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Abstract

Assessing multivariate analysis of GWAS for identification of genetic variants in
Alzheimer's Disease

Priya Bhatt

MS, Department of Medical Informatics and Clinical Epidemiology
at Oregon Health and Science University

November 2012

Thesis Advisor: Dr. Beth Wilmot

Alzheimer’s Disease (AD) is the leading cause of dementia in the United States
yet the genetics behind this complex disease remains unclear. With the exception of
Apolipoprotein E e4 (APOE-e4), more than 40 loci have been implicated as common
genetic risk factors of AD but none of these have been confirmed. We completed a
genome wide association study on 567 unrelated participants in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data set. DNA samples were genotyped with the
Illumina Human610-Quad BeadChip and 543,715 single nucleotide polymorphisms
(SNPs) were included after undergoing quality control measures. Genome-wide
association studies (GWASs) have successfully identified genetic associations to
individual phenotypes in a univariate framework across many complex diseases
including AD. However, the effort to detect pleiotropic associations, where multiple
traits are associated with the same genetic loci, is far less common and has never been
tried in an AD GWAS. Two multivariate methods, Principle Components Analysis (PCA)

and Seemingly Unrelated Regression (SUR), were employed to determine the genetic



association of three quantitative correlated endophenotypes of AD. The PCA method
incorporated hippocampal volume, ventricular volume and cognitive memory tests and
the SUR method included hippocampal volume and cognitive memory tests. Our study
identified 23 uniqgue SNPs, with six SNPs found in common between both methods after
adjusting for any biases. The PCA method found 21 SNPs (p-value < 10°) and the SUR
method found eight SNPs (p-value < 107). All of the identified genes have not been
otherwise linked to AD, indicating a multivariate framework can provide new insight to

genetic research of these phenotypes and AD.



Chapter 1: Introduction

1.1 Importance of determining novel genetic variants in AD

Alzheimer’s Disease (AD) accounts for 50 to 80 percent of dementia in the
United States.! In addition to AD’s obvious mental and physical burden on patients,
total payments for care average to three times higher for AD patients than for non-AD
patients. A recent report by the Alzheimer’s Association estimates the number of AD
patients to nearly quadruple by 2050, thus creating a sense of urgency in AD research.’
The general trend for current genome wide association studies (GWASs) of complex
diseases is to collect multiple phenotypes of interest from a single study population and
analyze the phenotypes individually using univariate analysis approach. This framework
is limited because it ignores the possible genetic correlations between different traits
that can help detect genes that have an effect on these multiple traits. These genes can
be important components to understanding a given complex disease, and in our case,
AD.? On the other hand, studying these traits jointly in a multivariate framework, where
we predict the relationship of genetic variants to a number of traits together, can
provide an insight to a complex disease that are not otherwise evident using a
univariate approach. It has been long hypothesized that pleiotropy, where a genetic
variation is associated with multiple traits, is an abundant phenomenon in complex
diseases. By using the multivariate analysis methods to study these pleiotropic effects,
we were able to determine novel genetic variants for AD while implementing and

comparing two different multivariate analysis methods to suggest a promising



multivariate framework. Applying multivariate analysis methods on GWAS studies for
complex diseases, allows future researchers to find additional genetic variants to

enhance their knowledge of their disease of interest.

1.2 Multivariate methods are an innovative approach in AD research

Although past studies have been successful in finding novel genetic variants
associated with AD, it is evident that there is much work to be done.>* Univariate
analysis methods have provided AD researchers with promising results, however we
know this is suboptimal because published research in other complex diseases have
found additional results by jointly analyzing the correlated phenotypes. By using a
multivariate framework, we are able detect pleiotropic associations, where multiple
traits are associated with the same genetic loci. Discovering and understanding these
pleiotropic effects can provide essential clues to the nature and function of the genes
associated with AD. Previous studies strongly suggest that multivariate analysis
methods can identify novel genetic variants associated with AD and push the field of

bioinformatics research in GWAS for complex diseases.

1.3 Specific Aims

There were two specific aims of this study.

1. Identify multiple outcomes as clinical important endophenotypes of AD within an

AD GWAS data set.
2. Identify novel genetic variants by comparing the results from two different

multivariate analysis techniques in the AD GWAS data set.
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Chapter 2: Background

2.1 Understanding Alzheimer’s Disease

Alzheimer’s Disease (AD) is the leading cause of dementia in individuals over the
age of 65 and is the sixth leading cause of death overall in the United States.™” Affecting
approximately 5.4 million Americans today ., AD is a progressive disease gradually
worsening over time. Patients can live anywhere between four and 20 years from the
onset of symptoms depending on age, additional health conditions and the severity of
their AD.! There currently is no cure for AD and despite its prevalence in today’s world,

much about AD remains unknown.

2.1.1 Neuropathology of AD

The brain has over 100 billion neurons that connect and communicate with each
other to create complex networks involved in specific functions and tasks. It is well
known that AD is characterized by the loss to these neurons and synapses in the
cerebral cortex and certain subcortical regions in the brain. Along with the loss of
neurons, there is a build-up of amyloid plaques and neurofibrillary tangles found in the
neuropathology of patients with AD. Amyloid plaques consist of dense, insoluble
deposits of the beta-amyloid protein. Beta-amyloid is a part of a larger protein,
amyloid-precursor protein (APP), which protrudes through the neuron membrane. An
enzyme divides APP, creating the beta-amyloid fragments that migrate together to form

the insoluble plaques. It is unclear whether the excessive amount of beta-amyloid
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protein or a malfunctioning enzyme leads to the formation of amyloid plagues; however
research shows that these plaques are present in AD patients.® Neurofibrillary tangles
are insoluble twisted fibers made of tau, the protein that forms microtubules.
Mutations of the tau protein, as seen in the pathology of AD patients, lead to the

microtubule structures to collapse and result in tangles.’

2.1.2 Risk Factors of AD

A number of risk factors have been identified with AD, where age, family history
and the presence of the Apolipoprotein E e4 (APOE-e4) allele are arguably the most
significant. Though AD is not a part of normal aging, the risk of developing the disease
doubles every five years after the age of 65 and nearly half of those over the age of 85
have AD.® APOE-e4, a form Apolipoprotein E found on chromosome 19, has been found
to be strongly associated with a higher risk for AD.> One allele of APOE-e4 increases the
risk of AD by four and two copies of the APOE-e4 allele increases the risk of AD by ten.
In addition, possession of two copies of the APOE-e4 allele increases the chance of AD

symptoms occurring at a younger age.

2.1.3 Genetics of AD

As of late 2011, 15 GWASs have published results in the field of AD research. All
GWAS results were detected utilizing a univariate framework. Through these univariate
analyses of these GWASs, researchers have been able to identify approximately 40 AD
susceptible loci other than APOE-e4. Recently, however, four additional genes show

significant evidence to be susceptible genes for AD: CLU, CR1, PICALM and BIN1.*%!
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APOQOE-e4 contributes to approximately 27% of the attributed risk where collectively the
other susceptible genes make up for approximately 20% of the attributed risk of AD.™ It
is clear, however, APOE remains the single most important genetic risk factor for AD to

date.

2.1.4 Clinical Criteria for the Diagnosis of AD

The National Institute of Neurological and Communicative Disorders and Stroke
(NINCDS) and the Alzheimer’s Disease and Related Disease Association (ADRDA)
developed criteria for the diagnosis of AD in 1984. These criteria were recently updated
in 2011 because of the significant research advancements that can now contribute to
the diagnosis of AD."* Here, we will step through the outlined criteria by the NINCDS-
ADRDA.*

In order to diagnose AD dementia, patients must first meet the criteria of all-
cause dementia. Dementia is diagnosed when a patient expresses cognitive or
neuropsychiatric symptoms that interfere with their ability to function doing daily
activities or at work and, over time, show a declining level of functionality of these
activities. In addition, patients’ symptoms cannot be explained by delirium or other
major psychiatric disorders. A thorough patient history provided by the patient and a
knowledgeable family member along with bedside examination of the patient’s mental
health and neurophysiological tests must be completed to detect and confirm cognitive
impairment. According to NINDCS-ADRDA, cognitive impairment is defined when
patients show symptoms from at least two of the following domains: inability to

remember new information, poor reasoning and inability to handle complicated tasks,
13



inability to understand visual representations and lack of spatial awareness, poorly
functioning language, changes in personality and behavior. In addition to meeting the
criteria for dementia, patients must also show a gradual onset and of these symptoms
and a clear decline of cognition over time. Patients that also possess the causative
genetic mutation for amyloid precursor protein (APP), Presenilin-1 (PSEN1), or Presenilin-
2 (PSEN2) increases the certainty that the patient’s symptoms is caused by AD pathology.
Finally, despite all examinations that are completed to diagnose AD, the only definite

method of diagnosis is brain autopsy after the patient’s death.™

2.1.5 Neurophysiological Testing of Memory as an Endophenotype for AD

A patient’s inability to remember family members or how to perform daily
activities (ie: balancing their check book) are classic signs of AD. Normally, when a
person learns new information, it is temporary held in short term memory until the
hippocampus consolidates the information into long-term memory."> However, when
the hippocampal region is damaged, the ability to convert from short-term memory to
long-term memory is compromised,*® and thus the patient lacks the ability to
remember. An AD patient’s short-term memory and long-term memory suffer and
there are a number of tests to measure the function of both. In particular, to test a
patient’s general or long-term memory function clinicians use the Rey’s Auditory Verbal
Learning Test — Delayed Recall'” (RAVLT-D) and the Logical Memory Test Il — Delayed

18
|

Recall™ (LMT-D). Other tests can be used to measure a patient’s ability to remain

attentive, executive functioning, language, construction, and reasoning and judgment.
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Since memory loss is a clear symptom of AD, declining scores of these memory tests,
can serve as a strong endophenotype of AD.

