
A Framework for Component

Specification

Fred Loney

B.A., Oakland University, 1975

B.S., University of Washington, 1977

M.B.A., University of Washington, 1984

A thesis submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree
Master of Science

III

Computer Science and Engineering

April 1995

@ Copyright 1995 by Fred Loney

All Rights Reserved

11

The thesis "A Framework for Component Specification" by Fred Loney has been

examined and approved by the following Examination Committee:

T. Lougenia AnJ1erson
Adjunct Facutt'y
Sequent Corporation
Thesis Research Adviser

.
Richard Kieburtz
Professor /

David Maier
Professor

III

Dedication

I dedicate this thesis to the memory of Kathy Gervais, for her example of dedication,

perseverance and grace under pressure.

IV

Acknowledgements

I would like to thank my principal thesis adviser, Lougie Anderson, for editing, paring

and refining the initial drafts into a publishable form; my thesis readers, Dick Kieburtz

and Dave Maier, for their helpful suggestions; my parents, for their positive example

and unflagging support; and especially Melinda, for her indulgence, patience and under-

standing.

v

Contents

Dedication IV

Acknowledgements V

Abstract Xill

1 Introd uction 1

2 Object Specification 3

2.1 Information Models . 3

2.2 The Role of a Framework in Object Specification 6

2.3 Comparison to Previous Work. 9

3 Component Definition 12

3.1 Component Schemes . 12

3.2 Component Structure . 15

3.3 Behavioral Specification .. 21

3.4 Use and Identity .. 24

3.5 Change and Identity .. 27

VI

4 Behavioral Dynamics 29

4.1 Method specification .. 29

4.2 Method activation 34

4.3 Monitoring actions .. 43

4.4 Agents: frames with an attitude 45

5 Object Management 49

5.1 Dimensionsof Software Object Management. 49

5.2 Functional Partitioning 51

5.3 Task Partitioning .. 52

5.4 Containment Hierarchy 55

5.5 Managing change .. 59

5.6 Reference Resolution .. 66

6 A Component Specification Framework Prototype 71

6.1 A specification example . 72

6.2 Scheme representation .. 84

7 Conclusions 88

7.1 The Role of a Specification Framework Reconsidered 88

7.2 Framework Implementation Lessons 90

7.3 Future Work 91

7.4 Summary .. 93

..VB

Bibliography 94

Vlll

List of Tables

2.1 Information modeling perspecti yes . 4

2.2 Application characteristics . 6

3.1 Associations between Frames .. 14

4.1 Specification-Computation analogues .. 34

6.1 Script for the Add Waitlist Feature use scenario. 72

6.2 Meros classes by category . 87

IX

List of Figures

3.1 Examples of frames. 13

3.2 Manager frame . 14

3.3 Manager and Employee views . 16

3.4 Hotel frame example . 19

3.5 Component Structure 21

3.6 Reserve rule. .. 22

3.7 Hold constraint . 23

3.8 Manager delegation to Employee 23

3.9 Employee delegation to a source code interface 24

3.10 Fregean distinction .. 25

3.11 Denotation and change relationship. .. 28

4.1 Reserve rule .. 30

4.2 Accept rule .. 30

4.3 Reservation status state variable domain values 31

4.4 Room occupancy status domain. .. 31

4.5 Hold rule 32

4.6 Availability rule. .. 32

x

4.7 Deny reservation action .. 33

4.8 Rule for binding a value to a slot .. 35

4.9 Resolution of a bound value . 36

4.10 Reserve subactions . 39

4.11 Overbook rule. .. 40

4.12 Confirmation constraint .. 42

4.13 Reservation add exception rule .. 42

4.14 Hotel Full monitor on reserve .. 44

5.1 Hotel component in two libraries .. 52

5.2 Add Waitlist Feature activity . 53

5.3 Example of projects 54

5.4 Membership references for the Add Waitlist Feature activity. 56

5.5 Effect of membership properties on change visibility 58

5.6 Workspacestructure .. 60

5.7 Workspace version graph visibility . 62

5.8 Environment example .. 64

Xl

4.15 Hotel Full action . 44

4.16 Hotel Full monitor on Occupancy. 45

4.17 Overbooking Authorization agent. 46

4.18 Overbooking Authorization rule. 47

4.19 Rescind compensatory action . 48

5.9 Configurable reference example .. 67

5.10 Reference resolution through a context map 69

6.1 Open Activity Editor. .. 73

6.2 Add New Activity 73

6.3 Select Hotel Component .. 74

6.4 Browse Hotel History. .. 75

6.5 Evolve Hotel History. .. 76

6.6 .Jay's active version .. 77

6.7 Open Hotel component. .. 78

6.8 Create waitlist method .. 79

6.9 Open Reservation scheme .. 80

6.10 Copy Reservation frame .. 81

6.11 Create waitlist slot .. 82

6.1~ Visibility of promoted change .. 83

6.1;~ Meros tool architecture .. 84

6.1.t Schemerepresentation in Meros .. 85

6.15 Configurable frame .. 86

XlI

Abstract

A Framework for Component

Specification

Fred Loney, M.S.

Oregon Graduate Institute of Science & Technology, 1995

Supervising Professor: T. Lougenia Anderson

This thesis demonstrates a practical approach to software specification that addresses

data abstraction, object interaction, design evolution, incremental refinement, system

partitioning and traceability. A framework is presented for representing and managing

the specification of reusable components. A component encapsulates software artifacts

that manifest an application concept. The structure and behavior of a component is de-

fined in behavioral templates, or schemes, for use in specifications. The dynamic aspects

of behavior are modeled by action rules and constraints, resulting in a computational

model for specification executability. Facilities are provided for controlling the evolu-

tion and selection of components. Meros, a prototype framework implementing these

concepts, is presented with examples.

Xlll

Chapter 1

Introduction

Information systems model application domains in terms of programming languages.

Interesting application domains are subtle, diverse and changeable; programming lan-

guages are prosaic, uniform and inflexible. This difference accounts for both the success

and failure of software. Software is successful at performing structured, repeatable tasks

quickly and reliably. Software is less successful at handling situations that do not fit

comfortably within a simplistic behavioral model.

Design is the process of transforming a conceptual model to an implement able spec-

ification. The software designer reduces the tangled web of interactions among complex

real-world entities to a set of discrete operations on a handful of stable datatypes. A

useful design carves out an appropriate context from the problem space. A faithful de-

sign preserves essential semantics of the problem domain. A full design captures all of

the relevant features within the system boundary. The goal of design is to transform

the conceptual model to an implementation specification by a useful, faithful and full

mapping of the problem domain to a solution space.

Unfortunately, the means of design is inherently at odds with its end. The design

process is exploratory, tentative and iterative. The dilemma of design is that it typically

deals with a "wicked problem", a problem that is not well-defined until its solution is

1

2

understood. Restated, if the solution is not understood, then the problem is not com-

pletely defined. Thus, design entails problem solution as well as problem definition. The

task of the hapless designer is to achieve the end of a well-behaved design transformation

by a process of circuitous tinkering.

This thesis describes an approach to specifying information systems and a lightweight

tool for doing so. The focus is on the design of object-oriented applications, although

the results generalize to the complete software development life-cycle of any informa-

tion system application. The design transformation is viewed as a gradual refinement of

specifications from concept to implementation. A specification is organized as a graph

structure with connections between object templates. The dynamics of object interac-

tions are modeled by actions. Meros, a tool for browsing specifications, is introduced

as a non-intrusive means of visualizing the specification that respects the exploratory

nature of the design process.

The major contribution of this thesis is an open, extensible representation for ob-

ject specifications that addresses data abstraction, object interaction, design evolution,

incremental refinement, system partitioning and traceability. The desire for rigor and

conceptual integrity is balanced by the need for a concrete, straightforward, non-intrusive

approach that is compatible with existing object-oriented programming languages and

development techniques.

The thesis is organized as follows: Chapter 2 describes the role of a specification

framework in the software development process. Chapter 3 presents the concepts perti-

nent to modeling information systems by incremental refinement of component specifica-

tions. The dynamic aspects of object interaction are discussed in Chapter 4. Chapter 5

places object specifications in the context of cooperative development. Chapter 6 il-

lustrates these concepts in Meros, a proof-of-concept prototype for managing object

specifications. Finally, Chapter 7 summarizes the accomplishments of the thesis and

identifies areas for future research.

Chapter 2

Object Specification

2.1 Information Models

An information model is an abstract representation of relevant concepts from an appli-

cation domain or a software system that applies to that domain. It provides a plan or

reference point for realizing the desired system behavior. Models take different forms

with varying degrees of specificity and realizability. Traditionally, three types of models

are distinguished by their correspondence with three distinct phases of software develop-

ment: analysis, design and implementation. An analysis model describes logical concepts

intended to specify what the system is to accomplish. The analysis model serves as a

formal problem description that is independent of the implementation architecture. A

design model changes the focus to how to implement the desired system behavior. The

design model factors implementation constraints and available components into a re-

alizable model to guide further development. The system architecture is described in

abstract terms with a close correspondence to implementation constructs. Finally, an

implementation model prescribes the solution in source code. Programming languages

arc a highly codified but imminently realizable implementation modeling language, from

which a compiler or interpreter can generate a concrete realization of the information

system.

3

4

Modeling traditionally addresses three perspectives: data, function and control.

Techniques and conventions have evolved for each perspective (Table 2.1). For example,

Implementation
Record
Structure

Procedure

Task,
Semaphore

Table 2.1: Information modeling perspectives

a semantic data model, typified by the Entity-Relationship data model [Che76, TYF86],

captures structural information about concepts as a bi-partite undirected graph of en-

tities and relationships. A database schema factors implementation considerations into

the semantic data model. The schema is manifested as sets of records, or fixed tuples of

labelled, typed, single-valued fields.

Structural data relationships are complemented with functional models in each phase

of the development process. The conceptual flow of data is analyzed by processes or data

transforms [Mar78]. Behavior is allocated to modules in an architecture diagram or struc-

ture chart [PJ88], and realized in the procedure definition of a programming language.

Control transforms complement data transforms to describe control flow [WM85, HP87].

State-transition diagrams or matrices serve as a general-purpose mechanism to elabo-

rate system event-response behavior [Har88]. Control behavior is implemented usmg

language-dependent communication and synchronization features [GJ82].

These techniques are directed toward applications characterized by processes acting

on stable, passive, homogeneous tabular data structures. Object-oriented models, on

the other hand, are intended to address the needs of applications with heterogeneous

Analysis Design
Data Entity, Database

Relationship Schema

Function Data Module
Transform Architecture

Control Control State
Transform Transition

5

entities and complex relationships such as computer-aided design and manufacturing

(CAD/CAM), computer-aided software engineering (CASE), knowledge-based systems,

and mutimedia document management [Kat87, Ber87, SB86, GT83]. Object orientation

encapsulates both data and functions in class objects responsible for performing opera-

tions according to a well-defined interface [Cox86, Weg90]. The class provides a public

interface and hides a private implementation. This separation of concerns promotes

information hiding and ease of maintenance by localizing data-function dependencies

in the subject class. Inheritance provides a compatibility relationship that is used to

validate semantic constraints and share behavior and properties. Inheritance facilitates

component reuse and economy of representation.

Object-oriented applications model conceptual entities of diverse size, format and

behavior. Data manipulation is typically graph-oriented rather than set-oriented. Com-

position hierarchies are constructed of components within composite objects. Changes

occur over long sessions and often have a cascading effect. Table 2.2 summarizes the

differences between object-oriented and record-oriented applications. These character-

istics will increasingly characterize conventional record-oriented applications as well, as

these applications become more complex and flexible in the services they provide and

activities they support.

A goal of object orientation is to reduce the semantic gap between a concept in the

application domain and its realization in a programming language, as befits its origins

in simulation [DMN68]. This blurs the analysis-design-implementation distinction. The

analysis-design distinction is already on shaky ground ontologicallyl, serving largely as

lThe problem lies in the inadequacy of language-any language-for formulating statements about the
content of what we perceive:

Even in describing things we simply go on saying more about how they are and not even in
this case get to what. The what always turns into the how because the content of the world
does not in any circumstances get into the propositions.

- H. L. Finch on Wittgenstein [Fin71].

6

Table 2.2: Application characteristics

an artificial heuristic to defer premature design decisions. This thesis eschews these

semantic tarpits by presenting a uniform representation of information models which

may be refined in several stages, individually or as a group. This more accurately reflects

practice [Dav88], especially with evolutionary software development approaches [Boe88].

(For a contrary argument, see [HG93].)

2.2 The Role of a Framework in Object Specification

The development of object-oriented applications reflects the characteristics of these ap-

plications. A large number of software artifacts are highly interrelated in a dynamic

fashion. This complexity places demands on the development infrastructure. A frame-

work helps manage system complexity by providing a set of interrelated services used

Record-orientedapplications Object-orientedapplications
Few, fixed types Many, extensible types
Many small records Few large records

Range and size limitations "Long fields" of indefinite size, format
Tabular organization Hierarchical organization

Set processing Graph-walking
Homogeneous sets Heterogeneous structures
Atomic entities Composite objects

Register simple events Relate complex interconnections

Update in place Versioning
Short-lived locks Check out/check in
Flat, serializable transactions Nested transactions

Abort/restart conflict resolution Cooperative reconciliation
Discrete events Cascading effect of changes
Definite actions Iterative, tentative session

User-assigned key identifiers System-assigned, persistent OOPs
Single-type classification Subtyping
Passive data store Data encapsulation
Process-based invocation Data-centered tool invocation
View definition Behavior refinement

7

to build applications [ECM90]. It is the scaffolding for constructing and deploying in-

tegrated toolsets. A specification framework is used to manage specifications; it helps

organize the application environment by providing the following services:

1. assembling specifications in reuse libraries

2. correlating specifications with software development artifacts

3. managing composite versions and configurations

4. controlling change of an evolving application

5. binding abstract descriptions to prototypical instances

6. activating specifications to drive workflow activities

One may distinguish two popular notions of a framework, a framework-in-the-Iarge

and a framework-in-the-small. A framework-in-the-Iarge is a set of subsystems and ap-

plications that serves as the basis for enterprise-wide software development environments

[Mas87, Ste87]. It integrates large-grained data and tools; an object typically corresponds

to a file or set of files; a tool typically runs as an independent process. Integration may

range from loose encapsulation to tight integration. Loose encapsulation entails placing a

wrapper around tools to direct the flow of input and output information. Artifacts of the

tool execution, typically files, are described and tracked by the framework. By contrast,

a tightly integrated tool relies on framework services for fundamental user interface, data

management and inter-tool communication operations [Was90, TN92].

A framework-in-the-small is a federation of objects and related methods used to

perform a distinguished set of services [Deu89]. It represents a well-defined functional

component with clear responsibility and integrated actions. The exemplar for this notion

offramework is the Smalltalk-802 Model-View-Controller paradigm [GoI84]. The model,

2Smalltalk-80 is a trademark of Xerox Corporation.

