
July 31, 1989

DEVELOPING BENCHMARKS FOR COMPARING

RELATIONAL AND OBJECT-ORIENTED

DATABASE SYSTEMS

Becky L. Lakey

B.A., Whitman College, 1975

A thesis submitted to the faculty
of the Oregon Graduate Center

in partial fulfillment of the
requirements for the degree

Master of Science
in

Computer Science and Engineering

The thesis "Developing Benchmarks For Comparing Relational and Object-

Oriented Database Systems" by Becky L. Lakey has been examined and

approved by the following ExaminationCom~ittee:

\L<'.cob Stein

Adjunct Assistant Professor

Thesis Research Advisor

David Maier

Professor

Robert Babb

Associate Professor

Denise Ecklund

Software Engineer

Mentor Graphics

ii

iii

This thesis is dedicated first and foremost to my family. Without their suppon,

encouragement, and prodding, I would still be working in a laboratory wondering if

there wasn't something else in life. Now, I know there is and I like it.

I also dedicate this thesis to my advisor, Jacob Stein, who did not get too

discouraged with his first graduate student, but kept me going with encouragement and

help. He also understood how finishing a thesis can sometimes take a long time!

I wish to acknowledge the following people for their help and support while I

was involved in preparing and writing my thesis: Dave Maier (the Edit King), Roben

Babb, Denise Ecklund, and the engineers at Servio-Logic Corporation. In addition,

many thanks go to Frank Binns and Kea Grilley for allowing me the time to complete

this thesis.

ORIENTED MODELS
.. 2

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 CHARACfERISTICS OF RELATIONAL AND OBJECT-

1.2 RELATED WORK 5

1.3 MEASUREMENT CRITERIA 14

1.4 RESEARCH GOAL 17

2. THE DATABASE SYSTEMS 18

2.1 UNIVERSITYINGRES- VERSION8.7 20

2.2 GEMSTONE- VERSION 1.3 22

3. THE BENCHMARKS 26

3.1 APPLICATION CRITERIA
.. 27

3.2 REJECTED APPLICATIONS

3.3 SELECTED APPLICATIONS

4. BENCHMARK IMPLEMENTATION

.. 31

.. 34

.. 43

4.1 THE DOCUMENT BENCHMARK
.. 43

4.1.1 Conceptual to Logical .. 43

4.1.2 Database Loading 47

4.1.3 Operation Implementation 49

IV

4.2.1 Conceptual to Logical 61

4.1.4 Execution 57

4.2 THE HYPERTEXT BENCHMARK 61

4.2.2 Database Loading 65

4.2.3 Operation Implementation 66

4.2.4 Execution 71

5. ANALYSISOF BENCHMARK RESULTS

5.1 THE DOCUMENTBENCHMARK

.. 72

. 74

5.2 THE HYPERTEXT BENCHMARK 85

5.3 GENERAL COMMENTS 94

5.3.1 The Design Environment .. 94

5.3.2 Getrusage/Gettimeofday Issues 97

5.3.3 Repeat Runs 98

5.3.4 Specific Benchmark Issues 99

6. CONCLUSIONS AND FUTURE WORK

BIBLIOGRAPHY

.. 104

.. 109

APPENDIX A - THE DOCUMENT BENCHMARK

APPENDIXB -THE HYPERTEXT BENCHMARK

116

133

..

v

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 4.1.

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

LIST OF FIGURES

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. .. .' ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

..

. .

. .

. .

. .

vi

28

36

39

41

42

44

45

46

52

62

64

67

70

75

77

79

80

81

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

.. ..

vii

83

83

84

86

87

88

91

92

93

101

.... - - - .._.--
_ u

Vlll

ABSTRACT

Various business and non-business applications, such as office information

systems, hypenext, and VLSI, are incorporating databases for data management suppon.

Many of these applications model entities considerably more complex than the simple

data structures relational database systems were originally developed to handle.

Proponents of object-oriented technology believe that the object-oriented paradigm is

better-suited for those applications requiring complex objects.

Eventually, benchmarks will be needed to compare and evaluate existing and

future relational and object-oriented database management systems. We discuss what

criteria should be met when selecting a suitable benchmark and the issues and

problems to be addressed during implementation. After selecting our benchmark

applications, we defmed the entities, operations, and data at the conceptual level and

determined what database systems we would test. We present the benchmarks selected,

discuss how we implemented these benchmarks, and present our results. In addition,

we offer our views on the ease of implementation and use of each database system,

including maintenance and reusability.

I.I

I

1
I.,

I ;,
I'

" ;

CHAPTER 1

relational and object-oriented database management systems. Consequently,

INTRODUCTION

Currently, various business and non-business applications are incorporating

databases for data management suppon. In some of these applications, e.g., VLSI

design [CFH83], office information systems [SSL83], and hypenext [Mey86], the

entities modeled are considerably more complex than the simple data items relational

database systems were originally developed to handle. The values referenced by these

complex entities may be other simple or complex entities. These complex entities can

be difficult to represent in the two-dimensional relational model, and generally require

encoding to coerce each entity's structure into a flat view, or alternately, over-

simplifying the application model to fit it to a relational database scheme. Proponents

of object-oriented technology believe that the object-oriented paradigm is well-suited

for those applications requiring complex objects.

Eventually, the need will arise to compare and evaluate existing and future

performance benchmarks for comparison and evaluation need to be developed.

2

The research presented in this thesis proposes and discusses various benchmarks

that would address the need above. The major issues we consider are what and how

a benchmark should measure and the necessary criteria that must be included in a

reasonable database management system benchmark. Five possible benchmarks are

proposed and the two implemented are discussed in detail. We primarily focused on

available relational and object-oriented database management system, but we feel the

benchmarks could be used with all types of database management systems.

1.1 CHARACTERISTICS OF RELATIONAL AND OBJECT-ORIENTED

SYSTEMS

Relational Systems

The relational model, utilized by the Ingresl database management system,

consists of a fixed set of basic types (integers, characters, and strings) and a fixed set

of operations on those types (arithmetic, comparison) [MS086]. The model also has

a predefined set of type constructors, Le., tuple and relation, that can be manipulated

by a fixed group of operations (insert field, retrieve tuple, modify relation). All tuples

in a relation must be homogeneous, with each tuple containing identical attributes and

each attribute's type restricted to the same fixed type.

In the relational model, it is not always possible to model the real-world

lIngresnd is a trademark of Relational Technology, Inc.

3

structure of an entity directly. Attempting to do so results in either an over-simplified

database scheme or encoding the scheme to mimic the entity structure, thereby

necessitating decoding by an application program. The relationship between entities

and subentities is represented using fields that contain keys for other relations. These

foreign keys are often difficult to maintain and are not always associated with the real-

world structure of an entity. The consistency of these foreign keys, assuring that each

foreign key is the key of an actual tuple, is known as referential integrity.

Sometimes, it is difficult to coerce the entity's real-world representation into the

flat view required by the relational model. Generally, a designer attempts to maintain

the database in "normalized" form, which requires decomposing real-world entities into

subentities and complicates application code.

The data manipulation languages found in conventional database systems do not

suppon general computations. Consequently, entities must be passed through an

interface to a general-purpose programming language that will perform the

computations. In most instances, one language is embedded within the other, an

application is written in the programming language and includes calls to the database

system for data manipulation. With this type of arrangement, impedence mismatch (or

structural mismatch), where there is a loss of information when data is transferred

between two structurally and semantically different languages, often ensues.

4

Object-Oriented Systems

The object-oriented model, as exemplified by Smalltalk-8OZor GemStone3, is

comprised of three main concepts, object, message, and class. An object is analogous

to a tuple. Most objects are divided into instance variables, similar to a tuple's

attributes. Each instance variable contains a value, which is another object. Cenain

objects cannot be decomposed further. These are considered atomic objects and include

SmallIntegers, Characters, and Booleans.

Objects communicate through messages. These messages generally are requests

to change an object's state or return a value. Every object has a standard set of

messages it responds to (its protocol). A method is associated with each message

denoting how to perfonn the request. An object can only respond to messages

associated with that object. The instance variables of an object cannot be directly

accessed from any method outside of those methods defmed for that object.

A class defines a collection of objects sharing the same internal structure and

methods. Each object is an instance of its class. Since all instances of a class share

the same methods, "any difference in the response by two instances is detennined by

a difference in the values of their instance variables" [StB86] and the message

arguments passed.

Classes are arranged hierarchically; a class's fonnat and methods are

automatically inherited by instances of any class defined as its subclass (i.e., a subclass

2Smalltalk-801Mis trademark of ParcPlace Systems.

3GemStone1Mis a trademark of Servio-Logic Corp.

5

inherits the properties of its parent and the parent's ancestors). A subclass is an

extension of its superclass that may introduce new instance variables and methods and

may redefme (or block) the behavior of its superclass.

In contrast to the relational model where the user is restricted to a fixed set of

data types and operations, object-oriented systems enable the user to define new data

types (classes) and new messages associated with those types. The object's behavior

is thus encapsulated by binding its structure to the set of operations associated with it.

In object-oriented systems, an entity's real-world structure can be modeled more

directly; an entity is represented as a single object rather than multiple tuples spread

through multiple relations. Consequently, complex entities may be modeled with less

encoding. Most object-oriented systems also support set-valued entities, where the set

elements are not restricted to homogeneous elements, but can be of arbitrary type.

Object-oriented systems incorporate one language that can be used for data

querying and manipulation, general computation, and system administration. This

language is used for all computations in an application, thereby eliminating the problem

of impedence mismatch.

1.2 RELATED WORK

Most literature concerning database system performance analyses focuses on

relational database systems. It is still too early in the development of object-oriented

database systems to find many articles that describe their performance.

6

Wisconsin Benchmarks and TPI

Bitton, et a!., designed a systematic approach for benchmarking relational

database systems, commonly referred to as the "Wisconsin Benchmarks" [BOT83].

Their goal was to "develop a scientific methodology for performance evaluation of

database management systems" [BOT83].

Five relational systems were benchmarked: OIRECf, Britton-Lee IDM/SOO,

'university' Ingres on a VAX llnSO under UNIX 4.14, 'commercial' Ingres on a VAX

llnSO under VMSs, and Oracle. The database consisted of four relations, each

populated using random number generators and containing a different number of tuples.

The number of attributes in each relation were the same. Various relational operations

(Le., selection, projection, join, aggregates, and updates) formed the set of queries,

which measured the cost of these operations. The benchmarks were executed in the

single-user mode; elapsed time was the primary measurement of performance.

After analyzing the benchmark results, the group concluded that the benchmark's

primary limitation was that of testing the systems in single-user mode. Even though

the only means of determining the effects of a system's hardware design, operating

system features, and query execution algorithms was to execute the benchmark in a

stand-alone environment, the designers felt that the testing situation did not realistically

approach a multi-user environment The group also concluded that the Wisconsin

4UNJXTh'is a trademark of AT&T.

SVMSThfis a trademark of ~igital Equipment Corp.

II:;

7 l
11

benchmarks did not exhaustively compare the various systems tested.

The benchmarks included the following operations: Key lookup (referred to as

The TPl benchmarks [An085] measure transaction throughput and are targeted

towards numerous, shott transactions. We speculate that many applications developed

with object-oriented database management systems, especially for computer-aided

design, will make use of fewer and longer transactions.

Benchmarks For Relational and Object-Oriented Systems

Another group of researchers developed a set of benchmarks which "would

measure the response time perfonnance from a database system for simple queries"

[RKC87]. The set of benchmarks were designed to be independent of the data model

presented by a particular system; the group strove to come up with data that could be

presented in both relational and object-oriented systems. The benchmarks execute

simple operations on single objects or records (as compared to complex operations on

objects spread over several records). Response time was defined as the real time that

elapsed between when a program invoked the database system with a specific query,

and when the result was returned.

Name Lookup), range lookup, group lookup (equivalent to using the value of a foreign

key for selection), single-step path traversal (referred to as Reference Lookup), class

insertion (class is analogous to a relation in their benchmarks), sequential scan of all

instances of a class, and database open. Since these benchmarks were intended to be

independent of the database systems, the design group did not specify queries using a

r iL

~I
'I '

~I:'

8

specific syntax (e.g., SQL), but gave an explanation of what they intended in each

operation. All of the benchmarks were implemented on Sun Microsystem's two

The analyses above compared various database systems with no hardware or

, u,

I :

r

i. !

L'
I'

I"

database systems, Unify6 and Ingres, and were executed on Sun workstations with local

databases. Within Unify, the user would define the data in an object-oriented model,

which was then mapped and stored relationally. The benchmarks were also run on a

modified version of Unify, Rad-Unify, that uses a large main memory cache. Each

database system was also tested on a database located remotely on a network of

workstations.

The researchers concluded that compiling relational queries or allowing a

programmer to access a local database at the single-table level (avoiding the query

processor) could increase the speed by a factor of five to ten. Also, if much of the

database could be cached in the workstation's main memory, execution would also be

speeded up. Remote access resulted in approximately 30 milliseconds extra per record

transferred (and per operation invoked in Unify) and more in Ingres (exact numbers

were not reported). Finally, the authors felt that additional optimization techniques

might generate a faster database system.

software extensions made to the systems. The next two performance analyses address

the effect of hardware and software configurations on database management system

performance.

6Unifr is a registered trademark of Unify Corporation.

9

Dividing Ingres Between Two Computers

Hagmann and Ferrari proposed dividing a database system's software into a

front-end and a back-end and implementing the back-end on a second computer

(HaFS6]. They specified that the back-end was to have no specialized hardware or an

operating system finely-tuned for database operations. Benchmarks were run against

six different configurations. They decided to use the Ingres database system running

under a predecessor of UNIX 4.2 The front-end would reside on a VAX I In so, while

the back-end would be on a VAX IlnSO. Research Ethernet and TCP/IP network and

transport protocol were the facilities for data transferral.

The six configurations consisted of the following:

Ingres

This was the existing, nondistributed Ingres database
management system.

Smart Disk

All of the file system functions were transferred to the
back-end.

In the rest 0 nctions remained in the back end.

Access Methods

The access methods of the database system were
converted to run on the back-end. This included the
software that gets, replaces, finds, inserts, and deletes
tuples.

... - - ..-......-..--.-

10

Inner Loop

The software that.was responsible for nonttivial queries
(Le., those queries where the database system had to read
and process more than one record) was transferred to the
back-end.

Decomposition

In this configuration, the query was parsed and validated
in the front-end and then sent to the back-end for full
execution.

Parser

The back-end executes all the database processing,
including the query processing. It returns a data stream
or an error message to the front-end.

Moderately complex queries were executed against two different database schemes, in

order that the results generated would be less dependent on a particular database.

The authors found that no configuration uniformly performed better than

another; depending on the performance criteria selected as most important, each

configuration could be considered to have performed the best. Also, each

configuration utilized varying amounts of resources. Ingres used the fewest total CPU

cycles, since all decisions were made on one machine. The Smart Disk configuration

did not perform as well as the authors anticipated; they found that it performed

suitably for a small amount of buffering, but as the buffering load increased, the

performance factor did not. The Access Methods and Inner Loops configurations

were concluded to be unsuitable for relational database systems. In the Access

Methods, the network load was the heaviest; the Inner Loop had the best CPU usage

disttibution between the ends, but it was felt that the coordination effort needed

between the two ends made this configuration impractical. The Decomposition and

r

11

Parser configurations would only be practical in relational database systems because
~.

they were dependent on the specific relational system used.

The architecture in this class is composed of a small set

Hardware Improvements to Database Machines

Rather than altering the software portion of the database manager system,

Dewitt and Hawthorn proposed using relatively inexpensive computer hardware to

improve the system's performance [DeH81]. To this end, they specified five generic

classes of database machine architectures:

CS - conventional system

Database system manager runs on a single processor.

PPT - processor-per-track system

This architecture processes selection operations 'on the
fly'. It includes a mass storage device consisting of a
large number of cells. The storage device is connected to
a global data bus which transmits selected tuples to the
host processor.

PPH - processor-per-head system

In this architecture, each head of a moving-head disk
includes associative processing logic.

PPD - processor-per-disk system

A processor (or a set of processors) is situated between
a standard disk and a memory device where selected
tuples will be transferred. The processor operates as a
filter to the disk and forwards only those tuples that match
the selection criteria.

MPC - multiprocessor cache system

- -- -- --- - ---- - -. .-.-. '-

r ',11

12

of general purpose processors and a three-level memory
hierarchy.

The last four classes are connected to a host processor which accepts and compiles the

queries and assists in executing specific complex queries that the back-end architecture

is unable to handle.

DeWitt and Hawthorn benchmarked these five architecture types on selection

and join operations and aggregate functions. These benchmarks measured the total

system workload necessary to process a query, not the elapsed time for the machine

to process the query. The benchmark tests on the selection operation demonstrated

that the CS and PPD architectures performed very well when an index existed on the

attribute being qualified. Therefore, if an index was always maintained, these designs

were the most cost-effective when processing selective queries. But, if indexes were

not maintained on the selected attribute, they found that the PPH design was the better

performer. In the join operations, the authors discovered that the PPD, PPH, and PPT

architectures performed terribly. They concluded that if an architecture design

executed faster on only selection operations, it was better to ignore the back-end and

take the CS approach, which was to perform a son-merge join on the host processor.

For complex queries, it was seen the MPC design executed the fastest.

IRIS

The IRIS Database Manager System, Version 2.0, is an object-oriented

prototype being developed and tested at Hewlett-Packard [FBC86] [LDF86]. The aim

of this database system is to provide "generalized database suppon for a wide variety

13

,

of applications" [LDF86]. The interfaces provided to IRIS's DBMS are designed for

specific object-oriented languages and will enable various applications coded in

different programming languages to share infonnation and transparently access

persistent objects.

The Hewlett-Packard group developed a benchmark which compared their IRIS

prototype to their relational database system, Allbase. Both IRIS and Allbase are built

on top of the same relational storage manager. The benchmark database consisted of

five relations that included between three and five attributes. No performance data

was given by the authors; they stated that generally, IRIS performed two to four times

slower than the relational system. There were some queries and updates where IRIS

performed at the same speed as Allbase, though.

Lyngbaek, et al. [LDF86], admitted that their schema did not test the entire

range of IRIS's capabilities; the sample set of queries did not cover derived functions

or the inheritance mechanism. They also noted that part of the query set included

updates and disjunctive queries which IRIS was unable to handle at the time of testing.

But, the group was encouraged and felt that IRIS had demonstrated the potential to

become competitive with commercial relational systems. Since the prototype is still

very new, it hasn't the performance [me-tuning of more mature relational systems.

The intention of this section was to share with the reader some of the work that

has been done in benchmarking relational and object-oriented database systems.

Researching this area has demonstrated that, while there is little trouble obtaining

literature on relational database system benchmarks, limited information exists on

14

,

object-oriented database systems. This is most likely because object-oriented database

systems are still very new and the systems being developed are still in the prototype

and testing stages.

1.3 MEASUREMENT CRITERIA

Three characteristics differentiate benchmarking object-oriented database systems

and traditional record-based systems (e.g., relational database management systems).

One, the newer applications where object-oriented database management systems are

applied involve modeling more complex entities. Definition of these entities is

generally in conceptual terms rather than the physical or logical terms normally used

in relational database management systems. This affectS those applications where an

entity's fields may contain values of different types. In relational database

management systems, a foreign key field can only reference a single relation, in which

all tuples are of the same type. Object-oriented database management systems allow

fields to reference various types of entities. The benchmark therefore should include

path traversal where entity types are unknown in advance or aren't restricted to be of

a specific type.

Two, in object-oriented database management systems, the process of moving

from the conceptual model to the execution model is handled by one language.

Operations that may entail numerous calls to complete in a relational database

management system can often be completed via one call in an object-oriented database

r
I'
I;'

15

I,

h
'

I

'
:~

I

"

,

i
,

'

,

'

>

'4"

I~,r,management system. While traditional benchmarking methods tend to ignore the

connections between objects. Randomly generating data exhibiting realistic

substantial body of programming .language code needed for an application, this may

not represent the object-oriented database management systems fairly, as they combine

data definition, data management, and general computation into a single language. The

benchmark must therefore also address this issue.

Finally, traditional benchmarks measure performance in terms of elapsed

response time to query completion and transaction throughput. Ease of implementation

and use, maintenance, and reusability are generally not considered. As applications

become more complex, these characteristics may become more critical, e.g., the user

may be willing to trade performance for ease of maintenance. Object-oriented database

management systems address the need for easier implementation, maintenance, and

reusability. Therefore, benchmarks for object-oriented database management systems

should emphasize measuring the complete application process, from development to

maintenance, not just the execution speed.

In selecting benchmark applications for object-oriented and relational systems,

there are many issues and problems that must be considered. Finding an application

that is easy to populate may not be a simple process. The application may be ideal

for benchmarking purposes, but populating it with data may be difficult. Many

applications managed by object-oriented systems are characterized by multiple

connectivity and distribution patterns may be difficult or unachievable. Therefore, the

benchmark must be easy to populate with realistic data.

The data in an application may vary greatly in its degree of data-sharing,

r ,I

.