RAVLT-D assesses a patient’s verbal learning and memory. Though there are
many variations of this test, patients listen to a list of fifteen words and repeat the
words back to an administrator. They are then given an interference list of words,
where thirty minutes later, patients are asked to recite back as many words they can
from the initial list."> LMT-D asks patients to remember a story told to them by an
administrator thirty minutes later. Administrators look for key words in the story and
the final score is determined by the number of words that are mentioned.?® These
memory tests provide strong evidence of cognitive decline and thus become a critical

endophenotype of AD.

2.1.6 Hippocampal Volume and Ventricular Volume as Endophenotypes

The hippocampal region in the brain plays a vital role in consolidating
information from short-term memory to long-term memory and spatial navigation. The
hippocampal region is one of the first regions to suffer damage in patients with AD,
resulting in memory loss. Hippocampal atrophy could be detected in patients with AD
and mild cognitive impairment (MCI) but not in cognitively normal individuals of the
same age.”’ These rates of atrophy among AD patients range from 3% to 7% per year
where cognitively normal individuals show a maximum atrophy rate of 0.9%.%*?* It has
also been indicated that delayed word recall tests are associated with hippocampal

atrophy in AD patients as well as those with substantial neurofibrillary tangle
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neuropathy.?®> Hippocampal volume, thus, is a crucial neurophysiological
endophenotype of AD.

The ventricular system in the brain consists of numerous structures that hold
cerebrospinal fluid, a colorless body fluid that protects the brain inside of the skull. The
use of ventricular volume to determine the progress of AD has been supported by a
number of recent studies and, in fact, brain atrophy rates are measured by ventricular
expansion and thus an increase of cerebrospinal fluid space in the brain.”® The rate of
ventricular volume change is also highly correlated with the development of senile
plaqgue and neurofibrillary tangles, two structures commonly found in the
neuropathology of AD patients.?’ This evidence proves ventricular volume as a critical

neurophysiological endophenotype of AD.

2.2 Genome-Wide Association Studies

A single nucleotide polymorphism (SNP) is a single base variation that occurs in a
DNA sequence in over one percent of the human population. Since only three to five
percent of the human genome codes for protein, the majority of SNPs are found in non-
protein coding regions. Those SNPs that are within the protein coding regions are of
particular interest because they may change the biological function of the protein. In
humans, common diseases are not caused by a single variation within one gene and
instead are a result of a number of genetic differences in multiple genes while also

taking account for environmental factors and lifestyle choices. It is difficult to
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determine environmental and lifestyle factors’ impact on the disease process, but
studying the genetic predisposition or likelihood of getting a disease is possible.

A genome wide association study (GWAS) aims to identify common genetic
variants that are associated with a given trait or disease in a related or unrelated
population. Often GWASs compare the genetic differences of patients with and
without a given disease. Subjects provide a sample of DNA, typically extracted from
their blood or saliva, from which millions of genetic variants are read using a SNP array.
As opposed to a targeted approach, GWASs investigate the entire genome. Because the
approach is non-candidate driven, GWASs determine the genes that are associated with

a disease or trait but do not indicate which genes are causal.

2.2.1 GWASs of Brain Volume Atrophy and Cognitive Decline
Thus far there are two published GWASs that aim to find genetic association with

2829 and one published GWAS that aims to find association with

hippocampal atrophy
ventricular volume®. The first study, a 2-stage GWAS for hippocampal atrophy,
obtained data from two sources: Multi Institutional Research in Alzheimer’s Genetic
Epidemiology (MIRAGE) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Both datasets were analyzed individually and also in a meta-analysis approach that
included African Americans and Caucasians ethnicities. According to the study’s meta-
analysis results, they identified four genes to be genome-wide significant (p-value <1.0 x
10®).% The second GWAS for hippocampal atrophy identified 25 SNPs that mapped

directly to 13 genes within the ADNI data set. Despite their findings, their analysis

appeared to show some bias in the QQ plot that could have affected their outcome.?’
17



Thus far, one published GWAS that aims to find association with ventricular volume and
other regions in the brain including hippocampal volume. Interestingly, no significant
genetic associations were found with ventricular volume and hippocampal volumes in a
univariate framework.

Lastly, one published GWAS aimed to identify genetic variants associated with
cognitive decline® by merging genetic data from two cohorts, the Religious Orders
Study (ROS) and the Rush Memory and Aging Project (MAP). Their results identified

APOE as genome-wide significant and associated with cognitive decline.
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Chapter 3: Materials and Methods

3.1 Subjects

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) from 2004-2009
consisted of 822 unrelated patients recruited from 57 sites across the United States and

Canada (adni.loni.ucla.edu). It is a multisite longitudinal study in an effort to support

the research and discovery of the development of treatments to help hinder or halt the
progression of AD. ADNI is funded by National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), pharmaceutical companies and non-profit organizations. Written
informed consent was obtained from all participants or their families and a local
institutional review board at each participating site approved the study. Of the 822
patients, there are 478 males and 344 females, 402 patients possess at least one of the
APQOE-e4 allele and they range from ages 55 to 91 at baseline.

ADNI participants were evaluated in six to twelve month intervals over a two to
three year period, depending on the clinical diagnosis of the participant at baseline.
Cognitive assessment was conducted at baseline for each participant. These
neuropsychological tests measure immediate memory, verbal learning and memory,
intelligence, attention and concentration, executive functions and language. In ADNI,
these tests include the Alzheimer’s Disease Assessment Scale — Cognitive®?, the
American National Adult Reading Test>?, the Clock Drawing Test**, the Logical Memory

Test | - Immediate Recall'’, the Digit Span Forward"’, the Digit Span Backward®’, the
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338 the Digit Symbol Substitution Test'’, the

Category Fluency®, the Trail Making Test
Boston Naming Test>, the Logical Memory Test Il - Delayed Recall (LMT-D)*, and the
Rey’s Auditory Verbal Learning Test (RAVLT)®.

In order for events to become permanent memories, these events must be
consolidated by the hippocampus from short-term memory to long-term memory.
However, in an AD brain, the hippocampus is unable to complete the task of converting
these events into long-term memory. Since memory loss is a clear symptom of AD,
declining scores of these memory tests can serve as a strong AD-related
endophenotype. In particular, LMT-D and RVALT- Delayed Recall (RVALT-D) test the
general memory function of a patient by asking a participant to recall a story or a list of
words to the best of their ability after a period of 30 minutes. Though Logical Memory
Test | — Immediate Recall also examines memory, this test focuses the immediate
memory function of a patient. For the purposes of this study, we wished to study the
general memory function and thus chose to incorporate the combined scores of RAVLT-
D and LMT-D as endophenotypes.

Imaging and volumetric data is also available from ADNI. These data were
collected by 1.5 Tesla (T) magnetic resonance imaging (MRI), 3.0 T MRI and positron
emission tomography (PET) imaging methods at qualified data collection sites. MRl is a
structural imaging method and is often considered the preferred neuroimaging method
for AD.*° MRI allows for precise measurements of three-dimensional volumes of

hippocampal, ventricular and other related regions in the brain. Evidence of

hippocampal atrophy, for example, can indicate the progression of AD. 3.0T MRI
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possesses twice the magnetic field strength of 1.5T MRI and is said to provide a better
noise-to-signal ratio to better differentiate gray matter from other tissue in the brain,

! PETis a functional

though 1.5T field strength of MRI is still predominantly used today.*
imaging method that enables clinicians and researchers to examine processes in the
brain in a noninvasive manner.*> For example, PET scans can help show a reduction of
glucose levels in brain regions important in memory. Volumetric data was collected
from all ADNI participants using 1.5T MRI and PET however only 25% of these
participants were also screened with 3T MRI. Participants were screened approximately
every six to twelve months, depending on the clinical diagnosis of the individual. We
chose to limit our data collected using 1.5T MRI because of our interest in the rate of
volume change of the hippocampal and ventricular regions of the brain in contrast to
other biomarkers that can be studied using PET data. We chose to use the 1.5T MRI

over the 3.0T MRI because more participants were screened with the lower magnetic

field strength and therefore maximizing our sample size.

3.2 Clinical Data Cleaning to Determine Clinical Outcomes

When determining inclusion criteria for a GWAS analysis, sample size is an
important factor to consider. In addition to sample size, however, creating a
homogenous sample is equally as crucial. The majority of the patients were of
Caucasian descent (n=763), thus any patients who were not Caucasian, primarily African
American and Latino, were excluded (n=59). Any patients that experienced a stroke

prior to or during the study and any patients who were diagnosed with other forms of
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dementia or Parkinson’s Disease were also excluded from the study (n=126). (Appendix
1, Appendix 3).

