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Abstract
An increasing amount of attention is being given to the structural and morpholog-

ical aspects of biological function, and by extension the computational challenges

necessary to understand them are becoming increasingly important. In cancer re-

search, structural changes in the tumor microenvironment and state changes in the

cells, as well as the spatial distributions of proteins at both the tissue and cellular

levels are key to understanding cancer progression and evolution. Imaging modal-

ities are integral to the development of morpho-spatial analysis because they allow

us to capture the structural information in tangent to the expression information

across many different biological scales with high resolution. Multiplex imaging

specifically has allowed researchers to capture an incredible amount of data for

dozens of proteins at a time, but the computational methods that are necessary

to comprehend the true diversity of the information that is contained in the data

are only now being developed. Digital pathology applications suffer from a lack

of consistent, reproducible, and unbiased methods, and as a result the interpre-

tations of the results are prone to inter-operator and inter-institution variability.

These limiting methods include: 1) imperfect manual annotation and segmenta-

tion which are both slow and produce different results for every operator, 2) the

reliance upon classical morpho-spatial features which are generalist and fail to

quantify novel and complex features of biological importance, 3) the subjective

selection of regions-of-interest and multiplex marker panels, both of which will

vary between researchers and cannot accurately be done without substantial prior

information. Because deep learning can capture complex information from large

data and the results of such models are reproducible regardless of operator, they

xv



provide the opportunity to address many of the limitations that multiplex imaging

faces. First, I propose a deep learning model for virtual semantic segmentation of

nuanced features (VISTA) as a solution to slow and imperfect annotation in pancre-

atic ductal adenocarcinoma tissue samples and discuss how similar pipelines can

be developed for use in new pathologies. Second, I propose a novel multi-encoder

variational autoencoder (ME-VAE) architecture, which is capable of extracting bio-

logically relevant morpho-spatial features from single cell images, specific to each

dataset and without the bias of traditional imaging features. Finally, I propose a

series of deep learning methods developed for reducing researcher burden and

bias in multiplex imaging by reconstructing 3-dimensional tissue volumes, select-

ing representative regions-of-interest using convex optimization, and decreasing

panel sizes by calculating a theoretically ideal reduced panel capable of imputing

all the information in the original full panel. Implementation of these methods will

help to advance the growing community of artificial intelligence research in the

biomedical domain and allow researchers to reproducibly quantify the morpho-

spatial data held in their images, which will lead to novel breakthroughs in the

cancer domain and beyond.
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Chapter 1

Introduction

Great knowledge sees all in one.
Small knowledge breaks down into the many.

Readings from Chuang Tzu

1.1 The use of biomedical imaging

Images are one of the most rapid and efficient ways to represent and convey intel-

ligible information, and as such the ability to visualize disease states is essential in

interpreting the biology. Visualization of biology is not always possible with the

naked eye either because it is too small, because it is out of reach, or because the

biology of interest is not visible without specific treatment. Biomedical imaging

helps to address this by allowing physicians and researchers to extract dense, bio-

logically relevant information that would normally be inaccessible through the use

of tissue sections, advanced imaging devices, and/or biologically target staining

to highlight certain features. Imaging is a well-established practice in the medical
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field and has been a staple of medical diagnostics for hundreds of years. Hema-

toxylin and eosin (H&E) staining in particular has been a standard imaging prac-

tice since 1876[150] and has allowed physicians to make decisions regarding di-

agnosis, grading, and prognosis ever since. Despite its age, H&E imaging contin-

ues to be consistently used, even in the presence of other more complex imaging

modalities because it is cheap and fast. It only uses two stains but it allows physi-

cians and researchers to interpret high-level features of biology such as tissue or-

ganization, type, and morphology.

This ability to examine and measure the morphological and spatial (morpho-

spatial) components of disease is why imaging is so important. While many

modern tests and modalities, such as those in the realm of -omics (RNA

sequencing[92], reverse-phase protein arrays[50], chromatin sequencing[14]), can

provide large amounts of expression data, they currently can do little to tell us

about the structural and organizational patterns of cells within a tissue as well

as the distribution of the expressions within cells. Imaging is unique in that it

preserves the spatial by aspect of information and therefore spatially resolve the

similar expression profiles to the other modalities. In cancer, this spatial aspect

of information and expression has been shown to be an important step in cancer

subtyping and treatment[26]. For example, recent discoveries have found that

the proximities and spatial distributions of many cell types such as fibroblasts,

immune cells, and tumor cells have an influence on clinical outcomes and patient

survival [81, 10].

The importance of imaging in the medical field has pushed researchers to develop
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more and more powerful tools that can obtain images with higher spatial resolu-

tion and increased profiling capacities, capable of now staining for dozens of stains

on the same tissue and cells. These are broadly called state-of-the-art multiplex

imaging modalities and include such methods as cyclic immunofluorescence (Cy-

CIF)[64], multiplex ion beam imaging (MIBI)[4], multiplex immunohistochemistry

(mIHC)[131], and co-detection by indexing (CODEX)[38]. Each modality, under-

standably, comes with its own benefits and drawbacks. Fluorescence-base meth-

ods are able to image large areas of tissue but suffer from auto-fluorescence is-

sues as a result of fixation[64, 38, 36], while mass spectrometry-based approaches

are able to achieve higher signal-to-background ratios while only being able to

image smaller areas[4, 37]. Additionally enzyme-based antibody methods like

mIHC[131] have more harsh label stripping conditions which results in increased

deleterious tissue effects. These multiplex modalities have increased the amount

of data being gathered both in terms of the spatial resolution (some being able

to image whole slide images at the single cell level) and marker diversity (some

being able to image the same tissue with up to 100 stains). The problem is that re-

searchers these modalities produces increasingly large amounts of data with more

complexities, interactions, and confounding factors. The best methods to analyze

these imaging features, however, are still the topic of research and testing, and as

of yet there is no current standard for many of the challenges.
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1.2 Limitations of the imaging modalities

Although multiplexed imaging technologies like CyCIF[64] have introduced many

benefits to researchers, they are still relatively novel tools that have not yet been

fully optimized, and as such they each come with their own downsides that re-

strict their broad and rapid application. Firstly, highly multiplexed technologies

are slow and labor intensive technologies[64, 38, 36, 4, 37]. CyCIF, for example,

is a process involving many iterative rounds of staining, imaging, and quench-

ing and can take weeks to complete depending on the size of the tissue and the

number of stains being used[64]. Some technologies, like multiplex immunohis-

tochemistry[131], can operate in a matter of days, but even this is too slow for

broad deployment in settings where pathologists and doctors need rapid results

to dictate immediate treatment. The faster multiplex platforms, however, typically

come with decreased resolution, multiplex stain capacity, or throughput[131, 4, 37].

These time estimates also only take into consideration the amount of time required

to actually capture the image following all the upstream preparation of the sample

and panel design, the processes of which each come with limitations of their own.

Panel design is a subjective process that is heavily reliant on prior literature, re-

searcher experience, and many iterations of experimentation to optimize with no

guarantee that the panel will capture all the relevant biology[94, 32]. The process

requires balancing the selection of specific biological targets with the practical lim-

itations of the physical biology: stains may or may not compete within a single

round of staining or may have off-target effects[135, 6]. When designing the panel,

researchers must use a substantial amount of prior knowledge to determine which
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stains will produce the most amount of biologically relevant data, but it can be dif-

ficult to predict which stains will be interesting beforehand and whether specific

stains even need to be included because they share mutual information with the

other stains. As a result, multiple researchers are able to select reasonable and dis-

tinct panel sets for an identical experiment, with no quantitative metric of which

will be better beforehand. Although the multiplex technologies enable staining

with significantly more depth, conducting many subsequent imaging rounds can

result in increased autofluorescence within the image (as a result of interactions

when blocking with normal serum) and increased degradation of the tissue[53].

For this reason, researchers must be careful to only select markers that will be bio-

logically important because although the panel size has been increased, the space

on the panel is still limited. The fact that these decisions must be made with each

experiment and dataset restricts the application of multiplex imaging away from

domains where 1) there may be a lack of prior information and 2) testing and de-

ployment must be rapid.

Even outside of multiplex imaging, the medical field is slowed by image-based

computational processes. It is true that imaging data comes with unique and im-

portant morpho-spatial information, but unlike other expression measurements,

these morpho-spatial patterns do not come already labeled and quantified. Many

imaging features are incredibly complex and cannot be captured with standard

handcrafted feature metrics for stain expression and morphology, as is the case for

subtle histological features of cancer progression[115] (further discussed in chap-

ter 2) and there is bias when selecting features, the result of which can ignore bio-

logically relevant features and put inappropriate focus on other technical features
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(further discussed in chapter 3). Currently, many tasks require researchers to man-

ually process images, by annotating tumors, labeling cell types of interest, and

quantifying/normalizing stains, all of which require a significant amount of time

and are subjective decisions prone to inter- and intra-operator variation[31, 149,

27, 111, 59]. Sometimes, there aren’t even appropriate methods for bulk annota-

tion, and cell type labeling is often performed simply using clustering, whereby

cell data is computationally grouped based on similarity, or binarized marker gat-

ing, whereby cells are called as being positive or negative for protein expression

using a simple threshold.

These processes of annotation are tedious and waste the time that researchers and

physicians. The issue of annotation is compounded when one looks at the size

of datasets, which are only increasing in volume as we improve the technology.

Whole slide images now contain millions of cells for labeling[67], multiplex data

uses dozens of stains that each independently require thresholding[64], and there

is an increasing demand to research 3-dimensional tissue volumes[60, 70, 67]. Not

only do these trends increase manual workload, but whole process must be re-

peated for every new dataset that is being analyzed. Cost is also a limitation of

these new platforms, making their use prohibitively expensive for small or poorly

funded labs. Additionally, the cost of researchers, experts, computationalists, and

supplemental resources will also increase as time is spent on menial tasks that do

not necessarily require innovative thought.



1.3. The limitations of imaging by eye 7

1.3 The limitations of imaging by eye

While the technology that is used for imaging will most certainly continue to

improve over the coming years and reduce the aforementioned limitations, one

aspect that will continue to be a limitation on image analysis is the human ele-

ment. Deep learning models are capable of parallel processing, allowing a single

model to analyze multiple images simultaneously, completing tasks in a fraction

of the time it would take their human counterparts[126]. Moreover, once a model

has been successfully trained, the computational resources necessary are generally

fairly small, capable of being deployed on generic smart phones, as can be seen

in the many facial recognition tools used in today’s social media applications. For

this reason, deep learning image models have and will continue to be deployed en

masse throughout the industrial setting and will grow more and more prevalent

within the medical field in the coming years.

An added benefit that computational algorithms have over the human analyst is

consistency. Not only has analysis by multiple experts been shown to be vulnera-

ble to inter-observer variation and bias [31, 149, 27], but even a single expert will

produce different results between multiple viewings of an image, even for simple

tasks such as counting cells[111, 59]. Because computation is deterministic, the

predictions from a deep learning model will produce the same results every time.

Although the computational algorithms may still be prone to error, the errors are

reproducible, diagnosable, and with some effort can be fixed/improved in subse-

quent iterations. The errors made by human annotation will often go unaddressed
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with no good way to overcome limitations in an inherently biased and unchange-

able biological neural network.

When a human views an image by eye, they can understand the whole of the im-

age, but when they are given the same image data in the form of intensity values

and matrices, it becomes completely unintelligible. Additionally, current visual-

ization methods struggle to convey multiplex images since computer visualization

is limited to 3 primary color channels (red,green,blue)[116] and multiplex images

can have dozens of channels to visualize simultaneously[64]. Extracting hidden

patterns from big data requires the ability to parse through more information than

can be held in the human attention at one time, which is something machines are

very good at doing, and as a result recent advanced computational methods have

been shown to extract hidden patterns from images that are imperceptible to hu-

mans in the biological domain[78, 133].

Similarly, machine learning allows researchers to apply quantitative metrics to fea-

tures that the human brain can only do qualitatively. Using features in cancer im-

ages, pathologists can make qualitative decisions in order to classify tumor grade,

but these assignments do not reflect the continuous nature of cancer progression,

would be better captured in continuous quantitative values, and lack mathemat-

ical certainty. When researching topics which require nuance in tissue and cell

state, such as developmental mechanisms of disease progression, these qualitative

decisions become even more perplexing, as there is often no clear divide between

one state and another[77]. Cell segmentation is commonly done with semantic

segmentation, performed by labeling positive area at the pixel level or instance

segmentation, performed by selecting regions containing a single cell. Even the
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more simple semantic segmentation-based tasks, however, suffer from imprecise

ground truth as it can be difficult to determine where one cell begins and another

ends, especially when multiple cells overlap. As a result, calls and decisions made

between researchers will not always be consistent[31, 149, 27, 111, 59]. Many basic

tissue level segmentation and quantification methods for the purpose of separat-

ing these disease states and tissue types rely on the thresholding of stains to make

binary calls[123, 69]. These thresholding methods, however, are prone to many

sources of variation and bias. The manually determined thresholds will vary by

user, and the tissue images often have uneven staining and fluorescence, which

further confounds the process[126].

Many morpho-spatial features that are important for biomedical analysis, for ex-

ample the texture of a surface, are things that humans can qualitatively observe,

but lack the capacity to empirically quantify. Classical feature sets[138, 80], which

are defined by static handcrafted metrics, can extract some morpho-spatial features

but these lack the complexity to extract all the rich information from multiplex im-

ages which can be defined by n-dimensional pixel level interactions. To further add

to the complexity of analysis, tissue level multiplex images can be incredibly large,

comprised of hundreds of billions of pixels and millions of cells[67]. This necessi-

tates the trimming down of data into more comprehensible regions, as oftentimes

many regions of the image might not be of biological interest[67]. This could be be-

cause some regions lack pathologically relevant tissue, do not contain rare/novel

cell types, or are not undergoing the specific micro-environmental changes exam-

ined in the study. Both of these processes require a substantial amount of prior

information. Moreover, the decisions do not have empirical backing to show that
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they optimize the amount of relevant information gained from the experiment, and

the choices for each part are subject to researcher bias. Empirical methods for selec-

tion important regions have been performed in H&E[95], but these attempts have

been very limited, capturing only obvious and high-level tissue features which

would not prove useful for more nuanced features at the cellular level, which is

necessary for multiplex imaging modalities.

1.4 Applications and limitations of existing machine

learning methods in biomedical imaging

Machine learning is a subset of artificial intelligence methods that enable the rapid

and accurate analysis of big data without having to be specifically programmed

for the task[28]. Using provided input data, the machine learning methods learn

to complete a specific task by "programming" themselves in a process called "train-

ing". In doing so, the models learn a specific set of parameters, weights, and fea-

tures, that optimize that performance of their specific task. In order to complete

the same tasks normally, researchers would design similar parameters a weights

in a sub-optimal process of trail and error.

Depending on how the data is given to the model and how the process of training is

conducted, machine learning can be classified into different types. Although there

are many distinctions, supervised learning and unsupervised learning are of par-

ticular relevance to this work. Supervised learning is when the machine learning

model is trained using classified, labeled, or ground truth data, such that the model
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the model has an intended output that it can compare its predictions to. Unsuper-

vised learning is when the model does not receive labeled data during training,

and therefore must infer information regarding the data that is not given to the

model directly[28]. Additionally, deep learning is an subset of machine learning

models that is characterized by having multiple layers in its architecture, making

it capable of performing more complex tasks while requiring more computational

resources to train and use[47].

Hundreds of new deep learning architectures are being developed and published

every year, with more than 700 peer-reviewed AI publications being produced

within the US for the medical field alone in 2019 according to Stanford University’s

AI Index Report[154]. From among these, there are several common deep learning

templates that have remained relevant without drowning in the quickly changing

sea of "state-of-the-art". Although addressing all of them is outside the scope of

this work, I will briefly describe three that are highly relevant to the projects de-

tailed later.

Segmentation is a vital part of the image analysis pipeline for most cancer research;

specific tissues and cells can only be analyzed individually if they are first seg-

mented from the rest of the image. The UNet[102]is an architecture for neural

networks using only convolutional layers to compress and expand the image in

such a way that it can generate the desired output, commonly segmentation masks.

The UNet has served as the baseline template for deep learning segmentation, and

over the years has seen many updates and modifications to improve its perfor-

mance[19, 151, 52]. One of the key advances in this domain has been the creation of

widely applicable cell segmentation methods such as Cellpose[120], Mesmer[40],
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and Stardist[147], which can perform a variety of cell segmentation tasks with little

expertise required. These generalist methods allow for the deployment of a single

reproducible deep learning model on many different datasets, which can be char-

acterized by different cell types, panels, and labs of imaging, without the need for

researchers to train their own models or design the model specific to their data.

Although these show promise and widespread use, the application of generalist

models is restricted to single cell and nuclear segmentations, where there is a com-

mon and easily defined objective shared by most researchers. As of yet, there are

no successful and widespread generalist methods for tissue level features, and cur-

rently tissue level segmentation requires manual annotation by researchers or the

expertise to train highly specific models.

Once the targets of interest have been segmented from an image, it is necessary

to extract biologically relevant features that can help researchers understand what

is happening to the cell or tissue. Although many common handcrafted features

and metrics exist for this purpose[138, 80], there are many more complicated fea-

tures that still need to be extracted and are not readily perceivable by the human

eye[78]. One tool commonly used to extract such features without researcher bias

is the Variational Autoencoder (VAE)[58], which compresses images into a series

of quantitative values that describe all the features within the image and then re-

constructs the original image from said vector in order to enforce that the represen-

tative values are relevant. The logic behind the model is that if you can adequately

reconstruct the image using the encoded values, then the values must contain all

the necessary the information about the image. Using a VAE not only allows re-

searchers to capture novel information not adequately represented in handcrafted
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metrics, but does so in an undirected and unbiased fashion[58, 78]. This means that

researchers can extract relevant information without having to know the features

of interest beforehand.

VAEs, however, come with their own limitations. This includes interpretability.

Because many features are quantified in an overlapping and interconnected fash-

ion, it can be difficult to disentangle the biological meanings that come out of a

black box[44, 86]. VAEs are also reliant on the fine tuning of many parameters, and

small changes in these parameters can completely change the way the models learn

or even cause the model to collapse, meaning that the model converges to state

where the encodings and predictions are meaningless in relation to the input but

optimize the loss function nonetheless[44]. Relevant to the work described here,

VAEs can be hypersensitive to transformation features, such as rotation, skew, and

scale, which are descriptors of the image but depending on the context might con-

tain no relevant biology, and this hypersensitivity inhibits the ability of models to

fully learn biological representations[35, 48, 8, 155, 84, 42]. This has been a topic

of considerable research, but most methods designed to overcome this hypersen-

sitivity are only directed at single features of disinterest at a time [48, 8, 155, 84, 42,

106, 93].

Using the information and features available from imaging data, researchers often

require the ability to predict realistic data that they do not currently have. Genera-

tive Adversarial Networks (GANs) allow for generator networks (like UNets) to be

pushed toward producing more realistic results necessary for synthetic data gen-

eration. It does this by coupling a discriminator network to the generator, which

punishes the generator if it produces results that can be distinguished from real
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data. Although commonly applied for synthetic image prediction[114, 33, 133],

their adversarial concept has also been applied to segmentation[140] and normal-

ization[153] tasks, since the adversarial penalty on the generator model is able to

encourage better results than the generator alone.

There are also many limitations that still plague machine learning as a whole. First

is the fact that deep learning requires incredibly large datasets to learn from[9].

Within the medical domain, medical images are expensive to create and difficult to

obtain and use. This problem is compounded for supervised deep learning meth-

ods, which require not only the original data, but also the corresponding ground

truths that they are attempting to predict[28]. In most applications, the creation

of these ground truths falls upon researchers who must annotate, segment, label,

and classify all the images in the large dataset. If these labeled datasets are not

sufficiently large, the models will either fail to converge meaningfully or will learn

to overfit the small dataset, making them unsuitable for application.

Further complicating this is the need for variation in the dataset[9]. Generaliz-

ability of models is important because many things can cause batch effects in the

images, ranging from obvious things like the patient, operator, and laboratory to

more trivial things like the weather and time of day[126]. Despite how important

size and variation are to model training, there is no good method for estimating

what is required ahead of time. Finally, even though models are trained using a

provided ground truth, we must ask how we really define ground truth, whether

the ground truths are adequate, and how much subjectivity we will accept in our

definitions of ground truth. As previously discussed, even simple tasks like cell



1.5. Dissertation contributions 15

counting produce various results between experts[111, 59], so when such manu-

ally labeled results are used as ground truth, the models will be subject to the data

used for training. This same principle applies to other objectives such as feature

extraction where there might not be easily identifiable/agreed upon truths that the

model is trying to predict. Although deep learning models are powerful, so long

as they are reliant on flawed human input for learning, they will be restricted in

the scope of what they can achieve.

1.5 Dissertation contributions

In the following chapters, I will address several of the biomedical applications

and limitations of the deep learning architectures described above. In chapter 2, I

discuss the limitations of human annotators for segmenting cancer features from

whole slide images for which there is no stain. Furthermore, within the chap-

ter, I discuss the limitations of staining, thresholding, and normalization methods

used for such tasks. I propose a UNet-based ensemble method with intermediate

normalization steps called VIsual Semantic Tissue Analysis (VISTA)[126], which

I show performs tissue segmentation in a fraction of the time and can guide re-

searchers toward improved annotations.

The contents of chapter 2 are adapted from works listed below in chronological

order:

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Joe W.

Gray, John Muschler, Young Hwan Chang (2020, June 19). Utilizing Deep

Learning to Enhance and Accelerate Pancreatic Disease Quantification in Murine
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Cohorts [Conference poster]. Brenden-Colson Center, Portland, OR, United

States.

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe W. Gray, John Muschler, and Young Hwan Chang. “Vista: Vi-

sual semantic tissue analysis for pancreatic disease quantification in murine

cohorts”. In: Scientific Reports 10.1 (2020). DOI: 10.1038/s41598-020-78061-

3

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe W. Gray, John Muschler, Young Hwan Chang (2019). VISTA: Vi-

sual semantic tissue analysis for pancreatic disease quantification in murine cohorts

[Conference poster]. Machine Learning for Health Workshop, Portland, OR,

United States.

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe Gray, John Muschler, and Young Hwan Chang. “Abstract PO-

014: VISTA: VIsual Semantic Tissue Analysis for pancreatic disease quantifi-

cation in murine cohorts”. In: Cancer Research 81.22 Supplement (2021), PO–

014–PO–014. ISSN: 0008-5472. DOI: 10.1158/1538-7445.PANCA21-PO-014.

eprint: https : / / cancerres . aacrjournals . org / content. URL: https :

//cancerres.aacrjournals.org/content/81/22_Supplement/PO-014

In chapter 3, I demonstrate the limitations of current VAE architectures for ex-

tracting features from single cell imaging data. I propose a novel architecture (the

Multi-Encoder Variational AutoEncoder (ME-VAE)[124]) which attempts to over-

come the noisy and biologically irrelevant transformational information present in

https://doi.org/10.1038/s41598-020-78061-3
https://doi.org/10.1038/s41598-020-78061-3
https://doi.org/10.1158/1538-7445.PANCA21-PO-014
https://cancerres.aacrjournals.org/content
https://cancerres.aacrjournals.org/content/81/22_Supplement/PO-014
https://cancerres.aacrjournals.org/content/81/22_Supplement/PO-014
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single cell images. I compare the tool to state-of-the-art methods and show that it

improves downstream analysis via our ability to cluster cell types, extract novel

features, and integrate with other modalities.

The contents of chapter 3 are adapted from works listed below in chronological

order:

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2020, De-

cember 14). Feature Controlled Variational Autoencoder for Single Cell Image

Analysis [Conference poster]. Learning Meaningful Representations of Life,

Virtual. https://www.lmrl.org/posters2020

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2021,

March). Feature Controlled Variational Autoencoder for Single Cell Image Analy-

sis [Conference presentation]. CSBC / PS-ON Image Analysis Working Group,

Virtual.

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2021, May

14). ME-VAE:Multi-Encoder Variational AutoEncoder for Controlling Multiple

Transformational Features in Single Cell Image Analysis [Conference poster]. Hu-

man Tumor Atlas Network: Face2Face, Virtual.

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang

(2021, July 25-30). ME-VAE: Multi-Encoder Variational AutoEncoder for

Controlling Multiple Transformational Features in Single Cell Image Analysis

[Conference poster]. International Society for Computational Biology, Virtual.

https://www.youtube.com/watch?v=fGgVYV0nBoA
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• Luke Ternes, Mark Dana, Marilyne Labrie, Gordon Mills, Joe W. Gray, Laura

Heiser, and Young Hwan Chang (2020, Nov 23-24). ME-VAE: Multi-Encoder

Variational AutoEncoder for Controlling Multiple Transformational Features in Sin-

gle Cell Image Analysis [Conference poster]. MLCB: Machine Learning in Com-

putational Biology, Virtual.

• Luke Ternes, Mark Dane, Sean Gross, Marilyne Labrie, Gordon Mills, Joe

Gray, Laura Heiser, and Young Hwan Chang. “ME-vae: Multi-encoder vari-

ational AutoEncoder for controlling multiple transformational features in

single cell image analysis”. In: (2021). DOI: 10.1101/2021.04.22.441005

• Luke Ternes, Mark Dana, Marilyne Labrie, Gordon Mills, Joe W. Gray, Laura

Heiser, and Young Hwan Chang (2022, Jan 3-7). Extracting more biologically

relevant features from multiplexed imaging with a Multi-Encoder Variational

AutoEncoder [Conference presentation]. Pacific Symposium on Biocomputing,

Waimea, HI, United States.

In chapter 4, I work to mitigate the burden on the multiplex imaging pipeline

through three tasks: stain prediction in 3-dimensional tissue volumes, representa-

tive region-of-interest identification via optimization, and quantitative multiplex

image panel reduction. I propose the use of a previously established stain pre-

diction algorithm (SHIFT)[133] for the prediction and propagation of multiplex

staining throughout a 3-dimensional tissue volume. I demonstrate the use of a

GAN-based XAE architecture and convex optimization function for discovering

representative regions-of-interest (ROIs) which can characterize whole slide im-

ages without the need to stain or analyze the whole section. Finally, I evaluate

https://doi.org/10.1101/2021.04.22.441005
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several methods for selecting an ideal/reduced panel for multiplex imaging that

maximizes the amount of information retained while eliminating stains whose in-

formation can be captured from markers elsewhere within the panel.

The contents of chapter 4 are adapted from works listed below in chronological

order:

• Luke Ternes, Erik Burlingame, Jia-Ren Lin, Yu-An Chen, Eun Na Kim, Joe W.

Gray, Sandro Santagata, Peter Sorger, and Young Hwan Chang (2021, Nov

18-19). 3D reconstruction of whole-slide multiplex tissue imaging and optimized

ROI selection. (paper in preparation).

• Luke Ternes, Erik Burlingame, Jia-Ren Lin, Yu-An Chen, Eun Na Kim, Joe W.

