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Abstract

Background Contributing to proteomic diversity, alternative splicing of
pre-mRNA is widespread in the human transcriptome and can greatly influence
regulation of both normal and disease-related cellular phenotypes. Similar to gene
expression, alternative splicing does not occur independently, but in a coordinated
fashion throughout the transcriptome in order to maintain proper cellular function.
Gene co-expression networks have been widely used as an approach to elucidate
coordinated regulatory patterns of gene transcription. Studies have shown that
genome-wide expression can occur in the form of network modules consisting of
highly co-expressed genes operating within specific cellular pathways. Such modules
are often well-preserved across similar biological systems and associated with various
phenotypes. Here we demonstrate a framework for de novo network inference of

co-splicing in the form of modules consisting of complex alternative splicing variants.

Results Network inference methods can be used to characterize coordination of
complex alternative splicing variants in the form of co-splicing modules. We utilize
graph-based splicing quantification methods to annotate and quantify complex
splicing variants from short read RNA-sequencing (RNA-seq) data and formulate
them in a way suitable for a module-based network approach. This framework allows
us to identify groups of complex splicing variants who undergo coordinated regulation
and are statistically associated with various phenotypes. We applied this framework
on various tissue types from the Genotype-Tissue Expression (GTEx) project and
identified a set of consensus modules consisting of complex splicing variants highly
co-spliced across tissue types. Consensus tissue modules also exhibit module-level
splicing values that are highly tissue-specific. We then applied our framework to infer
a co-splicing network of acute myeloid leukemia and identified co-splicing modules

strongly correlated with drug response for multiple targeted therapies.
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Conclusions Our proposed framework for de novo network inference of co-splicing
can help characterize transcriptome-wide coordination of complex splicing variation in
various biological systems and identify groups of splicing variants operating within
functional pathways. Our module-based approach can be further applied to other
RNA-seq datasets to identify groups of complex splice variants that are both highly

co-spliced and associated with various phenotypes of interest.
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Chapter 1: Introduction

Chapter 1 serves as an introductory review for the topics addressed in this
dissertation. First, we review the underlying biology of alternative splicing in basic
cellular regulation along with the role of aberrant splicing in human disease. We then
discuss the current state of technology for characterizing and quantifying alternative
splicing, namely using RNA-sequencing. Finally, we provide an overview of de nevo

network inference methods typically used for the study of gene co-expression.

RNA Splicing in Biology & Disease

Alternative Splicing Ribonucleic acid (RNA) splicing is a post-transcriptional
process in which one or more genomic regions of an expressed gene are excised out
before translation can occur. Known as introns, these excised regions are removed by
a dynamic cellular protein complex called the spliceosome (B. D. Wang and Lee 2018;
Zhou and Chng 2017). Composed of multiple proteins and small RNA, the
spliceosome links together the remaining non-excised pre-messenger RNA
(pre-mRNA) regions, known as exons, to form a processed mRNA transcript now
capable of being translated into a functional protein product (Zhou and Chng 2017;
Kim et al. 2018). Further, the specific selection of introns removed from the
transcribed pre-mRNA during splicing can occur in different combinations. This can
in turn lead to the production of multiple, distinct mature RNA products from a
single expressed gene (Figure 1). This phenomenon is known as alternative splicing
and the most recent of whole-transcriptome sequencing (RNA-Seq) studies show that
over 90% of multi-exon human genes produce alternatively spliced transcripts

(Necochea-Campion et al. 2016; B. D. Wang and Lee 2018; Zhou and Chng 2017).

The ability for a single gene to produce multiple transcript products is an obvious

mechanism for protein diversity given that the number of cataloged protein products
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Figure 1: Diagram of Alternative Splicing. During gene transcription, introns are
removed from the precursor RNA and the remaining exons are stiched together by the
splicing machinery. The specific selection of exons included in the processed transcript
may vary, leading to the production of alternatively spliced transcripts.

is far greater than the number of protein coding genes [Friedman, Hastie, and
Tibshirani (2008). While many alternatively spliced transcripts do result in protein
products with different functionality, other transcripts contribute specifically to
regulation. In some cases, alternatively spliced transcripts do not encode a final
protein product at all and are often targeted for nonsense-mediated decay (NMD).
The relative expression of each alternative transcript is often highly specific and
differential splicing levels can be observed across different cell types. Thus, along with
gene expression, alternative splicing plays a key role in regulating cellular phenotypes

(e.g., tissue specificity) and driving fundamental cellular programs (e.g., cellular

differentiation) (Friedman, Hastie, and Tibshirani 2008).

Aberrant Splicing in Cancer Alternative splicing of pre-mRNA is a tightly
regulated process and similar to gene regulation, splicing does not occur

independently, but rather in a coordinated fashion throughout the transcriptome in



order to drive proper cellular function (Fagnani et al. 2007; Dai et al. 2012). Loss of
such control can lead to aberrant splicing events either by deregulating the expression
of normal splice variants or mis-splicing of preemRNA by the splicing machinery (B.
D. Wang and Lee 2018). As such, alternative splicing has been demonstrated as a key
transcriptional mechanism contributing to the formation of a variety of human

diseases (Kim et al. 2018).

Aberrant splicing dynamics can occur alongside deregulated gene expression as an
additional transcriptional mechanism for cells to develop cancer-related cellular
phenotypes (Necochea-Campion et al. 2016; B. D. Wang and Lee 2018; Kim et al.
2018). Pan-cancer transcriptome studies have identified numerous cancer-specific
alternative splicing variants absent in healthy tissues and numerous cancer splicing
variants are specific to different cancer types and subgroups (B. D. Wang and Lee
2018). Cancer-specific splicing variants can occur in known oncogenes and tumor
suppressor genes such as HRAS and KLF65. Deregulated splicing can also contribute
to some of the key hallmarks of cancer described by (Hanahan 2000) including
sustained proliferative signaling, induced angiogenesis, metastasis and lack of
apoptosis (B. D. Wang and Lee 2018; Kim et al. 2018; Park et al. 2018). For
example, alternative splicing of the Bcl-X gene produces two distinct isoforms with
opposing functions. The first isoform, BCL-xS, is pro-apoptotic in function while the
second isoform BCL-xL is anti-apoptotic. Aberrant splicing regulation of the BCL-X
gene in tumor cells can lead to an increase in the relative expression of anti-apoptotic
BCL-xL, further promoting the survival of cancer cells (B. D. Wang and Lee 2018;
Kim et al. 2018).

Splicing factor genes are trans-acting regulators of alternative splicing decisions.
Deregulation of splicing factor expression can lead to aberrant splicing events and

contribute to cancer development and progression (Necochea-Campion et al. 2016; B.



