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Abstract

A Generalized Model for Analysis and Synthesis of English Intonation
Mahsa Sadat Elyasi Langarani
Doctor of Philosophy
Center for Spoken Language Understanding, Oregon Health & Science University
Thesis Advisor: Jan van Santen
August 20, 2020

Intonation provides a means to convey information in speech that is independent of the words
and their sounds. Finding a way to automatically describe this non-verbal information is impor-
tant for developing sophisticated speech technology applications. One leading approach to model
intonation is using a superpositional approach that assume intonation has a hierarchical structure,
and models the intonation by decomposing it’s physical representative (Fy contours) into compo-
nent curves with simpler intonation patterns in multi-level manner. However, it is not clear what
the set of component curves should be, and how they can be defined with few free parameters,
that will allow them to be used in analysis and synthesis of English for a wide range of tasks.

The central objective of this thesis is to propose a generalized model for analysis and synthesis
of English intonation. Our model is a quantitative superpositional intonation model that estimates
Fy contour by decomposing it into two levels; a phrase curve for each intermediate phrase and an
accent curve for each foot. We keep the shape of the phrase curve as simple as possible to let
the accent curves capture the Fj; dynamic patterns. Even though parameters of a specific accent
curve are proportional into a specific foot, we have the accent curve span across the entire phrase.
The formulation of component curves lets us to model the Fjy contour with a very small set of free
parameters. Having a limited number of parameters and having all curves span across the entire
phrase facilitates us to optimize the parameters simultaneously to estimate the component curves.
We name this model GENIE: GENeralized Intonation model for English.

We investigated GENIE’s potential to accurately represent intonational characteristics of the
English language in both synthesis and analysis tasks through a variety of speech processing ap-
plications. In a direct comparison with the ToBI system, we showed that GENIE’s component
curves are able to capture the underlying patterns of English intonation. In order to test the abil-

ity of GENIE to synthesize high-quality and more natural sounding F{ contours, we created two



different approaches based on GENIE for generating Fj contours in a Text-to-Speech system. We
investigated the effectiveness of these approaches through objective and subjective evaluations. To
examine GENIE’s capability to be used as an analysis tool, we created two different approaches to
differentiate two speaker groups through their Fy dynamic differences. Due to the success of these
two studies, we proposed a speaker group classifier using the Non-negative Matrix Factorization
algorithm and the Gini coeflicient. We evaluated our classifier in an English dialect classification
task. We also examined the ability of GENIE to adapt to new intonational patterns by performing
several perceptual tests with a variety of speech corpora and by creating an intonation adaptation
task to generate speaker-specific Fy contours. Thus, in this dissertation we examined the perfor-
mance of GENIE in two areas: 1) Predictiveness: does the model produce high-quality prediction
of Fy contours, while being linguistically descriptive? 2) Coverage: is the model flexible to subtle

intonational variations?



Chapter 1

Introduction

1.1 What is intonation?

The term intonation refers to the concept of conveying non-verbal information in speech. Intonation
is often considered the same as prosody; however, prosody is a more general term which in addition
to intonation also consists of rhythm (stress and timing patterns) and intensity patterns. These
non-verbal aspects usually can be distinguished as phonological features or acoustic features. Even
though there is some disagreement on which properties of spoken language are considered prosodic,
there have been many studies that show the presence of prosodic constituents through phonological
observations and acoustic measurements [115, 139, 23]. Figure 1.1 illustrates that prosody involves
many phonological features (e.g., pitch, stress pattern and loudness) and acoustical features (e.g.,
fundamental frequency, intensity, and duration).

Pitch is a perceptual feature, which allows for a listener to perceive how high or low someone

speaks. Similar to musical melodies, pitch changes over time during an utterance and it is closely

Phonological

____________________________

e Pitch
e Loudness \
e Boundary phenomena

Acoustical

Intonation <+—>{ ¢ Fundamental Frequency

o

e Intensity
Lexical Features e Duration
e Stress P/
e Pitch accent
e Tone

Figure 1.1: Within-group and between-group interaction of prosodic features.



CHAPTER 1. INTRODUCTION 2

correlated with duration and loudness patterns. The duration patterns or timing differ from
one language to another; for example in English, timing is related to the syllable stress and
pitch accents, which are two lexical features used to create prominence patterns of an utterance.
Loudness is another perceptual feature which allows for a listener to perceive how quiet or loud
someone speaks. These perceptual features cannot be measured directly. Instead, we can measure
the fundamental frequency (or Fy values) of the vocal cords during sound production (an acoustic
feature measured in Hz). The intensity of a speech signal is the acoustic equivalent of the perceptual
loudness feature. There is a strong correlation between all these prosodic features, which makes it
practically impossible to define intonation as only involving one of these features. Therefore, we will
use the term intonation in this thesis to refer to within-group interactions (e.g., relation between
pitch and loudness) between prosodic features in each aspect and between-group interactions (e.g.,

relation among pitch, stress pattern and F) between all aspects.

1.2 How to Represent Intonation?

In spoken language, a speaker transfers a variety of information beyond lexical and syntactic
information to convey a specific meaning to a target audience. Prosodic features, such as pitch
patterns, prominence, timing, intensity, and phrasing give a speaker the ability to convey different
meanings without changing the context (the words that were said). These non-verbal cues in an
utterance are called intonation. This section is not intended to be a literature review, which is in
Section 2.2 and Section 2.3; rather, this section explains the complexity of intonation in a simple
example that starts with the simplest representation of intonation and progressively add more
information into it.

Consider an environment consisting of two speakers: A and B. Speaker B always says the
sentence “This is an expensive car” as an answer to speaker A’s question who inquires about

specific information available in the mentioned sentence. These questions are shown below:

Speaker A Speaker B

What did you say? This is an expensive car.

Is this an expensive house? | This is an expensive car.

What kind of car is this? | This is an expensive car.

Is this a cheap car? This is an expensive car.
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Even though speaker B says the same sentence in an answer to different questions, he/she puts
different levels of emphasis on different parts in the stream of speech to make them prominent,
which results in conveying different meanings. To answer “What did you say?”, certain stressed
syllables will be more prominent than others — using a so-called pitch accent or accent, in speaker
B’s response “This IS an exPENsive CAR”. Small capitals indicate the locations of pitch accents in

the sentence:

Speaker A Speaker B

What did you say? This 1S an exPENsive CAR.

Is this an expensive house? | This IS an exPENsive CAR.

What kind of car is this? This IS an exPENsive CAR.

Is this a cheap car? This 1S an exPENsive CAR.

Not all intonational information can be transferred through the locations of pitch accents, for
instance, speaker B might puts more emphasis on the word “car” to answer “Is this an expensive
house?” than when he/she emphasizes the word “car” in response to “What did you say?” By
increasing the pitch range on the word “car”, speaker B conveys more intonational information to
speaker A. Here, pitch range information is an effective intonation characteristic. In the second
through to the fourth responses where speaker B does emphasized a syllable, we represent it with

an underline:

Speaker A Speaker B

What did you say? This IS an exPENsive CAR.

Is this an expensive house? | This IS an exPENsive CAR.

What kind of car is this? This IS an exPENsive CAR.

Is this a cheap car? This 1S an exPENsive CAR.

Using English orthography (such as small capitals and underlining) to highlight important

intonational information has been part of English intonation analysis for a long time. In an English
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pronunciation lexicon, every word has a stressed syllable, and these syllables are more likely to
be prominent — having a pitch accent — than other syllables in an utterance. Putting a pitch
accent on every word of an utterance would make it sound unnatural to human ears. In general,
it is more likely that the stressed syllables in content words get a pitch accent (small capitals in
the example above). As mentioned previously, some intonational characteristics are produced by
speaker B to add more clarity to the answer according to the communication needs of speaker A
(underlined syllables in above example.) However, not all types of intonational differences can be
easily captured by English orthography. When speaker B puts more emphasis on the word “car”
in answer to “Is this an expensive house?” due to clarifying that this is a car not a house, he/she
does not adjust the amount of prominence in the other words. However, when the emphasis shifts
to the word “expensive” in response to “Is this a cheap car?”, speaker B will lower the amount
of emphasis on the word “car” to specify that new intonational information carried by the word
“expensive”’ is more important than intonational information carried by the word “car”. Speaker
B can convey this information by using two levels of tones, a high tone (H) and a low tone (L)
which correspond to either a peak or a dip in intonation. Additionally speaker B can produce a
sharp rise in intonation by combining these tones into a bitonal event (LH). These tones only get
assigned to the prominent syllables of the emphasized words (stressed syllables of pitch accented

words).

Speaker A Speaker B
H H H
What did you say? This IS an eXPENsive CAR.
H H LH

Is this an expensive house? This IS an exPENsive CAR.

H H L
What kind of car is this? This IS an exPENsive CAR.

H LH L

Ts this a cheap car? This IS an eXPENsive CAR.

This representation brings out more information about intonational characteristics. The ac-
cented words before the most emphasis word (the word in focus) have the same tones as in the
neutral condition (compare the words “expensive” and “is” in the responses to these questions:

“What did you say?”, “Is this an expensive house?”). The accented words after the word in focus
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Linear interpolation

FO

Sagging interpolation

Time

Figure 1.2: The Fj in weak syllables (between the two peaks) are derived using different functions.
A linear function like Fy = at + b for linear interpolation, and a parabolic function like Fy =
at? + bt + ¢ for sagging interpolation. From [187]

have a low tone as opposed to having a high tone in the neutral condition (compare the word “car”
in the responses to these questions: “What did you say?”, “What kind of car is this?”). This also
helps to differentiate the answer of speaker B in response to “What kind of car is this?” from “Is
this a cheap car?”. Speaker B uses more emphasis on the whole word “exPENsive” in response to
“What kind of car is this?”. Therefore, the word “exPENsive” becomes the only part of the utterance
that contains new information. In contrast, in response to “Is this is a cheap car?”, speaker B can
place a sharp rise on the second syllable of the word “exPENsive” ; thus clarifying that this is indeed
an expensive car not a cheap one. Here, speaker B uses contrastive stress to not only convey more
information but also to correct the information (“cheap”) that was presented by speaker A.

The main drawback about this representation schema is that only obvious pitch movements
are translated and more subtle ones (e.g., syllables without stress) are ignored. The assumption
behind these models is that the pitch movement between the two tones are not meaningful (or are
not perceptible). This raises the question of how the pitch movement in the weak syllables (e.g.,
syllable “this” in our target sentence) can be modeled? To answer this question, researchers have
proposed different approaches, such as linear interpolation [157] or sagging transition [123]. These
theories are illustrated in Figure 1.2. They suggest that pitch movement between the two tones
is just a function of distance and can be modeled with any interpolation function. However, it
has been shown that listeners are sensitive to changes in Fy dynamics due to temporal alignment
changes [116]. This suggests that the pitch movements in weak syllables are not captured by a
simple interpolation between tones, and that they have certain patterns. Therefore, pitch move-
ment carries detailed intonation movements that cannot be captured only by static target tones

(L or H) [149]. One way to represent the pitch movement is to directly consider the physical
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representation of intonation, which is known as the fundamental frequency (Fy) contour.

Speaker A Speaker B

J\/\/\

This IS an exPENsive CAR.

N

This IS an eXPENsive CAR.

What did you say?

Is this an expensive house?

What kind of car is this? | This IS an exPENsive CAR.

Is this a cheap car? This IS an eXPENsive CAR.

By looking at the Fjy contours in the example above, it should be clearer how higher frequency
values are associated with more prominent stressed syllables, and how speaker B adjusts his/her
pitch range and pitch span to convey different intonational information. For instance, the word
“expensive”’ conveys progressively greater emphasis in response to each of the following questions:
“What did you say?”, “What kind of car is this?”, and “Is this a cheap car?.”

Through this short example, we pointed out the complexity and richness of English intonation
as represented by the Fjy contour of an utterance. It should be noted that choosing F{y contours to
represent the intonation does not mean that we are ignoring other intonational features (such as
duration, pitch accent, lexical stress, etc.). As mentioned earlier, intonational features are closely

related to each other and one can not be considered in isolation from the others.

1.3 How to Model Intonation?

In the previous section, we discussed that the Fy contour of an utterance can be used to represent
the complexity and richness of English intonation. We have shown that representing intonation

by marking up text or by adding tone annotations can not fully convey complexity of English
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intonation; how can we model intonation quantitatively? We can use phonetic models, where into-
national features are represented numerically in terms of vectors of acoustic features or continuous
parameters. More specifically, they represent intonation as a sequence of pairs (time, Fy). There
are two main categories of phonetic models: sequential and superpositional models. The sequen-
tial approach characterizes the Fj contour as a sequence of distinct intonational events that are
generated left to right. A widely used sequential intonation model is Taylor’s TILT model [157],
which considers the Fy contour as a sequence of intonational accents (rising and falling) with lin-
ear connections. Superpositional models, starting with the work of Fujisaki [41], posit that the Fj
contour can be described as a superposition of several simpler component curves. Depending on
whether the model is sequential or superpositional, the Fy contour of an utterance results from
interpolation between the estimated intonational events or the superposition of components of
different temporal scopes.

An assumption behind sequential models is that Fy contours are directly determined by their
surface patterns in small phonological units (mainly at the syllable level). However, intonation
is a suprasegmental phenomenon which is influenced by factors at different levels of a hierarchy.
At the lowest level in the hierarchy, there are syllables, which are grouped together into prosodic
phrases, and eventually utterances. The resulting effect of the intonational hierarchical structure
on the F contour cannot be modeled by a sequential approach. For example, a stressed syllable
with a pitch accent with a certain amount of emphasis will result in different Fyy values in different
parts of a prosodic phrase. Changes in Fj values are not only related to local factors in smaller
phonological units (such as stress at the syllable level or pitch accents at the word level), but also
to more global factors in higher phonological units (such as phrasing at the prosodic phrase level).

Characterizing the Fy contour at different phonological levels is crucial to the definition of
the superpositional approach. The superpositional approach characterizes the Fy contour as an
overlay (or superposition) of several component contours of different temporal scopes. Long scope
components represent the global patterns of Fy contour over the length of a prosodic phrase.
Shorter scope components represent local Fy contour changes associated with syllables (commonly
stressed accented syllables). Due to superpositional approach capturing the hierarchical structure
of intonation by estimating underlying patterns of the Fjy contour in a multi-level manner, the
superpositional approaches are more suitable than the sequential approaches for analyzing and
synthesizing English intonation. This advantage leads us to the use of a superpositional phonetic

approach to model English intonation.
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1.4 Problems in Superpositional Approach

In modeling intonation, there are several theoretical and practical concerns due to two factors:
(1) the description of intonation, and (2) the approach used to simulate the described intonation.

Here, we narrowed down these concerns in the context of superpositional intonation models.

1.4.1 Theoretical Concerns

Using a superpositional approach to decompose an Fy contour into its component curves — where
each component is tied to a distinct phonological unit, leads to various theoretical concerns, which

can be summarized as follows:

Hierarchical dependency: Due to the hierarchical structure of intonation, there are multi-
level interactions between intonational features. In the superpositional approach each level
has its own unique patterns, and they are superimposed on top of each other to estimate
underlying patterns of the given Fj contour. Although various intonation theories agree
on the hierarchical structure of intonation, they differ in terms of how many levels should
be used to represent the multi-level interaction between intonational features. In general,
any superpositional approach should consist of at least two levels: one level for representing
global intonational patterns at a prosodic phrase level, and one level for representing local
intonational patterns at a shorter temporal scope. However, some theories suggest more than
two levels to represent the intonation hierarchy (e.g., three levels [41, 169, 106], more than

three levels [105, 151, 178], or even one level for each phonological unit [129].

Adaptive decomposition: Decomposing a F;y contour into its component curves is challenging
since there is no unique solution to the decomposition of a given Fj contour, because different
component curves can combine to produce the same sum curve, unless certain assumptions
are made. The way in which component curves are superimposed determines the outcome
of the model. For example, component curve estimated at the lower level in the intonation
hierarchy, associated with smaller phonological units (commonly syllables), should only be
concatenated together and then added to component curves at a higher level. Some overlap

can also be applied before adding them to the component curves at the higher level.

Relevancy of component curves: The relevancy of the component curves relies on the
purpose for intonation modeling. For instance, if the purpose is to have a generative model
to be used in a speech synthesis system (e.g., Text-To-Speech), having an accurate estima-

tion of the Fy contour is more important than knowing if the component curve shapes are
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linguistically meaningful or not. In contrast, if the purpose is to use the intonation model
as an analysis tool, then having linguistically meaningful component curves is the central
assumption. Ideally, we want to have linguistically meaningful component curves that can
be used to generate the same intonation characteristics that would be produced by a spe-
cific speaker. This leads us to the following question: which phonological units (syllable,
sequence of syllables, words, phrases, and utterances) are more relevant for capturing mean-
ingful intonational movements? This issue is referred to as the lack of reference in intonation
research [125, 124, 185]. Xu [185] suggested that the relevant unit for studying underlying
meaningful intonational movements is the syllable. However, as also pointed out by Xu,
for languages that are not lexically tonal languages, such as English, considering a specific
intonation movement per syllable might cause overfitting, but it does not necessarily mean
that intonation movements are unspecified in weak syllables (which usually is assumed in
phonological-based approaches). This suggests that for English, the relevant prosodic unit
should be syllable-based but not specifically limited to the boundary of one syllable. Such
a unit, which is known as the foot, was proposed by Abercrombie et al [1]. The reason the
foot is a more relevant prosodic unit than the syllable in English will be discussed in detail

in the next chapter.

1.4.2 Practical Concerns

In addition to the theoretical concerns, there are two concerns that are critical when it comes to
practical usage of the intonation model in different speech processing applications, namely: the

level of predictability of the intonation model, and the degrees of freedom of the model [185].

Predictability: Intonation can vary substantially across different languages, making it practically
impossible to have one intonation model which can achieve both high predictiveness and
high descriptiveness for every existing language. Therefore, depending on the problem, it is
important to assess the trade-offs between predictiveness and descriptiveness of the method.
Achieving better predictiveness while being linguistically descriptive could lead us to two
insights: 1) In the synthesis phase, it is important to not only test the similarity between
the natural and estimated Fj contour but also the intonation characteristics of the input
categories. 2) In the analysis phase, the model should be powerful enough to be used in
detection and classification of intonational characteristics. Therefore, the model should be
able to accurately reconstruct the Fjy contour that makes it a useful tool for detecting prosodic

phrase boundary and pitch accent events. Going further, the model should also be able to
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capture hidden intonational characteristics of a speaker, which usually can not be easily
represented by a phonological-based approaches. This ability would make the model a useful
classification tool that covers a variety of cases: classification of individuals with dysarthria
vs. neurotypical individuals, clear vs. conversational speaking styles, dialect classification,
or differentiating any speaker groups regardless of speaking style, speech data, or any other

variation in patterns.

Degrees of freedom: The degrees of freedom of a model refer to the number of independent
free parameters that control the model for data estimation. If the number of independent free
parameters is too high then the model might become too complex and that causes overfitting
problems. If the number of independent free parameters is too low, then the model might
be too general and it might not capture the data distribution, which causes underfitting
problems. Therefore, the most important choice related to the degrees of freedom of the
intonation model is whether each parameter can be meaningfully justified. For example, for
a use-case with a small data size, using a simple model with only a few meaningful parameters
will be more beneficial than using a complex machine learning method which requires many
more parameters. In superpositional-based modeling, mainly two factors affect the degrees of
freedom of the model: the number of levels used for representing the hierarchical intonational

structure, and the number of parameters needed for each component curve.

1.5 Thesis Problem

Superpositional approaches assume intonation has a hierarchical structure, and models the intona-
tion by decomposing it’s physical representative (F contours) into component curves with simpler
intonation patterns in multi-level manner. However, it is not clear what the set of component
curves should be, and how they can be defined with few free parameters, that will allow them to

be used in analysis and synthesis of English for a wide range of tasks.

1.6 Thesis Statement

In this thesis, we create a quantitative superpositional intonation model that provides the high-
quality prediction of Fyy contours with few free parameters that the component curves are being

linguistically descriptive.

1Please note that due to the theoretical concerns there might be additional factors, such as the level of overlap
between component curves, association of the levels with phonological units, etc.
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Our model decomposes a given Fy contour into its component phrase and accent curves at
two levels: the prosodic phrase level (or intermediate phrase level) and the foot level. We used
two connected linear segments to model the phrase curve. We kept the shape of the phrase
curve as simple as possible to let the accent curves capture the F{y dynamic patterns. We used
a combination of the skewed normal distribution and a sigmoid function to model three different
types of accent curve. First, the skewed normal distribution is used to model rise-fall accents that
occur in non-final foot as well as in final foot for declarative utterances. Second, a sigmoid function
is used to model the rise at the end of yes-no question utterances. Third, the sum of the skewed
normal distribution and the sigmoid function is used to model continuation accents at the end of
a non-utterance-final phrase. Even though parameters of a specific accent curve are proportional
into a specific foot, we have the accent curve span across the entire phrase. This formulation of
component curves lets us to model the Fjy contour with a very small set of free parameters. Having
a limited number of parameters and having all curves span across the entire phrase facilitates us to
optimize the parameters simultaneously to estimate the component curves. We name this model
GENIE (GENeralized Intonation model for English). We show the proposed method can be used
as an analysis and synthesis tool of intonational characteristics in a variety of speech processing
applications, and it can model real world variations, such as: different speaking styles, different

intonational functions, different speech data, etc.

1.7 Contributions of this Thesis

In this dissertation, we propose a generalized model for analysis and synthesis of the English in-
tonation. The proposed model is a superpositional-based model that decomposes a continuous Fj
contour into its linguistically meaningful component curves. We propose several different frame-
works to examine the performance of the proposed model in terms of the objective of this thesis.