8

VIew and controller represent the semantic, presentation and input-handling aspects,

respectively, of an application object. A view is registered with the model as an interested

party. The controller signals important input events to the model, which interprets the

input event and broadcasts a message to interested views.

This thesis attempts to bridge the gap between a framework-in-the-Iarge and a

framework-in-the-small. The framework we present is neither as comprehensive as a

framework-in-the-Iarge nor as specialized as a framework-in-the-small. Rather, it serves

to organize software objects developed using these frameworks into reusable abstractions,

or components, that can be assembled into applications and applied to business tasks.

This focus is consistent with our intent of exploring the largely uncharted territory be-

tween programming-in-the-small and programming-in-the-Iarge. The goal is to enable

the construction of applications from reusable components with a well-defined interface.

The specification framework describes the component interface and behavior, guides the

application design and tracks the evolution of a system from textual requirements to

executable programs. It serves as the basis for developing advanced control applica-

tions, such as workflow automation, that rely on the flexible activation of autonomous,

heterogenous components.

The framework provides the capability to faithfully model the system under construc-

tion as an integral part of incremental, evolutionary development. Specifications describe

the architecture and dynamics of object representations. The process is directed toward

developing libraries of reusable software components for ongoing medium-to-large-scale

software projects. A component has one or more views; each view has an interface spec-

ification, acting as a behavioral template, and can encapsulate an artifact, such as a

requirement statement, analysis model, source code, object module, test suite or test

result. Specifications are developed in the context of a workspace that delimits the be-

havioral templates that can be used within the framework. The workspace defines a

context for change scoped by a given activity. The evolution of components is tracked

in configurations that relate consistent versions of components and views. For example,

9

adding a feature to a Reservation System application might define a context with an

associated workspace and a configuration that includes a new version of the csource

view of a Hotel component with modifications to support the new feature.

The framework does not dictate a symbolism, methodology or technique to use in

design. Rather, it integrates the representations of an object produced by tools and pro-

vides a common representation of shared concepts, to the extent that this information

is exposed in views. The information content is specified in the object schema. This

schema and additional information about the object, such as records of design activ-

ity, annotations and the location of design representations, constitutes the metadata,

or information about data, associated with the object. The metadata is stored in a

metadatabase managed by the framework.

A component-specification framework is merely one facet of a complete software

development environment. It does not supplant programming languages or application

toolkits. It does not provide user interface, data management, tool encapsulation or

inter-tool communication services. Its value lies in playing a non-intrusive, supporting

role in the design of components and their use in applications.

2.3 Comparison to Previous Work

This work draws on previous work in semantic data models, abstract specification and

configuration management. Semantic data models [PM88] form the basis for the static

representation of component structure. The Semantic Database Model [HM81] pioneered

the categorization of abstract application entities reflecting relativistic perspectives of an

underlying range of record- based database values. The functional data model, typified

by DAPLEX [Shi8l]. represents semantic properties of an application as functions be-

tween sets of entities. Function names may be overloaded and disambiguated by entity

roles, and derived functions specify conceptual abstractions based on the values of other

10

properties.

This thesis extends these semantic data models with behavioral descriptions of ob-

jects. Similarly, ADAPLEX [SFL81] and Galileo [AC085] extend the programming

languages Ada and ML [GMW79], respectively, with persistent conceptual modeling ca-

pability. This thesis differs from these efforts in that it addresses the representation

and management of abstract language-independent object specifications, rather than an

extension of a particular programming language.

Semantic data models were prefigured by research on frames [Min75] and semantic

nets [Sow92]. The scheme representation used in this thesis resembles frame instanti-

ation [BK~+ 77] restricted to the domain of software components. The notion of ex-

tensible schemata to represent propositions is suggested by conceptual graphs [Sow84],

which link concepts to primitive classifiers to produce structures that can be mapped

into first-order logic. Touretzky [Tou86] develops a theory of inheritance hierarchies with

exceptions. This thesis uses a similar hierarchical ordering to implicitly infer and over-

ride information, but adapted to a delegation mechanism constrained to preclude certain

inappropriate inferences. In general, the focus of this inquiry is of more modest scope

than the relevant artificial intelligence research (software development vis-a-vis human

language and behavior) and coarser granularity (software artifacts vis-a-vis words and

phrases), and hence hopefully addresses a more tractable problem.

There is a large and growing literature on abstract specification using object-oriented

analysis and design (OOAjD) techniques (e.g. [WBJ90]). Early efforts [SM88, CY90] are

largely a pastiche of traditional techniques recast in object-oriented terminology. Their

most significant contribution is an attempt to relate these techniques by designating ob-

jects as a unifying concept. Structure and behavior are collated in class descriptions, and

behavioral dynamics are modeled by finite state machines. Refinements include verifiable

interaction models [SM91], use cases [JCJ092] and hierarchical state-transition specifi-

cations [Feh93]. Popular approaches may be roughly categorized as entity-based [SM90,

11

CY90, Boo91, RBP+91] or behavioral [WBWW90, SM91, JCJ092, RG92], reflecting the

relative emphasis on static structure or dynamic interaction, respectively.

Those efforts are largely directed toward notation and methodology; by contrast,

this thesis focuses on the underlying representation rather than the presentation of ob-

ject specifications, and is independent of any particular methodology. A deficiency of

current OOAjD techniques is the loose correspondence between analysis, design and im-

plementation models. This thesis complements OOAjD by addressing the management

of analysis and design models as development artifacts in their own right, in the context

of a shared, distributed, evolving, interconnected development process.

Formal specification [LG86, GH93, FJ93] offers a rigorous basis for describing object

behavior. That effort is largely directed toward the exploration of programming lan-

guage structures conducive to the production of provably correct software. There has

regrettably been little interaction with object-oriented methodologists, although heuris-

tics have been suggested for translating informal requirements into formal specifica-

tions [Fra91, MH91]. This thesis attempts to partially bridge this gap by describing

object specifications with practical application to OOAjD with the potential for a well-

founded semantics.

The controlled evolution of systems by the component-specification framework builds

on well-accepted configuration management concepts [KCB86, BM88]. These concepts

are extended to support tasks and activity workspaces in the versioning model of Chiueh,

et al. [CKK90]. Batory and O'Malley have described an approach to composing systems

from software components [B092]. This thesis is the first effort to our knowledge to

characterize a software component as a unifying configuration of abstract views depicting

a concrete manifestation.

Chapter 3

Component Definition

3.1 Component Schemes

System specification is based on the notion of a component as the entity that integrates

an application concept with its manifestation in software. The component is the unit

of abstraction suitable for specification, evolution and reuse. An application is then

constructed by assembling components in a manner consistent with their specifications.

The role of the component-specification framework is to manage the component and

application specifications.

A component interface is presented in a basic scheme that defines the component's

structure. A scheme is an abstract representation of a component's composition, or at-

tributes, and functionality, or methods. The interface defines the structural basis for its

use by other components. A specification is built from schemes to show how components

actually plug together to accomplish the capabilities defined in their interfaces. A com-

ponent is represented in a specification by a frame; the frame depicts a scheme that is a

subset of the interface sufficient for its use within the specification.

Definition(Frame). A frame is a member of the set FRM indexed by sorts

COMPONENT and METHOD.

12

13

Interpretation. F RM is the universe of all frames in all specifications. Frames

are sorted into two types, component frames and method frames.

The frame represents the potential for use of an object in a particular operational

context. The context delimits the role the object plays, and thereby its applicable

behavior. The individual Donaldin Figure 3.1, for example, may be represented by the

Person 1

(Name)

Manager1

(Department)

I authorize IDonald

Donald
Employee-
Donald

Authorization

Father]
Employee

authorizer

Donald
(Children)

Donald

Figure 3.1: Examples of frames

distinct frames Person, Employee, Manager and Father, each with differing behavior

according to his various roles.

Both an attribute and a method are represented in the component specification as

frames contained within the component frame. The Manager component in Figure 3.2,

for example, has a Department attribute and an authorize method. Attributes and

method frames are slots that can be bound to a value: an attribute is bound to another

component frame, a method is bound to a method scheme that characterizes an action

performed when the method is invoked. The method may have input slots that are

bound prior to the action, and a result slot that is bound to a frame upon completion

14

Manager

(Department)

Requisition

Authorization

authorize

Figure 3.2: Manager frame

of the action. The values of the frame's attribute, input and result slots constitute the

acquaintances of that frame; these are the components necessary to fully specify the

frame interface. A connection binds the input slots with compatible frames, activating

the frame to perform an action. The authorize method in Figure 3.2 has an input slot

Requisition and a result slot Authorization.

Table 3.1 summarizes the associations between frames. The composition and method

I Association Source Target

Table 3.1: Associations between Frames

associations are visually depicted in a specification by containment of the attribute or

method frame within the component frame. The input association is depicted by an

arrow from the slot to the method. A method's result slot is situated on top of the

method frame. A specification's underlying structure is that of a digraph with frames

as nodes and these associations as edges.

Definition(Specification). A specification S P is a graph (1/,T/,81,fh) with

nodes 1/ C F RM, edges T/,a source function 81 : T/-+ F RM and a target

composition Component Attribute
method Component Method

input Method Input Slot
result Method Result Slot

15

function Eh : TJ-+ FRM, such that there is a graph embedding of 5Pinto

the graph gFRM induced by the frame associations. gFRM consists of frames

as nodes and, for any frames Fl and F2 of gFRM, an edge from Fl to F2 if

and only if there is a frame association from Fl to F2.

Interpretation. A specification diagrams selected frames and frame associa-

tions in a graph.

A scheme is a simple specification consisting of the component frame as a root node and

edges to its attributes and methods.

Definition(Scheme). A scheme 5 is a specification graph with a single root

of sort COMPO N E NT. The distinguished root node is called the point of

the scheme, identified as pt(5).

Interpretation. A scheme diagrams the interface of a distinguished component

frame. The scheme point singles out this component frame; pointed schemes

help relate interfaces consistently, as we will see in the definitions of the next

section.

3.2 Component Structure

A component interface is related to the software artifact(s) that realize it by a view. An

artifact is a persistent representation of a component interpretable by software tools; it

is the tool's unit of access. The view encapsulates these artifacts in a form suitable for

use independently of the tool that created the artifact. A distinguished interface frame

serves as the canonical definition of component structure for the view.

Definition(View). A view V is a pair (5, A) consisting of a scheme 5 and

a (possibly empty) set A of artifact handles. Each artifact handle is an

uninterpreted value that serves to identify the location of an artifact for an

16

associated tool. The unique frame pt(S) of V is the interface frame for the

VIew.

class RSEmployee {
long EmpNbr,

String EmpNm;

CREATE TABLE RSEmpDept (
EmpNbr long UNIQUE,

Dept char

SQL Table
DefinitionArtifact

Entity-Relationship Diagram Artifact
C++ Class Definition

Artifact

Figure 3.3: Manager and Employee views

Figure 3.3 presents Manager and Employee components sharing a concept view re-

lated to a common Entity-Relationship Diagram. The Employee conceptual specifica-

tion is implemented in a csource view that encapsulates the Reservation System class

RSEmployee. The Department attribute in the conceptual scheme is implemented as

the EmpDept method in the csource scheme. The EmpDept component encapsulates a

database table that associates an employee with her department. This component has no

conceptual scheme in this specification, but merely encapsulates a useful implementation

artifact.

Manager Employee Component
EmpDeptComponent

I r Employee Ir RSEmployee Component
Manager

(EmpNbr) (EmpNbr)
(EmpNbr)

RSEmpDept

(Name) (EmpNm) (EmpNbr)
I authorize I

(SSN) (EmpSocSecNbr) (Dept)
concepti view I I(Department) I EmpDeptI

contept view

17

A component collects a consistent set of views for a given conceptual entity. In this

respect, a component is analogous to a cell in the cell-view structure of the OCT CAD

management system [HMSN86]. Every view belongs to at least one component, and

every component has at least one view.

Definition(Component). Let =INT be an equivalence relation on the do-

main F RM of frames. Two frames Fl and F2 are intensionally equivalent if

Fl =INT F2. Two views are intensionally equivalent if their interface frames

are intensionally equivalent. A component C is a set of intensionally equiva-

lent views. The set of components covers the set of views, that is, V view V,

3C IV E C.

Interpretation. A component relates consistent views of a common concept.

This" consistency" is formalized as the intensional equivalence relation. Ev-

ery component frame in a specification is derived from some particular view's

interface frame. This interface frame is, in turn, related to the interface

frames of other views by the component. Note that there may be more than

one component per view. This allows several components to relate to a single

concept. However, a component can only relate views that are intensionally

equivalent. Furthermore, every view defines an interface for some component.

The view's interface frame represents the abstraction facet of the view, while the arti-

facts represent the view's content facet [CK91]. The abstraction facet of a view contains

the view metadata, the data about the content facet. The metadata describes external

characteristics and how the view relates to other views, abstracting the interface and

composition from the concrete representation. External characteristics, or annotations,

contain relevant information about the view regarded as an artifact-who created it,

when it was created, release and qualification status, remarks on its use, etc.

18

The framework can incorporate any relevant artifacts of a component; examples of

artifacts include a requirements document, structured specification, entity-relationship

diagram, object diagram, state-transition diagram, spreadsheet, source code, object code,

test suite or manual page. Tools generally fall into three categories: editors, translators

and analyzers. An editor creates, browses and modifies a software artifact. The Meras

framework, for example, provides a simple graphical specification editor for creating,

browsing and executing specifications. A translator changes a representation to a form

more suitable for another tool. A compiler is a translator that transforms a set of source

code views into an object module. A test driver is an example of an analyzer, a tool

that infers information about an existing artifact. The test driver accepts a test suite as

input and produces a test result as a dependent artifact.

A tool may be associated with an artifact as part of a component's encapsulation.

If the encapsulation supports tool invocation on method activation, then the tool may

be directly invoked by the framework when the method is activated. For example, an

implementation view of the Manager component with an associated tool with the capa-

bility of performing an authorize action enables the framework to initiate authorization

by invoking the tool directly. This provides a higher level of abstraction for interaction

with components. A component supplier or framework integrator defines the interface

for a component. An application builder assembles the components into a form suitable

to accomplish a discrete task. The application user enables a component by defining

values for input slots and activating a method of the interface (d. §4.2).

The view interface frame defines a component's structure for use in specifications.

These specification frames may restrict the interface to a subset of functionality sufficient

for their use within a particular specification context. Figure 3.4 on page 19 shows an

interface frame for the Hotel component and its use in three specifications. The Hotel

frames in the specifications derive their scheme from the base scheme defined in the

interface frame. A derived frame is related to its base frame, or prototype, by a delegation

rule, which defers the binding of an attribute or method frame through the derived frame

Hotel

Hotel

(Address)

(Phone Nbr)

(Address)

(Phone Nbr)

(capacity)

I reserve I

Specification 1

Hotel Chain

digHotel Interface

Specification 2 Specification 3

Figure 3.4: Hotel frame example

to a base frame (shown as dIg edges).