In order for the multivariate analysis to be successful, each of the three
correlated quantitative clinical outcomes needed to have sufficient data for each
patient: hippocampal volume, ventricular volume, and memory tests. The brain
volumes were derived from MRI 1.5T imaging data only. From these data, we required
that at least two data points for each patient be present for the averaged volume of the
left and right hippocampal regions and for the averaged volume of the left and right
ventricular regions. Participants also needed scores from the RAVLT-D and LMT-D
cognitive memory tests at baseline in order to be included in this study. Any patients
that lacked sufficient data in either memory test or volumetric data were excluded
(n=75). Lastly, any patients with a genotypic call rate lower than 85% were removed
from the study (n=2). After filtering based on these criteria, 567 participants remained

in the study (Table 1).

Control (n=158) MCI (n=277) AD (n=132)
Gender (M/F) 79/79 178/99 72/60
APOE (E4+/E4-) 44/114 156/121 88/44
Age (mean) 62-90 (75.84) 55-89 (74.51) 55-91 (74.93)

B4+ = patient has at least one APOE e4 allele; E4- = patient does not have an APOE e4 allele

Table 1: Descriptive statistics of Final data set (n=567)
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To normalize the phenotypic data we determined the rate of change for the
average hippocampal volume and the average ventricular volume. These rates of

change required data from two time points and followed Formula 1.

[(Volume at last time point — Volume at first time point)/Volume at first time point]

(Last time point — First time point)
(Formula 1)

The rates of change for both volumes were log-base 2 transformed to obtain a
normal distribution. The two cognitive memory tests, RAVLT-D and LMT-D, were
combined by calculating an average Z-score to improve reliability. As expected, these
three quantitative phenotypic outcome measures were correlated (Table 2, Appendix 3).
Hippocampal volume and ventricular volume were inversely correlated where the
memory tests had nearly the same magnitude of correlation with both brain volumes
but in opposite directions. Individual phenotype-covariate association analyses
assessed which covariates should be incorporated in the model, however because of
their clinical relevance, sex, age and APOE genotype were always included though the

covariates may not have been significant for each phenotype (Appendix 2).
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Age Sex APOE Cognitive Hippocampal Ventricular
8 Genotype Memory Tests Volume Volume

Age 1 -0.050 -0.133 -0.043 -0.048 -0.305

Sex -0.050 1 -0.025 0.005 -0.008 0.115

APOE Genotype | -0.133 -0.025 1 -0.108 -0.301 0.299

Cognitive -0.043 0.005 -0.108 1 0.198 -0.183

Memory Tests

Hippocampal -0.048 -0.008 -0.301 0.198 1 -0.453

Volume
Ventricular -0.305 0.115 0.299 -0.183 -0.453 1

Volume

Table 2: Pearson’s Correlation of Phenotypes and Covariates
Correlation coefficients of the phenotypes (memory tests, hippocampal volume and
ventricular volume) and covariates (age, sex and APOE Genotype)

3.3 Genotypic Data Cleaning to Determine Final Sample Size

Determining the quality of the genetic data is equally as important as studying
the clinical data in a GWAS. ADNI used lllumina 610 Quad array with 620,901 SNP
markers. SNP call rates less than 95%, a minor allele frequency less than 1%, and any
mitochondrial SNPs or CNV markers reduced the number of SNP markers to a final
genotypic data set of 543,715 SNPs. These genotypes were coded under an additive

model as a function of the number of minor alleles (ie: 0, 1, or 2).

3.4 Statistical Analysis Methods

Traditionally GWAS is studied in a univariate framework where SNP markers
predict the outcome of a given trait associated with a given disease. At the time of data
collection for complex diseases, several correlated phenotypes are recorded but usually
studied individually. By joining these correlated phenotypes, we are able to identify

genetic loci that are associated with all of the AD-related phenotypes in the model.

24




Determining genetic association of these phenotypes together can provide
opportunities to find pleiotropic genes that may have a more central role in functional
pathways. In addition, more exact modeling may bring forth to more accurate
predictions of one or more phenotypes within the model (Appendix 4).

The Principle Components Analysis (PCA) method and the Seemingly Unrelated
Regression (SUR) method were chosen for this study and have been successfully
implemented in other complex disease GWAS studies in the past.**** The SUR method
was used as a bivariate approach by implementing the cognitive memory tests and the
rate of change of hippocampal volume as phenotypic outcomes. The PCA also included
the rate of change of ventricular volume as the third outcome. Our significance
threshold was p—value < 10~ for SNPs of interest and however SNPs with strong
association (p—value < 10°®) were further scrutinized. Both methods required the use of

R, version 2.15.0 (http://www.r-project.org). Table 3 highlights the important packages

and functions used in this analysis.

Function Package Version Use

systemfit() Systemfit™ 1.1-12 SUR

prcomp() Basic 2.15.0 PCA

Im() Basic 2.15.0 Linear models
gtscore() GenABEL* 1.7-2 Genomic Control
GetClosestGenelnfo() NCBI2R 1.4.4 Annotation

Table 3: Important R packages and functions
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In addition, SNPs were annotated to the closest RefSeq gene (hg19) on the
chromosome within 100kb. A brief summary of each method and an outline of our

analysis can be found in the following sections.

3.4.1 Bivariate Model: Seemingly Unrelated Regression (SUR)

The SUR model is a system of linear regression models that allows for the
possibility of different predictor variables. By incorporating different explanatory
variables in the model to predict phenotypic traits, we are able to recognize that certain
variables may only predict the outcome of one or some of the phenotypes. In addition,
these linear regression models are “related” by their correlated error terms. A classic
bivariate SUR system can be written as:

i) =[o xlls] L]
Y, 0 X118, &
(Formula 2)

In matrix notation the system can be writtenas Y = X + ¢, where Y is a vector
of phenotypic variables, X is a diagonal matrix of explanatory variables, 8 is the vector
of the coefficients and ¢ is a vector of the residual error terms.

We applied the SUR model to test the association of two correlated quantitative
phenotypes: cognitive memory tests and the rate of change of hippocampal volume.
Though SUR has the capability to incorporate more than two phenotypes in the model,
biologically the rate of change in hippocampal volume and the scores cognitive memory
tests are closely related. It is important to create a meaningful study design by choosing

traits that are not only related to the disease but also are clinically and biologically
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relevant to each other. The phenotypes are predicted by each SNP marker and the
following covariates: age, sex and APOE genotype. In addition, the coefficients for all
variables in the model remained unrestricted. There is no association to either one or
both of the phenotypes under the null hypothesis. We were able to obtain the overall
F-statistic by comparing the observed model to a null model where the SNP coefficients

were zero.

3.4.2 Multivariate Model: Principle Components Analysis (PCA)

The PCA model transforms a set of correlated traits or phenotypes into an equal
number of uncorrelated, or orthogonal, linear combinations called principle
components (PCs). The number of PCs is equivalent to the number of phenotypes
incorporated in the analysis. Each PC is determined by calculating the maximum
variability possible in the data under the constraint that they be orthogonal with the

other PCs (Figure 1).
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(b) '

Figure 1: Graphical representation of how PCs are developed

(a) Determine the best fit line for all your data points and (b) rotate the axis to an
orthogonal plane (c) and determine the best fit line based on this axis. PCA is an
iterative process until 100% of the variation is explained. The number of PCs is
equivalent to the number of phenotypes there are in the analysis. (Figure adapted from
http://www.xIstat.com/en/learning-center/tutorials/principal-coordinate-analysis-pcoa-
with-xIstat.html)

These PCs are then used in a traditional linear regression model where they are
predicted by a SNP marker along with age, sex, and APOE genotype as covariates.
Traditionally the first PCs that explain approximately 80% of the total variance are only
taken into consideration with the belief that the remaining PCs, which explain little of

the variance, are noise and irrelevant. In contrast, in 1998 Hadi & Ling showed that the
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PCs which contribute little to the total variance may nonetheless significantly account
for the variance in the response variable.*’

By applying the PCA model to test the association of three correlated
guantitative phenotypes, cognitive memory tests, the rate of change of hippocampal
volume and the rate of change of ventricular volume, we obtained three PCs that all
acted as individual response variables in a linear regression model. We obtained SNP p-

values for each regression model.
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Chapter 4: Results

4.1 Results from the SUR Method

Two phenotypes were incorporated in this analysis: memory tests and the rate
of change of hippocampal volume. The bivariate SUR model identified eight significant
SNPs with a p-value < 10, with two SNPs having a p-value < 10° (Table 4, Figure 2.). A
QQ Plot of the association results is presented in Figure 3 indicates no significant biases

were present in the data.

—log10(pvalue)

O O Q (] (2] [+] [} (2] (] (2] (2] (2] 0O 0 000000000 O (2]
Tz I 2T T T Z T 2 T T T T T FTZITITTTIIT T2
e = N @ B G Y d @ 22322223200 X <
O - N W a0 NODOWO-N
Chromosome

Figure 2: Manhattan Plot of the results from the SUR method
Manhattan plot of the —log;o of observed p-values. Plots of univariate results can be
found in the Appendix 6.
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Figure 3: QQ Plot of the association results for the SUR method
QQ Plots of univariate results can be found in Appendix 6.