16

nesting depth, and entity size. A hypenext application may exhibit a high degree of

data-sharing and arbitrary depth, while a text application may demonstrate a low

degree of data-sharing and a bounded depth. Database management systems should

consequently be able to manage trees, DAGs, and cycles. In addition, an application

may contain data that is not necessarily stable, e.g., one update could modify multiple

entities, or one field could reference more than one entity. Database management
.1

systems will vary considerably in their ability to manage complex structures and the
"
"

An application developed on one relational system can easily be poned to

various operations upon these structures.

The complex real-world structures generally found in the newer applications

may be captured as single data items in object-oriented systems, whereas relational

systems may require referencing multiple relations to access the entire structure.

Additionally, in relational systems, manipulating complex structures may require

complex programming language code since the user is restricted to a fixed set of

operations and complex operations are implemented by embedding these operations in

the programming language code. Therefore, one conceptual operation may require

multiple database calls for execution. In object-oriented systems, the user has the

capacity to defme new operations, where the operations may execute on a single

object, a set of homogenous objects, or a set of heterogenous objects.

another relational database management system with little or no revision. The same

cannot be said of applications developed on an object-oriented system. Currently,

there is no single formal model for object-oriented systems. The object-oriented

schema and methods implemented on one system are not necessarily compatible with

17

those on another object-oriented system. In panicular, object-oriented systems can

differ in their deletion techniques (implicit versus explicit), indexing techniques

(collections versus classes), and inheritance (single versus multiple). Consequently,

considerable revisions to the schema and methods may be necessary before an

application developed on one object-oriented database management system could

function on another object-oriented system.

As discussed previously, the object-oriented systems have one language that

covers data definition, management, and computation, in contrast to relational systems,

where there are separate languages for data defmition and computations. Therefore,

what may conceivably be simple and time-saving to accomplish in an object-oriented

system is not necessarily so in a relational system.

Finally, it can be argued that the schema and operations implemented in the

benchmark may not be optimal and better results might have been generated using

different schemas and methodology. It was not our intention to present our

implementations as absolute, but to design and develop benchmarks that could be used

as staning points and references to evaluate and compare various object-oriented

database management systems and relational database management systems.

1.4 RESEARCH GOAL

Our goal in this thesis research is to develop benchmarks that can be used to

compare relational and object-oriented database management systems, where the

r

i

I

18

methodology is not biased toward either relational or object-oriented systems. The

benchmarks were implemented on two different database systems, Ingres and

GemStone, due to their ready availability. Because time was a factor in this study, we
I
I

!.,

did not concentrate on matching the operating environments in both database

management systems; therefore, our conclusions are based on the relative performance

within each system.

Each benchmark emphasized an application incorporating complex entities. For

each benchmark, we fIrst detennined a conceptual model for the complex entities used

in the application and a set of operations that were to be executed in the benchmark.

Additionally, due to the time constraint within this study, we required real-world

applications with pre-existing data, thereby, overcoming the necessity of generating our

own data, randomly or otherwise. The conceptual model was then mapped into

relational and object-oriented schemes and the intended operations implemented in each

database management system. Finally, the operations were executed within each

database management system and statistics collected that characterized each system's

performance.

The remainder of this thesis discusses the work involved in completing this

study. Chapter 2 discusses the relational and object-oriented database systems used,

while Chapter 3 covers benchmarking issues and benchmark selection. In Chapter 4,

we present the methodology employed in implementing the selected benchmarks. The

statistics collected on each system and an analysis of the systems' performance are

given in Chapter 5. Finally, conclusions and suggestions for future work are presented

in Chapter 6.

19 ,

CHAPTER 2

THE DATABASE SYSTEMS

The criterion for selecting a relational and an object-oriented database system

centered on availability. Potential relational candidates included two database machines,

DIREcr and Britton-Lee's IDM/SOO,and three relational database management systems,

Oracle, and 'university', and 'commercial' Ingres. From the time Ingres was introduced

At the time of decision, most object-oriented database systems (postgres, Vbase,

in 1976 [SWK86], it has been used extensively and is widely respected as a proven

relational database system. While 'commercial' Ingres includes various performance

enhancements (a different query optimizer, son-merge join strategies, query-tree

caching, and buffer management controlled by the database system [BDT83]) not found

in the 'university' version and would have been desirable to use, the 'university'

version was already installed at Oregon Graduate Center (OOC) and available for

immediate use. Since the database machines and Oracle were also unavailable for

evaluation, 'university' Ingres was chosen as the relational system for the analysis.

IRIS) were in experimental fonn and undistributed. One object-oriented database

20

r

system, GemStone, a product of Servio-Logic, was being beta-tested at various sites,

and available for use. Although GemStone was not available at OGC, Servio-Logic

made arrangements to allow benchmark development and testing at their site.

GemStone was therefore selected to be the object-oriented database system to analyze.

The following sections briefly describe the Ingres and GemStone database

systems.

2.1 UNIVERSITY INGRES - VERSION 8.7

Ingres (Interactive Graphics and Retrieval System) is a relational database

system, designed and written in C, and implemented on top of UNIX. Each relation

is stored as a separate UNIX file divided into 512-byte blocks (pages). Tuples are

maintained as records; records are packed into the blocks as tightly as possible with

no record divided between blocks.

Ingres's memory management is handled by UNIX. An Ingres-generated read

request prompts UNIX to move the required page(s) from secondary memory into

memory buffers and return the required byte string to the user. (lngres is configured

with 40 buffer pages.) Should a page that is already in the buffers be referenced

again, no disk I/O takes place.

Three types of storage organizations are supported by Ingres: heaped, hashed,

and isam. When a relation is created and fIlled, the relation file is automatically

organized as a heap; tuples are stored in the file in the order they were added. In the

21

heap organization, data is retrieved by sequentially searching the entire relation me.

Therefore, sequential scans generci1lyconsume most of the database system's time in

query and update operations. The heap storage structure has low system overhead
11'\1

and is best suited for small relations, temporary relations, or transitional storage

structures due to a COPY operation.

Users may stipulate that a relation be maintained in a hashed or isam

organization, which are keyed (indexed) storage structures: "The storage location of

a tuple within the file is a function of the value of the tuple's key domains" [SWK86].

These structures allow rapid access of specific pieces of a relation when a user supplies

the key values. Hashing creates and utilizes a table of buckets, determined by the

user-specified key values, and is most suitable for conditional accesses on a specific

key value. Relations designated to have an isam (indexed sequential access method)

organization maintain a sparse index on their key values and are nearly sorted. This
..

Ingres's data manipulation language, QUEL (QUEry Language), allows a

type of organization is desirable in situations where selection is based on a range of

values that the key value must fall in.

programmer to query and update a database without worrying about data structure ''I]
i

implementation or memory management algorithms. Customized user programs may

be written in EQUEL (C plus QUEL, i.e., a C program with QUEL embedded in it).
e ,
I >

UNIX system calls, and include QUEL commands to Ingres. Terminal and disk I/O
I

EQUEL is a preprocessor and allows a programmer to code programs in C, make

are supponed in EQUEL via C operations. QUEL also provides an operation

facilitating bulk data loading. The user formats a UNIX file of data to Ingres

22

specifications and then invokes the QUEL COPY command to download the data to

a pre-existing relation in the database.

For this study, Ingres was resident on a MicroVaxIl running 4.3 BSD UNIX.

The MicroVaxIl has one disk drive. On this drive resides the operating system and

I ~

I

'
. :;:1

'"

all system and user programs and data belonging to the MicroVaxIl. As a result,

potential bottlenecks can develop when the operating system and the database system

come in conflict with each other.

2.2 GEMSTONE - VERSION 1.3

GemStone is an object-oriented database management system that encompasses

GemStone employs five basic object storage formats:

the features of a traditional database management system while providing the object-

oriented features discussed in Chapter 1. It is written in C and implemented on VMS.

GemStone is composed of a Stone process and one or more Gem processes.

The Stone process is a resource monitor that allocates object-oriented pointers (OOPs)

and coordinates transaction commits. Both Stone and Gem use OOPs to refer to

objects and employ an object table, mapping the OOP to a physical location.

A Gem process provides secondary storage management, authorization,

transactions, recovery, and associative access support. Objects are stored on pages;

those objects too large to fit on one page are divided into pieces, and organized in a

tree structure spanning several pages.

r
r

23

Within GemStone, a user may create indexes on a path. A path is composed

self-identifying

This storage fonnat includes integers, characters, and booleans.

byte

Strings and floats are included within this fonnat.

named

Access to an object's subobjects is through unique identifiers, the
object's instance variables.

indexed

An object's subobjects are accessed by number (e.g., an Array).

non-sequenceable collections (NSC)

In this storage fonnat, the instance variables are anonymous, Le.,
elements are not identified by name or index, but are accessed by their
values.

Both self-identifying and byte storage structures are considered atomic, Le., there is no

internal structure. The NSC structures may be constrained to contain only specific

kinds of objects' and are sometimes referred to as constrained Collections.

of the instance variable names of some subpart of an object. Two types of indexes are

implemented. An identity index facilitates a search on the identity of an element's

subobject and is unconcerned with the state of the subobject (its value). An equality

index aids in searching a collection based on the value of its objects; it will also assist

in range searches on values. Indexes are implemented as B-trees; one B-tree exists for

'An object 0 is a kind of its class and its class's
Superclasses.

r

l

I

i

l

[

24

each component in the path name.

GemStone's programming language is OPAL, which is used for data definition,

data manipulation, and general computation. OPAL is similar to Smalltalk; it

encompasses the programming features of the Smalltalk language and also supports

associative access, data typing, and multi-user environments.

The GemStone database system provides workstation tools for editing and

database browsing. These programs, called the OPAL Programming Envirorunent

(OPE), include the OPE Workspace, where OPAL code may be entered, tested,

debugged, and committed to the database, the OPE Browser, which provides templates

for class and method definitions and facilitates review of previously-defmed classes and

methods, and the OPE Bulk LoadlDumper, a tool allowing automatic loading and

unloading of data. One utility recently added to the GemStone system is Topaz, an

interactive debugging environment. This utility allows the user to download OPAL

class definitions and program code to a GemStone process and interactively test this

code.

Direct terminal and disk I/O facilities are not available through OPAL.

Therefore, various libraries of C functions (the GemStone C Interface) or Smalltalk

classes and methods (the GemStone Smalltalk Interface) are provided to allow data

transferral between workstations and the host system, and enable the user to create
1

interactive user interfaces. In this way, the user is able to send OPAL code to

GemStone for execution, receive GemStone data objects for further manipulation or

display, and perform various system functions (Le., transaction commitments, beginning

and ending a GemStone session).

I"
\

25

The GemStone database system used in this study runs on a VAX Iln50 under

VMS 4.5. The operating system resides on one disk drive (the swap disk), while all

other data, programs, etc., are placed on several other disk drives (the data disks).

Since the operating system is removed from the data disks, operating system and

database system conflicts can be lessened.

II

f

f

1<.I,
.Ii.

26

CHAPTER 3

THE BENCHMARKS

Benchmarking attempts to quantitatively evaluate a system's external and internal

perfonnance [BoD84], [DHK85]. External performance measurements include the

elapsed response time to process various requests, while internal performance

measurements evaluate the work distribution within a database system.

External perfonnance is measured by inserting checkpoints into a database

application's flow of control. At each checkpoint, the system's clock is accessed and

the current time is stored. Generally, checkpoints will be inserted immediately before

and after a query, with the difference between the two times representing the elapsed

I

I

response time. While a query is being processed, no further operations, such as

printing, sorting, or calculations should be perfonned on the data; this restriction

guarantees that the result is a strict measurement of the database system's time to

process the request (Le., no additional overhead is incurred during the processing

operation). The checkpoints are encoded into a program using the database system's

embedded language facility and executed by the host system. Demmjian, et al.,

27

recommend insetting checkpoints directly into the database system's source code rather

than utilizing the system's embedded language facility [DHK85]. In this way, any

overhead incurred due to the embedded language is avoided. This approach was not

feasible for this study; therefore, the checkpoints are included in the program code of

each test. Pre-query statistics were collected to detennine what overhead was incurred.

Internal performance measurements evaluate a system's work distribution by

measuring CPU time and I/O activity. CPU cycles are generally consumed by the

software executing the query, the overhead procedures, Le., path selection access and

buffer pool management, and the operating system functions which initiate disk

operations. I/O activity includes retrieval of the query data into the buffer pool (reads)

and storing the query results into secondary storage (writes) [BoD84].

In selecting benchmark applications, we fIrst designed a conceptual model for

3.1 APPLICATIONCRITERIA

each potential application. In this model, we defmed the data entities, determined a

set of operations on the entities, and specified a data set. Once the conceptual model

was defined, we needed to map its components to their logical counterparts in Ingres

and GemStone. Figure 3.1 illustrates the mapping from the conceptual level to the

logical level. I

Each potential benchmark described an application modeling complex structures,

where the structures differed in their degree of depth and object-sharing. The data in

I

I

I

Ing!,es GemStone

Figure 3.1

28

I CONCEPTUAL I

I LOGICALI

an application that exhibits a known fixed number of levels and no cycles demonstrates

bounded acyclic depth. A Text application is an example of bounded acyclic depth.

In an application where no fixed maximum level can be ascertained in advance and no

cycles exist on the data, the application is said to exhibit unbounded acyclic depth.

Applications involving parse trees may be considered examples of this. Cyclic data

is found in those applications whose data exhibit cycles, Le., the depth of the data is

not well-defined. An application that cross-references programs where recursive

procedures are found is an example of cyclic data.

The degree of object-sharing in an application is characterized by the average

number of references to an object. We defined three levels of object-sharing. No

f [
,~',

I,

29 ,
.j:,.

sharing is characterized by no object-sharing in the application, that is, one reference :,'

per object (and hence, the data is tree-structured). If the maximum number of

references to an object is known in advance, the application is said to exhibit limited

sharing. Again, a Text application may be an example of limited sharing. Finally,

an application demonstrating arbitrary sharing permits an unbounded number of

references to objects. A Hypenext application can be considered to display arbitrary

Once the conceptual model was determined for each potential application, we

sharing.

The conceptual operations for each application consisted of two queries and two

updates. In choosing the operations, we tried to include at least one complex

operation, i.e., one that resulted in multiple object updates or referenced numerous types

of entities.

We strove for real-world applications for our benchmarks that included between

5,000 and 10,000 data items. This large amount of data thus precluded hand-generating

the data. Randomly-generating the data was considered, as specified by Bitton, et al.

[BDT83], but that approach was rejected due to the simplistic data generated and the

difficulty of producing realistic object-sharing and connectivity. Consequently, we

decided to concentrate on real-world applications that had pre-existing data.

Additionally, to avoid any bias towards object-oriented database schemes, we wanted

complex entity applications previously encoded. into relational schemes by someone

else. We then worked backwards to the conceptual scheme.

concentrated our effons on mapping it to its logical model in Ingres and GemStone.

This entailed mapping the conceptual scheme to Ingres relations and GemStone class

~,.

30

definitions. Since we were focusing on applications that already had relational schemes ,.,

in place, the mapping to Ingres relations was relatively simple. Translating the

conceptual scheme to GemStone class definitions was more time-consuming, since there
"

was no precedent to work with and correlating relational scheme definitions to object-

oriented schemas is not straightforward.

In Ingres, the conceptual operations were mapped to EQUEL programs and

involved working with two languages (C + QUEL). If the intended operation was not

Finally, we had to map the application's data set to Ingres and GemStone

part of Ingres' s predefined set of operations, we had to devise some means of

implementing that operation within the confines of that predefined set; this generally

entailed multiple Ingres calls to implement the operation. Mapping the conceptual

operation to GemStone involved developing an OPAL method, and possibly several

supporting methods, to implement that operation. Once the method was defined,

executing the operating entailed one OPAL call..
L.

databases, Le., we needed to load the database. In Ingres, this step was fairly simple,

since the applications included pre-existing relational schemes and data that could be

loaded with little or no pre-processing. For GemStone, it was not quite as simple.

The data had to be pre-processed first into a format that the GemStone Bulk Loader

could use. Once the data was loaded, it needed further manipulation to 'wire' the

object instances together.

Upon selecting the two applications that would be used and performing the ,;
~ ;
.. '

conceptual to logical mapping, commands were then entered into the code to generate

statistics on the following parameters:

31

r

1) elapsed response time per request,

2) CPU time involved per request,

3) I/O activity generated per request.

Statistics were also gathered on the amount of time required to generate and load the

data for each benchmark.

Each benchmark was executed in single-user mode without indexes to gather

baseline statistics. Those applications where indexing was appropriate were further

tested with indexes in place. Boral, et al., recommended that benchmarks be initially

run in single-user mode to measure a system's performance under optimal conditions,

expose update anomalies, and provide a "picture of the resources required by different

queries" [BoD84]. Multi-user and distributed modes were not possible to benchmark

for two reasons: one, the time-frame of this study prohibited testing the systems in the

multi-user mode, and two, neither system is a distributed system.

3.2 REJECTED APPLICATIONS

A literature search identified five relational schemes for complex object

applications. This section discusses the applications that were considered and rejected,

and the reasons why they were rejected.

~

f

11

32

Vdd
i

Vdd (VLSI Design Database System) can be used to store VLSI chip

descriptions in a relational database and also seNe as the focus for the VLSI tools

necessary for chip design [CFH83]. Once the chip description is entered into the

database, the designer can employ a conventional database management system for

query processing and data manipulation or access the data using the set of VLSI tools.

This application represented potential cyclic paths and arbitrary object-sharing,

but was rejected due to the time and effon it would take to coerce an existing VLSI

data set into the structure required by Vdd.

Storage of Block-Structured Programs

Another application involved storing block-structured computer programs in a

relational database management system. The database management system would

enable users to reference different pans of a program without a sequential search. It

would also aid the user in identifying various relationships between procedures and

functions, and variable declarations and usages. The relational schema was based on

Linton's schema for the Model programming language ([Lin83], [Lin84]) with the

objects exhibiting cyclic data and arbitrary object-sharing. Further research into the

Model language revealed that it was very similar to Pascal, with a few extensions.

Since we had a better chance of obtaining Pascal programs with the OGC community

than we had of gathering Model programs, we investigated the possibility of designing

33

r

a relational schema based on a subset of Pascal, using the Linton Model schema as a

guide. A database of pre-existing programs would be ftltered to remove those

expressions which weren't part of the subset.

We determined that this application would be extremely time-consuming in the

data-generation phase. Linton reported [Lin83] that 10,000 lines of code and four

months of full-time programming were required to design and implement the parser

to populate the database. Consideration was given to requesting Linton's database and

parser, but this was rejected due to time limitations and a lack of familiarity with the

Model language.

We also investigated using a utility that was designed and developed by Eugene

Rollins at OGC [RoI82b], [RoI82a], the Syntax Analyzer Constructor. This utility

could generate abstract syntax trees for a Pascal program which would then be used

to produce the necessary relational tuples and objects for the revised Linton schema on

Pascal programs. Since this approach required developing an LLI grammar and

debugging the utility, it was considered too time-consuming for our needs.

Consequently, we abandoned the Linton Model application.

Persistent LISP Objects

This application was developed by Margaret Butler at Berkeley and addresses

those situations where LISP programs "need to manipulate data structures that persist

between program invocations" [But86]. Butler designed an interface, Polymnia,

between Ingres and LISP that allows the user to declare a variable to be persistent and

I
II

34

store the value of that persistent variable in Ingres. Since LISP objects are loosely-

typed, representing them in Ingres, which is strongly-typed, required introducing

additional atttibutes to indicate an object's type and to store tuple identifiers (the

identifier may be the object's value or a reference to another tuple in another relation). "

This application represented cyclic data and limited object-sharing. Initially, we

intended to include this application in our study and began implementing the relational
"

and object-oriented schemas. As time and the project progressed, we determined that

very well, we opted to drop it from the study.

the time-frame for this project precluded completing this particular application; both the

data preparation and the implementation of the schema and operations would be

extremely time-consuming. Therefore, although this application suited our requirements

In this section, we present a detailed description of the applications that were

3.3 SELECTED APPLICATIONS

selected and discuss how we mapped the conceptual model to its relational and object-

oriented counterpart.

Documents

Currently, document processing is handled by text editors that include their own

facilities for storing and manipulating data. Stonebraker, et al., introduced the idea of

H

35

storing documents in a database management system whose services could then be

available to the tools or users that require them [SSL83]. These services include

concurrency control, crash recovery, and access control. The system's database query

language could also be used to aid document manipulation. The group proposed

storing documents as ordered relations and designing a text editor that uses the

relational system's facilities. In order for this idea to be successful, the relational

system's facilities must suppon variable-length strings and ordered relations.

In this application, a text document is divided into chapters, sections per chapter,

paragraphs per section, lines per paragraph, words per line, and the relative position of

words within lines. Initially, we considered the relationship of sentences per paragraph

and words per sentence, but after funher consideration, concluded that the initial

document preparation for data loads would be substantially more difficult if sentences

were a pan of the relational schema. We determined that the line data included

enough information to generate acceptable queries and updates, and therefore, chose to

use only line-oriented relationships. :if~.
-~';-..,~

Figure 3.2 shows an example of a document divided into the components above.