Gray, Sandro Santagata, Peter Sorger, and Young Hwan Chang (2021, Nov 18-

19). 3D reconstruction of whole-slide multiplex tissue imaging and optimized ROI

selection with deep learning [Conference poster]. Human Tumor Atlas Network

Face2Face, Virtual.

3D multiplexed tissue imaging reconstruction and optimized region-of-interest se-

lection through deep learning model of channels embedding.

1.6 Other contributions

Other contributions, manuscripts, and publications completed during my doctoral

studies have been omitted to maintain a clear focus in this dissertation. These

works are listed below in chronological order:
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• Luke Ternes, Caitlin Mills, Kartik Subramanian, Yunguan Wang, Clarence

Yapp, Sean Gross, LINCS MCF10A Consortium, Joe W. Gray, Peter Sorger,

Laura Heiser, and Young Hwan Chang, (2019, Oct 2-4). The Temporal Dynam-

ics of Ligand Treated MCF10A Cells Using Cyclic Immunofluorescent Imaging Data

[Conference poster]. Allen Institute BioImage Informatics Symposium, Seattle,

WA, United States.

• Luke Ternes, (2020, Jan 9-10). Recursive Segmentation Refinement Without

Manual Annotations [Conference presentation]. CSBC / PS-ON Image Analysis

Working Group, Seattle, WA, United States.

• Luke Ternes, Guillaume Thibault, Joe W. Gray, Young Hwan Chang, (2020,

Apr 3-7). Iterative deep learning based segmentation on cyclic immunofluorescence

imaging by using recursive refinement [Conference presentation]. IEEE Interna-

tional Symposium on Biomedical Imaging, Iowa City, IA, United States.

• Juan Carlos Vizcarra, Erik A. Burlingame, Clemens B. Hug, Yury Goltsev,

Brian S. White, Darren R. Tyson, and Artem Sokolov. “A community-

based approach to image analysis of cells, tissues and tumors”. In:

Computerized Medical Imaging and Graphics 95 (2021), p. 102013. DOI:

10.1016/j.compmedimag.2021.102013

• Orit Rozenblatt-Rosen et al. “The Human Tumor Atlas Network: Charting

Tumor Transitions across Space and Time at Single-Cell Resolution”. In: Cell

181.2 (2020), pp. 236–249. ISSN: 0092-8674. DOI: https://doi.org/10.1016/

j.cell.2020.03.053. URL: https://www.sciencedirect.com/science/

article/pii/S0092867420303469

https://doi.org/10.1016/j.compmedimag.2021.102013
https://doi.org/https://doi.org/10.1016/j.cell.2020.03.053
https://doi.org/https://doi.org/10.1016/j.cell.2020.03.053
https://www.sciencedirect.com/science/article/pii/S0092867420303469
https://www.sciencedirect.com/science/article/pii/S0092867420303469


21

Chapter 2

Reproducible segmentation of

nuanced cancer features without

annotator bias

A frog in a well cannot discuss the ocean,
because he is limited by the size of his well.

Readings from Chuang Tzu

2.1 Abstract

Mechanistic disease progression studies using animal models require objective and

quantifiable assessment of tissue pathology. Currently quantification relies heav-

ily on staining methods which can be expensive, labor/time-intensive, inconsis-

tent across laboratories and batch, and produce uneven staining that is prone to

misinterpretation and investigator bias. I developed an automated segmentation
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tool (VISTA) utilizing deep learning for rapid and objective quantification of his-

tologic features at the pixel-level, relying solely on hematoxylin and eosin stained

pancreatic tissue sections. The tool segments normal acinar structures, the ductal

phenotype of acinar-to-ductal metaplasia (ADM), and dysplasia with Dice coeffi-

cients of 0.79, 0.70, and 0.79, respectively. To deal with inaccurate pixelwise manual

annotations, prediction accuracy was also evaluated against biological truth us-

ing immunostaining mean structural similarity indexes (SSIM) of 0.925 and 0.920

for amylase and pan-keratin respectively. Our tool’s disease area quantifications

were correlated to the quantifications of immunostaining markers (DAPI, amy-

lase, and pan-keratin; Spearman correlation score= 0.86, 0.97, and 0.92) in unseen

dataset (n=25). Moreover, our tool distinguishes ADM from dysplasia, which are

not reliably distinguished with immunostaining, and demonstrates generalizabil-

ity across murine cohorts with pancreatic disease. I quantified the changes in his-

tologic feature abundance for murine cohorts with oncogenic Kras-driven disease,

and the predictions fit biological expectations, showing stromal expansion, a re-

duction of normal acinar tissue, and an increase in both ADM and dysplasia as

disease progresses. Our tool promises to accelerate and improve the quantification

of pancreatic disease in animal studies and become a unifying quantification tool

across laboratories.
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2.2 Introduction

Advances in deep learning technologies are creating opportunities for the rapid

and objective assessment of both normal tissue and pathologic processes in bio-

logic specimens. Computer-aided interrogation of medical imaging is being ap-

plied to accelerate and improve diagnosis in human patients[17, 74, 20, 110]. Sim-

ilarly, deep learning technologies can greatly improve analyses in animal disease

models which require the measurement of disease progression in large numbers

of tissue samples resulting either from pharmacological or genetic manipulations.

The extensive and growing use of murine models in disease studies creates a sig-

nificant need for tissue assessment methods that are rapid, objective and quantifi-

able in order to permit statistically validated disease measurements among animal

cohorts, free of technical variability and investigator bias.

The challenge of objective quantification of tissue changes among animal cohorts

is significant. Evaluation of tissue by either histochemical stains or antigen-specific

immunohistochemistry offers distinct and sometimes overlapping information,

but both have limitations. Hematoxylin and eosin (H&E) staining is a rapid,

reliable and inexpensive method; however, lack of molecular specificity and

requirement for manual segmentation have, thus far, limited its use for extraction

of quantifiable data. Consequently, disease assessments by H&E staining are

typically qualitative and vulnerable to inter-observer variation and bias[31, 149,

27]. Immunohistochemical stains offer a degree of specificity, but immunostaining

can be labor- and time-intensive, expensive and results are often challenging to

objectively quantify over broad tissue regions. In addition, tissue features of



24
Chapter 2. Reproducible segmentation of nuanced cancer features without

annotator bias

interest are not always cleanly distinguishable by immunostaining markers, and

so tissue assessments can be limited by reliance on the molecular specificity of

antibodies.

Here I develop and validate deep learning approaches that enable the rapid, reli-

able, and automated quantification of disease progression over large tissue areas,

solely based on H&E staining, using murine models of pancreatic cancer progres-

sion and pancreatitis. Murine models of pancreatic cancer were chosen as they

have proven useful for mechanistic investigations of pancreatic cancer progres-

sion, modeling well the human disease both genetically and phenotypically, par-

ticularly during the evolution of pre-cancerous lesions[45, 46]. The murine mod-

els have produced an explosion of studies including pre-clinical drug tests and

evaluation of additional genetic perturbations that expose tumor-suppressing and

tumor-promoting disease modifiers[148, 132, 141].

The early stages of pancreatic cancer evolution are well described in the mouse

models[45, 46]. The normal pancreas consists predominantly of acinar and ductal

epithelial cells forming the exocrine compartment, along with islet cells of the

endocrine compartment, vasculature and the varied fibroblasts of the stromal

compartment. The earliest stages of oncogene-induced pre-cancer evolution are

marked by an expansion of ductal cells or by the conversion of the acinar cells to

a ductal phenotype in an adaptive process known as acinar-to ductal metaplasia

(ADM)[118]. ADM is also characteristic of acute and chronic pancreatitis,

inflammatory conditions that can predispose to cancer[118]. The next stage in

cancer evolution is the development of low-grade dysplasia, also referred to as

pancreatic intraepithelial neoplasias (PanINs 1 and 2). Low-grade dysplasia is a
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pre-invasive neoplasia that can evolve to high-grade dysplasia (PanIN 3) and then

progress to invasive pancreatic ductal adenocarcinoma (PDAC)[97]. Both ADM

and dysplasia are accompanied by a prominent stromal reaction and immune

cell infiltrate[118]. The stages of ADM and dysplasia evolution are believed to

encompass a long phase of pre-cancer evolution that is a valuable window for

early intervention[97].

Within this work, I describe the model training workflow and application of deep

learning on H&E stained samples of murine pre-cancerous lesions, segmenting the

normal acini, the ductal phenotype of ADM, and dysplasia. With the rapid growth

of computer vision, more specifically deep learning, novel image analysis archi-

tectures have been developed for accessing image information that is not readily

observed through traditional methods. Several research groups have worked to-

wards inter-modality image translation and have developed tools that attempt to

convert medical images such as H&E stained tissue and brightfield microscopy to

more detailed ones such as fluorescent immunostains[16, 23, 91, 61]. The target

of such models has been the direct translation of stain intensities for the purpose

of constructing entirely new images. Our developed tool seeks to go further, pre-

dicting binarized masks of positive staining area and augment immunostaining by

segmenting key histologic features that current stains cannot reliably differentiate.

Results presented here demonstrate a well validated segmentation tool that can

automatically, rapidly, and objectively quantify pancreatic tissue and disease pro-

gression in mice, relying solely on easily replicated and low-cost H&E staining of

whole pancreas tissue sections, free of experimental variability and investigator
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bias. Our work provides a tool that is immediately applicable to the improve-

ment and acceleration of pancreatic disease studies in animal cohorts, and pro-

vides workflows for similar tool development in other disease models. Moreover,

the ease of use and availability allows for this tool to be a common thread for com-

paring different studies performed throughout the world.

2.3 Results

In order to predict the histologic feature distributions and immunofluorescent stain

positivity in murine pancreatic pre-cancerous tissues, several UNet models[102]

were trained using intensity normalized H&E image tiles paired with annotated

ground truth tiles (Figure 2.1). All pancreas tissue sections in training, validation,

and testing sets were stained with H&E (Table 2.1). First testing was conducted by

evaluating spatial overlap of predictions and expert annotations for normal acinar,

ADM, and dysplasia. A second test was performed by correlating predictions to bi-

narized immunofluorescence staining (IF): amylase (AMY), labeling normal acini,

pan-keratin (panK), labeling primarily the oncogenic Kras-transformed epithelial

population, and DAPI, labeling all nuclei. A third test was performed qualitatively

analyzing predictions in pancreatitis and normal samples, and comparing to bio-

logical expectations.

To ensure that UNet[102] model predictions were able to generalize well and

overcome staining differences within and between tissue sections, Dice Coefficient

were calculated comparing model predictions to expert annotations made in

Cytomine[82] after training with several different normalization techniques



2.3. Results 27

FIGURE 2.1: A subset of murine pancreas H&E images were annotated by three experts in
Cytomine[82]. The images and their annotations were cropped and normalized at inter-
mediate intervals, and these intermediate crops were then tiled into images that can be fed
into a UNet architecture[102]. 80% of tiles were used for training and validation, and 20%
of tiles were used for testing. A model was trained for each histologic feature label. The
best models were chosen and used to predict stain and feature distributions on unseen
H&E images. These predictions were then correlated with the stained image counterparts
to determine model accuracy.

(Reinhard[98], Vahadane[134], and Macenko[76]). As observed in Table 2.2, the

models implementing Reinhard normalization achieved better scores on average,

relative to Vahadane and Macenko. Furthermore, the models achieved the best

scores when the normalization process was applied on intermediate crops rather

than across the whole image. This is because staining can be uneven within

a single section, and normalizing crops helps to overcome these differences in
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Sample Size H&E IF Annotations Used For

KC (2 months) 12 x x
- IF Correlation
-Area evaluations in pre-cancer
histopathology

KC (5 months) 16 x x
(n=13)

x
(n=3)

- Training and validation
- Dice evaluation (H&E-based
prediction vs Annotations)
- IF Spearman correlations
- Area evaluations in pre-cancer
histopathology
- SSIM evaluation (H&E-based
prediction vs IF stain)
- Synthetic stain generalizability

Induced
Pancreatitis 6 x - New tissue generalizability

Normal Tissue 3 x - New tissue generalizability

TABLE 2.1: Datasets Used

intensity; whereas, normalizing across a whole section only helps overcome

differences between images.

The models were trained using 80% of the training dataset, and 20% of that train-

ing dataset was held out for cross-validation to evaluate and tune the models’ per-

formance with unbiased data. The unseen labeled test data, comprising 20% of

the annotated dataset was used for final evaluation of the models. The best mod-

els yielded Dice Coefficients of ∼0.79, ∼0.70, and ∼0.79 on the hold-out set for

normal acinar tissue, ADM, and dysplastic features, respectively (Table 2.2). The

segmentations match the expert annotations with a high degree of qualitative accu-

racy (Figure 2.2a). The reason that the models’ Dice scores are lower than expected

from successful models is because the models actually refined approximations in

the experts’ annotations leading to discrepancies between prediction and annota-

tion (Figure 2.2b). Due to the limitations of the annotation method used, entire le-

sions (including empty lumina, mixed morphologies (Figure 2.3e), and additional
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negative space) were labeled as one type of tissue (i.e., ADM or dysplasia). The

models, however, accurately differentiate between the tissue types within a lesion

and avoid labeling lumina. Despite the predicted histology labels being biologi-

cally correct, they differ than the experts’ manual annotations, resulting in a nega-

tive impact on the measured Dice Coefficients. This means that the performance of

the models is actually greater than reported by Dice due to inconsistent biological

error in the annotations which were used for model evaluation.

Normalization Method Metric Normal Acinar ADM Dysplasia

Reinhard Normalization of Intermediate Crops Dice 0.78691 0.70239 0.79403
BCE 0.16131 0.17112 0.22374

Reinhard Normalization[98] Dice 0.71750 0.60303 0.76210
BCE 0.20561 0.16635 0.21966

Vahadane Normalization[134] Dice 0.69311 0.58241 0.73684
BCE 0.20753 0.18726 0.24471

Macenko Normalization[76] Dice 0.70686 0.56660 0.77210
BCE 0.21784 0.18370 0.19711

TABLE 2.2: Evaluation of Model Performances

To test the accuracy of the trained models further, a comparison was made between

quantified model predictions and a second unseen test set of immunostained im-

ages that have been binarized. Quantification of the tissue area occupied by nor-

mal acinar cell and transformed pancreatic epithelial cells was achieved by im-

munostaining for amylase and panK, respectively, with DAPI staining of nuclei

used to detect all cellular regions. The comparable calculation was then made

using tool predictions on adjacent H&E stained tissue sections. For the tool predic-

tion, ADM and dysplasia predictions were grouped into the panK stain because

panK immunostaining does not distinguish ADM and neoplastic tissues. Because

stain area is specific and more biologically targeted than the rough annotations

that incorporate empty lumens and mislabeled features, the models’ immunostain



30
Chapter 2. Reproducible segmentation of nuanced cancer features without

annotator bias

FIGURE 2.2: a) Model Predictions closely align with the manually annotated ground truth
regions that was used for training. b) Close inspection of the ducts shows consistent dis-
crepancies regarding the lumen and split histologic features within single ducts. Manual
annotations were made by circling whole ducts, but the models’ predictions are actually
more reflective of biology, wherein, stain does not mark for the lumen. The Predictions
can also distinguish histologic features differences that the manual annotations combined.

Spearman correlation scores are much more reflective of their overall accuracy and
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FIGURE 2.3: The most prominent histologic features of the pre-cancerous pancreas are
the normal acinar epithelial cells (a), the ductal structures resulting primarily from ADM
(b), dysplasias (c), and the inflammatory and ECM-rich stroma (d). The normal acini
are marked by a thick and darkly stained cytoplasm. ADM is distinguished by a dimin-
ished stain, reduced cytoplasm and frequent appearance of a ductal lumen. Low-grade
dysplasias are distinguished primarily by an enlargement of the cytoplasm that is lightly
stained and correlates with enhanced intracellular mucin production. Dysplasia can ex-
hibit a hybrid appearance of flattened duct-like cells and thickened mucin-rich neoplasia
(e). The reactive stroma is marked by dense ECM, spindle like fibroblasts, and inflamma-
tory cells.

sensitivity. When the prediction masks are compared qualitatively and quantita-

tively to the stained images, the models are able to predict the spatial localiza-

tion of the immunostaining (Figure 2.4a and Figure 2.5). Prediction accuracy was

evaluated against biological truth using immunostaining and structural similarity

(SSIM) (Figure 2.5), in addition to the area correlations (Figure 2.4). SSIM was cho-

sen as our metric to evaluate against because it would be more robust than Dice

against differences between serial sections. Note that H&E and IF stained samples
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were acquired from adjacent serial sections.

FIGURE 2.4: a) Stain masks and predicted segmentation masks are qualitatively highly
similar. Differences can be seen in the high-level architecture of the tissues, which is in-
dicative of the fact that the predictions were made from serial sections to the stains. There
are also dim regions of the stained image that are lost from the global thresholding tech-
nique. These regions are successfully captured by the models. "Other" stain is the DAPI
stain minus regions overlapping with AMY and panK. b) Correlations were made by com-
paring the percent of area coverage for each stain mask. The high Spearman correlations
illustrate the models’ ability to replicate straining using only H&E images. These regions
are successfully captured by the models. "Other" stain is the DAPI stain minus regions
overlapping with AMY and panK.
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FIGURE 2.5: Binarized stain was obtained using thresholding and compared to the corre-
sponding histological predictions for 4 ROIs using SSIM. Small Gaussian blurs were used
to account for the fact that samples were taken in serial sections. The high SSIM score
support the accuracy of the tool at predicting histological information.

There are minor differences between the immunostained and the predicted seg-

mentations, which reflects slight tissue variations between the adjacent, but sep-

arate, sections used for H&E and IF staining. Quantitatively, three models also

have high Spearman correlations (Figure 2.4b) with the immunostained sections

despite these sections (n= 25) being unseen during training, with Spearman corre-

lation values of 0.97, 0.92, and 0.86 for AMY, panK, and DAPI stained other tissue,

respectively. These correlations are very strong, despite the assumption that the

serial section have true correlation values of close to 1[21]. The good qualitative

spatial localization and strong correlations validate that the models have been suc-

cessfully trained and are capable of replicating known biological data.

Not only can these models replicate immunostaining data, they can extract more

information than can be gained via immunostaining. In the second unseen testing

dataset consisting of 25 IF/H&E image pairs, the panK immunostain labels both

metaplasia and dysplasia, restricting the disease features that can be segmented.
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The model predictions, however, can distinguish these features (Figure 2.6a). This

allows for deeper and more nuanced quantification of disease progression than

can be achieved by immunostaining alone. Across a whole section of unseen test

tissue, it can be observed that each predicted feature corresponds with the correct

morphology.

FIGURE 2.6: a) In test images the predicted histologic features visually align with what
is expected from the H&E images. This shows the models’ utility in discerning novel
information regarding ductal features that cannot be detected via staining.
The models were used to predict the changes stain distributions b) and cancer histologic
features c) in murine models with induced cancer. Predictions show significant changes in
all stains and features between time points, and quantifies specific features that were not
discernable in immunostaining alone. Mann-Whitney U test was used to test for statistical
analyses.
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Because this process of prediction is deterministic, it is also a faster and less biased

than manually annotating histologic features, and less expensive and less error-

prone than immunostaining (Figure 2.7). Standard binarization of whole slide IF

stains often leaves dimmer regions of the tissue with inaccurate predictions of stain

positivity. This process of setting a threshold for stain binarization is also a sub-

jective process that will have different results depending on the expert looking at

the image, and performing regional thresholding throughout the image demands

more time and introduces more thresholds that can be biased by the evaluator. By

comparison, the trained models are deterministic and are able to overcome stain-

ing differences in a consistent manner. Furthermore, the process of staining an

IF section takes two days following standard protocol, with additional time spent

image processing and binarizing the image afterwards. By comparison, the deep

learning models take less than an hour depending on section size and graphics pro-

cess unit performance. Human annotation of the data is even slower, taking days

to weeks for a single section and can have high variability between annotators. In

addition, it can be difficult to get access to an expert with pathology certification

necessary for differentiating the morphologies.

Using the tissue sections from the second unseen testing dataset isolated from

P48+/Cre; LSL − KRASG12D (KC) mice at 2 and 5 months of age (n=12, n=13), the

model was able to quantify tissue changes reflecting disease progression by pre-

dicting immunostain from H&E stain images (Figure 2.6b/c). The observed age-

dependent transitions from normal acinar to ADM and dysplasia, and the increase

in other tissue area (DAPI stained), is consistent with biological expectations, illus-

trating the practical, objective use of this tool to quantitatively assess pre-cancerous
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FIGURE 2.7: The quality of the full stained image varies region to region, as some regions
have dimmer staining than others. Because of this uneven staining quality, a single global
threshold will not accurately represent true positives and negatives because dimmer re-
gions will be neglected. When regions are thresholded independently, the quality of the
segmentation masks improves; however, even regional dim spots are still dropped from
the segmentations. The developed models, however, are able to overcome this limitation
because it utilizes H&E images and is able to analyze the histologic features beyond just
the intensity of the stain. “Other” stain is the DAPI stain minus regions overlapping with
AMY and panK.

disease development.

To test the models’ robustness and generalizability, I evaluated images from

pancreata exhibiting histopathology associated with acute pancreatitis instead

of histopathology induced uniquely by oncogenesis. Acute pancreatitis is

characterized by prominent ADM and an inflammatory stromal response, but

does not promote neoplastic lesions[118]. Acute pancreatitis was induced in mice

by injection of the pro-inflammatory agent caerulein[118], then tissue sections
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exhibiting acute pancreatitis or normal pancreas (n=6, n=3 respectively) were

analyzed by the model (Figure 2.8). This was performed on a third test dataset not

seen by the models during training. Because neither annotations nor stains exist

for this third dataset, model prediction localizations were evaluated qualitatively.

Despite not being trained to analyze the particular disease states of pancreatitis,

the models were able to accurately label pancreatitis features (i.e. ADM) with

minimal error, regardless of whether the ADM was sporadic or clustered within

the tissue (Figure 2.8a). The model’s quantified tissue assessments show the

significant presence of ADM by pixel area in the pancreatitis samples compared

to normal tissues, which matches biological expectations. The near-absence of

significant ADM and dysplasia in normal pancreas samples is also consistent

with expectations, as is the near-absence of dysplasia in the pancreatitis samples

(Figure 2.8b). The small quantities of ADM and dysplasia predictions in the

normal tissues are errors introduced primarily by pixel level noise and are

insignificant compared to the size of the samples. Within this dataset I do not see

large heterogeneity in the histologic features across disease states, and as a result

the model performs consistently across all disease states shown.

2.4 Discussion

The computational tool developed here is intended to augment and accelerate dis-

ease research performed in animal models by allowing for simple stain prediction

and histologic feature labeling from H&E images without the need for expensive

and time-consuming immunostaining and biased image interpretation. It can be



38
Chapter 2. Reproducible segmentation of nuanced cancer features without

annotator bias

FIGURE 2.8: The model predicted histologic features match what in expected in both nor-
mal and pancreatitis samples. a) Predicted images show that tissue is dominated by nor-
mal acinar with pockets of clear ADM localization. In normal tissue ADM and dysplasia
are sparse predictions comprised primarily of arbitrary single pixels, and in pancreatitis
this is true for just dysplasia.
b) In normal tissues, ADM and dysplasia predictions are negligible, and in pancreatitis
there is a significant spike in ADM coverage with negligible dysplasia. Mann-Whitney U
test was used to test for statistical analyses. Erroneous predictions of ADM and dysplasia
in these samples are primarily driven by noise.

used to both mark the localization of tissue features and quantitatively to mea-

sure the extent of disease based on multiple histologic features (Figure 2.3). Such

rapid and unbiased quantification of disease states in animal models is critical to

enabling efficient and accurate disease assessments among large study cohorts, as

well as provide a common method to compare finding across different studies.

The ability of this tool to accurately predict histologic features among 25 unseen

pancreatic pre-cancer samples from multiple time points and 9 unseen samples

comprising other disease states demonstrates the robustness of the models when
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analyzing new datasets. The fact that the models generalize well, despite being

trained with a relatively small dataset (Figure 2.9 and Table 2.3), illustrates the

effectiveness of this workflow for tool development. Using this workflow (Fig-

ure 2.1) makes niche tool development plausible for small working groups that

might have less access to the resources needed to produce large batches of an-

notated data. This pipeline is also faster, cheaper, and more generalizable than

immunostaining, which can take days and be prone to investigator bias. This will

allow working groups to digitally process many samples within hours instead of

spending days immunostaining individual samples.

FIGURE 2.9: The annotated training, validation, and testing dataset was comprised of la-
bels from 5 regions across three images. In the context of deep learning, where some mod-
els are trained on thousands of whole tissue sections, this is considered a small dataset.
Despite only being trained on annotations from 3 images, however, the models are suc-
cessfully generalizable to many more images with different staining qualities and levels
of cancer development.
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There have been many efforts to recreate advanced staining images using more

common input modalities[16, 23, 91, 61], and although they are useful for visual-

izing potential stain and intensity distributions, the algorithms are limited to pre-

dicting staining patterns of existing markers. If the user wants to analyze specific

biological features for which there is no specific stain; however, simple stain trans-

lation will not suffice. The tool created here, however, can create objective binary

interpretations of H&E images that segment histologic features of developing pan-

creatic cancer for which there is no reliable conventional immunostain. Although

this methodology uses a conventional UNet architecture[102], which is a standard

method used for segmentation in deep learning, the work presented here is a novel

and useful application of this technology for studies into the development, pro-

gression, and mechanisms of pancreatic pre-cancers. The tools allows researcher

to distinguish the developmental histological cancer features of ADM and PanIN

lesions, which have seen few applications before and are important for quantify-

ing disease progression. These features, as previously described, are not easily

distinguished by any other methods besides manual annotation. Previous studies

have attempted to use computer-aided analyses for duct detection in pancreatic

cancer[62], and although the results are good, they are limited in their scope and

do not cover a range of subtly different features or early disease hallmarks such as

ADM and dysplasia. This illustrates the capacity for modern deep learning meth-

ods to provide a broader range of information and perform more complex tasks

with comparable accuracy.

Although this tool enables easy, rapid, and accurate binary stain prediction and

feature labeling in the early stage disease models employed here, there are several
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limitations to its predictive capacity. The most prominent source of error for the

tool currently is the way it handles unlearned tissue types, such as lymph nodes,

pancreatic islets, the desmoplastic stroma, and the occasional presence of neigh-

boring gastrointestinal tissue. Lymph nodes and gastrointestinal tissue are highly

irregular compared to the pancreatic features that were present in the training data,

leading to completely arbitrary labeling of the unrecognized tissue areas. To over-

come this, these regions can simply be cropped prior to analysis, as performed

for our analyses. Islets comprise a small fraction of the pancreatic tissue area, and

were labeled by the model as “other” (i.e. neither normal, ADM, or dysplasia), and

therefore introduced only minor errors. In addition, the desmoplastic stroma is a

prominent and histologically distinct feature of pancreatic disease that is currently

unlearned and labeled as "other" tissue.