D. Wang and Lee 2018; Zhou and Chng 2017). For example, the proto-oncogenic
group of SRSF splicing factors genes are found to be overexpressed in several cancer
types, producing a variety of aberrant splicing events leading to oncogenic protein
isoforms (B. D. Wang and Lee 2018). Mutations in splicing factor genes can also lead
to the production of aberrant splicing. Somatic mutations in the U2AF1 and SF3B1
splicing factor genes, for example, have been shown to promote cancer progression
and aggressiveness. Further, previous studies indicate that aberrant splicing can have
a significant impact on drug response with changes in the relative expression of
specific splicing variants leading to decreased sensitivity towards a variety of cancer
treatments (Necochea-Campion et al. 2016; B. D. Wang and Lee 2018; Zhou and
Chng 2017). Several examples of splice variants leading to poor response have been
identified and studied (Necochea-Campion et al. 2016; B. D. Wang and Lee 2018;
Zhou and Chng 2017). Some of these aberrant splicing variants occur in well-known
cancer-associated genes such as the BCR-ABL fusion gene in which increased
expression of the BCR-ABL35INS variant leads to resistance of the tyrosine kinase
inhibitor (TKI) imatinib in chronic myeloid leukemia (CML) patients (B. D. Wang
and Lee 2018). These studies have identified splicing variants as potential therapeutic
targets and have also pushed the way for the development of therapeutic strategies
that target cancer-related splicing events (B. D. Wang and Lee 2018; Zhou and Chng
2017).

RNA-Sequencing

Characterization and understanding of genomic regulation in health and disease has
increased substantially since the introduction of massively parallel high-throughput
sequencing technologies in the mid-2000s (Hanahan 2000). Whole-transcriptome or
RNA-sequencing (RNA-seq) platforms utilize the high-throughput approach of

DNA-sequencing (DNA-seq) to comprehensively capture the transcriptome from a



population of cells. In a typical RNA-seq experiment, RNA is isolated from samples
of interest using either an mRNA enrichment or ribosomal depletion strategy. The
isolated RNA is then synthesized to cDNA and attached with adapters prior to
amplification. Sequencing is then performed in a massively parallel fashion, producing
millions of short sequencing reads representing the current cellular state of
transcription. Thus, RNA-seq not only captures RNA at the sequence level, but also
provides a snapshot of the amount of RNA being expressed across the transcriptome

(Hanahan 2000).

The most common use of RNA-seq is differential gene expression in which the amount
of RNA from each gene is quantified and compared across conditions. RNA-seq,
however, captures the expression of all transcripts after splicing has occurred and can
also be utilized for characterizing changes in alternative splicing (Hanahan 2000; Liu,
Loraine, and Dickerson 2014; Trapnell et al. 2010). Further, previous methods for
measuring alternative splicing, including splicing-sensitive microarrays, were limited
to only known splicing variants (Hanahan 2000). RNA-seq, on the other hand, has the
ability to quantify novel transcripts as well, assuming the transcripts are expressed
with enough abundance and the sample of interest is sequenced at a reasonable depth

(Liu, Loraine, and Dickerson 2014; Trapnell et al. 2010; Hanahan 2000).

Co-expression Networks

Proper cellular function is maintained by the dynamic transcription of coding and
non-coding RNA across the transcriptome (Fagnani et al. 2007; Dai et al. 2012).
Transcription of each gene, however, does not occur independently. Instead,
transcriptional activation is a highly coordinated process under tight regulatory
control with proteins and functional RNA interacting within cellular pathways to
drive biological functions. These pathways are extremely complex and the

functionality of genes and their corresponding interactions are often poorly



understood (Dam et al. 2018; Gaiteri et al. 2014). Co-expression networks provide an
effective de novo inference approach for studying mechanisms of transcriptional
regulation on a systematic level. Utilizing gene expression measurements from
microarray and RNA-sequencing platforms, co-expression networks characterize
transcriptome-wide coordination of gene expression based on their dynamic

transcription across various conditions (Dam et al. 2018).

An underlying assumption of gene co-expression networks is that genes which are
highly co-expressed are often involved in similar biological processes (Dam et al.
2018). This assumption can be extremely useful for a variety genomic applications
involving transcriptional regulation. For example, gene co-expression networks can
provide insight on the functionality of less annotated genes based on which genes they
are highly co-expressed with (Dam et al. 2018). The also provide insight on
regulatory potential by identifying genes having a significantly large number of
interacting partners (Dam et al. 2018). Finally, co-expression networks can identify
groups of co-expressed genes that are highly involved in driving a particular biological

processes or phenotype (Langfelder and Horvath 2007).

Constructing and Analyzing Gene Co-expression Networks Gene
co-expression networks describe pairwise relationships between genes based on their
expression in a given dataset (Dam et al. 2018; Gaiteri et al. 2014; Langfelder and
Horvath 2008; Sanati et al. 2018; Horvath 2011). In a given network, nodes represent
genes and edges represent pairwise relationships (connections) between genes. The
pairwise edges, however, are unknown prior to network construction and must be
directly inferred using gene expression measurements from samples of interest (Figure
2). Various methods can be utilized to define pairwise relationships in gene
co-expression networks. A commonly used correlation measure for inferring

co-expression network edges is the Pearson correlation (or sample correlation). This



correlation represents a scaled version of a cosine correlation in which the vectors of
sample expression for each gene are scaled by subtracting the mean of the vector from
each value of the vector divided by the variance of the vector (Horvath 2011). The

Pearson correlation is then computed by taking the cosine distance between the two

scaled vectors for genes x and y:

cor(z,y) = cosineCor(scale(x), scale(y)).

Other correlation measures can also be utilized for inferring co-expression networks
including the Spearman correlation measure (Horvath 2011). The Spearman
correlation is more robust to outliers compared to the Pearson correlation and is
determined by calculating the Pearson correlation based on the ranks of the vectors
rather than the vectors themselves. The Spearman correlation, however, tends to be
overly conservative. Authors of the popular weighted gene co-expression network
analysis (WGCNA) framework have demonstrated the use of the biweight
midcorrelation measure which utilizes the strengths of both the Pearson correlation
and Spearman correlation, taking advantage of the high power aspect of Pearson

correlation alongside the robustness of the Spearman correlation (Horvath 2011).