Definition(Delegation). A graph homomorphism I: G1 ~ G2 is a mapping

(Iv, IT/) of nodes Iv : VI ~ V2 and edges IT/ : 171~ 172such that

A pointed graph homomorphism I = (Iv, IT/) is a homomorphism on pointed

graphs that preservespoints. i.e., Iv(pt(G)) = pt(l(G)). Delegation is a

partial pointed graph monomorphism dIg: Be HEM E ~ BeH EM E, i.e.,

a one-to-onemapping of schemesthat relates the roots.

Interpretation. A scheme is a pointed specification graph, where pt singles

out a component frame as the root of the graph. Delegation is partial, since

it may only map selected attributes and methods of a frame, pointed, since

it always maps a scheme's root to the root of the prototype scheme, and

19

20

monomorphic, since a given attribute or method can serve as the prototype

for at most one frame of the delegated scheme.

The delegation relationship can recurse, i.e., a derived frame can serve as the target of

another frame's delegation. The Hotelframe in Specification3delegates to the Hotel

frame in Specification2'A frame may also be derived from more than one base frame,

with distinct attributes and methods delegated to each of the base frames. For example,

a frame that shared characteristics of both the Specificationland Specification2

Hotel might delegate to both frames. Delegations thus form a directed graphic with

frames as nodes connected by delegation edges.

A component's specific functional characteristics are elaborated in independent spec-

ifications, as described in the next section §3.3. The frames representing the component

in these specifications serve to refine the interface. The refinement frame, like all spec-

ification frames, delegates to the prototypical interface frame for its basic functionality.

However, since the refinement specializes certain aspects of the base functionality, the

interface frame in turn delegates the specific specialized attributes and methods to the

refinement frame. Figure 3.5 depicts a component's structure with complementary del-

ega.tion edges between the Hotelinterface and one of its refinements. In the figure, the

Hotelrefinement in Specificationlcharacterizes the behavior of a particular Hotel

method. The Hotelrefinement delegates to the base interface in general, whereas the

interface frame delegates to the refinement for a detailed specification of the refined

method.

The refinements can be specialized by other refinements with complementary delega-

tion edges between the frames. The interface frame and its reachable refinements form

a subgraph of the delegation graph. There is a path from any frame in this subgraph

to any other frame in the subgraph, and the subgraph is maximal in this respect. The

interface fra.me and its reachable refinements thus constitute (by a fortuitous termino-

logical coincidence) a strongly connected component of the delegation graph. Though

21

Specification1

Interfaces

---I Artifacts
artifac~

(refinem4nt)
dig

Specificati0rl:1

Figure 3.5: Component Structure

the full delegation graph has cycles, each path in the graph terminates in a connected

component that includes a component interface frame.

3.3 Behavioral Specification

The component interface scheme defines the structural capability of a specification frame.

The frame can be further characterized by a rule for transformation of inputs to outputs

or a constraint to express conditions that must obtain in its use. A rule consists of a

(Condition, Action) pair: the condition is a template that must be matched before the

rule is enabled, the action describes a resultant binding of values to frames matching

the condition. Figure 3.6 showsa rule for the reserve method, indicating that a hotel

handling a reservation request with a room available for the requested period enables

that room's hold action to be successfullyactivated. That the two Roomframes in the

22

Condition Action

available

true

Room

Figure 3.6: Reserve rule

specification denote the same Room component is established by a visual convention, for

example by having the same color.

A constraint depicts a situation that must necessarily hold for a method or compo-

nent. A method constraint consists of a method and at least one pre- or post-condition.

The room in the hold method in Figure 3.7 is constrained to be availablefor the givenpe-

riod prior to being held and unavailable afterwords. The pre-condition (post-condition)

is indicated by a 0 connector on the method input (output) connection. In the figure,

the pre-condition and post-condition both apply to the same Period. Note that the

reserve rule of Figure 3.6 explicitly satisfies this pre-condition and does not implictly

violate the post-condition. A constraint, expressing a necessary state of affairs, has a

stronger effect than a rule, which provides a possible transformation. No action can

reliably occur that violates a constraint. A rule indicates an action that may occur if

the condition is matched and no constraint precludes this choice.

23

available

false

Figure 3.7: Hold constraint

A view may be implemented in terms of other views by specifying a delegation rule

as in Figure 3.8. This example elaborates on the views defined in Figure 3.3. Here,

Figure 3.8: Manager delegation to Employee

the Manager frame delegates to an Employee frame for the Name and SSN attributes.

Only those attributes amd methods occuring in the source frame of the delegation rule

are subject to delegation. Thus, the authorize method of the Manager component

is not implemented in terms of Employee, since it does not occur in the delegation

rule of Figure 3.8. In Figure 3.9, the Employee frame in the concept view in turn

delegates to the RSEmployee frame in the csource view. The csource view has a one-

to-one correspondence with a RSEmployee class defined in a source code artifact of the

Reservation System library.

The associations and rules defined in a specification are bona fide assignments rather

Manager Employee

(Name) dig (Name)

(SSN) (SSN)

24

Figure 3.9: Employee delegation to a source code interface

than de facto regulations; that is, the framework does not guarantee that a view's con-

crete aspect is a complete and faithful reflection of its interface, nor that views are

actually related in a rigorous fashion by specification rules. In particular, there is no

assurance that views integrated into the framework are correct by construction. This is a

weak notion of specification, but befits the non-intrusive nature of a framework targeted

to an open development environment. The multiplicity of view representations within a

component necessitates a loose coupling of interface to artifact and view to view. The

view interface exposes just enough of the artifact to facilitate its use in the framework.

3.4 Use and Identity

A scheme serves as a template for modeling a collection of real-world entities that share

some features in common. A frame may define how a feature is used within the context

of the specification in which it occurs, or it may delegate an aspect of its scheme to a

prototype, typically an interface frame. In addition, a frame may be bound to a proxy

for a particular individual entity of the application domain. The prototypical component

frame is an intensional entity, while the bound value represents the frame's extension.

The intension shows the meaning of an extensional object, that is, how it is used within a

particular context. Specifications are typically of unbound intensional objectsl, although

10f course, the intensional objects of the specification are managed as extensional objects by the
framework. A hotel component is an intensional object from the perspective of an application dealing

Employee 1 RSEmployee 1

(Name) dig (EmpNm)

(SSN) (EmpSocSecNbr)

25

these are often explicated by their extensional effects on a prototypical frame. Use of

prototypes encourages specification by example, unfolding the meaning of a software

component by its action on typical instances. In this respect, the frame differs from a

class concept and resembles a prototype or exemplar [Lie86, LT86, Bor86, US87, DMC92].

It is more appropriate to consider a frame as a specification for a class or an instance.

The intension-extension distinction has a long history in philosophy, dating back to

the Aristotlean separation between an object's meaning, or logos, and our experiences

of it. Frege [Fre92] considered every name as expressing some sense according to the

relation in Figure 3.10. A name, or symbol, for an object has a sense (Sinn) and a

reference or denotation (Bedeutung). The referent is the independent existent for which

the name stands. The sense is an aspect of the word's use that determines it to have

that referent. Different uses of the same object represent different senses with the same

reference. "Names with different senses but having the same reference correspond to

different routes leading to the same denotation." [Dum73].
Sense

Name

Denotation

Figure 3.10: Fregean distinction

This distinction is real and important; it is also not easily accomodated in most

programming languages, where object identity is either fragmented among its various

uses (Donald has one identity as a father, another as a manager) or case logic proliferates

(Donald is an employee, and employee behavior handles the specialize cases of father and

manager) .

with hotels, but is an extensional object from the perspective of a framework dealing with a component
as an object to be managed.

26

This distinction is made in scheme specification by the following steps:

1. Decouple identity and behavior.

2. Define behavior by use within a context.

3. Represent separate uses of an object in separate frames.

4. Relate the separate uses to the single unique extension.

Each frame has an intensional identity relative to its parent composite frame. In

addition, a frame may have a (bound) value given by another frame representing the

extension. All frames representing a given object have a common extension; the recursive

extension relation between frames forms a directed acyclic graph terminating in a domain

value that directly represents the object in its application domain. A domain value can be

bound to different frames of different types at the same or different times. For example,

the domain value for Donald in Figure 3.1 may be bound to a Person, Employee, Manager

or Father frame as the need arises.

The domain value is itself a typed frame occuring as a member of a collection. How-

ever, the domain value's characteristic type and parent are accidental, rather than essen-

tial, features of the domain value. The identity of the domain value is invariant through

changes in its bound intensions, characteristic type and collection membership. Thus,

the domain value for Donaldmay have begun as a frame of type Employee in a Hotel

Employees collection, been assigned a Manager type in a Hotel Managers collection,

and eventually end up as frame of type Person in an Ex-employee collection. Frames

with a bound value of Donald continue to have identical extension despite these changes.

27

3.5 Change and Identity

Objects have unique, immutable identity, but changeable state. Identity is not a visi-

ble characteristic of the object. All visible characteristics, including names, are subject

to change. The object identifier is a surrogate [Cod79], indepenendent of description

and location, thereby avoiding the anomalies associated with a weaker notion of iden-

tity [KC86]. Every manifestation or use of a domain value refers back to the single

occurence of the entity it represents in the application domain. An object has no ex-

tensional identity apart from its denotation, and two frames with a different denotation

denote different (extensional) entities. Similarly, every specification has a unique identity

that persists through changes to the specification, and every frame in the specification

has a unique identity relative to the specification. All frames derived from a prototypical

frame refer to the canonical identity of the prototype relative to its defining specification.

Consider the Manager attribute of the hotel object in Figure 3.11 on page 28. This

attribute originally has a denotation of Donald. When the Manager attribute changes,

it denotes a different domain value Ivana. The change to the hotel is reflected in the

edge labelled chg. The hotel object's state changes, but it's identity remains the same.

Similarly, the intensional identity of the Manager attribute, as a feature of the Hotel

scheme, remains the same, although its extensional identity has changed from Donald

to Ivana. Stated differently, there is a notion of Manager for a hotel, and the essence of

that characteristic has not changed, although it is bound to different values over time.

Likewise, Donald plays many roles at the same or different times, but each role (frame)

has a consistent domain value (denotation) over time and use. Equivalent denotation

establishes identical extension-the two Hotelframes in Figure 3.11 are identical by

virtue of the equivalent denotations as reflected in the dnt edges. Denotation equivalence

may be conveyed in a specification by other visual conventions as well, for example, by

using the same color for denotation ally equivalent frames.

Historicity is persistent, that is, the past is preserved. Thus Donald may no longer be

28

Hotel

Manager-
Donald

Plaza

C)
.s::.
o

Hotel

Manager-
Ivana

Plaza

Figure 3.11: Denotation and change relationship

a manager of any hotel (the value Managers. Donald is no longer reachable from any cur-

rent context), but the fact that Donald was a manager of the Plaza hotel at a particular

time is recorded (the value Donald is reachable from a superseded context). The version

history in this example is a linear sequence. However, versions may evolve independently

from the same source, for example to explore alternative designs or exercise different sce-

narios and compare the results. In general, the version history forms a directed acyclic

graph of frames connected by change edges; this DAG constitutes the history of the

object (d. §5.5). All changes represented in a specification are non-destructive actions,

indicated by a new version of a frame. Object state at any point in time is given by the

denotations of all of its attribute frames at that moment.

Chapter 4

Behavioral Dynamics

The constructs presented so far apply to a static specification-there has been little dis-

cussion of how objects interact to carry out the behavior specified in the method interface.

As described in Chapter 3, the component interface expresses the latent capability of

an object. A rule describes how a method uses its inputs to produce a result subject

to constraints. This chapter elaborates these behavioral descriptions by introducing the

dynamic capabilities of states, probes and agents. These capabilities result in a compu-

tational model for an executable specification. Executability serves a two-fold purpose:

for the component developer, prototyping and validation of individual components; for

the application builder, assembly of components into useful functional configurations.

4.1 Method specification

We motivate the discussion by reconsidering the reserve specification of §3.3, repro-

duced in Figure 4.1 with an accept action added to record the acceptance of the reser-

vation. The Hotel's Room attribute contains an available method, conveyed by the

nesting of the frames. The same Period serves an input value to both the reserve and

available methods, as shown by the arrows. The specification depicts the rule "IF an

attempt is made to reserve a room and the hotel has an available room, THEN accept

29

30

the reservation and hold the room for the given period". Figure 4.2 shows a specifica-

tion for the accept rule with the inclusion of state information for the Reservation

component. State information is representing in a state variable, a single-valued, un-

Condition Action

Hotel

Reservation

(Hotel] (Guest)

(PeriOd) (Room)

Figure 4.1: Reserve rule

Condition Action

Figure 4.2: Accept rule

interpreted attribute used to cantol a component's behavior and activate methods of

dependent components. Figure 4.3 on page 31 shows the Reservation Status state

31

variable ranging over a domain of five discrete values, with inital value requested. An

Figure 4.3: Reservation status state variable domain values

Figure 4.4: Room occupancy status domain

arrow without a source frame and directed to a component frame corresponds to a con-

struction event-the rule applies whenever a Reservation frame is created, for example

as a side-effect of the reserve action.

Condition Action

Reservation 1

4 Reservation)
Domain 1

<§cepte:9

C§ncel

Status

Condition Action

Room)
OccupancyStatus]

4 Room)

Gserve

GcuPiev

32

As an attribute, a state is set as a result of an action and can be used in rules and

constraints. In the example, the accept action transforms the value of the Status state

variable from requested to accepted. Similarly, the Occupancy Status state defined

in Figure 4.4 is transformed by the hold rule of Figure 4.5 from available to reserved.

Figure 4.6 translates the room's isAvailable action into a query on the Occupancy

state variable.

Condition Action

Room
Room

Figure 4.5: Hold rule

Figure 4.6: Availability rule

Condition Action

Room)
Room)

-I isAvailableI isAvailable

ailab true

33

Finally, Figure 4.7 shows a negative condition: the grayed-out Roomframe repre-

sents the absence of an available room for the given period, resulting in a denial of the

reservation requestl.

Condition Action

Hotel

Reservation

(Hotel) (Guest)

(Period) (Room)

Figure 4.7: Deny reservation action

1Note that is not equivalent to . The former represents the absence of an

available room in the subject hotel, whereas the latter represents the presence of an unavailable room in
the subject hotel. Negation implies the absence of a value satisfying the given frame, a condition that
cannot be asserted with positive frames alone.

34

The common intent of these actions is to transform a state variable from one value

to another. An input state used in an action is no longer available for use in another

action. State variable exclusivity differs from the use of input values in general, in that

a component bound to an input slot is available for subsequent use after the action

completes. The use of a frame as an input to an action is, however, consistent: an input

frame is treated as a resource consumed by the action to produce a result. A frame

bound to an input slot spawns a cloned frame upon activation for the exclusive use of

the action. The lifetime of this cloned frame is the duration of the action. A state, on

the other hand, is not bound to an input slot as a formal argument, but rather consumed

directly by the action.

4.2 Method activation

As indicated in §3.1, a method serves as a specification for an action. The action is actu-

ally carried out by an actor [Agh85], the computational analogue of a frame (Table 4.1).