Greater limitations arise with the appearance of high-grade neoplasia and adeno-

carcinoma, both of which can adopt ductal or disorganized structures more closely

resembling ADM. It should also be noted that the tool currently labels all non-

neoplastic ductal structures as ADM, whether they originate from acinar cells or

from ductal cells, and this contributes some error for the quantification ADM of

acinar origin. At this stage of the tool’s development, no label for fully developed

adenocarcinoma features were used, so lesions that have progressed beyond high

grade dysplasia would likely be mislabeled as either ADM or “other”. With fu-

ture work, it should be possible to train models to identify these additional tissue

features and predict them accurately alongside the existing models. The final limi-

tation of the tool is its failure to make accurate predictions in areas of tissue folding

or out of focus imaging, but these are obstacles for any image-based measurement
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tool (including human annotators) and are avoidable with good technique.

Further work is in progress to reduce error and allow for a broader range of tis-

sue interrogations, including training the tool to recognize a greater diversity of

cell types and tissue features such as islets of Langerhans, neural tissue, desmo-

plastic stroma, adenocarcinoma, and peripheral elements such as lymph nodes or

gastrointestinal tissue. The model’s quantitative capabilities can also be applied

to other disease states that share similar histologic features, such as pancreatitis.

Continued development can yield a single comprehensive tool for predicting and

labeling all histologic features in pancreatic tissue without the need for complex

staining.

Despite the current limitations discussed above, the tool developed here demon-

strates clear advantages and superiority to immunostaining for disease quantifi-

cation in pancreatic pre-cancers. By relying on H&E staining alone, the data ac-

quisition is not only faster and cheaper, but less vulnerable to variable and un-

even staining across tissue sections. This consistency and stability of H&E staining

eliminates a primary source of error and bias in feature quantification because of

manual adjustments needed to threshold immunostained tissues; tissue immunos-

taining quality varies significantly within single tissue sections and among the

many tissues acquired and stained from animal cohorts, typically stained on dif-

ferent days, months, and even years. This tool’s exploitation of H&E staining not

only enables easy quantitative comparisons between tissues collected and stained

across broad time periods, but also enables such comparisons among tissues col-

lected and stained in different laboratories around the world. This unifying aspect

will improve collaboration and cross-validation between experiments conducted
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by different groups.

Being computer driven, the tool easily quantifies whole pancreatic tissue sections,

allowing greater volumes of data acquisitions and avoiding the manual selection of

“representative” regions for quantification, which introduces further bias. Further-

more, as an automated, machine-driven measurement tool, potential investigator

bias is excluded from the data quantification pipeline. Finally, and importantly,

this tool has been demonstrated to identify and segregate key histologic features

which immunostaining methods cannot reliably distinguish (i.e. ADM and dys-

plasias), significantly extending the power of available tissue analytics. This genre

of tool will certainly enhance, and conceivably fully replace immunostaining in

many animal studies.

2.5 Methods

2.5.1 VISTA Datasets

Murine pancreatic tissues displaying a range of pre-cancerous lesions were

isolated from the P48+/Cre; LSL − KRASG12D mice (KC) mouse pancreatic cancer

model. This a widely used genetically engineered mouse model of oncogenic

Kras-driven pancreatic adenocarcinoma that closely models the evolution of

the human disease, displaying the early hallmarks of ADM, Dysplasia, and

desmoplasia, and eventually invasive adenocarcinoma after more than one year

of age[45]. Tissue sections from 3 whole pancreases were acquired from KC mice

at 5 months for models training. This labeled dataset was split into training
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(80%), validation (20% held out from training), and a first testing dataset (20%).

Whole pancreas sections from an additional 25 mice were collected at 2 and

5 months of age (n=12, n=13) for IF Spearman correlation testing on a second

unseen dataset. Collected pancreases displayed abundant pre-cancerous lesions

but were preceding the development of adenocarcinoma. Acute pancreatitis

(induced in mice by injection of the pro-inflammatory agent) and normal pancreas

sections (n=6, n=3) were also collected for generalizability testing on a third

unseen dataset. All pancreas tissue sections were stained with H&E and the

second testing set was also stained by immunofluorescence for amylase, labeling

normal acini, panK, labeling primarily the oncogenic Kras-transformed epithelial

population, and DAPI, labeling all nuclei. These stains were chosen as they

are known and well-established markers in the pancreas. Amylase (AMY) is

a secretory product of acinar cells, cytokeratins (panK) are well characterized

pancreatic ductal lineage markers[115], and DAPI stains cell nuclei which is used

as whole tissue area marker. I use AMY, panK and DAPI combination to identify

acinar cells from ADM and PanIN tissues. Acinar cells are positive on AMY but

negative for panK; ADM tissues are negative for AMY but positive for panK;

PanIN tissues are negative for AMY but positive for panK. Normal acini, ADM,

and PanINs have nuclei and can be stained with DAPI.

2.5.2 H&E staining and immunofluorescence of Mice Pancreas

The pancreatic tissues were paraffin-embedded, sectioned at 5µm thickness,

and stained by standard protocols at the OHSU Histopathology Core. For

immunofluorescence staining of amylase and panK, antigen retrieval was
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performed using Dako Target Retrieval Solution at pH 9 (Aligent: S236784-2)

according to manufacturer’s instructions. Specimens were blocked with blocking

buffer (1X PBS/5% normal serum/0.3% Triton X-100) for 1 hour at room

temperature. The anti-amylase (Santa Cruz: sc-12821) and anti-pan-Cytokeratin

(Santa Cruz: sc-15367) primary antibodies were incubated overnight at 4°C,

then washed and incubated with secondary antibodies (Invitrogen: A10042 and

A32814) for 1.5 hours at room temperature. Slides were covered by coverslips

with DAPI’s Prolong gold anti-fading agent (Invitrogen: P36931). Fluorescent

images of amylase (A), panK (B), and DAPI (C) staining were acquired using a

Carl Zeiss Axioscan Z1 slide scanner at a resolution of 0.2 microns/pixel and

converted to BigTiff format.

Immunofluorescence images were quantified using ImageJ software. The thresh-

old tool was applied manually to select the amylase-, panK-, or DAPI-positive

tissue regions by trained experts. Lymph nodes were manually cropped and ex-

cluded.

Despite all data coming from internal sources, steps were taken to better ensure

and test the generalizability of models. Each sample of and IF were collected and

stained on different days over the course of several month, and samples were taken

at different stages of disease progression. Although H&E samples were stained by

the same Histopathology Core, it is likely that staining was done by different oper-

ators and used different machines. Following model development, generalizability

and robustness to H&E staining differences were tested using synthetically altered

H&E stains to show model consistency (Figure 2.10). Synthetic HE stains were cre-

ated by randomly shifting the R, G, and B channels by up to +/- 25% and applying
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Gaussian noise. Dice scores were calculated against the unperturbed model pre-

dictions. The high mean dice scores support that the model is self-consistent across

stains.

FIGURE 2.10: Synthetic H&E stains were created by randomly shifting the R, G, and B
channels by up to +/- 25% and applying Gaussian noise. Synthetically stained images
were then passed through the same prediction pipeline to test model robustness across
staining qualities. Dice scores were calculated against the unperturbed model predictions.
The high mean dice scores support that the model is self-consistent across stains.

2.5.3 Expert annotation of histology features

Annotations for pancreatic tissue features were constructed in Cytomine[82] by

three trained experts, and affirmed by a pathologist. These annotations came from

5 regions across 3 images (Figure 2.9) and included at total of 1924 normal acinar,

2582 ADMs, and 1732 Dysplasia (Table 2.3).
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Number of Annotations
Normal Acinar ADM Dysplasia

Image 1 119 1722 1659
Image 2 1342 597 70
Image 3 463 263 3
Total 3 1924 2582 1732

Annotation Area (mm2)
Image1 0.05 0.59 1.22
Image 2 0.70 0.17 0.12
Image 3 0.10 0.12 0.02

Total Area 0.85 0.88 1.36

TABLE 2.3: Number of Training Annotations

2.5.4 Training image preparation

In order to make the images more amicable to training for the Deep Learning algo-

rithms, they were trained with intensity normalization to make them appear more

consistent with each other. To overcome differential staining across an H&E image,

various normalization approaches were applied on intermediate sized (5000x5000

pixel) overlapping crops prior to tiling (512x512 pixel). Background intensities

were also ignored from the normalization process to reduce drastic changes on

edge regions, isolating only the areas of interest for normalization. Background

area was selected by thresholding pixels where all RGB values were greater than

200. The best normalization method was shown to be Reinhard normalization[98]

(Table 2.2), so it is used in the implementation of the models.

2.5.5 UNet training

A separate UNet model was trained for each annotated ductal tissue type (normal

acinar, ADM, and Dysplasia)[102]. To make each model specific to its respective

tissue type, each model’s training set was made to incorporate small portions of the

other tissue types as negative controls. The training sets were made using 80% of
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the total relevant tissue tiles and ∼5-10% of the total of other tissue tiles. Tiles were

augmented during training with flips, rotations, and shears to overcome the small

dataset size. Training for all three models lasted for 50 epochs, used a batch size of

32 tiles and had a learning rate of 7e-4, implementing the Adam optimizer. Binary

cross entropy (Equation 2.1) was used as the loss function during training. Dice

Coefficient (Equation 2.2) was used following training to select the best models.

BinaryCrossEntropyLoss = − 1
N

N

∑
i=0

yi · log(ŷ) + (1 − yi) · log(1 − ŷi) (2.1)

DiceCoe f f icient =
2(X ∩ Y)
|X|+ |Y| (2.2)

where X is the ground truth segmentation mask and Y is the predicted segmenta-

tion mask.

2.5.6 Model integration

As a standard, models produced through Deep Learning packages will call any-

thing with a prediction value >= 0.5 as positive and anything < 0.5 as negative.

This threshold, however, might not be the ideal and can be subject to optimiza-

tion and tuning. Within the training and validation datasets, it was noticed that

the standard thresholds led to pixel level false positive noise and predictions that

bleed into surrounding ductal lumen. To make the models more accurate, thresh-

olds were chosen based on the Receiver Operating Characteristic (ROC) curves

(Figure 2.11) – sensitivity and specificity, and were manually adjusted to reduce
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the observed errors qualitatively. This step would help to ensure that the mod-

els would better generalize to the testing dataset with minimal noise, taking only

predictions the model was most confident in. Within the testing a validation set,

the following thresholds were chosen for each model respectively, and the chosen

thresholds were carried forward to be used in subsequent testing: Normal Acinar

Threshold = 0.3, ADM Threshold = 0.5, and Dysplasia Threshold = 0.7.

After manual parameter tuning, the determined thresholds remain within a rea-

sonable range, as observed by the ROC curves. Once each model made its pre-

diction for a given tissue, the background white pixels were again removed from

prediction by ignoring all pixels where all RGB values were greater than 200. To-

tal tissue (DAPI positive) region was also calculated by finding all pixels where

RGB values were lower than 200. To combine all four tissue masks, normal acinar

predictions override metaplasia and dysplasia predictions; metaplasia predictions

override dysplasia predictions; normal acinar, metaplasia, and dysplasia predic-

tions all override DAPI predictions.

2.5.7 VISTA validation and testing

Because no foreign tissue was used for negative controls during training (primar-

ily lymph nodes and GI tissue), regions of testing images containing these tis-

sues had to be cropped out prior to testing and analysis. Testing and analysis

were performed through a similar pipeline as training, incorporating intermediate

crop normalization and tile level prediction. These overlapping tiles were stitched

back into a full image and an average was taken to get pixel level predictions for
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FIGURE 2.11: ROC curves were created for each model by testing the error rate at 0.1 incre-
ments. The red line represents the chosen threshold’s corresponding false positive/true
positive rates. The high AUC values indicate that the models are highly accurate. The
fact that the chosen threshold falls well within the elbow of the ROC curve indicates that
despite manual adjustment, the chosen thresholds hold their high predictive value.

each model. In validation, models were compared to annotations from the held-

out dataset of labeled images. In testing, model predictions were compared to

three unseen datasets: the first comprised of labeled tiles, the second comprised

of immunostained serial sections that were thresholded by an expert, and a third

comprised of normal and pancreatitis whole tissue sections. To compare with im-

munostaining, ADM and dysplasia predictions were combined to make a general

panK prediction mask. Predictions were then paired with their respective serial

section and correlated to determine model accuracy. Correlation was chosen as the

metric for this test over Dice or sensitivity because serial sections have a 5 µm off-

set which causes the H&E used for predictions and the IF used for ground truth to
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be spatially unaligned. Although correlation of abundances remains high between

serial sections[21], the errors in alignment have strong negative biases on metrics

like Dice even after attempts at registration. Using IF as ground truth also adds

biological credibility to the metrics while annotated ground truths were found to

be prone to annotator error.

Like what is done with other virtual staining methods that have been deployed on

tissue sections[100, 101, 15] I also evaluated our predictions against IF staining was

also done with structural similarity:[143]

SSIM(x, y) =
(2µxµy)(2σxy + (k2L)2)

(µ2
x + µ2

y + (k2L)2)(σ2
x + σ2

y + (k2L)2)
(2.3)

where x and y are input images, µx and µy are the mean intensities, σ2
x and σ2

y

are the variances, σxy is the covariance, k1 and k2 are constants, and L is the dy-

namic range. SSIM was calculated using the scikit-image library with all default

parameters:[139] sliding window size = 7 pixels; k1 = 0.01; k2 = 0.03; and data

range estimated from images. The SSIM between two images is calculated over

pixel neighborhoods in the images and provides a more coherent measure of im-

age similarity than pixel-wise measures. I chose SSIM as the metric for comparison

because it would be more robust than Dice against differences between the serial

H&E and IF sections, and small Gaussian blurs were applied to account for tissue

differences at the pixel level. The range of SSIM values extends from -1 to +1, and

only equals 1 if the two images are identical. Values close to one are indicative of

good reconstruction and strong model performance. Four ROIs from two whole

slide test sections that had high correspondence between H&E and IF were used
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for analysis.

The amylase, panK and DAPI area were measured in pixels, and the percentage of

positive areas were calculated as a percent of the total all measured cellular regions.

2.5.8 Statistical analysis

Since datasets were continuous, independent, and had no tied values, after check-

ing the assumption and conditions were met, and since the datasets were small,

non-Gaussian, and contained outliers, the non-parametric Mann-Whitney U test

was used to access statistical differences in means. Since datasets were small and

had outliers, the correlation tests for all models were conducted using Spearman

correlation.

2.5.9 Animal models

This work was performed in accordance with Institutional Animal Use and Care

Committee (IACUC) guidelines of the Oregon Health and Science University

(OHSU). All work involving mice received approval by the IACUC at OHSU. The

KC mice were all backcrossed at least 5 generations into the C57Bl6/J background.

Acute pancreatitis was induced in 6-week old C57Bl6/J mice by intraperitoneal

injection of 50 µg caerulein (Sigma:C9026) per kg body weight, with a total of

7 consecutive treatments at 1hour intervals. Pancreatic tissues were harvested

3 days following caerulein treatment. Caerulein was dissolved in PBS at a

concentration of 10 µg/mL.
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Chapter 3

Extracting novel, biologically relevant

features from images

Men honor what lies within the sphere of their knowledge,
but do not realize how dependent they are on what lies

beyond it.

Readings from Chuang Tzu

3.1 Abstract

Image-based cell phenotyping relies on quantitative measurements as encoded

representations of cells; however, defining suitable representations that capture

complex imaging features is challenged by the lack of robust methods to segment

cells, identify subcellular compartments, and extract relevant features. Variational

autoencoder (VAE) approaches produce encouraging results by mapping an image

to a representative descriptor, and outperform classical hand-crafted features for
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morphology, intensity, and texture at differentiating data. Although VAEs show

promising results for capturing morphological and organizational features in tis-

sue, single cell image analyses based on VAEs often fail to identify biologically

informative features due to uninformative technical variation. Herein, I propose a

multi-encoder VAE (ME-VAE) in single cell image analysis using transformed im-

ages as a self-supervised signal to extract transform-invariant biologically mean-

ingful features, including emergent features not obvious from prior knowledge.

I show that the proposed architecture improves analysis by making distinct cell

populations more separable compared to traditional and recent extensions of VAE

architectures and intensity measurements by enhancing phenotypic differences be-

tween cells and by improving correlations to other analytic modalities.

3.2 Introduction

Understanding cellular changes and phenotypic pathways at the single cell level is

becoming increasingly important because it creates a comprehensive understand-

ing of cell state and cell-to-cell heterogeneity. Multiple analytical tools are avail-

able to extract, normalize, and evaluate single cell RNA sequencing (scRNAseq)

data[130, 107, 11]. Until recently, analyzing single cell imaging data in a similar

fashion was limited to extracting mean intensity profiles, predefined shape, tex-

tural and morphological features, and images stained with only a few markers.

Emerging multiplexed imaging technologies such as cyclic immunofluorescence

(CyCIF)[68], multiplexed immunohistochemistry[117], CO-Detection by indEXing

(CODEX)[25], and Multiplexed ion beam imaging[5] create images comprised of
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a large number of markers, expanding the depth of information. Robust analyt-

ical methods for high-dimensional multiplexed imaging data, however, are still

needed. One limitation with analyzing highly multiplexed single cell images is

the ability to extract biologically meaningful information on staining localization

patterns that indicate divergent cell states. Single cell imaging data has morpho-

spatial information not captured using simple mean intensity information, with

successful quantification of these features potentially leading to improved analy-

sis and understanding[145].

The classical approach for image feature extraction is manually creating a list of

desired features and predefined metrics to quantify them. This is biased toward

known and easily measured features and can miss subtle but important features.

More robust image feature extraction has been employed using deep learning ar-

chitectures such as the Variational Autoencoder (VAE)[58] in other domains where

feature representation can be automatically generated without supervising infor-

mation or prior knowledge.

However, the problem with VAE feature extraction in single cell imaging is that

there are typically unimportant or uninformative technical features driving differ-

ences between biologically similar images such as image transformation features

like rotation, offset within the image, affine/skew, and stretching. These features

are extracted and entangled with the other features from the VAE leading to the

downstream analysis being skewed in undesired ways[35]. Despite having the

same underlying information, the common uninformative features in transformed

images distract deep learning architectures so that they ignore most of the bio-

logically relevant features[48, 8, 155, 84, 42]. This holds true in single cell images,



56 Chapter 3. Extracting novel, biologically relevant features from images

where VAEs frequently ignore biologically meaningful features and focus on recre-

ating the transformational features which have a high variance across the dataset.

When these features are known controllable transformations, they can be used for a

self-supervised signal to extract invariant features with respect to a set of transfor-

mations during model training. This means that the model does not need a ground

truth annotation of what is being learn becasue it can supervise its own learning

progress using the results of different but biologically similar inputs. Untailored

deep learning architectures are unable to overcome these uninformative features

unless some modification is made to either their architecture or objective func-

tions[48, 8, 155, 84, 42]. Many recent works propose changing autoencoder archi-

tectures to coupled networks or using multiple latent dimensions to overcome this

without the need for biased hyperparameter tuning and data normalization[35,

146, 41, 41, 34]. Similar methodologies have also been explored that seek to correct

transformative features with coupled networks, direct latent space modifications,

novel layer architectures, and training networks with combinations of corrected

and uncorrected image data[48, 8, 155, 84, 42, 106, 93]. Most of these corrected

architectures, however, only target to one specified feature and can’t generalize to

other features without further modification. Two examples of recent architectures

that use modifications to the objective function are the β-VAE[44] and the invariant

C-VAE[86], which use their loss functions to pressure the model such that it will

prioritize a more learning more quantified features that are more interpretable,

balanced, and/or invariable to specific features.

Here I propose a novel method for single cell image feature extraction that removes

specified uninformative features by making them uniform and invariant across the
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reconstructions, using modified pairs of transformed input and output images by

self-supervised transformation, and utilizing multiple encoding blocks. Using this

multi-encoder VAE (ME-VAE) to control for multiple transformational features,

I highlight its ability to extract biologically meaningful and transform-invariant

single cell information and better separate biologically distinct cell populations

without the need for biased manually selected feature sets.

3.3 Results

3.3.1 Controlling for uninformative features

When a transformational feature varies across a single cell imaging dataset, stan-

dard VAEs extract only the dominant component to reconstruction. When rota-

tion varies from image to image, reconstructions along the principal component

walk[109] only constitute the angle of the cell and downstream analysis is heavily

skewed by this extracted component (Figure 3.1a). In another dataset where po-

lar orientation is the dominant feature, I observe the same behavior (Figure 3.1b);

VAEs only extract the dominant uninformative features, ignoring subtle but infor-

mative features necessary for detailed reconstruction.

In order to overcome model hypersensitivity to dominant uninformative features,

several architectures were proposed and tested to learn the latent space while at-

tempting to ignore uninformative features (Figure 3.1c-g). A standard VAE with-

out control for uninformative features was used as baseline and shows a high

correlation between the embedded components and the respective feature metrics
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FIGURE 3.1: VAE analysis of two datasets are shown, each governed by a single biologi-
cally uninformative feature a) rotation and b) polar orientation. Principal walk reconstruc-
tions[109] show the VAEs’ governing features across the latent space through a range of
image reconstructions. To correct this model hypersensitivity several architectures were
tested: c) standard VAE with matched raw images; d) VAE with paired randomly trans-
formed input and controlled output images; e) β-VAE which operates similarly to the
Standard VAE, but utilizes a λ hyperparameter in the loss function to encourage an inde-
pendent latent space; f) an invariant conditional VAE that injects the values of the unin-
formative features into the decoder such that they are not embedded in the latent space;
g) the proposed multi-encoder VAE: VAE with corrections for multiple features (rotation,
polar orientation, size, shape, etc.) using parallel encoder models, a shared latent space,
and a single decoder model. In c)-e), a correlation between the embedding components
and the respective feature (angle and orientation) is measured to quantify how effectively
the model removes uninformative features. PBS and TGFβ+EGF cell populations with
single channels were used in this analysis (n = 15,898 single cell images).

(Figure 3.1c and Figure 3.2a). When a single factor is controlled (e.g. rotation), it

becomes uncorrelated to all VAE encodings, and even the max correlated compo-

nent in the latent space is insignificant (Figure 3.1d and Figure 3.2b). Controlling

for one feature does not significantly impact the other dominate transformation

features (i.e. polar orientation). With a double transformed output correcting two
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features simultaneously, there is a decorrelation of both dominant features (Fig-

ure 3.2c), but the reconstructed images are poor (Figure 3.2g) reflecting the model’s

failure to learn relevant feature embeddings. The VAE with transformed output is

shown to work on simple transforms such as rotation, but pairs of complex trans-

formations like rotation combined with polar orientation prove too difficult. Both

the β-VAE[44] and invariant C-VAE[86] also show strong correlations between the

uninformative features I wanted to ignore and the latent space (Figure 3.1e/f and

Figure 3.2d/e). Finally, when both uninformative features are controlled for us-

ing the proposed ME-VAE with transformed image pairs, there is a decorrelation

in both uninformative features, indicating that the VAE reconstructions learned to

overcome them and focus on underlying features that better separate cell popu-

lations (Figure 3.1g and Figure 3.2f). Unlike with the corrected output VAE, the

ME-VAE produced coherent reconstructions (Figure 3.2h), as can be seen by the

qualitatively well-defined and more realistic images as opposed to the messy im-

ages with no clear biological pattern retained. Moreover, the ME-VAE is better able

to generalize to new datasets and is scalable since it controls many uninformative

features together in parallel by using a multi-encoder network where any number

of encoders can be added, and each encoder learns a single transformation. Finally,

when training on the same dataset of 15,898 single channel images, all comparison

architectures took a similar amount of time to train ranging between 53 and 54

seconds per epoch on average. The proposed architecture only took a few seconds

longer, averaging 64 seconds per epoch, indicating that the increased performance

and reduction in uninformative features does not come with a significant increase

in computation time.
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FIGURE 3.2: Encoding spaces for each VAE
method were analyzed for correlation with
uninformative features. Scatter plot and cor-
relation is shown for the latent space compo-
nent that had the highest correlation to given
the metric. Correlations for all methods uti-
lized a sample size of n = 15,898 single cell
images a) Standard VAE used as baseline to
show high correlation between encoded fea-
tures and undesired features. b) Output cor-
rected transform invariant VAE controlling
for rotation only. c) Output corrected trans-
form invariant VAE controlling for rotation
and polar orientation. d) β-VAE implement-
ing λ hyperparameter in loss function. e) In-
variant C-VAE using quantified values of un-
informative features injected into decoder. f)
Proposed multi-encoder VAE correcting for
both rotation and polar orientation. g) Failed
reconstruction examples from the transform
invariant VAE correcting for both rotation
and polar orientation. h) Successful recon-
struction examples from the ME-VAE correct-
ing for rotation and polar orientation.
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3.3.2 Improving biological interpretation on single channel im-

ages

To evaluate the models’ abilities to improve downstream usefulness and biological

relevance, I analyzed a dataset (subsection 3.5.1) of single cell CyCIF images from

MCF10A non-malignant breast epithelium cell line. The full dataset I analyzed is

comprised of 6 ligand treated cell populations and is stained with 23 biomarkers.

Here, I restricted our analysis to PBS (control) and TGFβ+EGF population and con-

sidered only the Epidermal Growth Factor Receptor (EGFR) channel. These were

chosen because they have similar distributions of cell size and mean whole cell

EGFR intensity following cell level normalization, making them difficult to naively

separate with classical cellular features (Figure 3.3a), but qualitatively show phe-

notypic differences such as compartment localization and stain texture. Within this

dataset I show that the ME-VAE better separates PBS and TGFβ+EGF treated cell

populations compared to the standard VAE.

As can be observed in Figure 3.3b, the standard VAE is incapable of separating

the two cell populations, creating a mix of the labeled cell populations in k-means

cluster space (number of clusters = 2) and UMAP embedding space. The cells

within UMAP regions also have an arbitrary range of phenotypes; the only ob-

served patterns are of uninformative features such as rotation, polar orientation,

and size. Classically extracted features show similar results to the standard VAE

(Figure 3.3c) where uninformative and non-biological features govern the cluster-

ing and UMAP distribution. Despite the fact that orientation was not included

in the set of extracted properties, the rotation angle is still captured because the
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same information is available through a combination of important features such as

eccentricity, extent, moments, and inertia which were extracted. The β-VAE archi-

tecture[44] does not show significant improvement from the standard VAE either

(Figure 3.3d). Moreover, the λ hyperparameter is known to be difficult to tune

which can lead to large variations in both reconstruction quality and clusterability

(Figure 3.4). The invariant C-VAE adapted from Moyer et al.[86] does see an im-

provement in clustering compared to the standard VAE (Figure 3.3e), but despite

having the uninformative values injected into the model, it is unable to keep them

from being encoded in the latent space, resulting in UMAP embeddings depen-

dent of uninformative features. Many of the recent extensions of the VAE that seek

to improve the interpretability of the latent space simply modify the loss function

used during training to encourage a result instead of forcing it (subsection 3.5.2).