This document consists of five chapters. The first chapter contains three sections,

with the initial section composed of ten paragraphs. Paragraph 1 contains seven lines,

the fIrst two lines being This is a test. and This is only a test. As mentioned

previously, each line has a text and word relationship. In Line 1, the Text value is

the entire first line, while Words separates the fIrst line into its component words, with

their position in the line defined (Le., word 1 -> This, word 2 -> is, etc.). This model

is used in designing and implementing the relational and object-oriented schemas for
I I

I
f

~

.

I
I!

I .'

36

..
Chaptera

1 . Section.
1

. L~n<::::::: Tnt ---+ Thisisa telLWord.
1 ---+ This
2 ---+ is
3 ---+ a
4 ---+ telL ",

Paraaraph.
1

2< Tel:t ---+ ThisisonlyaIc:8LWord.
1 ---+ This
2 ---+ is
3 ---+ only
4 ---+ a
5 ---+ telL

7

2 , Line.
1

2
HI

. Paragraph.
1

2
3

.Sectlon.
1

5

Figure 3.2

this application.

The data used for this application is the text of a master's thesis which, in its

raw form, consists of the thesis text and the commands required to format the

document. Initial data preparation included identifying and labelling the required

components, dividing the document into those components, and arranging the

I

Ii'

37

components into a format suitable for loading into Ingres and GemStone.

i
1

..>1

This application addresses bounded acyclic depth (the depth level is 6) and no

object-sharing. In Figure 3.2, the diagram should illustrate that any path from the top

will always lead to some object at the bonom, with no cycles or lost paths to contend

with. Also, no object is referenced by more than one object.
.11',

;t

The operations in this application consist of two updates and two queries. The

first update entails substituting all occurrences of one word with another word. The

second update involves moving specific chapters, sections, paragraphs, or lines to

another location in the document In the first query, the database is searched for all

the occurrences of a specific word and the chapter, section, paragraph, line, and word
<.

position values corresponding to each occurrence of that word are returned. The

In a hypertext system, related materials are connected non-sequentially. One

second query finds and returns a specific text line designated by the position of that

text line in the document (e.g., find the text line designated by "Chapter 1, Section 2,

Paragraph 3, Line 4").

Hypertext

such system is the Intermedia hypermedia/hypertext system, designed and implemented

by the IRIS (Institute for Research in Information and Scholarship) group at Brown

University [Mey86], [SmZ87], [GSM86]. Intermedia "provides a framework for a

collection of editors written in an object-oriented language, each capable of allowing

sophisticated connections between pieces of information in its documents" [SmZ87].

f

38

In the CUITentversion, the editors include a word processor, graphics editor, and a

scanned-image viewer.

Documents are connected by user-defined links. To create a link, a user selects

a block in one document (the source block), another block in a second document (the

destination block), and issues a command to link the two. A block may encompass

anything that can be selected in a document, Le., a word, line, paragraph, figure, ,
'~.

picture, etc. There is no restriction to the number of blocks defined within a

document, nor is there a limitation on the number of links attached to a block. All

links and their associated documents are stored in a web and may be shared by

numerous users having access to that web.

A conceptual model illustrating a tiny web and its components is presented in

Figure 3.3. Four documents, 01,02,03, and 04 are shown. Each document contains

one or more blocks, labelled Bl through B6. The links, Ll through L6, connect the

documents by beginning at a source block and ending at a destination block, contained

in some other document. One block can be designated both a source and a destination

block and may be associated with several links. For example, block Bl represents the

source block for links Ll and L2, and blocks B2 and B3, respectively, denote the

destination blocks for those links. Block B3 is also the source block for link L3.

The IRIS group chose to store the web information in Ingres; in this way, data

persistence, concun-ency and access control are supponed by Ingres. Since the data is

comprised of complex, hierarchical structures, flanening the data into relations makes

data retrieval and manipulation potentially awkward. Consequently, the IRIS group felt

that an object-oriented database might be better suited for storing the web data.

39

D3

"

'.,

Figure 3.3
i.

Because Intennedia is currently in use at Brown University, we contacted the

IRIS group and inquired into the possibility of using some of their data. The group

was very willing to help, and sent data consisting of one web corresponding to an

English course. We infonned the group it was not necessary to include the original

document texts in the data sent; we were not intending to implement hypertext, only

to query the tuples in the database. The IRIS group dumped the data from their Ingres

relations used for that particular web and sent it in a fonnat that could be used to load

our Ingres relations. The data sent included extra relations that were unnecessary for

this study as well as some empty relations we had intended to use in our database

scheme. Also, Intennedia' s relations that corresponded with ours had extra attributes

we did not intend to incorporate in our schema. As a result, the conceptual models

had to be modified slightly. The data files sent needed very little preparation for

. -!~

40
.f

Our fust query determines if a path exists between two documents by traversing

loading into the GemStone database.

This application represents cyclic paths and arbitrary object-sharing. Referring

to Figure 3.3, it is apparent that a search operation has the potential of executing

forever because a cycle was encountered. For example, a query could begin at Dl,

follow links L2, L3, L4. and L6, return to Dl, and begin again. This schema also

exhibits a high level of object-sharing; many links could reference the same block and

many blocks can reference the same document (Le., B3 is the destination block for

links L2 and L5, while blocks B2 and B3 are both in document, 02).

The hypertext application contains two queries and two updates. The first

update involves relocating a specific link, Le., a starting link will point to a different

ending block. For example, in Figure 3.3, we might update link L2 to point to block

B5 rather than block B3. In the second update, a new link is added to the web.

Referring to Figure 3.3, we might choose to add a link L7, connecting block B3 to

block B5.

all the starting links found in each document visited. The query executes a breadth-

first search and halts when a path is found, no path exists, or a cycle is encountered

prior to finding the desired end document. For example, Figure 3.4 contains a small

web, consisting of seven documents and their blocks and links. The user might want

to determine if a path exists between 01 and 03, beginning at Dl. Following links

Ll (or L2) and L3, we see the traversal has reached D3 and thus, the user is informed

that a path does exist But, if the user inquired if a path existed between Dl and D4,

a negative response would be generated; the traversal would follow links Ll, L2, L3,

,I..

Figure 3.4

and L4, and stop in 06 because 06 has no starting links to follow. Lastly, should

the user attempt to find a path between 04 and 01, beginning at 04, a cycle response

would be seen since following links L6, L7, and L8 would return the search to 04

which is where it began (of course, links LS, L3, and L4 will take the search to 06

and halt, but all the starting links in each document must be traversed).

In our second query, all the pertinent information necessary to illustrate one

document, its starting blocks, the end blocks associated with those starting blocks, and

the documents the end blocks are contained in is gathered. This information consists

of the initial document, each starting block, each end block associated with the starting

blocks, and the document for each end block. Figure 3.5 illustrates what the resulting

information might contain. 01 is the initial document with blocks Bl, B2, and B3

identified. The end blocks and documents associated with blocks B1, B2, and B3 are

41
N

-
I"

42

'"

., ,
<:

Figure 3.5

stored (B4-B8, D2-D5). The links denoting the block associations are then added to

the information (LI-L5). It should be emphasized that this query only retrieves the

required data; nothing further is done with that data in this study (Le., no pictures are

drawn).

f
11..

43

CHAPTER 4

BENCHMARK IMPLEMENT ATION

The implementation of each benchmark followed the protocol diagrammed in

Figure 4.1. Initially, the conceptual model was mapped into relational and object-

oriented schemas. The data used for each benchmark was then processed for database

loading and subsequently loaded into Ingres and GemStone databases. Next, the

operations were implemented in each system's language and tested on sample data.

Finally, each operation was executed on real data and statistics collected.

4.1 THE DOCUMENT BENCHMARK

4.1.1 Conceptual to Logical

The relation schema used for the Document benchmark was patterned after the

one presented by Stonebraker, et al. [SSL83], and is presented in Figure 4.2. The

1. CONCEPTUAL
STRUCTURES

2. RAW DATA

3. OPERATIONS

4.EXECUTION

Figure 4.1

44

attributes defined for each relation denote the relationship between that relation and

its components. For example, in the Chapter relation, the relationship between

chapters and sections is defined by the attributes chapid and sectid. The Section

relation dermes the relationship found between the sections and paragraphs, while in

the Paragraph relation, the relationship between paragraphs, lines and text is defined.

Each tuple in the Line relation represents a specific word and its position within a line.

The Text relation stores the entire line of text associated with a particular line,

including punctuation. We considered omitting the Line relation and extracting the

\
I.,j

45 ,"

,~.

Doc Database

Relation Chapter

ehapId seetld

Relation Section 'I

seetld parald
'. :~:

linel d wordPos word

Relation Paragraph

parald IineId tUneId

Relation Line

Relation Text

tUneId text

i

t

Figure 4.2

line-word relationship from the Text relation. Since this would have required a scanner

to do the extraction, we rejected this approach. Also, we did not include blank lines

in the Line relation as we felt they were unnecessary for our purposes. Since the

actual contents of the document are stored redundantly in the Line and Text relations,

update anomalies are possible.

Each chapter, section, paragraph, and line in the document is assigned a globally

unique integer identifier, used for referencing that component in the database only; it

is not intended to reflect the ordering of the components in the document. For

example, Chapter 1 may contain two sections and Chapter 2 contain three sections.

-

;;

..,

46

The relationship between the chapters and their sections is denoted by five tuples stored

in the Chapters relation, one tuple for each section. These tuples would contain the

values <1 1>, <1 2>, <2 3>, <2 4> and <2 5>, respectively, the first value associated

with chapid, and the second value, sectid. The sectid value increments with each

section encountered to ensure that each tuple in the database is unique and that no

conflict will occur when referencing a tuple. This type of tuple format is found

throughout the entire schema, with the actual word and text values stored in the Line

and Text relations, respectively.

Once we determined the relational schema, we created an Ingres database

labeled Doc to contain the relations above. The type of each attribute was defined to

be a 2-byte integer, with the exception of word (Line) and text (rext), that were

defined to be an 80-byte character type.

The GemStone schema used in this application is diagrammed in Figure 4.3 and !

Figure 4.3

.-

47

closely resembles the conceptual model shown in Figure 3.2. The Document class is

analogous to the Ingres Doc database and was defined as a subclass of class Object.

Two instance variables were defined in Document, name, referencing the name of a

document (e.g., Doc), and contents, referencing the entire document. The Chapters,

Sections, Paragraphs, Lines, Text and Words classes were defined as subclasses of

SequenceableColiection class and are analogous to an Array type; the number

corresponds to an object's position in the document. For example, in the Chapters

class, position 1 refers to Chapter 1 and will reference an object of class Sections that

contains the sections found in Chapter 1. This type of referencing pattern was utilized

within all SequenceableColiection subclasses above. ParagraphContents was also

defined as a subclass of Object class, with instance variables lines and textlines defined

within the subclass. The instance variables in Document and Paragraph Contents were

not constrained to be a specific type, although in Figure 4.3, each is shown referencing

a specific class type. The dotted arrows shown in each SequenceableColiection))
:c
1>
11
<

subclass in Figure 4.3 signify another instance is referenced and that each instance

referenced will be the same class type throughout the collection.

4.1.2 Database Loading

..

Data preparation consisted of formatting the document to yield the appropriate

UNIX and VMS files needed to load each database system. The document used for

this benchmark was a UNIX file containing troff source of a Master's thesis. Initial

,
~:

document preparation consisted of removing the formatting commands and sections ...,

, .
f.

..
I.

l
r

48

considered unnecessary for the final document data (i.e., the Title Page, the Table of

Contents, the Bibliography, etc:). The thesis contained six chapters and two

appendices. We decided the first appendix was unnecessary for our needs and deleted

it, but the second appendix contained program code we felt could prove interesting to

query. Therefore, we left it in the document and labeled it Chapter 7.

We processed the document through the nroff utility provided by UNIX, tagging

each section and paragraph to allow easy identification of these components in later

processing steps and removing all blank lines.

The refonnaued thesis still required a substantial amount of processing before

the necessary files could be created. This processing was accomplished through several

UNIX tools and utilities, specifically, vi, awk, and sed. Using these tools, 1) chapter

and line tags were inserted into the thesis, 2) each chapter, section, paragraph, and line

tag was labeled with the appropriate integer value (Le., for the relational scheme, each

tag was assigned a globally unique integer value, while in the object-oriented scheme,

each tag value was locally unique), and 3) the pertinent UNIX and VMS files were

generated and fonnatted to each database's loading specifications.

Initial database loading attempts in both systems used small subsets of the data

to ensure the data was correctly formatted and the loading operations understood. In

Ingres, we used the COpy operation to load the Doc database. Once the files were

copied into the database, it was ready to be used. The number of tuples contained in

each relation is listed below.
, ';'

Chapter 37

Section 199

49

r

Paragraph 2751

Line 19,711

Text 2751

In GemStone, large data files are copied into a database using the OPE Bulk

Loader tool. Like Ingres's COpy operation, the OPE Bulk Loader requires the data

be in a particular format within a file. The Bulk Loader reads the file, creates and

instantiates one object for each line of the file, and stores the objects in a user-

specified collection. After we had loaded the data into GemStone, we had to take the

data and construct our Document object. Methods were designed and tested to

facilitate this step. Once we were assured our methods worked, we constructed the

Document object and stored it in the GemStone database.

4.1.3 Operation Implementation

In this section, we discuss the implementation of each operation specified in our

conceptual model. Each operation was assigned a test name (Test 1, Test 2, etc.) for

easy referral. For each operation (test), three sets of parameters were tested.

Test 1

Replace all word and text occurrences of a word (the target word)

with another word (the replacement word).

=

50

We used the Ingres REPLACE operation which employs pattern-matching

characters to denote the target and replacement words. The operation did not require

additional C code in the EQUEL program to perform the word substitutions. We

attempted to select words that did and did not occur frequently in the document. The

words replaced in the programs and the ratio to their total word count were:

1. a -> A (5.25%)

2. the -> THE (9.39%)

3. process -> PROCESS (1.35%)

In the GemStone schema used in this application, the Word and Text objects

are positioned at the bottom of the Document object. To replace all the target words

with the replacement words, we had to implement a depth-fIrst search on the

Document object. We designed a method that executed this search, assigned it the

message selector replace:with:, and included it in the Document class. An example

expression for this update would be

Document replace: 'the' with: 'THE'.

The OPAL program for this update invoked the replace:with; method on the

set of parameters listed above.

Test 2

Relocate specific chapters, sections, paragraphs, or lines within the

document.

51

In order to implement this update in Ingres, we had to impose an order on the

relations. This was accomplished using the ORDEREDN operation provided by Ingres.

ORDEREDN adds an extra attribute, lidl, to a pre-loaded relation and assigns that

atttibute an integer value for each tuple, signifying the tuple's place in the relation.

This field is different from the user-defined attributes because it is dynamically

adjusted by Ingres during appends, deletes, and replacements to maintain a consistent

ordering of the tuples in the relation. In append operations, if the user specifies an

lidl value, the new tuple is inserted in front of the tuple associated with the specified

lidl value and all lidl values following the new tuple are incremented by 1. If a user

declares an lidl value in deletion operations, all lidl values following that tuple are

decremented.

After determining the mechanics of ORDEREDN, we designed the EQUEL

l.
programs that required additional C code to supplement the Ingres operations. Ingres

by itself could not express the necessary manipulations.

The three parameters tested in Test 2 are listed below and define the target

components in terms of their globally unique tuple ids. The first integer denotes the

component to be moved; the second defmes the new location it should be inserted at

1. chapter 5 2

2. paragraph32 22

3. line 795 2206

For example, 'chapter 5' denotes that we want to insert Chapter 5 before Chapter 2.

One issue we discovered that could not be addressed in this scheme was what would

happen when a line was inserted between two paragraphs; there was no way to

r
I
~

52

detennine if the line was the last line of the previous paragraph or the ftrst line of the
..

next paragraph.

The GemStone method implemented for this update had to move a specifted

object to a new location in the Document object. This entailed locating the

appropriate objects and perfonning the necessary insertions and deletions. For

example, suppose we wanted to move Chapter 4 to just before Chapter 3. Figure
.~.

4.4(a) diagrams the original Chapters array and a few of the sections it references.

The intent is to move the Sections array referenced by position 4 in the Chapters
"
>,

array to immediately before position 3 in the Chapters array. Thus, position 3 would

now reference the Sections array previously referenced by position 4, and all the

(a) (b)

Figure 4.4

";.

1

"
53

components referenced by those positions following position 3 are adjusted down one
\

I

position in the Chapters array. Figure 4.4(b) reflects this relocation operation.

Since we implemented the relocation method to move the intended object

immediately before the designated index position, this presented a problem when we

wished to move an object to the end of the array (e.g., how would one denote that

position?). We solved this problem by specifying that the object to be moved was to

be insened in the target object at index 0 (zero), thereby signalling the method to add

the moved object to the end of the new array object. The message selector for this
I
II
1

method was labeled relocate:to:. An example demonstrating its usage is shown below.

Document relocate: oldObject to: newObject.

The oldObject and newObject arguments are defined by the user.
(..
..
r.

The OPAL programs were written to test the same parameters as those tested

in Ingres. But, whereas the Ingres tests defined the parameters using the component's

globally unique ids, the OPAL programs define each component by its position in the ::0
:::0 r.
:1>'
.::0
'<

document. The OPAL expressions used are given below.

1. relocate:chapter 5

to: chapter 2

2. relocate: (chapter 3 (section 2 (paragraph 4»)

to: (chapter 1 (section 3 (paragraph 0»)

3. relocate: (chapter 4 (section 4 (paragraph 4 (line 4»»

to: (chapter 6 (section 3 (paragraph 3 (line 3»»

Conceptually, this would appear to give GemStone an advantage over Ingres,

because it is much easier to be able to define a component by its relative position in

Ir
I
I
I

54

the document. Yet, if we had chosen this means of identifying our parameters in

Ingres, it would have necessitated introducing additional program code to detennine the

unique component id corresponding to our parameter. Since the Doc database was

defined and created with globally unique component ids, we decided it was fairer to

Ingres to maintain this specification in our test parameters.

Test 3

Find every occurrence of a specific word (the target word) and return

the chapter, section, paragraph, line id and word position associated

with each occurrence of that word.

To execute this query in Ingres, we had to join the Chapter, Section,

Paragraph, and Line relations. We also needed to specify the target word using

Ingres's pattern-matching characters. The three target words and the number of times

they occurred in the document were:

1. and (431)

2. parallel (89)

3. fork (94)

We decided it would be interesting to detennine how the statistics would be affected

if the retrieval information was printed (Le., for each word occurrence, the chapter,

section, paragraph, and line ids and the word position value were printed). Therefore,

we designed two sets of EQUEL programs, one where the results weren't printed and

55

one where they were.

We determined the best way to execute this query in GemStone was to create

and instantiate an object for each target word occurrence and store the word's position

values in the object. These objects would be stored in a collection that would be

returned by the method upon completion. We had to perform a depth-fIrst search to

compare every word in the document to the target word. The method implementing

1. line 651

this search and collecting the required data was assigned the message selector

retrieveSpecificWord:. An example expression invoking this method is given below.

Document retrieveSpecificWord: 'fork'

The OPAL programs implemented for Test 3 tested the same set of parameters

as Ingres. As in Ingres, we wrote programs that did and did not print the returned

information.

Test 4
--."
-T'" ,_!:..J
:u
p.
;0
-<

Retrieve a specific textIine designated by its position in the document.

The Ingres implementation of this query required that the target textline be

defined by that textline' s unique id. Therefore, we designed a QUEL command that

searched the Text relation for the tuple whose tlineid value matched the value defined

in the parameter and returned that tuple's text value.

The parameters tested in this test were:

56

2. line 1192

3. line 2526

We used the same approach as in Test 2, Le., we defmed the parameters in terms of

the textline' s unique id, for the same reasons. We decided it would be appropriate to

collect statistics on printed and non-printed results in this test also, and developed the

We determined that this query did not require us to design a new GemStone

i:
I'
J _

oiI-
,-

necessary EQUEL programs.

(refer to Figure 4.3 for the scheme): :D
:£1
t>
:0
.,,-.....

method for implementation. Since we knew exactly where the text line was located

in the document, we could retrieve it directly using OPAL's at: method. For example,

suppose a user wished the text associated with chapter 1, section 3, paragraph 2, line

25. The following OPAL expression would perform the retrieval.

«««Document contents) at:1) at:3) at:2) textlines) at: 25).

Separating this OPAL expression into its individual expressions yields the following

(Document contents) returns Chapters

(Chapters at:l) returns Sections

(Sections at:3) returns Paragraphs

(Paragraphs at:2) returns Paragraph Contents

(Paragraph Contents textlines) returns Text

(Text at:25) returns String corresponding to the text at that line.

The OPAL programs for this test retrieved the same textlines as Ingres, but the

r
57

parameters are phrased as component positions. The OPAL expressions are listed

below:

1. «««Document contents) at:3) at:!) at:3) textlines) at:6).

2. «««Document contents)at:4) at:8) at:!l) textlines)at:3).

3. «««Document contents)at:7) at:l) at:!) textlines)at:250).

Included are programs that diOO'tprint the returned textline and programs that did.

At this point. we were ready to execute our test programs and collect statistics.

