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Abstract
An increasing amount of attention is being given to the structural and morpholog-

ical aspects of biological function, and by extension the computational challenges

necessary to understand them are becoming increasingly important. In cancer re-

search, structural changes in the tumor microenvironment and state changes in the

cells, as well as the spatial distributions of proteins at both the tissue and cellular

levels are key to understanding cancer progression and evolution. Imaging modal-

ities are integral to the development of morpho-spatial analysis because they allow

us to capture the structural information in tangent to the expression information

across many different biological scales with high resolution. Multiplex imaging

speci�cally has allowed researchers to capture an incredible amount of data for

dozens of proteins at a time, but the computational methods that are necessary

to comprehend the true diversity of the information that is contained in the data

are only now being developed. Digital pathology applications suffer from a lack

of consistent, reproducible, and unbiased methods, and as a result the interpre-

tations of the results are prone to inter-operator and inter-institution variability.

These limiting methods include: 1) imperfect manual annotation and segmenta-

tion which are both slow and produce different results for every operator, 2) the

reliance upon classical morpho-spatial features which are generalist and fail to

quantify novel and complex features of biological importance, 3) the subjective

selection of regions-of-interest and multiplex marker panels, both of which will

vary between researchers and cannot accurately be done without substantial prior

information. Because deep learning can capture complex information from large

data and the results of such models are reproducible regardless of operator, they

xv



provide the opportunity to address many of the limitations that multiplex imaging

faces. First, I propose a deep learning model for virtual semantic segmentation of

nuanced features (VISTA) as a solution to slow and imperfect annotation in pancre-

atic ductal adenocarcinoma tissue samples and discuss how similar pipelines can

be developed for use in new pathologies. Second, I propose a novel multi-encoder

variational autoencoder (ME-VAE) architecture, which is capable of extracting bio-

logically relevant morpho-spatial features from single cell images, speci�c to each

dataset and without the bias of traditional imaging features. Finally, I propose a

series of deep learning methods developed for reducing researcher burden and

bias in multiplex imaging by reconstructing 3-dimensional tissue volumes, select-

ing representative regions-of-interest using convex optimization, and decreasing

panel sizes by calculating a theoretically ideal reduced panel capable of imputing

all the information in the original full panel. Implementation of these methods will

help to advance the growing community of arti�cial intelligence research in the

biomedical domain and allow researchers to reproducibly quantify the morpho-

spatial data held in their images, which will lead to novel breakthroughs in the

cancer domain and beyond.
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Chapter 1

Introduction

Great knowledge sees all in one.
Small knowledge breaks down into the many.

Readings from Chuang Tzu

1.1 The use of biomedical imaging

Images are one of the most rapid and ef�cient ways to represent and convey intel-

ligible information, and as such the ability to visualize disease states is essential in

interpreting the biology. Visualization of biology is not always possible with the

naked eye either because it is too small, because it is out of reach, or because the

biology of interest is not visible without speci�c treatment. Biomedical imaging

helps to address this by allowing physicians and researchers to extract dense, bio-

logically relevant information that would normally be inaccessible through the use

of tissue sections, advanced imaging devices, and/or biologically target staining

to highlight certain features. Imaging is a well-established practice in the medical
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�eld and has been a staple of medical diagnostics for hundreds of years. Hema-

toxylin and eosin (H&E) staining in particular has been a standard imaging prac-

tice since 1876[150] and has allowed physicians to make decisions regarding di-

agnosis, grading, and prognosis ever since. Despite its age, H&E imaging contin-

ues to be consistently used, even in the presence of other more complex imaging

modalities because it is cheap and fast. It only uses two stains but it allows physi-

cians and researchers to interpret high-level features of biology such as tissue or-

ganization, type, and morphology.

This ability to examine and measure the morphological and spatial (morpho-

spatial) components of disease is why imaging is so important. While many

modern tests and modalities, such as those in the realm of -omics (RNA

sequencing[92], reverse-phase protein arrays[50], chromatin sequencing[14]), can

provide large amounts of expression data, they currently can do little to tell us

about the structural and organizational patterns of cells within a tissue as well

as the distribution of the expressions within cells. Imaging is unique in that it

preserves the spatial by aspect of information and therefore spatially resolve the

similar expression pro�les to the other modalities. In cancer, this spatial aspect

of information and expression has been shown to be an important step in cancer

subtyping and treatment[26]. For example, recent discoveries have found that

the proximities and spatial distributions of many cell types such as �broblasts,

immune cells, and tumor cells have an in�uence on clinical outcomes and patient

survival [81, 10].