In Chapter 2 we presents the literature review. First, some definitions are discussed. Then,
fundamental and more recent intonational models will be reviewed. The rest of the chapter will
focus on the usage of intonation models in speech processing applications. In Chapter 3, we propose
the generalized intonation model for English language (GENIE). We present the methodology and
mathematical formulation of GENIE. In Chapter 4, we propose a framework which combines
GENIE with a regression-based duration model for detection of intonational events. In Chapter 5,
we propose two approaches — data-driven-based and neural-network-based — for generating Fj
contours using GENIE in a TTS application. In the second part of this chapter, we propose a new

intonation adaptation method using GENIE to transform the perceived identity of a TTS system
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to that of a target speaker with a small amount of training data. This chapter tests predictability of
the model using both objective and subjective evaluations. In Chapter 6, we propose an approach
to perform speaker classification which exclusively uses features derived from the Fj contour by
using GENIE. A special aspect of our approach is the focus on Fy contour dynamics — often
underused in speaker group classification. Finally, the last chapter gives a summary of the main
findings of the research carried out in the scope of this dissertation. The dissertation ends with an
outlook on future work.

The following are accepted articles that came from the research performed for this thesis:

1. M. S. Elyasi Langarani, J. van Santen, E. Klabbers, A novel pitch decomposition method
for the generalized linear alignment model, ICASSP, 2014 [33]

2. M. S. Elyasi Langarani, J. van Santen, Modeling fundamental frequency dynamics in hy-

pokinetic dysarthria, Spoken Language Technology (SLT), 2014 [28]

3. M. S. Elyasi Langarani, J. van Santen, S. H. Mohammadi, A. Kain, Data-driven Foot-based
Intonation Generator for Text-to-Speech Synthesis, Interspeech, 2015 [34].

4. M. S. Elyasi Langarani, J. van Santen, Speaker intonation adaptation for transforming

text-to-speech synthesis speaker identity, ASRU, 2015 [29]

5. M. S. Elyasi Langarani, J. van Santen, Automatic, model-based detection of pause-less
phrase boundaries from fundamental frequency and duration features, 9th ISCA Speech

Synthesis Workshop (SSW9), 2016 [30]

6. M. S. Elyasi Langarani, J. van Santen, Foot-based Intonation for Text-to-Speech Synthesis
using Neural Networks, Speech Prosody, 2016 [31]

7. M. S. Elyasi Langarani, J. van Santen, Recurrent convolutional networks for classification
of speaker groups based on prosodic information, Women in Machine learning Work-

shop (WiML), 2017 [32]
The following are planned submissions covering some of the contributions of the dissertation:

1. M. S. Elyasi Langarani, J. van Santen, Investigating prosodic unit effects of fundamental

frequency dynamics in clear and conversational speech

2. M. S. Elyasi Langarani, J. van Santen, Prosody based dialect classification using NMF and

sparsity criteria



Chapter 2

Literature Review

In this chapter, we present the literature review. In Section 2.1, we discuss the relationship between
intonation and several prosodic features that are used in this thesis. In Section 2.2, we discuss
relevancy of prosodic unit in English intonation. In Section 2.3, we review fundamental and more
recent intonational models. In Section 2.4, we focus on the usage of intonation models in TTS and
TTS adaptation. In Section 2.5, we discuss how intonational features are extracted for speaker

group classification tasks. Finally in Section 2.6, we discuss about evaluation metrics.

2.1 The Phonology of English Intonation

The previous chapter gave an introduction to what intonation consists of, and how we can visualize
and model it. It also drew attention to the aspects of prosody that are characteristic of the English
language. As can be seen in Figure 1.1 that it is also represented here as Figure 2.1, intonation
refers to within-group interactions between prosodic features in each aspect and between-group
interactions between all aspects. As discussed in the previous chapter, intonational features are
closely related to each other and one can not be considered in isolation from the others. A
comprehensive account of the relationship of intonation to other prosodic features lies outside the
scope of this thesis, but in this section we discuss the relationship between intonation and several
of prosodic features through each aspect: paralinguistic, lexical and acoustical.

From a paralinguistic point of view, intonation is defined as the interaction between pitch,
loudness and prosodic boundary phenomena. These paralinguistic features help listeners make
inferences about a speaker’s state or attitude, such as enthusiasm or friendliness and depression or
happiness. It also can help in regulating turn-taking in communication: a speaker can naturally
use an Fj pattern to prompt the listener that it is their turn, or that the speaker does not want

to be interrupted. For example, consider this sentence “AvA does not eat ANY burger” in reply to

13
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Figure 2.1: Within-group and between-group interaction of prosodic features.

“Why did she not eat her burger?” in the following two cases.

AVA doesn’t eat ANY burger AVA doesn’t eat ANY burger

e N N

The response on the left, with a falling Fy at the end, indicates that Ava is a vegetarian and will
not eat any meat without exception. The response on the right, with a rising Fy at the end, means
that speaker is not done yet and wants to explain why Ava does not eat any burger and continues
to explain: “Ava is selective (or picky); she does not like just any burger”.

From a lexical point of view, intonation is defined as the interaction between stress pattern and
pitch accent. In English, listeners pay attention to the most prominent syllables to understand the
message. For example, the rhythmic pattern in word “iDENtifiCAtion” is identical to the phrase “we
TOOK a vaCAtion” since they both share the same stress pattern. Not all syllables are pronounced
with the same degree of force. For instance, stressed syllables of emphasized (or accented) words
are higher in energy, longer in duration, and have a greater change in Fy values compared to
stressed syllables of unemphasized words. Stress patterns of syllables in American English are
predetermined. For example, in the noun “present”; the stress falls on the first syllable ("pre sent).
As a verb, the second syllable of “present” carries the stress (pre ’sent). However, speakers choose
different intonation patterns to emphasize different words for conveying different meanings. For
example, in the following sentence “The boy was there when the sun rose,” every word (except
“the”) consists of one stressed syllable. In Figure 2.2 top plot, a speaker emphasizes the words
“BOY” and “ROSE” to highlight new information in the conversation. In Figure 2.2 bottom plot,

in addition to emphasizing the words “BOY” and “ROSE” also the speaker gives special emphasis
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Figure 2.2: An example that shows how a speaker emphasize different words to change the Fj
contour dynamics of an utterance. Small capitals indicate stressed-accented syllables in each
utterance.

to more specific details (the words “THERE” and “SUN”) to make the sentence clearer. Therefore,
utilizing the stressed syllable of an accented word (stressed-accented-syllable) is a key component
of a speaker’s ability to convey a subtle meaning.

The acoustical features of intonation are defined as the interaction between fundamental fre-
quency, duration and intensity. Among acoustic features, the fundamental frequency is mostly
considered as a primary physical-prosodical feature that can be measured. There is a periodic
pattern at the time-domain representation of a human speech waveform when a voiced sound (e.g.,
a vowel) is pronounced. Figure 2.3 shows periodic (voiced) and noisy (unvoiced) regions in the
word “easy”. Each peak in the periodic region is called a glottal pulse. The duration of one glottal
cycle is represented by the symbol 7. The fundamental frequency of a periodic signal is the inverse
of this duration (1/7) and is measured in Hz. When a person produces a voiced sound, one’s vocal
folds produce a set of frequencies (fundamental and its harmonics). The fundamental frequency
is the lowest frequency (starting from zero) which is also perceived as the loudest frequency by
human ear. The fundamental frequency is usually referred to as Fj;. Many factors can affect the
Fy of someone’s voice, such as: age (usually kids have a high-pitched voice compared to adults),
gender (usually men speak in lower-pitched voice than women ), and emotion (people may use
high-pitched voice when they are angry or excited, or they may use low-pitched voice when they

are sad).
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(a) Waveform and spectro- (b) Waveform and spectro-
gram of /i:/ gram of /z/

Figure 2.3: Waveform and spectrogram of a voiced and an unvoiced segment in the word “easy”.
Each red line represents a glottal pulse. The duration between two back-to-back glottal pulses is
represented by the symbol 7. There is no periodic pattern inside the/z/.

2.2 Intonation Segmentation into Prosodic Units

Meaningful prosodic movements can be perceived and expressed differently from one language to
another. In this thesis, we only focus on English (mostly on American English pronunciation).

In American pronunciation, every prosodic unit consists of at least one stressed-accented-
syllable. The largest prosodic unit that has one complete intonation pattern is called an into-
national phrase [125]. Every intonational phrase consists of at least one intermediate phrase and
every intermediate phrase consists of at least one stressed-accented-syllable (therefore every in-
tonational phrase does as well); However it is unclear which prosodic unit (syllable, sequence of
syllables, words, intermediate phrase, or intonational phrase) is more relevant for representing a
single meaningful intonational movements? Many studies used the syllable as the smallest prosodic
unit [185, 157]; their motivation was that the syllable is a smallest common prosodic unit across
languages (e.g., in Mandarin Chinese every syllable has a meaningful intonation pattern). As dis-
cussed in the previous chapter, considering a specific intonation pattern per syllable in English
is not necessary since weak syllables in English do not show strong intonation movements like
stressed-accented syllables.

After discussing the details of ToBI transcription system In Section 2.2.1, we then discuss its

view of the smallest prosodic unit. In Section 2.2.2 we discuses about different candidates for the
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Figure 2.4: Representation of the Fjy contour (orange curve) with Bolinger’s notation (black words).

smallest prosodic unit in English. Then in Section 2.2.3, we show how total number of intonational

patterns in ToBI can be reduced under the smallest relevant prosodic unit2.2.3.

2.2.1 ToBI Transcription System

Bolinger proposed one of the first and simplest notations for prosody [14]. He aligned the word
sequences with their real Fj values (Figure 2.4, black words). It is much easier for readers to
capture intonation from this notation than from plaintext, but Bolinger’s notation requires hand
labeling; it is almost impossible to automatically analyze or synthesize it. Under the influence of
Pierrehumbert research [125, 123|, autosegmental-metrical (AM) analysis framework became the
dominant in intonational research (for an introduction to AM and a critique see [78]). A modified
version of AM was proposed by Silverman and his coworkers [141] as, Tones and Break Indices
(ToBI), which is still commonly used.

The ToBI transcription system provides a set of symbolic labels (Table 2.1) for distinguishing
between all categorical intonation patterns. To achieve this aim, ToBI considers two aspects of

prosody:
1. Accent: contributes to the prominence of a word in an utterance
2. Phrasing: divides sentences into groups of words, which consists of four levels:

(a) First level: the word boundary within a phrase

(b) Second level: which is used to mark a mismatch
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(c¢) Third level: the end of an intermediate phrase

(d) Fourth level: the end of an intonational phrase

Symbol Description
H High tone is associated with pitch that occurs in upper part of a speaker’s pitch
range
L Low tone is associated with pitch that occurs in lower part of a speaker’s pitch range

stressed-accented-syllable

- End of an intermediate phrase

% End of an intonational phrase

! Pitch movement that lowers Fjy from any H tone into a downstep, which is not
necessary in the lowest part of the pitch range (not as low as L)

Table 2.1: ToBI symbols

ToBi annotation intonational phrase type
L-L% Statement sentence and Wh-question
L-H% Continuation
H-L% Listing and enumeration (or plateau contour)
H-H% Yes-No question
'H-L% Listing and enumeration (or calling contour)
'H-H% Continuation

Table 2.2: ToBI annotation for phrasal tone

There are two main levels of phrasing: the full intonational phrase level (intonational phrase,
fourth level), and the intermediate intonational phrase level (intermediate phrase, third level).
ToBI uses this symbol “-” followed by a tone to represent intermediate phrasal tone. The end of
one intonational phrase by default is aligned with the end of an intermediate phrase, therefore ToBI
categories intonational phrasing patterns through bitonal symbols; a tone plus symbol “%” followed
by an intermediate phrasal tone. There are four basic intonational phrasal tone combinations: L-

L%, L-0H%, H-L%, and H-H%. Also a downstep® can only happen in the first H tone of the following

1Downstep is a pitch movement that iteratively lowers Fy peaks of successive accented-syllable with a constant
proportion of the previous peak|[78]. However this downstep never reaches the lowest part of pitch range (not
necessary as low as L tone).
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phrasal tones: H-L%, and H-H%. Therefore, there are two more phrasal tones to consider: 'H-L%,
and 'H-H% (Table 2.2). It should be noted that 'H-H% is theoretically possible, but it is also hard
to distinguish from L-H%.

ToBI categorizes word pitch accents into five accent types. For each accent, the pitch movement
of the stressed-accented-syllable is illustrated with a starred tone. These accent types are: H*, L*,
L+H*, L*+H, and H+!H*. All high tone accents can be downstepped: 'H*, L+!H*, and L*+!H.
However, these downstepped accents show the same pattern of their non-downstepped version.

In Figure 2.5 that adapted from [173] illustrates all 28 possible ToBI intonational patterns for
a phrase with single stressed-accented-syllable. Each cell illustrates an intonational pattern under
certain combinations of an accent tone and a phrasal tone. The theoretical pitch movement of a
target tone is illustrated with a horizontal solid line. The starred target tone (pitch movement
of stressed-syllable) is differentiated from other tones by a bold solid line. The dotted line shows
transition between tone targets.

Most phonological-based approaches (e.g., ToBI transcription system) use words with a pitch
accent as the smallest prosodic unit; the main drawback of these approaches is that the intonation
movement in unaccented words is unspecified. As we also discussed in the previous chapter, weak
syllables (either unstressed or stressed in unaccented word) have enough intonational movements

to be specified but also not strong enough to be individualized.

2.2.2 Candidates for Smallest Prosodic Unit in English

There is consensus that each stressed-accented-syllable needs to be specified in English. There are
some researchers that advocate that the smallest prosodic unit in English should consist of exactly
one stressed-accented-syllable [72, 168, 164, 188, 6], but there is uncertainty about its boundaries.
Are they tied to the stressed-accented-syllable boundaries or can they span multiple syllables (not
stressed-accented syllable)? For example, in the sentence “I am HAPpy about inPROVEment,” with
three stressed-accented syllables (represented by uppercase typeface), what is the smallest prosodic

unit that can convey meaningful intonation? A few examples are given next:
e Syllable: “I am HAP py a bout im BROVE ment.”
 Word: 1 am FNEIDY » bou NROVENNGH

e Sequence of syllables:

~ Right-headed: T AT PEIDORMBROVE mnt
~ Left-headed: “I i EABEDYRIbOHG BROVERG
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H* H* H* L-L%

N~~~

N Three feet

N An intermediate phrase

AN

An Intonational phrase

Figure 2.6: Foot structure in a statement utterance

— Both directions: there are many possibilities in this case

= "l am HAP py a bout im PROVE ment.”
= "l am HAP py a bout im PROVE ment.”
*

« T aun HAP py & bout i PROVE et

We use the definition of a left-headed prosodic unit to capture a meaningful prosodic movement
since English is a left-dominant language [50]; In English there is a tendency for the first syllable of
words to be strong and the remaining to be weak, that is, left-dominant. Therefore, the left-headed
prosodic unit preferred over the right-headed prosodic unit for English due to two main reasons.
First, multi-syllabic words with primary stress on the final syllable are less common than other
words of the same length [24, 20]. Second, most of the intonational function (such as focus) in
English have a post-effect rather than a pre-effect. For example it has been shown that if an initial-
stressed word in a sentence is focused, any unstressed syllables after the stressed-accented-syllable
of the first word will be assigned a higher pitch compared to when there is no focus [88].

The left-headed prosodic unit, which will be referred to as a foot, starts with a stressed-accented-
syllable and ends before the next stressed-accented-syllable or with a prosodic phrase boundary [1].
For example in Figure 2.6, each foot start with a stressed-accented-syllable with a H tone and ends
before the next one, or in Figure 2.7 the final foot in the first intermediate phrase start with a
stressed-accented-syllable with a H tone and ends with a intermediate phrase boundary with H

tone.
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Appendix

L+H* H* H* L-H% H* L* H-H%

~_~-

N\ Five feet

N Two intermediate phrases

AN

An Intonational phrase

Figure 2.7: Foot structure in a yes-no question utterance that consists of two intermediate phrases.

H* L-L% L+H* L-L%

No_Hs-LL No_LpHs-LL

Figure 2.8: Difference between H* and L+H* for the word “NO”

2.2.3 ToBI Intonation Patterns under Foot Segmentation

In the previous section, we argued that the foot is a suitable prosodic unit for studying English
intonation patterns. In this section we investigate how ToBI intonation patterns can be categorized
using the foot structure. A core difference between an accent and a foot is that an accent is
defined as a word containing a prominent syllable and not necessarily as a (left-headed) foot,
which requires that the first syllable be the prominent syllable. Feet and accents have overlapping
but not necessarily matched boundaries. We will describe this difference through three examples.

First, consider a one-word single-phrase utterance with a stressed-syllable at the beginning, e.g.,
“NO”. In this example, the foot and accent share the same boundaries and only three accent types
can occur (H* L* and L*+H). In the case of L+H¥*, because there is not a non-stressed syllable
preceding the stressed syllable, the unstarred tone (L) cannot occur. This accent is matched with
its monotone accent (H*). In Figure 2.8, one speaker produces the word “NO” under two different
intonation patterns H* L-L% and L+H* L-L%. Since there are no unstressed syllables before the
prominent syllable, there is only a sharp rise from the mid-pitch range to a high Fy peak. In the
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H* L-L% L+H* L-L% H+!H* L-L%
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Figure 2.9: Difference between two pairs (H* and L+H*) and (H* and H+!H*) for the word
“meNOmonee”. The red dots inside the light blue box show the Fj contour points for the appendix

“me_”

case of H+!H*, similar to the case of L+H*, this accent should also be matched with its monotone
accent (IH*). However, downstep cannot happen at the beginning of an intonational phrase, since
it is required to follow a high tone. Therefore, the accent type H+!H* cannot happen in this
situation.

Second, consider a one-word, single-phrase utterance with at least one unstressed syllable at the
beginning, e.g., “meNOmonee”. The segmentation for this utterance using three different prosodic

units (phrase unit, accent unit and foot) are given as follow:

e Phrase: me NO monee.
o Accent: me NO monee.
e Foot: me NO monee.

Accent boundaries are matched with intonational phrase boundaries, while the foot starts at the
stressed syllable “-NO-" and ends at the end of the intonational phrase. According to the foot defi-
nition, intonational movement in phrase-initial unstressed syllables, which is called the “appendix”,
is not part of the foot (in this example, Fjy contour points in the unstressed syllable “me-?).

Also in this example, only three accent types can occur (H*, L*, and L*+H) in the foot since in
case of L+H*, and H+!H*, the unstarred tone is not part of the foot (L in L+H*, and H in H+!H
are appendix). However, Fj contour points under these tones are still part of the intonational
phrase. In Figure 2.9, one speaker produces word “meNOmonee” under three intonation patterns
to differentiate between two pairs (H* and L+H*) and (H* and H+!H*) in a statement sentence.

Third, consider a multi-word, single-phrase utterance with at least two accented words (e.g.,
“I am HAPpy about imPROVEment.”). In this single-phrase example, the phrase starts with the
accented-stressed syllable “I”; and as such all unaccented syllables in this example are not considered

an appendix.
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e Intonational Phrase: T am HAP py a bout im PROVE ment.

o Accent: I am HAPIPY a bout [iIPROVENIEHT.
o Foot: T am HAPpYabOU [EROVEREE

In the third accented word, “imPROVEment,” there is a mismatch between the start point of the
accent and the foot. The third accent starts with the unstressed syllable “im-” while in the foot
segmentation this syllable belongs to the second foot. Therefore, in this situation, three accent
types can occur (H*, L* and L*4+H) in the foot. In the case of L+H*, and H+!H*, the unstarred
tone will move into the previous foot.

The three examples above show that in foot segmentation only three ToBI accent types can
occur (H*, L* and L*+H). The first advantage of ToBI under foot segmentation over the original
ToBI is that it decrease ambiguity in differentiating L+H* and H+!H* from H*. As we saw, there
is some similarity between H* and L+H* tones and between H* and H-+!H* tones. Because of these
similarities, utterances often contain regions with more than one valid transcription which decreases
the reliability of annotations. ToBI is a qualitative model with low inter-annotator agreement even
for trained annotators, and this disagreement becomes even more extreme when ToBI annotations
are applied to expressive speech or spontaneous speech. The second advantage is that by using
foot segmentation, the total number of intonational patterns can be reduced to 16. Figure 2.10
illustrates these 16 intonational patterns for a single phrase with one stressed-accented-syllable.
Each cell illustrates an intonational pattern under certain combinations of an accent tone and a
phrasal tone. Since pitch transition between tones are more smooth in real speech, red curves
show more realistic Fjy contours for each situation. In chapter 3 we show the proposed intonation
model is capable of capturing and predicting all intonation patterns mentioned in the ToBI system
(even Fy contour points in the appendix) by using only foot-based information and reduce the

total number of patterns from 24 to three.

2.3 Intonation Models

Intonation models can be distinguished in terms of phonetic vs. phonological models.

Phonological models: In phonological models intonation is considered as a sequence of distinc-
tive discrete tonal categories. Therefore, these models are qualitative and sequential. The
ToBI model plays an important role in the popularization of phonological models in intona-

tion description and analysis.
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L-L% |
L-H%
H-L%
H-H%
'H-L% L
'H-H% F\j

Figure 2.10: Total intonational patterns suggested by the ToBI system under foot segmentation.
Each cell illustrates an intonational pattern under certain combinations of accent tone and phrasal
tone in an one-foot intonational phrase. The theoretical pitch movement of a target tone is il-
lustrated by a short black horizontal solid line. The starred target tone (pitch movement on the
stressed syllable) is differentiated from other tones by a bold solid line. The red lines represent the
theoretical smooth pitch contour.
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The motivation behind the phonological-based approaches is that the current intonational models
can not precisely predict all intonational characteristics. Therefore it is beneficial to determine
the observed intonational characteristics of a given utterance as much as possible; however, a
drawback of the current phonological approaches is that they are not sufficient. Phonological-based
approaches cannot fully model the intonational properties due to their limitation to represent the

Fy contour changes between level tones. In this section we only focus on phonetic-based approaches.

