
A REAL-TIME SOFTWARE PERFORMANCE ANALYSIS CHIP

Mehul S. Dave
RE., University of Bombay, India, 1987

A thesis submitted to the faculty
of the Oregon Graduate Institute of Science and Technology

in partial fulfillment of the
requirements for the degree

"Masterof Science
In

Electrical Engineering

September, 1990

The thesis "A Real Time Software Performance Analysis Chip" by

Mehul S. Dave has been examined and approved by the following Examina-

tion Committee:

Charles 1. Saxe,
Thesis Advisor,
Tektronix Inc.

~ // Dr. John Murr'ay
Associate Professor,

epartment of Electrical and Computer Engineering,
Oregon State University, CorvaUis, OR

Dr. V. S. Rao Gudimetla
Assistant Professor,

Department of Applied Physics and Electrical Engineering,
Oregon Graduate Institute of Science and Technology

Dr. Raj Solanki
Associate Professor

Department of Applied Physics and Electricai Engineering,
Oregon Graduate Institute of Science and Technology

ACKNOWLEDGMENTS

I would like to thank several people without whose help this project would

not have been possible. My thanks to Dr. V. S. Rao Gudimetla who got the pro-

ject for me and who was extremely supportive all through the project. I am also

thankful to Dr. Paul Davis for supporting this project and to Dr. John Murray and

Dr. Raj Solanki for agreeing to examine this thesis.

Special thanks are due to my thesis advisor, Chuck Saxe. He provided valu-

able guidance throughout the project and taught me many things. Without his gui-

dance and support, this project would not have been possible. My thanks to all the

members of the Advanced Development Group (ADG) at Tektronix. In particular,

thanks to Craig Overhage for suggesting this project and his help with critical path

analysis using the fastta timing analyzer. Thanks to Dave McKinney for designing

new standard cells almost on demand and for giving extremely helpful suggestions

about the design of the chip. Finally, I am thankful to Tektronix Inc. for funding

this project.

111

Table of Contents

Abstract Vll

1. Introduction ...

2. Background ..

3.

2.1 Need for testing and perfonnance analysis of software

2.2 Types of testing ...

2.3 Real time needs and traditional methods of testing and per-

fonnance analysis 6

2.4 Progress toward comprehensive real-time testing techniques

and tools 9

Macroarchitecture of the chip

4.

3.1 Goals of this project

3.2 Discussion of possible architectures ..

3.3 Description of macroarchitecture of the chip

Microarchitecture of the chip

4.1 Introduction ...

4.2 Global view of the microarchitecture ..

4.2.1 The Processing Section

4.2.2 The Input Section

4.2.3 The Output Section.

4.3 The Range Recognizer Circuit ...

iv

1

3

3

5

14

14

16

20

25

25

26

26

30

33

35

4.4

4.5

4.6

The Priority Resolver Circuit ...

The RAM circuit

Results and discussion ..

5. Summary and conclusions

References ..

41

44

49

59

61

AppendixA . 63

Appendix B ..

Appendix C ..

Appendix D ..

v

67

74

104

List of Figures

Figure 1 .. 27

Figure 2 .. 36

Figure 3 .. 42

Figure 4 45

VI

ABSTRACT

A REAL TIME SOFTWARE PERFORMANCE ANALYSIS CHIP

Mehul S. Dave, M.S.

Oregon Graduate Institute of Science and Technology, 1990

Supervising Professor: Charles L. Saxe

An essential stage in software development is debugging the code and check-

ing it for correctness. Another related stage is performance analysis of the

developed software which involves making sure that the program in question runs

at the optimal speed required for a particular application.

In many real time applications, fast and efficient code is needed. However,

the techniques and tools for the debugging and perfonnance analysis of real time

software are still, by and large, primitive and have not kept pace with the advances

in software technology. Traditional hardware tools such as logic and state

analyzers are useful only at the machine language or assembly language level.

Software based performance analysis tools such as program profilers interfere with

the real time behavior of the program by inserting additional code and thus do not

provide accurate information. A tool to perfonn non-intrusive perfonnance

analysis at the source level for programs written in high level languages is needed.

In this thesis, the design and implementation of a CMOS chip to aid high level

non-intrusive performance analysis is reponed.

Vl1

1. INTRODUCTION

The testing and validation of programs has received considerable amount of

attention in the past decade. With the increasing availability and use of high level

languages, the programmer has moved increasingly away from the low level machine

details and more complex abstractions can now be'implemented with ease. With the

increasing complexity of programming projects, the need for testing and debugging

the code becomes even more crucial. To handle the increasing complexity, the tools

for debugging and testing also must become more sophisticated.

Very often, it is not only necessary to test the program for correctness but also

performance. There are programs that may run correctly i.e they may perform the

necessary function but execute too slowly. This has sometimes been called a "perfor-

mance bug".l It would be desirable to do some performance analysis of such a pro-

gram to improve its running time. In real time systems, it is often mandatory to make

such improvements. Consider, for example, a mechanical arm in an assembly line

that moves at fixed intervals of time. The software driving the arm must be capable

of finishing its task within this interval. A tool to facilitate performance analysis of

such software would be extremely helpful to programmers. However, there are very

few tools available to facilitate the real time programmer in testing and debugging.

As Robert Glass puts it,2 the world of debugging and testing of real time software is a

"lost world".

The techniques and tools available to the programmer of real time systems have

not kept pace with the advances in software. A typical real time program is still

2

tested at the machine language or the assembly level. Traditional tools such as logic

and state analyzers help the programmer in debugging at the machine language or

assembly language level but are not useful to do performance analysis at the high

level in which programs are typically written. Software tools such as profiler~, where

available, are not useful for real time systems since they are intrusive by nature and

thus do not.give accurate measure of the timing of some sections of the code.

In this thesis, I will discuss the design and implementation of a CMOS chip

which is intended to be a hardware tool for non-intrusive real time performance

analysis and which can be used at high level with proper software. Chapter 2

presents the history and background of software testing and performance analysis.

Some other tools developed for non-intrusive performance analysis and related work

are also discussed.

In chapter 3, the macroarchitecture of the chip is discussed. Various modes and

features of the chip and the reasons for choosing a cenain architecture instead of

other possible architectures is discussed.

Chapter 4 discussed the microarchitecture and the logic level details of the chip.

The results of simulation using the Tektronix ADO standard cell library are

presented. The final layout of the chip and the simulation after the layout are also

presented.

Discussion of results, conclusions and suggestions for further research are

presented in chapter 5.

3

2. BACKGROUND

2.1 Need for testing and performance analysis of software

The need to test software is obvious. The program should be able to implement

the function that it is designed to implement. Since any program of a reasonable size

can, and almost always does have bugs, one needs to test the programs for their

correctness. The amount, scope and methods of testing of programs may vary

depending upon several factors such as the nature of the application, the resources

available to the software developer, ease with which testing can be done etc. How-

ever, at the very least, functional testing of a program must be done, i.e. it must be

made certain that the program implements the required function correctly and that

there are no bugs in the program. Detection and elimination of redundant code,

unused variables, bad programming constructs, incorrect logic, rare conditions which

can lead to bugs and optimizing code for performance etc. are among the goals of

testing to develop more reliable software. Bug free code is always desirable and a lit-

tle time invested in testing can uncover sources of potential later disasters.

The level of testing done depends on several factors such as the nature of the

programs, the tools available, the cost, the nature of the application etc. In certain

cases, extensive testing must be done to make certain that no bugs are left in the code

because the costs of errors, both tangible and intangible can be enormous. Consider,

for example, programs for missile control or control of equipment in a nuclear power

plant. In other, less critical applications, such as for example, payroll processing, the

standards for testing and optimization may not be as strict as the former case because

4

such standards are not needed and neither are they economically viable. The amount

of testing done is also largely dependent on the ease of testing. If sophisticated tools

are available to enable fast, easy, efficient, comprehensive and cost effective testing,

the programmer will devote more time to testing since bug free code is always desir-

able. On the other hand, in absence of such tools, only as much of testing as is abso-

lutely necessary, will be done. It is clear, however, that irrespective of the level of

testing done, it is almost mandatory to perform some testing on programs.

The increasing complexity of software emphasizes the need for testing even

more. As software has evolved from the machine language to assembly language to

finally the high level languages of today, the programmer is increasingly shielded

from the low level machine details. It is now possible to implement increasingly

complex abstractions much more easily by using sophisticated compiler technology.

Software written using such languages can thus perform functions far more complex

and far wider in scope than before. This also means, however, that the bugs in such

software are more difficult to uncover and that the likelihood of having bugs is

increased because several layers of software lie between the programmer and the

hardware. Therefore not only are more sophisticated tools for debugging needed but

also more extensive testing of code is needed. The tool for testing or performance

analysis has to interpret the low machine level events and pass through several layers

of abstractions to output data at the source level. Thus, tools with greater functional-

ity and more sophistication are needed.

While it is true that unlike debugging, it is not necessary to do performance

analysis in all cases, in many applications it is desirable and even mandatory to

undertake performance analysis. Real time applications are a very good example.

Real time software is constrained by latencies between events. The software must

complete its task in the time between inter-event latencies. It is often the case that

while the software implements the required function, it runs too slowly and may be

5

unacceptable for a real time application. In such a case, performance analysis of such

software is necessary to ascertain which areas of the code need improvement. Even

in case of batch processing, if the programs run for a long period of time, it would be

desirable to analyze the program to discover the performance bottlenecks and correct

them so that the program executes faster. Thus performance analysis of code is also a

crucial part of testing for several applications.

2.2 Types of testing

Considerable attention has been directed in the last decade to the subject of test-

ing and reliability of software. A lot of literature has been published on the subject

(see, for instance3-5). Tools such as static analyzers, program provers, profilers and

source level debuggers are more widely available. The testing techniques may be

broadly classified as static testing and dynamic testing. In static testing, the source

code is run through a program which analyzes the code for certain errors that can be

detected solely by looking at the text of the program. Such a tool can identify such

errors as incorrect data constructs, uninitialized variables, unreacha.ble code, non-

portable code etc. An example of such a tool is Lint6 for the C programming

language. In dynamic testing, the program is executed in a controlled manner so as

to test that the required functions execute correctly. This generally involves giving

the program a set of predetermined inputs and observing the output.

As discussed previously, several times it may be the case that the program in

question executes correctly but it executes too slow for the task at hand. Performance

analysis of the program needs to be done for such a case to determine in which part of

the code does the program spend most of its time. The efforts may then be directed at

this part of the code to make it more efficient by rewriting it. Program profilers are

the tools designed to facilitate performance analysis of a program. Typically, a pro-

gram profiler inserts counters at critical nodes in the code and the counters are incre-

6

mented dynamically when that part of the code is reached. Then, based on the avail-

able count and a statistical sampling of the program counter during the execution of

the program, the profiler gives the data about which part of the code is most fre-

quently used. The gprof7 profiler on UNIXt operating system is an example of such

a tool.

The tools for testing and performance analysis may be hardware or software

tools. Programs such as static analyzers and program profilers are software tools. On

the other hand, one can use hardware tools such as logic analyzers, state analyzers

and in-circuit simulators also as tools for testing and performance analysis. Such

hardware tools most often monitor the signals at the pins of the microprocessor or the

bus and when a certain combination of signals is detected, they start taking the data

till a certain point of time. They also may be time triggered i.e. at regular intervals of

time, they interrupt the microprocessor for a brief period and acquire data and store it

for later analysis.

2.3 Real time needs and traditional methods of testing and performance

analysis

Most of the traditional tools of testing and performance analysis are ill suited or

inadequate for testing real time software. As Robert Glass observes,2 the real-time

debug and test is still a "lost world" compare to the "civilization" developed in other

areas of software (referring to the advances of software from assembly level to high

level languages and development of fast compilers and link loaders). Not much work

has been done in the area since Glass's 1980 paper. There are several reasons why

debugging and performance analysis of real time software remains a difficult job

even with so much work done in the general area of testing and reliability of

software. All these reasons stem from the nature of real time applications; its

t UNIX is a trademark of AT&T Bell Laboratories.

7

requirements and the limitations imposed by its environment. A discussion of these

follows.

Real time software is software running on a computer that interacts with func-

tioning external devices. It is called real-time because the software actions control

activities that are occurring in an ongoing process.2 The task of developing reliable

real time software is particularly more difficult for several reasons. Most of the

times, such a software is part of a larger system (sometimes also called embedded

systems) and must interact with several different devices often functioning asynchro-

nously. In contrast with the traditional computer systems, such systems do not have

the sophisticated supporting software such as complex operating systems, debuggers,

program profilers and other utility programs. In fact, in most of the systems, the

hardware is cheap, light and small due to economic reasons. Consider, for example, a

computer driving a missile system. It is a throwaway piece of hardware and it is

therefore necessary to make it as cheap as possible. This results in complexity being

transferred from hardware to software. It is also desirable to transfer complexity

from hardware to software since multiple copies of software do not cost much but

every additional copy of hardware costs. Also, many times due to the nature of

environment in which a real time system operates such as excessive heat or moisture,

it is not possible to use complex hardware which requires more stable environmental

conditions. So the function must be taken care of by software again. To add to this

already bad picture, real time software is constrained by latencies between events.

The software must be able to complete its task within the time between interevent

latencies. So the real time software developer has to develop more powerful software

in a more primitive environment.

Given these conditions, it follows that a tool to facilitate debugging and perfor-

mance analysis which is geared towards real-time environments would be extremely

valuable to the real-time developer. Most of the traditional tools for testing and

8

debugging are, however, not geared for the real-time environment. Static perfor-

mance analyzers are not too useful because most of the software developed for real-

time applications is developed in a host-target environment. The program is

developed on the host, a more powerful and more sophisticated computer and then

cross-compiled for the real-time environment. The static analyzer can be useful in

the host environment and it will eliminate certain bugs but it is not enough.

Program profilers are not useful since they are intrusive by nature. They add

some additional code to ascertain the real-time behavior of the program and thus pro-

vide an inaccurate measure of the timing. They often intrude to the point where the

distortion is significant and thus the tool loses its effectiveness. Also, in several

applications such as embedded systems for instance, it may not be possible to insert

additional code into the real-time program. In such systems, the program is hard

coded and thus introduction of any additional piece of code is impossible. Also, such

a tool will often miss some crucial event which occurs rarely and is a source of a bug.

The program profilers also obtain their data on timing by sampling the location of the

program counter. This technique is inherently statistical in nature and thus several

runs of the program may be necessary before the accumulated data reaches as accept-

able level of confidence.

Hardware tools are most commonly used for real-time debugging and testing.

Tools such as logic and state analyzers, in circuit simulators etc. are very useful for

debugging of real-time programs. These tools observe the signals at the pins of the

microprocessor or the bus and acquire the data when a particular sequence of events

is observed. Some of these tools use an interrupt technique based on event triggering.

The tool interrupts the microprocessor when it detects a predefined event and

acquires data and stores it for later analysis. Such a technique, by its nature is

intrusive and is not suited for performance analysis. Other tools start data acquisition

by storing some signals on the bus when they detect a particular event and stop the

9

acquisition after a period of time. This technique is not intrusive but since the

amount of data to be stored is so much, typically the tool can only save the activity

for a few milliseconds. When its buffer is exhausted, it cannot store any data any

longer. Such a tool is not useful for observing the behavior of the program for

extended periods of time.

The most serious limitation of traditional hardware tools, however, is that they

cannot display the results of the program at the source level. Typically, they give

data either in terms of machine language level or assembly level. This is a very seri-

ous limitation. The programmer, thus, has to be knowledgeable about assembly

language and other low level details of the system he is working on. Thus more train-

ing effort has to be expended. And more importantly, since the low level machine

details differ from one system to another, the training effort has to be expended for

every new system. Moreover, debugging the program at assembly level is more diffi-

cult and time consuming. This combined with the fact that in real time systems, pro-

grammers typically have to deal with additional complexity transferred from

hardware makes it clear that a tool which affords source level analysis of real-time

software is required.

2.4 Progress toward comprehensive real-time testing techniques and tools

There have been a few attempts to develop tools and techniques particularly

suited for real-time applications. There have even been attempts at a systematic

study of the field and formalization.8 Some of the tools reported were developed

exclusively for some particular system 9,10 and while these make important observa-

tions, they are not helpful for systems other than those for which they are designed.

There were also some early attempts which suggested hardware support for debug-

ging and testing but these did not strictly deal with the subject of real-time testing but

rather with other related subjects such as multiprogramming environments. II

10

Many of the other tools developed focussed on the problem of debugging and

testing and proposed having large buffers to store all the activity of the program from

a certain point and then try to reconstruct the program to trace back to the point

where the error occurred. 10,12Such tools are suited more for the task of debugging

and not for performance analysis and they also propose storage of large amount of

data, quite abit of which may be useless. Besides, the problem of being able to store

only limited amount of data due to limited size of buffer remains and these tools,

therefore cannot be used for programs which execute for long time. The tools also

require a reconstruction of the program after its execution and it may not be easy to

accomplish this in all cases and the effort required to develop the software to recon-

struct the program from the stored data is quite large.

There are other tools proposed 13which are of more interest since they propose

real time monitoring of the program and storing only the essential data. Plattner14

proposes a tool to facilitate real time monitoring of programs and develops means to

specify actions to be taken by the monitoring program based on predicates formed on

the text of the source program. He describes, in detail, an elaborate hardware scheme

to accomplish this objective and reports the development of a prototype. A similar

tool is reported by Bemmerl.15

The main advantage of these tools is that they afford real-time analysis at the

source level. This is a significant improvement over other methods proposed. It is

also an attempt to bring the tools for debugging and testing up to date with the

advances in software technology. Such a tool would be of great help to a real-time

software developer particularly if working in host-target environment where the

software is written in a high level language on a host and cross compiled for the tar-

get. However, there are some disadvantages. Most significantly, the disadvantage is

the limited capability of the tool. For instance, in the prototype implemented by

Plattner, only 10 monitoring actions can be specified for a single run of the program.

11

This limitation overshadows most of the advantages of the tool. The tool offers a

variety of functions. Any sort of monitoring function can be specified to aid debug-

ging. One can keep track of changes in values of a particular variable, trace execu-

tion of a set of statements, set counters based on conditions etc. But only 10 of such

actions can be executed for one run of the program. So, most of the capabilities of

the tool which make it potentially useful for real-time applications are rendered use-

less since only a few can be used at a time.

There has been progress made even in logic and state analyzers.I6 The state

analyzers have become more sophisticated. Tools such as microprocessor analyzers

can be used to interpret the activities on the pins of a specific microprocessor and

relate these signals to high level events. However, these are microprocessor specific

and not useful in general for several systems. Hewlett-Packard's HP 64340A

software analyzer is another hardware tool to aid software analysis.I? The tool helps

the analysis of software at high-level. The disadvantage of this tool, like Plattner's, is

that the tool has limited capability. It can only monitor four ranges of code for a

given run of the program.

Another tool recently reported overcomes several of the disadvantages of the

tools mentioned above. Softanalyst by Northwest Instruments Inc., offers the capa-

bility to do non-intrusive source level performance analysis in real-time.I8-2I The

tool offers several capabilities. The symbolic trace option lets the user keep a trace

of the order of program execution and trace individual statements. Performance

analysis mode lets the user time up to 80 ranges of code and the code coverage option

keeps a track of which statements of the program were executed in a single run. The

significant feature of the tool is that it allows the user to observe the performance of

the program at source level. By looking at the symbolic table generated by the com-

piler, the tool relates the software events such as entry into a procedure and exit from

it or activity of a particular variable etc. to their hardware equivalents. The tool gath-

12

ers the data, processes it and displays the results back in terms of source level con-.
structs. It has many more ranges than the other tools and unlike logic analyzers, it

can gather execution data for the programs having execution time of the order of

seconds rather than the typical milliseconds for logic analyzers.

Softanalyst represents a significant advance in non-intrusive, real-time, source-

level performance analysis. However, in spite of its wider capabilities and resources,

it is often not extremely useful. The timing of code is the important capability

offered by it. But owing to the architecture of the tool, it can only store data for pro-

grams whose execution time is of the order of seconds. After that, its buffer over-

flows and it can no longer gather data. It also requires a relatively complex front-end

probe for each specific microprocessor which can provide it the necessary signals to

detect the occurrence of hardware events. The Softanalyst is event-triggered. It

detects the occurrence of up to 256 events on the bus and then starts its timing when

the occurrence of the event is detected and stops when another event is detected.

This presents some problems for timing of code. Firstly, this means that one cannot

satisfactorily time procedures with multiple entries and exits. Secondly, it becomes

difficult for it to account for occurrence of interrupts and it is also difficult to use for

multi user systems.

It should be observed that in all the previous efforts to develop a tool for debug-

ging and performance analysis, the main bottleneck was the limitation of resources of

the tool. Most tools offer very advanced capabilities but only a few of them can be

used at a particular time. The goal of the designers of the system was to offer a tool

which can handle several different tasks. This increased the complexity of the job

and resources were limited because each different task consumes away a part of the

limited resources available. In my opinion, it would be better to concentrate the

resources on a particular task rather than to divide them among several tasks. One

can design a small but efficient tool which would handle a particular task such as per-

13

fonnance analysis and leave tasks such as debugging to other tools. A system can

then be constructed out of several different components, each dedicated to a particu-

lar task. This would achieve a more efficient utilization of resources and better capa-

bilities for each particular task. The next chapter discusses the goals of this project

with this perspective and the macroarchitecture of the chip.

14

3. MACROARCHITECTURE OF THE CHIP

3.1 Goals of this project

The goal of this project was to develop a very cheap and effective way to do

performance analysis. We wanted to develop a tool which can time the execution of

code for extended periods of time and which uses relatively simple circuitry interfac-

ing with the system bus to detect events. Since this tool was to be used for non-

intrusive analysis in real time, it could not be implemented software. A part of it

would have to be hardware which, in turn, .is driven by software. We decided to try

to implement a chip which can allow a user to monitor several ranges of the program

and gather performance analysis data and store it in on-chip memory which can later

be read off by appropriate software. This thesis discusses only the chip. The

software to run the chip has not yet been developed.

As discussed in the previous chapter, the problem with most tools was that the

number of ranges which could be simultaneously monitored for gathering perfor-

mance analysis data, was too small. One of the goals of the project was to try to

overcome this limitation. The available chip area would constrain this number. But

if one could implement a relatively simple design so that each chip would be very

cheap, one could use several chips for a system and thus provide a large number of

ranges capable of collecting data for extended periods of time which can be used for

performance analysis purposes; These chips used in conjunction with a state or a

logic analyzer would make a very effective tool for non-intrusive debugging and per-

formance analysis.

15

There was the choice of implementing several features to enable debugging and

performance analysis. However, putting more features would involve implementing

complex logic on the chip. This involves a large amount of time and effort and

increased costs. More importantly, however, there is a trade off involved between

more features and increased capability for performance analysis. This is so because

real time performance analysis involves gathering and processing of data at least as

fast as the program being analyzed executes so that no data is missed. Since there are

always limitations on the amount of data that can be stored and processed in a certain

interval of time, one can either have large number of features but a few of which can

be used at a time due to the limitations of chip area or one can implement a relatively

small number of features, all of which can be used and which can be used much more

effectively. In designing chips, chip area is always a precious resource and it is

always beneficial to maximize the usage of all the logic. Therefore, the latter

approach seems preferable. Another advantage offered by the latter approach to

design is that one does not have to implement complex logic since the number of

functions that the hardware is required to perform, is limited. Therefore, the latter

approach to design was chosen i.e. implementing a relatively small number of

features but try to maximize their capabilities and usage. All features to help debug-

ging of code were, therefore, excluded and focus was on performance analysis.