An actor realizes the use of an object that a frame potentiates2. An actor is respon-

Table 4.1: Specification-Computation analogues

sible for handling requests to perform actions described by the methods of a frame's

2The frame-actor distinction is similar in this respect to the class-instance distinction in object-
oriented programming languages. The class (frame) defines a template for the computational capability
of the instance (actor). In other respects the notions are independent: in the terms of the specification
framework, an actor is an activated frame, whereas an instance is a class bound to a specific domain
value. It is more appropriate to consider a frame as a specification of a class or instance within a
particular context (d. §3.4), and an actor as a multiplexed instantiation, with each actor handling just
those requests appropriate to the corresponding frame. A frame may specify class or instance-specific
behavior; an actor enables the specified class or instance behavior.

Specification Computation
Frame Actor
Method Action
Connection Channel

35

scheme. Requests are initiated by opening a channel for information transfer between

the requestor and the method handler. The channel corresponds to a connection from

bound input slots to the recipient frame's method. An input value at the channel source

must be compatible with the input slot frame. Compatibility is determined by a rule

that maps the value to the slot. For example, Figure 4.8 shows a rule for mapping a

Figure 4.8: Rule for binding a value to a slot

Client of the Travel Agent application to a Guest of the Hotel Reservation application.

This rule creates a new Guestframe bound to the value of the Client frame. The Guest

frame's Name attribute is given by the bound Client frame's Name attribute. The arrow

between the corresponding Name frames establishes a procedure for binding an existing

Guest frame with a Client value. The Client value is compatible with the Guest frame

by virtue of this mapping.

Attributes and methods peculiar to the Client frame are unused in the context of

operations on the Guest slot. Attributes and methods peculiar to the Guest frame are

used while the bound frame is used in the role of a Client. The Client frame's Phone #

attribute is unused in the scope of the Guest binding, since it is undefined in the Guest

interface. By the same token, the Guest frame's License # attribute is not accessible

in the context of a specification using a Client frame.

When an input value is bound to an input slot, there must be some way to map

Condition Action

Client1 Guestl

r Name { Name)

(Phone#) [Driver's]License #

36

the input value's scheme to the input slot's scheme. A delegation rule such as that of

Figure 4.8 serves this purpose. A delegation rule from a prototype of the input value to

a prototype of the input slot may also serve this purpose, since recursive application of

delegation will yield a map of the input value scheme to the input slot scheme. Figure 4.9

depicts the binding of the input value Dave to a Guest input slot of the Hotel's reserve

Guest

Client
(Name)

~
(Phone #)

01
'6

-

,3
Guest-
Dave

Figure 4.9: Resolution of a bound value

method. There is no direct delegation map of Dave to the Guest slot, but Dave is a

Client, and there is a delegation map from a Client frame to a Guest frame. Therefore,

this delegation rule may be used to map the attributes and methods of Dave to a Guest.

The effective binding rule is the "most specific" rule for delegating the bound input

value to a prototype frame. Specificity is measured by the length of the path formed

from delegation edges to prototypes of the input slot. Thus, if there were also delegation

Domain1

(Davet-. .-. . .

Clients (

37

rules from both the Clientand the Guest frames to the same Person frame, this would

serve as a candidate binding rule, but would be superseded by the effective binding rule

from Client to Guest, since the delegation path to the Guest frame is shorter than

that to the Person frame. To recapitulate, the procedure used to bind the Guest slot

(2) of the reserve method to the Client frame Dave (1) in Figure 4.9 is to follow the

delegation edges back from the candidate Guest frame until the first mapping rule is

encountered from a prototype of the Client frame. The attribute(s) in common, Name

in this case, are assumed by the bound frame (3).

All object interaction occurs by communication along channels between cooperating

actors. A dispatcher at the channel destination monitors a mailbox of incoming requests.

The dispatcher schedules the request and activates a handler, a dormant actor desig-

nated by the dispatcher to process the request. An actor is dormant until activated

by a dispatcher, active during the course of its action, and passivated when the action

completes. The action thus occurs in the time interval [activation, passivation]. Action

intervals are disjoint for a given actor. Thus, activation is single-threaded for the actor,

i.e. an actor is responsible for at most one action at a time. However, activation may be

multi-threaded for a given object, since the object may have several actors active at the

same time.

The actor handling the request must spawn a replacement actor to handle subsequent

incoming requests. The dispatcher may schedule another request once a replacement ac-

tor is available. In this way the single-threaded action of individual actors can be sched-

uled concurrently to the extent allowed by the application and execution environment.

In the degenerate case of a single-threaded environment, the handler simply designates

itself as the replacement actor upon completion of its action.

A handler may progressively enable its replacement, monotonically increasing the

number of methods the replacement can service as the active handler completes. For ex-

ample, a handler that enters a critical section may restrict its replacement to handle only

38

messages unaffected by the excluded resource until it completes. Similary, a versioned

coarse-grained component responding to a long-lived update method may initially desig-

nate an immutable base version as its replacement restricted to read-only methods, then

operate on a new mutable version in a private environment and enable the remaining

methods when it completes (d. Chapter 5).

Actions are specificied by directly describing the effects of actions on objects in the

generation and use of frames. A requestor cannot rely on implicit assumptions about the

order of action execution. Action scheduling is the responsibility of the dispatcher and

activation completion is the responsibility of the request handler. Thus, request activa-

tion and completion is asynchronous from the standpoint of the requestor in the absence

of explicit control dependencies. Control is externalized from actions by monitoring a

channel for action completion (d. §4.3). The requestor can serialize actions by waiting

upon the handler to post a result to the open channel and signal completion prior to

issuing a subsequent request.

Just as an actor can be considered an independent computational unit, an action

can be considered a discrete process (conceptually, of course; the allocation of tasks to

processes can differ considerably in the underlying system architecture). Parallelization

occurs whenever more than one handler is active. Concurrent activation occurs whenever

1) an actor continues processing while a request it initiated is being actively handled by

another actor on an open channel, or 2) a method handler's replacement policy allows

designating a replacement actor prior to the handler's passivation. A perspicacious

framework can infer parallelization opportunities from the action specification and induce

multiple concurrent activations. Alternatively, the specification can include hints by, for

example, distinguishing read-only and write actions that can be used to synchronize

actions. A pessimistic replacement policy, on the other extreme, simply single-threads

execution.

39

The reserve rule in Figure 4.10 entails a database update operation and a confirma-

tion action. In this case, the fully-enabled replacement actor must include the database

Condition Action

Reservation
Reservation

Reservations

Reservation

Figure 4.10: Reserve subactions

state change, but need not wait upon completion of the non-destructive and potentially

lengthy confirmation action. A replacement can therefore be designated upon comple-

tion of add while the original Reservation actor remains engagedin the confirmaction.

The Hotel replacement actor references the newly-added Reservation frame and can

activate a Reservation actor that is indistinguishable from the Reservation actor still

engaged in the confirm action.

A method can have several associated constraints and rules. Hence, a connection

may match the condition for several conditions and (potentially conflicting) rules. In

general, a constraint or rule of an active frame is enabled whenever its conditions are

satisfied. For example, the accept rule of Figure 4.10 could be broken out into two

rules with identical accept condition and independent add and confirm actions. The

two alternative specifications for the accept action would be semantically equivalent so

long as the subactions were independent. For example, if the confirm action used the

40

Reservations table entry as input, as would be indicated by an arrow in the specifica-

tion from Reservations to confirm, then splitting the rule into two rules would yield

a semantically different specification, with no guarantee that the Reservations table

included the new Reservation.

Alternatively, a default rule may be explicitly specialized to apply a more exacting

condition. Consider the default rule for handling the reserve action in the absence of

an available room presented in Figure 4.7 of §4.1. This rule is specialized to handle an

overbook condition in Figure 4.11. The Hotelframe in Figure 4.11 refines the Hotel

Condition Action

Hotel

Reservation

Reservation Room

(Hotel) (Guest)

(Period) (Room)

upgradable-
true

Figure 4.11: Overbook rule

frame in Figure 4.7, which itself is a refinement of the Hotel frame in the Hotel compo-

nent interface. Both Figure 4.7 and Figure 4.11 match the Hotelfully booked condition.

However, the specification in Figure 4.11 allows for accepting the reservation if there is

some room matching the reservation request that, though not available, is upgradable

41

to an available room of similar or greater quality that could serve as a substitute during

the given period. Each and only the most specific constraints and rules with a satisfi-

able condition are applied to a given active frame. Hence, Figure 4.11 applies in place

of Figure 4.7 if and only if no room is available but some room is upgradable. Rule

specialization implements a form of default reasoning with exceptions [ER83, Zad87].

An action specification is computational, since it is a rule for computing new values

from existing values. However, the computation is descriptive, providing the essential

semantics of object interactions, rather than prescriptive, indicating a candidate sequence

of steps to implement the action. The subactions of an action are performed concurrently.

Action atomicity is guaranteed only to the extent that a replacement actor is defered

pending action completion. The add and confirm subactions of Figure 4.10 can be

performed concurrently. The replacement Hotel actor is made available after completion

of the add subaction.

The reserve action has no external effect on application state until this replacement

actor becomes available. An external effect cannot be undone in the event of a partial

failure. For example, a confirmation sent to a customer as a result of the confirm

sub action is not withdrawn if the add subaction fails. A partial failure can be handled

by either serializing the subactions or registering a compensatory action. Serialization is

indicated by adding a constraint on the successor action with the predecessor action(s) as

pre-condition(s), as in Figure 4.12. Actions should be serialized in the specification only

when there is an explicit requirement to do so. The serialization mechanism is dependent

on the underlying implementation environment. Preferably, action scheduling occurs at

run time based on optimization criteria.

If there is an acceptable means of compensating for a failed subaction without im-

peding the progress of related subactions, then an alternative to serialization is a speci-

fication of a compensatory action in an exception rule. For example, the exception rule

of Figure 4.13 specifies that a failed add action results in the sending of a note to the

42

Constraint

Reservation

Reservation

Reservations

Figure 4.12: Confirmation constraint

Exception Action

Reservation

Message

Reservations

Figure 4.13: Reservation add exception rule

desk clerk, who presumably will correct the problem. The failure of the add action is

indicated by the grayed add frame, representing the inability to complete the action.

Graying out the method frame is analogous to the use of a grayed attribute frame, as in

Figure 4.11, to represent the inability to match the shaded frame subject to the given

condition. An exception rule is the mechanism to handle an exception whose detection

is not possible or desirable prior to activation. If the action fails for any reason, every

matching exception rule is enabled.

43

The rule may simply post an informational message or it can induce a corrective

action of arbitrary complexity. Action atomicity is expressed by specifying an abort

exception. In the example, if both the confirm and the add sub actions had to complete

before any change were committed, then an abort exception could be specified. An abort

rolls back changes upon failure of any subaction to the extent possible in the underlying

artifact implementation. The default compensatory action is to raise an abort exception

for all actions initiated by the matched condition and raise an exception.

4.3 Monitoring actions

The activity of a component may be monitored by a specialized frame called a moni-

tor. The monitor typically collects, filters and disseminates information or performs a

discrete, ancillary action in response to a well-defined stimulus. An attribute) is moni-

tored by attaching a probe to the relevant frame. The probe is stimulated whenever the

attribute's value changes. If a value is supplied for the attribute frame, then the probe

is stimulated whenever the attribute acquires this value. A probe may also be attached

to a connection or method. A probe attached to a connection is stimulated whenever an

action result is posted to a connection channel. The connection input and output frames

may be supplied a value to qualify the conditions under which the probe is stimulated.

A probe attached to a method is stimulated upon completion of the method's action.

The Hotel Full monitor in Figure 4.14 continuously monitors the reserve action for

a fully booked condition. The probe is stimulated when the occupancy rate acquires

the value 100%. Upon activation, a HotelFull message is sent to the manager frame

(Figure 4.15). Figure 4.16 shows two equivalent forms for the hotel occupancy probe.

In the first case, the probe is stimulated whenever the Occupancy attribute changes

value. In the second case, the probe is stimulated whenever the Occupancy attribute

attains 100%. The extra condition on the Occupancy attribute redundantly restricts

the Occupancy attribute to the value specifiedin the HotelFull monitor's condition

44

Figure 4.14: Hotel Full monitor on reserve

Figure 4.15: Hotel Full action

of Figure 4.15. The advantage of this redundant condition is to directly indicate the

monitor's condition in the probe attachment, at the cost of redundancy and the attendant

update consistency problems.

Hotel Full Monitor

Hotel)

\
.J reserve I

MonitorJ

HotelFull J

Condition Action

(Table)
Message)

Occupancy

(Manager
to

send1100%

(ManagerJ
HotelFull
Message

45

Hotel Full Monitor 2 Hotel Full Monitor 3

Hotel Hotel

Occupancy Occupancy

100%

Monitor

Figure 4.16: Hotel Full monitor on Occupancy

4.4 Agents: frames with an attitude

The static and dynamic specifications of object schemes we have described provide a nat-

ural scaffolding for overlaying goal-directed computation. The static component interface

scheme specification describes the potential for frame activation; the action specification

shows control flow. The activation heuristic in each case is simple-a static specification

propagates activation through delegation, whereas an action specification activates an

action in a rule whose condition is satisfied. Action propagation is opportunistic, or

forward-chaining, in that every action with a satisfied condition in activated.

The simple activation heuristic of static and dynamic specification suffices to describe

reactive systems under the control of an external intelligent agent, for example a user

interacting with a system to satisfy an unknown (to the system) set of goals, beliefs

and plans. The value of a system description is fully realized when this description is

used to advantage in activities that engage the productive participation of purposeful

agents. This motivates the ability to model such agents directly in the object specifi-

cation. Representing agents in the specification is useful in development as a means of

understanding goal-directed behavior in system interactions, e.g. usage scenarios in a

workplace context.

46

Perhaps the greatest potential for a component specification framework, however,

lies in workflow automation, the flexible activation of discrete component operations

according to a plan to accomplish a set of goals. Workflow automation requires at least

the ability to flexibly define an activity as a prescribed sequence of component operations.

A more powerful approach is to represent the plans, goals and beliefs of the agent directly

in the framework. An activity is then defined and initiated dynamically based on the

agent's perception of the current situation in relation to the agent's goals.

An agent is a frame with a propositional attitude [LGP+90]. A propositional attitude

may be construed as a second-order binary proposition whose arguments are a holder

of the attitude and another proposition, e.g. believes(Manager, HotelIsFull). The

fundamental propositional attitudes of interest to reasoning systems are belief and desire.

We deanthropomorphisize these terms for our purpose by recognizing the propositional

attitudes of assertion and goal. An assertion posits a defeasible state of affairs that serves

as adequate justification for provisional actions. A goal represents a prefered state that

motivates the actions of an agent. The agent filters information to arrive at assertions,

and acts on those assertions to realize its goals.

