006 Nm"-2
Minimm Engineering Stress = 2.374e+005 Nm"-2
Maximum Percent Engineering Strain = 9.088e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximm True Stress = 1.909e+006 Nm"-2
Minimm True Stress = 3.110e+005 Nm"-2
Maximum Percent True Strain = 4.761et+001
Minimun Percent True Strain = 2.326e+001

141




142

Dpdus_1C

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data abaut zero,
0.542 was added to Stress and
0.667 was added to Strain
Fran an average over 14 camplete cycles:
The frequency is 0.10 Hz
Magnitude ratio is 1.0794
Phase difference is -1522.1041 degrees
Tan delta is -7.1869
Modulus (mean +/- SD) = 1.746e+007 +/- 8.404e+H007 Nm"-2 (average slope as function of strain)
Maximm Slope = 1.646e+009 Nm"-2
Minimum Slope = 3.457e+005 Nm"-2
Storage modulus (mean +/- SD) = 2.406e+006 +/- 1.158e+007 Nm"-2
Ioss modulus (mean +/- SD) = 1.729e+007 +/- 8.324e+007 Nm"-2
Maximm Engineering Stress = 1.046e+006 Nm"-2
Minimm Engineering Stress = 2.059e+005 Nm"-2
Maximum Percent Engineering Strain = 9.088e+001
Minimun Percent Engineering Strain = 3.032e+001
Maximum True Stress = 1.995e+006 Nm"-2
Minimm True Stress = 2.683e+005 Nm"-2
Maximum Percent True Strain = 4.761e+001
Minimm Percent True Strain = 2.325e+001

Dpdns_1D

W = 0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data about zero,
0.581 was added to Stress and
0.666 was added to Strain
Fran an average over 18 camplete cycles:
The frequency is 0.10 Hz
Magnitude ratio is 1.0643
Phase difference is -2002.1848 degrees
Tan delta is -0.4071
Modulus (mean +/- SD) = 1.594e+007 +/- 7.114e+007 Nm"-2 (average slope as function of strain)
Maximun Slope = 1.389¢+009 Nm™-2
Minimm Slope = 3.683e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.476e+007 +/- 6.58%e+007 Nm"-2
Loss modulus (mean +/- SD) = 6.009e+006 +/- 2.682e+007 Nm" -2
Maximum Engineering Stress = 9.901e+005 Nm"-2
Minimum Engineering Stress = 2.583e+005 Nm™-2
Maximum Percent Engineering Strain = 9.096e+001
Minimmm Percent Engineering Strain = 3.030e+001
Maximum True Stress = 1,889e+006 Nm"-2
Minimum True Stress = 3.384e+005 Nm"-2
Maximum Percent True Strain = 4.764e+001
Minimum Percent True Strain = 2.325e+001
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Dpdus_1E

W =0.0020
Input thickness of specimen in meters>.09e-3
Gauge =16.5000

To center selected data about zero,
0.595 was added to Stress and
0.667 was added to Strain
Fram an average over 14 camplete cycles:
The frequency is 0.10 Hz
Magnitude ratio is 1.0543
Phase difference is -1701.2881 degrees
Tan delta is -6.5043
Modulus (mean +/- SD) = 2.011le+007 +/- 1.023e+008 Nm"-2 (average slope as function of strain)
Maximm Slope = 1.658e+009 Nm™-2
Minimum Slope = 3.929e+005 Nm“-2
Storage modulus (mean +/- SD) = 3.055e+006 +/— 1.555e+007 Nm"-2
Loss modulus (mean +/- SD) = 1.987e+007 +/- 1.011e+008 Nm"-2
Maximum Engineering Stress = 9.063e+005 Nm*-2
Minimum Engineering Stress = 2.054e+005 Nm"*-2
Maximum Percent Engineering Strain = 9.088e+001
Minimum Percent Engineering Strain = 3.032e+001
Maximm True Stress = 1.729e+006 Nm"-2
Minimm True Stress = 2.690e+005 Nm"-2
Maximum Percent True Strain = 4.761e+001
Minimm Percent True Strain = 2.326e+001

B samples — [0.25Hz]
Dpdus_25A

W = 0.0020
Input thickness of specimen in meters>.09%e-3
Gauge =16.5000

To center selected data about zero,
0.545 was added to Stress and
0.667 was added to Strain
Fran an average over 25 canplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0789
Phase difference is -959.9286 degrees
Tan delta is ~1.7260
Modulus (mean +/~ SD) = 3.810e+006 +/- 1.069e+007 Nm"-2 (average slope as function of strain)
Maximm Slope = 1.682e+008 Nm™-2
Minimm Slope = 1.445e+005 Nm"-2
Storage modulus (mean +/~ SD) = 1.910e+006 +/- 5.360e+006 Nm™-2
loss modulus (mean +/~ SD) = 3.297e+006 +/- 9.250e+006 Nm"-2
Maximum Engineering Stress = 1.072e+006 Nm™-2
Minimum Engineering Stress = 2.550e+005 Nm"-2
Maximum Percent Engineering Strain = 9.096e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximmn True Stress = 2.041e+006 Nm™-2
Minimum True Stress = 3.324et+005 Nm"-2
Maximum Percent True Strain = 4.763et+001
Minimum Percent True Strain = 2.325e+001