Many of the debugging features can be more conveniently handled through

other means. Good static analyzers can uncover several errors from the source text of

the program. Such tools are typically available on large operating systems. Since real

time software development is often done in host-target environments, static analyzers

available on the host can be used to eliminate some errors from the programs. Source

level debuggers are also increasingly available on large systems. So the programmer

already has powerful tool to facilitate debugging on the host. The debugging features

useful for real time environment such as monitoring memory locations for changes in

16

values, gathering data after occurrence of a particular event etc. can be provided by a

state analyzer.

Therefore, the merit of this approach to testing is that the task of testing is thus

distributed to different tools. Each tool is dedicated to a particular task and thus its

resources can be entirely devoted to that task. One can build a powerful testing sys-

tem by combining such tools. Some part of the system helps debugging and other

part does performance analysis. In this manner, maximum utilization of all resources

of the system can be achieved and it is also more economical and efficient to imple-

ment the system in this manner.

The chip designed, therefore, only offers the capability to do performance

analysis. But since its range of features is now delimited, one can devote the freed

resources to provide additional capabilities. For instance, this chip was designed to

run at a clock frequency of 100 MHz; fast enough for the current generation, high

speed RISe microprocessors. It maintains a 48 bit counter for measuring the time

spent for each range and a 32 bit counter for measuring the number of entries into the

range. At the clock speed of 100 MHz (cycle time of 10 ns), this means that data can

be collected for execution time of approximately 78 hours for each range. Thus, data

can be collected for long, uninterrupted runs of programs. This is a very desirable

performance analysis feature which is absent from the other tools discussed previ-

ously. This benefit is, of course, obtained at the cost of eliminating other features but

considering the fact that a low cost tool such as this, in conjunction with a traditional

tool such as a state analyzer, can provide a powerful software testing tool, it is a good

tradeoff.

3.2 Discussionof possiblearchitectures

As discussed previously, the feature required of the chip was the ability to time

sections of a code for extended periods of time. There are at least two significantly

17

different architectures which can accomplish the same objective. In the following,

the pros and cons of both and why one was chosen over the other, are discussed.

The first approach to architecture is the event triggered approach taken by Sof-

tAnalyst.I8 In this approach, some particular function of the tool is triggered when the

tool detects the occurrence of a predefined event such as, for instance, entering or

exiting a procedure. The tool starts collecting data when the event is detected and

stops collecting data when another event is detected. For instance, in SoftAnalyst, the

user can specify up to 256 events. The tool maintains an on-chip timer and a status

qualifier. When it detects the occurrence of anyone of the defined events, it saves

some tags from the status qualifier, the time of detection and the event number in a

FIFO (fIrst-in-first-out memory). The data in the FIFO is then compressed by a data

compression chip which, in turn, feeds another microprocessor which analyzes the

data.

There are some advantages to this approach. Firstly, since event detection is

just a question of ANDing the data bits with a set of latches, this function is easy to

implement and also takes very little of chip space.t Secondly, the iRterpretation of

the events is not restricted by the hardware and is up to software. In SoftAnalyst, for

instance, the same event recognizers are used to perform several functions such as

tracing values of variables, recognizing entry to or exit from a procedure etc.

There are, however, disadvantages with this approach. The most serious prob-

lem with it is the storing and processing of data. The data is typically stored into a

buffer (the FIFO in SoftAnalyst) which is emptied at regular intervals. The data must

be processed fast enough so that the buffer does not overflow. This bottleneck is

very difficult to overcome particularly with today's high speed microprocessors. The

data would be, typically, written into memory which is generally a RAM. It is

It should be noted that SoftAnalyst is not implemented on a single chip but by using several other
chips. This, however, is irrelevant from the viewpoint of architecture. The same architecture
could, in theory, be implemented on a chip.

18

difficult to design RAMS which could be read and written at fast rates. The speed.
requirement of this project was 100 MHz. This would mean a IOns read/write acces-

sible on-chip RAM, clearly a very difficult task. The problem, however, does not end

here. Even supposing that a 10 ns RAM could be designed, one is still left with the

requirement that post processing must be done at the rate of IOns. Taking the exam-

ple of maintaining a count of time spent in a procedure, if the count was to be 32 bits

long, this would mean doing a 32 bit addition in 10 ns in the worst case. There are

ways to design around this problem but the logic becomes quite complicated.

Another small disadvantage with this approach is that it is very difficult to time

procedures with multiple entries and exits. It is also difficult to account for inter-

rupts. The timer needs to be stopped when executing interrupts. This requires front-

end circuitry to detect interrupts. If the target system is a time sharing system, it is

not possible to have a count of the timing unless some signal to stop the timer can be

provided. In systems where such a signal is not available, this architecture is not use-

ful.

Finally, there is the disadvantage of limited size of the buffer. Since the buffer is

limited in size, it is not possible to time programs which run for extended periods of

time. The buffer of SoftAnalyst for instance, fills up if the time of execution is of the

order of seconds. This architecture is, thus not well-suited for the requirements of the

project.

An alternate approach to the problem of timing the code is to count the number

of memory addresses on the system bus which lie in a particular range. Programs are

arranged sequentially in memory with instructions and data interspersed. The

microprocessor puts out either instruction fetches or data fetches on the system bus

during its execution. If one could detect and store the instru.ction fetch addresses,

compare them with preprogrammed limits and detect if they are in or out of that

range, one could maintain a count of the number of addresses detected in a range.

19

The count is approximately proportional to the time spent in the range and thus per-

formance analysis data is obtained.

The disadvantage of this approach is that the count obtained is not accurate. But

it is possible to overcome this limitation if additional signals from the system are

available. One can continue counting between two successive instruction fetches

assuming that the microprocessor is either executing the instruction or issuing data

fetches. With such an arrangement, accurate timing information can be provided. Of

course, this assumes the capability to stop the counting by an appropriate signals

when needed. But when such a signal is not available, the tool can still provide a

fairly accurate, though not exact, indication of where the program spends most of its

time during execution. Another disadvantage of this approach is that range compara-

tors are needed at the input to compare the input address with preprogrammed limits.

In contrast to a simple ANDing of bits, significant amount of logic is now required to

accomplish this function. This demands more chip area.

The most important advantage of this approach, however, is that it needs very

little post processing of data and it does not need to store large amounts of data in

memory. Only a count of the addresses being in or out of a range need be maintained

which is not very difficult to accomplish in hardware. Since there is no buffer, the

problem of having too much incoming data is completely eliminated. All that needs

to be done is to maintain a counter for each range which is incremented when an

address is in the range. This architecture is well suited for a chip since it is relatively

simple to implement. It does not require fast on chip buffers and complicated logic to

process the data in the buffer. Since this architecture appears much more appropriate

for the requirements of the project, it was chosen for the chip in preference to the

approach taken by SoftAnalyst.

The capability to do performance analysis at the source level is easily provided

if the symbol table generated by the compiler is available. From the symbol table,

--- _ -.. ..-

20

appropriate software can obtain the entry and exit points of all the procedures and

program the upper and lower limits of the range recognizers for the areas of codes

which the user wants to time. If the number of ranges available does not cover all the

procedures of a program, one can set up the chip so that it divides the address space

of the program evenly among the available range recognizers. Mter one run of the

program, the area of code where maximum time is spent can be narrowed down and

then in the second run of the program, the chip can be set up to time various parts of

that section of the code.

3.3 Description of macroarchitecture of the chip

The chip consists of several range recognizers (sixteen in the version imple-

mented for this project), each of which contains the following.

1. Two 32 bit latches which hold and lower and upper limit addresses for com-

parison (ul [0: 31] for upper limit and 11 [0: 31] for lower limit). The

recognizer increments its counter when the incoming address is greater than

or equal to the lower limit and less than or equal to the upper limit. The data

at the input pins is assumed to be 32 bits. The input data is used to write into

the latches when the prg_ chip signal is raised. The data is written into

the lower limit latch if the 1 imi t signal is low and it is written into the

upper limit latch if the limi t signal is high. A 4 bit range recognizer

number must also be input along with the data for the lower and upper limits.

2. A 48 bit counter which is incremented whenever the range recognizer

detects an address that lies between the two limits and the active bit of

the range recognizer is set.

3. An act i ve bit which is set when the range recognizer detects a valid

address within the programmed range. The bit is reset when the range

21

recognizer detects a valid input address which is outside the programmed

range.

4. A 32 bit entry/exit counter which is used to count the number of times a

range was entered. The counter is incremented when a valid input address is

outside the programmed range and when the act i ve bit was set in the

previous cycle. That is, the count is incremented when the active bit

changes from high to low. To provide for recursions, the entry/exit counter

is also incremented when the active bit was set in the previous cycle and the

input address is equal to the lower limit.

In addition, the chip has the following signals which are global.

5. The input clock. The maximum clock frequency is 100 MHz.

6. Input data (a [0 : 31]) to be used for comparison and counting by the range

recognizers. The input data is latched in at the the falling edge of the clock

and can change at the clock frequency.

7. A va 1 i d bit for the chip indicating if the incoming data is valid or not.

This bit can be used to maintain a count of particular types of addresses on

the bus of the microprocessor; for example, instructions only or data only.

8. An en_timer bit for the chip. When this bit is set and the chip is in the

time a range mode (see the description of the chip mode bit- - -

below) and the active bit of the range recognizer is set, the address/time

counter is incremented.

9. A chip_mode bit for the chip. When this bit is set (high), the chip is in

the time_a_range mode. In this mode, the counter of each range

recognizer is incremented if the act i ve bit of that range recognizer is set

and the en timer bit is set. If the chip_mode bit is reset (low), the

chip is in the count_addr mode. In this mode, the counter of each range

22

recognizer is incremented if the incoming data is valid (i.e. if the valid

bit of the chip is set) and the incoming address lies between the upper and

lower limits of the range recognizer.

10. Four input bits (d [0: 3]) to indicate the range recognizer number. These

bits are used to select a particular range recognizer when the upper and

lower limits of a range recognizer are being programmed or when the

address/time or the entry/exit count of a particular range recognizer is to be

read out.

11. A strb signal to synchronize the writing of data into the range recognizer

latches. After the signals d [0 : 3] , 1 imi t, prg_ chip and

a [0 : 31] are applied, they take some time to propagate to the range recog-

nizer latches. The delays for each of these paths is unequal so it is necessary

to synchronize them. The s t r b signal is used for this function. It is is

applied when the signals have propagated through to their destinations. The

write enable signal of the latch is raised when the strb signal is applied.

12. The nr signal. This signal is the master reset for the chip. It resets all the

counters to zero.

The entry/exit or the address/time count can be read out after the chip has fin-

ished collecting data for a single program run. The following signals are pro-

vided on the chip for this function.

13. Eight bits (c [0: 7]) which are used to output the value of address or

entry/exit count of a range recognizers in pieces of eight bits i.e. in bytes.

14. Three bits (enr [0: 2]) to select which byte of the counter is output. Valid

values for the bits are 0 through 5 for the address/time count and 0 through 3

for the entry/exit count. The least significant byte of the counter (i.e. bits 0

through 7) is output when the value is O.

23

15. A ren (read enable) signal. The counters can be read only when this signal

is set (high).

16. A clk4 signal. This signal outputs an internal clock of the chip which

runs four times as slow as the input clock. Due to the internal structure of

the chip, the signals to read the data of from the counters must be applied

when the falling edge of this clock is detected. This signal is provided for

the interfacing circuitry to allow it to properly synchronize the read signals

that it applies to the chip.

17. An eccnt signal. When it is set (high), the value of the entry/exit counter

is output and when it is reset (low), the value of the address/time counter is

output.

17. Four bits (m[0: 3]) which indicate the number of the range recognizer for

which the data is to be read.

In addition to the above signals, the chip provides the following two additional

signals used for testing the on-chip RAM.

18. The wen (write enable) signal. When this signal is high, the data input at

the a [0 : 31] bits and the c [0 : 7] bits are used to write into the upper

40 bits of the address/time counter. (Note that the c [0 : 7] pins of the chip

are bidirectional and are used as input pins when the wen signal is high). If

the eccnt signal is low, the data is written into the upper 40 bits of the

address counter and if the eccnt is high, the data (c [0: 23]) is written

into the upper 24 bits of the entry/exit counter. The lower 8 bits of both

counters cannot be written into.

19. The strb2signal, which is used to synchronize the writing of data into the

on-chip RAM. This signal is applied when the wen signal and the data

have propagated through their paths. This signal is needed because of the

unequal delays in these paths.

Appendix A contains a behavioral simulation of the chip written in the C

language. The next chapter discussed the microarchitecture of the chip.

24

25

4. MICRO ARCHITECTURE OF THE CHIP

4.1 Introduction

The microarchitecture of the chip is discussed in this chapter. First, the global

architecture is discussed. This is followed by a description of the of blocks that make

up the chip. Results from simulations are shown at the end of the chapter along with

several plots of the relevant signals.

The software tools used for simulation and analysis are the tools used by the

Advanced Development Oroup (ADO) at Tektronix Inc. The chip was designed

using the ADO 1.5 fJlIl standard cell library. The fastsim digital simulator was

used for simulations, the fastplot plotting program was used to plot out the

simulation results and the fastta timing analyzer was used to obtain critical path

timing data. All the simulation data included in this thesis is in the form of plots. A

description of each standard cell is included in Appendix B and the netlist is included

in Appendix C.

The initial analysis of the chip was done using a value of 0.15 pF of wire capaci-

tance for all the cells. This figure is used by the ADO group for most of their simula-

tions. To account for the degradation of speed with temperature, a degradation of

0.3% per °C was assumed (as per ADO data). The chip was designed to work at 100

MHz at the junction temperature of 700C. The timescale factor in the simula-

tion control file is used for this purpose. All the timings of the cells were multiplied

by this factor before being used by the simulator.

26

4.2 Global viewof the microarchitecture

The chip may be broadly divided into the input section, the processing section

and the output section. The processing section takes up most of the part of the chip

and is the heart of it so it will be described fIrst. The input and output sections are

described later.

4.2.1 The Processing Section

Figure 1 shows the architecture of the processing section of the chip. The chip

consists of 16 comparators each having programmable 32 bit latches for upper and

lower limits and a 32 bit input port for data. The output of the comparator is fed to

two eight bit counters. One of the counters maintains the entry/exit count while the

other maintains the time/address count. The output carry of each counter is fed to a

priority resolver which feeds a large on chip RAM. The RAM maintains the upper

40 bits for the time/address count of each range recognizer. An identical arrangement

is used for the entry/exit count except that the RAM for this is only 24 bits wide (Le.

a 32 bit count is maintained for the entry/exit count as opposed to the 48 bit count for

the time/address count).

Since the chip runs at 100 MHz, it must be able to accept an address for count-

ing every 10 ns. It is impossible to do a 32 bit compare in 10 ns with the standard

cell library available. My solution was to use pipelined comparators. The details of

this arrangements are discussed later. For the following discussion, it is assumed that

the comparators provide an increment signal for each of the counters every cycle Le.

every 10 ns. The problem, thus, is to accomplish a 48 bit increment in 10 ns. This is

discussed below.

Three different kinds of architectures are possible to solve the problem. Either

separate counters and incrementers for each range recognizer could be provided or a

ck

LL< data < UL. -

Comparator

Comparator

27

ck .. 10 ns

ck2 .. 40ns

40

p

Comparator +1 l \1 R
I

, I\,;I\ ' '\" 1ck
, , .

0
R

Comparator H-1 +1 Ll----1 I

T 1'1 RAMy ,I
II R I

I E I
I S
I 0
I L
I V
I
I

I \\1 ck2I
I

I 11 ck2-i +1I
I

Comparator

ck

Figure1

28

fast single incrementer for the all or some of the range recognizers which is fast

enough to do the increments for several range recognizers, can be provided or a com-

bination of the two approaches can also be used. The merits and drawbacks of these

arrangements are discussed in the following.

In the fIrst approach, a separate counter is provide for each range recognizer.

To accomplish a 48 bit increment at the rate of 10 ns, the incrementer has to be pipe-

lined i.e. the output carry of each stage of computation is used as the input carry for

the next stage and the counter can accept requests for incrementing from the com-

parators each cycle. Such an arrangement, however, has some disadvantages. The

counter would be implemented using flip-flops for' each bit. Flip-flops occupy large

chip area. If a separate counter for each is provided, a signifIcant area of the chip is

taken up by the counters and thus the number of range recognizers that can be pro-

vided, is reduced. Since one of the goals of the design was to try to squeeze as many

range recognizers on the chip as possible, this approach was rejected since it violated

the goals of the design.

In the second approach, only one or more high speed incrementers are used for

all the range recognizers and the count is stored in an on-chip RAM. The advantage

of this approach is that an on-chip RAM occupies very little space as compared to a

flip-flop. Another advantage is that, since in most cases, only a few of the range

recognizers will be active and counting, only a few incrementers are needed for all

the range recognizers (as opposed to one for each as in the previous approach). How-

ever, there are problems with this approach.

The access time for reading and writing for RAMs is typically large. For

instance, the C533 standard cell of the 1.5 J.1mlibrary (a 16 bit, single input output

RAM) has an access time of 16.56 ns plus 2.34 ns for each pF of capacitance on its

output. Clearly, this is unacceptable for the required speed of 10 ns. Even if a faster

RAM could be designed to meet the design requirements, there is another problem

29

with this approach. It must be realized that in the worst case, a 48 bit increment is

needed every 10 ns for each range recognizer. Keeping this in mind, consider the

following sequence of events. Let the incrementer pipeline have 4 stages. Thus, it

takes 40 ns to accomplish the 48 bit increment and write the incremented value back

into memory. Let the initial count in the memory be 10. At time t = n, there is a

request to increment the count and the count is read out and loaded into the incre-

menter. The incremented count will be available in the memory at n+40 ns. If,

within this period, there is another request for an increment, the counter will read out

the old count again Le. 10 instead of the correct count which should be 11. So, the

count will be incorrect. Since the range recognizers may provide a request for incre-

menting count every IOns, this approach is unacceptable.

In the third approach, a combination of the above two architectures is used to

provide an optimal arrangement which captures the advantages of both. The problem

with the RAM was that it received the increment requests too fast. If the requests

can, somehow be slowed down, the RAM can be used. This can be done when it is

realized that a counter is a divide by n circuit where n is the number of bits in the

counter. The carry out at the nth bit occurs 2n times as slow as the carry input to the

counter. So, if we have a 4 bit counter, the carry out at the 4th bit can occur at the

maximum rate of 160 ns if the rate at which the input increment requests can occur is

10 ns. Now, the increment requests have slowed down sufficiently so that the second

approach above can be implemented. In such an arrangement, each range recognizer

will have its own n bit counter which stores the lower n bits of the 48 bit count. The

carry out of this counter can be used to increment the upper (48-n) bits of the count

which are stored in an on-chip RAM. The on-chip RAM can feed a single (48-n) bit

incrementer which, after incrementing the data, writes it back to the RAM. This will

be the only incrementer for all the range recognizers on the chip and thus significant

chip area can be saved. The value of n must be chosen so that the correct timing and

30

optimization is achieved. This depends on the timings associated with the RAM, the

number of range recognizers and whether overlapping ranges are allowed or not. The

ADG standard cell library has a fast 4 bit incrementer (X137F) which, when used

with a standard 4 bit flip-flop (X351W4), can read the data out of the flip-flop, incre-

ment it by one and store it back to the flip-flop within 10 ns. Assuming non-

overlapping ranges and a 4 bit counter for each range recognizer and a total of 16

range recognizers on the chip, if there was a single incrementer for all the range

recognizers for the upper 44 bits (with the count being stored in the RAM), the RAM

circuit (the priority resolver, the RAM and the incrementer etc. see figure 1.) would

have to finish a 44 bit increment in 10 ns in the worst case. As discussed above, the

access time for the ADG standard cell RAM itself is higher than 10 ns so this solution

is unworkable. As is shown later, a 40 ns clock period for the RAM circuit is

optimal. (A 20 ns clock period could be used but it was found that a lot of additional

logic was required to accomplish this; for instance a pipelined incrementer was

required and more parallelism in the priority resolver was also necessary. The write

back circuit to the RAM also became quite complicated). If every range recognizer

had a 6 bit counter, the RAM circuit will be able accomplish the job of doing a 44 bit

increment for 16 range recognizers in the worst case. However, the range would still

have to non-overlapping. Since a 4 bit incrementer standard cell was readily avail-

able and since using an 8 bit counter for each range recognizer with a 40 ns clock cir-

cuit would give us the added feature of overlapping ranges, an 8 bit counter (one each

for address/time count and entry/exit count) for each range recognizer was imple-

mented. The upper 40 bits are stored in the RAM.

4.2.2 The Input Section

The input section consists of the following. (Please see Appendix C for the net-

list).

31

1. All the input signals are input to the C920 standard cell (a pad) whose output is

the input for the C501 TIL to CMOS level shifter. The IPADT cell (which is

actually a macro) on the netlist is a combination of the pad and the level shifter.

The output signals from the level shifter is then used as the input signal for the

various cells in the chip.

2. The input data, a [31 : 0] , is fed to the pads whose outputs are fed to inverting

TIL to CMOS level shifters (the IPADI macro which consists of the pad C920

and the buffer C507). The output of the level shifters (pa [31 : 0]) are fed to

inverting buffers (cell S101X2). The output of the buffers (b [31: 0]) are then

fed to the range recognizers.

3. The clock buffer generates the clock signal which is routed to all the flip-flops in

the chip. The input clock signal from the TTL to CMOS level shifter (pek)

feeds four non-inverting buffer cells (Z101) connected in parallel. The output of

these four cells (ekl) are wire-or'ed and then fed to 28 Z101 cells connected in

parallel. The outputs of these cells are wire-or'ed to form the c~ockfor the chip

(elk) which is then routed to all the flip-flops in the chip.

4. Several flip-flops in the chip use an asynchronous reset signal. In order to syn-

chronize the reset signal with the clock, the reset signal is fed to a 4 bit flip-flop

such that the output of each bit is the input of the next bit. The final output is

the reset signal (nr. 3) properly synchronized with the clock which is then fed

to a large non-inverting buffer (Z101X4) whose output (the bnr. 3 signal)

serves as the reset signal for the entire chip. The four bit flip-flop is used to

avoid the flip-flop from becoming metastable and thus providing an erroneous

reset signal.

5. The 1 imi t signal is fed to the pad and the level shifter. The output of the

level shifter (plimit) is fed to a non-inverting and an inverting buffer. The

outputs of the two buffers (the blimit and the bnlimit signals) are fed to

32

each of the range recognizers. The s t r b signal, which is used to synchronize

the writing of data into the latches of the range recognizers is also routed to the

range recognizers after being passed through two Z101X4 buffers. The

prg_ chip signal, similarly, is fed to a pad whose output is fed to a level

shifter. The output of the level shifter(pprg_chip)then feeds other parts of

the chip.

