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Abstract 

Polydimethylsiloxane Tensile Mechanical Properties and Membrane 

Deflection Theory 

Patrick A. Roman 

OGI School of Science and Engineering 

Oregon Health and Science University 

Supervising Professor: Dr. Sean Kirkpatrick, Ph.D. 

Recent advances in Micro Electro Mechanical Systems (MEMS), semiconductor 

sensor and actuator chip based technology, have incorporated many non-standard silicon 

processing materials in their design. The use of materials such as polymers in 

conjunction with standard CMOS processing and materials has enabled many new 

MEMS sensors and actuators to be created. Even though the design enabling flexibility 

of polymers maybe very high, the processing and implementation of polymers for a given 

application is often more complex than what is encountered with standard engineering 

materials due to their ubiquitous qualities. The main focus of this thesis is to investigate 

both the tensile mechanical properties of Polydimethylsiloxane (PDMS), a material 

increasingly used in MEMS, and large deflection membrane theory in an effort to provide 

more accurate tensile mechanical material properties and analytical membrane models for 

xvi 



MEMS application design with PDMS. Batch material processing and the elastomer 

behavior of PDMS creates numerous mechanical testing issues, while its amorphous 

molecular structure requires that it be analyzed in a different manner than crystalline 

materials. This difference is primarily addressed through the use of true strain 

definitions. Fundamental works of membrane mechanical theory have focused on 

standard engineering materials due to the applications and available materials of the day, 

thus providing inadequate analytical models for elastomers. A new theory, The new 

spherical cap model, is developed for large deflection circular membranes made of 

elastomers, which incorporates an appropriate true strain definition using the membrane 

radius of curvature, accounting for large deflections. Experimental results suggest that 

this theory accurately predicts elastomer circular membrane behavior and may be used to 

simulate circular membranes made of crystalline materials as well. Static and dynamic 

stress-strain experiments and analysis are performed upon uniaxial tensile samples, and 

static load- deflected, or bulge tested, circular and square membrane experiments and 

analysis are performed; both to develop the material properties of PDMS unique to those 

tests. PDMS tan 6, Poisson's ratio, stress relaxation time, and stress deformation were 

also investigated. Methods for PDMS fabrication, uniaxial and biaxial testing, analysis 

and results are explained. The results show varied PDMS tensile elastic modulus values 

for static and dynamic uniaxial tensile and membrane deflection tests; Estati, = 2.18 

20.1 84MPa, Edynamic = 1.45 *0.250Mpa, Emembrane = 1.08 *0.250Mpa, respectively. The 

PDMS loss factor, tan 6 = 0.03, and Poisson's ratio v = 0.47. These results display 

elastic constant strain rate dependence of varied PDMS tensile applications and agree 

with numerous published works on PDMS mechanical properties and MEMS elastomer 

membrane actuators. 

xvii 



Chapter 1 

Introduction 

Micro Electro Mechanical Systems (MEMS), or Micro Systems Technology 

(MST), has undergone vast development in the past decade [1,2]. As the computing and 

semiconductor industries matured over the past decade MEMS research grew, and the 

feasibility of varied and more complex on-chip micron scale sensor and actuator systems 

has become a reality [2]. Recent research contributions to MEMS advancement has been 

the development of non traditional semiconductor processes and materials. The 

combined application of these processes and materials has enabled the fabrication of 

MEMS sensors and actuators with previously unattainable performance from traditional 

silicon based semiconductor processes alone [2,3]. MEMS devices incorporating non 

traditional processes and or materials include: micro motors, micro gears, micro turbines, 

membrane actuators, microfluidics systems, micro optics, thermal and hygrometric 

sensors; nearly all new MEMS devices today [4,5,6]. MEMS design structures which 

have benefited significantly from the introduction of new materials and processes into 

MEMS design and fabrication include plates, membranes, and diaphragms [7-651. A 

significant benefit to MEMS applications with these design structures comes from the use 

of low modulus (E-1MPa) materials, such as Parylene, Polyethylene, and 

Polydimethylsiloxane (silicone rubber). These materials enable a greater range of 

structure mobility and design possibilities based on their material properties as compared 

to silicon and more standard engineering materials (metals). Polymeric materials have 



revolutionized MEMS microfluidic design and applications, in spite of limited 

fundamental research on the mechanical properties of these materials. However, there 

can be significant problems in the use of non-silicon polymer based processes and 

materials in MEMS design, fabrication, and use, due to their ubiquitous properties. 

MEMS microfluidic systems and micro total analysis systems (uTAS) have 

developed to serve as "lab on a chip" chemical analysis and biochemical assay 

distribution systems [29,30]. These systems consist of micron sized flow channels and 

chambers, connected to pumping systems and check valves for flow control. Often the 

entire system may be fabricated from a single polymer [29]. However, it is the pumps 

and check valves of these systems that make use of the unique material properties of the 

polymer used. Most of the MEMS microfluidic pump and check valve systems employ 

plate and membrane mechanics as their operating physics. Polymers used in plate and 

membrane mechanics behave very differently from metals and other MEMS fabrication 

materials. In fact a microfluidic system fabricated of standard CMOS materials does not 

yield a practical solution for most microfluidics applications. Through the use of 

polymers, specifically in the pumping diaphragms and check valves, very large 

deflections are possible, which would otherwise be impossible employing standard 

fabrication materials. It is through these large membrane deflections that large amounts 

of fluid may be moved, and flow channels closed; controlling flows. The unique 

molecular structure of some polymers, specifically the elastomer group, enables 

extremely large tensile elongations, coupled with the ability to return to their original 

shape with little plastic deformation. Large deflections in membrane mechanics are 

dominated by tensile forces [66].  Through the great flexibility of polymers and their 

ability to withstand large tensile elongations, polymer membranes are able to achieve 

deflections which are not possible with other fabrication materials, thus increasing 

potential applications. 

In this thesis, circular and square membranes of the elastomer 

polydimethylsiloxane (PDMS) were primarily investigated in connection with the tensile 

mechanical properties of PDMS and the resulting effects on large deflection membrane 



mechanical behavior, in an effort to reach a greater understanding of PDMS as an 

engineering material for MEMS applications. 

1 .I Membranes 

Plates, membranes, and diaphragms take many forms in society today. These 

forms can be force summing devices for low pressure applications [66] or balloon 

actuators for jet aircraft aerodynamic control [42]. Shapes and sizes can vary 

substantially, from the weatherproofing membrane of a building roof to a man hole sewer 

cover [68]. Thus, the theories used to describe plates and membranes vary greatly. In 

theory, plates and membranes may be analogous, while a diaphragm is considered a 

device employing plate theory for its function. Generally a plate has a thickness 1/20th 

and greater of its smallest span, while a membrane is a thin plate that has a thickness 

1/20th and less of its smallest span [68]. Membranes typically undergo deflections many 

times larger than their original thickness, and when mounted horizontally cannot support 

their own weight without deflecting [66]. A membrane is a flat plate incapable of 

conveying bending moments or shear forces, thus unable to support a load without 

deflection. In this sense, a membrane may be thought of as a two-dimensional analog of 

a flexible string [66,84]. The main focus of this thesis is the load-deflection relationship 

of circular and square polymer membranes. 

Plates, membranes, and diaphragms have been investigated in depth by many 

researchers since the original theory was developed by the French mathematician 

LaGrange in the 1800's [66]. The fundamental theory has been most notably covered by 

Timoshenko and Woinowsky-Krieger [69], and Roark and Young [67], who developed 

the fundamental theory to provide analytical solutions for numerous plate and membrane 

configurations for engineering use. The primary method for the application of plate and 

membrane theory developed is the energy method [69]. The energy method derives a 

solution for plate deflection behavior by first assuming the functional shape of a deflected 

plate by a load, and then calculating and minimizing the potential energy of the system to 

fit the initial assumption [69,47]. The application of the energy method as described by 



Timoshenko and Woinowsky-Krieger [69] for circular and square membranes will be 

discussed in 1.2.1, as it is relevant to this work. Further development upon the work of 

Roark and Young [67] and Timoshenko and Woinowsky-Krieger [69] was done by Di 

Giovanni [66], Ugural [68], Maier-Schneider et a1 [48], and Hohlfelder [70]. All of the 

authors discuss both theoretical and practical applications of plate and membrane theory 

for circular and square membranes, and how it may be used analytically, practically in 

experimental work, and in the design of diaphragm devices. Included in Di Giovanni 

[66] are experimental data and designs for corrugated plates, and computer methods for 

designing plates, membranes, and diaphragms. These works have proved invaluable 

throughout the production of this thesis. 

1.2 MEMS Membranes 

Membranes are used in numerous MEMS devices, primarily as actuators, but also 

as sensors [7-651. MEMS plates and membranes have been used in pressure sensors [3 1- 

381, microphones [39-401, aerodynamic balloon actuators [41-451, in the material testing 

of thin films [46-521, as deformable mirrors [53-621, as mass flow meters, and as thermal 

and hygrometric sensors [63-651. The most prolific application of MEMS membranes 

are as the functional components of microfluidic valves and pumps [7-301. These 

MEMS devices serve in many new applications throughout a number of different 

industries, facilitated by their small size, and relatively low cost due to semiconductor 

batch fabrication. Plate and membrane based MEMS devices have been used as blood 

pressure sensors for a single blood vessel [33], microfluidic channel pressure and flow 

sensors [32], as deformable mirrors for optical correction [54-571, mirrors for fiber optic 

network switching [62], and manifold air pressure (MAP) sensors for automobile aidfuel 

mixture control systems [I], as aerodynamic controls for fighter jet aircraft [42], and as 

check valves and pump actuators in micro total analysis systems (uTAS), lab on a chip 

based chemical analysis and biochemical assay distribution systems [29,30]. Due to the 

nature of planar semiconductor processing, which incorporates thin film deposition, 



plates and membranes are a logical design platform for MEMS, facilitating the previously 

mentioned devices. 

Of particular interest to this work are MEMS microfluidics and the investigation 

of the mechanical properties of thin films by way of load-deflection testing of MEMS 

membranes [46-511. The microfluidic membrane pumps and valves developed by Yang 

et a1 [7-121 and Sim et a1 [13,14] are most similar to the research presented herein. The 

thin film mechanical property membrane tests of Tabata et a1 [47], Maier-Schneider et a1 

et a1 [48], Pan et a1 [49], Lin and Hohlfelder [70], and Vlassak [71], are also of 

significant interest. The research conducted by the groups applying membrane 

load-deflection theory to circular and square plates having large deflections and very 

small thickness is applied herein to elastomer membranes, which are common 

microfluidic design structures and the subject of this work. 

1.2.1 Mechanics 

Membrane behavior is very different fiom plate behavior for circular and square 

structures uniformly loaded and rigidly fixed at the edges. Unlike plates, membranes 

develop negligible bending stress when exposed to a uniform external load, with the 

resistance to loading developing with the cube of the deflection of the membrane, see Fig. 

1.1 and equation 1.1. Plates are dominated by a linear relation of load-deflection for 

small displacements, generally the maximum deflection being half the plate thickness 

[67,68,69]. The purpose for the development of membrane mechanics is to obtain 

analytical models that very accurately describe the load-deflection behavior of bulk and 

thin film membranes. These models also enable the determination of thin film 

mechanical properties and residual stress inherent in manufacturing and testing. 

Membrane load-deflection theory is the foundation for bulge testing, which has proven to 

be a successful method used to test semiconductor and MEMS material properties [70]. 

Equation 1.1 is a generalized bulge equation that may be applied to any membrane 

geometry, where cl and ct are constants that account for membrane shape and Poisson's 

ratio [70]. 



Much of the membrane deflection theory literature was developed assuming the 

application of standard engineering materials, such as metals, having Poisson's ratio 

values of 0.25 to 0.35, resulting in inadequate approximations for non-traditional 

materials, such as elastomers with higher values of Poisson's ratio, from 0.4 and higher. 

Presently more accurate or exact theoretical models allow the selection of Poisson's ratio 

values, hence improving analytical approximations. 

Andreeva [66] developed a general solution to model the load-deflection 

relationship of circular membranes. This solution expresses the membrane shape and 

Poisson's ratio as a constant determined analytically, while other general solutions 

assume a value for this constant based on an assumed Poisson's ratio value. Hohlfelder 

[70] developed a general solution for circular membrane load-deflection based on 

Hencky [70] and Timoshenko's work, as well as incorporating residual stress into the 

solution [70]. This solution expresses the membrane shape and Poisson's ratio as 

analytically determined constants. These membrane shape constants, c~ and cr, are of 

considerable interest relative to the load-deflection theory, as a common application is 

the "bulge test", which is used to determine the tensile mechanical properties of micron 

scale thin film materials [47,48,49,70,71]. These constants vary according to membrane 

shape and Poisson's ratio and may have a significant effect upon the accuracy of the 

analytical model. Among the different groups cited various membrane theory derivation 

methods are used, producing different results for these constants, see table 1.1 [70]. This 

thesis outlines the most suitable circular and square membrane theories for PDMS based 

on the literature review, theoretical, and experimental investigation. 



Table 1.1.: Constants for the generalized bulge equation [70] 

Many groups have investigated circular and square membrane theory and its 

application in the determination of material properties and membrane large deflection 

behavior. Tabata et a1 [47] performed membrane load-deflection tests of square MEMS 

membranes to determine the mechanical properties of LPCVD silicon nitride and found 

good agreement between the analytical and experimental results. They were investigating 

the quantification of the residual stress and Young's modulus of thin film membranes 

from silicon planar processing. Substantial amounts of residual stress can be introduced 

by the planar processing of MEMS and thin film depositions. The membrane theory of 

Tabata et a1 [47] was based upon the work of Timoshenko et a1 [69]. 

Yang et a1 [7-121 performed membrane load-deflection testing using square 

silicone rubber membranes and applied the membrane theory of Timoshenko et a1 [69]. 

They found good initial agreement for plots of load versus deflection with some 

experimental data points lying outside of the theoretical curve at the highest load versus 

deflection levels. Yang's group attributed this to plastic deformation of the silicone 

rubber membrane material. 
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Pan et a1 [49] did a similar study of circular and square polyamide membranes, 

which included finite element model (FEM) correction of the analytical model membrane 

shape constants. Their study resulted in a more accurate analytical model, providing this 

group with a more reliable load-deflection test for determining material properties. 

Maier-Schneider et a1 [48] performed an analytical study of the Pan et a1 [49] and Tabata 

et a1 [47] experiment and FEM analysis. This study included the development of a new 

and expanded analytical solution of Timoshenko et a1 [69] square membrane theory, 

further expressing the membrane shape constants c~ and cz as a function of Poisson's 

ratio, and compared the results to the two groups. This analysis resulted in a - 1% error 

between Pan et a1 [49] and the Maier-Schneider et a1 [48] new analytical solution, and 

excellent agreement with experimental results. The Maier-Schneider et a1 [48] new 

analytical solution claims to be a more accurate solution for square membrane deflection 

than the original Timoshenko et a1 [69] theory for a Poisson's ratio of 0.25. This solution 

more accurately represents true membrane shape, and is the analytical model used for 

square membranes in this thesis. 

Hohlfelder's aluminum circular membrane experimental results yielded values of 

1.5% error in comparison to his approximate circular membrane theory derived from 

Hencky [70] and Timoshenko et a1 [69]. Thus providing the Nix et a1 [70, 721 group 

with a more tractable and accurate circular membrane solution. Further development of 

the circular bulge equation, through investigation and personal communications with 

Hohlfelder [70], provides a more accurate large deflection analytical model, which is 

explained herein. 

These new load-deflection analytical models for circular and square membranes 

result in a more accurate calculation of the residual stress and Young's modulus of 

material films, as well as in the prediction of membrane load-deflection behavior. These 

solutions also show their practical limitations when compared to experimental results, 

making clear which theoretical models are most applicable to what materials. 

The original plate and membrane theories of Timoshenko and Woinowsky- 

Krieger [69] have been expanded and developed for circular and square geometries by 



Pan et a1 [49], Maier-Schneider et a1 [48], Hencky and Hohlfelder [70], and in this work. 

The new analytical solutions for circular and square membranes by Hohlfelder [70] and 

Maier-Schneider et a1 [48] respectively, are developed and discussed herein. These new 

solutions are used to analytically define membrane load-deflection behavior in this thesis 

for the determination of elastomer membrane elastic modulus and residual stress. A new 

theory for large deflections of circular elastomer membranes based on a pressurized 

sphere is also proposed. 

1.2.1.1 Membrane load-deflection nomenclature 

Table 1.2 below lists relevant nomenclature for working with membrane load- 

deflection mechanics. 

Table 1.2: Membrane mechanics nomenclature 

M I Biaxial modulus = E/(l-y) 
or, 1 Biaxial stress ox, = OA = cr 

E, 
Y 

t 1 Film thickness 

Biaxial strain E,, = E,= E 

Poisson's ratio 
cr, C* 

h 

I a I Membrane radius 1 

Membrane shape constants 
Membrane deflection 

- - - 

( oo I Membrane residual stress 

R 
P 

1.2.1.2 Circular membrane mechanics 

- - -  

Membrane radius of curvature 
Pressure 

Circular membrane load-deflection theory was most accurately described by 

Hencky, and practically developed for the bulge test by Beams et a1 [70]. Both models 

similarly describe the system, the bulge test being the more simple of the two models. 

The Nix group 170, 71,721 further developed Henky's theory for application to the bulge 

test for thin film material property and residual stress investigation. 



The bulge test is based on the derivation of the stress in a pressurized thin-walled sphere. 

This problem is found in most engineering mechanics texts and provides the foundation 

for the bulge test as a spherical cap, see Fig. 1.1, for approximating the load deflection of 

circular membranes [70]. Given that the model is a sphere, equi-biaxial stress is 

considered (a, = %), and a balance of forces is applied. The Nix group derivation is as 

follows [72]: 

Circular membrane: no deflection 

resulting in, 

I I 

Deflected membrane: hemispherical cap 

By definition a membrane has no bending stress. This is due to the thin film 

thickness being much smaller than the deflection of the membrane (t<<h), which agrees 

Fig. 1.1. - Circular membrane schematic 
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well with the theory of the spherical cap model, which assumes that the membrane has

only equi-biaxial tension. Observing Fig. 1.1 it is assumed that when pressurized, the cap

is under uniform load, equi-biaxial stress, and of equal radius [70]. Once pressurized the

membrane is deflected to a height h, which is used to determine R, the membrane radius

of curvature, which is calculated by using Pythagorean's theorem.

(R - h)2 + a2 = R2 (1.4)

Rearranging,

h a2
R=-+-

2 2h

(1.5)

For deflections h is much smaller than the membrane radius a, which is typical for linear

elastic materials.

a2
R=-

2h

(1.6)

Substituting equation (1.5) into (1.2) gives:

Pa2

a = 4ht

( 1.7)

Equation (1.5) defines the biaxial stress of the spherical cap model.

Defining the strain of the membrane as a function of the radius of curvature using a linear

elastic engineering strain definition yields:

c = /),J= Re - a = Re -1
10 a a

(1.8)

The angle e below the membrane is given by:
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sin8 - a 83--- 8
R- -- 6

(1.9)

Substituting (1.9) into (1.8) we arrive at:

E = R8 82

Rec-t) -1~6

(1.10)

Approximating that 8;:::;a / R and substituting for R, the strain definition becomes:

a2 2h2
E=-=-

6R2 3a2

(1.11)

Given the stress-strain relationship of a membrane in biaxial tension,

a=ME (1.12)

Substituting equations (1.7) and (1.11) into the above equation and solving for pressure:

8 h3
P=-Mt-

3 a4

(1.13)

Equation (1.13) is the spherical cap bulge equation for a membrane in tension without

residual stress. Residual stress may be accounted for by modifying (1.12),

a =ME +ao (1.14)

Inserting equatons (1.7) and (1.11) into (1.14) and again solving for pressure yields:



This is the spherical cap bulge equation for a circular membrane [70]. Although this 

model maybe greatly simplified in comparison to exact solutions, it is a reasonable 

approximation for load-deflection behavior of a circular membrane system with residual 

stress [70]. A more exact solution by Timoshenko [69] develops the differential 

equations describing this problem at length, and Hencky [70] derived an exact solution 

very similar to the common shell solution found in many texts. However, the Hencky 

[70] model applies boundary conditions about the outer edge to limit transverse strain in 

order to more accurately describe membrane behavior, and neither model readily 

accounts for residual stress which is present in experimental tests. Based on the work of 

Hencky and Vlassak [70.71], Hohlfelder developed a general solution by describing two 

cases; the modulus dominated regime and the residual stress dominated regime. 

For a circular membrane the modulus dominated regime assumes no residual 

stress in the thin film, therefore the mechanics are dominated by membrane elasticity. 

This yields a general case modulus dominated solution of [70]: 

where, 

Equation (1.17) is a relation describing the membrane shape constant and how it varies 

with (v). 



Considering the residual stress dominated case, membrane behavior is governed 

to residual strains in the thin film. The general case solution of a residual stress 

dominated membrane is 1701: 

A general case solution may be developed in which residual stress in the 

membrane is neither dominant nor negligible. This is done by superposing the two 

solutions to the limiting cases. This gives the solution for the general case circular 

membrane load-deflection analytical model resulting in, The bulge equation for a 

circular window [70]: 

where, 

Although this is not an exact solution, it was found to be within 1.5% of Hencky's 

solution for a circular aluminum membrane [70]. 

The bulge equation for a circular window by Hohlfelder [70] accurately describes 

the physical system for linear elastic materials within the elastic stress-strain region, and 

enables the determination of thin film material properties and residual stress, which is 

present when working with membranes. The above theory is one of the models used 

herein for approximating circular membrane performance. 

Considering the derivation of the spherical cap model and its close approximation 

to exact solutions for circular membrane behavior as applied to linear elastic materials, an 

investigation into its application to non-linear elastic materials has been pursued. As can 

be found in most strength of materials texts, tensile strain definitions can have a 

significant impact upon material property characterization [73,74]. Based on this 

premise, a suitable tensile strain definition must be chosen to approximate any given 



material performance. Each material behaves in a different manner under the same 

loading conditions due to material composition and molecular structure. Numerous strain 

definitions have been developed by using different strain or stretch ratios to provide 

accurate elongation approximations for all materials [73,74,103]. Most engineering 

materials use the engineering strain definition: 

While (1.21) describes engineering materials very well, and is the definition used in the 

spherical cap method, assuming h is small so equation (1.6) is assumed, its ability to 

describe elastomers is poor. This is due to the model being tailored to engineering 

material or small strain analysis, and the ability of elastomers to elongate up to 600% of 

their original length before failure. To date only the standard engineering strain 

definition has been applied to the spherical cap model, limiting R to the form shown in 

equation (1.6) [75]. Therefore, an investigation assuming the exact form of R in equation 

(1.5) and applying it to the engineering strain definition, and true strain definitions was 

performed to better approximate the load-deflection behavior of elastomer membranes 

[74,75]. Applying equation (1.5) to the engineering strain definition from equation (1.8), 

as defined by Cauchy infinitesimal [74,75], yields: 

This is the engineering strain definition as a function of R [75]. 



True strain, as defined by Cauchy [74,75,103], is: 

Applying the true strain definition to the spherical cap model. From equation (1.8): 

and 

Substituting (1.24) and (1.25) into (1.23) yields: 

From equation (1.9), solving for 8, 

Substituting (1.27) into (1.26) yields: 

This is the true strain definition applied to the spherical cap model. 



The Almansi true strain definition is [74,103]: 

Applying the Almansi true strain definition to the spherical cap model by inserting (1.24) 

and (1.25) into (1.29) yields, 

This is the Almansi true strain definition for the spherical cap model. 

Now the new engineering and true strain definitions are applied to the spherical 

cap model following Nix [72]. Given the biaxial modulus: 

By inserting equations (1.3), (1.3 I), and (1.22) into equation (1.14): 

a 
PR E R sin-' - 

2t 1 - v  



Solving for pressure: 

This is the spherical cap model with engineering strain as a b c t i o n  of R [75]. 

The true strain spherical cap model is determined by inserting equations (1.3), (1.3 I), and 

(1.28) into equation (1.14) yielding: 

Rearranging to solve for pressure: 

This is the Cauchy true strain spherical cap model. 

The Almansi true strain spherical cap model is determined by inserting equations (1.3), 

(1.3 I), and (1.30) into (1.14) yielding: 



PR -- - 
2t 

Rearranging to solve for pressure: 

This is The new spherical cap model. 

Equations (1.32), (1.33), and (1.34) are the new analytical models for circular membrane 

large deflection. Figure 1.2 below is a plot of a PDMS circular membrane bulge test 

experimental data and compares the different analytical models previously outlined. This 

plot demonstrates the difference between the various analytical models and their ability to 

accurately approximate the experimental data. 
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1.2.1.3 Square Membrane Mechanics 

I I I I I I I I - 

- - 

Square membranes are different from circular, assuming the same radius and 

thickness, square membranes have 2 1 % more material, see Fig. 1.3. This is significant in 

that the predominant force acting on a membrane is tension, therefore there is more strain 

for a given pressure as compared to a circular membrane [68]. The stress-strain field is 

also very different from a circular membrane, as equibiaxial stress and strain can no 

longer be assumed. When pressurized, square membranes develop a circular bulge, 

going from their initial square shape and becoming more circular in the center, while the 

perimeter and corners assume a different shape [68]. This is especially evident for 

elastomer membranes, as seen in Fig. 1.3 and 2.1 1. The theory describing the physical 

system of square membrane load-deflection is not as simple as the spherical cap model 



for circular membranes. Most solutions were developed using differential equations and 

focus on membranes made of linear elastic materials, under small deflections. The 

complexity of square membrane theory and an analytical model that accurately 

approximates elastomer membrane load-deflection performance is further compounded 

by the large deflections achieved by elastomer materials, and has yet to developed. 

Therefore, the most accurate square membrane solution from the literature search is used 

herein. 

Fig. 1.3. - Square membrane schematic 

X 

Square membrane: No deflection 

Square and rectangular membrane load-deflection theory was originally described 

by Timoshenko et a1 [69] employing the energy method [48]. The energy method derives 

a solution for plate deflection behavior by first assuming the functional shape of a 

deflected plate by a load, and then calculating and minimizing the potential energy of the 

system to fit the initial assumption [69, 471. Unfortunately, early assumptions for the 

functional shape of a plate deflected by a load, a square plate to spherical cap, were 

inaccurate. The inaccuracy was due to mathematical simplification of the problem to 

P 

Square membrane: Deflected 



facilitate ease of computation at the expense of accuracy [49] . However, with the 

interest of determining the residual stress of thin films and their material properties, very 

accurate analytical models are desired. Maier-Schneider et a1 further developed the 

energy method theory of Timoshenko et a1 [49,69] for linear elastic materials by 

expanding the functional shapes of square plate load-deflection, thus improving the 

accuracy of the model. Maier-Schneider et a1 [48] developed this improved analytical 

solution using the computational software program MATHEMATICA, and is within 

1.2% error with FEM solutions developed by Pan et a1 [49]. The new analytical solution 

for square membrane load-deflection developed by Maier-Schneider et a1 is: 

where cI=3.45 and 

This solution for square membrane mechanics enables the determination of thin film 

material properties and residual stress, it is the most accurate solution known to date, and 

is the theory used herein to approximate square membrane load-deflection behavior. 

1.3 MEMS Materials 

Materials used for MEMS fabrication vary widely and are steadily increasing in 

number. This is due to new applications of MEMS with existing materials and new 

materials. Due to the application of MEMS as "chip level sensors and actuators" 

integrated into ICs, fabrication is done primarily employing bulk CMOS IC planar 

processing. The fabrication techniques used for MEMS employ standard CMOS 

processing as well as new MEMS processing techniques, such as LIGA, SCREAM, and 



MOSIS, used to facilitate more complex MEMS structures and devices. In standard 

CMOS fabrication and specific MEMS processing techniques the process usually begins 

with a bulk substrate. The most common materials used are silicon, bulk metals, 

polymers, and ceramics [77] Planar processing uses two dimensional lithographic 

techniques for patterning and incorporates layering and removal of materials for the third 

dimension. Materials used for layering are silicon dioxide, metal films, polymers, and 

ceramics. Many of these materials are well suited for MEMS applications, are standard 

processing materials, and have well known material properties. However, some 

materials have non-typical material properties which can offer enhanced performance, or 

enable particular MEMS sensory and actuation applications previously unavailable using 

standard processing materials, this is the case for PDMS MEMS membranes. 

1.3.1 Metals 

The use of metals in MEMS fabrication is vast. The ability to deposit thin metal 

films by electro-plating or thermal evaporation, is particularly suited for the fabrication of 

MEMS membranes. Plate and membrane mechanics were developed for practical use 

assuming metal as the material of choice. Metals are crystalline solids whose forms 

consist of a crystal lattice molecular structure, where each metal atom occupies its 

ordered space within the structural array forming a three dimensional material [77,78]. 

Metals crystallize in different structures and unit cells of atoms are formed, the most 

common being face-centered cubic, body-centered cubic, and close-packed hexagonal. 

When the unit cell is repeated in all directions a crystal lattice is formed. Fig. 1.4 

displays a body-centered cubic unit cell and crystal lattice. It is the atomic make up and 

resulting crystalline structure that give metals their individual material properties [80]. 



Fig. 1.4. - Metallic body-centered cubic crystalline solid structures 

Body-centered cubic unit cell 

Plate and membrane theory developed by Timoshenko et a1 [69], Hencky, Di 

Giovanni, and others assumes the use of materials having a Poisson's ratio of Y = 0.25 to 

Y = 0.35, these values of Poisson's ratio are typical for most metals [67,72,75]. Given 

that the theory was developed assuming material properties of common metals, the 

analytical solutions perform well for those materials. Metal films perform in a specific 

manner as plates and membranes, as governed by their material properties. The 

mechanical response, load-deflection, of a metal plate clamped at the edges and subject to 

a uniform load have been well documented [67,68,69]. Plate deflection is linear up to - 
30% of the plate thickness as dominated by pure bending theory, which dictates that an 

inflection circle of the plate be located at 57.73% of the plate radius [66]. Non-linearity 

is introduced when plate deflections greater than - 30% of the thickness are present, 

resulting in the inflection circle being pushed to the perimeter of the plate [66]. The 

result is a plate that is now governed by membrane load-deflection theory, the degree of 

which may introduce large amounts of hysteresis and plastic deformation. Metal plates 

and membranes are most often used as force summing devices or pressure sensors, due to 

their crystalline structure, linear elastic behavior, low hysteresis, ease of fabrication, and 

Body-centered cubic crystal lattice 



resistance to vibration [66] .  Metal plates used as pressure sensors produce highly linear 

and reproducible response for their design range, deflection - 30% of the plate thickness. 

1.3.2 Polymers 

Polymers have had an enormous impact upon MEMS research and the emerging 

MEMS industry. The use of polymers has made particular MEMS applications and 

devices a reality. Many of the MEMS applications to benefit from polymer use are 

microfluidics systems, hygrometers, accelerometers, and aerodynamic controllers [7-30, 

64,99,42]. Many of these applications would otherwise be impossible implementing 

standard CMOS fabrication materials and processes. The benefits of polymer use for 

MEMS applications are numerous. Polymers are used both as substrates and layering 

materials in MEMS fabrication. There is a vast selection of polymers in industry today 

yielding a wide range of material property selection. Elastic modulus values for 

polymers can vary from - 1 MPa for synthetic rubbers to - 4 GPa for polyamide nylon. 

Polymers with soft amorphous elastomer structures are favorable for MEMS applications 

due to their ability to withstand large deformations with low stress, which match 

favorably with low power MEMS actuation techniques [1,4,5]. Elastomers are polymers 

which exhibit large deformation at room temperature with non-plastic deformation when 

loading is released [3]. At room temperature typical elastomeric polymers, such as 

natural rubber and PDMS, have elastic modulus values of - lo6 ~ / m ~ ,  while glassy and 

crystalline polymers have elastic modulus values which are three orders of magnitude 

higher, - lo9 ~ / m ~  [2 ] .  This difference is due to the molecular structure and respective 

glass transition temperature (Tg) of the different polymers [2,3]. 

Cured polymers consist of long chain polymer molecules which are cross-linked. 

