
Training Evaluation: Syringe Pumps for Intravenous Furosemide

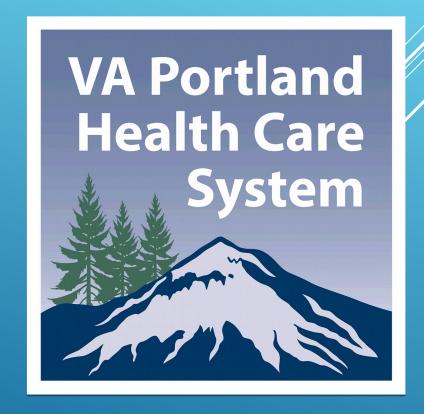
Allison Petersen, RN

Portland Veterans Affairs Healthcare System

Veteran's Affairs and Oregon Health and Science University
Evidence-based Practice Fellowship September 2017- June 2018

Introduction

- Situation & Background
- Research Question & Project Development
- Project Overview & Timeline
- Results
- Limitations
- Recommendations & Implications


Situation & Background

- Hurricane Maria, Puerto Rico, September 2017
- Devastation causes a shortage of IV medication, solutions, & bags
- Healthcare Systems across the U.S. must respond urgently and safely to the emergent situation
- Evaluate delivery method and develop training modality for new procedures
- Literature review for best practices

It Takes a Team!

- Victoria "Vicki" Church, RN, MS, CNS-BC
- Damian Vazquez, MMI, BSN RN
- Nicole Carter, MS, RN, AGCNS-BC, CMSRN
- Brenda Grossnickle, MSN, RN, CMSRN
- Amar Patel, PharmD
- Nicole Russo, BSN, RN, CIC
- Allison Petersen, RN, BSN, BS

Evidence-based Practice Question

How effective is the training modality for syringe pump use of IV

Furosemide (100 mg or greater) when evaluating safety, cost, nurse

satisfaction, and knowledge retention?

Training Structure & Delivery

Training Modality: Hands on/ psychomotor

- ☐ Timing: 30 minutes
- Education: Repeat demonstration with assessment of skills
- Small group learning
- No print materials or f/u

Timeline: September 2017- May 2018

Hurrican e Maria, Puerto Rico Plannin g begins for syringe pump usage

Syringe pumps are introduce d 3/20

Data collection/ analysis

Sept. 201Dct./ Nov. Dec./Jan. February

March

April

Ma<mark>y 20</mark>18

Reductio n of bags and solutions 2/5: Project designated as Quality Improveme nt

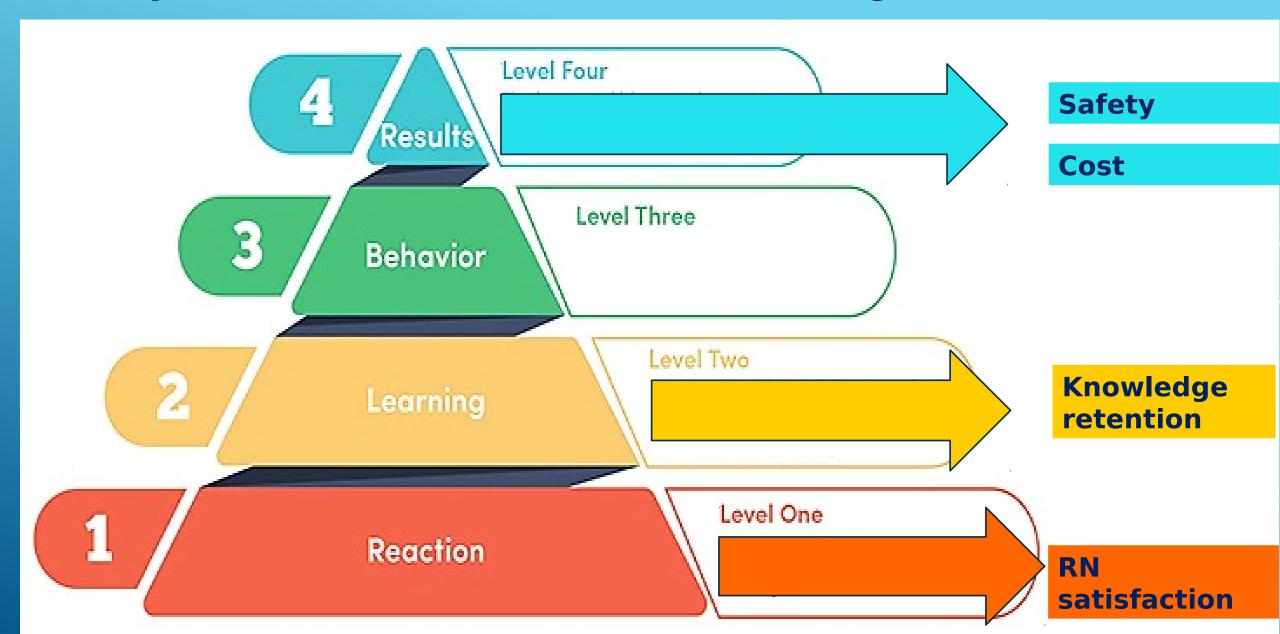
RN
Syringe
pump
Education
-Pre-test
-Post-test
-Training
evaluation