6. The four input bits, d [3 : 0] which select a particular range recognizer are,

like the other signals, fed to a pad whose output feed a level shifter. The output

of the level shifters (pd [3 : a]) is fed to a decoder tree. The decoder tree uses

the X417 standard cell which is a two input four output decoder with an enable

signal. The upper 2 bits, pd [3: 2] feed one decoder cell. The pprg_ chip

signal is the enable signal for this decoder so that the decoder outputs are

enabled only when prg chip is high. The outputs of the decoder

(decode [0: 3]) are fed to the enable inputs of four other decoder cells. The

two inputs of the four decoder cells are the lower two bits, pd [1 : a]. Each of

the four decoders generate four outputs which are then fed to tlte range recog-

nizer cells (signals prg_lat[0: 15] in the netlist).

7. Both the valid and the en timer signals, are fed to pads whose outputs

are fed to level shifters. The outputs of the level shifters (pen_timer and

pvalid) are fed to the DLY4X delay cells. This is needed to equalize the

delay between these signals and the b [31 : 0] signals i.e. the input data. The

output of the delay cells (den_timerand dvalid)is then stored in flip-

flops. The output of the flip-flops is fed to buffers which transmit the signals

(bvalid and bnen_timer) to the range recognizers (Note that the

en_timer signal is inverted before being distributed to the chip). The

chip_mode signal is also trapped in a flip-flop and then fed into an inverting

and a non-inverting buffer. The outputs of these buffers (bchip_mode and

33

bnchip mode) are routed to the range recognizers.- ,

4.2.3 The Output Section

The output sections consists of the following. (Please see Appendix C for the

netlist).

1. The ren (read enable), wen, eccnt and strb2 signals are fed to input

pads which feed TIL to CMOS level shifters. The eccnt signal, as previ-

ously explained, is used to read either the time/address or the entry/exit count.

The output of the level shifter for this signal (peccnt) is fed to two large non-

inverting buffers (ZlOIX4 cells) and their output is routed to other parts of the

chip (the beccnt signal). The eccnt signal is also fed to an inverter (XlOl

cell) whose output (neccnt signal) is used to generate the read signal for the

address/time count. The output of the level shifter for the ren signal (the

pren signal) is ANDed with the beccnt signal to generate the ecenr sig-

nal which is the read signal for the entry/exit count RAM. Similarly, the

neccnt and the pren signals are ANDed to generate the ccenr signal

which is the read signal for the time/address count.

The wen signal is the signal used to write into the RAMs. This signal is used

only for testing the RAM. In the normal operation of the chip, all the locations

of the RAM are initialized to zero. The wen signal is fed to the pads whose

output is fed to the level shifter whose output is the pwen signal. The pwen

signal is ANDed with the neccnt signal and the pprg_ chip signal to gen-

erate the write signal for the address/time count RAM. Similarly, a signal for

the entry/exit count RAM is also generated. The strb2 signal is used to syn-

chronize the writing of data into the RAM. This is explain.edlater.

2. The enr [0: 2] bits decide which byte of the count is to be read. They are, as

usual, fed to input pads and level shifters whose outputs (penr [0 : 2]) are fed

34

to three inverters and to AND gates to decode the three bits into six separate sig-

nals (rd [0: 5]). The signal which is high indicates the number of the byte of

the count to be read.

3. Just like the input section, the output section also has a decoding tree which is

used to generate signals for which range recognizer count is to be read. The sig-

nals m[0 : 3] are decoded into n [0 : 15] which, after being fed to inverting

buffers, are fed to a mux which drives the read port (or a mux which drives the

write port) of the appropriate RAM. A separate decoding tree is provided in the

output circuit because of the delay associated with the signals reaching the read

port of the RAM and the structure of the RAM circuit. If the decoding tree of

the input section were used, the delays involved are unacceptable so a separate

decoding tree was needed. This will be elaborated upon later.

4. The output of the entry/exit count and the time/address count RAMs and

counters are fed to a large MUX tree. The fIrst stage of the MUX tree multi-

plexes the output of the two RAMS (j [31: 8] and k [31: 8]). The

be cent signal is the control signal for these muxes. The outputs of these

muxes (1 [31: 8]) and the output of the counters of the range recognizers are

then fed into 6 to 1 muxes. These muxes are used to send a particular byte of the

count to the output. The rd [5 : 0] signals are used as the control signals for

the muxes.

s. The fInal output of the 6 to 1 muxes (1 [7 : 0]) is then fed to bidirectional pads.

The bidirectional pads consist of one incoming and one outgoing tristate buffers

connected to the pad input. The pad can, thus be used for input when the incom-

ing buffer is enabled and it can be used as an output pad when the outgoing

buffer is enabled. The outgoing buffer is enabled by the nenr signal i.e. when

the count is to be read out The 1 [7 : 0] signals are then output as c [7 : 0] .

The incoming buffer is enabled by the nenw signal i.e. when data is to be writ-

35

ten into the RAM. The wr [32 : 39] bits are used to write to the upper 8 bits

of the time/address count RAM. This is used only for testing the internal RAM.

Lastly, the internally generated 40ns clock, clk4, is driven out to the pins so

that it can be used as a synchronization signal for applying the enr [2 : 0] sig-

nals. The signals must be applied within 20ns after the falling edge of clk4 is

detected or the output data will be incorrect.

The next few sections discuss the range recognizer circuit, the priority resolver,

and the RAM circuit in detail.

4.3 The Range Recognizer Circuit

Figure 2 shows the components of the range recognizer in two parts. The netlist

for the range recognizer is in Appendix C starting with the "model compare" state-

ment. The range recognizer takes as its input the signals provided by the input sec-

tion and outputs the carry bit for the two counters and the lower 8 bits for the

counters.

The range recognizer uses several flip-flops with asynchronous resets. The mas-

ter reset signal is fIrst fed to a local buffer of the range recognizer and the output of

the buffer is fed to the reset inputs of the various flipflops. As shown in the fIgure,

the input data, a [31 : 0] is fed to two latches and a flipflop. The lower limit latch

holds the 32 bits of the lower limit address, 11 [31 : 0] and the upper limit latch

holds the 32 bits for the upper limit address, ul [31 : 0]. The write enable signal

for the lower limit latch is generated by ANDing the prg_lat, the nlimit and

the strb signals. The prg_lat signal is connected to the output of the decoder

tree of the input section and the other two signals are connected to their counterparts

from the input section. Thus, the latches would be written into when the

prg_ chip signal is high, the range recognizer is chosen by the decoding tree, the

strD
prQ-Chip

nllmlt

strD
prQ-Chlp

limit

eXltrange

aleD[32,28,24,20,16,12,8.41.0

naleD

9
t
e

g(31 :O]D.O L..:...J I ~ Dlec32.2
DeQc[32,28,24,20, 16, 12,8,4].0

nDlec

valid

e[70]

exitcout8

g[7:0]

inc

Figure 2

36

ffleeQ

1[7:0]

37

proper latch is chosen by the 1 imi t signal and the s t r b signal is raised. The

delay for the prg_lat, limit and the a(31:0] are unequal so the strb

signal is necessary to provide the right synchronization. The incoming data is also

stored in the input four bit flipflops reg [31 : 4] b.

The range recognizer logic is designed to do a 32 bit compare. The input

address, a [31 : 0] is compared with the lower and upper limit addresses and a sig-

nal for whether the input address is less than or equal to upper limit and greater than

or equal to lower limit, is generated. Since a comparison must be done every 10 ns,

the comparator is pipelined. The logic equation for comparison can be derived as fol-

lows. Given two numbers A and B, each n bits long, we generate two signals, e i and

g i for each bit of both the numbers such that,

ei =ai bi + Qi ii;

gi =Qi bi

The ei signal is true when the two bits, ai and bi are equal and the gi signal is true

when bi is greater than ai. To compare the numbers A and B, we start comparing

from the highest bit. If the highest bit of B is greater than A, then we have the result

immediately or if they are equal, we must compare the next lower bit. So, if the

numbers are four bits long, the equation for A <B is,

(1)

This can be rewritten as

Now, if we define

and

then

38

A <.B =aleb3 + aeqb3' aleb 1

Note that this is the same equation as the equation for A <B if A and B were 2 bits

long, with e}, gl and go replaced by aeqb3, aleb3 and aleb1 respectively. Thus, a 4

bit compare can be accomplished in two stages: in the fIrst stage generate the e and g

signals and use them to generate the aleb and aeqb signals which are the 2 bit

equivalents of the 1 bit e and g signals. Then use the aleb and aeqb signals to gen-

erate the fInal signals for A<B in the second stage. This method can be extended to

32 bits and this is the method followed in the logic of the range recognizer.

As shown in fIgure 2, the input address and the lower and upper limits are fed to

the gengteq blocks. These blocks generate the e and g signals for each bit. The g

signal is generated by feeding the corresponding bits to an XNOR gate (X421) and

the e signal is generated by feeding the complements of the corresponding bits to a

NOR gate (X102). The e and g signals from the gengteq blocks are then fed to

the gteq block. This block consists of several gtgen cells which do a four bit

compare with the corresponding e and g inputs (see equation (1) above). The output

of these cells are the aleb signals. In addition, the e signals are fed'to a four input

AND gate (X404) whose output is the aeqb signal. The various aleb and aeqb signals

are trapped in flip-flops. This is, thus, the fIrst stage of the pipeline for comparison of

the input address and the addresses in the latches. The output of the fIrst stage is then

fed to another gteq block which generates four signals, aleb16. 2,

aeqb16. 2, aleb32. 2, aeqb32. 2 as its output (similar signals are gen-

erated for the comparator for the input address and upper limit latch). The equation

for A<B when A and B are 32 bits long, thus, is,

A <B =aleb 32.2 + (aeqb 32.2) . (aleb 16.2)

The naleb signals is the A <B signal and the naeqb is the A =B signal. Similarly, the

blec and beqc signalsare generatedfrom the comparatorcomparingthe upper limit

address and the input address. These signals are trapped in a flip-flop. This

39

completes the second and final stage of the pipeline for the comparison.

The bottom pan of figure 2 shows the logic which uses the signals provided by

the comparators to generate the entry/exit and the time/address count. The

inrange signal is true if the input address lies between the upper and the lower

limit i.e. if. 1l[31:0]s;a[31:0]s;ul[31:0]. The logicequationfor this is,

inrange = (aieb + aeqb) . (biec + beqc)

Using DeMorgan' slaw, this can be rewritten as

inrange =aieb . aeqb + biec .beqc

(In the circuit, the complement outputs of the ffleq flipflops are used to generate

the inrange signal. Figure 2 shows these signals.) Along with the inrange

signal, the active signal for each range is also generated. Recall that the

act i ve signal indicates if the current range is active and counting or not. The

acti ve signal must be updated every cycle. The active signal should be true if

the input address is valid and in the range or if the current input address is invalid and

current range was active in the last cycle. The logic equation for the active signal at

time t thus becomes,

activet =actiVet_l . valid + valid, inrange

The actiVet-l signal is the active. 3 signal on the diagram, the activet is the

active signal the valid signal and its complement are valid.2 and

nvalid.2 respectively. The signal for whether the current input address signifies

an exit from the range, exi trange, is true when the current input address is valid

and not in the range and the range recognizer was active in the last cycle. In addition,

to account for recursive procedures, the exitrange signal is asserted when the

input address is valid and is equal to the lower limit and the. range recognizer was

active in the previous cycle. Thus the logic equation for the exi trange signal is,

exitrange =valid, activen_l . (inrange + aeqb)

40

Using DeMorgan' slaw,

exitrange =valid. activen-l . (inrange .aeqb)

The aeqb is the naeqb. 2 signal in the figure. The exi trange signal is used to

increment the entry/exit counter.

The increment signal for the address/time counter is the inc signal in the fig-

ure. As mentioned previously, the count is incremented when either of the following

conditions are met: the chip is in count-address mode and the input address is valid

and in the range or the chip is in time-a-range mode, the en_timer signal is high

and the range is active and counting. As shown in the figure, a part of the increment

signal is generated in parallel with the active signal. The logic equation for the inc

signal is,

inc =valid .chip mode + en timer . chip mode- - -
Using DeMorgan's law,

inc = (valid + chip_mode) (en_timer + chip_mode)

This is shown in the figure. The inc signal is trapped in the ffmisc flip-flop.

Various other signals are also trapped in the flip-flop as shown in the figure. It

should also be noted that this flip-flop has a reset signal, bnr. At initialization time,

this signal is asserted and all the bits of th flip-flop are set to zero when the signal is

asserted. The complements of the inc. 3 and active. 3 signals from the flip-

flop are fed to a NOR gate whose output is fed to an eight bit incrementer. Similarly,

the exi trange. 3 signal is the increment signal which is fed to an identical eight

bit incrementer.

The eight bit incrementer consists of two four bit flip-flops and two four bit

incrementers. A single four bit increment is done in each cycle i.e. each 10 ns. The

output of the flipflop feeds the incrementer whose output is fed back to the flip-flop

inputs. The carry-out from the lower 4 bits is trapped in a flip-flop and then fed to

41

the next stage. The output carry of each incrementer is fed to the priority resolver

logic (discussed later). The output bits of the flip-flops are fed to 2 to 1 inverting

muxes whose control signal is the eccnt signal. These muxes controls which

count is sent to the pins when the count is to be read out. The output of the muxes

feed a tristate buffer which is enabled when the read signal for this particular range

recognizer is asserted. The tristate buffer feeds an eight bit bus which is common to

all the 16 range recognizers on the chip. The appropriate buffer drives the bus when

it is enabled. The tristate buffers reduce the number of wires and thus minimize wir-

ing capacitances.

Thus, in summary, the range recognizer blocks take a 32 bit address as input and

output two eight bit counts and two carryout signals, cntcout8 and

exi tcout 8. The next section discusses the priority resolver circuit.

4.4 The Priority Resolver Circuit

As explained previously, the specifications of the chip allow overlapping ranges

to be programmed. Thus more than one range recognizer may output a carry at the

same time. The output carry is a signal for the RAM circuit to increment the upper

bits of the count for the range recognizer. Since there is only one incrementer in the

RAM circuit, only one of the increment requests can be handled at a time by the

RAM circuit. Thus some mechanism to ensure that the requests are queued up and

sent one after the other to the RAM circuit, is required. The priority resolver circuit

performs this function. The RAM circuit takes 40 ns to complete one increment.

The priority resolver takes as its input, the carry out signals from the range recognizer

and stores them till the RAM circuit is free to do an increment. When the RAM cir-

cuit proceeds with the increment for a particular range recognizer, the priority

resolver clears the corresponding carry out bit from its own flip-flops. This bit can be

set again by another carry out signal from the respective range recognizer. Since the

42

carryout from each range recognizer can only occur at the rate of once in 256 cycles

(2560 ns), and since there are only 16 range recognizers on the chip, with the RAM

circuit cycle time of 40 ns, the priority resolver will always take care of all the incre-

ment signals correctly and never miss any of them even in the worst case of all the 16

range recognizers giving an increment signal at the same time.

The priority resolver implements a simple algorithm for deciding which range

recognizer's request is honored fIrst. The request from a range recognizer whose

number is lower is always honored fIrst Le. the request from range recognizer 0 has

top priority followed by range recognizer 1 etc. and range recognizer number 15 has

the last priority. There is no specific reason to implement this particular order but it

is the simplest to implement (instead of some scheme like fIrst in fIrst out) so it was

chosen. The objective is to prevent an overlap of increment requests so the particular

priority resolving algorithm is not of importance so far as it accomplishes the objec-

tive. Figure 3 shows a part of the priority resolver circuit.

ncntcout.5

cntcout8

Figure 3

The carryout signal from the incrementers is fed to an OR gate and the output of

the OR gate is trapped in a flipflop. The other input of the OR gate is fed by a NOR

gate (which is used in place of an AND gate since invened inputs are available)

whose inputs are the output carry signal from the flipflop (ncntcout.5) and the

output signal of the priority resolver (trapped in another flipflop). The reason why

43

this logic is needed is the following. The output Can)' from the incrementer of the

range recognizer gets updated every 10 ns. However, the priority resolver will not

look at this signal every cycle. So the output carry needs to be saved till the priority

resolver has had a chance to look at it and finally apply it to the RAM after yvhichit

can be cleared. The pri_resolv circuit will assert at its output the carry out sig-

nal for a particular range recognizer only when that range recognizer has the highest

priority at that instant When this is done, the priority resolver has now passed on the

increment request to the RAM circuit and thus it must clear the carry out bit. Now,

consider the logic equation,

cntcout.5, =cntcout 8 + cntcout. 5'-1 .rccout

The reeout signal is the signal to be applied to the read ports of the RAM. Note

that the reeout is normally low and is only asserted when the pri_resolv

block forwards the carry request of the range recognizer to the RAM. So, the rccout

signal is normally high and thus the output of the AND gate is the same as

cntcout.5,_I. This is ORed with the current carry out from the range recognizer Le.

eneout8. So, if either of these signals is high, it gets trapped in the flip-flop and

the output of the flip-flop remains high till the reeout signal is assertedLe. when

the rccout signal goes low. Now, the output of the flip-flop is cleared and thus the

carry out is also cleared till the next carryout signal (Le. enteout8 signal) occurs

again.

Note that the enteout. 5 signal is the output of a flip-flop whose clock is

elk which runs at 10 ns. This signal is fed to another flip-flop which traps the signal

with the elk4 signal which is the internally generated 40 ns clock. This flip-flop

thus provides the proper interface between the IOns and 40 ns circuits. The output of

the priority resolver is trapped with the complement of the 40 ns clock which implies

that the propagation delay through the pri_resolvblock is less than 20 ns. The

logic equation for the pr i _resol v logic is,

44

rcoutn =coutn .COUtn-l .COUtn_2 Couto

where rcoutn is the output of the p r i _re sol v block and coutn etc. are the inputs

to it.

4.5 The RAM circuit

The RAM circuit is responsible for maintaining the upper bits of the count. The

priority resolver and RAM circuits for the entry/exit and address/time count are ident-

ical except that the RAM circuit for the former has only 24 bits of upper count as

opposed to the 48 bits for the latter. So only the address/time count RAM circuit will

be discussed here. The discussion applied mutatis mutandis to the entry/exit count

RAM circuit. All the flip-flops in the RAM circuit are clocked with the internally

generated 40 ns clock. This clock is generated by feeding the 10 ns clock to a divide

by 4 circuit. The output of the circuit is a 40 ns clock and its complement. This out-

put is fed to buffers whose outputs (clk4 and nclk4)are routed to the various

flip-flops in the RAM circuit.
.

Figure 4 shows a block diagram of the RAM circuit. The increment request

from the priority resolver output flip-flp is fed to a mux whose output feeds a buffer

which, in turn, drives the read ports of the RAM. (The output of the decoder tree in

the output section feeds the other input of the mux. This input is used to read out the

contents of the RAM). Only one of the 16 outputs from the priority resolver would

be asserted at a time which implies that one location of the RAM will be read out. It

is important to understand the clocking sequence of the flip-flops in the RAM circuit

properly. All the flip-flops are falling edge flip-flops unless specified otherwise.

As explained previously, the input flip-flop for the priority resolver uses the 40

ns clock. The delay through the priority resolver is about 16 ns. The output flip-flop

of the priority resolver is clocked with the complement of the 40 ns clock. This

means that the output of the priority resolver gets trapped 20 ns after the falling edge

45

wr[O:39]

enw

nh[O:39]

Figure 4

from RAM I d

priority e

resolver clk4d c
0

nn[O:15] d
enr I II Icc[O: 15] enw2

dout[O:39]

46

of the 40 ns clock, clk4.This output will be then driven to the readport of the

RAM if the enr signal is low i.e. if the chip is counting currently. The RAM is

actually madeup of severalC533FRAM cells which are singlebit I/O, 16 location

fast RAM cells. Each cell has 16 read and write ports and one input and one output.

This means that the mux at the read port of the RAMmust drive 40 suchcells. The

output of theRAM is trappedin a flip-flop which is clockedwith clk4. The worst

case read time for the RAM cell is 10.20 ns plus 2.34 ns for each pF of load on its

output. This means that the output of the RAM will be valid at about 12 ns after the

read address to the RAM read port is applied (assuming a load of about 0.5 pF).

Given the 20ns delay through the priority resolver-and a delay of about 3 ns for the

flip-flop outputs to become stable, the mux must drive the data from the flipflops to

the RAM read ports in 5 ns or less. Given that the mux has to drive 40 individual

ports, this is not possible to accomplish (with the ADG cell library) without using

buffers. Therefore, buffers are used to drive the data to the RAM read ports.

The output of the RAM is trapped in a flip-flop (ramff) which is clocked with

clk4. At the same time, the carry-in for the40bit incrementeris trappedinto a mux

flip-flop. The carry-inis obtainedby feedingthe outputsof the priorityresolver to a

16 input OR gate (constructed using NAND and NOR gates). The output of the OR

gate is trapped into a mux flip-flop. This flip-flop traps the output of the OR gate if

the enr signal is low. The other input of the flip-flop is grounded so the flip-flop

traps a zero if the enr signal is high. Thus the count will not be incremented when

the data is being read out of the RAM to feed it to the output pins. The output of

ram f f feeds a 40 bit incrementer. The output of the incrementeris trapped in the

incff flip-flops. These flip-flops are also clocked with clk4 so the increment

must be finished in 40 ns. The output of these flip-flops is the updated count which is

then fed to a mux which feeds the data input port of the RAM.

As seen from the figure, a mux also feeds the write ports of the RAM. This mux

47

is fed either from a flip-flop or from the output of the decoder tree in the output sec-

tion. The decoder tree output is used when the enw2 signal is assened. This mode

is used for testing the RAM. The output of the mux is again driven using buffers to

the read pons of the RAM. As shown, the output of the priority resolver is fed to the

wff flip-flop. However, the clock for this flip-flop is clk4d. This is a signal gen-

erated by feeding the clk4 signal to some delay cells. The delay is approximately

8 ns. The result is that the output of the priority resolver is stored into this flip-flop

about 8 ns after it is stored in the flip-flop at the read pon of the RAM.

In order to understand the operation of the RAM circuit, consider a sequence of

events as follows. At time t, the catTYout signals from the range recognizers are

trapped at the input of the priority resolver with the clk4 clock. At t+20 ns, the

priority resolver output is trapped in the flip-flop at tbe read port (the priority resolver

output flip-flop). The mux then applies this .valueto the RAM read pons. At t+48 ns,

the address applied to the read pon of the RAM (which is the same as the output of

the priority resolver) is stored in the wff flip-flop. The next clock edge for the read

flip-flop will occur at 40 ns while the next clock edge for the write flip-flop will

occur at t+88 ns. The RAM outputs the appropriate data after t+40 ns which is

trapped in the ramff flip-flop which feeds the incrementer. The output of the

incrementer is trapped at t +80 ns and is fed back to the input of the RAM. Since

the data at the write pons will change only at t+88ns, the output of the incrementer is

written into the con-ect location (Le. where it came from before being incremented).

The same sequence of events repeats every cycle.