Glassy and crystalline polymers may have a molecular structure somewhat similar to the 

structure of crystalline metals in Fig. 1.4, while elastomers consist of amorphous cross- 

linked structures as shown in Fig. 1.5. Semi-crystalline polymers are composed of both 

amorphous and crystalline molecular structures, to lesser and greater degrees, depending 

upon the material in question. Both amorphous and semi-crystalline polymers are 



considered visco-elastic materials due to their ability to behave like viscous fluid like gels 

and crystalline materials, with each molecular structure contributing its unique 

relationship to a given material's stress-strain curve [94]. Under relaxed conditions 

elastomer molecular structure is amorphous, making it an ubiquitous material which is 

difficult to characterize. When loaded the long chains disentangle and orient in the 

direction of the load, this is called strain crystallization, and is the typical elastic response 

of elastomer materials [80]. Semi-crystalline polymers have both an amorphous and 

crystalline elastic response to loading, which varies depending on the material. Semi- 

crystalline polymers are generally more rigid in stress-strain tests compared to 

elastomers, given their partial crystalline molecular structure. Standard tensile tests of 

typical crystalline polymers have a linear elastic stress-strain curve, without deforming, 

due to their ordered molecular structure, acting much like metals. This behavior is linear 

in the sense that the stress-strain relationship is a straight line until the yield point, where 

the material starts to deform, deviating from the straight line in a non-linear fashion. 

Elastomers and semi-crystalline polymers may have a similar linear stress-strain curve in 

standard tensile tests, depending on the material. The elastomer amorphous molecular 

structure having a linear elastic stress-strain curve until strain crystallization begins, thus 

changing to a non-linear stress-strain curve. Assuming that the breaking point is not 

reached, elastomers return to their original shape once loading is released and without 

substantial deformation, unlike semi-crystalline materials. Elastomers are unique in this 

behavior. These fundamental material properties of elastomers may be manipulated by 

varying the cross-link density of the polymer molecules [80,84]. 



Fig. 1.5. - Polymer molecular structures 
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Cross-linked polymer molecules 

Elastomers are gel like and amorphous due to their respective glass transition 

temperature. The glass transition temperature of a polymer may be considered analogous 

to the freezing point of a liquid. As the temperature is reduced, the amount of free 

volume in the polymer is also reduced, thus restricting molecular motion. Elastomers 

have glass transition temperatures well below room temperature, PDMS has a Tg - -127" 

C [2,3,17,18]. Due to the intrinsic molecular structure, molecules of elastomeric 

polymers readily slide past each other when subjected to an external load, generating 

heat. This may result in significant energy loss when materials are dynamically loaded, 

creating a mechanical hysteresis loop. The hysteresis is due to stress relaxation, 

molecules sliding past each other in the polymer, and is more evident at slow strain rates, 

due to the molecules having more time to disentangle. The measure of the energy lost is 

defined as tan 6, or "loss factor". The tan S of a materia1 is a representation of energy 

loss due to mechanical hysteresis and stress softening [88]. For elastomers, this energy 

loss is often in the form of heat, which may have a cumulative effect on the given 

application and therefore is an important material property to be included in material 

selection data [l 1 ,171. 

Amorphous region 4 
Crystalline region 

Amorphous and crystalline structures 



Amorphous elastomers are capable of very large elongations, up to 600% or more 

of the original sample length, with a corresponding reduction in cross section, [14,17]. 

Poisson's ratio is the lateral strain over the longitudinal strain for a material subjected to 

an axial load with resulting elongation, and is an important mechanical property to be 

included in simulation models. Poisson's ratio is typically from 0.25 to 0.35 for most 

metals, and is well above 0.35 for most amorphous elastomers [12,17]. Many polymers 

may be made to suit a wide range of material property requirements and MEMS 

processing needs. Once a polymer is chosen for a particular application often the 

material properties and processing technique are tailored to optimize the application 

requirements. Most other fabrication materials do not have such a dynamic range of 

material property manipulation. 

1.3.2.1 Polyethylene 

Polyethylene, a polyolefin plastic discovered in 1933 by E. Fawcett and R. 

Gibson of the Imperial Chemical Industries Laboratories (England), was the first 

synthetic polymer. Over the last seventy years polyethylene has been improved, costs 

less to manufacture, and is used in nearly every industry and consumer product today. 

Polyethylene is made in three primary methods; gas-phase, solution, and slurry (liquid- 

phase), through addition reactions of ethylene [94]. Generally these reactions consist of 

ethylene monomer molecules being polymerized in a pressurized environment containing 

ethylene, and a catalyst. Varying the pressure and temperature of the process 

environment yields different grades of polyethylene, each with different material 

properties, such as LDPE, MDPE, and HDPE; corresponding to low, medium, and high 

polymerization densities. LDPE polymerization processes result in producing 

polyethylene molecules with many long chain side branches off of the main polymer 

chain molecule. Processes that produce MDPE and HDPE yield polyethylene with 

reduced side branches. It is these side branches that affect the ability of the polymer 

molecules to pack closely together and the resulting bulk density of the material. 

Recently LLDPE (linear low density polyethylene) has been produced using a low 



pressure process. This is different from LDPE in that it has many short chain side 

branches and fewer long chain branches off the main polymer chain molecule. The low 

pressure process is more economical and is used as a standard process for most LDPE 

applications, such as food service films and plastic bags, today. Polyethylene is a material 

that has amorphous and crystalline regions. The crystalline regions consist of portions of 

the polymer chains aligning in ordered microscopic polyhedral-shaped spherulite crystals. 

While the amorphous regions are in no particular molecular order. HDPE may consist of 

up to - 90% crystalline regions, as compared to LDPE with up to - 40% crystalline 

regions. It is the close packing of the polymer molecules in the crystalline regions that 

give an increased density to the material, where the amorphous regions have a reduced 

structural order and density. Due to the coexistence of the amorphous and crystalline 

molecular packing regions, polyethylene is considered a semi-crystalline material, as 

shown in Fig. 1.5. Tensile stress-strain response is typically a short curvilinear elastic 

region with a lengthily cold draw region, due to the amorphous and crystalline packed 

molecular structure undergoing strain crystallization [94]. Polyethylene may be 

manufactured as a film for food service and packaging applications, pellets for raw 

material, and stock extrusions for industry. Typically it is injection molded, spin or blow 

molded, and extruded to form milk containers, fleece pullovers, kayaks, writing 

instruments, electrical wire insulation, automobile interior and exterior components, and 

innumerable packaging and industrial applications. Polyethylene may also be reused and 

recycled for remanufacture in new products [8 1,941. 

Polyethylene film was of particular interest as a reference material for this thesis. 

Linear low density polyethylene (LLDPE) film, manufactured by GLAD, was used to 

provide a known material for comparison to PDMS. LLDPE is an amorphous semi- 

crystalline plastic made from a low pressure polymerization process, having range of 

elastic modulus values E = 50-300 MPa for all Polyethylenes, and a Poisson's ratio v = 

0.4 [94,104]. Static uniaxial tensile specimens and membranes were made from the 

LLDPE film; GLAD wrap. The uniaxial tensile specimens were used to determine the 

elastic modulus of LLDPE and the membranes were used to produce load-deflection data. 



Both sets of specimens were used to verify the test setups and to give a known material 

reference for PDMS material property tests. 

1.3.2.2 Polydimethylsiloxane (PDMS) 

Polydimethylsiloxane is an elastomeric polymer or synthetic rubber, and the 

material of investigation for this thesis. PDMS was developed in the mid twentieth 

century as a replacement for natural rubber and is the most common elastomer in use 

today. PDMS or silicone rubber is different from other elastomers in that it consists of 

silicon and oxygen in the form of siloxane to form its main flexible backbone polymer 

molecules [80,82]. It is the structure and combination of these molecules that gives the 

flexible elastomeric nature of PDMS and its non-standard mechanical properties. 

Elastomer molecular structure when strained goes from an amorphous gel like state to a 

more crystalline state. This is called strain crystallization. Due to the change in 

molecular structure, large elongations result. Elastomers are capable of great elongations 

while strained, and are able to return to their initial state with little or no plastic 

deformation when the strain is released. Therefore, PDMS stress-strain behavior is linear 

to non-linear or varies as a function of the strain, thus the elastic modulus varies as a 

function of the strain. These phenomenon also have a significant effect upon the 

Poisson's ratio of PDMS. 

Vulcanization of PDMS is most commonly done by room temperature 

vulcanization (RTV). PDMS may come in the one-component form, where the cross 

linking component is manufactured into the base compound and vulcanization occurs 

upon use with exposure to atmospheric moisture. In this case, curing occurs from the 

outside-in with time, and is the form that most silicone sealants are found today. Another 

common type of RTV of PDMS is the two-component system, where the cross linking 

component is added to the base compound just before use, giving uniform curing 

throughout [80]. Variations in the mixing ratio and curing process of the two-component 

system have a significant impact upon the PDMS mechanical properties. Upon 

polymerization PDMS is inert, taste and odorless, resistant to biological and ultra-violet 



degradation, stable over a temperature range of -60" C to 300° C in air, and non reactive 

with most materials [XO]. ~ ~ ~ l i c a t i o n s  of PDMS silicone rubber include, automobile 

ignition cables, gaskets, sealants, o-rings, static seals, food and medical grade tubing, 

human prosthesis implants and augmentation, contact lenses, electrical component 

insulators, and as a MEMS fabrication material. PDMS is a very common and 

economical industrial material, which is stable after processing, has a vast range of 

applications and flexible processing capabilities. It is these characteristics along with its 

mechanical properties that make it a popular choice for many MEMS applications. 

1.4 Motivation 

Plate and membrane mechanics have been investigated for numerous ends, 

and for a number of different geometries and materials in MEMS research. However, 

the load-deflection mechanical response of circular and square PDMS membranes, with 

accurately defined material properties, has yet to be fully characterized. These are 

investigated herein to provide more accurate large deflection elastomer mechanical 

models for MEMS design applications of elastomer membranes and PDMS in varying 

applications. 



Chapter 2 

Experimental procedures and techniques 

To investigate the tensile mechanical properties and membrane load-deflection 

mechanical response of PDMS a number of experiments and modeling was conducted. 

Dynamic and static uniaxial tension tests were performed to determine tensile mechanical 

properties. Static membrane bulge tests were conducted to determine the mechanical 

response of circular and square membranes under static uniform load, and to derive the 

membrane biaxial modulus. The results of these tests provided accurate tensile 

mechanical property data for PDMS in varied tensile applications, which was used in 

analytical membrane deflection models to simulate membrane deflection experiments. 

2.1 Mechanical testing 

Mechanical testing consisted of static and dynamic uniaxial tensile tests as well 

as circular and square membrane testing. The purpose of the tensile testing was to 

characterize the tensile mechanical properties of the polymers investigated; PDMS and 

LLDPE. The mechanical properties of particular interest are the elastic modulus (E), loss 

factor (Tan 4, Poisson's ratio (v), and stress relaxation (z). For obtaining tensile test 

data three types of tests were conducted; static uniaxial tension, dynamic uniaxial tension, 

and video dimensional analysis F D A )  for determining Poisson's ratio. Stress relaxation 
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and deformation tests of PDMS tensile samples were conducted to verify PDMS

relaxation time and the feasibility of the membrane testing technique, as well as to

determine relative amounts of plastic deformation at a particular stress level. The

purpose of the membrane testing was to characterize the specific load-deflection response

of PDMS and LLDPE for circular and square geometries. These tests also provide

residual stress (ao) and biaxial modulus (M) material properties. Membrane testing

experimental results also serve to validate membrane analytical models. All mechanical

tests were performed on a Materials Testing Systems, Eden Prarie, Mn USA, (MTS)

Tytron servo-pneumatic tensile testing machine, Fig. 2.1.

Fig. 2.1. - MTS Tytron mechanical tester



2.1.1 PDMS material processing 

Industrial grade polydimethylsiloxane, manufactured by Silicones, Inc., of High 

point, North Carolina USA, [P-125, RTV-2 PDMS silicone rubber], was used to 

fabricate all PDMS films and test samples [83]. PDMS [P-125, RTV-21 is a common 

industrial grade, two part (base and activator) silicone rubber. A curing agent (activator), 

or polymerization catalyst, is added to the (base) polymer to form the final material. 

Varying the mixture ratio of base to activator varies the degree of base polymerization 

and the resulting final material properties of the PDMS [84]. Various curing techniques 

may also be added to the material processing, such as degassing the mixture and or heat 

curing, to further drive the polymerization reaction to completion. A common 

manufacturer recommend mixture and curing process was used to fabricate all samples. 

2.1.2 Polyethylene (LLDPE) film 

Polyethylene (LLDPE) film was used for the fabrication of tensile samples to 

provide a tensile test reference for the experimental test setup. This film was chosen for 

its similar mechanical properties to PDMS, film uniformity (- 0.0254e-3 m thick), 

availability, and low cost. The LLDPE film used is commercially known as GLAD wrap, 

a film invented in 1966 by GLAD Products of Australia for food packaging [85]. Glad 

wrap is made from hard polyethylene resin with a cast film extrusion machine, and is 

commercially available at most food stores in the USA [85]. The tensile specimens were 

punched from LLDPE film sheet. 



2.1.3 Tensile specimen fabrication 

Tensile specimens were fabricated from PDMS and LLDPE film sheets. Three 

sizes of PDMS tensile samples were prepared for the tensile tests, Fig. 2.2. A size 

samples were used for dynamic uniaxial tensile testing, B size samples were used for - 
2# ' 

static uniaxial tensile testing, and C size samples were used for Poisson's ratio testing. 

Tensile test specimens 

Sample A 

P24mm7 
W=Zmrn 

Sample B 

1' 35mm-I 
Poisson's ratio sample W=8mm 

Sample C 

Fig. 2.2. - Tensile specimens 

For the A samples the PDMS was prepared by thoroughly mixing 10 parts base to 

1 part activator by weight. Air bubbles were removed twice, sequentially in a vacuum 

chamber, and the PDMS allowed to cure in flat molds (2-mm thick) at room temperature 

for 24 hours. Rectangular C samples of this material batch were used in determining 

Poisson's ratio. The B samples were made with the same PDMS mixture ratio by weight, 

but spread to form very thin sheets and cured at room temperature for 24 hours without 
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exposure to a vacuum. A special jig was constructed using a variable height silk

screening squeegee, Parafilm, and shim material. Parafilm was taped to a very flat work

surface and a layer of PDMS,~ O.IOI6e-3 m thick, was squeegeed on the Parafilm.

Parafilm is a wax type standard laboratory film used to seal test tubes and etc. It was

used as a base for the PDMS film due to its non-adhesion to PDMS, and it could be rolled

up and stored for later use. Once the PDMS batches were fully cured, after 24 hours or

more, A, and B size tensile specimens were then fabricated with their respective punch,

Fig. 2.3, to provide a necked region in accordance with industry uniaxial tensile testing

standard (ASTM D 412-98a) for elastomer polymers [86]. LLDPE B size samples were

also punched. Rectangular C samples were cut to size Fig. 2.2. Testing standard (ASTM

D 412-98a) dictates that dumbbell specimens be punched from thin sheets of the material

to be tested. Two different punches were used to fabricate the A and B size dumbbell

specimens, (Fig. 2.3). Each test sample was of uniform shape and thickness.

Dumbbell punch -A size Dumbbell punch -B size

Fig. 2.3. -Tensile specimen punches
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2.1.4 Membrane fabrication PDMS and LLDPE

Membrane fabrication was achieved through the use of fabricated PDMS and

LLDPE films previously noted in section 2.1.1 and 2.1.2, in conjunction with the

membrane block Fig. 2.4. The film to be tested was placed between the two

disassembled sections of the membrane block, with a small amount of membrane pre-

tension to eliminate sag. The two sections were then fastened together, resulting in

clamped edge circular and square film membranes with an air tight seal, Fig. 2.4. Any

remaining film extending from the edges of the membrane block was trimmed away. The

membrane block was designed to create clamped edge circular and square membranes of

the same radius, r = 9.525mm, from the film sheets. These sheets are readily changed to

facilitate ease of testing. For deflection measurement purposes, each membrane was

marked with a black dot in the center to aid in aligning the probe to the membrane.

Membrane block with new membranes

Fig. 2.4. - Membrane block and membranes

membrane

2a

firMembrane block

sections p

Clamped edge membrane



2.1.5 Tensile test procedures 

Three types of tensile tests were performed to determine the tensile mechanical 

properties of PDMS using an MTS Tytron servo-pneumatic uniaxial tensile testing 

machine. These tests are; static uniaxial tension, dynamic uniaxial tension, and video 

dimensional analysis (VDA) for determining Poisson's ratio. LLDPE was tested in static 

uniaxial tension only. The static and dynamic tension tests performed were at particular 

rates of strain, and measurements were recorded in real time. The static uniaxial tests 

were performed at & = 0.741/sec, while the dynamic uniaxial tests were tested over a 

strain rate range of & = 0.033/sec to & = 0.256lsec for the A samples, and B = 0.3 171sec 

to E = 0.823/sec for the B samples. 

The PDMS specimens did not reach the breaking point due to elastomer 

elongation capability - 600%, and the limited displacement range of the MTS tester. 

When the samples were returned to their original gauge length, minimal deformation was 

observed, which may have been due to sample to grip slippage andlor plastic deformation 

in the samples. There is an element of strain rate dependence in the results obtained, 

which is typically encountered in elastomer polymer testing due to their viscoelastic 

nature and amorphous molecular structure. This is less significant in LLDPE due to 

testing the specimens solely in static uniaxial tension. However, the breaking point was 

reached for the LLDPE samples, given the more crystalline LLDPE material molecular 

structure. 

2.1.5.1 Equipment description 

Tensile testing was performed with an MTS Tytron servo pneumatic tensile 

testing machine. The MTS Tytron is a specialized tensile testing machine which 

incorporates a horizontal air bearing uniaxial test frame, a linearly variable displacement 

transducer (LVDT) actuator, an array of force transducers, computer software control, 

and data acquisition capability. The MTS Tytron was configured to have a working 



LVDT displacement of - 70 -.O.lmm with a set of compression clamps, one on the 

LVDT and the other on the force transducer, to hold tensile samples at either end, Figs. 

2.1,2.5. Testing may be done using the machine in manual control mode or computer 

controlled. Test recipes may be programmed to execute testing and data acquisition. The 

MTS Tytron is primarily used with very small test samples for sensitive or non- 

destructive tests. The entire system operates on an isolated air cushion table. The MTS 

Tytron is a sophisticated and accurate tensile testing machine, which made the work of 

this investigation possible. 

2.1.5.2 Static uniaxial tension test procedure 

The static uniaxial tensile test resembled the standard industry tensile test (ASTM 

D 412-98a) used for determining the stress-strain behavior of elastomers in tension [86]. 

However, due to the lack of a suitable extensometer, displacement measurements were 

taken from the LVDT grip actuator movement. With the force transducer zeroed, 

fabricated standard tensile specimens, B type, Fig. 2.2, were loaded into the grips of the 

MTS Tytron tester, and slack was removed. At a measured gauge length of 18.1 mm 

with a force of 0 N, the specimens were uniaxially displaced 50 mm in Is, yielding a 

strain rate of, E = 0.741/sec, Fig. 2.5. Time, displacement, and force were recorded. 

Difficulties encountered in testing elastomers in this manner were; grip slippage, 

specimen tearing at grips, large deformation of specimen at grip section, and premature 

failure due to sample imperfections. These are common occurrences in elastomer tensile 

testing [87]. Successful test results were obtained through technique and patience. In 

total, 10 satisfactory static uniaxial tensile tests of each material were performed to 

determine the static uniaxial elastic modulus of PDMS and LLDPE. 
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40

B sample loaded in tester B sample elongated -50 mm

Fig. 2.5. - Displaced uniaxial PDMS tensile specimen

2.1.5.3 Dynamic uniaxial tension test procedure

Dynamic tensile testing consisted of the initial specimen loading technique, a very small

pre-straining, EO= 0.17, of the specimen to eliminate slack, with corresponding oscillation

about that pre-strain at a set displacement and frequency. Testing in this manner yields

data that enables the determination of the tan b as a function of frequency for the

material. This is important data in the selection of dynamic design applications, which

may have a cumulative effect upon a given design. PDMS was the only material tested in

this manner. Dynamic testing was performed on two sizes of PDMS specimens, A and B

Fig. 2.2, to observe the effects of film thickness upon the mechanical properties. Fifty

samples were tested in total at frequencies ranging of O.5Hz, 1.0Hz, 2.0Hz, 3.0Hz, 4.0Hz,

and 5.0Hz. The A samples had a dynamic stress range from 1.4e5 to 2.1e5 Pa and a

strain range of 0.155 to 0.185, while the B samples dynamic stress range ofO.3e6 to 1.6e6

Pa and a strain range of 0.230 to 0.470. Five samples were tested at each frequency.



2.1.1.4 Poisson's ratio (VDA) test procedure 

Poisson's ratio was determined using video dimensional analysis (VDA), using 

three rectangular type C samples, Fig. 2.2. Each sample was loaded in the MTS Tytron 

grips and subjected to axial tension in 2mm increments from 0 to 48 mm. VDA was used 

to determine the axial and lateral change in the sample by measuring the sample at each 

increment. The VDA system was calibrated with a standard metric scale. Force and 

displacement (axial and lateral) were recorded. 

2.1.1.5 PDMS stress relaxation and deformation test procedure 

Stress relaxation of PDMS was done using B samples loaded into the MTS tester 

and strained, while recording time and load. Two groups of three samples strained to 0.3 

and 0.6 in Is, yielding strain rates of .i = 0.31sec and & = 0.6/sec, respectively, and then 

held at that strain for 60s. This data enables the determination of a relaxation time for the 

two strain levels, accounting for the viscous portion of the viscoelastic material 

characteristics, 0.3 true strain being in the linear region of the PDMS stress-strain curve, 

and 0.6 true strain in the non-linear region, from Fig. 3.1. The relaxation time for PDMS 

at a given strain level allows the determination of the amount of time that is required to 

reach static equilibrium for a given loading scenario. This was important to know to 

validate membrane deflection measurements. 

Deformation of the samples tested at a true strain of 0.6 was quantified by 

measuring the overall length of the samples with calipers immediately after they were 

removed from the test grips, and consecutively over a period of one week. This was done 

to observe the total plastic deformation of the samples and their ability to recover from 

the test. Twelve B samples were tested in total. 



2.1.6 Membrane testing 

Membrane testing, or bulge testing, was performed to determine the load- 

deflection mechanical response of PDMS and LLDPE circular and square film 

membranes. Membrane testing of this type is typically achieved using an apparatus 

similar to what is shown in the schematic of Fig. 2.6. A flat membrane is pressurized 

with air from the back side with a syringe. The syringe enables the control of the applied 

pressure, which is monitored by the pressure sensor. Once a membrane is pressurized it 

deflects, enabling measurement of the deflection at the center of the membrane. 

Deflected 

membrane 

Shut off valve 
Measurement 

syringe 

Membrane bulge test schematic 

Fig. 2.6. -Membrane bulge test schematic 

Membrane testing was done using the MTS Tytron tester in conjunction with a special 

test apparatus constructed for load-deflection testing of films; the membrane block Fig. 

2.8. The membrane block creates clamped edge circular and square membranes of the 



same radius, r = 9.525mm, from film sheets. The test consists of pressurizing the 

backside of a membrane and measuring the resulting membrane center deflection. Bulge 

test data not only provides characteristic membrane load-deflection mechanical response, 

but through analysis, membrane residual stress (ao), material biaxial modulus (M) and the 

elastic modulus (E) may be determined. 

2.1.1.1 Equipment description 

For membrane testing a special test apparatus (the membrane block) was 

constructed and mounted to the MTS Tytron tester. The membrane block in conjunction 

with the LVDT of the tester produces the loading and deflection measurement of the 

membrane, Fig. 2.7. By mounting a film layer between the two sections of the membrane 

block, clamped edge circular and square film membranes from simple films are produced, 

Fig. 2.8. An air pressurization system of a syringe, pressure gauge (0 - 30 in.w.g. = 

7,472.6 Pa), tubes, and valves enables pressurization of the membranes, individually or 

simultaneously, Fig. 2.9. The MTS tester had a special vibrating tip attached to the 

LDVT which facilitates membrane deflection measurement, Fig. 2.7. 
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Fig. 2.7. - Membrane testing apparatus

Fig. 2.8. - Membrane block
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Pressurization syringe, metering valves Pressurization meters, valves, and tubing

Fig. 2.9. - Membrane block pressurization system

2.1.1.2 Membrane test procedure

Membrane testing was performed by first assembling the membrane block with a

PDMS or LLDPE film, Fig. 2.8. The membrane block assembly was then mounted to the

MTS tester as shown in Fig. 2.7. Next the pneumatics were connected to the membrane

block and the membranes pressurized. Deflection was measured with the vibrating tip

attached to the LVDT. The tip was gently set into motion and slowly advanced toward

the center of the membrane with the LVDT. Tip vibration stopped as the tip advanced

and contacted the center of the deflected membrane. An averaged value of three

deflection readings was recorded for each data point, afterwards the membrane pressure

was released to zero. This was repeated for the entire pressure range of the membranes,
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from 0 - 7,500 Pa. This measurement technique was found to be convenient and

successful given the relative scale of the experiment and components. The PDMS

membranes were tested at 250 Pa per datum, while the LLDPE membranes were tested at

500 Pa per datum. This was due to the lower deflections of LLDPE as compared to

PDMS. Fig. 2.10 and 2.11 show circular and square PDMS membrane deflection.

Fig. 2.10. - Membrane block and deflected membrane
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Fig. 2.11. - Square and circular deflected membranes at equal pressure, respectively.

2.2 Analytical methods and Modeling

Analytical methods were used to analyze the tensile specimen and membrane

experimental data. Methods were chosen based on the literature search, and further

developed into analytical models to approximate the experimental tensile specimen

stress-strain and membrane bulge test physical systems.

2.2.1 Description of analytical software and techniques

Tensile specimen and membrane mechanical response data from all experiments

were analyzed with analytical methods and models built in Matlab. Matlab is a high-



performance programming language for technical computing. Matlab utilizes data and 

computation arrays which enable the building of sophisticated analysis models in familiar 

mathematical notation 1881. Experimental data may be imported to analysis programs 

from text data files, entered by user input, or incorporated as a part of a program. Tensile 

specimen data were imported from specimen test files created during experimentation, 

while membrane data were made a part of the analysis programs. Matlab programs 

provide a comprehensive view of experimental data range analysis through the plotting of 

analysis results. Plots with curve fitting capabilities and equations aid in further defining 

the results. 

2.2.2 Tensile specimen analytical methods 

Tensile specimen data was analyzed with the following stress-strain method for 

PDMS and LLDPE. 

Stress calculation, as defined by Euler 174,1031. Assumes constant volume and strains 

EYY/E== EZJE,. 

where lambda is the stretch ratio [103]. 

True strain calculation, as defined by Cauchy. 



For materials which exhibit large elastic strains, such as PDMS, true stress, (a,), and 

true strain, ( E ~ ) ,  in the sense of Euler and Cauchy respectively, are typically used to 

develop a more accurate stress-strain behavior model [73,74,89,102,103]. Assuming 

constant volume in the true stress relation and using the true strain definition gives an 

accurate representation of the stress-strain relationship to loading for the large 

deformations of elastomers. This method was used to determine static uniaxial tension 

and dynamic elastic modulus values, and tan 6 values. Tables 2.1 and 2.2 below 

summarize the results from the static and dynamic uniaxial tension tests. 

Table 2.1 - PDMS and LLDPE elastic modulus - static uniaxial test results 

Table 2.2: PDMS dynamic elastic modulus - dynamic uniaxial test results 

Linear elastic 
modulus 

2.18 %0.184 MPa 

166 *6.270 MPa 

Emax 

0.342 20.026 

0.020 20.000 

Test 

Static uniaxial 
PDMS 

Static uniaxial 
LLDPE 

amax  

.26 16 Mpa 

3.33 MPa 

Average 
dynamic 
modulus 

1.45 20.250 MPa 

Test 

Dynamic A 

Dynamic B 

Emax 

0.18 20.0 15 

0.30 20.002 

a m a x  

0.27-c 0.05 MPa 

0.422 0.10 MPa 

Dynamic linear 
elastic modulus 

1.49 *0.143 Mpa 

1.39 *0.381 Mpa 



2.1.3 Poisson's ratio analytical method 

Poisson's ratio is defined as lateral strain over longitudinal strain for a material 

subjected to an axial load with resulting elongation [73,89]. The method used to 

calculate Poisson's ratio utilized true strain definitions from equation (2.3) to best 

approximate the elastomer behavior of PDMS as shown below. Poisson's ratio of 

LLDPE was obtained from the literature search, and has a value of, v = 0.4. 

Poisson's ratio for elastomers: 

The average Poisson's ratio of PDMS was 0.47 3~0.028, for the entire range of axial true 

strain. 

2.1.4 Stress relaxation analytical method 

Stress relaxation was quantified for PDMS uniaxial tensile specimens with 

The following analytical method: 

Stress relaxation time: 

Where t is the specimen loading time (see) to initial stress 00, and a is the selected stress 

test level [77]. Tests where 00 and oare the same value is characteristic of materials with 



long relaxation times; linear elastic materials and the elastomer linear elastic stress-strain 

region. Table 2.3 displays the results for the two tests below. 

Table 2.3: PDMS stress relaxation results 

2.1.5 Tan 6 analytical method 

The tan 6 or loss factor for dynamic tensile specimens was analyzed by the 

following method [77]. 

The loss factor given by the equation below [loll: 

Test 

Stress 
Relaxation A 
Stress 
Relaxation B 

Where E' is the real modulus, or storage modulus, in-phase with the stress and defined 

and E" is the imaginary modulus, or the out-of-phase strain component, defined as: 

~ m a x  

0.30 

0.60 

E* is the complex or dynamic modulus. 

Test time (s) 

60 s 

60 s 

Uo 

1.0MPa 

5.1 Mpa 

u 

1.0MPa 

3.8 MPa 

Relaxation time (s) 

0.0s 

7.82 s 



Due to the amorphous structure, molecules of elastomer polymers readily slide 

past each other, resulting in energy loss when these materials are dynamically loaded. 

This effect creates a mechanical hysteresis loop. The measure of the energy lost is 

defined as the tan 6 or loss factor [90]. The amount of energy lost may also be a function 

of the amount of strain for these materials, given their strain crystallization behavior 

[80,90]. The tan 6 as a hnction of frequency for PDMS was (tan 6 = 0.03 k0.015) for 

the frequency range of 0.5 to 5 Hz. 

2.1.6 Membrane analytical methods and models 

Circular and square membrane data was analyzed with the following analytical 

methods and models. Biaxial stress and strain definitions from the equations of large 

deflection circular membrane theory discussed in section 1.2.1.2 were used to analyze 

membrane experimental data. The Almansi true strain definition as applied to membrane 

deflection theory in conjunction with spherical cap stress were used due to their accurate 

approximation of the experimental systems, and are defined below: 

Circular membrane biaxial stress: 

Circular membrane Almansi biaxial true strain: 



Applying the new Almansi biaxial true strain definition and biaxial stress, allows 

the determination of the membrane biaxial modulus (M) and residual stress (oo). The 

residual stress is due to membrane pre tensioning to eliminate sag during testing, and 

appears as an offset in the biaxial stress-strain plots, where the slope of the plot is the 

biaxial modulus [91]. The membrane elastic modulus may then be calculated from the 

following equation [92]: 

E 
Membrane biaxial modulus: M = - 

(1 -Y) 

rearranging for E we get: E = (1 -v )I4 

Where E is the membrane elastic modulus. 

Once the membrane elastic modulus and residual stress are determined, they may 

be used in the circular and square analytical models. The models used to simulate the 

experimental data of PDMS and LLDPE were as follows. 

New circular membrane analytical model: 

The new spherical cap model 

where, 



Maier-Schneider et a1 square membrane analytical model: 

where c, = 3.45 and 

The development of The new spherical cap model for circular membranes, as 

shown in equation (1.34) and discussed in section 1.2.1.2, represents membrane 

deflection as a function of membrane radius of curvature, and was used to simulate 

PDMS and LLDPE circular membrane load-deflection experiments. Equation (1.36) by 

Maier-Schneider et a1 is the analytical model used for square membrane experiment 

simulation. Table 2.4 below displays the results from the circular membrane tests. 

