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ABSTRACT

A REAL TIME SOFTWARE PERFORMANCE ANALYSIS CHIP

Mehul S. Dave, M.S.

Oregon Graduate Institute of Science and Technology, 1990

Supervising Professor: Charles L. Saxe

An essential stage in software development is debugging the code and check-
ing it for correctness. Another related stage is performance analysis of the
developed software which involves making sure that the program in question runs

at the optimal speed required for a particular application.

In many real time applications, fast and efficient code is needed. However,
the techniques and tools for the debugging and performance analysis of real time
software are still, by and large, primitive and have not kept pace with the advances
in software technology. Traditional hardware tools such as logic and state
analyzers are useful only at the machine language or assembly language level.
Software based performance analysis tools such as program profilers interfere with
the real time behavior of the program by inserting additional code and thus do not
provide accurate information. A tool to perform non-intrusive performance
analysis at the source level for programs written in high level languages is needed.
In this thesis, the design and implementation of a CMOS chip to aid high level

non-intrusive performance analysis is reported.
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1. INTRODUCTION

The testing and validation of programs has received considerable amount of
attention in the past decade. With the increasing availability and use of high level
languages, the programmer has moved increasingly away from the low level machine
details and more complex abstractions can now be implemented with ease. With the
increasing complexity of programming projects, the need for testing and debugging
the code becomes even more crucial. To handle the increasing complexity, the tools

for debugging and testing also must become more sophisticated.

Very often, it is not only necessary to test the program for correctness but also
performance. There are programs that may run correctly i.e they may perform the
necessary function but execute too slowly. This has sometimes been called a "perfor-
mance bug".! It would be desirable to do some performance analysis of such a pro-
gram to improve its running time. In real time systems, it is often mandatory to make
such improvements. Consider, for example, a mechanical arm in an assembly line
that moves at fixed intérvals of time. The software driving the arm must be capable
of finishing its task within this interval. A tool to facilitate performance analysis of
such software would be extremely helpful to programmers. However, there are very
few tools available to facilitate the real time programmer in testing and debugging.
As Robert Glass puts it,2 the world of debugging and testing of real time software is a

"lost world".

The techniques and tools available to the programmer of real time systems have

not kept pace with the advances in software. A typical real time program is still



tested at the machine language or the assembly level. Traditional tools such as logic
and state analyzers help the programmer in debugging at the machine language or
assembly language level but are not useful to do performance analysis at the high
level in which programs are typically written. Software tools such as profilers, where
available, are not useful for real time systems since they are intrusive by nature and

thus do not give accurate measure of the timing of some sections of the code.

In this thesis, I will discuss the design and implementation of a CMOS chip
which is intended to be a hardware tool for non-intrusive real time performance
analysis and which can be used at high level with proper software. Chapter 2
presents the history and background of software testing and performance analysis.
Some other tools developed for non-intrusive performance analysis and related work

are also discussed.

In chapter 3, the macroarchitecture of the chip is discussed. Various modes and
features of the chip and the reasons for choosing a certain architecture instead of

other possible architectures is discussed.

Chapter 4 discussed the microarchitecture and the logic level details of the chip.
The results of simulation using the Tektronix ADG standard cell library are
presented. The final layout of the chip and the simulation after the layout are also

presented.

Discussion of results, conclusions and suggestions for further research are

presented in chapter 5.



2. BACKGROUND

2.1 Need for testing and performance analysis of software

The need to test software is obvious. The program should be able to implement
the function that it is designed to implement. Since any program of a reasonable size
can, and almost always does have bugs, one needs to test the programs for their
correctness. The amount, scope and methods of testing of programs may vary
depending upon several factors such as the nature of the application, the resources
available to the software developer, ease with which testing can be done etc. How-
ever, at the very least, functional testing of a program must be done, i.e. it must be
made certain that the program implements the required function correctly and that
there are no bugs in the program. Detection and elimination of redundant code,
unused variables, bad programming constructs, incorrect logic, rare conditions which
can lead to bugs and optimizing code for performance etc. are among the goals of
testing to develop more reliable software. Bug free code is always desirable and a lit-

tle time invested in testing can uncover sources of potential later disasters.

The level of testing done depends on several factors such as the nature of the
programs, the tools available, the cost, the nature of the application etc. In certain
cases, extensive testing must be done to make certain that no bugs are left in the code
because the costs of errors, both tangible and intangible can be enormous. Consider,
for example, programs for missile control or control of equipment in a nuclear power
plant. In other, less critical applications, such as for example, payroll processing, the

standards for testing and optimization may not be as strict as the former case because



such standards are not needed and neither are they economically viable. The amount
of testing done is also largely dependent on the ease of testing. If sophisticated tools
are available to enable fast, easy, efficient, comprehensive and cost effective testing,
the programmer will devote more time to testing since bug free code is always desir-
able. On the other hand, in absence of such tools, only as much of testing as is abso-
lutely necessary, will be done. It is clear, however, that irrespective of the level of

testing done, it is almost mandatory to perform some testing on programs.

The increasing complexity of software emphasizes the need for testing even
more. As software has evolved from the machine language to assembly language to
finally the high level languages of today, the programmer is increasingly shielded
from the low level machine details. It is now possible to implement increasingly
complex abstractions much more easily by using sophisticated compiler technology.
Software written using such languages can thus perform functions far more complex
and far wider in scope than before. This also means, however, that the bugs in such
software are more difficult to uncover and that the likelihood of having bugs is
increased because several layers of software lie between the programmer and the
hardware. Therefore not only are more sophisticated tools for debugging needed but
also more extensive testing of code is needed. The tool for testing or performance
analysis has to interpret the low machine level events and pass through several layers
of abstractions to output data at the source level. Thus, tools with greater functional-

ity and more sophistication are needed.

While it is true that unlike debugging, it is not necessary to do performance
analysis in all cases, in many applications it is desirable and even mandatory to
undertake performance analysis. Real time applications are a very good example.
Real time software is constrained by latencies between events. The software must
complete its task in the time between inter-event latencies. It is often the case that

while the software implements the required function, it runs too slowly and may be



unacceptable for a real time application. In such a case, performance analysis of such
software is necessary to ascertain which areas of the code need improvement. Even
in case of batch processing, if the programs run for a long period of time, it would be
desirable to analyze the program to discover the performance bottlenecks and correct
them so that the program executes faster. Thus performance analysis of code is also a

crucial part of testing for several applications.

2.2 Types of testing

Considerable attention has been directed in the last decade to the subject of test-
ing and reliability of software. A lot of literature has been published on the subject
(see, for instance3- ). Tools such as static analyzers, program provers, profilers and
source level debuggers are more widely available. The testing techniques may be
broadly classified as static testing and dynamic testing. In static testing, the source
code is run through a program which analyzes the code for certain errors that can be
detected solely by looking at the text of the program. Such a tool can identify such
errors as incorrect data constructs, uninitialized variables, unreachable code, non-
portable code etc. An example of such a tool is Lint6 for the C programming
language. In dynamic testing, the program is executed in a controlled manner so as
to test that the required functions execute correctly. This generally involves giving

the program a set of predetermined inputs and observing the output.

As discussed previously, several times it may be the case that the program in
question executes correctly but it executes too slow for the task at hand. Performance
analysis of the program needs to be done for such a case to determine in which part of
the code does the program spend most of its time. The efforts may then be directed at
this part of the code to make it more efficient by rewriting it. Program profilers are
the tools designed to facilitate performance analysis of a program. Typically, a pro-

gram profiler inserts counters at critical nodes in the code and the counters are incre-



mented dynamically when that part of the code is reached. Then, based on the avail-
able count and a statistical sampling of the p;ograzn counter during the execution of
the program, the profiler gives the data about which part of the code is most fre-
quently used. The gprof 7 profiler on UNIXt operating system is an example of such

a tool.

The tools for testing and performance analysis may be hardware or software
tools. Programs such as static analyzers and program profilers are software tools. On
the other hand, one can use hardware tools such as logic analyzers, state analyzers
and in-circuit simulators also as tools for testing and performance analysis. Such
hardware tools most often monitor the signals at the pins of the microprocessor or the
bus and when a certain combination of signals is detected, they start taking the data
till a certain point of time. They also may be time triggered i.e. at regular intervals of
time, they interrupt the microprocessor for a brief period and acquire data and store it

for later analysis.

2.3 Real time needs and traditional methods of testing and performance

analysis

Most of the traditional tools of testing and performance analysis are ill suited or
inadequate for testing real time software. As Robert Glass observes,? the real-time
debug and test is still a "lost world" compare to the "civilization" developed in other
areas of software (referring to the advances of software from assembly level to high
level languages and development of fast compilers and link loaders). Not much work
has been done in the area since Glass’s 1980 paper. There are several reasons why
debugging and performance analysis of real time software remains a difficult job
even with so much work done in the general area of testing and reliability of

software. All these reasons stem from the nature of real time applications; its

+ UNIX is a trademark of AT&T Bell Laboratories.



requirements and the limitations imposed by its environment. A discussion of these

follows.

Real time software is software running on a computer that interacts with func-
tioning external devices. It is called real-time because the software actions control
activities that are occurring in an ongoing prcocess.2 The task of developing reliable
real time software is particularly more difficult for several reasons. Most of the
times, such a software is part of a larger system (sometimes also called embedded
systems) and must interact with several different devices often functioning asynchro-
nously. In contrast with the traditional computer systems, such systems do not have
the sophisticated supporting software such as complex operating systems, debuggers,
program profilers and other utility programs. In fact, in most of the systems, the
hardware is cheap, light and small due to economic reasons. Consider, for example, a
computer driving a missile system. It is a throw away piece of hardware and it is
therefore necessary to make it as cheap as possible. This results in complexity being
transferred from hardware to software. It is also desirable to transfer complexity
from hardware to software since multiple copies of software do not cost much but
every additional copy of hardware costs. Also, many times due to the nature of
environment in which a real time system operates such as excessive heat or moisture,
it is not possible to use complex hardware which requires more stable environmental
conditions. So the function must be taken care of by software again. To add to this
already bad picture, real time software is constrained by latencies between events.
The software must be able to complete its task within the time between interevent
latencies. So the real time software developer has to develop more powerful software

in a more primitive environment.
Given these conditions, it follows that a tool to facilitate debugging and perfor-

mance analysis which is geared towards real-time environments would be extremely

valuable to the real-time developer. Most of the traditional tools for testing and



debugging are, however, not geared for the real-time environment. Static perfor-
mance analyzers are not too useful because most of the software developed for real-
time applications is developed in a host-target environment. The program is
developed on the host, a more powerful and more sophisticated computer and then
cross-compiled for the real-time environment. The static analyzer can be useful in

the host environment and it will eliminate certain bugs but it is not enough.

Program profilers are not useful since they are intrusive by nature. They add
some additional code to ascertain the real-time behavior of the program and thus pro-
vide an inaccurate measure of the timing. They often intrude to the point where the
distortion is significant and thus the tool loses its effectiveness. Also, in several
applications such as embedded systems for instance, it may not be possible to insert
additional code into the real-time program. In such systems, the program is hard
coded and thus introduction of any additional piece of code is impossible. Also, such
a tool will often miss some crucial event which occurs rarely and is a source of a bug.
The program profilers also obtain their data on timing by sampling the location of the
program counter. This technique is inherently statistical in nature and thus several
runs of the program may be necessary before the accumulated data reaches as accept-

able level of confidence.

Hardware tools are most commonly used for real-time debugging and testing.
Tools such as logic and state analyzers, in circuit simulators etc. are very useful for
debugging of real-time programs. These tools observe the signals at the pins of the
microprocessor or the bus and acquire the data when a particular sequence of events
is observed. Some of these tools use an interrupt technique based on event triggering.
The tool interrupts the microprocessor when it detects a predefined event and
acquires data and stores it for later analysis. Such a technique, by its nature is
intrusive and is not suited for performance analysis. Other tools start data acquisition

by storing some signals on the bus when they detect a particular event and stop the



acquisition after a period of time. This technique is not intrusive but since the
amount of data to be stored is so much, typically the tool can only save the activity
for a few milliseconds. When its buffer is exhausted, it cannot store any data any
longer. Such a tool is not useful for observing the behavior of the program for

extended periods of time.

The most serious limitation of traditional hardware tools, however, is that they
cannot display the results of the program at the source level. Typically, they give
data either in terms of machine language level or assembly level. This is a very seri-
ous limitation. The programmer, thus, has to be knowledgeable about assembly
language and other low level details of the system he is working on. Thus more train-
ing effort has to be expended. And more importantly, since the low level machine
details differ from one system to another, the training effort has to be expended for
every new system. Moreover, debugging the program at assembly level is more diffi-
cult and time consuming. This combined with the fact that in real time systems, pro-
grammers typically have to deal with additional complexity transferred from
hardware makes it clear that a tool which affords source level analysis of real-time

software is required.

2.4 Progress toward comprehensive real-time testing techniques and tools

There have been a few attempts to develop tools and techniques particularly
suited for real-time applications. There have even been attempts at a systematic
study of the field and formalization.® Some of the tools reported were developed
exclusively for some particular system %10 and while these make important observa-
tions, they are not helpful for systems other than those for which they are designed.
There were also some early attempts which suggested hardware support for debug-
ging and testing but these did not strictly deal with the subject of real-time testing but

rather with other related subjects such as multiprogramming environments.!1



Many of the other tools developed focussed on the problem of debugging and
testing and proposed having large buffers to store all the activity of the program from
a certain point and then try to reconstruct the program to trace back to the point
where the error occurred.10:12 Such tools are suited more for the task of debugging
and not for performance analysis and they also propose storage of large amount of
data, quite a bit of which may be useless. Besides, the problem of being able to store
only limited amount of data due to limited size of buffer remains and these tools,
therefore cannot be used for programs which execute for long time. The tools also
require a reconstruction of the program after its execution and it may not be easy to
accomplish this in all cases and the effort required to develop the software to recon-
struct the program from the stored data is quite large.

There are other tools pra:)posed13 which are of more interest since they propose
real time monitoring of the program and storing only the essential data. Plattnerl4
proposes a tool to facilitate real time monitoring of programs and develops means to
specify actions to be taken by the monitoring program based on predicates formed on
the text of the source program. He describes, in detail, an elaborate hardwarc scheme
to accomplish this objective and reports the development of a prototype. A similar

tool is reported by Bemmerl.13

The main advantage of these tools is that they afford real-time analysis at the
source level. This is a significant improvement over other methods proposed. It is
also an attempt to bring the tools for debugging and testing up to date with the
advances in software technology. Such a tool would be of great help to a real-time
software developer particularly if working in host-target environment where the
software is written in a high level language on a host and cross compiled for the tar-
get. However, there are some disadvantages. Most significantly, the disadvantage is
the limited capability of the tool. For instance, in the prototype implemented by

Plattner, only 10 monitoring actions can be specified for a single run of the program.
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This limitation overshadows most of the advantages of the tool. The tool offers a
variety of functions. Any sort of monitoring function can be specified to aid debug-
ging. One can keep track of changes in values of a particular variable, trace execu-
tion of a set of statements, set counters based on conditions etc. But only 10 of such
actions can be executed for one run of the program. So, most of the capabilities of
the tool which make it potentially useful for real-time applications are rendered use-

less since only a few can be used at a time.

There has been progress made even in logic and state :~.1na1yzcrs.16 The state
analyzers have become more sophisticated. Tools such as microprocessor analyzers
can be used to interpret the activities on the pins of a specific microprocessor and
relate these signals to high level events. However, these are microprocessor specific
and not useful in general for several systems. Hewlett-Packard’s HP 64340A
software analyzer is another hardware tool to aid software analysis.!” The tool helps
the analysis of software at high-level. The disadvantage of this tool, like Plattner’s, is
that the tool has limited capability. It can only monitor four ranges of code for a

given run of the program.

Another tool recently reported overcomes several of the disadvantages of the
tools mentioned above. Softanalyst by Northwest Instruments Inc., offers the capa-
bility to do non-intrusive source level performance analysis in real-time.!8-21 The
tool offers several capabilities. The symbolic trace option lets the user keep a trace
of the order of program execution and trace individual statements. Performance
analysis mode lets the user time up to 80 ranges of code and the code coverage option
keeps a track of which statements of the program were executed in a single run. The
significant feature of the tool is that it allows the user to observe the performance of
the program at source level. By looking at the symbolic table generated by the com-
piler, the tool relates the software events such as entry into a procedure and exit from

it or activity of a particular variable etc. to their hardware equivalents. The tool gath-

LI



ers the data, processes it and displays the results back in terms of source level con-
structs. It has many more ranges than the other tools and unlike logic analyzers, it
can gather execution data for the programs having execution time of the order of

seconds rather than the typical milliseconds for logic analyzers.

Softanalyst represents a significant advance in non-intrusive, real-time, source-
level perfoﬁnancc analysis. However, in spite of its wider capabilities and resources,
it is often not extremely useful. The timing of code is the important capability
offered by it. But owing to the architecture of the tool, it can only store data for pro-
grams whose execution time is of the order of seconds. After that, its buffer over-
flows and it can no longer gather data. It also requires a relatively complex front-end
probe for each specific microprocessor which can provide it the necessary signals to
detect the occurrence of hardware events. The Softanalyst is event-triggered. It
detects the occurrence of up to 256 events on the bus and then starts its timing when
the occurrence of the event is detected and stops when another event is detected.
This presents some problems for timing of code. Firstly, this means that one cannot
satisfactorily time procedures with multiple entries and exits. Secondly, it becomes
difficult for it to account for occurrence of interrupts and it is also difficult to use for

multi user systems.

It should be observed that in all the previous efforts to develop a tool for debug-
ging and performance analysis, the main bottleneck was the limitation of resources of
the tool. Most tools offer very advanced capabilities but only a few of them can be
used at a particular time. The goal of the designers of the system was to offer a tool
which can handle several different tasks. This increased the complexity of the job
and resources were limited because each different task consumes away a part of the
limited resources available. In my opinion, it would be better to concentrate the
resources on a particular task rather than to divide them amoﬁg several tasks. One

can design a small but efficient tool which would handle a particular task such as per-

12



formance analysis and leave tasks such as debugging to other tools. A system can
then be constructed out of several different components, each dedicated to a particu-
lar task. This would achieve a more efficient utilization of resources and better capa-
bilities for each particular task. The next chapter discusses the goals of this project

with this perspective and the macroarchitecture of the chip.
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3. MACROARCHITECTURE OF THE CHIP

3.1 Goals of this project

The goal of this project was to develop a very cheap and effective way to do
performance analysis. We wanted to develop a tool which can time the execution of
code for extended periods of time and which uses relatively simple circuitry interfac-
ing with the system bus to detect events. Since this tool was to be used for non-
intrusive analysis in real time, it could not be implemented software. A part of it
would have to be hardware which, in turn, is driven by software. We decided to try
to implement a chip which can allow a user to monitor several ranges of the program
and gather performance analysis data and store it in on-chip memory which can later
be read off by appropriate software. This thesis discusses only the chip. The

software to run the chip has not yet been developed.

As discussed in the previous chapter, the problem with most tools was that the
number of ranges which could be simultaneously monitored for gathering perfor-
mance analysis data, was too small. One of the goals of the project was to try to
overcome this limitation. The available chip area would constrain this number. But
if one could implement a relatively simple design so that each chip would be very
cheap, one could use several chips for a system and thus provide a large number of
ranges capable of collecting data for extended periods of time which can be used for
performance analysis purposes: These chips used in conjunction with a state or a
logic analyzer would make a very effective tool for non-intrusive debugging and per-

formance analysis.

14



There was the choice of implementing several features to enable debugging and
performance analysis. However, putting more features would involve implementing
complex logic on the chip. This involves a large amount of time and effort and
increased costs. More importantly, however, there is a trade off involved between
more features and increased capability for performance analysis. This is so because
real time performance analysis involves gathering and processing of data at least as
fast as the program being analyzed executes so that no data is missed. Since there are
always limitations on the amount of data that can be stored and processed in a certain
interval of time, one can either have large number of features but a few of which can
be used at a time due to the limitations of chip area or one can implement a relatively
small number of features, all of which can be used and which can be used much more
effectively. In designing chips, chip area is always a precious resource and it is
always beneficial to maximize the usage of all the logic. Therefore, the latter
approach seems preferable. Another advantage offered by the latter approach to
design is that one does not have to implement complex logic since the number of
functions that the hardware is required to perform, is limited. Therefore, the latter
approach to design was chosen i.e. implementing a relatively small number of
features but try to maximize their capabilities and usage. All features to help debug-

ging of code were, therefore, excluded and focus was on performance analysis.

Many of the debugging features can be more conveniently handled through
other means. Good static analyzers can uncover several errors from the source text of
the program. Such tools are typically available on large operating systems. Since real
time software development is often done in host-target environments, static analyzers
available on the host can be used to eliminate some errors from the programs. Source
level debuggers are also increasingly available on large systems. So the programmer
already has powerful tool to facilitate debugging on the host. The debugging features

useful for real time environment such as monitoring memory locations for changes in

15



values, gathering data after occurrence of a particular event etc. can be provided by a

state analyzer.

Therefore, the merit of this approach to testing is that the task of testing is thus
distributed to different tools. Each tool is dedicated to a particular task and thus its
resources can be entirely devoted to that task. One can build a powerful testing sys-
tem by combining such tools. Some part of the system helps debugging and other
part does performance analysis. In this manner, maximum utilization of all resources
of the system can be achieved and it is also more economical and efficient to imple-

ment the system in this manner.