It is now easy to see why the inputs to the read and write port of the RAM are

critical. Note that one of the write pons of the RAM is addressed all the time. This

means that whatever appears at the data input port will be written into that location.

So, the inputs to the ports must be timed very precisely or else the data in the RAM

will be wrong. This is also the reason why a separate decoder tree for the output sec-

48

tion was necessary. If the input decoder tree is used, its inputs get excessively loaded

resulting in an increase in the delay through it. This delay is unacceptable for the

RAM circuit so a separate decoder tree is used. This is not much of a problem,

though, since the decoder tree takes very little space on the chip. When the data from

the RAM is to be read out, the enr signal is asserted and the output of the decoder

tree is fed to the read port of the RAM. The RAM output is trapped in the ramff

flip-flop whose output is then sent out to a mux whose output feeds the pins. The

read address at the input pins of the chip must be maintained till the data is read out.

It is clear now that the read address must be applied in such a way so that the output

of the decoder tree is applied to the read ports, about 12 ns before the falling edge of

the c 1k 4 clock occurs. The graphs of simulation results attached at the end of this

chapter show this. The clk4 signal is output at the pins so that it can be used to

synchronize the application of the read address to the pins.

To test the RAM, an additional pin is provided on the chip as discussed previ-

ously. When this pin is asserted along with the prg_ chip pin, the enw signal is

asserted for the appropriate RAM circuit (entry/exit or address/time) based on the

beccnt signal. This will feed the wr [0: 39] signals to the RAM data input As

discussed previously, the 32 bits of input data pins (the lower 24 bits for the

entry/exit count RAM) and the 8 bits of bidirectional output/input data pins (not used

for the entry/exit count RAM) are used to feed the RAM. The output of the decoder

tree is the write address. It will be fed to the RAM when the enw2 signal is

asserted. This signal is asserted when, in addition to prg_ chip and enw, the

strb2 pin is asserted. The strb2 pin is used to synchronize the writing of data

into the RAM since the data takes longer to set up than the address.

The next section discusses the layout of the chip and shows the results of a typi-

cal run of the chip. Several plots showing the key signals are shown.

49

4.6 Results and discussion

As mentioned previously, all the simulations of the chip before layout were

done using the 1.5 JlII1standard cell library. The chip layout was done using

automatic layout tools and the capacitances were recalculated from the layout. The

critical path was 14.6 ns, 4.6 ns slower than the required. The critical path was found

in one of the range recognizers (this was expected). It must be noted, however, that

only a few of the 16 range recognizers had critical paths while others met the timings.

It must also be noted that almost no effort was put into planning the layout of the

chip. Since the chip consists of 16 range recognizers and since even with the

automatic layout, many of the range recognizers meet the required timing, it is rea-

sonable to assume that if a custom layout of one range recognizer is done, it would

not only meet the required timings but also save significant amount of chip area.

The current layout of the chip uses the 1.5 /lm standard cell library. The ADO group

has already developed a standard cell library for a channel length of 1 /lm. If the

current layout is scaled to 1/lm channel length, according to ADO, the gain in perfor-

mance would eliminate the critical paths that are present in the 1.5 /lm version of the

layout and the chip would meet the required specs (100 MHz clock speed at 700C).

The chip has not yet been actually manufactured and therefore no real data for actual

silicon is available. However, as discussed before, there are reasonable grounds to

assume that there will be no critical paths in a manufatured chip with some effort

being invested in layout of the chip. In the following, the results of simulation of a

typical run of the chip are presented. The input vectors were generated using a vector

generating program used by the ADO group called vgp. The actual list of vectors is

too long to include here but the vgp program input used to generate the vectors is

included in appendix D. All the simulations shown in this thesis and the timings

shown in this section are scaled up by 32% from the original timings to account for

the speed up that can be gained by scaling the chip from 1.5 /lm to 1 /lm technology

50

and better layout (Le. all the time factors were multiplied by 0.68 after accounting for

the temperature degradationof 0.3% per 0 C). The results of the simulationsare

shown in the form of plots which are located at the end of this chapter.

The plots show values of some signals for a typical run of the chip. The chip is

fIrst initialized by applying the chip reset signal, nr (see plot 1). The part of the

plots which shows a series of x's indicates that the value of the signal is undefined at

that time. This is expected at the time of initialization. The reset signal nr is fed to

buffers whose output, bnr. 3 (asserted low) resets the counters for the range recog-

nizers (signals rrO. e [7: 0] and rrO. g [7: 0]. The carryout signals also get

initialized. These, in turn, feed the flipflops which feed the RAM circuit (see plot 4).

Thus the RAM flip-flops also get initialized to zero. The internal 40 ns clock gen-

erated from the 10 ns clock is also seen in plot 4.

Referring back to plot 1, at about 220 ns, the prg_ chip signal is raised and

data is applied at the input. This data is used to program the upper and lower limits

of the range recognizers. The lower limit of all range recognizers is programmed to

the value ¥¥t't't't'F2 (hex) and the upper limit is programmed to FF¥¥t't't'8 (hex).

The data is latched into the appropriate latches (signals rrO .11 [31: 0] and

rrO . u1 [31: 0] on the plot) using the limit signal and is strobed in using the

strb signal. The d [3: 0] signals select the appropriate range recognizer. The

plots attached show the data for range recognizer number O. The write enable signals

for the latches, rrO .llimit and rrO. u1imi t can also be seen on plot 1. The

g [7 : 0] signal is the inverted output of the mux in each range recognizer which

sends lowest eight bits of the time/address count (rrO .g [7: 0]) or the entry/exit

count (rrO. e [7: 0]) to another mux which sends it to the output pins.

Now, referring to plot 2, we see the range recognizer 0 counting. The input data

is held at the value FFFFFFF6 and the valid signal is held high. The count incre-

ments every cycle, as seen in the plot. Plot 3 shows both the entry/exit and the

51

address/data counters counting. The inpu! data alternates between the values

FFFFFFF7 and rrrrrrrC. The fIrst address is within the range and the second is

outside the range so both counters will be counting. As mentioned previously, plot 4

shows the flip-flops in the RAM circuit being initialized. Plot 5 shows data being

written into the RAM. This is the test mode of the RAM. In order to see the 40 bit

increment, we write a value of FFFFFFFFFF into the 40 bit address/time count RAM

and a value of FFFFFF into the 24 bit entry/exit count RAM (not shown). The plot

also shows the address being applied to the m [3 : 0] pins and the output of the

decoder tree being applied to the RAM write port, (signal rameent. w [15: 0]).

Note also that the output of the decoder tree is applied to the RAM only after the

strb2 signal is raised and held. Plot 6 shows the RAM circuit counting. Recall

that all the range recognizers were programmed with same upper and lower limits to

see that even overlapping ranges work correctly. This is seen from the plot. Notice

that the ee [15 : 0] signals start with the value of FFFF i.e. all range recognizers

requesting an increment at the same time. The output of the priority resolver,

ree [15: 0] applies each one at a time to the RAM read ports,

rameent. rd [15: 0]. The output of the RAM is trapped in the output flip-flop

(rameent. dout [39: 0]) and stored back to the RAM after being incremented

(rameent. din [15: 0]). The address at the read port is trapped into flip-flops at

the write port after being delayed (rameent .w [15: 0]). The delay is achieved by

using the delayed 40 ns clock, rameent. elk4d to clock these flip-flops. Finally,

plot 7 shows the results being read out from the RAM and the range recognizers. The

input range recognizer number m[3 : 0] (which is actually the RAM address) is

applied to the read port of the RAM and the output data is trapped in flip-flops

(rameent.dout [39: 0]). The output of the flip-flops feed a mux which drives a

byte of data to the output pins, e [7 : 0], depending on the value of the

enr [2 : 0] signals. (The plot shows the value decoded to six signals, rd [5 : 0]).

N
V) Real Time Performance Analyzer

Time .0s
6/313/30 21:56:33 faslsim x0130

5us. . . . ,1Bus .

Cycle

Time
c k.

c I k...............

prg ch ip.....

pprg chip___
I im it...........

b I imiL........

bn I imi L......

s lrb.............

s lrba...........

d3:d0
pt~g lalB___..
nr _................

bnr . 3_..........

a31:a16
a15:a0
b31 :b 16-...

.

b15 . b~ ~.:.:-:-:-:.-:.:
. {J

rr0.b31.1:
rt~B . b 15. 1 :

rrB.1131:r
rt~B.1115,:r
rrB.uI31:r
rrB.uI15:r
rr0.11 imiL
rr0.ulimiL
rrB.e7:rr0.
rrB.g7:rr0.
g7:gB
rrB. ccouL..
rr0 .ecouL..

200 '400 '6013 '8013 'fe0Efi12BB'f40B '161313'1800 2000 220tf240026B0'

.....

...o
zs::

.jTltr' It t t X.
.--------------.-

. . .

t

. . .

I

.

~4~ ~ ~ ~ ____._......____..___.

Cycle

.

.

~

..

'113

.

.

'15 13

.

.

25

.

.

30

.

.

35 '40

.

.

'45

.

.

~0

.

.

~5 '613

~
II) Real Time Performance Analyzer

Time .05
6/30/g0 21:56:3g faslsim x01g0

r us.10us .

'800 '1000 '1200 '1400 '1600 '1800 '2000 2200 2400 2600'Cycle

Time
ck _.
c 1k_...................
pt~g ch i pu........
d3:d0
va 1 i d__..............
bva 1 i du............
nr
bnr .3_...............
en l i mer __........
bnen l i mer ___...
ch i p-modeu......
a31:a16
a15:a0
b31:b16
b15:b0
rr0.b31.1:rr0
-rr0.b15.1 :rr0
rr0. 1131 :rr0 .
rr0. 1115: rr0 .
rr0.u131:rr0.
rr0.u115:rr0.
rr0 .acl i ve___...
rr0.exilrange
rr0. acl ive .3_.
rr0. i nc___.........
rr0. cnlc in_.....
rr0.e7:rr0.e0
rr0.g7:rr0.g0
g7~g0
rr0. ccouL.......
rr0. ecouL......

Cycle

200 '400 '600

N
...
o

is':

.

. : , ,

. , : : " , . ..
: : , . . .

.

.
1
1

. , . . . , . . .
':;:ii VlX

.
I VI

.
.:1 Vln

.
I Vlh

.
:;1 1tJ

.
I Li

.
::1 14

.
I 1,

.

. IJ........I...._.._,_._.._.__......J...___._,..__.__.,____..___._.._...._.__.J......._,.._.....,..._.._......... I".. , : : , , , . . .
'462 '464 '466 '468 470 '472 '474 '476 '478 480 '482 '484 '486 '488

~
V) Real Time Performance Analyzer

Time .05
faslsim x0190

10us,

Cycle

Time.
ck.
c 1 k....................

pr~g ch ip_...___...

d3:d0
va 1 id.........______.

bva 1 iQ...___.___...
nr_.....................

bnr . 3................

en l imer..........

bnen l imer......

ch ip-mode...___..
a31:016
a15:a0
b31:b16
b15:b0
rr0.b31.1:rr0
rr~0. b15.1 :rr0
rr0. 1131 :rr0 .
rr0. 1115: rr0 .
rr0.u131:rr0.
rr0.u115:rr0.
rr0.acliveu....
rr0 . ex ilr'ange
rr0. acl ive .3..

rr0. incu....___...

rr0 . cnlc in......

rr0.e7:rr0.e0
rr0.g7:rr0.g0
g7;g0 .

rr0. ccouL___....

rr0 . ecouL...___.