Table 2.4: Circular membrane biaxial stress-strain and modulus results 

Material 

PDMS 

LLDPE 

ExxMax 

0.21 

0.020 

UxxMax 

0.427 MPa 

2.75 MPa 

M 

2.03 MPa 

127 MPa 

I? 

1.08 20.250 MPa 

76.0 26.110 MPa 

a 0  

0.038 Mpa 

0.427 MPa 



Chapter 3 

Results 

3.1 Tensile tests 

3.1.1 Static uniaxial testing of PDMS and LLDPE 

Data from the B sample static uniaxial tests, analyzed using Euler and Cauchy 

true stress and true strain for PDMS and LLDPE, yielded an elastic modulus of 2.18 

k0.184 MPa, up to a strain of 0.375 for PDMS, and an elastic modulus of 166 k6.270 

MPa for LLDPE. The behavior of the stress-strain curve shown in Fig. 3.1 for PDMS, is 

nearly linear for low stress values at or below 1.25 MPa, representing the elastic stress- 

strain region. This behavior agrees with published results for elastomeric polymers 

[82,90,93,98,100]. A fifth order approximation of the non-linear performance of PDMS 

in uniaxial tension is also given in Fig. 3.1, and was chosen as a best fit approximation. 

The stress-strain curve of LLDPE in Fig. 3.2 depicts typical polyolefin plastic behavior. 

There is not a straight line for the initial section of the curve, therefore as a standard 

linear approximation, a secant is drawn from the origin to where the curve intersects 2% 

strain to obtain an elastic modulus value [81,94]. The elastic tensile modulus also falls 

within the range of tensile modulus values of 50 - 300 MPa for LLDPE, giving 

confidence in both PDMS and LLDPE experimental test procedures and results [94,104]. 
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Fig. 3.1. - Stress-strain curve (true strain), and elastic modulus for PDMS tested in static uniaxial tension. 

Non-linear curve fit: Y = 5. le8x5-5.8e8x4+2.6e8x3-5.3e7x2+5.7e6x+6.7e2 
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Fig. 3.2 - Stress-strain curve (true strain), and elastic modulus for LLDPE tested in static uniaxial tension. 



Table 3.1 below gives a summary of the PDMS and LLDPE elastic modulus 

values. Non-linear approximations of PDMS stress-strain may be made utilizing the fifth 

order equation in Fig. 3.1. 

Table 3.1.: PDMS and LLDPE elastic modulus - static uniaxial test results 

3.1.2 Dynamic uniaxial testing of PDMS 

Dynamic testing of samples A and B was done in two groups respectively, to 

observe the effects of varying sample size and initial strain on the mechanical properties. 

A Students t-test was performed on the two groups and yielded an a = 0.0763, which 

determined that the elastic modulus of the two groups were not statistically different. 

Fig. 3.3 shows a typical plot of stress versus strain for the dynamic tests, where an A 

sample was cycled sinusoidally between true strains of 0.155 and 0.185 at 1.0 Hz. The 

shape of the plots depicts mechanical hysteresis loops for the A samples, with the open 

center areas in the plots representing the amount of energy lost, per volume of material, 

during cyclic loading [82]. The size of the hysteresis loop is a visual representation of 

the magnitude of the loss factor or tan 6. The two plots correspond to true and 

engineering strain as defined by Cauchy and Green respectively, and display the 

differences that may be encountered analyzing non-Hookian materials [74]. 

Test 

Static uniaxial 
PDMS 

Static uniaxial 
LLDPE 

amax 

1.26 20.16 Mpa 

3.33 20.22 MPa 

Emax 

0.342 k0.026 

0.02 +0.000 

Linear elastic 
modulus 

2.18 h0.184 MPa 

166 h6.270 MPa 
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Fig. 3.3 - Dynamic testing stress-strain plot 

Dynamic testing of the A samples was done at an initial strain of 0.17 oscillating klmm 

of displacement about that point at frequencies from O.5Hz to 5Hz, yielding strain rates of 

i = 0.086/sec to 0.86/sec, and an elastic modulus of 1.49 k0.143 MPa. Testing of the B 

type samples was performed at an initial strain of 0.37 oscillating i5mm of displacement 

about that point at frequencies from 0.5Hz to 5Hz, yielding strain rates of i. = 0.1 15/sec 

to 1.16/sec, yielding an elastic modulus of 1.39 ~t0.381 MPa for the smaller PDMS 

dynamic test samples. Fig. 3.4 displays the elastic modulus for both dynamic tests versus 

frequency. An average elastic modulus of 1.45 MPa 3~0.250 MPa was obtained. Over the 

strain rates tested, the modulus of PDMS appears to be independent of strain rate for the 

given strain range and test frequencies. Table 3.2 below summarizes the dynamic 

modulus results between the A and B samples for PDMS tested in the linear elastic 

region. 



Table 3.2.: PDMS dynamic elastic modulus - dynamic uniaxial test results 

O.OE+O ! 1 

0 1 2 3 4 5 6 

Frequency (Hz) 

Average 
dynamic 
modulus 

Dynamic A 

Dynamic B 

Fig. 3.4. - Elastic modulus versus Frequency for PDMS A (0) and B (0) samples (E = 1.45 zk0.250 MPa) 

Test 

Fig. 3.5 displays the tan 6 of the PDMS A samples versus frequency as (tan 6 = 0.03 

*0.015) for the frequency range of 0.5 to 5 Hz. This result agrees with published tan S 

Emax amax 

0.272 0.1 1 MPa 

0.422 0.1 1 MPa 

results for elastomers at room temperature [96]. 

Dynamic linear 
elastic modulus 

0.18 20.003 

0.30 20.0006 

1.49 *O. 143 Mpa 

1.39 k0.381 Mpa 
1.45 k0.250 MPa 
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Fig. 3.5. - tan 6 versus Frequency for PDMS A samples (tan 6 = 0.03 *0.015) 

3.1.3 PDMS Poisson's ratio ( v )  

Axial and lateral displacement data from Poisson's ratio testing was analyzed 

using true strain. Fig. 3.6 shows the Poisson's ratio of PDMS to be a constant value of 

0.47 %0.028, for the entire range of axial strain. This value is well above the Poisson's 

ratio for most metals and agrees with Poisson's ratio values for elastomers [82,96]. 
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Fig. 3.6. - Plot of PDMS Poisson's ratio versus Axial strain (v= 0.47 k0.028) 

3.1.4 Stress relaxation and deformation of PDMS 

Stress relaxation and deformation tests of B type tensile specimens of PDMS were 

performed. This was done to observe the initial stress relaxation in specimens strained to 

30%, & = 0.31sec and 60%, i = 0.61sec true strain, to aid in confirming the validity of 

the test setup for membrane deflection measurement; stepped static pressurization with 

deflection measurement. Average stress relaxation times were determined for strain 

levels of 30% and 60%, inside and outside the linear regions of the stress-strain curve for 

PDMS, respectively. Full stress relaxation times were not determined due to the sample 

testing time being limited to 60 seconds. Samples strained to 30% with a testing stress of 

1.0 MPa had no detectible difference between the initial stress and the test stress for the 

60 second test, Fig. 3.7, see table 3.3 [77,90]. This suggests that there is minimal 



molecular motion in the samples, resulting in a long relaxation time for PDMS at this 

strain level. For samples strained to 60% true strain the initial stress was much higher 

than the testing stress, thus yielding an relaxation time of 7.82 seconds with no noticeable 

change thereafter, Fig. 3.8, which suggests a long relaxation time for PDMS at 60% strain 

as well. The apparent long relaxation time for PDMS at the tested stress and strain levels 

suggest that the static pressurization and deflection method used for membrane testing is 

valid, as the resulting strain for those tests was - 20% true strain for the membranes 

tested. Complete stress relaxation values for PDMS under these test conditions would 

have required the tests to be carried out over a much longer period of time to achieved 

accurate stress relaxation values. However, this test provides sufficient information to 

validate the membrane deflection measurement method. Figure 3.9 displays a decaying 

exponential fit for the stress relaxation curve at a true strain of 0.6, which enables the 

extrapolation of longer relaxation times if desired. Table 3.3 summarizes the stress 

relaxation results. 

Stress deformation was investigated for the samples tested at a true strain of 0.6 

only, due to the large strain level and difference in the testing and relaxing stresses. This 

was done to determine the relative amount of permanent plastic deformation in the 

samples from the test and the ability of the samples to recover over time. The average 

total plastic deformation of the 24mm B samples tested was 0.135mm -.0.022mm, which 

is approximately 0.5% total elongation. Figure 3.10 displays the plasic deformation in 

relation to the sample initial length of 24mm. A decaying exponential fit is also shown in 

Fig. 3.10, which enables the determination of selected time or deformation values. The 

large standard deviations in Fig. 3.10 are due to the inaccuracy of measuring sample total 

length with manual calipers. Some error may have also been introduced to sample total 

length by the gripping technique compressing the ends of the samples during testing. 
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Fig. 3.7. - Plot of PDMS stress relaxation at true strain = 30% 
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Fig. 3.8. - Plot of PDMS stress relaxation at true strain = 60% 



x lo6  PDMS, B sample stress relaxation at true strain = 0.6 
6 I I I I I 1 

Fig. 3.9 - Plot of PDMS stress relaxation at true strain = 60% 

Decaying exponential curve fit: o = oo exp (-tk), where r = 7.82 seconds 

Table 3.3.: PDMS stress relaxation results 

Relaxation time z (s) 

0.0s 

7.82 s 
Relaxation B 

<J 

1.0 Mpa 

3.8 Mpa 

a0 

1.0 Mpa 

5.1 Mpa 

Test time (s) 

60 s 

60 s 

Test 

Stress 
Relaxation A 
Stress 

&ma, 

0.30 

0.60 
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Fig. 3.10. - Plot of PDMS stress deformation at true strain = 60% 

Decaying exponential curve fit: Y = Yo exp (-dr), where r = 7.1E4 seconds 

3.2 Membrane tests 

Data from the circular and square membrane bulge test experiments for PDMS 

and LLDPE depict the characteristic curves of load-deflection mechanical response for 

these membranes. Fig. 3.1 1 and 3.12 display the experimental results for the circular and 

square membranes tested in the membrane block for the PDMS and LLDPE films. Three 

sets of membranes, circular and square, were tested for each material. 
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Fig. 3.11. - Plot of PMDS membrane load-deflection 
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Fig. 3.12. - Plot of LLDPE membrane load-deflection 



Fig. 3.1 1 and 3.12, display typical circular and square membrane load-deflection 

mechanical response of the membranes tested. The error bars indicate the standard 

deviation at each point. The square membranes have larger deflection uniformly 

throughout the loading range compared to the circular membranes, at the same pressure, 

due to dominating membrane tensile mechanics coupled with the greater area of the 

square membranes. 

3.2.1 Membrane biaxial stress-strain 

Circular membrane experimental data analyzed with large deflection membrane 

theory was used to develop biaxial stress-strain plots. Pressure and deflection values 

were converted to stress and strain by using the Almansi true strain definition and 

equations (1.3) and (1.30) respectively, as discussed in section 2.1.6. Fig. 3.13 and 3.14 

are biaxial stress-strain plots for representative PDMS and LLDPE circular membrane 

samples. From these plots it is possible to determine the amount of residual stress in the 

membrane, added during loading of the film, and the biaxial modulus at the center 

deflection point of the membrane [70,91]. A standard linear curve fit with the equation 

of a line in the form of: 

yields m as the slope, or the biaxial modulus (M), and b the y-offset as the residual stress 

( 0 0 ) .  
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Fig. 3.13. - PDMS Biaxial stress-strain plot 

x lo6 LDpE Circular membrane - Biaxial stress vs Biaxial strain 
4.5 I I , 

I I I I 0 I I 

0.01 0.015 0.02 0.025 0.03 0 0.005 
Biaxial Strain 

Fig. 3.14. - LLDPE biaxial stress-strain plot 



Analyzing the experimental data in this manner allows the determination of the 

elastic modulus (E) from the biaxial modulus (M) utilizing equation (2.9). The elastic 

modulus (E) and the residual stress (00) are useful input values for circular and square 

membrane analytical models. The plot for LLDPE was limited to 2% strain to remove 

the effects of plastic deformation in the determination of the membrane elastic modulus 

[94]. Table 3.4 contains biaxial stress-strain average elastic modulus and residual stress 

values for the PDMS and LLDPE circular membrane samples tested. 

Table 3.4.: Circular membrane biaxial stress-strain results 

3.2.2 Membrane analytical Models 

Circular and square membrane analytical model results were developed using 

Matlab, and were designed to simulate the experimental membrane tests. For circular 

membranes The new spherical cap model was used, while the Maier-Schneider et a1 

model was used for square membranes. The new spherical cap model is designed for 

materials capable of large elongations, while the Maier-Schneider et a1 model is designed 

for more traditional linear elastic materials. Elastic modulus and residual stress data from 

the biaxial stress-strain tests was input to meet model material property and test condition 

requirements. 
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3.2.3 Circular membrane analytical models 

Fig. 3.15 displays PDMS bulge test experimental results from a sample circular 

membrane and compares the results to a number of membrane analytical models. 

lo-3 PDMS membrane large deflection theory. E=1.272MPa, RE=O.O34MPa 
8 I I I I I I I I 
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Fig. 3.15. - PDMS bulge test experiment simulated with different models 

The new spherical cap model provides the best fit to the PDMS membrane 

experimental data compared to the other analytical models. The same comparison of 

experimental results and analytical models was done for an LLDPE membrane as shown 

in Fig. 3.16, with the same result. 
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Fig. 3.16. - LLDPE bulge test experiment simulated with different models 

While the new spherical cap model best represents the PDMS circular membrane 

of all models compared, with large differences clearly seen between the models, the same 

comparison for the LLDPE membrane yields less discrepancy between the models. The 

alignment of the models for the LLDPE membrane experimental results is due to the 

much reduced amount of strain in the LLDPE membrane, E,, = 0.0275 ,compared to, E, 

= 0.18, for the PDMS membrane, see table 3.4. This substantiates the fact that initial 

membrane theory was developed for linear elastic materials, and that it is inadequate for 

simulating materials capable of large non-plastic elongations. Fig. 3.16 also shows the 

ability of the new spherical cap model to approximate more crystalline material model 

performance, thus providing a new circular membrane deflection model for potential use 

with all material types. Fig. 3.17 and 3.18 display the new circular membrane deflection 



analytical model fit to experimental data for PDMS and LLDPE circular membranes. 

PDMS Cirmlar Membrane - Almansi strain. E=l 272MPa. Rs=O.OYMPa 

3̂ 

Fig. 3.17. - PDMS analytical model fit to circular membrane bulge test experimental results. 
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Fig. 3.18. - LLDPE analytical model fit to circular membrane bulge test experimental results. 



The analytical results compared to the experimental bulge test data from PDMS 

and LLDPE circular membranes agree well for the systems investigated. However, the 

LLDPE circular membranes plastically deformed during the experiment as they were 

loose upon release of pressure, while the PDMS membranes remained taught, indicating 

no noticeable deformation. 

3.2.4 Square membrane analytical model 

The Maier-Schneider et al square membrane analytical model was used to 

produce analytical results for comparison to PDMS and LLDPE square membrane bulge 

test experimental data. This is the most accurate square membrane theory to date from 

the literature search conducted herein. Development of a new square membrane theory 

for elastomeric materials requires fbrther research due to the complexity of the physical 

system. Elastic modulus (E) and residual stress (ao) values generated from the biaxial 

stress-strain tests were input to the square membrane analytical models for analysis. It 

was assumed that the residual stress was the same for both circular and square 

membranes as assembled in the membrane block. Fig. 3.19 and 3.20 display the 

theoretical results in comparison to the experimental data. The analytical model results 

for the PDMS square membrane do not agree well with the experimental data. This is 

most likely due to the theory having been developed for linear elastic materials, as 

opposed to elastomeric materials such as PDMS, which have the ability to achieve great 

elongations - 600% without plastically deforming. Fig. 3.19 most resembles the 

performance of the PDMS circular membrane results analyzed with the spherical cap 

analytical model as displayed in Fig. 3.15. Thus showing a similarity between the square 

analytical and original spherical cap models, and their inability to accurately simulate the 

experimental results. 
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Fig. 3.19. - Square analytical model fit to PDMS square membrane bulge test experimental results. 
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Fig. 3.20. - Square analytical model fit to LLDPE square membrane bulge test experimental results. 



The Maier-Schneider et a1 analytical model agrees well with LLDPE membranes; 

a more linear elastic material with smaller elastic deflections, for the square membrane 

experimental data of this system, up to a pressure of - 6.5 ~ ~ l r n * ,  or a biaxial strain of 

E,, = 0.0275. 



Chapter 4 

Discussion 

The main focus of this thesis was the investigation of the tensile mechanical 

properties of PDMS and large deflection membrane theory, in an effort to provide more 

accurate tensile mechanical material properties and analytical membrane models for 

MEMS application design with PDMS. The discussion is comprised of a comparison of 

data from the tensile and membrane tests, the experimental bulge test data, the analytical 

model results, and other researcher's published results. The areas of interest for the 

discussion are the tensile mechanical material properties; elastic modulus (E), tan 6, and 

Poisson's ratio (v), for p~lydimethyl~iloxane (PDMS) and linear low density 

polyethylene (LLDPE). The analytical membrane theories and how they describe the 

systems and materials tested is also discussed. Finally, a table is given summarizing the 

polydimethylsiloxane (PDMS) tensile mechanical properties from this work. 

4.1 Comparison of data 

4.1.1 Tensile test versus Membrane test 

Tensile testing as a method of material characterization is well established in 

fields of science and engineering for materials with crystalline molecular structure, such 

as steel and aluminum. The material properties and stress-strain relationships for 



materials of this type are well documented, as many of these materials are used in 

engineering design, resulting in industrial application. Therefore, it is paramount that the 

material properties be well characterized for designers to properly select and accurately 

predict material performance for a given application. Numerous test methods have been 

developed and standardized to obtain accurate material property data for a variety of 

materials. The standard tensile test (ASTM E8) for determining the stress-strain 

relationship of steel is an industrial standard and a universally accepted test method [97]. 

A similar test method for tensile testing elastomers, standard (ASTM D 412-98a), was 

used herein to develop the tensile mechanical properties of PDMS and LLDPE, see 

section 2.1. Both tests make use of dumbbell specimen uniaxial tension elongation with 

end gripping. While these tensile methods are similar, there are inherent differences in 

the materials, which limit the usefulness of the elastomer stress-strain data. Due to the 

amorphous molecular structure of PDMS, grip end effects and test strain rate have a 

profound effect on the stress-strain relationship developed during testing. The main 

function of dumbbell specimen design is to focus the tensile load on the necked section of 

the dumbbell, away from the grips. For accurate results a contact or optical extensometer 

is commonly used in the necked section to provide localized strain measurements, 

therefore isolating grip end effects [102]. While the use of an extensometer is practical 

for crystalline materials, their use for testing elastomers is difficult due to the amorphous 

molecular structure, thus contributing to the difficulties of elastomer material 

characterization. Therefore, tensile elongation and strain were measured from grip end 

displacement. For PDMS elastomer specimens, as the elongation and strain increase 

during the tensile test, the ends of the dumbbell begin to deform. Deformation of this 

type is clearly evident in Fig. 2.5, as compared to the initial specimen shape as seen in 

Fig. 2.1 and 2.5. This phenomenon is a function of the dumbbell geometry, strain rate, 

and amount of tensile elongation. Fig. 4.1 below, depicts the typical stress-strain curve of 

a tested B type PDMS uniaxial tensile specimen. 
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Fig. 4.1. - Stress-strain relationship and Elastic Modulus for PDMS tested in uniaxial tension. Non-linear 
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Fig. 4.2 - Stress-strain relationship of typical rubbery elastomers and different materials 



This is a fairly characteristic curve for an elastomer material [82,90]. However, 

the PDMS curve appears to have distinct linear and non-linear regions, which is similar 

and yet different from the curve for rubbery elastomers shown in Fig. 4.2 [82]. This may 

be due to test specimen end effects, the gripping technique, or the test strain rate E = 

0.8/sec, but is most likely the inherent molecular structure elastic response specific to 

PDMS. The PDMS linear region tensile modulus, E = 2.18 MPa, generated from the 

static and dynamic uniaxial tensile tests performed. The PDMS loss factor, tan 6 = 0.03, 

and Poisson's ratio v = 0.47. Poisson's ratio is in close agreement with published results 

for PDMS of the same consistency, while the tan 6 value is unique to this work, but 

acceptable for a material of this type [96]. In general, the results presented may be 

affected by the manual difficulties in performing these tests combined with test strain 

rate, and specimen end effects, respectively. This made clear the need for a comparative 

test with a different material. 

The LLDPE tensile tests had a much different result. The specimen end effects 

were much less of a factor as specimen deformation occurred only in the necked region. 

This was most likely due to the more deformation resistant crystalline molecular structure 

of LLDPE [81]. The LLDPE linear region tensile modulus, E = 166 MPa, generated 

from the static uniaxial tensile tests performed. This result is within the published range 

of values E = 50 - 300 MPa for all Polyethylenes [104], and is appropriate for LLDPE 

within that range, thus giving more confidence in the static uniaxial testing results of both 

materials. 

Membrane testing, or bulge testing, was conducted to investigate the load- 

deflection mechanical response of PDMS circular and square membranes for MEMS 

applications. Further research made clear the use of the bulge test to derive the elastic 

modulus and membrane residual stress from material films. This gave further elastic 

modulus comparison information. Bulge testing is an easy test to conduct, using sheet 

film materials and the specially fabricated membrane block, as discussed in section 2.1.6. 

Many of the difficulties and potential errors associated with elastomer uniaxial tensile 

testing previously mentioned are not encountered in the bulge test. The simplicity of the 



test combined with the ability to derive the test material elastic modulus and residual 

stress makes the bulge test a favored test method, and useful for result comparison. 

Biaxial stress-strain plots were made from PDMS and LLDPE circular membrane load- 

deflection experimental data, and the membrane elastic modulus and residual stress 

derived, see sections 2.2.6 and 3.2.1. Table 4.1 below compares the tensile and 

membrane test results. 

Table 4.1 : Comparison of tensile and membrane elastic modulus results 

From table 4.1, there is a substantial amount of difference between the results of 

the tensile tests and the membrane tests conducted herein. However, considering the 

difficulties associated with polymer mechanical testing and the rather unsophisticated 

deflection measurement techniques employed, the results are not only within reason, but 

are very close to published elastic modulus values for these materials, see table 4.2. The 

elastic modulus values of the membrane and static uniaxial tensile tests have a similar 

variance in this comparison under the same test conditions for both materials. This is 

most likely due to the greater strain rate dependence of the uniaxial tensile tests. This 

problem is attributed to the amorphous molecular structure of both materials. The 

membrane tests are a more static test, reducing strain rate dependence, and providing a 

simple and more accurate elastic modulus testing method, for similar static applications 

of these materials. The differences in the elastic modulus results for the same material, 

display the varying "elastic" performance of these materials, due to their molecular 

structure. 

Material 

PDMS 
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Tensile 

Membrane 
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0.020 20.000 

0.020 20.000 

E 

2.18 =to. 184 MPa 

1.08 20.250 MPa 

166 *6.270 MPa 

76.0 26.1 10 MPa 



4.1.2 Analytical results versus Experimental membrane results 

Fig. 4.3, displays PDMS bulge test experimental results from a sample circular 

membrane and compares the results to a number of membrane analytical models. There 

is a large variation in the results produced by each model as compared to the 

experimental results, therefore underlining the need of the development of the new 

spherical cap model. The differences between these models is in the fundamental 

membrane strain definition and how it is applied as a function of the radius of curvature 

of the membrane load-deflection equation; as defined in the circular membrane 

mechanics section 1.2.1.2. 
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Fig. 4.3 - PDMS bulge test experiment simulated with different models 



The new large deflection theory, The new spherical cap model, based upon the 

Almansi true strain definition is clearly the analytical model that best describes the load- 

deflection response of PDMS circular membranes as displayed by the experimental data, 

Fig. 4.4. 

I o - ~  PDMS Circular Membrane - Almansi strain, E=1.272MPa. Rs=0.034MPa 
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Fig. 4.4 - PDMS analytical model fit to circular membrane bulge test experimental results. 

The same analytical model comparison of Fig. 4.4 was done with LLDPE 

membranes, Fig. 4.5. This comparison shows much less difference between the 

analytical models for LLDPE. This is most likely due to the smaller strain level in the 

LLDPE membrane compared to the PDMS membrane. There is good agreement with the 

analytical and experimental results for LLDPE. Given the apparent ability of the new 

spherical cap model to approximate both amorphous and semi-crystalline material bulge 

test performance, use with all material types is proposed as a new universal circular 



membrane deflection analytical model. Further testing and validation is needed to prove 

this proposed application. 

Hohlfelder englneerlng stram model 
Cauchytue strain model 

- - Spherical cap model 

I o - ~  LDPE membrane large defledlon theory. E=72MPa Rs=.55MPa 

Pressure ( ~ 3  

2.5 

Fig. 4.5 - LLDPE bulge test experiment simulated with different models. 

I I I I I I I I 

- - 

The analytical model results for the PDMS square membrane do not agree well 

with the experimental data, Fig. 3.19. This is most likely due to the theory having been 

developed for crystalline materials, instead of amorphous elastomeric materials such as 

PDMS, which have the ability to achieve great elongations -600% without plastically 

deforming. There is better agreement between the analytical and experimental results for 

the LLDPE square membrane, Fig. 3.20, confirming the functional pairing of a correct 

strain model and material. Further research is needed to develop a square membrane 

large deflection model for elastomeric materials. 



4.2 Comparison of PDMS results versus other researcher's results 

Polydimethylsiloxane, silicone rubber, and other similar elastomers have 

seen increasing use in the field of MEMS [7-301. The advantages polymers offer in 

processing flexibility and material property manipulation are main criteria for there 

selection. The use of polymers in MEMS micro fluidics and other MEMS membrane 

applications has prioritized the need to characterize elastomer material mechanical 

properties and resulting behavior in mechanical systems. Many groups have investigated 

characterizing the mechanical properties of PDMS, and have used PDMS for varied 

MEMS applications. Similar polymers, such as Parylene, low density polyethylene, and 

numerous commercially available RTV silicone rubbers have also been investigated. For 

these assorted polymers, each demonstrates very similar membrane load-deflection 

behavior from the results presented, which is characteristic for low modulus polymer 

materials, Fig. 3.15 [7,8,9,10]. However, no group has specifically investigated PDMS 

circular and square membrane load-deflection mechanics and the material properties 

derived. PDMS membranes are desirable for MEMS actuator applications for their large 

displacement capability due to the molecular structure of PDMS. Therefore it is required 

to have accurate material property data for a specific PDMS process to realistically 

simulate PDMS membrane actuator performance. For this investigation a common 

mixing ratio (10: 1 base to activator), or cross-link polymerization ratio, and curing 

process was used. Varying batch polymerization results may be easily obtained from 

addition cure RTV polymers, due to the process dependent polymer cross-linking. It is 

this feature of elastomers that makes them very useful, as well as frequently ubiquitous 

from a mechanical property perspective. Table 7 displays PDMS material property 

results from this work and from other research groups [84,98,99,100]. Varied 

fabrication, testing, and analysis methods were used to obtain these contrasting results for 

PDMS. 



Table 4.2 - PDMS Mechanical Property values from various Research groups 

Comparing these elastic modulus values for PDMS, there is confidence in the 

results generated from this work, given their close proximity and uniformity. The PDMS 

circular membrane test results have less dynamic components and strain rate dependence 

than the uniaxial static and dynamic tensile test results, and fewer testing difficulties. 

This may explain some of the variation in the tensile test results in table 4.2. The circular 

membrane test is a more accurate method for determining the elastic modulus of PDMS 

for static tensile applications, while the dynamic test values are more suited for 

applications similar to those tests. It is this strain dependent behavior that makes PDMS 

and other polymers perform differently in varying applications [94]. These phenomenon 

should be considered when designing applications for the use of PDMS and similar 

polymers. This work agrees closely with other published test techniques and their results. 

Research group 

Lotters et al, 1997 

Armani et al, 2003 

Yang et al, 1999 

Hosokawa et al, 2001 

Qi et al, 2000 

This work, 2004 

Test type 

Shear 

Beam bending 

Membrane 

Tensile static 

Tensile static 

Tensile static 

Tensile dynamic 

Membrane 

E 

0.75 Mpa 

0.75 Mpa 

0.51 Mpa 

2.20 Mpa 

1.99 Mpa 

2.18 Mpa 

1.45 Mpa 

1.04 Mpa 

Tan 6 

<<0.001 

- 

- 

- 

- 

0.03 

- 

- 

Y 

- 

0.5 

- 

0.5 

0.49 

0.47 

- 

- 



Chapter 5 

Conclusions 

The elastomer polymer Polydimethylsiloxane (PDMS) is a material that has 

become very popular for MEMS applications due to its processing and material property 

flexibility, low cost, and availability. However, it is a ubiquitous material from 

processing, material property characterization, and performance perspectives. 

Many PDMS processing techniques exist which ultimately influence the material 

properties and resulting application performance [84]. It is the relationship between the 

processing technique and the polymerization reaction that determines the amount of 

cross-linking and the resulting polymer material properties. Monomer base to catalyst 

activator ratio forms the basis of the amount of polymerization. For this work a common 

base to actuator ratio of 10 to 1 parts by weight was used. Variable polymerization is 

generally a good phenomenon, increasing application flexibility through customizing 

material properties, it may also add difficulty in the ability to reach or maintain consistent 

material properties and application performance. There may be variance in polymer 

material properties from batch processing, not only due to the process itself, but in the 

raw materials supplied; the two part monomer and catalyst components of the polymers 

themselves, and what manufacturer is being used. PDMS has a manufacturer 

recommended shelf life of approximately six months. This is due to the PDMS monomer 

base polymerizing over time with vibration, exposure to heat and oxygen [83]. 

Therefore, it is recommended that PDMS be stored in a sealed container in a cooled, 



stable environment. Once polymerized or fully cured, PDMS may be considered inert, 

changing only with exposure to extreme temperatures (-60" C to 300' C in air) and 

swelling with exposure to some solvents [80]. 

The polymerized molecular structure of PDMS is considered amorphous and 

changes with strain, going from amorphous to semi-crystallization, compounding the 

difficulties of material characterization and introducing strain rate dependence in testing. 

This change in structure occurs through alignment of the polymer chains in the loading 

direction [80]. It was found that this material behavior had numerous impacts upon 

tensile tests and results. Initial difficulties were encountered with specimen loading in 

the tester grips, while during testing specimen end effects and slippage may have 

contributed erroneously to the results. The molecular structure of PDMS also yielded 

distinct linear and non-linear stress-strain regions in uniaxial tensile test results. The 

linear region modulus of PDMS from static uniaxial tensile testing was, E = 2.18 MPa up 

to a true strain E = 0.342, the stress-strain curve becoming non-linear after that point with 

significant strain crystallization, failure was not attained. The PDMS linear elastic 

modulus is a higher value than published results, most likely due to the strain rate of the 

test, and the true stress and true strain analysis used to simulate the material behavior. To 

obtain a more accurate uniaxial tensile modulus, static uniaxial testing should be done 

with extensometers. The results generated from the dynamic uniaxial tensile tests were 

an average, E = 1.45 Mpa for the A and B samples. This test gives a more realistic "in- 

situ" elastic modulus value for PDMS. The lower modulus value may be due to stress 

conditioning of the material during the cyclic testing [80]. This varying range of the 

PDMS elastic modulus displays the strain dependent behavior that makes PDMS and 

other polymers perform differently in varied applications [94]. These phenomenon 

should be considered when designing applications for the use of PDMS and similar 

polymers. The LLDPE tensile tests were also dependent upon strain rate and end effects. 

LLDPE yielded an elastic modulus of, E - 166 MPa, an acceptable value for LLDPE, 

thus validating the test procedure and confirming the PDMS results. 