Network edges can then be defined using the resulting similarity values and are
represented in the form of an n x n symmetric matrix known as an adjacency matrix
A = (a;;). Each pairwise entry of the adjacency can be in the form of a weighted or
unweighted connection. In unweighted networks, relationships for each gene pair are
represented as binary connections in which two genes are either connected (1) or not
connected (0) (Dam et al. 2018; Gaiteri et al. 2014; Langfelder and Horvath 2008;
Sanati et al. 2018; Horvath 2011). A basic approach for defining unweighted networks
from resulting correlation measures is to utilize a hard-thresholding technique in

which an edge is defined between two genes if their correlation is above a certain



value (e.g. > 0.9). A more sophisticated approach for defining binary co-expression
networks is the use of graphical lasso, a type of Gaussian graphical model (Friedman,
Hastie, and Tibshirani 2008). Graphical lasso utilizes a regularization parameter
similar to LASSO regression and attempts to estimate the precision matrix which is
the inverse of a covariance matrix initially computed from the gene expression data.
The resulting precision matrix represents pairwise dependencies between all gene
pairs. Any non-zero entry represents a conditional dependency between two genes and

thus a binary edge is added to the network (Friedman, Hastie, and Tibshirani 2008).
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Figure 2: Overview of De Novo Co-expression Network Inference. In de novo network
inference the network structure is unkown and must be inferred using sample expression
data. A similarity measure is used to infer pairwise relationships between nodes and
are stored in a symmetric adjacency matrix. A hard- or soft-thresholding technique
and a possible edge transformation is applied to define edges of the network.

In weighted co-expression networks, an edge is present between every pair of nodes in
the network. A value is then assigned to every edge and represents the strength of
relationship between two genes based on their expression throughout each sample of
the dataset (Horvath 2011). Initially, pairwise correlation values will be between -1
and 1, with edges closer to 1 representing stronger positive correlations and edges

closer to -1 representing stronger negative relationships. In a typical co-expression



network, network edges are positive and thus a transformation is used to ensure all
edge weights are between 0 and 1. Typically, a network is transformed into either a
signed or unsigned network. Unsigned networks transform the edge weights using
their absolute values, resulting in negatively correlated genes grouping together with
their positively correlated counterparts. Signed networks, however, scale the edge
weights so that negative correlation values are represented between 0 and 0.5 and
positive correlation values are between 0.5 and 1. The signed network transformation
approach has been shown to produce more biologically relevant networks than
unsigned networks, but unsigned networks have also been successfully applied to

certain biological applications (Horvath 2011).

It is critical to understand that utilizing any form of similarity measure

(e.g. correlation) for de novo inference of co-expression has the potential to introduce
spurious or noisy edge weights. The extent of spurious co-expression estimates is
unknown and will vary depending on the dataset(s) used for the analysis. As
previously stated, binary networks are often created using a hard-thresholding
technique in which an edge is added only if two genes are highly correlated, however
the appropriate choice of threshold is difficult to determine. Graphical lasso utilizes a
more sophisticated approach for hard thresholding in which an edge is created
between two genes if they are conditionally dependent (having a non-zero in the
resulting precision matrix). The resulting precision matrix, however, is still dependent
on the choice of regularization parameter during inversion of the covariance matrix

(Friedman, Hastie, and Tibshirani 2008).

The Weighted Gene Co-expression Network Analysis (WGCNA) framework utilizes a
soft-thresholding technique for weighted network edges. Here, the resulting adjacency
matrix will undergo a power transformation (AFpower) in which the resulting edge

weights are raised to the power of a constant value (). Given that the choice of 3 is



unknown, WGCNA borrows from the assumption of biological networks having a
close to scale-free topology. In a scale-free topological network, the connectivity of
the network follows a power-law distribution in which a small number of nodes have
an extremely high level of connectivity while the remaining nodes are less connected.
Recent studies have shown that early claims of all real-world networks following a
close to scale-free topology may be false and that scale-free networks are potentially
quite rare (Broido and Clauset 2019). However, much evidence still indicates that
biological networks (e.g. gene regulatory networks) follow a close to scale-free
property. Nonetheless, the scale-free property is used as an approximation to guide
the choice of 8 for power transformation in order to reduce the effect of spurious
correlations. With an R? fitting index equal to 1 indicating a perfect power-law
distribution, a 3 value can be selected that so that the R? fitting indicates

approximate scale-freeness (e.g. R? > 0.85).

Module-based Co-expression Network Analysis Previous studies of
transcriptional regulation using de novo network inference approaches have
demonstrated gene expression occurring in the form of highly co-expressed modules
(Langfelder and Horvath 2007). Using a community detection procedure to group
network nodes into subgraphs of highly correlated genes, co-expression modules are
often highly preserved across similar biological systems. The identification of network
modules from a co-expression network can help characterize distinct groups of genes
that may operate within specific biological pathways. Thus, the use of network
modules provide a more comprehensive biological understanding of phenotype-specific
regulation than traditional method for characterizing gene expression such as
differential testing (differential expression) of individual genes. Further, the use of a
module-based approach of co-expression provides an inherent data reduction

technique (Langfelder and Horvath 2007). The expression of individual genes can be

10



summarized to the module level and one can then focus the analysis on a relatively
small set of modules as opposed to thousands of genes, thus mitigating the issue of
multiple testing. Whereas differential expression techniques identify extreme fold
changes of the expression of individual genes across two phenotypes, a co-expression
module statistically associated with two phenotypes may contain genes with both
large expression changes as well as genes with less significant expression changes, yet
are still highly relevant within the biological pathway in which the differentially

expressed genes are involved (Langfelder and Horvath 2007).
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Chapter 2: Creating a Module-based Network
Framework for De Novo Co-splicing Inference of

Complex Splicing Variants

Introduction

Chapter 2 describes an algorithm for de novo inference of co-splicing, the foundation
of this dissertation. As the ability to infer systems-level coordinated splicing is highly
dependent on the methods used for measuring alternative splicing variants, the
chapter begins with a general review of the methods currently available for
annotating and quantifying splicing from short RNA-sequencing reads. This is
followed by a discussion on the important considerations when inferring co-splicing
relationships and how the process differs from that of gene co-expression inference.
Finally, the chapter presents an algorithm for formulating complex alternative
splicing events quantified from RNA-seq samples in a manner suitable for a

module-based network approach of co-splicing.

Methods for Quantifying Splicing From RN A-sequencing

A key application for RNA-seq is to measure differences in the expression of genes
and splice variants across different cell types (e.g., tissue types) or conditions (e.g.,
healthy and disease). In doing so, the expression of genes and transcripts must be
accurately quantified using sequencing reads each sample. Compared to gene
expression, measuring changes in alternative splicing is far more difficult due to the
fact that RNA-seq reads are typically between 50 and 150bp long and are much
shorter than that of exons and introns (Hanahan 2000; Liu, Loraine, and Dickerson
2014; Anders, Reyes, and Huber 2012; Shen et al. 2014). This produces significant

complexity issues when trying to accurately annotate and quantify multiple

12



alternatively spliced transcripts of the same gene (Liu, Loraine, and Dickerson 2014;
Trapnell et al. 2010; Hanahan 2000; Anders, Reyes, and Huber 2012; Shen et al.
2014). When the samples of interest belong to a well-studied organism such as human
or mouse, reference-based assembly methods can accurately align short RNA-seq
reads to their genomic location of origin (Liu, Loraine, and Dickerson 2014; Trapnell
et al. 2010; Hanahan 2000). When quantifying expression at the gene level, all reads
aligning within the region of a particular gene are counted towards the overall
expression of that gene. Quantifying alternatively spliced transcripts of the same
gene, however, is a more difficult task. Transcripts resulting from alternative splicing
will typically share multiple exons or exon regions with one another. Thus, when a
read aligns entirely to a genomic region (exon) shared by two or more alternative
transcripts, there is no way to distinguish the transcript of origin for that particular
read (Liu, Loraine, and Dickerson 2014; Trapnell et al. 2010; Hanahan 2000; Anders,

Reyes, and Huber 2012; Shen et al. 2014).