The Overbook Authorizer agent in Figure 4.17 holds as a goal the maximization of

Figure 4.17: Overbooking Authorization agent

hotel occupancy. To that end, the assertions that a class of rooms is full but upgradable

leads to the authorize action to permit overbooking specified in Figure 4.18.

Assertions are characterized by a local truth value and defeasibility; they represent

Agent)

Goal

Maximize
Occupancy

Overbook
Authorizer

47

Figure 4.18: Overbooking Authorization rule

a state of affairs to the best of an agent's knowledge. For example, a travel agent may

hold that a hotel room is available if and only if the room may be reserved, whereas the

hotel manager may withhold certain available rooms from consideration for reservation

or, conversely, overbook a room if the occupancy can be upgraded to an available suite.

The difference may be due to temporal vagaries in information accessibility or, as is the

case in the example, an intentional difference that represents the different perspectives

of different roles. Thus, assert(A, P) :> P is true for a proposition P for a scope local

to the agent A, but assert(A, P) 1> P in general.

Furthermore, an assertion is defeasible, or subject to revision as the state of the

world and an agent's perception of it changes. It is thus necessary to monitor asser-

tion dependencies and detect changes that affect dependent assertions and goals. If a

previously held belief is withdrawn based on new information, then it is necessary to

invoke a compensatory action to rectify any actions based on the now discredited belief,

and recursively analyze the belief dependency structure for new revisions. Figure 4.19

describes the rescindcompensatory action activated whenever it is necessary to with-

draw a previously approved authorization based on a change in one of the assertions that

led to the authorization. The burden of truth maintenance [Doy80, dK86] is alleviated

by specifying explicit compensatory actions.

Assertion Action

IRoom Classl Authorization 1
-....

(Room Class)isUpgradable I
true

Overbook
Authorization

48

Assertion Action

(Room Class)

Overbook
Authorization

Figure 4.19: Rescind compensatory action

We have seen in this chapter the beginnings of a programming model for the com-

ponent specification framework. An action specification serves as a visual script for

enabling actor behavior. Actor scripting has three uses:

1. Experiment with the specification by simulating component interaction.

2. Validate an artifact against its component specification by observing its behavior

under situations described in the specification script.

3. Build applications by scripting components and deploying agents to accomplish

goal-directed tasks.

These uses represent a progressively increasing level of involvement of a component

specification with its underlying artifact and associated tools. It is thus critical to the

full employment of a robust component-specification framework in a shared, distributed

environment that the software objects related to a component are managed in a flexible,

consistent manner. Software object management appropriate to the framework is the

topic of the next chapter.

Chapter 5

Object Management

5.1 Dimensions of Software Object Management

Software design and construction generates a large number of artifacts, including re-

quirements documents, analysis models, design models, module interfaces, source code,

documentation, test cases and verification results. The object management subsystem

of a software development framework has the responsibility of organizing these artifacts

in meaningful, consistent structures that support the development process. This respon-

sibility is pronounced for design structures, since a design demonstrates purpose only

when related back to requirements and guides construction by its relation forward to

implementation.

We consider the following six dimensions of interest in software object management:

1. Function - organization of components within functional areas

2. Task - assembly of components to perform a work activity

3. Containment - collection within a containment hierarchy

4. Composition - aggregation of subcomponents

5. Time - version configuration of component content

49

50

6. Location - physical storage location of component information.

The points along these dimensions are, respectively, the library, activity, member, com-

posite, version and handle for the object. For example, the Hotel component could be

organized functionally in the Reservation System library, used in the Add Waitlist

Feature task, a member of an Exports container, composed of Room subcomponents,

currently at revision 6 and holding an artifact with location handle

//orion/project/rsv-sys/src/hotel.c.

This chapter elucidates the role of a specification framework with respect to the

function, task, containment and time dimensions. The composition of subcomponents

as attributes within a composite component is described in Chapter 3. Location of

specifications and artifacts is distinguished by its absence: the framework strives for the

illusion of location independence, permitting free use of components in specifications

without consideration for their location in a network of distributed applications and

data. Achieving this illusion is a significant challenge, but one that relies on underlying

object technology that is incidental to our purpose in this thesis.

Each of the dimensions are logically independent, in that a change in anyone dimen-

sion need not necessitate a change in the other dimensions. Dimension independence is

desirable in practice because it reduces interdependence of framework subsystems, fa-

cilitating a pluggable framework architecture and reducing the complexity of managing

the application development process. Furthermore, component organization need not af-

fect the contents of a view's tool-dependent representation. The framework encapsulates

the view's tool-dependent representation and provides a consistent context for its use.

References within the object to another object are represented as abstract component

identifiers that resolve to the appropriate target within a given context. Contextual ob-

jects track the reference target's evolution, organization and location without affecting

the content of the source object holding the reference.

51

It is the framework's responsibility to determine the context sufficient to resolve

references and control evolution. The framework selects the appropriate component and

view by filtering candidates based on this context. A view representation can then be

materialized by mapping the abstract aspect of the view to the location of its concrete

aspect and invoking the appropriate tool. The framework thereby provides assistance

in locating view representations and maintaining component consistency. For example,

resolving a reference to the Hotel's csource artifact might use the information that

the developer is involved in the Add Waitlist Feature as context for identifying the

correct working version of the csource file.

5.2 Functional Partitioning

Any non-trivial system quickly faces the need to partition functionality into manageable,

self-consistent units. This decomposition of large systems into semi-autonomous units

is, in fact, the organizing principle of systems design. Object-oriented applications are

particularly susceptible to this requirement because of the multiplicity, reactivity and

specialization of objects. There are a large number of diverse objects that interact by

responding to messages and may specialize the behavior defined for other objects. The

fundamental functional unit identified by the framework is the component. Views are

defined in order to permit operation on a component as the logical unit of abstraction.

A library serves to group components related to a broad functional area or subsystem.

It is possible to share a single component among multiple libraries, or to represent a single

conceptual entity by distinct components in different libraries. Sharing of a component

among libraries and a view among components is based on development and deployment

policy. For example, the hotel entity can correspond to the same or distinct components

in the ReservationSystemand Inventory System libraries. If distinct, the two Hotel

components can share views or evolve independently (Figure 5.1). Here, the concept

views are shared, but relate to distinct csource views, DCHotel for the Desk Clerk

52

Libraries Desk Clerk Reservation System

Components I Hotel
csource concept

Views

Hotel
concept csource

csource view concept view csource view

Figure 5.1: Hotel component in two libraries

library and RSHotel for the Reservation System library.

A library is a functional partitioning only, and does not carry an implication for

the physical storage location of a view's concrete aspect. Location is set by a policy

or as view metadata. In the example, the concept view's content facet might reside in

a database, the Desk Clerk csource in a local file system, and the the Reservation

System csource at a remote site.

5.3 Task Partitioning

The task dimension organizes components by use in accomplishing a discrete purpose,

or activity. The activity sets the context for use and modification of individual com-

ponents. The Add Waitlist Feature activity in Figure 5.2 uses the Hotel, Room,

DCHotel

(Rooms) (Room)
(Hotel Room Table)

I rsvRoom I
(Ledger) I hold_room I

I registerGuestI
(Reservation) I

I I I available_room

53

Add Waitlist Feature

(Hotel)

(Room)
(Waitlist)

Figure 5.2: Add Waitlist Feature activity

Waitlist, Reservation and Queue components. The Reservation and Queue com-

ponents are contained in a folder, or generic container, named Imports. An activity

may encompass tasks for both an individual person or agent as well as a group of people

or agents, and may be recurring (e.g. Print Monthly Statement) or transitory (e.g.

Add Waitlist Feature).

The activity may model an application task (Print Monthly Statement) or a de-

velopment task (Add Waitlist Feature). In either case, the framework is managing

meta-objects of the application-specification objects that describe application objects-

rather than the application objects themselves. An activity, as defined here, reflects

operations on components rather than of components. The latter are described entirely

by the action specifications of component methods. An activity, on the other hand, sets

a context for selecting versions of components, views and artifacts.

Activities are grouped into a project or process to coordinate work effort. A project

is intended to model one-time efforts, whereas a process models repeated efforts. (In the

context of this discussion, the two are otherwise identical, and a description of one applies

to both). A project (process) can contain subprojects (subprocesses), activities, folders

and components. The Desk Clerk project in Figure 5.3contains the Registration sub-

project, Fix DB Post Bug and Add WaitList Feature activities and Imports folder.

54

Enterprise
~

Desk Clerk

(Hotel) (Room)

(Registry) Add Waitlist Feature

(Hotel) (Waitlist)Registration

~
(Registry)

(Room)

Reservation System

(Hotel) (Reservation)

Travel Agent Link Release 2.0

(Reservation) (Hotel]

I
\ /

~ /,---------------------------------------

Figure 5.3: Example of projects

Another project, Reservation System, contains two subprojects. There is a distin-

guished top-level Enterprise psuedo-project that serves as the root of the activity hi-

erarchy and contains all projects and processes accessible at a given site.

The activity hierarchy is chosen by its convenience for the task at hand, independent

of physical location or functional organization. Projects are distinguished from libraries

in that a library groups components according to function, whereas a project acts as a

55

locus of task responsibility. The two coincide when projects are defined functionally or

libraries are organized by task responsibility. Identification of tasks with libraries is often

the case for software development projects. A process, on the other hand, typically uses

components drawn from assorted libraries for a particular business purpose. It is also

possible to partition projects by physical location (for distributed development), project

life-cycle (early phases separated from later phases), or any other convenient scheme.

5.4 Containment Hierarchy

The activity hierarchy is a special case of a containment hierarchy. There are five species

of container objects: project, process, activity, library and folder. A folder acts as

a general-purpose container to augment containment given by the activity hierarchy.

Components are collected into a container by an aggregation rule that determines the

criteria for inclusion. A common rule for an activity, for example, is augmented selection,

selection of members of the parent project augmented by components peculiar to the

activity. In the example of Figure 5.3, the Add WaitlistFeature activity contains

the Hotel, Roomand Imports members of the Desk Clerk parent project, as well as a

new Waitlist component. More sophisticated aggregation rules are possible; the only

requirement is that the rule can be evaluated and returns a set of components or other

containers. For example, an Approved folder might have an aggregation rule that collects

a set of approved components by filtering incoming e-mail for change approval notices.

Membership in containers is by independent, shared composite reference [KBG89];

that is, the existence of a component is independent of membership in any certain con-

tainer, and a given component can be shared as a member of more than one container.

A container is typically created by copying selected members of an existing container.

Copying is a logical operation that creates a membership reference from the target con-

tainer to the referent object. The Imports folder in the Add Waitlist Feature activity

was, as the name suggests, copied from the Imports folder in the Desk Clerk project.

56

TheHoteland Room componentswere copied from the parent Desk Clerk project as

well.

Change capability and visibility are conditioned by three membership reference prop-

erties: deferability, fixity and mutability. Deferability refers to whether the reference is

direct, resolving directly to the referent or defered, defering resolution to another con-

tainer. Membership can be further characterized by its fixity-a fixed reference always

resolves to the same referent, whereas a floating reference may resolve to different ob-

jects over time. The mutability property determines the capability for changing the

referent-a mutable member can be modified in place, an immutable member cannot.

Direct membership has the effect of isolating the container from changes in member-

ship in other containers. Defered membership relies on another container to determine

a member's contents. In Figure 5.4,AddWaitlistFeatureholds a direct reference to

Desk Clerk

Add Waitlist Feature

(Hotel) mUjable ~
floting ~

immutable di eet

::~~~~h...+.h..{Room)

mu

~

able

flo ting

(Waitlist)di eet(Room)-

(Registry)

Figure 5.4: Membership references for the Add Waitlist Feature activity

Hotel and Waitlist,but defers to the Desk Clerk parent project to resolve the Room

membership reference. Thus, a change applied to the Room member of the Desk Clerk

project is visible to the Add Waitlist Feature activity. Hotel and Wai tlist, on the

57

other hand, are unaffected by changes in the Desk Clerk project.

The Imports container is shared between the Add Waitlist Feature activity and

the Desk Clerk project, and any change in membership made to either representation

of Imports is reflected in both representations. Changes cannot be made to the Imports

members themselves, however, since these are immutable references. They are defered

through the source project from which the component was imported, but are fixed in

order to preserve a stable copy ofthe imported components that is shared among all activ-

ities within the Desk Clerkproject. The deferal retains the original project-component

membership relationship but conceals it in the Imports folder. It is possible to recover

the original membership by querying the original source container of the defered copy.

Querying the source container enables navigation to an imported component's source

project as it existed when the member was copied. The source is fixed at a stable,

internally consistent snapshot of the project.

The effect of change given these three properties is portrayed in Figure 5.5. The

first case (i) shows the effect of a change to a defered floating reference: the change in

container A's reference is reflected in the defered reference of container B. This is useful,

for example, for an Import folder of one project which always reflects changes made to

membership of another project's Export folder. In the second case (ii), the change to

container B's direct reference does not affect the original container A's reference. This is

equivalent to a deep copy of the original container, for example an Import folder whose

members come from an Export folder but thereafter lose all correspondence with the

source. B's defered fixed reference in (iii) is unaffected by a change in container A's

reference. The fixed reference has the effect of freezing the reference at a point in time.

This applies whether the reference is direct or defered; if the reference is defered, then this

has the effect of freezing a virtual copy of the original container holding a direct reference

(A in this case). This is useful, for example, to fix the Import folder's membership at

that of the Export folder at a point of time, isolated from subsequent changes to the

Export folder. Finally, the referent in (iv) is shared by the original container A and

58

o ~ 0.

~
'. ', '. '. '. ,. '. '

o
i) defer ed, floating

ii) direct, floating

0' ~ 0. ..'. .---.......... .'--
~

' .'
. ", ", ., . '

~"

iii) defered, fixed

ivy defer ed, mutable

Figure 5.5: Effect of membership properties on change visibility

the container B, and changes to the referent through the defered, mutable reference are

applied directly to the shared referent and visible to both A and B. This is similar to a

link in that a change made to a member of Imports is reflected in the corresponding

member of Export as well.

These three properties are orthogonal, distinguishing which reference is changed (de-

ferability), and whether the change is applied to the reference (fixity) or the referent

(mutability). However, some combinations of membership properties are more mean-

ingful than others. Combinations of chief interest characterize susceptibility to change,

whether by modifying a reference or its referent. These are subsumed in a composite

stability property-a stable reference is fixed and immutable; a volatile reference is one

59

that is not stable.

In summary, the aggregration mechanism described in this section balances flexibil-

ity, economy and protection. Components are organized in libraries based on functional

criteria. Folders can be arbitrarily assembled from components and other folders. A con-

tainer can defer to other containers to resolve membership or be isolated from changes

made in the context of other containers. The deferability, fixity and mutability prop-

erties, taken collectively, provide a mechanism for implementing access protection and

change control policies by restricting the permissible combinations. For example, a pol-

icy that constrains accessiblity to its mutable members to direct, floating references only

allows updates that do not affect the source containers. Conversely, a source container

which only allowed a target container to establish defered, fixed, immutable references

to its members prohibits changes to its members from any access path except that of the

source container; furthermore, it isolates any changes made in the source container from

affecting the members of existing target containers. Deferal also provides the mechanism

for implementing versioning as a means of change control, considered in detail in the next

section §5.5.