Heat was generated by the PDMS molecules sliding past each other during tensile 

testing, and was most significant in the dynamic uniaxial tensile tests as the specimens 

were cyclically strained, strain energy was lost in the form of heat. This energy loss was 

quantified by the loss factor or tan 6 = 0.03 over a test frequency range of 0.5 Hz, 1.0 

Hz, 2.0 Hz, 3.0 Hz, 4.0 Hz, and 5 Hz., which is an appropriate value for a low loss rubber 

up to 100 Hz [96]. Poisson's ratio using video dimensional analysis was found to be, v = 

0.47. 

Bulge testing of PDMS circular and square membranes was performed to 

investigate their mechanical load-deflection performance for MEMS applications. The 

bulge test is a static mechanical test that is easy to perform and yields membrane elastic 

modulus and residual stress results. Through in depth investigation of circular membrane 

deflection theory and PDMS experimental results, a new circular membrane analysis and 

large deflection theory was developed; The new spherical cap model. Biaxial stress- 

strain analysis, as defined below as a function of membrane radius of curvature, enable 

the derivation of the elastic modulus and residual stress of circular membranes. 

h a2  
Membrane radius of curvature, R = - + - 

2 2h 

PR 
Circular membrane biaxial stress, a, = a, = - , from equation (1.3). 

2t 

The elastic modulus and residual stress values for PDMS circular membranes were found 

to be, E = 1.08 MPa and a0 = 0.038 MPa, which agree with published results. These 

elastic constants may then be used in the new large deflection circular membrane theory. 



The new spherical cap model: 

The new spherical cap model provides an accurate elastomer circular membrane 

load-deflection analytical model. Application of this model to semi-crystalline material 

circular LLDPE membranes produced results indicating the use of this new theory for 

small and large deflecting materials. The square membrane theory of Maier-Schneider et 

a1 approximated the experimental results of LLDPE very well, but poorly for PDMS. 

MEMS applications that may benefit from this new theory are, aerodynamic control 

membrane actuators for jet aircraft, micro mirrors mounted on polymer membrane 

structures for optical coherence tomography applications, and in-situ semiconductor 

CMOS thin film material testing. Applications may also include the investigation of 

biological material properties, and nondestructive material testing. 

Further research may include, the application of The new spherical cap model 

universally for all material types in the bulge test, and the development of the Almansi 

true strain definition for square membrane theory for use with elastomers. 



Appendix A 

Experimental data 

A.1 Uniaxial tensile test data description 

Tensile test data was collected in real time with the MTS data acquisition system 

and saved to data files, specimen.dat, for each sample tested. These files were then 

edited to remove headings to provide 3 columns of the collected experimental data; time, 

axial displacement, axial force, for analysis with Matlab. Typically these files contain 

data collected at 1 millisecond intervals. The data described was collected for the static 

and dynamic uniaxial tests, as well as the stress relaxation tests. Examples of the test 

data files and analysis files are shown in part below. 

A.l . l  MTS specimen.dat test data file; example 

Data Acquisition 
Sec 
Time Axial Displacement Axial Force 
Sec mm N 
0.16430664 -0.003362483 1 -0.0083912509 
0.1743 1641 -0.00 1680776 0.0041 976348 
0.184326 17 -0.00 1680776 0.0041 976348 
0.19433594 0.030271659 0.0251791 1 
0.2043457 0.4305 1797 0.0083939293 
0.21435547 0.99557155 -0.0083912509 

Time: 10.443 1 15 



A.1.2 Edited specimen.dat file for Matlab analysis; example 



A.2 Poisson's ratio test data 

Poisson's ratio testing of PDMS was done by collecting three sets of uniaxial 

displacement data. Video dimensional analysis was used to measure axial displacements 

as the samples were incrementally displaced. Data was recorded manually; cross head 

displacement, sample axial displacement, sample width displacement, and load. The 

notation gl stands for sample gauge length or original length. 

Table. A . l -  PDMS Poisson's ratio data set A 

Test A 
nltx=19.45mmlx=4.33mm qly=8.45mm 

gldismm I X d i s m m  I Y d i ~ m m  I Force (N) 

No failure in 



Table. A.2 - PDMS Poisson's ratio data set B 

Test B 

No failure in sample 

Table. A.3 - PDMS Poisson's ratio data set C 

Test C 
gltx=19.40mrr glx=4.33mm gly=7.65mm 

gldis mm 1 X dis mm I Y dis mm I Force (N) 

No failure in sample 



A.3 Membrane deflection test data 

Membrane deflection data was collected as circular and square PDMS and 

LLDPE membranes were incrementally pressurized. The tables below are comprised of 

an average of three deflection measurements for one deflection data point for each 

pressure level. A set of three membranes were tested for each material , data collection 

was done manually. 

Table A.4 - PDMS membrane deflection data 
PDMS membrane testing 
Raw data - Full pressure range 0 - 30 in.w.g. (membrane thicknesses - 11 =.004, t2=.003, t3=.0035, tavg=.0035) 



Table. A.5 - LLDPE membrane deflection data 

LDPE membrane testing 
Full pressure range 0 - 30 in.w.g. LDPE film thickness tavg=.OOlin, made by Glad. 

A.4 PDMS stress deformation test data 

Stress deformation data was generated by measuring the overall length of samples 

strained for one minute at 60% true strain, and then released. Manual dial calipers were 

used to measure the samples over a period of one week. 

Table. A.6 - PDMS stress deformation test data 

PDMS stress deformation data 
B sample pre test length = 24mm 



Appendix B 

Data analysis programs 

B.l Matlab programs 

All experimental data analysis programs were written using Matlab. Matlab is a 

high-performance programming language for technical computing that utilizes data and 

computation arrays which enable the building of sophisticated analysis models in familiar 

mathematical notation [88]. Tensile specimen data was imported from specimen test files 

created during experimentation, while membrane data was made a part of the analysis 

programs. 

B.l.l Static uniaxial tensile test analysis programs 

B.l . l . l  PDMS Static uniaxial tension analysis program 
%-am fo r  p lot t ing Cauchy t rue  stress vs true s t r a i n  of viscoelastic materials 
%(polymers) - 
% F i l e m :  [PDMS-staticauchy-true.m] Patrick RaMn 11/13/03 
8 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P  
%Plot MTS data (Time, Stroke, Load) 
%Reset Matlab 
clear a l l  
close all 
% S a q l e  dimensions 
W2e-3 ; 
*.08e-3; % i n p u t ( ' I n p t  thiclmess of specimen in meters>'); %Specimen thickness 
Gauge=18.1; 
%Calculating xsect area 
X-section = W*T; %Cross-sectional area of t e s t  specimen 
%Opening data f i l e .  txt 



f id=f open ( 'C : \WINDaWS\Desktop\Thesis3\Matlab 
programs\Static-UllT\!CpdmII-data\T@mf. txt ' ) ; 
d = fscanf(fid,'%g %g %g1,[3,inf]); 
£close ( fid) ; 
d=d ' ; 
jsize=size(d); 
Time=d(:,l); 
Displacmt--d(:,2); 
Load=cl(: ,3); 
%Calculating stress and true strain (Cauchy) 
Stress-C=Load/XLoasection; 
Strain-Eng=(Displacm-ent)./(Gauge); 
StraintruetrueCauchy-(Displacement)./(Gauge+Displac~nt); 
%PGauge+Displacement ; 
%LcFGauge; 
%Almn~iStrain=(~.^2-Lo.^2)./(2*L.^2); 
AlmansiStrain=(((Gauge+Displa~ement).~2)-Gauge.~2)./(2*((Gauge+~isplacement).^2)); 
% 
%Calculating true Stress (Euler) 
%Assures constant volume and that strainyy/strainxx=strainzz/strainxx 
%Stresstrue=stretch ratio(ladxIa)*Engineering Stress; 
larrS3da=(Gauge+Displacement)./Gauge; 
StresstruetrueEuler=(lan33da).*Stress-C; 
% 
%Plotting stress vs strain 
%figure(l);plot(Strainain~g,Stress-C,'g.','markersize',.25);legend('~f');title('~~ 
%S in Uniaxial Tension - Stress vs Strain ' ) ;  
%hold on 
%plat(StrainainEng,StresstrueeEuler,'r.','markersize',.25);legend('~f%');title('PDfrlS 
%in Uniaxial Tension - Stress vs Strain ' ); 
hold on 
plat(StraintrueeCauchy,StresstrueeEuler,'r+','markersize',2); 
title('-, Static uniaxial tension - true stress vs true strain ' ) ;  
legend( 'mf ' 
hold on 
%plot(StraintruetrueCauchy,Stress-C,'m.','markersize',.25);legend('~f'); 
title('PL36 in Uniaxial Tension - Stress vs Strain ' ) ;  
hold on 
%plot(~iStrain,StresstrueeNer,'b.','markersize',.25);legend('Tpd%msf2');title(' 
PDMS in Uniaxial Tension - Stress vs Strain ' ) ;  
%Axis labels 
xlabel('True strain');ylabel('~e stress (ma)') 
%Setting plot range 
&([0 .9 -.5e6 2.5e71) 
%fitting straight line 
x=[0:.1:.9]; 
m2.2e6; 
b=-.05e6; 
y=m*x+b; 
%adding fit to plot 
figure(1) 
hold on 
plot (xryr 'k' ) 
%adding label 
text(.6S1.3e7,'E=2.2MPa') 



B. 1.1.2 LLDPE Static uniaxial tension analysis program 

% LLDPE 
- %Program for plotting Cauchy true stress vs true strain of 
viscoelastic %materials (polymers). 
%Patrick Roman 02/05/02 
%Plot MTS static data (Time, Stroke, Load) 
%Reset Matlab 
clear all 
close all 
%Sample dimensions 
W=2e-3 ; 
T=.025E-3;%input('Input thickness of specimen in meters>'); %Specimen 
thickness 
Gauge= 18.5 ; 
%Calculating xsect area 
X-section = W*T; %Cross-sectional area of test specimen 
%Opening data file-txt 
%C:\PATRICK\Masters\Thesis general\Materials Researcha\Test 
data-all\Patrick\P_E\pe4 
fid = fopen('C:\directory\Matlabprograms\Static~~~~\~~~data\pel3.txt'); 
d = fscanf(fid,'%g %g %g1,[3,inf]); 
fclose(fid); 
d=d ' 
jsize=size(d); 
Time=d(:,l); 
Displacement=d(:,Z); 
Load=d(:,3); 
%Calculating Engineering stress 
Stress=Load/X-section; 
......................................................... 

%Calculating true Stress (Euler) 
%Assumes constant volume and that strainyy/strainxx=strainzz/strainxx 
%Stresstrue=stretch ratio(lambda)*Engineering Stress; 
lambda=(Gauge+Displacement)./Gauge; 
Stresstrue-Euler=(lambda).*Stress; 
............................................................ 

%Calculating true Strain (Cauchy) 
True-Strain=(Displacement)./(Gauge+Displacement); 
%cnt=O ; 
%for i=l:length(Strain) 
%if Strain(i)>O 
%cnt=cnt+l; 
%Strain-s(cnt)=Strain(i); 
%Stress-s(cnt)=Stress(i); 
%end 
%end 
%Plotting True stress vs True strain 
plot(True-Strain,Stresstrue-Euler,'r+'); 
legend('Tpdmsd'); 
title('PDMS in Uniaxial Tension - Stress vs Strain ' ) ;  
%Setting plot range 
axis([-0.1 .5 Oe6 35e61) 
%Axis labels 



xlabel('Strainl); 
ylabel('Stress (MPa)'); 
%fitting straight line 
x=[0:.02:.35]; 
m=165e6; 
b=Oe5; 
y=m*x+b; 
%adding fit to plot 
figure(1) 
hold on 
plot (x,y,'bll) 
%adding label 
text(.3,3.25e7,'E=165MPa1) 
%plotting 2% strain limit 
XI=. 02; 
yl=[0:.5e6:.75e7]; 
plot (xl,yl,'k-','markersize',l2) 
text(.03,.15e7,'2% strain1,'fontsize',7) 

B.1.2 PDMS dynamic uniaxial tension analysis programs 

%Plot dynamic data (Time, Stroke, Load) and calculate phase difference 
and tan delta for 
%selected cycles 
%Also calculates True Stress (in terms of Cauchy) and True Strain 
%This program should be run with B0x.m in the same directory 
%DO NOT USE IF EXTENSOMETER DATA COLLECTED. USE PHASEDIFF2.M FOR THAT 
%USE THIS SCRIPT ONLY FOR DATA THAT WAS GENERATED UNDER STROKE CONTROL 
%SJ Kirkpatrick 03/12/01 
% 

%User called functions - Box 
close all 
clear all 
%Modifiy below before each run 
fprintf (l,'\ttest\n1); %Sample name 
fprintf (1,' \tOPERATOR - Patrick Roman 6 Nov 2001\n'); 
fid = fopen('C:\PATRICK\Masters\Materials Research\~DMS research\~~~S 
t e s t s \Dpdmsl \DPDMSDARl \pdmst_3d . tx t ' ) ;  
d = fscanf(fid,'%g %g %g1,[3,inf]); 
fclose(fid); 
d=d ' ; 
lengl=size(d); 
leng=round((lengl(l))/lO); 
W=6e-3%input('Input width of specimen in metere'); %Specimen width 
T=input('Input thickness of specimen in meters>'); %Specimen thickness 
Gauge=48%input ('Input gauge length in mm>'); %Gauge length 
X-section = W*T; %Cross-sectional area of test specimen 
Time=d(:,l); 



Time(l,:)=[]; 
Displacement=d(:,2);Displacement(lI:)=[]; 
Load=d(:,3);Load(l,:)=[]; 
figure(l);plot(Displacement,Load,'r'); 
xlabel('Disp1acement (mrn)');ylabel('Load (N)'); 
%print 
Strain = (Displacement./Gauge); 
Stress = ~oad./~-section; 
%filtering of stress & Strain 
Stress=filtfilt(ones(1,4),4,Stress); 
Strain=filtfilt(one~(1~4),4~Strain); 
figure(2); 
plot(Strain,Stress); 
title('Stress-Strain Plot of Polydimethylsilioxane (PDMS)'); 
xlabel('Strain ' ) ;  
ylabel('Stress (~/m^2)'); 
grid on 
%print 
%grid on 
figure(3); 
plot(Time,Strain,'g-'); 
title('Strain as function of time'); 
xlabel('Time, (s)'); 
ylabel('Strain8); 
figure(4); 
plot(Time,Stress,'g-'); 
title('Stress as function of time'); 
xlabel('Time, ( s ) ' ) ;  
ylabel('Stressl); 
figure(5); 
plotyy(~ime,Strain,Time,Stress); 
grid on 
xlabel( 'Time, s'); 
ylabel('Strainl); 
grid on 
Strainnorm=Strain./max(Strain); 
Stressnorm=Stress./max(Stress); 
figure(6); 
plotyy(Time,Strainnorm,Time,Stressnorm); 
grid on 
xlabel('Time, s');ylabel('Strain'); 
%Calculate E as a function of strain 
for ii = 1:leng-1 
i= lO*(ii-1) + 1; 
j=i+lO; 
sigma=Stress(i:j); 
deltastress(ii,l)=max(sigma)-min(sigma); 
meanstress(ii,l)=mean(sigma); 
end; 
for ii = 1:leng-1 
i= lO*(ii-1) + 1; 



j=i+lO; 
sigma=Strain(i:j); 
deltastrain(ii,l)=max(sigma)-min(sigma); 
meanstrain(ii,l) = mean(sigma); 
end; 
for ii = 1:leng-1 
i= lO*(ii-1) + 1; 
j=i+lO; 
sigma=Time(i:j); 
deltatime(ii,l)=max(sigma)-min(sigma); 
end 
Strain-rate=deltastrain./deltatime; 
E = deltastress./deltastrain; 
E(l,:)=[l; 
meanstrain(l,:)=[]; 
meanstress(l,:)=[]; 
Strain-rate(l,:)=[J; 
figure(7); 
plot(meanstrain,E,'ro'); 
xlabel('Strain'); 
ylabel('E(\epsilon)'); 
grid off;%print 
Em=mean(E); 
StandardDeviation=std(E,l); 
figure(8); 
plot(meanstrain,Strain-rate,'rol); 
xlabel('Strainl); 
ylabel('Strain rate, \epsilon/sl);%print 
%figure(9); 
plot(Strain-rate,E,'r-'); 
axis([O 0.7 0.4e6 2.5e63); 
xlabel('Strain rate, \epsilon/sl); 
%ylabel('E(\epsilon)') 
len = length(Time); 
relmax = max(Strainnorm) / max(Stressn0rm); 
if (abs(relmax)>2) 
refscale = 2̂ (( relmax < (2.̂ (-10:lO)) ).* ... 
( 2*relmax > (2.^(-10:lO)) )*((1:21))'-12); 
else 
refscale = 1; 
end; 
% define the initial axis scaling vector 
axisvec = [0 Time(1en) min([Stressnorm; Strainnorm/refscale])*l.l ... 
max([Stressnorm; Strainnorm/refscaleJ)*1.1]; 
done=O ; 
while (-done) 
figure(l0); 
subplot(2,1,1); 
plot(Time, Stressnorm,'b'); 
hold on 
plot(Time, Strainnorm/refscale,'r'); 



plot([O max(Time)], [0 01, ':ml) 
xlabel ('time (seconds)'); 
ylabel (['Strain',' (red) and Stress (blue)']); 
axis(axisvec) 
% axis([O max(Time) min(Strainnorm/refscale)+.S 
max(Strainnorm/refscale)]) 
[stime, spos] = ginput (1); 
plot([stime stime], [min([Stressnorm; Strainnorm/refscale]), 
max([Stressnorm; Strainnorm/refscale])], ':k*') 
%fprintf (1, 'Click to the right of the test cycles \n\n'); 
[ftime, fpos] = ginput (1); 
plot([ftime ftime], [min([Stressnorm; Strainnorm/refscale]), 
max([Stressnorm; Strainnorm/refscale])], ':k*') 
% check that these are in the right order 
if (ftimecstime) 
tmptime = ftime; 
ftime = stime; 
stime = tmptime; 
clear tmptime; 
end; 
axisvec = [stime-O.l*ftime ftime*l.l ... 
min([Stressnorm; Strainnorm/refscale])*l.l max([Stressnorm; 
Strainnorm/refscale])*l.l]; 
axis(axisvec) 
hold off 
%fprintf (1, 'Check that selected data is at the same vertical 
... level\nl); 
subplot (2,1,2) 
box ([I5 01, 20,'k') 
axis off 
axis ([0 90 -20 203) 
hold on 
box ([I5 01, 15, 'y') 
box ([45 01, 20, 'k') 
box ([45 01, 15, 'y') 
box ([75 01, 20, 'k') 
box ([75 01, 15, 'y') 
hold off 
text (30, 16, I . . .  then click below to ' ) ;  
text (10, -16, 'reselect'); 
text (30, -16, 'zoom out, then reselect'); 
text (65, -16, 'accept selection'); 
[X, Yl = ginput(l1; 
if ( (x>=30) & (x<60) ) % zoom out 
axisvec = [0 Time(1en) min([Stressnorm;Strainnorm/refscale])*l.l 
... max([Stressnorm; Strainnorm/refscale])*l.l]; 
end; 
if ( (x>=60) ) % done 
done = 1; 
axisvec = [0 Time(1en) min([Stressnorm; Strainnorm/refscale])*l.l 
... max([Stressnorm; Strainnorm/refscale])*l.l]; 



subplot (2,1,1) 
%title (['Total Data Set: ',fname]); 
axis(axisvec); % put the whole data set back up 
end 
end; 
%fprintf (1, 'calculating ... \n'); 
% find where in the data the user clicked 
s-ind = 1; 
while (Time(s-ind)<stime) 
s-ind = s-ind+l; 
end; 
f-ind = 1; 
while (Time(f-ind)<ftime) 
f - ind = f-ind+l; 
end; 
% define the allowable offset from zero as a fraction of the max value 
dev = 0.001; 
totrefshift = 0; 
totposshift = 0; 
done = 0; 
while (-done) 
refavg = mean(Strainnorm); 
posavg = mean(Stressnorm); 
% now find the crossing times 
refcrossind = [I; 
poscrossind = [I; 
tposcross = [I; 
trefcross = [I; 
upcross = 0 
downcross = 0; 
i=s-ind; 
while (i<f-ind-1) % find reference crossings 
if ( (Strainnorm(i)>refavg) & (Strainnorm(i+l)<=refavg) & 

....(- upcross) ) % a downward crossing 
trefcross = [trefcross interpl([Strainnorm(i:i+l)], [Time(i:i+l)], 
.... refavg)]; 
refcrossind = [refcrossind i]; 
downcross = 1 & (-upcross); % do only downward crossings 
end; 
if ( (Strainnorm(i)<refavg) & (Strainnorm(i+l)>=refavg) & 

...(- downcross) ) %  an upward crossing 
trefcross = [trefcross interpl([Strainnorm(i:i+l)], 
...[ Time(i:i+l)], refavg)]; 
refcrossind = [refcrossind i]; 
upcross = 1 & (-downcross); % do only upward crossings 
end; 
i = i + 1; 
end; 
i=refcrossind(l); 
while (i<f-ind-1) % find position crossings 
if ( downcross & ( (Stressnorm(i)>posavg) & 



(Stressnorm(i+l)~=posavg) ) ) % a downward crossing 
tpOSCrOSS = [tposcross interpl([Stressnorm(i:i+l)], ...[ Time(i:i+l)], 
posavg ) 1 ; 
poscrossind = [poscrossind i]; 
end; 
if ( upcross & ( (Stressnorm(i)<posavg) & (Stressnorm(i+l)>=posavg) ) 

% an upward crossing 
tposcross = [tposcross interpl([Stressnorm(i:i+l)], ...[ Time(i:i+l)], 
posavg I ; 
poscrossind = [poscrossind i] 
end; 
i = i + l ;  
end; 
numcycles = length(refcrossind);%instead of floor(1ength 
...(p oscrossind)/2)-1; % this is really 1 + the number of cycles 
refcrossind = refcrossind(l:numcycles); % keep no more ref than pos 
%cycles 
trefcross = trefcross(l:numcycles); 
tposcross = tposcross(l:numcycles); 
% examine averages to see if data needs to be centered about zero 
refavg = sum(Strainnorm(refcrossind(l):refcrossind(ncycles))) / ... 
(refcrossind(numcyc1es)-refcrossind(1)); 
posavg = sum(Stressnorm(poscrossind(l):poscrossind(numcycles))) / ... 
(poscrossind(numcyc1es)-poscrossind(1)); 
refavgdev= 
abs(refavg)/max(Strainnorm(refcrossind(l):refcrossind(numcycles))); 
posavgdev = 
abs(posavg) / max(Stressnorm(poscrossind(l):poscrossind(numcycles))); 
done = ( (refavgdev<dev) & (posavgdev€dev) ) ;  
% try and center the data about zero 
if (-done) 
% fprintf(1, ['Selected data not centered about ' ... 
% '(within %.2f percent of) zero.\nl], dev*100); 
% fprintf(1, ['\t(reference average=%.4f = %.2f percent, \n' ... 
% '\t position average=%.lf = %.2f percent)\nl], ... 
% refavg, refavgdev*100, posavg, posavgdev*lOO); 
% fprintf(1, 'Centering data ... \nl); 
Strainnorm = Strainnorm - refavg; 
Stressnorm = Stressnorm - posavg; 
totrefshift = totrefshift + refavg; 
totposshift = totposshift + posavg; 
end; 
end; 
% announce how much fudging we've done 
fprintf (1, ['To center selected data about zero, ' ,  ... 
'\n\t%.3f was added to Stress and \n' ... 
'\t%.3f was added to Strain\n'],totposshift, totrefshift); 
% using all selected cycles, averaged, find the gain and phase 
tphase = 0; 
tperiod = 0; 
for i=l:numcycles-1 



tphase = tphase + tposcross(i)-trefcross(i); 
tperiod = tperiod + trefcross(i+l)-trefcross(i); 
end; 
tphase = tphase / (numcycles-1); 
tperiod = tperiod / (numcycles-1); 
magnitude = (max(Stressnorm(poscrossind(l):poscrossind(numcycles))) - 
... min(Stressnorm(poscrossind(l):poscrossind(numcycles)))) / ... 
(max(Strainnorm(refcrossind(l):ref~rossind(num~ycles))) - ... 
min(Strainnorm(refcrossind(l):ref~r~~sind(numcycles)))); 
phase = 360 * tphase / tperiod; 
tandelta=tan(phase*0.017453); 
Estore=E.*cos(phase*0.017453); 
Estorem=abs(mean(Estore)); 
Estoresd=std(Estore,l); 
Eloss=E.*sin(phase*O.017453); 
Elossm=abs(mean(Eloss)); 
Elosssd=std(Eloss,l); 
% plot the final range of data to be used 
subplot (2,1,2) 
plot(Time(refcrossind(l):poscrossind(numcycles)+l), ... 
Stressnorm(refcrossind(l):poscrossind(numcycles)+l), 'b.'); 
hold on 
plot (Time(refcrossind(l):poscrossind(numcycles)+l), ... 
Strainnorm(refcrossind(l):poscrossind(numcycles)+l)/refscale,'r'); 
plot([Time(refcrossind(l))-tperiod*O.l ... 
Time(poscrossind(numcycles)+l)+tperiod*0.1],[0 01, ':k') 
plot (trefcross, zeros(l,numcycles), '+k'); 
plot (tposcross, zeros(l,numcycles), 'ok'); 
axisvec2 = [trefcross(l)-tperiod*0.1 tposcross(numcycles)+tperiod*O.l 
... min([Strainnorm(refcrossind(l):poscrossind(numcycles))/refscale; ... 
Stressnorm(refcrossind(l):poscrossind(numcycles))])*l.l ... 
max([Strainnorm(refcrossind(l):poscrossind(numcycles))/refscale; ... 
Stressnorm(refcrossind(l):poscrossind(numcycles))])*l.l]; 
axis(axisvec2); 
title ([num2str(numcycles-I),' cycles selected, ' ,  ...' centered and 
scaled, crossing points shown']) 
xlabel ('time (seconds)'); 
ylabel (['Strain',' (red) and Stress (blue)']);%print 
text((0.05*axisvec2(2)+0.95*axisvec2(1)),(0.25*axisvec2(4)+1.25*axisvec 
2(3)),['f = ',num2str(l/tperiod),'Hz Mag ratio = ... 
',num2str(magnitude), ...'p hase diff = ',num2str(phase),' deg']); 
hold off 
fprintf (1, 'From an average over %d complete cycles:\nl, numcycles-1); 
fprintf (1, '\tThe frequency is %.2f ~z\n', l/tperiod); 
fprintf (1, '\tMagnitude ratio is %6.4f \n', magnitude); 
fprintf (1, '\t~hase difference is %6.4f degrees\nl, phase); 
fprintf (1, '\tTan delta is %.4f\n1, tandelta); 
disp(sprintf('Modu1us (mean +/- SD) = %5.3e +/- %5.3e NmA-2 (average 
slope as function of strain)', Em, StandardDeviation)) 
disp(sprintf('\tMaximum Slope = %5.3e NmA-2', max(E))) 
disp(sprintf('\tMinimum Slope = %5.3e NmA-2', min(E))) 



disp(sprintf('Storage modulus (mean +/- SD) = %5.3e +/- %5.3e NmA-2', 
Estorem, Estoresd)) 
disp(sprintf('Loss modulus (mean +/- SD) = %5.3e +/- %5.3e NmA-2', 
Elossm, Elosssd)) 
disp(sprintf('Maximum Engineering Stress = %5.3e NmA-Z',max(Stress))) 
disp(sprintf('Minimum Engineering Stress = %5.3e NmA-Z',min(Stress))) 
disp(sprintf('Maximum Percent Engineering Strain = %5.3e 
%',max(Strain)*lOO)) 
disp(sprintf('Minimum Percent Engineering Strain = %5.3e 
%',min(Strain)*lOO)) 
%Routine for true stress and true strain 
%Calculate true Strain 
for i=1:1008; 
Gaugetrue=(Gauge+Displacement); 
Straintrue=(Displacement./Gaugetrue); 
end 
% 
%Calculate true Stress 
%Assumes constant volume and that strainyy/strainxx=strainzz/strainxx 
%Stresstrue=stretch ratio(lambda)*Engineering Stress; 
lambda=Gaugetrue./Gauge; 
for i=1:1008; 
Stresstrue=lambda.*Stress; 
end 
figure(ll);plot(StraintrueIStresstrueI'r+');legend ('True, - 
Engineering'); 
hold on 
plot(Strain,Stress,'b-');%title('Stress-St Plot'); 
xlabel('Strain ');ylabel('Stress (N/mA2)');%print 
disp(sprintf('Maximum True Stress = %5.3e NmA-Z',max(Stresstrue))) 
disp(sprintf('Minimum True Stress = %5.3e NmA-Z',min(Stresstrue))) 
disp(sprintf('Maximum Percent True Strain = %5.3e 
%',max(Straintrue)*lOO)) 
disp(sprintf('Minimum Percent True Strain = %5.3e 
%',min(Straintrue)*lOO)) 
figure(l2);plot(meanstress,E,'ro'); 
xlabel('Stress');ylabel('E(\sigma)'); 



% This program should reside in the main program and data file 
directory 
function box(center, size, color) 
% (c) 1997 M. E. Brokowski 
% BOX(CENTER, SIZE, COLOR) 
% Draws a filled square in the current graph window. The square 
% is centered at CENTER, which is an x,y pair. SIZE is the side 
% length and COLOR is specifyable as it is in FILL. 
% [ll ul ur lr] 
fill ([center(l)-size/2 center(1)-size/2 center(l)+size/2 ... 
center(l)+size/2],[center(2)-size/2 center(2)+size/2 ... 
center(2)+size/2 center(2)-size/2], color); 

B.1.3 Stress relaxation program 

% PDMS stress relaxation program ----------- Patrick Roman 01.24.04 
clear all 
close all 
£id = fopen('C:\W1ND0WS\Desktop\pdms~sr~data\p~s~sr002.txt1); 
d = fscanf(fid,'%g %g %g1,[3,inf]); 
fclose(fid); 
d=d ' ; 
jsize=size(d); 
Time=d(:,l); 
Displacement=d(:,2); 
Load=d(:,3); 
%Sample dimensions 
W=2e-3 ; 
T=.llE-3;%input('Input thickness of specimen in meters>'); %Specimen 
thickness 
Gauge=18.5; 
%Calculating xsect area 
X-section = W*T; %Cross-sectional area of test specimen 
%Calculating ENGR stress and ENGR strain 
Stress=Load/X-section; 
......................................................... 