Dpdmns_25B

W =0.0020
Input thickness of specimen in meters>.1lle-3
Gauge =16.5000

To center selected data about zero,
0.557 was added to Stress and
0.667 was added to Strain
Fram an average over 23 camplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0329
Phase difference is -839.9265 degrees
Tan delta is 1.7382
Modulus (mean +/- SD) = 3.278e+006 +/- 8.594e+006 Nm"-2 (average slope as function of strain)
Maximm Slope = 1.300e+008 Nm™~2
Minimum Slope = 1.449%e+005 Nm"~2
Storage modulus (mean +/- SD) = 1.635e+006 +/- 4.286e+006 Nm"-2
Ioss modulus (mean +/- SD) = 2.841e+006 +/- 7.449e+006 Nm"-2
Maximum Engineering Stress = 1.078e+006 Nm"-2
Minimum Engineering Stress = 2.682e+005 Nm"-2
Maximun Percent Engineering Strain = 9.094e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximum True Stress = 2.055¢+006 Nm"-2
Minimum True Stress = 3.516e+005 Nm"-2
Maximum Percent True Strain = 4.763e+001
Minimm Percent True Strain = 2.325e+001

it

Dpmds_25C

W =0,0020
Input thickness of specimen in meters>.1le-3
Gauge =16.5000

To center selected data about zero,
0.537 was added to Stress and
0.667 was added to Strain
Fram an average over 26 cawplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 0.9929
Phase difference is -1525,1990 degrees
Tan delta is -11.8428
Modulus (mean +/- SD) = 3.276e+006 +/- 8.562e+006 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.352e+008 Nm"™-2
Minimm Slope = 1.767e+005 Nm"-2
Storage modulus (mean +/- SD) = 2.757e+005 +/- 7.204e+005 Nm™-2
ILoss modulus (mean +/- SD) = 3.265et+006 +/- 8.531et+006 Nm"-2
Maximum Engineering Stress = 1.075e+006 Nm™~-2
Minimam Engineering Stress = 2.658e+005 Nm"-2
Maximum Percent Engineering Strain = 9.090e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximum True Stress = 2.051e+006 Nm"™-2
Minimum True Stress = 3.465e+005 Nm"-2
Maximm Percent True Strain = 4.762e+001
Minimum Percent True Strain = 2.325e+001
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Dpmds_25D

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge = 16.5000

To center selected data about zero,
0.595 was added to Stress and
0.667 was added to Strain
Fram an average over 21 canplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0244
Phase difference is -1252.6172 degrees
Tan delta is 0.1299
Modulus (mean +/- SD) = 3.581et+006 +/- 9.040et+006 Nm*-2 (average slope as function of strain)
Maximum Slope = 1.195e+008 Nm"-2
Minimam Slope = 1.410e+005 Nm“-2
Staorage modulus (mean +/- SD) = 3.552e+006 +/- 8.965e+006 Nm"-2
loss modulus (mean +/- SD) = 4.615e+005 +/- 1.165e+006 Nm"-2
Maximum Engineering Stress = 1.141e+006 Nm*-2
Minimumm Engineering Stress = 3.226e+005 Nm"-2
Maximum Percent Engineering Strain = 9.091e+001
Minimmn Percent Engineering Strain = 3.030e+001
Maximum True Stress = 2.178e+006 Nm"-2
Minimm True Stress = 4.222e+)05 Nm"-2
Maximm Percent True Strain = 4.762e+001
Minimumm Percent True Strain = 2.325e+001

Dpmnds_25E

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000
To center selected data about zero,
0.550 was added to Stress and
0.667 was added to Strain
Fram an average over 24 canplete cycles:
The frequency is 0.25 Hz
Magnitude ratio is 1.0389
Phase difference is -287.8758 degrees
Tan delta is 3.1014
Modulus (mean +/- SD) = 3.726e+006 +/- 1.141e+007 Nm™-2 (average slope as function of strain)
Maximum Slope = 2.279e+008 Nm“-2
Minimum Slope = 1.958e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.144e+006 +/- 3.501e+006 Nu"-2
Loss modulus (mean +/- SD) = 3.547e+006 +/- 1.086e+007 Nm™-2
Maximum Engineering Stress = 1.134e+006 Nm™-2
Minimm Engineering Stress = 2.898e+005 Nm"-2
Maximm Percent Engineering Strain = 9.090e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximm True Stress = 2.165e+006 Nm"-2
Minimumm True Stress = 3.796e+005 Nm"~2
Maximum Percent True Strain = 4.762e+001
Minimm Percent True Strain = 2.325e+001
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B samples — [0.5Hz)
Dpuds_SA