Cycle

6/30/90 21:56:39
us

200 '400 '600 '800 '1000 '1200 '140Ef1600 '1800 2000 2200 240£1 2600 f

5.3u5, S.32u~ S.34u~ ~~~
~~~II!II L~~~~. . , . . ....' . . . . .
..' . . . . .. . . . . ...' . . . . .. . . . . .. . . . . .

. . , . . .. . . , .. . . . . .. . . . .. . . . . .. . . , . .

. . . , . .... . , . . .
, ,t

t t .." . . . I"' I ..., I . . . ... I t t t, t. t I r" t t t.. I t t t ... I t t t,....
, , , .

~:::It ( ( r: :~t t t t .:1t ( ( r: ;.~:Jt t . .;1 (( (r: ~~.t, , , r .:1f f ( r: ~,~ . t . .:1( ( ( r: ~::I . t . .:1( ( ( r: ~:=.'". . . .....
.1 . . . .
)::-f:fTYt ... 1 . , . r .1 (f f ( .J . . . r .1 (( ( -I , . . ' .1 (t ( .1 t t t r" - t t t t t t t I"' .: , , , r
1 tttt
1 ,ttr'

I , , . .
I , , 'K

I 1 . I I, I, 1 I. I , I, I

~h : r-, : r-h ' .--h : r-. : ri : r=
tl: : I : I ; I : : I,. .....' . , . . .

..H : I , : II : I I ; I . I :
.:~~1-C -c c-c -:~ --(4 I -e -:1 -eh

VILI VI ~ .:1 VI ~I -:, ~I K VL'1 -::1 VIn
. . . , . .

~ ~ ~ ~ ~ ~.._..._.._---
. . . . . .
. . . . . .

. . . . . .

. . , . . .

. : : I: . :

'1062 1064 '1066 1068 '1070 11072 '1074 1076 '1B78 108e '1082

rt"I
...
o

s:



200 '400 '600

6/30/90 21:56:39 fastsim x0190
us. . . . .10us .

'g00 '1000 '1200 '1400 '1600 '1800 2000 2200 2400 2600 '

tr)
tr)

Real Time Performance Analyzer
Time 85

Cycle

Time
c 1 k 4_.................

nc 1 k 4................

nr ..................

cc15:cc0
rcc15:rcc0
prg ch ipu........

ppr-g ch ip........
e cc nt................

beccnL.............

r en ............

pr enu................
ccenr ................

nenr ..................

~en_...................

ccenlJ.1. ...............

n e nlJ.1 .......
5 lrb2................

ps trb2u............
ramccnl. c in....
ramccnl.rd15:
ramccnl.dout1
j23:j8ramccnt.nh15:
ramccnt.din39
ramccnl.din31
ramccnt.din15
ramccnl.~d15:
m3:m0
pm3:pm0
n15:n0
ramccnt.~15:r
ramccnl.ck4d..
rdS:rd0
17:-10
c7:c0

Cycle

. . .. .. .., ...... .. ...... . .. .. ... ... t". .. .., .... .. ... ... .... ,. ... ... ..., .. ... ... .... .. ... ... ..., .. ... ... ..., .. ... ... .... .. ... ... .... .. ... ... ...

. .. ... ... ..., ., ... ... ...I .. ... ... .... .. ... ... ...

. ., . . .,. .... .. ... ... .... .. ... ... .... .. ... ... .... .. .,. ... .... .. ... .... .. ... ,..

.

.

~

:~~ ~ ~ ~ ~ ~ ~ t ; ~ ~ ~ ,...-......0 . .. ... .,. ..,
~0 ~0 ~0 40 ~0 ~0 ~0 0 ~0 ~00~10 120~3e ~40~50

~-o
i5:



\0
V) Real Time Performance Analyzer

Time .0s
6/30/90 21:56:39 faslsim x0190

us . .10us .
200 '400 '600 'g00 '1000 '1200-'1400 '1606 '18002000 2200 24002600Cycle

Time
c Ik 4...................

nc I k 4__...............

nr_......................
cc15:cc0
rcc15:rcc0
prg ch i P............

ppl~g ch 1 p.........
ecc nL.................

beccnL..............

r en. .............__.

pr en.............__....
ccenr .................

nenr _..................

we n __...............

cc entJL................

netltJL..................

s lrb2u...............

ps ll~b2u.............
ramccnl. c in.....

ramccnl.rd15:r
ramccnl.doul15
j23:j8
ramccnl. nh15: rl

ramccnl.din39:
ramccnl.din31:
ramccnl.din15:
ramccnl.wd15:r
m3:m0
pm3:pm0
n15:n0
ramccnl.w15:ra
ramccnl.ck 4d..~
rd5:rd0
c7:c0

Cycle

V)
....
o

6:

1 .0Sus 1. 1us 1. 15l.!s---, . . . . .. . . . . . . . . .. . . .c----I . . I I
. . . .. . . . . . . . . .. . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . ,. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . , .. . . . . . . . , .. . . . , . . . . .. . . . . . . . . .. . . . . . . . , .. . . . . . . . . .. . . . . . . . . ... . . . . . . . . .. . . . . . . . .. . . . .. . . . .. . . . . . . . .. I . . . . . . . . ... . , .. . . .. . . . . . .. . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .

. ..... . . . . , .
...
'::t

It'.... I 1 ............... ...1........... ...........1.... I
... I ,. ."1

..
VII IVII ::) V IVlr' '::L VlVIVIQ .:.:., IVIVIX .:::L n IVI

. . I . .. . . . . . , I. ,
VI.

-.----..f...--.-. t t.
110

. . . .
20

. . , .
30

., . . . . . . , . .
'208 '212 '214 '216 '218 '222 '224 '226 '228 '232



"\I) Real Time Performance Analyzer
Time .05

6/30/g0 21:56:3g fastsim x01g0
us 0 0 0 . .10us 0

'800 '1000 '1200 '1400 '1600 '1800 ~000 2200 2400 2600'Cycle

Time
c 1 k 4..................

nc 1 k 4................

nr......................

cc15:cc0
rcc15:rcc0
prg ch ip..........

pprg ch ip........
eccnt................

beccn L.............

ren....................

pren ......
c cenr ................

nenr..................

we n....................

c c e nhL...............

nenhL.................
5 trb2................

ps trb2..............
ramccnt. c ir\....
ramccnt.rd15:
ramccnt.dout1
j23: j8
ramccnt.nh15:
ramccnt.din3g
ramccnt.din31
ramccnt.din15
ramccnt.wd15:
m3:m0
pm3:pm0n15:n0
ramccnt.w15:r
ramccnt. ck4d..
rd5:rd0
17: 10
c7:c0

Cycle

200 '400 '600

\0
...o
~

14.8us 4.85us 4.gu5. 4.g5u 5U5 5.05u5 : r0 0 0 or . 0. . 0 . .-, 0 .
L. 0 0 0

0
0 . 0 . . ..

t t t t t t t P t t r , t t t X , t tVi t t ...VI , tl"'VI , t t XVI

....__..__....
0 . . . . .
0 0 0 . 0 ..

0 . 0 .0 0
. 0 0 . . . .

0 0 . . 0 .
.

. 0 . . . .

. . . . 0 .
.

. .. . . .
.

0 . . . .
0 0 0 . . .

.
. . . . . .

. 0 . 0 0 0 .

. . . . . . .
. . . . . .
. . . . 0 ..

. . . .. .
.

0 . 0 . . .
. 0 . 0 . . .

. 0 0 . . .

. 0 0 0 . . .

0 : . . . .
.

: . . . 0
.:..-

. . . 0

..-
. n{{ . t {{'r ..:;:;:::::;;:;:tttt

...-
t t . €:.::::::.-. .--.-. ,-::::518.... t1 tttt

r

I..
:. VIVIV n.
r

( VI VI VI , I VlVIVlq I , VIVI I VI t VIVI"" VI ,
I . . . I .'" . . . .. 0 . .

0 . 0 . . ...........r.......... ..........r.......... ..........,.......... ..........r.......... ..........,.......... ..........,........... . . . 0 .. . . . . .
'g65 70 'g75 980 'g85 g0 'gg5 1000 '1005 1010 '1015



6/3EVge
us

21:56:39 fcslsim xe1ge
1eus

00
VI Real

Time
Time Performance Analyzer

s

Cycle

Time.
c I k 4_....................

nc I k 4_..................

nr_........................

cc15:cce
rcc15:rcce
p'~g ch ipu...........

pp'~g ch ip_..........

eccn '[ ....

beccn L ............

r e n_......................

p'~en ...

ccenr_..................

nenr _....................

ramccnl . c ifL.....

ramccnl.rd15:r
rcmccnl.doul15:
ramccnl.nh15:r
rre.e7:rre.ee
rre.g7:rre.ge
g7:ge
m3:me
pm3:pme
n15:ne
rcmccnl.w15:ra
ramccnl .ck 4d_....

rd5:rde
c7:ce

Cycle

21313'41313'6ee 'gee 1eee j12ee '14ee 'f6ee '18ee '2eee 22ee 24ee '26ee '

r---

...o
5:

:.::1 . h0 . -:;:. .

. . .
. . .

23135 231

. .

. .

2345

. .. .
2385



59

5. SUMMARYANDCONCLUSIONS

The need for a cheap and effective tool to accomplish non-intrusive source level

performance analysis of real time software was identified in Chapter 2. Some efforts

to develop such a tool and the pros and cons of these tools were discussed.

The macroarchitecture of a real time performance analysis chip was discussed in

Chapter 3. The reason for choosing a particular architecture and its advantages were

discussed. It was shown that by reducing the demand on the capabilities of the tool,

high performance at a low price could be obtained by.designing a simple but efficient

chip which uses a simple technique to aid non-intrusive performance analysis.

In Chapter 4, the microarchitecture of the chip was presented. The logic equa-

tions and the implementation of the required functions using the ADO 1.5 Jl.II1stan-

dard cell library was presented. Results of the layout of the chip and a post layout

simulation were presented.

In summary, a high performance chip to aid real time non-intrusive performance

analysis was sucessfully simulated and laid out. The chip implements a simple algo-

rithm to accomplish this purpose and provides the capability to do performance

analysis at speeds as high at 100 MHz. A set of such chips combined with a state

analyzer can make an extremely effective system for debugging and performance

analysis. The current version of the chip has only 16 ranges. This is admittedly a

small number but this was largely necessitated by the speed requirement. Further, as

already discussed, almost no effort was put into laying out the chip. The regular and

hierarchical structure of the chip assures that a custom layout would save significant

amount of space. The addition of more ranges merely involves adding more range



60

recognizer blocks and expanding the priority resolve and the RAM circuit which is

fairly easy to accomplish. It is possible to further reduce the chip area by reducing

the number of pipeline stages in the comparators in the range recognizers. This can

be accomplished by designing standard cells to accomplish this function. Also using

1 micron technology would buy more chip area. No software has yet been written to

program and run the chip and and the question of integrating the chip with state

analyzer has not yet been studied. It is my opinion that further work should be

directed at these areas.



61

References

1. W. Morven Gentleman and Henry Hoeksma, "Hardware assisted high level

debugging (preliminary draft)," ACM national conference proceedings, pp.

140-144, 1983.

2. Robert L. Glass, "Real-time: The "lost world" of software debugging and test-

ing," Communications of the ACM, vol. 23, Number 5, pp. 264-271, May 1980.

3. Victor R. Basili and Richard W. Selby, "Comparing the effectiveness of

software testing strategies," IEEE transactions on software engineering, vol.

SE-13, No. 12, pp. 1278-1296, December 1987.

4. Richard Hamlet, "Special section on software testing," Communications of the

ACM, vol. 31, Number 6, pp. 662-667, June 1988.

5. David Gelperin and Bill Hetzel, "The growth of software testing," Communica-

tions of the ACM, vol. 31, Number 6, pp. 687-695, June 1988.

6. S. C. Johnson, "Lint, a C Program Checker," CompoSci. Tech. Rep. No. 65,

December1977.

7. Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick, "gprof: A call

graph execution profiler," SIGPLAN Notices 17, pp. 120-126, June 1982.

8. Bernhard Plattner and Jurg Nievergelt, "Monitoring program execution: a sur-

vey," IEEE Computer, vol. 14,pp. 76-93, Nov. 1981.

9. C. A. Witschorik, "The real-time debugging monitor for the Bell system lA

processor," Software-Practice and Experience, vol. 13, pp. 727-743, 1983.

10. Richard N. Taylor, "Debugging real-time software in a host-target environ-

ment," Technology and science of informatics, vol. 3, pp. 229-236, 1984.

11. Niklaus Wirth, "Toward a discipline of real-time programming," Communica-

tions of the ACM, vol. 20, pp. 577-583, August 1977.



62

12. Kwang-Ya Fang and Carl K. Chang, "Non interference software debugging and

testing for real-time systems," IEEE computer and software application confer-

ence proc., pp. 326-32, 1985.

13. Charles R. Hill, "A real-time microprocessor debugging technique~" ACM

national conference proceedings, pp. 145-148, March 20-3, 1983.

14. Bernhard Plattner, "Real-time execution monitoring," IEEE Transactions on

software engineering, vol. SE-lO, No.6, pp. 756-764, Nov. 1984.

15. Thomas Bemmerl, "Realtime high level debugging in host/target environ-

ments," Microprocessing and microprogramming, vol. 18, pp. 387-400, Dec.

1986.

16. Charles H. Small, "Login analyzers evolve in response to high-level

languages," EDN, pp. 61-72, February 6, 1986.

17. Charles H. Small, "Software analyzer traces high-level program execution in

real time," EDN, pp. 83-84, April 18, 1985.

18. Bruce Ableidinger, Nirmal Agarwal, and Chuck Nobles, "Real-time analyzer.
furnishes high-level look at software operation," Electronic Design, September

19, 1985.

19. Bruce Ableidinger, "Hardware tool streamlines software testing," Computer

Decisions, October 1, 1985.

20. Ted Gary, "Optimizing and verifying software in embedded systems," Digital

Design, pp. 58-62, August 1986.

21. Gus Noelcke, "Debug system targets multiprocessor design," Computer

Design, pp. 105-114, November 1, 1986.



63

APPENDIX A

/* Behavioral simultion of real time performance analyzer

* Second Version: Written Sept 15, 1989 by Mehul Dave
*

* Reads input from a file line wise.
* Format of line is

* f1 f2 f3 f4 fS f6 f7 f8 f9 f10 f11

* where
* n

f2
f3
f4

*
*
*
*
*
* fS
*
* f6

f7
f8
f9
no
f11

*
*
*
*
*
*

Chip reset (set all counters to zero)

: program chip (0/1)

Upper/lower (1/0) limit address - for programming

mode of analysis for chip

o -> Count number of addresses in a range

1 -> Time a range

Enable/disable timer. For time a range mode. If disabled, don't

count.

valid/invalid(1/0) input data. for PA measurements

input data (32 bit in hex)

Range Recognizer (RR) number

read time/address count or entry/exit count

read enable

the byte number to be read (of the count)

* Outputs result of the performance analysis on stdout.
*/

finclude

fdefine

fdefine

tdefine

tdefine

fdefine

fdefine

<stdio.h>

MAXLINE 1000 /* Maximum character in one input line */

UPPER 1 /* data word indicates upper limit for compare */

LOWER 0 /* data word indicateslower limit for compare */
MAX 16 /* Number of range recognizers */

COUNT_ADDR 0 /* chip mode to count addreses in a range */

TIME_A_RANGE 1 /* chip mode to time a range */

int reset,prg_chip,limit,chip_mode,en_timer,valid,rrnumber,eccnt,
ren,enri

int active[MAX]i /* Bit to indicate if RR is active or not */

long data,data2i

long upper[MAX], lower[MAX]i /* Upper and lower limits of RRs */

long ccount[MAX], ecount[MAX]i /* Time/Address or entry/exit count for RRs */
int linenumber = Oi

main ()



64

int i,j;

char line[MAXLINE];

i = j = 0;

/* Get a line from input file till end of file encountered */

while (fgets(line,MAXLINE,stdin) != NULL)

++linenumber;

i = (sscanf(line,"%d %d %d %d %d %d %x %d %d %d %d",

&reset, &prg_chip, &limit, &chip_mode, &en_timer, &valid,

&data, &rrnumber, &eccnt, &ren, &enr»;

/*

for (j = 0; j < MAX; ++j)

printf("line %d: active [%2d] %dO,linenumber,j,active[j]);

*/

if (i != 11) {

printf("Invalid data format on line %dO,linenumber);

printf("Each line must have exactly 11 fieldsO);

printf("Oborting Program executionO);

exit (1);

if (reset)

/* Set the time/address counts and entry/exit counts for all
range recognizers to zero */

for ( i=O; i < MAX; ++i) {

ccount[i] = 0;

ecount[i] = 0;

else if (prg_chip)

program_chip();

else if « (chip_mode == COUNT_ADDR) && valid) II

«chip_mode == TIME_A_RANGE) && en_timer»

accept_data();

else if (ren) { /* Read the required byte of required count from RAM */
if (eccnt)

data2 = (ecount[rrnumber] & (OxFF « (8*enr»);
else

data2 = (ccount[rrnumber]& (OxFF« (8*enr»);

printf("Eccnt = %ld, Byte %ld for RR %2d = %2xO,eccnt,
enr,rrnumber,data2);



65

else (

printf("Invalid data conditions on line %dO, linen umber);

printf("Oborting Program executionO);

exit(l);

printf(" O);

printf ("I RRNumber I Time/Event I Entry/exit 10);

printf ("I I Count I Count 10);
printf ("1 10) ;
for (i = 0; i<MAX; ++i)

if «ccount [i] != 0) II (ecount [i] != 0»

printf("1 %3d I %6d I %6d 10,i,ccount[i],ecount[i]);
}

printf(" O);

program_chip ()

{

if «rrnumber >= MAX) II (rrnumber < 0» (

printf("Invalid rrid %d on line %dO,rrnumber,linenumber);
exit (1) ;

}

else if (!«chip_mode == TIME_A_RANGE) II (chipyode == COUNT_ADDR»)

printf("Invalid chip mode %d on line %dO,chip_mode,linenumber);
exit(l);

else if (limit == UPPER)

upper [rrnumber] = data;

else if (limit == LOWER)

lower [rrnumber] = data;

else (

printf("Invalid limitid %d on line %dO, limit, linenumber);

exit(l);

accept_data ()

{

int i = 0;

for (i=O; i<MAX; ++i) {

if (valid) {

if «data >= lower[i])

++ccount[i];

&& (data <= upper[i]» {

/* increment address/time count */



66

/* if data equals lower

increment entry/exit

procedures */

limit when the range is active,

count. This is for recursive

if «active [i])

++ecount[i];

if (!active[i])

active[i] =

&& (data lower[i]»

1; /* Activate status bit */

else

/* if addr. equals upper limit or out of range, then

end of that range if that range was active */

if « (data < lower[i]) II (data> upper [i]» &&

(active [i]» {

active[i] = 0; /* deactivate status bit */

++ecount[i];

/* If timing a range, then increment count if inside that range i.e.

if the range is active */

else if «!valid) && en timer && (chip_mode

if (active [i])

++ccount[i];



67

APPENDIX B

LIST OF ADG 1.5u CMOS STANDARD CELLS

LEVEL SHIFTERS
--------------

C501

C507

C510

C511

(Q IN)

(Q IN)

(VSS)

(VDD)

TTL to CMOS

TTL to CMOS

GROUND cell

VDD cell

level shifter (non-invert)

level shifter (inverting)

BUFFERS
-------

X10l
5101

(Q Il)
(Q Il)

inverter

inverting buffer - double size

PAD CELLS
--------

C592 (PG NG DOUT) pad output driver (inverting)

C592HV (PG NG DOUT) pad output driver (inverting, 1/2 power)

C592I (PG NG DOUT) pad output driver (non-invert)

C592IHV (PG NG DOUT) pad output driver (non-invert,1/2 power)

C593 (PG NG DOUT CSB) tri-state pad output driver (invert)

C593HV (PG NG DOUT CSB) tri-state pad output driver (invert, 1/2 power)

C5931 (PG NG DOUT CS) tri-state pad output driver (non-invert)

C593IHV (PG NG DOUT CS) tri-state pad output driver (non-invert, 1/2 power)

C920 (PAD) input pad with protection
C920PU (PAD) input pad with protection and pull-up
C920PD (PAD) input pad with protection and pull-down
C920E (PAD) input pad with protection (ECL vers.)
C930 (PAD PGATE NGATE) output pad
C930D (PAD PGATE NGATE) output pad (double-strength)
C930HV (PAD PGATE NGATE) output pad (half-strength)
C930PU (PAD PGATE NGATE) output pad with pull-up
C930PD (PAD PGATE NGATE) output pad with pull-down



68

GATES

SlOlX2 (Q Il) inverting buffer - 2x drive

SlOlX3 (Q Il) inverting buffer - 3x drive

SlOlX4 (Q Il) inverting buffer - 4x drive
ZlOl (Q Il) non-inverting buffer - double size

ZlOlX2 (Q Il) non-inverting buffer - 2x drive

ZlOlX4 (Q Il) non-inverting buffer - 4x drive

DLY2X (Q Il) delay cell (2 inverters)

DLY4X (QIl ) delay cell (4 inverters)

DLY8X (Q Il) delay cell (8 inverters)

CS19 (NQ DIS IN) tristate buffer (inverting)

CS20 (Q DIS IN) fast tristate buffer (non-inverting)

BUFSUS (NODE) tristate bus line sustainer

X102 (Q Il I2) 2 input nor

X102X2 (Q Il I2) 2 input nor, 2x drive

X102X3 (Q Il I2) 2 input nor, 3x drive

X102X4 (Q Il I2) 2 input nor, 4x drive

X103 (Q Il I2 I3) 3 input nor

X104 (Q Il I2 I3 I4) 4 input nor

X10S (Q Il I2 I3 I4 IS) S input nor

X106 (Q Il I2 I3 I4 IS I6) 6 input nor
X107 (Q Il I2 I3 I4 IS I6 I7) 7 input nor

X108 (Q Il I2 I3 I4 IS I6 I7 I8) 8 input nor

X162 (Q Il I2) 2 input nand
X162X2 (Q Il I2) 2 input nand, 2x drive

X162X4 (Q Il I2) 2 input nand, 4x drive

X162X6 (Q Il I2) 2 input nand, 6x drive

X163 (Q Il I2 I3) 3 input nand
X164 (Q Il I2 I3 I4) 4 input nand
X16S (Q Il I2 I3 I4 IS) S input nand
X166 (Q Il I2 I3 I4 IS I6) 6 input nand
X167 (Q Il I2 I3 I4 IS I6 I7) 7 input nand
X168 (Q Il I2 I3 I4 IS I6 I7 I8) 8 input nand

X402 (Q Il I2) 2 input and
X402X2 (Q Il I2) 2 input and, 2x drive
X402X4 (Q Il I2) 2 input and, 4x drive

X403 (Q Il I2 I3) 3 input and



DATA LATCHES
------------

TTLLAT

X318

X318X2

X319

X320

X321

X322

X322W4
X322W8

X323

(NQ EN D)

(Q NQ EN D)

(Q NQ EN D)

(Q NQ QT EN D DIS)