The importance of imaging in the medical �eld has pushed researchers to develop
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more and more powerful tools that can obtain images with higher spatial resolu-

tion and increased pro�ling capacities, capable of now staining for dozens of stains

on the same tissue and cells. These are broadly called state-of-the-art multiplex

imaging modalities and include such methods as cyclic immuno�uorescence (Cy-

CIF)[64], multiplex ion beam imaging (MIBI)[4], multiplex immunohistochemistry

(mIHC)[131], and co-detection by indexing (CODEX)[38]. Each modality, under-

standably, comes with its own bene�ts and drawbacks. Fluorescence-base meth-

ods are able to image large areas of tissue but suffer from auto-�uorescence is-

sues as a result of �xation[64, 38, 36], while mass spectrometry-based approaches

are able to achieve higher signal-to-background ratios while only being able to

image smaller areas[4, 37]. Additionally enzyme-based antibody methods like

mIHC[131] have more harsh label stripping conditions which results in increased

deleterious tissue effects. These multiplex modalities have increased the amount

of data being gathered both in terms of the spatial resolution (some being able

to image whole slide images at the single cell level) and marker diversity (some

being able to image the same tissue with up to 100 stains). The problem is that re-

searchers these modalities produces increasingly large amounts of data with more

complexities, interactions, and confounding factors. The best methods to analyze

these imaging features, however, are still the topic of research and testing, and as

of yet there is no current standard for many of the challenges.
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1.2 Limitations of the imaging modalities

Although multiplexed imaging technologies like CyCIF[64] have introduced many

bene�ts to researchers, they are still relatively novel tools that have not yet been

fully optimized, and as such they each come with their own downsides that re-

strict their broad and rapid application. Firstly, highly multiplexed technologies

are slow and labor intensive technologies[64, 38, 36, 4, 37]. CyCIF, for example,

is a process involving many iterative rounds of staining, imaging, and quench-

ing and can take weeks to complete depending on the size of the tissue and the

number of stains being used[64]. Some technologies, like multiplex immunohis-

tochemistry[131], can operate in a matter of days, but even this is too slow for

broad deployment in settings where pathologists and doctors need rapid results

to dictate immediate treatment. The faster multiplex platforms, however, typically

come with decreased resolution, multiplex stain capacity, or throughput[131, 4, 37].

These time estimates also only take into consideration the amount of time required

to actually capture the image following all the upstream preparation of the sample

and panel design, the processes of which each come with limitations of their own.

Panel design is a subjective process that is heavily reliant on prior literature, re-

searcher experience, and many iterations of experimentation to optimize with no

guarantee that the panel will capture all the relevant biology[94, 32]. The process

requires balancing the selection of speci�c biological targets with the practical lim-

itations of the physical biology: stains may or may not compete within a single

round of staining or may have off-target effects[135, 6]. When designing the panel,

researchers must use a substantial amount of prior knowledge to determine which
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stains will produce the most amount of biologically relevant data, but it can be dif-

�cult to predict which stains will be interesting beforehand and whether speci�c

stains even need to be included because they share mutual information with the

other stains. As a result, multiple researchers are able to select reasonable and dis-

tinct panel sets for an identical experiment, with no quantitative metric of which

will be better beforehand. Although the multiplex technologies enable staining

with signi�cantly more depth, conducting many subsequent imaging rounds can

result in increased auto�uorescence within the image (as a result of interactions

when blocking with normal serum) and increased degradation of the tissue[53].

For this reason, researchers must be careful to only select markers that will be bio-

logically important because although the panel size has been increased, the space

on the panel is still limited. The fact that these decisions must be made with each

experiment and dataset restricts the application of multiplex imaging away from

domains where 1) there may be a lack of prior information and 2) testing and de-

ployment must be rapid.