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data about zero,
0.565 was added to Stress and
0.667 was added to Strain
Fram an average over 25 carplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0788
Phase difference is 305.6008 degrees
Tan delta is -~1.3970
Modulus (mean +/~ SD) = 1.631e+006 +/- 1.559e+006 Nn"-2 (average slope as function of strain)
Maximm Slope = 1.296e+007 Nun"-2
Minimum Slope = 8.915e+004 Nm"-2
Storage modulus (mean +/- SD) = 9.491e+005 +/- 9.074e+005 Nm"-2
Loss modulus (mean +/- SD) 1.326e+006 +/- 1.268e+006 Nm -2
Maximum Engineering Stress = 1.003e+006 Nm"-2
Minimum Engineering Stress = 2.439e+005 Nu“-2
Maximum Percent Engineering Strain = 9.089%e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximm True Stress = 1.915e+006 Nm"“-2
Minimum True Stress = 3.182e+005 Nm"-2
Maximum Percent True Strain = 4.762e+001
Minimum Percent True Strain = 2.325e+001

Dpmds 5B

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data about zero,
0.544 was added to Stress and
0.667 was added to Strain
Fram an average over 27 conplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0904
Phase difference is -152.4884 degrees
Tan delta is 0.5209
Modulus (mean +/- SD) = 1.636e+006 +/- 1.660e+006 Nn"-2 (average slope as function of strain)
Maximum Slope = 1.563e+007 Nm™-2
Minimum Slope = 2.034e+005 Nm“-2
Storage modulus (mean +/- SD) = 1.451eH006 +/- 1.472e+006 Nm"-2
Loss modulus (mean +/~ SD) = 7.560e+005 +/- 7.670e+005 Nm"-2
Maximun Engineering Stress = 9.678e+005 Nm"-2
Minimum Engineering Stress = 2.098e+005 Nm*-2
Maximum Percent Engineering Strain = 9.095e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximum True Stress = 1.843e+006 Nm"-2
Minimum True Stress = 2.734e+005 Nm*-2
Maximum Percent True Strain = 4.763e+001
Minimm Percent True Strain = 2.325e+001
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Dpnds_5C

W =0.0020
Input thickness of specimen in meters>.le-3
Gauge =16.5000

To center selected data about zero,
0.545 was added to Stress and
0.667 was added to Strain
Fram an average over 21 canplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0611
Phase difference is -133.8088 degrees
Tan delta is 1.0426
Modulus (mean +/- SD) = 1.641e+006 +/- 1.741e+006 Nm"-2 (average slope as function of strain)
Maximum Slope = 2.227e+007 Nn“-2
Minimom Slope = 1.752e+005 Nm*-2
Starage modulus (mean +/- SD) = 1.136e+006 +/~ 1.205e+006 Nn"-2
Loss modulus (mean +/- SD) = 1.185e+006 +/- 1.256e+006 Nm“-2
Maximm Engineering Stress = 1.043e+006 Nm"-2
Minimmm Engineering Stress = 2.505e+005 Nm"-2
Maximmm Percent Engineering Strain = 9.094e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximum True Stress = 1.970e+006 Nm"-2
Minimum True Stress = 3.264e+005 Nu"-2
Maximumm Percent True Strain = 4.763e+001
Minimum Percent True Strain = 2.325e+001

Dpwds_5D

W =0.0020
Input thickness of specimen in meters>8e-5
Gauge =16.5000

To center selected data about zero,
0.528 was added to Stress and
0.667 was added to Strain
Fram an average over 20 carplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.0464
Phase difference is -76.4929 degrees
Tan delta is —-4.1626
Modulus (mean +/- SD) = 1.844e+006 +/- 1.978e+006 Nm"~2 (average slope as function of strain)
Macxdmum Slope = 2.102e+007 Nm"“-2
Minimum Slope = 1.697e+005 Nm"-2
Storage modulus (mean +/- SD) = 4.307e+005 +/- 4.621e+005 Nm*-2
Loss modulus (mean +/- SD) = 1.793e+006 +/- 1.924e+006 Nm"-2
Maximum Engineering Stress = 1.103e+006 Nm"-2
Minimum Engineering Stress = 2.45%e+005 Nm*-2
Maximum Percent Engineering Strain = 9.095e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximum True Stress = 2.092e+)06 Nm"-2
Minimam True Stress = 3.205e+005 Nm“-2
Maximumm Percent True Strain = 4.763e+001
Minimm Percent True Strain = 2.325e+001
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Dpmds SE

W =0.0020
Input thickness of specimen in meters>8e-5
Gauge =16.5000

To center selected data about zero,
0.567 was added to Stress and
0.666 was added to Strain
Fram an average over 20 camplete cycles:
The frequency is 0.50 Hz
Magnitude ratio is 1.1001
Phase difference is -189.3712 degrees
Tan delta is -0.1650
Modulus (mean +/- SD) = 1.777e+006 +/- 2.184et006 Nn"-2 (average slope as function of strain)
Maximum Slope = 2.503e+007 Nm*-2
Minimm Slope = 1.930e+005 MNn*-2
Starage modulus (mean +/- SD) = 1.753e+006 +/- 2.155e+006 Nm"-2
Loss modulus (mean +/- SD) = 2.892e+005 +/~ 3.555e+005 Nm"-2
Maximm Engineering Stress = 9.130e+005 Nm"-2
Minimum Engineering Stress = 2.082e+005 Nm“-2
Maximum Percent Engineering Strain = 9.098e+001
Minimum Percent Engineering Strain = 3.031e+001
Maximum True Stress = 1.743e+006 Nm"-2
Minimm True Stress = 2.714e+005 Nm"-2
Maximm Percent True Strain = 4.764e+001
Minimum Percent True Strain = 2.325e+001