The chip designed, therefore, only offers the capability to do performance
analysis. But since its range of features is now delimited, one can devote the freed
resources to provide additional capabilities. For instance, this chip was designed to
run at a clock frequency of 100 MHz; fast enough for the current generation, high
speed RISC microprocessors. It maintains a 48 bit counter for measuring the time
spent for each range and a 32 bit counter for measuring the number of entries into the
range. At the clock speed of 100 MHz (cycle time of 10 ns), this means that data can
be collected for execution time of approximately 78 hours for each range. Thus, data
can be collected for long, uninterrupted runs of programs. This is a very desirable
performance analysis feature which is absent from the other tools discussed previ-
ously. This benefit is, of course, obtained at the cost of eliminating other features but
considering the fact that a low cost tool such as this, in conjunction with a traditional
tool such as a state analyzer, can provide a powerful software testing tool, it is a good

tradeoff.

3.2 Discussion of possible architectures

As discussed previously, the feature required of the chip was the ability to time

sections of a code for extended periods of time. There are at least two significantly
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different architectures which can accomplish the same objective. In the following,

the pros and cons of both and why one was chosen over the other, are discussed.

The first approach to architecture is the event triggered approach taken by Sof-
tAnalyst.!8 In this approach, some particular function of the tool is triggered when the
tool detects the occurrence of a predefined event such as, for instance, entering or
exiting a pfocedure. The tool starts collecting data when the event is detected and
stops collecting data when another event is detected. For instance, in SoftAnalyst, the
user can specify up to 256 events. The tool maintains an on-chip timer and a status
qualifier. When it detects the occurrence of any one of the defined events, it saves
some tags from the status qualifier, the time of detection and the event number in a
FIFO (first-in-first-out memory). The data in the FIFO is then compressed by a data
compression chip which, in turn, feeds another microprocessor which analyzes the

data.

There are some advantages to this approach. Firstly, since event detection is
just a question of ANDing the data bits with a set of latches, this function is easy to
implement and also takes very little of chip space.f Secondly, the interpretation of
the events is not restricted by the hardware and is up to software. In SoftAnalyst, for
instance, the same event recognizers are used to perform several functions such as

tracing values of variables, recognizing entry to or exit from a procedure etc.

There are, however, disadvantages with this approach. The most serious prob-
lem with it is the storing and processing of data. The data is typically stored into a
buffer (the FIFO in SoftAnalyst) which is emptied at regular intervals. The data must
be processed fast enough so that the buffer does not overflow. This bottleneck is
very difficult to overcome particularly with today’s high speed microprocessors. The

data would be, typically, written into memory which is generally a RAM . It is

It should be noted that SoftAnalyst is not implemented on a single chip but by using several other
chips. This, however, is irrelevant from the viewpoint of architecture. The same architecture
could, in theory, be implemented on a chip.
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difficult to design RAMS which could be rcf:\d and written at fast rates. The speed
requirement of this project was 100 MHz. This would mean a 10 ns read/write acces-
sible on-chip RAM, clearly a very difficult task. The problem, however, does not end
here. Even supposing that a 10 ns RAM could be designed, one is still left with the
requirement that post processing must be done at the rate of 10 ns. Taking the exam-
ple of maintaining a count of time spent in a procedure, if the count was to be 32 bits
long, this would mean doing a 32 bit addition in 10 ns in the worst case. There are

ways to design around this problem but the logic becomes quite complicated.

Another small disadvantage with this approach is that it is very difficult to time
procedures with multiple entries and exits. It is also difficult to account for inter-
rupts. The timer needs to be stopped when executing interrupts. This requires front-
end circuitry to detect interrupts. If the target system is a time sharing system, it is
not possible to have a count of the timing unless some signal to stop the timer can be
provided. In systems where such a signal is not available, this architecture is not use-

ful.

Finally, there is the disadvantage of limited size of the buffer. Since the buffer is
limited in size, it is not possible to time programs which run for extended periods of
time. The buffer of SoftAnalyst for instance, fills up if the time of execution is of the
order of seconds. This architecture is, thus not well-suited for the requirements of the
project.

An alternate approach to the problem of timing the code is to count the number
of memory addresses on the system bus which lie in a particular range. Programs are
arranged sequentially in memory with instructions and data interspersed. The
microprocessor puts out either instruction fetches or data fetches on the system bus
during its execution. If one could detect and store the instruction fetch addresses,
compare them with preprogrammed limits and detect if they are in or out of that

range, one could maintain a count of the number of addresses detected in a range.
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The count is approximately proportional to the time spent in the range and thus per-

formance analysis data is obtained.

The disadvantage of this approach is that the count obtained is not accurate. But
it is possible to overcome this limitation if additional signals from the system are
available. One can continue counting between two successive instruction fetches
assuming that the microprocessor is either executing the instruction or issuing data
fetches. With such an arrangement, accurate timing information can be provided. Of
course, this assumes the capability to stop the counting by an appropriate signals
when needed. But when such a signal is not available, the tool can still provide a
fairly accurate, though not exact, indication of where the program spends most of its
time during execution. Another disadvantage of this approach is that range compara-
tors are needed at the input to compare the input address with preprogrammed limits.
In contrast to a simple ANDing of bits, significant amount of logic is now required to

accomplish this function. This demands more chip area.

The most important advantage of this approach, however, is that it needs very
little post processing of data and it does not need to store large amounts of data in
memory. Only a count of the addresses being in or out of a range need be maintained
which is not very difficult to accomplish in hardware. Since there is no buffer, the
problem of having too much incoming data is completely eliminated. All that needs
to be done is to maintain a counter for each range which is incremented when an
address is in the range. This architecture is well suited for a chip since it is relatively
simple to implement. It does not require fast on chip buffers and complicated logic to
process the data in the buffer. Since this architecture appears much more appropriate
for the requirements of the project, it was chosen for the chip in preference to the

approach taken by SoftAnalyst.

The capability to do performance analysis at the source level is easily provided

if the symbol table generated by the compiler is available. From the symbol table,
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appropriate software can obtain the entry and exit points of all the procedures and
program the upper and lower limits of the range recognizers for the areas of codes
which the user wants to time. If the number of ranges available does not cover all the
procedures of a program, one can set up the chip so that it divides the address space
of the program evenly among the available range recognizers. After one run of the
program, the area of code where maximum time is spent can be narrowed down and
then in the second run of the program, the chip can be set up to time various parts of

that section of the code.

3.3 Description of macroarchitecture of the chip

The chip consists of several range recognizers (sixteen in the version imple-

mented for this project), each of which contains the following.

1. Two 32 bit latches which hold and. lower and upper limit addresses for com-
parison (ul [0:31] for upper limit and 11[0:31] for lower limit). The
recognizer increments its counter when the incoming address is greater than
or equal to the lower limit and less than or equal to the upper limit. The data
at the input pins is assumed to be 32 bits. The input data is used to write into
the latches when the prg chip signal is raised. The data is written into
the lower limit latch if the 1imit signal is low and it is written into the
upper limit latch if the 1imit signal is high. A 4 bit range recognizer
number must also be input along with the data for the lower and upper limits.

2. A 48 bit counter which is incremented whenever the range recognizer

detects an address that lies between the two limits and the active bit of

the range recognizer is set.

3. An active bit which is set when the range recognizer detects a valid

address within the programmed range. The bit is reset when the range
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recognizer detects a valid input address which is outside the programmed
range.

A 32 bit entry/exit counter which is used to count the number of times a
range was entered. The counter is incremented when a valid input address is
outside the programmed range and when the active bit was set in the
previous cycle. That is, the count is incremented when the active bit
changes from high to low. To provide for recursions, the entry/exit counter
is also incremented when the active bit was set in the previous cycle and the

input address is equal to the lower limit.

In addition, the chip has the following signals which are global.

The input clock. The maximum clock frequency is 100 MHz.

Input data (a [0:311]) to be used for comparison and counting by the range
recognizers. The input data is latched in at the the falling edge of the clock

and can change at the clock frequency.

A valid bit for the chip indicating if the incoming data is valid or not.
This bit can be used to maintain a count of particular types of addresses on

the bus of the microprocessor; for example, instructions only or data only.

An en_ timer bit for the chip. When this bit is set and the chip is in the
time_a_range mode (see the description of the chip_mode bit
below) and the active bit of the range recognizer is set, the address/time

counter is incremented.

A chip mode bit for the chip. When this bit is set (high), the chip is in
the time_a range mode. In this mode, the counter of each range
recognizer is incremented if the actiwve bit of that range recognizer is set
and the en_timer bit is set. If the chip_mode bit is reset (low), the

chip isinthe count_addr mode. In this mode, the counter of each range
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10.

11.

12.

recognizer is incremented if the incoming data is valid (i.e. if the valid
bit of the chip is set) and the incoming address lies between the upper and

lower limits of the range recognizer.

Four input bits (d [0:3]) to indicate the range recognizer number. These
bits are used to select a particular range recognizer when the upper and
lower limits of a range recognizer are being programmed or when the
address/time or the entry/exit count of a particular range recognizer is to be

read out.

A strb signal to synchronize the writing of data into the range recognizer
latches. After the signals d[0:3], 1limit, prg chip and
a[0:31] are applied, they take some time to propagate to the range recog-
nizer latches. The delays for each of these paths is unequal so it is necessary
to synchronize them. The strb signal is used for this function. It is is
applied when the signals have propagated through to their destinations. The

write enable signal of the latch is raised when the strb signal is applied.

The nr signal. This signal is the master reset for the chip. It resets all the

counters to zero.

The entry/exit or the address/time count can be read out after the chip has fin-

ished collecting data for a single program run. The following signals are pro-

vided on the chip for this function.

13,

14.

Eight bits (c[0:7]) which are used to output the value of address or

entry/exit count of a range recognizers in pieces of eight bits i.e. in bytes.

Three bits (enxr [0:21]) to select which byte of the counter is output. Valid
values for the bits are 0 through 5 for the address/time count and O through 3
for the entry/exit count. The least significant byte of the counter (i.e. bits 0

through 7) is output when the value is 0.
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15.

16.

17.

17.

A ren (read enable) signal. The counters can be read only when this signal
is set (high).

A clk4 signal. This signal outputs an internal clock of the chip which
runs four times as slow as the input clock. Due to the internal structure of
the chip, the signals to read the data of from the counters must be applied
when the falling edge of this clock is detected. This signal is provided for
the interfacing circuitry to allow it to properly synchronize the read signals
that it applies to the chip.

An eccnt signal. When it is set (high), the value of the entry/exit counter
is output and when it is reset (low), the value of the address/time counter is

output.

Four bits (m [0 : 3]) which indicate the number of the range recognizer for

which the data is to be read.

In addition to the above signals, the chip provides the following two additional

signals used for testing the on-chip RAM.

18.

L8

The wen (write enable) signal. When this signal is high, the data input at
the a[0:31] bits and the c[0:7] bits are used to write into the upper
40 bits of the address/time counter. (Note that the c[0:7] pins of the chip
are bidirectional and are used as input pins when the wen signal is high). If
the eccnt signal is low, the data is written into the upper 40 bits of the
address counter and if the eccnt is high, the data (c[0:23]) is written
into the upper 24 bits of the entry/exit counter. The lower 8 bits of both

counters cannot be written into.

The strb2 signal, which is used to synchronize the writing of data into the
on-chip RAM. This signal is applied when the wen signal and the data
have propagated through their paths. This signal is needed because of the
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unequal delays in these paths.

Appendix A contains a behavioral simulation of the chip written in the C

language. The next chapter discussed the microarchitecture of the chip.
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4. MICROARCHITECTURE OF THE CHIP

4.1 Introduction

The microarchitecture of the chip is discussed in this chapter. First, the global
architecture is discussed. This is followed by a description of the of blocks that make
up the chip. Results from simulations are shown at the end of the chapter along with

several plots of the relevant signals.

The software tools used for simulation and analysis are the tools used by the
Advanced Development Group (ADG) at Tektronix Inc. The chip was designed
using the ADG 1.5 pum standard cell library. The fastsim digital simulator was
used for simulations, the fastplot plotting program was used to plot out the
simulation results and the fastta timing analyzer was used to obtain critical path
timing data. All the simulation data included in this thesis is in the form of plots. A
description of each standard cell is included in Appendix B and the netlist is included
in Appendix C.

The initial analysis of the chip was done using a value of 0.15 pF of wire capaci-
tance for all the cells. This figure is used by the ADG group for most of their simula-
tions. To account for the degradation of speed with temperature, a degradation of
0.3% per °C was assumed (as per ADG data). The chip was designed to work at 100
MHz at the junction temperature of 70°C. The timescale factor in the simula-
tion control file is used for this purpose. All the timings of the cells were multiplied

by this factor before being used by the simulator.
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4.2 Global view of the microarchitecture

The chip may be broadly divided into the input section, the processing section
and the output section. The processing section takes up most of the part of the chip
and is the heart of it so it will be described first. The input and output sections are

described later.

4.2.1 The Processing Section

Figure 1 shows the architecture of the processing section of the chip. The chip
consists of 16 comparators each having programmable 32 bit latches for upper and
lower limits and a 32 bit input port for data. The output of the comparator is fed to
two eight bit counters. One of the counters mamtams the entry/exit count while the
other maintains the time/address count. The output carry of each counter is fed to a
priority resolver which feeds a large on chip RAM. The RAM maintains the upper
40 bits for the time/address count of each range recognizer. An identical arrangement
is used for the entry/exit count except that the RAM for this is only 24 bits wide (i.e.
a 32 bit count is maintained for the entry/exit count as opposed to the 48 bit count for

the time/address count).

Since the chip runs at 100 MHz, it must be able to accept an address for count-
ing every 10 ns. It is impossible to do a 32 bit compare in 10 ns with the standard
cell library available. My solution was to use pipelined comparators. The details of
this arrangements are discussed later. For the following discussion, it is assumed that
the comparators provide an increment signal for each of the counters every cycle i.e.
every 10 ns. The problem, thus, is to accomplish a 48 bit increment in 10 ns. This is

discussed below.

Three different kinds of architectures are possible to solve the problem. Either

separate counters and incrementers for each range recognizer could be provided or a
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fast single incrementer for the all or some of the range recognizers which is fast
enough to do the increments for several range recognizers, can be provided or a com-
bination of the two approaches can also be used. The merits and drawbacks of these

arrangements are discussed in the following.

In the first approach, a separate counter is provide for each range recognizer.
To accomplish a 48 bit increment at the rate of 10 ns, the incrementer has to be pipe-
lined i.e. the output carry of each stage of computation is used as the input carry for
the next stage and the counter can accept requests for incrementing from the com-
parators each cycle. Such an arrangement, however, has some disadvantages. The
counter would be implemented using flip-flops for each bit. Flip-flops occupy large
chip area. If a separate counter for each is provided, a significant area of the chip is
taken up by the counters and thus the number of range recognizers that can be pro-
vided, is reduced. Since one of the goals of the design was to try to squeeze as many
range recognizers on the chip as possible, this approach was rejected since it violated

the goals of the design.

In the second approach, only one or more high speed incrementers are used for
all the range recognizers and the count is stored in an on-chip RAM. The advantage
of this approach is that an on-chip RAM occupies very little space as compared to a
flip-flop. Another advantage is that, since in most cases, only a few of the range
recognizers will be active and counting, only a few incrementers are needed for all
the range recognizers (as opposed to one for each as in the previous approach). How-

ever, there are problems with this approach.

The access time for reading and writing for RAMs is typically large. For
instance, the C533 standard cell of the 1.5 pm library (a 16 bit, single input output
RAM) has an access time of 16.56 ns plus 2.34 ns for each pF of capacitance on its
output. Clearly, this is unacceptable for the required speed of 10 ns. Even if a faster

RAM could be designed to meet the design requirements, there is another problem
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with this approach. It must be realized that in the worst case, a 48 bit increment is
needed every 10 ns for each range recognizer. Keeping this in mind, consider the
following sequence of events. Let the incrementer pipeline have 4 stages. Thus, it
takes 40 ns to accomplish the 48 bit increment and write the incremented value back
into memory. Let the initial count in the memory be 10. At time t = n, there is a
request to increrncnt the count and the count is read out and loaded into the incre-
menter. The incremented count will be available in the memory at n+40 ns. If,
within this period, there is another request for an increment, the counter will read out
the old count again i.e. 10 instead of the correct count which should be 11. So, the
count will be incorrect. Since the range recognizers may provide a request for incre-

menting count every 10 ns, this approach is unacceptable.

In the third approach, a combination of the above two architectures is used to
provide an optimal arrangement which captures the advantages of both. The problem
with the RAM was that it received the increment requests too fast. If the requests
can, somehow be slowed down, the RAM can be used. This can be done when it is
realized that a counter is a divide by n circuit where n is the number of bits in the
counter. The carry out at the n™ bit occurs 2 times as slow as the carry input to the
counter. So, if we have a 4 bit counter, the carry out at the 4th bit can occur at the
maximum rate of 160 ns if the rate at which the input increment requests can occur is
10 ns. Now, the increment requests have slowed down sufficiently so that the second
approach above can be implemented. In such an arrangement, each range recognizer
will have its own n bit counter which stores the lower n bits of the 48 bit count. The
carry out of this counter can be used to increment the upper (48-n) bits of the count
which are stored in an on-chip RAM. The on-chip RAM can feed a single (48-n) bit
incrementer which, after incrementing the data, writes it back to the RAM. This will
be the only incrementer for all the range recognizers on the chip and thus significant

chip area can be saved. The value of n must be chosen so that the correct timing and
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optimization is achieved. This depends on the timings associated with the RAM, the
number of range recognizers and whether overlapping ranges are allowed or not. The
ADG standard cell library has a fast 4 bit incrementer (X137F) which, when used
with a standard 4 bit flip-flop (X351W4), can read the data out of the flip-flop, incre-
ment it by one and store it back to the flip-flop within 10 ns. Assuming non-
overlapping ranges and a 4 bit counter for each range recognizer and a total of 16
range recognizers on the chip, if there was a single incrementer for all the range
recognizers for the upper 44 bits (with the count being stored in the RAM), the RAM
circuit (the priority resolver, the RAM and the incrementer etc. see figure 1.) would
have to finish a 44 bit increment in 10 ns in the worst case. As discussed above, the
access time for the ADG standard cell RAM itself is higher than 10 ns so this solution
is unworkable. As is shown later, a 40 ns clock period for the RAM circuit is
optimal. (A 20 ns clock period could be used but it was found that a lot of additional
logic was required to accomplish this; for instance a pipelined incrementer was
required and more parallelism in the priority resolver was also necessary. The write
back circuit to the RAM also became quite complicated). If every range recognizer
had a 6 bit counter, the RAM circuit will be able accomplish the job of doing a 44 bit
increment for 16 range recognizers in the worst case. However, the range would still
have to non-overlapping. Since a 4 bit incrementer standard cell was readily avail-
able and since using an 8 bit counter for each range recognizer with a 40 ns clock cir-
cuit would give us the added feature of overlapping ranges, an 8 bit counter (one each
for address/time count and entry/exit count) for each range recognizer was imple-

mented. The upper 40 bits are stored in the RAM.

4.2.2 The Input Section

The input section consists of the following. (Please see Appendix C for the net-

list).
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All the input signals are input to the C920 standard cell (a pad) whose output is
the input for the C501 TTL to CMOS level shifter. The IPADT cell (which is
actually a macro) on the netlist is a combination of the pad and the level shifter.
The output signals from the level shifter is then used as the input signal for the

various cells in the chip.

The input data, a[31:0], is fed to the pads whose outputs are fed to inverting
TTL to CMOS level shifters (the IPADI macro which consists of the pad C920
and the buffer C507). The output of the level shifters (pa[31:01]) are fed to
inverting buffers (cell S101X2). The output of the buffers (b [31:0]) are then

fed to the range recognizers.

The clock buffer generates the clock signal which is routed to all the flip-flops in
the chip. The input clock signal from the TTL to CMOS level shifter (pck)
feeds four non-inverting buffer cells (Z101) connected in parallel. The output of
these four cells (ck 1) are wire-or’ed and then fed to 28 Z101 cells connected in
parallel. The outputs of these cells are wire-or’ed to form the clock for the chip

(c1k) which is then routed to all the flip-flops in the chip.

Several flip-flops in the chip use an asynchronous reset signal. In order to syn-
chronize the reset signal with the clock, the reset signal is fed to a 4 bit flip-flop
such that the output of each bit is the input of the next bit. The final output is
the reset signal (nr . 3) properly synchronized with the clock which is then fed
to a large non-inverting buffer (Z101X4) whose output (the bnr.3 signal)
serves as the reset signal for the entire chip. The four bit flip-flop is used to
avoid the flip-flop from becoming metastable and thus providing an erroneous

reset signal.

The limit signal is fed to the pad and the level shifter. The output of the
level shifter (plimit) is fed to a non-inverting and an inverting buffer. The

outputs of the two buffers (the blimit and the bnlimit signals) are fed to
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each of the range recognizers. The strb signal, which is used to synchronize
the writing of data into the latches of the range recognizers is also routed to the
range recognizers after being passed through two Z101X4 buffers. The
prg_chip signal, similarly, is fed to a pad whose output is fed to a level
shifter. The output of the level shifter (pprg_chip) then feeds other parts of

the chip.