5.5 Managing change

Components are subject to concurrent development and use in evolving systems. The

component specification framework is a natural foundation for tracking changes to com-

ponents and ensuring the consistent use of compatible versions. The project and activity

containers define a context for change and use. Associated with each such context is a

workspace that controls the visibility and accessibility of software objects. Workspaces

are used to promote integrity and concurrency by controlling access to design evolu-

tion, isolating change and permitting evaluation of local changes in a broader context.

A workspace is an administrative mechanism whose control is at the discretion of the

designer or system integrator.

60

A workspace acts as a filter on the universe of software objects in an enterprise.

Components and views are filtered "horizontally" by a projection of a subset of relevant

members and "vertically" by a selection of versions visible in the workspace. Figure 5.6

illustrates version derivation (thin line) and version selection (thick line) of components.

Workspace 1

A 8

v1

D

v2

v1

Figure 5.6: Workspace structure

Workspace2 selects components A and C from Workspace} augmented by the new com-

ponent D. The versions of A, C and D selected are 1, 1.1.1 and 1, respectively. Version

1.1.1 of C is a new version created in the context of Workspace2 and is owned by that

workspace. It is derived from version 1 owned by Workspace}. The workspace maintains

a version graph managed by a history object for each object within its scope.

Workspaces are organized into a hierarchy that mirrors the project-activity hierarchy.

A parent workspace owns versions created in that workspace; a child workspace has

61

selective visibility to versions in the version graph of the parent workspace, as well as

versions created in the child workspace. In the example, Workspace! is a parent of

Workspace2' A configuration distinguishes the current versions of the objects in the

workspace. The (shaded) configuration in Workspace2 of the example selects version 1

of A; the parent workspace's configuration selects version 2.

A child workspace evolves a software object from a version owned by its- parent

with the check-out operation. The check-out creates a new version owned by the child

workspace and sets the currency of the history object to this version. Typically, the

parent's current version is checked out; this establishes a local context for object evolution

and evaluation that isolates the impact of changes from the shared global context of the

parent workspace. However, the check-out can be of a version which is not the current

version of the parent, in which case the current version of the child workspace is not a

successor of the current version of the parent workspace. In this way, alternatives can be

explored and evolved in a local context without affecting the global notion of currency

of a software object.

A new version is promoted to its parent workspace by the check-in operation. This

creates a successor reference from the source of the check-out to the subject of the check-

in. The parent's version graph is amended to include this successor and, if the immediate

predecessor is current in the parent, currency is moved forward to the new successor. No

intermediate versions which may have been created during the object's evolution in the

child workspace are promoted to the parent workspace. These intermediate versions are

retained in the child workspace, and may be preserved for historical reasons or purged

if no longer needed.

Component C in Figure 5.7 was checked out to both of the sibling Works paces 2 and

3. It is evolved in Workspace 2 to versions 1.1.1 and 1.1.2; version 1.1.2 is subsequently

checked into the parent and relabeled version 2. Meanwhile, Workspace 3 has evolved

version 1 to versions 1.2.1 and 1.2.2. Version 1.2.2 is then merged with version 2 in the

62

Workspace 1

Workspace 2 Workspace 3

Figure 5.7: Workspace version graph visibility

parent workspace to form a new version 3 upon check-in. Intermediate versions are still

visible in the child workspace, but these are not selectable in the other workspaces. The

visible versions and change-derivation edges are either owned by the workspace (solid

line in the example) or inherited from the parent (dashed line). Any redundant edge,

such as that connecting versions 1 and 2 in Workspace 2, is removed.

A child workspace may simply designate a current version from the parent workspace

without an intent to evolve it. In this case, the version history maintained by the child

workspace is the same as the version history of the parent workspace, but the currency

of the child workspace overrides that of the parent. Furthermore, any change to the

currency in the parent workspace is not reflected in the child workspace. Fixing currency

63

in the child workspace effectively takes a snapshot of the object in the parent workspace

and freezes the currency of that object while it remains in the child workspace. For

example, Component Ain Figure 5.6 is frozen to version 1.

The set of current versions in a workspace defines a default configuration, or set of

consistent versions, for that workspace. The configuration relates entities to versions; this

partial monomorphism determines version currency. A configuration is a software object

and may evolve; a configuration object is a history object that manages configurations

as versions. The default configuration of the workspace is then the current configuration

in this configuration object's version history.

The default configuration is different from other software objects in the workspace

In that it is not an immutable version; every check-in operation updates the default

configuration in place. Configurations are versioned by the snapshot operation instead.

A snapshot commits the default configuration as an immutable back version and creates

a copy as the new, mutable default configuration. Frozen shared configurations are

typically labelled with a meaningful version designator such as rls 1 or v3. 1.

A developer may freeze a shared configuration by making a local copy of the default

configuration in her individual workspace and using the local copy. Any change to the

parent's default configuration does not affect the local copy. An entity in the local copy

may be related to any version of that entity visible in the development workspace. The

local copy can be pared down to include just objects of interest, included in another

configuration and subsequently discarded, all without affecting the version binding of

other developers.

Configurations are used to construct an environment that binds each referencable

entity to a specific software object. The environment maintains a partial order on a

collection of configurations. This partial order determines the version binding of the en-

tities represented in its configurations. Each workspace contains a default environment,

which defines a sufficient context for the evaluation of all references held by software

64

objects within that workspace. The default environment typically consists of the transi-

tive closure of default configurations over the ancestors of the workspace, ordered by the

parent relationship, as well as selected configurations of workspaces that own referenced

software objects not included in the ancestry.

The example in Figure 5.8 shows public workspaces corresponding to the Desk Clerk,

Inventory System Common Services Desk Clerk

Add Waitlist FEiature

Add Waitlist Feature

Figure 5.8: Environment example

CommonServices and Inventory System projects, a private workspace for the Add

Waitlist Feature activity, versions of entities (circles) within these workspaces, the

default environment of the Add Waitlist Feature workspace (at bottom), and four

configurations (shaded) corresponding to the four workspaces. The four configurations

65

include the default configuration for the Add WaitlistFeature activity, configura-

tions labeled integration for the parent Desk Clerk and imported CommonServices

projects, and the configuration rls2. 1 for the Inventory System project. In this exam-

ple, a Desk Clerk entity will bind preferentially to a software object checked out into the

Add Waitlist Feature workspace. Otherwise a Reservation System entity will bind

to the version in the integration configuration of the parent workspace. References

to CommonServices and Inventory System components always bind to the versions

called out by the integration and rls2. 1 configurations, respectively.

Potential ambiguities arise when a single entity is represented in more than one

sibling workspace. For example, if a released component is checked out into two sibling

integration workspaces and a developer's workspace is a child of both of these integration

areas, then the environment has insufficient information to select a prefered version of

the component. Such ambiguities are resolved by a developer decision, e.g. by copying

the prefered binding to a local configuration that takes preference over the conflicting

parent configurations.

An environment, like a configuration, is a software object managed in a workspace.

There may be several environments in a workspace; different environments represent

different perspectives on the design space and can lead to different evaluation results. It

is possible to create recursive relationships of configurations within environments within

configurations, and is entirely reasonable to do so. For example, it may be desirable for

traceability to capture the Add Wait list Feature environment used to bind versions

prior to commiting and archiving the changes made as a result of this activity. This

can be accomplished by including the Add WaitlistFeature environment itself as an

entity selected by the Add Waitlist Feature configuration.

66

5.6 ReferenceResolution

A component was previously defined as a software object that collects views of a con-

ceptual entity. A component may now be understood as a specialized configuration

object-a version of a component is the configuration that collates a consistent set of

versions of views. A workspace configuration contains component configurations, man-

aged as composite objects. For example, the Add Wait list Feature configuration may

select version 2 of the Hotel component, which in turn selects versions 2, 2 and 3 of its

constituent concept, design and csource views, respectively.

A configurable reference takes the form (Component, View), where Component and

View are abstract entity surrogates. The binding of a configurable reference to a partic-

ular version of a view is a three-step process:

1. The active environment selects a context for evaluating the reference.

2. This context determines the binding of the Component entity to a component

versIOn.

3. The configuration represented by the selected component version binds the View

entity to a version of that view.

The bound version of the view is then available for use, for example to construct a frame

from the view's scheme. Continuing the Add Waitlist Feature environment example of

Figure 5.8 in Figure 5.9, a reference to a Hotel component's view can now be understood

as a configurable reference through the environment to a version of the Hotel component,

then to the version of the view as configured by this component version.

The context used to evaluate a reference is typically the configuration managmg

the component with the highest precedence in the active environment. Configuration

precedence ensures that every referenced component resolves to the same version when

67

Views concept design csource

Component

Figure 5.9: Configurable reference example

evaluated in that environment. However, it is occasionally desirable to treat a referenced

component as a black box for evaluation purposes, so that any reference from that

component is evaluated in a context different from that given by the active environment.

In the example, if a component imported from the Inventory System references

Hotel, it may be desirable to resolve this reference using the environment in effect when

the Inventory System rls2. 1 configuration was built. This alternative resolution re-

produces the reference evaluations in effect at the point of release and ignores any changes

that would otherwise be visible in the current active environment. The resulting evalua-

tion treats the released component as a black box upon which the active environment has

no effect. An imported Inventory System component is then treated as a self-contained

entity unaffected by changes to components in the private workspace.

The first step of reference resolution is complicated somewhat by this flexibility, since

the active environment must maintain a context map that relates a component to the

68

context used to evaluate references from views of that component. By default the con-

text map is empty, signifying that all references resolve through the active environment.

However, a component or container of components may be explicitly mapped to a dif-

ferent environment by a user action. In the presence of a context map, all references

directly or indirectly from a mapped component will be evaluated in the new context.

The second and third steps of reference resolution remain the same, modulo this context

switch.

In the example of Figure 5.10, the Inventory System and Desk Clerk projects use

different versions of a common Hotel component. References from an Inventory System

specification are mapped through an Inventory System environment, whereas refer-

ences from an Desk Clerk specification are mapped through the Add Waitlist Feature

environment. Thus, a frame bound to the Hotel component slot in the Inventory

System specification conforms to a prototype specified in version 1 of the Hotel compo-

nent, whereas a Desk Clerk specification conforms to a version 1.2 prototype.

Configuring reference resolution through a context map yields a more controlled

evaluation by isolating the scope of changes within the active environment, but precludes

an understanding of the impact oflocal changes on a shared environment. A context map

is appropriate when there may be multiple versions of an object active in an operating

environment with dynamic communication between statically bound components. For

example, the Hotelcomponent specification could reflect a dynamic request from version

1.2 of a Hotelcomponent to an Inventory System component, which in turn statically

embeds version 2 view of the Hotel component. In this case, it is desirable to treat the

imported Inventory System component as a black box unaffected by local changes to

Hotel in the Desk Clerk project. Context-sensitive version selection faithfully models

a situation involving several active versions of the same object. Activation of multiple

component versions is potentially confusing, and the benefit of faithfully modeling such

a situation must be balanced against the potential for propagating confusion in the

specification.

Hotel

Component

Add Waitlist Feature
Environment

Context Map .. Desk Clerk
SDecification

Inventory
System

V
Desk
Clerk

Inventory System
SDecification

Figure 5.10: Reference resolution through a context map

69

70

The fidelity-complexity trade-off is a recurring theme in software object management.

We will return to this topic in the conclusion. For now, let it be noted that the goal of the

framework is to manage software complexity rather than mask it. The model of object

management developed in this chapter attempts to relate components to artifacts in a

flexible and consistent manner. The next chapter illustrates this model by describing a

proof-of-concept prototype that implements many of the concepts.

Chapter 6

A Component Specification Framework

Prototype

This chapter describes Meros1, a tool suite for managing object specifications. Meros

is a proof-of-concept prototype for demonstrating features presented in this thesis. The

prototype consists of the following tools:

Project Browser organizes activities within projects

Library Browser collects components in libraries

Component Editor browses and edits component specifications

History Browser tracks the evolution of components

Tool usage will be described by way of example in §6.1, followed by a discussion of scheme

representation in §6.2.

1Meros is from the Greek /lofpOC;,signifying "part" and connoting an essential aspect of an object as
manifested in its interaction with other objects in a larger context:

An Anaxagorean /loO'ipCiis a 'portion' in the sense of a 'share' rather than of a 'piece' or
'particle'. The essential characteristic of such a 'portion' seems to be that it is something
which neither in theory nor in practice can ever be actually reached and separated out from
that which contains it.

- G.S. Kirk and J.E. Raven [KR57].

71

72

Table 6.1: Script for the Add Waitlist Feature use scenario

6.1 A specification example

This example traces a use scenario [RG92] for adding a new feature to an existing ap-

plication. A script for this scenario is presented in Table 6.1. The steps in this script

follow the actions of a hypothetical developer, Sue, in adding a waitlist feature to the

reserve action in the Desk Clerk tool of the Hotel Reservation application.

Sue begins by creating an AddWaitlist Feature activity within the Desk Clerk

Project in Figures 6.1 and 6.2. The Activity Editor is invoked from the Meros Tool Dash-

board in Figure 6.1. The activity hierarchy consists of the Desk Clerk and Reservation

System projects, denoted by the ~ icon, and several subprojects and the Fix DB Post

Bug activity, denoted by the B icon. The Add Waitlist Feature activity added in

Figure 6.2 defines a new context for resolving component references by creating an as-

sociated workspace for controlling the evolution of objects modified while this activity

is active. Subsequent changes to components are local to this activity's workspace until

promoted to the parent Desk Clerk Project. A reference to a component checked out to

the Add WaitlistFeature activity resolves to the version current in that workspace.

Other references are resolved in the parent Desk Clerk Project context.

Initiator Action Participant Service
Sue open Desk Clerk Project Activity Editor open a project
Sue create Waitlist Activity Desk Clerk Project add an activity
Sue browse Hotel Mgmt Library Hotel Mgmt Library open a library
Sue select Hotel Component Hotel Component select component
Sue browse Hotel History Hotel History display history
Sue evolve Hotel Version Hotel History create a version

Jay browse Hotel History Hotel History display history
Sue open Hotel Component Hotel Component open a component
Sue create Waitlist Method Hotel Component add a method
Sue open Reservation Spec Reservation Comp open a spec
Sue clone Reservation Frame Hotel Spec clone a frame
Sue create Reservation Slot Waitlist Method add a slot
Sue save Hotel Spec Hotel Component save a spec
Sue promote Waitlist changes Waitlist Activity promote activity
Jay browse Hotel History Hotel History display history

73

Actillity Component History Library
Editor Editor 8rowser 8Iowser

Activity Editor
fdit

Enterprise
~ Reservation System
~ Travel Agent Link
~ Release 2.0

~ Desk Clerk
~ Registration
~ Fix DB Post Bug

Figure 6.1: Open Activity Editor

Registration
B Fix DB Post Bug

~ Reservation System
~ Travel Agent Link
~ Release 2.0

Figure 6.2: Add New Activity

A component view may be checked out to the active context explicitly by editing

that object's version history or implicitly by editing the view as a generic object. In

the example, Sue browses the Hotel Management library using the Library Browser and

74

selects the generic Hotel component (Figure 6.3).