A post-hoc univariate analysis was completed for comparison with the bivariate
SUR model. In the univariate approach, nine SNPs were found to be significantly
associated with the rate of change of hippocampal volume and 11 SNPs were found to
be significantly associated with memory tests (Appendix 6). The top four SNPs in the
univariate analysis for rate of change of hippocampal volume and the top SNP the
univariate analysis for the cognitive memory tests were also found to be highly
significant in the bivariate SUR approach (Table 5-6). No SNPs were found to be
genome-wide significant with a p-value < 10 by the SUR model or the univariate

analyses.
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(b) Univariate Models

P-value (a) Bivariate SUR
Hippocampal Volume Cognitive Memory Test
10" <p<10° 2 1 2
10°<p<10° 6 8 9
10°<p<10™ 70 39 55
TOTAL of SNPs p < 10” 8 9 11
TOTAL of SNPs p < 10* 78 48 66

Table 4: Number of significant SNPs determined by SUR
(a) shows the number of significant SNPs associated with hippocampal volume and
memory tests as determined by the bivariate SUR method. (b) presents the number of
significant SNPs associated with hippocampal volume and memory tests in a univariate

framework

SNP Location

SNP Name F-statistic P-value Closest Gene (bp) Chromosome Location
rs1653725 29.174 4.62E-07 KLHL29 23806335 2p24.1
TCONS_I2_0002

rs6848146 28.313 7.11E-07 1296 132757887 4g28.3
rs788338 26.517 1.75E-06 MYH14 50778543 19913.33
rs7294478 26.240 2.01E-06 C1RL 7266805 12p13.31
rs1511592 26.080 2.17E-06 EGFEM1P 168594416 3026.2
rs10898028 25.552 2.83E-06 FAM181B 82456494 11g14.1
rs492923 24.302 5.28E-06 FAM181B 82478824 11q14.1
rs730165 23.065 9.80E-06 C1RL-AS1 7270804 12p13.31

Table 5: Top associated SNPs determined by the SUR model
List of the significant SNPs associated with hippocampal volume and memory tests as

determined by the bivariate SUR method. Each SNP was mapped to its closest RefSeq

gene (hg19) found within 100kb
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(a) Cognitive Memory Test

SNP Location

SNP Name  Beta Coefficient  P-value Closest Gene (bp) Chromosome Location
rs1653725 -0.291 2.35E-07 KLHL29 23806335 2p24.1
rs10898028 -0.267 6.94E-07 FAM181B 82456494 11q14.1
rs492923 -0.287 1.09E-06 FAM181B 82478824 11q14.1
rs7294478 -0.204 1.38E-06 C1RL-AS1 7266805 12p13.31
rs11233276 -0.233 2.84E-06 FAM181B 82411650 11q14.1
rs1021595 -0.234 2.84E-06 FAM181B 82413892 11q14.1
rs11583823 -0.403 2.85E-06 RUNX3 25299473 1p36
rs717178 -0.212 3.74E-06  LOC100499405 9395920 12p13.31
rs2036135 -0.225 3.75E-06 FAM181B 82448738 11q14.1
rs1432268 -0.244 4.12E-06 KLHL29 23770434 2p24.1
rs4752092 0.202 4.19E-06 TCONS_000183 119448066 10g26.11
48
(b) Hippocampal Volume
SNP Name  Beta Coefficient  P-value Closest Gene SNP ;.s;)ation Chromosome Location
rs6848146 0.00091 1.57E-07 TCONS_I2_0002 132757887 4028.3
1296
rs4533608 -0.003 2.41E-06 -- 154398140 3925.2
rs696854 -0.0014 3.14E-06 GPR149 154102701 3925.2
rs6762590 -0.00145 3.20E-06 GPR149 154124532 3925.2
rs171711 -0.0012 3.30E-06 MIR4280 86471345 5
rs30394 -0.0013 3.93E-06 RASA1 86490293 5q13.3
rs6882746 -0.0007 3.95E-06 -- 31659869 5p13.3
rs11597160 -0.001 4.37E-06 TCONS_000180 132273788 10926.3
71
rs1159082 0.0008 8.66E-06 PPIAP22 20199970 21921.1

Table 6: Top associated SNPs determined by univariate approach
List of the significant SNPs associated with (a) memory tests and (b) hippocampal
volume as determined by the bivariate SUR method. Each SNP was mapped to its
closest RefSeq gene (hg19) found within 100kb.

Multiple significant SNPs mapped to KLHL29, or kelch-like 29 (Drosophila), and

was significantly associated with the both phenotypes by the bivariate SUR approach (p-

value < 4.62 x 10”) and in the univariate analysis for the memory tests (p-value < 2.35 x

107). KLHL29, located on chromosome 2 (Figure 4, Appendix 8), has not yet been
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reported to be associated with hippocampal volume, cognitive memory tests,
ventricular volume or AD but is expressed in brain tissue.

A long non-coding RNA (IncRNA) on chromosome 4, TCONS _[2_00021296, was
highly significantly associated with both phenotypes by the bivariate SUR (p-value < 7.11
x 107) and was also most significant result in the univariate approach for hippocampal
volume (p-value < 1.57 x 107). IncRNAs are strongly implicated to be involved the
regulation of protein-coding genes at both the transcriptional and post-transcriptional
levels, and large number have been identified to affect a various cellular and
developmental pathways. Thus, it would make sense that irregularities in IncRNAs could

contribute to many complex diseases, including AD.*®
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Figure 4: Focus Plot of KLHL29

Additional SNPs, but of lesser significance, are found within the KLHL29 region and are
in linkage disequilibrium thus supporting our result. Region plots of all significantly
determined SNPs are in Appendix 8.
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MYH14, or myosin, heavy chain 14, non-muscle, is a gene that encodes for the
myosin superfamily found on chromosome 19. Myosin-related genes are involved in
actin-dependent motor proteins and regulate cytokinesis, cell polarity and cell molality.
Mutations in MYH14 have been linked to a form of autosomal dominant hearing
impairment and to the neurodegenerative disease, Charcot Marie Tooth disease,
affecting the peripheral nervous system (Appendix 8).* This gene was determined
highly significant by the bivariate SUR method (p-value < 1.75x 10°) and was not found
to be highly significant by either post-hoc univariate analyses.

C1RL, or complement component 1, r subcomponent-like, is found on
chromosome 12 and encodes for a protein belonging to the serine protease family, but
lacks any protease function. It still, however, plays an important role in the
activation/catalytic process of these proteases. C1RL is expressed in a wide range of
human tissue, including but not limited to liver, kidney, pancreas, placenta, lung, and
spleen. Though the biological functions of the gene remain unknown, C1RL could play
roles in the regulation of protease activity in inflammation or immune responses.°
Furthermore, C1RL-AS1, C1RL antisense RNA 1, was also determined highly significant by
the bivariate SUR method (C1RL: p-value < 2.01 x 10°®, CIRL-AS1: p-value < 9.80 x 10°°).

EGFEM1P, EGF-like and EMI domain containing 1, pseudogene, and FAM181B,
family with sequence similarity 181, member B, were also determined highly significant
by the SUR method (EGFEM1P: p-value < 2.17 x 10°®, FAM181B: p-value < 2.83 x 10, p-
value < 5.28 x 10°®). Little is known about these two genes however EGFEM1P is

expressed in the hippocampus.

35



4.2 Results from PCA Method

All three phenotypes were incorporated in this analysis: cognitive memory tests,
the rate of change of hippocampal volume and the rate of change of ventricular volume,
and thus three PCs were studied. Though the first two PCs made up over 81.83% of the
total variance, previous studies have shown that the PCs that account for little of the
total variance are often those that explain the phenotypic variables. Thus all three PCs
were incorporated in our analysis (Table 7). In addition, the PCs explain the joint
variation of multiple phenotypes so the portion of the phenotypic variation that makes
up each PCis unknown. To confirm the variation in the covariates in the PCs were not
biased in one PC to the other, pairwise comparison plots of the three PCs highlighting
the covariates in the model as well as the 57 data collection sites were created

(Appendix 4). The plots did not show any evidence of a bias to any covariate or sites in

the data.
PC Percentage of Variance
PC1 52.72%
PC2 29.1%
PC3 18.17%
All PCs 100%

Table 7: Percentage of Variance explained by each PC
Shows the percentage of variance explained by each PC in the PCA analysis for
hippocampal volume, ventricular volume and memory tests.

QQ plots of the association results for PC3 showed a deviation from normality and
Genomic Control analysis was then performed to account for this bias (Appendix 7).
After the Genomic Control, the PCA multivariate analysis method identified 21

significant SNPs with a p-value < 10 (Table 8, Appendix 7). Of these 21 SNPs, the
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second PC (PC2) was associated with 13 of these SNPs, however none of these SNPs

were found significant at the genome-wide significance threshold. Five SNPs were

found significant in the first PC (PC1), which made up more than half of the total

variation in this analysis. PC3, the PC that accounted for the least variation at 18.17%,

found three significant SNPs, to which all mapped to unique genes. Table 9 shows

remaining the associated SNPs from the PCA method by each PC. Not surprisingly, each

PC uniquely identified a set of significant SNPs that mapped to different genes. We

expect this result because each PC accounts for a distinctive part of the variation in

within the data.