The four input bits, d[3:0] which select a particular range recognizer are,
like the other signals, fed to a pad whose output feed a level shifter. The output
of the level shifters (pd [3:01) is fed to a decoder tree. The decoder tree uses
the X417 standard cell which is a two input four output decoder with an enable
signal. The upper 2 bits, pd[3:2] feed one decoder cell. The pprg_chip
signal is the enable signal for this decoder so that the decoder outputs are
enabled only when prg chip is high. The outputs of the decoder
(decode [0:3]) are fed to the enable inputs of four other decoder cells. The
two inputs of the four decoder cells are the lower two bits, pd[1:0]. Each of
the four decoders generate four outputs which are then fed to the range recog-

nizer cells (signals prg lat [0:15] in the netlist).

Both the valid and the en_ timer signals, are fed to pads whose outputs
are fed to level shifters. The outputs of the level shifters (pen timer and
pvalid) are fed to the DLY4X delay cells. This is needed to equalize the
delay between these signals and the b[31:0] signals i.e. the input data. The
output of the delay cells (den_timer and dvalid) is then stored in flip-
flops. The output of the flip-flops is fed to buffers which transmit the signals
(bvalid and bnen timer) to the range recognizers (Note that the
en_timer signal is inverted before being distributed to the chip). The
chip_mode signal is also trapped in a flip-flop and then fed into an inverting

and a non-inverting buffer. The outputs of these buffers (bchip mode and
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bnchip mode) are routed to the range reco gnizers.

4.2.3 The Output Section

The output sections consists of the following. (Please see Appendix C for the

netlist).

1.

The ren (read enable), wen, eccnt and strb2 signals are fed to input
pads which feed TTL to CMOS level shifters. The eccnt signal, as previ-
ously explained, is used to read either the time/address or the entry/exit count.
The output of the level shifter for this signal (peccnt) is fed to two large non-
inverting buffers (Z101X4 cells) and their output is routed to other parts of the
chip (the bececnt signal). The eccnt signal is also fed to an inverter (X101
cell) whose output (neccnt signal) is used to generate the read signal for the
address/time count. The output of the level shifter for the ren signal (the
pren signal) is ANDed with the beccnt signal to generate the ecenr sig-
nal which is the read signal for the entry/exit count RAM. Similarly, the
neccnt and the pren signals are ANDed to generate the ccenr signal

which is the read signal for the time/address count.

The wen signal is the signal used to write into the RAMs. This signal is used
only for testing the RAM. In the normal operation of the chip, all the locations
of the RAM are initialized to zero. The wen signal is fed to the pads whose
output is fed to the level shifter whose output is the pwen signal. The pwen
signal is ANDed with the neccnt signal and the pprg chip signal to gen-
erate the write signal for the address/time count RAM. Similarly, a signal for
the entry/exit count RAM is also generated. The strb?2 signal is used to syn-

chronize the writing of data into the RAM. This is explained later.

The enr[0:2] bits decide which byte of the count is to be read. They are, as

usual, fed to input pads and level shifters whose outputs (penr [0:2]) are fed
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to three inverters and to AND gates to decode the three bits into six separate sig-
nals (rd[0:51]). The signal which is high indicates the number of the byte of

the count to be read.

Just like the input section, the output section also has a decoding tree which is
used to generate signals for which range recognizer count is to be read. The sig-
nals m[0:3] are decoded into n[0:15] which, after being fed to inverting
buffers, are fed to a mux which drives the read port (or a mux which drives the
write port) of the appropriate RAM. A separate decoding tree is provided in the
output circuit because of the delay associated with the signals reaching the read
port of the RAM and the structure of the RAM circuit. If the decoding tree of
the input section were used, the delays involved are unacceptable so a separate

decoding tree was needed. This will be elaborated upon later.

The output of the entry/exit count and the time/address count RAMs and
counters are fed to a large MUX tree. The first stage of the MUX tree multi-
plexes the output of the two RAMS (j[31:8] and k[31:81). The
beccnt signal is the control signal for these muxes. The outputs of these
muxes (1 [31:81) and the output of the counters of the range recognizers are
then fed into 6 to 1 muxes. These muxes are used to send a particular byte of the
count to the output. The rd[5:0] signals are used as the control signals for

the muxes.

The final output of the 6 to 1 muxes (1 [7:01) is then fed to bidirectional pads.
The bidirectional pads consist of one incoming and one outgoing tristate buffers
connected to the pad input. The pad can, thus be used for input when the incom-
ing buffer is enabled and it can be used as an output pad when the outgoing
buffer is enabled. The outgoing buffer is enabled by the nenr signal i.e. when
the count is to be read out. The 1[7:0] signals are then outputas c[7:0].

The incoming buffer is enabled by the nenw signal i.e. when data is to be writ-
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ten into the RAM. The wr [32:39] bits are used to write to the upper 8 bits

of the time/address count RAM. This is used only for testing the internal RAM.

Lastly, the internally generated 40ns clock, clk4,is driven out to the pins so
that it can be used as a synchronization signal for applying the enr[2:0] sig-
nals. The signals must be applied within 20ns after the falling edge of cl1k4 is

detected or the output data will be incorrect.

The next few sections discuss the range recognizer circuit, the priority resolver,

and the RAM circuit in detail.

4.3 The Range Recognizer Circuit

Figure 2 shows the components of the range recbgnizcr in two parts. The netlist
for the range recognizer is in Appendix C.starting with the "model compare" state-
ment. The range recognizer takes as its input the signals provided by the input sec-
tion and outputs the carry bit for the two counters and the lower 8 bits for the

counters.

The range recognizer uses several flip-flops with asynchronous resets. The mas-

ter reset signal is first fed to a local buffer of the range recognizer and the output of
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the buffer is fed to the reset inputs of the various flipflops. As shown in the figure, |

the input data, a[31:0] is fed to two latches and a flipflop. The lower limit latch
holds the 32 bits of the lower limit address, 11[31:0] and the upper limit latch
holds the 32 bits for the upper limit address, ul[31:0]. The write enable signal
for the lower limit latch is generated by ANDing the prg lat, the nlimit and
the strb signals. The prg lat signal is connected to the output of the decoder
tree of the input section and thé other two signals are connected to their counterparts
from the input section. Thus, the latches would be written into when the

prg_chip signal is high, the range recognizer is chosen by the decoding tree, the
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proper latch is chosen by the limit signal and the strb signal is raised. The
delay for the prg lat, limit and the a(31:0] are unequal so the strb
signal is necessary to provide the right synchronization. The incoming data is also

stored in the input four bit flipflops reg[31:4]b.

The range recognizer logic is designed to do a 32 bit compare. The input
address, a[31:0] is compared with the lower and upper limit addresses and a sig-
nal for whether the input address is less than or equal to upper limit and greater than
or equal to lower limit, is generated. Since a comparison must be done every 10 ns,
the comparator is pipelined. The logic equation for comparison can be derived as fol-
lows. Given two numbers A and B, each n bits long, we generate two signals, e; and

g; for each bit of both the numbers such that,

ei =a; b +a; b;

gi=ab;

The e; signal is true when the two bits, a; and b; are equal and the g; signal is true
when b; is greater than a;. To compare the numbers A and B, we start comparing
from the highest bit. If the highest bit of B is greater than A, then we have the result
immediately or if they are equal, we must compare the next lower bit. So, if the

numbers are four bits long, the equation for A <B is,
A<B =g3+e3zga+teszezgi+eszeze1go (M
This can be rewritten as

A<B =g3t+e3gartesez(gi1+e180)
Now, if we define

aleby=g3+e3g7 aegbs3=ese;
and

afeb1=g1+elgg
then
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A <B =alebs+ aeqbs-aleb;

Note that this is the same equation as the equation for A<B if A and B were 2 bits
long, with e, g1 and g replaced by aegbs, alebs and aleb respectively. Thus, a 4
bit compare can be accomplished in two stages: in the first stage generate the e and g
signals and use them to generate the aleb and aegb signals which are the 2 bit
equivalents of the 1 bit e and g signals. Then use the aleb and aegb signals to gen-
erate the final signals for A<B in the second stage. This method can be extended to

32 bits and this is the method followed in the logic of the range recognizer.

As shown in figure 2, the input address and the lower and upper limits are fed to
the gengteq blocks. These blocks generate the e and g signals for each bit. The g
signal is generated by feeding the corresponding bits to an XNOR gate (X421) and
the e signal is generated by feeding the complements of the corresponding bits to a
NOR gate (X102). The e and g signals from the gengteq blocks are then fed to
the gteq block. This block consists of several gtgen cells which do a four bit
compare with the corresponding e and g inputs (see equation (1) above). The output
of these cells are the aleb signals. In addition, the e signals are fed to a four input
AND gate (X404) whose output is the aegb signal. The various aleb and aegb signals
are trapped in flip-flops. This is, thus, the first stage of the pipeline for comparison of
the input address and the addresses in the latches. The output of the first stage is then
fed to another gteq block which generates four signals, alebl6.2,
aegbl6.2, aleb32.2, aegb32.2 as its output (similar signals are gen-
erated for the comparator for the input address and upper limit latch). The equation

for A<B when A and B are 32 bits long, thus, is,
A<B =aleb32.2 + (aeqb32.2) (aleb16.2)

The naleb signals is the A <B signal and the naegb is the A=B signal. Similarly, the
blec and beqc signals are generated from the comparator comparing the upper limit

address and the input address. These signals are trapped in a flip-flop. This
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completes the second and final stage of the pipeline for the comparison.

The bottom part of figure 2 shows the logic which uses the signals provided by
the comparators to generate the entry/exit and the time/address count. The
inrange signal is true if the input address lies between the upper and the lower

limit i.e. if 1[31:0]<a[31:0] <u/[31:0]. The logic equation for this is,
inrange = (aleb +aeqb )- (blec +beqc )

Using DeMorgan’s law, this can be rewritten as

inrange = aleb -aeqb + blec - begc

(In the circuit, the complement outputs of the ffleq flipflops are used to generate
the inrange signal. Figure 2 shows these signals.) Along with the inrange
signal, the active signal for each range is also generated. Recall that the
active signal indicates if the current range is active and counting or not. The
active signal must be updated every cycle. The active signal should be true if
the input address is valid and in the range or if the current input address is invalid and
current range was active in the last cycle. The logic equation for the active signal at

time ¢ thus becomes,
active; = active,_y - valid + valid - inrange

The active,_, signal is the active.3 signal on the diagram, the active, is the
active signal the valid signal and its complement are wvalid.2 and
nvalid. 2 respectively. The signal for whether the current input address signifies
an exit from the range, exitrange, is true when the current input address is valid
and not in the range and the range recognizer was active in the last cycle. In addition,
to account for recursive procedures, the exitrange signal is asserted when the
input address is valid and is equal to the lower limit and the range recognizer was

active in the previous cycle. Thus the logic equation for the exitrange signalis,

exitrange =valid - active,_y - (inrange + aegb )



Using DeMorgan’s law,

exitrange = valid - active,_1 - (inrange - aeqb )

The aegb is the naegb. 2 signal in the figure. The exitrange signal is used to

increment the entry/exit counter.

The increment signal for the address/time counter is the inc signal in the fig-
ure. As mentioned previously, the count is incremented when either of the following
conditions are met: the chip is in count-address mode and the input address is valid
and in the range or the chip is in time-a-range mode, the en_timer signal is high
and the range is active and counting. As shown in the figure, a part of the increment
signal is generated in parallel with the active signal. The logic equation for the inc
signal is,

inc =valid - chip_mode + en_timer - chip_mode
Using DeMorgan’s law,

inc = (valid + chip_mode ) (en_timer + chip_mode )

This is shown in the figure. The inc signal is trapped in the ffmisc flip-flop.
Various other signals are also trapped in the flip-flop as shown in the figure. It
should also be noted that this flip-flop has a reset signal, bnr. At initialization time,
this signal is asserted and all the bits of th flip-flop are set to zero when the signal is
asserted. The complements of the inc.3 and active. 3 signals from the flip-
flop are fed to a NOR gate whose output is fed to an eight bit incrementer. Similarly,
the exitrange. 3 signal is the increment signal which is fed to an identical eight

bit incrementer.

The eight bit incrementer consists of two four bit flip-flops and two four bit
incrementers. A single four bit increment is done in each cycle i.e. each 10 ns. The
output of the flipflop feeds the incrementer whose output is fed back to the flip-flop

inputs. The carry-out from the lower 4 bits is trapped in a flip-flop and then fed to
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the next stage. The output carry of each incrementer is fed to the priority resolver
logic (discussed later). The output bits of the flip-flops are fed to 2 to 1 inverting
muxes whose control signal is the eccnt signal. These muxes controls which
count is sent to the pins when the count is to be read out. The output of the muxes
feed a tristate buffer which is enabled when the read signal for this particular range
recognizer .is asserted. The tristate buffer feeds an eight bit bus which is common to
all the 16 range recognizers on the chip. The appropriate buffer drives the bus when
it is enabled. The tristate buffers reduce the number of wires and thus minimize wir-
ing capacitances.

Thus, in summary, the range recognizer blocks take a 32 bit address as input and
output two eight bit counts and two carryout signals, cntcout8 and

exitcout8. The next section discusses the priority resolver circuit.

4.4 The Priority Resolver Circuit

As explained previously, the specifications of the chip allow overlapping ranges
to be programmed. Thus more than one range recognizer may output a carry at the
same time. The output carry is a signal for the RAM circuit to increment the upper
bits of the count for the range recognizer. Since there is only one incrementer in the
RAM circuit, only one of the increment requests can be handled at a time by the
RAM circuit. Thus some mechanism to ensure that the requests are queued up and
sent one after the other to the RAM circuit, is required. The priority resolver circuit
performs this function. The RAM circuit takes 40 ns to complete one increment.
The priority resolver takes as its input, the carry out signals from the range recognizer
and stores them till the RAM circuit is free to do an increment. When the RAM cir-
cuit proceeds with the increment for a particular range recognizer, the priority
resolver clears the corresponding carry out bit from its own flip-flops. This bit can be

set again by another carry out signal from the respective range recognizer. Since the
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carryout from each range recognizer can only occur at the rate of once in 256 cycles
(2560 ns), and since there are only 16 range recognizers on the chip, with the RAM
circuit cycle time of 40 ns, the priority resolver will always take care of all the incre-
ment signals correctly and never miss any of them even in the worst case of all the 16

range recognizers giving an increment signal at the same time.

The priority resolver implements a simple algorithm for deciding which range
recognizer’s request is honored first. The request from a range recognizer whose
number is lower is always honored first i.e. the request from range recognizer 0 has
top priority followed by range recognizer 1 etc. and range recognizer number 15 has

the last priority. There is no specific reason to implement this particular order but it
is the simplest to implement (instead of some scheme like first in first out) so it was
chosen. The objective is to prevent an overlap of increment requests so the particular
priority resolving algorithm is not of importance so far as it accomplishes the objec-

tive. Figure 3 shows a part of the priority resolver circuit.

| : ncntcout.S

—_
rccout r
J_/ p f
cntcout8 e f r
5 c pri_resolvf— f
f
clk g clkq| © nclk4
Figure 3

The carryout signal from the incrementers is fed to an OR gate and the output of
the OR gate is trapped in a flipflop. The other input of the OR gate is fed by a NOR
gate (which is used in place of an AND gate since inverted inputs are available)
whose inputs are the output carry signal from the flipflop (ncntcout.5) and the

output signal of the priority resolver (trapped in another flipflop). The reason why
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this logic is needed is the following. The output carry from the incrementer of the
range recognizer gets updated every 10 ns. However, the priority resolver will not
look at this signal every cycle. So the output carry needs to be saved till the priority
resolver has had a chance to look at it and finally apply it to the RAM after which it
can be cleared. The pri_resolv circuit will assert at its output the carry out sig-
nal for a particular range recognizer only when that range recognizer has the highest
priority at that instant. When this is done, the priority resolver has now passed on the
increment request to the RAM circuit and thus it must clear the carry out bit. Now,

consider the logic equation,
cntcout. 5, = cntcout 8 + cntcout. 5;_1 - Fccout

The rccout signal is the signal to be applied to the read ports of the RAM. Note
that the rccout is normally low and is only asserted when the pri resolv
block forwards the carry request of the range recognizer to the RAM. So, the rFccour
signal is normally high and thus the output of the AND gate is the same as
cntcout. 5,-1. This is ORed with the current carry out from the range recognizer i.e.
cncout8. So, if either of these signals is high, it gets trapped in the flip-flop and
the output of the flip-flop remains high till the rccout signal is asserted i.e. when
the 7ccout signal goes low. Now, the output of the flip-flop is cleared and thus the
carry out is also cleared till the next carryout signal (i.e. cntcout8 signal) occurs
again.

Note that the cntcout.5 signal is the output of a flip-flop whose clock is
clk which runs at 10 ns. This signal is fed to another flip-flop which traps the signal
with the c1k4 signal which is the internally generated 40 ns clock. This flip-flop
thus provides the proper interface between the 10 ns and 40 ns circuits. The output of
the priority resolver is trapped with the complement of the 40 ns clock which implies
that the propagation delay through the pri_ resolv block is less than 20 ns. The

logic equation for the pri resolv logic is,
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where rcout, is the output of the pri_resolwv block and cout, etc. are the inputs

to it.

4.5 The RAM circuit

The RAM circuit is responsible for maintaining the upper bits of the count. The
priority resolver and RAM circuits for the entry/exit and address/time count are ident-
ical except that the RAM circuit for the former has only 24 bits of upper count as
opposed to the 48 bits for the latter. So only the address/time count RAM circuit will
be discussed here. The discussion applied mutatis mutandis to the entry/exit count
RAM circuit. All the flip-flops in the RAM circuit are clocked with the internally
generated 40 ns clock. This clock is generated by feeding the 10 ns clock to a divide
by 4 circuit. The output of the circuit is a 40 ns clock and its complement. This out-
put is fed to buffers whose outputs (c1k4 and nclk4) are routed to the various

flip-flops in the RAM circuit.

Figure 4 shows a block diagram of the RAM circuit. The increment request
from the priority resolver output flip-flp is fed to a mux whose output feeds a buffer
which, in turn, drives the read ports of the RAM. (The output of the decoder tree in
the output section feeds the other input of the mux. This input is used to read out the
contents of the RAM). Only one of the 16 outputs from the priority resolver would
be asserted at a time which implies that one location of the RAM will be read out. It
is important to understand the clocking sequence of the flip-flops in the RAM circuit

properly. All the flip-flops are falling edge flip-flops unless specified otherwise.

As explained previously, the input flip-flop for the priority resolver uses the 40
ns clock. The delay through the priority resolver is about 16 ns. The output flip-flop
of the priority resolver is clocked with the complement of the 40 ns clock. This

means that the output of the priority resolver gets trapped 20 ns after the falling edge
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of the 40 ns clock, clk4. This output will be then driven to the read port of the
RAM if the enr signal is low i.e. if the chip is counting currently. The RAM is
actually made up of several C533F RAM cells which are single bit I/O, 16 location
fast RAM cells. Each cell has 16 read and write ports and one input and one output.
This means that the mux at the read port of the RAM must drive 40 such cells. The
output of thc RAM is trapped in a flip-flop which is clocked with clk4. The worst
case read time for the RAM cell is 10.20 ns plus 2.34 ns for each pF of load on its
output. This means that the output of the RAM will be valid at about 12 ns after the
read address to the RAM read port is applied (assuming a load of about 0.5 pF).
Given the 20ns delay through the priority resolver and a delay of about 3 ns for the
flip-flop outputs to become stable, the mux must drive the data from the flipflops to
the RAM read ports in 5 ns or less. Given that the mux has to drive 40 individual
ports, this is not possible to accomplish (with the ADG cell library) without using

buffers. Therefore, buffers are used to drive the data to the RAM read ports.

The output of the RAM is trapped in a flip-flop (ram£ £) which is clocked with
clk4. At the same time, the carry-in for the 40 bit incrementer is trapped into a mux
flip-flop. The carry-in is obtained by feeding the outputs of the priority resolver to a
16 input OR gate (constructed using NAND and NOR gates). The output of the OR
gate is trapped into a mux flip-flop. This flip-flop traps the output of the OR gate if
the enr signal is low. The other input of the flip-flop is grounded so the flip-flop
traps a zero if the enr signal is high. Thus the count will not be incremented when
the data is being read out of the RAM to feed it to the output pins. The output of
ramff feeds a 40 bit incrementer. The output of the incrementer is trapped in the
incff flip-flops. These flip-flops are also clocked with clk4 so the increment
must be finished in 40 ns. The output of these flip-flops is the updated count which is

then fed to a mux which feeds the data input port of the RAM.

As seen from the figure, a mux also feeds the write ports of the RAM. This mux
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is fed either from a flip-flop or from the output of the decoder tree in the output sec-
tion. The decoder tree output is used when the enw2 signal is asserted. This mode
is used for testing the RAM. The output of the mux is again driven using buffers to
the read ports of the RAM. As shown, the output of the priority resolver is fed to the
wf £ flip-flop. However, the clock for this flip-flop is clk4d. This is a signal gen-
erated by feeding the c1k4 signal to some delay cells. The delay is approximately
8 ns. The result is that the output of the priority resolver is stored into this flip-flop

about 8 ns after it is stored in the flip-flop at the read port of the RAM.