(Q NQ EN D NR)

(Q NQ QQ EN D NR)

(Q NQ EN D)

(QO..Q3 NQO..NQ3,

(QO. .Q7 NQO. .NQ7,

(Q NQ EN D NR)

FLIP FLOPS
----------

d-latch, TTL-level input
d-latch

d-latch, 2x drive
d-latch with tri-state

d-latch with Reset

d-latch with Nand

d-latch

DO. .D3 EN)

DO. .D7 EN)

d-latch

4-bit d-latch

8-bit d-latch

with Reset

X351 (Q NQ CK D)

X351W4 (QO..Q3 NQO..NQ3 CK DO..D3)

X351W5 (QO..Q4NQO..NQ4 CK DO..D4)

X351DY (Q NQ CK D)

X351DYW4 (QO..Q3 NQO..NQ3 CK DO..D3)

X351DYW8 (QO..Q7 NQO..NQ7 CK DO..D7)

X352 (Q NQ CK D NR)

X352W4 (QO..Q3 NQO..NQ3 CK DO..D3 NR)

X353 (Q NQ CK D NS)

X354 (Q NQ CK D NR NS)

(low enable)

(low enable)

(low enable)

(low enable)

(low enable)

(low enable)

(high enable)

(high enable)

(high enable)

(high enable)

D-FF

4-bit D-FF

4-bit D-FF

dynamic D-FF

4-bit dynamic D-FF

8-bit dynamic' D-FF

D-FF with Reset

4-bit D-FF with Reset

D-FF with Set

D-FF with Reset and Set

(neg

(neg

(neg

(neg

(neg

(neg

(neg

(neg

(neg

(neg

edge)

edge)

edge)

edge)

edge)

edge)

edge)

edge)

edge)

edge)

69

X403X2 (Q Il 12 13) 3 input and, 2x drive

X404 (Q Il 12 13 14) 4 input and

X404X2 (Q Il 12 13 14) 4 input and, 2x drive

X405 (Q 11 12 13 14 15) 5 input and

X406 (Q 11 12 13 14 15 16) 6 input and

X407 (Q 11 12 13 14 15 16 17) 7 input and

X408 (Q 11 12 13 14 15 16 17 18) 8 input and

X432 (Q Il 12) 2 input or

X433 (Q Il 12 13) 3 input or

X434 (Q Il 12 13 14) 4 input or
X435 (Q 11 12 13 14 15) 5 input or

X436 (Q 11 12 13 14 IS 16) 6 input or
X437 (Q 11 12 13 14 IS 16 17) 7 input or
X438 (Q 11 12 13 14 15 16 17 18) 8 input or



70

X361 (Q NQ CK D)

X361W4 (QO..Q3 NQO..NQ3 DO..D3 CK)

X361DY (Q NQ CK D)

X361DYW3 (QO..Q2 NQO..NQ2

X361DYW4 (QO..Q3 NQO..NQ3

X361DYW5 (QO..Q4 NQO..NQ4

X362 (Q NQ CK D NR)

X362X2 (Q NQ CK D NR)

X364 (Q NQ CK D NR NS)

DO. .D2 CK)

DO. .D3 CK)

DO. .D4 CK)

D-FF
4-bit D-FF

dynamic D-FF

3-bit dynamic D-FF

4-bit dynamic D-FF

5-bit dynamic D-FF

D-FF with Reset

D-FF with Reset,2x drive

D-FF with Reset and Set

(pos

(pos

(pos

(pos

(pos

.(pos

(pos

(pos

(pos

edge)

edge)

edge)

edge)

edge)

edge)

edge)

edge)

edge)

X371 (Q NQ CK J K)

X372 (Q NQ CK J K NR)

X374 (Q NQ CK J K NR NS)

JK-FF

JK-FF with Reset

JK-FF with Reset and Set

(neg

(neg

(neg

edge)

edge)

edge)

(Q NQ CK A B SELA NR).

(Q NQ CK A B SELA NS)

2 input FF

AO..A3 BO..B3 SELA)

4-bit 2 input FF

AD. .A4 BO. .B4 SELA)

5-bit 2 input FF

2 input dynamic FF

BO. .B3 SELA)

2 input dynamic FF(neg edge)

2 input FF with Reset (neg

2 input FF with Set (neg

(neg edge)X381 (Q NQ CK A B SELA )

X381W4 (QO..Q3 NQO..NQ3 CK
(neg edge)

X381W5 (QO..Q4 NQO..NQ4 CK

X381DY (Q NQ CK A B SELA)

x381DYW4 (QO..Q3 NQO..NQ3 CK AO..A3
4-bit

(neg edge)

(neg edge)

X382

X383

edge)

edge)

DECODERS & COMPLEX GATES
------------------------

X412 (QO Q1 Q2 Q3 X Y)

X413 (QO Q1 Q2 Q3 X Y DIS)

X414ND (Q 10 11 12 13 X Y )

X414 (Q 10 11 12 13 X Y DIS)

X415 (Q A B SELA)

X416 (Q A B SELA)

X417 (QO Q1 Q2 Q3 X YEN)

2 to 4 line DECODER

2 to 4 line DECODER w/Disable (X=LSB)

1 of 4 DATA SELECTOR (X=LSB)

1 of 4 DATA SELECTOR w/Disable (X=LSB)

inverting 1 of 2 DATA SELECTOR

1 of 2 DATA SELECTOR

2 to 4 line DECODER with En (X=LSB)

X641 (Q NQ CK D NWE) D-FF with Hold (neg edge)

X641W4 (QO. .Q3 NQO. .NQ3 CK DO. .D3 NWE)

4-bit D-FF with Hold (neg edge)

X691 (Q NQ CK D NWE SD NSS) D-FF with Scan and Hold (neg edge)

X692 (Q NQ CK D NWE SD NSS NR) D-FF with Scan, Hold and Reset (neg edge)

X693 (Q NQ CK D NWE SD NSS NS) D-FF with Scan, Hold and Set (neg edge)



NAND of 1 2-input OR && 1-Input

NAND of 2 2-input OR gates

NAND of 3 2-input OR gates

NOR of 2 2-input AND gates

NOR of 3 2-input AND gates

NOR of 1 2-input AND && 1-Input

AND of 2 2-input OR gates

AND of 3 2-input OR gates

OR of 2 2-input-AND gates

OR of 3 2-input-AND gates

OR of 4-3-2-1 input AND

X592 (SO Sl CO AO BO A1 B1 CIN) 2-bit ADDER

X592N (NSO NS1 CO AO BO A1 B1 CIN) 2-bit ADDER (inverted outputs)

X594 (SO Sl S2 S3 CO AO BO A1 B1 A2 B2 A3 B3 CIN)

4-bit ADDER

X594N (NSO NS1 NS2 NS3 CO AO BO A1 B1 A2 B2 A3 B3 CIN)

71

X418W4 (QO Q1 Q2 Q3 AO BO A1 B1 A2 B2 A3 B3 SELB)

inverting 4 of 8 DATA SELECTOR

X419W4 (QO Q1 Q2 Q3 AO BO A1 B1 A2 B2 A3 B3 SELB DIS)

inverting4 of 8 DATA SELECTOR w/Disable

X422 (Q A B C) 3-Input Majority Gate

X452 (Q A B SELA) inverting1 of 2 DATA SELECTOR
X453 (Q ABC SA SB SC) inverting1 of 3 DATA SELECTOR
X454 (Q ABC D SA SB SC SD) inverting1 of 4 DATA SELECTOR
X455 (Q ABC D E SA SB SC SD SE)

inverting1 of 5 DATA SELECTOR
X456 (Q ABC D E F SA SB SC SD SE SF)

inverting1 of 6 DATA SELECTOR

X113 (Q BI1 BI2 A1)

X114 (Q A1 B1 A2 B2)
X116 (Q A1 B1 A2 B2 A3 B3)
X124 (Q A1 B1 A2 B2)

X126 (Q A1 B1 A2 B2 A3 B3)

X133 (Q A1 B1 I)

Z114 (Q A1 B1 A2 B2)
Z116 (Q A1 B1 A2 B2 A3 B3)
Z124 (Q A1 B1 A2 B2)

Z126 (Q A1 B1 A2 B2 A3 B3)
GTGEN4

(Q G3 E3 G2 E2 G1 E1 GO)

ARITHMETICFUNCTIONS
--------------------

X136 (SO Sl CO AO AO CIN) 2-bit INCREMENTER (SO MSB)

X137 (SO..S3 CO AO..A3 CIN) 4-bit INCREMENTER (SO MSB)

X137F (SO..S3 CO AO..A3 CIN) Fast 4-bit INCREMENTER (SO MSB)

X138 (SO..S7 CO AO..A7 CIN) 8-bit INCREMENTER (SO MSB)

X139 (SO Sl CO AO A1 CIN) 2-bit DECREMENTER (SO MSB)

X420 (Q I1 I2) EXCLUSIVE OR

X421 (Q I1 I2) EXCLUSIVE NOR



72

4-bit ADDER (inverted outputs)

MUL12X12 (PO..P23 NXO..NX11 YO..Y11 )

12-bit signed multiplier

MUL16X16 (PO..P31 NXO..NX1S YO..Y1S SGNDX SGNDY NSTDBY)

16-bit signed/unsigned multiplier

RAMs

LIST OF ADG 1.Su CMOS MACRO CELLS

These macros are distributed in the file cmos1Smc. It is important

to note that these macros are provided as application examples for
the convenience of our customers. Final netlists submitted to ADG

must be flattened to the standard cell level. Netlists so flattened

will contain NO macros.

PAD Macros
----------

IPADI (DIN, PAD)

IPADT (DIN, PAD)

OPADI (PAD, DOUT)

OPADIHV 1/2

(PAD, DOUT)

OPADT (PAD, DOUT)

OPADTHV 1/2

(PAD, DOUT)

TSPADI (PAD, DOUT CSB)

invertingTTL input pad macro
non-invertingTTL input pad macro
inverting TTL/CMOS output pad macro

power,

inverting TTL/CMOS output pad macro

non-invert. TTL/CMOS output pad macro

power,

non-invert. TTL/CMOS output pad macro

inverting TTL/CMOS tristate output

pad macro with disable
TSPADIHV 1/2

(PAD, DOUT CSB)
power,

inverting

pad
TTL/CMOS tristate output

macro with disable

CS2S ( DOUT RDO..RD3 DIN WRO..WR3 ) 4 word x 1 bit

CS2SF ( DOUT RDO..RD3 DIN WRO. .WR3 ) faster, higher power version

CS27 ( DOUT RDO..RD7DIN WRO..WR7 ) 8 word x 1 bit

CS27F ( DOUT RDO..RD7DIN WRO..WR7 ) faster, higher power version

CS33 ( DOUT RDO..RD1SDIN WRO..WR1S ) 16 word x 1 bit

CS33F ( DOUT RDO..RD1SDIN WRO..WR1S ) faster, higher power version



73

TSPADT (PAD, DOUT CSB) non-invert. TTL/CMOS tristate output

pad macro with disable

TSPADTHV 1/2 power,

(PAD, DOUT CSB) non-invert. TTL/CMOS tristate output

pad macro with disable



CIRCUIT WIREC

; The input pads

padlimit plimit,limit IPADT

padstrb pstrb, strb IPADT

padprgc pprg_chip, prg_chip

padnr pnr, nr IPADT

padvalid pvalid,valid IPADT

padtimer pen_timer, en_timer

padcm pchip_mode, chip_mode

74

APPENDIX C

IPADT

IPADT
IPADT

padcka pck, ck IPADT

The input pads for input data. These pads have inverting buffers so
data is inverted.

pada31 pa31, a31 IPADI

pada30 pa30, a30 IPADI

pada29 pa29, a29 IPADI

pada28 pa28, a28 IPADI

pada27 pa27, a27 IPADI

pada26 pa26, a26 IPADI

pada25 pa25, a25 IPADI

pada24 pa24, a24 IPADI

pada23 pa23, a23 IPADI

pada22 pa22, a22 IPADI

pada21 pa21, a21 IPADI

pada,20 pa20, a20 IPADI

pada19 pa19, a19 IPADI

pada18 pa18, a18 IPADI

pada17 pa17, a17 IPADI

pada16 pa16, a16 IPADI

pada15 pa15, a15 IPADI

pada14 pa14, a14 IPADI

pada13 pa13, a13 IPADI



pada12
padall
padalO
pada9
pada8

pada7

pada6

padaS

pada4

pada3

pada2

padal

padaO

padd3

padd2

paddl

paddO

75

pa12, a12

pall, all

palO, alO

a9 IPADI

a8 IPADI

pa9,

pa8,

pa7, a7

pa6, a6

paS, as

pa4, a4

pa3, a3

pa2, a2

pal, al

paO, aO

pd3, d3

pd2, d2

pdl, dl

pd~, dO

IPADI

IPADI

IPADI

IPADI

IPADI

IPADI

IPADI

IPADI

IPADT

IPADT

IPADT

IPADT

IPADI

IPADI

IPADI

; Inverting Buffers to drive output of pa3l-paO into the latches and ffs

bufa3l

bufa30

bufa29

bufa28

bufa27

bufa26

bufa2S

bufa24

bufa23

bufa22

bufa2l

bufa20

bufa19

bufa18

bufa17

bufa16

bufalS

bufa14

bufa13

bufa12

bufall

bufalO

bufa9 b9,

b3l,
b30,
b29,
b28,
b27,
b26,
b2S,
b24,

b23,
b22,
b2l,
b20,
b19,
b18,
b17,
b16,

pa3l

pa30

pa29

pa28

pa27

pa26

pa2S

pa24

pa23

pa22

pa2l

pa20

pa19

pa18

pa17

pa16

blS, palS

b14, pa14

bl3, pal3

b12, pa12

bll, pall

blO, palO

pa9 SlOlX2

SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2

SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2

SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2
SlOlX2



76

bufa8 b8, pa8 SlOlX2

bufa7 b7, pa7 SlOlX2

bufa6 b6, pa6 SlOlX2

bufa5 b5, pa5 SlOlX2
bufa4 b4, pa4 SlOlX2

bufa3 b3, pa3 SlOlX2

bufa2 b2, pa2 SlOlX2

bufal bl, pal SlOlX2

bufaO bO, paO SlOlX2

; build the clock buffer

ekbufp eka, pek ZlOl
ekbufa ekl, eka ZlOl

ekbufb ekl, eka ZlOl

ekbufe ekl, eka ZlOl

ekbufd ekl, eka ZlOl

ekbufl elk, ekl ZlOl

ekbuf2 elk, ekl ZlOl

ekbuf3 elk, ekl ZlOl

ekbuf4 elk, ekl ZlOl

ekbuf5 elk, ekl ZlOl

ekbuf6 elk, ekl ZlOl

ekbuf7 elk, ekl ZlOl

ekbuf8 elk, ekl ZlOl

ekbuf9 elk, ekl ZlOl

ekbuflO elk, ekl ZlOl

ekbufll elk, ekl ZlOl

ekbuf12 elk, ekl ZlOl
ekbuf13 elk, ekl ZlOl
ekbuf14 elk, ekl ZlOl
ekbuf15 elk, ekl ZlOl
ekbuf16 elk, ekl ZlOl

ekbuf17 elk, ekl ZlOl
ekbuf18 elk, ekl ZlOl

ekbuf19 elk, ekl ZlOl
ekbuf20 elk, ekl ZlOl

ekbuf2l elk, ekl ZlOl
ekbuf22 elk, ekl ZlOl

ekbuf23 elk, ekl ZlOl
ekbuf24 elk, ekl ZlOl
ekbuf25 elk, ekl ZlOl
ekbuf26 elk, ekl ZlOl
ekbuf27 elk, ekl ZlOl
ekbuf28 elk, ekl ZlOl



77

wiclk1

wiclk2

ck1

clk

WIREOR: ci=1/4 ; split capacitance on the node between 4 Z101s

WIREOR: ci=1/28 ; split capacitance on the node between 28 Z101

; The flip-flop to capture and generate the reset signal

ffreset nr.3 nr.2 nr.1 * * * * nr.O, clk nr.2 nr.1 nr.O pnr X351W4

; Buffer to drive the reset signal into each compare block

rstbuf bnr.3, nr.3 Z101X4

; Generate upper or lower limit programming signals

bufl blimit, plimit Z101
invl bnlimit, plimit X101

bustrba

bustrbb
strba, pstrb ZlOlX4

strbb, pstrb Z10lX4

; The decoder tree for programming the latches of each range

decodeu decodeO decodel decode2 decode3, pd2 pd3 pprg_chip X417

decode1

decode2

decode3
decode4

prg_latO prg_lat1 prg_lat2 prg_lat3, pd~ pd1 decodeO X417

prg_lat4 prg_lat5 prg_lat6 prg_lat7, pd~ pd1 decode1 X417

prg_lat8 prg_lat9 prg_latlO prg_lat11, pd~ pd1 decode2 X417

prg_latl2 prg_latl3 prg_lat14 prg_lat15, pd~ pd1 decode3 X417

Delay the valid and en_timer signals to synchronize data with these

signals

dlyvalid dvalid, pvalid dly4x

dlytimer1 den_timer, pen_timer dly4x

; Timer enable-disable, valid, chip_mode ffs

ffvalid valid.1 valid.O en_timer.1 en_timer.O nvalid.1 $

nvalid.O nen_timer.l nen_timer.O, clk $
valid.O dvalid en timer.O den timer bnr.3 X352W4- -

fftimer en_timer.2 nen_timer.2, clk en_timer.1 bnr.3 X352

ffcm chip_mode.3 nchip_mode.3, clk pchip_mode bnr.3 X352

; Buffers to drive the chip_mode, en_timer and valid signals



78

bufvalid bvalid, valid.l ZlOlX2

bufcm bchip_mode, chip_mode.3 ZlOlX2

bufncm bnchip_mode, nchip_mode.3 ZlOlX2

bufnent bnen_timer, nen_timer.2 ZlOlX2

; The range recognizers

rrO rrO.ccout rrO.ecout g7 g6 g5 g4 g3 g2 gl gO $
b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_latO strba clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 reeO reeO nnO beecnt compare

rrl rrl.ccout rrl.ecout g7 g6 g5 g4 g3 g2 gl gO $
b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll bIO b9 b8 b7 b6 b5 b4 b3 b2 bI bO $

blimit bnlimit prg_latl strba clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 reel recl nnl beeent compare

rr2 rr2.ccout rr2.eeout g7 g6 g5 g4 g3 g2 gl gO $
b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat2 strba clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rce2 rec2 nn2 beccnt compare

rr3 rr3.ccout rr3.ecout g7 g6 g5 g4 g3 g2 gl gO $
b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat3 strba clk bnen_timer bvalid $

behip_mode bnchip_mode bnr.3 rce3 rec3 nn3 beccnt compare

rr4 rr4.ccout rr4.eeout g7 g6 g5 g4 g3 g2 gl gO $

b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat4 strba clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rce4 ree4 nn4 beeent compare

rr5 rr5.ecout rr5.eeout g7 g6 g5 g4 g3 g2 gl gO $

b3I b30 b29 b28 b27 b26 b25 b24 b23 b22 b2I b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat5 strba elk bnen_timer bvalid $

behip_mode bnchip_mode bnr.3 ree5 ree5 nn5 beeent compare

rr6 rr6.ceout rr6.eeout g7 g6 g5 g4 g3 g2 gl gO $

b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll bIO b9 b8 b7 b6 b5 b4 b3 b2 bI bO $

blimit bnlimit prg_lat6 strba elk bnen_timer bvalid $



79

bchip_mode bnchip_mode bnr.3 rcc6 rec6 nn6 beccnt compare

rr7 rr7.ccout rr7.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat7 strba clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcc7 rec7 nn7 beccnt compare

rr8 rr8.ccout rr8.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat8 strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcc8 rec8 nn8 beccnt compare

rr9 rr9.ccout rr9.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat9 strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcc9 rec9 nn9 beccnt compare

rrlO rrlO.ccout rrlO.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnl~it prg_latlO strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcclO reclO nnlO beccnt compare

rrll rrll.ccout rrll.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_latll strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rccll recll nnll beccnt compare

rr12 rr12.ccout rr12.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnlimit prg_lat12 strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcc12 rec12 nn12 beccnt compare

rr13 rr13.ccout rr13.ecout g7 g6 g5 g4g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $

blimit bnl~it prg_lat13 strbb clk bnen_timer bvalid $

bchip_mode bnchip_mode bnr.3 rcc13 rec13 nn13 beccnt compare

rr14 rr14.ccout rr14.ecout g7 g6 g5 g4 g3 g2 gl gO $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 $

b16 b15 b14 b13 b12 bll blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO $



80

blimit bnlimit prg_lat14 strbb elk bnen_timer bvalid $

behip_mode bnehip_mode bnr.3 ree14 ree14 nn14 beeent compare

rrlS rrlS.eeout rrlS.eeout g7 g6 gS g4 g3 g2 gl gO $

b3l b30 b29 b28 b27 b26 b2S b24 b23 b22 b2l b20 b19 b18 b17 $

b16 blS b14 b13 b12 bll blO b9 b8 b7 b6 bS b4 b3 b2 b1 bO $

blimit bnlimit prg_latlS strbb elk bnen_timer bvalid $

behip_mode bnehip_mode bnr.3 reelS reelS nnlS beeent compare

Generate the 40ns clock from the master clock by divide by 4 circuit

ffl elk2 nelk2, elk nelk2 bnr.3 x3S2

ff2 elk40 nelk40, elk2 nelk40 bnr.3 x3S2

bufnelk nelk4, nelk40 Z10l

bufelkl elk4, elk40 ZlOlX4

bufelk2 elk4, elk40 Z101X4

wielk4 elk4 WIREOR : ei = 1/2

; Input flipflops which trap the carry from comparators

ffee4 ee3 ee2 eel ceO nee3 nee2 neel neeO, elk4 $

rr3.eeout rr2.eeout rrl.eeout rrO.eeout X3S1W4

ffee8 ee7 ee6 eeS ee4 nee7 nee6 neeS nee4, elk4 $
rr7.eeout rr6.eeout rrS.eeout rr4.eeout X3S1W4

ffee12 cell eelO ee9 ee8 neell neelO nee9 nee8, elk4 $

rrll.eeout rrlO.eeout rr9.eeout rr8.eeout X3S1W4

ffee16 eelS ee14 ee13 ee12 nee1S nee14 nee13 nee12, elk4 $
rrlS.eeout rr14.eeout rr13.eeout rr12.eeout X3S1W4

ffee4 ee3 ee2 eel eeO nee3 nee2 nee1 neeO, elk4 $

rr3.eeout rr2.eeout rr1.eeout rrO.eeout X3S1W4

ffee8 ee7 ee6 eeS ee4 nee7 nee6 neeS nee4, elk4 $

rr7.eeout rr6.eeout rrS.eeout rr4.eeout X3S1W4

ffee12 eell ee10 ee9 ee8 neel1 nee10 nee9 nee8, elk4 $

rr11.eeout rrlO.eeout rr9.eeout rr8.eeout X3S1W4

ffee16 eelS ee14 ee13 ee12 neelS nee14 nee13 nee12, elk4 $

rr1S.eeout rr14.eeout rr13.eeout rr12.eeout X3S1W4

; Take data from pads and generate enr/enw signals

padent

padren

padwen

padstb2
invenr

invenw

peeent, eeent IPADT

pren, ren IPADT

pwen, wen IPADT

pstrb2, strb2 IPADT

nenr, pren S101

nenw, pwen X10l



81

andccenr ccenr, neccnt pren X402X2

andccenw ccbenw, neccnt pprg_chip pwen X403

andccenw2. ccenw2, neccnt pprg_chip pstrb2 X403X2

bufccenw ccenw, ccbenw Z101X2

andecenr ecenr, beccnt pren X402X2

andecenw ecbenw, beccnt pprg_chip pwen X403

andecenw2 ecenw2, beccnt pprg_chip pstrb2 X403X2

bufecenw ecenw, ecbenw Z101X2

; pads to input the signals to decide which bits of RAM to read

padrwO

padrw1

padrw2

penrO,

penr1,

penr2,

enrO IPADT

enr1 IPADT

enr2 IPADT

; Generate inverts of originals

invenrO

invenr1

invenr2

nenrO, penrO X101

nenr1, penrl X101

nenr2, penr2 X101

; Decode the input signals to six seperate signals

decodenr

andrd4

andrd5

rdO rd1 rd2 rd3, penrO penr1 nenr2

rd4, penr2 nenr1 nenrO X403

rd5, penr2 nenr1 penrO X403

X417

; pads to input read address

padrnO pmO, mO IPADT

padrn1 pm1, ml IPADT

padm2 pm2, m2 IPADT

padrn3 pm3, m3 IPADT

input read signals to read RAM

; A decoder decodes 4 bits to 16

; MUX which feeds the RAM

after incrementing is over

bits which are then fed to the read

decodem5 selO sell sel2 sel3, pm2 pm3 pprg_chip X417

Rest of the decoding tree

bufeccntl beccnt, peccnt ZlOlX4

bufeccnt2 beccnt, peccnt ZlOlX4
inveccnt neccnt, beccnt X10l

wibeccnt beccnt WlREOR: ci=1/2



82

deeodem4

deeodem3

deeodem2

deeodem1

n12 n13 n14 n1S, pmO pm1 se13

n8 n9 n10 n11, pmO pm1 se12

n4 nS n6 n7, pmO pm1 sell

nO n1 n2 n3, pmO pm1 selO

X417
X417
X417
X417

; Invert the output of the decoders

rameent j8 j9 j10 j11 j12 j13 j14 j1S j16 j17 j18 j19 j20 j21 j22 j23 $

j24 j2S j26 j27 j28 j29 j30 j31 nj32 nj33 nj34 nj3S nj36 nj37 $

nj38 nj39 nj40 nj41 nj42 nj43 nj44 nj4S nj46 nj47, $
eeenr eeenw elk4 nelk4 eeenw2 $

ceO eel ee2 ee3 ee4 eeS ee6 ee7 ee8 ee9 ee10 cell ee12 ee13 $

ee14 eelS neeO nee1 nee2 nee3 nee4 neeS nee6 nee7 nee8 nee9 $

nee10 nee11 nee12 nee13 nee14 nee1S $

; The RAM circuit for entry/exit count

rameent k8 k9 k10 k11 k12 k13 k14 k1S k16 k17 k18 k19 k20 k21 k22 k23 $

k24 k2S k26 k27 k28 k29 k30 k31, $

invnO nnO, nO S101X2

invn1 nn1, n1 S101X2

invn2 nn2, n2 S101X2

invn3 nn3, n3 S101X2

invn4 nn4, n4 S101X2

invnS nnS, nS S101X2

invn6 nn6, n6 S101X2

invn7 nn7, n7 S101X2

invn8 nn8, n8 S101X2

invn9 nn9, n9 S101X2

invn10 nn10, n10 S101X2

invn11 nn11, nll S101X2

invn12 nn12, n12 S101X2

invn13 nn13, n13 S101X2

invn14 nn14, n14 SlOlX2

invnIS nn1S, n1S S101X2

; The RAM circuit for address/time count

reeO reel ree2 ree3 ree4 reeS ree6 ree7 ree8 ree9 $

ree10 ree11 ree12 ree13 ree14 reelS $

nnO nn1 nn2 nn3 nn4 nnS nn6 nn7 nn8 nn9 nn10 nn11 nn12 nn13 $

nn14 nn1S eO e1 e2 e3 e4 eS e6 e7 $

paO pal pa2 pa3 pa4 paS pa6 pa7 pa8 pa9 palO pall pa12 pa13 $

pa14 palS pa16 pa17 pa18 pa19 pa20 pa21 pa22 pa23 pa24 pa2S $

pa26 pa27 pa28 pa29 pa30 pa31 wr32 wr33 wr34 wr3S wr36 wr37 $
wr38 wr39 ram40



83

nn14 nn15 gO gl g2 g3 g4 g5 g6 g7 $

paO pal pa2 pa3 pa4 paS pa6 pa7 pa8 pa9

pa14 palS pa16 pa17 pa18 pa19 pa20 pa2l