In this case. it would appear that Ingres might have had an advantage over

GemStone. since it only needed to search one relation (Line) for the unique ids and

return the textlines; GemStone had to traverse each specified object to finally locate

the specified textline. As in Test 2. because we wished to be consistent with respect

to the scheme's specifications and our test parameters. we chose to leave each one as

IS.

4.1.4 Execution

In each EQUEL program. we used UNIX system calls to produce the statistics. To

measure the elapsed time of a test operation. the gettimeofday system call was used.

This operation stores the system' s time upon invocation. In order to determine the

elapsed time. two invocations were required. one immediately before executing the

query. and one immediately after the query was completed; the difference between the

two is the elapsed time. Since the units returned by gettimeofday were not in

seconds. minutes. or hours. we converted them to seconds within the EQUEL program.

'I

58

The cpu activity of a test operation was detennined by a getrusage system call.

This call returns various timing and disk I/O statistics for the calling process and its

children process(es). (For the remainder of this thesis, I/O means disk I/O.) Of

primary interest to our study were the values denoting the amount of cpu time the

EQUEL program consumed executing the test operation and the I/O numbers generated III

during execution. Utilizing getrusage required stipulating the process for which we

wanted the statistics (the parent or the child process). If a child process was to be
[J

measured, getrusage could not be invoked until that child process had tenninated.

When Ingres is invoked in an EQUEL program, an Ingres process is forked.

Since we could not invoke the getrusage operation until the child process had

All QUEL commands included in the EQUEL program are piped to this process and

executed there, with the results then piped back to the EQUEL program. Therefore,

the getrusage call was defined to collect the statistics on the child process (Le., the

Ingres process) and was invoked immediately after the Ingres process had terminated

(e.g., a QUEL EXIT call was made). The statistics collected by the getrusage call

reflected the cpu time and I/O activity generated by the QUEL operations. In tests

that included printing the results to a file, this activity was also included in the

getrusage statistics.

terminated, the statistics included several Ingres operations outside the test operations.

These operations included initiating the Ingres process, pre- and post-query operations

(Le., range, destroy, and modify statements), and exiting Ingres. Because these
I)'

operations were not considered pan of our test operations, we did not want them

included in the performance statistics. We designed a separate program to collect the

,"-

59

getrusage statistics for only the Ingres initiation and exit operations. These value were

then subtracted from the over-all query statistics to obtain a more representative

performance measurement.

We were unable to incorporate both system calls in one EQUEL program

because the getrusage values would include the activity generated by gettimeofday,

and would not reflect the absolute cpu and I/O statistics of the test operations.

Therefore, each test operation required two separate EQUEL programs; one invoked

gettimeofday for the elapsed time measurements and the other called getrusage and

measured the cpu and I/O activity.

Because our objective was to run each test program in a system without

For each test operation, a UNIX batch file was written that invoked the

corresponding EQUEL program ten times. All output generated by the tests was

captured to a file for future review. Since update operations revised the database, we

restored the relations with the original data prior to executing each run, using separate

programs that copied and truncated the relations.

concurrent user activity, we needed to ascertain that each test was indeed executed

under this condition. To accomplish this an update system call was made prior to

each test's invocation that reponed the number of users currently logged on to the

system and the system load factor at that time.

The OPAL programs for each test operation were executed from the Topaz

environment. Topaz is a process forked by the VMS operating system that enables the

user to execute OPAL programs interactively and in batch mode. When a Topaz

process is initiated, VMS begins collecting data on that process and all executions

.~

60
I"'.

occurring within that process. That data is captured by including two calls to the

OPAL method time within Topaz; one call prior to executing an OPAL program and

a second call immediately after execution is completed. The time operation returns the

following values:

1) the system clock time at the point of the time call,

2) the cpu time consumed by the Topaz process from the time of

initiation to the time invocation, and

3) the I/O activity generated in Topaz, also from the initiation point

to the invocation call.

The results from each time invocation were written to an output file. By

As in Ingres, when executing updates we wanted to be certain we were

subtracting the second set of values from the fIrst set, we were able to detennine the

timing and I/O statistics for that OPAL program.

Batch programs were written for each test program. These batch programs

invoked Topaz, ran the OPAL program ten times, and generated an output file

containing the timing and I/O statistics.

updating a fresh database after each set of OPAL expressions was executed.

Therefore, when the set of expressions was finished executing, we aboned the

transaction. This guaranteed that the database remained unchanged and that subsequent

updates would be executed on the original data.

In GemStone also, our objective was to run the test suites on a system with no

other users concurrently executing. To detennine if this was the case, prior to running

each test suite and upon completion, we invoked a VMS call sho sys that reponed the

61

system activity. Since Ingres basically began with a fresh database prior to each batch

execution, we anempted to approximate those conditions in GemStone by instantiating -~

a fresh database before running each batch program. iI

4.2 THE HYPERTEXTBENCHMARK

4.2.1 Conceptual to Logical
..

The relational schema used for the Hypenext Benchmark, given in Figure 4.5,

(docName), and a string associated with the pathname denoting where the document is

IS a subset of the schema implemented by the IRIS group [Mey86], [SmZ87],

[GSM86]. We used a subset because their original data included empty relations and

relations they subsequently informed us were unnecessary and would be deleted in the

future. All document information contained in the web sent by the IRIS group is

stored in the Docs relation. Each document tuple contains a unique integer value used

for referencing the document (doc/d), a string representing the name of the document

stored in the fIle system (docPath). (We reiterate here that the document contents

were not included in the data; consequently, although the path value denotes where the

document may be found, the document itself cannot be retrieved.) The Block relation

stores the tuples for every block contained in the web. Each tuple contains a unique

integer block/d, a blkOwner string, denoting who created that block, and a doc/d, that

references a Docs tuple. The block definition parameters are stored in the AppBlock

62

f

Inter Database

relation. The blockld value references a tuple in the Block relation that the parameters

are associated with. The appExtenr (application extent) attribute stores the block

definition parameters. Since one block may require several appExtent values for

definition (for example, the beginning and end points of a text selection), the

AppBlock relation will store a tuple for each appExtent value, each tuple referencing

the same blockld.

Finally, the Link relation contains the data associated with each link. Each link

tuple includes a type (linkType) and an owner (lkOwner) value. Also in the link

information are the start and end ids for the document (startDocld, endDocld) and

block (startBlkld, endBlkld) associated with that link. The document ids are included

Relation Docs

doeld docName docPath

Relation Block

bloekld doeld blkOwner

Relation AppBlock

bloekld appExtent

Relation Link

linkld IinkType startDoeld startBlkld

endDoeld endBlkld IkOwner

Figure 4.5

r
63

in this relation to avoid a join operation when a link is retrieved, although this results

in more relations requiring updates when a link is shifted.

An Ingres database labeled Inter was created and the Docs, Block, AppBlock,

and Link relations defined. Most of the attributes were defmed to be 2-byte integers;

docName (Docs), docPath (Docs), blkOwner (Block), and IkOwner (Link) were defmed

as character strings.

Figure 4.6 illusttates the GemStone scheme for this application. Since there can

be more than one web stored in a database, each web is assigned a unique identifier;

we received Web7 from the IRIS group. In Figure 4.6, we show an instantiation of

Web? We will use this diagram to explain the classes defmed for the Hypertext

application. Each object in the diagram is an instance of the class designated in bold

print (e.g., WebObj represents an instance of an object of class WebObj).

A WebObj object, referenced by position? in WebColI, contains the data

associated with Web? The links, blocks, and docs instance variables in WebObj

correspond to the Link, Block, and Docs relations, respectively, shown in Figure 4.5.

Each instance variable is consttained to contain a collection of their associated objects

(Le., links -> LinkColI objects, blocks -> BlkColI objects, and docs -> DocColI

objects). Each Web would contain these collections which are stored as relations by

the IRIS group. Included in WebObj is an instance variable, owners, also constrained

to point only to a collection (OwnerColI) of owner strings.

Each collection's class definition also stipulates that its component objects must

be a specific type. In our schema, LinkColI contains only LinkObjs, BlkColI

contains only BlkObjs, DocColI contains only DocObjs, OwnerColI contains only

-...J
J
.~,
,,
...

64

WebColi

r--
"2

DocColi L___,,,.,,.,

I .,
I -i
f !
I ,
I : I
I : I
I : I
I : I
I : I
I : I
I : I
I : I
I : I
I : IL ~ ,

Figure 4.6

Strings, and AEColl (AppExtent Collection) contains only Integers. These consttaints

are necessary for adding indices.

Each LinkObj corresponds to one tuple in the Ingres Link relation; except for

startDocId and endDocId, a LinkObj contains the same data as a Link tuple. The

owner instance variable references the owner string associated with that link, while the

type variable references a single value found in LinkTypes. Both starrBlk and endBlk

are constrained to reference specific BlkObjs. These BlkObjs are stored in BlkColi.

1'1
I

65

The instance variables found in a BlkObj correspond to those attributes found

in the Ingres Block and AppBlock relations. The owner variable references an owner..

string, while doc is constrained to reference a DocObj identifying the document

containing that particular block. The appExt instance variable must contain an AEColl

set that stores all the appExt values connected with the BlkObj.

The id, name, and path instance variables found in a DocObj match the Ingres

Docs relation attributes. Each points to a String or a Small Integer value. Included

in each DocObj is an instance variable, startLinks, that can only reference a LinkColi. .

I
This collection contains references to all the LinkObjs whose starting blocks are found

in that particular document

I

I

We received the data for this benchmark from the IRIS group at Brown

4.2.2 Database Loading

University. The data was sent in UNIX files, formatted for direct input into Ingres

relations. Since some of the UNIX files contained extra fields, some pre-processing

was necessary to delete those fields. We used Ingres' s COpy operation to fill the

relations. The following lists the number of tuples contained in each relation.

In order to load the GemStone database, we first had to define classes and

Docs 1723 tuples

Block 1331 tuples

AppBlock 1376 tuples

Link 909 tuples

66

methods to accept the data during loading. Once this was accomplished, we used the

GemStone Bulk Loader to load the VMS data fIles into the database. At this point,

the data was still in pieces; we needed to "wire together" those pieces into a Web?

object. We implemented additional methods to perform this process. Finally, we

invoked these methods and constructed and instantiated our Web? object and stored it

We also wanted to determine how printing the results would affect our

in the GemStone database.

4.2.3 Operation Implementation

In this benchmark, we wanted to ascertain what effect indexing would have on

execution time and the other statistics. Consequently, our scheme had to be designed

to accept indexes. Since GemStone cannot index array structures at this time, any

r
collections we intended to index in the Hypenext schema could not be arrays.

statistics. Therefore, for each operation, we designed three test cases. The fIrst test

did not print the results or utilize an index. The second test did print the results, but

still did not execute on indexed collections. Our third test case utilized indexing, but

did not print the results.

Test 1

Determine if a path exists between two documents by traversing the

starting links found in each document encountered.

67

1
I

I
I

Implementation of this query followed the algorithm given in Figure 4.7 which

computes transitive closure. We should note that when a cycle was encountered, the

execution immediately halted, thus potentially overlooking valid paths. The source

and destination documents are specified by their names. The set of parameters used

startDocName = user-defined document name.
endDocName - user-defined document name.

startDocld = DOC.id where (DOC.name = startDocName).
endDocld = DOC.id where (DOC.name = endDocName) .

START <- {startDocld}.
~SITED <- {startDocId}.

while TRUE do
END <- {LINK.endDocldl where {START.startDocld LINK.startDocId}.

if (END == 0)

EMPTY SET.

delete from END where (END.endDocId VISITED.docId) .

/* no path exists between the two documents
*/

if (END.endDocld
MATCH .
quit.

endDocId)

/* path exists between the two documents */

if (END == 0)
CYCLE /* every document in END is also a member

of VISITED. Therefore a cycle has been
encountered in the traversal and the search
is halted. */

/* none of the above conditions matched - continue search */

~SITED <- {~SITED U END}.
START <- {}.
START <- END.
END <- {I.

Figure 4.7

end WHILE.

}
;

+-..--

r

68

in this test were

1. Crusoe Defoe

2. Crusoe Footprint

Defoe

where the fIrst parameter indicates the source document and the second parameter

denotes the destination document.

Prior to executing the EQUEL program that queried the indexed database, we

created the appropriate indexes. We indexed permanent relations only. We excluded

the temporary relations because they were too small to justify the overhead of

generating indexes. The Docs and Link relations were indexed, since these were the

The GemStone method retrieved the source and destination DocObj objects

only permanent relations searched in the query. The Docs relation was modified to an

isam storage structure, using docName as the key value. The Link relation had a

hashed storage structure, declaring startDocId as its key value. In hindsight, we

should have used the hashed storage structure for both relations, since both were

conditionally searched on their key values.

using the detect: message, which searches a collection sequentially, looking for

matches. Within the detect: expression, we used a selection block rather than an

ordinary block, signalling OPAL to execute the search operation using indexes if

possible. By using selection blocks, we hoped to decrease the time spent retrieving the

DocObj objects. We assigned the method the message selector

doesPathExistBetween:and:. An OPAL expression demonstrating its usage is shown

below.

--- -.--------.----

. -

69

Web7 doesPathExistBetween: 'Crusoe' and 'Defoe'

Three OPAL expressions were implemented, each specifying one of the sets of

parameters defmed above and incorporated into OPAL programs. Before we executed

the OPAL program that would query the indexed database, we created an equality

index on the name instance variable in the DocObj objects contained in DocColI, since

this was the only collection that had to be searched. The rest of the data in this test

was retrieved by following the object references.

Test 2

For a specific document, collect all the information necessary to

blocks linked to each starting block.

(

r
(
(

display that document, its starting blocks, and the documents and end

We implemented this query following the algorithm given in Figure 4.8. As

in Test 1, we defined the initial document by its name. The primary detail addressed

during the implementation process in both database systems was the nature of the data

structure in which we collected the data. Once we had completed that step, we then

wrote the test programs. -~

The parameters we used were:

1. Defoe

3. Pope OV

Preceding the execution of the program that queried the database containing

11

70

docName = user-defined document name.

doCld = DOC.id where (DOC.name = docName) .
docPath = DOC.path where (DOC.name = docName) .

Data Structure <- dOCld, docpath.

TEMP <- {LINK.startBlkld, LINK.endBlkld, LINK.endDocld}
where (LINK.startDocld = docld) .

Data Structure <- {APPBLOCK.appExtent}
where (TEMP.startBlkld= APPBLOCK.blockld) .

Data Structure <- {APPBLOCK.appExtent}
where (TEMP.endBlkld= APPBLOCK.blockld) .

Data Structure <- {DOC.name, DOC. path}
where (TEMP.endDocld = DOC.id) .

Figure4.8

indexes, we created hashed storage structures on the permanent relations that were

searched (docname in Docs, startDocId in Link, and blockId in AppBlock.)

The GemStone method implemented for this test was assigned the message

selector retrieveAppExtent: and was used in an OPAL expression resembling the

following:

Web7 retrieveAppExtent: 'Pope OV'

We wrote three OPAL programs, each invoking this method with one of the parameters

listed above as an argument. The same index as in Test 1 was created prior to

executing the OPAL program designated to query the indexed database for the same

reasons given in Test 1.

f

71

Test 3
..

Relocate a specific link by modifying it to point to a different ending

block.

Test 4

Add a new link to the web. ,1

These two updates were not implemented in this study, due to time limitations.

4.2.4 Execution

The execution of the tests for this benchmark and the statistic collection

followed the same protocol discussed in the Document Benchmark (Section 4.1.4).

I

I

I
~

l

r

72

CHAPTER 5
I

I

ANALYSIS OF BENCHMARK RESULTS

This chapter presents the statistics collected for each benchmark test. Since

.1

'.~

Ingres and GemStone were run under different operating systems and on dissimilar

machine configurations, direct comparison between the two is not possible. Therefore,

for each benchmark, we will analyze the performance of each system in terms of the

statistics generated and discuss possible reasons for those statistics.

The statistics collected in each test represent elapsed time, cpu time, and I/O

activity. Elapsed time is wall-clock time to execute an operation. This value includes

the cpu time consumed by the user process and the system during the operation, and

overhead. Part of the overhead consists of page swapping for page faults, managing

various system file structures, and maintaining the catalogue files associated with a

database. The cpu time value represents the total cpu time consumed by both the user

process and the system during operation execution. The value shown for I/O activity >1
I ;:

reflects the number of times the operating system had to perform reads and writes from

and to secondary storage while the operation was being processed. In order to better

73

understand what the I/O statistic represents, below is a discussion of Ingres and

GemStone's data storage and retrieval mechanisms.

'. Ingres is built on the UNIX file system where each relation is stored in a UNIX

fIle on 512-byte pages. (We confInned this number with the UNIX system call statfs.)

UNIX employs a buffer pool (cache) whose size is 40 pages, established by Ingres.

All file I/O is handled through this buffer pool. During a file read, the buffer pool

is searched first to determine if the desired page is in the pool. If the page is already , I

resident, no I/O occurs and the data is returned directly to the caller. If the page is

not found in the buffer pool, it must be swapped in from secondary memory. In some

cases, this action could require two I/O calls, one to. swap in a piece of the page table,
'I ,I

'~

In GemStone, each object is referenced by its object-oriented pointer (OOP).

and another to transfer in the required data itself. At the time of a file write, the

updated data is written to the buffer pool. When the buffer pool is full (or the entire

relation is updated), the pages from the pool are written to secondary storage.

Within each Ingres database, there are six system relations, automatically created

and filled by Ingres, that describe the database. During program execution, these

relations are referenced and updated. Consequently, they are also being swapped in

and out of the buffer pool, contributing to I/O.

OOPs are allocated by the Stone process, which is built on the VMS fIle system. The

OOP values for all the objects in a database are stored in an object table. The object

table maps each OOP to its physical location. Although an object table can

conceivably contain 231possible OOPs [MS086], the designers expected that the portion

of the object table for objects needed during a session would be small enough to fIt

__ - H_ .._..

74

:1

I
I
,

into main memory. The OOPs for each object's instance variable values are clustered

together (except for large objects), although the objects they reference may be spread

around.

All object manipulation is handled via the object's OOP. The only time

secondary storage is accessed is when specific object values are requested, Le., printing,
h.'

updates, and various operations (arithmetic, comparisons, string manipulation, etc.).

Therefore, the I/O generated by a GemStone program might represent retrieving data

We first discuss the Document benchmark statistics, then the statistics on the

from secondary storage and writing data to secondary storage. The values rarely

include object table operations, since theoretically, the entire object table resides in

main memory and no extra I/O is incurred from page-swapping. Also, because

GemStone does not require extraneous system files to support a database, there is no

additional I/O due to system file maintenance. As in Ingres, GemStone employs large

buffer pools for file I/O.

Hypertext benchmark, and afterwards comment on specific benchmark issues.

5.1 THE DOCUMENT BENCHMARK

Test 1

Replace all word and text occurrences of a word (the target word)

with another word (the replacement word).

75

The results for Test 1 are given in Figure 5.1, which includes the number of

tuples updated in both the Line and Text relations.

In the Ingres implementation, the entire Line and Text relations were searched

in each test run. Therefore, a portion of the I/O statistics reflects the fact that the

entire relation had to be brought into memory. Included in this number is I/O

resulting from reading the page table. If the page table was too large to fit into main

memory, the I/O may be increased from swapping in the appropriate pages of the page

Test 1.1 - 'a' -> 'A'

Tuples updated: 1035 Ingres Gemstone

Elapsed Time 85.22 see 382.57 see 0
::a

CPUTime 51.92see 356.79see rT1
G>

Direct10 1497 596 0
Z
G)

Test 1.2- 'the' -> 'the' :%)

Tuplesupdated: 1851 Ingres Gemstone [;1
t::''\

Elapsed Time 95.70 see 380.07 see :>.!
"=-I

CPU Time 58.27see 355.61see ,,1,-.:z: :

Direct 10 1632 605 ("n
":-0

:=i

Test 1.3 - 'process' -> 'PROCESS' G.::;-"
,,-.$1

Tuples updated: 267 Ingres Gemstone

Elapsed Time 63.03 see 323.84 see

CPU Time 45.84 see 312.38 see

Direct 10 927 233

Figure 5.1

76

table. The I/O statistic also includes the I/O generated from reading and updating the

system catalogue files associated with the Doc database.

Since the Line and Text relations had to be completely searched in all three

tests, we hypothesized that the difference in the statistics between the tests was due to

the difference in the number of tuples updated. Recall that when a tuple is updated,

the revisions are stored in the buffer pool. When the pool is full or the entire relation

is updated, the pool is then written to secondary storage. Therefore, as the number of

tuples that needed updates increased, the number of revisions stored in the buffer pool

and the number of writes to secondary storage iIJcreased. To test this hypothesis, we

designed a program that tested a parameter not found in the document ('becky' ->

In the GemStone implementation, execution entailed a depth-fIrst search of the

'BECKY'). By doing this, we hoped to approximate the I/O when no updates

occurred. We found that, without updates, the tests would generate approximately 560

I/O hits. Therefore, the difference in the elapsed time and I/O between the three tests

appears due to the variation in the number of update operations that occurred.

entire Document object. Updating the Word and Text values required retrieving those

values from disk. We hypothesized that the majority of I/q activity generated by the

GemStone tests was due to accessing the disk to retrieve the Word and Text values.