A plethora of methods for quantifying alternative splicing using short read sequencing
data have been developed since RNA-seq was introduced in the late 2000s. Many of
these methods are also designed to test for significant changes in the expression of
splice variants between two or more conditions (Liu, Loraine, and Dickerson 2014;
Trapnell et al. 2010; Hanahan 2000; Anders, Reyes, and Huber 2012; Shen et al.
2014). Changes in the expression of splice variants are often described as differential
splicing and is somewhat analogous to differential gene expression (Anders, Reyes,
and Huber 2012; Shen et al. 2014). However, whereas differential expression describes
the change in the total expression of a particular gene, differential splicing typically
describes the change in relative abundance of each splice variant (or alternative
spliced transcript) contributing to the total gene expression. Further, a gene may be
significantly differentially spliced between two conditions without having a significant

change in total expression (Liu, Loraine, and Dickerson 2014). The majority of

13



methods that have been developed for quantifying splice variants and testing for
differential splicing between two or more conditions can be classified into to one of
three categories: full isoform resolution models, exon-based models, and event-based

models (Liu, Loraine, and Dickerson 2014).

Full Isoform Resolution Models Isoform resolution models first attempt to
assemble short sequencing reads into full length transcripts and then estimate their
relative abundance (Trapnell et al. 2010; Hanahan 2000). In the assembly step,
methods such as Cufflinks will utilize a graph-based structure to try and resolve the
minimal set of transcripts that best explain the data. The abundance of each
assembled transcript is then quantified using statistical modeling. Often with the use
of a maximum-likelihood estimation, each read is assigned to a potential transcript
before the final transcript abundances are estimated. This is performed using a
statistical modeling approach that accounts for uncertainty in each read’s transcript
of origin along with cross-replicate variability estimates. The final transcript
abundance estimates are then used to test for significant changes in the relative
expression of each transcript between biological conditions (Trapnell et al. 2010;
Hanahan 2000). These methods are beneficial for characterizing splicing in that they
provide full length transcripts along with their relative abundance and change in
abundance between conditions. The results are intuitive for studying alternative
splicing and are thus easily interpretable for further analysis on splicing changes in
different conditions. A significant drawback of these methods, however, are the
complexities of full length transcript assembly and abundance estimation using short
sequencing reads. First, the resulting number of transcripts from the assembly step
may inaccurately represent the number and structure of the truly expressed
transcripts for a given gene. Second, transcript abundance estimation can introduce a

high degree of uncertainty given that a significant proportion of reads can potentially
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belong to multiple transcripts. This degree of uncertainty can increase significantly
when the number of possible alternative transcripts increases (Liu, Loraine, and

Dickerson 2014).

Exon and Event-based Splicing Quantification Methods A second class of
methods for measuring splicing changes try to circumvent the transcript complexity
issue by focusing only on the expression of individual exons (Anders, Reyes, and
Huber 2012). These exon-based approaches utilize the fact that many transcripts
share multiple exons. Rather than trying to identify which transcript a read belongs
to when it aligns to an exon shared by multiple transcripts, it quantifies the total
expression of the exon while ignoring the transcript of origin. To do this, exon-based
methods such as DEXSeq take the union of all possible exons for a given gene’s set of
transcripts (provided within a gene structure annotation file) and compresses them
into non-overlapping exonic bins. The expression of each exon bin is quantified using
a negative binomial model for read counts. DEXSeq then tests for differential splicing
of a gene between two or more conditions using a generalized linear model (GLM) that
tests for significant differential exon usage of each counting bin relative to the total

expression of all exon bins belonging to that gene (Anders, Reyes, and Huber 2012).

The third class of methods extends upon the approach of exon-based methods to
avoid the complexities of transcript assembly and abundance estimation while
incorporating more biological relevance towards alternative splicing of pre-mRNA
(Shen et al. 2014). Event-based methods utilize a compress and count approach
similar to exon-based methods, but instead of compressing transcripts into a union of
individual exons, regions of transcripts are flattened into individual alternative
splicing events. Exon structures for each transcript belonging to a given gene model
are checked to see if they participate in one of the five basic splicing event types.

Each splicing event identified can be broken into a set of binary outcomes (e.g., the
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skipping or inclusion of a cassette exon). The two outcomes for each splicing event are
quantified using junction spanning reads that support either of the two cases. Splicing
event quantities are typically represented using a metric known as percent spliced in
(PST or W) which represents the proportion of one splicing event outcome over the
total of both outcomes. Differential splicing is performed by testing for significant

change in the PSI of splicing events between biological conditions (Shen et al. 2014).

Splicing Graph Methods A more recent class of methods for characterizing
alternative splicing from RNA-seq data utilize a somewhat hybrid approach,
borrowing from full length transcript models while incorporating localization from
that of exon and exon-based methods. Splicing graph methods utilize a graph-based
view of the possible splicing variations to which a transcribed gene may undergo.
First, a splicing graph is created for each gene representing the inclusion and
exclusion of all possible exonic segments. Splice graphs can be constructed from
previously annotated gene models or from split read alignments of splice junction
spanning reads. This approach is similar to that of full isoform resolution models
such as Cufflinks which first assembles a graph of all possible transcript variations.
However, unlike full transcript models, splice graph quantification models will avoid
transcript estimation and instead quantify localized variants found within the graph.
Most often, methods will first assemble the splice graph from each gene and then
search the graph for the presence of the basic alternative splicing events types

(e.g. exon skipping). Splice graphs that incorporate junction spanning read
alignments during graph construction have an advantage in that novel splicing

variants can be annotated prior to quantification.

Splicing graph-based approaches provide a more comprehensive representation of the
potential splicing complexity for a transcribed RNA. Like the event-based approaches

that strictly utilize known gene models, graph-based approaches that annotate
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splicing in the form of basic splicing events fail to capture the full complexity to
which splicing variants can entail. Some recently developed graph based approaches,
however, attempt to annotate complex splicing variants prior to the quantification
process. Methods such as Leafcutter and MAJIQ redefine what constitutes and
alterantive splicing event. Their annotation approaches can in turn quantify splicing
at varying degrees of complexity such as non-binary events or compound events
involving more than one event type. Recent characterizations of complex splicing in
mammalian transcriptomes have found that nearly 30% of splicing occurs in the form

of complex splicing events (Li et al. 2018; Vaquero-Garcia et al. 2016).