In order to understand the operation of the RAM circuit, consider a sequence of
events as follows. At time t, the carry out signals from the range recognizers are
trapped at the input of the priority resolver with the clk4 clock. At t+20 ns, the
priority resolver output is trapped in the flip-flop at the read port (the priority resolver
output flip-flop). The mux then applies this value to the RAM read ports. At t+48 ns,
the address applied to the read port of the RAM (which is the same as the output of
the priority resolver) is stored in the wff flip-flop. The next clock edge for the read
flip-flop will occur at 40 ns while the next clock edge for the write flip-flop will
occur at t+88 ns. The RAM outputs the appropriate data after t+40 ns which is
trapped in the ramff flip-flop which feeds the incrementer. The output of the
incrementer is trapped at t+80 ns and is fed back to the input of the RAM. Since
the data at the write ports will change only at t+88ns, the output of the incrementer is
written into the correct location (i.e. where it came from before being incremented).

The same sequence of events repeats every cycle.

It is now easy to see why the inputs to the read and write port of the RAM are
critical. Note that one of the write ports of the RAM is addressed all the time. This
means that whatever appears at the data input port will be written into that location.
So, the inputs to the ports must be timed very precisely or else the data in the RAM

will be wrong. This is also the reason why a separate decoder tree for the output sec-
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tion was necessary. If the input decoder tree is used, its inputs get excessively loaded
resulting in an increase in the delay through it. This delay is unacceptable for the
RAM circuit so a separate decoder tree is used. This is not much of a problem,
though, since the decoder tree takes very little space on the chip. When the data from
the RAM is to be read out, the enr signal is asserted and the output of the decoder
tree is fed tb the read port of the RAM. The RAM output is trapped in the ramff
flip-flop whose output is then sent out to a mux whose output feeds the pins. The
read address at the input pins of the chip must be maintained till the data is read out.
It is clear now that the read address must be applied in such a way so that the output
of the decoder tree is applied to the read ports, about 12 ns before the falling edge of
the clk4 clock occurs. The graphs of simulation results attached at the end of this
chapter show this. The c1lk4 signal is output at the pins so that it can be used to

synchronize the application of the read address to the pins.

To test the RAM, an additional pin is provided on the chip as discussed previ-
ously. When this pin is asserted along with the prg_chip pin, the enw signal is
asserted for the appropriate RAM circuit (entry/exit or address/time) based on the
beccnt signal. This will feed the wr [0:39] signals to the RAM data input. As
discussed previously, the 32 bits of input data pins (the lower 24 bits for the
entry/exit count RAM) and the 8 bits of bidirectional output/input data pins (not used
for the entry/exit count RAM) are used to feed the RAM. The output of the decoder
tree is the write address. It will be fed to the RAM when the enw2 signal is
asserted. This signal is asserted when, in addition to prg chip and enw, the
strb?2 pin is asserted. The strb2 pin is used to synchronize the writing of data

into the RAM since the data takes longer to set up than the address.

The next section discusses the layout of the chip and shows the results of a typi-

cal run of the chip. Several plots showing the key signals are shown.
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4.6 Results and discussion

As mentioned previously, all the simulations of the chip before layout were
done using the 1.5 pm standard cell library. The chip layout was done using
automatic layout tools and the capacitances were recalculated from the laydut. The
critical path was 14.6 ns, 4.6 ns slower than the required. The critical path was found
in one of the range recognizers (this was expected). It must be noted, however, that
only a few of the 16 range recognizers had critical paths while others met the timings.
It must also be noted that almost no effort was put into planning the layout of the
chip. Since the chip consists of 16 range recognizers and since even with the
automatic layout, many of the range recognizers meet the required timing, it is rea-
sonable to assume that if a custom layout of one range recognizer is done, it would
not only meet the required timings but also save significant amount of chip area.

The current layout of the chip uses the 1.5 pm standard cell library. The ADG group
has already developed a standard cell library for a channel length of 1 pm. If the
current layout is scaled to 1 um channel length, according to ADG, the gain in perfor-
mance would eliminate the critical paths that are present in the 1.5 pm version of the
layout and the chip would meet the required specs (100 MHz clock speed at 70° C).
The chip has not yet been actually manufactured and therefore no real data for actual
silicon is available. However, as discussed before, there are reasonable grounds to
assume that there will be no critical paths in a manufatured chip with some effort
being invested in layout of the chip. In the following, the results of simulation of a
typical run of the chip are presented. The input vectors were generated using a vector
generating program used by the ADG group called vgp. The actual list of vectors is
too long to include here but the wvgp program input used to generate the vectors is
included in appendix D. All the simulations shown in this thesis and the timings
shown in this section are scaled up by 32% from the original timings to account for

the speed up that can be gained by scaling the chip from 1.5 pum to 1 pm technology
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and better layout (i.e. all the time factors were multiplied by 0.68 after accounting for
the temperature degradation of 0.3% per °C). The results of the simulations are

shown in the form of plots which are located at the end of this chapter.

The plots show values of some signals for a typical run of the chip. The chip is
first initialized by applying the chip reset signal, nr (see plot 1). The part of the
plots whicﬁ shows a series of x’s indicates that the value of the signal is undefined at
that time. This is expected at the time of initialization. The reset signal nr is fed to
buffers whose output, bnr. 3 (asserted low) resets the counters for the range recog-
nizers (signals rr0.e([7:0] and rr0.g[7:0]. The carryout signals also get
initialized. These, in turn, feed the flipflops which feed the RAM circuit (see plot 4).
Thus the RAM flip-flops also get initialized to zero. The internal 40 ns clock gen-

erated from the 10 ns clock is also seen in plot 4.

Referring back to plot 1, at about 220 ns, the prg_chip signal is raised and
data is applied at the input. This data is used to program the upper and lower limits
of the range recognizers. The lower limit of all range recognizers is programmed to
the value FFFFFFF2 (hex) and the upper limit is programmed to FEFFFFF8 (hex).
The data is latched into the appropriate latches (signals rr0.11[31:0] and
rr0.ul[31:0] on the plot) using the limit signal and is strobed in using the
strb signal. The d[3:0] signals select the appropriate range recognizer. The
plots attached show the data for range recognizer number 0. The write enable signals
for the latches, rr0.1limit and rr0.ulimit can also be seen on plot 1. The
g[7:0] signal is the inverted output of the mux in each range recognizer which
sends lowest eight bits of the time/address count (rr0.g[7:01]) or the entry/exit

count (rr0.e[7:0]) to another mux which sends it to the output pins.

Now, referring to plot 2, we see the range recognizer 0 counting. The input data
is held at the value FFFFFFF6 and the wvalid signal is held high. The count incre-

ments every cycle, as seen in the plot. Plot 3 shows both the entry/exit and the
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address/data counters counting. The input data alternates between the values
FEFFFFF7 and FFFFFFEC. The first address is within the range and the second is
outside the range so both counters will be counting. As mentioned previously, plot 4
shows the flip-flops in the RAM circuit being initialized. Plot 5 shows data being
written into the RAM. This is the test mode of the RAM. In order to see the 40 bit
increment, .we write a value of FFFFFFFFFF into the 40 bit address/time count RAM
and a value of FFFFFF into the 24 bit entry/exit count RAM (not shown). The plot
also shows the address being applied to the m[3:0] pins and the output of the
decoder tree being applied to the RAM write port, (signal ramccnt.w[15:0]).
Note also that the output of the decoder tree is applied to the RAM only after the
strb2 signal is raised and held. Plot 6 shows the RAM circuit counting. Recall
that all the range recognizers were programmed with same upper and lower limits to
see that even overlapping ranges work correctly. This is seen from the plot. Notice
that the cc[15:0] signals start with the value of FFFF i.e. all range recognizers
requesting an increment at the same time. The output of the priority resolver,
rcc[15:0] applies each one at a time to the RAM read ports,
ramccnt .rd[15:0]. The output of the RAM is trapped in the output flip-flop
(ramccnt .dout [39:0]) and stored back to the RAM after being incremented
 (ramccnt.din[15:0]). The address at the read port is trapped into flip-flops at
the write port after being delayed (ramccnt .w[15:0]). The delay is achieved by
using the delayed 40 ns clock, ramccnt.clk4d to clock these flip-flops. Finally,
plot 7 shows the results being read out from the RAM and the range recognizers. The
input range recognizer number m[3:0] (which is actually the RAM address) is
applied to the read port of the RAM and the output data is trapped in flip-flops
(ramcent .dout [39:01]). The output of the flip-flops feed a mux which drives a
byte of data to the output pins, c[7:0], depending on the value of the

enr [2:0] signals. (The plot shows the value decoded to six signals, rd[5:01).
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Real Time Performance ﬁnalgzer
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Real Time Performance Analyzer
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Real Time Performance Analyzer
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Real Time Performance Analyzer
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. ramcent .rd1S:r

Real Time Performonce Analyzer
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5. SUMMARY AND CONCLUSIONS

The need for a cheap and effective tool to accomplish non-intrusive source level
performance analysis of real time software was identified in Chapter 2. Some efforts

to develop such a tool and the pros and cons of these tools were discussed.

The macroarchitecture of a real time performance analysis chip was discussed in
Chapter 3. The reason for choosing a particular architecture and its advantages were
discussed. It was shown that by reducing the demand on the capabilities of the tool,
high performance at a low price could be obtained by designing a simple but efficient

chip which uses a simple technique to aid non-intrusive performance analysis.

In Chapter 4, the microarchitecture of the chip was presented. The logic equa-
tions and the implementation of the required functions using the ADG 1.5 um stan-
dard cell library was presented. Results of the layout of the chip and a post layout

simulation were presented.

In summary, a high performance chip to aid real time non-intrusive performance
analysis was sucessfully simulated and laid out. The chip implements a simple algo-
rithm to accomplish this purpose and provides the capability to do performance
analysis at speeds as high at 100 MHz. A set of such chips combined with a state
analyzer can make an extremely effective system for debugging and performance
analysis. The current version of the chip has only 16 ranges. This is admittedly a
small number but this was largely necessitated by the speed requirement. Further, as
already discussed, almost no cffort was put into laying out the chip. The regular and
hierarchical structure of the chip assures that a custom layout would save significant

amount of space. The addition of more ranges merely involves adding more range
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recognizer blocks and expanding the priority resolve and the RAM circuit which is
fairly easy to accomplish. It is possible to further reduce the chip area by reducing
the number of pipeline stages in the comparators in the range recognizers. This can
be accomplished by designing standard cells to accomplish this function. Also using
1 micron technology would buy more chip area. No software has yet been written to
program aﬁd run the chip and and the question of integrating the chip with state
analyzer has not yet been studied. It is my opinion that further work should be

directed at these areas.
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APPENDIX A

/* Behavioral simultion of real time performance analyzer
* Second Version: Written Sept 15, 1989 by Mehul Dave

*

*

Reads input from a file line wise.

* Format of line is

* £1 £2° £33 £4 £5 f£6 £7 £8 £9 :£10 £l1l

* where

* f1 : Chip reset (set all counters to zero)

* £2 : program chip (0/1)

* f3 : Upper/lower(l/0) limit address - for programming

* £f4 : mode of analysis for chip

* 0 -> Count number of addresses in a range

* 1 -> Time a range

* f5 : Enable/disable timer. For time a range mode. If disabled, don’t
& count.

* £6 : valid/invalid(1/0) input data. for PA measurements
* £7 : input data (32 bit in hex)

* £8 : Range Recognizer (RR) number

e f9 : read time/address count or entry/exit count

X £f10 : read enable

* f11 : the byte number to be read (of the count)

*

* Outputs result of the performance analysis on stdout.

Xy

#include <stdio.h>
#define MAXLINE 1000 /* Maximum character in one input line */

#define UPPER 1 /* data word indicates upper limit for compare */
#define LOWER 0 /* data word indicates lower limit for compare */
#define MAX 16 /* Number of range recognizers */

#define COUNT_ADDR 0 /* chip mode to count addreses in a range */
#define TIME_A RANGE 1 /* chip mode to time a range */

int reset,prg chip,limit,chip mode,en_timer,valid, rrnumber,eccnt,

ren,enr;

int active[MAX]; /* Bit to indicate if RR is active or not */
long data,data2;

long upper[MAX], lower[MAX]; /* Upper and lower limits of RRs */

long ccount [MAX], ecount[MAX]; /* Time/Address or entry/exit count for RRs */
int linenumber = 0;

main ()

{



/*

e
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int A7
char line [MAXLINE];

i=43=20;
/* Get a line from input file till end of file encountered */

while (fgets(line,MAXLINE,stdin) != NULL) {
++linenumber;

i = (sscanf(line,"%d %d %d %d %d %d %x %d %d %d %4",
&reset, &prg_chip, &limit, &chip mode, &en_timer, &valid,
&data, &rrnumber, &eccnt, &ren, &enr));

for (j = 0; j < MAX; ++3)
printf ("line %d: active[%2d] = %d0, linenumber, j,active[]j]):

if (14 !'= 11) {
printf ("Invalid data format on line %d0, linenumber) ;
printf ("Each line must have exactly 11 fields0);
printf ("Oborting Program execution0);
exit (1)

if (reset) {

/* Set the time/address counts and entry/exit counts for all
range recognizers to zero */

for ( i=0; i < MAX; ++i) {
ccount [i] = 0;
ecount [i] = 0;

}
else if (prg_chip)
program chip() ;

else if (((chip_mode == COUNT_ADDR) && valid) ||
((chip_mode == TIME_A_ RANGE) && en_timer))
accept_data():
else if (ren) { /* Read the required byte of required count from RAM */
if (eccnt)
data2 = (ecount[rrnumber] & (0xFF << (8*enr)) ) :;
else

data2 = (ccount[rrnumber] & (0xFF << (8*enr))):

printf ("Eccent = %1d, Byte %1d for RR %2d = $2x0,eccnt,
enr, rrnumber,data?) ;
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else {
printf ("Invalid data conditions on line %d0, linenumber);

printf ("Oborting Program executionO) ;

exit (1) ;
}
}
printf {MT==srcrememene e r s e, s e s e 0):
printf ("] RRNumber | Time/Event | Entry/exit [0):
print£(”| | Count | Count |0) ;
printf(M|emmmrommssnrn oSS e T s R 10) ;
for (i = 0; i<MAX; ++i)
if ((ccount([i] !'= 0) || (ecount[i] != 0)) |
printf (| $3d | $6d | $6d [0,i,ccount [i],ecount[i]);
}
PLANEE (Mmoo 0)

program chip ()
{

if ((rrnumber >= MAX) || (rrnumber < 0)) {
printf ("Invalid rrid %d on line %d0, rrnumber, linenumber) ;

exit (1);
}
else if (! ((chip_mode == TIME A RANGE)|(chip_mode == COUNT_ADDR))) {
printf ("Invalid chip mode %d on line %d0,chip mode, linenumber) ;
exitdl);
}
else if (limit == UPPER)
upper [rrnumber] = data;
else if (limit == LOWER)
lower [rrnumber] = data;
else {
printf ("Invalid limitid %d on line %d0, limit, linenumber);
exit(l);

accept_data()
{

int i = 0;

for (i=0; i<MAX; ++i) {
if (valid) {
if ((data >= lower[i]) && (data <= upper([i])) {
++ccount [i]; /* increment address/time count */



/*

if data equals lower limit when the range is active,
increment entry/exit count. This is for recursive
procedures */
if ((activel[i]) &&
++ecount [1];

(data == lower[i]))

if (lactivel[i])

active[i] = 1; /* Activate status bit */

}

else

/* if addr. equals upper limit or out of range, then
end of that range if that range was active */

if (((data < lower[i]) ||
(active[il])) {
active[i] = 0;
++ecount [1];

(data > upper[i])) &&

/* deactivate status bit */

66

/* If timing a range, then increment count if inside that range i.e.

if the range is active */

else if ((!valid) && en_timer && (chip_mode == TIME A RANGE)) {

if (active[i])
++ccount [1];
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APPENDIX B

LIST OF ADG 1.5u CMOS STANDARD CELLS

C501 (Q IN)

C507 (Q IN)

C510 (VsS)

C511 (VDD)

PAD CELLS

c592 (PG NG DOUT)
C592HV (PG NG DOUT)
C592T (PG NG DOUT)
C5921IHV (PG NG DOUT)
€593 (PG NG DOUT CSB)
C593HV (PG NG DOUT CSB)
C5931 (PG NG DOUT CS)
C593IHV (PG NG DOUT CS)
C920 (PAD)

C920PU (PAD)

C920PD (PAD)

C920E (PAD)

C930 (PAD PGATE NGATE)
C930D (PAD PGATE NGATE)
C930HV (PAD PGATE NGATE)
C930PU (PAD PGATE NGATE)
C930PD (PAD PGATE NGATE)
BUFFERS

X101 (. Tlj)

5101 (Q 1I1)

TTL to CMOS level shifter (non-invert)
TTL to CMOS level shifter (inverting)
GROUND cell

VDD cell

pad output driver (inverting)

pad output driver (inverting, 1/2 power)

pad output driver (non-invert)

pad output driver (non-invert,1/2 power)

tri-state pad output driver (invert)

tri-state pad output driver (invert, 1/2 power)

tri-state pad output driver (non-invert)

tri-state pad output driver (non-invert, 1/2 power)

input pad with protection

input pad with protection and pull-up

input pad with protection and pull-down

input pad with protection (ECL vers.)

output
output
output
output
output

pad

pad (double-strength)
pad (half-strength)
pad with pull-up

pad with pull-down

inverter
inverting buffer - double size



5101X2
S101X3
S101X4
2101

2101X2
Z2101X4

(Q
(Q
(Q
(Q
(Q
(Q

I1)
I1)
3i)
I1)
I1)
I1)

DLY2X (Q Il1)
DLY4X (Q TI1)
DLY8X (Q Il)

C519 (NQ DIS 1IN)
C520 (Q DIS IN)

BUFSUS

X102
X102X2
X102X3
X102Xx4
X103
X104
X105
X106
X107
X108

X162
X162X2
X162X4
X162X6
X163
X164
X165
X166
X167
X168

X402
X402X2
X402X4
X403

(NODE)

(Q
(Q
(Q
(Q

(Q
(Q
(Q
(Q

I1 I2)
I1 TI2)
I1 T2}
El B2}

Il iI2' I3)

Il 12 I3
Id: F2: T3
Tl T2 I3
Il 12 I3
Il T2 I3

Tl T2y
T1 I2)
I1 I2)
Il I2)
I1 I2 I3)
Tl I2 I3
Tl I2 I3
I1 12 13
Tl 12 I3
Il 12 158

I1 12)
Td: T2
T1. T2)
I1 I2 I3)

I4)

I4
I4
I4
I4

I4)

I4
I4
I4
I4

I5)

I5 I6)

I5 16 I7)

I5 I6 I7 I8)

IS5)

I5 I6)

I5 I6 I7)

I5 I6 I7 I8)

inverting buffer - 2x drive
inverting buffer - 3x drive
inverting buffer - 4x drive
non-inverting buffer - double size
non-inverting buffer - 2x drive
non-inverting buffer - 4x drive

delay cell (2 inverters)
delay cell (4 inverters)
delay cell (8 inverters)

tristate buffer (inverting)
fast tristate buffer (non-inverting)

tristate bus line sustainer

input nor
input nor, 2x drive
input nor, 3x drive
input nor, 4x drive
input nor
input nor \
input nor
input nor

input nor

W - o b W NN

input nor

input nand
input nand, 2x drive
input nand, 4x drive
input nand, 6x drive
input nand
input nand
input nand
input nand
input nand

W J o s W DN N

input nand

input and
input and, 2x drive
input and, 4x drive

w N NN

input and
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X403X2 (Q I1 I2 I3) 3 input and, 2x drive

X404 (Q I1 I2 I3 I4) 4 input and

X404X2 (Q I1 I2 I3 I4) 4 input and, 2x drive

X405 (Q I1 I2 I3 I4 I5) 5 input and

X406 (Q T1 I2 I3 I4 IS5 I6) 6 input and

X407 {C Il 12 I3 14 IS5 I6 1) 7 input and

X408 (Q I1 I2 I3 I4 I5 I6 I7 I8) @8 input and

X432 {0 I1 I2) 2 input or

X433 {0 I1 T2 I3) 3 input or

X434 (Q 11 I2 I3 I4) 4 input or

X435 (Q I1 I2 I3 I4 I5) 5 input or

X436 (Q I1 I2 I3 I4 IS5 16) 6 input or

X437 (Q I1 I2 I3 I4 IS5 I6 I7) 7 input or

X438 (Q I1 I2 I3 I4 I5 I6 I7 I8) B input or

DATA LATCHES

TTLLAT (NQ EN D) d-latch, TTL-level input (low enable)
X318 (Q NQ EN D) d-latch (low enable)
X318X2 (Q NQ EN D) d-latch, 2x drive (low enable)
X319 (Q NO QT EN D DIS) d-latch with tri-state (low enable)
X320 (Q NQ EN D NR) d-latch with Reset (low enable)
X321 (Q NQ Q0 EN D NR) d-latch with Nand {low enable)
X322 (Q NQ EN D) d-latch (high enable)
X322W4 (Q0..Q3 NQO..NQ3, DO0..D3 EN) 4-bit d-latch (high enable)
X322W8 (Q0..Q7 NQO..NQ7, DO..D7 EN) 8-bit d-latch (high enable)
X323 (Q NQ EN D NR) d-latch with Reset (high enable)
FLIP FLOPS