Although it would seem reasonable to assume that Test 1.2 would generate the largest

values, due to the greatest number of tuples to update, this was not reflected in the

GemStone statistics. The results of Test 1.1 and Test 1.2 are nearly identical. At this

time, we have no reasons for why this happened.

77
,.

Test 2

Relocate specific chapters, sections, paragraphs, or lines within the

document.

Figure 5.2 shows the statistics generated in Test 2. In the Ingres

implementation, we used Ingres's ORDEREDN operation to maintain an order on the

Test 2.1 - 'chapter 5 2'

Ingres Gemstone

Elapsed Time 9.56see 1.02see a
:0 '

CPU Time 5.89 see 0.88 see r"T1"

G)'I"U f

Direct 10 121 5 o !"'

Z
G)

Test 2.2 -'paragraph 32 22' ::0
.po

Ingres Gemstone 0
C::

Elapsed Time 178.54see 1.24 see :
n"

CPUTime 163.94see 1.01see --
Z

Direct 10 261 7 (t:) ,
---G '1--......-'!:..
_. :I.:'
--- . '}
I .:-.-Test 2.3 - 'line 795 2208' :..
"'-

Ingres Gemstone

Elapsed Time 1456.43 see 1.66 see

CPU Time 1414.28 see 1.34 see

Direct 10 2002 10

Figure 5.2

l
78

relations. As the size of a relation increases, the time it takes to maintain order on

the relation increases. Notice the difference in the elapsed time values between Test

2.1 and Test 2.3. In Test 2.1, the Chapter relation, containing 37 tuples, was modified

and re-ordered. In Test 2.3, we modified and re-ordered the Line relation, which

contained 19,711 tuples.

The elapsed time value includes the time spent searching a relation for the

desired tuples, inserting and deleting the appropriate tuple, and re-ordering the relation.

We hypothesize that the majority of the elapsed time and I/O is spent re-ordering the

relation.

In GemStone, it is unnecessary to retrieve the entire collection of objects to

Reviewing the statistics on the three tests, we noticed a slight increase in the

reorder elements. The relocation operation involves rearranging the objects' OOPs

rather than the objects, and thus, requires no disk access for specific data values in the

objects. Since the OOPs are stored in an object table and it is assumed that the object

table can completely fit into main memory, the only I/O required is to bring the object

table into memory.

elapsed time and I/O from Test 2.1 to Test 2.3. We don't feel the differences are very

significant, and could be attributed to the size of the arrays that had to be searched.

In most instances, a Line array was larger than a Chapter or a Paragraph array. The

results are so close between the three tests that the differences might be due to run-

time variation and not program implementation or scheme design. .~
I

~

~-

79

Test 3

Find every occurrence of a specific word (the target word) and return

/.'.

,~:.:

the chapter, section, paragraph, line id and word position associated

with each occurrence of that word.

The statistics generated for Test 3 are shown in Figures 5.3-5.5. Each query

included tests that printed the results and tests that didn't print the results.

In the Ingres implementation, the chapter, section, paragraph, and line ids and

the word position value for each occurrence of a particular word in the document had

Direct 10 1426 16*

to be retrieved. In order to facilitate this retrieval, the Chapter, Section, Paragraph,

Test 3.1 -'and'

Number of occurrences: 431

Part 1 -No Results Printed

Elapsed Time

CPU Time

Ingres

640.93 see

Gemstone

298.03 see

609.82 see 289.20 see

Part 2 - ResultsPrinted Ingres Gemstone

Elapsed Time

CPU Time

647.85 see 442.70 see

611.54 see 388.38 see

Direct 10 1459 848

* These results are suspect. See explanation in texL

Figure 5.3

- .--- .
:ii

80

Test 3.2 - 'paraDel'

Number or occurrences: 89

Part 1 -No Results Printed Ingres Gemstone

Elapsed Time

CPU Time

453.39 see 217.80 see

422.37 see 206.83 see

Direct 10 1354 106

Part 2 -Results Printed Ingres Gemstone

Elapsed Time

CPU Time

454.37 see 251.76 see

423.70 see 234.41 see

Direct 10 1392 360

Figure 5.4

and Line relations had to be joined. Each relation had to be read into main memory,

searched, and the appropriate tuple returned to the program. All of this activity

contributed to the elapsed time and I/O. When we initially began reviewing the

l
statistics, we were surprised that the elapsed time values were so much longer than

those generated in Test 1, since we were only retrieving the words, not updating them.

Further consideration, though, led us to realize that, in this operation, four relations

I
Lr
I
I

were joined, one containing over 19,000 tuples (Line). Since a join can be an

expensive operation, and four joins proportionately more expensive, we concluded that

I

~
I

~

these large numbers weren't so surprising after all.

We noticed that there was very little difference in the Ingres statistics between

the two parts of each test. This was expected because, for any operation, Ingres must

retrieve the data in each relation from secondary storage. Since the data is already in

~II

J

..-

81

Test 3.3 . 'fork'

Number of occurrences: 94

Part 1 . No Results Printed Ingres Gemstone

Elapsed Time

CPU Time

470.74 see 224.49 see

437.02 see 213.40 see

Direct 10 1390 128

Part 2 . Results Printed Ingres Gemstone

Elapsed Time

CPU Time

466.30 see 255.68 see

Direct 10

436.53 see

1348

239.45 see

316

Figure 5.5

main memory, we felt printing the data shouldn't significantly affect the I/O. In Test

3.3, the I/O for Part 2 is less than Part 1 and suggests that there is very little overhead

incurred when data is printed. We speculate that the difference between the two parts

is negligible and might be attributed to run-time variation.

When implementing this query in GemStone, the entire Document object was
:2
(,?
---ti
:~
.............'~..~

1!
.-~

searched, depth-first Each word was accessed and compared to the target word. If

the word matched, the Chapter, Section, Paragraph, Line, and Word array positions

leading to that word were stored in a separate object. We expected Test 3.1 to yield

much higher values than Test 3.2 and Test 3.3, since it retrieved the largest number

of values. But, as can be seen, at least in Part 1, this was not the case. This may be

explained as follows.

In the initial program execution for Part 1, the tests were executed in the

82

following order: Test 3.1, Test 3.2, Test 3.3. Later, we speculated that Test 3.1 might
T

be exhibiting high statistics based on the fact that it was the first to execute and had

incuned unnecessary overhead due to system warm-up and page retrieval. Test 3.2 and

Test 3.3 would not be affected since the data was already resident in memory.

ignored the first results. The database was opened at the beginning of the run and

;',

:1

i,'.
il
:.,'.

Therefore, we devised a second run that executed Test 3.1 by itself 11 times, and

closed upon completion of the run. These are the results reponed. Since the database

was not closed between each test execution, we suspect these results are too low. ,I

We should have repeated the initial batch program and executed Test 3.1 twice, once

at the beginning and once at the end, to obtain more representative results. Due to

The difference in the GemStone elapsed time and I/O between Pans 1 and 2

time constraints and machine unavailability, though, we were unable to repeat this

test. Consequently, the results of Test 3.1, Part 1, cannot be considered valid.

were expected. In Part 1, the data structure that was created and instantiated with the

retrieved values was not printed, but stored on disk. In Part 2, the data structure was

retrieved and each object printed out. The I/O value reflects the I/O activity to print

to a file.

Test 4

Retrieve a specific textUne designated by its position in the document.

The results for Test 4 are shown in Figures 5.6-5.9. As in Test 3, each query

included tests that printed the results and tests that did not.

..

83

Test 4.1 . 'line 651' (chapter 3 section 1 paragraph 3 textLine 6)

When the Ingres database was queried, the entire Text relation was searched for

the tuple corresponding to the specified unique tuple id. Therefore, part of the I/O

reflects the number of I/O hits taken to transfer the entire relation into main memory

Test 4.2 . 'line 1192' (chapter 4 section 8 paragraph 11 textLine 3)

.-.-
~~.~
':,<;J
-~
..:1\..-
-'--
'--'"'!!
-~

Part 1 . No Results Printed Ingres Gemstone

Elapsed Time 4.56 see 0.75 see

CPU Time 4.25 see 0.60 see

Direct 10 62 6

Part 2 . Results Printed Ingres Gemstone

Elapsed Time 4.70 see 0.57 see

CPU Time 4.27 see 0.48 see

Direct 10 62 4
I:

Figure 5.6

Part 1 . No Results Printed Ingres Gemstone

Elapsed Time 4.50 see 1.43 see

CPU Time 3.51 see 0.96 see

Direct 10 54 6

Part 2 . Results Printed Ingres Gemstone

Elapsed Time 4.80 see 1.45 see

CPU Time 4.26 see 0.87 see

Direct 10 60 12

Figure 5.7

--:-
I

-

84

Test 4.3 . 'Une 2526' (chapter 7 section 1 paragraph 1 textLine 250)

similar. Reviewing all three tests, our expectations were proven correct. Also, since

and read it, because Ingres does not stop once it has located the correct tuple. Since

this query perfonned no updates to the database, we expected the I/O to reflect only

the activity generated by fIle reads. We postulated that the only file write included in

the I/O statistic would be when the text line was printed. Because the data was

already in main memory, this write action should have contributed very little to the

I/O. Therefore, we expected the results between Parts 1 and 2 in each test to be fairly

each test was theoretically performing exactly the same operation (Le., retrieving

I
.
I

,

I

"

exactly one tuple from the Text relation), we anticipated that the elapsed time values

between each test would be very similar. This also was demonstrated in the statistics.

For this query, we did not have to code a specific GemStone method, but could

retrieve the desired text line utilizing the primitive method at:. Consequently,

weexpected fairly low response times and I/O in our results. The statistics verified our

Part 1 -No Results Printed Ingres Gemstone

Elapsed Time 4.54 see 1.18 see

CPU Time 4.22 see 0.81 see

Direct 10 55 9

Part 2 . Results Printed Ingres Gemstone

ElapsedTime 4.42 see 0.83 see

CPU Time 4.25 see 0.66 see

Direct 10 60 7

Figure 5.8

.:..~

85

expectations. The negligible differences between Part 1 and Part 2 in each test might I.

be attributed to the data having already been retrieved into memory, and thus, writing

the result to the file had very little impact on the statistics.

We hypothesized that since each test executed approximately the same operation,
'I

the statistics between the three tests would be fairly close. The actual results suppon
..

this hypothesis. The elapsed times are so small that the differences between the runs

can be regarded as insignificant, and again, possibly attributed to run-time variation.

5.2 THE HYPERTEXT BENCHMARK

Determine if a path exists between two documents by traversing the

Test 1

starting links found in each document encountered.

The statistics generated in Test 1 are shown in Figures 5.9-5.11. Recall that

this query incorporated an infinite loop that was exited when an answer was

determined (EMPTY SET , MATCH, or CYCLE). The number of loops each test

cycled through before an answer was generated is shown in the Figures.

Reviewing the Ingres statistics, we found that, as the number of loops cycled .~

through increased, the elapsed time values lengthened. For example, Test 1.2 required

the least number of cycles to return an answer and exhibited the shonest elapsed time. J'

86

~-:;J
:.tJ

-l~
--:;-;..~

.;::::.
-.t-n

Test 1.3 displayed the longest elapsed time and cycled through the loop the greatest
-

.-~::::--

number of times. When we examined the Ingres program implementing this query, we

determined that, for each cycle through the loop, up to four separate relations had to
==4
i-:r.1

be searched (Link, Start, End, and Visited). In Tests 1.1 and 1.2, the size of the

Start and End relations were fairly small, each containing one tuple per cycle and

Visited incrementing by one in each loop. But, in Test 1.3, the size of these three

relations was substantiallylarger. For example, in loop 5, Start and End in Tests 1.1

and 1.2 each contained 1 tuple and Visited contained 5 tuples. In contrast, in Test

Test 1.1 - Crusoe Defoe -> EMPTY SET

Loops Cycled: 6

Part 1 -No Results Printed Ingres Gemstone

Elapsed Time 58.59 see 14.60 see

CPU Time 34.74 see 14.10 see

Direct 10 811 5

Part 2 -Results Printed Ingres Gemstone

Elapsed Time 58.70 see 14.79 see

CPU Time 34.66 see 14.44 see

Direct 10 802 8

Part 3 -With Indexes, No Results Ingres Gemstone
Printed

Elapsed Time 52.23 see 14.90 see

CPU Time 28.20 see 14.44 see

Direct 10 786 8

Figure 5.9

:;)
.1)
't-:J8
--;)-

'..----
,..

::~
-11

1.3, Start and End contained 72 tuples and Visited, 279 tuples. We therefore were

not surprised with these statistics because searching and comparing relations requires

time, and the larger the relations to search and the more times they must be searched ~-:-::~
~;1

and compared, the longer the execution time. Examination of the I/O revealed the

same trend; as the number of loops to cycle through increased, the I/O increased.

We anticipated that the Ingres results between Parts 1 and 2 in each test would

not be significantly different and this was proven by the statistics. As covered in the

Document discussion, the elapsed time and I/O were not increased significantly by

.,...,.

88

Test 1.3 - Defoe_Sources Defoe -> CYCLE

Loops Cycled: 9

Part 1 -No Results Printed GemstoneIngres

Elapsed Time

CPU Time

487.89 see 122.74see

116.39see440.76 see

Direct 10 1975 64

Part 2 -Results Printed Ingres Gemstone

Elapsed Time

CPU Time

491.46 see 122.12 see

115.55 see440.85 see

2015 69Direct 10

Part 3 -With Indexes, No Results
Printed

Ingres Gemstone

Elapsed Time

CPU Time

135.35 see

128.36 see

177.77 see

135.04 see

Direct 10 1478 115

Figure 5.11
-
:::-
--f
TI

printing results, since the data already resided in main memory. We did expect, and
-

.~::

the results demonstrated, that the values in Part 3 would be lower than Part 1, due to

the indexes created. In Part 3, both the Docs and Link relations were indexed.

During query execution, the Docs relation was searched once, while the Link relation

was searched as many times as the loop was entered. Tests 1.1 and 1.2 did not exhibit
. -.

large differences between Parts 1 and 3 (part 3 in Test 1.1 ran 1.12 times faster than

Part 1, while, in Test 1.2, Part 3 executed 1.09 times faster). But, Test 1.3 did display

a considerable difference between the two parts, Part 3 executing faster that Part 1 by

89

a factor of 2.94. We sunnise this can also be attributed to the size of the relations

examined in each cycle.

In the GemStone statistics, we noticed the same pattern as seen in Ingres. Test

1.2 executed in the least amount of time; Test 1.3 ran the longest. Again, we suggest

this was due to the number of loops each test had to cycle through. The larger I/O

in Test 1.3 may be correlated to the size of the temporary collections that needed to

be searched and compared.

The GemStone statistics between Parts I and 2 show little or no difference.

The answers generated by this query were pre-defined strings, signifying the outcome

of the query. There was no data collected or stored in an object to be used at another

strings was negligible and did not affect the elapsed time or I/O substantially.

time. Consequently, we suspect the GemStone overhead when writing the answer

Prior to executing Part 3, an equality index was created on the name instance ~~...,

IJ
:;:;.1"

-::;--
;:~
- -2
n

variable for all the DocObj elements in the DocColl collection. Since we were

performing an equality search on the name instance variable (which required accessing

the disk for the values), we hypothesized that the search would take less time than

sequentially searching the entire DocColl collection. Within the GemStone method for

this query, there were two searches on the DocColl collection, one to retrieve the .-~._~
~~;i

starting DocObj element, and the other to retrieve the ending DocObj object. We did

not create indexes on the temporary collections due to the overhead in creating indexes.

We also did not create an index on the LinkColl set, since there was no need to

search it for matches. Once we had the required DocObj objects, we were able to

retrieve their associated LinkObj objects by following the startLinks reference. Recall

f 1
90

I

it
\~~

that startLinks in DocObj references a LinkColl set that contains references to all the

LinkObj objects whose starting Point is in that document. (Refer to Figure 4.6.) I

Therefore, a search of the global LinkColl set was unnecessary.

We expected the results in Pan 3 to be lower than Pan 1. The index should 1

have decreased the elapsed time, due to the decrease in search time. The I/O should

also have been decreased because there would not be as many fIle reads to retrieve the

name values.

As can be seen in our results, this did not always happen. The elapsed time

value in Test 1.2, Pan 3, is less than in Pan 1, but the I/O is slightly larger. Tests

1.1 and 1.3 display greater elapsed time and I/O in Pan 3 than in Pan 1. This

behavior demonstrates that indexing does not always improve performance. When

indexes are specified, index pages are created. Consequently, when a query is

performed on an indexed object, there is a small overhead incurred when retrieving the

index pages. Also, different OPAL methods may be used on indexed objects, possibly

,-;)
'-cJ
.~-~
--?,,~;.....-
::~..j
i"f

necessitating more pages to be retrieved. Therefore, if the amount of data looked up

is small, the overhead is not recovered. .-.,-
.:~
,~-:J
.. ~i
.~.-

Test 2 --l
k":'.;....

For a specific document, collect all the information necessary to

display that document, its starting blocks, and the documents and

end blocks linked to each starting block.

,"

91
.'I

.J ~

The results for Test 2 can be seen in Figures 5.12-5.14, including their number '"

of starting links.

The Ingres results generated in Pans 1 and 2 of each tests, as expected, were

not significantly different. In Pan 3, where indexes were created on the Docs, Link,

and AppBlock relations, the elapsed time was decreased by approximately 40% in each

test; the I/O decreased slightly. Utilizing indexes did decrease the execution time of
('"

the query significantly between Pans 1 and 3 (overall, the elapsed time increased with

the number of starting links within each document). This behavior makes sense, since

Test 2.1 -Defoe
.,

Starting Links: 7 0
Gemstone

:-...CJ
Part 1 -No Results Printed Ingres ,.-n

{:;> .Ii

Elapsed Time 62.08 see 4.12 see .:)....
.".r:;.,..

CPU Time 57.70 see 3.94 see ':;, '.,,
:Q .

Direct 10 262 4 t
-::J,.-

Part 2 -Results Printed Gemstone
.-

Ingres .;:-.......
':'"

Elapsed Time 61.93 see 9.17 see r'J-
;"

CPU Time 57.74 see 7.44 see
.,,-

.:;)""""'.,1
Direct 10 260 31

-:-

""-,,

Part 3 -With Indexes, No Results Ingres Gemstone --1'.\,

Printed

Elapsed Time 37.07 see 3.31 see

CPU Time 32.37 see 3.22 see

Direct 10 248 4

Figure 5.12

M

92

the amount of information to be retrieved is directly proportional to the number of

starting links.

The GemStone results agreed with our expectations. The larger values in Part
CC -,~
.~~;i

2 versus Part 1 can be attributed to the system's need to access secondary storage for

the data to be printed. In Part 1, references to objects are collected, which does not

require retrieving the object from the disk. In Part 2, the state of the referenced object

is fetched from disk. Part 3 did generate the type of numbers we expected from

indexing in GemStone, Le., the elapsed times were significantly lower than those found

Test 2.2 - Defoe_Essay

Starting Links: 8

Part 1 -No Results Printed Ingres Gemstone

Elapsed Time 67.67 see 8.67 see

CPU Time 63.28 see 7.24 see

Direct 10 265 40

Part 2 -Results Printed Iogres Gemstone

Elapsed Time 67.80 see 13.82see

c. CPU Time 63.29 see 11.16 see

Direct 10 258 63

_.
Part 3 -With Indexes, No Results Iogres Gemstone

Printed

Elapsed Time 39.80 see 4.29 see

CPU Time 34.72 see 3.76 see

Direct 10 252 14

Figure 5.13

..,
d

" ":;J

"~
...~

" ':"2

","

in Part 1. In Test 2.1, Part 3 executed approximately 20% faster than Part 1. Part .:),.
.I

":.1--3 in Test 2.2 was approximately 50% faster than Part 1, and in Test 2.3, the elapsed

time in Part 3 was faster than Part 1 by approximately 6%. In this query, we created

the same index as in Test 1 and searched the DocColl collection once. It is difficult

to say, at this time, why indexing decreased the elapsed times in this test and made

little difference in Test 1.

We expected that Part 3 would demonstrate significantly lower I/O than Part 1

due to indexing. But, this was not the case; Test 2.3 displayed greater I/O in Part 3

93

Test 2.3 - Pope OV

Starting Links: 18

Part 1 -No Results Printed Ingres Gemstone

Elapsed Time 121.20see 6.59 see

CPU Time 114.78see 5.88 see

Direct 10 343 20

Part 2 - Results Printed Ingres Gemstone

Elapsed Time 121.89see 20.01 see

CPU Time 114.85see 15.85see

Direct 10 340 83

Part 3 -With Indexes, No Results Ingres Gemstone
Printed

Elapsed Time 71.91 see 6.23 see

CPU Time 65.88 see 5.21 see

Direct 10 271 32
I

I
Figure 5.14

94
:il

than in Part 1. As explained in Test 1, this can be attributed to the overhead incurred

reading in index pages and executing index methods.

Unlike the Ingres results, we were unable to correlate the GemStone results to

the number of starting links present in a document Test 2.3 retrieved information on

18 starting links and generated smaller values than Test 2.2, which dealt with 8 links.

5.3 GENERAL COMMENTS

I
.