[

B samples — [1.0Hz]
Dpmds1A

W =0.0020
Input thickness of specimen in meters>7e-5
Gauge =16.5000

To center selected data about zero,
0.562 was added to Stress and
0.667 was added to Strain
Fram an average over 44 camplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.1669
Phase difference is 319.3805 degrees
Tan delta is -0.8579
Modulus (mean +/- SD) = 1.308et+006 +/- 8.234e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 6.212e+006 Nm"-2
Minimum Slope = 1.999e+005 Nm"-2
Storage modulus (mean +/- SD) = 9.927e+005 +/- 6.250e+005 Nm"-2
Loss modulus (mean +/- SD) = 8.516e+005 +/- 5.361e+005 Nm*-2
Maximum Engineering Stress = 9.704e+005 Nm"™-2
Minimum Engineering Stress = 2.136e+005 Nm"-2
Maximum Percent Engineering Strain = 9.085e+001
Minimm Percent Engineering Strain = 3.032e+001
Maximm True Stress = 1.853e+006 Nm"-2
Minimm True Stress = 2.783e+005 Nu"-2
Maximum Percent True Strain = 4.763e+001
Minimum Percent True Strain = 2.325e+001
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Dpmis1B

W = 0.0020
Input thickness of specimen in meters>7e-5
Gauge = 16.5000

To center selected data about zero,
0.504 was added to Stress and
0.667 was added to Strain
Fran an average over 32 canplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.2210
Phase difference is 302.1076 degrees
Tan delta is -1.5940
Modulus (mean +/- SD) = 1.296e+006 +/- 7.701e+005 Mn*-2 (average slope as function of strain)
Maximum Slope = 4.999%e+006 Nn"-2
Minimum Slope = 1.686e+005 Nm"-2
Storage modulus (mean +/- SD) = 6.887e+005 +/- 4.093e+005 Nm"-2
Ioss modulus (mean +/- SD) = 1.098e+006 +/~- 6.524e+005 Nm -2
Maximum Engineering Stress = 9.835e+(05 Nm"-2
Minimum Engineering Stress = 1.667e+005 Nm"-2
Maximum Percent Engineering Strain = 9.091e+001
Minimum Percent Engineering Strain = 3.030et+001
Maximum True Stress = 1.876e+006 Nm™-2
Minimum True Stress = 2.176e+005 Nm"“-2
Maximum Percent True Strain = 4.765e+001
Minimum Percent True Strain = 2.325e+001

Dpmds1C

To center selected data about zero,
0.608 was added to Stress and
0.667 was added to Strain
Fram an average over 14 conplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0525
Phase difference is 0.6419 degrees
Tan delta is 0.0112
Modulus (mean +/- SD) = 8.429e+005 +/- 3.947e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 3.871e+006 Nm“-2
Minimum Slope = 2.426e+005 Nmn“-2
Storage modulus (mean +/- SD) = 8.429e+005 +/- 3.947e+005 NMm -2
ILoss modulus (mean +/- SD) = 9.443e+003 +/- 4.422e+003 Nm*-2
Maximm Engineering Stress = 7.100e+005 Nm"-2
Minimum Engineering Stress = 1.855e+005 Nn"-2
Maximum Percent Engineering Strain = 9.094e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximum True Stress = 1.355e+006 Nm™-2
Minimum True Stress = 2.417e+005 Nm"-2
Maximum Percent True Strain = 4.765e+001
Minimm Percent True Strain = 2.325e+001
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Dpnds1D

To center selected data about zero,
0.554 was added to Stress and
0.666 was added to Strain
Fram an average over 35 camplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0660
Phase difference is 6.7234 degrees
Tan delta is 0.1179
Modulus (mean +/~ SD) = 1.203e+006 +/- 5.767e+005 Nn*-2 (average slope as function of strain)
Maximum Slope = 3.862e+006 Nm™-2
Minimm Slope = 2.026e+005 Nn"-2
Storage modulus (mean +/- SD) = 1.195e+006 +/- 5.727e+005 Nn*-2
Loss modulus (mean +/- SD) = 1.408e+005 +/- 6.752e+004 Nm*-2
Maximm Engineering Stress = 9.685e+005 Nm"-2
Minimm Engineering Stress = 2.351e+005 Nn*-2
Maximum Percent Engineering Strain = 9.098e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximum True Stress = 1.850e+006 Nm"-2
Minimum True Stress = 3.066e+005 Nm"“-2
Maximum Percent True Strain = 4.767e+001
Minimum Percent True Strain = 2.325e+001