Unlike these previous attempts, the ME-VAE changes the actual deep learning ar-

chitecture by adding multiple encoding blocks each for the purpose of removing a

specific feature, which I observe to has an increased performance.

By comparison to all other attempted methods, the ME-VAE has a dramatic in-

crease in k-means cluster purity and normalized mutual information (NMI) and

shows a clear separation of labeled cell populations in UMAP (Figure 3.3f), indi-

cating improved clusterability and separability. Regional cell images within the

multi-encoder’s UMAP space show distinct phenotypic differences that separate

the cell populations with biologically relevant features (stain localization, intensity,

and subcellular pattern). In PBS dominant regions, EGFR stain is most heavily con-

centrated uniformly along the cellular membrane, while TGFβ+EGF regions show
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FIGURE 3.4: Left panels are shown 25 randomly sampled image reconstructions across
varying values of β, followed by their quantified clustering metrics generated using k-
means with number of clusters = 2 and sample size of n = 15,898 single cell images, and
on the right are the models’ projections into UMAP, colored by ligand population and
rotation angle.

a cloudy diffuse concentration of EGFR stain throughout the cell with the heavi-

est concentration of stain localizing to one side of the nuclear membrane. These
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differences illustrate a clear difference in cellular regulation and compartmental-

ization of the EGFR protein induced by the TGFβ+EGF ligand combination. Based

on observations from the multi-encoder output in Figure 3.3f, I inferred the met-

ric of radial slope would similarly separate the two populations (subsection 3.5.3,

Figure 3.5). I observe a larger (more positive) radial slope in the PBS population

on average, indicating that the distribution of stain increases radially toward the

membrane, and by comparison the radial slope of the TGFβ+EGF population has a

smaller (more negative) radial slope than the PBS, indicating that the stain distribu-

tion is located primarily toward the center of the cell and decreases radially toward

the membrane. Using this metric, there is improved separation and cluster purity

and NMI compared to the selected naïve metrics (Figure 3.3a and Figure 3.3g).

What’s more is that the concentration of EGFR in the TGFβ+EGF population is lo-

cated just outside the nucleus, and therefore would not be successfully separated

simply be isolating the mean intensity of the nuclear region. The clustering metrics

from radial slope, however, are still lower than the full ME-VAE cluster purity, in-

dicating more features beyond the radial slope are being extracted from ME-VAE.

3.3.3 Use case with a large complex dataset

Models were next trained on the expanded dataset (five ligands and PBS control)

and 23 channel CyCIF images (subsection 3.5.1 and Table 3.1). Like before, the

ME-VAE was trained to control for rotation, polar orientation, and cell size/shape,

and the standard VAE performed similarly to the previous experiment, encoding

cells based primarily on the dominant features such as size and rotation while
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FIGURE 3.5: Cell intensity maps were circularized to allow easy compartmentalization.
The inner, middle and outer mean intensities were extracted by dividing the cell into
thirds radially. The mean intensity of the whole cell was also taken. The radial mean
intensity map was created by taking the average intensity for each radius across the circu-
larized cell. The slope of the radial mean intensity map was then taken to create a single
metric for stain distribution.

largely ignoring complex staining information (Figure 3.6a,b – left). Although vi-

sually there is some preferential localization in UMAP (OSM left side, TGFβ+EGF

right side), it is clear that the populations are thoroughly mixed with poor separa-

bility. The intensity profiles show that size has a strong impact on this left/right

embedding (Figure 3.6b left). Most stains show little or no consistency within the

embedding space, with the exception of DAPI and Ki67. These stains, however,

show the same left/right distribution as size, indicating the nuclear intensity dis-

tributions are simply a result of cell size, since the whole cell mean intensity of a

nuclear marker will decrease with larger cells and increase with smaller cells.



3.3. Results 67

Channel Marker
1 DAPI
2 STAT1 (p-S727)
3 Vimentin
4 Cytokeratin 7
5 ki67
6 S6
7 LC3A/B
8 NFkB (p65)
9 p21 (Waf1/Cip1)
10 Catenin (Beta)
11 S6 (p-S235/S236)
12 PDL1
13 E-cadherin
14 STAT1 (alpha-isoform)
15 HES1
16 EGFR
17 NDG1 (p-T346)
18 STAT3
19 S6 (p-S240/244)
20 MET
21 Cytokeratin 18
22 Cyclin D1
23 c-Jun

TABLE 3.1: CyCIF Marker Panel

Despite the increased complexity of the multi-channel CyCIF images and diver-

sity of the dataset which could overload a simple architecture, the ME-VAE shows

good separation of the labeled cell populations (Figure 3.6a – right). I also observe

subcluster formation for HGF, BMP2+EGF, and TGFβ+EGF. By analyzing inten-

sity profiles and regional cell images of these populations, one can see differences

in expression (Figure 3.6b right and Figure 3.7b – right). The UMAP intensity pro-

files show clear stain intensity patterns indicating that the ME-VAE encoding space

contains relevant biological information. Size does show some distribution in the

UMAP, but the effect is largely dulled in comparison to the standard VAE.

Here I discuss some of the most noticeable drivers of separation between cell pop-

ulations in the MCF10A dataset. PBS shows a marked decrease in Ki67 expression

compared to other ligands, consistent with a relative decrease in proliferation. The
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FIGURE 3.6: a) UMAP embeddings for respective VAE encodings, allowing for qualitative
visual evaluation of ligand separability. Mean cluster purity and NMI was calculated to
quantitatively compare methods (k-means number of clusters = 6). Total sample size is
n=73,134 single cell images. b) Distribution of stain features across UMAP space, colored
by intensity.

TGFβ+EGF populations show an increase in S6 expression, indicating an increase

in cell growth. This is observed visually with regional cell images (Figure 3.7b

right); however, it’s worth noting that high S6 expression is seen in both large

and small cells treated with TGFβ+EGF. In EGF and BMP2+EGF treated popula-

tions, decreased expression of membrane adhesion proteins such E-cadherin and

β-Catenin is observed. This decrease presents visually as dim stain, but the marker

is still localized to the membrane rather than missing or diffuse throughout the cell.
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FIGURE 3.7: a) UMAP embeddings for respective VAE encodings, allowing for qualitative
visual evaluation of ligand separability. b) Regional cell images were sampled from loca-
tions throughout UMAP space to highlight the differences in expression pattern. Stains
shown were selected based on a combination of being correlated to important VAE fea-
tures and hand-selection for known variance.

In both TGFβ+EGF- and PBS-treated cells, there is increased concentration of HES1

localized primarily to the nucleus, while in other populations the distribution is
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uniform throughout the cell. In the case of TGFβ+EGF, this localization is accom-

panied by increased intensity (Figure 3.7b right), but PBS intensity is more similar

to the other ligand-treated populations. Similarly, Stat1a is primarily located in the

nucleus for TGFβ+EGF-, BMP2+EGF-, and OSM-treated populations, but shows

decentralized staining in cell images for other ligand populations. This is impor-

tant because both HES1 and Stat1a are functional in the nucleus (Stat1 particularly

as it translocates into the nucleus as part of its functional pathway) with limited

activity in the cytosol[87, 55]. Another observation is that p21 uniquely separates

subpopulations in TGFβ+EGF-, HGF-, and BMP2+EGF- treated cells, indicating

that there are subsets of the population that are undergoing growth arrest due to

inhibition of cell cycle progression via p21 regulation.

These results show that the ME-VAE captures relevant biological information and

separates cell populations, highlighting important features without significant in-

terference from the controlled uninformative features. Furthermore, the ME-VAE

can capture emergent biologically relevant imaging features not obvious without

prior knowledge. By contrast, little to no biologically relevant information is ob-

tained from the standard VAE.

3.3.4 Correlation of reverse phase protein arrays pathway activity

and CyCIF using ME-VAE features

To validate that ME-VAE yields biologically more meaningful representations, I

correlate VAE features with respect to Reverse Phase Protein Arrays (RPPA) path-

way activity. By reordering VAE features using hierachical clustering to form a
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feature spectra, I extract broad patterns and reduce the dimensionality of the fea-

ture set. The standard VAE shows very poor self-correlation with only a handful of

feature clusters showing strong correlation (Figure 3.8a top). Comparatively, I ob-

serve a clear pattern of self-correlations between ME-VAE features, indicating the

model successfully extracts distinct yet different expression patterns (Figure 3.9a

top). I identify ten representative clusters from the ME-VAE latent space that illus-

trate different expression patterns, which are explored using representative images

(Figure 3.9a bottom). Representative cell images are chosen by selecting the cell for

each feature set that has a high mean expression of all features in that respective

aggregated feature set. Between clusters 0 and 1, there is a difference in the ratio

of nuclear size and cell size. Cluster 1 encodes for larger nuclei than cluster 0 (this

pattern is reaffirmed in Figure 3.9b where cluster 1 correlates to DNA pathways

and nuclear stains while cluster 0 does not). Cluster 4 is a highly varied cluster but

contains large cells with more diffuse intensity patterns. From these aggregated

features, one can observe that the ME-VAE architecture extracts a combination of

intensity and morpho-spatial profiles with at least 10 clear axes of variation. Using

these aggregated features, one can analyze and interpret biological meaning with

fewer spurious correlations than comparing many to many.

A growing method for single cell analysis is to integrate multiple modalities.

Multi-modal integration helps validate where the two modalities overlap,

expands the dataset with mutually exclusive or orthogonal features, and allows

for cross-wise mapping of features. This form of integration is also important

because biology operates across scales, compartments, and data types (such as

genetic, transcriptomic, and proteomic), and across time. Being able to encode
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FIGURE 3.8: a) Using the single cell observations as features, correlations are drawn be-
tween pairs of standard VAE features. These features are then hierarchically clustered to
observe patterns and reduce VAE features to aggregated feature sets. Cell images were
assigned aggregated feature scores using the mean expression of each feature in a cluster.
Shown are representative cells that are highly expressing for each respective cluster.
b) Correlation matrix between RPPA pathway activity scores and standard VAE aggre-
gated features. Samples from the two modalities were paired by their ligand treatments,
resulting in a sample size of n=6 biologically independent ligand treated cell populations.
RPPA pathways and VAE features were hierarchically clustered to show prominent pat-
terns in correlation. Standard VAE aggregated features were also correlated to several
metrics of CyCIF expression (mean inner, mean middle, whole cell mean, and radial slope)
for all 23 stains. This CyCIF correlation was done using the full dataset of single cell im-
ages (sample size n=73,134 single cell images)). The table of CyCIF correlations shows the
top three correlations for each ME-VAE aggregated feature. Aggregated feature 4 shows
high correlations to almost all RPPA pathways (3rd column from the right), and the DNA
death/repair and apoptosis pathways also has high correlations to almost all aggregated
features (1st and 5th rows).

the full scope of information is necessary for understanding the full picture of

biological information. The validation of additional modalities is especially

important for VAE-based single cell image analysis because it frames inherently

obscure encoding features in a biological context and validates that the extracted
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FIGURE 3.9: a) Using the single cell observations as features, correlations are drawn be-
tween pairs of ME-VAE features. These features are then hierarchically clustered to ob-
serve patterns and reduce VAE features to aggregated feature sets. Cell images were as-
signed aggregated feature scores using the mean expression of each feature in a cluster.
Shown are representative cells that are highly expressing for each respective cluster.
b) Correlation matrix between RPPA pathway activity scores and ME-VAE aggregated fea-
tures. Samples from the two modalities were paired by their ligand treatments, resulting
in a sample size of n=6 biologically independent ligand treated cell populations. RPPA
pathways and VAE features were hierarchically clustered to show prominent patterns in
correlation. ME-VAE aggregated features were also correlated to several metrics of CyCIF
expression (mean inner, mean middle, whole cell mean, and radial slope) for all 23 stains.
This CyCIF correlation was done using the full dataset of single cell images (sample size
n=73,134 single cell images). The table of CyCIF correlations shows the top three correla-
tions for each ME-VAE aggregated feature.

features are coherent. The increased feature range of ME-VAE allows for

cross-wise mapping and integration of complex CyCIF image features and other

modalities (e.g. RPPA).

When correlating the 7 aggregated standard VAE features with RPPA pathway ac-

tivity, one can notice two distinct issues. First, there is a single aggregated feature

that shows significant correlations shows correlates to nearly every RPPA pathway

activity profile (Figure 3.8b). Second, there is a single RPPA pathway that correlates
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to nearly every standard VAE aggregated feature. When correlating standard VAE

aggregated features to the extracted CyCIF metrics (subsection 3.5.3, Figure 3.5),

the Spearman correlations are small despite the increased sample size of n=73,134

single cell images (Figure 3.8b), with the largest correlations being restricted to nu-

clear markers such as CyclinD1, DAPI and Ki67. As mentioned above this is likely

an artifact of encoding for size since nuclear expressions can be a function of cell

size. By contrast the ME-VAE features result in more powerful and informative

Spearman correlations with both RPPA pathways and CyCIF (Figure 3.9b). All

10 aggregated features show strong and consistent Spearman correlations, illus-

trating that the ME-VAE has biological interpretability in both CyCIF and RPPA.

Improved correlations illustrate the multi-encoder’s applicability for multi-modal

integration and comparison by extracting biologically meaningful features.

Biological correlations are validated by looking at representative images for each

ligand treatment (Figure 3.9 and Figure 3.10), where the stains shown were se-

lected for their high correlations to the aggregated ME-VAE features or distinct

visual patterns. The same patterns observed in the CyCIF correlation table and

ME-VAE Z-score expression matrix (Figure 3.9b), are also qualitatively confirmed

by visual inspection. For example, S6 expression (ME-VAE feature 0) is high in

BMP2+EGF, EGF, and TGFβ+EGF and is low in HGF, OSM, and PBS. Radial Cy-

clinD1 radial slope (ME-VAE aggregated feature 6), as shown in Figure 3.10, is

negative in BMP2+EGF, EGF, and TGFβ+EGF, with high stain intensity in the in-

ner compartment and rapid decrease toward the cell perimeter; conversely, HGF,

OSM, and PBS show much dimmer CyclinD1 expression in the inner compart-

ment. This pattern is even more clear in the radial HES1 slope (Figure 3.10), where
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HGF, OSM, and PBS show a more continuous stain abundance all the way to the

cell membrane. Although the RPPA sample size (n=6 independent ligand treated

cell populations) is still too small to achieve statistical significance, the correlations

between protein markers in CyCIF and RPPA pathways linked by VAE features,

are supported by known literature. DAPI expression (ME-VAE aggregated feature

1) is highly correlated to the DNA damage and repair (DDR) pathway, which is

expected since DAPI is a maker for DNA expression. A more interesting exam-

ple (ME-VAE aggregated feature 9) shows a strong correlation between the Stat3

radial slope of distribution and the epithelial-to-mesenchymal transition (EMT)

and hormone receptor pathways in RPPA. Prior literature also shows that Stat3

distribution throughout the cell, its translocation to the nucleus, and its cytoplas-

mic activation are important in the EGF induced epithelial-to-mesenchymal transi-

tion pathway[142]. The ME-VAE architecture also extracts patterns when multiple

markers play a role; CyclinD1 and p21 (ME-VAE aggregated feature 5) are known

in literature to play a joint part in the cell growth pathway[24]. These observations

demonstrate a potential application of multi-modal integration using the proposed

approach for other single cell image analysis[108].

The ME-VAE can also improve downstream analysis by making the cell popu-

lations more easily separable(Figure 3.11) as measured by mean pairwise Tukey

p-values and mean effect sizes. For the given MCF10A dataset, the CyCIF mark-

ers were chosen with the known ligands and cell populations in mind to highlight

differences between the populations and separate them. This results in already

decent separability using just CyCIF mean intensity information (Figure 3.11 top).
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FIGURE 3.10: Representative cell images are shown for each ligand treatment (rows) and
are shown using several stains (columns). Each column also includes a VAE number that
ties back to the multi-encoder feature that is highly correlated.

That being said, ME-VAE features show lower mean Tukey pairwise p-values indi-

cating a greater average significance in separability, and the effects sizes for those

separations are larger (Figure 3.11 bottom). The marker that was an exception to

this (shown in the first example) is S6, where the CyCIF mean intensity shows
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better separability. Even in this example, however, the multi-encoder’s feature is

still adequate. It is worth noting that ME-VAE latent space features are encoded in

combination to represent even a single stain, so separability can be improved even

further when utilizing more than just one feature at a time.

FIGURE 3.11: A two-sided ANOVA was performed for a features and intensities between
populations in order to compute the F statistic (F) and p-value ( PR(>F) ). Subsequently,
the mean Tukey-pairwise p-value (tp) across ligands and mean effect size (ES) shown
for each feature. ME-VAE features used for comparison were the features with largest
correlation to the respective CyCIF marker. This analysis utilized all 73,134 cell images
from the MCF10A dataset.

Although aggregated features are useful for integrating data modalities, since they

reduce spurious correlations, using the full range of latent features is preferable

for clustering populations since aggregation can average out some relevant signal

(Figure 3.12). The aggregated features still perform well at separating cell popula-

tions and still outperform most stains, however, there is a noticeable reduction in

effect size after aggregation.
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FIGURE 3.12: Density function for several CyCIF and ME-VAE feature pairs. A two-sided
ANOVA was performed for a features and intensities between populations in order to
compute the F statistic (F) and p-value ( PR(>F) ). Subsequently, the mean Tukey-pairwise
p-value (tp) across ligands and mean effect size (ES) shown for each feature. ME-VAE
features used for comparison were the features with largest correlation to the respective
CyCIF marker. This analysis utilized all 73,134 cell images from the MCF10A dataset.

3.4 Discussion

Just as it is necessary to pre-process, normalize, and remove unwanted features

from single cell RNAseq or RPPA analysis, so too is it necessary to remove un-

informative features from single cell imaging analysis in order to extract features

of interest. Without this guided feature alignment, VAE applications for single

cell image analysis will only reconstruct dominant features while ignoring subtle

more informative features (Figure 3.1a/b). By making uninformative features in-

variable across a dataset using pairs of transformed images in parallel encoding

blocks (Figure 3.1g), VAE priority can be shifted to mutually shared, biologically

relevant information (Figure 3.3f, Figure 3.6). This results in a more complex and
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meaningful latent space.

Feature extraction is important for all downstream analysis and interpretation, but

often times naïve metrics are not sufficient to capture biological differences and

separate cell populations, especially in datasets where labeled populations are not

known beforehand. By separating populations with the ME-VAE, distinct popu-

lations and biologically meaningful metrics can be established allowing identifica-

tion of emergent image properties such as localization and staining pattern (Fig-

ure 3.3f, Figure 3.6, Figure 3.7), with increased separability compared to using in-

tensity or morphology information alone (Figure 3.3c/f/g, Figure 3.11). Although

a theoretically infinite number of handcrafted naïve features could be crafted to

capture more information, the advantage of deep-learning is that it can extract

the most important features of an image with limited prior knowledge required.

More complex single cell analysis methods such as multimodal integration (Fig-

ure 3.9) require a wide range of biologically relevant features. The ME-VAE ar-

chitecture provides an important step for biological research by linking imaging

data to molecular readouts. By employing this architecture to extract a larger

range of features and metrics from single cell images, potential applications, such

as multi-modal integration using imaging features, become available which were

previously restricted due to inadequate cell representations.

To further demonstrate the generalizability of the ME-VAE architecture with a

large complex dataset, I applied ME-VAE to a dataset another multiplexed imag-

ing modality, CODEX as described in subsection 3.5.1. The same overall increased

performance is observed in the additional dataset of single cell images extracted

from CODEX tissue microarrays (TMA)[112] (Figure 3.13), where the Standard
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VAE mixes populations and organizes cells primarily based on size. By contrast,

the ME-VAE forms distinct clusters with unique expression profiles and is even

able to extract cell types with known size differences, for instance, macrophages

(as determined by high CD68 expression). In the CODEX dataset, the ME-VAE

was only correcting for rotation and polar orientation, since size and shape were

considered to be more biologically relevant variables of interest in this setting. This

illustrates the ME-VAEs ability to generalize to new modalities, cell types, as well

as to tissue data.

FIGURE 3.13: a) UMAP embeddings for respective VAE encodings, allowing for qualita-
tive visual evaluation of ligand separability. b) Distribution of stain features across UMAP
space, colored by intensity. Both models analyzed a dataset of size n=12,229 cells individ-
ual cell images.

The simplicity of the multi-encoder design makes it easily incorporated into more
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complex deep-learning architectures, such as being augmented with a discrimina-

tor to improve reconstruction quality. This methodology is limited by two criteria

which the uninformative features must meet: 1) being known so that they can

be addressed with a new encoding block and transformed image pair; 2) being

a known or inducible transform operation such as rotation, affine, or scale such

that a respective randomly transformed image can be generated using the opera-

tion. Despite these limitations, the majority of dominant uninformative imaging

features are based on known transformations, making the ME-VAE architecture

widely applicable. Although researchers have the opportunity with this architec-

ture to add novel non-standard transform features to remove, they will need to

verify that the feature being removed is not of biological interest, and the cycle

of feature removal might be iterative as new features of disinterest are extracted

which weren’t previously.

Computationally the model is not significantly larger than a standard VAE or other

comparable architectures(Figure 3.1c-g), as the largest amount of additional time

is allocated to creating the necessary transformed images, the time for which will

vary based on transformation complexity. The increase in computation for the ac-

tual architecture is small because it only adds a single encoding block for each

undesired feature. Future applications of this architecture will allow complex fea-

tures such as texture, pattern, and distribution to be extracted from single cell im-

ages without the hassle of disentangling dominant uninteresting transform fea-

tures. Images contain morpho-spatial features not shared by their other single cell

counterparts (scRNAseq and RPPA), and by implementing this architecture, the

scientific community will be able to analyze these unique image features with the
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same robustness as algorithms made for other well-established single cell modal-

ities, with quantitative feature metrics free from the bias of handcrafted feature

sets.

3.5 Methods

3.5.1 Datasets

MCF10A cell populations were treated with seven ligands, PBS (control), HGF,

OSM, EGF, BMP2+EGF, TGFβ+EGF, and EGF+IFNγ (data from the LINCS Con-

sortium – https://lincs.hms.harvard.edu/mcf10a/)[1]. For this paper I analyzed

all but the IFNγ population because initial analysis showed that it was so distinct

from other cell populations that even a single marker intensity resulted in decent

separability. After 48 hours, cells were fixed and subjected to cyclic immunofluo-

rescence with 23 markers (Table 3.1). The dataset comprises three plates of repli-

cates. On each plate there are three replicates of each ligand in different wells, and

in each well 9 different fields of view were taken. Cells were segmented using

CellPose segmentation tool[120] using the EGFR and DAPI channels. Stains were

normalized using histogram stretching to the 1st and 99th percentiles across in-

tensities for individual cells and across the whole dataset. Image transformations

were applied for rotation, polar orientation, and size/shape (Figure 3.14). Rotation

is corrected by obtaining the major axis from the binary cell mask, then rotating the

image using the Python package OpenCV[13]. Polar orientation was corrected by

calculating the angle toward the image’s center of mass, then applying a flip/ro-

tation to align the angle using the Python Numpy package[90]. Size/shape was
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corrected simultaneously by registering the cell mask to a circle target image (code

available here: https://github.com/GelatinFrogs/Cells2Circles). In total, 73,134

cells were processed through this pipeline. When isolating the PBS and TGFβ+EGF

populations for the two ligand separation analysis in Results A and B, the sample

size was 15,898. All 73,134 cells were analyzed in the full MCF10A analysis, modal-

ity integration, and separability test in Results C and D.

FIGURE 3.14: Examples of image corrections for rotation, polar orientation, and
size/shape, shown using EGFR channel of randomly selected images.

A publicly available CODEX dataset[112], was used as a secondary multiplex

imaging technology to demonstrate the generalizability of the ME-VAE to other

tools, cell types, and to tissue data. The portion of the dataset tested consisted of 8

TMAs from skin and breast cancer. From the full panel of 91 markers, I chose 20

stains that were the least sparse, highest quality, and important for labeling the
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full tissue (Table 3.2). I then segmented 12,229 cells from the TMA images using

the Hoechst and CD71 channels in Mesmer[40], and normalized using histogram

stretching to the 1st and 99th percentiles across the whole dataset.

Channel Marker
1 HOECHST
2 CD44
3 CDX2
4 CD8
5 p53
6 T-bet
7 beta-catenin
8 Ki67
9 CD4

10 Vimentin
11 Na-K-ATPase
12 CD5
13 Cytokeratin
14 CD11b
15 aSMA
16 CD25
17 CD11c
18 EGFR
19 CD194
20 CD68

TABLE 3.2: CODEX Marker Panel

Bulk Reverse Phase Protein Array (RPPA) was performed by the LINCS consor-

tium[1] in parallel to the CyCIF imaging, on cell populations treated with the same

ligands after 48 hours of exposure. The protein array incorporated 295 protein

markers. As described by Akbani, R., et al.[3], RPPA data were median-centered

and normalized by standard deviation across all samples for each component to

obtain the relative protein level. The pathway score is then the sum of the relative

protein level of all positive regulatory components minus that of negative regu-

latory components in a particular pathway. Pathway members and weights were

developed through literature review. Pathways were used instead of individual

proteins because the large number of proteins would decrease the significance of

correlations. Despite the available bulk RPPA dataset saving a smaller sample size
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FIGURE 3.15: a) Independent analysis of the Bulk RPPA dataset shows distinct clustering
of ligand populations in UMAP embeddings space where b) selected markers show clear
patterns of distribution between the clusters.

than the single cell CyCIF dataset, it was chosen as the secondary modality because

similar ligand separation and cluster patterns were observed in both modalities,

indicating an overlap in the information each contains (Figure 3.15).

For correlation to CyCIF and RPPA pathways, the VAE latent space was restricted

to smaller sets of aggregated features. These aggregated features were made using

self-correlation of VAE features across individual cell metrics and averaging the

VAE features for resulting hierarchical clusters (Figure 3.9 and Figure 3.8). This

was done to reduce the feature dimensionality and reduce spurious correlations

in the biological findings. Representative images for each cluster were done by
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finding cells with a high average expression for all features within the cluster. For

other analyses of VAE features comparing VAE separability to CyCIF expression

and interpreting image feature space, ME-VAE encoding features were restricted

to 18 single features for each. The dimension of 18 was chosen because it is the

number of mutual markers between the RPPA and CyCIF datasets. Explanatory

features were chosen from the VAE encodings such that the inter-cluster variability

was maximized and the intra-cluster variability was minimized using the follow-

ing equation:

FeatureScore = Varall −
∑i=cluster Varci

#o f Clusters
(3.1)

3.5.2 VAE models

To allow for fair comparison, the structure of the encoder and decoder blocks were

kept consistent between networks, and the same latent dimension was used for

all models for a given dataset (64 for the 1-channel dataset, 512 for the 23-channel

dataset). Both encoder and decoder blocks consist of three layers, and all layers

utilize a relu activation except the final output, which uses sigmoid activation. All

models were trained for 10 epochs (determined by identifying the loss function

plateau) on the NVIDIA P100 with 100GB of RAM and 100GB of disc space, but

the ME-VAE architecture can work on any NVIDIA GPU.
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A standard VAE with matching pairs of single cell images was used to estab-

lish baseline performance (Figure 3.1c). Standard VAEs utilized the standard Evi-

dence Lower Bound (ELBO) loss format characterized by reconstruction and Kull-

back–Leibler (KL) divergence terms. I used a Binary Cross Entropy loss (BCE) as

the reconstruction term for all VAEs tested here to keep the comparisons fair and

consistent. Put together, the standard VAE loss used was:

LStandardVAE = BCE(x, p(z))− KL[q(z|x)||p(z)] (3.2)

where q represents the encoder and p represents the decoder as described in

Kingma et al.’s initial VAE paper[58]. Here x represents the unadjusted input

image and z represents the latent space.