Union approval for post-survey 4/11

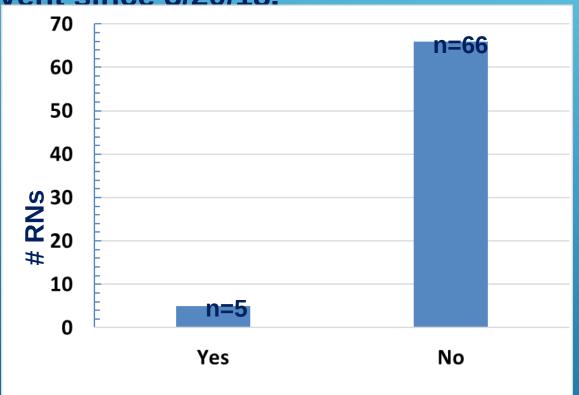
Postintervention survey 4/20

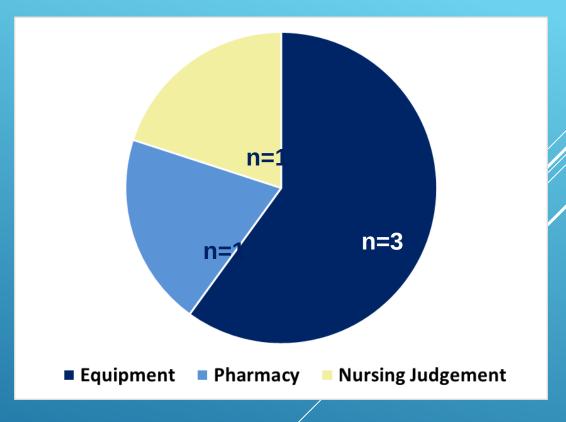
Program Evaluation

Improved job performance:


Acquisition of new skills and knowledge

OUTCOME VARIABLES


- Safety: MERS, self-reported errors
- Cost: Supplies and Training
- Knowledge retention after educational intervention
- RN satisfaction with training and skill delivery


Kirkpatrick's Four Levels Of Training Evaluation

"I have experienced an Error or Adverse Event since 3/20/18."

Error or Adverse Event by Type

Results: Cost

The cost of continued syringe pump use does not appear to be limiting.

The cost difference between delivery methods is < 5% (excluding tubing).

Results: Safety

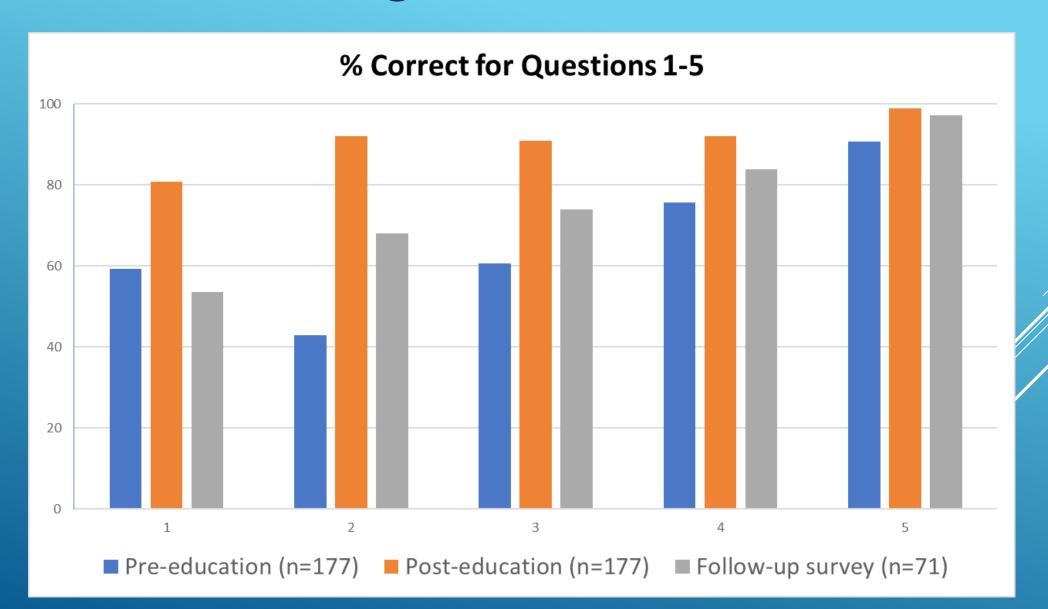
MERS (February- April 2018)