P-value PC1 PC2 PC3
10" <p<10° 0 4 0
10°<p<10° 5 9 3
10°<p<10™ 45 49 35
TOTAL of SNPs p < 10” 5 13 3
TOTAL of SNPs p < 10™ 50 62 38

Table 8: Number of significant SNPs determined by PCA
Shows the number of significant SNPs associated with PC1, PC2 and PC2 determined by

the PCA method.
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(a) PC1
SNP Name P-value Closest Gene SNP Location (bp) Chromosome Location
rs6882746 2.27E-06 - 31659869 5p13.3
rs1253107 2.93E-06 JKAMP 59952947 14g23.1
rs1475394 4.77E-06 LPHN2 82412099 1p31.1
rs30394 5.00E-06 RASA1 86490293 5q13.3
rs10518661  5.16E-06 LPHN2 82381380 1p31.1
(b) PC2
SNP Name P-value Closest Gene SNP Location (bp) Chromosome Location
rs1653725 3.01E-07 KLHL29 23806335 2p24.1
rs7294478 5.75E-07 C1RL-AS1 7266805 12p13.31
rs730165 6.96E-07 C1RL-AS1 7270804 12p13.31
rs10898028  9.32E-07 FAM181B 82456494 11g14.1
rs3782924 1.80E-06 C1RL-AS1 7262154 12p13.31
rs2263090 2.73E-06 SLFN11 33718077 17912
rs9989026 3.02E-06 C1RL 7258451 12p13.31
rs492923 4.30E-06 FAM181B 82478824 11g14.1
rs788338 4.39E-06 MYH14 50778543 19g13.33
rs7498145 4.93E-06 ACSM2B 20547076 16p12.3
rs11681555  5.95E-06 KLHL29 23819830 2p24.1
rs788332 6.27E-06 MYH14 50782462 19g13.33
rs1291361 9.23E-06 HEBP1 13155166 12p13.1
(c) PC3
SNP Name P-value Closest Gene SNP Location (bp) Chromosome Location
rs9684216 6.09E-06 TRIML2 189031028 4qg35.2
rs696854 6.10E-06 GPR149 154102701 3025.2
rs6835799 9.64E-06 SORCS2 7586924 4pl6.1

Table 9: Top associated SNPs determined by the PCA model

List of the significant SNPs associated with (a) PC1 (b) PC2 and (c) PC3 as determined by
the PCA method. Each SNP was mapped to its closest RefSeq gene (hg19) found within
100kb.

4.2.1 Mapped genes significantly associated to PC1

Four of the five SNPs determined by PC1 mapped to genes within 100kb of the
SNP. JKAMP, JNK1/MAPK8-associated membrane protein, found on chromosome 14 (p-
value < 2.93 x 10°®) encodes a protein located within the endoplasmic reticulum and aids
in the degradation of misfolded proteins by recruiting proteasomes and the components

involved in endoplasmic-reticulum-associated protein degradation (ERAD).>!

38



Abnormally functioning JKAMP could prevent ERAD from eradicating misfolded proteins
and potentially lead to oxidative stress and cell death which has been suggested to be
related to AD, Parkinson’s Disease, and diabetes.>

LPHN2, Latrophilin-2, is a member of the latrophilin subfamily of G-protein
coupled receptors and was associated to PC1 in our analysis (p-value < 5.16 x 10°).
Latrophilins are suggested to function in cell adhesion and signal transduction. LPHN2 a
candidate gene for its involvement in the development of breast cancer however it’s
specific role remains unidentified.”

RASA1, or RAS p21 protein activator 1, was the third gene found significantly
associated with PC1 (p-value < 5.00 x 10®). The gene encodes for a protein that is
responsible for inactivating the Ras protein, which is involved in cellular signal
transduction. Mutations of the RASA1 gene have been linked to capillary malformation-
arteriovenous malformation syndrome (CM-AVM) and Parkes Weber syndrome. CM-
AVM is characterized by enlarged capillaries that increase blood flow close to the skin’s
surface and vascular abnormalities that affect blood circulation that can lead to
abnormal bleeding, seizures, heart failure and even death. Parkes Weber syndrome
presents similar vascular abnormalities to CM-AVM and also usually involves the over

growth of one limb. Mutations in RASA1 have not yet been linked to AD.>*>

4.2.2 Mapped genes significantly associated to PC2
Significant genetic variants associated with PC2 mapped to eight unique genes.

Of these eight genes, five genes (KLHL29, C1RL-AS1, FAM181B, C1RL and MYH14) were
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also found to be associated with the joint association of hippocampal volume and the
cognitive memory tests in the bivariate SUR model.

Found on chromosome 17, SLFN11, or Schlafen-11, (p-value < 2.73 x 10°) has
been recently identified to selectively inhibit HIV protein expression. Though the
specific mechanism is unknown, the natural inhibition of HIV protein synthesis could
point to why some HIV-positive patients never experience the symptoms of AIDs.>®

ACSM2B, acyl-CoA synthetase medium-chain family member 2B, (p-value < 4.93 x
10°) is one of five genes that encode for enzymes that catalyze the activation of
medium chain length fatty acids. The gene is highly expressed in the liver and kidney
and studies have linked this gene to traits of insulin resistance syndrome and type 2
diabetes.>’

HEBP1, or heme binding protein 1, (p-value < 9.23 x 10®) may be involved in
heme regulation or biosynthesis. It is also involved in the pathway to generate F2L, a
crucial protein required for tissue repaired and regulation of the inflammatory process.

HEBP1 is widely expressed in human tissue, including brain.>®

4.2.3 Mapped Genes significantly associated to PC3

Three genetic variants associated with PC3 mapped to three unique genes:
TRIML2 (p-value < 6.09 x 10°®), GPR149 (p-value < 6.10 x 10°) and SORC2 (p-value < 9.64
x 10°). TRIML2, tripartite motif family-like 2, has yet to be associated with AD or the
phenotypes discussed in this study. Little is also known about GPR149, G protein-

coupled receptor 149, however the deletion of this gene increases fertility in mice.
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SORCS2, or sortilin-related VPS10 domain containing receptor 2, is found on
chromosome 4 and is highly expressed in human brain tissue (Appendix 8). As part of
the related VPS10-domain receptor family, SORCS2 is one of five type 1 transmembrane
proteins that interact with neurotrophins and neuropeptides. Lastly, family members of

SORCS2, SORCS1 and SorlLA, have been implicated to be associated with AD.

4.3 Common Findings of SUR and PCA

There were six highly significant SNPs found by both the SUR and the PCA
methods. These SNPs mapped to four genes: KLHL29, FAM181B, C1RL-AS1, MYH14.

Interestingly, all six SNPs were significantly associated with PC2 of the PCA method

(Table 10).
Chromosome | Gene P-values (PC2) P-values (SUR)
2 KLHL29
rs1653725 3.01x 107 4.62x107
11 FAM181B
rs10898028 9.31x 10" 2.83x10°
rs492923 430x10° 5.28 x 10°®
12 C1RL-AS1
rs7294478 5.75x 107 2.01x10°
rs730165 6.96 x 107 9.80x 10°®
19 MYH14
rs788338 439x10° 1.75x 10°

Table 10: Common genes found by both methods
Shows the four common genes, that mapped to six SNPs associated to PC2 in the PCA
method and hippocampal volume and memory tests in the bivariate SUR method.
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None of these genes have been previously implicated to be associated with AD,
hippocampal atrophy, ventricular volume, or cognitive memory tests. These genes
warrant follow-up studies to understand their involvement in relation to AD, or at least

one or more of the phenotypes in the study.
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Chapter 5: Conclusions

We employed two multivariate methods that allow for correlated quantitative
phenotypes that are clinically relevant to AD. Both methods handle correlated
phenotypes differently. With the SUR method, it is possible to have different linear
regression models for each phenotype while retaining the correlation between the error
terms.. The PCA method transforms the correlated phenotypes to uncorrelated, or
orthogonal, linear combinations called PCs that serve as the response variable in a linear
regression model. To our knowledge this is the first multivariate analysis study of an AD
GWAS with unrelated subjects.

Our GWAS results show that carefully studying the relationship of quantitative
endophenotypes with AD strongly promotes the identification of new genetic variants.
The bivariate SUR model discovered eight SNPs that have not previously been found.
These significant SNPs show a pleiotropic effect on the rate of change in hippocampal
volume and cognitive memory tests, a phenomenon known to be ubiquitous in complex
diseases like AD. In addition, the bivariate SUR model showed a strong association to
SNPs that were the top hit in the post-hoc univariate analyses of both traits. The
multivariate PCA model found 21 associated SNPs: five SNPs were associated with PC1,
13 SNPs were associated with PC2, and three SNPs were associated with PC3. As
previously noted, traditionally the first PCs that account for 80% or more of the total
variance are analyzed further with the notion that the remaining PCs are noise within

the data, however others indicate that PCs that explain the little amount of the total
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variance are often those that explain SNP association with the response variables. By
including PC3 in our analysis, we determined three significant SNPs, each of which
uniquely mapped to a gene. The SUR method determined eight unique genes and the
PCA model identified 16 unique genes none of which have been previously identified to
be associated with the hippocampal volume, ventricular volume, cognitive memory
tests or AD.

As previously mentioned, two published GWASs studied genetic association with
hippocampal volume, one published GWAS studied the genetic association with
ventricular volume and one published GWAS studied the genetic associated with
cognitive decline or memory. All of these studies were conducted using a univariate
framework. Of these studies, the GWASs for ventricular volume® and cognitive
decline®! did not identify any novel genetic variants. The two GWASs determining
association to hippocampal volume identified 17 genes together, none of which were

2829 The first GWAS study for hippocampal volume identified

identified in our study.
novel four gene regions as a result of testing the association of imputed SNPs.”® The
second GWAS study identified novel 13 genes to be associated with hippocampal
volume, however there was a significant bias in their association results, as depicted by
their QQ Plots.”® The study did not correct for the bias and warrants further scrutiny of
their results.