The Modeling Alternative Junction Inclusion Quantification (MAJIQ) framework first
develops per-gene splicing graphs using a combination of previously annotated gene
models and de novo junction spanning RNA-seq reads (Vaquero-Garcia et al. 2016).
Splicing variants are then annotated by formulating local splicing variants (LSVs)
defined from nodes with multiple ingoing or outgoing edges of each splice graph.
Each LSV consists of two or more junctions and are quantified using marginal percent
selected index (PSI or W) representing their relative expression to that of all junctions
of the LSV (Vaquero-Garcia et al. 2016). In a typical experiment, the relative change
in PSI (AV) would be tested between two conditions and such an analysis is

analogous to that of differential expression of genes between two conditions (Figure 3).

Previous Work for Network Inference of Alternative Splicing

Most genomic applications of de novo network inference have focused on gene-level
co-expression. Some methods, however, have been developed to study coordinated
transcription beyond just co-expressed genes and instead focus on the co-expression
of individual transcripts or exons. (Saha et al. 2017) developed gene co-expression
networks from 16 tissues types using RNA-seq data from the Genotype-Tissue

Expression (GTEx) project. Along with co-expressed genes, their networks also
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Figure 3: Overview of the MAJIQ Framework for Complex Splicing Quantification.
Gene splicing graphs are constructed using previously annotated transcripts and
junction spanning read alignments from RNA-seq samples. Complex splicing is
annotated and quantified from each graph in the form of local splice variants (LSVs).
The relative usage of each junction within an LSV is measured using reads supporting
either their inclusion of exclusion.
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contained the relative expression of transcripts, creating a single network with nodes
representing both genes and transcripts and edges defining the correlations between
gene-pairs, transcript-pairs, and gene-transcript pairs. They utilized this network to
identify potential regulatory genes such as transcription factors and splicing factors
(Saha et al. 2017). This network, however, is potentially limited in that correlations
for defining edges between transcript-transcript pairs and transcript-gene pairs are
dependent on the accurate estimation of transcript expression. As previously
discussed, transcript abundance estimation is a highly difficult and non-trivial task
using short RNA-sequencing reads and can often lead to inaccurate estimations of
transcript-level expression. Further, the incorporation of individual transcripts into a
network is also dependent on accurate transcript assembly, another difficult task
using short read data. The number of transcripts assembled by many short read
assembly methods may not accurately represent the true number of alternatively
spliced transcripts that were expressed in a specific condition and could lead to either

an incomplete or inaccurately represented network.

Other methods have demonstrated the use of co-expression networks at exon-level
resolution. (Dai et al. 2012) developed a tensor-based algorithm to identify exon
clusters across multiple networks. Each network was constructed using the expression
of individual exons as nodes with edges representing the correlation between the
expression of each exon-exon pair across samples. (Iancu et al. 2015) developed a
gene co-expression network based on correlations of aggregated exon-level expression.
Using mammalian brain RNA-seq data, this network was built by defining gene-pair
edges based on Mantel correlations between gene matrices. Each gene matrix
represented the difference in expression of all exons for all samples of that gene. This
approach was successful in identifying unique, yet biologically relevant gene modules

only detectable using exon-level correlations between genes.
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Network Inference of Co-splicing Modules Consisting of

Complex Splice Variants

It is well known that gene expression is a tightly regulated process with genes
interacting in a coordinated fashion within cellular pathways. Gene co-expression
networks provide a systems-level framework for inferring both conserved and
phenotype-specific coordination of transcription in different biological systems.
Alternative splicing of both coding and non-coding RNA also occurs in a highly
coordinated manner and recent studies have begun to utilize de novo network
inference approaches to elucidate transcriptome-wide coordination of alternative
splicing regulation (co-splicing). A systems-level framework that integrates the full
complexity of alternative splicing variation in the form of network modules in a
manner suitable for the use of studying their association with phenotypic traits,

however, has not been demonstrated.

Inferring coordinated alternative splicing (co-splicing) at a network-level is difficult
due to the ubiquitousness of alternatively spliced transcripts. A network consisting of
isoforms may contain spurious and unreliable network edges due to inaccuracies when
estimating full length transcript expression using short RNA-seq reads. Co-splicing
inference methods that utilize exon-level gene correlations to mitigate the issues of
transcript estimation do not capture complex alternative splicing variants at a level of
granularity to that of recent splicing graph approaches. Thus, we sought to develop a
co-splicing network approach that 1) characterizes transcriptome-wide coordination of
complex splicing variants, 2) formulates complex splicing in a manner suitable for a
module-based network approach, 3) allows for a modular-level analysis of splicing
variation across one or more biological systems. In this study we first describe an
approach that formulates complex splicing variants from splice-graphs annotated

using the MAJIQ framework in a manner suitable for a module-based network
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analysis of co-splicing. We then demonstrate the use of our formulated co-splicing
modules within the popular Weighted Gene Co-expression Network Analysis
(WGCNA) framework traditionally used for studying gene co-expression. We applied
our co-splicing module approach in two applications. First, we characterize
co-splicing variation in the form of network modules across ten human tissues types.
We then construct a co-splicing network of acute myeloid leukemia (AML) and
identify co-splicing modules predictive of drug response for a variety of small molecule

inhibitors.

In a gene co-expression network, nodes represent genes and edges represent pair-wise
relationships (connections) between genes. In de novo inference of gene co-expression,
the edges are unknown prior to network construction and therefore must be directly
inferred from the data using a similarity or correlation measure. Compared to gene
co-expression, inferring system-wide relationships between localized splicing variants
is less straightforward. A single gene may and often will contain multiple splice
variants. Splicing variants originating from the same gene are biologically plausible to
be highly correlated, however the extent of which is difficult to ascertain given the
uncertainty as to whether the change in relative splicing of both variants is due to
changes in the relative expression of the same transcripts. Co-splicing networks
inferred using exon-level correlations aggregated to gene level do not include
within-gene splicing relationships. However, two splicing variants from one gene may
have different correlations with a variant from a second gene. Biologically speaking
this may represent an isoform (and resulting protein) having different functional
interactions with two isoforms of the same gene and such an event would not be

captured in a gene-level co-splicing approach.

We find in our data that pairs of LSVs originating from the same gene indeed have

stronger correlations than those of different genes (Figure 4A). A number of
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within-gene LSV pairs, however, are found within close proximity to one another with
partial or even fully shared exonic regions involved in each variant. Such LSVs are
often found within clusters of skipped exons, retained introns, and alternative splice
sites to which the inclusion and exclusion of specific RNA segments can occur in a
variety of forms. We find that correlations of LSV pairs containing overlapping exonic
regions are significantly greater than same gene LSV pairs that do not overlap
(Figure 4B). Such correlations are often highly redundant and may contain potential
noise due to inconsistent depth of coverage for splice junction spanning reads.
Therefore, we propose a pre-processing step that summarizes groups of overlapping

LSVs from a splice-graph prior to network construction.