Phonetic models: In phonetic models (which are also regarded as quantitative models), intona-
tional features are represented numerically in term of vectors of acoustic features or contin-
uous parameters. More particularly, they represent intonation as a sequence of (time, Fj)

pairs.

In phonetic-based approaches, some reasonable disagreement stems from the fact that intonational

aspects are supra-segmental, which lead us into the second dimension:

Sequential vs. superpositional models: In sequential models, intonation is characterized as
a sequence of distinct intonational events or targets that are generated left to right. The
superpositional approach characterizes the Fj contour as an overlay (or superposition) of
several component contours of different temporal scopes. Longer scope components (such
as phrase curves ) model the global shape of Fy contour over length of an IP. The shorter
scope components (accent curves ) model local Fy contour changes associated with accented-

stressed syllables.

The phonetic models can be sequential that the Fy contour of an utterance results from interpola-
tion between the estimated intonational events, superpositional that the Fjy contour of an utterance
results from superposition of the components of different temporal scopes, or even combination of
both.

In the following sections, Section 2.3.1 and 2.3.2 some basic theoretical assumptions underlying

the traditional and more recent models are presented.

2.3.1 Traditional Intonation Models
2.3.1.1 Tilt intonation model

The Tilt model is a widely used sequential phonetic intonation model [157, 158]. This model
considers the Fy contour as a sequence of intonational events (pitch accents and boundary tones)
with linear connections. Taylor proposed a continuous feature — tilt-value, which jointly uses

amplitude (A) and duration (D) of rising and falling pitch movements to model each rise-fall
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Figure 2.11: Example of five accent types with the continuous tilt-value ranging from +1 to -1
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Figure 2.12: Block diagram of the Fujisaki model. From [40]

intonation event. Figure 2.11 shows an example of five pitch accents with continuous tilt-values

ranging from +1 to -1. The tilt-value is formulated as follows:

|Arise| - |Afall| Drise + Dfall
(|Arise| - ‘AfallD 2(Drise + Dfall)

tilt =
ey

2.3.1.2 The Fujisaki model

The Fujisaki model [41, 39, 40] is a superpositional phonetic model which is applied to the analysis
and synthesis of intonation of different languages. This model has three major components: a
baseline, a phrase, and an accent component (Figure 2.12). The baseline is equal to the minimum
value of the log Fy for the speaker. The phrase and accent components are modeled using second-
order linear filters. The Fjy contour of an utterance results from the superposition (or sum) of the
phrase accent components and the baseline.

The Fujisaki model only explains Fy movements on "declining" utterances—those in which the
Fpy contour starts at a higher value and gradually decreases during the phrase—while in some cases
a rise in tone happens at the end of a question utterance. The treatment of declination as a fixed
component of the model has been often criticized [54, 8], because declination is observed mainly

in laboratory recorded speech. However, the biggest disadvantage of the Fujisaki model that it is
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not entirely related to the linguistic structure. The phrase curve starts and ends with the start
and end of a prosodic phrase, and it is not affected by which syllables are accented. The accent
curves are not linguistically tied to a temporal scope since the starting point of an accent curve
coincides with the start of an accented syllable, but the end point does not necessarily correspond

to any syllable boundary.

2.3.1.3 The Generalized Linear Alignment Model (GLAM)

As previously mentioned the shared assumption in all superpositional approaches is that the Fj
contours can be described as an overlay (or superposition) of component curves that belong to one
of several component curve classes. The General Superpositional Model (GSM) proposed by van
Santen [166] ties these components to specific phonological entities, namely phrases and left-headed
feet.

The definition of GSM can be formulated as follows where C' corresponds to a set of curve

classes, ¢ represents a particular curve class, k stands for an individual curve and & is an operator.

R = 2, 2 Jeal) 22

The @-operator represents an addition-like (or in some cases multiplication-like) function of C.
Therefore, this operator can satisfy the usual properties of generalized addition (or multiplication),

such as monotonicity and commutativity:

at+c>b+c
monotonicity :  if a > bthen Sadc>bdc

axc>bxe

a+b=b+a
commutativity : =aPb=>bBa

axb=bxa

From the theoretical GSM model came the implementation of the Generalized Linear Alignment
Model (GLAM) also developed by van Santen at Bell Labs [169, 164, 136]. This model considers a
phonetic superpositional approach to intonation modeling. In this model, the intonation contours
consist of three layers: phrase curves, accent curves and perturbation curves. For each layer, a
different component curve class was considered. The model was implemented into a multilingual
TTS system developed for English, French, German, Italian, Spanish, Romanian, Russian and
Japanese.

Phrase curve: Similarly to the Fujisaki model, the phrase curve represents the long-term shape

of the Fy contour. However, unlike the Fujisaki model, it does not have any fixed gradients and
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Algorithm 2.1 Accent curve generation algorithm for the linear alignment model

1: Determine the accent template type

2: Determine the Fy peak position

3: Get the anchor values Tp

4: Calculate the anchor points Ty

5. Calculate the frequency values P4 corresponding to the T4

6: Apply linear interpolation between P4 values

7: Return the interpolated curve multiplied by an amplitude parameter
500 H*LL% 5007 Continuation 500 Yes/No
300 300 /\/ 300
100 100 100

00 04 08 00 04 08 00 04 08
TIME

Figure 2.13: Averages of Declarative, Continuation, and Yes/No contours. From [169]

therefore the model has more degrees of freedom compared to the Fujisaki model. Phrase curves
are modeled as piece-wise quasi-linear (or log-linear) curves consisting of a start point of the
intermediate phrase, an inflection point at the start of the syllable containing the nuclear pitch
accent, and an end point of the intermediate phrase.

Accent curve: Accent curves consist of pitch peaks and pitch movements associated with a foot
segmentation. It is modeled by parameterized time warps of an accent curve template.

Algorithm 2.1 shows the required steps to generate accent curves. The first step is to determine
the accent curve type based on the location of the foot in the intermediate phrase. The accent
curve types are declarative template, continuation rise template, and interrogative template (Fig-
ure 2.13). In the second step, a template accent curve is defined using a sequence of anchor values.
These values describe the archetypical shape of the associated template type. For example, for
the declarative template, which employs a rise-fall pattern, the value of the template might be as

follows:

T, =< 0,0.05,0.2,0.8,0.9,1,0.9,0.8,0.2,0.05,0 >

The third step consists of determining Fj peak position using information related to the foot

duration and foot structure. This information includes: duration and phonetic composition of the
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Figure 2.14: Alignment parameters in the linear alignment model From [164]

accented syllable’s onset (D, and C, respectively), rhyme duration of the accented syllable (D,},),
and combined duration of the unaccented syllables (D,s). Peak location is calculated using the

equation below:

Tpeak = g, X Do + B, X Dy +v¢, X Dy (2.3)

The fourth step creates a number of anchor points to obtain a good approximation of the
accent curve shape (Algorithm 2.1). The Ath anchor point is located at a point on the time axis as

computed in Equation 2.4. The alignment parameters (o, §,and «) are extracted from Figure 2.14.

Ta =ac,a X Do+ P, a X Depn+7c,,4 X Dys (2.4)

The fifth step calculates the frequency points P4 using a linear time-warp function considering
anchor points T4, and anchor values Tp. A complete accent curve results from linear interpolation
between successive P4 values. Finally, it is multiplied by an amplitude parameter that reflects the
degree of emphasis. Figure 2.15 shows the prediction of two different normalized accent curves for
two words “spot” and “noon” from one common template. The predicted normalized accent curve
can be viewed as a time-warped version of a common template.

Segmental Perturbation Curves: These are short-term curves associated with those parts of
the modeled Fy contour where segmental effects occur e.g., initial parts of a sonorant following a

transition from an obstruent.
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Figure 2.15: The prediction of two normalized accent curves for the words “Spot” and “Noon”.

2.3.2 Recent Intonation Models
2.3.2.1 Quantitate target approximation

Quantitate target is a multi-language phonetic approach since it models the continuous Fj contour
with regards to intonational features at the syllable level [188]. However, it cannot be purely
categorized as a sequential or superpositional approach. It models the intonation (or tone in tonal
languages) as a sequence of target approximations (TA) which are syllable-synchronized. The Fj
contour in each syllable is modeled using two curves. A base line which represents the pitch target
as a straight line with slope m and height b, and a combination of polynomial and exponential
curves for representing the dynamic pitch target (Equation 2.5). Therefore, this model could be
considered as a superpositional approach using a syllable segmentation (note that ¢ in equation 2.5
is limited to a syllable). This model could also be considered as a sequential approach according

to the sequentiality and syllable synchronization assumption, as it processes a syllable at a time.

Fo(t) = (mt +b) + (c1 + cot + c3t?)e™ M (2.5)

One of the advantages of this model is that the polynomial coefficients (ci,ca, and c3) are
not optimized as independent variables. They are a function of m, b, and A. Therefore, this
model consists of three independent parameters per syllable. Therefore, this model has potential
to capture the Fj dynamics in syllables level with few parameters that makes it a suitable method
for analysis and synthesis of syllable-time languages (e.g., Mandarin Chinese). As we discussed in

the first chapter, English is a stress-time language and considering a specific intonation movement
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for weak syllables might cause overfitting.

2.3.2.2 Statistical phrase and accent models

Anumanchipalli et al. introduced the statistical phrase and accent model (SPAM) [7], which is based
on a superpositional approach that decomposes the Fy contour into phrase and accent components
(the residual of the Fy contour minus the phrase curve). They used an iterative Expectation
Maximization algorithm to train the phrase and accent components. The phrase component was
initialized by the minimum value of F0 over a syllable. They used the TILT representation for the
accent shape at the syllable level; the Fy is not modeled for unaccented syllables. Each accented
syllable is represented as a tuple of four values: peak location, amplitude, duration and tilt-value.
At each iteration, first, a decision tree (CART) is applied and K-means clustering performed for
modeling phrase and accent components, respectively. Second the Fjy contour is estimated by
adding the phrase and accent curves together. Third, the residual of the real Fj contour and the
estimated F{ contour is added to the phrase curve. Finally, the residual of the real Fy contour
minus the updated phrase curve is used to update the accent estimations (TILT parameters). The

main purpose of this model is to synthesis a high-quality and natural sounding Fj contour.

2.3.2.3 Fj contour decomposition using discrete cosine transform

Teutenberg and colleagues [159] use the discrete cosine transform (DCT') to model the Fy contour.
They propose a two-level model, one level for estimating the general movement of the Fy contour
(phrase curve), and a second level for estimating the details of the voiced regions, which is equal
to the Fy contour minus the phrase curve. They use the mean (the first DCT coefficient) of each
voiced region’s signal (as the phrase curve value), and the sum of the weighted cosine functions
with zero phase for approximating the DCT. During analysis, they extract the DCT coefficients
from the Fjy contour for voiced regions and apply a linear interpolation for filling in the unvoiced
regions. For synthesis, they apply the inverse-DCT at each level separately. The estimate of the
Fy contour is equal to the sum of the result of the inverse-DCT at the two levels. The disadvantage
of this model is that it does not consider textual information that affects the Fy dynamic range
(variance), such as lexical stress patterns in the current, previous, and next voiced regions, and
the length of voiced regions based on the number of syllables and phonemes. Furthermore, the
number of DCT coefficients is not fixed, and can be different for different speakers, which makes

the modeling more challenging.
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Figure 2.16: (adopted from [151]): Example of Fy decomposition using continuous wavelet trans-
form with 10 scales.

2.3.2.4 [y contour decomposition using continuous wavelet transform

Continuous wavelet transform (CWT) decomposes the Fy contour into several frequency compo-
nents where each component is distinguished through a scale. Based on the application, different
number of scales are used for modeling the Fy contour. Ming et al. used a five-scale CWT to
model Fyy contours for emotional conversion[105]. In [151] ten distinct scales are used to model Fy
contours in different linguistic levels for synthesis purposes. The scales 0 and 1 correspond to the
phone level, scales 2 and 3 correspond to the syllable level, scales 4 and 5 correspond to the word
level, scales 6 and 7 correspond to the intonational phrase level, and scales 8 and 9 correspond
to the utterance level. Figure 2.16 shows an example of an utterance decomposition using this
method.

Ribeiro et al. [129] combined both DCT and CWT to explore a multi-level representation
of Fy. The decomposition process can be summarized by the following steps: 1) A ten-scale
CWT-based decomposition approach (identical to [151]) is applied to decompose Fy. 2) The
number of scales is reduced to five corresponding to different linguistic levels: phone, syllable,
word, intonational phrase and utterance level. 3) The contour in each scale is segmented by
considering the corresponding linguistic level, e.g., the contour in the third scale is segmented
at word boundaries. 4) For parametrizing each segment, an individual DCT is applied. Different
coeflicients are used at different levels: 6, 6, 4, 4, 3 coefficients are used for the phone, syllable, word,

intonational phrase, and utterance level, respectively. Combining both DCT and CWT results in
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more contribution of the higher linguistic levels in the naturalness of the synthesized speech. The
successful use of this method in speech synthesis was the inspiration for other studies [105, 178, 92].
It is unclear if this method is suitable for analysis since these component curves were not meant

to be linguistically meaningful.

2.3.2.5 Gamma distribution based decomposition

This superpositional model [56, 138] decomposes the Fj contour into two component classes: the
phrase curve class and the accent curve class (called “atom” by the author). The phrase component
is the same as in Fujisaki’s model while the accent components are modeled using the gamma

distribution (Equation 2.6).

1
Gro(t) = ok—_rtk_le_t/e, k=2,0=1/a (2.6)

The phrase curve and accent curves are estimated through two separate processes. First, an Fj
contour is decomposed into phrase and residual curve components using a greedy algorithm. Then,

the same greedy algorithm is applied on the residual to estimate the accent curve parameters.

2.3.2.6 Procedure for Representing Intonation in the Superpositional Model

Procedure for Representing Intonation in the Superpositional Model (PRISM) is a superpositional
phonetic model inspired by GLAM. PRISM decomposes a Fjy contour into three components curves:

phrase curve, accent curve and perturbation curve [106].

Phrase curve: The Phrase curve is piecewise-linear, consisting of foot-length line segments. Com-
pared to GLAM’s phrase curve, this curve requires additional parameters (n + 1 compared

to GLAM’s three parameters per phrase curve containing n feet).

Accent curve: Accent curves in this model are a simplified version of accent curves used in the
GLAM model. This simplification is applied in two steps, calculating anchor values (Tp,
templates) and anchor points T4. Unlike GLAM, the anchor points T4 are not extracted
using information related to the foot structure (they are not calculated through Equation 2.4).
Anchor points are n values sampled at equal time points (nine points was recommended by
the author). The template corresponding to a rise-fall pattern, continuation rise pattern,
and interrogative pattern are implemented by a Gaussian curve, summation of a Gaussian

curve and a rising exponential curve, and rising exponential curve, respectively.

Perturbation Curves: These curves are modeled by a negative exponential curve.
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Algorithm 2.2 PRISM two-phase decomposition algorithm

Phase 1: wavelet decomposition ............ee oottt

1: Smoothing the Fy contour
2: Phr + Applying wavelet decomposition to the smoothed Fy contour
3: Res + Fy— Phr

Phase 2: template based decomposition ................eeeeii et

Determine the Res peak position
for each foot do
RawAcc < get raw Res contour for current foot
Get the template curve with n point values
TmpAcc < mazimum(RawAcc) * template curve
EstAcc < apply n-point linear time-warp between TmpAcc and Raw Acc

© ® N Tk

10: Segmental Influence curves are parameterized in a manner similar to accent curves
11: Apply optimizer on accent curves and Segmental Influence curves parameters

PRISM’s algorithm has two phases. In the first phase, a given Fj contour is decomposed into a
phrase curve and a residual curve using the discrete wavelet transform. The second phase consists
of template based decomposition of the residual into accent curves and segmental perturbation
curves. Algorithm 2.2 shows the steps required for Fy decomposition using PRISM.

Similar to GLAM, PRISM has three component curves where each of the component curves
is tied to a distinct phonological segmentation. There are certain aspects to PRISM that must
be examined more closely. First, PRISM allows negative accent curves to model Fy values that
fall under the phrase curve. American English generally does not have negative accents. Second,
PRISM uses nine parameters for estimating each accent, which, given the generally regular shapes
of local pitch excursions should not be necessary — fewer parameters, such as location, width, and
asymmetry, should suffice. Third, it uses n + 1 parameters to model phrase curve that undermine
the perceptual relevance of the phrase curve because there is no global declination. Fourth, PRISM

optimizes the phrase and accent curves separately, which is prone to local minimum problems.

2.4 Intonation in Text-To-Speech (TTS) Systems

The aim of TTS systems is to synthesize intelligible and natural sounding speech waveforms from
the input text. Most traditional TTS systems consist of two phases: a front-end, which converts the
input text into an abstract linguistic representation, and a back-end, which generates the speech
waveform along with the prosody of the sentence to be spoken using the linguistic information.
Figure 2.17 shows the general schema of a TTS system.

The objective of this section is not to provide a comprehensive account; rather it samples the
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Figure 2.17: Schematic diagram of a speech synthesis system

common prosodic features and models that are used in the back-end phase of TTS systems under

two categories: intonation synthesis and intonation adaptation.?

2.4.1 Synthesis

The methods for synthesizing F{, in speech synthesis are very diverse, ranging from rule-based
methods in older systems whereby Fy contours are generated by rule and then imposed onto
a concatenated sequence of stored acoustic units [146], to statistical parametric based synthesis
in which Fj is generated frame-wise in parallel with spectral frame generation and is, similarly,
imposed onto spectral frames [192], to unit selection systems where the database is sufficiently rich
that stored Fy can be used as-is [126].

Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) were the two most
common acoustic models used in parametric TTS systems. However, their limitations, such as data
disjointness caused by decision-trees (which are used to represent complex, nonlinear relationships
between the input text and the acoustic features) have motivated researchers to use deep neural
networks (DNNs).

There are two main challenges when it comes to modeling Fj for synthesis purposes. The
first challenge is that there are only F{; observations within voiced speech regions. The question
is how F{ values in unvoiced regions should be represented. The second challenge is capturing
the suprasegmental properties in Fy movements. As we discussed in Section 2.2, considering a
phonological unit that is larger than the syllable but does not coincide with word boundaries is
more suitable for capturing the suprasegmental properties of Fjy movements. However, most HMM-
based synthesizers predict Fj at the frame level using limited linguistic contextual information.

This frame-by-frame prediction of Fj results in an overly-smooth F{; contour that cannot properly

2A more comprehensive account is given in [71] which provided an overview of the evolution of the TTS system
from its early ages till today.
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Reference Unvoiced Fj representation Intonation model Model domain

[38] Random values generated from continuous HMM Frame-level
a probability density function
(pdf) with large variance

[62] Zero continuous HMM Frame-level

[194, 195] Interpolated GMM Frame-level

[154] Interpolated + Low Pass Filter GMM Frame-level
[80, 128] Interpolated DCT Syllable-level and

phrase-level

[129] Interpolated CWT Syllable-level

word-level and
phrase-level

Table 2.3: A comparison of several approaches for Fjy contour modeling of HMM-based TTS
systems. Approaches are classified into three categories: unvoiced Fj representation, intonation
model, and model domain

represent the suprasegmental properties of F; movements. In our review of approaches, we will

focus on these two issues.

2.4.1.1 HMM-based approaches

Hidden Markov Models (HMMSs) in synthesis are stochastic generative acoustic models that gen-
erate an observation sequence given a discrete hidden state sequence. Typically, the spectrum and
Fy are modeled in separate streams due to their different characteristics and time scales. To model
missing Fy values in unvoiced regions, multi-space probability distributions (MSD) are usually
used in HMM-based synthesis systems [160, 190, 101]. The MSD-HMM uses a discrete HMM to
model the Fy values for unvoiced frames and a continuous mixture HMM to model the Fy values
for voiced frames. The first limitation of this approach is that it is sensitive to voicing classification
errors. One solution to this is to assume that Fj is continuous in unvoiced regions as well [194].
The second limitation is that frame-by-frame prediction of Fj values results in overly-smooth Fj
contours. In order to capture the prosodic patterns on a larger scale and to generate more natural
F, contours, superpositional approaches are used[80, 129, 128]. Table 2.3 gives a summary of these

approaches.

2.4.1.2 DNN based approaches

Many articles on speech synthesis report that the usage of deep learning techniques shows improve-

ment over HMM-based approaches in terms of naturalness, similarity, and quality of the generated
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Reference  Unvoiced Fy representation Intonation model Model domain
[87, 86, 198§] Undefined MSD Frame-level
[198] Interpolated [194] Frame-level
[91] Interpolated DNN applied on a Frame-level or
vector-space state-level
representation of input
texts
[68] Zero hybrid approach between syllable-level

DNN and Gaussian
process based regression

[131] Interpolated SPAM + LSTM syllable-level

Table 2.4: A comparison of several approaches for Fy contour modeling of DNN-based TTS systems.
Approaches are classified into three categories: unvoiced Fy representation, intonation model, and
model domain.

speech [87, 91]. Some only apply DNN models on spectral modeling and keep the prediction of
Fy values identical to HMM-based approaches [86, 198], while others use DNN models directly
for predicting Fy contours [36, 91, 68]. Kang et al. used a deep belief network as a generative
model for the joint distribution of linguistic and acoustic features [68]. They suggested that the
low-dimensional Fj features are not modeled well when combined with high-dimensional spectrum
features. They used a combination of discriminative DNN and Gaussian process-based regression
to predict log F{, values. First, a DNN is trained to map linguistic feature to log Fy values. The
activations at the last hidden layer are then used as the input for the Gaussian process based
non-parametric regression. In [91], a DNN is trained on vector-space representations of linguis-
tic context. This vector-space representation was derived without using any linguistic resources.
In [131] a template-based approach was explored. A simplified LSTM classifier was used to predict
a template at the syllable-level using textual information. These templates are extracted using
the SPAM model (see Section 2.3.2.2) from training data. Table 2.4 gives a summary of these
approaches.