,

i
:1

I

In this section, I comment on various characteristics of each database system

and specific benchmark issues. In particular, I address the degree of ease or difficulty

in learning each system, database loading, and general system implementation details.

I also discuss several specific issues I encountered during each benchmark's design and

development.

5.3.1 The Design Environment

The set of QUEL operations in Ingres was small and not very difficult to

master. Since I was already familiar with the C programming language, incorporating

the benchmark tests into EQUEL programs was fairly straightforward and presented

few complications. The learning curve for GemStone, and especially OPAL, was much

steeper than Ingres. In the beginning, I knew very little about object-oriented

=>
i

..

.:-..0
.en
.;..:;}
""..:J
::.........

.;)
11
-:JIo

:::i..-
..-
,
-I

n
,\-.- :--- .;

,.;:)
:'I

--;:i 11
J

-,1
',.."'i

.. -. -

95

languages and had to become familiar with the concepts inherent in these languages.

Most of the time involved in maStering GemStone was spent learning OPAL; once I

was proficient in OPAL, familiarizing myself with the rest of the GemStone system

required very little time.

Because I spent the majority of my time learning the database systems while

implementing the Document benchmark, that benchmark required approximately twice

as much time to complete than the Hypenext benchmark. As I became familiar with

each system during the Document benchmark, I realized initial designs could be revised

to yield better implementations and more optimal results. In particular, I was able to

decrease the number of QUEL commands used to execute an operation, thereby

OPAL, I could again decrease the execution times somewhat. As a result of all that

potentially decreasing execution times. Within OPAL, I found that incorporating as

many primitive methods as possible in my expressions would significantly reduce

response times. In addition, by avoiding message passing within loop conditions in

I learned during the Document benchmark implementation, the Hypenext benchmark

development required less time and was easier to accomplish. Additionally, during the

implementation of the Hypenext application, I continued to discover optimization
.;J"I
_.1..-

techniques that could apply to the Document application. Therefore, I would backtrack ~
. -,

and revise the Document benchmark.

In terms of database loading, I found the Ingres COPY operation to be

substantially more efficient than GemStone's Bulk Loader. Loading the Ingres database

for the Document benchmark required approximately 5 minutes, in contrast to the

GemStone database with took approximately 3 hours to load. (Loading the Hypenext

J...

.

:

96

database in Ingres required approximately 1 minute; loading the GemStone database

was about 1 1/2 hours.) Once the Ingres databases were loaded, they were

immediately ready to use. Before I could query or update the GemStone databases,

though, I had to construct the appropriate data objects. For the Document benchmark,

I needed to build the Document object, which took approximately 40 minutes; the

Web7 object for the Hypertext benchmark required approximately 1 hour for

construction. Therefore, the total time spent preparing each GemStone database for use

in each benchmark was approximately 4 hours (the Document benchmark) and 2 112

hours (the Hypertext benchmark). Comparing these times to those of Ingres (5 minutes

and 1 minute, respectively), it is apparent that populating the databases in Ingres

requires significantly less time than that needed in GemStone.

During implementation of the Hypenext benchmark, both the Ingres and
:~_..

GemStone schemas were revised. In Ingres, the revision entailed redefining the Docs

relation to include a new field, incorporating the new data into the proper UNIX f1le,

and copying the data from that file into the new Docs relation. The entire process did

not take long (approximately 1 hour, 30 minutes user time and 30 minutes machine

time) and once it was completed, the database was ready to use.

In revising the GemStone schema, I had to redefme the pertinent class

definitions and re-commit them to the database. I also needed to reformat the raw data

to coincide with the revised schema and reload the database. Finally, the Web7 object

had to be constructed. The entire revision process required approximately 8 hours to

accomplish (2 hours user time and 6 hours machine time).

I concluded that revising an Ingres schema is not very difficult and that the

f
97

COpy operation facilitates easy database loading and unloading. When revising a

GemStone schema, redefining the classes and committing them to the database requires

little time. The bulk of the revision time is spent dumping and reloading the database

and constructing the required data objects. Depending on the size of the database and

the constructed objects, this process could require a substantial amount of time, and in

most cases, would be desirable to avoid, if possible.

5.3.2 GetrusageiGettimeofday Issues

Within the EQUEL programs used in both benchmarks, the statistics did not

take into account the C code that was included in the operations, since the C code was
:~..-

executed in the parent process, and the getrusage operation was declared to collect

statistics on the child process. Consequently. I needed to determine if the included C

code generated significant values that would need to be included in the performance

analysis results, or if the results proved negligible, and no test re-execution was

-2
OJ-

necessary. The programs that incorporateda substantial amount of C code were

redesigned and rerun. The results indicated that the included C code statistics were

negligible, and thus, it was not mandatory that the entire suite of tests be rerun. To

be absolutely accurate, though, I feel future work should include getrusage calls to

both the parent and child processes to generate more representative statistics.

Each test had two programs associated with it, one invoking gettimeofday for

elapsed time measurements, and one calling getrusage, measuring the cpu and I/O

98

activity. I separated the system calls into two programs because I felt that the

getrusage statistics would include the system work generated by gettimeofday. In

hindsight, though, I realized that both calls could have been incorporated into one

program. As long as getrusage was only collecting the statistics on the child process,

the numbers generated by gettimeofday would not have been included. If future

programs collected statistics on both the child and parent processes during query

execution, additional work would be necessary to determine the system overhead

incurred by gettimeofday. I suspect the overhead is minimal and would have little

effect on the getrusage statistics.

5.3.3 Repeat Runs

In the Ingres programs, each set of tests was invoked in the same order in each

cycle of the loop. I was afraid that the statistics of the fIrst test might have exhibited

larger values due to system warm-up (Le., loading the database relations into memory),

while the other two tests may have demonstrated different statistics, due to caching.

It was necessary, therefore, to determine if my premise above was accurate. For each ~. -.

test, I designed repeat programs that invoked two of the three tests, with the original

fIrst test invoked last. The statistics collected from these repeat runs indicated that the

original statistics were valid; the results between the initial runs and the repeat runs

were not significantly different Hence, I was able to use my original statistics in my

analysis.

--..

99

The original OPAL programs had the same fonnat as found in the Ingres

programs. As a result, I also designed new OPAL programs that reran the tests in a

different order than the original tests. My results in the original runs demonstrated that

the fIrst test executed demonstrated system warm-up, increasing the statistics by

approximately 1.5%. Therefore, to be consistent with the other two tests that were not

affected by system warm-up, I chose to disregard the original statistics generated for

the fIrst test and use the statistics from the repeat run. The exception to this is Test

3.1, Part 1. For the reasons discussed earlier, these results must be considered invalid.

It may be argued that the approach is not valid because practical applications must

allow for system warm-up. But, I chose to use this approach to maintain consistency
,,')

j.Jn
.J
)

between all the test runs.

5.3.4 Specific Benchmark Issues

"'
)
,J"
:J

The reader may question why indexes were included in the Hypertext
'.

benchmark, but not in the Document benchmark. At this time, GemStone does not

.
'T

'i
';.,~

support indexes on array structures. I felt, however, that the array structure was the

best structure to use in the GemStone Document schema because it reflected the

conceptual model so closely. In many cases, a particular structure is better suited to

an application and will generate better response times when used in place of indexes.

In my case, I decided the array structure was more advantageous for the Document

application than incorporating indexes into the schema. In taking this approach, though,

. -.. -------..-.

"
100

Ingres was placed at a disadvantage. Had indexes been used in the Ingres

implementation, the statistics might have demonstrated faster execution times and

decreased I/O activity. But, I wanted each system's implementation characteristics to

be as identical as possible, which precluded using indexes in the Ingres schema.

In Test 1 in the Document benchmark (Le., replacing words), the Ingres scheme

proved suitable. The Line and Text relations represented sets that were searched

during the query. Due to the nature of the scheme, I was able to execute the query

without referencing relations other than the two mentioned above, and thus, avoided

any join operations.

Recall that in Test 2 and Test 4 in the Document benchmark, the Ingres

implementations required that the user specify the globally unique tuple id associated

with the desired document component, Le., line 2526. There are two alternatives I)

been to include a field in each relation in the scheme that contained the relative

could have, and in hindsight, should have considered. One alternative would have

position of that relation's component in the document (see Figure 5.15). Then the

parameters in Test 2 and Test 4 could define a component by its relative position in :

the document. The EQUEL program would include code that would convert the relative F.
position values to globally unique tuple ids and then perfonn the required operation. ,..

., ~

In Test 2, after the relocation operation was perfonned, the EQUEL program would

also need to update the values in the position field to reflect the new order in the

document. Including a position field in the scheme might have been difficult to

instantiate, but might have decreased the update response time in Test 2, since Ingres' s

ORDEREDN operation would have been by-passed and my own ordering routine

101

')
.J

executed. It's difficult to state at this time if this revised schema would generate

faster response times or decreased I/O.

~r
;

i

The other alternative would have been to allow the user to use relative positions .~

m the parameters and include code in the EQUEL program that convened the ';...
.f.

parameters to their globally unique tuple ids. Implementing this design would have

been easier and faster than the previous alternative. The execution times would no

doubt be longer than the present times, due to the parameter conversion. Also, this

approach would require that a separate relation be included containing the total number

of components found in the document to facilitate the conversion. The relation would

need to be updated when the size of the document changed. This approach also

Relation Chapter

ehapld seetld crelpos

Relation Section

seetld parald srelpos

Relation Paragraph

parald lineld tLineld prelpos

Relation Line

lineld wordPos word lrelpos

Relation Text

tLineld text

Figure S.lS

102

modifies the database scheme. Since the objective in this benchmark was to use the

scheme designed by Stonebraker, et al., with no modifications, both alternatives would

have modified the schema, contrary to the objective.

Ideally, I should have been consistent between Ingres and GemStone, Le., used

either relative positions or unique tuple and object ids as parameter arguments. In

retrospect, the easiest and possibly best solution would have been to define the query

parameters for each system in terms of a component's position within the document.

This type of declaration reflects the real-world structure of the data.

Finally, the results printed by Ingres in Test 3 of the Document benchmark, the

global unique tuple ids are used. For example, for the word found at position chapter

been consistent between the two systems and had Ingres also print the component's

3 sect.on 2 paragraph 1 line 3 word position 7, Ingres printed out "chapter 3 section

5 paragraph 50 line 196 word position 7". This type of response does not convey the

relative position of that word in the document Again, as in Test 2, I should have

relative position. Printing the relative position would have required additional EQUEL

to convert the Ingles response above to the desired notation, resulting in longer

In the Hypertext benchmark, one objective was to determine the effect indexing

response times.

. ._~

would have on the statistics. Before I could create the indexes, I had to declare

constraints on all the instance variables that I intended to index. I encountered

problems in doing so. OPAL stipulates that an instance variable may not be

constrained to an object from a class not previously defined. In defming the set of

classes needed for the Hypertext schema, no matter how I arranged the classes, I

--- -------

103

always encountered one class whose instance variable was constrained to a class not

yet defmed. This problem was finally resolved by utilizing OPAL's class hierarchy

mechanism. Each problem class was divided into two separate classes. The first class

(the superclass) contained a subset of the class's original instance variables. The

second class was declared a subset of the fIrst class, thereby inheriting the first class's

instance variables. The rest of the class's intended instance variables were included

in the second class. By splitting the problem classes into two distinct classes and

taking advantage of OPAL's class hierarchy, I was able to circumvent this circular

constraint problem.

The GemStone documentation recommends constraining only those instance

variables that are to be indexed. During the initial design phase in the Hypertext

benchmark, I thought I would need to create many more indexes than I actually did,

so I declared constraints on numerous instance variables. Since my fInal

implementation created one index on one instance variable, I could have revised my

GemStone schema to remove the unnecessary constraints and possibly avoided the

circular constraint problem.

F..,
,.

--

104

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Our initial objective in this thesis was to compare Ingres and GemStone using

accomplish this objective. The version of Ingres we were testing ('university') runs

our benchmarks. But, early in the design stage, it became apparent that we could not

under UNIX, while GemStone is implemented on top of VMS. Since each was run

under different operating systems, direct comparison of the two systems was unrealistic. ..
../-

Consequently, the premise of the thesis was revised to concentrate on developing two

benchmarks that could ultimately be used to compare relational and object-oriented

.J
~.

database systems. These benchmarks specifically addressed applications that

.,

.r

f.
incorporated complex entities as data objects.

Although 'university' Ingres is a well-respected relational database system and

served our needs suitably in this study, the statistics it generated should not be

considered valid for 'commercial' Ingres. 'University' Ingres does not contain the

performance enhancements found in 'commercial' Ingres, and therefore, does not

perform as efficiently as 'commercial' Ingres. To obtain a more representative

105

perspective of Ingres's capabilities and proficiency, 'commercial' Ingres running under

VMS should be used. In this way, a more direct comparison of Ingres and GemStone

would be possible. As stated in Chapter 2, this scenario would have been desirable,

but we did not have access to 'commercial' Ingres.

We stress that the relational schemas were not completely optimized, especially

the Document schema. In addition, the EQUEL code written for the Document and

Hypenext benchmarks was not extensively reviewed or revised for optimal performance.

Consequently, we cannot take our statistics at face value and conclude that they truly

reflect 'university' Ingres. Instead, we must view the statistics with caution and realize

that the results may have been more favorable had the above steps been performed.

.Within each database system, we found that the system's performance is
)
,.J
-,
;
:)dependent on the schema implemented. For example, since the GemStone Document

schema was designed so that the word and text values could only be retrieved by)
)

performing a depth-first search, a significant amount of time was spent executing the
)

search when those values were desired. A better approach would have been to modify

the schema so that the word and text values were stored in collections, with the words
,,'

contained in a Set object to eliminate duplications, and the text values kept in a Bag

object. In this way, word and text replacement operations could be executed more

quickly, since the depth-first search would be avoided. If only one occurrence of a

word was to be modified, a depth-first search would still need to be performed to

locate the exact line that contained the word to be modified. At that time, the word

in the text could be modified, and the Set collection searched for the desired

replacement word. If it did not exist, it would be appended to the Set collection and

106

referenced.

Relational schemas should be evaluated to detennine if they can be optimized

to obtain better performance. A designer needs to ascertain if it is better to maintain

a "normalized" schema or combine various relations to avoid update anomalies and join

operations. The schema should be checked for extraneous foreign keys or simplistic

schemas that necessitate numerous joins to retrieve the data. In our Hypertext schema,

we noticed that the Block relation was never referenced; the required block information

was retrieved from the Link relation. In our case, the Block relation was unnecessary,

but other application programs might use it.

One potential bottleneck in a database system is its I/O management. GemStone

attempts to alleviate part of the bottleneck by only accessing the disk when object

values need to be retrieved. In Ingres, the relations containing the desired data must ,
be retrieved from the disk prior to viewing or manipulating the data. I/O activity can ")

j

be decreased in Ingres with indexes; only certain pages are retrieved versus the entire

relation. We feel GemStone has a better paradigm for I/O management, but it should

be stressed that 'commercial' Ingres might generate better statistics than those seen in

our tests, due to its performance enhancements.
..

After becoming familiar with each database system, we preferred the GemStone .
model over the Ingres model for implementing the schema. In GemStone, we could

model the real-world structure and behavior of an object. In Ingres, we had to flatten

the data objects to conform to the table configuration inherent in the relational model.

Since this flat representation did not reflect the real-world structure of the data entity,

the schema was not as easy to remember or understand as GemStone's schema.

107

GemStone's model facilitated representing the relationships between objects. It was not

as straightforward in Ingres to model those relationships. Foreign keys had to be

introduced to the relational schema to denote relationships, frequently producing a

complicated schema that was difficult to decode, or the data values did not reflect the

relationship between objects (e.g., in the Document application where each component

was assigned a globally unique tuple id that did not always reflect that component's

relative position in the document).

GemStone was easier to use because we were able to accomplish everything

(model definition, method implementation, and statistic generation) in one programming

language. To implement the applications in Ingres, we had to utilize three separate

languages, QUEL, EQUEL, and C and be cognizant of impedence mismatch.

In GemStone, all the class definitions, application methods, and data connected)

with a specific database are contained in that database and are available to the user ")
.i

when the database is opened. An Ingres database includes the relations containing the

data and the system relations describing the database, but does not include the

application programs. As a result, when an Ingres database is opened, the data is

available to the user, but not the specific programs written to retrieve the data; these

programs reside outside of the database and the user must know where they are

located.

Although our original intention to compare the performance of Ingres and

GemStone was abandoned, we feel we have successfully proposed two benchmarks that

could be used to compare relational and object-oriented database systems. Using the

relational and object-oriented schemas and the operations provided in each benchmark,

108

various relational and object-oriented database systems could be analyzed and compared.

Porting the relational schema betWeen relational database management systems should

be fairly easy. But, implementing the object-oriented schemas on various object-

oriented systems will not be as straightforward because there is not a single object-

oriented model that all systems adhere to. Yet, each benchmark presents the conceptual

model of the data entity, which can be used as a guideline in the design and

implementation of the object-oriented model.

Although we feel the proposed benchmarks could be used in their present form,

we believe they could be improved in the following manner. First, more than one

scheme should be implemented in each database system. In this way, one can

detennine which scheme is most suitable for the application and the database system.

But, the term 'suitability' must be defined before determining which system is best,

e.g., is one looking for a fast response time or an easily understood schema?

Second, the Ingres implementation of the Document benchmark should include ..

indexes. In not utilizing indexes, Ingres was placed at a disadvantage because it was

not allowed to run at its greatest potential. Third, Test 2 and Test 4 implementations

in the Document benchmark should be revised to allow the parameters to reflect the

component's position in the document, matching the implementation of those tests in

GemStone. Fourth, the GemStone schema designed for the Document benchmark

should either be modified to store the word and text values in collections, or another

schema devised, including these modifications, and both compared. Finally, the amount

of code required to implement the benchmark should be included in the statistics.

109

BIBLIOGRAPHY

[Ano85]

Anon, et.al., A Measure of Transaction Processing Power, Datamation 31:7,

April, 1985.

[BaD82].

Baroody, A. J. and DeWitt, D. J., An Object-Oriented Approach to Database

System Implementation, ACM Trans. Database Systems 6,4 (Dec. 1982),576-

601.

[BDT83]

Bitton, D., Dewitt, D. J. and Turbyfill, C., Benchmarking Database Systems -
A Systematic Approach, Technical Repon #526, Computer Sciences Dept., Univ.

of Wisconsin, Madison, Wis., Dec. 1983.

[BoD84]

Boral, H. and DeWitt, D. J., A Methodology for Database System Performance
,
,

Evaluation, Proceedings of ACMlSIGMOD Annual Meeting, 1984, 176-185.

[But86]

Butler, M., An Approach to Persistent LISP Objects, 31st IEEE Computer

Society International Conference Proceedings, 1986, 324-329.

. Not referenced in thesis.

~

\

I

L

I

I

I

I

,
I

._ _ _ u._.

110

[CFH83]

Chu, K., Fishburn, J. P., Honeyman, P. and Lien, Y. E., Vdd - A VLSI Design

Database System, IEEE, Jan. 1983, 25-37.

[CoM84] *

Copeland, G. and Maier, D., Making Smalltalk a Database System, Proceedings

of ACM/SIGMOD Annual Meeting, 1984, 316-325.

[DeH81]

DeWitt, D. and Hawthorn, P., A Performance Evaluation of Database Machine

Architecture, ACM Proceedings on Very Large Databases, 1981, 199-213.

[FBC86]

Fishman,D. H., Beech,D., Cate, H. P., Chow,E. c., Connors,T., Davis, J. W., ..J
.j
...
....

Derrett, N., Hoch, C. G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat, M. A.,

Ryan, T. A. and Shan, M c., IRIS: An Object-Oriented DBMS, Technical

Report #STL-86-15, Hewlett Packard Co., Palo Alto, Calif, Dec. 1, 1986.

[GSM86]

Garrett, L. N., Smith, K. E. and Meyrowitz, N., Intennedia: Issues, Strategies,

and Tactics in the Design of a Hypennedia Document System, Proceedings

from Computer-Supported Cooperative Work Conference, 1986, 1-17.

[GoR83] *

Goldberg, A. and Robson, D., Smalltalk-80: The Lansroaf!e and its

Implementation, Addison Wesley, Menlo Park, Ca., 1983.

;.

111

[HaF86]

Hagmann, R. and Ferrari, D., Perfonnance Analysis of Several Back-End

Database Architectures, ACM Trans. Database Systems 11, 1 (March, 1986),

1-26.

[HaS86] *

Hawthorn, P. and Stonebraker, M., The Use of Technological Advances to

Enhance Database System Perfonnance, in The Ine:res Papers: Anatomv of a

Relational Database, M. Stonebraker (00.), Addison Wesley, Reading, MA,

1986, 106-130.

KCB87] *

Kim, W., Chou, H. and Banerjee, J., Operations and Implementation of Complex

~,
J
'f
"...

Objects, Proceedings of the 3rd International Data Engineering Conference,
..
.....

1987, 626-633. "

[Lin83]

Linton, M. A., Queries and Views of Programs Using a Relational Database

System, Technical Report #UCB/Computer Science Dept. 83/164, Univ. of

California - Berkeley, Berkeley, Calif., Dec. 1983.