A) LSV-LSV Correlations Within & Between Genes B) LSV-LSV Correlations Within & Between Overlapping Regions C) SVR-SVR Correlations Within & Between Genes
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Figure 4: Distribution of Edge Weight Correlations. Density plots represent distribu-
tion of Pearson correlations computed using splicing features quantified from AML
RNA-seq samples. A) Correlation distributions for between-gene and within-gene
LSVs. B) Correlation distributions for overlapping and non-overlapping within-gene
LSVs. C) Correlation distributions for between-gene and within-gene SVRs.

Splice Variant Regions (SVRs)

We first identify for each LSV, the most up- and down-stream positions among all of
its corresponding junctions. We then iteratively merge all LSVs having overlapping
genomic positions until merging can no longer be accomplished. We define such
overlapping groups of LSVs as splice variant regions (SVRs) (Figure 5). Given that

the set of PSI values for each junction of an LSV are quantified relative to their sum,
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we select a single junction to represent the splicing level of each LSV to avoid linear
dependency between junctions. For each LSV we select the junction having the

greatest variance across all samples of the dataset.

We then define for each SVR a matrix XD = (mElI)) where index i = 1,2, ..ny
corresponds to the LSVs within SV RY) and index [ = 1,2, ..., m corresponds to the
RNA-seq samples in the dataset. We summarize the splicing levels of all LSVs
belonging to SV RY) using Singular Value Decomposition (SVD), a commonly used

data reduction technique. We denote SVD of XD as
XU =upv”

where U and V) are orthogonal matrices and the columns of U and V are the left-
and right-singular vectors respectively. Assuming the values of D, a diagonal matrix
of singular values, are arranged in decreasing order, we represent the splicing value of

SV RU using the first column of V) as
SVRD = D,

This representation is equivalent to performing principal component analysis (PCA)
on the matrix X) and representing the splicing of SV RY) using the first principal

component.

After constructing SVRs from overlapping LSVs of splice-graphs we find that the
difference in correlation distributions between within-gene and between-gene SVRs is
highly reduced compared to that of LSV correlations (Figure 4C). The formulation of
SVRs prior to network construction prevents the inclusion of redundant and
potentially noisy network edges between splicing variants while still retaining

variation in splicing levels of complex splice variants across samples. Further, the
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Figure 5: Formulation of Splice Variant Regions (SVRs) From LSVs For Co-splicing
Network Inference. SVRs are formulated using all sets of overlapping LSVs from a
given splice graph. The splicing value of the SVR is quantified using the 1st principal
component after SVD using all LSVs within the SVR.

SVR datatype is also biologically relevant given that SVRs consist of clusters of
alternatively used exonic segments undergoing a variety of usage patterns. SVRs
capture the variation in splicing levels of such clusters across the sample set and thus

provide a suitable data structure for representing complex splicing variants for de

novo network inference of co-splicing.
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Chapter 3: Characterization of Co-splicing
Variation Across Human Tissues (Use case)

Chapter 3 discusses the first use case for the co-splicing algorithm in which we
characterize co-splicing variation in the form of network modules across ten human
tissue types. The results of the analysis in chapter serve as a proof of principal for the
proposed co-splicing module-based network inference framework described in the

previous chapter.

Introduction: Tissue-specific Regulation of Transcription and
Splicing

Alternative splicing plays an essential role in the regulation of cellular phenotypes.
Variation in the expression of specific alternative transcripts can lead to varying gene
products between particular tissues. With the advent of RNA-sequencing, the role of
alternative splicing in tissue-specificity is becoming more clear. Differentially
expressed genes and differential splicing events have been extensively identified
between tissue types and stages of cellular differentiation (Grange et al. 2010; The
GTEx Consortium 2015). The Genotype Tissue Expression (GTEx) project provides
an extensive dataset of well curated genomic data across multiple tissues (The GTEx
Consortium 2015). This resource has led to new insights on transcriptional regulation

in regards to tissue specificity.

Given the complexities of transcriptome-wide regulation, many de novo network
inference approaches have been utilized to study gene co-expression variation across
human tissues (The GTEx Consortium 2015; Pierson et al. 2015). Such approaches
have identified characteristics of gene co-expression in both a preserved and

tissue-specific manner. Likewise, a recent study demonstrated a framework for

25



integrating transcript expression ratios into a gene co-expression network with the
goal of characterizing regulatory mechanisms of gene expression and alternative
splicing (Saha et al. 2017). Using data from GTEx, the authors demonstrated the use
of Transcriptome-Wide Networks (TWNs) to identify shared and tissue-specific gene
co-expression hubs that may regulate the expression of other genes and isoforms. The
primary focus of their analysis was the characterization of potential regulatory factors
both in terms of gene expression and splicing. A potential limitation to their study
was the use of full length transcripts estimated from RNA-seq data from the human
GTEx tissue samples. The authors note that care should be taken when making
conclusions in regards to specific network edges, which is true for any de novo
inference based analysis. This aspect could be of particular concern when using
transcripts in a de novo network approach given the known issues of transcript
expression estimation methods (Li et al. 2018; Sterne-Weiler et al. 2018; Shen et al.

2014; Vaquero-Garcia et al. 2016).

Studies utilizing gene co-expression networks have demonstrated the presence of
co-expression modules, including modules preserved across tissue types (Langfelder
and Horvath 2007). Co-splicing in the form of network modules across tissues is less
characterized. In this chapter we apply our proposed co-splicing approach using SVRs
formulated from alternative splicing graphs quantified using RNA-seq sampes from
multiple human tissue types. The use of SVRs provide an efficient means for
accurately quantifying splicing in a manner suitable for a network inference approach.
Further, groups of SVRs in the form of network modules can be summarized to the
module level, allowing for a module-based analysis of co-splicing. We note that the
choice of de novo network approach is highly dependent on the question at hand and
the authors in the aforementioned study of splicing regulation were addressing a
different question in regards to phenotypic regulation. The analysis and results in this

chapter focus on groups of highly co-expressed alternative splicing variants and
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characterize the variation of these modules across human tissues.

Results
Constructing Co-splicing Networks Across Human Tissues

We aimed to characterize transcriptome-wide coordination of complex splice variants
in the form of co-splicing modules across human tissues. To study between-tissue
co-splicing variation we first annotated and quantified LSVs from RNA-seq data of
ten human tissue types from GTEx using MAJIQ. Only LSVs that met the minimum
coverage thresholds (Methods) in all 1,621 donor samples during PSI quantification
were included in downstream analysis. This resulted in 6,427 LSVs from 2,147 genes
which were then used to formulate 4,147 SVRs. All tissue samples were utilized
during summarization of each SVR to ensure the leading eigenvector is consistent
across datasets and represents splicing variation across tissue types. Figure 6 shows
the result of bi-clustering using the formulated SVRs from the ten human tissue
types. The formulated SVRs are able to effectively distinguish the four main tissue
groups. Tissue subtypes are less distinct, but subtype-specific splicing is still clearly

present from the clustering results and heatmap.