By using an image randomly transformed with respect to a dominant feature as

the input and controlling for the same uninformative feature in the output image

(Figure 3.1d), the model can self-supervise the transformation and will only en-

code novel features since the controlled features (such as rotation) no longer aid

reconstruction:

LOutputCorrectedVAE = BCE(x′, p(T−1(x′)))− KL[q(z|x′)||p(z)] (3.3)

where x’ represents an image that has been transformed with a known transfor-

mation to remove one or more uninformative features and T−1(∗) represents a

transformation of the controlled image to create a dominant uninformative feature

at a random degree.
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The proposed multi-encoder architecture uses multiple transformed inputs with

separate encoder blocks, where each block controls for a separate uninformative

feature, and a single decoder block uses the shared latent space (combined by mul-

tiplication to emphasize mutual information) for reconstruction (Figure 3.1f). To

accommodate the multiple encoders in the loss, the KL term is replaced with a

summation of all KL divergences for each individual latent space, which is then

divided by the total number of encoders (n):

LME−VAE = BCE(x′, p(zall))−
1
n
(

n

∑
1

KL[qi(zi|T−1
i (x′))||p(zall)]) (3.4)

where each encoder’s (qi) individual latent space (zi) is combined in an

elementwise multiplication layer to create a mutual latent space (zall) and T−1
i (∗)

represents a different random transformation for individual uninformative

features such as rotation, polar orientation, size, shape, etc. respectively. The

shared latent space of the multi-encoder forces the deep learning model to

encode features that are shared between each transformation, reinforcing the

shared mutual information and eliminating the non-shared transformational

information. A base implementation of the ME-VAE architecture can be

found here: https://github.com/GelatinFrogs/ME-VAE_Architecture. The

multi-encoder architecture allows for image pairs to be randomly transformed,

which can act as a balancing agent for imbalanced features. Furthermore, the

corrected outputs serve as a weakly self-supervised signal for the model. With

the extra information from the additional inputs, the model is able to overcome

more complex transformations that failed in the corrected output architecture in
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Figure 3.1d, when multiple corrections are attempted. Paired images also serve

one additional benefit of allowing for features to be retained in parallel encoders

that might be lost due to artifacts in other corrections, i.e. artifacts within a

polarity correction encoder will not be present in a rotation correction encoder.

The β-VAE[44] makes a small but significant change to the standard ELBO loss

function of the Standard VAE by adding an adjustable hyperparameter to the loss

function:

Lβ−VAE = BCE(x, p(z))− β · KL(q(z|x)||q(z)) (3.5)

where the β applies varying amounts of priority to the KL regularization term.

As described in the β-VAE paper[44], this forces the VAE to separate features into

more interpretable format where each component corresponds to a specific fea-

ture. One downside of this method is that by shifting priority to the regularization

term is that it causes the model to produce poorer quality reconstructions since

less priority is placed on the reconstruction term. Another downside is that the β

hyperparameter can be difficult to tune properly, and a different β value will be

optimal for different datasets, image sizes, and latent dimensions (Figure 3.4).

A final architecture tested was the invariant conditional autoencoder (C-VAE),

which injects the quantified class/values of interest into the decoder. The im-

provement this architecture makes upon the ELBO loss used by standard VAEs

and conditional VAEs is the addition of a conditional and marginal KL regulariza-

tion term that operates similar to a Maximum Mean Discrepancy penalty in that it
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“encourages the statistical moments of each [latent space] to be the same over the

varying values of c”[86]:

LC−VAE = −KL[q(z|x)||p(z)]− λ · KL[q(z|x)||q(z)] + (1 + λ)BCE(x, p(z)) (3.6)

where λ is a hyperparameter which during this experiment was 1. The

invariant conditional VAE was adapted based on the paper by Moyer

et al.[86] and code available from the author’s Github and tutorials

(https://github.com/dcmoyer/invariance-tutorial/blob/master/tutorial.ipynb).

In our implementation, I used the quantified values of rotation angle, polar

orientation, and size as the C inputs such that the latent space would hopefully be

invariant to those features. Similar to our proposed approach, the uninformative

features of interest must be known in this method since the C values are input

into the model.

Additionally, in the reduced dataset the architectures are compared to classically

extracted intensity and morphology features using scikit-image’s regionprops

package[138]. The classical feature dataset is defined by 58 properties (Table 3.3)

extracted from each single channel cell images. I included all properties I could

for single channel images, but left out orientation in order to show that rotation

angle is still captured through other properties even when it is not explicitly an

extracted feature.
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# Property # Property
1 area 31 inertia_tensor-0-0
2 moments_central-0-0 32 inertia_tensor-0-1
3 moments_central-0-1 33 inertia_tensor-1-0
4 moments_central-0-2 34 inertia_tensor-1-1
5 moments_central-0-3 35 inertia_tensor_eigvals-0
6 moments_central-1-0 36 inertia_tensor_eigvals-1
7 moments_central-1-1 37 major_axis_length
8 moments_central-1-2 38 max_intensity
9 moments_central-1-3 39 mean_intensity
10 moments_central-2-0 40 minor_axis_length
11 moments_central-2-1 41 moments-0-0
12 moments_central-2-2 42 moments-0-1
13 moments_central-2-3 43 moments-0-2
14 moments_central-3-0 44 moments-0-3
15 moments_central-3-1 45 moments-1-0
16 moments_central-3-2 46 moments-1-1
17 moments_central-3-3 47 moments-1-2
18 centroid-0 48 moments-1-3
19 centroid-1 49 moments-2-0
20 ecccentricity 50 moments-2-1
21 euler_number 51 moments-2-2
22 extent 52 moments-2-3
23 ferret_diameter_max 53 moments-3-0
24 moments_hu-0 54 moments-3-1
25 moments_hu-1 55 moments-3-2
26 moments_hu-2 56 moments-3-3
27 moments_hu-3 57 perimeter
28 moments_hu-4 58 solidity
29 moments_hu-5 – –
30 moments_hu-6 – –

TABLE 3.3: RegionProps classical features list

3.5.3 Evaluations metrics

In order to evaluate the model’s ability to separate labeled cell populations, k-

means clustering was applied to the encoding spaces using sklearn[96]. Cluster

purity was then calculated by taking the percentage of the largest population for

each cluster. UMAP embeddings were calculated using the UMAP Python pack-

age[85]. Biological metrics were calculated to give VAE encoding features biologi-

cal grounding (Figure 3.5). Circularized cells were used for calculation because it

made compartmentalization of the cell more consistent and uniform. Mean inten-

sities were calculated for inner, middle, outer, and whole cell compartments. To
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calculate the radial slope, the mean intensity was taken from each radius of the

circularized cell, then the linear regression of the series was calculated using the

scipy.stats package[136] in Python. The slope of the calculated linear regression

was used as the metric and the intercept was ignored. Self-correlations between

VAE features were performed using Spearman correlation and clustering was done

in seaborn clustermap.[144] Clustermaps using hierarchical clusters were calcu-

lated using the function’s default method (Euclidean). Representative cluster im-

ages were chosen based on high expression of the cluster’s respective VAE fea-

tures. RPPA pathways activity scores, VAE features, and biological metrics were

all standardized prior to analyses using the sklearn StandardScaler function[96] in

Python. Correlations between RPPA pathway activities and VAE encodings and

between CyCIF and VAE encodings were both calculated using the Spearman cor-

relation. To test for separability (Figure 3.11 and Figure 3.12), features were first

tested using type 2 ANOVA with the Python implementation of anova_lm from

statsmodels[113] for the default F-statistic, all of which proved significant. Subse-

quently, the post-hoc pairwise Tukey p-test was used to calculate the significance

and effect size for each ligand pair. The mean p-value and effect size were reported

to illustrate average separability.

3.6 Code availability

For reproducibility, I share the code with precise implementation, further

details describing variables and equations, as well as shared trained mod-

els with parameters in Github. All ME-VAE code is available on Github
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(https://github.com/GelatinFrogs/ME-VAE_Architecture)

3.7 Data availability

CyCIF and RPPA Data is publicly available through the LINCS Consortium:

(https://lincs.hms.harvard.edu/mcf10a/) CODEX Data is available online

(https://doi.org/10.7937/tcia.2020.fqn0-0326)
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Chapter 4

Guiding multiplex imaging with stain

propagation, region selection, and

panel reduction

You are still guided by your own expectations...
While you are still plotting, do you think you can really be

guided in what to do?

Readings from Chuang Tzu

4.1 Abstract

Multiplex tissue imaging platforms (MTIs) generate large amounts of data with

unprecedented scale, resolution, and depth. Although this bulk of information

presents the opportunity for many novel discoveries, it also comes with many

new challenges concerning how to tackle the creation and interpretation of the
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data most efficiently. Tissue based sampling and diagnosis is defined as extrac-

tion of information from certain limited spaces and the diagnostic significance of

a certain object. Many MTIs make the assumption that tissue microarrays (TMAs)

containing small core samples of 2-dimensional (2D) tissue sections are a good ap-

proximation of bulk tumor even though tumors are not 2D. However, emerging

whole slide imaging (WSI) or 3D tumor atlases which employ MTIs like cyclic im-

munofluorescence (CyCIF) strongly challenge this assumption. In spite of the ad-

ditional insight gathered by measuring the tumor microenvironment in WSI or 3D,

it can be prohibitively expensive and time consuming to process tens or hundreds

of tissue sections with CyCIF. Even when resources are not limited, the criteria for

region-of-interest (ROI) selection in tissues for downstream analysis remain largely

qualitative and subjective as stratified sampling requires the knowledge of objects

and evaluation of their features. Despite the fact TMAs fail to adequately approxi-

mate whole tissue features, a theoretical subsampling of tissue exists that can best

represent the tumor in the whole slide image. Similarly, MTIs like CyCIF utilize

large panels of markers that attempt to gather as much information as possible,

but increasing the number of stains does come with the downsides of increased

autofluorescence and tissue degradation. Just as with spatial sampling, there also

exists a theoretical subsampling of markers that is able to recreate the same infor-

mation as a full panel; therefore, removing the self-correlating information with

such a subset would increase the efficiency of the imaging process and maximize

the information collected. To address these challenges, I propose two deep learn-

ing approaches to learn multi-modal image translation: 1) generative modeling
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approach to reconstruct 3D CyCIF representation and 2) co-embedding CyCIF im-

age and Hematoxylin and Eosin (H&E) section to learn multi-mappings by a cross-

domain translation for minimum representative ROI selection. I demonstrate that

generative modeling enables a 3D virtual CyCIF reconstruction of a colorectal can-

cer specimen given a small subset of the imaging data at training time. By co-

embedding histology and MTI features, I propose a simple convex optimization

for objective ROI selection. I demonstrate potential application of ROI selection

and the efficiency of its performance with respect to cellular heterogeneity. Finally,

I test and utilize several embedding and reconstruction strategies to determine the

best method for selecting an optimized panel set.

4.2 Introduction

Cancers are complex diseases that operate at multiple biological scales—from atom

to organism—and the purview of cancer systems biology is to integrate informa-

tion between scales to derive insight into their mechanisms and therapeutic vul-

nerabilities. From this holistic perspective, the field has come to appreciate that the

spatial context of the tumor microenvironment in intact tissues not only enables a

more granular definition of disease, but also the design of more personalized and

effective therapies[75]. This has been spurred by an increased understanding that

solid tumors are complex ecosystems including stromal barriers imposed by tis-

sue architecture[54] and infiltrating immune cells in the surrounding stroma[99].

This has motivated the National Cancer Institute’s Human Tumor Atlas Network
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(HTAN) to begin charting 3D tissue atlases which capture the multiscale organi-

zations and interactions of immune, tumor, and stromal cells in their anatomically

native states[104]. The HTAN-SARDANA[67] is one such atlas which aimed to

deeply characterize the architecture of a single colorectal cancer (CRC) specimen

via histology and a spatial context-preserving multiplexed imaging platform called

cyclic immunofluorescence (CyCIF)[65].

Histology is an essential component of the clinical management of cancer. For

around 150 years, pathologists have interrogated thin sections of tissue stained

with hematoxylin and eosin (H&E) to determine the morphological correlates of

cancer grade, stage, and prognosis. However, this essentially 2D representation of

tissue is a relatively poor representation of tissues like prostate, pancreas, breast,

and colon which have highly convoluted 3D ductal structures [71, 56, 18, 66]. Since

2D whole slide imaging of a 3D specimen might not be representative, 2D anal-

yses using biased downsampling or the small fields of view afforded by tissue

microarrays (TMAs) suffer further due to subsampling issues[67]. Moreover, his-

tology alone lacks the molecular specificity to unequivocally determine the iden-

tity and function of cells in tissue. In contrast, CyCIF enables the co-labelling

of tens of markers in tissue and can broadly characterize the tumor, immune,

and stromal compartments. By coupling histology and CyCIF in the same spec-

imen, the HTAN-SARDANA atlas integrates both top-down (pathology-driven)

and bottom-up (single cell phenotype-driven) perspectives of CRC and provides a

framework for the charting of 3D atlases for other cancers[67].

In spite of these advances, 3D multiplexed imaging atlases and 2D whole slide
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multiplexed imaging with large cohorts both require a tremendous amount of re-

sources and effort to build. For the HTAN-SARDANA atlas, a single CRC speci-

men was serially sectioned and processed yielding 22 H&E slides interleaved with

25 CyCIF slides, with the CyCIF slides taking days to process due to the cycles of

antibody incubation. To build the breast cancer atlas in [18], a single specimen was

serially sectioned and processed into 156 slides which were characterized using

imaging mass cytometry, which enables simultaneous labeling of 40 antigens with

a single incubation step, but has relatively limited spatial scope (50 µm x 50 µm

x 50 µm) compared to CyCIF. To build the pancreas cancer atlas in [56], speci-

mens were serially sectioned and processed into over 1,000 H&E slides, some of

which had histological regions of interest labeled through a laborious and subjec-

tive manual annotation process. These annotations were used as training data for a

deep learning segmentation model which was used to fully reconstruct the labeled

classes of the 3D specimen at the pixel level with high accuracy, but this approach

is restricted by the limited and predefined annotation classes.

To address this challenge, I extend a virtual staining paradigm into the third

dimension by deploying it on the coupled H&E and CyCIF image data from

the HTAN-SARDANA atlas of CRC. There have been several applications at

stain prediction within the limited context of a single two dimensional tissue

section[16, 23, 91, 61]. I have also previously demonstrated methods for predicting

virtual IF stains based on H&E-stained tissue (SHIFT: Speedy Histological-to-

ImmunoFluorescent Translation)[133], wherein I use spatially-registered H&E

and immunofluorescence (IF) data and generative deep learning to model the

correspondences between these imaging modes and compute near-real time
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virtual IF stains conditioned on H&E-stained tissue alone. SHIFT is a deep

learning architecture made from generator and descriminator models that

works to create stylistically realistic stain images from H&E. From a biological

perspective, these data and approaches allow us to ask which markers in an IF

panel have a quantifiable histological signature, what that signature might be,

and a means to estimate the distribution of markers in histological images for

which such a signature exists. From an application perspective, the approach

could be useful for automated compartment labeling in 3D tissues labeled with

highly-standardized and low-cost histological stains. I demonstrate that what

generative models learn from less than 5% of coupled H&E and CyCIF images

is sufficient to generate a virtual 3D CyCIF reconstruction of the whole CRC

specimen and that quantitative endpoints derived from real and virtual CyCIF

images are highly correlated.

In order to reduce the burden and complexity of multiplex imaging on whole slide

images (WSIs), TMAs are often used to sample small sections of the tissue for anal-

ysis. Although these TMAs have become a staple of analytics over the past decade,

they come with many drawbacks and are prone to substantial bias, often introduc-

ing sampling errors and shifts in the expected content which fail to accurately cap-

ture the true heterogeneity and spatial distributions found in WSIs[88]. In order

to overcome this sampling bias, a significantly large number of TMA cores would

need to be taken[63], but increasing the size of the randomly sampled TMA cores

also shows little to no effect on improving their representativeness[89]. It is neces-

sary to intelligently sample regions for TMAs, but without a method to quantify

biological content beforehand, intelligent sampling is estimated from histological
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appearance alone. If regions of WSIs could be quantitatively described prior to

analysis, TMA cores could subsequently be taken based on which regions of the

image were most representative of the whole slide.

Methods for selecting important regions have been performed in H&E previ-

ously[95], but most attempt only to capture high level tissue features and do

not attempt to capture cell type information that would be useful for inferring

CyCIF information. The ability to capture such expression based information

would be necessary to select regions that are going to be important for subsequent

staining and analysis. As a method for select core-like regions similar to doing

a TMA virtually, I utilize a shared representation between H&E and CyCIF to

quantitatively identify representative samples that will serve as the optimal

regions of interest (ROIs). Using the principles of SHIFT[133], here I propose

a cross-domain autoencoder (XAE) image translation architecture which after

training can assign regional descriptors to image tiles that contain the cell type

information of CyCIF based solely on the H&E image. By formulating a simple

convex optimization problem, these tile-based descriptors can be used to select

small regions that are representative of the whole slide image with a minimum

number of ROIs. I demonstrate that the XAE architecture is able to adequately

represent biological information and that the minimum set of ROIs is more

representative of whole slide biology than random sampling or biased manual

ROI selection.

Even within these ROI sections, panels must be chosen intelligently and with pur-

pose because each additional round of staining comes with additional deleterious

tissue effects that negatively effect the resulting images and downstream analysis.
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Some examples of this include increased levels of autofluorescence, caused by the

natural emission of light by the biological structures and proteins in the normal

blocking serum[53], as well as the degradation of tissue that gets washed away

between staining rounds. Current algorithmic methods to select panels do not op-

erate at the large scale of multiplex imaging data, and instead focus on selecting

panels that optimize the physical restrictions of imaging, such as the overlap of

wavelengths between markers[135]. When selecting a panel, however, experts pay

considerable attention to the biology of the disease in order to capture specific fea-

tures of interest, but it is not always possible for experts to know the full extent

of marker co-expression, co-localization, and predictability. Just as it is possible

to use deep learning architectures to predict CyCIF information from features in

H&E alone, so too is it possible to predict shared information from one marker to

another. By selecting an idealized subsample of markers, a deep learning model

can be trained to predict the same information as a full dataset with fewer rounds

of staining. Here I evaluate several methods of subsample marker selection and

demonstrate their ability to reconstruct the full panel’s information.

Data generation and analysis are expensive and time consuming, and choices often

have to be made to reduce the scope of experiments, which will result in the loss of

potential vital information. Here I explore three methods to maximize the amount

of information retained using computational methods at different points of the

multiplex imaging pipeline as shown in Figure 4.1): 1) 3D stain propagation using

SHIFT for stain prediction 2) guided ROI selection using a cross-domain autoen-

coder 3) Optimized panel selection to maximize the imputation of absent markers.
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Using these computational methods, it will be possible to obtain the most infor-

mation possible from multiplex imaging while reducing the amount of staining,

tissue, markers.

FIGURE 4.1: All three methods discussed work to improve the multiplex imaging pipeline
from the basics of experimental design, to imaging, to downstream analysis by maximiz-
ing the amount of information obtained with computational inference and guidance using
minimal data as input. 3D stain propagation reduces the number sections that need to be
stained and imaged by learning to infer stain distributions from H&E. Guided ROI selec-
tion allows for a smaller amount of tissue to be stained and analyzed while maximizing
the relevant biology by targeting computed biological features. Panel reduction allows for
researchers to infer the information of a full panel with computationally selected markers,
reducing staining rounds and opening space for new markers on the panel.
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4.3 Results

4.3.1 3D stain propagation using SHIFT

A. Preprocessing steps for spatially registered H&E and IF images

Spatially registered H&E and IF images are a requirement for SHIFT model[133]

training and evaluation. To register the H&E and CyCIF data for this task, I begin

with sequential registration of the H&E stack beginning from the middle sections

and propagating to outer sections (section 4.5, Figure 4.2A/B). I then co-register

ROIs of adjacent H&E and CyCIF images using their respective nuclear masks for

a finer local registration of the adjacent sections.

FIGURE 4.2: A) To register H&E in the three-dimensional setting, I sequentially registered
all slides to the center using the transforms propagated from previous layers. B) CyCIF
was then finely registered to the adjacent H&E images at the ROI level to maximize single
cell level correspondence. Registration of CyCIF and H&E was performed using binarized
DAPI and thresholded H&E to align nuclei. C) Tissue sections are subject to technical vari-
ability in stain intensity, even between adjacent sections that are separated by only 5 µm.
D) Representative results of H&E stain normalization. The stain intensity distribution of
the test section 001 is transformed to match that of the reference section 054 which was
used for SHIFT model training.

Before SHIFT model training could begin, I had to account for the section-to-

section variability in H&E stain intensity, which helps to ensure a model trained

on one H&E section generalizes well to the other sections. Using the training H&E
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section (middle section as shown in Figure 4.2A) as reference, I tried several stain

normalization methods for outer testing sections[98, 134, 76], and found that the

Reinhard method worked best at normalizing stain intensities to the reference by

qualitative comparison (Figure 4.2C/D). This result was consistent with a quantita-

tive comparison that found the Reinhard method conferred better generalizability

to DL models in an analogous digital pathology application[127].

B. Image-to-image translation for 3D virtual CyCIF reconstruction

With spatially registered H&E and CyCIF data, I generated a virtual 3D CyCIF re-

construction in an effort to measure how faithfully I can characterize the full SAR-

DANA dataset with virtual IF staining by learning from only one pair of adjacent

H&E and real CyCIF sections. First, the middle pair of H&E and CyCIF sections

was selected for training SHIFT models under the assumption that they are a good

representation of the tissue on either side of the sample block. This assumption is

supported by the initial HTAN-SARDANA study[67], where the authors conclude

that 2D whole slide imaging of a 3D specimen does not, in general, suffer from the

subsampling issue associated with TMAs or small fields of view.

I then decompose the WSIs into thousands of pairs of matching H&E and IF image

tiles, and use those to train a generative adversarial network (GAN) to synthesize

virtual IF tiles conditioned on H&E tiles[133]. Briefly, the generator network of the

model is responsible for synthesizing virtual IF images conditioned on H&E im-

ages, and the discriminator network is responsible for quality assurance of the vir-

tual IF images synthesized by the generator as shown in Figure 4.3A. Once trained

on the middle-most sections, the model can then be tested using the tiles from the
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held-out H&E sections. The generated IF images are then compared with the real

CyCIF images to evaluate performance. Importantly, a virtual IF image is condi-

tioned on an H&E section, and there is natural variation between it and its adjacent

real IF section 5 µm away, which complicates pixel-wise evaluation of model accu-

racy.

FIGURE 4.3: (A) Extending SHIFT to 3D using adjacent spatially-registered H&E/CyCIF
WSIs from a single CRC sample. (B) WSI virtual staining result. Models trained to pre-
dict single-channel CyCIF images conditioned on the H&E/CyCIF training sections were
applied to H&E test section 096 to generate virtual stain WSIs for the markers panCK,
aSMA, and CD45. The input H&E test section is shown at left, and the real and virtual
CyCIF WSIs are shown in the rows above and below, respectively, for ease in comparison.
(C) qualitative comparison of real and virtual staining for the markers panCK, aSMA and
CD45 in the selected region. (D) Quantitative comparison of ROI cell composition corre-
lation between real. For each of the ROIs, the positive ratio of cells for each of panCK,
CD45, CD20, and CD3 are calculated using the same workflow and displayed for either
real or virtual CyCIF WSIs. Pearson’s correlations and p-values describing the association
between positive ratios derived from real and virtual CyCIF WSIs for each marker are in-
dicated above each bar plot. (E) 3D virtual stain volumes conditioned on held-out H&E
test sections visualized by 3D Slicer[30].

I trained individual SHIFT models to predict single CyCIF channels conditioned



4.3. Results 107

on H&E inputs from the central H&E/CyCIF training sections 053/054 (Fig-

ure 4.3A). Representative test results from the application of trained SHIFT models

on H&E/CyCIF test sections 096/097 (far from the middle section, i.e., training

section) are shown in Figure 4.3B/C. These qualitative results indicated that the

SHIFT models were fitting well to the training sections, and the representations

learned were useful for extension to held-out test sections.

The virtual CyCIF images generated by SHIFT models are conditioned on H&E

sections which are 5 µm adjacent to the real CyCIF sections, so the cellular contents

are slightly different between sections and images. Recognizing that this would

hamper pixel-wise comparisons between the real and virtual CyCIF images[133,

20], I estimated an upper bound on SHIFT performance by measuring the concor-

dance between nuclear content from the adjacent sections of the H&E/CyCIF test

sections 096/097 (Figure 4.4).

The test sections were first subdivided into 135 non-overlapping ROIs and each

ROI was locally registered to improve the alignment of H&E and CyCIF image

content, then I measured the Dice coefficient of nuclear masks derived from the

H&E and DAPI images from each ROI (Figure 4.4A). I used the Dice coefficient for

each ROI as a compensation factor when evaluating the quality of the virtual stains

for each ROI by dividing raw quality scores by the Dice coefficients corresponding

to each ROI. Virtual CyCIF image quality was evaluated using structural similarity

index measure (SSIM), which is established as a metric for assessing virtual stain

quality[133, 100, 101]. Median SSIM score following compensation by the upper

bound ranged from 0.36 for CD20 up to 0.89 for aSMA. This result suggested that

there was significant room for improvement for some SHIFT models, but with the
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FIGURE 4.4: (A) The Dice coefficients describing the overlap of nuclear masks from ROIs
of adjacent sections were used as compensation factors for evaluating virtual stains. (B)
Boxplot describing the distribution of Dice coefficients of the 135 locally-registered ROIs
from H&E/CyCIF test sections 096/097. (C) Boxplots describing the distributions of struc-
tural similarity (SSIM) of real vs. virtual CyCIF ROIs over the 135 locally-registered ROIs
from H&E/CyCIF test sections. The red dotted line indicates the unity line describing
Dice-compensated SSIM.

adequately performing channels, the virtual images will still prove useful to re-

searchers, since SSIM is sensitive to slight differences in image contrast which may

not significantly affect downstream processing and interpretation[133].