Date	Shift	Error Type	Implications
2/13/2018	Night	Incomplete dose	Prior to syringe pump use.
3/27/2018	Night	Missed Dose	Using syringe pumps.

Results: Cost

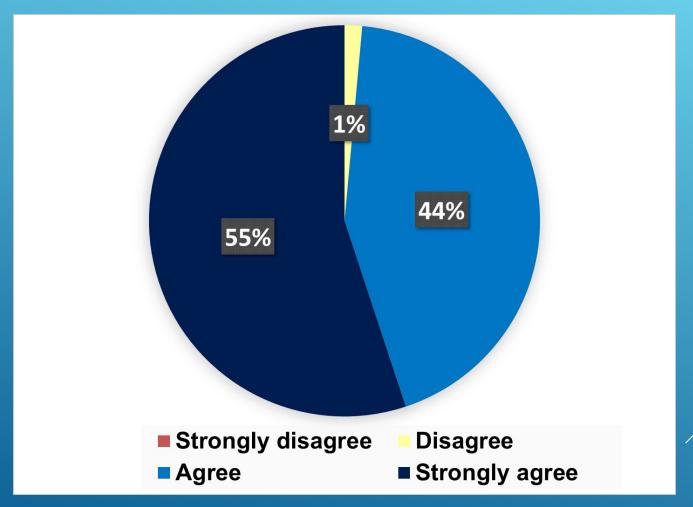
IV furosemide (bag)	Cost per Item	Total Cost of Delivery
D5 100 mL Mini Bag	\$1.00	
Tubing	\$4.80	
Medication	\$3.64- 5.19	\$9.44- 10.99
Syringe Pump Furosemide	Cost per Item	Total Cost of Delivery
Syringe	\$0.22	
Tamper evident cap	\$0.35	
Tubing	\$4.80	
Medication	\$3.64- 5.19	\$9.01- 10.56

4/17/- 5/17/18 Total Doses- All Areas/ Wards	IV Bag	Syringe Pump
272	\$2,567.68- 2,989.28 (month)	\$2,450.72- 2,872.32 (month)
	\$30,812.16-35,871.36	\$29,408.64- 34,467.84


Results: Cost

Education/ training

(Est. Hourly RN Wage: \$40 x 0.5) x 254= \$5,080


Does not include investment in syringe pump equipment or intervention planning, development, & implementation

Results: Knowledge Retention

Results: RN Satisfaction

One Month Flu Survey: "I am satisfied with the education/ training I received"

Results: RN Satisfaction

One month f/u survey qualitative data

Positive	Neutral	Negative	Feedback
Enjoyed training	Other IV mediations should be used for syringe pumps	No follow-up/ reinforcement of learning	Need written Handouts/ procedure
Feel competent		Did not try skills out after training	
Simple, easy procedure and skill		Unable who to ask for help	
Education was effective in teaching skills needed		Unclear where to access resources related to syringe pumps	
"This was the best inservice I have ever experienced in 23 years. Truly!!!"			

Limitations

Data collection may not be sufficient to draw conclusions about errors.

- Selection bias (self-reporting)
- Structural limitations
 - Wrong color cap and/or label
 - Unable to obtain syringe pump
 - Wrong programming

Implications

Effective training modalities:

Conserve time & resources

Optimize key outcome variables.