Dpmds1E

To center selected data about zero,
0.556 was added to Stress and
0.667 was added to Strain
Fran an average over 24 coamplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0486
Phase difference is 6.5156 degrees
Tan delta is 0.1142
Modulus (mean +/~ SD) = 1.403e+006 +/- 6.728e+D05 Nn*-2 (average slope as function of strain)
Maximum Slope = 4.505e+006 Nm -2
Minimum Slope = 2.363e+005 Nm"-2
Starage modulus (mean +/- SD) = 1.394eH006 +/- 6.685¢+005 Nm -2
Loss modulus (mean +/- SD) = 1.592e+005 +/- 7.635e+004 Nn*-2
Maximum Engineering Stress = 1.130e+006 Nm™-2
Minimm Engineering Stress = 2.743e+005 Nm*-2
Maximum Percent Engineering Strain = 9.098e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximum True Stress = 2.158e+006 Nm"-2
Minimumm True Stress = 3.577e+005 Nm"-2
Maximumm Percent True Strain = 4.767e+001
Minimm Percent True Strain = 2.325e+001
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B samples — [3.0Hz]

Dpmds3A

To center selected data about zero,
0.555 was added to Stress and
0.666 was added to Strain
Fram an average over 39 canplete cycles:
The freguency is 1.00 Hz
Magnitude ratio is 1.0719
Phase difference is 6.6163 degrees
Tan delta is 0.1160
Modulus (mean +/- SD) = 1.531e+006 +/- 7.340e+005 Nm*-2 (average slope as function of strain)
Maximum Slope = 4.915e+006 Nm"-2
Minimm Slope = 2.578e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.521e+006 +/- 7.291e+005 Nm™-2
Loss modulus (mean +/- SD) = 1.764e+005 +/- 8.457e+004 Nm"-2
Maximm Engineering Stress = 1.233e+006 Nm*-2
Minimm Engineering Stress = 2.992e+005 Nm"-2
Maximum Percent Engineering Strain = 9.098e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximm True Stress = 2.355e+006 Nm"-2
Minimum True Stress = 3.902e+005 Nm"-2
Maximum Percent True Strain = 4.767e+001
Minimum Percent True Strain = 2.325e+001

Dpmds3B

To center selected data about zero,
0.554 was added to Stress and
0.667 was added to Strain
Fran an average over 30 carplete cycles:
The frequency is 1.00 Hz
Magnitude ratio is 1.0660
Phase difference is 6.8553 degrees
Tan delta is 0.1202
Modulus (mean +/- SD) = 1.295e+006 +/- 6.211e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 4.159e+006 Nm"-2
Minimum Slope = 2.182e+005 Nm"™-2
Storage modulus (mean +/- SD) = 1.286e+006 +/- 6.166e+005 Nm"-2
Loss modulus (mean +/- SD) = 1.546e+005 +/- 7.413e+004 Nm™~2
Maximum Engineering Stress = 1.043e+006 Nm"-2
Minimun Engineering Stress = 2.532e+005 Nm"-2
Maximum Percent Engineering Strain = 9.098e+001
Minimum Percent Engineering Strain = 3.030et+001
Maximum True Stress = 1.992e+006 Nm™-2
Minimm True Stress = 3.302e+005 Nm"-2
Maximum Percent True Strain = 4.767e+001
Minimum Percent True Strain = 2.325e+H001
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Dpmds3C

To center selected data about zero,
0.525 was added to Stress and
0.672 was added to Strain
Fram an average over 35 carplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.0613
Phase difference is 12.1010 degrees
Tan delta is 0.2144
Moduulus (mean +/- SD) = 9.850e+005 +/- 2.611e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.834e+006 Nm'-2
Minimm Slope = 4.400e+005 Nm"-2
Storage modulus (mean +/- SD) = 9.632e+005 +/- 2.553e+005 Nm"-2
Loss modulus (mean +/- SD) = 2.065e+005 +/- 5.473e+004 Nm"“-2
Maximum Engineering Stress = 8.887e+005 Nm"-2
Minimum Engineering Stress = 1.130e+005 Nm"-2
Maximum Percent Engineering Strain = 9.013e+001
Minimum Percent Engineering Strain = 3.022e+001
Maxdmum True Stress = 1.699e+006 Nm™-2
Minimm True Stress = 1.471e+005 Nm"-2
Maximum Percent True Strain = 4.776e+001