X351 (Q NQ CK D) D-FF (neg edge)
X351w4 (QO0..Q3 NQO..NQ3 CK DO0..D3) 4-bit D-FF (neg edge)
X351W5 (Q0..Q4 NQO..NQ4 CK DO..D4) 4-bit D-FF {neg edge)
X351DY (Q NQ CK D) dynamic D-FF (neg edge)
X351DYW4 (Q0..03 NQO..NQ3 CK DO0..D3) 4-bit dynamic D-FF (neg edge)
X351DYW8 (Q0..Q7 NQO..NQ7 CK D0..D7) 8-bit dynamic D-FF (neg edge)
X352 (Q NQ CK D NR) D-FF with Reset (neg edge)
X352W4 (Q0..Q3 NQO..NQ3 CK D0..D3 NR) 4-bit D-FF with Reset (neg edge)
X353 (Q NQ CK D NS) D-FF with Set (neg edge)
X354  (Q NQ CK D NR NS) D-FF with Reset and Set (neg edge)



X361 (Q NQ CK D)
X361W4 (Q0..Q3 NQO..NQ3 DO..D3
X361DY (Q NQ CK D)

X361DYW3 (Q0..Q2 NQO..NQ2 DO..D2 CK) 3-bit

X361DYW4 (Q0..Q3 NQO..NQ3 D0..D3 CK) 4-bit
X361DYW5 (Q0..Q4 NQO..NQ4 DO..D4 CK) S5-bit

X362 (Q NQ CK D NR)
X362X2 (Q NQ CK D NR)
X364 (0 NQ CK D NR NS)
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D-FF (pos edge)

CK) 4-bit D-FF (pos edge)
dynamic D-FF (pos edge)
dynamic D-FF (pos edge)

dynamic D-FF (pos edge)

dynamic D-FF (pos edge)

D-FF with Reset (pos edge)

D-FF with Reset,2x drive (pos edge)
D-FF with Reset and Set (pos edge)

X371 (Q NQ CK J K) JK-FF (neg edge)
X372 (Q NQ CK J K NR) JK-FF with Reset (neg edge)
X374 (Q NQ CK J K NR NS) JK-FF with Reset and Set (neg edge)
X381 (Q NO CK A B SELA ) 2 input FF (neg edge)
X381W4 (Q0..Q3 NQO..NQ3 CK AO..A3 BO..B3 SELA)

4-bit 2 input FF (neg edge)
X381W5 (Q0..Q4 NQO..NQ4 CK A0..A4 BO..B4 SELA)

5-bit 2 input FF (neg edge)
X381DY (Q NQ CK A B SELA) 2 input dynamic FF (neg edge)

x381DYW4 (Q0..Q3 NQO..NQ3 CK A0..A3 BO..B3 SELA)
4-bit 2 input dynamic FF (neg edge)

X382 (Q NQ CK A B SELA NR)
X383 (Q NQ CK A B SELA NS)

X641 (Q NQ CK D NWE)

X641W4 (Q0..Q3 NQO..NQ3 CK DO..
4-bit

X691 (Q NQ CK D NWE SD NSS)

X692 (Q NQ CK D NWE SD NSS NR)

X693 (Q NQ CK D NWE SD NSS NS)

DECODERS & COMPLEX GATES

X412 (Q0 Q1 Q2 Q3 X Y)

X413 (Q0 Q1 Q2 Q3 X Y DIS)
X414ND (Q IO I1 I2 I3 X Y )
X414 (Q I0 Il I2 I3 X Y DIS)
X415 (Q A B SELA)

X416 (Q A B SELA)

X417 (Q0 Q1 Q2 Q3 X Y EN)

2 input FF with Reset (neg edge)
2 input FF with Set (neg edge)
D-FF with Hold (neg edge)
D3 NWE)
D-FF with Hold (neg edge)
D-FF with Scan and Hold (neg edge)

D-FF with Scan, Hold and Reset (neg edge)
D-FF with Scan, Hold and Set (neg edge)

g% ]

to 4 line
to 4 line
of 4 DATA
of 4 DATA
inverting 1
1 of 2 DATA
2 to 4 line

[ )

DECODER

DECODER w/Disable (X=LSB)
SELECTOR (X=LSB)

SELECTOR w/Disable (X=LSB)
of 2 DATA SELECTOR
SELECTOR

DECODER with En (X=LSB)



X418W4 (Q0 Q1 Q2 Q3 A0 BO Al B1 A2 B2 A3 B3 SELB)
inverting 4 of 8 DATA SELECTOR
X419W4 (Q0 Q1 Q2 Q3 A0 BO Al Bl A2 B2 A3 B3 SELB DIS)
inverting 4 of 8 DATA SELECTOR w/Disable

X422 (Q A B Q) 3-Input Majority Gate

X452 (Q A B SELA) inverting 1 of 2 DATA SELECTOR
X453 (Q A B C SA SB SC) inverting 1 of 3 DATA SELECTOR
X454 (Q A B C D SA SB SC SD) inverting 1 of 4 DATA SELECTOR
X455 (Q A B CD E SA SB SC SD SE)

inverting 1 of 5 DATA SELECTOR

X456 (Q ABCDEF SA SB SC SD SE SF)

inverting 1 of 6 DATA SELECTOR
X113 (Q BI1 BIZ2 Al) NAND of 1 2-input OR && l-Input
X114 (Q Al Bl A2 B2) NAND of 2 2-input OR gates
X116 (Q Al Bl A2 B2 A3 B3) NAND of 3 2-input OR gates
X124 (Q Al Bl A2 B2) NOR of 2 2-input AND gates
X126 (Q Al Bl A2 B2 A3 B3) NOR of 3 2-input AND gates
X133 (Q Al Bl I) NOR of 1 2-input AND && l1-Input
z114 (Q Al Bl A2 B2) AND of 2 2-input OR gates
z116 (Q Al Bl A2 B2 A3 B3) AND of 3 2-input OR gates
Z124 (Q Al Bl A2 B2) OR of 2 2-input-AND gates
z126 (Q Al Bl A2 B2 A3 B3) OR of 3 2-input-AND gates
GTGEN4

(Q G3 E3 G2 E2 G1 E1 GO) OR of 4-3-2-1 input AND

ARITHMETIC FUNCTIONS

X136 (SO S1 CO A0 AQ CIN) 2-bit INCREMENTER (S0 MSB)
X137 (S0..S83 CO A0..A3 CIN) 4-bit INCREMENTER (S0 MSB)
X137F (S80..83 CO A0..A3 CIN) Fast 4-bit INCREMENTER (SO MSB)
X138 (s0..87 CO AQ..A7 CIN) 8-bit INCREMENTER (S0 MSB)
X139 (S0 S1 co a0 Al CIN) 2-bit DECREMENTER (SO MSB)
X420 (Q I1 1I2) EXCLUSIVE OR

X421 (Q Il 1I2) EXCLUSIVE NOR

X592 (SO0 S1 CO A0 BO Al Bl CIN) 2-bit ADDER
X592N (NSO NS1 CO A0 BO Al Bl CIN) 2-bit ADDER (inverted outputs)
X594 (S0 s1 sS2 S3 CO A0 BO Al Bl A2 B2 A3 B3 CIN)
4-bit ADDER
X594N (NSO NS1 NS2 NS3 CO A0 BO Al Bl A2 B2 A3 B3 CIN)
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4-bit ADDER (inverted outputs)
MUL12X12 (PO..P23 NXO0..NX11 Y0..Y11l )
12-bit signed multiplier
MUL16X16 (PO..P31 NXO0..NX15 Y0..Y1l5 SGNDX SGNDY NSTDBY)
16-bit signed/unsigned multiplier

RAMs

€525 ( DOUT RDO..RD3 DIN WRO..WR3 ) 4 word x 1 bit

C525F ( DOUT RD(O..RD3 DIN WR0..WR3 ) faster, higher power wversion
€527 ( DOUT RDO..RD7 DIN WRO..WR7 ) 8 word x 1 bit

C527F ( DOUT RDO..RD7 DIN WRO..WR7 ) faster, higher power version
C533 ( DOUT RDO..RD15 DIN WRO..WR15 ) 16 word x 1 bit

C533F ( DOUT RDO..RD15 DIN WRO..WR15 ) faster, higher power version

LIST OF ADG 1.5u CMOS MACRO CELLS

These macros are distributed in the file cmoslSmc. It is important
to note that these macros are provided as application examples for
the convenience of our customers. Final netlists submitted to ADG
must be flattened to the standard cell level. Netlists so flattened
will contain NO macros.

PAD Macros

IPADI (DIN, PAD) inverting TTL input pad macro
IPADT (DIN, PAD) non-inverting TTL input pad macro
OPADI (PAD, DOUT) inverting TTL/CMOS output pad macro
OPADIHV 1/2 power,

(PAD, DOUT) inverting TTL/CMOS output pad macro
OPADT (PAD, DQUT) non-invert. TTL/CMOS output pad macro
OPADTHV 1/2 power,

(PAD, DOUT) non-invert. TTL/CMOS output pad macro

TSPADI (PAD, DOUT CSB) inverting TTL/CMOS tristate output

pad macro with disable
TSPADIHV 1/2 power,

(PAD, DOUT CSB) inverting TTL/CMOS tristate output
pad macro with disable



TSPADT (PAD,

TSPADTHV
(PAD,

DOUT CSB) non-invert.

TTL/CMOS tristate output

pad macro with disable

1/2 power,
DOUT CSB) non-invert.

TTL/CMOS tristate output

pad macro with disable

i3



APPENDIX C

CIRCUIT WIREC
; The input pads

padlimit plimit,limit IPADT
padstrb pstrb, strb IPADT
padprgc pprg_chip, prg_chip IPADT
padnr pnr, nr IPADT

padvalid pvalid,valid IPADT
padtimer pen_timer, en_timer IPADT
padcm pchip mode, chip mode IPADT

padcka pck, ck IPADT

']

; data is inverted.

pada3l pa3l, a3l IPADI
pada30 pa30, a30 IPADI
pada29 pa29, aZ29 IPADI
padaZ28 pa28, a28 IPADI
pada2’ pa27, a27 IPADI
pada2é6 pa26, a26 IPADI
pada25 pa25, a25 IPADI
pada24 pa24, aZ24 IPADI
pada23 pa23, a23 IPADI
pada22 pa22, a22 IPADI
padaz2l pa2l, a2l IPADI
pada20 pa20, a20 IPADI
padal? pal9, al%9 IPADI
padal8 pal8, al8 IPADI
padal? pal7, al7 IPADI
padalé pal6é, alé IPADI
padals pals, als IPADI
padal4 pal4, al4 IPADI

padal3 pal3, al3 IPADI
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; The input pads for input data. These pads have inverting buffers so
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padalz pal2, al2 IPADI
padall pall, all IPADI
padal0 pall, al0 IPADI

pada%9 pa9, a9 IPADI
pada8 pa8, a8 IPADI

pada7 pa7, a7 IPADI
pada6é pa6, a6t IPADI
pada5 pab, a5 IPADI
pada4 pa4, a4 IPADI
pada3 pa3, a3 IPADI
pada2 pa2, a2 IPADI
padal pal, al IPADI
padal pal, a0 IPADI

padd3 pd3, d3 IPADT
padd2 pd2, d2 IPADT
paddl pdl, dl IPADT
padd0 pd0, 40 IPADT

; Inverting Buffers to drive output of pa3l-pa0 into the latches and ffs

bufa3l b31l, pa3l S101X2
bufa30 b30, pa30 S101X2
bufa29 b29, pa29% sS101x2
bufa28 b28, pa28 S101X2
bufa2’7 b27, pa27 S$101x2
bufa2é b26, pa26 S101X2
bufa2s b25, pa25 S101x2
bufaz24 b24, pa24 S101X2
bufa23 b23, pa23 S101x2
bufaz22 b22, pa22 S101x2
bufa2l b21, pa2l S101Xx2
bufa2l b20, pa20 S101X%2
bufal9 bl9, pald% S101X2
bufals bl8, pal8 S101Xx2
bufal? bl7, pal7 S101X2
bufalé blé, palé S101X2
bufals bl5; palb :S101%X2
bufal4 bl4, pald S101X2
bufal3 bl3, pal3 S101Xx2
bufalz bl2, palZ S101X2
bufall bll, pail SLOLX2Z
bufal0 b10, pal0 S101Xx2

bufa® b9, pa® S101x2



bufa8

bufa?7
bufaé
bufas
bufa4
bufa3
bufa2
bufal
bufal

b8,

b7,
bé,
bs,
b4,
b3,
b2,

bl

bo,

paB

pa’7
pab
pab
paéd
pa3
paZ2
pal
pal

S101X%2

S101X2
S101x2
S101X2
5101X2
S101x2
$101Xx2
S101x2
S101Xx2

; build the clock buffer

ckbufp
ckbufa
ckbufb
ckbufc
ckbufd
ckbufl
ckbuf2
ckbuf3
ckbuf4
ckbufs
ckbufé
ckbuf?
ckbuf8
ckbuf9
ckbufl0
ckbufill
ckbufl?2
ckbufl3
ckbufl4
ckbufls
ckbuflé
ckbufl?
ckbufl8
ckbufl9
ckbuf20
ckbuf2l
ckbuf22
ckbuf23
ckbuf24
ckbuf25
ckbuf2e
ckbuf2?
ckbuf28

cka, pck
ckl, cka
ckl, cka
ckl, cka
ckl, cka
clk, ckl
clk, ckl
clk, ¢kl
clk, ckl
clk; ckl
clk, ckl
elk; ckil
clk, ckl
clk, ckl
clk,. ckl
clk; ckl
clk, ckil
clk,. ¢kl
clk, ckl
clk, ckl
clk; ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk, ckl
clk; ckl
clk, ckl
clk, ckl

Z101
z101
z101
z101
z2101
z101
z101
2101
Z101
zZ101
Z101
z2101
2101
2101
2101
2101
z101
z2101
2101
2101
z101
2101
z101
Z101
z101
2101
Z101
2101
2101
Z101
z101
z101
z101
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wiclkl ckl WIREOR: ci=1/4 ; split capacitance on the node between 4 Z101ls
wiclk2 clk WIREOR: ci=1/28 ; split capacitance on the node between 28 Z101l

; The flip-flop to capture and generate the reset signal

ffreset nr.3 nr.2 nr.l # # # # nr.0, clk nr.2 nr.l nr.0 pnr X351W4
; Buffer to drive the reset signal into each compare block

rstbuf bnr.3, nr.3 Z101X4

; Generate upper or lower limit programming signals

bufl blimit, plimit Z101
invl bnlimit, plimit X101

bustrba strba, pstrb Z101X4
bustrbb strbb, pstrb Z101X4

; The decoder tree for programming the latches of each range

decodeu decodel decodel decode2 decode3, pd2 pd3 pprg chip X417
decodel prg_lat0 prg latl prg lat2 prg lat3, pd0 pdl decode( X417
decode2 prg _lat4 prg_lat5 prg_laté prg lat7, pd0 pdl decodel X417
decode3 prg_lat8 prg lat9 prg_latl0 prg latll, pd0 pdl decode2 X417

decode4 prg_latl2 prg latl3 prg_latl4 prg latl5, pd0 pdl decode3 X417

; Delay the valid and en_timer signals to synchronize data with these
; signals

dlyvalid dvalid, pvalid dlyédx

dlytimerl den_timer, pen_timer dly4x

; Timer enable-disable,valid,chip mode ffs
ffvalid valid.l valid.0 en_timer.l en_timer.0 nvalid.l §
nvalid.0 nen_timer.l nen timer.0, clk $

valid.0 dvalid en_timer.0 den_timer bnr.3 X352W4

fftimer en_timer.2 nen_timer.2, clk en timer.l bnr.3 X352
ffcm chip_mode.3 nchip mode.3, clk pchip_mode bnr.3 X352

; Buffers to drive the chip mode, en timer and valid signals



bufvalid bvalid, wvalid.l 2101X2

bufcm bchip mode, chip_mode.3 2Z101X2

bufncm bnchip mode, nchip mode.3 Z101X2
bufnent bnen_timer, nen timer.2 Z101X2

; The range recognizers

rr(

EET

rr2

rr3

rré

rrb

rré6

rrQ.ccout rrO.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 blY bl8 bl7
bl6 bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg lat0 strba clk bnen_timer bvalid $
bchip_mode bnchip mode bnr.3 rccl recO0 nn0 beccnt compare

rrl.ccout rrl.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 bl9 bl8 bl7
bl6 bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 bé b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_latl strba clk bnen_timer bvalid $
bchip mode bnchip mode bnr.3 rccl recl nnl beccnt compare

rr2.ccout rr2.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 blg bl7
bl6é bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat2 strba clk bnen_timer bvalid $

bchip mode bnchip mode bnr.3 rcc2 rec2 nn2 beccnt compare

rr3.ccout rr3.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7
blé bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat3 strba clk bnen timer bvalid $
bchip_mode bnchip mode bnr.3 rce3 rec3 nn3 beccnt compare

rr4.ccout rréd.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b3l b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7
blé bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat4 strba clk bnen timer bvalid $
bchip mode bnchip mode bnr.3 rccd4 rec4 nné4 becent compare

rr5.ccout rrS5.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7
bl6é bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat5 strba clk bnen timer bvalid $
bchip mode bnchip mode bnr.3 rcc5 rec5 nn5 becent compare

rré.ccout rré.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bls bl7
bl6é bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 §
blimit bnlimit prg lat6é strba clk bnen timer bvalid $
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bchip_mode bnchip mode bnr.3 rccé recé nné beccnt compare

rr

rr8

rr9

rrl0

rrlil

rrl2

rrl3

rrld

rr7.ccout rr7.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7 $
bl6 bl5 bld bl3 bil2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat7 strba clk bnen_timer bvalid $
bchip_mode bnchip mode bnr.3 rcc7 rec7 nn7 beccnt compare

rr8.ccout rr8.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 blY bl8 bl7 $
bl6 bl5 bld bl3 bl2 bll bl0 b9 b8 b7 bé b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_lat8 strbb clk bnen_timer bvalid $

bchip mode bnchip mode bnr.3 rcc8 rec8 nn8 beccnt compare

rr9.ccout rr9.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 bl9% bl8 bl7 §
blé bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl bl §
blimit bnlimit prg_lat9 strbb clk bnen_timer bvalid $

bchip mode bnchip mode bnr.3 rcc9 rec9 nn9 beccnt compare

rrl0.ccout rrl0.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7 3
bl6 bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 §
blimit bnlimit prg_latl0 strbb clk bnen timer bvalid $

bchip mode bnchip _mode bnr.3 rccl0 recl0 nnl0 beccnt compare

rrll.ccout rrll.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 blY bl8 bl7 $
blé bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 bé b5 b4 b3 b2 bl b0 $
blimit bnlimit prg_latll strbb clk bnen_timer bvalid $

bchip mode bnchip mode bnr.3 rccll recll nnll beccnt compare

rrl2.ccout rrl2.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 bl9 bl8 bl7 $
blé bl5 bl4 bl3 bl2 bll bl0 b% b8 b7 b6 b5 b4 b3 b2 bl bl $
blimit bnlimit prg latl2 strbb clk bnen_timer bvalid $

bchip mode bnchip mode bnr.3 rccl2 recl2 nnl2 beccnt compare

rrl3.ccout rrl3.ecout g7 g6 g5 g4 g3 g2 gl g0 $

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7 $
bl6 bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 $
blimit bnlimit prg latl3 strbb clk bnen_ timer bvalid $

bchip mode bnchip mode bnr.3 rccl3 recl3 nnl3 beccnt compare

rrlé4.ccout rrld.ecout g7 g6 g5 g4 g3 g2 gl g0 $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 bl9 bl8 bl7 $
blé bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 bé b5 b4 b3 b2 bl b0 $
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blimit bnlimit prg latl4 strbb clk bnen_timer bvalid $
bchip _mode bnchip _mode bnr.3 rccléd recl4 nnl4 beccnt compare

rrl5 rrl5.ccout rrl5.ecout g7 g6 g5 g4 g3 g2 gl g0 $
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b2l b20 bl bl8 bl7 $
bl6 bl5 bl4 bl3 bl2 bll bl0 b9 b8 b7 bé b5 b4 b3 b2 bl b0 §
blimit bnlimit prg latl5 strbb clk bnen_timer bvalid $
bchip mode bnchip_mode bnr.3 rccl5 recl5 nnl5 beccnt compare