In addition to these studies there have been a number of published GWASs, yet

the results of our study remain unique. Determining genetic association in AD is

complex because it accounts for multiple factors. Our study focuses on testing for the
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association of two or three AD-related traits together, choosing to remove many other
factors that impact the disease.

Examining phenotypic traits provide a more focused approach to studying
complex disease like AD by avoiding any variability or noise in the traits for which we
hope to find genetic association. A possible explanation as to why these results have
not been otherwise identified could attest to our careful outcome selection and
exclusion criteria to obtain a clean phenotypic data. Our results show that using
multivariate analysis methods in an AD GWAS can bring out associations for correlated
guantitative phenotypes and further characterize the nature of these complex diseases.
Just as multiple traits help define a disease, these SNPs that are associated to multiple
traits can provide insight to how these traits define a disease and warrant follow-up
research. Our findings in this study need to be replicated in a similar cohort that

possesses imaging, clinical and genotypic data.

5.1 Further work

The PCA method allows us to detect SNPs that are associated with the
phenotypes we selected; however because of the unique joint nature of this analysis the
relationship of the SNP to a given phenotype is unknown. Further research into the
specific variation comprising each PC may improve our understanding of the
relationships of the SNPs and the phenotypes.

AD impacts millions of Americans today. Our approach identified a number of
novel genetic variants. By targeting phenotypic traits that are strongly associated with

AD and analyzing them in two different multivariate methods, we were able to identify a
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number of novel genetic variants. Uncovering genetic variants can further our
understanding and provides new targets for treatment to the millions of people affected

by AD in addition to advancing the fields of bioinformatics and AD research.
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Appendix 1: Inventory of ADNI Clinical Files

All data files described here can be retrieved with special permission from ADNI
administrators (adni.loni.ucla.edu).

Appendix 1 is designed to provide an overview of the clinical data present in the ADNI
data set. | have organized the information by file name where | have provided the
information from the initial ADNI protocol to obtain the data (when applicable and/or
available), the background and detailed information of the data itself.

adni_adas_2009-09-01.csv

Alzheimer’s Disease Assessment Scale (ADAS) - Cognitive
* Brief cognitive test to assess learning and memory, language production,
language comprehension, constructional praxis, ideational praxis and orientation
* This test is not timed.

adni_adasscores_2009_09_01.csv

* Scores from adni_adas_2009-09-01.csv
0 Ql: Word Recall = Score = 10 — (average of 3 trials)
0 Q2: Commands = Score =5 — (# of commands correctly completed)
0 Q3: Construction = Score = 4 — (# of constructions correctly drawn)
= Score of 5 means none were correct
Q4: Delayed Word Recall >Score = 10 — (# remembered )
0 Q5: Naming = Score = 17 — (# correctly named)
= Score of 18 = none
O Q6: Ideational Praxis = Score =5 — (#correctly completed)
= Score of 6 =none
0 Q7: Orientation = Score = 8 (#correctly)
= Score of 9 = none

@]

0 Q8: Word Recognition = Score = 12 — (#correct)
= Score of 12 = none
O Q9: Recall Instructions = Score = 0 if no help, 1 if need help
0 Q10: Spoken Language = Score = 0 if no help, 1 if need help
0 Q11: Word Finding = Score =0 if none, 1 impaired
0 Q12: Comprehension = Score =0 if none, 1 impaired
0 Ql13:Nodata
0 Q14: Number Cancellation

* TOTAL11: all Qs except for Q4 and Q14
* TOTALMOD: all Qs
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adni_addcomm_2009-09-01.csv

e Additional comments
adni_adsxlist_2009-09-01.csv

* List of symptoms/diagnosis
* Nausea, vomiting, diarrhea, constipation, abdominal discomfort, sweating,
dizziness, low energy, drowsiness, blurred vision, headache, dry mouth,
shortness of breath, coughing, palpitations, chest pains, urinary discomfort,
urinary frequency, ankle swelling, musculoskeletal pain, rash, insomnia,
depressed mood, crying, elevated mood, wandering, fall.
0 1=present, 0=absent

adni_apoeres_2009-09-01.csv

* Results of APOE genotyping
* Genotypes of both alleles
* Info of how blood was handled

adni_arm_2009-09-01.csv

* Gives diagnosis (NL, MCI, or AD) and scan assignment
* (1.5 Tesla MRl only PET & 1.5T MRI, 1.5T MRI & 3T MRI)
0 Diagnosis
= NL:1&4&7
= MCl:2&5&8
= AD:3&6&9
O Scan assignment
= 15TMRlonly:1&2&3
= PET&1.5MRI:4&5&6
= 15TMRI&3T:7&8&9

adni_biomark_2009-090-01.csv

* Information about biomarker samples
* 4 biomarker samples: blood (serum), plasma, urine, cerebrospinal fluid (CSF)
0 Each biomarker has info for time of collection, amount collected,
centrifuged time, transfer time, volume transferred, time frozen

adni-blchange_2009-09-01.csv

* Overall summary to explain if there was a “clinically relevant” change ( in
relation to baseline) overtime (ie: changes in MMSE. ADAS, etc.)
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adni_blscheck_2009-09-01.csv

¢ checklist of symptoms at baseline

* nausea, vomiting, diarrhea, constipation, abdominal discomfort, sweating,
dizziness, low energy, drowsiness, blurred vision, headache, dry mouth,
shortness of breath, coughing, palpitations, chest pains, urinary discomfort,
urinary frequency, ankle swelling, musculoskeletal pain, rash, insomnia,
depressed mood, crying, elevated mood, wandering, fall

adni_cdr_2009-09-01.csv

* Clinical Dementia Rating (CDR): numeric scale to quantify severity of symptoms
of dementia
* 6 Categories: Memory, Orientation, Judgment, Problem Solving, Community
Affairs, Home & Hobbies, Personal Care
0 Memory is primary, remaining categories are secondary
* CDR Score = Memory (M) if 3 secondary categories are given same scores as

memory.
CDR Composite Rating Symptoms
0 None
0.5 Very mild
1 Mild
2 Moderate
3 Severe

* conducted at every clinic visit after month 6 visit
adni_faqg_2009-09-01.csv
* measures activities of daily living(can patient do it w/o assistance
O ie: writing checks, shopping, playing bridge/chess etc
* administered at baseline & every subsequent in clinic visit
adni_fhq_2009-09-01.csv
e provide info of whether mother/father suffered from dementia and/or AD

adni_gdscale_2009-09-01.csv

* ADNI uses shorter version of GDS. Originally GDS is a 30 item questionnaire used
to identify depression in the elderly.
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* Completed at screen, 12 months, 24 months, 36months
* Ascore of > 5 indicates further examination for depression is required (for
shorter version only)(SEE TOTALSCORE COLUMN)

adni_hcres_2009-09-01csv

* Evidence from observational epidemiological studies suggest that higher levels of
plasma total homocysteine may be associated with inc. risk of AD.(and also
stroke & Parkinson’s Disease)

* Ranges: Female 4.9 — 11.6 umol/L, elevated > 10.4 pumol/L

Male : 5.9 — 15.3 umol/L, elevated > 11.4 pmol/L
* This file gives amount of total plasma homocysteine in umol/L.

adni_inclusio_2009-0901.csv

* Alist of questions, where the answers determines patient’s inclusion in the study
* Completed at screening phase.

adni_indfemog_2009-09-01.csv

* Provides demographic info of patient’s study partner (gender, occupation,
relationship to patient)

adni_labtests_2009-09-01.csv

* Tests completed at c=screening
* Blood & urine

adni_loclab_2009-09-01.csv
* From CSF, WBC count, RBC count, protein results(mg/dL), glucose results(mg/dL)
adni_medhist_2009-09-01.csv

* Avyes/no response if the patient has a clinically significant history of problems in
the area
* Completed at screening.

adni_mmse_2009-09-01.csv

* Test used to screen for cognitive impairment
* Scores range from 0 — 30
0 225isconsidered normal
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adni_

adni_

adni_

adni_

adni_

adni_

0 <10is considered severe impairment

0 10-19is considered moderate impairment

O 19-24is considered mild impairment /AD
MMSCORE = Total score in the data file

modhach_2009-09-01.csv

Modified Hachinski: test used to screen/differentiate vascular dementia from
degenerative forms.