Figure 6.3: Select Hotel Component

75

At this point, Sue could check out the version of the object current in the parent

workspaceimplicitly by directly opening the genericHotelcomponent presented in the

Library Browser. She chooses to check it out explicitly by opening the object's history

(Figure 6.4) and evolving the version marked as current (Figure 6.5, page 76). This action

Figure 6.4: Browse Hotel History

creates a new editable version of the Hotel view that is isolated from other development

activities. Thus, another developer, Jay, operating in the parent workspace retains

version 1 of Hotelas the active version (Figure 6.6, page 77).

76

Figure 6.5: Evolve Hotel History

77

Library Browser
Session .Edit

Hotel Management
S Room
-EJ Guest
-EJ Reservation

,u.

History Browser

Session History

Figure 6.6: Jay's active version

78

Sue, meanwhile, opens the Hotelinterface scheme (Figure 6.7) and creates a new

Hotel,

[Reservation)

~
IreserveI
aHotel

Figure 6.7: Open Hotel component

waitlistmethod (Figure 6.8). Sue must add a Reservationslot to the waitlist

method. Adding the slot is accomplished by selecting the appropriate Reservation

component interface scheme (Figure 6.9), creating a clone from this prototype in the

waitlistspecification (Figure 6.10), and attaching this frame to a new slot labelled

rsvn (Figure 6.11). Sue then saves the specification and promotes this change to the

parent project workspace. This action makes the change visible in other developers'

contexts (Figure 6.12).

79

Hotel,

(Reservation]

~
Ireservel
BIll
aHotel

Figure 6.8: Create waitlist method

80

Reservation

(Date)

~
(Period)

aReservation

Hotel
; "

(Reservation)

~
IreserveI
IwaitlistI
aHotel

Figure 6.9: Open Reservation scheme

81

Hotel,

[Reservation)

~
Ire serve I

Iwait"st I

aHotel

Figure 6.10: Copy Reservation frame

Hotel,

(Reservation)

~
Ireservel

~_rsvn
aHotel

Figure 6.11: Create waitlist slot

82

Specification
fdit

[Reservation}-rsvn

Figure 6.12: Visibility of promoted change

83

84

6.2 Scheme representation

Figure 6.13, page 84, is a block architecture diagram of the major subsystems of the Meros

~
~" /-

1\
-'---~"

/ "- / "-

/ \ / \
I \ I \
I , I I\ I \ I

, /, /" / "- /
..........

Schemes ~----
Object Repository

Figure 6.13: Meros tool architecture

environment. Interactive tools access a common object repository, or metadatabase.

Objects and their associations are represented in a graph data model with system schemes

and component schemes. The system schemes include the following:

Project Scheme

Workspace Scheme

Library Scheme

Tool Scheme

project/activity hierarchy

workspace contents and parentage

library component containment

definition of tools associated with views

The component scheme represents the essential, non-visual, shared aspects of a compo-

nent interface.

Each component interface is represented in a separate component scheme. The com-

ponent scheme, as described in §3.1, is a graph of frame nodes connected by typed edges.

85

The root of the interface scheme is a frame for the subject component. This frame has

edges to its attribute and method frames. The method frame in turn has an edge to

each of its slot frames. The component's attribute and slot frames comprise its acquain-

tances. Each acquaintance frame holds a configurable reference to another component.

The reference identifies a generic component surrogate that may be resolved to a specific

frame for that component (Figure 6.14). Typically, acquaintance references resolve to

Guest
Specification

------ -- -/'
/' '-

/ "-
/ \

I \
I I
\ I
\ /
~ /

. '- /'
/'

.........---------

Hotel
Specification

----------- -/'
/' '-

/' '-
{ "-

/ ' \
I \

I \
I ,
\ I
\ /, I" /

'- /'
/'_/---------

Hotel

(Room)

as stored as displayed

Figure 6.14: Scheme representation in Meros

the root of the interface scheme for the target component.

The Component Editor presents an interface scheme. The scheme is represented in

the Object Repository as a simple tree structure rooted at the component frame. The

Component Editor maintains a graph in its persistent specification artifact that reflects

this base tree, augmented with graphics attributes governing font, color, selection and

display. Each frame may be selectively shown or hidden. A display attribute determines

whether the frame is displayed as simple or composite-a composite frame recursively

86

displays its visible contents.

An acquaintance frame may be opened, viewed and embedded within a specification

artifact. The specification must then reflect the acquaintance's interface scheme as re-

solved by the component reference attached to the acquaintance frame. Furthermore,

this information must be stored persistently in the specification artifact and updated

dynamically as the acquaintance's referent interface changes. Dynamic update is accom-

plished by the use of a configurable frame for the acquaintance. Figure 6.15 shows how a

-----------~-- ---~ ,/ ,/ ,/ "/ "
I \

/ \
I \
, \
I I
\ ,
\ I
\ /
\ I" I

, /, /, .." /, ..--
,." ~

-Hotel-

Specification
~--

/ '
/ 'I "

I \
, I
\ I. \ /

" /
, /_/

GueSt
Specification

Figure 6.15: Configurable frame

Guestframe's scheme is dynamically determined in the context of a Hotelspecification.

The Hotel specification has a Guest frame that is the input to the reserve method. The

Guest's scheme must be dynamically determined based on a shared Guest specification

that is imported into the Hotel specification.

The Guest frame is represented as a configurable reference in the Hotel specification

graph. A configurable reference consists of two nodes, an efferent node and an afferent

node. The efferent (afferent) node only holds inbound (outbound) arcs. The afferent node

87

is the root of a component interface scheme. A configuration map relates each afferent

node in the specification to a configurable reference to the interface scheme containing the

efferent node. Upon opening the frame within the specification, the Component Editor

consults the configuration map, resolves the reference to the efferent node's interface

scheme, grafts the referenced interface scheme into the base specification graph at the

afferent node, and displays the result. The embedded interface scheme is cached within

the new virtual graph and updated if the original interface scheme is modified.

The implementation of Meros is heavily reliant on a consistent scheme representa-

tion. Meta-schemes represent the information of the framework itself, such as library

contents, the activity hierarchy and workspace parentage. The prototype is implemented

in Smalltalk/V2 for a single-user Windows3 environment. The prototype extends the

base Smalltalk environment with 52 classes containing approximately 820 methods (Ta-

ble 6.2). The base Smalltalk environment collection classes and graphics classes were

Table 6.2: Meros classes by category

heavily used. The Smalltalk change notification mechanism assisted in maintaining con-

sistency of schemes with their display as connected frames. Of the classes introduced

in the prototype, the scheme classes saw the greatest reuse, since nearly every aspect

of specification management was represented by some form of specification graph built

from schemes. The integrated tool suite was inextricably based on underlying meta-

schemes. The development and use of the prototype contributed to an understanding

of component specification technology. The next chapter draws on this understanding

to reconsider the role of a framework, discuss implementation lessons, and speculate on

future work.

2Smalltalk/V is a registered trademark of Digitalk Corporation.
3Windows is a trademark of Microsoft Corporation.

Category Classes

Specification Objects 13

Graphs and Schemes 14

Graphics 11

Applications 6

Auxiliary 8

Chapter 7

Conclusions

7.1 The Role of a Specification Framework Reconsidered

The claim was advanced in §2.2 that a component specification framework is motivated by

the need to manage software development complexity. Development is facilitated, it was

argued, by abstracting interface schemes from concrete artifacts, relating the resulting

views to a component as the unit of reuse, elaborating and refining these components in

specifications, and assembling appropriate components into applications. A component

specification framework provides tools to enable and administer this process. The value

of the framework is its capacity for abstraction of software into a form suitable for use.

This thesis describes an approach to managing component specifications that is in-

tended to be relatively unobtrusive. It is nevertheless apparent that what is gained in

dealing with software at a higher level of abstraction comes at a cost of devising the

appropriate abstractions and keeping track of how they relate to underlying software

artifacts. Given the complexity inherent in both the framework itself and its use, it

is reasonable to reconsider whether this model of software development reduces system

complexity or merely shifts the source of complexity.

The net effect of component-based development will depend largely on the effective-

ness of the underlying component technology. This thesis refrains from the methodolog-

ical judgement of what constitutes a reasonable component and how it is constructed

88

89

and deployed. In its most rudimentary form, a component can be identified with a cor-

responding programming language construct, such as a class in C++ [Str76] or a module

in Modula-2 [Wir82]. The framework then offers a way to specify and keep track of these

language constructs and their translation into execution units.

However, as alluded to in Chapter 4, perhaps the greatest potential for component

specification is workflow automation, providing the scaffolding for the flexible construc-

tion of task-related applications and the deployment of autonomous, goal-directed agents.

Conventional object-oriented programming languages are not well-suited for this pur-

pose, since they lack dynamic expressivity and reconfigurablity without detailed knowl-

edge of the language and component representations.

A component framework reduces this hurdle, but is constrained by the underlying

component implementation technology. If incremental extensibility requires static com-

pilation or grafting onto a self-contained programming environment, the ability to grace-

fully compose task-specific applications is limited. The framework's value increases as

the ease of dynamic component query, configuration and extensibility increases. The im-

portance of this enabling technology has recently spawned significant commercial efforts,

including OLE2 [Cor94], CORBA [OMG93] and SOM/DSOM [IBM93], that promise the

capability required of a component framework.

The framework serves as a vehicle for transition from language-based to component-

based construction, and from application-based to task-based use. The organizational

impact is to transform the role of the application developer and create two new classes of

software developers, those of component builder and framework integrator. Application

development then relies on components provided by component builders and introduced

into a local framework by a framework integrator. The components are assembled into

vertical applications suited to a particular task. Components are refined and config-

ured to suit the task at hand, independent of the component construction language or

environment.

The significant gains in managing complexity will come from the ability to compose

novel applications from an evolving set of components in an environment that filters

out unnecessary details, partitions components in useful ways and sets a context for

90

change isolation and control. This capability will not have the effect of reducing over-

all system complexity so much as shifting the focus of development-and, with it, the

complexity-from self-contained applications to component construction, assembly and

interoperability. The role of the component specification framework is to help manage

the complexity resulting from this transition to component-based development.

7.2 Framework Implementation Lessons

Development of the Meros tool yielded useful lessons regarding the nature of components

and how specifications can be effectively managed. This effort was begun before com-

mercial component technology of the sort described above was announced or available.

Consequently, much of the intuition. about what form components should take arose

out of the attempt to build the framework for managing them. Existing programming

language environments proved an inadequate basis for realizing the full potential of a

framework. The framework could at best capture class developer's intent and execute

specifications to validate requirements against use scenarios. Building workflow applica-

tions requires components that are well-defined, semi-autonomous execution units. The

necessary encapsulation technology is beyond the scope of a specification framework; for-

tunately, the commercial potential of this technology has become apparent and products

are rapidly becoming available.

The primary lesson in managing specifications is the importance of a consistent

scheme representation. A framework is integrative technology, keeping track of how in-

dependently developed objects interrelate. As such, the conceptual model is dominated

by connections between objects rather than semantics of the objects themselves as in-

dependent entities. Consequently, the implementation must rely heavily on graph-based

constructs.

Originally, a variety of specialized graph-like structures were developed for the in-

ternal implementation of framework objects, including the activity hierarchy, compo-

nent library, views within components, specifications for views, interface schemes within

specifications, methods in interfaces, slots within methods, bindings to slots, et at. Fur-

thermore, common information necessitated data sharing in some form. The demands

91

of maintaining data consistency overwhelmed any approach relying on data replication

and caching.

It quickly became apparent that a common form of graph implementation construct

was needed that could be used within the framework's class implementation and provided

for controlled structure sharing. This evolved into the representation of schemes as a

directed graph structure, extendible through the graph join mechanism described in §6.2,

to capture much of the framework information. Framework administrative information

was represented in the system schemes for component, activity and workspace hierarchies.

Support for versioning and change control led to a series of design decisions (for

example, whether components and views are versioned independently) that resulted in

the proposed change model. The key role of configurations and the representation of a

component as itself a configuration of versions of views permitted a change model that

mediated reference resolution without imposing extraneous requirements on otherwise

independent concepts, such as aggregation and frame relationships. Actions occured

within the context of an active workspace that controlled scheme evolution. Setting

the active workspace and relating specification frames by indirect component reference

rather than direct object pointers was then the only instrumentation required to enable

the change model.

7.3 Future Work

The most pressing task in furthering the understanding of component specification is

to provide a well-founded conceptual basis. Although beyond the scope of this thesis,

many of the concepts were developed with such a foundation in mind. The most at-

tractive possibility for such a foundation lies in category theory [Mac71, BW90, AL91],

which provides a mathematical workspace for relating algebras. Categories are graphs

with identity and composition; "categorical thinking" involves abstracting the underlying

structure of algebras and understanding their essential characteristics by how they map

into other structures rather than how they operate internally. For example, a set object

is understood by how it relates to other sets, particularly special sets like the empty

92

set and singletons, rather than how it operates on the members of the set. This capac-

ity for understanding abstractions makes categories attractive for developing a sound

conceptual foundation for component specification semantics.

The other area offoundational work needed is formalization of component interaction

dynamics. The activation model elaborated in §4.2 can be translated into an appropri-

ate process logic along the lines of Girard's linear logic [Gir87]. This logic captures

the essential characteristic of resources as consumable objects. In conventional logic, a

proposition can be used repeatedly in a proof. Linear logic, by contrast, can constrain

a proposition to a single use in a proof. This constraint is a good match for a logical

treatment of agents and actions. Until specifications are understood as formulae in a

well-defined logic, agent activation is at best an ad hoc device.

Besides providing a conceptual foundation for component frameworks, there are sev-

eral areas that would benefit from further effort. One such area is framework distri-

bution and cooperative development. Meros was developed with a distributed, shared

implementation in mind, with provision for multiple users, transactions and distributed

resources. For example, a User object is registered with a workspace manager, provided

local resources and a change context of nested Transaction objects that are committed

with the save operation. However, the implementation currently merely provides hooks

for a persistent implementation. Similarly, the current implementation provides only the

raw material for the dynamic aspects of the framework, in the form of frame bindings

and connections. The implementation needs to be extended to support agent activation

and coordination.

There is also potential for understanding how to refine and relate views. Is a specifi-

cation framework suitable for domain analysis? Can views be progressively refined and

transformed to carry through from initial requirements to final deployment? Are views

parameterizable? There are opportunities for reverse engineering tools that can infer a

specification from an implementation artifact. Reverse engineering might take a form as

simple as translating a class definition into an interface scheme, or as sophisticated as

infering constraints and action rules from call paths and execution traces.