; Generate the 40ns clock from the master clock by divide by 4 circuit

ff1 clk2 nclk2, clk nclk2 bnr.3 X352

ff2 clk40 nclk40, clk2 nclk40 bnr.3 X352
bufnclk nclk4, nclk40 z101

bufclkl clk4, clk40 2101X4

bufclk2 clk4, clk40 Z2101X4

wiclk4 clk4 WIREOR : ci = 1/2
; Input flipflops which trap the carry from comparators

ffccd cc3 cc2 ccl ccl nce3 ncc2 nccl necl, clk4d $
rr3.ccout rr2.ccout rrl.ccout rr0O.ccout X351W4
ffcc8 cc7 ccé cc5 ccd ncc7 nccé ncebS nccéd, clkéd $
rr7.ccout rré.ccout rrS.ccout rré4.ccout X351W4
ffecel2 ccll ccl0 cc9 cc8 ncecll nccl0 ncc9 nce8, clkéd $
rrll.ccout rrl0.ccout rr9.ccout rr8.ccout X351W4 J
ffceclé ccl5 ccld ccl3 ccl2 ncclS nccld ncel3 necl2, clk4 $
rrl5.ccout rrld.ccout rrl3.ccout rrl2.ccout X351W4

ffec4 ec3 ec2 ecl eclO nec3 nec2 necl necO, clk4 $
rr3.ecout rr2.ecout rrl.ecout rr(0.ecout X351W4

ffec8 ec7 ec6é ec5 ecd4 nec7 necb nec5 necd, clk4d $
rr7.ecout rré6.ecout rr5.ecout rrd.ecout X351W4

ffecl2 ecll ecl0 ec9 ec8 necll necl0 nec9% nec8, clk4 $
rrll.ecout rrl0.ecout rr9.ecout rr8.ecout X351W4

ffeclé ecl5 ecld ecl3 ecl2 necl5 necld necl3 necl2, clk4 $
rrl5.ecout rrld.ecout rrl3.ecout rrl2.ecout X351W4

; Take data from pads and generate enr/enw signals

padcnt peccnt, eccnt IPADT
padren pren, ren IPADT
padwen pwen, wen IPADT

padstb2 pstrb2, strb2 IPADT
invenr nenr, pren S101

invenw nenw, pwen X101
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bufeccntl beccnt, peccnt Z101X4 .
bufeccnt2 becent, peccnt Z101X4
inveccnt neccnt, beccnt X101
wibeccnt beccnt WIREOR: ci=1/2

andccenr ccenr, neccnt pren X402X2

andccenw ccbenw, neccnt pprg_chip pwen X403
andccenw2 ccenw2, neccnt pprg_chip pstrb2 X403X2
bufccenw ccenw, ccbenw Z101X2

andecenr ecenr, beccnt pren X402X2

andecenw ecbenw, beccnt pprg chip pwen X403
andecenw?2 ecenw2, beccnt pprg chip pstrb2 X403X2
bufecenw ecenw, ecbenw Z101X2

; pads to input the signals to decide which bits of RAM to read

padrw0 penr0, enr0 IPADT
padrwl penrl, enrl IPADT
padrw2 penr2, enr2 IPADT

; Generate inverts of originals

invenr( nenr(, penr0 X101
invenrl nenrl, penrl X101
invenr2 nenr2, penr2 X101

; Decode the input signals to six seperate signals

decodenr rd0 rdl rd2 rd3, penr(0 penrl nenr2 X417
andrd4 rd4, penr2 nenrl nenr( X403
andrd5 rd5, penr2 nenrl penr( X403

; pads to input read address

padm0 pmO, m0 IPADT
padml pml, ml IPADT
padm2 pm2, m2 IPADT
padm3 pm3, m3 IPADT

; input read signals to read RAM after incrementing is over
; A decoder decodes 4 bits to 16 bits which are then fed to the read
MUX which feeds the RaM ’

.

decodem5 sel0 sell sel2 sel3, pm2 pm3 pprg chip X417

; Rest of the decoding tree
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decodem4 nl2 nl3 nl4 nl5, pm0 pml sel3 X417

decodem3 n8 n9 nl0 nll, pm0 pml sel2 X417
decodem2 né4 n5 n6 n7, pm0 pml sell X417
decodeml n0 nl n2 n3, pm0 pml sel0 X417

; Invert the output of the decoders

invn0 nn0, n0 S101X2
invnl nnl} nl S101x2
invn2 nn2, n2 S101Xx2
invn3 nn3, n3 S101X2
invn4 nn4, n4 S101X2
invn5 nn5, n5 S5101X2
invné nné6, n6é S101X2
invn7 nn7, n7 S$101X2

invn8 nn8, n8 S101X2
invn9 nn%, n9 S101X2

invnl0 nnl0, nl0 S101X2
invnll nnll, nll S101Xx2
invnl2 nnl2, nl2 S101X2
invnl3 nnl3, nl3 S101X2
invnl4d nnld4, nld S101X2
invnl5 nnl5, nl5 S101X2

; The RAM circuit for address/time count

ramccnt 38 39 ji0 j11 ji12 ji13 ji4 ji5 j1lé6 317 3j18 j19 320 j21 j22 j23 $
j24 3j25 326 327 j28 j29 330 331 nj32 nj33 nj34 nj35 nj36 njl37 $
nj38 nj39% nj40 nj4l nj42 nj43 nj44 njd45 nijdé njd47, §
ccenr ccenw clk4 nclk4 ccenw2 $
ccl0 ccl cc2 cc3 ccd ccb cchb cc7 cc8 ccd ccll cecll ccl2 cecl3 §
ccld ccl5 necel necl nce2 nce3 nccd nec5 neccé ncc7 nece8 nccH S
nccl0 nccll necel2 ncel3 nccld ncelb $
rccO0 rececl rcec2 rce3 rccd rccb rccé rec? rcc8 rccH $
recll roell ¥oel2 recll '¥ecld ¥eelb 8
nn0 nnl nn2 nn3 nn4 nn5 nné nn7 nn8 nn% nnl0 nnll nnl2 nnl3 §
nnl4 nnl5 e0 el e2 e3 e4d e5 e6 €7 $
pal pal pa2 pa3 pa4 pa5 pab pa7 pa8 pa9 pall pall pal2 pal3l $
pal4 palb palé pal7 pal8 pal9 pa20 pa2l pa22 pa23 pa24 pa25
pa26 pa27 pa28 pa29 pa30 pa3l wr32 wr33 wr34 wr35 wr36 wr37 $
wr38 wr39 ramd0

03

; The RAM circuit for entry/exit count

ramecnt k8 k9 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23 $
k24 k25 k26 k27 k28 k29 k30 k31, $



ecenr ecenw clk4 nclk4 ecenw2 §

ec0 ecl ec2 ec3 ecd ec5 ec6t ec7 ec8 ecH
ecld ecl5 necO necl nec2 nec3
necl0 necll necl2 necl3 neclé

rec0 recl rec2 rec3 recé4 rech
recl0 recll recl2 recl3 recl4d

nn0 nnl nn2 nn3 nn4 nn5 nné nn7 nn8 nnd

nnl4 nnl5 g0 gl g2 g3 g4 g5 g6 g7 $

pa0 pal pa2 pa3 pa4 pa5 pa6 pa7 pa8 pa)d
pal4 pal5 palé pal7 palB pal9 pa20 paZ2l

;

muxeccntl2
muxeccntl6

muxeccnt20

muxeccnt24

muxeccnt28

muxeccnt32

; Muxes to

mux0 10,
muxl 11,
mux2 12,
mux3 13,
mux4 14,
mux5 15,
muxé 16,
mux?7 17,

111 110 19 18,

115 114 113 112,
beccnt X418WwW4
119 118 117 11ls,
beccnt X418W4
123 122 121 120,
beccnt X418W4
127 126 125 124,
beccnt X418W4
131 130 129 128,
beccnt X418W4

15

419

j23

327

331

k19

k23

k27

k31

311 k11 310 k10 39 k9
k15 314 k14 3§13

318 k18 317
422 k22 j21
326 k26 325

330 k30 329

ecl0 ecll
nec4 nec5 nec6 nec?
necl5 $
rec6t rec7 rec8 recH
recl5 $
nnl0 nnll
pall pall
pa22 paZ23

48 k8 beccnt X418W4

k13 312
k17
k21

k25

k29

j16

320

324

j28

ecl2 ecl3 s
nec8 nec9% $

nnl2 nnl3 $

pal2 pal3 $
ram24

kl2 $

k16 $

k20 $

k24 s

k28 $

select which bit of the count to be driven out

g0
gl
g2
g3
g4
g5
g6
g7

110
i e §
1312
333
114
115

118
119
120
121
122
123

126
127
128
129
130
L3

nj34
nj35
nij36
nj37
nij3s
nj39

nj42
nj43
nj44
nj45
nij4e
nj47

rd0
rd0
rd0
rd0
rd0
rd0

rd2
rd2
rd2
rd2
rd2
rd2

rdl
rdl
rdl
rdl
rdl
rdl

rd3
rds
rd3
rd3
rd3
rd3

rd4
rd4
rd4
rd4
rdd
rd4

18 116 124 n3j32 n3j40 rd0 rdl rd2 rd3 rd4 rd5 X456

19 117 125 nj33 njd4l rd0 rdl rd2 rd3 rd4 rd5 X456

rd5 X456
rd5
rd5
rd5
rd5
rd5

X456
X456
X456
X456
X456

; Bidirectional pad cells to drive data from read ports out of the

; chip and drive write data form RAM into the chip

iopad0
iopadl
iopad2
iopad3
iopad4
iopad5
iopadé6
iopad?

wr32
wr33
wr34
wr35
wr36
wr37
wr38
wr39

c0,
el
oy
ol 7
c4,
e
cé6,
c?,

nenw
nenw
nenw
nenw
nenw
nenw
nenw

nenw

10
14
12
13
14
15
16
L7

nenr
nenr
nenr
nenr
nenr
nenr

nenr

nenr iopad
iopad
iopad
iopad
iopad
iopad
iopad
iopad
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Mux to select the exit count or the time count bits to be driven out
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; Drive the 40ns clock out to provide synchronization with data

r

clkpad pck4, clk4 OPADI

MODEL compare subckt: nodes = ( cntcout.5 exitcout.5 m7 mé m5 m4d m3 m2 $
ml m0, $
a3l a30 a29 a28 a27 a26 a25 a24 a23 3
a22 a2l a20 al9 al8 al7 alé al5 al4 all al2 all al0 a9 a8 a7 3
a6 a5 a4 a3 a2 al a0 limit nlimit prg lat strb ck nen_timer $
valid chip mode nchip_mode nr rccout recout nenr eccnt )

; Regenerate the reset signal
rstbuf bnr, nr 2101
; Generate upper or lower limit programming signals

andll 1llimit, prg_lat nlimit strb X403X2
andul ulimit, prg lat limit strb X403X2

; The upper and lower limit registers. The latches are written into
; when the llimit or ulimit signal is high.

reg321l 1131 1130 1129 1128 1127 1126 1125 1124 nll31 $§
nll30 nll29% nll28 nll27 nll26 nll25 nll24, a3l a30 $
a29 a28 a27 a26 a25 a24 1llimit X322W8

reg2411 1323 4122 11271 13120 33119 1118 1317 11%6 mll23 &
nll22 nll2l1 nll20 nlll9% nlll8 nlll7 nlllée, a23 a22 $
a2l a20 al9 al8 al7 alé llimit X322W8

regl6ll 13325 11314 23113 E1¥2 4313 11160 119 118 nldlh nllld S
nlll3 nl1l112 nl1111 nlll10 nll9 nll8, al5 ald4d al3 al2 all $
al0 a9 a8 1llimit X322W8

reg8ll 117 116 115 124 113 112 111. 1190 nll? nllée nlis. §
nll4 nll3 nll2 nlll nll0, a7 a6 a5 a4 a3 a2 al a0 $
llimit X322W8

reg32ul ul3l ul30 ul29% ul28 ul27 ul26 ul25 ul24 nul3l $
nul30 nul29 nul28 nul27 nul26 nul25 nul24, a3l a30 $
a29 a28 a27 a26 a25 a24 ulimit X322W8

reg24ul ul23 ul22 ul2l ul20 uwll9 uwll8 ull7 ullé nul23 $§
nul22 nul2l nul20 null9 null8 null7 nullé, a23 a22 $
a2l a20 al9 al8 al7 alé ulimit X322W8

regl6éul ull5 ull4 uwll3 ull2 wlll ull0 ul9 ul® nullS5 nulld 3
null3 null2 nulll null0 nul9 nul8, al5 al4 al3 al2 all §
al0 a9 a8 ulimit X322W8

reg8ul ul7 ulé ul5 ul4 ul3d ul2 ull ul0 nul7 nulé nulsS $
nul4 nul3 nul2 null nulQ, a7 aé a5 a4 a3 a2 al a0 $



ulim

; Flip

reg32b
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it X322wW8
-flops to trap the input data bits

b31.1 b30.1 b29.1 b28.1 nb31.1 nb30.1 nb29%.1 nb28.1 §

ck a31 a30 a29 a28 X351w4

reg28b

reg24b

reg20b

regléb

regl2b

b27.1 b26.1 b25.1 b24.1 nb27.1 nb26.1 nb25.1 nb24.1 $
ck a27 a26 a25 a24 X351w4

b23.1 b22.1 b21.1 b20.1 nb23.1 nb22.1 nb21.1 nb20.1 §
ck a23 a22 a2l a20 X351w4

b19.1 bl8.1 bl7.1 bl6.1 nbl9.1 nbl8.1 nbl7.1 nblé6.1 $
ck al9 al8 al7 alé X351w4

b15.1 bl4.1 bl3.1 bl2.1 nbl5.1 nbl4.1 nbl3.1 nbl2.1 $
ck al5 al4 al3 al2 X351wW4

bll.1 b10.1 b9.1 b8.1 nbll.1 nbl0.1 nb%.1 nb8.1 $

ck all al0 a9 a8 X351wW4

reg8b b7.1 b6.1 b5.1 b4.1 nb7.1 nb6.1 nb5.1 nb4.1 $

ck a7 a6 a5 a4 X351w4

regd4b b3.1 b2.1 bl.1 b0.1 nb3.1 nb2.1 nbl.1l nb0.1 $

; Gene

cmp32a

cmp32b

cmpZ8a

cmp28b

cmp24a

cmp?24b

cmp20a

ck a3 a2 al a0 X351w4
rate the e (a equal b) and g (a gt b) signals for comparison

.0 e31a.0 g3la.0 e30a.0 g30a.0 e29%9a.0 g2%a.0 e28a.0 g28a.0, 3
1131 1130 1129 1128 nll31 nll130 nll29 nll28 b31.l b30.1 b29.1 $
b28.1 nb31.1 nb30.1 nb29.1 nb28.1 gengteqgq

.0 e31b.0 g31b.0 e30b.0 g30b.0 e29b.0 g29b.0 e28b.0 g28b.0, $
b31.1 b30.1 b29.1 b28.1 nb3l1l.1 nb30.1 nb29.1 nb28.1 ul3l %

ul30 ul29 ul28 nul3l nul30 nul29 nul28 gengteqg

.0 e27a.0 g27a.0 e26a.0 g26a.0 e25a.0 g25a.0 e24a.0 g24a.0, $
1127 1126 1125 1124 nll27 nll26 nll25 nll24 b27.1 b26.1 b25.1 §
b24.1 nb27.1 nb26.1 nb25.1 nb24.1 gengteq

.0 e27b.0 g27b.0 e26b.0 g26b.0 e25b.0 g25b.0 e24b.0 g24b.0, $
b27.1 b26.1 b25.1 b24.1 nb27.1 nb26.1 nb25.1 nb24.1 ul27 §

ul2é ul25 ul24 nul27 nul26 nul25 nulZ24 gengteg

.0 e23a.0 g23a.0 e22a.0 g22a.0 e2la.0 g2la.0 e20a.0 g20a.0, $
1123 1122 1121 1120 nll23 nll22 nil2l nli20 b23.1 b22.1 b2l.1 5
b20.1 nb23.1 nb22.1 nb21.1 nb20.1 gengteqg

.0 e23b.0 g23b.0 e22b.0 g22b.0 e21b.0 g21b.0 e20b.0 g20b.0, $
b23.1.b22.1 b21.1 b20.1 nb23.1 nb22.1 nb2l.1 nb20.1 ul23 §

ul22 ul2l uwl20 nul23 nul22 nul2l nul20 gengteq

.0 el%a.0 gl9a.0 elBa.0 glBa.0 el7a.0 gl7a.0 el6a.0 gl6a.0, S
1119 1118 1117 1116 nll119 nlll8 nlll7 nlllé bl9.1 bl8.1 bl7.1 §
bl6.1 nbl9.1 nbl8.1 nbl7.1 nblé6.l gengteqg



cmp20b.0 €19b.0 gl9b.0 el8b.0 gl8b.0 el7b.0 gl7b.0 eléb.0 gléb.0, S
b19.1 bl8.1 bl7.1 bl6.1 nbl%.1 nbl8.1 nbl7.1 nbl6.1 ulld $
ull8 ull?7 ull6é null9 null8 null7 nullé gengteq

cripléa.0 el5a.0 glSa.0 el4a.0 gl4a.0 el3a.0 gl3a.0 el2a.0 gl2a.0, $
1115 1114 1113 1112 nlll5 nlll4 nlll3 nlll2 b15.1 bl4.1.bl3.1 $
b12.1 nbl5.1 nbl4.1 nbl3.1 nbl2.1 gengteq

crpléb.0 e15b.0 gl5b.0 el4b.0 gl4b.0 el3b.0 gl3b.0 el2b.0 gl12b.0, $
b15.1 bl4.1 bl3.1 bl2.1 nbl5.1 nbl4.1 nbl3.1 nbl2.1 ullS $
ull4 ull3 ull2 null5 null4 null3 null2 gengteq

cmpl2a.0 ella.0 glla.0 el0a.0 gl0a.0 e%a.0 g%a.0 e8a.0 g8a.0, 1111 $
1110 119 118 nllll nlll0 nll9% nll8 bll.1l bl0.1 b9.1 S
b8.1 nbll.1 nbl0.1 nb9%.1 nb8.1 gengteg

cmpl2b.0 e11b.0 gllb.0 el0b.0 gl0b.0 9.0 g9b.0 e8b.0 g8b.0, bll.1 $
b10.1 b9.1 b8.1 nbll.1l nbl0.1 nb9.1 nb8.1 ulll ull0 ul? $
ul8 nulll null0 nul9 nul8 gengteqg

cmp8a.0 e7a.0 g7a.0 e6a.0 g6a.0 e5a.0 g5a.0 e4a.0 g4a.0, 117 116
115 114 nll7 nllé nll5 nll4 b7.1 b6.1 b5.1 b4.1 nb7.1 §
nb6.1 nb5.1 nb4.1 gengteg

cmp8b.0 e7b.0 g7b.0 eéb.0 g6b.0 e5b.0 g5b.0 e4b.0 g4b.0, b7.1 b6.
b5.1 b4.1 nb7.1 nb6.1 nb5.1 nb4.1 ul7 ulé ulS5 uld nul7 3
nulé nulS5 nuld4 gengteqg

cmp4a.0 e3a.0 g3a.0 e2a.0 g2a.0 ela.0 gla.0 e0a.0 g0a.0, 113 112
X1, 310 nll3 nll2 nlll. ¥l ‘b3.1 B2.1 Bi.2 B0.1 fib3.1 §
nb2.1 nbl.1 nb0.1 gengteg

cmp4b.0 e3b.0 g3b.0 e2b.0 g2b.0 elb.0 glb.0 e0b.0 g0b.0, b3.1 bZ.
bl.1 b0.1 nb3.1 nb2.1 nbl.1 nb0.1 ul3 ul2 ull ull nul3d $
nul2 null nul0 gengteq

; Feed the e and g signals to the 4 bit comparator (gtgen) cell

; and generate a less than b (aleb) signals. Also generate an

; a equal b (aegb) signal for each four bits by ANDing the e signals
; for the individual bits

gteg32a.0 aleb32.0 aegb32.0, g3la.0 e3la.0 g30a.0 e30a.0 $
g29a.0 e29a.0 g28a.0 e28a.0 gteg

gteqg32b.0 blec32.0 begc32.0, g31b.0 e31b.0 g30b.0 e30b.0 $
g29b.0 e29p.0 g28b.0 e28b.0 gteg

gteg28a.0 aleb28.0 aegb28.0, g27a.0 e27a.0 g26a.0 e26a.0 $
g25a.0 e25a.0 g24a.0 e24a.0 gteq

gteg28b.0 blec28.0 begc28.0, g27b.0 e27b.0 g26b.0 e26b.0 $
g25b.0 e25b.0 g24b.0 e24b.0 gteg



gteg24a.0 aleb24.0 aeqb24.0, g23a.0 e23a.0
g2la.0 e2la.0 g20a.0 e20a.0 gteqg

gteg24b.0 blec24.0 begc24.0, g23b.0 e23b.0
g21b.0 e21b.0 g20b.0 e20b.0 gteqg

gteg20a.0 aleb20.0 aegb20.0, gl%a.0 el9%a.0
gl7a.0 el7a.0 gléa.0 el6a.0 gteg

gteqg20b.0 blec20.0 begc20.0, gl9b.0 €19b.0
gl7b.0 el7b.0 gléb.0 elé6b.0 gteg

gteglé6a.0 alebl6.0 aegblé.0, glSa.0 el5a.0
gl3a.0 el3a.0 gl2a.0 el2a.0 gteg

gteqgléb.0 blecl6.0 begcl6.0, gl5b.0 e15b.0
gl3b.0 el13b.0 gl2b.0 el2b.0 gteg

gteglza.0 alebl2.0 aegbl2.0, glla.0 ella.O
g9%a.0 e9%a.0 g8a.0 e8a.0 gteg

gteglZb.0 blecl2.0 begcl2.0, gllb.0 ellb.0
g9%.0 €9b.0 g8b.0 eB8b.0 gteqg

gtegB8a.0 aleb8.0 aegb8.0, g7a.0 e7a.0 géba.
g5a.0 e5a.0 g4a.0 ed4a.0 gteg

gteg8b.0 blec8.0 begc8.0, g7b.0 e7b.0 géb.
g5b.0 e5b.0 g4b.0 e4b.0 gteq

gteg4a.0 aleb4.0 aegb4.0, g3a.0 e3a.0 g2a.
gla.0 ela.0 g0a.0 e0a.0 gteq

gtegé4b.0 blec4.0 begc4.0, g3b.0 e3b.0 g2b.
glb.0 elb.0 g0b.0 e0b.0 gteq

; Trap the first stage aleb and aegb signals

ff32lea aleb32.1 aleb28.1 aleb24.1 aleb20
aleb28.0 aleb24.0 aleb20.0 X351wW4
ff32leb blec32.1 blec28.1 blec24.1 blec20.

blec28.0 blec24.0 blec20.0 X351W4

fflélea alebl6.l alebl2.1l aleb8.1 aleb4.1l
alebl2.0 aleb8.0 alebd.0 X351W4
ffléleb blecl6.1 blecl2.1 blec8.1 blec4.1l

blecl2.0 blec8.0 blec4.0 X351W4

ff32eqga aegb32.1 aegb28.1 aegb24.1 aegb20.

aeqgb28.0 aegb24.0 aeqgb20.0 X351wW4

ff32eqgb begc32.1 beqgc28.1 begc24.1 begc20.

begc28.0 beqgc24.0 begc20.0 X351W4

g22a.

g22b.

gl8a.

gl8b.

glda.

gléb.

glla.

glOb.