>7 = vascular dementia

HMSCORE = total score in the data file.

mri3meta_2009-09-01.csv

3T MRI Scan Information

Follows the ADNI MRI Tech Procedure Manual (pages 21 — 27)

For each step in manual a yes/no record was kept to indicate what was
completed/not completed for the given patient

mrib1calib_2009-09-01.csv

MRI B1 Calibration
Head coil or body

mrimeta_2009-09-01.csv

1.5T MRI Scan Information

Follows the ADNI MRI Tech Procedure Manual (pages 21 — 27)

For each step in manual a yes/no record was kept to indicate what was
completed/not completed for the given patient

mrimpro_2009-09-01.csv

MPRAGE Process (T1 weighted, vcommon)
Provides information regarding the scanning process
More necessary info is in adni_mrimprank

mrimprank_2009-09-01.csv
MPRAGE RANKING

0 Ranks the quality of the scan
Also have the monthly visits
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adni_mrinclusio_2009-09-01.csv

* MRI Subject inclusion—> can patient be in study?
* Information regarding scan type (1.5T/3T) and any medical image issues
0 Surgery, infarction, hemorrhage, trauma, devanomaly, metallic, lesion,
nph, atrophy, edema
* Indicates if patient “passes” and if they can continue in study (based on MRI scan
alone)

adni_mriphantom_2009-09-01.csv

* MRI phantom (QC)
0 Tests performance of MRI system
O PRESENT data field indicates if system was present & accurate or not

adni_mriprot_2009-09-01.csv

* MRI Protocol
0 Appears to test quality of images
0 Appears to provide info for what technology was used & if scan passed.

adni_mriquality_2009-09-01.csv
*  MRI Quality
adni_mriread_2009-09-01.csv

* MRI Clinical Read:

* Indicates if the patient was screened with 1.5T/3T/ or both

* Indicated if patient is compatible with inclusion/exclusion criteria
* Indicated if patient is clinically suitable to remain in study.

adni_neurobat_2009-09-01.csv

* Neuropsychological Battery
0 Assessment of possible physical aspects of neurological damage
Clock Drawing Test (pg. 88 — 89)
O Recorded yes /no results based on drawings.
Logical Memory Test 1 —immediate recall (pg.91)
0 Patient must recall immediately (verbatim) a story that was just read to
them.
Digit Span Forward (pg.92)
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0 Used to test working memory by reading # sequence & asking patient to
repeat
O Total score is # patient got correct
0 Forward length is the length of highest digit sequence patient was able to
repeat back.
* Digit Span Backward (pg.93-94)
0 Used to test working memory by reading # sequences to the patients &
asking to repeat the backwards.
0 Total score(DSPANBAC) is total # patient got correct
0 Backward (DSPANLTH) is the length of highest digit sequence patient was
able to say in reverse.
* Category Fluency Test (pg. 95-96)
0 Used to measure semantic memory (verbal fluency, language)
0 Patient asked to give examples of a given topic in an allotted amount of
time ( 60 seconds)
0 The adequate number of responses is dependent on age

Age #Response(adequate)
<65-69 15
70-74 15
75-79 14
80-84 13
85> 11

0 1% Topic: Animals (CARANIMSC)
0 2" Topic: Vegetables (CATVEGESC)

* Trail Making Test (pg. 97 — 98)
0 Test of processing speed & executive function
O PartA
= Ask patient to connect dot #1 — 25 in order in 150second
= Scoring based on the time it takes. (TRAASCOR)
O PartB
= Ask patient to connect dots #1 — 13 & A - L alternating in order in
300 seconds
= Scoring based on the time it takes. (TRABSCOR)
O ForA&Berrors
= Errors of commission: connects dots in the incorrect sequence
each occurrence is marked
= Error of omission: fails to draw connecting line between 2 dots in
the correct sequence. Occurs when patient runs out of time
0 Scoring Thresholds
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Avg. Score Deficient Rule of Thumb

Part A 29sec >78sec Most in 90 sec
Part B 75sec >273sec Most in 3 min

Digit Symbol Substitution Test (pg.99)
0 Test sensitive to brain damage, dementia, age, depression
0 90 second timed test
O Total # points max is 93
Logical Memory Test II- Delayed recall (pg.100)
0 Scoring same as logical MT I.
Boston Naming Test (pg. 100 — bottom)
0 Tests the ability to name line drawings of objects
0 Only odd # problems were used in ADNI testing
0 Max score =30 (in ADNI)
0 If semantic or phonemic, clues were given, it is recorded.
American National Adult Reading Test — ANART (pg. 87)
0 Tests ability to correctly read & pronounce words
O Score # correct, # incorrect

adni_neuroexm_2009-09-01.csv

Neurological Exam

Completed at screening

Abs/pres: visual impairment, auditory impairment, tremor
Norm/Abnorm: Level of consciousness, cranial nerves, motor strength,
cerebellar- fingers to nose, cerebellar — heel to shin, sensory, deep tendon
reflexes, plantar reflexes, gait.

adni_npig_2009-09-01.csv

Neuropsychiatric Inventory Q
0 Yes/no or none/mild/moderate/severe assessment of patient based on
their responses to questions.ie: Does patient believe others are stealing
from them? Does patient act as if they hear voices?

adni_pdxconv_2009-09-01.csv

Diagnostic Summary
Completed Bl, M6, M12, M24, M36
1. indicates current diagnosis. (NL, MCI, AD)
2. Indicates a conversion (NL=>MCI, NL=>AD, MCI=>AD) or a reversion (MCI>NL,
AD->NL, AD>MCI)
3. Describes the MClI, AD, or other dementia or Parkinson’s
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adni_petmeta_2009-09-01.csv

* PET Scan Information
* Prior to PET scan plasma (10 vials) were given to each patient.
* File provides info of plasma, as well as details of the scanning process.

adni_petqc_2009-09-01.csv

* PET QC Tracking
* Indicates if PET scans are acceptable & which frames, if any are unacceptable.
*  Whether scans pass QC.

adni_physical_2009-09-01.csv (pg 108)

* Physical Exam
* Completed at screening
* normal/abnormal responses assessed by clinician

adni_pibmeta_2009-09-01.csv

* PiB Scan information

e MCIn=48, ADn=24, NLn=24

* PET scans using Pittsburg Compound B (PiB) (used to image B-amyloid plaques in
neuronal tissue)

* [Indicates scanner info, PiB dose, motion issues

adni_pibgc_2009-09-01.csv

* PiB QC Tracking
* Indicates if PET scans W/ PiB are acceptable or not & if scans pass QC

adni_ptdemop_2009-09-01.csv

* Participant Demographic Information

* Completed at screening

* Gender, DOB, handedness, marital status, education, mental retardation,
primary occupation, most recent occupation, retired date, type of residence,
language for testing, primary language, year of onset for AD symptoms, ethnicity,
race
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adni_recadv_2009-09-01.csv

* Adverse Events/Hospitalizations Log

* Record of all new symptoms & all symptoms that worsen in frequency or severity.

* Indicates info, such as if patient went to a hospital because of event, if it was life
threatening, medication changes or new prescribed

adni_recbllog_2009-09-01.csv
* Documentation of Baseline Symptoms Log
* Records all symptoms (recorded by test, no numerical assessment) at time of
baseline visit
* The severity, date ceased

adni_reccmeds_2009-09-01.csv

* Concurrent Medication Log
¢ All medications from screen visit ( up to 3 months prior)
¢ Listed and any while in ADNI

adni_recmhist_2009-09-01.csv

* Medical History
* Provides descriptive information of patient medical history if it is current

adni_registry_2009-09-01.csv

* Registry
* Records of patient’s involvement/termination

adni_roster_2009-09-01.csv
* RID matching w/ participant ID
adni_treatdis_2009-09-01.csv

* Early discontinuation and withdrawal
* |f patient decides to withdraw from ADNI & why
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adni_visits_2009-09-01.csv

* Codes for visits

VISCODE VISNAME VISORDER
Sc Screening 1
Bl Baseline 2
MO06 Month 6 3
M12 Month 12 4
M18 Month 18 5
M24 Month 24 6
M30 Month 30 7
M36 Month 36 8
Unsl unscheduled

F Screen fail

Nv Not yet determine 11
M42 Month 42 9
M48 Month 48 10

adni_vitals_2009-09-01.csv

* Vital signs
* Patient’s weight, height, SBP, DBP, pulse rate, respiration per min, temperature

adni_avgjacob_2009-09-01.csv

* Average Jacobian Temporal (Paul Thompson’s Lab)
* Jacobian maps reflect the percentage of tissue change over time.
* This file is specific to the Temporal Lobe

adni_bsi_2009-09-01.csv

* boundary shift integral summaries

* ameasure of cerebral volume changes derived from registered repeat 3-D MRI
scans

* BSl determines the total volume through which the boundaries of given cerebral
structure has moved

adni_conversion_2009-09-01.csv

* Conversions of patients from MCI = AD, MCI=>NL, NL->MCI, AD->MCl, NL>AD.
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0 Gives patient ID, the month of the visit, the conversion was assessed &
what the specific conversions are
0 There are 19 conversions in total

adni_strokesum_2009-09-01.csv

adni_

adni_

adni_

adni_

adni_

Stroke Summary
Provides information if patient had stroke, the severity of the stroke, amount of
white matter in whole brain, location, stroke type

uaspmvbm_2009-09-01.csv

Voxel based Morphometry
0 Neuroimaging analysis technique that allows investigation of focal
differences in brain anatomy
ucbpet_2009-09-01.csv

PET ROI Analysis (UCB)
Brain ROI for regions
Gives voxels as well as PET values

ucsdvol_2009-09-01.csv

Derived Volumes

Volumes of whole brain, ventricles, left hippocampus, right hippocampus ,left
mid temporal, right mid temporal, left inferior temporal, right inferior temporal,
left fusiform, right fusiform, left entorhinal, right entorhinal

ucsfatrphy_2009-09-01.csv

Regional Atrophy Rates
Summary of regional atrophy rates between 1*' and last scan. Summarizes
changes in both temporal lobes

ucsffresfr_2009-09-01.csv

Longitudinal Free Surfer

Freesurfer measures volumes of sub/cortical structures, computes thickness
Longitudinal looks at changes over time

For each region — volume, surface area, Cortical Thickness Avg. , Cortical
Thickness SD

65



adni_ucsffsl_2009-09-01.csv

* Longitudinal FreeSurfer
* (same as previous file)

adni_ucsfsx_2009-09-01.csv

* Cross — Sectional FreeSurfer
* (same as previous file)

adni_ucsfsnlvox_2009-09-01.csv
* SNT Hippocampal Volumes
* Uses MRI data
* Volumes of hippocampus (Right & Left)
adni_upennspare_2009-09-01.csv
* Spatial Patterns of Abnormalities for Recognition of early AD
* Score indicates a presence of an AD like spatial pattern of brain atrophy
0 |If +, = presence
o If -, = absence
adni_uucacir_2009-09-01.csv
* UUPET Analysis

adni_uwovent_2009-09-01.scv

* Ventricular Volumes
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Appendix 2: Individual Phenotype-Covariate association analysis

The following six tables provide the results of individual phenotype (or PC) to covariate
association analysis.