All 4,147 SVRs were utilized for de novo network inference of co-splicing. For each
tissue we inferred tissue-specific network edges between SVRs using biweight
mid-correlations and the resulting correlation values were linear transformed to a

1 L )
%. As the use of correlation measures for

signed network using Sgigned,i,j =
inferring networks may lead to spurious or noisy edge weights, we raised each of the
ten signed adjacency matrices to a power of 3. This transformation serves as a
soft-thresholding technique that promotes strong correlations while suppressing weak
ones. Following techniques from WGCNA, since the choice of 5 is unknown, we

borrow from the assumption that biological networks follow an approximate scale-free
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Figure 6: Bi-clustering and Heatmap of SVRs Formulated Using Human Tissue RNA-
seq Data. Bi-clustering was performed using complete linkage based on euclidean
distance. All 4,147 SVRs from 1,621 tissue samples across ten tissue types were used
for clustering.

topology in which there are a small number of nodes having a large number of

connections. At 3 =5 all ten tissue co-splicing networks reach an R? scale-free fit

greater than 0.9 and was thus chosen as the § value for all networks.

Following power transformation we then performed a topological overlap
transformation TOM (A) for each tissue adjacency matrix. This transformation
provides additional topological relationship characteristics among the nodes of each
network. Unlike the initial adjacency matrices where each inferred edge weight is
calculated independently from the remaining nodes of the network, the topological
overlap measure (TOM) describes relationships between nodes while also accounting

for shared relationships among neighboring nodes.

Identifying Consensus Co-splicing Modules Shared Across Tissues

To analyze shared and tissue-specific co-splicing characteristics at a module level we

identified a consensus set of co-splicing modules across the ten tissue types.
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Consensus network modules represent groups of nodes that are highly correlated and
preserved to an appreciable degree in all sample groups (i.e. tissues) of the analysis
(Langfelder and Horvath 2007). To identify consensus co-splicing modules we first
compute a consensus topological overlap matrix, representing the minimal
connectivity of nodes across the ten tissue networks. Using the consensus TOM we
then perform a network clustering procedure to identify a set of co-splicing modules
shared across the ten tissue types. Many network clustering techniques exist and the
choice of clustering is typically driven by the level of granularity necessary for the
analysis (Iancu et al. 2014). Under the WGCNA framework it is common to perform
average linkage hierarchical clustering on the resulting TOM (A). Hierarchical
clustering has an advantage in that the number of clusters does not need to be known
beforehand. Other methods, however, have also been proposed for clustering
co-expression networks including the use of ensemble approaches. (Botia et al, 2017)
first identified gene co-expression modules using average linkage hierarchical
clustering, but then performed a re-clustering step using k-means clustering with k
being the number of clusters detected in step one (Botia et al. 2017). We extend
upon this ensemble approach by first performing hierarchical clustering to detect an
initial module count and then re-cluster each network using spectral clustering which
has been recently demonstrated as a method for module detection in co-expression

networks (Al-Yousef and Samarasinghe 2021).

Following the WGCNA framework, we first computed the consensus topological
overlap dissimilarity matrix (1 — ConsensusTOM) as input for hierarchical
clustering and identified an initial module set. Separately for each tissue, we
summarized the expression of each module by performing SVD using all of the
corresponding nodes and then merged any closely related modules having a Pearson
correlation > 0.75. Nodes not belonging to a proper module (denoted as “grey” in

WGCNA) are removed prior to spectral clustering, but remain in the final network
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assigned to the improper “grey” module. A total of 13 proper modules remained after

merging and k = 13 was thus used for spectral clustering.

Spectral clustering was performed by first transforming the original consensus
topological overlap matrix into a degree-normalized Laplacian matrix defined as

L =D — A, where D is a matrix of the degrees of A and A is the initial adjacency
matrix (in this case Cons(TOM(A)). Then, the top k eigenvectors are computed on
the resulting graph Laplacian and k-means clustering is performed on the network
nodes using the resulting eigenvectors. We identified 13 consensus co-splicing modules

across the ten tissue types containing 199-544 SVRs from 184-494 unique genes

L

212 269 184

(Figure 7).

Consensus Co-splicing Module Network

Edge Weight - Signed

0 0.2 0.4 06 08 1

Figure 7: Consensus Module Network of GTEx Tissues. Heatmap values represent
inter-modular relationships based on module correlations from all tissue types. The
heatmap dendrogram represents the consensus hierarchy of modules across tissue
types. Not shown are tissue-specific consensus module clustering and edge weights.
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Of the 2,147 genes represented in each tissue co-splicing network, over half of the
genes are represented by more than one splicing variant (Figure 8A). Therefore,
splicing variants for a single gene may be found in more than one module. Similarly,
a single gene may have more than one splicing variant present within the same
module. Figures 8B and C show the distributions of genes across modules as
represented by their splicing variants. Of the 2,147 unique genes found within the
co-splicing network, nearly half of the genes contain one or more splicing variants
found within two or more splicing modules. Within each module, genes are more
often represented by a single splicing variant, however, a small portion of genes can

be found having two or more splicing variants within the same module.

A) Distribution of SVRs Per Gene B) Distribution of Module Assignments Per Gene C) Distribution of Gene Occurrences Within Modules
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Figure 8: Characterization of SVRs and Genes Across Consensus Modules. A)
Distribution showing the number of splice variant regions for each gene of the tissue
co-splicing networks. B) Distribution showing the number of modules a gene belongs to
given their splicing variants. C) Distribution showing the number of splicing variants
belonging to a single gene within each co-splicing module

Quality of consensus module detection was evaluated using a variety of module
quality statistics including module density, module connectivity, and overall module
summary (Langfelder et al. 2011). For each module statistic we computed a Zscore
using the observed module statistic relative to the mean and standard deviation of
10,000 random node to module assignments. Quality statistics for each module were
computed using each tissue network separately. Zscores < 2 were implied as being of

poor quality for a Z-statistic of a given module with Zscores > 10 implying high
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quality modules. All 13 consensus modules were found to have high Zconnectivity

(Z > 10) in all tissues (Figure 9). Zdensity values were of moderate (2 < Z < 10) to
high quality (Z > 10) in almost all modules across each tissue, with only the turquoise
module having Zdensity values < 2 in three of the ten tissue networks (both heart

tissues and lung). Zsummary, representing the average Zdensity and Zconnectivity
of a given module, was also of high quality (Z > 10) for all consensus modules in each
tissue. These results indicate that the identified consensus modules represent groups

of splicing variants that are indeed highly co-spliced across tissue types.