0 eba.

0 eéb.

0 e2a.

0 e2b.

0 e22a.

0 e22b.

0 elBa.

0 el8b.

0 elda.

0 eldb.

0 el0a.

0 ellb.

0 s

0 s

0 3

0 3

in flip-flops

.1 #

1 #

# # %,

# # ¥,

ck aleb32.

ck blec3Z.

# #, ck alebl6.0

# #, ck blecl6.0

# ¥ 4,

# # ¥,

ck aegb32.

ck begc32.
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ffléeqga aegbl6.l aegbl2.l aeqb8.1 aegbd.l # # # #, ck aegblé6.0 $
aegbl2.0 aegb8.0 aegb4.0 X351W4
ffléegb begcl6.1l begcl2.1l beqgc8.1 begc4.l # # # #, ck begclé.0 $

begcl2.0 beqc8.0 begc4.0 X351W4

; Feed output of flipflops to second stage gtgen cells.
; Do a 6 bit gtgen in this stage

; The gtgen’ing of first 4 bits for the previous 16 bits of result

gteg32a aleb32.2 aegb32.2, aleb32.1 aeqgb32.1 aleb28.1 aegb28.1 $
aleb24.1 aegb24.1 aleb20.1 aegb20.1 gteg
gteg32b blec32.2 begc32.2, blec32.1 begc32.1 blec28.1 begc28.1 $

blec24.1 begc24.1 blec20.1 begc20.1 gteg

gtegléa alebl6.2 aegbl6.2, alebl6.l aegbl6.l alebl2.1l aegbl2.1l $

aleb8.1 aegbB8.1 aleb4.l aegbd4.l gteg
gtegléb blecl6.2 begcl6.2, blecl6.l begcl6.l blecl2.1l begcl2.1l $

blec8.1 begc8.1 blec4.l begcd.l gteq

; Do another gtgen with the previous outputs. Thus a 6 bit compariscn
; is done in this stage

gt32a naleb, alebl6.2 aegb32.2 aleb32.2 x133
gt32b nblec, blecl6.2 begc32.2 blec32.2 x133

eg32a naegb, aegb32.2 aegblé.2 x162
eg32b nbegc, beqc32.2 begcl6.2 x162

: Trap second level gtgen output in a ff

ffleeqg naleb.2 nblec.2 naegb.2 nbegc.2 # # # #, ck naleb nblec naegb $
nbegc X351W4

; Generate the in-range signal

acil inrange, naleb.2 naegb.2 nblec.2 nbegc.2 X124

ao2 active, inrange valid.2 nvalid.2 active.3 2124
cai3 inc, nen_timer nchip mode chip mode nvalid.2 X114
nandl exitrangel, naegb.2 inrange X162

and0 exitrange, exitrangel active.3 valid.2 X403

; Trap active and exitrange signals

ffmisc exitrange.3 valid.2 active.3 inc.3 nexitrange.3 $
nvalid.2 nactive.3 ninc.3, ck exitrange valid $
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active inc bnr X352W4

ffcout cntcout .4 exitcout.4 cntcout.5 exitcout.5 ncntcout.4 $
nexitcout.4 ncntcout.5 nexitcout.5, ck cntcout4d exitcoutd $
cntcout8l exitcout8l bnr X352w4

; Generate increment signal for the time/address count

1]

norcnt w cntcin, nactive.3 ninc.3 X102
; The incrementer and the associated flipflop

ffcnt4 e3 e2 el el ne3 ne2 nel nel, ck d3 d2 dl d0 bnr X352W4
incr4 d3 d2 dl1 d0 cntcoutd4, e3 e2 el el cntcin X137F

ffcnt8 e7 e6 e5 ed4 ne7 nebé neb ned, ck d7 d6 d5 d4 bnr X352W4
incr8 d7 dé d5 d4 cntcoutB, e7 eb e5 e4 cntcout.4 X137F

norcnt2 1, ncntcout.5 rccout X102
orl cntcout8l, 1 cntcout8 X432

; Incrementer for range entry exit

ffrr4 g3 g2 gl g0 ng3 ng2 ngl ng0, ck £3 £2 f1 £0 bnr X352W4
incrr4 £3 £2 f1 £0 exitcout4, g3 g2 gl g0 exitrange.3 X137F

ffrr8 g7 g6 g5 g4 ng7 ng6é ng5 ng4, ck £7 £6 £5 f4 bnr X352W4
incrr8 £7 £6 £5 f4 exitcout8, g7 g6 g5 g4 exitcout.4 X137F

norext2 2, nexitcout.5 recout X102
or2 exitcout8l, 2 exitcout8 X432

; Mux the entry-exit and range count bits

muxeccnt4 13 12 11 10, ne3 ng3 ne2 ng2 nel ngl nel ng0 eccnt X418W4
muxeccnt8 17 16 15 14, ne7 ng7 ne6 ngé ne5 ng5 ned ng4 eccnt X418W4

; Drive the increment and range entry exit count to tristate buffers

bufl7 m7, nenr 17 C519
buflé m6, nenr 16 C519
bufl5 m5, nenr 15 C519
bufl4 m4, nenr 14 C519
bufl3 m3, nenr 13 C519
bufl2 m2, nenr 12 C519
bufll ml, nenr 11 C519
bufl0 m0, nenr 10 C519



ENDM compare

MODEL gengteq subckt: nodes = (e3 g3 e2 g2 el gl e0 g0, a3 a2 al a0 $
na3 na2 nal na0 b3 b2 bl b0 nb3 nb2 nbl nbl )

XNOR3 e3, na3 nb3 X421
XNOR2 e2, na2 nb2 X421
XNOR1 el, nal nbl X421
XNORO e0, na0 nb0 X421
NO3 g3, a3 nb3 X102
NO2 g2, a2 nb2 X102
NO1 gl, al nbl X102
NOO g0, a0 nb0 X102

ENDM gengteq

model gteqg subckt: nodes = (aleb aegb, g3 e3 g2 e2 gl el g0 e0)
gtgen aleb, g3 e3 g2 e2 gl el g0 gtgend

Aegout aegb, e3 e2 el el X404

ENDM gteg

model dlyéx subckt: nodes = (out, in)

dly2x 1, in DLY2X
dly4x out,l DLY4X

ENDM dlyé6x

model ram40 subckt: nodes { iE0 ¥£1 £2 £3 £4 £S5 ¥6 £7 £8 £9 £10 £17 8
£12 £13 £14 £15 f16 £17 £18 £19 £f20 £21 f22 £23 nf24 nf25 nf26 $
nf27 nf28 nf29 nf30 nf3l nf32 nf33 nf34 nf35 nf36 nf37 nf38 S
nf39, enr enw clk4 nclk4 enw2 §
b0 bl b2 b3 b4 b5 b6 b7 b8 b9 bl0 bll bl2 bl3 bl4 bls $
nb0 nbl nb2 nb3 nb4 nb5 nbé nb7 nb8 nb% nbl0 nbll nbl2 nbl3 §
nbl4 nbl5 $
g0 gl g2 g3 g4 g5 g6 g7 g8 g9 gl0 gll gl2 ql3 §
qld gl5 $
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nn0 nnl nn2 nn3 nn4 nn5 nné nn7 nn8 nn% nnl0 nnll nnl2 nnl3 $§

nnl4d nnlsS el el e2 e3 e4d e5 e6b e7 §
wr0 wrl wr2 wr3 wrd4 wr5 wr6 wr7 wr8 wr9 wrl0 wrll wrl2 wrl3 §

wrld wrl5 wrlé wrl7 wrl8 wrl9 wr20 wr2l wr22 wr23 wr24 wr25 $
wr26 wr27 wr28 wr29 wr30 wr3l wr32 wr33 wr34 wr35 wr36 wr37 $
wr38 wr39 ) !

; the priority resolver

resolv

ngl ng2 ng3 ng4 ng5 ngé ng7 ng8 ngd% $
ngl0 ngll ngl2 ngl3 ngl4 ngl5 b0 bl b2 b3 b4 b5 b6 b7 b8 §
b9 bl0 bll bl2 bl3 bl4 bl5 nbl0 nbl nb2 nb3 nb4 nb5 nb6 nb7 nb8 $
nb9 nbl0 nbll nbl2 nbl3 nbl4 nbl5 pri resolwv

; output of priority resolver trapped in flipflops with rising edge

2 0F &

rff4
rff8
rffl2
rfflé

; Mux

muxré
muxr8§
muxrl2
muxrlé

he clock to take care of the 20ns delay thru the resolv circuit

nd3 nd2 ndl nd0 g3 g2 gl g0, nclk4 ng3 ng2 ngl nb0 X351wW4

nd7 ndé ndS5 nd4 g7 g6 g5 g4, nclk4 ng7 ng6é ngS ng4 X351W4

ndll ndl0 nd9 nd8 gll gl0 g9 g8, nclk4 ngll ngl0 ng9 ng8 X351W4

ndl5 ndl4 ndl3 ndl2 gl5 gl4 gl3 gl2, nclk4 ngl5 ngl4d ngl3 ngl2 X351wW4

to drive output of priority resolver or decoder to RAM read ports

d3 d2 d1 d0, nd3 nn3 nd2 nn2 ndl nnl nd0 nn0 enr X418W4
d7 dé d5 d4, nd7 nn7 ndé nné nd5 nn5 nd4 nnd4 enr X418wW4
dll d10 d9 d8, ndll nnll ndl0 nnl0 nd9 nn9% nd8 nn8 enr X418W4
dl5 dl14 dl13 dl12, ndl5 nnl5 ndl4 nnl4 ndl3 nnl3 ndl2 nnl2 enr $
X418wW4

; Drive the mux output to the RAM using buffers

bufrd0l
bufrdl
bufrd2
bufrd3s

bufrd4
bufrd5
bufrdé
bufrd’7

bufrds8
bufrd9
bufrdl
bufrdl

rd0, d0 2101x4
rdl, dl 2101X4
rd2, d2 z2101X4
rd3, d3 Z101X4

rd4, d4 z101x4
rd5, d5 2101X4
rdé, dé Z101x4
rd7, d7 2101X4

rd8, d8 z101x4
rd9, d9 2101x4
0 rdl0, d10 z101x4
1 rdll, d11 2101x4



bufrdl?2 rdl2,
bufrdl3 rdl3,
bufrdl4 rdl4,
bufrdls rdl5,
; The RAM

bit0

bitl

bit2

bit3

bit4

bit5

bité

bit7

bit8

bit9

bitl0

bitll

bitl2

dout0 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl3 rdl4 rdl5 din0 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F
doutl rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl3 rdl4 rdl5 dinl wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F
dout2 rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdl0 rdll
rdl3 rdl4 rdl5 din2 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F
dout3 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9% rdl0 rdll
rdl3 rdl4 rdl5 din3 wd0 wdl wd2 wd3 wd4d wd5 wd6 wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F
dout4 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl(0 rdll
rdl3 rdl4 rdl5 din4 wd0 wdl wd2 wd3 wd4 wd5 wdé6 wd7 wds8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F
dout5 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl(0 rdll
rdl3 rdl4 rdl5 din5 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F
dout6 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9% rdl0 rdll
rdl3 rdl4 rdl5 din6é wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F
dout7 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl3 rdl4 rdl5 din7 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F
dout8 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl3 rdl4 rdl5 din8 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F
dout9 rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdl0 rdll

diz
di3
dl4
dls

2101X4
2101X4
Z2101x4
2101X4

rdl2 $
wdd $

rdl2 $
wd9 $

rdl2 $
wd9 $

rdl2 $
wd9 $

rdlz $
wd9 $

rdl2 $
wd9 $

rdlz $
wd9 $

rdl2 $
wd9 $

rdlz s
wd9 $

rdl2 $

rdl3 rdl4 rdlS din9 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8 wd9 $

wdl0 wdll wdl2 wdl3 wdl4

wdl5 C533F
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doutl0 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll rdl2 $

rdl3 rdl4 rdl5 dinl0 wd0 wdl wd2 wdl3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdld4 wdl5 C533F

doutll rd0 rdl rd2 rd3 rd4 rd5 rd6é rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinll wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F )
doutl2 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo0
rdl3 rdl4 rdl5 dinl2 wd0 wdl wd2 wd3 wd4
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F
bitl3 doutl3 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0

wd8 wd9 $

rdll rdil2 $
wd8 wd9 $

rdll rdi2 $
wd8 wd9 $

rdll rdl2 §



rdl3 rdl4 rdlS5 dinl3 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wds8

bitl4

bitl5

bitlé6

bitl7

bit18

bit19

bit20

bit21l

bit22

bit23

bit24

bit25

bit26

bit27

bit28

wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl4 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdll
rdl3 rdl4 rdl5 dinl4 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

doutl5 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdll
rdl3 rdl4 rdl5 dinl5 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl6é rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinlé wd0 wdl wd2 wd3 wdd wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

doutl7 rd0 rdl rd2 rd3 rdd4 rd5 rdé rd7 rd8 rd9 rdilo
rdl3 rdl4 rdl5 dinl7 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl8 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinl8 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl9 rd0 rdl rd2 rd3 rd4 rdS5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinl9 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

dout20 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0
rdl3 rdl4 rdl5 din20 wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout21 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0
rdl3 rdl4 rdl5 din2l wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout22 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdlS5 din22 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout23 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0
rdl3 rdl4 rdl5 din23 wd0 wdl wd2 wd3 wdd wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout24 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdilo
rdl3 rdl4 rdl5 din24 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout25 rd0 rdl rd2 rd3 rd4 rd5 rd6é rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din25 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout26 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din26 wd0 wdl wd2 wd3 wdd wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout27 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din27 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

dout28 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdilo
rdl3 rdl4 rdl5 din28 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

wdd $

rdll rdl2
wd8 wd9 S

rdll rdlz2
wd8 wd9 $

rdll: rdlZ
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdlz2
wd8 wd9 $

rall rdlz2
wd8 wd9 $

rdll rdlz2
wd8 wd9 $

radll rdl?
wd8 wd9 $

rall. ¥dlz
wdB8 wd9 $§

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdl?2
wd8 wd9 $

rdll rdlz
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdlz
wd8 wd9 $
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bit29

bit30

bit31l

bit32

bit33

bit34

bit35

bit36

bit37

bit38

bit39

dout29 rd0 rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din29 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout30 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din30 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout31l rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdlo0
rdl3 rdl4 rdl5 din31l wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout32 rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdlo0
rdl3 rdl4 rdl5 din32 wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdlé4 wdl5 C533F

dout33 rd0 rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdll
rdl3 rdl4 rdl5 din33 wd0 wdl wd2 wd3 wd4 wd5 wd6 wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

dout34 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdlS5 din34 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout35 rd0 rdl rd2 rd3 rd4 rd5 rdé6é rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din35 wd0 wdl wd2 wd3 wd4 wd5 wdée wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

dout36 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din36 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout37 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo0
rdl3 rdl4 rdl5 din37 wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout38 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9% rdlo
rdl3 rdl4 rdl5 din38 wdl wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

dout39 rd0 rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 din39 wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

; Delayed clock4 from clk4

delayl ck4d,

clk4 DLYZ2X

rdll x=dl2Z
wd8 wd9 $

rdll rdlz
wd8 wd9 $

rdll rdi2
wd8 wdd $

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll .rdiz
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdil2
wd8 wd9 $

rdll rdlz2
wd8 wd9 $
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; 16 input OR gate for trapping the signal for carry-in to be fed to the

; incrementer.

; RAM is being read.

nandl
nand2
orl

ffcin

3,

1, nd0 ndl nd2 nd3 nd4 nd5 nd6 nd7 X168

2, nd8 nd9% ndl0 ndll ndl2 ndl3 ndl4 ndl5 X168
1 2 %432
cin ncin, clk4 LO 3 enr X381

Set the signal to low when the enr signal is high i.e. the



; The ff to load RAM data

ramff5 £f4 £3 £2 £f1 £f0 # # # # #,
X351W5
ramff10 £9 £8 £7 f6 £5 # # # # #,
X351W5
ramff15 £14 £13 £12 £11 £10 # # # # #,
doutll doutl(Q X351W5
ramf£f20 £19 £18 £17 f16 £15 # # # # #,
doutlé doutl5 X351W5
ramff25 £24 £23 £22 £21 £20 nf24 # # # #,
dout21 dout20 X351W5
ramf£30 £29 £28 £27 £26 £25 nf29 nf28 nf27 nf26 nf25,
dout28 dout27 dout26 dout25 X351W5
ramf£f35 £34 £33 £32 £31 £30 nf34 nf33 nf32 nf31 nf30,
dout33 dout32 dout3l dout30 X351W5
ramff40 £39 E£38 £37 £36 ‘£35 nE39:nf38 nf37 nE3I6 nf3h5;

; The

inc4

inc8

incl2
inclé
inc20
inc24
inc28
inc32
inc36
inc40

dout38 dout37 dout36 dout35 X351WS

incrementer

g3 g2 gl g0 co4,
g7 g6 g5 g4 co8,
g9 g8 col2,

gll
gls
gl9
g23
g27
g3l
g35
g39

glo
gl4é
gls
g22
g26
g30
g34
g38

; Trap output

incf£5s

incffl

incffl

incff2

incff2

incff3

incf£f3

incff4

#
0 #
5 #
X351W5
0 #
X351W5
5 #
X351W5
0 #
X351W5
5 #
X351W5
0 #

gl3
gl?
g2l
g25
g29
g33
g37

gl2
glé
g20
g24
g28
g32
g36
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clk4 doutd dout3 dout2 doutl dout(0 S

clk4 dout9 dout8 dout7 dout6 doutb §

clk4 doutld doutl3 doutl2 $

clk4 doutl9 doutl8 doutl?7 $§

£3 £2 fl £0 cin X137F
f7 £f6 £f5 f4 cod4 X137F

colé,
co20,
co24,
co28,
co32,
co36,

£15
£19
£23
£27
£31
£35

of incrementer

4
#

nh4 nh3 nh2 nhl nh0,
nh9 nh8 nh7 nhé nh5,

f14
£18
f22
f£26
£30
£34

£11 £10 £9 £8 co8 X137

£13 £12 col2
£17 £16 colé
£21 £20 co20
£25 £24 co24
£29 £28 co28
£33 £32 co32
#, £39 £38 £37 £36 co36 X137F

clk4
clk4

nhl4 nhl3 nhl2 nhll nhlO,

nhl9

nh24

nh29

nh34

nh39

nhl8

nh23

nh28

nh33

nh38

nhl7

nh22

nh27

nh32

nh37

nhlé

nh21

nh26

nh31

nh36

nhl5,

nh20,

nh25,

nh30,

nh35,

F
X137F
X137F
X137F
X137F
X137F
X137F

g4 g3 g2
g9 g8 g7
clk4 gl4
clk4 gi19
clk4 g24
clk4 g29

clk4 g34

clk4 g39

clk4 dout24 dout23 dout22 $

clk4 dout29 $

clk4 dout34 $

clk4 dout39 $

gl g0 X351WS
g6 g5 X351W5

gl3 gl2

gl8 gl7

g23 g22

g28 g27

g33 g32

g38 g37

gll gl0 $

glé gls5 $

g2l g20 3

g26 g25 $

g3l g30 S

g36 g35 §



X351W5

mux4

mux8

muxl2

muxlé

mux20

mux24

mux28

mux32

mux36

mux40

; Mux

muxwé
muxw8
muxwl?2

muxwlé

~e e w

~

; while new data can be applied at the read

wif4d
wff8
wffl2
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to feed either output of flipflops or data from outside into the
Writing into RAM from outside used for testing

din3 din2 dinl din0, nh3 wr3 nh2 wr2 nhl wrl nh0 wr0 enw $

X418wW4

din7 diné dinS5 din4, nh7 wr7 nh6é wré nh5 wr5 nh4 wr4 enw $

X418w4

dinll dinl0 din9% din8, nhll wrll nhl0 wrl0 nh9 wr9 nh8

enw X418W4

dinl5 dinl4 dinl3 dinl2,
wrl2 enw X418W4

dinl9 dinl8 dinl7 dinle,
wrl6é enw X418W4

din23 din22 din2l1 din20,
wr20 enw X418wW4

din27 din26 din25 din24,
wr24 enw X418W4

din31 din30 din29 din28,
wr28 enw X418WwW4

din35 din34 din33 din32,
wr32 enw X418wW4

din39 din38 din37 din36,
wr36 enw X418wW4

to drive output of priority resolver or decoder to RAM

nhl5

nhl9

nh23

nh27

nh31

nh35

nh39

wrl5 nhl4 wrld4 nhl3

wrl9 nhl8 wrl8 nhl7

wr23 nh22 wr22 nh2l

wr27 nh26 wr26 nh25

wr3l nh30 wr30 nh29

wr35 nh34 wr34 nh33

wr39 nh38 wr38 nh37

wrl3

wrl7

wr2l

wr25

wr29

wr33

wr37

w3 w2 wl w0, p3 nn3 p2 nn2 pl nnl p0 nn0 enw2 X418W4
w7 w6 w5 w4, p7 nn7 pé nné p5 nn5 pd nnéd enw2 X418W4
wll wl0 w9 w8, pll nnll pl0 nnl0 p% nn% p8 nn8 enw2 X418W4
wl5 wld4 wl3 wl2, pl5 nnl5 pl4 nnl4 pl3 nnl3 pl2 nnl2 enw2 X418W4