[Lin84]

Linton, M. A., Implementing Relational Views of Programs, ACM 1984

Software Eng. Notes/SIGPLAN Notices Proceedings, 1984, 132-140.

:i.

.
I

I

I

I

,
I

I

I

112

[LoP83] *

Lorie, R. and Plouffe, W., Complex Objects and Their Use in Design

Transactions, ACM Proceedings on Databases for Engineering Applications,

1983, 115-121.

[LKM85]

Lorie, R., Kim, W., McNabb, D., Plouffe, W. and Meier, A., Supporting

Complex Objects in a Relational System for Engineering Databases, in Query

Processine in Database Systems, W. Kim, D. Reiner and D. Batory (ed.),

Springer-Verlag, 1985, 145-155.

[LDF86]

Lyngbaek, P., Derrett, N., Fishman, D. H., Kent, W. and Ryan, T. A., Design

and Implementation of the IRIS Object Manager, Technical Report #STL-8617,

Hewlett Packard Co., Palo Alto, Calif., Dec. 10, 1986.

[Mai83]

Maier, D., Capturing More Meaning In Databases, Technical Report #CSIE-83-

009, Oregon Graduate Center, Beaverton, Ore., 1983.

[Mai86] *

Maier, D., Why Object-Oriented Databases Can Succeed Where Others Have

Failed, Proceedings of IEEE International Workshop on Object-Oriented

Databases, 1986, 227.

[MaS86] *

Maier, D and Stein, J., Indexing in an Object-Oriented DBMS, Technical Report

#CSIE-86-006, Oregon Graduate Center, Beaverton, Ore., May, 1986.

--

_.- -.. . -- --.--...--

113

[MS086]

Maier, D., Stein, J., Otis, A. and Purdy, A., Development of an Object-Oriented

DBMS, ACM OOPSLA 1986 Conference Proceedings, 1986,472-482.

[MaS87] *

Maier, D. and Stein, J., Development and Implementation of an Object-Oriented

DBMS, in Research Directions in Obiect-Oriented Proe:rammim!.B. Shriver

and P. Wegner (ed.), MIT Press, Cambridge, MA., 1987, 355-392.

[Mey86]

Meyrowitz, N., Intermedia: The Architecture and Construction of an Object-

Oriented Hypermedia System and Applications Framework, ACM OOPSLA

Conference Proceedings, 1986, 186-201.

[PMS87] *

Purdy, A., Maier, D. and Schuchardt, B., Integrating an Object-Server with

Other Worlds, ACM Transaction on Office Information Systems 5, 1 (Jan.

1987).

[RoI82a]

Rollins, E. J., Abstract Syntax in Theory and Practice, Technical Repon #CSIE-

82-04, Oregon Graduate Center, Beavenon, Ore., 1982.

[RoI82b]

Rollins, E. J., A Syntax-Analyzer Constructor, Doctorial Dissertation, State

University of New York, Stoney Brook, 1982.

114

[RKC87]

Rubenstein, W. D., Kubicar, M. S. and Cattell, R. G. G., Benchmarking Simple

Database Operations, Proceedings of the ACM/SIGMOD Annual Meeting,

1987.

[SmZ87]

Smith, K. E. and Zdonik, S. B., Intennedia: A Case Study of the Differences

Between Relational and Object-Oriented Database Systems, ACM OOPSLA

Conference Proceedings, 1987.

[StB86]

Steftk, M. and Bobrow, D. G., Object-Oriented Programming: Themes and

Variations, The AI Magazine, Jan. 1986, 40-62.

[SSL83]
"

Stonebraker, M., Stettner, H., Lynn, N., Kalash, J. and Guttman, A., Document

Processing in a Relational Database System, ACM Transactions on Office

Information Systems 1, 2 (April 1983), 143-158.

[Sto86] *

Stonebraker, M., Operating System Support for Database Management, in The

In2res Papers: Anatomv of a Relational Database, M. Stonebraker (ed.),

Addison Wesley, Reading, MA, 1986, 172-181.

[SWR86] *

Stonebraker, M., Woodftll, J., Ranstrom, J., Murphy, M., Meyer, M. and

Allman, E., Performance Enhancements to a Relational Database System, in The

In2res Papers: Anatomv of a Relational Database, M. Stonebraker (ed.),

115

Addison Wesley, Reading, MA., 1986, 131-153.

[SWK86]

Stonebraker, M., Wong, E., Kreps, P. and Held, G., The Design and

Implementation of Ingres, in The In2res Papers: Anatomv of a Relational

Database" M. Stonebraker (ed.), Addison Wesley, Reading, MA., 1986, 5-45.

[WSR81] *

Woodfill, J., Siegal, P., Ranstrom, J., Meyer, M. and Allman, E., In2res

Reference Manual. Version 8.7, Univ. of California - Berkeley, Berkeley,

Calif., April, 1981.

[Zdo84] *
,",

Zdonik, S. R, Object Management System Concepts, Proceedings of the
'II;

ACM/SIGOA Conference on Office Information Systems, 1984, 13-19.

[ZdW86] *

Zdonik, S. R and Wegner, P., Language and Methodology for Object-Oriented

Database Environments, Proceedings of the 19th International Conference on

System Sciences, 1986, 378-387.

APPENDIX A

THE DOCUMENT BENCHMARK

A.I Creating Ingres Doc Database

UNIX command to create Doc database:

creatdb doc

Ingres commands to defme Doc relations:

create chapter (chapid = i2, sectid = i2)

create section (sectid = i2, paraid = i2)

create paragraph (paraid = i2, lineid = i2, tlineid = i2)

create line (lineid = i2, wordpos = i2, word = c80)

create text (tlineid = i2, text = c80)

116

A.2 Ingres Commands To Load Document Database

copy chapter (chapid = cO, sectid = cO) from

"/ogc/students/becky/THESIS/DOC/chap.rel"

copy section (sectid = cO, par aid = cO) from

"/ogc/students/becky/THESIS/DOC/sect.rel"

"/ogc/students/becky/THESIS/DOC/para.rel"

copy paragraph (paraid = cO, lineid = cO, tlineid

copy line (lineid = cO, wordpos = cO, word

"/ogc/students/becky/THESIS/DOC/line.rel"

copy text (tlineid = cO, text = cOnl) from

"/ogc/students/becky/THESIS/DOC/text.rel"

cO) from

cOnl) from

117

118

A.3 Ingres Program Listing For Testl

TEST1. TEMPLATE

/* In this program, all occurrances of one word are replaced with
another word. This program was executed three times, each run
replacing a different word. Included in this listing are the
different word sets and where they were hard-coded in the program.
This listing also contains the system calls associated with the time
and cpu programs. They are labeled and inserted in the code where
they appear in their respective programs.

*/

/* the following declarations pertain to the timing programs */

#include <sys/time.h>

struct timeval
struct timezone

long

double

tPi
tZPi
endtimesec,
endtimeusec,
starttimesec,
starttimeuseci
endusec,
endtime,
startusec,
starttime,
elapsedtimei

/* the following declarations pertain to the CPU programs */

#include <sys/time.h>
#include <sys/resource.h>

struct rusage
long

resusagei
systimesec,
systimeusec,
usertimesec,
usertimeusec,
inputcount,
outputcounti

double

int

sysusec,
systime,
userusec,
usertimei
WhOi

main()
(

/* CPU */

who = RUSAGE_CHILDREN; /* = -1 */

/* invoke ingres on 'doc' database */

ii ingres doc

ii range of nl is newline
it range of nt is newtext

/* TIME - start the timer */
gettimeofday(&tp, &tzp);
starttimesec = tp.tv_sec;
starttimeusec = tp.tv_usec;

/* replace searchwords with targetwords in both relations */

ii replace nl (word = "A")
"THE"
"PROCESS"

it where nl.word = "a"
"the"
"process"

H{

H}
/* no processing */

H replace nt(text "HO A HO")
THE
PROCESS

H where nt.text "UO a HO"
the
process

119

H{

I)
/* no processing */

H}

I. /* TIME - stop the timer */
I

gettimeofday(&tp, &tzp);

il
endtimesec = tp.tv_sec;

endtimeusec = tp.tv_usec;

I I H exit
I
I

/* CPU - collect statistics */

; I getrusage(sho, &resusage) ;

I

120

/* TIME - calculate the elapsed time */

startusec = (starttimeusec * .000001);
starttime = (starttimesec + startusec);

printf ("start time = %If sec", starttime);

endusec = (endtimeusec * .000001);
endtime = (endtimesec + endusec)
printf ("end time = %If sec", endtirne);

elapsedtime = endtime - starttime;
printf("ELAPSED TIME = %If sec", elapsedtime);

/* CPU - pull statistics from resusage structure */

usertimesec = resusage.ru_utime.tv_sec;
usertimeusec = resusage.ru_utime.tv_usec;
input count = resusage.ru_inblock;
output count = resusage.ru_oublock;
systimesec = resusage.ru_stime.tv_sec;
systimeusec = resusage.ru_stime.tv_usec;

/* CPU calculate and print cpu statistics */

usersec = (usertimeusec * .000001);
usertime = (usertimesec + userusec);
printf("USER TIME = %If sec", usertime);

sysusec = (systimeusec * .000001);
systime = (systimesec + sysusec);
printf("SYSTEM TIME = %If sec", systime);

printf("INPUT COUNT = %ld", inputcount);
printf("OUTPUT COUNT = %ld", outputcount);

exit () ;

121

A.4 UNIX Driver for Test 1

RUNTEST 1

iitiii tt#tt#i#titffititttttftttt#tt.tffttf##ftt#tttiftitiitttitii#t
In this shell script, time and cpu tests are run multiple times and
f the data generated collected in a file "runtest1.results".
iiiiiiiififi#iiiiiiiiiiiiiiii#t##f###i######iiftff#tftftift#tftfftttittf

if ($targv == 0) then

echo "ERROR -> Specify t of runs to execute."
exi t ()

else
date >! runtest1.results

echo
echo "

» runtest1.results
» runtest1.results

echo
echo
echo
echo
echo

"********************" »
"* RUNTEST1.RESULTS *" »
"********************" »

» runtest1.results
" " » runtest1.results

runtest1.results
runtest1.results
runtest1.results

echo "****************** TIME *****************" » runtest1. results
echo" " » runtest1.results

@ count = 1
while ($count <=

if ($count
date
echo

$argv[l])
== 1) then
» runtest1.results
"COPYING NEWTEXT/NEWLINE RELATIONS"

» runtest1.results

copyrel1
date » runtest1.results
echo" " » runtest1.results
echo" " » runtest1.results

else
copyrel1

endif

up~ime » runtest1.results
echo "=> Tirne1-a" » runtest1.results
time1 » runtest1.results

uptime » runtest1.results
ec::o "=> Time11-the" » runtest1.results
time11 » runtest1.results

endif

uptime » runtest1.results

echo "=> Time111-process" » runtest1.results
time111 » runtest1.results

122

truncrell

echo "***"

» runtestl.results
@ Count++

end

echo "****************** CPU ******************" » runtest1. resultsecho" " » runtestl.results

@ count = 1

while ($count <= $argv(l])
COpyre11

uptime » runtestl.results

echo "=> CPU1-a" » runtest1.results
cpul » runtestl.results

uptime » runtestl.results

echo "=> CPUll-the" » runtestl.reSults
cpu11 » runt est 1.results

uptime » runtestl.results

echo "=> CPU11l-process" » runtestl.results
cpu1ll » runtestl.results

truncre1l

echo "***"

» runtestl.results
@ count++

end

echo" " » runtestl.results

date » runtestl.results
exi t ()

123

A.5 Gemstone Document Class Definitions

"Chapters class"

SequenceableCollection subclass: 'Chapters'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
islnvariant: false.

"Sections class"

SequenceableCollection subclass: 'Sections'
instVarNames: #()
classVars: #()

poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
islnvariant: false.

"Paragraph class"

SequenceableCollection subclass: 'Paragraphs'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: t()
iSlnvariant: false.

"ParagraphContents class"

Object subclass: 'ParagraphContents'

instVarNarnes: #('lines' 'textLines')
classVars: t()

poolDictionaries: #()
inDictionary: UserGlobals
constraints: t()
islnvariant: false.

I-

124

"Lines class"

I

I

I

I

I
I
I

I

SequenceableCollection subclass: 'Lines'
instVarNames: f()
classVars: f()
poolDictionaries: I()
inDictionary: UserGlobals
constraints: I()
isInvariant: false.

"Words class"

SequenceableCollection subclass: 'Words'
instVarNames: f()
classVars: f()
poolDictionaries: I()
inDictionary: UserGlobals
constraints: f()
isInvariant: false.

"TextLines class"

.
I

SequenceableCollection subclass: 'TextLines'
instVarNames: f()
classVars: f()

poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
isInvariant: false.

"Document class"

Object subclass: 'Document'

instVarNames: f('name' 'contents')
classVars: #('Test' 'Thesis')
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
isInvariant: false.

-

125

A.6 Gemstone Bulk Loader Class Definitions

"WordElernent"

Object subclass: 'WordElernent'

instVarNarnes: I('chapid' 'word' 'sectid' 'paraid' 'lineid'
'wordpos')

classVars: I()

poolDictionaries: I()
inDictionary: UserGlobals
constraints: I()
iSInvariant: false.

"TextElernent"

I

Object subclass: ,TextElernent'

instVarNarnes: I('chapid' 'sectid' 'paraid' 'tlineid' 'text')
classVars: I()

poolDictionaries: I()
inDictionary: UserGlobals
constraints: I()
isInvariant: false.

"FileArray class"

SequenceableCollection subclass: ,FileArray'
instVarNarnes: I()

classVars: I ('TextFile' 'WordFile')
poolDictionaries: I()
inDictionary: UserGlobals
constraints: I()
iSInvariant: false.

126

A.7 Gemstone Methods for Constructing the Document Object

classmethod: Document "retrieveThesis"

retrieveThesis

"returns the Object found in Thesis classVariable."

"Thesis

classmethod: Document "setThesis: "

set Thesis: anObject

"instantiates 'Thesis' classVariable with anObject."

Thesis :- anObject

category: 'createDoc'

classmethod: Document "instantiateThesis"

instantiateThesis

"A document is created and instantiated, using the Wordfile and Textfile
Objects stored iD the FileArray class. Upon completion, the document is
stored in the 'Thesis' class variable in the Document class."

"Document instantiateThesis"

I wordfile chap index cindex length element cid sect sindex wflength sid
para pindex pid paraCont line lindex lid word textfile tflength doc tcid
sects tsid paras tpid tparacont tline textstr I

wordfile := FileArray retrieveWordFile.
wflength := (word=ile size).

chap := Chapters new.
index := O.
cindex := O.
[(index := index - :) <= wflength]

whileTrue:
[

eleme~~ :- wordfile at: index.
cid := ~lement chapid.
cindez -- cid

:.=:'rue:

cindex := cid.

sect := Sections new.
chap add: sect.
sindex := O.

127

sid := element sectid.
sindex -= sid

ifTrue:
[

I;
sindex := sid.

para := Paragraphs new.
sect add: para.
pindex := O.

I.].

pid := element paraid.
pindex -= pid

ifTrue:
[

pindex := pid.

paraCont := ParagraphContents new.
para add: paraCont.
line := Lines new.
paraCont addLines:line.
lindex := O.

].
lid := element lineid.
lindex -= lid

ifTrue:
[

lindex := lid.
word := Words new.
line add: word.

].
word add: element word.

].

"retrieve the TextFile and complete the Document contents."

text file := FileArray retrieveTextfile.
tflength := (textfile size).
index := O.

[(index := index + 1) <= tflength]
whileTrue:
[

element := textfile at: index.

tcid := element chapid.
sects := chap at: tcid.
tsid := element sectid.
paras := sects at: tsid.

tpid := element paraid.
tparacont := paras at: tpid.
tline := tparacont textLines.
tline isNil

if True:
[

tline := TextLines new.
tparacont addText: tline.

].
textstr := element text.
tline add: textstr.

] .

128

"create doc and instantiate variables."
I
I
I

t
.;
.

doc := Document new.
doc addName: 'thesis'.

doc addContents: chap.

~.
.

"send the document to Document class for storage and future retrieval."
Document setThesis: doc.

I
I

r

i

129

A.8 Gemstone Program Listings for Test 1

method: Document "replace: with:"

replace: oldString with: newString

"replaces all oldString occurrances in a document with the newString.
This occurs in both the Word and Text objects. The following line
demonstrates how to use this message.

"(Document retrieveThesis) replace: 'a' with: 'A'."

I doc chap sect para paracont clength slength plength llength wlength line
word aword cindex sindex pindex lindex tindex tlength oldStringsp windex
xindex yindex tline symbolarray symbol strIndex tarray textstr endPos
spOldStringsp I

oldStringsp := oldString + '

chap := self contents.
clength := (chap size).
1 to: clength do: [:cindex
sect := chap at: cindex.
slength := (sect size).

1 to: slength do: [:sindex
para := sect at: sindex.
plength := (para size).

1 t: plength do: [:pindex I
paracont := para at: pindex.
line := paracont lines.
llength := (line size).

1 to: llength do: [:lindex
word := line at: lindex.

wlength := (word size) .

1 to: wlength do: [:windex
aword := word at: windex.

aword = oldString
ifTrue:

r

word at: windex put: newString.
].

]. "windex"

]. "lindex"

tline := paracont textLines.
tlength := (tline size).

].
].

].
].

1 to: t1ength do: [:tindex I
textstr := (tline at: tindex).
"is oldString at beginning of textstr?"
(textstr at: 1 equals: oldStringsp)
if True:

[

textstr deleteFrom: 1 to: (oldString size).
textstr insert: newString at: 1.
]
if False:

[

"check if (textstr size) >= (oldString size) + 1"
«textstr size) >= «oldString size) + 1»
if True:

[
"is oldString at the end of textstr?"
endPos := «textstr size) - «oldString size) - 1».
(textstr at: endPos equals: oldString)
if True:

[

textstr deleteFrom: endPos

to: «endPos) + «oldString size) - 1».
textstr insert: newString at: endPos.
]
if False:

[

"is oldString within textstr?"

spOldStringsp := ' , + oldStringsp.
strIndex := (textstr findString: spOldStringsp

startingAt: « oldString size) + 1».
strIndex -= 0
if True:

[
"oldString found within textstr."
textstr deleteFrom: (strIndex + 1)

to: (strIndex + (oldString size».
textstr insert: newString at: (strIndex + 1).
]

"tindex"

"pindex"
"sindex"
"cindex"

130

131

A.9 Topaz Driver for Test 1

TEST1.OPL

!---

I
L

This program runs three sets of word replacements. The specific word
which is replaced is noted in the 'remark' invocation within each
test.
(Note: The object 'doc' is in UserGlobals and therefore, can be
referenced directly.)

!---

time
remark Testl.l (a)
run

doc replace: 'a' with: 'A'.
%
time

!---

time
remark Testl.2 (the)
run

doc replace: 'the' with: 'THE'.
%
time

!---

time
remark Testl.3 (process)
run

doc replace: 'process' with: 'PROCESS'.
%
time

!---

run
System abortTransaction.

%

!---

-

132

A.tO VMS Driver for Test!

TEST1.COM

$ set noverify
$ sd user2: [lakeyb. gemstone. testl]
$ write sys$output ""
$ sho sys

$ define gemstone user2: [lakeyb.docsys]
$ startstone docs tone gemstone

$ write sys$output ""
$ write sys$output "********************* TEST 1 ************************"
$ write sys$output
$ count = 1
$ LOOP:

$ write sys$output "Loop I "count'"
$ write sys$output ""
$ gem
connect stone docstone

login 'becky lakey' gemstone
level 0

output push testl.out
input testl.opl
output pop
logout
exit

$ awk -f gemtime.awk testl.out > testl.time
$ count = count + 1

$ if count .le. 6 then goto LOOP

$ write sys$output ""
$ write sys$output "******** ***** **** ********* **** *** * *** ** * * ** * *** *** ***"

$ write sys$output ""

$ stopstone docstone datacurator swordfish
$ sho sys
$ write sys$output ""
$ write sys$output "**** **** ** * *** ** *** * * *** ********* **** ** * * ** ******* ***"

$ write sys$output ""
$ exit

133

APPENDIX B

THE HYPERTEXT BENCHMARK

8.1 Creating Ingres Inter Database

UNIX command to create Inter database:

creatdb inter

Ingres commands to defIne Inter relations:

create docs (docid = i2, docname = c35, docpath = c128)

create block (blockid = i2, docid = i2, blkowner = cIO)

create appblock (blockid = i2, appextent = i2)

create link (linkid = i2, linktype = i2, startdocid = i2,

startblkid = i2, enddocid = i2, endblkid = i2,

lkowner = cIO)

134

B.2 Ingres Commands To Load Inter Database

copy appblock (blockid = cO, appextent = cO) from

"/ogc/students/becky/THESIS/INTER/appblock.rel"

copy block (docid = cO, bloc kid = cO, blkowner cOnl) from

"/ogc/students/becky/THESIS/INTER/block.rel"

copy docs (docid = cO, docname = cO, docpath cOnl) from

"/ogc/students/becky/THESIS/INTER/docs.rel"

copy link (linkid = cO, linktype = cO, startdocid = cO,

startblkid = cO, enddocid = cO, endblkid = cO,

lkowner = cOnl) from

"/ogc/students/becky/THESIS/INTER/Unk.rel"

135

8.3 Ingres Program Listing For Testl

TEST1.TEMPLATE

/* Given two document names, this test determines if a path exists
between those two documents via links. The following results are
printed, depending on the outcome of the test:

path exists:
path does not exist:
cycle encountered:

'MATCH'
,EMPTY SET'

'CYCLE'

The protocol for determining the answer is as follows:

1. Retrieve the docid values corresponding to the given document
names.

startid
endid

2. Append startid to 'Visited' and 'Start' relations.

3. Begin infinite 'while' loop to search for the end document.

1. Search Link relation for all endDocId's whose
corresponding startDocId's = s.startDocId

- collect the endDocId's in a temporary relation,
End.