The main problem of statistical parametric T'TS systems is that they are typically composed of
many domain-specific modules (e.g., a text analyzer, an Fy generator, a spectrum generator, etc.).
These modules usually are trained independently, so errors from each module may compound and
result in a complex TTS system [179, 153]. More resent methods use the sequence-to-sequence
deep learning technique to merge these internal modules into a single model that directly connects
the input text to the output audio (this technique is called end-to-end TTS). The end-to-end TTS

systems based on sequence-to-sequence techniques are commonly RNN-based [145]. However,
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due to RNN-based disadvantages (long-term dependencies, and CPU time consuming), attention-
based mechanisms [177, 83] and CNN-based learning models have been proposed [117, 42]. The
end-to-end T'TS models obtained better performance over a statistical parametric speech synthesis
system in terms of naturalness; However, it still remains a challenge to control the synthesis model

to generate speech with desired intonational characteristics (e.g., emotion) [176].

2.4.2 Intonation Adaptation

In TTS adaptation, the aim is to transform the perceived identity of a T'TS voice to that of another
speaker. To clarify, in the case of TTS, the source speaker is the speaker whose recordings were
used to generate the acoustic units (for unit selection approaches), acoustic inventory (for diphone
based synthesis), or acoustic features for HMM or DNN approaches. This speaker’s recordings may
also be used as training data for prosody mimic. Thus, the speech generated by a TTS system
generally sounds like the source speaker. For prosody mimic (intonation adaptation), the challenge
is to compute a transformation that, when applied to the speech data or to any representations
thereof, generates output speech mimicking a target speaker.

Most TTS adaptation papers are focused on spectral features, and they use trivial methods to
modify prosody [108, 182, 107]. Typically, Fy is represented by just its mean and the standard
deviation (SD); thus, during synthesis, the output utterance will match only these target speaker
features without attempting to capture the dynamic details of the speaker’s prosodic style [18].
In a more sophisticated approach, Chappell proposed a linear transformation that globally maps
mean and standard deviation of Fy values in utterance level [18]. Patterson went a step beyond
Chappell’s approach and used four types of data points in an utterance to represent Fy [119].
For given an utterance, they selected the sentence-initial Fpy, the sentence-final Fy values, all
the non-initial pitch accent peaks and all the post pitch accent valleys. The main drawback of
these mapping methods is that they cannot fully capture dynamic patterns of F;y contour. HMM-
based [155, 60] and superpositional [169, 37, 33, 172] approaches are potentially more accurate and
practical methods for capturing intonation.

Intonation can be transformed at different levels (listed is column in Table 2.5): frame [155,
18, 44, 35|, tone [175] syllable [52, 90, 156, 60, 175, 59], word [3], sequence of syllables [60, 59, 61]
and sentence [18] with different methods (listed is column in Table 2.5). As mentioned, the most
common method to transform Fj is by globally matching the mean and SD of the target speaker’s
Fy contour. The mean and SD values of the source and target speaker’s Fj contours are used

to define a linear transformation that is applied to the source speaker’s Fj contour, typically in
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Approach Adaptation Adaptation Intonation model model domain
method domain
[18] Linear Frame-level Average(mean sentence-level
and SD) of raw
Fy contour
[18] Polynomial Frame-level Scatterplot model Phone-level
conversion of mean Fj
[44] Piecewise linear Frame-level Pitch range model Accent-level
mapping and

sentence-level

[156] Linear Syllable-level Raw Fy Syllable-level

modification and phrase-level
[156] GMM Syllable-level Pitch target Syllable-level
model
[172] GMM Syllable-level DCT + Syllable-level
multi-level and phrase-level
dynamic features
[60] Data-driven Fy Sequence of MSD-HMM Syllable-level
segment selection syllable
[156] CART Syllable-level Pitch target Syllable-level
model

[52] Codebook+CART Syllable-level DCT Syllable-level

[18] Contour codebook Sentence-level Raw Fj Sentence-level
+ DTW

[155] MSD-MLLR Frame-level MSD-HMM Frame-level

[90] MLLR Syllable-level GMM Syllable-level

Table 2.5: A comparison of several prominent intonation transformation approaches. These tech-
niques are classified into four categories: adaptation method, adaptation domain, intonation model,
and model domain.

the log domain [18]. Extensions of this approach include higher-order polynomial [18], piecewise
linear transformation [44] and linear modification based on hand-labeled intonational (syllable-
phrase) features. Another class of methods predict intonation by modeling Fy and spectral features
jointly [93, 49, 184]. In cases where limited amounts of data are available, statistical techniques
are usually utilized to extract the mapping function. The most popular technique is based on
a Gaussian mixture model (GMM) [156, 172, 35, 59, 9]. Two other methods use F, contour

codebooks [18] and parametrized codebooks [52, 59]|. Weighting multiple contours has shown a

minor performance improvement [162]. Various other methods, such as hierarchical models [180],
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CART [52, 156] and MLLR [155, 90] are proposed.®> However, it still remains a challenge to

generate speech with intonational characteristics of the target speaker when data are limited.

2.5 Intonation in Speaker State Classification

The aim in speaker state classification (SSC) is to recognize the speaker’s state using paralinguis-
tic features (and/or linguistic features). Typical problems include the recognition of a speaker’s
emotion, age, gender, identity, and health. The process of this classification usually consists of
three steps: feature extraction, feature selection, and classification. We focus only on the feature
extraction step.

Most approaches in feature selection extract a large number of acoustic features from the
speech signal and use standard machine learning techniques as a black box often achieving good
classification accuracy. However, there are two drawbacks to this common approach. First, they are
often not informative for scientists working in the domain field (e.g., autism researchers), because
they are interested in finding which features are the most important ones for classification and
why. For example, just knowing that a classifier performs at 90% accuracy fails to answer these
questions. Of course, in certain industrial or governmental applications, classification accuracy is
the primary or even sole interest. Second, these approaches require that the recording conditions
— microphone, room acoustics, distance to microphone — are not in the least bit confounded with
the classes under consideration. The large number of acoustic features may capture differences in
recording conditions, so that the final classification result may have little to do with the classes
of interest. This is particularly dangerous in multi-site data collection efforts in which each site is
responsible for recording a specific class. To combat these issues, some researchers have turned to
the use of prosodic features, which is discussed next.

In the last two decades, the usage of prosodic features have shown an improvement in the

performance of classification systems. Prosodic features can be grouped with respect to two factors:

1. The temporal structure used for feature extraction: a distinction is drawn between short-
term and long-term temporal structures. The short-term features, which are also referred to
as segmental features, are extracted for every frame (typically 25ms in length). Long-term
features, which are also called suprasegmental features, are extracted at the utterance level
(or continuously voiced regions separated by a pause). However, other linguistic units (e.g.,

syllables) have gotten more attention in recent years (first two columns in Table 2.6).

3 A more comprehensive account is given in [181].
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Features Level Low-Level-Descriptors Functional
(LLDs)
segmental Frame Frame-energy,
Frame-intensity
subraseemental Utterance Fpy, energy, intensity, Extreme values (maximum,
b & harmonics-to-noise ratio, minimum), mean, moments
shimmer, jitter, normalized (standard deviation,

amplitude quotient, duration  variance, kurtosis, skewness),
percentiles of non-zero
frames, duration in seconds

Syllable Fp, intensity, duration, Fy Extreme values (maximum,
residual, Fy regression, minimum), mean, local range
intensity regression (span), gradient,

voiced-unvoiced ratio

Table 2.6: Categorization of prosodic features in terms of the linguistic unit and parametrization.

2. The level of feature descriptors: the features can be in two levels: Low-Level-Descriptors
(LLDs), and functionals. LLD features consist of prosodic features at both the segmental
and suprasegmental level. The functional features are statistical features that are derived

from suprasegmental LLD features (last two columns in Table 2.6).

Table 2.6 summarizes categorization of common prosodic features according to the above factors.
As we discussed in Section 2.2 and Section 2.4, prosodic features (especially Fj contours ) have
suprasegmental properties and frame-level segmentation is too short for capturing these properties.
As in found in {186, 150], in order to produce the smallest meaningful Fy movement, a longer span
of time is required (in average 100ms). Even though short-term features cannot properly represent
the prosodic characteristics, these features could be effective when: large amounts of data are
available [2], they are combined with spectral features (especially in noisy conditions) [70], log Fp
or normalized Fy are used instead of the raw Fy [69, 113, 144, 140].

It has been shown that the prosodic features (such as Fj, intensity, and energy) are more
effective when they are extracted at the utterance level [140, 17, 67, 45]. However, utterance level
features listed in Table 2.6 cannot properly convey suprasegmental properties of prosody since
these statistics fail to capture local Fy dynamic changes (specifically in long duration utterances
with multiple pitch accents) [143]. Generally, researchers took two ways to face this issue. The
first one is to consider using features that represents local F{y dynamics, and the second one is to
consider analyzing prosody in linguistic units shorter than an utterance and longer than a frame
or phoneme (e.g., syllable).

When using short-term based techniques, adding the delta Fy can help capture some of the local
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Figure 2.18: Fj regularization and feature extraction using a piecewise linear model in a long-term
segment (continuously voiced regions separated by a pause). From [143]

Fy dynamic information. When using long-term based techniques, several methods are used for
capturing local Fjy dynamics. For example, in [2] F and energy trajectories are used to determine
the corresponding slope of the contour in the voiced region. (+ for rising and - for falling slope). For
each segment, Fyy and energy symbols are joined together (e.g., ++, +-, -+, -, and uv for unvoiced
regions). Then, a sequence of these symbols are used to represent the long-term features. In [143],
first a regularization is applied on the Fj contour using a Piecewise Linear Model (see Figure 2.18a),
then Piecewise Linear Model features (segment median, segment slope, and segment duration) and
durational features (duration of the voiced segment and pause duration) are extracted from each
continuously voiced region (see Figure 2.18Db).

Regarding the second solution, usually a segmentation method is applied on the F; contour to
split the Fj contour into a sequence of smaller segmented Fy contours. Each segment is represented
by a set of features. Typically syllables are used as the segmentation unit. The most common way
to produce segmentation automatically is by using automatic speech recognition (ASR); however
due to ASR limitations in some areas, such as emotion and language classification, some ASR-free
approaches have been proposed. Segmentation into syllable-like regions is usually accomplished
with the knowledge of vowel onsets [100, 4, 98] or Fp/energy contour valley points [26].

In recent years, there have been a number of studies on syllable-based analysis of prosodic
features. In [99], the author used Tilt parameters to represent the dynamics of Fj contours in
syllable-like regions. A total of seven parameters were used for each segment: mean value of

Fy, peak Fy, change of Fy (delta), distance of Fy peak to vowel onset, amplitude tilt, duration
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tilt, change of log energy (delta). A polynomial function is used to approximate Fy and energy
contours in syllable-like segments [26]. Each segment is represented by a feature vector consisting
of the polynomial coefficients (for both F and energy contours) and segment duration. The
same method is also used in [27] except that in this case the coefficients are time-normalized.
Raymond et al. have investigated a large set of prosodic features in syllable-like units [113, 112, 114].
These features consisted of Fy, energy, and duration. In addition to the raw Fj and raw energy
contour, normalized, regression, and residual contours(where the phrase curve is subtracted from
the corresponding contour) were also included. Five features are extracted for each of the following
features of Fp/energy: value in the syllable nucleus, maximum, minimum, range (or span) and
gradient. Three duration features are considered: the time interval between two neighboring
syllable nuclei, syllable duration, and the ratio between the length of the Fy contour and the

syllable duration. Figure 2.19 demonstrates these prosodic features.

2.6 Evaluation

Evaluation methods can be split into two categories: objective and subjective. Objective evaluation
in intonation measures the goodness of fit between estimated F{y contours and the original contours.
The root mean square error (RMSE), which is known as the standard error, is a widely used
objective measure in intonation. Based on a rule of thumb, the lower the value the better the
model can relatively estimate the Fy contour. Objective measures are popular because they are
objectively unchangeable and easy to calculate; however, in intonation research it is important to
realize how these results are being interpreted.

RMSE can not explain type of measurement error. For example, if the RMSE is 15Hz, it
means the square root of the average squared difference between the estimated Fy contour and the
original one is 15Hz. RMSE does not clarify that it results from high error in few outlier points
(e.g., caused by halving/doubling error or gross error) or very small error across all points (e.g.,
random error), which both could have the same RMSE but might be perceptually quite different.

RMSE does not show relative values. For instance, a 15Hz difference is considered a bad fit
when studying a synthetic Fy contour of a male adult in read speech data, while a 15Hz difference
is considered a suitable fit when studying a synthetic Fj; contour of a child in emotional-based
data. In other words, human ears are not sensitive to a 15Hz difference when the base frequency
is really high (e.g., a happy child).

In order to determine how the human ear can distinguish between frequencies, experts divide

the frequency range of human hearing (20-20kHz) into eleven octaves. Octaves are not equally
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Figure 2.19: Representation of prosodic features at the syllable level for an example utterance.
From [114].

spaced in frequency. Lower octaves cover a narrower frequency range than higher octaves, since
the human ear can more easily distinguish between frequencies in lower frequencies (the human ear
is more sensitive to low frequency changes). This division is done in such a way that each octave
covers double the frequency range of the previous octave. To more closely match how humans
distinguish frequency, each octave can be split into 12 semitones. The human ear can distinguish
only one semitone differences. The semitone is formulated, as in Equation 2.7, using a baseline

frequency.

S : semitone = 12 x log, (f/baseline) (2.7)

For example, if we are studying a male adult, the baseline is 50Hz, while the baseline is 300Hz in
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an happy child. The first semitone difference corresponds to a frequency differential of 3Hz, and

18 Hz for a male adult and a happy child, respectively, as we will now show.

fo = baseline (1.2)

AS=8,41—-85,=1

12 xlog 2( frn+1/baseline) — 12 x log 2( f,, /baseline) = 1
log 2( fn41/baseline) — log 2( f,, /baseline) = 1/12
10g 2(frn+1/fn) = 1/12
Frir/fn =212

fapr =2 (1.3)

From Equation 1.2 and Equation 1.3 we can conclude that f; — fo = baseline(2'/12—1) . Therefore,

the smallest frequency difference perceivable by the human ear at the speaker’s baseline for:
e male adult is 50 * (2'/12 — 1) = 2.9731 Hz ~ 3 Hz
e happy child is 300 % (21/12 — 1) = 17.8389 Hz ~ 18 Hz

Due to the above calculation, in many studies the use of log Fy is preferred over raw Fy. The
RMSE provides a sense of how close (or far) estimated Fj values are from the raw Fp; However
fails to clarify how well the model explains the shape of Fj contour. In this case, correlation
between estimated Fj contour and raw F{, contour can be used as an evaluating measure. In above
example, if the correlation is high (e.g., 0.8) regardless of RMSE value, then the model considered
as a good estimation of the Fy contour that explains 80% of the shape of Fy contour. The higher the
correlation value is, the more precise is the model. Furthermore, when dealing with the objective
evaluation of real speech data, it is important to either normalize the data before analysis or find
a reliable measure for comparison afterwards.

Another way to evaluate the effectiveness of a method is by using subjective evaluation ap-
proaches. These methods have been quite diverse, since subjective evaluation is subject to human
interpretation. Evaluating the naturalness of the estimated Fj contour has been the most fre-
quently used subjective evaluation approach. A common method is to ask subjects to listen to

a generated utterance and judge the naturalness of the utterance on a five-point scale (e.g., 1:
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bad, 2: poor, 3: fair, 4: good, and 5: excellent). Another method is to ask subjects to do an
A /B testing, when two systems are being tested against each other, to pick which of two is most
natural on a five-point scale (e.g., -2: definitely prefer the first utterance, -1: probably prefer the
first, 0: neither, 1: probably prefer the second utterance, 2: definitely prefer the second). Also we
could ask subjects questions to get at their understanding/interpretation of the utterance: “Is the
speaker sad?”, or “What word is most emphasized?”.

During subjective evaluation, it is important to control how subjects are being instructed. For
example, in evaluation of speech in a news-reading speaking style, asking the subjects to rate the
naturalness of an utterance is adequate, and further clarification may not be needed. However,
in evaluation of other types of speech (e.g., clear vs conversational speech, emotional speech), a
slight change in instruction (e.g., providing content of utterance with or without punctuations)
may result in different ratings. Although it is important to clarify the instructions given to the
subjects, it is unethical to lead them in a specific direction. For example, assume that we are
interested in evaluating the ability of our model to handle marked-up input to design a contrastive
emphasis test. The content of the utterance under test is “This is a CHEAP car”, where capitals
indicate an emphasized word according to a contrastive choice. It would be leading if the subjects
are asked to answer this question “Is the word “cheap” emphasized?” or “Is this utterance the
answer to: What kind of car is this?”. In the first question, we asked the subjects to pay particular
attention to the word “cheap”, therefore even a small emphasis on the word “cheap” would lead
the subjects to answer positively to the question. In the second question, we asked the subjects to
pay particular attention to the adjective, therefore any noticeable emphasis on the word “cheap”
would lead the subject to answer positively to the question. In both cases, a high rating suggests
that our model is emphasizing the word “cheap”, but does not indicate that our model correctly

puts contrastive emphasis on the word “cheap”.



Chapter 3

GENeralized Intonation model for

English (GENIE)

In this chapter, we propose a new generalized intonation model for English (GENIE).! GENIE is
inspired by the General Superpositional Model (GSM) [169, 164, 136]. In Section 3.1, we explain
what the shared assumptions are between GENIE and GSM, and how it differs from GSM’s other
implementations (namely GLAM and PRISM). In Section 3.2, we present the details of GENIE.
GENIE like GLAM and PRISM is a superpositional intonational model that provides the high-
quality prediction of Fy contours, but unlike them it uses a very small set of parameters which are
optimized simultaneously, and it focuses not only on the synthesis of English intonation but also
on the analysis of English intonation. Finally, in Section 3.3 we use GENIE to show it can produce

accurate and linguistically meaningful results.

3.1 GENIE model properties

In Section 3.1.1, we summarize the underlying assumptions of GSM, which directly inspired the
creation of three models: GLAM, PRISM, and GENIE. Then, we discuss the shared assumptions
and differences between GENIE and its cousins. In Section 3.1.2, we introduce the additional

assumptions of GENIE.

3.1.1 Fundamental assumptions

GSM is a theoretical framework. It was developed by van Santen [164], which we discussed it in

details in Chapter 2. The idea behind GSM was that although there are several superpositional

IThis chapter is based on work published in ICASSP [33].
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approaches with different assumptions, they are all part of one bigger family and they can be

represented by one single formula. GSM has two core assumptions:

Assumption 1: F; contours can be described as an overlay (or superposition) of underlying

component curves that belong to one of several component curve classes
Assumption 2: Each class of curves corresponds to a distinct temporal scope.

Based on these GSM assumptions, the F{y contour of an utterance can be modeled using an overlay
of component curves that belong to one of several component curve classes where each corresponds
to a distinct temporal scope. This definition is sufficiently general to formulate any superpositional
model as follows where: C' corresponds to a set of curve classes (e.g., phrase curve class and accent
curve class), ¢ represents a particular curve class of C' (e.g., accent curve class), k stands for an

individual curve of ¢’s class (e.g., rise-fall accent curve), and @ is an operator.

Fot) = @& @ fe.r(t
O( ) ceC kECf 7k( )

This formula is very general and may not have obvious testable predictions. A successive narrowing
down would lead to such predictions.

The Generalized Linear Alignment model (GLAM) is the first direct implementation of GSM.
It was also developed by van Santen at Bell Labs [169, 164, 136]. The objective of GLAM was to
be used as a generative intonational model in a multilingual TTS system. We characterize GLAM
through an additional set of assumptions and compare them with GSM’s. GLAM has stronger
assumptions than GSM since it focuses on TTS applications, but is still general enough to cover

multiple languages.?

Assumption 1.1: This assumption refines Assumption 1 from GSM. An Fj contour — interpo-
lated in unvoiced regions — can be decomposed into component curves: a phrase curve (P(t)

in Equation 3.1) and a sum of one or more accent curves (A(t) in Equation 3.1).
Fo(t) = P(t) + A(t) (3.1)

Assumption 2.1: This assumption refines Assumption 2 from GSM. The Phrase class is tied to
an intermediate phrase (discussed in Section 2.2.1), and the Accent class corresponds to a
foot(discussed in Section 2.2.3), which is a shorter scope than an intermediate phrase and

consists of an accented-stressed syllable followed by with zero or more unaccented syllables.

2The validity of these assumptions has been tested in many research projects [164, 169, 166, 72, 136, 137].
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Figure 3.1: Three different accent categories
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Figure 3.2: Foot structure in a statement utterance
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Assumption 3: The Phrase class should be smooth over long time stretches, which enables us to

determine the effect of intonational characteristics and functions on the component curves.