P3 p2 pl p0 # # # #, ck4d nd3 nd2 ndl nd0 X351w4
p7 p6 p5 p4d # ¥ # #, ckdd nd7 ndé nd5 nd4 X351W4

pll pl0 p9 p8 # # # #, ckd4d ndll ndilo

clocked in some time after the read address is clocked in.

nd9 nd8 X351wW4

wr8 §

nhl2 §

nhlé $

nh20 $

nh24 $§

nh28 §

nh32 $

nh36 $

read ports

Flip-flops to capture the data for the write ports of the RAM
Use the delayed clock for these flip-flops so that the write address is

Thus, the

output of the incrementer can be written into the previous RAM location
port of the RAM

wiffl6 pl5 pl4 pl3 pl2 # # # #, ckdd ndl5 ndl4 ndl3 ndl2 X351wW4

; Drive the mux output to the RAM write ports using buffers
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bufwd0 wd0, w0 2101X2
bufwdl wdl, wl 2101X2
bufwd2 wd2, w2 Z101X2
bufwd3 wd3, w3 Z2101X2
bufwd4 wdd, wéd Z101X2
bufwd5 wd5, w5 2101X2
bufwdé wdé, w6 Z101X2
bufwd? ) wd7, w7 Z101X2
bufwd8 wdB, w8 Z101X2
bufwd? wd9, w9 2101X2
bufwdl( wdl0, wl0 Z101X2
bufwdll wdll, wll Z101X2
bufwdl?2 wdl2, wl2 Z101X2
bufwdl3 wdl3, wl3 Z101X2
bufwdl4 wdld, wld Z101X2
bufwdl5 wdl5, wl5 z101X2
endm ram4(

model ram24 subckt: nodes = ( £0 f£1 £f2 £3 f£4 £5 f£6 £7 £8 §

£9 £10 £11 £12 £13 f£14 £15 £l16 £17 £18 £19 £20 £21 £22 £23, $
enr enw clk4 nclk4 enw2 $

b0 bl b2 b3 b4 b5 b6 b7 b8 b9 bl0 bll bl2 bl3 bl4 bl5 $

nb0 nbl nb2 nb3 nb4 nb5 nb6 nb7 nb8 nb9% nbl0 nbll nbl2 nbl3 §
nbl4 nbl5 $

g0 gl g2 g3 g4 g5 g6 g7 g8 g9 gl0 gll gl2 gl3 $

gld gl5 $

nn0 nnl nn2 nn3 nn4 nn5 nné nn7 nn8 nn9 nnl0 nnll nnl2 nnl3 $
nnl4d nnl5 e0 el e2 e3 e4d e5 e6 e7 $

wr() wrl wr2 wr3 wrd4 wr5 wré wr7 wr8 wr9 wrlQ0 wrll wrl2 wrl3 $
wrld wrl5 wrl6 wrl7 wrl8 wrl9 wr20 wr2l wr22 wr23 )

; the priority resolver

resolv ngl ng2 ng3 ng4 ng5 ngé ng7 ng8 ng% $
ngl0 ngll ngl2 ngl3 ngl4 ngl5 b0 bl b2 b3 b4 b5 b6 b7 b8 $
b% bl0 bll bl2 bl3 bl4 bl5 nb0 nbl nb2 nb3 nb4 nb5 nbé nb7 nb8 $
nb9 nbl0 nbll nbl2 nbl3 nbl4 nbl5 pri_resolv

; output of priority resolver trapped in flipflops with rising edge
; of the clock to take care of the 20ns delay thru the priority resolv circuit

rff4 nd3 nd2 ndl nd0 g3 g2 gl g0, nclk4 ng3 ng2 ngl nb0 X351W4
rff8 nd7 ndé nd5 ndd4 q7 g6 g5 g4, nclk4 ng7 ngé ng5 ngd X351W4



98

rffl12 ndll ndl0 nd9 nd8 gll gl0 g9 qq, nclk4 ngll ngl0 ng9 ng8 X351wW4
rf£f16 ndl5 ndl4 ndl3 ndl2 gql5 gl4 gl3 gl2, nclk4 ngl5 ngl4 ngl3 ngl2 X351W4

; Mux to drive output of priority resoclver or decoder to RAM read ports

muxrd d3 d2 dl1 40, nd3 nn3 nd2 nn2 ndl nnl nd0 nn0 enr X418wW4

muxr8 d7 d6 d5 d4, nd7 nn7 ndé nné nd5 nn5 nd4 nnd enr X418W4

muxrl2 dll d10 d9 d8, ndll nnll ndl0 nnl0 nd9 nn9 nd8 nn8 enr X418W4

muxrlé ' dl5 dl14 d13 d12, ndl5 nnl5 ndl4 nnl4 ndl3 nnl3 ndl2 nnl2 enr $
X418W4

; Drive the mux output to the RAM using buffers

bufrd0l rd0, 40 z101X4
bufrdl rdl, d1 Z101X4
bufrd2 rd2, d2 z101X4
bufrd3 rd3, d3 z101X4
bufrd4 rdd, d4 z101X4
bufrd5 rd5, d5 Z101X4
bufrdé rd6, dé z101X4
bufrd?7 rd7, d7 2101X4
bufrd8 rd8, d8 z1l01x4
bufrd? rd9, d9 Z101X4
bufrdl0 rdl0, 410 Z101X4
bufrdll rdll, dll Z101X4
bufrdl2 rdl2, dl2 Z101X4
bufrdl3 rdl3, d13 2101X4
bufrdl4d rdld, dl14 Z101X4
bufrdl5 rdl5, d15 Z101X4
; The RAM

bit0 dout0 rd0 rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 din0 wd0 wdl wd2 wd3 wd4 wd5 wdée wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

bitl doutl rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 dinl wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

bit2 dout2 rd0 rdl rd2 rd3 rd4 rd5 rd6é rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 din2 wd0 wdl wd2 wd3 wd4 wd5 wd6 wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

bit3 dout3 rd0 rdl rd2 rd3 rd4 rd5 rd6é rd7 rd8 rd9 rdl0 rdll rdl2 $§
rdl3 rdl4 rdl5 din3 wd0 wdl wd2 wd3 wd4 wd5 wd6é wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F



bit4

bit5

bité

bit7

bit8

bit8

bit10

bitll

bitl2

bitl3

bitl4

bitl5

bitlé

bitl7

bit18

bitl9

dout4 rd0
rdl3 rdl4
wdl0 wdll
dout5 rd0
rdl3 rdlé4
wdl0 wdll
dout6 rdo0
rdl3 rdl4
wdl0 wdll
dout7 rd0
rdl3 rdl4
wdl0 wdll
dout8 rd0
rdl3 rdl4
wdl0 wdll
dout9 rd0
rdl3 rdl4

rdl rd2 rd3 rd4 rd5 rd6é rd7 rd8 rd9 rdl(0 rdll
rdl5 dind4 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl2 wdl3 wdl4 wdl5 C533F

rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl(0 rdll
rdl5 din5 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl2 wdl3 wdl4 wdl5 C533F

rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl5 diné wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl2 wdl3 wdld wdl5 C533F

rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdll0 rdll
rdl5 din7 wd0 wdl wd2 wd3 wd4 wd5 wdé6 wd7 wd8
wdl2 wdl3 wdld4 wdl5 C533F

rdl rd2 rd3 rd4 rd5 rdé6 rd7 rd8 rd9 rdl0 rdll
rdl5 din8 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8
wdl2 wdl3 wdl4d wdl5 C533F

rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll
rdl5 din9 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8

rdl2 $
wd9 $

rdl2 $
wd9 $

rdl2 $
wd9 $

rdl2 $
wd9 $

rdl2 $
wdd $

rdl2 $
wd9 $

wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

doutl0 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0
rdl3 rdl4 rdl5 dinl0 wd0 wdl wd2 wd3 wd4 wd5S wd6é wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutll rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd% rdio
rdl3 rdl4 rdl5 dinll wd0 wdl wd2 wd3 wd4 wd5 wdé wd?
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

doutl2 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdill
rdl3 rdld4 rdl5 dinl2 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl3 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinl3 wd0 wdl wd2 wd3 wdd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl4 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdll
rdl3 rdl4 rdl5 dinl4 wd0 wdl wd2 wd3 wd4 wd5 wdé6 wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl5 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinl5 wd0 wdl wd2 wd3 wd4 wd5 wdé wd?7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl6é rd0 rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinlé wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl7 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdlo
rdl3 rdl4 rdl5 dinl7 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 CS533F

doutl8 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdilo
rdl3 rdl4 rdlS5 dinl8 wd0 wdl wd2 wd3 wdd wd5 wdé wd7
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

doutl9 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdio
rdl3 rdl4 rdl5 dinl9 wd0 wdl wd2 wd3 wd4 wd5 wdé wd?

a1l rdlz
wd8 wd9 $

rall xdlz
wd8 wd9 $§

rdll rdl?2
wdB8 wdg $§

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdlz
wd8 wd9 $

radll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdl2
wd8 wd9 $

rdll rdi2
wd8 wd9 $

9
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wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

bit20 dout20 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 din20 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wdB wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

bit21 dout2l rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 din21 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdlé4 wdl5 C533F

bit22 dout22 rd0 rdl rd2 rd3 rd4 rd5 rdé rd7 rd8 rd9 rdl0 rdll rdl2 3
rdl3 rdl4 rdl5 din22 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F _

bit23 dout23 rd0 rdl rd2 rd3 rd4 rd5 rd6 rd7 rd8 rd9 rdl0 rdll rdl2 $
rdl3 rdl4 rdl5 din23 wd0 wdl wd2 wd3 wd4 wd5 wdé wd7 wd8 wd9 $
wdl0 wdll wdl2 wdl3 wdl4 wdl5 C533F

; Delayed clock4 from clk4

delayl ck4d, clk4 DLY2X

; 16 input OR gate for trapping the signal for carry-in
nandl 1, nd0 ndl nd2 nd3 nd4 nd5 ndé nd7 X168

nand2 2, nd8 nd9% ndl0 ndll ndl2 ndl3 ndl4 ndl5 X168

orl 3, 1 2 X432

ffcin cin ncin, clk4 LO 3 enr X381

; The ff to load RAM data

ramf£f5s f4 £3 £2 £f1 £0 # # # # #, clk4d doutd dout3 dout2 doutl doutl $
X351W5S

ramf£f10 £9 £8 £7 £6 £5 # # # # #, clk4 dout9 dout8 dout7 douté dout5 $
X351W5

ramffl5 £14 £13 £12 £11 £10 # # # # #, clk4 doutld doutl3 doutl2 $
doutll doutl0 X351W5

ramff20 £19 £18 £17 £f16 £15 # # # # #, clk4 doutl9 doutl8 doutl7 $
doutlé doutl5 X351W5

ramff24 £23 £22 £21 £20 # # # #, clk4 dout23 dout22 dout2l dout20 $
X351w4

; The incrementer

inc4 g3 g2 gl g0 co4, £3 £2 £f1 £0 cin X137F

inc8 g7 g6 g5 g4 coB, f7 f6 £5 f4 co4 X137F

incl2 g1l g10 g9 g8 col2, f11 £10 £9 £8 co8 X137F
incl6 gl5 gl4 gl3 gl2 col6, £f15 fl14 f13 fl2 col2 X137F
inc20 gl9 gl8 gl7 glé co20, £19 £18 f17 £f16 col6 X137F
inc24 g23 g22 g21 g20 #, £23 £22 £f21 £20 co20 X137F
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; Trap output of incrementer

incffS $ # # # # nh4 nh3 nh2 nhl nh0, clk4 g4 g3 g2 gl g0 X351W5

incff10 # # # # # nh9 nh8 nh7 nhé nh5, clk4 g9 g8 g7 g6 g5 X351W5

ainctfls # # # # # nhl4 nhl3 nhl2 nhll nhl10, clk4 gl4 gl3 gl2 gll gl0 $
X351W5 .

incff20 # # # # # nhl19 nhl18 nhl7 nhl6 nhl5, clk4 gl9 gl8 gl7 glé gl5 8
X351W5

incff24 - # # # # nh23 nh22 nh21 nh20, clk4 g23 g22 g2l g20 X351wW4

; Mux to feed either output of flipflops or data from outside into the
; RAM. Writing into RAM from outside used for testing

muxd4 din3 din2 dinl din0, nh3 wr3 nh2 wr2 nhl wrl nh0 wr0 enw $

X418W4

mux8 din7 diné din5 din4, nh7 wr7 nhé wré nh5 wr5 nh4 wr4 enw $
X418wW4

muxl2 dinll dinl0 din9 din8, nhll wrll nhl0 wrl0 nh9 wr9 nh8 wr8 $
enw X418W4

muxl6 dinl5 dinl4 dinl3 dinl2, nhl5 wrl5 nhl4 wrl4 nhl3 wrl3 nhl2 $
wrl2 enw X418w4

mux20 dinl9 dinl8 dinl7 dinlé, nhl9 wrl9 nhl8 wrl8 nhl7 wrl7 nhlé $
wrlé enw X418W4

mux24 din23 din22 din2l1 din20, nh23 wr23 nh22 wr22 nh2l wr2l nh20 $§
wr20 enw X418W4

; Mux to drive output of priority resolver or decoder to RAM read ports

muxwd w3 w2 wl wO, p3 nn3 p2 nn2 pl nnl p0 nn0 enw2 X418W4

muxw8 w7 w6 w5 w4, p7 nn7 p6 nné p5 nn5 p4 nnd enwZ X418W4

muxwl2 wll wl0 w9 w8, pll nnll pl0 nnl0 p9% nn9 p8 nn8 enw2 X418W4
muxwl6 wl5 wld4 wl3 wl2, plS5 nnl5 pl4 nnl4d pl3 nnl3 pl2 nnl2 enw2 X418wW4

; Flip-flops to capture the data for the write ports of the RAM
wffd p3 p2 pl pO0 # # # #, ck4d nd3 nd2 ndl nd0 X351wW4

wff8 p7 p6 pS pé4 #¥ # # #, ckd4d nd7 ndé nd5 nd4 X351W4

wffl2 pll pl0 p9 p8 # # # #, ck4d ndll ndl0 nd9 ndB X351W4
wfflé pl5 pld pl3 pl2 # # # #, ckd4d ndl5 ndld4 ndl3 ndl2 X351wW4

; Drive the mux output to the RAM write ports using buffers

bufwd0 wd0, w0 2101x2
bufwdl wdl, wl 2101X2
bufwd2 wd2, w2 2101X2

bufwd3 wd3, w3 2101X2



bufwdi4
bufwd5
bufwd6
bufwd?

bufwd8
bufwd9
bufwdl
bufwdl

bufwdl
bufwdl
bufwdl
bufwdl

endm ram24

model

nandl
nand2
nand3
and4

nand4
nand5
nandé
and7

nand?7
nand8g

nand9

andl08
andl03

nandl0
nandll
nandl2
andl2

nandl3
nandl4
nandl>5

0
1

2
3
4
D

pri_resolv subckt: nodes
ngl0 ngll ngl2 ngl3 ngld4d ngl5 a0 al a2 a3 a4 a5 a6 a7 a8 $

wdd,
wdb,
wd6,
wd7,

wd§,
wd9,
wdl0,
wdll,

wdl2,
wdl3,
wdld,
wdl5,

wi
w5
wbé
w7

w8
w9

z2101X2
z2101X2
2101X2
Z2101X2

Z101x2
Z2101xX2

wl0 2101X2
wll z101X2

wl2 2101X2
wl3 2101X2
wld 2z101X2
wl5 2101X2
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= (ngl ng2 ng3 ng4 ng5 ngé ng7 ng8 ngd $

a9 all all al2 al3 al4 al5 na0 nal na2 na3 nad4 nab5 naé na7 naB $

na% nal0 nall nal2 nal3 naléd nalb )

nql,
ng2,
ng3,

ngeé,

al na0

a2 nal na0

a3 na2 nal nal

na3 na2 nal nal

ad 1

a5 nad 1

a6 nab5 nad 1

2, naé6 nab na4 1

ng7,
ng8,
ng9,

7,

a7 2

a8 na7 2

a9 naB na7 2

X163

X162

X404

X162

9, na9% naB na7 naé nas

nal nal0 9

nglo,
ngll,
ngl2,

ngl3,
ngl4,

allo 7

all nal0 7
al2 nall nal0 7
8, nal2 nall nal0 7

al3 8
ald4 nall3 8
ngl5, al5 nal4 nal3 8

X162
X164

X404

X163
X164

X163
X164

na4 na3 na2

X403x%2

X162
X163

X404

X162
X163

X164

X164

X408



103

endm pri_resolv

model iopad subckt : nodes = (in out, nenin dout nenout)
outpad out, dout nenout TSPADT

inttlbuf tin, out C501

inzbuf in, nenin tin C519

endm iopad

read ~fastsim/lib/cmosl51lb
ENDC



APPENDIX D

#MODE = 2
#NO_HEADER
#DEFINE_INPUTS

ck =1
prg_chip =
limit = 3
strb = 4
valid 5

en_timer =

Il

nr =7
chip mode = 8 S

a(31:0) = 9:40 s
d(3:0) = 41:44 S
m({3:0) = 45:48 S
enr(2:0) = 49:51 s

e :0) = 52:59 §
eccnt = 60 S

ren = 61 S

wen = 62 8§

strb2 = 63

#END

ck = 10 @ 1
strb2 = 0
ren = 0
wen = 0
eccnt = 0
enr(2:0)
m(3:0) =0
c(7:0) = =z
prg_chip
limit=0
strb=0
valid = 0

I
o

I
o
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en_timer =1

chip mode=1

nr

=1

run 3

nr

=0

run 20

prg _chip =1
loop i=0,FH {

a(31:0) = FFFFFFF2H

d(3:0)=1
run 1
strb=1
run 1
limit=1
strb=0
run 1

a(31:0) = FFFFFFF8H

strb=1
run 1
strb=0
1limit=0
run 1

prg_chip=1
loop i=0,FH {

}

m(3:0) = 1
eccnt=0

run 2

strb2=1

wen=1
a(31:0)=FFFFFFFFH
c(7:0)=FFH

run 1

strb2=0

run 6

loop i=0,FH {

m(3:0) = 1
eccnt=1

run 2

strb2=1

wen=1
a(31:0)=FFFFFFFFH
c(7:0)=FFH
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run 1
strb2=0
}

run 6

strb=0
strb2=0
wen=0
eccnt=0
c(7:0)=z
limit=0
prg_chip=0
run 1

ck 10 @ 1
nr = 0

prg_chip=0
limit=0
valid=1
a(31:0)
run 1

a(31:0)
run 1

valid=0
a(31:0)
run 1

FFFFFFF9H

FFFFFFF4H

I

FFFFFFF1H

en_timer=0

valid=0

a(31:0) = FFFFFFF5H
run 1

valid=1l

run 1

en_timer=1

run 1

a(31:0) = FFFFFFFAH

run 1

a(31:0) = FFFFFFF6H

run 300

a(31:0) = FFFFFFFBH

run 1

loop i=0,300D {
a(31:0) = FFFFFFF7H
run 1
a(31:0) = FFFFFFFCH
run 1

}
a(31:0) = FFFFFFF8H
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run 1
a(31:0) =
run 1
a(3l:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(3l:0) =
run 1
a(3l1:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0) =
run 1
a(31:0)
run 8
prg_chip=1
eccnt=0

Il

ren=1
run 1

FFFFFFF2H

FFFFFFF8H

FFFFFFFDH

FFFFFFF2H

FFFFFFFOH

FFFFFFFEH

FFFFFFF4H

FFFFFFFFH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOH

FFFFFFFOR

FFFFFFFAH

FFFFFFFAH

FFFFFFFAH

FFFFFFFOH

loop j=0,FH {

m(3:0)
run 8

=3

loop i=0,5H {
enr (2:0)=1

run 2
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ren=0
run 5
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