%Calculating true Stress (Euler) 
%Assumes constant volume and that strainyy/strainxx=strainzz/strainxx 
%Stresstrue=stretch ratio(lambda)*Engineering Stress; 
lambda=(Gauge+Displacement)./~auge; 
Stresstrue-Euler=(lambda).*Stress; 
............................................................ 

figure(l);plot(Time,Stresstrue~Eu1er,'r+');tite('PDMS, B sample stress 
relaxation at true strain = 0.6'); 
%;legend('PDMS SR001') 
%Setting plot range 
%axis([O 65 0 2.5361) 
%Axis labels 
xlabel('Time (sec)');ylabel('True stress (N/mA2)') 
hold on 



%Curve fitting decaying exponential 
x=(0:63); 
y=6.5e6*exp(-.1275*~-2)+4.9e6; 
~lot(xr~r'k') 
axis([O 65 Oe6 8e61) 

B.1.4 Stress deformation program 

%Plastic deformation of PDMS: stress relaxation curve fitting 
%with a decaying exponential 
close all 
clear all 
%data set 
data= [ 

0 24 
1 24.199 
2 24.118 
3 24.155 
4 24.142 
5 24.133 
6 24.136 
7 24.1381; 

day = dataA(:,l) 
Elongation = dataA(:,2) 
%Plotting data (you don't need this stuff 
% errorbar will plot the data AND the errorbars 
%plot(day,Elongation,'ro') 
%axis([O 8 24.4 24.51) 
%hold on 
%Curve fit 
errorbar(day,Elongation,stdl,'ro') 
hold on 
x=(O:8); 
y=24.1375+exp(-x-1.7); 
plot(x,y);title('PDMS, B sample deformation from true strain = 0.6'); 
%Axis labels 
xlabel('Time (Days)');ylabel('~longation (mm)') 
% Comparing SR to deformation test--------------------------------- 
%dataB=[ 
%10 24.0485 
% 15 24.0475 
%2 0 24.0465 
%25 24.046 



%figure(2);plot(Time,ElongationB,'ro'); 
%axis([-10 70 24.042 24.0541) 
%hold on 
%stdlB=[0.0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 0005 
%O. 00051 ; 
%Curve fit 
%errorbar(Time,ElongationB,stdlB,'ro') 
%hold on 
%xB=(0:65); 
%yB=.006*exp(-.07*xB-.004)+24.045; 
%yB=24.0455+exp(-xB-1) 
%plot(xB,yB); 
%title('PDMS, B sample elongation at true strain = 0.6'); 
%Axis labels 
%xlabel('Time (sec)');ylabel('Elongation ( m m ) ' )  

B.1.5 Membrane analysis programs 

B.1.5.1 PDMS circular membrane biaxial stress-strain program 

%This program analyzes circular bulge test data for visoelastic 
materials 
% 
%patrick Roman 07/08/03 
%Bulge test data for circular membrane 
close all 
clear all 
%Copied PDMS data from experiment (Circular) 
data= [ 
0.0 0.000 
0.5 0.957 
1.0 1.244 
2.0 1.683 



3.0 2.024 
4.0 2.232 
5.0 2.489 
6.0 2.635 
7.0 2.857 
8.0 3.035 
9.0 3.180 
10.0 3.348 
11.0 3.464 
12.0 3.675 
13.0 3.789 
14.0 3.875 
15.0 4.000 
16.0 4.120 
17.0 4.270 
18 -0 4.380 
19.0 4.560 
20.0 4.670 
21.0 4.800 
22.0 4.939 
23.0 5.020 
24.0 5.200 
25.0 5.292 
26.0 5.440 
27.0 5.524 
28.0 5.642 
29.0 5.839 
30.0 5.9671; 
%Experimental data plot 
Deflection = data(:,2)*le-3; %converts to meters 
Pressure = data(:,1)*248.84; %converts inwg to N/mA2 
figure ( 1 ) 
plot(Deflection,Pressure,'ro') 
title('PDMS Circular membrane experimental - Pressure vs Deflection'); 
ylabel('Pressure (~/m^2)') 
xlabel('Def1ection (m)') 
%System geometries and variables 
a=9.52e-3 %average membrane radius (nun) 
%P=(0:100:7465); %Pressure load (Pa or N/MA2) 
t=.089e-3; %Membrane thickness 
v=.47; %Poisson's ratio 
%defining R 
~=((Deflection/2)+(a~2./(2*Deflection))); 
%Defining Biaxial stress 
Bstress=((Pressure.*R)/(2*t)); 
%Defining Biaxial strain 
test=(((R.*asin(a./R)).^2)-(a^2))./(((R.*a~in(a./R)).~2)*2); 
figure(4) 
s=length(Bstress); 
plot(test(2:s),Bstress(2:s),'r+') 
title('PDMS Circular membrane - Biaxial stress vs Biaxial strain'); 
ylabel('Biaxia1 Stress (N/mA2)') 
xlabel('Biaxia1 Strain') 



B.1.5.2 LLDPE circular membrade biaxial stress-strain program 

%This program analyzes circular bulge test data for visoelastic 
materials 
% 
%Patrick Roman 07/08/03 
%Bulge test data for circular membrane 
close all 
clear all 
%Copied LLDPE data from experiment (Circular) 
data= [ 
0.0 0.000 
1.0 0.549 
2.0 0.739 
4.0 0.848 
6.0 0.992 
8.0 1.163 
10.0 1.282 
12.0 1.371 
14.0 1.408 
16.0 1.492 
18.0 1.571 
20.0 1.6251; %------------ data cut here for 2% strain analysis 
%22.0 1.709 
%24.0 1.778 
%26.0 1.830 
%28.0 1.884 
%30.0 1.9661; 
%Experimental data plot 
Deflection = data(:,2)*le-3; %converts to meters 
Pressure = data(:,1)*248.84; %converts inwg to N/mA2 
figure(1) 
plot(Deflection,Pressure1'ro') 
title('PDMS Circular membrane experimental - Pressure vs Deflection'); 
ylabel('Pressure (N/mA2)') 
xlabel('Def1ection (m)') 
%System geometries and variables 
a=9.52e-3 %average membrane radius (mm) 
%P=(0:100:7465); %Pressure load (Pa or N/MA2) 
t=.025e-3; %Membrane thickness 
v=.4; %Poisson's ratio 
%defining R 
R=((Deflection/2)+(a^2./(2*Deflection))); 
%Defining Biaxial stress 
Bstress=((Pressure.*R)/(2*t)); 
%Defining Biaxial strain Almansi 
test=(((R.*a~in(a./R)).~2)-(a^2))./(((~.*asn(a./R)).~)*); %almansi 
figure ( 4 ) 
s=length(Bstress); 
plot(test(2:s),~stress(2:s),'r+') 
%Setting plot range 
axis([O .03 Oe6 4.5e61) 
title('LLDPE Circular membrane - Biaxial stress vs Biaxial strain'); 
ylabel('Biaxia1 Stress (N/mA2)') 



xlabel('Biaxia1 Strain') 
%adding straight line fit 
x=[0:.0025:.03]; 
m=120e6; 
b=.61e6; 
y=m*x+b; 
%adding fit to plot 
%hold on 
%plot (x,y,'bl') 
%adding label 
text(.3,3.25e7,'E=165MPa') 
%plotting 2% strain limit 
x1=. 02; 
yl=[0:.25e6:3.5e6]; 
hold on 
plot (xl,ylI1k-','markersize',l2) 
text(.Ol8,le6,'ex = 2% strain','fontsize',7) 

B.1.5.3 PDMS circular membrane program 

%Membrane analysis program (Circular) 
%Better fitting program using varying 
%radius of curvature and more accurate strain definitions. 
%Patrick Roman 07.13.03 
%This program fits experimental load - deflection data for bulge tests 
%of silicone membranes. Material elastic modulus and residual stress 
%are determined. Circular membranes are analyzed. 
%SI units only 
close all 
clear all 
% Membrane geometry and constants 
a=9.52e-3 %average membrane radius (m) 
P=(0:100:7465); %Pressure load (Pa or N/MA2) 
t=0.089e-3; %Membrane thickness 
v=0.47; %Poisson's ratio 
%Copied PDMS data from experiment (Circular) - data set #3 
data= [ 
0.0 0.000 
0.5 0.957 
1.0 1.244 
2.0 1.683 
3.0 2.024 
4.0 2.232 
5.0 2.489 
6.0 2.635 
7.0 2.857 
8.0 3.035 
9.0 3.180 
10.0 3.348 
11.0 3.464 
12.0 3.675 
13.0 3.789 
14 .O 3.875 



15.0 4.000 
16.0 4.120 
17.0 4.270 
18.0 4.380 
19.0 4.560 
20.0 4.670 
21.0 4.800 
22.0 4.939 
23.0 5.020 
24.0 5.200 
25.0 5.292 
26.0 5.440 
27.0 5.524 
28.0 5.642 
29.0 5.839 
30.0 5.9671; 
CPressure=data(:,l)*248.84; 
CDeflection=data(:,2)*le-3; 
%=============== Hohlfelder Spherical cap Model ================= 
%======== membrane constants 
Clc=4 
C2~=((8/3)/(1-v)) 
%Fitting Circular membrane experimental data to spherical cap bulge 
%eqn. 
CRc = 3.7e4; 
Ec = 1.272e6 %Circular membrane Elastic modulus 
Cscap=( ( 4*CRc*t*CDeflection)/a^2+(C2c*Ec*t*CDefle~tion.~3)/a~4); 
%=============== Hohlfelder Circular membrane theory ================= 

% ENGINEERING STRAIN with constant radius of curvature 
%Constant calculation (Circular membrane) 
Clc=4 
C2~=(8/3)*(1.015-.247*~)/(1-V) 
%Fitting Circular membrane experimental data to Hohlfelder circular 
%bulge eqn. 
CRc = 3.7e4; 
Ec = 1.272e6 %Circular membrane Elastic modulus 
CPressurefit=( ( 
4*CRc*t*CDeflection)/a^2+(C2c*Ec*t*CDefle~tion.~3)/a~4); 
%=============== Hohlfelder Circular membrane theory (Non 
%linear)=============== 
% ENGINEERING STRAIN....... with varying radius of curvature 
%Radius of curvature varying with deflection (strain Eng) 
%Strain Eng=((R.*asin(a./~)/a)-1); %Hohlfelder non linear strain 
%definition 
~=~~eflection/2+(a~2)./(2*CDeflection); %Radius of curvature 
R(1)=0; 
%Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane 
%experimental data #3 
CRce = 3.7e4;%Residual stress 
Ece = 1.272e6 %Circular membrane Elastic modulus 
%Peng=(( (~ce/(l-v) ) * (  R.*asin(a./R)/a -1 )+CRce)*2*t )./R; 
AA=Ece/(l-v); 
BB=R.*asin(a./R)/a; 
Peng=(AA*(BB-l)+CRce)*Z*t./R; 
%=============== Modified Hohlfelder Circular membrane theory (Non 



%linear)=============== 
% TRUE STRAIN....... with varying radius of curvature 
%Radius of curvature varying with deflection (strain True) 
%Strain True=(l-(a./(R.*asin(a./R)))); %Roman non linear strain 
%definition 
%R=(((CDeflection./2)+(a^2))/((2*CDeflection))); %Radius of curvature 
%Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane 
%experimental data #3 
CRct = 3.7e4;%Residual stress 
Ect = 1.272e6 %Circular membrane Elastic modulus 
Ptrue= ( (  (~ct/(l-v) ) *  (1-(a./(R.*asin(a./R)))) +CRct)*2*t)./~; 
....................................................................... 
% More TRUE STRAIN....... with varying radius of curvature 
....................................................................... 
%Almansi true strain %; 
CRctA = 3.7e4;%Residual stress 
EctA = 1.272e6 %Circular membrane Elastic modulus 
Al=(R.*asin(a./R)).-; 
A=(Al-aA2)./(2*A1); 
B=EctA/(l-v); 
PtrueA=(B*A+CRctA)*2*t./R; 
%Green true strain % ; 
CRctG = 3.7e4;%Residual stress 
EctG = 1.272e6 %Circular membrane Elastic modulus 
Al=(R.*asin(a./R)).y; 
A=(A~-aA2)./(2*aA2); 
B=Ec~/(~-v); 
P ~ ~ u ~ G = ( B * A + c R c ~ ) * ~ * ~ . / R ; %  
%------------------------------ Plotting 
figure(1) 
plot(data(:,1)*248.84,data(:,2)*le-3,'bo1)% experimental data 
hold on 
plot(CPressurefit,CDeflection,'k-')%; 
legend('Theoryl) 
title('PDMS Circular Membrane - E=1.272MPa, Rs=O.O34MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 8e-31) 
figure ( 2 ) 
plot(data(:,1)*248,84,data(:,2)*le-3, 'bol)% experimental data 
hold on 
plot(CPressurefit,CDeflection,'k-')%;legend('~heory') 
hold on 
plot(Cscap,CDeflection,'m-')%;1egend('Theory1) 
hold on 
Peng(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(Peng,CDeflection,'g-') 
title('PDMS Circular Membrane - E=1.272MPa, Rs=O.O34MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 8e-31) 
figure(3) 
plot(data(:,1)*248.84,data(:,2)*le-3, 'bol)% experimental data 
hold on 
plot(~~ressurefit,C~eflection,'k:')%;legend('Theory') 



hold on 
plot(Cscap,CDeflection,'k--')%;legend('Theoryl) 
hold on 
Peng(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(Peng,CDeflection,'k-.') 
hold on 
Ptrue(l)=O 
plot(Ptrue,CDeflection,'k.','markersize',4') 
hold on 
%plot(PtrueA,CDeflection,'r-') 
hold on 
PtrueA(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(PtrueA,CDeflection,'k-') 
%plot(PtrueG,CDeflection,'c-') 

%plot(Ptrue,CDeflection,'r-') 
title('PDMS membrane large deflection theory, E=1.272MPa, 
Rs=O.O34MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
axis([O 8500 0 8e-31) 
ylabel('Def1ection (m)','fontsize1,8) 
figure ( 4 ) 
plot(data(:,1)*248.84,data(:,2)*le-3, 'bol)% experimental data 
hold on 
plot(PtrueA,CDeflection,'k-') 
%plot(Ptrue,CDeflection,'g-') 
title( 'PDMS Circular Membrane - Almansi strain, E=1.272MPa, 
Rs=O.O34MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
axis([O 8500 0 8e-31) 
ylabel('Def1ection (m)','fontsize1,8) 

B.1.5.4 LLDPE circular membrane program 

%Membrane analysis program (Circular) 
%Better fitting program using varying 
%radius of curvature and more accurate strain definitions. 
%Patrick Roman 07.13.03 
%This program fits experimental load - deflection data for bulge tests 
%of silicone membranes. Material elastic modulus and residual stress 
%are determined. Circular membranes are analyzed. 
%SI units only 
close all 
clear all 
% Membrane geometry and constants 
a=9.52e-3 %average membrane radius (mm) 
P=(0:100:7465); %Pressure load (Pa or N/M^~) 
t=0.025e-3; %Membrane thickness 
v=0.4; %Poisson's ratio 
%Copied LLDPE data from experiment (Circular) - data set #3 
data= [ 
0.0 0.000 
1.0 0.404 



2.0 0.560 
4.0 0.806 
6.0 0.946 
8.0 1.083 
10.0 1.200 
12.0 1.327 
14.0 1.426 
16.0 1.483 
18.0 1.550 
20.0 1.650 
22.0 1.709 
24.0 1.778 
26.0 1.830 
28.0 1.884 
30.0 1.9661; 
CPressure=data(:,l)*248.84; 
CDeflection=data(:,2)*le-3; 
%=============== Hohlfelder Spherical cap Model ================= 
%======== membrane constants 
Clc=4 
C2~=((8/3)/(1-v)) 
%Fitting Circular membrane experimental data to spherical cap bulge 
%eqn . 
CRc = .55e6; 
Ec = 72e6 %Circular membrane Elastic modulus 
Cscap=( ( 4*CRc*t*CDeflection)/aA2+(C2c*~c*t*C~eflection.A3)/aA4); 
%=============== Hohlfelder circular bulge equation ================= 

% ENGINEERING STRAIN. ....... with constant radius of curvature 
%Constant calculation (Circular membrane) 
Clc=4 
C2~=(8/3)*(1.015-.247*v)/(l-V) 
%Fitting Circular membrane experimental data to Hohlfelder circular 
%bulge eqn. 
CRc = .55e6; 
Ec = 72e6 %Circular membrane Elastic modulus 
CPressurefit=( ( 4*cRc*t*CDeflection)/aY+ ... 
(~2c*~c*t*C~eflection."3)/a~4); 
%==== Hohlfelder Circular membrane theory (Non %linear)=============== 
% ENGINEERING STRAIN....... with varying radius of curvature 
%Radius of curvature varying with deflection (strain Eng) 
%Strain Eng=((R.*asin(a./~)/a)-1); %Hohlfelder non linear strain 
%definition 
R=CDef1ection/2+(aA2)./(2*CDeflection); %Radius of curvature 
R(1)=0; 
%Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane 
%experimental data #3 
CRce = .55e6;%Residual stress 
Ece = 72e6 %Circular membrane Elastic modulus 
%Peng=(( (Ece/(l-v) ) * (  R.*asin(a./R)/a -1 )+CRce)*2*t )./R; 
AA=Ece/(l-v); 
BB=R.*asin(a./R)/a; 
Peng=(AA*(BB-l)+CRce)*2*t./R; 
%= Modified Hohlfelder Circular membrane theory (Nonlinear)======== 
% TRUE STRAIN....... with varying radius of curvature 
%Radius of curvature varying with deflection (strain True) 



%Strain True=(l-(a./(R.*asin(a./~))));%~oman non linear strain 
%definition 
%R=(((CDeflection./2)+(aA2))/((2*CDeflection))); %Radius of curvature 
%Fitting Hohlfelder Non linear circular bulge Eqn to Circular membrane 
%experimental data #3 
CRct = .55e6;%Residual stress 
Ect = 72e6 %Circular membrane Elastic modulus 
Ptrue= ( (  (~ct/(l-v) ) *  (I-(a./(~.*asin(a./~)))) +CRct)*2*t)./~; 
....................................................................... 
% More TRUE STRAIN....... with varying radius of curvature 
....................................................................... 
%Cauchy true strain %; 
%Almansi true strain %; 
CRctA = .55e6;%Residual stress 
EctA = 72e6 %Circular membrane Elastic modulus 
Al=(R.*asin(a./R)).Y; 
A=(Al-aA2)./(2*A1); 
B=Ec~A/(~-v); 
PtrueA=(B*A+CRctA)*2*t./R; 
%Green true strain % ; 
CRctG = .55e6;%Residual stress 
EctG = 72e6 %Circular membrane Elastic modulus 
Al=(R.*asin(a./R)).̂ 2; 
~=(Al-a^2)./(2*a^2); 
B=Ec~/(~-v); 
PtrueG=(B*A+CRct)*2*t./R;% 
%------------------------------ Plotting 
figure( 1) 
plot(data(:,1)*248.84,data(:,2)*le-3, 'bo')% experimental data 
hold on 
plot(CPressurefit,CDeflection,'k-')%;legend('Theory') 
title('LLDPE Circular Membrane - E=72MPa Rs=.55MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 3e-31) 
figure(2) 
plot(data(:,l)*248.84,data(:,Z)*le-3, 'bo')% experimental data 
hold on 
plot(CPressurefit,C~eflection,'k-')%;legend('The~ry') 
hold on 
Peng(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(Peng,CDeflection,'g-') 
title('LLDPE Circular Membrane - E=72MPa Rs=.55MPa','fontsize',8); 
xlabel('Pressure (~/m~2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 3e-31) 
figure ( 3 ) 
plot(data(:,l)*248.84,data(:,Z)*le-3, 'bo')% experimental data 
hold on 
plot(~Pressurefit,~~eflection,'k:')%;legend('~heory') 
hold on 
Peng(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(Peng,CDeflection,'k-.') 
hold on 
Ptrue(l)=O 



plot(Ptrue,CDeflection,'k.') 
hold on 
plot(Cscap,CDeflection,'k--') 
hold on 
PtrueA(l)=O %forces first point to 0 ,infinitive is due to h=O division 
plot(PtrueA,CDeflection,'k-') 
%plot(PtrueG,CDeflection,'c-') 
%plot(Ptrue,CDeflectionI'r-I) 
title(' LLDPE membrane large deflection theory, E=72MPa 
Rs=.55MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
axis([O 8500 0 3e-31) 
ylabel('Def1ection (m)','fontsize',8) 
figure ( 4 ) 
plot(data(:,1)*248.84,data(:,2)*le-3, 'bo')% experimental data 

hold on 
plot(PtrueA,CDeflection,'k-') 
%plot(Ptrue,CDeflection,'g-') 
title('LLDPE Circular Membrane - Almansi strain, E=72MPa 
Rs=.55MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
axis([O 8500 0 3e-31) 
ylabel('Def1ection (m)','fontsize',8) 

B.1.5.5 PDMS square membrane program 

%Membrane analysis program (Square) 
%Patrick Roman 07.13.03 
%This program fits experimental load - deflection data for bulge tests 
%of silicone membranes. Material elastic modulus and residual stress 
%are determined. Square membranes are analyzed. 
%SI units only 
close all 
clear all 
% Variables 
a=9.52e-3 %average membrane radius (mm) 
%P=(0:100:7465); %Pressure load (Pa or N/MA2) 
%E1=1.45e6; %Elastic Modulus of PDMS material 
t=.089e-3; %Membrane thickness 
v=.47; %Poisson's ratio 
%Es= 1.04e6 %Square membrane elastic modulus 
%SRs= 3.8e4 %Square membrane residual stress 
%Deiter et a1 - Square membrane Bulge equation 
%Constant C2 calculation (SQUARE membrane) 
C2~=1.994*(1-.271*v)/(l-V) 
%C2s=4.3 
%(Square membrane) Deflection calculation 
%hs=((P*aA4)./(C2s*E1*t)).^(1/3); 
%elastic modulus (square) 
%~st=((~*a~4)./(~2s*t*hs.^3)); 
%Copied data PDMS from experiment (Square) 
data= [ 



SPressure=data(:,l)*248.84; %converts inwg to N/mA2 
SDeflection=data(:,2)*le-3; %converts to meters 
%figure(l) 
%plot(SPressure,SDeflection, 'bs') %experimental data plot 
%hold on 
%plot(P,hs,'rs') %analytical theory plot 
%title('PDMS 3 Square Membrane - Pressure vs Deflection'); 
%xlabel('Pressure (N/mA2)') 
%ylabel('Deflection (rn)') 
%Square bulge equation 
zz=(1:25); 
a = 9.52e-3 %average membrane radius (mm) 
P = (0:7465); %Pressure load (Pa or N/MA2) 
%El = 0.0001e6; %Elastic Modulus of PDMS material 
t = 0.09e-3; %Membrane thickness 
v = 0.47; %Poisson-'s ratio 
Es = 1.272e6; %Square membrane elastic modulus 
SRs = 0.034e6;%Square membrane residual stress 
C ~ S  = 1.94*(1-.271*v)/(l-V) 
%global data 
%start=[SRs Es]; 
%results=fmins('ftting',start); 



%Es = results(2); 
%SRs = results(1); 
SPressurefit=( ( 3.45*SRs*t*SDeflection)/a^2+ .... 
(C2s*E~*t*SDeflection.~3)/a~4); 
figure (2) 
plot(data(:,l)*248.84,data(:,2)*le-3, 'bs')% experimental data 
hold on 
p1ot(SPressurefit,SDef1ection,'r-')%;1egend('Theory1) 
%title(sprintf('SRs=%5.5f Es=%5.5f1,SRs,Es)) 
title('PDMS Square Membrane - E=1.272MPa, Rs=O.O34MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 10e-31) 

B.1.5.6 LLDPE square membrane program 

% POLYETHYLENE LLDPE 
%Membrane analysis program (Square) 
%Patrick Roman 04.14.03 
%This program plots the load deflection of Square membranes. 
%Fitting is possible to determine E and the residual stress of LLDPE. 
%experimental data set 3 was used for LLDPE at t=.OOIM or .025e-3 M 
%SI units only 
close all 
clear all 
% Variables 
a=9.52e-3 %average membrane radius (mm) 
P=(0:100:7465); %Pressure load (Pa or N/MA2) 
E1=1.45e6; %Elastic Modulus of PDMS material 
t=.025e-3; %Membrane thickness 
v=.4; %Poisson's ratio 
%Constant C2 calculation (Circular membrane) 
C 2 ~ = ( 8 / 3 ) * ( 1 . 0 1 5 - . 2 4 7 * ~ ) / ( 1 - V )  
%C2c=6.1 
%(Circular membrane) Deflection calculation 
hc=((p*aA4)./(C2c*E1*t)).^(1/3); 
%elastic modulus (circular) 
Ec=((P*aA4)./(C2c*t*hc.*3)); 
%Copied PDMS data from experiment (Square) 
data= [ 
0.0 0.000 
1.0 0.478 
2.0 0.631 
4.0 0.940 
6.0 1.133 
8.0 1.292 
10.0 1.408 
12.0 1.507 
14.0 1.586 
16.0 1.704 
18.0 1.850 
20.0 1.930 
22.0 2.000 



24.0 2.081 
26.0 2.123 
28.0 2.250 
30.0 2.3601; 
SPressure=data(:,l)*248.84; 
SDeflection=data(:,2)*le-3; 
%Square bulge equation 
%zz=(1:25); 
a = 9.52e-3 %average membrane radius (mm) 
%P = (0:7465); %Pressure load (Pa or N/MA2) 
%El = 0.0001e6; %Elastic Modulus of PDMS material 
t = 0.025e-3; %Membrane thickness 
v = 0.4; %Poisson-'s ratio 
C ~ S  = 1.94*(1-.271*~)/(1-V) 
Es = 72e6; %Square membrane elastic modulus 
SRs = .55e6;%Square membrane residual stress 
%global data 
%start=[SRs Es]; 
%results=fmins('ftting',start); 
%Es = results(2); 
%SRs = results(1); 
SPressurefit=( ( 3.45*SRs*t*SDeflection)/a^2+ ... 
(C2s*Es*t*SDeflection.*3)/a^4); 
figure (2) 
plot(data(:,1)*248.84,data(:,2)*le-3,'bs1)% experimental data 
hold on 
p1ot(SPressurefit,SDef1ection,'k-')%;1egend('Theory1) 
%title(sprintf('SRs=%5.5f Es=%5.5f1,SRs,Es)) . 

title('LLDPE Square Membrane - E=72MPa, Rs=0.55MPa','fontsize',8); 
xlabel('Pressure (N/mA2)','fontsize',8) 
ylabel('Def1ection (m)','fontsize',8) 
axis([O 8500 0 3.5e-31) 



Appendix C 

Analysis program results 

C.1 Data analysis results 

Data analysis results generated by the Matlab analysis programs in appendix B 

were expressed in numeric and graphical forms. This appendix contains program 

numerical output values and example graphical results for the analysis performed. 

C.1.1 Dynamic uniaxial tension A sample numeric results 

The results below were generated by the Matlab program (Phasediff1bb.m). This 

program was designed to analyze dynamic uniaxial tension test data. The results are 

listed for each A sample run and correspond to the text data file name and dynamic 

frequency at which the samples were tested. For example, the result below of 

P h t  - 025. txt corresponds to the sample tested at 0.25Hz of the "A" group of samples. 

The next result Pchst-05.txt corresponds to the sample tested at 0.5Hz of the "A" 

group of samples, and so on increasing in test frequency. There are five groups of 

samples, one group for each of the five samples tested per frequency. 



PDMS Dynamic uniaxial tension analysis - Matlab results 
Matlab program (phasediff1bb.m) 
A samples - [Group A] 

OPEWKR - Patrick Rmm 20 Aug 2001 
m center selected data a t m t  zero, 

0.873 was addedto Stress and 
0.909 was added to Strain 

E'ran an average over 1 carplete cycles: 
The frequency is 0.25 Hz 
Magnitude ra t io  is 1.0327 
Phase differenoe is 358.2839 degrees 
Tan delta is -0.0301 

-us (man +/- SD) = 2.377d-006 +/- 6.06Od-006 W - 2  (average slcpe as of strain) 
Maximnn Slope = 9.65Od-007 NnA-2 . . 
MYlunmn Slape = 3.501d-005 NIT-2 

Storage -us (mean +/- SD) = 2.376ei-006 +/- 6.057d-006 W - 2  
U6s -US (man +/- SD) = 7.144d-004 +/- 1.821d-005 I W - 2  
Maxhml Ehg-ing Stress = 2 . 6 0 W 0 5  M A - 2  . . 

E h g W i n g  Stress = 2.027d-005 W - 2  
Mixhum k t  Fn&ering Strain = 2.292d-001 . . 
Mmunnn Percent E n g d i n g  Strain = 1.874d-001 
Maximnn True Stress = 3.20!5&005 W - 2  . . 

True Stress = 2.407d-005 W - 2  
Maxhnn Percent True Strain = 1.865d-001 

# .  

M u m u m  Percent True Strain = 1.578et-001 

OPERAKR - Patrick Rcmn 20 Aug 2001 
In@ width of specimen in n ~ l ~ s 6 e - 3  
Inplt thiclcness of s p e c k  in meterY1.15~+3 
In@ gauge length in m 4 8  
T b c e n t e r s e l e c t e d d a t a ~ z e m ,  

0.902 was added to Stress and 
0.909 was added to Strain 

Fran an average over 3 ccmplete cycles: 
The frequency is 0.50 Hz 
Magnitude ratio is 1.0240 
Phase cliff- is 356.1869 ckgxees 
Tan del ta  is -0.0668 

k d d u s  (m +/- SD) = 1.806&06 +/- 1.411&06 W - 2  (average slqe as M a n  of strain) 
Mixhum Slope = 1.516eH307 W - 2  . . - S l ~ p e  = 4.542d-005 W - 2  

Starage -US (m +/- SD) = 1.802et006 +/- 1.408d-006 M A - 2  
-US (mean +/- SD) = 1.203&05 +/- 9.39-04 NnA-2 

Maxinum E h g W i n g  Stress = 3 . 4 3 M 0 5  W - 2  . . - E h g d i n g  Stress = 2.773d-005 NnA-2 
Maxhml Percent Eng-ing Strain = 2.292d-001 . . 
Mmunnn Fercent E n g w i n g  Strain = 1.874d-001 
Maxjmnn True Stress = 4.216el-005 NnA-2 . . 

True Stress = 3 . 2 9 M 0 5  W - 2  
Maxhml Percent True Strain = 1.865d-001 . . 
Mumum True Strain = 1 . 5 7 W 0 1  



QPERATOW - Patrick Ramn 20 Aug 2001 
Inplt w i d t h  of specirren in ~ e t e r e 6 e - 3  
Inplt thickmss of s p e c k  in -1.54e-3 
Inplt gauge length in m 4 8  
Tb ten* selected Qta abart zero, 

0.901 was addedto Stress a d  
0.909 was added to Strain 

Fran an average wer 4 ccnplete cycles: 
The f r q m q  is 1-00 Hz 
Magnitude ratio is 1.0728 
Phase difference is 355.3822 dsp-es 
Tan delta is -0.0809 

MXMUS (man +/- SD) = 1.598&06 +/- 3.401&05 Nn -̂2 (a- slope as -on of strain) 
Slope = 3.951&006 W - 2  . . 