GLAM uses a phrase curve consists of two quasi-linear segments, the first from the phrase start

(ps) to the start of the final foot in the the phrase (generally associated with the nuclear pitch

accent, py), and the second from the latter to the end point of the last voiced segment of the phrase

(pe)-

Assumption 4: Three different accent categories are used to estimate the three intonational

patterns: Rise-fall accent groups (e.g., H*L-L%, Figure 3.1a), yes-no question contours (e.g.,

L*H-H%, Figure 3.1b), and continuation contours (e.g., H*L-H%, Figure 3.1c). Rise-fall

accents occur in any non-final feet as well as in the final foot in an intonational phrase for a

statement utterance. Figure 3.2 shows occurrence of three rise-fall accents in an intonational

phrase. Continuation contours consist of a dual motion in which an early peak is followed

by a valley and a final rise. A continuation accent occurs at the final foot in an intermediate

phrase that is not aligned with the end of an intonational phrase. In Figure 3.3, the accent

curve in the final foot of the first intermediate phrase is a continuation accent. Yes-no

question accents occur on the final foot in an intonational phrase for a yes-no question and

consist of an accelerated decrease starting at the onset of the accented syllable, followed by

a steep increase in the nucleus (in Figure 3.3, the accent curve in the last foot).
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Final foot in an intermediate phrase
Appendix

Non-final feet Non-final foot Final foot in an intonational phrase
\ for a yes-no question utterance

I~~~

\ Five feet

\

Two intermediate phrases

An Intonational phrase

Figure 3.3: Foot structure in a yes-no question utterance that consists of two intermediate phrases.

Assumption 5: A specific accent curve cannot be assigned to phrase-initial unstressed syllables —
also called appendix — since these syllables are not part of any foot. In Figure 3.3, we can see
the appendix does not belong to any particular foot, but it is still part of the intermediate

phrase.

The Above assumptions were developed intentionally to make GLAM a suitable and flexible syn-
thetic intonational model. These assumptions are shared among GLAM and GENIE. Implementation-
wise GLAM has three more assumptions to make it suitable across languages. The rest of assump-

tions in this section are not part of GENIE’s shared assumption.

e Accent curves consist of pitch peaks and pitch movements associated with syllables (e.g., a
foot in English or one syllable in Mandarin). It is modeled by parameterized time warps of

an accent curve template.
e Overlap is allowed only between successive accent curves

e Segmental Influence Curves are also considered as a component class, which are added to the

Phrase and Accent class to estimate Fy contours

The first item was developed to give GLAM flexibility to consider all intonational patterns in
different languages. The second and third items were added to improve the voice quality of syn-
thesized speech. There are several drawbacks to these assumptions when it comes to real-world
cases. 1) Optimization of component curve parameters can not be done simultaneously since some
curves require independent preprocessing (pitch peak detection for accent curves and vowel onset
detection for segmental influence curves). 2) Beside the actual parameters, there are some hyper-

parameters that need to be tuned, such as the number of anchor points, and the degree of overlap



CHAPTER 3. GENERALIZED INTONATION MODEL FOR ENGLISH (GENIE) 52

between two successive accent curves.

The Procedure for Representing Intonation in the Superpositional Model (PRISM) was a second
direct implementation based on GSM. Like GLAM, PRISM is a synthetic intonational model
for a TTS system, but it only considered American English. PRISM adopted most of GLAM’s

assumptions, but differed from GLAM in terms of the following items:

e The phrase curve is piecewise-linear, consisting of foot-length line segments instead of the
two line segments allowed by GLAM. However, this introduces additional parameters in the
process (n + 1 instead of 3 parameters per prosodical phrase containing n feet), and may also

undermine the perceptual relevance of the phrase curve because there is no global declination.

e PRISM allows negative accent curves to model Fy values that fall under the phrase curve.

Generally, American English does not have negative accents.

3.1.2 GENIE’s additional assumptions

The word “General” in GSM denotes that its assumptions are general enough to define any su-
perpositional model for any language regardless of whether it is used for synthesis or analysis.
In practice, there might not be one model for solving every possible problem (based on the no
free lunch theorem). Intonation can vary substantially across languages. Probably, there is not
a single intonation model that can achieve both high predictiveness (used as a synthesis tool)
and high descriptiveness (used as an analysis tool) for every language. Therefore, depending on
the problem, it is important to assess the trade-offs. GENIE and GLAM define these trade-offs
differently. The word “Generalized” in GLAM denotes that its assumptions are general enough to
define any superpositional model across any language, but its assumptions were specified to make
GLAM a practical synthesis tool. The word “Generalized” in GENIE denotes that its assumptions
are intended to make it general enough to make GENIE a practical synthesis and analysis tool,
but its assumptions are specific only for the English language. GENIE (like GLAM) uses stronger
assumptions than GSM. Some of these assumptions are shared with GLAM, which we discussed in
the previous section. Some of these assumptions are specific to GENIE, which we discuss in this

section.

Assumption 3.1: This assumption refines Assumption 3 from GLAM. The shape of the phrase
curve should be kept as simple as possible. GENIE uses a phrase curve consisting of two

linear segments (not quasi-linear or log-linear segments like GLAM).

With regards to Assumption 3.1, a fundamental issue in superpositional-based approaches is that
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Figure 3.4: Fy contour decomposition example, comparing when the phrase curve is a horizontal
line versus when it has to capture the local minima. Each red curve represents a Fj contour of a
one-phrase utterance consisting of two feet, with different amounts of overlap. Green curves and
magenta curves represent phrase curves and accent curves, respectively.

there is no unique way to decompose a curve into its components curves. One reason for this
is that in real speech intonational movements are more complex than in theory. For example,
we are interested in decomposing a given Fjy contour with two feet with rise-fall patterns into its
component curves. One common sense solution is that the Fy contour can be estimated by the
concatenation of two identical rise-fall patterns with a coinciding start and end point. Figure 3.4
bottom row shows this approach; however, in real speech there can be an overlap between successive
intonation movements (top and middle red solid curves).® Figure 3.4 shows two different ways of
decomposition for three Fy contours (red solid curves). Both ways are mathematically valid since
the sum of the component curves in both ways results in a perfect fit to the Fy contour; we prefer
the first decomposition that by keeping the shape of the phrase curve as simple as possible lets the
accent curves capture the meaningful intonation patterns. As the second decomposition, the phrase
curve has to capture the local minima that prevents the accent curves from capturing meaningful

intonation patterns.

3The degree of overlap depends on many factors, such as the number of syllables, duration of syllables, level of
emphasis (or even focus), etc.
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Assumption 6: All accent curves of an intermediate phrase span the full length of the interme-

diate phrase.

GLAM allows an overlap only between successive accent curves but it does not clarify what the
extent of overlap allowed is. In some implementations based on GLAM, it was suggested that
non-phrase-final accents should have no more than 20% of the foot duration overlapped with the
next accent curve. Therefore, the amount of overlap is dependent on the foot duration and needs
to be determined individually for each accent. Defining the amount of overlap as a free parameter
results in an increase in the degrees of freedom of the model. In order to have overlap without
any changes to the degrees of freedom, the overlap has to be tied to a segmental unit. In GLAM,
the overlap can be tied to one of the following units, the syllable, foot, or intermediate phrase.
We suggest to tie the overlap to the intermediate phrase boundaries. Allowing accent curves to
span the full length of an intermediate phrase results in a bidirectional overlap between all accent
curves of the intermediate phrase. The advantage of this amount of overlap is as follows. First, it
allows a simpler mathematical formulation for analysis and synthesis. Second, the model is able

to account for the pitch movement in appendices, which we discuss next.
Assumption 7: Fj values in an appendix are predictable by the model.

The motivation behind Assumption 7 is that in ToBI it is uncertain whether L-+H* and H* are
distinct phonological categories in English intonation patterns. By showing that this uncertainty
is not an issue in the proposed model, predictability of the Fy values in appendices is necessary.
With regards to the fifth assumption, an accent curve cannot be assigned to an appendix since
it does not belong to any particular foot, but it is part of the intonational phrase. Therefore,
recovering the pitch movement in an appendix would be possible by using information of both the
phrase curve and the first accent curve which falls into the appendix segment.* Figure 3.5 shows
how bidirectional overlap enables the model to predict Fy values in an appendix.

Earlier in this chapter, we mentioned that our core goal for GENIE is that it be used as an
intonational analysis and synthesis tool for the English language. Therefore, for making GENIE a

practical tool, we consider two terms that are not assumption but are more like guiding principal.
e The number of parameters should be minimal, and each parameter should be meaningful.

The degrees of freedom of a model refers to the number of independent free parameters required to

control the model for data estimation. When considering a model that fits to data, it is common

4Even though all accent curves are contributed due to sixth assumption, but just the first accent curve has any
real influence.
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Figure 3.5: Letting an accent curve span the entire intonational phrase in both directions (bidi-
rectional overlap) results in more accurate estimation of Fy values in the appendix by GENIE.

practice to pay attention to three things. 1) Higher degrees of freedom implies better fit but de-
creases generalizability of the model. 2) If the size of the database is small, meaningful parameters
will be more beneficial. 3) Parameters should be independent (highly correlated parameters con-
tain redundant information). Building an efficient yet accurate and predictable parametric model
is not easy. If GENIE satisfies these conditions, it would make it a practical tool for synthesizing

English intonation.
e The model should be able to quantitatively capture all intonational patterns in English.

In order to make GENIE a practical intonational analysis tool two goals must be satisfied at the
same time. First, GENIE’s component curves should be linguistically descriptive. The general
shape of GENIE’s component curves are adapted from GLAM, and their validity has been tested
in many research projects [164, 169, 166, 72, 136, 137]. Second, GENIE should decompose a
given Fy contour into linguistically meaningful component curves. As discussed above, not all
decomposed component curves are meaningful, even if they add up to a very accurate estimation
of the Fy contour. If GENIE satisfies these goals, it should be able to quantitatively capture all

intonational patterns in English, which makes it a useful tool for analyzing English intonation.

3.2 GENIE model methodology

In the previous section we summarized the underlying assumptions of GENIE that lead us to its
creation. In Section 3.2.1 we discuss the mathematics behind GENIE’s component accent and

phrase curves. Then in Section 3.2.2, we introduce a way to implement GENIE.
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Figure 3.6: Each green line represents a phrase curve which indicates the general underlying Fj
contour for any type of utterance. Each black two-headed arrow shows how a specific parameter
can change while other parameters kept unchanged.

3.2.1 Component curve classes

The proposed GENIE model is a superpositional-based intonation model that decomposes a con-
tinuous Fy contour — interpolated in unvoiced regions — into two component curve classes: phrase

curve and accent curve classes.

Phrase curve class: a phrase curve consists of two connected linear segments, the first from the
phrase start (t5) to the start of the final foot in the intermediate phrase (¢¢), and the second
from the latter to the end point of the last voiced segment of the intermediate phrase (t.).
The phrase curve does not account for how the Fjy changes to mark the end of the intermediate
phrase. For these three time points, we associate three parameters p,, py, and p. to represent
the phrase curve value. The phrase curve is constructed by linear interpolation between the
three parameters (Equation 3.2). Please note that in an intermediate phrase with only one

foot the phrase curve can be calculated by linear interpolation between the two points (ps,

pe)'

P(t) = interpolate(ps, ps, pe) (3.2)

This definition satisfies Assumptions 1-3, 1.1, and 3.1; however, in order to satisfy Assumption 7,
some limitations on phrase curve class parameters are required. The phrase curve class represents
the general underlying movement of the F, contour: 1) in statements, the phrase curve is a
descending curve function. Therefore, ps > py > pe. 2) In yes-no questions, the final phrase curve
is an ascending curve function. Therefore, p; < py < pe. Figure 3.6 shows all possible movements
for the phrase curve parameters. Each plot represents how a specific parameter can change while
other parameters are kept unchanged. For example, the top-left plot shows that ps; can have a
value equal or higher than p.. Therefore, the phrase curve is allowed to be either a horizontal

curve or a pure descending curve.

Accent curve class: Accent curves are described by certain parametric curves. In order to satisfy
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Assumptions 1.1, 2.1, 4, 5, and 7 and also motivated by the two guiding principles, we use a
combination of the skewed normal distribution and a sigmoid function to model three different
types of accent curves. First, the skewed normal distribution is employed to model rise-fall
accents that occur in non-final positions as well as in final positions in statements (f(¢) in
Equation 3.3). Second, a sigmoid function is used to model the rise at the end of a yes-no
question (g(t) in Equation 3.4). And, third, the sum of the skewed normal distribution and
the sigmoid function is used to model continuation accents at the end of a non-utterance-final
intermediate phrase (h(t) = f(¢t) + g(t)).

f(t) = 2o "5)a(a(=5)) (3.3)

w w w

98) =D s (3.4)

In Equations 3.3 C, w, £, and « represent the amplitude, scale, location, and skewness of the
rise-fall accent curve, respectively. In Equations 3.4 D, 3, and + indicate amplitude, slope, and
location of the yes-no question accent curve, respectively. Figure 3.7 shows the effect of a change
in one parameter on the shape of the rise-fall accent model (f(t)), while other parameters are kept
unchanged. In comparison, in each plot the darkest curve represents the normal distribution (by
setting C =1, £ =0, w=1, and « = 0 in f(¥)).

Since this model is a superpositional-based model, the Fy contour of a one-phrase utterance
results from an overlay of component curve classes (Equation 3.1). The accent curve class (A(t))

is formulated below in Equation 3.5 where n is the total number of feet in the intermediate phrase:

n

Ay =) Ait) = i fi(t) + An(t) (3.5)
=1

i=1

fn(t) statement
Ap(t) = gn(t) yes-no question (3.6)
fn(t) + gn(?) non-utterance-final intermediate phrase

Even though accent curve types are separated by their position 7 (in Equation 3.5) in an inter-
mediate phrase and intermediate phrase type (e.g., statement vs. yes-no question in Equation 3.6),
they are a function of ¢ not a subsegment of ¢. This allows for bidirectional overlap between accent
curves. Therefore, the parameters of a specific accent curve are proportioned to a specific foot but

it spans across the entire intermediate phrase.
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Figure 3.7: Each plot represents the effect of changing a specific parameter of a rise-fall accent
curve while other parameters are kept unchanged. The darkest curve in each plot represents the

normal distribution.
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3.2.2 A Decomposition Implementation for GENIE

Decomposing an Fj contour into its component curves is core to any superpositional approach
including GENIE; however, there are many ways that this decomposition can be implemented.
Below, we outline two ways that an implementation can be done.

In general, every decomposition method is actually a curve fitting problem, in which a math-
ematical function (Y') is constructed in such a way as to obtain the best fit for the data points

(Fo)-

Fo(t) =Y(t) (3.7)

The simplest technique for solving this fitting problem is brute-force search (or exhaustive search).
This technique considers all combination of candidates (parameters of Y') to check which combi-
nation results in an exact match. The brute-force search is very easy to implement, but it can be
a time-consuming process; given the length of the utterance, the number of solutions is probably
exponential.

In most speech processing applications, speed is more important than the simplicity of the

implementation. This leads us to look for an approximate solution instead (Equation 3.8).

Fo(t) = Y (t) (3.8)

One way to come up with an approximate solution is using an iterative approach, which consists of
the following steps: initializing the parameters of Y, and updating them in each iteration until there
is no significant improvement in a cost function. The root weighted mean square error (RWMSE)
is one way to compare the deviations between the observed Fj contour and the estimated one Y.
In Equation 3.9, Fy(¢) represents the continuous Fy contour with ¢ frames, and w represents a
weight vector. The weight w is computed as the multiplication of the voicing flag and the signal

energy.

Fo(i) - Y3)?
sz‘

Below we discuss how we use above iterative approach to decompose an Fy contour for GE-

mmmmxm=¢ZW( (3.9)

NIE. This decomposition requires the foot structure of the observed Fjy contour, which includes
intermediate and intonational phrase boundaries, as well as the utterance type. By knowing the
foot structure we can constrain the parameters’ search boundaries.

A good initial guess for the parameters would speed up convergence to the optimal solution.
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In order to initialize the phrase curve’s three parameters, we use the actual Fy values as an initial
guess if the speech is voiced at two time points (¢, and ¢y). If the start of the phrase is unvoiced,
the initial phrase start value is set to match the ps. The p. is set to match the minimum between
ps and the Fy value at the time point t.. These points are adjusted downwards if there are any
Fy values falling under the phrase curve. This prevents optimization from being stuck in the local
minimum. Next, the initialized phrase curve (Pp) is subtracted from the Fy contour to obtain the

initial values for the accent curves (Equation 3.10).

Raw accent : R(t) = Fy(t) — Py(t) (3.10)

For example, to initialize a rise-fall accent, we compute the skewness (Equation 3.11), the mean
(Equation 3.12), and the variance (Equation 3.13) of the raw accent values (R) in a foot as the

initial values of the rise-fall accent parameters: «, w, and &.

4—7 (5\/2)2 «
> [ _— (3.11)

skewness of R(t) EETIEP where § e
2
meanof R(t) = & + wé\/7 (3.12)
T
variance of R(t) = w*(1 — —) (3.13)
T

We use the LMFIT python library (Non-linear least-square minimization and curve-fitting
for Python) [111] to optimize GENIE’s component curves parameters while minimizing the cost
function (Equation 3.9). This library allows for the combination (adding or multiplying) of pre-built
model classes with basic algebraic operations. A python implementation of GENIE is available.’

In addition to this implementation, we have designed a GUI (Graphical User Interface) toolkit,’

that provides a framework for manipulating GENIE’s parameters and visualizing the effects.

3.3 Experiments to show the efficacy of GENIE

In this section, we examine GENIE’s potential to be used as both a synthesis and analysis tool
for English intonation through several experiments. In the first part, we discuss how GENIE can

reduce total number of intonational patterns defined by the ToBI system from 24 to three, and

5Add linke here 7?7
6 Add linke here ???
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in the second part, GENIE is used for objective testing to show it can produce accurate and

linguistically meaningful results.

3.3.1 Linguistically meaningful

In this section, we want to show that GENIE is capable of capturing and predicting all intonation
patterns present in ToBI by only three different accent curves.

For an intermediate phrase consisting of one accented-stressed-syllable (a one-foot intonational
phrase), ToBI can describe 28 different intonational patterns (as described in Section 2.2.1). If our
model can fit accent curves to each of the 28 intonational patterns, while keeping the phrase curve
as a horizontal line equal to the minimum of the Fy contour, then we can claim that the component
curve classes are linguistically meaningful; in other words, GENIE can phonologically represent
English intonation patterns. In the second chapter, we showed that using foot segmentation, the
total number of ToBI intonational patterns can be reduced to 16. In Figure 3.8, we show how
theoretically these 16 intonational patterns can be decomposed into their component curves using
GENIE. Each plot under the “intonational pattern” column represents an individual intonational
pattern used by ToBI under certain combinations of accent tone and phrasal tone in a one-foot
intonational phrase. Each plot under the “component curves” column represents a decomposition
of the individual intonational pattern using GENIE. As we can see, by setting the phrase curve
(green line) to the minimum value of the intonational pattern, an accent curve can capture the
meaningful Fy dynamic pattern of the residual.

We previously discussed that the only concern about foot segmentation is that the appendix,
a sequence of phrase-initial unstressed syllables, is ignored under this segmentation, while in the
ToBI system the appendix is differentiated through a less prominent tone in a bitonal accent type
(e.g., an L tone in a L+H* accent tone). In Section 3.1.2, we argued that an appendix does not
show as much pitch movement in an accented-stressed-syllable, but that does not mean that the
pitch movement in an appendix is unspecified. According to Assumptions 5, 6 and 7, GENIE
predicts the pitch movement in the appendix without assigning a specific accent curve to it, and
it does it by allowing accent curves to span the full length of an intermediate phrase (Figure 3.5).
We show GENIE’s ability through the same two examples as in Section 2.2.3

First, consider a one-word single-phrase utterance with a stressed-syllable at the beginning,
e.g., “NO”. In Figure 3.9, one speaker produces the word “N0O” under five ToBI accent types in a
continuation phrase (L-H%). As we discussed in Chapter 2, under foot segmentation only three

accent types can occur (H*, L* and L*+H) since there are no unstressed syllables before the
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H* L* L*+H

Intonational pattern Component curves(Intonational pattern Component curves|Intonational pattern Component curves

L-L%

L-H%

H-L%

H-H%

'H-L%

'H-H%

Figure 3.8: Decomposition of all intonation patterns used by the ToBI system under foot segmenta-
tion. In each intonational pattern, the theoretical pitch movement of a target tone is illustrated by
a short black horizontal solid line. The starred target tone (pitch movement of stressed-syllable) is
differentiated from other tones by a bold solid line. The red lines represent the theoretical smooth
pitch contour. Next to each intonational pattern, there are the theoretical component curve classes
of the proposed model: the green line represents the phrase curve and the magenta line represents
the accent curve.
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Figure 3.9: Decomposition of two words “meNOmonee” and “NO” for the five accent types in
a continuation phrase(L-H%). The red lines represent the estimated pitch contour, green lines
represent the estimated phrase curves, magenta lines represent the estimated accent curves. The
raw pitch is represented by blue dots.
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prominent syllable to carry the unstarred tone in two cases L+H* and H+!H*. Interestingly, all
these five different ToBI accent types can be represented by only a continuation accent type due
to the inherent flexibility of GENIE’s accent curve formulation that is based on skewed normal
distribution and sigmoid function.

Second, consider a one-word, single-phrase utterance with at least one unstressed syllable at
the beginning, e.g., “meNOmonee.” In this example, the foot starts at the stressed syllable “-NO-"
and ends at the end of the intonational phrase, therefore again only three accent types can occur
(H*, L*, and L*+H) under foot segmentation. In Figure 3.9, the same speaker produces the
word “meNOmonee” under five different ToBI intonation patterns. As we can see, even though the
pitch values under the appendix are not part of the foot, GENIE can accurately predict them and
capture the Fy dynamics of the intonation pattern due to its strong assumptions. The same logic
can apply for the five other intonational phrase types (Figure 3.8).

In this section, first, we showed that GENIE is capable of capturing and predicting all intonation
patterns present in the ToBI system. Second we showed that GENIE can represent all 28 different
ToBI intonational patterns by only three different accent curves (in Equation 3.5) due two reasons:
1) flexibility of component curve to capture any Fy dynamics 2) extension of accent curves to
the full length of an intermediate phrase. This implies that considering 28 different intonational
patterns for an intermediate phrase consisting of one accented-stressed-syllable is not necesseray,
and they are all variation of three different accent curves. Further in Chapter 4 and Chapter 6, we
use GENIE’s ability of decomposing a Fy contour into linguistically meaningful component curve

as an analysis tool in variety of tasks.