Module Quality Scores
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Figure 9: Module Quality Zscores Scores Across Tissues. Modules are ordered based on
the consensus module hierachy and Zscores are grouped by tissue. Heatmap intensity
is capped at 10 in order to indicate modules in tissues having less than high quality
Zscores.

Differential Co-splicing of Network Modules Across Tissue Types

Here, we characterized the intra-modular preservation of co-splicing modules between

the ten tissue types. Differences in the hierarchical structure of co-splicing modules
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between tissues may reveal tissue-specific differences of splicing regulated pathways.
Following WGCNA we first summarize the splicing level of each module separately
for each tissue type using SVD. Here, module splicing values (eigengenes in WGCNA)
capture the within-tissue variation of SVRs for each module. We then cluster the
consensus co-splicing modules using hierarchical clustering based on the within-tissue
module splicing values. The dendrogram in figure 7 represents the consensus

hierarchy of the consensus modules across the ten tissue types.

As defined by (Langfelder & Horvath 2007) the preservation of two modules between

two tissue networks is

eor(MY M) — cor (0P, M)
2 b

Preservgjm =1

where M I(s) is the module splicing value of the I-th splicing module in tissue s.

The scaled connectivity preservation of a module between two tissue networks is

defined as

_ Sipy leor(My”, M) — cor(M?, M)

Cr(Preserv™?) =1 SN =) :

and describes the preservation of correlation between the I-th module and the

remaining modules between the two tissue networks.

The density preservation between two tissue networks is defined as

S S |eor(MY, MJY) — cor(M?, M)

D(Preserv1?) =1 NN =) ,

and describes the overall preservation of module connectivities between two tissues.

In addition to the consensus module dendrogram, we also perform hierarchical
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clustering of co-splicing modules on each tissue separately, thus characterizing the
tissue-specific hierarchy of co-splicing modules. Figure 10 shows an example of the
three module network preservation statistics along with tissue-specific module
dendrograms. For simplicity, the module preservation statistics are applied to four of
the ten tissue types (two heart tissues and two brain tissues). Looking at figure 10 it
is easy to observe that inter-modular co-splicing is more preserved between similar
tissue types than non-related tissues with, edge weights of the module networks
showing similar co-splicing patterns between related tissues. Comparing scaled
connectivity preservation (Cj(Preserv?)) of each module between tissue pairs
shows that while most modules remain relatively preserved in scaled connectivity,
non-related tissues (e.g. hippocampus and atrial appendage) show decreased module

connectivity preservation for the magenta and greenyellow co-splicing modules.

Figure 11 shows a heatmap of the overall preservation (D(Preserv(t?))) values across
all ten tissue pairs. As expected, related tissue types were found to have higher levels
of co-splicing preservation than un-related tissue types. Clustering of the ten tissue
networks using 1 — D(Preserv(1’2)) as a distance measure results in grouping of
similar tissues. The two heart tissues, atrial appendage and left ventricle, showed
higher preservation with each other than with any of the remaining tissue types. Of
the six brain regions, all but cerebellum showed higher preservation with other brain

regions than with non-brain regions.

Functional Enrichment of Consensus Co-splicing Modules

We performed functional enrichment of genes derived from consensus co-splicing
modules to characterize their biological function. Co-splicing modules were
significantly enriched for numerous GO biological process terms with modules
containing both shared (Figure 12) and module-specific (Figure 13) terms. Many of

the enriched terms for each module include basic cellular functions to which splicing
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Figure 10: Differential Co-splicing of Network Modules. Two brain tissues (hip-
pocampus and cortex) and two heart tissues (atrial appendage and left ventricle) are
shown for example. Top row indicates tissue-specific module clustering of consensus
modules. Heatmaps going diagonal from row two to row five represent tissue-specific
edge weights of tissue module networks. Yellow and blue heatmaps in the bottom
left indicate pairwise preservation values of modules between two tissue types. Bar
charts in the upper right corner indicate preservation of module connectivity between
two tissue networks. Values above bar charts represent the preservation density (D)
between two tissue networks.
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Co-splicing Module Network Preservation Across Tissues
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Figure 11: Co-splicing Network Preservation Across Tissues. Values in the heatmap
represent module network density preservation between all pairs of tissue networks.
Blue values indicate higher levels of network preservation. Clustering of preservation
values was performed by subtracting the density preservation value by 1 and performing

hierarchical clustering using euclidean distance.
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may be contributing in regulation. Enriched terms shared across multiple co-splicing
modules include regulation of mRNA stability, translation initiation, and RNA
splicing (FDR < 0.01, minimum of 10 genes). Module-specific terms include
neutrophil activation and immune response which were both highly enriched in the
black co-splicing module, Wnt signaling which was enriched in the green module, and

regulation of apoptotic signaling in the blue module.

Shared GO:BP Terms By Module Count (FDR < 0.01; Minimum 10 Genes)
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Figure 12: Module Counts of Enriched GO Biological Process Terms From Consensus
GTEx Modules.

Co-splicing modules were also enriched for numerous Reactome pathways with several
pathways being shared across modules (Figure 14). Infectious disease, regulation of
expression of SLITs and ROBOs, and translation were found enriched in at least ten
co-splicing modules. Co-splicing modules were also enriched for several
module-specific pathways including the turquoise module which was highly enriched
for SUMOylation pathways and the magenta module highly enriched for NOTCH

signaling (Figure 15).



Top Module-specific Enriched GO:BP Terms (FDR < 0.01; Minimum 10 Genes)
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Figure 13: Module-specific Enriched GO Biological Process Terms From Consensus
GTEx Modules.
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Figure 14: Module Counts of Enriched Reactome Pathways From Consensus GTEx
Modules.
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Top Module-specific Enriched Reactome Pathways Across Splicing Module Set (FDR < 0.01; Minimum of 10 Genes)
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Figure 15: Module-specific Enriched Reactome Pathways From Consensus GTEx
Modules.

Characterization of Intra-modular Hub Nodes Across Tissues

Network hubs represent nodes having the highest levels of connectivity within a
network. Node connectivity (or weighted degree) is the sum of all edge weights for a
given node to all nodes of the network. In a module-based network analysis we focus
on intra-modular connectivity of each node which describes the relative connectivity
of each node to all nodes within the same module. Intra-modular hub nodes tend to
be the most important and functionally relevant nodes for a given module and may
include nodes that regulate many of the other nodes within a module. Node module
membership (kME) is defined as the correlation of each node with the module
splicing value and consistent with gene co-expression studies we found intra-modular
connectivity to be highly correlated with module membership across all tissues,
indicating that the most central nodes of each module are driving the within module

variation (Figure 16).

Intra-modular connectivity of a given node may occur in either a conserved or
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Intra-modular Connectivity vs. Module Membership
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