Even outside of multiplex imaging, the medical �eld is slowed by image-based

computational processes. It is true that imaging data comes with unique and im-

portant morpho-spatial information, but unlike other expression measurements,

these morpho-spatial patterns do not come already labeled and quanti�ed. Many

imaging features are incredibly complex and cannot be captured with standard

handcrafted feature metrics for stain expression and morphology, as is the case for

subtle histological features of cancer progression[115] (further discussed in chap-

ter 2) and there is bias when selecting features, the result of which can ignore bio-

logically relevant features and put inappropriate focus on other technical features
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(further discussed in chapter 3). Currently, many tasks require researchers to man-

ually process images, by annotating tumors, labeling cell types of interest, and

quantifying/normalizing stains, all of which require a signi�cant amount of time

and are subjective decisions prone to inter- and intra-operator variation[31, 149,

27, 111, 59]. Sometimes, there aren't even appropriate methods for bulk annota-

tion, and cell type labeling is often performed simply using clustering, whereby

cell data is computationally grouped based on similarity, or binarized marker gat-

ing, whereby cells are called as being positive or negative for protein expression

using a simple threshold.

These processes of annotation are tedious and waste the time that researchers and

physicians. The issue of annotation is compounded when one looks at the size

of datasets, which are only increasing in volume as we improve the technology.

Whole slide images now contain millions of cells for labeling[67], multiplex data

uses dozens of stains that each independently require thresholding[64], and there

is an increasing demand to research 3-dimensional tissue volumes[60, 70, 67]. Not

only do these trends increase manual workload, but whole process must be re-

peated for every new dataset that is being analyzed. Cost is also a limitation of

these new platforms, making their use prohibitively expensive for small or poorly

funded labs. Additionally, the cost of researchers, experts, computationalists, and

supplemental resources will also increase as time is spent on menial tasks that do

not necessarily require innovative thought.
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1.3 The limitations of imaging by eye

While the technology that is used for imaging will most certainly continue to

improve over the coming years and reduce the aforementioned limitations, one

aspect that will continue to be a limitation on image analysis is the human ele-

ment. Deep learning models are capable of parallel processing, allowing a single

model to analyze multiple images simultaneously, completing tasks in a fraction

of the time it would take their human counterparts[126]. Moreover, once a model

has been successfully trained, the computational resources necessary are generally

fairly small, capable of being deployed on generic smart phones, as can be seen

in the many facial recognition tools used in today's social media applications. For

this reason, deep learning image models have and will continue to be deployed en

masse throughout the industrial setting and will grow more and more prevalent

within the medical �eld in the coming years.

An added bene�t that computational algorithms have over the human analyst is

consistency. Not only has analysis by multiple experts been shown to be vulnera-

ble to inter-observer variation and bias [31, 149, 27], but even a single expert will

produce different results between multiple viewings of an image, even for simple

tasks such as counting cells[111, 59]. Because computation is deterministic, the

predictions from a deep learning model will produce the same results every time.

Although the computational algorithms may still be prone to error, the errors are

reproducible, diagnosable, and with some effort can be �xed/improved in subse-

quent iterations. The errors made by human annotation will often go unaddressed
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with no good way to overcome limitations in an inherently biased and unchange-

able biological neural network.

When a human views an image by eye, they can understand the whole of the im-

age, but when they are given the same image data in the form of intensity values

and matrices, it becomes completely unintelligible. Additionally, current visual-

ization methods struggle to convey multiplex images since computer visualization

is limited to 3 primary color channels (red,green,blue)[116] and multiplex images

can have dozens of channels to visualize simultaneously[64]. Extracting hidden

patterns from big data requires the ability to parse through more information than

can be held in the human attention at one time, which is something machines are

very good at doing, and as a result recent advanced computational methods have

been shown to extract hidden patterns from images that are imperceptible to hu-

mans in the biological domain[78, 133].

Similarly, machine learning allows researchers to apply quantitative metrics to fea-

tures that the human brain can only do qualitatively. Using features in cancer im-

ages, pathologists can make qualitative decisions in order to classify tumor grade,

but these assignments do not re�ect the continuous nature of cancer progression,

would be better captured in continuous quantitative values, and lack mathemat-

ical certainty. When researching topics which require nuance in tissue and cell

state, such as developmental mechanisms of disease progression, these qualitative

decisions become even more perplexing, as there is often no clear divide between

one state and another[77]. Cell segmentation is commonly done with semantic

segmentation, performed by labeling positive area at the pixel level or instance

segmentation, performed by selecting regions containing a single cell. Even the
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more simple semantic segmentation-based tasks, however, suffer from imprecise

ground truth as it can be dif�cult to determine where one cell begins and another

ends, especially when multiple cells overlap. As a result, calls and decisions made

between researchers will not always be consistent[31, 149, 27, 111, 59]. Many basic

tissue level segmentation and quanti�cation methods for the purpose of separat-

ing these disease states and tissue types rely on the thresholding of stains to make

binary calls[123, 69]. These thresholding methods, however, are prone to many

sources of variation and bias. The manually determined thresholds will vary by

user, and the tissue images often have uneven staining and �uorescence, which

further confounds the process[126].