3.3.2 Objective evaluation

We evaluated GENIE’s potential in producing accurate and linguistically meaningful results. First,
we start with the simplest scenario when the corpus contains only synthetically generated F{y curves.
Second, we consider a corpus of all-sonorant utterances. Finally, we consider a more challenging
scenario when the corpus contains recordings of one child spoken in four different emotions. The
Root Weighted Mean Squared Error (RWMSE) was extracted between the observed F values and
the estimated values. In experiments 2 and 3 we compared the performance of GENIE and PRISM

(on the corpora for which comparable data are available).
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3.3.2.1 Decomposing synthetic intonation contours

The first experiment with the implementation of GENIE was a proof-of-concept using synthetically
generated Fj contours. The contours were generated using a text-to-speech system that used
GLAM to generate Fy contours. We generated synthetic curves for 229 sentences present in the
CSLU Emphasis Protocol [110]. This protocol was designed to elicit Fj contours produced with
various linguistic and prosodic features. It prescribes which syllables are accented, where each foot
starts and ends, and where phrase boundaries occur. Finally, each utterance in the protocol has
a target word that is spoken with a prescribed degree of emphasis. The protocol systematically
varied the accent type (standard vs contrastive), the sentence type (declarative, wh-question, or
yes-no question), the number of syllables in the foot (1, 2, 3 or more), and the phrasal position of
the target word (initial, medial, or final). Here is an example with foot boundaries marked with
brackets and the target word marked in all-caps: [Will we] [really know| [MARIO], [when we’re
in] [Maine?]|. For each Fj contour in the date, we apply the implementation of GENIE and then
calculate RWMSE between the Fjy contour and the GENIE’s estimated Fy contour; it results in a
very small overall RWMSE of 1.4307 Hz for whole data.

While humans can hear very fine distinctions between two pure tones when listening to them
sequentially at a short time interval, in a longer sentence this type of error is not noticeable.
Klatt notes that subjects could hear a 0.3 Hz difference in a constant Fy contour, but when the
synthetic Fy contour is a linear descending ramp (32 Hz/sec) the just-noticeable difference slips
to 2.0 Hz [73]. Comparing perceived intonation in two sentences, 't Hart [152] found that there
is significant variability in the subjects’ sensitivity to intonation differences. Some subjects are
able to perceive differences of 1.5 - 2 semitones where others were only able to hear differences
when the intonation was more than 4 semitones apart. They conclude that only differences of
more than 3 semitones play a part in communicative situations. As we discussed in Section 2.6,
semitones are measured on a perceptual scale and the actual frequency difference depends on the
frequency range. Suppose the base frequency is 200 Hz, then a 2 semitone difference corresponds
to a frequency differential of 24 Hz. But if the base frequency is really high, say 800 Hz, then the
same 2 semitone differential corresponds to a frequency differential of 97 Hz.

The slight discrepancy between the generated accent curves and the decomposed curves is due
to the fact that the accent curves generated by GLAM are asymmetric curves coupled together
via cosine interpolation, whereas GENIE uses a smooth skewed normal distribution. Not only do
we suspect that this discrepancy is inaudible, we also suggest that the skewed normal distribution

can provide accurate approximations to a broader range of curves.
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3.3.2.2 Decomposing all-sonorant speech

This experiment involves actual recordings using all-sonorant speech from the same CSLU Empha-
sis Protocol. One male speaker spoke a subset of 61 sentences in this protocol. The recordings are
forced-aligned to the phonemes using the CSLU Toolkit [57]. We used the YAAPT algorithm [197]
to extract Fy values. We applied linear interpolation between voiced areas to replace the unvoiced
areas. In this experiment, we compared the performance of GENIE with that of PRISM. The
RWMSE for decomposition using PRISM was 5.40 Hz [106]. We use a similar methodology as
in the previous section. The overall RWMSE for GENIE was 2.37 Hz. We applied a one-sample
two-tailed t-test to determine whether this difference was significant. The results showed that

GENIE performed significantly better than PRISM (t(60) = 4.21, p < 0.05).

3.3.2.3 Decomposing recordings with voiced and unvoiced speech sounds

In the previous experiments, Fjy values were available for all frames in the speech recordings, so
that we could apply GENIE on continuous Fj contours. A challenge for intonation decomposition
of natural speech recordings is the presence of unvoiced regions and pauses where there are no Fj
values, and segmental perturbations. A common way to solve this issue is to use linear interpolation
between voiced areas to fill in unvoiced areas. One side-effect of having unvoiced segments in speech
is that an unvoiced phoneme preceding a voiced phoneme can cause a segmental perturbation at
the start of the voiced phoneme, where the observed Fjy values are slightly higher than they should
be [136]. Thus, linear interpolation will give suboptimal results. In order to test GENIE on a
speech corpus with voiced and unvoiced segments and compare it directly with PRISM, we use the
CSLU affect corpus [72]. This corpus was not specifically designed for synthesis purposes, but was
created to study different prosodic and spectral variations using the same affect-neutral text for
each sentence spoken in four different affects (Angry, Fearful, Happy, and Sad). One female child
actor reading a total of 24 sentences in each affect (96 utterances total). The sentences are fairly
short, consisting of a single phrase and 2-5 words in a phrase. The correct affect was prompted
by vignettes that preceded each sentence. For this particular speaker, the Fj ranges from 200-800
Hz.

Figure 3.10 represents the intonation decomposition of the sentence “She was taking a bath”
into the component curves for the four affect types based on the proposed model versus PRISM.
PRISM detects negative accent curves for two types of affects: Fearful, and Sad. The negative
accent in the first foot of the Fearful sentence makes it a slightly better fit between the actual

Fy values and the decomposed values. However, there are doubts regarding the use of negative
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Figure 3.11: The RWMSE of GENIE vs. PRISM in Hz.

accents in American English.

The RWMSE for GENIE and PRISM are shown in Figure 3.11. GENIE performs better than
PRISM for all of the affects. The average difference between the RWMSE of the two methods
is 9.16 Hz. We applied a one-sample two-tailed t-test to determine whether this difference was
significant. The results showed that GENIE performed significantly better (t(95) = 2.22, p =
0.027). The frequency range of the angry and fearful utterances cover the entire frequency range
of the speaker (200 Hz-800 Hz) and there are a few points specifically around each accent peak
that have more effect on the RWMSE. But since Fj perception does not follow a linear scale, Fj
discrepancies at higher frequencies are likely to be less audible. Further in Chapter 5, we investigate
GENIE’s ability to decompose and generate high-quality Fy contour through several perceptual

studies.



Chapter 4

Intonation Annotation Using GENIE

In the previous chapter, we proposed GENIE, a foot-based superpositional analysis and synthesis
intonation model for English. We showed that the implementation GENIE was able to decompose
Fy contours accurately for a few different data sets using a limited set of parameters. In this chapter
we demonstrate the use of GENIE as an analysis tool to automatically detect the occurrence of

phrase boundaries and show that it can do so reliably.

4.1 Motivation

Humans use phrasing to chunk speech into semantic or syntactic units, not only as a natural
by-product of how speech is “computed” by the brain or as a result of limitations of the speech
production apparatus (e.g., running out of breath), but also as a device to make it easier for the
listener to understand the message.

The acoustic-prosodic correlates of phrase boundaries involve both Fy and temporal features.
Phrase boundaries can be produced by, for example, final lowering of the Fj at the end of state-
ments, final rises at the end of yes-no questions, and continuation rises for non-utterance-final
breaks. In the temporal domain, phrase boundaries can be produced by, for example, the presence
of pauses or phrase-final lengthening.

As we discussed in Chapter 2, there are two levels of phrasing: the full intonational phrase
level (intonational phrase), and the intermediate intonational phrase level (intermediate phrase).
An intonational phrase is frequently followed by a pause and it is indicated by strong phrase-final
Iy changes and strong phrase-final lengthening. An intermediate phrase is not indicated by a
pause. The phrasing cues after an intermediate phrase are weaker than phrasing cues after an

intonational phrase.

1This chapter is based on work published in the 9th ISCA Speech Synthesis Workshop [30].
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Intonational phrase Intermediate phrase
ToBI tonal marking L-L%, L-H%, H-L%, L-, H-, and 'H-
H-H%, 'H-L%, and
'H-H%
ToBI breaking index 4 3
Total Number of Intonational phrase 1 -
Total Number of Intermediate phrase 1 or more 1
Total Number of feet 1 or more 1 or more
Followed by pause Yes, PBT No, PB~ No, PB~
Phrasing cues Very strong Strong Less strong
E End of statement utterance Yes Yes No
§ End of Yes/No question utterance Yes Yes No
—  End of non-utterance-final phrase Yes Yes Yes

Table 4.1: Comparison between two levels of phrasing: intonational phrase and intermediate
phrase. The term “phrasing cues’ associates with phrase-final F;; changes and phrase-final length-
ening.

While phrase boundaries involving pauses (PB™, intonational phrases) are relatively easy to
automatically detect, pauseless phrase boundaries (PB~, intonational phrases or intermediate
phrases) are much harder to detect [132]. The two main reasons why PB~s detection is a diffi-
cult task are: 1) Fy contours may pass entirely smoothly through the phrase boundary; and 2)
lengthening is difficult to assess because phoneme durations depend on many other factors besides
the presence of a phrase boundary. For example, a 120 ms schwa (/@/, as in the word “the”) is
relatively long while a 120 ms /al/ (as in “by”) is relatively short [165].

In the ToBI annotation scheme, there are four break indices, where the two highest indices
indicate phrasing. An intermediate phrase (break index 3) is associated with a monotone boundary
tone (L-, H-, and 'H-) while an intonational phrase (break index 4) is associated with a bitonal
boundary tone (listed in Table 2.2). An intonational phrase consists of one or more intermediate
phrases where each intermediate phrase consists of one or more feet. Table 4.1 summarizes the
differences between intonational and intermediate phrases.

As mentioned previously, it is not easy to detect phrase boundaries when they are not followed
by a pause (especially when dealing with intermediate phrases). Agreement among human labelers
or between the human and automated labelers is not very high for this task. This is less the case
for a phrase boundary involving a pause [132]. A common solution is to hire an expert to label the

data, but inter-rater reliability among experts might be low as different experts may use different
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acoustic cues to decide on the labeling. One solution is to hire more experts and use their mutual-
agreement as ground truth; however, expert annotations are costly and time-consuming to collect.

It would be ideal if we had an automatic annotator that results in accurate correct prediction
regardless of speaking style. As we showed in previous chapter, the implementation of GENIE
results in highly accurate estimation of Fj contour; assuming the given inputs (foot structure,
phrase boundary, and raw Fy contour) are accurate. This led us to hypothesize that GENIE has
a potential to be used for this task in evaluating flexibility of GENIE in capturing meaningful and
underlying intonation patterns.

In order to use GENIE to determine the best phrase boundaries for a sentence, we could
generate all possible phrase boundaries for the sentence by considering occurrence /non-occurrence
of PB™ after each word. We then could use GENIE to find which variation resulted in the lowest
error with respect to the model; however, considering all possible phrase boundaries results in an
exponential number of variations for a sentence.

Rather than solving this problem, in this chapter we are going to take a simpler approach. We
limit the search space of variations by using a labeling method that over generates PB~ candidates
for a sentence. Then, we generate number of phrase boundaries for the sentence by considering
occurrence/non-occurrence each of those PB~s. For a better comparison, we use three labeling
methods to constrain the PB~ search space.

The aim of this chapter is to use GENIE as an analysis tool to improve the detection of
pauseless phrase breaks by filtering out incorrectly placed pauseless phrase breaks by a labeler or
an automatic labeling system. As such, we are proposing a hybrid method that constrains the
PB search space, and filters out the false positives by using GENIE. We also investigate using a
duration model to further improve the results.

We propose a framework that combines GENIE with a duration model to improve the phrase
boundary assignment driven from a labeling methods. In Section 4.2, we use three labeling methods
to constrain the PB search space. Each method results in a phrase boundary assignment for a
given sentence, by determining which word in the sentence is followed by a phrase boundary. In
Section 4.3, we use GENIE to determine which phrase boundary assignment provides the best fit
of the model. In Section 4.4, we use a duration model that measures pre-boundary lengthening
by predicting the duration of a vowel based on all factors known to affect vowel duration, but
excluding boundary related factors. Then, we combine GENIE and the duration model to improve

the detection of PB~s. Finally, in Section 4.5, we introduce a method to derive a ground truth.
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4.2 Constraining the Phrase Boundary Search Space

In order to avoid the very large space of possible boundary assignments for a given sentence,
we limited the search space using three labeling methods: Expert, Festival, and a combination of
both. For each method, in addition to phrase boundaries, pitch accents have also been determined,
as they are used for creating foot structure which is needed in GENIE to model the surface Fj

movements.

Expert: Two linguistically informed experts manually indicated phrase boundaries.?2 They each
separately used Praat [13]| for annotating pitch accent labels and phrase boundary labels.
They also had access to phonetic transcriptions and segmentation (e.g., phoneme, syllable,
and word boundaries). Then we used they mutual agreement on pitch accent labels and

phrase boundary labels as a final outcome of this method.

Festival: Festival was used to predict pitch accents and phrase boundaries. It predicts phrase
boundaries at the word level based on an algorithm presented in [11]. It also predicts pitch
accents at the syllable level. The pitch accent labels were moved to the word level, such
that if one syllable of a word is accented then the whole word is accented. Only textual
information was used for this prediction without any acoustic or prosodic information. We
placed a period after any word which was followed by a pause, before feeding text to Festival,

in order to have the same PB™ as the original speech.

Combination of Festival and Expert (Comb): We combined phrase boundary and pitch
accent labels from Expert and Festival by considering the union between the two. Our
objective behind this method is that by giving a bit more possible PB, we might reduce the
number of true negatives (present of PB that was missed by Festival or Expert method).
Pitch accent labels in this method are obtained via the union of Expert pitch accent labels
and Festival pitch accent labels. PB~s are also obtained via the union of the Expert PB~
labels and Festival PB~ labels. These methods are different in terms of pitch accent labels

and the location of PB~ labels but they all have the same PB™T labels.

4.3 Using GENIE to Filter out False Positives

In this section, we describe how we use GENIE as an analysis tool to select a specific boundary

assignment for each sentence. Before providing the method’s details, we recall a fact about GENIE

2 Author of this dissertation and her adviser were the two experts.
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Algorithm 4.1 Usage of GENIE

Input
St < get Stress label of S from Dictionary
PB < get Phrase Boundary labels from X
Acc + get Accent labels from X
phrase_boundary _assignments < All combinations of occurrence/non-occurrence PB

Output
Phrase break prediction by X g,

Index < 0

for PBA in phrase boundary assignments do
Feet «+ Get foot structure(PBA, Acc, St)
Fitted Fy < Fit the Fy model(Feet, Raw Fy)
Error[Index] + RWMSE(Fitted Fy, Raw Fy)
Index < Index + 1

Inz < Index of lowest Error

Report PBA[Inx]

from the third chapter; foot structure and phrase boundaries are GENIE’s requirement. A foot
starts with a stressed-accented-syllable and ends before the next stressed-accented-syllable or with
a prosodic phrase boundary. Therefore, GENIE depends on syllable stress, pitch accent, and
phrase boundary labels. Syllable stress labels are predetermined in English; however pitch accent
and phrase boundary are variable and based on the speaker’s style. Here, for a given sentence, .S,
the syllable stress labels are dictionary-based while phrase boundary labels and pitch accent labels
come from each labeling method X (X = Fzxpert, Festival, or Comb) as described in Section 4.2).
Now by given the S and the labels from any labeling method in X, we use GENIE to filter out
incorrect occurrence of PB~ and report the best phrase boundary assignment.

Algorithm 4.1 shows the required steps to detect PB~s using GENIE, given a sentence S along
with its prosodic labels from X. We illustrate the steps by an example. Consider the S, “I like
cooking rice and kids.”, which received two set of labels (phrase boundary labels and pitch accent

labels) from the Comb.
e Input Phrase Boundary labels (PB) from Comb: I like cooking?”B ricePZ” and kids?B" .
e Input Accent labels (Acc) from Comb: I like COOKing rice and KIDS.

Using the labels, we consider all combinations of occurrence/non-occurrence of PB~ labels. We

call these combinations for a given sentence phrase boundary assignments.
1. I like cooking?B ™ rice PB™ and kidsPB".

2. I like cooking rice”®" and kidsPB".
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3. 1 like cooking?”B™ rice and kidsPB".
4. 1 like cooking rice and kids” BT

Then for each assignment, we generate the foot structure with respect to the Acc labels and stress

labels.
1. |I like] [cooking]PB ™ rice B~ and [kids]"B" .
2. [I like] [cooking rice] "™ and [kids]” BT
3. [I like] [cooking]PB ™ rice and [kids|” BT
4. [ like] [cooking rice and] [kids|PB".

Foot structure in the first assignment is not valid since it consists of a prosodic phrase with no foot
(rice PP

we apply GENIE and then calculate a Root Weighted Mean Square Error (RWMSE) between the

: we discard the first assignment. For the three remaining assignments (2, 3, and 4),

raw Fy and GENIE’s estimated Fj contour. At the end we determine the best phrase boundary
assignment using a goodness of fit measure (the lowest RWMSE). Let say the second assignment
results in the lowest RWMSE, it means using GENIE we determine that the Comb incorrectly

placed a PB™ after the word “cooking” for the sentence S.
e Input Phrase Boundary labels (PB): I like cooking”?  rice”’?  and kidsPB"
e Output Phrase Boundary labels: I like cooking rice”’®  and kids” BT

By applying GENIE to the Expert, Festival, and Comb assignments, we can in principle filter out

the incorrect PB~s. We call these methods: Ezpertapnig, Festivalapnig, and CombgeniE.

4.4 Using a Duration Model to Filter out False Positives

As mentioned in Section 4.1, phrase-final lengthening is a well-established prosodic cue for phrase
boundaries, with some of the earlier work reporting lengthening at many types of boundary (e.g.,
[74]), not just at the boundaries considered by ToBI. We use a simple model from literature that
expressed vowel duration as a sum of product terms, with each component of a product depending
on a specific factor (e.g., stress, post-vocalic consonant) [74]. Special cases of the sum-of-products
model include the additive model (each product term has just one factor) and the multiplicative
model (a single product term containing all factors). Using this model, it was shown that phrase-

final lengthening is largely confined to phrase-final syllables, with much weaker lengthening for
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earlier syllables [165]. We therefore confine our duration modeling to vowels in phrase-final syllables
of each potential phrase boundary.

The duration of a vowel depends on many features in addition to the position in the phrase.
The sums-of-products model was used to take into account these factors in order to evaluate the
presence of lengthening. We fit the additive version of the model using the following features:
the current phoneme whose duration is of interest, next phoneme, previous phoneme’s stress label
(binary), current syllable’s stress label (binary), and current word’s accent label (binary). The key
is that we did not include position in the phrase as a feature in this prediction. Also note that we
exclude both sentence-initial and sentence-final vowels, since this would confound the parameter
estimates for the features included in the analysis.

By letting D%, . be the observed duration of the i*" vowel in a sentence and D%, the predicted
duration using the duration model, we define the ratio of the observed duration to the predicted
duration of the vowel as R; = D}, /D%, . Then, we extract a sequence of ratios, normalized per

sentence (Equation 4.1).

. R, ‘ /
- 4.1
Sig {Median{Rij ¢ PB) | i € Sentence's vowels} (4.1)

Thus, the sequence Sig is a vector that, by construction, provides hints about which vowels
may be lengthened, and thus about possible phrase boundaries. After extracting the Sig vectors
for all sentences for each of the six approaches (three labeling methods, and whether or not Fj
information was used), a logistic regression model [122] is trained to predict the phrase boundary
assignments. In each case, we split the data into 10 partitions and applied 10-fold cross validation.
When we present the results in Section 4.6, we will distinguish methods that use this duration
modeling with the suffix “Dur”. We note, however, that the estimation of the duration parameters
and hence of D%, _ was not part of the cross-validation procedure. However, given the extremely
small number of parameters compared to vowel tokens (30 compared to over 2,500), the risk of

over-training was minimal.

4.5 Ground Truth

As we discussed at section 4.1 it is difficult to come up with a correct phrase boundary assignment
for a corpus, which also makes it difficult to come up with the ground truth. For this chapter we
define ground truth in the following manner. We use a group of native speakers of English and

their majority vote as the ground truth. Our assumption — for preferring a group of speakers over
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an individual — is that if a pauseless phrase break cannot be perceived by majority of these native
speakers then it is not strong enough to be considered as a phrase break even though an expert
might argue that there is some evidence in occurrence of a pauseless phrase break.

We used Amazon Mechanical Turk [15] with native speakers of English (master participants
who have approval ratings of at least 95%). Their task was to determine the location of phrase
boundaries in a sentence, regardless of phrase boundary type. At any given trial, the turkers were
presented with the text displayed in normal, horizontal format, accompanied by a vertical list of
the words, displayed in the same order, and each word followed by a button. They also listened
to the audio of the text and had an option to replay. The task was to click on any words that the
turker thought that should be followed by a comma or period.

The reference phrase boundary assignment for a given sentence is calculated by majority vote.

A PB after a word in the sentence is included if more than half of turkers click on this word.