MUUIUKI Slope = 6.718ei-005 NIP-2 
Stcn-age m3dulus (man +/- SD) = 1.593e-i-006 +/- 3 . 3 W 0 5  W - 2  
Zr>ss (m +/- SD) = 1-288eH305 +/- 2.741&004 W - 2  
Maximnn ~sl~jn&rin~ stress = 3.343&05 Nn*-2 . . 
WnUTUTI h g d i n g  stress = 2.679&05 Nn*-2 
Maxjnum Percent Enghxzing Strain = 2 . 2 9 M 0 1  . . 
WnUTUTI n t  Ihghering Stra in  = 1 . 8 7 M 0 1  
Maximnn ' J k E  Stress  = 4 . 1 1 W 0 5  Nf-2 . . - ~ Y w  Stress = 3.181&05 W - 2  
Maximan Fwxent True Strain = 1 . 8 6 6 4 0 1  . . 
WnUTUTI Percent True Strain = 1.577d-001 

QPERATOW - Patrick RaMn 20 Aug 2001 
Inplt width of s p e c k  in mte~%e-3 
I p t  thkkness of s p e c k  in meterY1.4.e-3 
Inplt gauge length in m1P48 
Tb center selected data abcut zero, 

0.786 was added to St ress  and 
0.908 was added to Strain 

an =age m c r  3 mrplete cycles: 
The frequency is 2.00 Hz 
Magnitude ratio is 1.8897 
Phase differexe is -2.7011 degrees 
Tan d e l t a  is -0.0472 

bkxblus (m +/- SD) = 1.244d-006 +/- 1.453d-005 MA-2 (average slope as functicn of strain) 
Maximnn Slape = 1.612d-006 W - 2  . . 
MUUIUKI Slope = 8.304&005 NnA-2 

Stcn-age mdulus (man +/- 9)) = 1.243M06 +/- 1.451&005 W - 2  
-US (m +/- SD) = 5 . 8 6 M 0 4  +/- 6.845&-003 W - 2  

Maximan mg-ing Stress = 1 . 5 4 W 0 5  W - 2  . . 
WUUIUII hg** Stress = 9.436d-004 W - 2  
M d m m  Fwxent Engimering Strain = 2 . 2 9 M 0 1  . . Mmmum n t  Eng-ing Stra in  = 1.873d-001 
Maximan ISue Stress = 1.892d-005 Em -̂2 . . 
WnUTUTI True Stress = 1.121d-005 NnA-2 
Maxjnum Percent True Strain = 1.871&01 . . 
Muumrm PercMt True Strain = 1 . 5 7 M 0 1  



OPlWiTR - Patr ick Rmm 20 Aug 2001 
I n p r t w i d t h o f s p e c ~ i n ~ 3  
Ingut thiihess of specimen i n  -1.2%-3 
Inpr t  gauge length i n W 4 8  
Tb center selected data akut z e m ,  

0.793 was added to Stress and 
0.910 was added to Strain 

Frcm an average over 3 ccnplete cycles: 
The frequency is 3.00 Hz 
Magnitude ratio is 2.0004 
Phase difference is -3.2299 ckgmes 
Tan delta is -0.0564 

MxUus (mean +/- SD) = 1.227d-006 +/- 1.057M05 NnA-2 (average slope as functicn of strain) 
-Slope = 1.517d-006 IW-2 . . 
MUUXUKI Slope = 1.036ee006 W - 2  

Storage mdulus (mean +/- SD) = 1.22WO6 +/- 1.055e1-005 W - 2  
Loss EdUlUS (m +/- SD) = 6 . 9 1 M 0 4  +/- 5.954et003 NnA-2 
MdmEII hg-hg Stress = 1.392et-005 W - 2  . . Itmmm hgjneer ing  Stress = 8.236d-004 NnA-2 
Maxkm Percent Fngjreering Strain = 2 . 2 9 W 0 1  . . 
l4uwn.m Percent mgjreering Strain = 1.875d-001 
m 'DXE Stress = 1.712d-005 W - 2  . . True Stress = 9.780ei-004 W - 2  
Mzudmnn Percent True Strain = 1 . 8 7 M 0 1  . . 
M ~ ~ ~ L T I  Fercent True Strain = 1.564ee001 

OPHWKR - Patr ick Rcman 20 Aug 2001 
I n p t  width of specimen in m t e ~ M e 3  
Inpr t  t h i d m s s  of specimen in ~ 1 . 1 4 ~ 3  
Iqut gauge length in m 4 8  
m center selected data abart zem, 

0.779 was added to Stress and 
0.909 was added to Stra in  

Fmn an average over 2 carplete cycles: 
The fmqmxy is 4.00 Hz 
Magnitude ratio is 2.0630 
Phase differeme is -2.1375 degrees 
Tan delta is -0.0373 

MxkiLus (mean +/- SD) = 1.405eH)06 +/- 9.337et-004 W - 2  (average slope as £unction of strain) 
Maximrm Slope = 1.600&006 W - 2  . . 
MUUXUKI Slope = 1.214M06 MA-2 

Storage mdulus (mean +/- SD) = 1.404d-006 +/- 9 . 3 3 W 0 4  W - 2  
LCSS -US (m +/- SD) = 5.242d-004 +/- 3.482M03 MA-2 

Maximrm Percent Enghex ing  Strain = 2.289e-i-001 . . 
Itmmm Percent Engineering Strain = 1.876eM01 
MdmEII True Stress = 1.957M05 W - 2  . . 
Muumrm 'DXE Stress = 1.108et005 MA-2 
t4&num Fercent Rue Strain = 1.886d-001 
Minimum P e r c e n t  T r u e  S t r a i n  = 1.556e+001 



OPEWICR - Patrick Fbmn 20 Aug 2001 
InptwidthofspeciIlt?ninIEkeEM+3 
In@ thickness of s p e c h  in meters>1.68e-3 
Inprt gauge length i n  m 4 8  
Tb center selected data abxt zero, 

0.602 was addedto Stress and 
0.903 was ackW to Strain 

Fran an average aver 2 carplete cycles: 
The frecpncy is 5.00 Hz 
Magnitude ratio is 4.3662 
Phase cliff- is 351.4361 degrees 
Tan delta is -0.1507 

Wxblus (man +/- SD) = 8.415eM05 +/- 1 . 1 5 W 0 4  W - 2  ( m a w  slqe as functicn of strain) 
MaXhUKt Sl- = 8.659et005 W - 2  . . 
MYlurum Slope = 8.102et005 W - 2  

Storage mdulus (mean +/- SD) = 8 .321d05  +/- 1.138etO04 W - 2  
Loss (m +/- SD) = 1 . 2 5 4 4 0 5  +/- 1.714M03 I W - 2  
MaXhUKt ms-ing Stress = 4.618&-004 W - 2  . . 
M.m.num Rqbeering Stress = -1.374et004 M A - 2  
Maxjnum Percent Engimering Strain = 2.307-1 . . 
Mmumm Percent Eng-ing Strain = 1.745eHH)l 
Maximmi True Stress = 5 . 6 8 M 0 4  W - 2  . . 
MYlurum lhre Stress = -1.613d-004 W - 2  
MaXhUKt EWcent True Strain = 1.885eH)Ol . . 
MYlurum Fercent True Strain = 1.485ee001 

A samples - [Group B] 

OPE?AXR - Patrick Rmm 27 Aug 2001 
Irqxlt w i d t h  of specimen in meters>6e-3 
Inpt thkkmss of Specimen in mzberiP1.3-3 
In@ gauge 1- in W 4 8  
lbcenterselecteddataabxltwo, 

0.859 was adQd to Stress and 
0.909 was added to Strain 

FYun an average wer 3 ccnplete cycles: 
The frecpncy is 0.25 Hz 
Magnitude ratio is 1.1307 
Phase difference is 358.2384 degrees 
Tan delta is -0.0309 

MxUus  (man +/- SD) = 2.328etO06 +/- 7.008et006 N'f-2 (average slope as function of strain) 
Maximnn Slq?e = 9.40-07 NnA-2 . . 

Slcpe = 1 . 2 9 M 0 5  Nn^-2 
Starage &us (man +/- SD) = 2.327d-006 +/- 7.005e+O06 M A - 2  
loss &US (m +/- SD) = 7.181d-004 +/- 2 .162d05  W - 2  
MaxirnrmFZig-ing Stress = 1 . 6 5 M 0 5  W - 2  . . Mumum Engineering Stress = 1 . 2 3 W 0 5  W - 2  
Miudmmn Percent Engineering Strain = 2.292e4-001 . . 
Mvllmpn Percent E n g d i n g  Strain = 1.874etOOl 
Maximmi- Stress = 2.032-05 W - 2  . . 

Stress = 1.472eC005 W - 2  
Maxjnum Percent True Strain = 1.865ee001 . . 
Muumnn Percent True Strain = 1.578el-001 



OPBWKR - Patrick RaMn 27 Aug 2001 
In@ w i d t h  of  specimn in mzker&6e-3 
Inprt thickness of specimen in m t e r s - 1 . 2 2 ~ 3  
Inprt gauge length in m 4 8  
Tbcenterselecteddataalxxtwo, 

0.885 was added to Stress and 
0.909 ms added to Strain 

E'ran an average over 4 ccnplete cycles: 
!BE freqcmcy is 0.50 Hz 
Magnitude ratio is 0.9510 
Phase differeriix is -0.0009 &gees 
Tan delta is -0.0000 

W u s  (mean +/- SD) = 1.808MO6 +/- 1.582d-006 W - 2  ( a w a g e  slop as fumtkm of strain) 
M ~ ~ ~ R I I  Slope = 2.10-07 W - 2  . . 
MUUIUII Slope = 4.64219405 NnA-2 

Storage -us (m +/- 9)) = 1.808eH)06 +/- 1.582~9-006 MA-2 
&US m rea an +/- SD) = 2.772eH)Ol +/- 2.426d-001 W - 2  

Maximnn Engineering Stress = 3.583eM05 NnA-2 . . 
Mumnnt~ Ehgjneering stress = 2.837M05 NnA-2 
Maximnn Percent Engineering Strain = 2.293eI-001 . . 
Mumum Percent Engineering Strain = 1.874d-001 
Maximrm lkue Stress = 4.404et005 W - 2  . . 
MUWIUII lkue Stress = 3.368ei-005 Nn -̂2 
Maxhm Percent- Strain = 1.865et001 . . 
Mumum Percent True Strain = 1.578eH)Ol 

OPEWTW. - Patrick RaMn 27 A u ~  2001 
r n p I t w i d t h 0 f ~ i n ~ & 3  
Irqxlt thkknes of specimen in -1.48e-3 
Irqxlt gauge length inrmp48 
To center s e l u  data abart zero, 

0.875 was added to Stress and 
0.908 was added to Strain 

Fran an average over 2 ccnplete cycles: 
The frequency is 1.00 Hz 
Magnitude ratio is 1.0106 
Phase difference is 0.2422 c k q r e s  
Tan &lta is 0.0042 

W u s  (rean +/- SD) = 1.503e+O06 +/- 3 . 3 1 W 0 5  W - 2  (average slcpe as functicn of strain) 
Maximnn Slope = 3.850et006 NnA-2 . . 
MUWIUII Slape = 6.774&005 W - 2  

Storage mdulus (m +/- SD) = 1.503et006 +/- 3 . 3 1 W 0 5  NIP-2 
rosS &US (mean +/- SD) = 6.354&03 +/- 1.399ee003 W - 2  
Maximnn Engineering Stress = 3 . 3 2 W 0 5  NIP-2 . . 
Muumrm mgineering Stress = 2 . 5 8 W 0 5  NnA-2 

Percent Engimering Strain = 2 . 2 9 W 0 1  . . 
Mumum Percent hg-hq Strain = 1.873&-001 
Maximnn True Stress = 4.092&05 W - 2  . . 
Mumum Stress = 3.074d-005 W - 2  
Maximnn Percent True Strain = 1.866d-001 . . Mmmmn Percent True Strain = 1.577d-001 



OERAKR - Patrick Ramn 27 Aug 2001 
I n p r t w i d t h o f s p e c ~ i n ~ 6 e - 3  
Inpt thickness of spcimen in  mbrs-1.17e-3 
Inprt gauge length inmrp48 
'Ib center selected data atcut zero, 

0.769 was a&ledto Stress and 
0.908 was adjed to Strain 

Fmm an average over 1 unplete cycles: 
The frequency is 2.00 Hz 
W t u d e  ra t io  is 2.0530 
Phase cliff- is -3.0966 ckqrees 
Tan delta is -0.0541 

-US (m +/- SD) = 1.367eM06 +/- 1.64Oet005 NnA-2 (average slcpe as furacticn of strain) 
Fkdmm Slope = 1.977M06 W - 2  . . - Slope = 9.652M05 W - 2  

Starage mxiulus (m +/- SD) = 1.365&06 +/- 1.637eI-005 W - 2  
Lc~S -US (mean +/- SD) = 7.382M04 +/- 8.858M03 W - 2  
M i x h u m  J3qin&ing Stress = 1.501e+O05 W - 2  . . Muum.nn Engineering Stress = 8.636M04 NnA-2 
Maxinum Pefient Engineering Strain = 2 . 2 9 W 1  . . 
Mmmm Rqimering Strain = 1.873eH)Ol 

?hae Stress = 1.845et005 W - 2  . . 
-True Stress = 1.025et005 MA-2  
Maximon Percent True Strain = 1.870eK)Ol . . Mmmm EQnent Trw Strain = 1 .573401 

OPERMCR - Patrick Rmm 27 Aug 2001 
Inprtwidthof specinen in-3 
Inprt thi&ness of specimen in retaxS-1.23e-3 
Inprt gauge length in 1m~48 
To center sel& data abart zeJm, 

0.787 was added to Stress and 
0.910 was addedto Strain 

Fran an average wer 2 -ete cycles: 
The frequeracy is 3.00 Hz 
Magnitude rat io  is 2.0042 
Phase differexe is -2.5072 degrees 
Tan delta is -0.0438 

l4xh.l~~ (man +/- SD) = 1.350et006 +/- 1.298d-005 W - 2  (a- slcp as £umtia~ of strain) 
Maximrm S l e  = 1.671eI-006 W - 2  . . - S l c p  = 1.002d-006 Em -̂2 

Stmage IItXhdUS (m +/- SD) = 1.34-06 +/- 1.297&005 W - 2  
k6s &US (m +/- SD) = 5.907&004 +/- 5.677d-003 NnA-2 
Maxjnum Engineering Stress = 1.540eM05 NnA-2 . . Mnmum Bqbeering Stress = 9.33-04 NnA-2 
Wximm Percent Engineering Strain = 2.295el-001 . . 
M u m u m  Percent E n g i r e r i n g  Strain = 1.874-1 
Maxinum True Stress = 1.893M05 W - 2  . . 
-?Sue Sttess = 1.108&005 MA-2  
Maximon Percent True S t r a i n  = 1.875et001 . . 
Muumrm Percent True Strain = 1.564d-001 



OPEWtX - Patrick RaMn 27 Aug 2001 
I@ w i d t h  of specimen in m z t e r ~ 6 e - 3  
In@ thidcmss of specinrn i n  mter91.2e-3 
In@ gauge lei-#& i n  m 4 8  
Tocenter selecteddataabcut zero, 

0.782 was added to Stress md 
0.910 was -to Strain 

Fran an average aver 3 cmplete cycles: 
The frequency is 4.00 Hz 
Magnit& ratio is 2.0980 
Phase difference is -2.4435 degms 
Tan del ta  is -0.0427 

-us (man +/- SD) = 1.3OWO6 +/- 9.352M04 NnA-2 (average slcpe as functicn of strain) 
Maximrm Slope = 1.514d-006 W - 2  . . - Slcpe = 1.118ee006 NnA-2 

Storage m3dulus (m +/- a )  = 1.304etO06 +/- 9.343ei-004 mA-2 
(m +/- SD) = 5.565e4-004 +/- 3.987M03 W - 2  - mg-ing Stress = 1.439d-005 W - 2  . . kimmm Engineering stress = 8.213ei-004 W - 2  

Maxhum Fexent mgineering Strain = 2.289eH)Ol . . Mmmm Percent Engbzering Strain = 1.876e-l-001 
Maximrm True Stress = 1.77Od-005 W - 2  . . - True Stress = 9.761404 W - 2  
hkx&nnn Percent Rue Strain = 1 . 8 8 M 0 1  . . M u m u m  Rercent True Strain = 1.556e-l-001 

- Patrick Bmm 27 Aug 2001 
In@widthofspech~ninm&ers%+3 
Iqut thkhess of spchxi in mtecel.45e-3 
Inprt gaqe length i n m 4 8  
Tbcenterselededdataabartzero, 

0.842 was added to Stress and 
0.910 was added to Strain 

Fran an m g e  aw 3 carplete cycles: 
The frequency is 5.00 Hz 
M a p i t u l e  ratio is 1.4333 
Phase difference is -2.0229 &gms 
Tan delta is -0.0353 

WcUus (mean +/- SD) = 1.60&+006 +/- 1.036d-005 W - 2  (average slope as function of strain) 
Maximnn Slope = 1.794d-006 MA-2 . . Slcpe = 1.476M06 W - 2  

Storage &us (mean +/- 9)) = 1.607et006 +/- 1.035eK)05 NnA-2 
kSS (m +/- SD) = 5 .677404  +/- 3.657et003 W - 2  

Eng-ing Stress = 2.592M05 NnA-2 . . -mgineering Stress = 1.845e4-005 W - 2  
Maximnn Percent Engimering Strain = 2.289eHX)l . . Mmmmn Reroent Engimering Strain = 1 .874401  
i4&.mnn True Stress = 3 . 1 9 W 0 5  I'M-2 . . 
~ m m m  pue stress = 2. i g m o s  mA-2 
Maximrm Percent True Strain = 1.886e-l-001 . . 
t4mm.m Percent True Strain = 1.554eH)Ol 



A samples - [Group C ]  

OPEWIR - Patrick Rmm 27 Aug 2001 
Inp t  wid th  of s p e c h  in meter96e-3 
Inprt thidmess of specimen in -1.53e-3 
I@ gauge length in -48 
To center selected data abart zero, 

0.857 was added to Stress and 
0.909 was added to Strain 

Fmn an average 1 anplete cycles: 
The fresueracy is 0.25 Hz 
Maqnitude rat io  is 1.0514 
Phase cliff- is 0.2303 degrees 
Tan delta is 0.0040 

W u s  (m +/- SD) = 2.136et006 +/- 5.911d-006 W-2 (average slope as functicn of strain) 
Maximnn Slope = 8.491407 W - 2  . . 
MUUIUTI Slope = 1.303eto05 W - 2  

-age &us (man +/- SD) = 2.136et006 +/- 5.911&06 MA-2 
Irxss IK&Lus (m +/- SD) = 8.587d-003 +/- 2.376et004 W - 2  
Maxjnum mg-ing Stress = 1 . 7 2 W 0 5  IW-2 . .  
~~UUUII mgineering Stress = 1.308eH)05 W - 2  
Maximrm Percent Engimering Strain = 2 .292401  . . Muumnn Percent Engimering Strain = 1.875eM01 
Maxjnum ISue Stress = 2 .121405  W - 2  . . 

ISue Stress = 1.553d-005 W - 2  
Maximnn Percent True Strain = 1.865eH)Ol . . 
Mmmnn Percent True Strain = 1.578eH)Ol 

OPE3WDR - Patrick RoMn 27 Aug 2001 
I n p r t w i d t h o f s p e c i m n i n ~ 3  
In@ thichess of s p e c h m  in Itleters>l.ZOe-3 
Inplt gauge length i n  -48 
To Cerrter selected cMa abaTt z e m ,  

0.878 was added to Stress and 
0.909 was added to Strain 

Fmn an average over 1 anplete cycles: 
The is 0.50 Hz 
Magnitude ratio is 1.0213 
Phase differenoe is 359.5977 degrees 
Tan delta is -0.0071 

Wdulus (m +/- SD) = 1 . 8 9 W 0 6  +/- 1.716et006 W - 2  (average slope as fmctim of strain) 
MXknRn Sl- = 2.68-07 W - 2  . . Slope = 4.981405 W - 2  

Sterage miulus (man +/- S) = 1 . 8 9 W 0 6  +/- 1 . 7 1 W 0 6  MA-2 
(m +/- SD) = 1.351&04 +/- 1.223€+004 W - 2  

~aximm Enginering stress = 3 . 4 9 ~ 0 5  mA-2 . . mg-ing stress = 2.73-05 NnA-2 
Maximin Percent Engimering Strain = 2 .292401  . . 
Mmmnn E%zcent E n g d i n g  Strain = 1.874eI-001 
Maxhm True Stress = 4.29Oe-l-005 W - 2  . . 
Mvllmnn !Bw Stress = 3.2453-005 NnA-2 
Maximnn Percent True Strain = 1 . 8 6 W 0 1  . . 
Mumum Percent True Strain = 1.578eH101 



- Patrick RaMn 27 Aug 2001 
Inprt width of s p e c h  in n-etas-6e-3 
Inpt thkkness of specimen in -1.3-3 
Inprt gauge length in m 4 8  
mcenter~electedQtaabout~era, 

0.880 was added to Stress and 
0.908 was added to Strain 

Fran an average wer 2 carp1et.e cycles: 
Tfle frequency is 1-00 Hz 
Magnitude ratio is 0.9622 
Phase difference is 0.6369 dqrees 
Tan delta is 0.0111 

M x U u s  (mean +/- SD) = 1.515M06 +/- 2.269.9-005 N f - 2  (average slcpe as fmdkn of strain) 

. . Maximrm Slope = 2 . 3 7 W 0 6  W - 2  
Mmmum Slcpe = 7.241ei-005 W - 2  

Starage mzdulus (man +/- 9)) = 1.515ei-006 +/- 2.269d-005 W - 2  
IDSS -US (m +/- SD) = 1.684404 +/- 2.522d-003 W - 2  
Maxjnum Eng&ing Stress = 3.604ei-005 W - 2  . . - % d i n g  Stress = 2 . 8 5 W 0 5  W - 2  
Maxknn Percent Engineer- Strain = 2.293eKH31 . . Mmmm Percent Engineering Strain = 1.873ec001 

'Jhe Stress = 4.431405 MA-2 . . 
Muumnn True Stress = 3.384d-005 W - 2  
Maximnn Percent True Strain = 1.866e+O01 . . 
Mmmnn Femmt True Strain = 1.577ei-001 

OPEWER - Patrick Itmen 27 Aug 2001 
l i q u t w i d t h o f s p e c i m e n i n ~ 6 e - 3  
liqut thiclahess of specimn in mtere1.42e-3 
Inp t  gauge length in nnP48 
'It, center selected data atart zem, 

0.786 was addedto Stress and 
0.908 was added to Strain 

Fran an average over 1 mrplete cycles: 
The f3xqmcy is 2.00 Hz 
m t u d e  ratio is 1.9266 

d i f f m  is -2.0905 
Tan delta is -0.0365 

-us (m +/- SD) = 1.246d-006 +/- 1.412et-005 W - 2  (average slcpe as £umAicn of strain) 
Maximrm Slcpe = 1.546&-006 W - 2  . . 
-Slope = 8.54Od-005 W - 2  

Storage ncdulus (mean +/- SD) = 1.245d-006 +/- 1.411ei-005 W - 2  
&US (m +/- SD) = 4.545&004 +/- 5.149et003 W - 2  

Maximnn m g d i n g  Stress = 1.491405 W - 2  . . - Stress = 9.023d-004 W - 2  
M x h u m  Feramt Engimering Strain = 2.295~3-001 . . Mmmm -t mq-ing Strain = 1.873eH)Ol 
Maxjnum True Stress = 1.833et005 W - 2  . . 
Mmmtnn ISue Stress = 1.072d-005 W - 2  
Maxjnum Bxent  True Strain = 1.870e+001 . . M u m u m  Bment True Strain = 1.571etO01 



0- - Patrick m 27 Aug 2001 
I n p t  width of specimen in -6e3 
Inprt thidnss of  spcimen in -1.2le-3 
Inplt gauge length in m 4 8  
Tb center selected data abcut zero, 

0.774 was added to Stress and 
0.910 was added to Strain 

F'ran an average over 1 cmplete cycles: 
?he frequency is 3.00 Hz 
Magnitude ratio is 2.1212 
Phase d i f f m  is -1.2756 
Tan delta is -0.0223 

Mocblus (man +/- SD) = 1 . 3 2 0 0 6  +/- 1.27WO5 Nn"-2 (a- slope as functicn of strain) 
Slope = 1.687d-006 W - 2  

a .  Slope = 1.092d-006 W - 2  
Storage rrcdulus (mean +/- SD) = 1.32Oe+O06 +/- 1 . 2 7 W 0 5  W - 2  
W &US (m +/- SD) = 2.939M04 +/- 2.841d-003 W - 2  
Maxjmnn mg-ing Stress = 1.418e+005 W - 2  . . - mgheering Stress = 8 . 1 4 W 0 4  W - 2  
Maxhm Percent Engineering Strain = 2.295eHX)l . . 
Mmmnn Percent Engineering Strain = 1.869d-001 
Maximrm True Stress  = 1.743&05 W - 2  . . 

True Stress  = 9.667d-004 W - 2  
Maxhm Fercent True Strain = 1.873eH)Ol . . 
Mmmm Percent True S t r a in  = 1.566eH)Ol 

OPEWCR - Patrick Rnrran 27 Aug 2001 
Inpltwidthofspecimeninmetery6e-3 
Inplt thickness of specimen in mters-1.1-3 
Inprt gauge length in ~ 4 8  
Tb center seleded data atalt wo, 

0.799 was added to Stress and 
0.911 was addedto Strain 

F'ran an average aver 3 caplete cycles: 
The frequency is 4.00 Hz 
Magnitude ratio is 1.8677 
Phase d i f f m  is -2.4176 degrees 
Tan d e l t a  is -0.0422 

-us (mean +/- SD) = 1.387d-006 +/- 9 . 7 1 W 0 4  W - 2  (average slope as £unctim of s t r a i n )  
Slope = 1.594d-006 W - 2  . . Slape = 1.189d-006 W - 2  

Storage rrcdulus (mean +/- SD) = 1.38-06 +/- 9.7old-004 mA-2 
W &US (mean +/- SD) = 5-848e+004 +/- 4.096eH)03 W - 2  
Maxjmnn hg-hg Stress = 1.741er005 W - 2  . . 

Ebg-hg Stress = 1 . 0 6 0 0 5  W - 2  
Maxjmnn Psment Engineering Strain = 2.288et001 . . 
Mmmun Percent Eqhering Stra in  = 1.877d-001 

True Stress = 2.141d-005 W - 2  . . 
Mmmm ISue Stress = 1.260&005 Nn"-2 
Maximm Percent True Strain = 1 . 8 8 W 0 1  . . Mmmxn J?acent True Strain = 1.555&001 



- Patrick Rmm 27 Aug 2001 
I n p l t w i d t h o f s p e c h i n ~ 3  
Inplt th idass  of specimen in mtms-1 .37e3  
Inprt ga- length in m 4 8  
To center selected data abcut zero, 

0.828 w a s  added to Stress and 
0.910 was added to Strain 

Fran an average over 2 carplete cycles: 
The freguency is 5.00 Hz 
Magnitude ratio is 1.6587 
Phase difference is 357.9089 degrees 
Tan delta is -0.0366 

W u s  ( m  +/- SD) = 1.70Oe+O06 +/- 2.43-04 NIP-2 (average slcpe as functicn of  strain) 
Maximrm Slope = 1.773d-006 W - 2  . . - Sl- = 1.643d-006 W - 2  

Starage mdulus (man +/- 9)) = 1.699d-006 +/- 2.434d-004 Nn4-2 
mdul~ (m +/- SD) = 6 -222d-004 +/- 8.912d-002 W - 2  - E n g M i n g  Stress = 2.214et005 W - 2  . . 

Mmmum Engineering Stress = 1.474M05 W - 2  
Maxinum Percent Ehg-ing Strain = 2.29Od-001 . . 
Mmunnn Percent Eng-ing Strain = 1.867d-001 
Maximrm True Stress = 2.725&05 W - 2  . . - 'Ihe Stress = 1.75Od-005 W - 2  
Maxhm Percent True Strain = 1.882M01 . . 
M m m m  Percent True Strain = 1.559e-t-001 

A samples - [Group Dl 

- Patrick 27 Aug 2001 
I n p r t w i d t h o f s p e c ~ i n ~ 6 e - 3  
Inplt thickness of specimm in n&ec+l.51e-3 
Inplt gauge length in W 4 8  
Tocenterselecteddata a b x t  zero, 

0.874 was addedto Stress and 
0.909 was added to Strain 

Fran an average ovx 2 ccnplete cycles: 
The frequency is 0.25 Hz 
Magnitude ratio is 1.0800 
Phase difference is 0.7833 
Tan delta is 0.0137 

m u s  ( m  +/- SD) = 2.364d-006 +/- 9.119et006 W - 2  (average slope as of strain) 
Maximrm Slope = 1.943ec008 W - 2  . . 
Muumm Slope = 1.522d-005 W - 2  

Stcarage &us (man +/- 9)) = 2.363d06 +/- 9.11W-006 NnA-2 
-US (m +/- SD) = 3.231M04 +/- 1.247d-005 W - 2  

Maximnn mgheering Stress = 1.438d-005 NnA-2 . . Mumum hgheering Stress = 1.075d-005 NnA-2 
Maximnn Percent Ehg-ing Strain = 2.292eH)Ol . . 
Mumum Fercent Eng-ing Strain = 1 . 8 7 W 1  
M&num 'Ihe Stress = 1.767M05 W - 2  . . 

Stress = 1 . 2 7 W 0 5  NnA-2 
k%%&mn Percent True Strain = 1.865d-001 . . 
Mmunnn Fercent True Strain = 1.57W-001 



OPEUiKR - Patrick Rmm 27 Aug 2001 
Inpt wid th  of specinen in r n z k x + - 6 3  
Inpt  thjdcwss of specimen in meters>1.7*3 
I- gauge lerigth in m 4 8  
To center selected data abart zero, 

0.876 was added to Stress and 
0.909 was added to Strain 

Fran an average over 1 anplete cycles: 
The frequency is 0.50 Hz 
Magnitude ratio is 0.9739 
Phase difference is 360.0956 delpees 
Tan delta is 0.0016 

WUS (mean +/- SD) = 1.401er-006 +/- 1.183d-006 ma-2 (average slope a~ functicn of strain) - Slope = 2.091d-007 W - 2  . . 
MmmUKI Slope = 3.86-05 W - 2  

Starage mdulus (mean +/- SD) = 1.401e+O06 +/- 1.183d-006 NnA-2 
LCSS  US (IECXI +/- SD) = 2.190ee003 +/- 1.848d-003 W - 2  
Maximnn E h g h i n g  Stress = 2.782d-005 W - 2  . . M u m u m  Ehgineering Stress = 2.183M05 NnA-2 
Maxhm Percent Eng-ing Strain = 2.292eHX)l . . Mmun.nn Percent Engim?ring Strain = 1.874ee001 
M&KWII True Stress = 3.419&-005 I W - 2  . . 
MmmUKI True Stress = 2.593d-005 W - 2  
Mmhm Percent True Strain = 1.865d-001 . . 
hbnmm Percent True Strain = 1.578eH)O 

OPIBAXR - Patrick W 27 Aug 2001 
Inplt width of s p c h n  in m t e r e 6 e - 3  
1- thkkness of s p e c h  in nr-.ters>1.4&-3 
1- gauge length in rmv48 
Tbcenterselecteddataabar tzem,  

0.881 was added to Stress and 
0.909 was added to Strain 

F'ran an average over 1 carplete cycles: 
The frecluency is 1.00 Hz 
Magnitude ratio is 0.9810 
Phase differen~e is -1.7521 
Tan delta is -0.0306 

W u s  ( m a n  +/- SD) = 1.545E4-006 +/- 3.909ei-005 W - 2  (average slcp as fundicn of strain) 
Maximnn Slope = 4.042er-006 W - 2  . . 
l4mun.m Slope = 7.627er-005 W - 2  

Storage ncdulus (mean +/- SD) = 1.544ee006 +/- 3.907d-005 W - 2  
I#SS &US (m +/- SD) = 4.724&04 +/- 1.195W004 NnA-2 
Maxjmxn Engimering Stress = 3.4 12er-005 NnA-2 . . 
hbnmm E n g k i n g  Stress = 2 .697H05  W - 2  
Maxjnum Percent Eng-ing Strain = 2.293d-001 . . 
Mlrunum Pxcent Engimering Strain = 1.874d-001 
Maxhml True Stress = 4.193d-005 W - 2  . , 
MmmUKI Stress = 3.203d-005 W - 2  
Maxhml Fenent True Strain = 1.865E4-001 . . 
MmmUKI Percent True Strain = 1.578eH)O 



m t - 2 .  t x t  

OPERATaR - Patrick Rmm 27 Aug 2001 
InprtwidthofspecirreninmtenP6e-3 
1- thkkmss of s p e c k  i n  -1.25e-3 
Inpt gauge length in -48 
To center selected data abart ze?m, 

0.764 was added to Stress and 
0.908 was addedto Strain 

Fmn an average over 1 anplete cycles: 
?he frequency is 2.00 Hz 
Maqnitd ratio is 2.0295 
Phase difference is -0.1312 &gees 
Tan d e l t a  is -0.0023 

M u s  (mean +/- SD) = 1.317&06 +/- 1.510et005 W - 2  (average slope as hmticn of strain) 
Maxhm Slcpe = 1 .753406  W - 2  . . 
t4.umnm Slope = 7.924et005 W - 2  

W a g e  -us (mean +/- S) = 1.317d06 +/- 1.510et005 W - 2  
-US ( m ~ a n  +/- SD) = 3.017&03 +/- 3.457&002 W - 2  

Msdmrm Ehg-ing Stress = 1.483d-005 NnA-2 . . 
Mmmnn Ehg-ing Stress = 8.545ee004 MA-2 
Msdmrm Pexent E a q k e r i n g  Strain = 2 . 2 9 W 0 1  . . 
Mmmwm Pexent Engh?ering Strain = 1.873d-001 
Msdmrm True Stress = 1.823d-005 MIa-2 . . 
Mlmmml True stress = 1 . 0 1 ~ 0 5  W - 2  
Maximnn Percent True Strain = 1.870et001 . . 
Mmmwm Fwxent True Strain = 1.573d-001 

OPEMCR - Patrick Ranan 27 Aug 2001 
InprtwidthofspeckinnEters=6e-3 
Inprt thic)cness of s p e c k  in nEters=1.55e-3 
Inprt gauge length i n m 4 8  
lb center selected data abart zero, 

0.813 was added to Stress and 
0.909 was added to Strain 

Fran an average over 2 ccnplete cycles: 
The fmpmcy is 3.00 Hz 
Mqni td  ratio is 1.7123 
Phase difference is -2.2899 degrees 
Tan d e l t a  is -0.0400 