Similarly, it would be useful to investigate the expressive power of forward engineering

tools to generate workable artifacts from the specification. It is not clear how complete

93

and faithful a specification is in mapping to a programming language to express, for

example, a critical timing constraint or to support frame activation. A more impor-

tant task is relating the component framework to emerging component technologies such

as OLE2 and CORBA. A robust framework should accomodate these standards. Con-

versely, research in enabling component technology would benefit from an appreciation

of component specification framework requirements.

7.4 Summary

A component specification framework provides one piece of the support necessary for

enabling an adaptive software development model. Such a model recognizes that our

interpretation of the world is in a constant state of flux and requires continual, incre-

mental adjustment. Schema change in such a model is frequent, wide-spread, incremental

and non-intrusive. Component definition is flexible, extensible and customizable. Any

available frame in a specification can be used as a prototype to build new specifications.

Software is freely adapted to accomodate the task at hand, rather than adjusting the task

to the available software. Information is represented at several levels of abstraction, with

well-defined transformations from requirements to implementation. This thesis describes

one approach that points in the direction of an adaptive development model by facili-

tating the restructuring of brittle, monolithic applications into extensible, configurable

components.

Bibliography

[AC085] A. Albano, 1. Cardelli, and R. Orsini. A strongly typed interactive con-

ceptuallanguage. ACM Transactions on Database Systems, 10(2):230-236,

1985.

[Agh85] G. A. Agha. ACTORS: A Model of Concurrent Computation in Distributed

Systems. The MIT Press, 1985.

[AL91] A. Asperti and G. Longo. Categories, Types and Structures: An Introduc-

tion to Category Theory for the Working Computer Scientist. MIT Press,

1991.

[Ber87] P.A. Bernstein. Database systems support for software engineering. In

Proc. Ninth Int'l. Conf. on Software Engineering, pages 166-177,1987.

[BKN+77] D. G. Bobrow, R. M. Kaplan, D. A. Norman, H. Thompson, and T. Wino-

grad. GUS: a frame-driven dialog system. Artificial Intelligence, 8:155-173,

1977.

[BM88] D. Beech and B. Mahod. Generalized version control in an object-oriented

database. In Proc. 1988 IEEE Data Engineering Conference, pages 14-22,

February 1988.

[B092] D. Batory and S. O'Malley. The design and implementation of hierarchi-

cal software systems with reusable components. ACM Trans. on Software

Engineering and Methodology, 1(4):355-398, October 1992.

[Boe88] B. W. Boehm. A spiral model of software development and enhancement.

IEEE Computer, 21(5):61-72, May 1988.

94

[Boo91]

[Bor86]

[BW90]

[Che76]

[CK91]

[CKK90]

[Cod79]

[Cor94]

[Cox86]

[CY90]

[Dav88]

[Deu89]

95

G. Booch. Object-Oriented Design with Applications. Benjamin/Cum-

mings, 1991.

A. Borning. Classes versus prototypes in object-oriented languages. In

Proceedings of the ACM/IEEE Fall Joint Computer Conference, pages 36-

40, 1986.

M. Barr and C. Wells. Category Theory for Computer Science. Prentice

Hall, 1990.

P. Chen. The entity-relationship model-toward a unified view of data.

ACM Transactions on Database Systems, 1(1):9-36, March 1976.

T. C. Chiueh and R. H. Katz. Trait: an attribute management system for

VLSI design objects. In J. Clifford and R. King, editors, Proc. 1991 ACM

SIGMOD Int'l. Conf. on the Management of Data, pages 228-237, June

1991.

T. C. Chiueh, R. H. Katz, and V. King. A history model for managing VLSI

design process. In Proc. 1990 Int'l. Computer Conference on Computer

Aided Design, November 1990.

E. F. Codd. Extending the database relational model to capture more

meaning. ACM Transactions on Database Systems, 13(6):377-387, 1979.

Microsoft Corporation. OLE2 Programmer's Reference. Microsoft Press,

1994.

B. J. Cox. Object Oriented Programming - an Evolutionary Approach.

Addison-Wesley,1986.

P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, 1990.

A. M. Davis et al. A strategy for comparing alternative software develop-

ment life cycle models. IEEE Trans. on Software Engineering, 14(8):1453-

1461, October 1988.

1. P. Deutsch. Design reuse and frameworks in the Smalltalk-80 system.

In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability, Vol. II,

pages 55-71. ACM Press, 1989.

[dK86]

[DMC92]

[DMN68]

[Doy80]

[Dum73]

[ECM90]

[ER83]

[Feh93]

[Fin71]

[FJ93]

[Fra9l]

96

J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127-

162, 1986.

C. Dony, J. Malefant, and P. Cointe. Prototype-based languages: from a

new taxonomy to constructive proposals and their validation. In ACM Proc.

of the Conference on Object-Oriented Programming, Systems, Languages

and Applications, pages 201-217, October 1992. ACM SIGPLAN Notices

27(10).

O. J. Dahl, B. Myrhaag, and K. Nygaard. Simula 67 Common Base Lan-

guage. Norwegian Computing Center, 1968.

J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272,

1980.

D. Dummet. Frege: Philosophy of Language, page 96. Duckworth, 1973.

ECMA. A reference model for frameworks of computer-assisted software

engineering environments. Research Report TR/55, ECMA, 1990.

D. W. Etherington and R. Reiter. On inheritance hierarchies with excep-

tions. In Proceedings of the National Conference on Artificial Intelligence,

pages 104-108, Menlo Park, Ca., 1983.

J. Fehling. A concept of hierarchical Petri nets with building blocks. In

G. Rozenberg, editor, Advances in Petri Nets '93, volume 674 of Lecture

Notes in Computer Science, pages 148-168. Springer-Verlag, 1993.

H. L. Finch. Wittgenstein - the Early Philosophy: an Exposition of the

Tractatus,page 35. Humanities Press, 1971.

1. M. G. Feijs and H. B. M. Jonkers. Formal Specification and Design.

Cambridge University Press, 1993.

M. D. Frasier et al. Informal and formal requirements specification

languages: Bridging the gap. IEEE Trans. on Software Engineering,

17(5):454-466, May 1991.

[Fre92]

[GH93]

[Gir87]

[GJ82]

97

G. Frege. Uber Sinn und Bedeutung. Zeitschrift fur Philosophie und

philosophische Kritik, 100:22-50, 1892. Translated as 'On Sense and Ref-

erence'in [GB52]. See also [Dum73].

J. V. Guttag and J. J. Horning. LARCH: Languages and Tools for Formal

Specification. Cambridge University Press, 1993.

J. Girard. Linear logic. Theoretical Computer Science, 50:1-102,1987.

C. Ghezzi and M. Jazayeri. Programming Language Concepts. John Wiley,

1982.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78 of

Lecture Notes in Computer Science. Springer-Verlag, 1979.

[GoI84] A. Goldberg. Smalltalk-80: the Language and Its Implementation. Addison-

Wesley, 1984.

[GT83] S. Gibbs and D. Tshiritzis. A data modeling approach for OIS. ACM

Transactions on Office Information Systems, 1(4):299-314, October 1983.

[Har88] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514-

530, May 1988.

[HG93]

[HM81]

G. M. Hoydalsvik and S. Guttorm. On the purpose of object-oriented

analysis. In A. Paepke, editor, ACM Proc. of the Conference on Object-

Oriented Programming, Systems, Languages and Applications, pages 240-

255, October 1993. ACM SIGPLAN Notices 28(10).

M. Hammer and D. McCleod. Database descriptions with SDM: A semantic

database model. ACM Transactions on Database Systems, 6(3):351-386,

1981.

[HMSN86] D. Harrison, P. Moore, R. Spickelmier, and R. Newton. Data management

and graphics editing in the Berkeley design environment. In Proc. Int'/.

Computer Conf. on Computer Aided Design, pages 20-24, 1986.

[HP87] D. J. Hatley and 1. A. Pirbhai. Strategies for Real- Time System Specifica-

tion. Dorset House, 1987.

98

[IBM93] IBM Corporation, Armonk, N.Y. SOMobjects Developers Toolkit - User's

Guide and Reference Manual, 1993.

[JCJ092] 1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented

Software Engineering - a Use Case Drive Approach. Addison-Wesley, 1992.

[Kat87] R. H. Katz. Information Management for Engineering Design. Springer-

Verlag, New York, 1987.

[KBG89] W. Kim, E. Bertino, and J. F. Garza. Composite objects revisited. In

J. Clifford, B. Lindsay, and D. Maier, editors, Proc. 1989 ACM SIGMOD

Int'l. Conf. on the Management of Data, pages 337-347, June 1989.

[KC86] S. Khoshafian and G. P. Copeland. Object identity. In N. Meyrowitz, ed-

itor, ACM Proc. of the Conference on Object-Oriented Programming, Sys-

tems, Languages and Applications, pages 406-416, November 1986. ACM

SIGPLAN Notices 21(11).

[KCB86] R. H. Katz, E. Chang, and R. Bhateja. Version modeling concepts for

computer-aided design databases. In C. Zaniolo, editor, Proc. 1986 ACM

SIGMOD Int'l. Conf. on the Management of Data, pages 379-385, June
1986.

[KR57] G. S. Kirk and J. E. Raven. The Presocratic Philosophers, page 377. Cam-

bridge University Press, 1957.

[LG86] B. Liskov and J. Guttag. Abstraction and Specification in Program Devel-

opment. The MIT Press, 1986.

[LGP+90] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd. Cyc:

Toward programs with common sense. Communications of the A CM,

33(8):30-49, August 1990.

[Lie86] H. Lieberman. Using prototypical objects to implement shared behavior in

object-oriented systems. In N. Meyrowitz, editor, ACM Proc. of the Con-

ference on Object-Oriented Programming, Systems, Languages and Appli-

cations, pages 214-223, November 1986. ACM SIGPLAN Notices 21(11).

99

[LT86] W. R. LaLonde and D. A. Thomas. An exemplar-based Smalltalk. In

N. Meyrowitz, editor, ACM Proc. of the Conference on Object-Oriented

Programming, Systems, Languages and Applications, pages 30-37, Novem-

ber 1986. ACM SIGPLAN Notices 21(11).

[Mac71] S. MacLane. Categories for the Working Mathematician, volume 5 of Grad-

uate Texts in Mathematics. Springer-Verlag, 1971.

[Mar78] T. De Marco. Structured Analysis and System Specification. Yourdon Press,

1978.

[Mas87] V. Masurka. Requirements for a practical software engineering environ-

ment. In Proc. 24th ACMjIEEE Design Automation Conference, pages

67-73, June 1987.

[MH91] K. Miriyala and M. T. Harandi. Automatic derivation of formal software

specifications from informal descriptions. IEEE Trans. on Software Engi-

neering, 17(10):1126-1142, October 1991.

[Min75] M. Minsky. A framework for representing knowledge. In P. W. Winston,

editor, The Psychology of Computer Vision. McGraw-Hill, 1975.

[OMG93] Object Management Group. OMG common request broker architecture and

specification (CORBA). Technical report, Object Management Group, 492

Old Connecticut Path, Framingham, MA 01701, December 1993. OMG

TC Document 93.12.43.

[PJ88] M. Page-Jones. The Practical Guide to Structured Systems Design.

Prentice- Hall, 1988.

[PM88] J. Peckham and F. Maryansli. Semantic data models. ACM Computing

Surveys, 20(3):153-189, 1988.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[RG92] K. S. Rubin and A. Goldberg. Object behavior analysis. Communications

of the ACM, 35(9):48-62, September 1992.

[SB86]

[SFL81]

[Shi81]

[SM88]

[SM90]

[SM91]

[Sow84]

[Sow92]

[Ste87]

[Str76]

[TN92]

[Tou86]

[TYF86]

[US87]

100

M. Stefik and D. C. Bobrow. Object-oriented programming: themes and

variations. AI Magazine, pages 40-62, 1986.

J. M. Smith, S. Fox, and T. Lancers. Reference manual for ADAPLEX.

Technical Report CCA-81-02, Computer Corporation of America, January

1981.

D. Shipman. The functional data model and the data language DAPLEX.

ACM Transactions on Database Systems, 6(1):140-173,1981.

S. Shlaer and S. J. Mellor. Object-Oriented Systems Analysis. Prentice-Hall,

1988.

S. Shlaer and S. J. Mellor. Object-Oriented A nalysis: Modeling the World

in Data. Yourdon Press, 1990.

S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the World in States.

Yourdon Press, 1991.

J. Sowa, editor. Conceptual Structures. Addison-Wesley, 1984.

J. Sowa, editor. Principles of Semantic Networks. Addison-Wesley, 1992.

V. Stenning. On the role of an environment. In Proc. Ninth Int'l. Conf. on

Software Engineering, pages 30-35, March 1987.

B. Stroustrop. The C++ Programming Language. Addison-Wesley, 1976.

I. Thomas and B. Nejmeh. Definitions of tool integration for environments.

IEEE Software, pages 29-35, March 1992.

D. S. Touretzky. The Mathematics of Inheritance Systems. Morgan Kauf-

mann Publishers, 1986.

T. J. Teory, D. Yang, and J. P. Fry. A logical design methodology for

relational databases using the extended entity-relationship model. ACM

Computing Surveys, 18(2):40-62, 1986.

D. Ungar and R. B. Smith. Self: the power of simplicity. In ACM Proc.

of the Conference on Object-Oriented Programming, Systems, Languages

[Was90]

[WBJ90]

101

and Applications, pages 227-241, December 1987. ACM SIGPLAN Notices

22(12).

A. J. Wasserman. Tool integration in software engineering environments.

In Software Engineering Environments: Proc. Int'l. Workshop on Environ-

ments, pages 30-34, 1990.

R. J. Wirfs-Brock and R. E. Johnson. Surveying current research in object-

oriented design. Communications of the ACM, 33(9):104-124, September
1990.

[WBWW90] R. J. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented

Software. Prentice Hall, 1990.

[Weg90]

[Wir82]

[WM85]

[Zad87]

P. Wegner. Concepts and paradigms of object-oriented programmmg.

OOPS Messenger, 1(1):7-87, 1990.

N. Wirth. Programming in Modula-2. Springer-Verlag, fourth edition, 1982.

P. Ward and S. J. Mellor. Essential Modeling Techniques, volume 2 of

Structured Development Techniques for Real- Time Systems. Prentice-Hall,

1985.

W. Zadrozny. A theory of default reasoning. In Proceedings of the National

Conference on Artificial Intelligence, 1987.

Biographical Note

The author received a B.A. degree in Mathematics from Oakland University in 1975

and a B.S. degree in Forestry from the University of Washington in 1977. He gravitated

to computer programming as an occupation less tedious than the available alternatives

and eventually pursued a career in information technology. He acquired an M.B.A. from

the University of Washington in 1984, with a concentration in Information Systems and

a research project in dynamic hashing. He was employed as a Database Analyst and

Supervisor at u.s. Bancorp from 1984 to 1988. He joined Mentor Graphics Corporation

as a Software Engineer in 1988, where he developed object management software for

CASE and EDA applications. He enjoys hiking, bicycling and skiing with his wife,
Melinda.

102