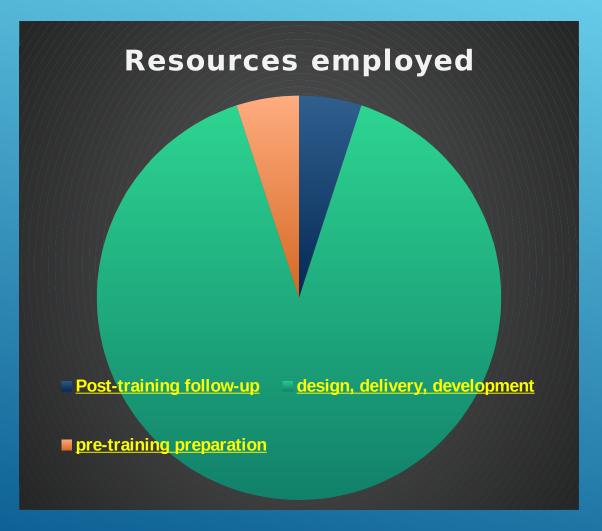
Effective training may prevent Adverse Drug Events (ADEs).

The cost of one ADE is estimated at \$1851.44, although variable by setting (Poudel et al, 2017) (Vallano, 2012).

Recommendations

Pre-education/ intervention knowledge and materials (asynchronous training)

Increased follow-up with added written procedures to augment training


Increased availability of subject matter expert after intervention

Involving nurses in project development process/ Rapid Improvement

Training evaluation standards and benchmarks

Traditional Training Approach

(Brinkerhoff, 2006)

Recommendation: Learning And Performance Training Approach

(Brinkerhoff, 2006)

Additional Recommendations

Syringe Pumps for other medications (e.g. antibiotics)

- Measure LOS in HF patients
 - Increased accuracy of dosing with syringe pumps
 - Less fluid used per dose with syringe pumps
- Measure Infection rates with new tubing
 - Syringe pump tubing changed with each dose of medication

Conclusion

- Crisis situation and emergent training
- More follow-up leads to better outcomes
- Nurses retained knowledge of skills 1 month post intervention
- Overall safety of syringe pumps was effective with no major adverse events or errors/ no increase in error rate
- Nurse satisfaction was positive
- Cost analysis indicates possible long-term sustainability

References

For complete reference list, please see attached documents/ handouts.

Chan, A., Purcell, A., & Power, E. (2016). A systematic review of assessment and intervention strategies for effective clinical communication in culturally and linguistically diverse students. *Medical Education*, 50(9), 898-911.

Ejaz, A. A., & Mohandas, R. (2014). Are diuretics harmful in the management of acute kidney injury? Current Opinion in Nephrology and Hypertension, 23(2), 155-160.

Ferguson, A., Delaney, B., & Hardy, G. (2014). Teaching medication administration through innovative simulation. *Teaching & Learning in Nursing*, 9(2), 64-68.

Gjeraa, K., Moller, T. P., & Ostergaard, D. (2014). Efficacy of simulation-based trauma team training of non-technical skills. A Systematic Review. *Acta Anaesthesiologica Scandinavica*, 58(7), 775-787.

Kirkpatrick, J.D. & Kayser-Kirkpatrick, W. (2016). *Kirkpatrick's Four Levels of Training Evaluation*. Virginia: ATD Press.

References

Lee, J., & Oh, P. J. (2015). Effects of the use of high-fidelity human simulation in nursing education: A meta-analysis. *The Journal of Nursing Education*, *54*(9), 501-507.

Maki, D. G., Rosenthal, V. D., Salomao, R., Franzetti, F., & Rangel-Frausto, M. S. (2011). Impact of switching from an open to a closed infusion system on rates of central line-associated bloodstream infection: A meta-analysis of time-sequence cohort studies in 4 countries. *Infection Control and Hospital Epidemiology*, *32*(1), 50-58.

Poudel, D. R., Acharya, P., Ghimire, S., Dhital, R., & Bharati, R. (2017). Burden of hospitalizations related to adverse drug events in the USA: A retrospective analysis from large inpatient database. *Pharmacoepidemiology and Drug Safety*, 26(6), 635-641.

Vallano Ferraz, A., Agusti Escasany, A., Pedros Xolvi, C., & Arnau de Bolos, J. M. (2012). Systematic review of studies assessing the cost of adverse drug reactions. [Revision sistematica de los estudios de evaluacion del coste de las reacciones adversas a medicamentos] *Gaceta Sanitaria*, 26(3), 277-283.