M u s  (mean +/- SD) = 1.303d-006 +/- 1.179M05 MA-2 (average slope as function of strain) 
Maxhm Slope = 1.619d-006 MI"-2 . . Slcpe = 1.095d-006 W - 2  

Ebrage -us (mean +/- SD) = 1 .302d06  +/- 1.179e+005 W - 2  
rosS &US (~~.ean +/- SD) = 5.207&04 +/- 4.713d-003 MIa-2 
Maximnn mg-ing StreSS 1.712&05 W - 2  . . 
Mmmwm Ehg-ing StreSS = 1.105ee005 W - 2  
Maximim FFxcent Engh?ering Strain = 2 . 2 9 W 0 1  . . 
Mlmmml Percent Enghzering Strain = 1.870eH)Ol 
Maximnn True Stress = 2 . 1 0 ~ 0 5  NnA-2 . . 
Mlmmml True Stress = 1.311M05 W - 2  
Maximnn Rrcent True Strain = 1 . 8 7 W 0 1  . . 
Mlmmml Pexent True Strain = 1 . 5 6 W 0 1  



OPEWfKR - Patrick Ranan 27 Aug 2001 
1npl.t w i d t h  of s p e c h  in -6e-3 
In@ thiclcness of specimen in meterY1.08e-3 
Inprt gauge length in m 4 8  
To center selected data abcllt zero, 

0.692 was added to Stress and 
0.910 was added to Strain 

Frcm an average over 2 carplete cycles: 
The frequency is 4.00 Hz 
Magrktxk ratio is 3.0725 
Phase difference is 356.2377 degrees 
Tan delta is -0.0659 

M&lus (man +/- SD) = 1.288et006 +/- 9.848&04 Nn"-2 (average slqe as functicn of strain) 
Maximm Slope = 1.528e-l-006 W - 2  . . 
-Slope = 1.106~+006 W - 2  

Storage rrodulus (man +/- 9)) = 1.285&06 +/- 9.82W04 W - 2  
Loss &US (m +/- SD) = 8.464ee004 +/- 6.472d-003 MA-2 
Maximm Ehg*ing Stress = 9.732d-004 MA-2 . . 
MUUIUKI m g h i n g  Stress = 4.057ee004 MA-2 
Maximm Percent Ehgkeering Strain = 2.289eH)Ol . . 
Mmmm Percent Engimering Strain = 1.844M01 
Maximm True Stress = 1.199&05 MA-2 . . 
Mmmm 'IYUe Stress = 4.815d-004 W - 2  
Maximm Percent True Strain = 1.884ee001 . . 
Mmmm Percent True Strain = 1.557ee001 

OPERATOR - Patrick Roman 27 Aug 2001 
Input width of specimen in meters>6e-3 
Input thickness of specimen in meters>l.60e-3 
Input gauge length in mm>48 
To center selected data about zero, 

0.834 was added to Stress and 
0.910 was added to Strain 

From an average over 3 complete cycles: 
The frequency is 5.00 Hz 
Magnitude ratio is 1.5177 
Phase difference is -2.4947 degrees 
Tan delta is -0.0436 

Modulus (mean +/- SD) = 1.652e+006 +/- 7.861e+004 NmA-2 (average slope as 
function of strain) 

Maximum Slope = 1.739e+006 NmA-2 
Minimum Slope = 1.421e+006 NmA-2 

Storage modulus (mean +/- SD) = 1.650e+006 +/- 7.854e+004 Nm^-2 
Loss modulus (mean +/- SD) = 7.190e+004 +/- 3.422e+003 NmA-2 
Maximum Engineering Stress = 2.376e+005 NmA-2 
Minimum Engineering Stress = 1.651e+005 NmA-2 
Maximum Percent Engineering Strain = 2.289e+001 
Minimum Percent Engineering Strain = 1.878e+001 
Maximum True Stress = 2.929e+005 NmA-2 
Minimum True Stress = 1.961e+005 NmA-2 
Maximum Percent True Strain = 1.886e+001 
Minimum Percent True Strain = 1.555e+001 



A samples - [Group El 

OPEWKR - Patrick Ranan 27 Aug 2001 
In@ wid th  of  specimen in m t e r s 6 e - 3  
In@ thkkness of  specimen in -1.6%-3 
In@ gauge length in ~ 4 8  
Tb center selected data abcut zem, 

0.860 was added to Stress and 
0.909 was added to Strain 

Fran an average aver 1 mplete cycles: 
The frequency is 0.25 Hz 
Magnitude ratio is 1.0976 
Phase difference is 360.4245 degrees 
Tan delta is 0.0073 

bbdllus (m3an +/- SD) =: 1 . 8 4 7 4 0 6  +/- 4.985et006 W - 2  (average slcpe as -on of strain) 
Maximnn Sl- = 1.090d408 W - 2  . . - Slope = 1.737d-005 NnA-2 

Storage mxhlus (man +/- SD) = 1.847e4-006 +/- 4.985&006 W - 2  
Loss &US (m +/- SD) = 1.349eH104 +/- 3.641d-004 W - 2  
Maximnn Ehg-ing Stress = 1.602ei-005 NnA-2 . . - Ehg-ing Stress = 1.21Ck+O05 NnA-2 
Maximnn Percent Engineering Strain = 2.293eH)Ol . . 
Muzunrm Percent Engineering Strain = 1 . 8 7 4 4 0 1  

True Stress = 1.969d-005 W - 2  . . - True Stress = 1 . 4 3 7 4 0 5  NnA-2 
Maximnn Percent True Strain = 1.865et001 . . 
Mumum Percent True Strain = 1 . 5 7 W 0 1  

OEWWlX - Patrick Rawin 27 Aug 2001 
I n @ w i d t h o f s p e c ~ i n ~ 6 e - 3  
In@ thkhess of s p e c k  in metery1.72e-3 
In@ gauge length in m 4 8  
Tb center selected data abcut ZeIO,  

0.876 was  addedto Stress and 
0.909 was added to Strain 

F'mn an average wer 1 q l e t e  cycles: 
The frequency is 0.50 Hz 
Magnitude ratio is 0.9706 
Phase difference is 358.9593 degrees 
Tan delta is -0.0183 

Wddus (rean +/- SD) = 1.518e+O06 +/- 1.491e4-006 W - 2  (awage slcpe as functicn of strain) 
Maximrm Slope = 2 . 2 8 M 0 7  W - 2  . . - Slcpe = 1 . 9 1 3 4 0 5  Em -̂2 

-age &us ( m m  +/- 9)) = 1.518etO06 +/- 1.491d-006 mA-2 
Loss ~ ~ U I U S  (m +/- SD) = 2.773ei-004 +/- 2.723d-004 W - 2  
Maxhm Engkeering Stress = 2.895eH)OS W - 2  . . - Ehg-ing Stress = 2.272ei-005 W - 2  
Maximnn Fercent En-- Strain = 2.292d-001 . . 
M m m a n  Fercent Engineering Strain = 1.874eI-001 
Maxhm True Stress = 3.557et005 W - 2  . . - True Stress = 2 . 6 9 W 0 5  W - 2  
Maxhm Fercent True Strain = 1.865et001 . . 
Mmxnnn Aercent True Strain = 1 . 5 7 W 0 1  



OPtWXKR - Patrick m 27 Aug 2001 
Inpt w i d t h  of specifien in IretfXe6e-3 
Irpk t h k h e s s  of specimen in meters>1.26e-3 
In@ gauge length in m 4 8  
To center seleded data abart zero, 

0.875 was added to Stress and 
0.909 was added to Strain 

kcm an average aver 2 cmplete cycles: 
The frequency is 1.00 Hz 
Magnitude ratio is 1.0094 
Phase difference is -1.2587 dqn!es 
Tan delta is -0.0220 

M u s  ((mean +/- SD) = 1.407et006 +/- 2.966etO05 NnA-2 (average slope as functicn of strain) 
Maxjnum Slope = 3.407eM06 Nna-2 . . 

Sl- = 3.84-05 W - 2  
Storage mdulus (man +/- SD) = 1.407e1-006 +/- 2.965&05 W - 2  

&US +/- SD) = 3.091et004 +/- 6.515&003 W - 2  
Maximnn hgineering Stress = 3.157M05 NnA-2 . . 

hgineering Stress = 2.465d-005 W - 2  
Maxinun E n g d h q  Strain = 2.293e+OOl . . Muumnn Pacent Engheerhq Strain = 1.874et001 
Mxhm True Stress = 3.879d-005 NnA-2 . . 

rrUe Stress = 2.927ee005 W - 2  
Mxhm True Strain = 1.865el-001 . . 
M u m u m  Percent True Strain = 1.578et001 

apERATaw - Patrick Rmxm 27 Aug 2001 
Inprt width of specifien in l&Jx96+3 
Inprt thichess of specimen in  meterY1.19e-3 
Inprt gauge length in m 4 8  
rncenterselecteddataabartzero, 

0.694 was added to Stress and 
0.690 was added to Strain 

Fran an average ow 4 carplete cycles: 
The frequency is 2.00 Hz 
Magnitude ratio is 1.2324 
Phase cliffererace is 357.3667 degrees 
Tan delta is -0.0461 

WU$ (fiean +/- SD) = 1-35-06 +/- 3.114&05 W - 2  (aver- sl~pe as a of Strain) 
S l o p  = 3.80-06 NnA-2 . ' 

MYllmrm Slop = 5.504&005 MI"-2 
Storage &us (man +/- 9)) = 1.354&06 +/- 3.111M05 NnA-2 
Wss (m +/- SD) = 6-23-04 +/- 1.434d-004 W - 2  
Maximnn h g m i n g  Stress = 3.62-05 NnA-2 . . Muumm hgineering Stress = 4.408#003 W - 2  
Maximnn Percent Enghering Strain = 3.033et001 . . Mmmum Fercent Enghetxing Strain = 2.704etOOO 
Maxinun True Sxess = 4.731e-I-005 W - 2  . , Mmmum T h e  Stress = 4.522d-003 W - 2  
Maxinun Rercent !I!cue Strain = 2.338et001 . . 
Mmunnn &rent  True Strain = 2.512et000 



OPERXRX - Patrick RaMn 27 Aug 2001 
Inplt width of spec- in meterY6e3 
In@ thiclaess of qecinW in mztec+1.44e-3 
Inpt gauge length in W 4 8  
mcenterselecteddataaboutzer~, 

0.799 was added to Stress and 
0.909 was  added to Strain 

Fran an average over 2 mrplete cycles: 
The £repmy is 3.00 Hz 
t4qnitude rat io is 1.8010 
Phase differem= is -1.3640 &qes 
Tan delta is -0.0238 

kdiius (mean +/- SD) = 1 . 3 1 W 0 6  +/- 1.187eI-005 W - 2  (average slcp as £unction of strain) 
Maximml Slope = 1.659et006 W-2 . . Mxumnn Slcpe = 1.090eH)06 W - 2  

Storage mdulus (mean +/- 9)) = 1 . 3 1 W 0 6  +/- 1.187eH)05 NnA-2 
Lass mdulus (man +/- SD) = 3.140eH304 +/- 2.826M03 IW-2 
Maximrm mgheering Stress = 1.672M05 MA-2 . . 
MUUIUII Eng-hg Stness = 1.048&05 W - 2  
Maximrm Engineering Strain = 2.296ei-001 . . 
bluunun F+arent Engineering Strain = 1.872eHX)l 
M ~ ~ ~ u I I  lhae Stress = 2.056&005 W - 2  . . 

!Eue Stress = 1.24-05 W - 2  
Maxinum Percent True Strain = 1.876el-001 . . Mumum Percent Tnze Strain = 1.567eH)O 

OFEkWEX - Patrick 27 Aug 2001 
I n p l t w i c K h o f s p e c i m e n i n ~ 3  
mpt Wckness of specimn i n  m t s s l . 2 l e - 3  
lipt gauge length in m 4 8  
To center se1& data atcut wo, 

0.766 was added to Stress and 
0.910 was added to Strain 

Fran an average over 3 anplete cycles: 
The f- is 4.00 Hz 
Magnitude ratio is 2.2043 
Phase difference is -1.7998 degrees 
Tan Wta is -0.0314 

WcUus (mean +/- SD) = 1.285ei-006 +/- 8 . 8 8 W 0 4  W - 2  (average s m  as functicn of strain) 
hbxhm Slcpe = 1.475&06 NnA-2 . . 
MUIUUTI Slope = 1.017etO06 NnA-2 

Starage -us (mean +/- 9)) = 1.284eI-006 +/- 8.881etO04 W - 2  
LCSS &US (m +/- SD) = 4.03-04 +/- 2.791eK)03 W - 2  
M ~ ~ ~ u I I  Eng-ing Stress = 1.34-05 W - 2  

. a  

Murunsn Engineering Stress = 7.27&+004 Nn*-2 
Maxinum Percent Eng-ing Strain = 2 . 2 8 W 1  . . 
Muurnan Percent Eng-ing Strain = 1.856d-001 
Mdmm Due Stress = 1.655&005 W - 2  . . Mmmum Due Stress = 8.62-04 MA-2 
Maxhm Femmt True Strain = 1.886eK)Ol . . 
MUUIUII &rcent True Strain = 1.556ee001 



OPERATOR - Patrick Roman 27 Aug 2001 
Input width of specimen in meters>6e-3 
Input thickness of specimen in meters>l.2le-3 
Input gauge length in mm>48 
To center selected data about zero, 

0.787 was added to Stress and 
0.910 was added to Strain 

From an average over 3 complete cycles: 
The frequency is 5.00 Hz 
Magnitude ratio is 1.9784 
Phase difference is -3.7930 degrees 
Tan delta is -0.0663 

Modulus (mean +/- SD) = 1.289e+006 +/- 2.781e+004 NmA-2 (average slope as 
function of strain) 

Maximum Slope = 1.352e+006 NmA-2 
Minimum Slope = 1.223e+006 NmA-2 

Storage modulus (mean +/- SD) = 1.286e+006 +/- 2.775e+004 NmA-2 
Loss modulus (mean +/- SD) = 8.526e+004 +/- 1.840e+003 NmA-2 
Maximum Engineering Stress = 1.635e+005 NmA-2 
Minimum Engineering Stress = 9.935e+004 NmA-2 
Maximum Percent Engineering Strain = 2.289e+001 
Minimum Percent Engineering Strain = 1.873e+001 
Maximum True Stress = 2.014e+005 NmA-2 
Minimum True Stress = 1.180e+005 NmA-2 
Maximum Percent True Strain = 1.885e+001 
Minimum Percent True Strain = 1.557e+001 

C.1.2 Dynamic uniaxial tension B sample numeric results 

The results below were generated by the Matlab program (Phasediff1bb.m). This 

program was designed to analyze dynamic uniaxial tension test data. The results are 

listed for each B sample run and correspond to the text data file name and dynamic 

frequency at which the samples were tested. For example, the result below of 

Dpdms-1A.t~-t corresponds to the first "A" sample tested at O.1Hz. Five samples were 

tested, A through E for each fiequency. The next result set Dp3w-lB.txt corresponds 

to the next sample of the O.1Hz group tested at O.lHz, and so on increasing in test 

frequency. There are six groups of samples with five sample per group per test 

fiequency. 



PlBS Dynamic uniaxial tension analysis - Matlab results 
Matlab program (phasediff1bb.m) 

B samples - [O.lHz] 
D@s lrestZ Analysis log - 11/18/01 

Tbcenterselecteddataabartzero, 
0.545 was added to Stress and 
0.666 was added to Strain 

Fran an average over 9 caplete cycles: 
The frequency is 0.10 Hz 
Magnitude ratio is 1.0578 
Phase difference is -1099.0397 dqres 
Tan delta is -0.3447 

M x b l u s  (rean +/- SD) = 1.813ec007 +/- 8.003etO07 NnA-2 (average slcpe as £unction of strain) 
M ~ ~ ~ u T I  Slcpe = 1.006&009 MA-2 . . 
WnXIUII Slope = 3-45-05 W - 2  

Starage nrdulus (m +/- SD) = 1 .714407  +/- 7.56-07 NnA-2 
LOSS &US (m +/- SD) = 5.90%+006 +/- 2.608&07 Nf-2 
Maximnn Fng-ing Stress = 1 . 0 9 W 0 6  W - 2  . . 
MUXIUUI FngWing Stress = 2.50-05 W - 2  
Maxinum Fercent Engimsring Strain = 9 .097401  . . 
kfmmum percent Engirmzcing Strain = 3.030eHH)l 
bBxhnn TIXE Stress = 2 . 0 8 W 0 6  W - 2  . . 
kfmmum True Stress = 3.268&05 MA-2 
Maxinum percent True Strain = 4.764&01 . . 
Muumm percent True Strain = 2.325ee001 

W =0.0020 
~nplt thi&mss of sp5nm in mtere .  le-3 
Gauge =16.5000 

Tb center selected data abart zero, 
0.598 was added to Stress and 
0.667 was acfjed to Strain 

Fran an average aver 11 ccnplete cycles: 
Tne frequency is 0.10 Hz 
Magnitude ratio is 1.0601 
Phase difference is -1119.8915 degrees 
Tan delta is -0.8353 

MxUus (m +/- SD) = 1.676etOO7 +/- 7.964et007 MA-2 (average s l q  as £unction of strain) 
%ximm~ Slope = 1.441&09 MA-2 . . 
WnXIUII Slope = 2.354&005 MA-2 

Storage &us (man +/- SD) = 1.287407 +/- 6.112407 W - 2  
IDS n m d u l . ~ ~  (mean +/- SD) = 1.075ee007 +/- 5.106et007 W - 2  
Maximnn - W i n g  Stress = 1.001&06 W - 2  . . 
MUXIUUI E h m i n g  Stress = 2 .374405  MA-2 
Maxirmm Percent mimering Strain = 9 . 0 8 W 0 1  . . 
MUXIUUI Percent Engirmzcing Strain = 3.031ee001 
M ~ ~ U U I  True Stress = 1.909d-006 W - 2  . . -True Stress = 3 . 1 1 W 0 5  MA-2 
Mxbnnn Percent True Strain = 4 .761401  . . Mumum Percent True Strain = 2.326eH101 



Tocerrterselecteddataabartzero, 
0.542 was addedto Stress and 
0.667 was added to Strain 

Fron an average wer 14 ccnplete cycles: 
'Ille flxcpmcy is 0.10 Hz 
Magnitude ratio is 1.0794 
Phase difference is -1522.1041 decpees 
Tan delta is -7.1869 

~ C W U S  (mean +/- SD) = 1.746e4-007 +/- 8 . 4 0 W 0 7  W - 2  (average slcpe as £unction of strain) 
Maxinum Slope = 1.646&009 W - 2  . . - Slcpe = 3.457&05 W - 2  

Storage mdulus (mean +/- SD) = 2.406ee006 +/- 1.158&007 W - 2  
(mean +/- SD) = 1.729&07 +/- 8.324M07 NnA-2 

Maxinum hg-ing Stress = 1.046e-kOO6 W - 2  . . 
M~HIUII - d i n g  Stress = 2.059d-005 M A - 2  
Maxinum Percent hgineering Strain = 9.088eH)Ol . . Mmunnn Percent hgineering Strain = 3.032et001 
Maxinum'hue Stress = 1.995d-006 W - 2  . . 
IW~MUTI m Stress = 2.68-05 W - 2  
Maxinum -t True Strain = 4.761MOl . . 
Mmmm Percent True Strain = 2.32!%+001 

W = 0.0020 
Inplt thickness of spechen in mters-. le-3 
Gauge =16.5000 

'Ib center select& data abcut zero, 
0.581 was addedto Stress and 
0.666 was added to Strain 

Fnm an =age (XIE?T 18 carplete cycles: 
'RE f l q u e i q  is 0.10 Hz 
Magnitude ratio is 1.0643 
Phase d i f f m  is -2002.1848 deqrees 
Tan delta is -0.4071 

Hxblus (man +/- SD) = 1 . 5 9 4 4 0 7  +/- 7.114M07 W - 2  (average slope as fundicn of strain) 
Maximml Slope = 1.389d-009 NnA-2 . . 
MUIUUII Slape = 3.68-05 W - 2  

W a g e  mdulus (m +/- 9)) = 1.476eI-007 +/- 6.589eI-007 Nn^-2 
-US (m +/- SD) = 6 . 0 0 9 4 0 6  +/- 2.682M07 W - 2  

Maxinum minesing Stress = 9 . 9 0 1 4 0 5  W - 2  . . 
Mmmm h g d i n g  Stress = 2.583el-005 NnA-2 
Miucimm Percent Engineering Strain = 9.096ee001 . . M.mmnn Percent R~gimering Strain = 3.030e+OOl 
Maxinum Rue Stress = 1.88-06 M - 2  . . - !PKW Stress = 3.384d-005 NnA-2 
Maxinum Percent True Strain = 4.764d-001 . . Mmmum Percent True Strain = 2 . 3 2 W 0 1  



W =0.0020 
Inplt thickness of e i m e n  in mz&rs>. 0-3 
Gauge =16.5000 

To center selected data a b x t  zero, 
0.595 was  added to Stress and 
0.667 was acLled to Strain 

F m  an average over 14 carplete cycles: 
The frequency is 0.10 Hz 
Magnitude ratio is 1.0543 
Phase d i f f m  is -1701.2881 degrees 
Tan delta is -6.5043 
(mean +/- SD) = 2.011d-007 +/- 1 -023eH308 W - 2  (average slqe as fumkicn of strain) 
Maxjnum Slcpe = 1.65&+009 NnA-2 . . 

Slope = 3.929d-005 NnA-2 
Storage &US (m +/- SD) = 3 . 0 5 W 0 6  +/- 1.555e+007 W - 2  

-US (m +/- SD) = 1.987ee007 +/- 1.011ee008 MA-2  
Maximnn mgineering Stress = 9.063&-005 W - 2  . . 
MUUWIII mgineering Stress = 2.054ee005 W - 2  
Maximnn Percent Eng-ing Strain = 9.088ee001 . . Mumum Percent Eng-ing Strain = 3.032d-001 

ISue Stress = 1.72913406 NnA-2 . . 
I4uun.m !Cme Stress = 2.69Oel-005 W - 2  
Maximnn Percent True Strain = 4.761ee001 . . 
M.urmm Percent True Strain = 2 . 3 2 W 0 1  

B samples - [0.25Hz] 

Inpt thickness of s p e c h  in 1r&~s-.09e-3 
Gauge =16.5000 

T o c e n t e r s e l ~ d a t a a b c l l t z e z ~ ,  
0.545 was a&kd to Stress and 
0.667 was added to Strain 

kan an average m 25 m r p l e t e  cycles: 
frequenc~ is 0.25 Hz 

Magnitude ratio is 1.0789 
Phase differems is -959 -9286 degrees 
Tan delta is -1.7260 

Wxblus (m +/- SD) = 3.810eH)M +/- 1.069eH)07 NnA-2 (average slcp as Kmcticn of strain) 
u Slope = 1.682d-008 NnA-2 . . 
MLllllTLrm Slope = 1.44-05 tW-2 

w a g e  mddus (mean +/- 9)) = 1.91Oet006 +/- 5.360&-006 W - 2  
IDS -US  rean an +/- SD) = 3.297d-006 +/- 9 . 2 5 W 0 6  W - 2  
Maximnn mgineering Stress = 1.072d-006 W - 2  . . MUUUUUI Ehg-incJ SXFSS = 2 .55W05  W - 2  
Maxhm~ Rercent mgimering Strain = 9.096et-001 . . 
Mmumm Pen=ent Engimering Strain = 3.03Oet001 
Maximrm Rue Stress = 2.041d-006 NnA-2 . . - True Stress = 3.324d-005 W - 2  
Maximnn B r e n t  True Strain = 4.76-01 . , - Percent True Strain = 2.325ee001 



W =0.0020 
Input ihkkness of specimen in mte rY . l l e -3  
Gauge =16.5000 

lbcenterselectedQtaabcxltzero, 
0.557 was added to Stress and 
0.667 was addedto Strain 

Frar\ an average over 23 mrplete cycles: 
The frecpmq is 0.25 Hz 
Magnitude ratio is 1.0329 
Phase difference is -839.9265 degrees 
Tan delta is 1.7382 

MxWus (man +/- SD) = 3.27fW006 +/- 8.594d-006 Nn"-2 ( m a w  slope as functicn of strain) 
S l ~ p e  = 1 . 3 0 W 0 8  W - 2  . . - = 1.449@-005 W - 2  

Storage mdulus (man +/- 9)) = 1.635et006 +/- 4 . 2 8 W 0 6  ma-2 
W (m +/- SD) = 2.841d-006 +/- 7-44-06 W - 2  
Maxinum Enginering Stress = 1.07fW006 W - 2  . . 
Mumnun Enqineainq Stress = 2.682e4-005 W - 2  
MaY&UII PE?rcent h & e r i n g  Strain = 9.094eKX)l . . M.uumnn Percent Engimering Strain = 3.030et001 
Maxhml True Stress = 2.055d-006 M1*-2 . . 
MUUIUTI True Stress = 3.516405 NIP-2 
Maximrm lrercent True Strain = 4.763~9-001 . . 
Mmmml Percent True Strain = 2.325ee001 

Tocenterselecteddataabart~, 
0.537 was acfjed to Stress and 
0.667 was added to Strain 

F'ran an aver- aver 26 carplete cycles: 
The frequency is 0.25 Hz 
Magnitude ratio is 0.9929 
Phase diffemme is -1525.1990 ckgres 
Tan d e l t a  is -11.8428 

Mcdulus (man +/- SD) = 3.27-06 +/- 8.562etO06 Ma-2 (average s l q e  as M m  of strain) 
MaY&UII Slope = 1.352d-008 W - 2  . . 
bfumnnn Slope = 1.767d-005 W - 2  

Storage nudulus (man +/- 9)) = 2.757-5 +/- 7.204MO5 W - 2  
rosS -US (m +/- SD) = 3.265406 +/- 8.531etO06 MI"-2 
Maxinum Engineering Stress = 1.075ee006 W - 2  . . Mmmtm Engheerirrg Stress = 2 . 6 5 W 0 5  FW-2 
lbxhm W t  Engimering Strain = 9.090eHX)l . . 
Mumum Percent Engineering Stra in  = 3.031d-001 
Maxinun True Stress = 2.051d-006 W - 2  . . Muumm True Stress = 3.465ei-005 W - 2  
Maxinum Percent Rue Strain = 4.762d-001 . . 
bfumnnn Percent True Stra in  = 2.325el-001 



W =0.0020 
Inplt thic]aEess of spec* in -. le-3 
Gauge = 16.5000 

m center se1- data absut zezp, 
0.595 was added to stress and 
0 -667 was xHed to Strain 

Fmm an =age over 21  ccnplete cycles: 
The fmqmmq is 0.25 Hz 
t4qdtude ratio is 1.0244 
Phase difference is -1252.6172 Qgrees 
Tan delta is 0.1299 
(mean +/- SD) = 3.581et006 +/- 9 . 0 4 W 0 6  &IA-2 (average slcpe as Men of strain) 
Maximnrr S l ~ p e  = 1.195ee008 W - 2  . . - Slape = 1.410ec005 &IA-2 

Storage M u s  (man +/- 9)) = 3.552etO06 +/- 8.965e1-006 mA-2 
modulus (man +/- SD) = 4.615ei-005 +/- 1.165d-006 MA-2  

M a x h m  Engineering Stress = 1.141eM06 NIP-2 . . 
Enghe&ng Stress = 3.226d-005 W - 2  

Maxhurn Percent Fng-ing Strain = 9 .091401 . . 
Mmmurt~ Percent Eng-ing Strain = 3.030e+001 - True Stress = 2.178ee006 W - 2  . . 
l4lmmm True Stress = 4.222ee005 W - 2  
Mxhum Percent True Strain = 4.762401 . . Mumnm Percent True Strain = 2.325d-001 

Inprt thic]aEess of specimen in -.le-3 
Gauge =16.5000 
Tocerr terselekddataaboutzero,  

0.550 was a&kd to Stress and 
0.667 was a&kd to Strain 

Fmn an average over 24 ccnplete cycles: 
The f- is 0.25 Hz 
Magnitude ratio is 1.0389 
Phase difference is -287.8758 
Tan &lta is 3.1014 

W u s  (m +/- SD) = 3.726d-006 +/- 1.141eI-007 W - 2  (average slcpe as functim of strain) 
Maximnrr Slcpe = 2.279-08 MA-2  . . 

Slope = 1.958eH305 W - 2  
Storage M u s  (man +/- 9)) = 1.144406 +/- 3.501eK106 &IA-2 
rosS modulus I- +/- SD) = 3 - 5 4 7 4 0 6  +/- 1.086ec007 W - 2  
Maxjmnn Ehg&ing stress = 1.134ee006 W - 2  . . 
Muumrm Ehgheering Stress = 2.898d-005 W - 2  
Maximnn Pefient EngitxmAng Strain = 9.090&001 . . 
kimumn Percent E n g W i n g  Strain = 3.031eHH)l 
Maxinum True Stress = 2 .16W06  W - 2  

. ,  
l4lmmm True Stress = 3.796&05 MA-2  
i4axh.m Fement True Strain = 4.762401 . . 
M m m m  Percent True Strain = 2.325ei-001 



B samples - [0.5Hz] 

W 4.0020 
Iqut thickness of specimen in Illeters>.le-3 
Gauge =16.5000 

TocenterselectedQtaaboutzero, 
0.565 ws added to St ress  and 
0.667 ws added to strain 

Fran an average over 25 carplete cycles: 
The frecpncy is 0.50 Hz 
Magnitude ratio is 1.0788 
Phase diff- i s  305.6008 degrees 
Tan d e l t a  is -1.3970 

W d d u ~  (man +/- SD) = 1.631&06 +/- 1.559M06 PWA-2 (average slqx as functicn of strain) 
M w h m  S l c p  = 1 . 2 9 M 0 7  W - 2  . . 

Sl- = 8.915d404 ?An"-2 
Starage -us (man +/- 9)) = 9.491&05 +/- 9 . 0 7 W 0 5  W - 2  
m lK&dUS (m +/- SD) = 1.326&006 +/- 1.268ee006 MA-2 

. . m m9-m Stress = 1.003et006 W - 2  
Mmnum Engineering Stress = 2.439&05 Em -̂2 
M z h n n  Percent Engimerhg Strain = 9.089~MOl . , 
Muunum Peraent Engimering Strain = 3.031et001 
Maximm True Stress = 1.915d-006 M - 2  . . True Stress  = 3.182d-005 W - 2  
Maihnn Percent True Strain = 4.762e4-001 . . Mmnum Rxamt True St ra in  = 2 . 3 2 H 0 1  

To center selected data about zero, 
0.544 was addedto Stress and 
0.667 was added to Strain 

Fran an anrerage cxrer 27 ccnp1et.e cycles: 
The f rqmcy  is 0.50 Hz 
Magnitude ratio is 1.0904 
Phase difference is -152.4884 & q e s  
Tan d e l t a  is 0.5209 

l&d.iLus (mean +/- SD) = 1.636ef-006 +/- 1.66oei-006 W - 2  (average s lcpe  as fundicn of strain) 
&KhUn Slope = 1.563&07 W - 2  . . 