To test this, I quantified the positive cell ratio for multiple markers in each of

pathologist-annotated 6 ROIs in H&E test section 096 using either real or virtual
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CyCIF images (Figure 4.3D), which assesses how such an endpoint might be im-

pacted when using virtual images which may or may not be of high quality with re-

spect to SSIM (Figure 4.4). In spite of the adjacency complication explained above,

there was substantial correlation between positive cell ratios using real and virtual

CyCIF images, suggesting that virtual images could be used in place of real with-

out significantly affecting some downstream endpoints. Having established the

fitness of the SHIFT models, I performed a full virtual 3D reconstruction of the Cy-

CIF images by passing all held-out H&E test sections to the SHIFT models trained

on the H&E/CyCIF training sections (Figure 4.3E).

I also assessed the value added by the discriminator network of the GAN by

training models without it, leaving the generator network to learn the virtual

panCK stain alone (Figure 4.5). I found that while the generator-only virtual

panCK stain has good localization, it lacks the naturalistic texture of the real

and GAN-generated virtual stains, which highlights the compromise of a more

efficient and portable generator-only model.

4.3.2 Guided region-of-interest selection

A. Shared latent representation via embedding of CyCIF images on H&E

image

3D Virtual staining is enabled through the rich latent representations that gener-

ative models are capable of learning from paired H&E and CyCIF image data. I

hypothesized that these latent representations could be useful for the related and

unsolved problem of objective ROI selection. If ROI selection for targeted CyCIF
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FIGURE 4.5: Left panels correspond to results from the full SHIFT model (generator and
discriminator) and the right panels correspond to results from a model consisting of a
generator only.

staining was to be possible using only H&E for prediction, it would be necessary

for the H&E images to contain relevant biological information equivalent to that of

CyCIF.

To test this hypothesis, I created tile-based image descriptors from H&E using a

standard Variational Autoencoder (VAE)[57] and compared them to cell type com-

position vectors (7 cell types) created from CyCIF imaging data for the same tiles.

In order to evaluate the overlap and exclusivity of each modality’s information,

I used canonical correlation analysis (CCA)[51] using two components. The two

modalities quantitatively show high canonical correlations of 0.91 and 0.88 for each

component respectively and qualitatively show a high level of overlap when the

two components are plotted on top of one another (Figure 4.6A). Motivated by this
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example, and building upon previous works in cross-domain data translation[72,

110], I built a cross-domain autoencoder (XAE) architecture which learns to co-

embed H&E and CyCIF representations of the same tissue into the shared latent

space (Figure 4.6B). To test a minimum working example of our XAE architecture,

I performed a simple ablation experiment with the CyCIF encoder of the model

removed. For this experiment, the model was tasked with H&E reconstruction

and H&E-to-(DAPI and panCK) translation. To assess goodness of fit, the model

was trained to convergence and evaluated on a validation set. Visual inspection of

model outputs indicated that the model was functioning as intended (Figure 4.6C).

In our original design, the XAE included skip connections that connected across

the U-Net generator blocks, but I discovered that the models did not learn useful

latent representations of images, a direct effect of the absence of loss function gra-

dient flow through the interior layers of the models enabled by skip connections.

I removed the skip connections in subsequent experiments and found that these

models exhibit good convergence properties and have appreciable loss function

gradient flow through the model interior (not shown).

Having confirmed that the trained XAE had fit its training distribution (Fig-

ure 4.6C), I next wanted to assess the representativeness and interpretability of

the latent feature space that it learned with respect to pathologically interesting

regions of the sample. To do this, I used the H&E encoder of the trained

XAE to encode tiles from H&E test section 096 into 512-dimension feature

representations and assessed how the features were distributed over tiles drawn

from each of several pathologist-defined ROIs in the test section. The 6,742

non-overlapping tiles from H&E test section 096 which had at least one pixel
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FIGURE 4.6: (A) VAE encodings of H&E and CyCIF cell type composition (7 cell types)
show high canonical correlation and a large overlap between data and cluster embed-
dings. (B) XAE architecture. The model has two input heads, one for H&E encoder inputs
(xi) and another for CyCIF encoder inputs (yi), both of which encode into a shared latent
space (z).The model also has two output heads, one for H&E decoder outputs and an-
other for CyCIF decoder outputs. Full XAE model architecture is described in Table 4.3.
(C) Ground truth tiles representing a single training batch. Trained XAE model results for
the tasks of H&E-to-H&E reconstruction and H&E-to-CyCIF translation using the ground
truth training. (D) XAE latent feature clustering and corresponding pathologist anno-
tation where the inset image indicates the binary mask corresponding to each ROI with
respect to the layout of the H&E test section. Features were z-scored, then tiles were mean-
aggregated based on their ROI and features were hierarchically clustered. The ROI label
keys are 1: tumor adenocarcinoma (n = 2,501 tiles); 2: normal mucosa (n = 362 tiles); 3:
proper muscle (n = 1,576 tiles); 4: submucosa (n = 473 tiles); 5: subserosa, loose connective
tissue (n = 782 tiles); and 6: fibrosis, inflammation, lymphoid aggregate (n = 1,048 tiles).
The color scale corresponds to the mean of z-scored feature values for each ROI.

of pathologist annotation were each encoded into 512-dimension latent feature

maps. I found that many of the learned image features were associated with

pathologically-distinct regions of the sample (Figure 4.6D).



4.3. Results 113

In order to evaluate how well deep learning can capture and represent unseen

complex information using H&E images alone, the VAE model features the XAE

features (both generated from H&E images alone) were compared to cell types de-

fined by CyCIF expressions and to pathologist tissue annotations. Clustering tiles

within the WSI based on cell type composition using K-means resulted in 7 clus-

ters, and the pathologist annotated 6 key tissue types to be used as ground truth

(Figure 4.7A). Ground truth tile labels were compared against one another to create

a baseline for evaluation. When annotations were used to predict cell type, there

was a baseline performance of 57.1% cluster purity and 0.44 normalized mutual in-

formation (NMI). Conversely when cell type was used to predict annotations, there

was a baseline performance of 66.8% cluster purity and 0.44 NMI (Figure 4.7B). In

all metrics, XAE outperformed VAE predictions, achieving a 56.1% cluster purity

and 0.35 NMI against cell type, and 70.2% cluster purity and 0.38 NMI against

pathologist annotation (Figure 4.7B). It is also notable that on the metric of cluster

purity against annotations, the XAE outperformed the baseline metric; this indi-

cates that the XAE is better at predicting histologic tissue type than even cell type

compositions.

Analysis of complex information, deeper than large scale clustering, was con-

ducted using canonical correlations between the model embedding space and the

tile-wise CyCIF expressions. Visually both VAE and XAE show a good overlap be-

tween cell type embeddings from CyCIF and model embeddings produced from

H&E images (Figure 4.7C); the XAE, however, achieves higher canonical correla-

tions (0.93 and 0.92 compared to 0.91 and 0.88 for VAE). To confirm that I was

extracting relevant and rare cell types with the representation models, I computed
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FIGURE 4.7: A) Images colored by tile labels for cell type, pathologist annotation, assigned
cluster from VAE using H&E input, and assigned cluster from XAE using H&E input. B)
Quantitative evaluation of VAE and XAE at recapitulating biological labels, measured us-
ing cluster purity and NMI and compared to baseline of agreement between biological
labels. C) Canonical correlation analysis between cell type composition vector and H&E
encodings for both VAE and XAE, quantitatively measured by component correlation and
qualitatively by label overlap in embedding space. D) Cluster-wise correlation matrix
for XAE against both cell type and pathologist annotations to determine which biolog-
ical features are adequately captured. Defining CyCIF expressions provided based on
inter/intra-cluster variability.

the Spearman correlation between every predicted cluster and ground truth clus-

ter (Figure 4.7D). From this I can see that XAE has consistently high magnitudes

of correlation, and that a reasonable correlation exists for every ground truth clus-

ter except for cell type clusters 4 and 5 which are underrepresented populations.

Furthermore, the cell types that the XAE is able to capture are largely explained

by changes in Na-K ATPase, E-Cadherin, and PCNA, which were shown to be

important indicators for cell phenotypes in prior research on this tissue[67].
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It is shown by several metrics that the XAE model outperforms the VAE in cap-

turing detailed information from H&E images alone, which are able to adequately

recapitulate information from CyCIF expression data and pathologist annotations

that are unseen during test time. Because the XAE encodings are able to adequately

recapitulate the information in CyCIF from H&E, I can use them for proxy analyses

such as selecting representative regions of the WSI to be stained or analyzed with

other modalities and methods.

B. Co-embedding H&E and IF representations improves ROI selection

Currently ROI selection within WSIs is done either randomly, which is inaccurate

and is likely to select an area that doesn’t represent the WSI, or with manually,

which is biased, subjective, and has been shown to miss whole tissue patterns[67].

The XAE encodings described above capture the complex cell type and annota-

tion information using H&E alone, which means that the information it extracts

can be used to quantitatively evaluate the features within regions across imaging

domains. Using these XAE extracted features, I develop an optimization-method

to select a minimum set of ROIs that are more representative of the whole slide

features than random sampling. The additional benefit of this approach is that

it is repeatable and biologically-driven, so multiple people and labs can perform

the same analysis with the same results. To evaluate ROI selection performance,

I used three metrics: mean squared error (MSE) between the cell type composi-

tion of selected ROIs and WSI; Jensen-Shannon Divergence (JSD) between the cell

type composition vectors of selected ROIs and WSI; and mean entropy of the se-

lected ROIs’ cell type compositions. Since MSE and JSD both operate on different
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principles, quantifying individual values and overall distributions, the use of both

for evaluating composition is beneficial. While MSE is highly prone to outliers

and abnormal data, amplifying error of single erroneous samples, JSD provides a

smoothed and normalized metric. Three different methods for ROI selection were

tested: random sampling, convex optimization minimizing l1-norm of cell type

composition, and convex optimization minimizing l1-norm of cell type composi-

tion with maximizing entropy to select ROIs with more heterogeneous cell compo-

sition.

When regions are randomly sampled, one can see that the cell type compositions

struggle to converge to the whole slide cell type composition, taking upwards of

20-30 ROIs (each of which comprises between ∼0.15% and ∼0.80% of WSI area

individually) before reaching a reasonable representation (Figure 4.8top). Using a

simple composition-based optimization drastically decreases the number of ROIs

necessary to ∼7. This number of ROI is equivalent to the number of cell type clus-

ters I was optimizing for and further investigation shows that the algorithm was

selecting primarily homogeneous regions that reconstruct the whole slide compo-

sition. This is validated looking at the mean entropy of ROIs for the base convex

optimization method, which consistently shows low to middling ROI entropy val-

ues, especially at the 1000 pixel size data where there is decreased chance of getting

diverse populations simply due to the ROI size (Figure 4.8middle).

To select a more heterogeneous region, entropy is considered in the convex op-

timization, and convergence is observed much earlier at 3-4 representative ROIs

(Figure 4.8top). Unlike the simple optimization considering cell composition only,
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FIGURE 4.8: For four ROI sizes (1000x1000, 1500x1500, 2000x2000, 2500x2500 pixels) and
three sampling techniques (random sampling, convex optimization using cell type compo-
sition, convex optimization using cell type composition and regional entropy), I calculate
the optimal selection of ROI. Top row) By calculating the MSE for a range of ROI, I can
evaluate the rate and quality of convergence for each technique. Middle row) Selections of
representative ROIs are evaluated based on two metrics (Entropy for tissue heterogeneity
and Jensen-Shannon Divergence for composition similarity.) Random sets of 7 ROIs are
generated 1000 times to portray the baseline pattern. Selections from linear and convex
optimizations are plotted with increasing numbers of ROIs to show the change in perfor-
mance. The performance of the manually selected ROIs is also shown to emphasize the
bias in targeted sampling. Bottom) The optimal ROIs are shown for convex entropy opti-
mization at each size of ROI. Image colors portray the XAE labeled clusters describing cell
and tissue type.

however, the ROIs selected are not homogenous and include much more biolog-

ically interesting regions with diverse cell populations. This is confirmed with

entropy values considerably higher than the randomly sampled population (Fig-

ure 4.8middle). When looking at the full range of clusters, both optimization-

based approaches are substantially better than even manual ROI selection which is
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extremely biased, scoring poorly on both composition metrics and heterogeneity

metrics.

Manual annotation is often guided by a desire to sample a specific set of tissue

types, in this focusing in on three tissue types (tumor adenocarcinoma, normal

mucosa, and lymphoid aggregate) while being unable to account for cell type. To

account for this and provide a more fair comparison, I narrowed the range of clus-

ters being optimized for in the ROI selection to only consider tiles with the relevant

cluster identities (Figure 4.9). Even in this restricted cluster set, manual annotation

is less representative of the WSI’s tumor and immune cell type composition as pro-

duces less heterogeneous regions. This shows that the improvements made over

manual selection are not solely due to the tissue type bias of pathologists selecting

interesting regions; it is also the fact that the ROI selection based on convex opti-

mization method can find the most representative regions which can be a difficult

task for an annotator who cannot see cell type without substantial time and effort.

4.3.3 Optimized panel selection to maximize marker predictabil-

ity

A. Proof-of-concept for using a generative model to impute missing markers

As I have shown in the above sections, deep learning enables the use of informa-

tion from one subset of data to predict information about another subset when

there is a significant amount of mutual information between the two. Just as it is

possible to predict the spatial staining patterns and intensities of CyCIF from H&E,

it is also possible to predict the CyCIF staining of one panel using another. This
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FIGURE 4.9: For two ROI sizes (1000 pixel, 2500 pixel) and three sampling techniques
(random sampling, convex optimization using cell type composition, convex optimization
using cell type composition and regional entropy), I calculate the optimal selection of ROI.
Prior to calculation, I restrict the cluster type identities being optimized for to only those
that were targeted by manual annotation. Top row) By calculating the MSE for a range
of ROI, I can evaluate the rate and quality of convergence for each technique. Middle
row) Selections of representative ROIs are evaluated based on two metrics (Entropy for
tissue heterogeneity and Jensen-Shannon Divergence for composition similarity.) Random
sets of 7 ROIs are generated 1000 times to portray the baseline pattern. Selections from
convex optimizations are plotted with increasing numbers of ROIs to show the change in
performance. The performance of the manually selected ROIs is also shown to emphasize
the bias in targeted sampling. Bottom) The optimal ROIs are shown for convex entropy
optimization at each size of ROI. Image colors portray the XAE labeled clusters types
containing information on both cell type and tissue type (red being cell tiles not considered
in this analysis).

can be used to reduce the number of stains in CyCIF protocols by using a reduced

panel set to predict a larger panel of markers without actually having to stain for

them. The question then becomes, what is the theoretically best selection of mark-

ers for maximizing the amount of information retained and generating the whole

panel image predictions.
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To test this process, I used a breast cancer TMA dataset comprised of 88 cores, 6

different breast cancer subtypes (plus normal), and 25 markers in the CyCIF tumor

panel (Table 4.1) as described in the section 4.5. I evaluated 4 different methods

for selecting an optimal reduced panel set (random selection, correlation-based se-

lection, gradient-based selection, and sparse subspace-based selection), as shown

in Figure 4.10 and described in section 4.5. The reduced panels of every method

were then used to reconstruct the initial full panel using a variational autoencoder

(VAE), which encodes the markers in the reduced panel into a latent descriptor

and generates all 25 markers in the initial panel set. The reconstructed images of

each method are then evaluated using two common analytics (mean intensity cor-

relation and cluster overlap) to determine whether information is retained in the

reduced panel and prediction pipeline.

Channel Marker Channel Marker
1 DAPI 14 Ki67
2 CD3 15 CD45
3 ERK-1 16 p21
4 hRAD51 17 CK14
5 CyclinD1 18 CK19
6 VIM 19 CK17
7 aSMA 20 LaminABC
8 ECad 21 Androgen Receptor
9 ER 22 Histone H2AX

10 PR 23 PCNA
11 EGFR 24 PanCK
12 Rb 25 CD31
13 HER2 - -

TABLE 4.1: Full TMA panel set

As a proof of concept to further demonstrate how information from a reduced set

can adequately predict unseen information within the full set, I randomly selected
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FIGURE 4.10: In order to select an optimal reduced panel from a designed full panel,
four different selection methods were tested: intensity correlation-based, deep learning
gradient-based, deep learning sparse subspace-based, and random selection. Using the
reduced panels selected from each method, a VAE was used to impute the full panel set.
The full set of imputations were then evaluated by comparing them to the original images
using expression correlations and cluster overlap as these are two important features of
downstream analytics.

50% of the full panel (Table 4.7) which was used to predict the other 50% (Fig-

ure 4.11). As can be seen qualitatively in the real and predicted image pairs, the

morpho-spatial features of size, shape, distribution, and relative intensity are pre-

served, regardless of whether the marker was present in the training panel. Quan-

titatively this is captured using the structural similarity index measure (SSIM),

which measures the perceptual difference between two images. The overall quan-

tification shows a mean SSIM of 0.75. The predictions also achieve Spearman cor-

relations of 0.91 and 0.75 for included stains and withheld stains, respectively.

To help ground the quantitative metrics in this proof-of-concept experiment in a
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FIGURE 4.11: 12 stains were randomly selected to create a reduced panel which were then
used to train a VAE to reconstruct the full panel of stains. Here I show a representative
3 stains from the included and withheld marker sets across 8 cells. Real and predicted
staining is shown side by side to qualitatively demonstrate that a reduced panel can re-
construct relevant unseen information.

more interpretable context, I compare the degree of error to other forms of com-

mon technical noise (blurring, salt/pepper, and differences in segmentation as

simulated by erosion/dilation) as can be seen in Figure 4.12. One can see visu-

ally and quantitatively that each of the different noises have varying degrees of
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severity, with blurring having the smallest effect on intensity and overall struc-

ture of the image. Differences in segmentation via erosion/dilation has the largest

effect as the inclusion and exclusion of a few pixels can make a significant differ-

ence when the overall size of the cell is only about 10-20 pixels across[119]. The

effect of this mis-segmentation will also have a larger effect on membrane stains

or densely packed cell populations. With regards to the structure of the predicted

image, the randomly selected panel of 12 stains achieves an average SSIM of 0.75,

just behind blurring at 0.78 and well above salt/pepper and erosion/dilation at

0.68 and 0.67, respectively. Although the predictions from the randomly chosen

panel of 12 stains rank lowest in mean intensity correlation at 0.80, the score is still

comparable to segmentation noise at 0.83. This shows that a variational autoen-

coder can recapitulate the full panel image using a randomly selected panel that

is half the size of the original, but does so with differences that are similar to the

variation created by normal technical imaging artifacts. Evaluation of the utility

of these reconstructions will be discussed in later experiments. The question still

remains, however, to what degree selecting the reduced panel methodologically

can improve these results.

B. Evaluating selection methods with imputed marker correlation

Our first evaluation of panel reduction methods was conducted by correlating the

original and reconstructed panels’ mean intensities (Figure 4.13). This was done

over an increasing number of stains in the reduced set to show how each method

performs with different levels of information available in the reduced set. For a

baseline comparison, the intensities of the reduced panel were used as a 1-to-1
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FIGURE 4.12: To frame the extent of error in the predicted results from a randomly se-
lected reduced panel of 12 stains, several technical noises were simulated and evaluated
for the same metrics. The average SSIM was measured for each stain individually and
averaged. Likewise, the Spearman correlation between the original stain intensity and the
resultant stain intensity was calculated for each stain independently and averaged across
the withheld panel set.

substitute for the missing stains; for example, if CK19 is included in the reduced

panel and PanCK is not included, then the CK19 expression will be directly used as

the prediction of PanCK expression since it is PanCK’s highest correlate within the

reduced panel. This baseline of 1-to-1 substitution resulted in subpar predictions



4.3. Results 125

that did not converge to a correlation approximating the full panel until nearly all

stains were included in the reduced set, indicating the need for predictive models

to retain information on removed markers. Random selection performed mod-

erately better than baseline, achieving a mean Spearman correlation of 0.77 for

withheld markers and 0.89 for all markers when 18 of 25 markers are included

in training. The reasonable performance of the random sampling method, both

here and in the above proof-of-concept, is primarily a result of how well deep

learning models can process and predict patterns missing from the data. Random

selection here can be used as a computational baseline to illustrate the increased

performance and predictive power that comes from deep learning regardless of

intelligent panel design. Without the constraints of time and processing power,

this study could be improved by training and evaluating predictive models using

dozens of randomly selected panels; however, each deep learning model (for each

panel arrangement and size) can take more than a day to train and evaluate. For

this study only a single randomly selected panel at 6 different sizes is used, which

prohibits analysis as to the variability of random predictions.

Sparse subspace selection performs slightly better than random selection and base-

line, achieving mean Spearman correlations of 0.80 and 0.89 for withheld markers

and all markers, respectively. By looking at the correlations with respect to panel

size (Figure 4.13), however, one can see that subspace-based selection performs

even better at lower panels sizes compared to random. Gradient-based selec-

tion performs better than random or subspace-based selection methods within the

withheld marker predictions, achieving a max correlation of 0.81. It is worth noting
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that this prediction method appears to be less stable with prediction metrics fluc-

tuating when different panel sizes are used. Within the full marker set, gradient-

based selection performs similarly to random and subspace selection methods,

achieving a correlation of 0.88. Finally, correlation-based selection also performs

well at reconstructing the mean intensities of each stain, both within and with-

held from the reduced panel. For most every panel size, correlation-based selec-

tion achieves the highest Spearman correlations compared to the other selection

methods, obtaining a correlation of 0.86 and 0.90 for withheld and all markers,

respectively. For the purpose of reconstructing mean intensity information, the

other selection methods only perform similarly to correlation-based selection at

extremely low panel sizes where there is insufficient information.

FIGURE 4.13: All panel selection methods were evaluated across a range of panel sizes to
determine how well their reduced panels can be used to reconstruct the full panel. Spear-
man correlation was measured for each stain independently and then averaged across the
whole dataset. The data was split into withheld markers (left) and all markers (right) to
illustrate each model’s generalizability and performance in both domains. 1-to-1 substi-
tutions of marker intensity were used as the baseline, where makers withheld from the
reduced panel set were simply assigned the intensity of their closest match as described
in section 4.5
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In order for a panel to be consistently effective, it must be generalizable across

datasets and similar pathological states. An example of this is breast cancer sub-

typing where unique expression patterns will vary and classification can fail if

important markers are not able to be predicted properly based on the underly-

ing information of that specific biology. To test this generalizability, I applied the

highest performing panel (correlation-based with 18 markers) to all the different

cancer subtypes within the TMA dataset separately and evaluated the predicted

expressions (Figure 4.14). Although there is some slight variance, the panel per-

forms well consistently across all subtypes, achieving Spearman correlations be-

tween 0.72 and 0.83 within the excluded markers. However, the specific markers

that scored the highest and lowest correlations in each subtype, did vary based on

the relative biological expression. It can be further observed in Figure 4.15 that the

markers that performed poorly simply did not have large variation across the spe-

cific subtype. This can be seen distinctly in PR, H2AX, and PCNA. The predictions

receive poor correlations for all subtypes when the marker does not show substan-

tial positive expression, and the predictions receive good correlations whenever

the subtype does show a variable expression range. Although many of the low

correlation scores around 0.70 are still adequate, their reduced performance com-

pared to the other markers is due to their low variability in a cancer subtype. This

can be further seen in PCNA where the correlation metric is 0.39 when the marker

is completely absent from the subtype. This absence of markers skews the evalua-

tion of the models. This also further illustrates the consistency of the panel across

subtypes despite the differences in biology and marker expression, since the pre-

dictions only score low correlations for absent and low variability samples.
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FIGURE 4.14: The full panels of six different cancer subtypes and normal were predicted
using the highest performing reduced panel ( correlation-based selection with 18 mark-
ers). Spearman correlations were calculated between the full panel expressions and the
expressions of the predicted markers for the included markers and excluded markers sep-
arately. The expression correlation plots for the best and worst predicted markers are
shown for each subtype.

C. Evaluating selection methods with cluster matching

Although it is important to be able to reconstruct the mean intensities of cells,

downstream analysis such as single cell phenotyping and clustering is important

for biological research and if such analytical methods were to be affected, then

the reduced panel predictions would not be useful for complex research methods.

As shown in Figure 4.16, although the selection methods have varied levels of

performance at predicting mean intensity, when 18 of 25 markers are included

in the reduced panel sets, all selection methods perform well at recapturing the

same clusters extracted from the full panel set, as measured by normalized mutual
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FIGURE 4.15: A sample of a few of the lowest scoring and highest scoring makers were se-
lected to directly compare the Spearman correlations across all the breast cancer subtypes.
Predicted and true expression were compared for each marker and subtype individually.

information (NMI)[96]:

NMI(U, V) =
MI(U, V)

mean(H(U), H(V))
(4.1)

where U and V are the reduced panel predicted and full panel (ground truth) clus-

ter labels and H(U) and H(V) represent the entropy of U and V, respectively. The

predicted clusters were then paired to their full panel counterpart by examining

the population compositions to maximize consistency.
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This again shows that the information within the 7 withheld markers is able to

be predicted using the 18 markers in the reduced panel, enough to produce sim-

ilar downstream results for clustering and potentially cell-type calling. Although

it would be ideal to compare results to ground truth cell types, the dataset was

limited by lack of labeled data; therefore, the clustering results from the full panel

mean intensity dataset were used as ground truth for the single cell populations

that can be extracted. The correlation-based method achieved the highest NMI of

0.64, while gradient-based, subspace-based, and random selection achieved only

slightly lower NMIs of 0.60, 0.63, and 0.60, respectively. All clustering results are

significantly larger than the baseline NMI of randomly shuffled cluster labels (NMI

= 0.0002). Although the spatial distance in the illustrated UMAP cluster plots is

not quantitative in regards to similarity of clusters, one can qualitatively see the

same overall pattern and organization of clusters between the full panel and all

selection methods. This shows that while intelligent selection of the reduced panel

will matter for the overall prediction of the expression information, the selection

method might be irrelevant to the end result of other analytics such as clustering.

This is because deep learning architectures can learn to capture the most defining

information so long as they are trained on large enough panel size, regardless of

which channels are used in the reduced panel.
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FIGURE 4.16: Clustering was performed on the full panel intensities to generate ground
truth cell type clusters using k-means (k=10, chosen with elbow method on silhouette
score). Random, correlation-based, gradient-based, and subspace-based selection meth-
ods were also clustered using reconstructed intensities as input to k-means (k=10). Clus-
tering similarity to ground truth was performed using normalized mutual information
(NMI). A baseline NMI for comparison was generated using randomly shuffled cluster
labels. The clusters were projected into a UMAP embedding and plotted to visually
show the cluster results. Colored cluster-labels for all prediction methods were applied
by matching cell compositions with the full panel.