Minimm Percent True Strain = 2.312e+001
Dpnds3D

W = 0.0020

Input thickness of specimen in meters>1.3e-4
Gauge = 16.5000

To center selected data about zero,
0.568 was added to Stress and
0.673 was added to Strain
Fran an average over 52 camplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.0883
Phase difference is -11.2737 degrees
Tan delta is -0.1993
Modulus (mean +/- SD) = 9.039e+005 +/- 2.123e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.632e+006 Nm"™-2
Minimum Slope = 4.053e+005 Nm“-2
Storage modulus (mean +/- SD) = 8.865e+005 +/- 2.082e+005 Nm"-2
Loss modulus (mean +/- SD) = 1.767e+005 +/- 4.150e+004 Nm"-2
Maximum Engineering Stress = 8.443e+005 Nm"-2
Minimum Engineering Stress = 2.088e+005 Nm"-2
Maximm Percent Engineering Strain = 9.002e+001
Minimum Percent Engineering Strain = 3.021e+001
Maximum True Stress = 1.614e+006 Nm™-2
Minimm True Stress = 2.719e+005 Nm"-2
Maximm Percent True Strain = 4.773e+001
Minimm Percent True Strain = 2.307e+001
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Dpmds3E

To center selected data about zero,
0.565 was added to Stress and
0.673 was added to Strain
Fram an average over 42 carplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.0717
Phase difference is 5.7864 degrees
Tan delta is 0.1013
Modulus (mean +/- SD) = 1.068e+006 +/- 2.509e+005 Nm™-2 (average slope as function of strain)
Maximm Slope = 1.929e+006 Nm“-2
Minimm Slope = 4.790e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.063e+006 +/- 2.496e+005 Nm"-2
Ioss modulus (rean +/- SD) = 1.077e+005 +/~ 2.530e+004 Nm"“-2
Maximum Engineering Stress = 9.978e+005 Nm"-2
Minimm Engineering Stress = 2.468e+005 Nm"-2
Maximum Percent Engineering Strain = 9.002e+001
Minimum Percent Engineering Strain = 3.021e+001
Maximum True Stress = 1.908e+006 Nm™-2
Minimum True Stress = 3.213e+005 Nm"-2
Macdmum Percent True Strain = 4.773e+001
Minimum Percent True Strain = 2.307e+001

B samples — [5.0Hz]

Dpmds5A

To center selected data about zero,
0.564 was added to Stress and
0.673 was added to Strain
Fram an average over 35 canplete cycles:
The frequency is 3.00 Hz
Magnitude ratio is 1.0717
Phase difference is 6.1333 degrees
Tan delta is 0.1075
Modulus (mean +/- SD) = 1.068e+006 +/- 2.509e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.929e+006 Nm"-2
Minimm Slope = 4.790e+005 Nm"-2
Storage modulus (mean +/- SD) = 1.062e+006 +/- 2.495e+005 Nm"-2
Loss modulus (mean +/— SD) = 1.141e+005 +/- 2.681e+004 Nm"-2
Maximum Engineering Stress = 9.978e+005 Nm"-2
Minimum Engineering Stress = 2.468e+005 Nm"-2
Maximum Percent Engineering Strain = 9.002e+001
Minimum Percent Engineering Strain = 3.021e+001
Maximumm True Stress = 1.908e+006 Nm"-2
Minimm True Stress = 3.213e+005 Nm*-2
Maximum Percent True Strain = 4.773e+001
Minimm Percent True Strain = 2.307e+001
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DpmisSB

To center selected data about zero,
0.601 was added to Stress and
0.688 was added to Strain
Fram an average over 73 camplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.0616
Phase difference is 2.4670 degrees
Tan delta is 0.0431
Modulus (mean +/- SD) = 8.679e+005 +/- 1.412e+005 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.323e+006 Nm*-2
Minimun Slope = 5.488e+005 Nm*-2
Starage modulus (mean +/- SD) = 8.671e+005 +/~- 1.410e+005 Nm"-2
Loss modulus (mean +/- SD) = 3.736e+004 +/- 6.076e+003 Nm™-2
Maximum Engineering Stress = 8.083e+005 Nm"-2
Minimm Engineering Stress = 2.463e+005 Nmn*-2
Maximum Percent Engineering Strain = 8.827e+001
Minimum Percent Engineering Strain = 3.045e+001
Maximum True Stress = 1.54%e+006 Nm*-2
Minimum True Stress = 3.211e+005 Nm*-2
Maximum Percent True Strain = 4.786e+001
Minimm Percent True Strain = 2.253e+001

Dpmds5C

W = 0.0020
Input thickness of specimen in meters>1.2e-4
Gauge = 16.5000

To center selected data about zero,
0.608 was added to Stress and
0.688 was added to Strain
Fram an average over 75 canplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.0842
Phase difference is -10.9709 degrees
Tan delta is -0.1939
Modulus (mean +/- SD) = 8.948e+005 +/- 1.009e+005 Nm*-2 (average slope as function of strain)
Maximm Slope = 1.135e+006 Nm*-2
Minimm Slope = 5.724e+005 Nm"-2
Storage modulus (mean +/- SD) = 8.784e+005 +/- 9.909e+004 Nm -2
Loss modulus (mean +/- SD) = 1.703e+005 +/- 1.921e+004 Nm"-2
Maximum Engineering Stress = 8.753e+005 Nm*-2
Minimum Engineering Stress = -1.748e+004 Nm"-2
Maximum Percent Engineering Strain = 8.829e+001
Minimum Percent Engineering Strain = 3.011e+001
Maximum True Stress = 1.679e+006 Nm“-2
Minimum True Stress = -2.278e+004 Nm™-2
Maximum Percent True Strain = 4.787e+001
Minimum Percent True Strain = 2.258e+001
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Dpmds5D