4.6 Experiments

In this section, we evaluate the potential of GENIE as an analysis tool to filter out false positives
in order to improve PB~ detection. In Section 4.6.1, we introduce the corpora that we used.
This corpora consists of two types of speech data, read speech and prosodically rich speech. In
Section 4.6.2 we evaluate our assumption about generating the ground truth. We discuss in what
degree turkers were reliable by measuring how much agreement exists in the labels given by various
turkers. In Section 4.6.3, for each speaker, we extract phrase boundary assignments of each sentence
via each labeling method X (X = Expert, Festival, or Comb). Then, we filter out false positives
of these assignments using GENIE (XggniE), the duration model (XP¥"), and GENIE and the
duration model (XZ#% ). In total, we compare 12 assignments with the ground truth for each
sentence.

One way to evaluate these comparisons is by reporting the percentage of correct predictions.
However, in this case the percentage of correct predictions is a biased measure since we are dealing
with an unbalanced database. The unbalanced data is when the positive cases (i.e., appearance of
a PB~ after a word) are much lower than the negative cases since roughly 90% of words are not
followed by a phrase boundary. Analysis of the unbalanced data often results in a large number of
false positives, that is, words wrongly identified as a word followed by a PB~. Therefore, we use
the F1 score (Equation 4.2) as a performance measure, since it gives equal importance to precision
and recall. In addition, PB¥s are not considered in the results of this study since the location

of all PBTs are the same for all methods (i.e., all the phrase boundaries involving a pause are
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correctly detected by all methods and turkers).

y precision X recall 2TP

F1=2 =
precision +recall 2TP+ FP+ FN

(4.2)

4.6.1 Corpora

Prosodically Rich Database (PRD): we used a prosodically rich database. In this corpus
100 sentences were selected from the AP Newswire (years 1988-1990), automatically were
annotated in terms of factors relevant for duration prediction [165] and greedy methods were
used to select text with maximal coverage of the resulting feature space [135]. These sentences
contained on average of 19 words. One female American English speaker, who is an experi-
enced voice talent, was given carte blanche as to how to read these sentences as long as her
utterances were affectively and prosodically meaningful, natural, and sounded exciting. All
sentence internal punctuation were removed, and the speaker was instructed to insert phrase
boundaries as judged appropriate; the speaker was not provided any instructions in terms
of whether phrase boundaries should contain pauses or involve specific intonational cues.
The recordings from the speaker were manually phonetically transcribed and time-aligned.
We then followed the exact same procedure for a second speaker except the recordings from
Speaker 2 were manually graphemically transcribed (i.e., slight deviations from the read text
were corrected) but were segmented automatically using the HTK toolkit [193]; no manual

corrections were made in the latter case.

CMU Arctic Speech Database: we also used the CMU Arctic speech database [75]. The
database was automatically labeled via CMU Sphinx using the FestVox labeling scripts. We
used speaker SLT, a US English female. To perform a fair comparison between CMU Arctic
and Prosodically Rich Database (PRD), we wanted to create a collection of sentences most
similar to PRD in terms of phoneme sequences. The CMU Arctic contains 1132 utterances
from speaker SLT. For each sentence in the PRD, we find the 10 best sentences from the CMU
corpus that are most similar in terms of their phoneme sequences using a standard string
alignment algorithm (using the Bio.pairwise2.align function from the BioPython library [21]).
Finally, from this collection of 100 x 10 sentences, which can include duplicates, we extract
one from each 10 best sentences that was most frequent in all 100 x 10 sentences. The

end-product is a set of 100 unique sentences.
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4.6.2 Reliability of the Ground Truth

In Section 4.5 we introduced our process of generating the ground truth; in this section we want
to measure the reliability of the ground truth. For any task in which multiple labelers are used,
labelers might disagree about the observed target (i.e., appearance of a PB after a word). In
order to reduce this issue, we took three precisive steps. First, as described in Section 4.5, we
hired master turkers, who have approval ratings of at least 95%, from Amazon Mechanical Turk.
Second, we randomly select three sentences to be annotated twice. A turker that did not have the
exact same annotation for these three sentences was excluded. Third, we hired 15 unique turkers
for each speaker (the two speakers in the PRD and SLT from CMU).

As described in Section 4.5, in each mode we use majority vote to determine the reference
phrase boundary assignment. For measuring how reliable these references are, we need to assess
the inter-labeler agreement. The inter-labeler agreement indicates the difficulty of the task.

There are a number of measures to estimate the inter-labeler agreement. We apply two of them
to ensure reliability of the ground truth. The simplest measure of agreement is Total agreement,
also known as Accuracy. Accuracy is the number of equally labeled words by different turkers,
divided by the total number of words. In our case, accuracy has a bias towards TN (True Negative,
a word that correctly not being labeled as a word followed by a phrase break). The value of TN
tends to be high since most words are not followed by a phrase break. The second measure is

Occurrence agreement which is not affected by T'N.

TP o
TP+ FP+ FN

Occurrence agreement = 100 (4.3)

TP+ TN

Total t =
otal agreemen TP+ PP+ FN TN X

100 (4.4)

In order to assess the inter-labeler agreement, for each sentence, we split the group of 15 turkers
into all possible combinations of two groups with seven and eight members in each (Algorithm 4.2
steps 2-3). We computed the respective unions of the boundary assignments for each group (Al-
gorithm 4.2, steps 5-7), and then computed the group-wise agreement (Algorithm 4.2, steps 8-9)
for these unions measured using the Occurrence agreement (Equation 4.3) and Total agreement
(Equation 4.4). When the turkers are in perfect agreement, the percentage of group-wise agreement
is equal to 100%.

Results of group-wise agreement are presented in Table 4.2. The results show a high agreement

level on average in all five modes. The inter-labeler agreement is higher for the CMU database



CHAPTER 4. INTONATION ANNOTATION USING GENIE 79

Algorithm 4.2 Intergroup raw agreement

1: for S in Sentences do
L+ {l],lg,...,l]5}
A < all 7-combinations of the set L, (?)
for subset in A do
subset® < L - subset
C(subset) + Ufiﬁsa 1;(9)
C(subset®) « J0* 1,(S)
O + Occurrence agreement(C(subset ), C(subset®))
9: T < Total agreement(C(subset),C(subset®))

10: report average of O and T

Total Occurrence
Speaker 1 96.29 80.92
Speaker 2 89.40 79.22
CMU SLT 95.13 87.55

PRD

Table 4.2: Percentages of group-wise agreement

than the PRD database with respect to the occurrence agreement measure. One reason is that the
CMU database was used to create a TTS database and the speaker was instructed to pronounce

the sentences in a news reading style.

4.6.3 Results

In this section we give the results of using GENIE and the duration model to improve the phrase
boundary assignments driven from the three labeling methods. For each speaker, we extract phrase
boundary assignments of each sentence via each labeling method X (X = Expert, Festival, orComb).
Then, we filter out false positives of these assignments using GENIE (Xggng), the duration model
(XPur) and GENIE and the duration model (XZu% ;). In total, we compare 12 assignments
with the ground truth for each sentence. We compare 12 phrase boundary assignments with the
ground truth.

The median F1 scores of the three labeling methods, without use of GENIE or the duration
model, are summarized in top three rows in Table 4.3. In the CMU Arctic database we only
report Festival results, since the labeling results from FExpert were identical to Festival. Based
on the results for the CMU Arctic database, we conclude that both Festival and Expert are highly
accurate in PB~ detection due to high F1 measure (which also implies on reliability of the ground
truth). As for the PRD database, Expert performs better than Festival. This is undoubtedly due

to the experts having access to all the acoustic/prosodic/textual information. There is no surprise
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PRD CMU
Speaker 1 Speaker 2 SLT
FExpert 0.68 0.64 -
Comb 0.40 0.50 -
Festival 0 0.34 0.98
Expertgenie 0.95 0.80
CombggenNIE 0.50 0.42 -
FestivalggnIE 0.21 0.39 0.88
ExpertPur 0.68 0.50 -
CombPvr 0.86 0.50 -
Festival " 0.67 0.45 0.5
Expert2¥ 0.90 0.64 -
Comb2% 11 0.90 1 -
Festival 2% 1 0.90 1 1

Table 4.3: This table summarizes median F1 scores for all 12 methods in comparison with
text+speech ground truth for the three speakers.

that Comb performed worse than Expert and better than Festival.

As we discussed in Section 4.3, we used GENIE to select a subset of the PB~ to get the best
fit of the Fy contour. In Table 4.3, we can see an improvement on the F1 scores (Expertgenie >
Expert, Festivalgenig > Festival), when the speakers were instructed to pronounce the sen-
tences in an exciting-sounding voice (Speaker 1 and Speaker 2), but it did not improve the perfor-
mance of the Comb method (Combgrnrr = Comb). A reason for that is the implementation of
GENIE that we used is an optimization-based method. In the Combggy g method, the number
of optimization parameters increased by combining PB~ labeling of two methods (Festival and
Expert) which caused the model to be overfitted to the Fy contour.

As we discussed in Section 4.4, we used the duration model to select a subset of the PB~ driven
from the three labeling methods. The Expert?*" performed worse than the Expert condition. In
the FestivalP"" case, we see a significant improvement for the PRD (Speaker 1 and Speaker 2);
however, this improvement could not be found in the CMU Arctic database. A reason for that
might be the complexity of the PRD sentences compared to the CMU Arctic database.

While using GENIE and the duration model individually produced minor improvements, their
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— Expert
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Figure 4.1: This figure summarizes the F1 score of each labeling method X (X =
Expert, Festival, or Comb), and their combination with Fy and duration information (XZ&n5)
for the two speakers. Three different colors red, purple, and blue are used to represent results of the
Expert, Comb and Festival methods, respectively. Medians are represented by a solid horizontal
black line.

combination resulted in major improvements especially in the Comb and Festival cases, In Ta-
ble 4.3, compare the numbers in the following pairs: (Ezpert, Expert2¥h5), (Comb, CombE¥y k),
and (Festival, FestivalZ2¥y ;). The experts (as well as Festival) are performing at 0.98 for the
CMU Arctic database, and this performance reaches perfection when GENIE and the duration
model were applied. This almost equality of performance with and without GENIE and the du-
ration model implies that the phrase boundaries of the CMU speaker matched the grammatical
phrase boundaries.

Side-by-side box-plots in Figure 4.1 show the distribution of the F1 score of each labeling
method X, and their combination with GENIE and the duration model (XF¥y, ) for the two
speakers in the PRD database.? We mentioned earlier that the higher number of PB~ candidates
in the Comb method was the reason that C'omb performed worse than Expert (in Figure 4.1a, and
4.1b, compare most left red bot-plot (Expert) with most left purple bot-plot (Comb)). However, in
Comb2¥ 1z, GENIE and the duration model appeared to filter out incorrect PB~ assignments,
resulting in better performance by decreasing the False Positives (in Figure 4.1a, and 4.1b, compare
left purple bot-plot (Comb) with right purple bot-plot (CombE%¥y ;). There is no surprise in
Festival’s performance in PRD since only textual information was used for the Festival based
methods (in Figure 4.1a, and 4.1b, compare most left red bot-plot (Expert) with most left blue bot-

plot (Festival)). However, results for FestivalS%y,;  were as good as the results for CombE2¥y 5

3We computed the F1 score for each sentence, and these boxplots are the distribution of these F1 scores.
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PRD CMU
Speaker 1~ Speaker 2 SLT
(Expert, Expertp"") 0.007 0.733 -
Dur
(Comb, Combp"") 0 0 -
(Festival, FestivalR"") 0 0 0.154

Table 4.4: P-value of Exact Wilcoxon Test between (X, X{"")

which makes the impact of using GENIE and the duration model for filtering out incorrect PB~
assignments generated from Festival labels more interesting. This suggests that the proposed
model has the potential to detect PB~ for a prosodically rich dataset (such as emotional speech)
using only textual information.

We employed the Exact Wilcoxon Test [55] to assess whether the following pairs -— (Expert,
ExpertB¥ 1), (Comb, CombB¥y 1), and (Festival, Festival 2% ;) — were from significantly
different distributions (the P-values are shown in Table 4.4). The reason we chose this statistic
over the standard t-test is that we did not meet the normality assumption for some cases. All

pairs are significantly different in term of F1 score distribution except the following two pairs:

(Expert, ExpertB4; ) in Speaker 2 and (Festival, Festival 2% ;z) in CMU.

4.7 Conclusion

In this chapter, we discussed how prosodic information can be used for improving the detection of
pauseless phrase breaks. Pauseless phrase breaks associate with two surface phenomena: phrase-
final F;y changes and phrase-final lengthening. We used GENIE as an analysis tool to automatically
capture the phrase-final Fjy changes and a duration model to capture the phrase-final lengthening.
We showed that using these models individually produced minor improvements, while combin-
ing them results in a higher agreement between the labeling method and the ground truth. In
prosodically rich speech, we improved the F1 measure by 0.68, 0.47, 0.10 in a paired comparison
for (Festival, FestivalZ¥y ), (Comb, CombB%y ) and (Expert, ExpertE¥y 1), respectively.
An interesting finding was that FestivalZ¥y 5 was as good as CombS %y . This suggests that
with only textual information and using GENIE and the duration model we are able to filter out
incorrect pauseless phrase breaks for prosodically rich datasets (such as emotional speech, and
spontaneous speech).

The above approach, using GENIE and the duration model, has three advantages. First, it uses

very few parameters, making the method usable in cases where few samples are available. This is
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in particular the case when collecting speech data from special populations, such as dialect groups
or individuals with speech or language challenges. Second, it makes use of global as well as local
information available in an utterance. Third, it may allow us to “connect” this line of research
with linguistics research, because the models are grounded in such research. We will further use
the goodness of fit of the implementation of GENIE in the six chapter to differentiate one speaker
group from another.

We limited the search space by not considering the very large space of possible boundary
assignments for a given sentence. We showed using GENIE and the duration model resulted in
major improvements especially in the Festival, which implies that considering such large spaces

may not be needed after all.



Chapter 5

Intonation Generation and Adaptation in

TTS

In the third chapter, we introduced GENIE as an analysis and synthesis tool for English intonation.
In this chapter, we mainly focus on synthesis and discuss how GENIE can be used as an intonation

I In Section 5.2, we

generator model for an English Text-To-Speech (TTS) synthesis system.
propose two methods for generating intonation for English based on GENIE. The first method
is a data-driven foot-based intonation generator (“DRIFT”). The second method is a foot-based
neural network intonation generator (“FONN”) that maps foot-based features to GENIE’s accent
parameters using a simple Artificial Neural Network (ANN). We then turn to intonation adaption
in Section 5.3. We use GENIE as an analysis tool to extract underlying prosodic characteristic
of source and target speaker, then during test we use GENIE as an synthesis tool to generate

target-specific Fyy contours. Finally, in Section 5.4, we give a summary of the main fundings of this

chapter.

5.1 Motivation

Research into the analysis and modeling of speech prosody has increased dramatically in recent
decades, and speech prosody has emerged as a crucial concern for Text-To-Speech (T'TS) synthe-
sis. Every TTS synthesis system needs to model prosodic phenomena to provide both natural
and expressive speech. Hence, we want to investigate are the GENIE-based methods capable of
generating more natural-sounding speech compare to baseline; if yes, can we go further and show

the DRIFT method has potential to be used to generate expressing convincing speech.

IThis chapter is based on work published in 3 papers [34, 29, 31].

84
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The main challenge in generating natural sounding speech is capturing the suprasegmental
properties in Fy movements. For example, in English, standard L+H*L-L% rising peak accents
involve a smooth rise during the course of the accented syllable followed by a descent until the
next accented syllable or phrase boundary [169, 85, 78, 163]. A study by Anumanchipalli explicitly
addressed this issue [6] by considering various phonological units in a statistical parametric speech
synthesis framework, including the frame, syllable, word, accent group, phrase, and sentence.
“Accent group” was defined as a sequence of syllables containing an accented syllable and not
necessarily as a foot, which requires that the first syllable is accented. Anumanchipalli showed that
the best-performing phonological unit in his study was the accent group. However, most HMM-
based synthesizers predict F{y at the frame level using limited linguistic contextual information.
This frame-by-frame prediction of Fy results in an overly-smooth Fy contour that cannot properly
represent the suprasegmental properties of Fy movements. This motivated us to hypothesize that
GENIE has a potential to generate more natural sounding Fj contour than frame-based methods.
We examine this hypothesis in Section 5.2.

One challenge in generating expressive speech is how well an Fy generation method performs
when input text is marked up to create intonation patterns that are not present in the training
data. For example, suppose that one instructs the system, via markup, to convey strong contrastive
stress, can the system create compelling-sounding contrastive stress when the training data do not
contain any instances of contrastive stress? We address this issue in Section 5.2.4.4.

Going further, we also interested to see how GENIE can be used to transfer the perceived
intonational identity of a T'TS voice to that of a target speaker? To clarify, in the case of TTS,
the source speaker is the speaker whose recordings were used to generate the acoustic units (for
unit selection approaches), acoustic inventory (for diphone based synthesis), or acoustic features
for HMM or DNN approaches. This speaker’s recordings may also be used as training data for
prosody mimic. Thus, the speech generated by a TTS system generally sounds like the source
speaker. For prosody mimic, the challenge is to compute a transformation that, when applied
to the speech data or to any representations thereof, generates output speech mimicking a target

speaker.

5.2 Proposing a F; Generation Method for TTS Systems

There are different ways that we can use GENIE in Fj generation. So to be fair, we are ex-
ploring two different ways. After discussing details of the baseline in Section 5.2.1, we propose

two foot-based intonational approaches for Fy generation based on GENIE: DRIFT and FONN
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in Section 5.2.2 and Section 5.2.3, respectively. Then in Section 5.2.4, we compare Fj contours
generated by FONN with the baseline and with DRIFT in a subjective listening experiment with
stimuli created by imposing contours generated by the three methods onto natural speech. In
this test, we also explore the role of sparsity, by comparing test items whose constituent phoneme
sequences, stress patterns, and phrasal structures are well vs. poorly covered by the training data.
This exploration is based on the assumption that FONN and DRIFT are less sensitive to sparsity
than HTS. Since DRIFT uses templates associated with individual curves in the training data,
while FONN computes curves based on multiple observed curves in the training data, we expect
DRIFT to have a relative advantage over FONN in well-covered test data sets because such data
would provide ample stored templates that closely match the test context in terms of the selection
features, but we expect FONN to have a relative advantage over DRIFT in poorly-covered test
data. In a second experiment, we determined the ability of DRIFT to convey contrastive stress.
This served to demonstrate the ability of DRIFT to generate F{, contours from marked-up input

text.

5.2.1 Baseline: Model-driven frame-based intonation generator

Hidden Markov Model (HMM) is a statistical parametric speech synthesis that takes the linguistic
representation of a given text as input and outputs the acoustic features. We use a HMM-based

baseline that is a model-driven frame-based intonation generator for comparison purposes.

5.2.1.1 Intonation model

The multi-space probability distribution (MSD) HMM [102] is a special case of using HMMs to
model observed Fj values. MSD-HMM includes discrete and continuous mixture HMMSs to model
Fy. The state output probability is defined by an MSD, which is a joint distribution of discrete Fj

values and voicing labels [196].

5.2.1.2 Training

We used the HTS toolkit (version 2.2) [199] to perform HMM-based TTS synthesis.? HTS uses the
Festival speech synthesis architecture to extract a sequence of contextual and phonological features
at several levels, such as, for a given utterance, the phrase, word, syllable, phoneme, and frame

levels. As a result, there are many combinations of contextual features to consider when obtaining

2At the time this research was performed, HTS was the dominant method for statistical parametric speech
synthesis.
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models. HTS employs decision-tree (DT) based context clustering for handling a large number of
feature combinations. The left panel in Figure 5.1 shows independent DT-based context clustering

solutions for Fjy and duration, respectively.

5.2.1.3 Synthesis

Synthesis consisted of these steps: A to-be-synthesized sentence was converted into a contextual
label sequence; the utterance HMM was constructed by concatenating the context-dependent state
HMMs given the label sequence; state durations of the utterance HMM were determined [191]; a
sequence of Fy values (one value per frame), including a voiced /unvoiced label, was generated given

the utterance HMM and the state durations.

5.2.2 Data-driven foot-based intonation generator (DRIFT)

In this section, we discuss how DRIFT generates a Fj contour given a text and its duration
information as an input. First in Section 5.2.2.1, we briefly review GENIE, which DRIFT is based
on. Then in Section 5.2.2.2, we describe how we train DRIFT. We build a inventory of parameter
vectors characterizing the individual shapes of GENIE’s component curves; these parameter vectors
are labeled in terms of basic linguistic features. Finally in Section 5.2.2.3, we describe DRIFT
synthesis a Fy contour. For a input text, we generate component curves by retrieving parameter
vectors whose linguistic labels match those of the test and use these vectors to generate Fy curves

with the same duration as those in the test.

5.2.2.1 Intonation model

GENIE was used to decompose a Fj contour. In GENIE, the phrase curve consists of two connected
linear segments, between the phrase start and the start of the final foot, and between the latter and
the end point of phrase, respectively. As we discussed in Section 3.2, GENIE uses a combination of
the skewed normal distribution and the sigmoid function to model three different types of accent
curves. GENIE allows for simple joint optimization of phrase and accent curve parameters using

fewer parameters.

5.2.2.2 Training

For each utterance in the training data (train and test set selection is explained in Sections 5.2.4.1
and 5.2.4.2), we do the following. First, we run Festival to generate accent labels, syllable labels,

and phrase boundaries. Second, we derive the foot structure. Third, we apply GENIE to compute
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the component accent and phrase curves. Fourth, the RWMSE between the accent curve and the
raw accent contour — defined as the raw Fj contour minus the phrase curve — is extracted for
each foot. We exclude any curve that does not meet a certain threshold on fitness error. Fifth,
We create two inventories, one for the accent curves and one the phrase curves, and each uses a
different set of features: Fi.. and Fpp,., respectively.