4.4 Discussion

Tumors are heterogeneous tissue volumes up to centimeters in size that can hardly

be represented by a microscopic 2D section, but many of the imaging characteri-

zation platforms in both research and clinical practice make the assumption that

TMAs containing small core samples of essentially 2D tissue sections are a reason-

able approximation of bulk tumor. However, emerging 3D tumor atlases strongly

challenge this assumption[67, 56, 29]. In spite of the additional insight gathered

by measuring the tumor microenvironment in 3D, it can be prohibitively expen-

sive and time consuming to process tens or hundreds of tissue sections with Cy-

CIF. Even when resources or time are not limiting, the criteria for ROI selection

in tissues for downstream analysis remain largely qualitative and subjective. Fur-

thermore, excessively large and self-correlated staining panels increase the amount

of time, effort, and expense needed to obtain images and can result in decreased
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image quality in later rounds of imaging.

In the current study, the virtual staining paradigm is extended to a 3D CRC at-

las[67] and demonstrate a proof-of-concept that generative models can learn from

a minimal subset of the atlas to reconstruct the remaining sections of the CyCIF

portion of the atlas and recapitulate quantitative endpoints derived using the real

CyCIF data. Quantitative comparisons of real and virtual CyCIF stains exposed

the challenge of using adjacent sections to train models, where image contents are

subtly but appreciably different between sections at single cell resolution. This

challenge could be overcome in future studies by staining each tissue section first

with CyCIF, then terminally with H&E[133]. That being said, this study and those

like it take for granted that histology workflows are inherently destructive, since

serial sectioning and processing of tissue can preclude tissue from being used in

other assays. Alternatively, a non-destructive 3D microscopy approach using tis-

sue clearing and light-sheet microscopy could be deployed, which would also pre-

serve tissues for other assays[71]. However, the slow diffusion rate of antibodies in

whole tissues limits the deep multiplexing potential of the CyCIF platform in this

non-destructive approach, but the use of small molecule dyes and affinity agents

could help to overcome this challenge to 3D virtual staining applications[152].

I also implement and evaluate a novel deep learning model which integrates

paired H&E and CyCIF data into a shared representation and demonstrate that

the model can be used as a quantitative and objective guide for ROI selection, with

the integrated H&E/CyCIF representations being more informative than H&E

representations alone. The limitation of this approach is that the XAE model must

be trained using paired H&E-CyCIF data prior to being used for prediction and
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quantification. A further limitation is that the ROI selection can only be optimized

with respect characteristics that can be quantified, such as heterogeneity and

composition used here.

Although image representations can accurately describe biological features, they

cannot convey what may or may not be biologically interesting to researchers or

clinicians. Cell type composition and entropy were used as metrics of biological

relevance in this setting, but it is likely that other experiments will have different

priorities. Some examples of this might include: weighting cell type clusters by

level of interest; weighting entropy negatively if homogeneous regions are desired;

weighting some other extracted metric such as co-localization of two cell types of

interest. If one, for example, wishes to select the minimum number of ROIs that

capture all the potential tumor cell states, then one would simply need to add a

metric quantifying whether the cell types are included to the objective function,

assuming that the encoded latent space created by the XAE were successful at cap-

turing all the tumor cell types. Ultimately, the proposed method of optimization is

versatile and amenable to many different functions depending on the biology and

the needs of the researcher. The key takeaway is that this pipeline allows for in-

telligent representation from H&E images, which enables a plethora of subsequent

analyses on this representation space with other multiplexed imaging platforms

such as MIBI, IMC or GeoMX when only a few ROIs can be selected and analyzed

using these platforms. The current methodology requires training the XAE model

on a subset of paired CyCIF and H&E images, limiting its broad application un-

less a model is trained to be generalizable. The method, however, still has great

potential to save time and resources as it can be applied to parallel slides and 3D
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volumes to select regions for analysis throughout.

Finally, I evaluated several methods for optimally removing self-correlating mark-

ers from existing multiplex panel sets, while retaining the maximum amount of

information by using generative deep learning to predict the staining of the full

image panel, including withheld markers. The limitation of all these methods of

panel selection is that they require a round of staining to be conducted first so that

the marker interactions can be measured and evaluated to determine the level of

panel self-correlation. Ideally, it would be best to use the information gained from

these selection methods to design panels for new datasets without having to stain,

test, and design for every new dataset, tissue, or patient. Although here I show the

method’s utility for identifying reducible markers within a single diverse dataset

of multiple cancer subtypes, future research can look into the deployment of the

designed panels to new datasets without the need for retraining. Research can also

be done into the biological relevance of the reduced sets so that researchers can

better design panels on their own with fewer excess predictable markers. By iden-

tifying which markers are consistently well predicted and which consistently fail

regardless of panel reduction method, researchers can design future panels with

informed decisions to include the poorly performing markers and exclude the eas-

ily predicted markers. It is worth noting, however, that the reduction methods

used here only look to remove markers on the basis of expression and informa-

tion redundancy, by making a panel that can repredict the full panel. There are

many more factors to consider when designing a panel, such as wavelength over-

lap, competition between markers, and duplicate markers used for quality control.

The methods proposed here can help guide the design of panels, but in no way are
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fully able to replace the thought and decisions needed in many other aspects of the

experiment.

In conclusion, all three tasks performed in this chapter (3D stain propagation,

guided ROI selection, and intelligent panel reduction) demonstrate the capacity

for deep learning to lessen the burden on researchers and potentially guide fu-

ture experiments. These techniques are able to decrease the time and cost of anal-

yses, while also making quantitative decisions that might otherwise be subject

to researcher bias. Deployment of these methods will benefit multiplex stain-

ing pipelines that are currently bogged down in tedious redundancy and large

datasets.

4.5 Methods

4.5.1 3D stain propagation methods

A. H&E and CyCIF image normalization

It is extremely common for stain distributions, intensities, and colors to vary be-

tween images, even for common staining method like H&E and even when the

images were acquired within the same lab. These staining variations can make it

difficult for deep learning models to generalize to images that look different from

the images they were trained on. To minimize the influence of technical variability

on stain color between H&E sections, the application of several stain normalization
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methods to the H&E WSIs[98, 134, 76] were tested using the Python package stain-

tools1. To identify and mask out background regions of each WSI (white regions

of slide without tissue), WSIs were each cropped into non-overlapping 256x256-

pixel tiles and tiles containing greater than 70% area of pixels with 8-bit encoded

intensity greater than (210, 210, 210) were excluded from subsequent normaliza-

tion steps. To help identify and mask out background pixels in the cropped and

accepted foreground before model fitting and normalization, the foreground tiles

from each H&E WSI were independently standardized such that 5% of all pix-

els were luminosity saturated. For all normalization methods, the H&E WSI from

middle most section is used as the stain reference to which the stain intensity distri-

butions of all other H&E WSIs would be fit. Foreground tiles of each non-reference

WSI were used as a whole to determine the color distributions of the stain in that

section, and all foreground tiles for each section were then normalized at one time

to fit the reference distribution. After the foreground tiles were normalized, they

were restitched to form cohesive WSIs. On the basis of visual inspection (Fig-

ure 4.2B/C), I opted to use the Reinhard normalization method, which has also

been shown to maximize deep learning model performance on digital pathology

applications[128]. To control for variations in raw contrast between CyCIF WSIs,

the intensities of CyCIF WSIs were re-scaled to have a min-max range fit to the

70th-99.99th intensity percentiles of the input WSIs.

1https://github.com/Peter554/StainTools
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B. 3D registration of paired H&E and CyCIF

The construction of a 3-dimensional volume requires that all the points are spa-

tially aligned and continuous throughout all axes; otherwise, the resulting volume

would be disjointed with erroneous fragments, projections, and holes. Because

image layers within 3D tissue volumes are taken on serial sections, the vertically

stacked serial images, as well as the serial sections of H&E and CyCIF, all require

a pixel-wise alignment such that the stacked section images will form a spatially

continuous tissue volume. This process of aligning unaligned tissue section im-

ages obtained from different acquisitions is called registration. To register all the

H&E together, I used the tissue section from the center of the tissue volume as

the baseline target for registration since it will be the most similar to the entire

stack of tissue, and this similarity will improve overall registration quality. Regis-

tration transforms were calculated between each layer in the stack using Matlab’s

imregtform function set to affine[83]. The calculated transformations were applied

sequentially to all slides, moving from one to the next until all slides were regis-

tered to the same coordinates as the central slide (Figure 4.2A), which was chosen

as the target because it would maximize similarity to the tissue morphologies at

the far ends of the tissue stack.

Although a rougher alignment is acceptable for constructing bulk tissue volumes,

it was necessary to have higher level registration between adjacent H&E and Cy-

CIF images when training and testing of deep learning models that translate H&E

to CyCIF images. The deep learning models learn based on pixel-level expressions

and errors in prediction, so if the H&E and CyCIF images are not aligned well,

the models will fail to learn relevant patterns since the errors in prediction will



138
Chapter 4. Guiding multiplex imaging with stain propagation, region selection,

and panel reduction

be in part due to the technical differences of registration. Because of whole slide

structural changes that biologically occur in the µm space between sections, it was

not possible to register whole slide images adequately without using elastic trans-

formations that operate by deforming the image at the local level as opposed to

creating a single set of transform parameters for the whole image, which in this

case resulted in imaging artifacts, such as altered stain intensity, blurring, distor-

tion, and warped morphology features, that would skew model training. To get

the best registration possible with the least amount of artifacts, I performed fine-

tuned CyCIF registration using the same imregtform function in Matlab (set to

affine)[83] on smaller cropped ROI images that covered the entire tissue section.

Within a single small ROI image, a simple transformation can accurately register

the tissue without having to accommodate conflicting transforms from regions lo-

cated in distant areas of the whole slide. The registration transform for this step

was calculated using a manually binarized DAPI image and manually thresholded

H&E images as the target, such that the computed transform would best align the

nuclei of the two ROIs. No manual registration was performed during this pro-

cess. After the local ROIs were registered, the paired H&E and CyCIF images were

tiled for use in model training.

C. SHIFT models

3D stain propagation models were trained to predict single channel images cor-

responding to one of the CyCIF stains from input H&E tiles from section 054, e.g.

H&E→CD45 or H&E→CD31. These models were built using the architectures pre-

viously described[133] and are diagrammed in Table 4.2. Paired H&E and CyCIF
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image tiles from section 054 were split into 80% training (8134 tiles) and 20% vali-

dation (2034 tiles) sets and each model was trained with a batch size of 4 and learn-

ing rate of 0.0002 for 100 epochs. Best models were selected based on the lowest

validation loss at each epoch end and were then used for downstream application

to held-out H&E WSIs.
Layer Generator

D1 Conv2d(3, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)
LeakyReLU(negative_slope=0.2, inplace=True)

D2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D4
Conv2d(256, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D5
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D6
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D7
Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

D8 Conv2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)
ReLU(inplace=True)

U1
ConvTranspose2d(512, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U2
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U3
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U4
ConvTranspose2d(1024, 512, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U5
ConvTranspose2d(1024, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U6
ConvTranspose2d(512, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U7
ConvTranspose2d(256, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
ReLU(inplace=True)

U8 ConvTranspose2d(128, 1, kernel_size=(4,4), stride=(2,2), padding=(1,1))
Tanh()

Layer Discriminator

1 Conv2d(4, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1))
LeakyReLU(negative_slope=0.2, inplace=True)

2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1), bias=False)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

4
Conv2d(256, 512, kernel_size=(4,4), stride=(1,1), padding=(1,1), bias=False)

BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
LeakyReLU(negative_slope=0.2, inplace=True)

5 Conv2d(512, 1, kernel_size=(4,4), stride=(1,1), padding=(1,1))

TABLE 4.2: SHIFT model architecture. Layers are represented in PyTorch pseudocode. For the layer column,
D and U represent down- and up-sampling layers of the U-Net architecture [103], respectively.
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D. Measuring concordance between nuclei overlap in adjacent sections

Because the H&E and CyCIF images are serially sectioned with a thickness of 5 µm,

there is a non-negligible difference in tissue architecture imaged on each section.

This difference limits the overall evaluation of the models since the predicted Cy-

CIF will line up with the tissue architecture of the H&E image more precisely than

with the CyCIF image it is evaluated against. Estimation of the upper bound on

SHIFT performance was done by measuring concordance between overlapping

nuclei in adjacent sections for locally-registered ROIs from H&E/CyCIF test sec-

tions. For H&E ROIs, I deconvolve the hematoxylin stain to extract nuclear con-

tent intensity[105], then segment the intensity to derive binary nuclear masks us-

ing Cellpose[120]. For CyCIF ROIs, I use Cellpose to segment DAPI intensity to

derive binary nuclear masks. The Dice coefficients describing the overlap of nu-

clear masks from ROIs of adjacent sections were used as compensation factors for

evaluating virtual stains. In order to evaluate the overall image reconstruction

quality, Dice-compensated structural similarity index measure (SSIM) values were

calculated by using scikit-image[139] (with an 11-pixel sliding window). The SSIM

between the virtual CyCIF ROI and the real CyCIF ROI were divided by the Dice

coefficient of nuclear overlap between the hematoxylin and DAPI nuclear masks

from sections 096/097 for that ROI.
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4.5.2 Guided region-of-interest selection methods

A. XAE models

In order to select optimal ROIs, it is necessary to quantify feature values for each

tissue tile such that I can balance and select relevant features quantitatively. In or-

der to capture histologic features from H&E and expression features from CyCIF

in the same latent space, an XAE model was used, which is an encoding and recon-

struction model that take two image inputs and co-encodes them into a single de-

scriptor. XAE models were built using Pytorch and are described in Table 4.3. The

XAE architecture used here is an adaptation of the UNIT architecture[72] and the

imaging-to-omics XAE architecture[110]. XAE models have two input encoders

(Figure 4.6), one accepting H&E image tiles (batch size x 3 x 256 x 256), and the

other accepting the corresponding paired CyCIF images (batch size x N CyCIF

channels x 256 x 256). Both encoders compress their inputs into a shared latent

space z. From z, image representations can be upscaled by either H&E or CyCIF

decoders. Hence, there are four forward paths through the model: (1) H&E re-

construction: H&E→z→H&E; (2) H&E-to-CyCIF translation: H&E→z→CyCIF;

(3) CyCIF reconstruction: CyCIF→z→CyCIF; and (4) CyCIF-to-H&E translation:

CyCIF→z→H&E. Models were trained with a batch size of 16 and a learning rate

of 0.0001 for 100 epochs. Best models were selected based on the lowest validation

loss at each epoch end and were then used for downstream application to held-out

H&E WSIs.
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Layer Encoders Shared?

1

ReflectionPad2d((3, 3, 3, 3))
Conv2d(3, 64, kernel_size=(7,7), stride=(1,1))

InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False)
LeakyReLU(negative_slope=0.2, inplace=True)

No

2
Conv2d(64, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
No

3
Conv2d(128, 256, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
No

4 ResBlock(N=256 ,K=3, S=1) No
5 ResBlock(N=256, K=3, S=1) No
6 ResBlock(N=256, K=3, S=1) No

z ResBlock(N=256, K=3, S=1)
Reparameterization() Yes

Layer Decoders Shared?
1 ResBlock(N=256, K=3, S=1) Yes
2 ResBlock(N=256, K=3, S=1) No
3 ResBlock(N=256, K=3, S=1) No
4 ResBlock(N=256, K=3, S=1) No

5
ConvTranspose2d(256, 128, kernel_size=(4,4), stride=(2,2), padding=(1,1))

InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)
LeakyReLU(negative_slope=0.2, inplace=True)

No

6

ConvTranspose2d(128, 64, kernel_size=(4,4), stride=(2,2), padding=(1,1))
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
ReflectionPad2d((3, 3, 3, 3))

No

7 Conv2d(64, 3, kernel_size=(7,7), stride=(1,1))
Tanh() No

Layer Discriminators Shared?

1 Conv2d(11, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True) No

2
Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

3
Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

4
Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False)

LeakyReLU(negative_slope=0.2, inplace=True)
No

5 Conv2d(512, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) No

ResBlock
ReflectionPad2d((1, 1, 1, 1))

Conv2d(N, N, kernel_size=(K, K), stride=(S, S))
InstanceNorm2d(N, eps=1e-05, momentum=0.1, affine=False)

ReLU(inplace=True)
ReflectionPad2d((1, 1, 1, 1))

Conv2d(N, N, kernel_size=(K, K), stride=(S, S))
InstanceNorm2d(N, eps=1e-05, momentum=0.1, affine=False)

TABLE 4.3: XAE model architecture. Layers are represented in PyTorch pseudocode.
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B. Tile cluster identification

Ultimately, I want to evaluate whether deep learning architectures can recapitulate

the biological information of both cell type and pathologist annotated histology. I

determined that the best way to validate that the model was capturing biologically

relevant information from both modalities (H&E and CyCIF) was to compare the

ground truth histologic labels and cell type clusters with the clusters created from

the XAE embedding. Histologic labels were created via expert pathologist anno-

tation of relevant tissue types. The pathologist labeled 6 tissue types that were

distinct and prominent throughout the sample. The whole slide annotations were

then tiled to match the tiles used in the XAE. A tile’s ground truth label from the

pathologist was determined based on the maximum pixel-wise tissue type within

the tile (Figure 4.7). Cell type clusters were determined by k-means clustering the

CyCIF expressions then the cell type composition was used to assign a ground

truth label to each tile (Figure 4.7). The choice of 7 clusters was determined using

the elbow method of the silhouette score. A smaller number of clusters within the

elbow was chosen to better match the number of pathologist annotations for con-

sistency in evaluation. 7 clusters were computed for both the standard VAE and

the XAE encoding vectors to closely match the number of clusters/tissue types

in the ground truth label set, but the higher of the two was used since the XAE

encodings had to capture both sets of information.

Several metrics were used to evaluate the models’ ability to predict spatially ar-

range ground truth cluster information throughout the whole tissue (Figure 4.7).

Cluster purity was used to evaluate how well the two methodologies were able to
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reconstruct the same clusters as ground truth:

Purity =
1
N

k

∑
i=1

max(ci ∩ tj) (4.2)

where N is the number of datapoints, k is the number of clusters, ci is the set

of predicted clusters and tj is the set of ground truth clusters. The sklearn[96]

implementation of Normalized Mutual Information (NMI) was used as another

metric to evaluate the same question (Equation 4.1).

To evaluate whether the deep learning models capture the same level of feature

information as CyCIF staining, I used the pyrcca[12] implementation of canoni-

cal correlation on the encoded latent feature space and the paired CyCIF tile-wise

expressions. The outputs from this process produced two components shared be-

tween the two modalities (Figure 4.7). Quantitatively the correspondence of the

two modalities can be measured by the canonical correlation of each component,

and qualitatively the correspondence can be observed by the overlap in the scatter

plot of the new components.

C. Region-of-Interest selection methodologies

Once it is known that the tiles contain relevant histologic and cell-type information,

the question becomes how to select regions from the whole slide that optimize

and balance the XAE embedded features with the fewest regions-of-interest (ROIs).

Several methods for ROI selection were tested:

a. Random sampling



4.5. Methods 145

Random sampling was conducted by randomly drawing a new non-overlapping

ROI repeatedly until the desired number of ROIs were obtained. For bulk analysis

and comparison, 1000 random combinations of k ROIs were selected where k is the

number of ROIs found to be optimal for the other sampling methods.

b. Convex optimization on composition Convex optimization is a method

that applies to a subset of non-linear functions, such that the function is twice dif-

ferentiable at all points within the domain and such that there exists a straight

non-intersecting line connecting any two points along the function. Using convex

optimization one can identify the minimum number of ROIs to match WSI cellular

population by solving:

min
x

||x||1 s.t. b = Ax

where b represents the counts of cells across cell types and A is a matrix whose

columns each represent an ROI, the row-wise elements of which contain the num-

ber of cells for each cell type.

Since I do not have cell type compositions beforehand, I will use the clustering

results from the tile-wise XAE encodings of both H&E and CyCIF. The underlying

assumption here is that H&E/CyCIF encoding reflects tile-based cell and tissue

composition, which I validated in Figure 4.6. For optimization on XAE cluster

composition, I solve:

min
x

||x||1 s.t. b = Ax and s.t. 0 ≤ x ≤ 1

where b ∈ RN, b represents the composition vector of clustered groups within the

WSI, each column of A ∈ RN×M represents a possible ROI and each row contains



146
Chapter 4. Guiding multiplex imaging with stain propagation, region selection,

and panel reduction

the percentage of tiles in that ROI for each cluster; N and M represent the number

of clusters and the number of possible ROIs in the WSI respectively. Implemen-

tation of this function was conducted using the intlinprog function in MATLAB.

The function produces a value for each ROI (xi) that describes its contribution (or

importance) to reconstructing the WSI compositions. The threshold of 0.01 was

used as the threshold to select all relevant ROIs with a significant contribution.

The main issue of this approach is that it often selects homogeneous cell popula-

tions as there is no part of the optimization function that encourages diverse ROIs

(Figure 4.8).

c. Convex Optimization with Entropy

Since homogeneous and non-diverse ROIs within this dataset were not biologi-

cally interesting, it was necessary to encourage the optimization function to select

heterogeneous and diverse ROIs that would capture a wide range of cell types and

interactions. To optimize both composition and ROI heterogeneity, I additionally

take the entropy of the composition vector into account using the convex function:

minx(||Ax − b||2 − λEx) s.t. 0 ≤ x ≤ 1 and ∑ x = 1

where E ∈ RM represents the vector of ROI entropies and λ is a hyperparameter

governing the weight of entropy compared to composition matching with regards

to the optimization priority. In this experiment, λ was set to 1. Implementation of

this function was conducted using CVX[39] in MATLAB. The function produces

a value for each ROI (xi) that describes its contribution (or importance) to recon-

structing the WSI compositions. The threshold of 0.01 was applied as cutoff for

these contribution scores to select all relevant ROIs. Because entropy was taken
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into account in the optimization function, the resulting ROI selections have more

heterogeneity while still converging to a good representation (Figure 4.8).

D. Evaluating selected ROIs

The quality of the selected representative ROIs was evaluated based on three

metrics: Mean squared error (MSE), Jensen-Shannon Divergence (JSD), and

entropy. MSE and JSD between the ROI and WSI compositions were used to

evaluate how well the selected ROI compositions match the composition of the

WSI. MSE operates on the differences between individual values comparing

predicted and ground truth, while JSD operates by comparing the overall

distribution of each. Mean squared error was calculated using:

MSE =
1
n

n

∑
i=1

(Ri − Wi)
2 (4.3)

where n is the number of predicted clusters, R is the percent composition of each

cluster within all selected ROIs combined, and Wi is the percent composition of

each cluster within the WSI. JSD was calculated using:

JSD =
1
2

n

∑
i=1

Rilog2

(
Ri

1
2(Ri + Wi)

)
+

1
2

n

∑
i=1

Wilog2

(
Wi

1
2(Ri + Wi)

)
(4.4)

where n is the number of predicted clusters, Ri is the percent composition of each

cluster within all selected ROIs combined, and Wi is the percent composition of

each cluster within the WSI. Mean ROI entropy was then used to evaluate the
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heterogeneity of the selected ROIs. The mean entropy was calculated using:

mean entropy =
1
m

m

∑
i=1

∑ rilog(ri) (4.5)

where m is the number of selected ROIs and ri is the percent composition of each

cluster within each individual ROI.

4.5.3 Optimized panel selection methods

A. Panel reduction dataset

The dataset used for testing panel reduction methodologies was a breast cancer

tissue microarray (TMA) available on synapse from the human tumor atlas net-

work[2]. The TMA dataset is comprised of 88 cores and 6 different cancer sub-

types: luminal A, luminal B, luminalB/HER2+, HER2+, triple negative, and inva-

sive lobular carcinoma (ILC). Reference tissue, normal breast, and cell lines are also

included. The TMA was imaged using cyclic immunofluorescence with 40 marker

channels. The imaging channels were filtered down to 25 channels of interest by re-

moving autofluorescent and duplicate marker channels (see Table 4.1). The stained

images were normalized using histogram stretching to the 1st and 99th percentiles,

ignoring background area which was thresholded manually. Segmentation was

then performed by The HMS Laboratory of Systems Pharmacology using a UNet

model[102]. The segmentation resulted in a total of 737, 653 single cells images. As

discussed in chapter 3, transformational features of single cell images can skew the

latent spaces of encoding models like a VAE. For this reason, the single cell images

were corrected for rotation by rotating all images such that the major axes of all
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cell masks were aligned and were corrected for polar orientation by flipping the

images such that the center of staining mass was located in the same quadrant for

all cells. By doing this the model can focus on relevant staining information and

ignore transformation information that is irrelevant to retaining panel information.

B. Methodologies for selecting the optimal reduced panel

Within a set of markers, intensity information is often correlated when a portion of

the proteins of interest operate along the same pathways, are mutually expressed,

or are tied to similar phenotypic states. This can be true for markers that localize to

different regions of the cell so long as they are correlated in overall expression for

different cell states (Figure 4.17). Although some of these correlated stains might

be selected for biologically relevant reasons, quantitatively the information from

one or more markers can be used to predict the information of another, meaning

that they can be reduced. Based on this, there exists an ideal reduced dataset that

maximizes the amount of information gained using the fewest markers.

a. Baseline 1-to-1 intensity substitution using reduced panel only In order

to create a baseline comparison of reduced panel performance, it is necessary to

access the maximum amount of information retained using just a reduced panel

without computational inference. Since the metric for evaluation is the correlation

between predicted and ground truth marker expression it was necessary to create

predictions of withheld markers from the reduced panel without computation. A

simple 1-to-1 expression substitution was used for baseline because it is the least

computationally intensive method. To do this I computed the correlation for each

marker within the full panel set and paired each withheld marker to its highest
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FIGURE 4.17: Heatmap of mean marker intensity correlations in the full TMA panel set,
computed across single cell images. Heatmap visualization is clustered using hierarchical
clustering of rows and columns. Highly correlated marker clusters show where markers
can potentially predict one another and thus can be reduced. Markers with no good cor-
relates will likely need to be included in a reduced panel as there will be no other marker
that is predictive of their expression (using intensity information alone). Baseline 1-to-1
substitution will use these correlations to determine marker pairs for intensity substitu-
tion. Correlation-based selection will combinatorially create and test all possible panels
of size n to determine which reduced panel produces the max correlation to all withheld
markers.

correlated partner Figure 4.17 within the randomly selected reduced panel set of a

given size. To simulate the predictive inference that would be made by only having

the reduced panel set and no reconstruction methods, the predicted intensity for

each withheld stain was simply the intensity of its matched partner. This produced

fairly low correlations for all panel sizes that only converged to 1 when nearly all
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the stains were included in the reduced panel (Figure 4.13).

b. Intensity correlation-based selection In order to determine an optimal re-

duced panel, the stains that maximized the correlation to all the stains withheld

from the panel were chosen. If the correlations between all the stains in the dataset

are pre-computed (Figure 4.17), one can quickly perform a combinatorial test of all

possible reduced panels with n markers. For every combinatorially created poten-

tial panel, the withheld markers are paired with their highest correlated marker

within the potential panel, and the max correlations for all withheld markers are

averaged to assign a score to that potential panel:

PanelScore = ∑ max [corr(Wi, R)]
length(W)

(4.6)

where R is the potential reduced panel being evaluated, W is the set of withheld

markers, and Wi is the intensities of each withheld marker that is being paired.