Table A2.1 Association between covariates and Composite Z-score of Cognitive Memory
Tests (AVLT and LMT):

Covariate B o Coefficient T-test p-value
Sex 0.01055 0.170 0.865
APOE Genotype -0.16064 -2.642 0.00847
Age -0.004173 -0.935 0.350
Diagnosis Status -0.15967 -3.773 <0.001

Table A2.2. Association between covariates and Rate of Change in Log of Ventricular
Volume:

Covariate B o Coefficient T-test p-value
Sex 0.0011683 2.781 0.00559
APOE Genotype 0.0029676 7.449 <0.001
Age -2.212e-04 -7.624 <0.001
Diagnosis Status 0.0025752 9.480 <0.001

Table A2.3. Association between covariates and Rate of Change in Log of Hippocampal
Volume:

Covariate B o Coefficient T-test p-value
Sex -6.496e-05 -0.317 0.752
APOE Genotype -0.0014332 -7.411 <0.001
Age -1.931e-05 -1.308 0.191
Diagnosis Status -0.0015589 -12.389 <0.001
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Table A2.4. Association between covariates and PC1:

Covariate B o Coefficient T-test p-value
Sex 0.1609 1.505 0.133
APOE Genotype 0.85725 8.624 <0.001
Age -0.020737 -2.704 0.00705
Diagnosis Status 0.84005 12.90 <0.001
Table A2.5. Association between covariates and PC2:

Covariate B o Coefficient T-test p-value
Sex -0.09778 -1.230 0.219
APOE Genotype -0.15781 -2.016 0.0443
Age 0.017667 3.108 0.00198
Diagnosis Status -0.14715 -2.691 0.00733
Table A2.6. Association between covariates and PC3:

Covariate B o Coefficient T-test p-value
Sex 0.14439 2.307 0.0214
APOE Genotype 0.0006762 0.011 0.991
Age -0.036601 -8.589 <0.001
Diagnosis Status -0.09182 -2.120 0.0345
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Appendix 3: Distribution of plots

The following plots show the distributions of the data for the final number of subjects
(n=567).
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Figure A3.1 Distribution of Patient’s age
Overall normal distribution of patient’s age at baseline (n=567).
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Figure A3.2 Distribution of Patient’s age by diagnosis status

Overall normal distribution of patient’s age at baseline (n=567) where 1 = Healthy
control, 2 = Mild Cognitive Impairment, 3 = Alzheimer’s Disease.
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Figure A3.3 Distribution of APOE alleles e2, e3, e4.
Overall normal distribution of patient’s age at baseline (n=567) where 22 = e2e2, 23

=e2e3, 24 = e2e4, 33 = e3e3, 34 = e3e4, 44 = eded. We also see an insufficient
amount of data for patients with APOE genotypes of e2e2, e2e3 and e2e4. Asa
result, APOE Genotype was transformed into a binary variable indicating the
presence or absence of at least 1 APOE e4 allele.
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Figure A3.4 Distribution of the Composite Z-scores of the Cognitive Memory Tests

Overall normal distribution of Composite Z-scores of the Cognitive Memory Tests for all
patients (n=567).
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i I =
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Figure A.3.5. Distribution Composite Z-score of Figure A.3.6 Distribution Composite Z-score of the
the Cognitive Memory Tests by gender. Cognitive Memory Tests by APOE genotype.
Overall normal distribution of memory test z- Overall normal distribution of memory test z-scores
scores for all patients by gender (n=567) for all patients by binary variable APOE Genotype
(n=567).
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Figure A3.7 Distribution of the log base-2 of rate of hippocampal volume change

Overall normal distribution of rate of hippocampal volume change for all patients
(n=567).
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Figure A3.8. Distribution of the log base-2 of rate  Figure A3.9. Distribution of the log base-2 of rate of
of hippocampal volume change by gender hippocampal volume change by APOE genotype

Overall normal distribution of rate of hippocampal Overall normal distribution of rate of hippocampal
volume change for all patients by gender (n=567) volume change for all patients by binary variable
APOE Genotype (n=567).
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Figure A3.10 Distribution of the log base-2 of rate of ventricular volume change.
Overall normal distribution of rate of ventricular volume change for all patients (n=567).
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Figure A3.11 Distribution of the log base-2 of rate
of ventricular volume change by gender.

Overall normal distribution of rate of ventricular
volume change for all patients by gender (n=567)
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Figure A3.12 Distribution of the log base-2 of rate
of ventricular volume change by APOE genotype
Overall normal distribution of rate of ventricular
volume change for all patients by binary variable
APOE Genotype (n=567).
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Appendix 4: Genotypic Quality Control Distributions

These distributions show the SNP call rates and the Minor Allele Frequencies of the final
genotypes incorporated in the study (n=543715 SNPs)
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Figure A4.1 Histogram of SNP Call Rates (n = 543715 SNPs)
Majority of SNPs possess a call rate of 100%. Any SNPs with a call rate < 85% were
removed from the study
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Figure A4.2 Histogram of Minor Allele Frequencies (n = 543715 SNPs)
Any SNPs with a minor allele frequency < 10% were removed from the study
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Appendix 5: Pairwise comparisons of PCs, highlighting covariates in study
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Figure A5.1. Pairwise comparison of PCs
(color coding indicates each site (n=57) for
data collection)
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Figure A5.3. Pairwise comparison of PCs
(color coding indicates diagnosis)
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Figure A5.2. Pairwise comparison of PCs
(color coding indicates APOE genotype
(E4+ or E4-))
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Figure A5.4. Pairwise comparison of PCs
(color coding indicates gender)
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Appendix 6: Manhattan Plots and QQ Plot for SUR and Univariate Methods

Manhattan Plot of all SNP Pvalues for Bivariate SUR QQ-Plot of Overall Model p-values (SUR Method)
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Figure A6.1. (a) Manhattan Plot and (b) QQ Plot the Results from the Bivariate SUR
Method

Manhattan Plot of all SNP Pvalues for Cognitive Memory Tests QQ-Plot of Cognitive Memory Test p-values (SUR Method)

—bq!O(waluv!l
Observed -logiolp)

- &S
Figure A6.2. (a) Manhattan Plot and (b) QQ Plot the Results from Univariate association
results for Cognitive Memory Tests

Expected -logy(p)
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Manhattan Plot of all SNP Pvalues for Hippocampal Volume QQ-Plot of Volume 1 (SUR Method)
s P

Observed -logylp)

Expected -logy(p)

Figure A6.3. (a) Manhattan Plot and (b) QQ Plot the Results from Univariate association
results for Hippocampal Volume
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Appendix 7: Manhattan Plots and QQ Plot for PCA Method

Manhattan Plot of all SNP Pvalues for PC1
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Figure A7.1 Manhattan plot of PC1 association results
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Figure A7.2 QQ plot of PC1 association results before (left) and after (right) Genomic
Control
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Manhattan Plot of all SNP Pvalues for PC2
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Figure A7.3 Manhattan plot of PC2 association results
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Figure A7.4 QQ plot of PC2 association results before (left) and after (right) Genomic

Control
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Manhattan Plot of all SNP Pvalues for PC3
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Figure A7.3 Manhattan plot of PC3 association results
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Figure A7.6 QQ plot of PC3 association results before (left) and after (right) Genomic

Control
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Appendix 8: Focus Plots

Focus plots for genes that annotated to SNPs with p-values < 10°.

Focus plots for genes annotated to significant SNP determined by Bivariate SUR method
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Focus plots for genes annotated to significant SNP associated with PC1 (PCA Method)

JKAMP LPHN2
1253107 . . vvvvv 5394
. 0 &
T e T T AL R 2l e fal e,
RASA1
=
I

| -
5 . VY O WPV ST TR TL I Sy

MR AASAT =

Focus plots for genes annotated to significant SNP associated with PC2 (PCA Method)
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Focus plots for genes annotated to significant SNP associated with PC3 (PCA Method)

GPR149

9606854

-,

TRIML2

1 I 1 | 1

EBA210

-

2o Bl e d

2of ot /Som

a2 TRAA -

SORCS2

0 I BRI BRI LI Rl n L IR
8IS
|
|
L ]
\ ° P l\.. .
| Il & 8o’ o ot \
WP AP
sorcss e o]

84