S l m  = 2.034d-005 W - 2  
Storage ndulus (man +/- SD) = 1.451eI-006 +/- 1.472&06 W - 2  
ICSS -US (m +/- SD) = 7 . 5 6 W 0 5  +/- 7 . 6 7 W 0 5  Nn -̂2 

W-ing Stress = 9.67W-005 NnA-2 . . Muunum W-irVg Stress = 2.098d405 W - 2  
Maximnn Fezcent EngirrWing Stra in  = 9.095eM01 . . Muunum Fezcent EngirrWing Stra in  = 3.031e+O01 
-True St ress  = 1.843d-006 W - 2  . . True Stress = 2 . 7 3 W 0 5  W - 2  
EQxhm Percent True S t r a in  = 4 . 7 6 M 0 1  . . Mmmnn Percent True Strain = 2.32-01 



W 4.0020 
Inplt thkkness of specimen in meters>.le-3 
Gauge =16.5000 

lbcenterselecteddataabcutzerp, 
0.545 was added to Stress and 
0.667 was added to Strain 

kon an average over 21 ccnplete cycles: 
The frequency is 0.50 Hz 
Magnit& ratio is 1.0611 
Phase differena? is -133.8088 degrees 
Tan delta is 1.0426 

W u s  (m +/- SD) = 1.641M06 +/- 1.741ec006 N f - 2  (average slope as fmctia~ of strain) 
Maximnn Slope = 2.227M07 NnA-2 . . - Slcpe = 1.752M05 W - 2  

Starage mdulus (m +/- SD) = 1-13-06 +/- 1.205e4-006 NnA-2 
ICSS -US (m +/- SD) = 1 .185406 +/- 1 . 2 5 W 0 6  W - 2  
Maxinum Enginezring Stress = 1.043et006 Nn"-2 . . 
MUUIUII Ehg-ing Stress = 2.50-05 Nn"-2 
Maximm &rcent mineering Strain = 9.094eMO1 . . 
Muumm Percrrnt Engineering Strain = 3.031eH)Ol 
Maxinum True Stress = 1 . 9 7 W 0 6  NnA-2 . . 
MUUIUII Pue Stress = 3.264M05 NnA-2 
Maxinum Percent Rue Strain = 4.763ei-001 . . Mmmum Percent True Strain = 2.325et001 

W 4.0020 
Inpk t h k h e s s  of s p e c h  in metefi>8e-5 
Gauge =16.5000 

' Ibcenterseleckddataabcutzero, 
0.528 was added to Stress and 
0.667 was added to Strain 

Fran an average over 20 ccnplete cycles: 
!BE frequency is 0.50 Hz 
Magnitude ratio is 1.0464 
Phase difference is -76.4929 degrees 
Tan delta is -4.1626 

bkxkdus (m +/- SD) = 1.844M06 +/- 1.978el-006 W - 2  (average slqre as Men of strain) 
& x b ~ ~  Slcpe = 2.102M07 W - 2  . , 
MUUDUII Sl- = 1.697&05 NnA-2 

W a g e  nudulus (man +/- SD) = 4.307M05 +/- 4.621&05 W - 2  
n d ~ I . u ~  (m +/- SD) = 1.793M06 +/- 1.924ec006 W - 2  

ME&UII W g h i n g  Stress = 1.103et006 W - 2  . . 
Mmmum R ~ g d i n g  Stress = 2.459et005 W - 2  
Maxhm Percent Engh?ering Strain = 9.095e4-001 . . 
Muumm Rzen t  Eng-ing Strain = 3.031eHX)l 

~ Y w  Stress = 2.092d-006 W - 2  . . 
Stress = 3.205d-005 NnA-2 

Maxhm Fercent True Strain = 4.763a-001 . . Muumm Rxcent True Strain = 2 .325401  



TocenterselectedQtaabartwo, 
0.567 was added to Stress and 
0.666 was ackkdto Strain 

F'ran an average over 20 carplete cycles: 
The frequency is 0.50 Hz 
Magnitude ratio is 1.1001 
Phase difference is -189.3712 degrees 
Tan delta is -0.1650 

W&~US (mean +/- SD) = 1.777d-006 +/- 2.184ei-006 NnA-2 (average slqe as fmcticm of strain) 
Maxhm Slope = 2.503elQ07 W - 2  . . 
lyllnunrm slcpe = 1 . 9 3 W 0 5  W - 2  

Storage nudulus (mean +/- SD) = 1.753etO06 +/- 2.155M06 m A - 2  
LCSS @US (m +/- SD) = 2.892&005 +/- 3-55-05 M A - 2  
Maxhm Ehgheering Stress = 9 . 1 3 W 0 5  W - 2  . . 
Mumrum mgineering stress = 2.082et-005 M A - 2  
Maxiuum Percent EngirEering Strain = 9.098e+O01 . . 
Mmmum Faxent EngirEering Strain = 3.031ei-001 
Maxjnum True Stress = 1.74-06 W - 2  . . 
Mmmum Stress = 2.714M05 M A - 2  
Maxhm Percent True Strain = 4.764et-001 . . 
MUUWKI Percent True Strain = 2 . 3 2 W 0 1  

B samples - [l.OHz] 

W =0.0020 
Inpt  lMckness of s p e c h  in meters>7e5 
Gauge =16.5000 

Tbc€nterselecteddataabartwo, 
0.562 was -to Stress and 
0.667 was ackkd to Strain 

FYan an average over 44 carplete cycles: 
!BE freqmcy is 1.00 Hz 
Magnitude ratio is 1.1669 
Phase diff- is 319.3805 
Tan delta is -0.8579 

WcUus (mean +/- SD) = 1.308d-006 +/- 8.234ei-005 Me-2  (averags slope as functicn of strain) 
t4&num Slope = 6.212d-006 W - 2  . . - Slope = 1 . 9 9 9 4 0 5  W - 2  

Storage ntxiulus (mean +/- SD) = 9.927ei-005 +/- 6 . 2 5 w 0 5  W - 2  
LCSS @US (m +/- SD) = 8.51-05 +/- 5.361&005 N f - 2  

. . t4&num Engineering stress = 9.704el-005 M A - 2  - F i ~ g M i n g  Stress = 2.13-05 W - 2  
Maxjnum Percent hg-ing Strain = 9 . 0 8 W 1  . . 
Mmmum Percent Engimering Strain = 3.032-1 
Maxhm True Stress = 1.853ee006 NnA-2 . . - True Stress = 2-78-05 W - 2  
Maxhm Percent True Strain = 4 . 7 6 3 4 0 1  . . 
Mmmnn Percent True Strain = 2.325eH)Ol 



W = 0.0020 
Inplt thickness of specimen in lwters-72-5 
Gauge = 16.5000 

mcenter~electeddataabart~er~, 
0.504 was added* Stress and 
0.667 was added to strain 

Frcm an average aver 32 carplete cycles: 
The frequency is 1.00 IIz 
Magnitude ratio is 1.22 10 
Phase diff- is 302.1076 degmes 
Tan delta is -1.5940 

Mzddus (mean +/- SD) = 1.296e4-006 +/- 7.701d-005 NnA-2 (average slcpe as £unction of strain) 
Maxinum Slcpe = 4.999M06 W - 2  . . 
Mumumslope = 1.686&005 W - 2  

Starage mAiius (m +/- 9)) = 6 . 8 8 7 d 0 5  +/- 4.09313-005 W - 2  
LCSS -US (m +/- SDI = 1 . 0 9 W 0 6  +/- 6 .524d05  W - 2  
MxhiIII hg-ing Stress = 9 . 8 3 W 0 5  M A - 2  . . - Ehg-ing Stress = 1.667ee005 W - 2  
Mxhmm n t  Ehgh?ering Strain = 9.091eM01 . . 
Mumum mt Engh?ering Strain = 3 . 0 3 W 0 1  
MxhiIII 'ISue Stress = 1.876ee006 W - 2  . . - ?kue Stress = 2.176e4-005 W - 2  
MxhiIII B r e n t  True Strain = 4 . 7 6 W 0 1  . . Mumum Percent True Strain = 2.325e4-001 

m center selected data aba~t zero, 
0.608 ms AtkdtoStress and 
0.667 was acldedto Strain 

F'mn an average cxrer 14 carplete cycles: 
The frequency is 1.00 Hz 
Magnitude ratio is 1.0525 
Phase diff- is 0.6419 degrees 
Tan delta is 0.0112 

M z d d ~ ~  (m +/- SD) = 8.429d-005 +/- 3.947d-005 W - 2  (average slcpe as £unction of strain) 
Maxinum Slcpe = 3.871d-006 W - 2  . . 

Slope = 2.426&05 W - 2  
Starage nndulus (m +/- SD) = 8.429ee005 +/- 3.947d-005 W - 2  
LOSS &US (m +/- SD) = 9.443dQ03 +/- 4.422d-003 W - 2  
Maxinum Ehg-ing Stress = 7.1OOd-005 W - 2  . . - Ehg-ing Stress = 1.855d-005 W - 2  
Maxinum Percent EngiEEZing Strain = 9.094eHX)l . . 
Mumum F e r c a t  EhgiEEZing Strain = 3 . 0 3 W 0 1  
Maxinum TKLE Stress = 1.3559906 W - 2  . . 

'Ikue Stress = 2.417d-005 W - 2  
Maxhm Percent True Strain = 4.76-01 . . 
Mumum Facent True Strain = 2.325e4-001 



Tocenterselecteddataaboutzero, 
0.554 was added to Stress and 
0.666 was added to Strain 

Fmn an average over 35 carplete cycles: 
rme fresuency is 1.00 Hz 
Magnit& ratio is 1.0660 
Phase difference is 6.7234 degrees 
Tan delta is 0.1179 

kdiLus (m +/- SD) = 1 . 2 0 3 4 0 6  +/- 5.767d-005 M A - 2  (average slope as -on of strain) 
Maximnn Slope = 3 . 8 6 2 4 0 6  mi'-2 . . 
MUUXUKI Slope = 2.026d-005 W - 2  

Starage mdulus (m +/- 9)) = 1.195eO06 +/- 5 . 7 2 7 4 0 5  W - 2  
LOSS -US (m +/- SD) = 1.408d-005 +/- 6.752-04 W - 2  
Mxbmm Bigheexhg Stress = 9 . 6 8 5 4 0 5  W - 2  . . 
Numum Bigineerhg Stress = 2 . 3 5 1 4 0 5  W - 2  
Maxhm &t h & e r i n g  Strain = 9 . 0 9 W 0 1  . . 
l4uum.m Percent E n g W i n g  Strain = 3.03Od-001 
Maximnn hrue Stress = 1.85kl-006 W - 2  . . 
-True Stress = 3.066d-005 W - 2  
Mxbmm Percent True Strain = 4 . 7 6 7 4 0 1  . . 
Numum Percent True Strain = 2.32-01 

Tocenterselecteddataaboutzero, 
0.556 w addedto Stress and 
0.667 was addedto Strain 

Fmn an average over 24 carplete cycles: 
The frequency is  1.00 Hz 
Magnitude ratio i s  1.0486 
Phase difference is 6.5156 c k q r e ~ ~  
Tan d e l t a  is 0.1142 

&ddus (man +/- SD) = 1.403&06 +/- 6.728ee005 Nn"-2 (average slw as M a n  of strain) 
Mxbmm Slope = 4.505et006 W - 2  . . 
WULUUII Slope = 2 .363405  W - 2  

Starage -us (mean +/- SD) = 1 . 3 9 4 4 0 6  +/- 6.685eO05 W - 2  
LOSS (II.ean +/- SD) = 1 . 5 9 2 4 0 5  +/- 7.63-04 Nn*-2 
Mmimm mgheexing Stress = 1.13Od-006 W - 2  . . 
i4mumm Ehgheexing Stress = 2 . 7 4 3 4 0 5  I W - 2  
Maximnn &t En&ering Strain = 9.098eH)Ol . . 
MUUXUKI Percent Engimering Strain = 3.030eH)Ol 
Maximnn True Stress = 2.158ee006 NnA-2 . . 
i4mumm True Stress = 3.577&005 MnA-2 
t&xhnn Reroent True Strain = 4 . 7 6 7 M 1  . . 
Mmmum Reroent True Strain = 2.32-01 



B samples - [3.OHz] 

Tocenterselecteddataahartzero, 
0.555 was added to Stress ami 
0.666 was added to strain 

Fmn an average over 39 carplete cycles: 
The f r x c p n q  is 1-00 Hz 
Magnitude ratio is 1.0719 
Phase differenoe is 6.6163 ckqrees 
Tan delta is 0.1160 

WUS (mean +/- SD) = 1 . 5 3 1 4 0 6  +/- 7.340et005 W - 2  (average slope as £unction of strain) 
Maximrm Slw = 4.915&006 W - 2  . . S l ~ p e  = 2 . 5 7 W 0 5  W - 2  

Stnrage mxhlus (m +/- SD) = 1 . 5 2 1 d 0 6  +/- 7 . 2 9 1 d 0 5  W - 2  
Ic~S @US (m +/- SD) = 1.764ee005 +/- 8 .457404  W - 2  
Maxhm Ehgimering Stress = 1 . 2 3 W O 6  W - 2  . . 
ldmmum hgheering Stress = 2 . 9 9 2 4 0 5  W - 2  
Mximnn Percent ~ i n e e r i n g  Strain = 9.09&+001 . . 
MUUUUII Percent Eng-ing Strain = 3.03Oe+O01 
Maxhm True Stress = 2 .355H06  W - 2  . . 
MUUUUII True Stress = 3.902d405 W - 2  
Maxhm Percent Rue Strain = 4 . 7 6 7 4 0 1  . . 
M~UTUKI m t  True Strain = 2.325eH)Ol 

~centerselecteddataahartzero, 
0.554 was added to Stress and 
0.667 was added to Strain 

Fmn an average over 30 -1ete cycles: 
me £reqmq  is 1.00 Hz 
Magnitude ratio is 1.0660 
Phase d i f f m  is 6.8553 degrees 
Tan delta is 0.1202 

~~XUUS (m +/- SD) = 1 . 2 9 W 0 6  +/- 6.211d-005 NIP-2 (average slope as fmcticn of strain) 

. . Maximrm Slope = 4.159&006 W - 2  - Slope = 2 . 1 8 2 4 0 5  Em^-2 
Starage midus (m +/- SD) = 1.286e006 +/- 6.166d-005 W - 2  
IAXS lTK&I.LlS (m +/- SD) = 1.546d-005 +/- 7.413&004 W - 2  

mgheering Stress = 1 . 0 4 W 0 6  W - 2  . . 
MUUIUII mgheering Stress = 2 . 5 3 2 4 0 5  W - 2  
Maxhnm Percent Eng-ing Strain = 9 . 0 9 W 0 1  . . 
ldmmum Percerrt E n g h ~ ~ i n g  Strain = 3.03OeH101 

aUe Stress = 1 . 9 9 2 4 0 6  W - 2  . . - aUe Stress = 3.302&005 Nnn-2 
Maxhm Percent True Strain = 4.767M01 . . 
Wmnum Percent True Strain = 2.32-01 



m center selected data abart zero, 
0.525 was added to Stress and 
0.672 was added to Strain 

E'ran an average over 35 carplete cycles: 
The ~Y~WIEY is 3.00 Hz 
Magnitude ratio is 1.0613 
Phase cliff- is 12.1010 degrees 
Tan delta is 0.2144 

W u s  (man +/- SD) = 9 . 8 5 W 0 5  +/- 2.611d-005 W - 2  (average slope as Men of strain) 
Maximm Slope = 1.834d-006 W - 2  . . - Slope = 4.40Od-005 W - 2  

Storage mxblus (m +/- SD) = 9.632ee005 +/- 2 -553etOo5 W - 2  
~DA~Lus (m +/- SD) = 2 . 0 6 W 0 5  +/- 5-47-04 W - 2  

Miudmrm E h g M i n g  Stress = 8.887d-005 IW-2 . . 
MUIUUII E h g w h g  Stress = 1.13WO5 W - 2  
Miudmrm Percent Engbxring Strain = 9.013et001 . , IWu.mnn Faxent Engbxring Strain = 3.022d-001 
Miudmrm True Stress = 1 . 6 9 W 0 6  MA-2  . . 
MUUIUII True Stress = 1.47M-005 MA-2  
Maxhun Percent True Strain = 4.776d-001 . . 
Mmmum Fement True Strain = 2.312d-001 

Iqxt thickness of s p e c h  in mtere1.3e-4 
Gauge = 16.5000 
m center selected data atYxt zero, 

0.568 was addedto Stress and 
0.673 was added to Strain 

E'ran an average over 52 ccmplete cycles: 
The frequency is 3.00 Hz 
Magnitude ratio is 1.0883 
Phase difference is -11.2737 degrees 
Tan delta is -0.1993 

WcUus (m +/- SD) = 9.039e-kOO5 +/- 2.12-05 W - 2  (average slqe as £unction of strain) 
Maximnn Slope = 1.632eI-006 W - 2  . . IWu.mnn Slope = 4 .05W05  W - 2  

Store -US (m +/- SD) = 8.865ee005 +/- 2.082d-005 NnA-2 
IDS -US (m +/- SD) = 1.767d-005 +/- 4 .15W04  MA-2 
l4axh.m hgineering Stress = 8 . 4 4 W 0 5  W - 2  . . 
Mmmum hgineering Stress = 2.088ei-005 W - 2  
Maximnn Fercent mgbxring strain = 9.002et-001 . . Mumum Faxent Engixszring Strain = 3.021et-001 
Maximnn True Stress = 1.614M06 W - 2  . . - True Stress = 2.719d-005 W - 2  
Maxinun Fercent True Strain = 4.773d-001 . . 
Muwn.nn Fercent True Strain = 2.307et-001 



Tb center seleded data abcut zero, 
0.565 was added to Stress and 
0.673 was added to Strain 

Fmn an average over 42 ccnplete cycles: 
The fmpmcy is 3.00 Hz 
Magnitude ratio is 1.0717 
Phase difference is 5.7864 degrees 
Tan delta is 0.1013 

W u s  (m +/- SD) = 1.068&006 +/- 2.509et-005 W - 2  ( ave ra~  slcpe as functicn of strain) 

. . Maximrm Sl- = 1 . 9 2 9 4 0 6  MI^-2 
MUUXUUI Sl- = 4 . 7 9 W 0 5  W - 2  

Stnrage nudulus (man +/- SD) = 1.063etoo6 +/- 2.496e-1-005 W - 2  
m -US (m +/- SD) = 1.077et-005 +/- 2.53Od-004 W - 2  
Maxinum Engineering Stress = 9.978d-005 W - 2  . . 

m g m i n g  Stress = 2.468d-005 W - 2  
Maxinun Rxcent Engimering Strain = 9.002et-001 . . 
MUUXUUI Percent Engimering Strain = 3.021et-001 
Maxinun True Stress = 1 . 9 0 W 0 6  MIA-2 . . 

lkue Stress = 3.21-05 MIA-2 
Maxinum mt True Strain = 4.773et-001 . . 
Mumnnn Percent True Strain = 2.307et-001 

B samples - [ 5  .OHz] 

Tb center selected data about zero, 
0.564 was added to Stress and 
0.673 was added to Strain 

Fmn an =age over 35 ccnplete cycles: 
The frequency is 3.00 Hz 
W t u d e  ratio is 1.0717 
Phase cliff- is 6.1333 degrees 
Tan delta is 0.1075 

l&diLus (m +/- SD) = 1.068d-006 +/- 2.509&05 W - 2  (average slqe as Men of strain) 
Maximrm S l q  = 1.929&06 MI^-2 . . MUUIUII Slope = 4 . 7 9 W 0 5  W - 2  

Storage mdiLus (mean +/- 9)) = 1.062ek006 +/- 2.495et-005 m A - 2  
IDS -US (m +/- SD) = 1.141et-005 +/- 2.681d-004 W - 2  
Maximnn Engineering Stress = 9.978d-005 W - 2  . . 
MlnunmI Engineering Stress = 2 . 4 6 W O S  W - 2  
Maximrm Fement Engineering Strain = 9.002ee001 . . 
MlnunmI Fercent Engineering Strain = 3.021etOOl 
Maximrm lkue Stress = 1 . 9 0 W 0 6  MIA-2 . . 
MUUIUII True Stress = 3 . 2 1 M O S  W - 2  
Maximnn Percent True Strain = 4.77W-001 . . 
MlnunmI Percent True Strain = 2.307d-001 



Tbcenterselededdataabartzero, 
0.601 was added to Stress and 
0.688 was added to Strain 

Fmm an average over 73 ccnplete cycles: 
The is 5.00 Hz 
Magnitude ratio is 1.0616 
Phase differerie is 2.4670 degrees 
Tan delta is 0.0431 

-us (m +/- SD) = 8.679&05 +/- 1.412d-005 NIP-2 (average slope as of strain) 
M a x h m l  Slope = 1.323et006 Nn*-2 . . 

Slope = 5.488WO05 W - 2  
Starage ntxtulus (mean +/- 9)) = 8.671&05 +/- 1.410eH)05 MI*-2 
k6s (m +/- SD) = 3.736d-004 +/- 6.076d-003 Nn*-2 
Maximnn mgineering Stress = 8 . 0 8 W 0 5  Nn*-2 . . Mmufum Engineering Stress = 2 . 4 6 W 0 5  W - 2  
Maximnn Percent Engireering Strain = 8 . 8 2 7 4 1  . . Muu.m.m Percent Engireering Strain = 3.04SeNO1 
Maximnn !Eue Stress = 1.549eH)06 NnA-2 . . - True Stress = 3.211d-005 NnA-2 
Maximnn Percent True Strain = 4.786d-001 . . Mmmm Percent True Strain = 2 . 2 5 W 0 1  

Tb center selected data abart zero, 
0.608 was addedto Stress and 
0.688 was a&ied to Strain 

Fran an average over 75 q l e t e  cycles: 
7% £resueracy is 5.00 Hz 
Magnitude ratio is 1.0842 
Phase difftxence is -10.9709 degrees 
Tan delta is -0.1939 

I-kxUus (mean +/- SD) = 8.948e4-005 +/- 1.009eH305 W - 2  (average slope as £unction of strain) 
Maximrm Slope = 1.135ei-006 W - 2  . . 
MuLlmrm Slope = 5.724M05 W - 2  

Stat-age mddus (man +/- 9)) = 8.784&005 +/- 9.909etO04 W - 2  
k6s  rean an +/- SD) = 1 . 7 0 W 0 5  +/- 1.921&004 W - 2  
Maximxn Engineering Stress = 8.753&05 W - 2  . . 
IYmmlm hgineering Stress = -1.748d-004 W - 2  
Maximnn Percent mgineering Strain = 8.829eH)Ol . . Mmmum Percent Eng-ing Strain = 3.011eH)Ol 
M2udmnn ?Sue Stress = 1.679eH106 NnA-2 . . - ?Sue Stress = -2.278d-004 Nn*-2 
Maximnn Rmxnt True Strain = 4.787&001 . . 
Mmmum Percent True Strain = 2.258e4-001 



m center selected data aka& zero, 
0.623 was added to Stress and 
0.690 was added to Strain 

F'mn an average wer 83 ccnplete cycles: 
The frequency is 5.00 Hz 
Magnitude ratio is 1.0663 
Phase difference is 0.9755 degrees 
Tan delta is 0.0170 

l - tddus ( m  +/- SD) = 9.41&+005 +/- 6.357&04 W - 2  (average slope as fumticn of strain) 
Maximnn Slope = 1.184d-006 W - 2  . . 
WJUIUII Slcpe = 7.777d-005 W - 2  

Starage nudulus ( m  +/- SD) = 9.416ee005 +/- 6.356&04 W - 2  
Loss -US ( m  +/- SD) = 1.603ec004 +/- 1.082d-003 NnA-2 
Madnun hginecring Stress = 9.212e4-005 W - 2  . . 
MUUWKI hg*ing Stress = 1.923el-005 W - 2  - Percent Engineering strain = 8.807e4-001 . . 
WJUIUII Percent Engineering Strain = 3.03oet.001 

True Stress = 1.765&06 W - 2  . . 
WJUIUII True Stress = 2.506&05 W - 2  
Maximrm Fercent True Strain = 4.782e4-001 . . M u m u m  Percent True Strain = 2.267e4-001 

mcente r~e ieda taa t !cu tzer~ ,  
0.623 was addedto Stress and 
0.690 was added to Strain 

Fran an average over 83 ccnplete cycles: 
The frequency is 5.00 Hz 
Magnitude ratio is 1.0663 
Phase diff- is 0.9755 degms 
Tan delta is 0.0170 

-US (rean +/- SD) = 9.41&+005 +/- 6.357d-004 Nn^-2 (average slope as fundicn of strain) 
Maximnn Slope = 1.184d-006 W - 2  . . 
WJUIUII Slope = 7.777e4-005 W - 2  

storage mclulus ( m  +/- 9)) = 9.416M05 +/- 6.356&04 W - 2  
Loss &US fm +/- SD) = 1.603el-004 +/- 1.082&03 M A - 2  
kbxinum hg&xing Stress = 9.212d-005 W - 2  . . 
WJUIUII hg-ing Stress = 1.923el-005 W - 2  
Maximm Percent Eng-ing Strain = 8.807e4-001 . . 
Mmmum Percent Eng-ing Strain = 3.03oet.001 
Maximm True Stress = 1.765d-006 W - 2  . . True Stress = 2.506d-005 W - 2  
Mmknm Percent True Strain = 4.782e4-001 . . 
WJUIUII Percent True Strain = 2.267e4-001 

C.1.3 Dynamic uniaxial tension graphical results 

The graphical results below were generated by the Matlab programs 

(Phasediff1bb.m) and (B0x.m). The results shown below are examples of plots for 

samples run. 



C.1.3.1 Dynamic uniaxial tension A sample graphical results 

A sample,  ams st-02sa.txt plots. 
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Fig. C. l -  PDMS A sample - Load vs Displacement 

x lo5 StressStrain Plot of PDMSI 
4.4 

I 1 I I I I 

14 0.56 0.58 0.6 0.62 0.64 0.66 

Strain 

Fig. C.2 - PDMS A sample - Stress vs Strain (Engineering) 
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Fig. C.3 - PDMS A sample - Strain vs Time 

x lo5  Stress as function of time 
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Fig. C.4 - PDMS A sample - Stress vs Time 



0.7

c:
'§ 0.6
U5

II[II,!I
111:1.IHli

ill I!

'I;;; 111111I
11'111l!

~ i~:1 \]U!I
'
, !nP

i,

!!!~n
,
' ~ U

,

'i!
j i 111,1I !rHfI! 11~111

0.5
0 50 100

Fig. C.5 - PDMS Poisson's A sample - Strainvs Time

;~1O5

14
I

150 200
]3

250

Time, S

q
!lln

Illli\III'II:'11i

Ii illllllll!IIII!11

111111111111
I11111~

c:

'§ 0.9
U5 II~.11

I
II1II1

ili\\1

!III!

IIIIII1I1
Iii1"

0.8
0 50 100

Time, S

Fig. C.6 - PDMS A sample - Strain vs Time

150 200
0.6

250

158



2.5X10.

2 0
0

0

0
@
0
0
0
0
0

159

1.5

"
iIi

1

@

0
0

I
0.5

0
0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68

Strain

Fig. C.7 - PDMS A sample - E vs Strain
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Fig. C . l l -  PDMS A sample - E vs Stress 



C.1.3.2 Dynamic uniaxial tension B sample graphical results 

B sample, Dpdms 25d.txt plots. - 
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Fig. C.12 - PDMS B sample - Load vs Displacement 
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Fig. C.13 - PDMS B sample - Stress vs Strain 
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Fig. C.16 - PDMS B sample - Strain vs Time 
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Fig. C.17 - PDMS B sample - Strain vs Time 
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Fig. C.18 - PDMS B sample - E vs Strain 
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Fig. C.19 - PDMS B sample - Stress rate vs Strain 
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Fig. C.20 - PDMS B sample - Strain vs Time 

n6 Stress-Strain Plot 

0.2 1 I I I , I I 
0.2 

1 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Strain 

Fig. C.21- PDMS B sample - Stress vs Strain 



Stress x to5 

Fig. C.22 - PDMS B sample - E vs Stress 

C.1.4 Static uniaxial tension graphical results 

The graphical results below were generated by the Matlab programs 

(PDMS-staticauchy true.m) and (PE-staticauchy-true.m). The results shown below are - 

the plots for the B samples tested. 



C.1.4.1 PDMS static uniaxial tension B sample graphical results 

b sample, Tpdmsa. t x t  through ~pamsf. t x t  data file example plots. 

3j107 
PDMS, Static uniaxial tension - bue stress vs lnre strain 

Fig. C.23 - PDMS B sample, (Tpdmsa.txt) - True stress vs True strain 
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Fig. C.24 - PDMS B sample, (Tpdmsbkxt) - True stress vs True strain 



PDMS, Static uniaxial tension - true stress vs true strain 

I rue atrum 

Fig. C.25 - PDMS B sample, (Tpdrnsc.txt) - True stress vs True strain 
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Fig. C.26 - PDMS B sample, (Tpdmsd.txt) - True stress vs True strain 



PDMS, Static uniaxial tension - true stress vs true strain 
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Fig. C.27 - PDMS B sample, (Tpdmse.txt) - True stress vs True strain 
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Fig. C.28 - PDMS B sample, (Tpdmsf.txt) - True stress vs True strain 



C.1.4.2 LLDPE static uniaxial tension B sample graphical results 

LLDPE B sample, pe2. t x t  through pel5. t x t  selected data file example 

plots. Uniaxial stress-strain elastic modulus taken at 2% strain to minimize effects of 

plastic deformation in modulus results [94]. 

Fig. C.29 - LLDPE B sample, (pe2.txt) - True stress vs True strain 



Fig. C.30 - LLDPE B sample, (pe4.txt) - True stress vs True strain 
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Fig. C.31- LLDPE B sample, (pe9.txt) - True stress vs True strain 
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Fig. C.32 - LLDPE B sample, (pe12.txt) - True stress vs True strain
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C.1.4.3 PDMS B sample stress relaxation graphical results 

B sample, pdms-sr-01. txt through pdms-srO3. t x t ,  and pdms-sr001. t x t  

through pdms - sr003. t x t  data file result plots. 

PDMS, B sample stress relaxation at true strain = 0.3 

62 

Time (sec) 

Fig. C.36 - Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms-srOl.txt) 
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Fig. C.37 - Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms-sr02.txt) 



PDMS, B sample stress relaxation at true strain = 0.3 
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Fig. C.38 - Stress relaxation plot at true strain = 0.3 - PDMS B sample, (pdms-sI03.txt) 
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Fig. C.39- Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms-sr001.txt) 
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Fig. C.40 - Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms-s1002.txt) 
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Fig. C.41- Stress relaxation plot at true strain = 0.6 - PDMS B sample, (pdms-s1003.txt) 



C.1.4.4 PDMS B sample stress deformation graphical result 

PDMS, B sample deformation from true strain = 0.6 
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Fig. C.42 Stress deformation plot at true strain = 0.6 - PDMS B samples 



C.1.5 Circular membrane biaxial stress-strain graphical results 

Biaxial stress-strain and biaxial modulus results for PDMS and LLDPE 

membranes, generated from membrane deflection data incorporated into Matlab 

programs. 

C.1.6 PDMS circular membrane biaxial stress-strain result plots 

x lo5 PDMS Circular membrane - Biaxial stress vs Biaxial strain 
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Fig. C.43 - PDMS circular membrane biaxial stress-strain results, membrane sample 1 
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Fig. C.44 - PDMS circular membrane biaxial stress-strain results, membrane sample 2
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c.t. 7 LLDPE circular membrane biaxial stress-strain graphical results

LLDPE biaxial stress-strain plots limited to 2% strain to minimize effects of

plastic deformation in modulus results [94].
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Fig. C.46- LLDPE circular membrane biaxial stress-strain results, membrane sample I
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4.5 X lOE
LOPE Circular membrane - Biaxial stress vs Biaxial strain
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Fig. C.48 - LLQPE circular membrane biaxial stress-strain results, membrane sample 3

C.1.8 Membrane deflection program graphical results

PDMS and LLDPE membrane deflection graphical results from matlab

membrane theory comparison programs. Results for circular and square membranes.



C.1.8.1 PDMS circular membrane deflection program graphical results 

l o J  PDMS membrane large defledlon theory. E=1.272MPa. Rs=O.O34MPa 

I I I I I I I I I 

Fig. C.49 - PDMS circular membrane theory comparison - PDMS membrane sample 3 

x loJ  PDMS Circular Membrane - Almansl rtnln. E=1.272MPat Rr=0.034MPa 
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Fig. C.50 - New Spherical Cap Model results for PDMS membrane sample 3 



C.1.8.2 PDMS square membrane deflection program graphical results 

PDMS Square Membrane - E=1.272MPa. Rs=O.O%MPa 

0°' I 
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Fig. C.51- Square membrane theory and PDMS experimental result comparison - membrane sample 3 



C.1.8.3 LDPE circular membrane deflection program graphical results 

Fig. C.52 - LLDPE circular membrane theory comparison - LLDPE membrane sample 3 

Fig. C.53 - New Spherical Cap Model results for LLDPE membrane sample 3 



C.1.8.4 LLDPE square membrane deflection program graphical results 

LDPE Squam Membrane - E=72MPa. Rs=0.55MPa 

3.5 11 

Fig. C.54 - Square membrane theory and LLDPE experimental result comparison - membrane sample 3 
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