Once I have scored every potential panel of a given size, I can then select the panel

that has the greatest score, indicating its predictive capacity toward the withheld

markers. Although this method is simplistic, utilizing only mean intensity infor-

mation, it is quick and is not computationally intensive, making it amenable to

rapid panel design and testing. Using this method, the markers are re-selected for

each panel size, meaning a specific marker might be included in a panel of one

size but not in the next. It is worth noting that for all selection methods, the DAPI

marker was a requirement for inclusion in the panel since it is a common marker

among currently implemented panels and is a necessary marker for most segmen-

tation pipelines. The panels selected using this method can be seen in Table 4.4.
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3-Channel Selection 6-Channel Selection 9-Channel Selection 12-Channel Selection 15-Channel Selection 18-Channel Selection
DAPI DAPI DAPI DAPI DAPI DAPI
PCNA CyclinD1 CyclinD1 hRAD51 CD3 CD3
ECad VIM VIM CyclinD1 ERK-1 ERK-1

ER ER VIM hRAD51 hRAD51
PCNA EGFR EGFR CyclinD1 CyclinD1
PanCK HER2 HER2 VIM VIM

CK17 CD45 aSMA aSMA
PCNA p21 EGFR ER
PanCK CK17 HER2 EGFR

PCNA CD45 Rb
PanCK p21 HER2
CD31 CK17 CD45

PCNA p21
PanCK CK17
CD31 Androgen Receptor

PCNA
PanCK
CD31

TABLE 4.4: Correlation-based reduced panel set.

c. Sparse subspace clustering-based selection Although the correlation-based

method is quick, simple correlation of mean intensities ignores potentially more

complex interactions between markers, as two or more markers might be required

to predict the expression of a third. Also, combinatorial testing, while quick on

small numbers of stains, can become exponentially more burdensome to compute

with large panel sets. The next method tested seeks to detect complex interactions

across the panel set. To do this deep learning is used to train a coefficient matrix (C)

such that the matrix multiplication of C and the single cell marker-wise intensity

vector (I) reconstructs I as accurately as possible (Figure 4.18). Here I is an n × 1

matrix where n is the number of markers in the full panel set. During training the

diagonal of C is forced to be 0 so that the matrix does not converge to the identity

matrix and the off-diagonal coefficients (Cij) give information of the interactions

necessary for reconstruction. Training of the C matrix uses the following loss:

LC =
∑ C2

n
+ ||I − (C × I)||2 (4.7)

This loss penalizes the size of C such that 1) it remains sparse and only places
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weights on a few interactions that contribute the most to reconstruction of the in-

tensity vector and 2) penalizes the accuracy of I reconstruction such that the model

learns to compute accurate and relevant interactions (Figure 4.18 right). Looking

at the resultant interaction map, one can see that many markers can play a part in

predicting the relative intensity of another marker. To determine an optimal panel

set from the interaction map, a similar combinatorial method was used, similar to

the correlation-based method. Here, however, I was attempting to select a theoret-

ical reduced panel that maximized the interactions to the withheld markers, while

minimizing the interactions within the panel:

PanelScore = ∑ Int(Wi, R)
length(W)

− ∑ Int(Ri, R)
length(R)

(4.8)

where R is the potential reduced panel being evaluated, W is the set of withheld

markers, Wi is the interactions of each withheld marker to the markers in panel

R, and Ri is the interactions of each included marker to the other markers in the

reduced panel. Once I have scored every potential panel of a given size, I can then

select the panel that has the greatest score, indicating its predictive capacity toward

the withheld markers. Just like with correlation-based selection, the reduced set

of markers is re-selected for each panel size, meaning a specific marker might be

included in a panel of one size but not in the next. The reduced panels selected

using this method can be found in Table 4.5

d. Deep learning gradient-based selection While both of the previous meth-

ods rely solely on mean intensity information, image data has significantly more

information than intensity readouts alone. The localization, texture, and shape of
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FIGURE 4.18: Diagram demonstrating the trained coefficient matrix and the resultant in-
teraction map used to select a reduced panel. A model is trained to optimize the Coeffi-
cient Matrix (C) with a forced zero diagonal, such that it is sparse and when multiplied
by the intensity vector of each single cell (I) it can reconstruct I as closely as possible.
The resultant interaction map is the trained weights of C, showing the interactions of each
marker necessary to adequately reconstruct each other marker in an image. Some makers
are capable of being reconstructed from only one other marker, other markers require a
more complex combination, and some are not well predicted by any.

cells can also tell us about potential co-staining patterns and interactions. In order

to quantify how these features may be important, I use a deep learning method that

quantifies the channel-wise importance for reconstructing imaging features across

all channels. A similar method to the one described here uses the gradient of the

model to determine the channel-wise importance for cell type classification[79].

The key difference of our proposed method is the objective of the model (recon-

struction instead of classification) which requires a different architecture. Instead

of using a series of ResNet encoders and fully connected classification layers, I use

a series of encoders equal to the number of input channels and a decoder for the

purpose of reconstructing the combined input channels (Figure 4.19). This forces

the gradient at the encoding layer to be greater for channels that play a bigger role
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3-Channel Selection 6-Channel Selection 9-Channel Selection 12-Channel Selection 15-Channel Selection 18-Channel Selection
DAPI DAPI DAPI DAPI DAPI DAPI
ERK-1 PR ERK-1 ERK-1 aSMA CD3

PR Ki67 PR aSMA PR VIM
p21 Rb PR Rb aSMA

CK17 p21 Rb HER2 Ecad
CD31 CK17 HER2 Ki67 PR

Histone H2AX Ki67 CD45 EGFR
PanCK CD45 p21 Rb
CD31 p21 CK14 Ki67

CK17 CK17 CD45
Histone H2AX LaminABC p21

CD31 Androgen Receptor CK14
Histone H2AX CK17

PCNA LaminABC
CD31 Androgen Receptor

Histone H2AX
PCNA
CD31

TABLE 4.5: Subspace-based reduced panel set.

in the reconstruction of the full panel image, including localization, textures, and

intensity information. Since the encodings of each channel are kept separate and

concatenated, the magnitude of the gradients can be averaged for each channel

separately and evaluated for their importance. The reduced panel set is then se-

lected by taking the top n channels ranked by importance, where n is the desired

panel size. Because the importance is static and is sequentially added in order or

ranking, the selected panels have the advantage of simply being expansions of the

smaller panels, potentially making panel design easier. The list of ranked markers

can be found in Table 4.6.

Ranked Importance Marker Ranked Importance Marker
1 DAPI 10 ECad
2 CyclinD1 11 VIM
3 CK19 12 ERK-1
4 CK14 13 Rb
5 CK17 14 HER2
6 Ki67 15 CD31
7 EGFR 16 PanCK
8 CD3 17 LaminABC
9 PR 18 Histone H2AX

TABLE 4.6: Gradient-based reduced panel set.
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FIGURE 4.19: A multi encoder variational autoencoder architecture is implemented with
each channel being used as the input to parallel encoders. The encodings of each channel
are concatenated and decoded into a full panel image. The gradients of the model are then
backpropagated to the encoding layer. If the magnitude of the gradient is interpreted as
importance, the channel gradients can be averaged across the dataset to determine which
markers are most important for reconstructing image features within the model.

e. Random selection In order to determine the importance of intelligently se-

lecting panels, I generated random panels for each panel size to be used as a com-

parison. For ease of testing, I generated a random sequence of markers, and the

markers were sequentially added to the panel in that order. The list of markers

used for each randomly selected panel can be seen in Table 4.7.

Selection Order Marker Selection Order Marker
1 DAPI 10 hRAD51
2 ERK-1 11 Histone H2AX
3 Ki67 12 PCNA
4 LaminABC 13 CD3
5 CyclinD1 14 ER
6 p21 15 PanCK
7 Androgen Receptor 16 EGFR
8 VIM 17 CK17
9 ECad 18 CK19

TABLE 4.7: Randomly selected reduced panel set.
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C. Model architecture for imputing full image and calculating gradient

In order to impute the full panel image from the reduced panel, I trained a multi-

encoder variational autoencoder (ME-VAE) where the inputs to each encoder were

the channels of the input set and the output was the full panel image. The encod-

ings from each input were concatenated into a single vector before being passed

to the decoder. Each encoder and decoder network was 3 layers deep, and each

layer used a rectified linear unit activation, except for the output layer which used

a sigmoid activation. The concatenated encoding dimension was kept to ∼ 128 for

all reduced panel sizes. Each input is encoded into its own latent space, equivalent

in length to the latent space of all other inputs, meaning that it was not always pos-

sible to get a total concatenated latent space of 128 depending on panel size. For

this reason a total latent space as close to 128 was chosen for each panel size. This

model uses a modified ME-VAE loss since its purpose is to accurately reconstruct

an image instead of encode relevant features:

LME−VAE = BCE(x, p(zall))−
1
n
(

n

∑
1

KL[qi(zi|(xi))||p(zall)]) (4.9)

where each encoder’s (qi) individual latent space (zi) is combined in a concatena-

tion layer to create a mutual latent space (zall), xi represents a different channel of

image x, and n represents the number of markers in the reduced panel. Using the

described setup, models were trained for 10 epochs and 90% of the dataset.
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D. Methods for simulating technical noise

In order to frame the accuracy of predictions in a biological context, I simulated

several types of technical noise commonly found in imaging data (blurring,

salt/pepper, and variation in segmentation method). To simulate image blurring,

I used the scikit-image implementation of gaussian blur [138] with sigma set

to 1. To simulate salt/pepper noise, I used the scikit-image implementation of

random_noise with the mode set to "s&p" and the amount set to 0.1[138]. To

simulate variation in segmentation, I applied erosions and dilations to image

masks, eroding half the image and dilating the other half. This created a mask

deformed from the original by a few pixels, as can reasonably be expected from

different segmentation methods. Images were then re-extracted using the new

masks.

E. Metrics for reduced panel evaluation

Three metrics were used in the evaluation of reduced panels. In order to evaluate

the mean marker intensity predictions, Spearman correlation was used comparing

each marker’s mean intensity between ground truth and reconstructed images.

The Spearman correlation was computed for each stain individually, and then the

average correlation across all stains in the set was reported. In order to evaluate

the quality of the reconstructed CyCIF image, I computed the SSIM between each

single cell image and its reconstruction. This was done for each channel individ-

ually, and then the average across all cells and channels was reported. In order

to evaluate the retention of information necessary for downstream phenotyping,

NMI was computed for the cluster labels created from the full panel intensities
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and for the reconstructed intensities of each selection method. For each selection

method, the panel size used for this test was 18. For full panel and all selection

methods, k-means was used for clustering with k set to 10 (determined using the

elbow method on the full panel dataset). UMAP embeddings, calculated from

reconstructed intensities, were also used to visualize the clustered data. Cluster

labels were colored such that the reduced panel clusters matched to the cell com-

position of the full panel clusters.
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Chapter 5

Conclusion

A path is made by walking on it.

Readings from Chuang Tzu

5.1 Thesis summary

The biomedical field, more so than most others, must deal with problems con-

cerning complex interconnected systems. Even basic imaging modalities allow

researchers and clinicians to capture rich organizational and morphological infor-

mation of the cancer environment and to make some simple holistic conclusions

such as the presence, size, and even stage of tumors. As even more powerful imag-

ing modalities like multiplex imaging are developed, however, the burden placed

upon researchers and human annotators increases. Although the information in

these new image formats are more highly resolved with increased information

density[64], the complexity can be too much for annotators to quickly extract per-

tinent results without the aid of more sophisticated computational methods, and
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the reliance on human annotations and decisions leaves analyses vulnerable to re-

searcher bias[31, 149, 27, 111, 59]. Moreover, these new imaging methods come

with many limitations of their own, such as increased imaging time, cost, and ad-

verse effects on the tissue[64, 38, 36, 4, 37]. There is no doubt that the development

of multiplex tissue imaging will greatly advance the field of cancer systems biol-

ogy, but without progress on the computational side as well, the full depth of the

imaging data cannot be exploited. Using deep learning we can design models and

methods to address many of these problems and guide researchers to novel bio-

logical insights. Some of the key contributions made by this dissertation include:

1. the development of a semantic tissue segmentation methodology for labeling

hitherto inseparable histologically important features of cancer progression

and predicting stain distributions without the effects of uneven staining and

biased thresholding (chapter 2).

2. the creation of a novel deep learning architecture to extract biologically rele-

vant features from multiplex images while ignoring previously unavoidable

and uninteresting transformational features, resulting in improved perfor-

mance and analysis (chapter 3).

3. the optimization of the multiplex imaging pipeline through predictive stain-

ing, guided region selection, and optimized panel reduction, such that mul-

tiplex imaging maximizes the amount of information gained with the least

amount of wasted time, effort, and money (chapter 4).

Although the work and methods presented in this dissertation are still experimen-

tal, they serve as a proof-of-concept for the advancements that will be developed in
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the coming years. Whether in the same form as the methods previously described

or in the form of even newer more advanced methods, deep learning will play an

important role in multiplex image analysis.

5.2 Significance of the presented work

Although these multiplex imaging modalities are capable of producing unprece-

dented amounts of information, the actual process of running them is expensive;

a new section of tissue can require days to weeks to image, depending on the size

of the tissue and the number of stains[64, 131]. If only a small section of the tis-

sue is informative, though, staining the rest of the tissue is a superfluous waste of

resources. The same can be said for the marker panels used by researchers: every

additional round of staining contributes to negative staining artifacts like autoflu-

orescence[53] and tissue degradation[64], and the amount of information gained

from some markers might be negligible when included alongside co-expressed

markers. The problem with both of these limitations is that researchers cannot

with certainty know which areas of a tissue are biologically interesting and can-

not intuitively know which markers are imputable. Furthermore, the increased

depth of the data presents increased computational burden. The immediate bene-

fits of addressing these problems are fairly obvious at a glance: decreased imaging

time increases the number of tissues that can be analyzed; reduced operational

cost enables the funding of more research; and guided sampling to reduce dataset

redundancy enables better computation with more accurate and informative re-

sults. Additionally there are many more nuanced benefits of this work which are
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described below.

Although the primary function of principal investigators is to produce quality re-

search and push biological innovation, most would say that they spend a dispro-

portionate amount time applying for funding, managing budgets, and waiting for

datasets to be created. Additionally the quality of their research would be im-

proved if they had more resources. These burdens, however, not only affect the

quality of immediate projects, but also affect the long term state of the biomedical

research field, as many graduates cite their frustrations with budget and data limi-

tations as key contributors to their decision to opt for alternate career paths outside

of academia[73]. Connected to this point, is the desire to feel that one’s work is

valuable. One of the primary motivators for biomedical students and researchers

is the feeling that their work is important and has value to the greater commu-

nity[121]. Although it is an unavoidable truth the research progresses slowly, there

is a difference between rigorous testing and tedious labor, and it is important to

prioritize time spent doing research in a way that maximizes intellectual rigor.

Many of these issues regarding time and tedious tasks can be alleviated with novel

deep learning methods, but the ability to develop such models is not accessible to

small labs or those without deep learning expertise. All of these things contribute

to reduced work quality and researcher satisfaction, pushing qualified researchers

toward industry[73], where resources are often more readily available. This shift

will in the coming years shape the landscape of biomedical advancement. The vast

majority of biomedical research in the industrial setting over the past decade has

been focused on drug development and testing with less and less research being

done of the fundamentals of biological discovery and mechanisms of disease[73].



5.2. Significance of the presented work 165

A balance of these two facets is essential. The fundamentals of discovery are nec-

essary for the development of novel drugs, and the movement of researchers away

from academia to better funded industry positions will have a lasting impact on the

advancement of the field. This trend cannot be solely attributed to the cost, time,

and burdensome limitations of multiplex imaging, but the increased value pro-

vided by accessible deep learning will provide researchers with a more amenable

environment to perform their experiments and maximize their value.

Although big data is useful because more data inherently has more information

and potential findings, it also comes with many downsides as well. In any dataset

there are potentially confounding factors and false associations, but studies using

big data are more likely to find themselves falling prone to these errors[49] be-

cause there is an increased number of variables that need to be scrutinized. This

is even more true in imaging data where there is not a universal and standardized

set of variables. Imaging features are often difficult to identify, extract, and quan-

tify, meaning that researchers might not even know that there is a confounding

factor in the analysis[124]. While conventional analyses are heavily dependent of

human-in-the-loop methods (i.e. normalization, thresholding, segmentation, fea-

ture selection, noise identification and removal)[123, 80, 22], human-in-the-loop

methods are incompatible with big data since the manual operations would need

to be performed exponentially many times. This necessitates the implementation

of deep learning into general practice so that analysis is not dependent on repeti-

tive researcher input.

Without pre-processing guidance and computational data trimming provided by
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deep learning, multiplex imaging could one day face the same fate of genome-

wide association studies. Even though the idea of testing every nucleotide in the

human genome to identify the source of a disease sounds promising, these stud-

ies are held back by the low statistical power of testing hundreds of thousands of

variables simultaneously[122]. Studies of this nature that use the standard statis-

tical norms will yield ∼ 25, 000 false-positives on average[49]. To overcome this,

genome studies require extremely large sample sizes. We must be even more wary

of these errors with multiplex imaging which has the false appearance of being

a large diverse dataset comprised of hundreds of thousands of cells. In actuality

multiplex imaging studies are fairly small, typically containing only a few patient

or disease samples[20]. One reason for this small dataset size is again the pro-

hibitive time and cost of acquiring multiplex images, making it difficult to rapidly

deploy on any and all samples of interest. This will result in findings that appear

significant but might not generalize well.

By improving upon and deploying the methods discussed in this dissertation, we

can:

1. reduce the resources and redundancy of producing multiplex images

2. increase the time spent doing actual research

3. decrease researcher frustration with tedious tasks

4. identify the most relevant and informative data quickly

5. reduce the amount of redundant, confounding, and uninformative informa-

tion
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6. guide researchers toward novel metrics

7. improve the significance of findings

8. enable new analytical and multimodal methods that were hitherto unavail-

able

9. allow multiple labs and institutions to achieve similar quantifications with

less variation

10. improve potential treatments and ultimately better the lives of patients ev-

erywhere

5.3 Limitations of the proposed methods

The methods discussed in this dissertation are shown to be effective within the

context of their design and within the datasets they were tested on, but their suc-

cess is still limited to the research setting, and there are a plethora of improvements

that can be made. Here I will briefly discuss some of their limitations and potential

opportunities for future research.

5.3.1 Limitations of VISTA

The first limitation of the VISTA tool is the inherent scope of the project in which

the tool was developed. VISTA’s original purpose was for segmenting and quan-

tifying the abundances of normal acinar, acinar-to-ductal metaplasia, and ductal

neoplasia. There are, however, many other important histological features within



168 Chapter 5. Conclusion

the pancreas that are important to researchers in the cancer domain, including lym-

phatic tissue, islets of Langerhans, desmoplastic stroma, as well as fully developed

adenocarcinoma. A fully effective implementation of VISTA would see the inclu-

sion of a wider array of pancreatic tissue features. This would allow its deployment

to a variety of experiments outside of constrained cancer progression studies.

The second and more unavoidable limitation of the VISTA tool is the inevitable

aging of computation methods as the field progresses. Although the architectures

and methods used at the time were satisfactory, many new approaches to seg-

mentation, classification, and object detection have been developed that push the

state-of-the-art ever forward[7, 43, 156]. A new implementation of VISTA would

likely require the utilization of new architectures, while employing some of the

discovered training and normalization techniques described here.

5.3.2 Limitations of the ME-VAE

Variational autoencoders (VAEs) are an important part of the computer vision com-

munity, as they and their many derivations are the current standard for extracting

descriptive features from images that are not easily quantified[58]. VAEs them-

selves have many limitations that the community has acknowledged, and because

the ME-VAE is a VAE derivation, it suffers from many of the same limitations. That

being said, the ME-VAE architecture was designed to overcome one key limitation

of VAEs (the hypersensitivity of the model to dominant uninformative transfor-

mational features in a datase[44]) and was not intended to overcome the other

limitations at this time.



5.3. Limitations of the proposed methods 169

One of the limitations of VAEs is that the latent spaces are often entangled, mak-

ing it difficult to attribute meaning to any singular encoding feature[44, 86]. Even

methods that attempt to force the disentangling of the encodings (the β-VAE[44]

and the invariant C-VAE[86]) still suffer from the fact that the encodings can be

difficult to interpret in a biological context. Additionally, VAEs are sensitive to

hyperparameters that effect its ability to converge and learn meaningful represen-

tations[44]. The ME-VAE architecture, as described here, suffers from both of these

limitations, being unable to disentangle and interpret the latent space. Addressing

these limitations, however, was outside of the scope of the project. Furthermore,

the ME-VAE method of using multiple encoders can be added onto other VAE

derivations, meaning that when a new architecture is developed that can address

the above limitations, the multiple encoder aspect can be incorporated to remove

transformational noise.

The ME-VAE itself is still limited in its ability to remove uninformative transforma-

tional features, though, which was the purpose of its development. This is because

the ME-VAE relies on transformed images with respect to specific identified fea-

tures. This means that the feature of disinterest must be 1) known, 2) quantifiable,

and 3) transformable in the image. There are many known transformational fea-

tures which can easily be controlled, and many new features can be added as they

are found at the discretion of the researcher. It will be necessary on the part of

the researcher to make sure that each feature controlled for by the ME-VAE does

not have biological interest or meaning within the context of their experiment. Fu-

ture directions of research could attempt to design an architecture that learns to



170 Chapter 5. Conclusion

remove uninteresting features without the need for prior knowledge, but my ini-

tial opinions on this prospect are reticent since features that might be biologically

interesting in one dataset, such as polar orientation and size, might be noise in

another.

5.3.3 Limitations of the various techniques for optimizing multi-

plex pipelines

A. Limitations of 3-dimensional virtual stain propagation

The SHIFT method[133] of virtual staining has been shown to successfully predict

several marker distributions in both 2D sections and 3D volumes. The technique,

however, is still only highly accurate for some stains that are abundant throughout

a tissue[133]. Future iterations of virtual SHIFT staining can look into methods

for accurately predicting sparse information without the need to add significant

amounts of information.

The proposed method is also limited because the model must trained with at least

one section of paired CyCIF and H&E for each tissue volume. This means that to

successfully reduce the amount of staining needed overall, at least one section of

staining must be performed. With the potential size of 3D volumes being hundreds

of sections, performing only single section of CyCIF imaging is an improvement

from having to stain many serial tissue sections, but further studies can be con-

ducted on the generalizability of the approach which would allow the model to

virtually stain unseen tissue volumes.
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B. Limitations of representative ROI selection

The XAE used for embedding histologic and immunofluorescent features relies

on similar training methods as SHIFT[133], and thus shares similar limitations.

Despite the multiplex dataset having dozens of stains, only eight abundant stains

are used for feature embedding. More cell and tissue types could be captured for

representation if additional markers were successfully embedded. Further studies

can look into ways to extend this embedding methodology to more stains and

underrepresented cell types.

An additional limitation of the method is that the optimization function fails to

quantify actual biological interest. This project sought to select representative re-

gions that captured all the whole slide features and conveyed the heterogeneity of

the whole tissue section. The optimization function, however, is capable of being

modified to the desire of the user, optimizing for entropy, certain tissue types, or

any other quantifiable metric. Instead of a limitation, this can be seen as a poten-

tial customizable feature of the method, wherein the user specifies what kind of

regions they desire. Future studies should look into ways to quantify the biologi-

cal interest of regions, such that the most important regions are recommended for

study and analysis.

This method also requires one section of paired H&E and CyCIF, which means it

cannot reduce the amount of staining needed within a single section dataset. This

does allow for a reduction in time when working on parallel slides wherein the

information from the first stained section can guide the staining and analysis of the

subsequent. If future studies show that the model is generalizable, then a model
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trained previously can be applied to an entirely unseen dataset without having to

stain the tissue beforehand.

C. Limitations of optimal panel selection

Although the panel optimization study was performed on a diverse dataset com-

prised of 6 different breast cancer subtypes[2], more research is needed into the

generalizability of proposed panels to unseen datasets and pathologies. New bio-

logical environments and samples might contain information that would be elim-

inated with the proposed panels if a marker has different patterns of expression

between the training and test datasets. All of the proposed methods for panel se-

lection also fail to biologically explain why certain markers might be imputable

from other markers in the panel. They can order and prioritize stains that are use-

ful for image reconstruction, but they offer little in the way of overarching biolog-

ical principles that can be learned from and applied to new datasets. The methods

also don’t take into consideration other complex aspects of panel design, such as

marker interaction, overlapping wavelengths, and redundant markers for quality

control, which are important considerations when designing a panel[135, 6]. Fi-

nally, a VAE-based architecture was used for image reconstruction in this study, as

I determined that the embedding space might be useful for analysis and identifi-

cation of cell types; however, if the goal is to impute the full panel such that no

information is lost, a generative model for image-to-image translation (like SHIFT)

might be more appropriate in future studies.
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5.4 Combating an idealized vision of the future

The research conducted here shows that deep learning has a place in the multiplex

imaging pipeline, and research into its application will likely continue for many

years to come. Some might see an unavoidable future in which artificial intelli-

gence replaces even the most complex tasks and puts experts out of a job, but if

such a future does come to pass, it is a far way off. The current state of deep learn-

ing is just as its name implies, capable of learning deep and hidden patterns from

data, but nowhere within the trained models and weighted kernels have we been

able to create something remotely resembling intelligence or comprehension. In

the foreseeable future, the role of deep learning will serve primarily to reduce the

burden of tedious and reproducible tasks such as identifying cells within images

and classifying cell types. That being said, an ideal goal for the immediate future

is one of symbiosis and growth. Deep learning is capable of extracting informa-

tion from images that humans cannot, but its black box nature means that trust

in its conclusions will always need to be validated. There is typically no justifica-

tion behind its results other than: it is the answer that optimized the loss function

during training. Despite deep learning’s large capacity for discovery, such unsup-

ported answers are not compatible with blind application into healthcare. This

does not mean, however, that deep learning should be avoided; only that it should

be used as a guide, replacing burdensome tasks, reducing bias with reproducible

and quantifiable predictions, and making suggestions to the researcher that can be

deciphered and learned from.

Maybe one day, deep learning will be a miracle technology that is able to detect,
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diagnose, track, and treat cancer all in one, and on that day we will have created

something we might be able to call a true artificial intelligence. But that day is

still a distant dream, and for now we are confined to using deep learning that is

computationally useful but not intelligent. In the meantime, until we have the

advanced powers of artificial intelligence at our fingertips, we will work towards

a future where deep learning improves the multiplex imaging pipeline, making

the groundbreaking new imaging modalities more accessible to researchers and

clinicians.
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