The accent curve inventory is created as follows. In contrast with HTS, which uses a large
number of features per frame, we only extract five features per foot: phrase type, foot position
in phrase, number of syllables in foot, onset duration of stressed-accented syllable, and rhyme
duration of stressed-accented syllable. We use the first three features for categorizing the accent
curves, and we will use the last two features later on in synthesis part for retrieving closest accent
curves. We store the vector comprising the estimated accent curve parameters and the values of
OD and RD in the inventory. The inventory contains twelve sub-inventories defined in terms of
the Fi.. features AT, Pos, and SNum (middle panel of Figure 5.1). Because the data were not

tagged for yes-no (or any) questions, a yes-no question sub-inventory is not included.

AT : accent type (rise-fall, continuation)

Pos : foot positionin phrase (initial, middle, final)
Face = SNum : number of syllablesin foot (1,2, > 2)

OD : onset duration of stressed accented syllable

RD : rhyme duration of stressed accented syllable

The phrase curve inventory is created as follows. Two contextual features are extracted per
phrase: phrase type and number of foot in phrase. We store the vector consisting of the phrase
curve parameters (phrase start, the start of the final foot in phrase, and phrase end) is stored in
the inventory. Note that if a phrase contains just one foot, then the phrase is modeled by two pa-
rameters (phrase start and phrase end). The inventory contains four sub-inventories, differentiated

in terms of the Fpy, features, PT and FNum.

PT : phrasetype (statement, continunation)

Fppr =
FNum : number of feetinphrase(1,> 1)

In order to determine wether the 12 sub-inventories differ from each other, we performed a
classification experiment. An RBF kernel based SVM [121] was used to classify each pair of

sub-inventories by using these features: all accent curve parameters plus OD and RD. The F'1



CHAPTER 5. INTONATION GENERATION AND ADAPTATION IN TTS 90

average over all inter sub-inventories for continuation- final is 0.4917. This low F'1 score in case
of the continuation class indicates that the accent curve parameters in this category could not be
differentiated through SNum. Therefore, we could ignore SNum and merged the three continuation
sub-inventories into one. For rise-fall the average F'1 score for initial, middle, and final were 0.8228,
0.8595, and 0.6325, respectively. These high F'1 score show that accent curves varied systematically

as a function of the Fj.. features. Therefore, we kept the nine sun-inventories under rise-fall as is.

5.2.2.3 Synthesis

In this method, we run Festival on an input sentence to generate accent labels, syllable labels, and
phrase boundaries. Then, we derive the foot structure, and determine AT, Pos, and SNum for
each foot. The values OD and RD are predicted using forced alignment [159] applied to original
test utterances®. A suitable accent sub-inventory is chosen for that foot by traversing the proposed
DT using the first three features: AT, Pos, and SNum (middle panel of Figure 5.1). We calculate
the Euclidean distance between the OD, and RD of the current foot, and the stored accent curves
in the chosen sub-inventory. The five candidate accent curves with the lowest distance in that
sub-inventory are retrieved. To minimize the differences between successive accent curve heights
in a phrase, we apply a Viterbi search to the sequence of candidate accent curves; the observation
matrix consists of the normalized duration distances and the transition matrix consists of the
normalized accent curve height differences.

For the current phrase, the suitable phrase sub-inventory is chosen by using these two features:
PT and FNum. We use the average of the stored phrase curves parameters in the chosen sub-

inventory as synthetic phrase curve parameters.

5.2.3 Foot-based F{ Generator using Neural Networks (FONN)

In this section, we discuss how FONN generates a F{y contour given a text and its duration informa-
tion as an input. Similar to DRIFT, we use GENIE to compute the component curves. Also we use
similar feature sets as in DRIFT for accent curves. Dissimilar to DRIFT which uses a structured
inventory of accent curve parameters, we use an ANN to compute accent curve parameters. We

describe training and synthesis steps in Section 5.2.3.1 and Section 5.2.3.2, respectively.

3To ensure that the comparison strictly focused on the quality of the Fy contours and was not affected by other
aspects of the synthesis process
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5.2.3.1 Training

Similar to the DRIFT model, for each utterance in the training data we do the following. First, we
run Festival to generate accent labels, syllable labels, and phrase boundaries. Second, we derive the
foot structure. Third, we apply GENIE to compute the component curves. Fourth, we calculate
the RWMSE between the accent curve and the raw accent contour. We exclude any curve that
does not meet a certain threshold on fitness error.

For the fifth step which differs from DRIFT, we store two vectors for each foot, an input and
a target vector. The input vector consists of the features from feature Ei... We normalize the OD
and RD by foot duration. The target vector consists of the parameters of the accent curve. Before
storing the target vector, we normalize the parameters.

We use the input and target vector to train an ANN. The ANN consists of two layers as shown
in the right panel of Figure 5.1. The input dimension is 10 which represents the first three binary
features in Fj.. and the last two features in Fi... The output dimension is 7 which represents the
accent curve parameters. The hidden layer size is 200. The hidden layer uses a sigmoid activation

function and the output layer uses a linear activation function.

5.2.3.2 Synthesis

Like the DRIFT method (Section 5.2.2.3), an input sentence is segmented into phrases, each phrase
is segmented into a foot sequence, and for each foot the Fi.. features are extracted. These feature
vectors are given to the trained ANN sequentially to predict accent curves parameters. We use
the predicted parameters to create accent curves for each foot. In order to create phrase curve, we
use the DRIFT’s phrase inventory by taking average over the stored phrase curves parameters in

the chosen sub-inventory.

5.2.4 Experiments

We ran two experiments to evaluate the performance of the three intonation generation approaches
subjectively: the first test measured the naturalness and the second test measured the ability to
convey contrastive stress. We used Amazon Mechanical Turk [15], with turkers who have approval

ratings of at least 95% and were located in the United States.

5.2.4.1 Database

We use the CMU Arctic speech database [75]. The database was automatically labeled via CMU
Sphinx using the FestVox labeling scripts. We use speaker SLT, a US English female. This corpus



CHAPTER 5. INTONATION GENERATION AND ADAPTATION IN TTS 92

Algorithm 5.1 Automatic selection of test data
1: for 2000 iterations do
A + Choose 50% of database randomly for training set
for each token in A do
Frqtoken] < Extract the frequency of token

B + database - A
for S in B do
C' + Replace tokens of the S with number from Frq)
x1 < median of the C divided by mazximum of the C
x2 < number of zeroes in the C divided by totall number of tokens in the S
DisWell < Euclidean((1,0)(x1,22))
DisPoor < Euclidean((0,1)(x1,22))

Well < Choose 50 sentences with lowest DisWell

13: Poor < Choose 50 sentences with lowest DisPoor

14: well SET < Choose 50 more frequent sentences from Wells

15: poor SET + Choose 50 more frequent sentences from Poors

16: randomSET < Choose 50 sentences randomly from remaining data
17: trainSET < remaining data

R e A R o

=
= O

—
»

contains 1132 utterances, which are recorded at 16bit 32KHz, in one channel.

5.2.4.2 Set coverage

In data driven approaches, data sparsity is a pervasive challenge [135]. We want to evaluate the
impact of sparsity on the three methods by using a test data selection algorithm. We create three
test sets that differ in terms of how they are covered by train set. Units used to compute coverage
included the diphone, which is commonly used as a feature for set coverage [79] because it does
not have sparsity of triphone and context independency of phonemes. They also included prosodic
context via syllable (lexical) stress and word accent labels. Thus, each sentence was represented
as a sequence of diphone/stress/accent tokens. We are interest to investigate the effect of whether
train and test set are matched in terms of coverage of those tokens. We created four subsets of
data: trainSET, containing training data; wellSET, containing test data that are well covered by
trainSET; poorSET, containing test data that are poorly covered by trainSET; and randomSET,
a random selection from the test data.

We create an algorithm (Algorithm 5.1) to select the four subsets. We randomly select half of
database as a train set (A), and we calculate and store the occurrence frequency of each token.
(Algorithm 5.1 step from 2 to 5). Then, for each sentence in the remaining data (B) we do
followings. First, we replace each token in the sentence with its occurrence frequency value in
A or with zero. Second, we calculate two distance metrics, DisWell and DisPoor, to measure

the sentence coverage by A (Algorithm 5.1 step from 7 to 10). For example, if the sentence is
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well covered by A, we expect to have low DisWell value and high DisPoor value, and vice-versa.
Lower a distance the stronger evidence that how the sentence is covered by A. Third, we choose
50 sentences with lowest DisWell value and 50 sentences with lowest DisPoor value for well test
set and poor test set (Algorithm 5.1 steps 12 and 13).

Since a randomization is involved, we need to repeat the process several times in order to lend
credibility of the data selection. At the end of iterations, we select more frequent sentences of each

sets from all iterations as the final sets (Algorithm 5.1 step from 14 to end).

5.2.4.3 Naturalness test

We ran three separate tests to compare each pair of three synthesis methods (HTS vs. DRIFT,
HTS vs. FONN, and DRIFT vs. FONN). For each pair, we used a comparison test to evaluate the
naturalness of the Fjy contours synthesized by the two methods. In this test, turkers heard two
stimuli with the same content back-to-back and then were asked which they prefer using a five-
point scale consisting of -2 (definitely First one), -1 (probably First one), 0 (unsure), +1 (probably
Second one), +2 (definitely Second one). We randomly switched the order of the two stimuli. The
experiment included 50 utterance pairs for each of the three test sets (total 150 pairs). Three
control utterance pairs, which were trivial to judge, were added to the experiment to filter out
unreliable turkers. Each turker only judged pairs from one test set (i.e., poorSET, randomSET,
and wellSET). We employed a total of 150 turkers.

We evaluated the two approaches by imposing the Fjy contours generated by the two approaches
onto recorded natural speech, thereby ensuring that the comparison strictly focused on the quality
of the Fjy contours and was not affected by other aspects of the synthesis process. To ensure that the
Fy contours were properly aligned with the phonetic segment boundaries of the natural utterances,
the contours were time warped such that the predicted phonetic segment boundaries corresponded
to the segment boundaries of the natural utterances. Note that the predicted phonetic segment
boundaries were the same for the two approaches. To compute the segment boundaries of the
natural utterances, we used the HTS state durations and phoneme durations. Finally, we used
PSOLA to impose the synthetic contours onto the natural recordings.

Figure 5.2 shows the results of the pairwise comparisons between the naturalness of the Fjy con-
tours synthesized by the two configuration pairs (HT'S-DRIFT, HTS-FONN, and DRIFT- FONN).
In general, perceptual results indicated superior performance of DRIFT and FONN over HTS.
DRIFT performed better than FONN in random and well coverage cases.
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Figure 5.2: Each of the group bars (poor, random, and well) represent the histogram (in percentage
(left y-axis)) of the related preference points: The five-point scale consists of -2 (definitely first
version), -1 (probability first), 0 (unsure), +1 (probability second), +2 (definitely second). The

dotted line and the confidence intervals correspond to the values (right y-axis) computed via
Equation 5.1.
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HTS vs. DRIFT | HTS vs. FONN | DRIFT vs. FONN
ttest t(49) 7.9034 6.7803 -0.6974
Poor p-value FRE FRF -
Randomization mean 1.3277 0.4120 -0.8512
SD 1.2454 1.2189 0.8353
t-test £(49) 5.9978 5.7140 -2.2792
Rendom p-value FEF FEF *
Randomization mean 1.1718 0.2137 -0.1916
SD 1.0709 1.1669 0.9297
ttest t(49) 4.9139 2.0512 -2.3892
Well p-value FRE F3 F3
Randomization 60 0.6584 0.5868 -0.1571
SD 1.4475 0.9291 1.0863

~ p>005 * p<005 *f p<00l = p< 1.0el0

Table 5.1: Results of one-sample t-tests [t-value(df), p-value], and mean and standard deviation
(SD) of the randomization-based t-statistic distribution for three pairwise comparisons in three
test sets that vary in how well they are covered by the training data.

For significance testing, we first computed a score for each utterance using Equation 5.1, and
then, separately for each test set, applied a one-sample t-test (Results are summarized in Table 5.1).
In Equation 5.1, j, n, m, and C}; stand for thej*" utterance in the current test set, the number of
listeners, the number of utterance in the current test set, and the rating of the i listener for the

j*" utterance, respectively, and || indicates the absolute values.

i (C5ilCyal)
=l Cjie{-2,-1,0,1,2} (5.1)
2. (2 (1G5

j=1 1

scorej =

M=

1

Conventional t-test results for the first and second comparisons (Table 5.1, first and second
rows) show that the scores for DRIFT and FONN are significantly better than those for HT'S for
all test sets. The third comparison (Table 5.1, last row) indicates that the scores for DRIFT and
FONN differed significantly from each other for two test sets (random and well), but were the
same for the poorSET. The superiority of FONN over HTS, but not that of DRIFT over HTS, was
reduced in the wellSET.

In order to show the robustness of the t-test results, we also performed a randomization test
for each comparison in each test set. We randomly changed the signs of all ratings, computed
the scores for each utterance, and then calculated the t-statistic. We repeated these steps 2000
times. The means and standard deviations of the resulting distributions are reported in Table 5.1,

confirming the conventionally obtained significance levels. For example, the t-value of the first
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comparison (HTS-DRIFT) for the poorSET is far from chance (e.g., 7.9034 deviates by 6.5757
standard deviations from the randomization mean of 1.3277, for a normal t(49) distribution with
mean 1.3277 and SD of 1.2454, this yields a chance level less than 1.0e — 10).

In another experiment, we performed a test in which we compared the systems based on the
impact of coverage. We first computed a difference score for each utterance, defined by the differ-
ence between the scores for the two approaches, and subsequently performed a two-sample t-test
comparing these difference scores between the poorSET and wellSET data. We only found sta-
tistically significant results for the HTS-FONN comparison (¢(49) = —3.5675, p = 2.8036e — 4,
one-tailed; these results were again confirmed using a randomization test). This result showed a
powerful significant trend for the impact of coverage to be stronger for the HTS approach than for
FONN. Figure 5.2 (gray curve, right y-axis) also showed the results of comparing the two systems

in terms of the impact of coverage of each test set by the trainSET.

5.2.4.4 Testing the ability to synthesize text marked up for contrastive stress

To evaluate the ability of DRIFT to handle marked-up input, we created a contrastive emphasis
test. First, we selected 22 sentences from the test data that contained a pair of noun-adjective
words for which contrastive stress is meaningful. Then, for each of these sentences, we generated
two utterances such that in each utterance one of the two words was emphasized. For example,
for the sentence “This is a red house”, with capitals indicating stress, we considered “This is a
RED house” and “This is a red HOUSE”. We used DRIFT for generating the F; curves, and then
implemented a simple rule whereby we increased and decreased amplitudes of the accent curves
associated with the emphasized and non-emphasized words by multiplication with factors of 3 and
0.5, respectively.

In the perceptual test, each turker was asked to imagine the following situation: “Two people,
John and Mary, are having a dialogue; unfortunately, John is not a good listener so that Mary has
to repeat what she just said, emphasizing the word that John— apparently —got wrong. Your
task is to figure out which word John got wrong.” The experiment was administered to 50 turkers
with each turker judging 44 (22 x 2) sentences. The percentage of emphasized words conveyed
correctly was 84.85%. We also applied the same test for a recorded natural voice (female native
American English speaker) for the 44 sentences, and obtained a nearly identical accuracy of 85.15%.
We concluded that DRIFT’s ability to convey contrastive stress is comparable to that of natural

speech.



CHAPTER 5. INTONATION GENERATION AND ADAPTATION IN TTS 97

5.3 Proposing an F; Adaptation Method for TTS Systems

In this section, we propose a new intonation adaptation method to transform the perceived in-
tonational identity of a TTS voice to that of a target speaker with a small amount of training
data. For modeling intonation, we use GENIE that captures Fyy contours with a small number of
parameters at two levels: the foot level and the phrase level. For generating Fy contours, we used
the DRIFT method which is based on GENIE. Because the number of parameters to be estimated
is relatively small, it is feasible to adapt the speaking style using any mapper function, such as the
Joint distribution Gaussian mixture model (JDGMM). We compare our proposed method with
a baseline adaptation method in which the source Fj contour is transformed linearly such that
the per-utterance mean and variance of the target Fy contour is unaltered; yet, this generated
Fy contour still has the dynamics of the source Fy contour. Thus, in this part we address two
questions. First, is adapting just the mean and SD enough? And, if not, does DRIFT succeed in
capturing extra, dynamic information that is lost in the linear transformation approach?

In Section 5.3.1, after introducing the baseline we briefly review JDGMM. Then in Section 5.3.2,
we discuss how we train the JDGMM mapper, and how we use this mapper on the estimated
source and target component curves derived from DRIFT to generate target Fy contour. Finally,
in Section 5.3.3, we ran two subjective listening experiments (speech similarity and speech quality)

to study the performance of the two methods for two male target speakers.

5.3.1 Intonation Mapping
5.3.1.1 Baseline: Mean-Variance Linear Mapper

In Voice Conversion (VC) and TTS literature, it is often assumed that the Fy mean and stan-
dard deviation (SD) are adequate to capture prosodic style [148]. The most common method for
transforming Fy values is to globally match the average mean and SD of the target speaker’s Fj
contour, while maintaining the dynamic intonation pattern of the source. With this assumption,
intonation can be transformed by mapping log — Fy using a linear transformation, where p and o
represent the average mean and SD of the log — F of the training set [18].

Otarget (

Fmimicked = Fsource - /f"source) + Htarget (52)

USOU’I"CS
For the baseline method, we used a slightly different linear transformation in which the baseline
does not have a training stage. Therefore, in the baseline method p and o represent the mean

and SD of the original utterances of the test set. This assumption gives the linear model a strong
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opportunity to overfit the target speaking style in a given sentence, making it in principle more

effective than the average-mean-and-SD linear mapper.

5.3.1.2 Joint Distribution GMM Mapper

In this section, we present a brief overview of the GMM mapping function [63]. Let X = x4, ..., x,
and Y = yi1,...,y, be sets of parameters vectors for n segments (foot or phrase in the case of
mapping accent parameters or phrase parameters, respectively) from the source and target model.
Note that each vector is normalized using the maximum and minimum values of X and Y. Let
Z = [X,Y] be the joint source-target parameters vector. A GMM represents the distribution using

M multivariate Gaussians;

M
> aN(zitm, Y )

m=1 m

P(z)

where N (2; i, Y ,,) is a normal distribution with mean p,, and covariance ) = of component m.
The prior probability of the component m is represented by a.,,. The parameters of the GMM are
calculated using the Expectation Maximization (EM) algorithm on the joint vector Z.

During transformation, for each component, we estimate the weighted mixture of the maximum

likelihood estimator of the target vector given the source vector for each component;

M zy Ty—1
Jiw) = EY|X = 2] =) wi ()l — Y (@i — )]

x
where wy,

(z;) is a posterior probability that the segment x; belongs to the class described by the

component m.

xTrxr
am N (i 18, >0)
W,zn(l'i) = M ma:a:

> akN(a:i;uz;)

k=1

5.3.2 Intonation Adaptation
5.3.2.1 Mapper Training Procedure

The aim of Fy adaptation is to predict the intonation style of the target speaker with a small
amount of parallel training data, since otherwise one might just as well obtain a complete set of
speech recordings of the target speaker and avoid the transformation process all together. We

randomly select a small set of recordings (section 5.3.3.1, 28 parallel utterances) from the source
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and target speakers. For each utterance, we apply GENIE to decompose the Fj contour of the
utterances into component accent and phrase curves. We use the estimated source and target
accent curve parameters to train a JDGMM mapper with two components (M = 2). This process
is performed similarly for phrase curve parameters. Thus, the mapper operates in the parameter
space defined by the DRIFT model and indirectly mapped source Fj contours onto target Fj

contours (Top block-diagram in Figure 5.3a).

5.3.2.2 Adaptation Procedure

Similar to the DRIFT model, for an input sentence we do the following. First, we run Festival to
generate accent labels, syllable labels, and phrase boundaries. Second, we derive the foot structure,
and determine AT, Pos, and SNum for each foot. Third, we predict the values of OD and RD
using forced alignment applied to the original utterance [10]. Forth, we retrieve the five candidate
source accent curves with the lowest distance in the selected sub—inventory.

For the fifth step which is not part of DRIFT, we apply the accent mapper to each of those five
candidates to predict five transformed accent curves per foot. At the end similar to the DRIFT
model, we apply a Viterbi search to minimize the differences between successive transformed accent
curve heights in a phrase.

For the current phrase, the Fpp, features are extracted. Parameters of the source phrase
are predicted by calculating the average of the stored phrase curves parameters in the selected
sub-inventory. Transformed phrase parameters are estimated by applying the phrase mapper to

predicted source phrase parameters. (Figure 5.3b)

5.3.2.3 Synthesis Procedure

During synthesis, for an input sentence we do the following. First, we apply the mapper to the
source speaker’s DRIFT model parameters (i.e., the parameters that would be used to generate TTS
output during normal operation, see bottom block diagram in Figure 5.3a) to generate predicted
target speaker DRIFT parameters (described in Section 5.3.2.2). Second, we use these predicted
parameters to generate the accent and phrase curves, which are added together to generate a target

Fy contour. Finally, we use this target contour in the process of generating output speech.

5.3.3 Experiments

We ran two tests to perform a subjective evaluation of the intonation generation performance of

the two approaches: the first test measures speech quality and the second test measures speech
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similarity between a stimuli and the target speaker. We used Amazon Mechanical Turk with
turkers who have approval ratings of at least 90% and were located in the United States.

In each test, we evaluated the two approaches by imposing the Fjy contours generated by the two
approaches onto recorded natural speech, thereby ensuring that the comparison strictly focused on
the quality of the Fy contours and was not affected by other aspects of the synthesis process. To
ensure that the F{y contours were properly aligned with the phonetic segment boundaries of the nat-
ural utterance, the contours were time warped so that the predicted phonetic segment boundaries
corresponded to the segment boundaries of the natural utterance. To compute the segment bound-
aries of the natural utterance, we used the phoneme durations predicted by forced al