2. Check 'end' relation for Empty Set, Match, or Cycle.

EMPTY SET

End relation is empty. No path exists.

MATCH

does one of the tuples in End match endid?
Yes - path exists.

CYCLE

delete all those tuples in End which are
also contained in Visited. If End then
contains 0 tuples, a cycle was encountered.

136

3. none of above conditions were matched - continue search.

Visited = (Visited U End)
remove tuples in Start

append to Start the tuples remaining in End
destroy End relation

[end of while loop]

Three sets of document names are tested, one for each condition in
the program. This listing also contains the system calls associated
with the time and cpu programs. They are labeled and inserted in
the code where they appear in their respective programs.

This test was run three times; the first time, the results were not
printed, the second run printed the results, and the third run was
invoked on an indexed database.

*/

#include <stdio.h>
#include "misc.h"

u
u
u
u
u
u

int
int
int
int
int
int

xid;
did;
endid;
startid;

preendct;

postendct;

u
u
u

char
char
char

dname[36];
*startdocname;
*enddocname;

/* the following declarations pertain to the timing programs */

#include <sys/time.h>

struct timeval
struct timezone

long

tp;
tzp;
endtimesec,
endtimeusec,
starttimesec,
starttimeusec;
endusec,
endtime,
startusec,
start time,
elapsedtime;

double

I

/* the following declarations pertain to the CPU programs */

finclude <sys/time.h>
finclude <sys/resource.h>

struct rusage
long

resusage;
systimesec,
systimeusec,
usertimesec,
usertimeusec,
inputcount,
outputcount;

double sysusec,
systime,
userusec,
usertime;
who;int

main (argc, argv)
int argc;
char *arv[];

if (argv < 3)
{

printf("not enough document names");
exit();

/* initialize variables */

startdocname = argv[l];
enddocname = argv[2];

/* CPU */

who RUSAGE_CHILDREN; /* = -1 */

/* invoke ingres on 'inter' database */

ff ingres inter

/* establish range variables */

ff range of d is docs
ff range of 1 is link

/* TIME - start the timer */

gettimeofday(&tp, &tzp);
starttimesec = tp.tv_sec;
starttimeusec = tp.tv_usec;
/* create 'start' and 'visited' relations */

H
H

create start(startdocid
create visited(enddocid

i2)
i2)

137

I

138

/* determine startid and endid values */

U
if
U

retrieve (did = d.docid, dname = d.docname)
where (d.docname = startdocname) or (d.docname enddocname)

unpad(dname);

if «strcmp(dname, startdocname» == 0)
{

startid = did;
}
else
{

endid = did;

if

/* append startid to 'visited' and 'start' relations */

it append to start (startdocid = startid)
ii append to visited(enddocid = startid)

ii range of s is start

/* begin infinite while loop to search for the end document */

while (TRUE)
{

/* search link relation for all enddocid's whose
corresponding startdocid's = s.startdocid */

u
u retrieve into end (l.enddocid)

where (s.startdocid = l.startdocid)

u range of e is end

/* check 'end' relation for Empty Set, Match, or Cycle */

/* EMPTY SET */

U retrieve (preendct= countu(e.enddocid»

if (preendct == 0)
{

/* Run 1 - No processing*/

break;

/* Run 2 - Results printed */

printf ("EMPTY SET");
break;

}

/* MATCH */

u
u

it
U
it

*/

u

u

u

u

.

xid = -1;

retrieve (xid = e.enddocid)
where (e.enddocid = endid)

if (xid ! z: -1)
{

/* Run 1 - No processing */

break;

/* Run 2 - Results printed */

printf ("MATCH") ;
break;

/* CYCLE */

range of v is visited
delete e where (e.enddocid = v.enddocid)
retrieve (postendct = countu(e.enddocid»

if (postendct == 0)
{

/* Run 1 - No processing */

break;

/* Run 2 - Results printed */

printf ("CYCLE");
break;

139

/* none of above conditions were matched - continue search

/* visited = (visited U end) */
append to visited (e.all)

/* remove tuples in start */

modify start to truncated

/* append to start the tuples remaining in end */

append to start (startdocid = e.enddocid)

/* destroy end relation */

destroy end

/* end of while loop */

/* TIME - stop the timer */

..

140

gettimeofday(&tp, &tzp);
endtimesec = tp.tv_sec;
endtimeusec = tp.tv_usec;

/* clean up */

it destroy end
it destroy visited
tt destroy start

U exit

/* CPU - collect statistics */

getrusage(who, &resusage);

/* TIME - calculate the elapsed time */

startusec = (starttimeusec * .000001);
starttime = (starttimesec + startusec);

printf("start time = %If sec", starttime);

endusec = (endtimeusec * .000001);
endtime = (endtimesec + endusec)
printf ("end time = %If sec", endtime);

elapsedtime = endtime - start time;
printf("ELAPSED TIME = %If sec", elapsedtime);

/* CPU - pull statistics from resusage structure */

usertimesec = resusage.ru_utime.tv_sec;
usertimeusec = resusage.ru_utime.tv_usec;
inputcount = resusage.ru_inblock;
output count = resusage.ru_oublock;
systimesec = resusage.ru_stime.tv_sec;
systimeusec = resusage.ru_stime.tv_usec;

/* CPU calculate and print cpu statistics */

usersec = (usertimeusec * .000001);
usertime = (usertimesec + userusec);
printf("USER TIME = %If sec", usertime);

sysusec = (systimeusec * .000001);
systime = (systimesec + sysusec);
printf("SYSTEM TIME = %If sec", systime);

printf("INPUT COUNT = %ld", inputcount);
printf ("OUTPUT COUNT = %ld", outputcount);

I
tI
I
I

141

B.4 UNIX Driver for Test 1

RUNTEST 1

#####ff#f#ff#########.####.########.f###f#.f######ff##ff#f.f#f#ff#f#####
In this shell script, time and cpu tests are run multiple times. This
script is invoked three times - the first time, to generate the
statistics where the resullts are not printed (runtest1.results), the
f second run gathers the statistics for the printed results
(runtest11.results), while the third run indexes the necessary relations
prior to collecting the statistics (indxruntest1.results); results are
not printed out in the indexed run.
ffff#ffff##f#f.###ff#f#f##f#.f##f#ff##f#ff.fff##f###.#f#.f#..#.#.# f.

if ($fargv == 0) then
echo "ERROR -> Specify # of runs to execute."
exi t ()

else
date >' (indx)runtest1(1) .results

echo
echo

» (indx) runtest1 (1).results
» (indx)runtest1(1) .results

echo
echo
echo
echo
echo

"********************" » (indx)runtest1(1) .results
"* RUNTEST1.RESULTS *" » (indx) runtest1 (1).results
"********************" » (indx) runtest1 (1).results

» (indx)runtest1(1) .results
" " » (indx)runtest1(1) .results

date » (indx)rlntest1(1) .results
echo "COPYING RELATIONS" » (indx)runtest1(1) .results
copyrel1
date » (indx)runtest1(1) .results
echo" " » (indx)runtest1(1) .results
echo" " » (indx)runtest1(1) .results

/* Run 3 - Index appropriate relations prior to running tests */

date » (indx)runtest1(1).results
echo "INDEXING RELATIONS" » (indx) runtest1 (1).results
indxrel1
date » (indx)runtest1(1).results
echo" " » (indx)runtest1(1).results
echo" " » (indx)runtest1 (1).results

echo "****************** TIME *****************"
» (indx)runtest1(1).results

echo" " » (indx)runtest1(1).results

endif

142

@ count = 1

while ($count <= $argv[l])

uptime » (indx)runtest1(1) .results
echo "=> time1 Crusoe Defoe" » (indx)runtest1(1) .results
time1 'Crusoe' 'Defoe' » (indx) runtest1 (1).results

uptime » (indx)runtest1(1) .results

echo "=> time1 Crusoe Footprint" » (indx) runtest1 (1).results
time1 'Crusoe' 'Footprint' » (indx) runtest1 (1).results

uptime » (indx)runtest1(1) .results
echo "=> time1 Defoe Sources Defoe"

» (indx)runtest1(1) .results

time1 'Defoe_Sources' 'Defoe' » (indx)runtest1(1) .results

echo "***"

» (indx)runtest1(1) .results

@ count++
end

echo "****************** CPU ******************"

» (indx) runtest1 (1).results
echo" " » (indx)runtest1(l) .results

@ count = 1

while ($count <= $argv[l])

uptime » (indx)runtestl(l) .results
echo "=> cpu1 Crusoe Defoe" » (indx) runtest1 (1).results
cpu1 'Crusoe' 'Defoe' » (indx)runtest1(1) .results

uptime » (indx)runtestl(l) .results
echo "=> cpul Crusoe Footprint" » (indx) runtestl (1).results
cpu1 'Crusoe' 'Footprint' » (indx)runtest1(1) .results

uptime » (indx)runtest1(1) .results

echo "=> cpu1 Defoe_Sources Defoe"
» (indx) runtest1 (1).results

cpu1 'Defoe_Sources' 'Defoe' » (indx) runtest1 (1).results

echo "***"

» (indx)runtest1(1) .results

@ count++
end

date » (indx)runtest1(1) .results
truncrel1
exi t ()

8.S Gemstone Hypertext Class Definitions

"AbstractDoc class"

Object subclass: ,AbstractDoc'
instVarNames: #('id' 'name')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[

#[#id, Integer],
[#name, String],

]
islnvariant: false.

"AbstractBlk class"

Object subclass: ,AbstractBlk'
instVarNames: #('id' 'doc')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[

[lid, Integer],
#[#doc, AbstractDoc],

]
isInvariant: false.

"AbstractLink class"

Object subclass: ,AbstractLink'
instVarNames: #('id' 'startBlk' 'endBlk')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[

#[#id, Integer],
[#startBlk, AbstractBlk],
[#endBlk, AbstractBlk],

]
isInvariant: false.

"OwnerCollection class"

Set subclass: 'OwnerCollection'

instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: String
islnvariant: false.

I

143

"AECollection class"

Set subclass: 'AECollection'
instVarNames: t()
classVars: t()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: Integer
isInvariant: false.

"BlkCollection class"

Set subclass: ,BlkCollection'
instVarNames: t()
classVars: t()

poolDictionaries: ,()
inDictionary: UserGlobals
constraints: AbstractBlk
isInvariant: false.

"DocCollection class"

Set subclass: ,DocCollection'
instVarNames: #()
classVars: ,()
poolDictionaries: t()
inDictionary: UserGlobals
constraints: AbstractDoc
isInvariant: false.

"LinkCollection class"

Set subclass: ,LinkCollection'

instVarNames: t()
classVars: t()

poolDictionaries: t()
inDictionary: UserGlobals
constraints: AbstractLink
isInvariant: false.

"BlkObj class"

AbstractBlk subclass: ,BlkObj'
instVarNames: '('owner' 'appExt')
classVars: t()
poolDictionaries: t()
inDictionary: UserGlobals
constraints: t[

t[tappExt, AECollection],
]

isInvariant: false.

144

"LinkObj class"

AbstractLink subclass: ,Link0bj'
instVarNames: #('owner' 'type')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: # ()
isInvariant: false.

"DocObj class"

AbstractDoc subclass: 'DocObj'
instVarNames: #('path' 'startLinks')
classVars: #()
poolDictionaries: t()
inDictionary: UserGlobals
constraints: t[

t[#startLinks, LinkCollection],
]

isInvariant: false.

"WebObj class"

Object subclass: 'WebObj'

instVarNames: #('owners' 'links' 'docs' , blocks')
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[

]
isInvariant: false.

[#owners, OwnerCollection],
t[#links, LinkCollection],
#[#docs, DocCollection],
[#blocks, BlkCollection],

"WebCollection class"

Array subclass: 'WebCollection'

instVarNames: #()

classVars: #('LinkTypes')
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
isInvariant: false.

.

145

-
1

I

146

B.6 Gemstone Bulk Loader Class Definitions

"DocElement class"

Object subclass: ,DocElement'
instVarNarnes: i('id' 'name' 'path')
classVars: i ()

poolDictionaries: i()
inDictionary: UserGlobals
constraints: i ()
isInvariant: false.

"LinkElement class"

Object subclass: ,LinkElement'
instVarNarnes: i('id' 'owner' 'type' 'startBlkId' 'endBlkId')
classVars: i()
poolDictionaries: i()
inDictionary: UserGlobals
constraints: i ()
isInvariant: false.

"BlockElernent class"

Object subclass: ,BlockElement'
instVarNames: i('blockId' 'blockOwner' 'docId')
classVars: i()
poolDictionaries: f()
inDictionary: UserGlobals
constraints: i()
isInvariant: false.

"AppElement class"

Object subclass: ,AppElement'
instVarNarnes: i('blockId' 'appExt')
classVars: i()
poolDictionaries: i()
inDictionary: UserGlobals
constraints: f()
isInvariant: false.

"DocLinkElement class"

Object subclass: ,DocLinkElement'
instVarNames: i('docId' 'linkId')
classVars: i ()
poolDictionaries: f()
inDictionary: UserGlobals
constraints: i ()
isInvariant: false.

1

147

"OwnerElement class"

I

I

J

J

J

j

J

Object subclass: 'OwnerElement'

instVarNames: I('owner')
classVars: I()
poolDictionaries: I()
inDictionary: UserGlobals
constraints: . ()
isInvariant: false.

~I

"TypeElement class"

Object subclass: ,TypeElement'

instVarNames: '('type')
classVars: .()
poolDictionaries: f()
inDictionary: UserGlobals
constraints: f ()
isInvariant: false.

--

148

B.7 Example Gemstone Methods for Constructing Web7 Object

category: 'build components'

method: WebObj "buildOwnerCollection"

buildOwnerCollection

"builds the Owner Collection for a specific Web Object"

lownerset olength oindex I

ownerset := OwnerCollection new.

olength := (OwnerFile size).

1 to: olength do: [:oindexl
ownerset add: «OwnerFile at: oindex) owner).

] . "oindex"

"ownerset

category: ,private'

classmethod: Webcollection "setLinkTypes:"

setLinkTypes: anObject

"instantiates 'LinkTypes' class variable with anObject"

LinkTypes := anObject.

category: 'initialization'

method: WebCollection "initializeWeb:"

initializeWeb: anInteger

"initializes an instance of a WebCollection at position anInteger with an
instance of a built WebObj."

..

,

149

I newWebObj I

I

II

I
I
I

WebCollection buildLinkTypes.
newWebObj := WebObj new.
newWebObj owners: (newWebObj buildOwnerCollection).
newWebObj docs: (newWebObj buildDocCollection).
newWebObj blocks: (newWebObj buildBlockCollection).
newWebObj links: (newWebObj buildLinkCollection:

(WebCollection retrieveLinkTypes».
newWebObj completeDocObjects.
self at: anInteger put: newWebObj.
UserGlobals at: tIntermedia put: self.

l
150

B.8 Gemstone Program Listings for Test 1

category: ,queries'

method WebObj "doesPathExistBetween:and:"

doesPathExistBetween: startDocName and: endDocName

"determine if a path exists between startDocName and endDocName"

"(Intermedia at: 7) doesPathExistBetween: 'Crusoe' and: 'Footprint'"

IdocColl startDocObj enddocObj startColl endColl visitedColl slcoll did
loop I

docColl := self docs.

"1. Find the Doc obj's associated with startDocName & endDocName"

startDocObj := docColl detect: {:aDocObj I aDocObj.name = startDocName}
if None: [Nil].

(startDocObj isNil)
if True:

AstartDocName asString + 'does not exist - Goodbye'.
] .

endDocObj := docColl detect: {:aDocObj I aDocObj.name
ifNone: [Nil].

endDocName}

(endDocObj isNil)
if True:

[
AendDocName asString + 'does not exist - Goodbye'.

] .

"2. Create start & visited collections - add startDocObj to both"

startColl := (Set new) add: StartDocObj.
visitedColl := (Set new) add: (StartDocObj id).

"3. Infinite loop searching for a path between startDocObj and
endDocObj. -

loop discontinued when Empty Set, Match, or Cycle found."

loop := 1.

[loop = 1]

whileTrue:

[
"for each DocObj in startColl, collect the endDocObj's
associated with each startLink object in endColl."

1
I
I

151

endColl := (Set new).
startColl do: [:aDocObj I

slcoll := (aDocObj startLinks).
(slcoll notNil)

if True:

[
slcoll do: [:aLinkObj I

endColl add: «aLinkObj endBlk) doc).
]. "do"

] .

]. "do"

"endColl Set contains all of the endDoc's associated with each
DocObj found in startColl that had startLinks. If endColl
isNil, none of the starting documents had startLinks
(startblk's) associated with them - the path has ended at
those start documents."

(endcoll isEmpty)
if True:

[
", EMPTY SET'.

] .

"endColl is not empty - check if any of its DocObj's match the
endDocObj. "

(endDocObj in: endColl)
if True:

[
"'MATCH' .

].

"none of endColl's DocObj's match endDocObj - check if any
have already been visited."

startCol1 := (Set new) .

endColl do: [:aDocObj I

did := (aDocObj id).
(did in: visitedColl)

if False:

[
visitedCol1 add: did.

startCol1 add: aDocObj.
].

]. "do "

"if startCol1 iSNil, it means that all the DocObj' s in endCol1
have alreadybeen visitedand checked- therefore, a CYCLE was
found. "

(startColl isEmpty_
if True:

[
", CYCLE' .

] .

]. "whileTrue"

-
152

B.9 Topaz Driver for Test 1

TEST1.OPL

1___------------------

Three sets of start and end documents are specified. This program
determines if a path exists abetween each set of start and end
documents.

The numerals in parentheses reflect what is included in Test1(1)1.opl.
(Note: 'Intermedia' in UserGlobals references the WebColl object.)

1---__________________

time
remark Test1(1).1 ('Crusoe' 'Defoe' - EMPTY SET)
run

(A) (Inter.media at: 7) doesPathExistBetween: 'Crusoe'
and: 'Defoe' .

%
time

!---

time
remark Test1(1).2 ('Crusoe' 'Footprint' - MATCH)
run

(A) (Inter.media at: 7) doesPathExistBetween: 'Crusoe'
and: 'Footprint'.

%
time

!---

time

remark Test1(1).3 ('Defoe_Sources' 'Defoe' - CYCLE)
run

(A) (Inter.media at: 7) doesPathExistBetween: 'Defoe Sources'
and: 'Defoe' .

%
time

!---

153

B.10 VMS Driver for Test!

TEST1.COM

$ set noverify
$ sd user2: [lakeyb.inter.test1]
$ write sys$output ""
$ sho sys
$ startstone docstone gemstone

$ write sys$output ""
$ write sys$output "*************** (INDX) TEST 1 (1) *********************"
$ write sys$output
$ count = 1
$ LOOP:

$ write sys$output "Loop t "count'"
$ write sys$output
$ gem
connect stone docstone

login 'becky lakey' gemstone
omit bytevalues /* Test1.opl */
oops off /* Test1.opl */
level 0

output push (indx)test (1).out
input (indx) test (1).opl
output pop
logout
exit

$ awk -f gemtime.awk (indx)test (1).out > (indx) test (1).time
$ count = count + 1

$ if count .le. 6 then goto LOOP

$ write sys$output ""
$ write sys$output ""***
$ write sys$output ""

$ stopstone docstone datacurator swordfish
$ sho sys
$ write sys$output ""
$ write sys$output ""***
$ write.sys$output "" .
$ exit

154

BIOGRAPHICAL NOTE

The author was born January 19, 1953 in Corvallis, Oregon. Her father was

in the Air Force for 20 years and as a result, the family moved around quite a bit.

In 1971, the author graduated from Charles M. Russell High School in Great Falls,

Montana.

In 1971, the author entered Whitman College in Walla WaHa, Washington, and

graduated with a Bachelor of Arts degree in Biology in 1975. She worked in a small

clinical laboratory in Richland, Washington for a year and then completed a year's

internship in Medical Technology at Sacred Heart Medical Center, Spokane,

Washington, graduating in 1977. From 1977 until 1985, the author worked in reference

clinical laboratories and hospital laboratories in Seattle, Washington and Vancouver,

Washington.

In 1985, the author began classes at Oregon Graduate Center where she

completed the requirements for the degree Master of Computer Science in July, 1989.

She is currently working as a Technical Marketing Engineer at Intel Corporation in

Hillsboro, Oregon.

	198907.lakey.becky to p. 75.pdf
	198907.lakey.becky to p. 154.pdf