palO pall pa12 pa13 $

pa22 pa23 ram24

; Mux to select the exit count or the time count bits to be driven out

; Muxes to select which bit of the count to be driven out

ecenr ecenw clk4 nclk4 ecenw2 $

ecO eel ec2 ec3 ec4 ec5 ec6 ec7 ec8 ec9 eclO ecll ec12 ec13 $

ec14 eelS necO necl nec2 nec3 nec4 nec5 nec6 nec7 nec8 nec9 $

neclO necll nec12 nec13 nec14 nec15 $

recO reel rec2 rec3 rec4 rec5 rec6 rec7 rec8 rec9 $

reclO recll rec12 rec13 rec14 reelS $

nnO nnl nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nnlO nnll nn12 nn13 $

muxeccnt12 111 110 19 18, jll kll jlO klO j9 k9 j8 k8 beccnt X4l8W4

muxeccnt16 115 114 113 112, j15 k15 j14 k14 j13 k13 j12 k12 $

beccnt X4l8W4

muxeccnt20 119 118 117 116, j19 k19 j18 k18 j17 k17 j16 k16 $

beccnt X4l8W4

muxeccnt24 123 122 121 120, j23 k23 j22 k22 j2l k2l j20 k20 $

be cent X4l8W4

muxeccnt28 127 126 125 124, j27 k27 j26 k26 j25 k25 j24 k24 $

beccnt X4l8W4

muxeccnt32 131 130 129 128, j3l k3l j30 k30 j29 k29 j28 k28 $

be cent X4l8W4

muxO 10, gO 18 116 124 nj32 nj40 rdO rdl rd2 rd3 rd4 rd5 X456
muxl 11, gl 19 117 125 nj33 nj4l rdO rdl rd2 rd3 rd4 rd5 X456
mux2 12, g2 110 118 126 nj34 nj42 rdO rdl rd2 rd3 rd4 rd5 X456
mux3 13, g3 III 119 127 nj35 nj43 rdO rdl rd2 rd3 rd4 rd5 X456
mux4 14, g4 112 120 128 nj36 nj44 rdO rdl rd2 rd3 rd4 rd5 X456
mux5 15, g5 113 121 129 nj37 nj45 rdO rdl rd2 rd3 rd4 rd5 X456
mux6 16, g6 114 122 130 nj38 nj46 rdO rdl rd2 rd3 rd4 rds X4s6
mux7 17, g7 115 123 131 nj39 nj47 rdO rdl rd2 rd3 rd4 rds X4s6

Bidirectional pad cells to drive data from read ports out of the

chip and drive write data form RAM into the chip

iopadO wr32 cO, nenw 10 nenr iopad

iopadl wr33 cl, nenw 11 nenr iopad

iopad2 wr34 c2, nenw.12 nenr iopad
iopad3 wr3s c3, nenw 13 nenr iopad

iopad4 wr36 c4, nenw 14 nenr iopad
iopads wr37 cs, nenw 15 nenr iopad

iopad6 wr38 c6, nenw 16 nenr iopad

iopad7 wr39 c7, nenw 17 nenr iopad



84

; Drive the 40ns clock out to provide synchronization with data

clkpad pck4, clk4 OPADI

MODEL compare subckt: nodes = ( cntcout.s exitcout.s m7 m6 ms m4 m3 m2 $

m1 mO, $
a31 a30 a29 a28 a27 a26 a25 a24 a23 $

a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 all a10 a9 a8 a7 $

a6 a5 a4 a3 a2 a1 aO limit nlimit prg_lat strb ck nen_timer $

valid chip_mode nchip_mode nr rccout recout nenr eccnt )

Regenerate the reset signal

rstbuf bnr, nr Z101

; Generate upper or lower limit programming signals

andll llimit, prg_lat nlimit strb X403X2

andul ulimit, prg_lat limit strb X403X2

The upper and lower limit registers. The latches are written into

; when the llimit or ulimit signal is high.

reg3211 1131 1130 1129 1128 1127 1126 1125 1124 nl131 $

nl130 nl129 nl128 nl127 nl126 nl12s nl124, a31 a30 $
a29 a28 a27 a26 a25 a24 llimit X322W8

reg2411 1123 1122 1121 1120 1119 1118 1117 1116 nl123 $

nl122 nl121 nl120 nll19 nll18 nll17 nll16, a23 a22 $
a21 a20 a19 a18 a17 a16 llimit X322W8

reg1611 1115 1114 1113 1112 1111 1110 119 118 nll1s nll14 $

nll13 nll12 nll11 nll10 nl19 nl18, a1s a14 a13 a12 all $
a10 a9 a8 llimit X322W8

reg81l 117 116 115 114 113 112 111 110 nl17 nl16 nlls $
nl14 nl13 nl12 nll1 nllO, a7 a6 a5 a4 a3 a2 a1 aO $
llimit X322W8

reg32ul u131 u130 u129 u128 u127 u126 u12s u124 nu13l $

nu130 nu129 nu128 nu127 nu126 nu12s nu124, a3l a30 $
a29 a28 a27 a26 a2s a24 ulimit X322W8

reg24ul u123 u122 u12l u120 ul19 ull8 ull7 ull6 nu123 $

nu122 nu12l nu120 null9 null8 null7 null6, a23 a22 $
a2l a20 a19 ala al7 a16 ulimit X322wa

regl6ul ulls ul14 ull3 ull2 ul1l ullO u19 u18 nullS null4 $

null3 null2 nulll nullO nu19 nu18, als al4 al3 al2 all $
alO a9 a8 ulimit X322W8

reg8ul u17 u16 uls u14 u13 u12 ull ulO nu17 nu16 nuls $

nu14 nu13 nu12 null nulO, a7 a6 as a4 a3 a2 al aO $



85

u1imit X322W8

Flip-flops to trap the input data bits

reg32b b3l.l b30.l b29.l b28.l nb3l.l nb30.l nb29.l nb28.l $
ck a3l a30 a29 a28 X351W4

reg28b b27.l b26.l b25.l b24.l nb27.l nb26.l nb25.l nb24.l $
ck a27 a26 a25 a24 X351W4

reg24b b23.l b22.l b2l.l b20.l nb23.l nb22.l nb2l.l nb20.l $
ck a23 a22 a2l a20 X351W4

reg20b b19.l b18.l b17.l b16.l nb19.l nb18.l nb17.l nb16.l $
ck a19 a18 a17 a16 X351W4

reg16b b15.l b14.l b13.l b12.l nb15.l nb14.l nb13.l nb12.l $
ck a15 a14 a13 a12 X351W4

reg12b bll.l blO.l b9.l b8.l nbll.l nblO.l nb9.l nb8.l $
ck all alO a9 a8 X351W4

reg8b b7.l b6.l b5.l b4.l nb7.l nb6.l nb5.l nb4.l $
ck a7 a6 as a4 X351W4

reg4b b3.l b2.l bl.l bO.l nb3.l nb2.l nbl.l nbO.l $
ck a3 a2 al aO X351W4

Generate the e (a equal b) and g (a gt b) signals for comparison

cmp32a.0 e3la.0 g3la.0 e30a.0 g30a.0 e29a.0 g29a.0 e28a.0 g28a.0, $
1131 1130 1129 1128 nl13l nl130 nl129 nl128 b3l.l b30.l b29.l $

b28.l nb3l.l nb30.l nb29.l nb28.l gengteq

cmp32b.0 e3lb.0 g3lb.0 e30b.0 g30b.0 e29b.0 g29b.0 e28b.0 g28b.0, $
b3l.l b30.l b29.l b28.l nb3l.l nb30.l nb29.l nb28.l u13l $

u130 u129 u128 nu13l nu130 nu129 nu128 gengteq

cmp28a.0 e27a.0 g27a.0 e26a.0 g26a.0 e25a.0 g25a.0 e24a.0 g24a.0, $
1127 1126 1125 1124 nl127 nl126 nl125 nl124 b27.l b26.l b25.l $

b24.l nb27.l nb26.l nb25.l nb24.l gengteq

cmp28b.0 e27b.0 g27b.0 e26b.0 g26b.0 e25b.0 g25b.0 e24b.0 g24b.0, $
b27.l b26.l b25.l b24.l nb27.l nb26.l nb25.l nb24.l u127 $

u126 u125 u124 nu127 nu126 nu125 nu124 gengteq

cmp24a.0 e23a.0 g23a.0 e22a.0 g22a.0 e2la.0 g2la.0 e20a.0 g20a.0, $
1123 1122 1121 1120 nl123 nl122 nl12l nl120 b23.l b22.l b2l.l $

b20.l nb23.l nb22.l nb2l.l nb20.l gengteq

cmp24b.0 e23b.0 g23b.0 e22b.0 g22b.0 e2lb.0 g2lb.0 e20b.0 g20b.0, $
b23.l b22.l b2l.l b20.l nb23.l nb22.l nb2l.l nb20.l u123 $

u122 u121 u120 nu123 nu122 nu121 nu120 gengteq

cmp20a.0 e19a.0 g19a.0 e18a.0 g18a.0 e17a.0 g17a.0

1119 1118 1117 1116 nl119 nl118 nll17 nll16

b16.1 nb19.l nb18.l nb17.1 nb16.l gengteq

e16a.0 g16a.0, $
b19.1 b18.1 b17.1 $



86

cmp20b.0 e19b.0 g19b.0 e18b.0 g18b.0 e17b.0 g17b.0 e16b.0 g16b.0, $
b19.l b18.l b17.l b16.l nb19.l nb18.l nb17.l nb16.l u1l9 $

u1l8 u1l7 u1l6 nu1l9 nu1l8 nu1l7 nu1l6 gengteq

cmp16a.0 e15a.0 g15a.0 e14a.0 g14a.0 e13a.0 g13a.0 e12a.0 g12a.0, $
1115 1114 1113 1112 n11l5 n11l4 n11l3 n11l2 b15.l b14.l.b13.l $

b12.l nb15.l nb14.l nb13.l nb12.l gengteq

cmp16b.0 e15b.0 g15b.0 e14b.0 g14b.0 e13b.0 g13b.0 e12b.0 g12b.0, $
blS.l b14.l b13.l b12.l nb15.l nb14.l nb13.l nb12.l u1l5 $

u1l4 u1l3 u1l2 nu1l5 nu1l4 nu1l3 nu1l2 gengteq

cmp12a.0 ella.O glla.O elOa.O glOa.O e9a.0 g9a.0 e8a.0 g8a.0, 1111 $
1110 119 118 n11ll n11l0 nl19 nl18 bll.l blO.l b9.l $

b8.l nbll.l nblO.l nb9.l nb8.l gengteq

cmp12b.0 ellb.O gllb.O elOb.O glOb.O e9b.0 g9b.0 e8b.0 g8b.0, bll.l $
blO.l b9.l b8.l nbll.l nblO.l nb9.l nb8.l u1ll u1l0 u19 $

u18 nulll nullO nu19 nu18 gengteq

cmp8a.0 e7a.0 g7a.0 e6a.0 g6a.0 e5a.0 g5a.0 e4a.0 g4a.0, 117 116 $
115 114 nl17 nl16 nl15 n114 b7.l b6.l b5.l b4.l nb7.l $

nb6.l nb5.l nb4.l gengteq

cmp8b.0 e7b.0 g7b.0 e6b.0 g6b.0 e5b.0 g5b.0 e4b.0 g4b.0, b7.l b6.l $
b5.l b4.l nb7.l nb6.l nb5.l nb4.l u17 u16 u15 u14 nu17 $

nu16 nu15 nu14 gengteq

cmp4a.0 e3a.0 g3a.0 e2a.0 g2a.0 ela.O gla.O eOa.O gOa.O, 113 112 $
III 110 nl13 nl12 n11l nllO b3.l b2.l bl.l bO.l nb3.l $

nb2.l nbl.l nbO.l gengteq

cmp4b.0 e3b.0 g3b.0 e2b.0 g2b.0 elb.O glb.O eOb.O gOb.O, b3.l b2.l $
bl.l bO.l nb3.l nb2.l nbl.l nbO.l u13 u12 ull ulO nu13 $

nu12 null nulO gengteq

Feed the e and g signals to the 4 bit comparator (gtgen) cell

and generate a less than b (aleb) signals. Also generate an

; a equal b (aeqb) signal for each four bits by ANDing the e signals
for the individual bits

gteq32a.0 a1eb32.0 aeqb32.0, g3la.0 e3la.0 g30a.0 e30a.0 $

g29a.0 e29a.0 g28a.0 e28a.0 gteq

gteq32b.0 blec32.0 beqc32.0, g3lb.0 e3lb.0 g30b.0 e30b.0 $

g29b.0 e29b.0 g28b.0 e28b.0 gteq

gteq28a.0 aleb28.0 aeqb28.0, g27a.0 e27a.0 g26a.0 e26a.0 $

g25a.0 e25a.0 g24a.0 e24a.0 gteq

gteq28b.0 blec28.0 beqc28.0, g27b.0 e27b.0 g26b.0 e26b.0 $

g25b.0 e25b.0 g24b.0 e24b.0 gteq



ff32lea aleb32.1 aleb28.1 aleb24.1 aleb20.1 I I I I, ck aleb32.0 $
aleb28.0 aleb24.0 aleb20.0 X351W4

ff32leb blec32.1 blec28.1 blec24.1 blec20.1 I I I I, ck blec32.0 $
blec28.0 blec24.0 blec20.0 X351W4

87

gteq24a.O aleb24.0 aeqb24.0, g23a. e23a.O g22a.O e22a.O $

g21a.O e21a.O g20a.O e20a.O gteq

gteq24b.O blec24.0 beqc24.0, g23b.O e23b.O g22b.O e22b.O $

g21b.O e21b.O g20b.O e20b.O gteq

gteq20a.O aleb20.0 aeqb20.0, g19a.O e19a.O g18a.O e18a.O $

g17a.O e17a.O g16a.O e16a.O gteq

gteq20b.O blec20.0 beqc20.0, g19b.O e19b.O g18b.O e18b.O $

g17b.O e17b.O g16b.O e16b.O gteq

gteq16a.O aleb16.0 aeqb16.0, g15a.O e15a.O g14a.O e14a.O $

g13a.O e13a.O g12a.O e12a.O gteq

gteq16b.O blec16.0 beqc16.0, g15b.O e15b.O g14b.O e14b.O $

g13b.O e13b.O g12b.O e12b.O gteq

gteq12a.O aleb12.0 aeqb12.0, glla.O ella.O glOa.O elOa.O $

g9a.O e9a.O g8a.O e8a.O gteq

gteq12b.O blec12.0 beqc12.0, gllb.O ellb.O glOb.O elOb.O $

g9b.O e9b.O g8b.O e8b.O gteq

gteq8a.O aleb8.0 aeqb8.0, g7a.O e7a.O g6a.O e6a.O $

g5a.O e5a.O g4a.O e4a.O gteq

gteq8b.O blec8.0 beqc8.0, g7b.O e7b.O g6b.O e6b.O $

g5b.O e5b.O g4b.O e4b.O gteq

gteq4a.O aleb4.0 aeqb4.0, g3a.O e3a.O g2a.O e2a.O $

gla.O ela.O gOa.O eOa.O gteq

gteq4b.O blec4.0 beqc4.0, g3b.O e3b.O g2b.O e2b.O $

glb.O elb.O gOb.O eOb.O gteq

Trap the first stage aleb and aeqb signals in flip-flops

ff16lea aleb16.1 aleb12.1 aleb8.1 aleb4.1 I * I I, ck aleb16.0 $
aleb12.0 aleb8.0 aleb4.0 X351W4

ff16leb blec16.1blec12.1blec8.1 blec4.1 * I * I, ck blec16.0 $
blec12.0 blec8.0 blec4.0 X351W4

ff32eqa aeqb32.1 aeqb28.1 aeqb24.1 aeqb20.1 I *.* I, ck aeqb32.0 $
aeqb28.0 aeqb24.0 aeqb20.0 X351W4

ff32eqb beqc32.1 beqc28.1 beqc24.1 beqc20.1 I * * I, ck beqc32.0 $
beqc28.0 beqc24.0 beqc20.0 X351W4



88

Feed output of flipflops to second stage gtgen cells.

Do a 6 bit gtgen in this stage

The gtgen'ing of first 4 bits for the previous 16 bits of result

gteq32a aleb32.2 aeqb32.2, aleb32.1 aeqb32.1 aleb28.1 aeqb28.1 $

aleb24.1 aeqb24.1 aleb20.1 aeqb20.1 gteq

gteq32b blec32.2 beqc32.2, blec32.1 beqc32.1 blec28.1 beqc28.1 $

blec24.1 beqc24.1 blec20.1 beqc20.1 gteq

gteq16a aleb16.2 aeqb16.2, aleb16.1 aeqb16.1 aleb12.1 aeqb12.1 $

aleb8.1 aeqb8.1 aleb4.1 aeqb4.1 gteq

gteq16b blec16.2 beqc16.2, blec16.1 beqc16.1 blec12.1 beqc12.1 $

blec8.1 beqc8.1 blec4.1 beqc4.1 gteq

; Trap second level gtgen output in a ff

ffleeq naleb.2 nblec.2 naeqb.2 nbeqc.2 I I I I, ck naleb nblec naeqb $
nbeqc X351W4

Generate the in-range signal

aoil
ao2
oai3
nandl
andO

inrange, naleb.2 naeqb.2 nblec.2 nbeqc.2 Xl24

active, inrange valid.2 nvalid.2 active.3 Zl24

inc, nen_timer nchip_mode chip_mode nvalid.2 Xll4

exitrangel, naeqb.2 inrange Xl62

exitrange, exitrangel active.3 valid.2 X403

; Trap active and exit range signals

ffmisc exitrange.3 valid.2 active.3 inc.3 nexitrange.3 $

nvalid.2 nactive.3 ninc.3, ck exitrange valid $

ff16eqa aeqb16.1 aeqb12.1 aeqb8.1 aeqb4.1 I I I I, ck aeqb16.0 $

aeqb12.0 aeqb8.0 aeqb4.0 X351W4

ff16eqb beqc16.1 beqc12.1 beqc8.1 beqc4.1 I I I I, ck beqc16.0 $

beqc12.0 beqc8.0 beqc4.0 X351W4

Do another gtgen with the previous outputs. Thus a 6 bit comparison

is done in this stage

gt32a naleb, aleb16.2 aeqb32.2 aleb32.2 x133

gt32b nblec, blec16.2 beqc32.2 blec32.2 x133

eq32a naeqb, aeqb32.2 aeqb16.2 x162

eq32b nbeqc, beqc32.2 beqc16.2 x162



89

active inc bnr X3s2W4

ffcout cntcout.4 exitcout.4 cntcout.s exitcout.s

nexitcout.4 ncntcout.s nexitcout.s, ck cntcout4

cntcout8l exitcout8l bnr X352W4

ncntcout.4 $

exitcout4 $

Generate increment signal for the time/address count

norcnt cntcin, nactive.3 ninc.3 X102

norcnt2 1, ncntcout.s rccout X102

orl cntcout8l, 1 cntcout8 X432

; Mux the entry-exit and range count bits

; The incrementer and the associated flipflop

ffcnt4 e3 e2 el eO ne3 ne2 nel neO, ck d3 d2 dl dO bnr X3s2W4

incr4 d3 d2 dl dO cntcout4, e3 e2 el eO cntcin X137F

ffcnt8 e7 e6 es e4 ne7 ne6 ne5 ne4, ck d7 d6 ds d4 bnr X3s2W4

incr8 d7 d6 ds d4 cntcout8, e7 e6 es e4 cntcout.4 X137F

; Incrementer for range entry exit

ffrr4 g3 g2 gl gO ng3 ng2 ngl ngO, ck f3 f2 fl fO bnr X3s2W4

incrr4 f3 f2 fl fO exitcout4, g3 g2 gl gO exitrange.3 X137F

ffrr8 g7 g6 gs g4 ng7 ng6 ngs ng4, ck f7 f6 fs f4 bnr X352W4

incrr8 f7 f6 fs f4 exitcout8, g7 g6 gs g4 exitcout.4 X137F

norext2 2, nexitcout.s recout X102

or2 exitcout8l, 2 exitcout8 X432

muxeccnt4 13 12 11 10, ne3 ng3 ne2 ng2 nel ngl neO ngO eccnt X4l8W4

muxeccnt8 17 16 15 14, ne7 ng7 ne6 ng6 nes ngs ne4 ng4 eccnt X4l8W4

; Drive the increment and range entry exit count to tristate buffers

buf17 m7, nenr 17 CS19

buf16 m6, nenr 16 CS19

bufls ms, nenr 15 CS19

buf14 m4, nenr 14 CS19

buf13 m3, nenr 13 CS19

buf12 m2, nenr 12 CS19

bufll ml, nenr 11 Cs19

bufl0 mO, nenr 10 CS19



90

ENDM compare

MODEL gengteq subckt: nodes = (e3 g3 e2 g2 e1 gl eO gO, a3 a2 a1 aO $
na3 na2 na1 naO b3 b2 b1 bO nb3 nb2 nb1 nbO

Aeqout aeqb, e3 e2 e1 eO X404

ENDM gteq

model dly6x subckt: nodes (out, in)

dly2x 1, in DLY2X

dly4x out,l DLY4X

ENDM dly6x

model ram40 subckt: nodes = ( fO f1 f2 f3 f4 fS f6 f7 f8 f9 f10 f11 $

f12 f13 f14 f1S f16 f17 f18 f19 f20 f21 f22 f23 nf24 nf2S nf26 $

nf27 nf28 nf29 nf30 nf31 nf32 nf33 nf34 nf3S nf36 nf37 nf38 $
nf39, enr enw clk4 nclk4 enw2 $

bO b1 b2 b3 b4 bS b6 b7 b8 b9 b10 b11 b12 b13 b14 b1S $

nbO nb1 nb2 nb3 nb4 nbS nb6 nb7 nb8 nb9 nb10 nb11 nb12 nb13 $
nb14 nb1S $

qO q1 q2 q3 q4 qS q6 q7 q8 q9 q10 q11 q12 q13 $
q14 q1S $

XNOR3 e3, na3 nb3 X421

XNOR2 e2, na2 nb2 X421

XNOR1 e1, na1 nb1 X421

XNORO eO, naO nbO X421

N03 g3, a3 nb3 X102

N02 g2, a2 nb2 X102

N01 gl, a1 nb1 X102

NOO gO, aO nbO X102

ENDM gengteq

model gteq subckt: nodes = (aleb aeqb, g3 e3 g2 e2 gl e1 gO eO)

gtgen aleb, g3 e3 g2 e2 gl e1 gO gtgen4



91

nnO nnl nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nnlO nnll nnl2 nnl3 $

nnl4 nnl5 eO el e2 e3 e4 e5 e6 e7 $

wrO wrl wr2 wr3 wr4 wr5 wr6 wr7 wr8 wr9 wrlO wrll wrl2 wrl3 $

wrl4 wrl5 wrl6 wrl7 wrl8 wrl9 wr20 wr2l wr22 wr23 wr24 wr25 $

wr26 wr27 wr28 wr29 wr30 wr3l wr32 wr33 wr34 wr35 wr36 wr37 $

wr38 wr39

; the priority resolver

resolv nql nq2 nq3 nq4 nq5 nq6 nq7 nq8 nq9 $

nqlO nqll nql2 nql3 nql4 nql5 bO bl b2 b3 b4 b5 b6
b9 blO bll bl2 bl3 bl4 bl5 nbO nbl nb2 nb3 nb4 nb5

nb9 nblO nbll nbl2 nbl3 nbl4 nbl5 pri_resolv

b7 b8 $

nb6 nb7 nb8 $

output of priority resolver trapped in flipflops with rising edge

of the clock to take care of the 20ns delay thru the resolv circuit

rff4

rff8

rff12

rffl6

nd3 nd2 ndl ndO q3 q2 ql qO, nclk4 nq3 nq2 nql nbO X35lW4

nd7 nd6 nd5 nd4 q7 q6 q5 q4, nclk4 nq7 nq6 nq5 nq4 X35lW4

ndll ndlO nd9 nd8 qll qlO q9 q8, nclk4 nqll nqlO nq9 nq8 X35lW4

ndl5 ndl4 ndl3 ndl2 ql5 ql4 ql3 ql2, nclk4 nql5 nql4 nql3 nql2 X35lW4

; Mux to drive output of priority resolver or decoder to RAM read ports

muxr4 d3 d2

muxr8 d7 d6

muxrl2

muxrl6

dl dO, nd3 nn3 nd2 nn2 ndl nnl ndO nnO enr X4l8W4

d5 d4, nd7 nn7 nd6 nn6 nd5 nn5 nd4 nn4 enr X4l8W4

dll dlO d9 d8, ndll nnll ndlO nnlO nd9 nn9 nd8 nn8 enr X4l8W4

dl5 dl4 dl3 dl2, ndl5 nnl5 ndl4 nnl4 ndl3 nnl3 ndl2 nnl2 enr $
X4l8W4

; Drive the mux output to the RAM using buffers

bufrdO rdO, dO ZlOlX4

bufrdl rdl, dl ZlOlX4

bufrd2 rd2, d2 ZlOlX4
bufrd3 rd3, d3 ZlOlX4

bufrd4 rd4, d4 ZlOlX4

bufrd5 rd5, d5 ZlOlX4
bufrd6 rd6, d6 ZlOlX4
bufrd7 rd7, d7 ZlOlX4

bufrd8 rd8, d8 ZlOlX4

bufrd9 rd9, d9 ZlOlX4
bufrdlO rdlO, dlO ZlOlX4
bufrdll rdll, dll ZlOlX4



92

bufrd12

bufrd13

bufrd14

bufrdlS

rd12,

rd13,

rd14,

rdlS,

d12 ZlOlX4

d13 ZlOlX4

d14 ZlOlX4

dlS ZlOlX4

; The RAM

bitO doutO rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinO wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bitl doutl rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinl wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit2 dout2 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din2 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit3 dout3 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din3 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit4 dout4 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din4 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bitS doutS rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinS wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bitG doutG rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinG wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit7 dout7 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din7 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit8 dout8 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din8 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit9 dout9 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din9 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $
wdlO wdll wd12 wd13 wd14 wdlS CS33F

bitlO doutlO rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinlO wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bitll doutll rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS dinll wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit12 dout12 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din12 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit13 dout13 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $



rd13 rd14 rd15 din13 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7 wd8

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit14 dout14 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din14 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit15 dout15 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din15 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit16 dout16 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din16 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit17 dout17 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din17 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit18 dout18 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din18 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit19 dout19 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din19 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit20 dout20 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din20 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit21 dout21 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din21 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit22 dout22 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din22 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit23 dout23 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din23 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit24 dout24 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din24 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit25 dout25 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din25 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit26 dout26 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din26 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit27 dout27 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din27 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

bit28 dout28 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO

rd13 rd14 rd15 din28 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7

wdlO wdll wd12 wd13 wd14 wd15 C533F

93

wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $



Delayed clock4 from clk4

delay1 ck4d, clk4 DLY2X

16 input OR gate for trapping the signal for carry-in to be fed to the

incrementer. Set the signal to low when the enr signal is high i.e. the
RAM is being read.

nandl 1, ndO ndl

nand2 2, nd8 nd9

orl 3, 1 2 X432

ffcin cin ncin, clk4 LO 3 enr X381

nd2 nd3 nd4 ndS nd6 nd7 X168

ndl0 nd11 nd12 nd13 nd14 ndlS X168

94

bit29 dout29 rdO rdl rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rdl0 rdll rd12 $

rd13 rd14 rd15 din29 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wd10 wdl1 wd12 wd13 wd14 wdlS CS33F

bit30 dout30 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd15 din30 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd15 CS33F

bit31 dout31 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd1i rd12 $

rd13 rd14 rd15 din31 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd15 CS33F

bit32 dout32 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd1S din32 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd1S C533F

bit33 dout33 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd1S din33 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd1S CS33F

bit34 dout34 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd15 din34 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd1S CS33F

bit3S dout3S rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd15 din35 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd15 CS33F

bit36 dout36 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd15 din36 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd15 CS33F

bit37 dout37 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd15 din37 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wd10 wd11 wd12 wd13 wd14 wd15 CS33F

bit38 dout38 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd1S din38 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $
wd10 wd11 wd12 wd13 wd14 wd1S CS33F

bit39 dout39 rdO rd1 rd2 rd3 rd4 rdS rd6 rd7 rd8 rd9 rd10 rd11 rd12 $

rd13 rd14 rd1S din39 wdO wd1 wd2 wd3 wd4 wdS wd6 wd7 wd8 wd9 $
wd10 wd11 wd12 wd13 wd14 wd15 CS33F



95

; The ff to load RAM data

ramff5 f4 f3 f2 f1 fO I I I I I, clk4 dout4 dout3 dout2 dout1 doutO $
X351W5

rarnff10 f9 f8 f7 f6 f5 I I I I i, clk4 dout9 dout8 dout7 dout6 dout5 $
X351W5

rarnff15 f14 f13

dout11 dout10

rarnff20 f19 f18

dout16 dout15

rarnff25 f24 f23

dout21 dout20

rarnff30 f29 f28

dout28 dout27

rarnff35 f34 f33

dout33 dout32

rarnff40 f39 f38

dout38 dout37

£12 £11

X351W5

£17 £16

X351W5
f22 f21

X351W5

f27 f26 f25 nf29 nf28

dout26 dout25 X351W5

f32 f31 f30 nf34 nf33

dout31 dout30 X351W5

f37 f36 f35 nf39 nf38

dout36 dout35 X351W5

f10 I I I I I, clk4 dout14 dout13 dout12 $

f15 I I I I I, clk4 dout19 dout18 dout17 $

f20 nf24 I I I I, clk4 dout24 dout23 dout22 $

nf27 nf26 nf25, clk4 dout29 $

nf32 nf31 nf30, clk4 dout34 $

nf37 nf36 nf35, clk4 dout39 $

; The incrernenter

inc4

inc8

inc12

inc16

inc20

inc24

inc28

inc32

inc36

inc40

g3 g2 gl gO co4, f3 f2 f1 fO cin X137F

g7 g6 g5 g4 co8, f7 f6 f5 f4 co4 X137F

gll g10 g9 g8 co12, f11 f10 f9 f8 co8 X137F

g15 g14 g13 g12 co16, f15 f14 f13 f12 co12 X137F

g19 g18 g17 g16 co20, f19 f18 f17 f16 co16 X137F

g23 g22 g21 g20 co24, f23 f22 f21 f20 co20 X137F

g27 g26 g25 g24 co28, f27 f26 f25 f24 co24 X137F

g31 g30 g29 g28 co32, f31 f30 f29 f28 co28 X137F

g35 g34 g33 g32 co36, f35 f34 f33 f32 co32 X137F

g39 g38 g37 g36 I, f39 f38 f37 f36 co36 X137F

; Trap output of incrernenter

incff5 I I I I I nh4 nh3 nh2 nh1 nhO, clk4 g4 g3 g2 gl gO X351W5
incf£1O I I I I I nh9 nh8 nh7 nh6 nh5, clk4 g9 g8 g7 g6 g5 X351W5
incf£15 f f I I I nh14 nh13 nh12 nh11 nh10, clk4 g14 g13 g12 g11 g10 $

X351W5

incff20 I I I I I nh19 nh18 nh17 nh16 nh15, clk4 g19 g18 g17 g16 g15 $
X351W5

incff25 I I I I I nh24 nh23 nh22 nh21 nh20, clk4 g24 g23 g22 g21 g20 $
X351W5

incff30 I I f I j nh29 nh28 nh27 nh26 nh25, clk4 g29 g28 g27 g26 g25 $
X351W5

incff35 * * I I * nh34 nh33 nh32 nh31 nh30, clk4 g34 g33 g32 g31 g30 $
X351W5

incff40 * I I I I nh39 nh38 nh37 nh36 nh35, clk4 g39 g38 g37 g36 g35 $



96

X351W5

Mux to feed either output of flipflops or data from outside into the

RAM. Writing into RAM from outside used for testing

mux4 din3 din2 din1 dinO, nh3 wr3 nh2 wr2 nh1 wr1 nhO wrO enw $

X418W4

mux8 din7 din6 din5 din4, nh7 wr7 nh6 wr6 nh5 wr5 nh4 wr4 enw $

X418W4

mux12 din11 din10 din9 din8, nh11 wr11 nh10 wr10 nh9 wr9 nh8 wr8 $

enw X418W4

mux16 din15 din14 din13 din12, nh15 wr15 nh14 wr14 nh13 wr13 nh12 $
wr12 enw X418W4

mux20 din19 din18 din17 din16, nh19 wr19 nh18 wr18 nh17 wr17 nh16 $
wr16 enw X418W4

mux24 din23 din22 din21 din20, nh23 wr23 nh22 wr22 nh21 wr21 nh20 $
wr20 enw X418W4

mux28 din27 din26 din25 din24, nh27 wr27 nh26 wr26 nh25 wr25 nh24 $
wr24 enw X418W4

mux32 din31 din30 din29 din28, nh31 wr31 nh30 wr30 nh29 wr29 nh28 $
wr28 enw X418W4

mux36 din35 din34 din33 din32, nh35 wr35 nh34 wr34 nh33 wr33 nh32 $
wr32 enw X418W4

mux40 din39 din38 din37 din36, nh39 wr39 nh38 wr38 nh37 wr37 nh36 $
wr36 enw X418W4

; Mux to drive output of priority resolver or decoder to RAM read ports

muxw4 w3 w2

muxw8 w7 w6

muxw12

muxw16

w1 wO, p3 nn3 p2 nn2 p1 nn1 pO nnO enw2 X418W4

w5 w4, p7 nn7 p6 nn6 p5 nn5 p4 nn4 enw2 X418W4

w11 w10 w9 w8, p11 nn11 p10 nn10 p9 nn9 p8 nn8 enw2 X418W4

w15 w14 w13 w12, p15 nn15 p14 nn14 p13 nn13 p12 nn12 enw2 X418W4

Flip-flops to capture the data for the write ports of the RAM

Use the delayed clock for these flip-flops so that the write address is

clocked in some time after the read address is clocked in. Thus, the

output of the incrementer can be written into the previous RAM location

while new data can be applied at the read port of the RAM

wff4

wff8

wff12

wff16

p3 p2 p1 pO I I I

p7 p6 p5 p4 I I I

p11 p10 p9 p8 I I

p15 p14 p13 p12 I

I, ck4d nd3 nd2 nd1 ndO X351W4

I, ck4d nd7 nd6 nd5 nd4 X351W4

I I, ck4d nd11 nd10 nd9 nd8 X351W4

I I I, ck4d nd15 nd14 nd13 nd12 X351W4

; Drive the mux output to the RAM write ports using buffers



resolv nql nq2 nq3 nq4 nq5 nq6 nq7 nq8 nq9 $

nqlO nqll nql2 nql3 nql4 nql5 bO bl b2 b3 b4 b5 b6

b9 blO bll bl2 bl3 bl4 bl5 nbO nbl nb2 nb3 nb4 nbS

nb9 nblO nbll nbl2 nbl3 nbl4 nbl5 pri_resolv

b7 b8 $

nb6 nb7 nb8 $

; output of priority resolver trapped in flipflops with rising edge

; of the clock to take care of the 20ns delay thru the priority resolv circuit

rff4
rff8

nd3 nd2 ndl ndO q3 q2 ql qO, nclk4 nq3 nq2 nql nbO X35lW4

nd7 nd6 nd5 nd4 q7 q6 q5 q4, nclk4 nq7 nq6 nq5 nq4 X35lW4

97

bufwdO wdO, wO ZlOlX2

bufwdl wdl, wl ZlOlX2

bufwd2 wd2, w2 ZlOlX2

bufwd3 wd3, w3 ZlOlX2

bufwd4 wd4, w4 ZlOlX2

bufwdS wd5, w5 ZlOlX2

bufwd6 wd6, w6 ZlOlX2

bufwd7 wd7, w7 ZlOlX2

bufwd8 wd8, w8 ZlOlX2

bufwd9 wd9, w9 ZlOlX2

bufwdlO wdlO, wlO ZlOlX2

bufwdll wdll, wll ZlOlX2

bufwdl2 wdl2, wl2 ZlOlX2

bufwdl3 wdl3, wl3 ZlOlX2

bufwdl4 wdl4, wl4 ZlOlX2

bufwdl5 wdl5, wl5 ZlOlX2

endm ram40

model ram24 subckt: nodes = ( fO fl f2 f3 f4 f5 f6 f7 f8 $

f9 flO fll fl2 fl3 fl4 fl5 fl6 fl7 fl8 fl9 f20 f2l f22 f23, $

enr enw clk4 nclk4 enw2 $

bO bl b2 b3 b4 b5 b6 b7 b8 b9 blO bll bl2 bl3 bl4 blS $

nbO nbl nb2 nb3 nb4 nb5 nb6 nb7 nb8 nb9 nblO nbll nbl2 nbl3 $

nbl4 nblS $

qO ql q2 q3 q4 q5 q6 q7 q8 q9 qlO qll ql2 ql3 $

ql4 qlS $
nnO nnl nn2 nn3 nn4 nn5 nn6 nn7 nn8 nn9 nnlO nnll nnl2 nnl3 $

nnl4 nnl5 eO el e2 e3 e4 e5 e6 e7 $

wrO wrl wr2 wr3 wr4 wr5 wr6 wr7 wr8 wr9 wrlO wrll wrl2 wrl3 $

wrl4 wrlS wrl6 wrl7 wrl8 wrl9 wr20 wr2l wr22 wr23

; the priority resolver



98

rffl2 ndll ndlO nd9 nd8 qll qlO q9 q~, nclk4 nqll nqlO nq9 nq8 X3SlW4
rffl6 ndlS ndl4 ndl3 ndl2 qlS ql4 ql3 ql2, nclk4 nqlS nql4 nql3 nql2 X35lW4

; Mux to drive output of priority resolver or decoder to RAM read ports

muxr4 d3 d2 dl dO, nd3 nn3 nd2 nn2 ndl nnl ndO nnO enr X4l8W4

muxr8 d7 d6 d5 d4, nd7 nn7 nd6 nn6 nd5 nn5 nd4 nn4 enr X4l8W4

dll dlO d9 d8, ndll nnll ndlO nnlO nd9 nn9 nd8 nn8 enr X4l8W4

dl5 dl4 dl3 dl2, ndl5 nnl5 ndl4 nnl4 ndl3 nnl3 ndl2 nnl2 enr $

X4l8W4

muxrl2

muxrl6

Drive the mux output to the RAM using buffers

bufrdO rdO, dO ZlOlX4

bufrdl rdl, dl ZlOlX4

bufrd2 rd2, d2 ZlOlX4

bufrd3 rd3, d3 ZlOlX4

bufrd4 rd4, d4 ZlOlX4

bufrd5 rd5, d5 ZlOlX4

bufrd6 rd6, d6 ZlOlX4

bufrd7 rd7, d7 ZlOlX4

bufrd8 rd8, d8 ZlOlX4

bufrd9 rd9, d9 ZlOlX4

bufrdlO rdlO, dlO ZlOlX4

bufrdll rdll, dll ZlOlX4

bufrdl2 rdl2, dl2 ZlOlX4

bufrdl3 rdl3, dl3 ZlOlX4

bufrdl4 rdl4, dl4 ZlOlX4

bufrdl5 rdl5, dl5 ZlOlX4

; The RAM

bitO doutO rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 dinO wdO wdl wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wdlO wdll wdl2 wdl3 wdl4 wdl5 C533F

bitl doutl rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 dinl wdO wdl wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wdlO wdll wdl2 wdl3 wdl4 wdl5 C533F

bit2 dout2 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 din2 wdO wdl wd2 wd3 wd4 wd5 wd6'wd7 wd8 wd9 $

wdlO wdll wdl2 wdl3 wdl4 wdl5 C533F

bit3 dout3 rdO rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 din3 wdO wdl wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $

wdl0 wdll wd12 wdl3 wdl4 wd15 C533F



99

bit4 dout4 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 din4 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wd15 C533F

bitS dout5 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 din5 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wd15 C533F

bitG doutG rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 dinG wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit7 dout7 rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rdlS din7 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $

wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit8 dout8 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rdl4 rdl5 din8 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $

wdlO wdll wdl2 wd13 wd14 wdl5 C533F

bit9 dout9 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rdl4 rdl5 din9 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $

wdlO wdll wdl2 wdl3 wdl4 wdl5 C533F

bitlO doutlO rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 dinlO wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $

wdlO wdll wdl2 wd13 wd14 wd15 C533F

bitll doutll rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 dinll wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $
wdlO wdll wd12 wdl3 wdl4 wdlS C533F

bitl2 doutl2 rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rd14 rd15 dinl2 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $
wdlO wdll wdl2 wdl3 wd14 wdlS C533F

bit13 dout13 rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rdl4 rdl5 din13 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $
wdlO wdll wd12 wd13 wdl4 wdl5 C533F

bitl4 doutl4 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rd14 rdl5 dinl4 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $
wdlO wdll wdl2 wd13 wd14 wdl5 C533F

bitl5 doutl5 rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 dinl5 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $
wdlO wdll wdl2 wdl3 wdl4 wdl5 CS33F

bitlG doutlG rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rd14 rdl5 dinlG wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $
wdlO wdll wdl2 wd13 wdl4 wdl5 C533F

bitl7 doutl7 rdO rdl rd2 rd3 rd4 rd5 rdG rd7 rd8 rd9 rdlO rdll rdl2 $

rdl3 rdl4 rdl5 dinl7 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $
wdlO wdll wd12 wd13 wd14 wdlS CS33F

bit18 dout18 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rdl3 rdl4 rdlS din18 wdO wdl wd2 wd3 wd4 wd5 wdG wd7 wd8 wd9 $
wdlO wdll wd12 wd13 wd14 wd15 C533F

bit19 dout19 rdO rdl rd2 rd3 rd4 rdS rdG rd7 rd8 rd9 rdlO rdll rd12 $

rd13 rd14 rd15 din19 wdO wdl wd2 wd3 wd4 wdS wdG wd7 wd8 wd9 $



wd10 wd11 wd12 wd13 wd14 wd15 C533F

bit20 dout20 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10

rd13 rd14 rd15 din20 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7

wd10 wd11 wd12 wd13 wd14 wd15 C533F

bit21 dout21 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10

rd13 rd14 rd15 din21 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7

wd10 wd11 wd12 wd13 wd14 wd15 C533F

bit22 dout22 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10

rd13 rd14 rd15 din22 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7

wd10 wd11 wd12 wd13 wd14 wd15 C533F

bit23 dout23 rdO rd1 rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rd10

rd13 rd14 rd15 din23 wdO wd1 wd2 wd3 wd4 wd5 wd6 wd7

wd10 wd11 wd12 wd13 wd14 wd15 C533F

Delayed clock4 from clk4

delay1 ck4d, clk4 DLY2X

; 16 input OR gate for trapping the signal for carry-in

nand1 1, ndO nd1 nd2 nd3 nd4 nd5 nd6 nd7 X168

nand2 2, nd8 nd9 nd10 nd11 nd12 nd13 nd14 nd15 X168

or1 3, 1 2 X432

ffcin cin ncin, clk4 LO 3 enr X381

; The ff to load RAM data

100

; The incrementer

inc4

incB

inc12

inc16

inc20

inc24

g3 g2 gl gO co4, f3 f2 f1 fO cin X137F

g7 g6 g5 g4 coB, f7 f6 f5 f4 co4 X137F

gll g10 g9 gB co12, f11 f10 f9 fB coB X137F

g15 g14 g13 g12 co16, f15 f14 f13 f12 co12 X137F

g19 glB g17 g16 co20, f19 f1B f17 f16 co16 X137F

g23 g22 g21 g20 t, f23 f22 f21 f20 co20 X137F

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

rdll rd12 $

wd8 wd9 $

ramff5 f4 f3 f2 f1 fO t t t t t, clk4 dout4 dout3 dout2 dout1 doutO $
X351W5

ramff10 f9 fB f7 f6 f5 t t t t t, clk4 dout9 doutB dout7 dout6 dout5 $
X351W5

ramff15 f14 f13 f12 f11 f10 t t t t t, clk4 dout14 dout13 dout12 $
dout11 dout10 X351W5

ramff20 f19 f1B f17 f16 f15 t t t t t, clk4 dout19 dout18 dout17 $
dout16 dout15 X351W5

ramff24 f23 f22 f21 f20 t t t t, clk4 dout23 dout22 dout21 dout20 $
X351W4



101

Mux to feed either output of flipflops or data from outside into the

RAM. Writing into RAM from outside used for testing

; Mux to drive output of priority resolver or decoder to RAM read ports

muxw4 w3 w2

muxw8 w7 w6

muxw12
muxw16

wl wO, p3 nn3 p2 nn2 pl nnl pO nnO enw2 X418W4

w5 w4, p7 nn7 p6 nn6 p5 nn5 p4 nn4 enw2 X418W4

wll wlO w9 w8, pll nnll plO nnlO p9 nn9 p8 nn8 enw2 X418W4

w15 w14 w13 w12, p15 nn15 p14 nn14 p13 nn13 p12 nn12 enw2 X418W4

; Flip-flops to capture the data for the write ports of the RAM

wff4

wff8

wff12

wff16

p3 p2 pl pO f f f

p7 p6 p5 p4 f f f

pll plO p9 p8 f f

p15 p14 p13 p12 i

i, ck4d nd3 nd2 ndl ndO X351W4

i, ck4d nd7 nd6 nd5 nd4 X351W4

f i, ck4d ndll ndlO nd9 nd8 X351W4

iii, ck4d nd15 nd14 nd13 nd12 X351W4

; Drive the mux output to the RAM write ports using buffers

bufwdO

bufwdl

bufwd2

bufwd3

wdO, wO
wdl, wl
wd2 , w2

wd3, w3

ZlOlX2

ZlOlX2
ZlOlX2
ZlOlX2

; Trap output of incrementer

incff5 f f f f f nh4 nh3 nh2 nhl nhO, clk4 g4 g3 g2 gl gO X351W5

incfflO f f f f f nh9 nh8 nh7 nh6 nh5, clk4 g9 g8 g7 g6 g5 X351W5

incff15 f f f f f nh14 nh13 nh12 nhll nhlO, clk4 g14 g13 g12 gll glO $
X351W5

incff20 f f f f f nh19 nh18 nh17 nh16 nh15, clk4 g19 g18 g17 g16 g15 $

X351W5

incff24 f f f f nh23 nh22 nh21 nh20, clk4 g23 g22 g21 g20 X351W4

mux4 din3 din2 dinl dinO, nh3 wr3 nh2 wr2 nhl wrl nhO wrO enw $

X418W4

mux8 din7 din6 din5 din4, nh7 wr7 nh6 wr6 nh5 wr5 nh4 wr4 enw $

X418W4

mux12 dinll dinlO din9 din8, nhll wrll nhlO wrlO nh9 wr9 nh8 wr8 $

enw X418W4

mux16 din15 din14 din13 din12, nh15 wr15 nh14 wr14 nh13 wr13 nh12 $

wr12 enw X418W4

mux20 din19 din18 din17 din16, nh19 wr19 nh18 wr18 nh17 wr17 nh16 $

wr16 enw X418W4

mux24 din23 din22 din21 din20, nh23 wr23 nh22 wr22 nh21 wr21 nh20 $

wr20 enw X418W4



bufwd4
bufwd5
bufwd6
bufwd7

bufwd8
bufwd9
bufwd10
bufwd11

bufwd12

bufwd13

bufwd14

bufwd15

endm ram24

102

wd4,

wd5,

wd6,

wd7,

w4 Z101X2

w5 Z101X2

w6 Z101X2

w7 Z101X2

wd8, w8 Z101X2

wd9, w9 Z101X2

wd10, w10 Z101X2

wdll, wll Z101X2

wd12,

wd13,

wd14,

wd15,

w12 Z101X2

w13 Z101X2

w14 Z101X2

w15 Z101X2

model pri_resolv subckt: nodes = (nql nq2 nq3 nq4 nq5 nq6 nq7 nq8 nq9 $
nq10 nq11 nq12 nq13 nq14 nq15 aO a1 a2 a3 a4 a5 a6 a7 a8 $
a9 a10 all a12 a13 a14 a15 naO na1 na2 na3 na4 na5 na6 na7 na8 $

na9 na10 na11 na12 na13 na14 na15 )

nand1 nq1, a1 naO X162

nand2 nq2, a2 na1 naO X163

nand3 nq3, a3 na2 na1 naO X164

and4 1, na3 na2 na1 naO X404

nand4 nq4, a4 1 X162

nand5 nq5, a5 na4 1 X163

nand6 nq6, a6 na5 na4 1 X164

and7 2, na6 na5 na4 1 X404

nand7 nq7, a7 2 X162

nand8 nq8, a8 na7 2 X163

nand9 nq9, a9 na8 na7 2 X164

and108 9, na9 na8 na7 na6 na5 na4 na3 na2 X408
and103 7, na1 naO 9 X403X2

nand10 nq10, a10 7 X162
nand11 nq11, all na10 7 X163
nand12 nq12, a12 na11 na10 7 X164

and12 8, na12 na11 na10 7 X404

nand13 nq13, a13 8 X162
nand14 nq14, a14 nal3 8 X163
nand15 nq15, a15 na14 na13 8 X164



103

endm pri_resolv

model iopad subckt : nodes = (in out, nenin dout nenout)

outpad
inttlbuf

inzbuf

out, dout nenout TSPADT

tin, out C501

in, nenin tin C519

endm iopad

read -fastsim/lib/cmos15lb

ENDC



eccnt = 60 5

ren = 61 5

wen = 62 5

strb2 = 63

:/tEND

ck = 10 @ 1
strb2 = 0
ren = 0
wen = 0

104

APPENDIXD

:/tMODE = 2

:/tNO_HEADER

:/tDEFINE_INPUTS

ck = 1 S

prg_chip = 2 S
limit = 3 5

strb = 4 5

valid = 5 S

en timer = 6 S

nr = 7 S

chip_mode = 8 S
a(31:0) = 9:40 S

d (3: 0) = 41:44 S

m(3:0) = 45:48 5

enr (2: 0) = 49:51 S

c(7:0) = 52:59 S

eccnt = 0
enr(2:0) = 0

m(3:0) = 0

c(7:0) = z

prg_chip = 0
limit=O
strb=O
valid = 0



105

en_timer = 1

chip_mode=l
nr = 1
run 3
nr = 0
run 20

prg_chip = 1

loop i=O,FH {
a(31:0) = FFFFFFF2H

d(3:0)=i
run 1

strb=l

run 1

limit=l

strb=O

run 1

a(31:0)
strb=l

run 1

strb=O

limit=O

run 1

FFFFFFF8H

prg_chip=l

loop i=O,FH {
m(3:0) = i
eccnt=O
run 2
strb2=1
wen=l

a (31:0)=FFFFFFFFH

c(7:0)=FFH

run 1
strb2=0

run 6

loop i=O,FH {

m(3:0) = i

eccnt=l
run 2
strb2=1
wen=l

a (31: 0) =FFFFFFFFH

c(7:0)=FFH



106

run 1

strb2=0

run 6

strb=O

strb2=0

wen=O

eccnt=O

c(7:0)=z
limit=O

prg_chip=O
run 1

ck = 10 @ 1

nr = 0

prg_chip=O
limit=O
valid=l
a(31:0)
run 1

a(31:0)
run 1
valid=O
a(31:0) = FFFFFFF1H

FFFFFFF9H

FFFFFFF4H

run 1

en timer=O

valid=O

a(31:0) = FFFFFFFSH
run 1

valid=l

run 1

en_timer=l
run 1

a(31:0)
run 1

a(31:0) = FFFFFFF6H
run 300
a(31:0) = FFFFFFFBH

FFFFFFFAH

run 1

loop i=0,300D
a(31:0)
run 1

FFFFFFF7H

a(31:0)
run 1

FFFFFFFCH

}

a(31:0) = FFFFFFF8H



run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)

run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)

run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0)
run 1

a(31:0) = FFFFFFFOH

107

FFFFFFF2H

FFFFFFF8H

FFFFFFFDH

FFFFFFF2H

FFFFFFFOH

FFFFFFFEH

FFFFFFF4H

FFFFFFFFH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOH

FFFFFFFAH

FFFFFFFAH

FFFFFFFAH

run 8

prg_chip=l
eccnt=O

ren=l

run 1

loop j=O,FH {

m(3:0)=j
run 8

loop i=O,SH {

enr(2:0)=i
run 2



108

ren=O

run 5



VITA

Mehul S. Dave was born in Indore, Madhya Pradesh in India on June 5,

1965. He received his RE. (Electrical) degree (first class with honors) from Vic-

toria Jubilee Technical Institute, University of Bombay, Bombay, India in July

1987. In September 1987, he began his studies at Oregon Graduate Institute of

Science and Technology. His areas of interest are VLSI design and computer

architecture. He joined Intel corporation as a design engineer in April 1990 after

finishing his graduate school.