To center selected data about zero,
0.623 was added to Stress and
0.690 was added to Strain
Fram an average over 83 camplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.0663
Phase difference is 0.9755 degrees
Tan delta is 0.0170
Modulus (mean +/- SD) = 9.418e+005 +/- 6.357e+004 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.184e+006 Nm“-2
Minimum Slope = 7.777e+005 Nn"-2
Starage modulus (mean +/- SD) = 9.416e+005 +/- 6.356e+004 Nm"-2
Loss modulus (mean +/- SD) = 1.603e+004 +/- 1.082e+003 Nm -2
Maximum Engineering Stress = 9.212e+005 Nm"-2
Minimum Engineering Stress = 1.923e+005 Nm"-2
Maximum Percent Engineering Strain = 8.807e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximum True Stress = 1.765e+006 Nm" -2
Minimm True Stress = 2.506e+005 Nm"-2
Maximm Percent True Strain = 4.782e+001
Minimm Percent True Strain = 2.267e+001

DpmdsSE

To center selected data about zero,
0.623 was added to Stress and
0.690 was added to Strain
Fram an average over 83 canplete cycles:
The frequency is 5.00 Hz
Magnitude ratio is 1.0663
Phase difference is 0.9755 degrees
Tan delta is 0.0170
Modulus (mean +/- SD) = 9.418e+005 +/- 6.357e+004 Nm"-2 (average slope as function of strain)
Maximum Slope = 1.184e+006 Nm*-2
Minimum Slope = 7.777e+005 Nm*-2
Storage modulus (mean +/- SD) = 9.416e+005 +/- 6.356e+004 Nm"-2
Loss modulus (mean +/- SD) = 1.603e+004 +/- 1.082e+003 Nm™-2
Maximum Engineering Stress = 9.212e+005 Nm™-2
Minimm Engineering Stress = 1.923e+005 Nm"-2
Maximum Percent Engineering Strain = 8.807e+001
Minimum Percent Engineering Strain = 3.030e+001
Maximm True Stress = 1.765e+006 Nm"-2
Minimum True Stress = 2.506e+005 Nm"-2
Maximum Percent True Strain = 4.782et+001
Minimm Percent True Strain = 2.267et+001

C.1.3 Dynamic uniaxial tension graphical results

The graphical results below were generated by the Matlab programs

(Phasedifflbb.m) and (Box.m). The results shown below are examples of plots for

samples run.
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C.1.3.1 Dynamic uniaxial tension 4 sample graphical results

A sample, Pamst_025d.txt plots.
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Fig. C.1 — PDMS A sample — Load vs Displacement

s Stress-Strain Plot of PDMS1
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Fig. C.2 — PDMS 4 sample - Stress vs Strain (Engineering)
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Strain as function of time
0.68 T T T T

0.66 'E

062f ! SR I R 1

Strain

058 ' -

0.56 ; 1 4

0.54 ' . L .
0 50 100 150 200 250

Fig. C.3 — PDMS A sample - Strain vs Time

% 10° Stress as function of time
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Fig. C.4 - PDMS 4 sample - Stress vs Time
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Fig. C.5 — PDMS Poisson’s 4 sample - Strain vs Time
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Fig. C.6 — PDMS 4 sample - Strain vs Time
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Strain (red) and Stress (blue)
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Fig. C.9 - PDMS A sample — Stress and Strain vs Time
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Fig. C.10 — PDMS A4 sample - Stress vs Strain (True and Engineering)
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Fig. C.11 — PDMS 4 sample - E vs Stress




C.1.3.2 Dynamic uniaxial tension B sample graphical results

B sample, Dpdms_25d.txt plots.

0.35 T T T T T
0.3+

0.251+

0.1}

0.05 F

0 1 1 1 L S
8

10 12 14
Displacement (mm)

Fig. C.12 — PDMS B sample - Load vs Displacement

x10° Stress-Strain Plot of POMS1
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Fig. C.13 — PDMS B sample — Stress vs Strain
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Fig. C.16 — PDMS B sample - Strain vs

Time

Fig. C.17 - PDMS B sample - Strain vs
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Fig. C.19 — PDMS B sample - Stress rate vs Strain
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Fig. C.22 - PDMS B sample — E vs Stress

C.1.4 Static uniaxial tension graphical results

The graphical results below were generated by the Matlab programs

(PDMS_staticauchy true.m) and (PE_staticauchy true.m). The results shown below are
the plots for the B samples tested.
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C.1.4.1 PDMS static uniaxial tension B sample graphical results
b sample, Tpdmsa.txt through Tpdmst.txt data file example plots.
5% 10 PDMS, Static uniaxial tension - true stress vs true strain
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Fig. C.23 - PDMS B sample, (Tpdmsa.txt) - True stress vs True strain

x 10" PDMS, Static uniaxial tension - true stress vs true strain
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Fig. C.24 — PDMS B sample, (Tpdmsb.ixt) - True stress vs True strain
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x10 PDMS, Static uniaxial tension - true stress vs true strain
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Fig. C.25 - PDMS B sample, (Tpdmsc.txt) - True stress vs True strain
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Fig. C.26 — PDMS B sample, (Tpdmsd.txt) - True stress vs True strain
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x10 PDMS, Static uniaxial tension - true stress vs true strain
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Fig. C.27 - PDMS B sample, (Tpdmse.txt) - True stress vs True strain

x10 PDMS, Static uniaxial tension - true stress vs true strain
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Fig. C.28 — PDMS B sample, (Tpdmsf.txt) - True stress vs True strain




C.1.4.2 LLDPE static uniaxial tension B sample graphical results
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LLDPE B sample, pe2.txt through pel5.txt selected data file example

plots. Uniaxial stress-strain elastic modulus taken at 2% strain to minimize effects of

plastic deformation in modulus results [94].
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Fig. C.29 — LLDPE B sample, (pe2.txt) - True stress vs True strain
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Fig. C.30 — LLDPE B sample, (pe4.txt) - True stress vs True strain
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Fig. C.31 - LLDPE B sample, (pe9.txt) - True stress vs True strain
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Fig. C.32 - LLDPE B sample, (pel2.txt) - True stress vs True strain
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Fig. C.33 — LLDPE B sample, (pel3.txt) - True stress vs True strain
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Fig. C.35 — LLDPE B sample, (pel5.txt) - True stress vs True strain



C.1.4.3 PDMS B sample stress relaxation graphical results
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B sample, pdms_sr_01.txt through pdms_sr03.txt, and pdms_sr001.txt

through pdms_sr003. txt data file result plots.

x10° PDMS, B sample stress relaxation at true strain = 0.3
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Fig. C.36 — Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms_sr01.txt)
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Fig. C.37 — Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms_sr02.txt)
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x10° PDMS, B sample stress relaxation at true strain = 0.3
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Fig. C.38 — Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms_sr03.txt)

x10° PDMS, B sample stress relaxation at true strain = 0.6
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Fig. C.39- Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms_sr001.txt)
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x 108 PDMS, B sample stress relaxation at true strain = 0.6
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Fig. C.40 - Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms_sr002.txt)
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Fig. C.41 — Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms_sr003.txt)
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C.1.4.4 PDMS B sample stress deformation graphical result

PDMS, B sample deformation from true strain = 0.6
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Fig. C.42 — Stress deformation plot at true strain = 0.6 - PDMS B samples
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C.1.5 Circular membrane biaxial stress-strain graphical results

Biaxial stress-strain and biaxial modulus results for PDMS and LLDPE
membranes, generated from membrane deflection data incorporated into Matlab

programs.

C.1.6 PDMS circular membrane biaxial stress-strain result plots

x10° PDMS Circular membrane - Biaxial stress vs Biaxial strain
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Fig. C.43 — PDMS circular membrane biaxial stress-strain results, membrane sample 1
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Fig. C.44 — PDMS circular membrane biaxial stress-strain results, membrane sample 2
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Fig. C.45 — PDMS circular membrane biaxial stress-strain results, membrane sample 3
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C.1.7 LLDPE circular membrane biaxial stress-strain graphical results
LLDPE biaxial stress-strain plots limited to 2% strain to minimize effects of

plastic deformation in modulus results [94].

x 10 LDPE Circular membrane - Biaxial stress vs Biaxial strain
4.5 T T T —

4L y=12e+008% + 58e+005

|
35+

3r

Biaxial Stress th’mz}
b
i

1 gl = 2% stran

L 1 1 —— —.
0 0.005 0.01 0.015 0.02 0.025 0.03
Biaxial Strain

Fig. C.46 — LLDPE circular membrane biaxial stress-strain results, membrane sample 1
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Fig. C.47 — LLDPE circular membrane biaxial stress-strain results, membrane sample 2
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Fig. C.48 — LLDPE circular membrane biaxial stress-strain results, membrane sample 3

C.1.8 Membrane deflection program graphical results
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PDMS and LLDPE membrane deflection graphical results from matlab

membrane theory comparison programs. Results for circular and square membranes.
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C.1.8.1 PDMS circular membrane deflection program graphical results
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Fig. C.49 — PDMS circular membrane theory comparison — PDMS membrane sample 3
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Fig. C.50 — New Spherical Cap Model results for PDMS membrane sample 3
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C.1.8.2 PDMS square membrane deflection program graphical results
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Fig. C.51 — Square membrane theory and PDMS experimental result comparison - membrane sample 3
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C.1.8.3 LDPE circular membrane deflection program graphical results
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Fig. C.52 — LLDPE circular membrane theory comparison — LLDPE membrane sample 3
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Fig. C.53 — New Spherical Cap Model results for LLDPE membrane sample 3
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C.1.8.4 LLDPE square membrane deflection program graphical results
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Fig. C.54 — Square membrane theory and LLDPE experimental result comparison - membrane sample 3
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