Many morpho-spatial features that are important for biomedical analysis, for ex-

ample the texture of a surface, are things that humans can qualitatively observe,

but lack the capacity to empirically quantify. Classical feature sets[138, 80], which

are de�ned by static handcrafted metrics, can extract some morpho-spatial features

but these lack the complexity to extract all the rich information from multiplex im-

ages which can be de�ned by n-dimensional pixel level interactions. To further add

to the complexity of analysis, tissue level multiplex images can be incredibly large,

comprised of hundreds of billions of pixels and millions of cells[67]. This necessi-

tates the trimming down of data into more comprehensible regions, as oftentimes

many regions of the image might not be of biological interest[67]. This could be be-

cause some regions lack pathologically relevant tissue, do not contain rare/novel

cell types, or are not undergoing the speci�c micro-environmental changes exam-

ined in the study. Both of these processes require a substantial amount of prior

information. Moreover, the decisions do not have empirical backing to show that
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they optimize the amount of relevant information gained from the experiment, and

the choices for each part are subject to researcher bias. Empirical methods for selec-

tion important regions have been performed in H&E[95], but these attempts have

been very limited, capturing only obvious and high-level tissue features which

would not prove useful for more nuanced features at the cellular level, which is

necessary for multiplex imaging modalities.

1.4 Applications and limitations of existing machine

learning methods in biomedical imaging

Machine learning is a subset of arti�cial intelligence methods that enable the rapid

and accurate analysis of big data without having to be speci�cally programmed

for the task[28]. Using provided input data, the machine learning methods learn

to complete a speci�c task by "programming" themselves in a process called "train-

ing". In doing so, the models learn a speci�c set of parameters, weights, and fea-

tures, that optimize that performance of their speci�c task. In order to complete

the same tasks normally, researchers would design similar parameters a weights

in a sub-optimal process of trail and error.

Depending on how the data is given to the model and how the process of training is

conducted, machine learning can be classi�ed into different types. Although there

are many distinctions, supervised learning and unsupervised learning are of par-

ticular relevance to this work. Supervised learning is when the machine learning

model is trained using classi�ed, labeled, or ground truth data, such that the model
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the model has an intended output that it can compare its predictions to. Unsuper-

vised learning is when the model does not receive labeled data during training,

and therefore must infer information regarding the data that is not given to the

model directly[28]. Additionally, deep learning is an subset of machine learning

models that is characterized by having multiple layers in its architecture, making

it capable of performing more complex tasks while requiring more computational

resources to train and use[47].

Hundreds of new deep learning architectures are being developed and published

every year, with more than 700 peer-reviewed AI publications being produced

within the US for the medical �eld alone in 2019 according to Stanford University's

AI Index Report[154]. From among these, there are several common deep learning

templates that have remained relevant without drowning in the quickly changing

sea of "state-of-the-art". Although addressing all of them is outside the scope of

this work, I will brie�y describe three that are highly relevant to the projects de-

tailed later.

Segmentation is a vital part of the image analysis pipeline for most cancer research;

speci�c tissues and cells can only be analyzed individually if they are �rst seg-

mented from the rest of the image. The UNet[102]is an architecture for neural

networks using only convolutional layers to compress and expand the image in

such a way that it can generate the desired output, commonly segmentation masks.

The UNet has served as the baseline template for deep learning segmentation, and

over the years has seen many updates and modi�cations to improve its perfor-

mance[19, 151, 52]. One of the key advances in this domain has been the creation of

widely applicable cell segmentation methods such as Cellpose[120], Mesmer[40],
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and Stardist[147], which can perform a variety of cell segmentation tasks with little

expertise required. These generalist methods allow for the deployment of a single

reproducible deep learning model on many different datasets, which can be char-

acterized by different cell types, panels, and labs of imaging, without the need for

researchers to train their own models or design the model speci�c to their data.

Although these show promise and widespread use, the application of generalist

models is restricted to single cell and nuclear segmentations, where there is a com-

mon and easily de�ned objective shared by most researchers. As of yet, there are

no successful and widespread generalist methods for tissue level features, and cur-

rently tissue level segmentation requires manual annotation by researchers or the

expertise to train highly speci�c models.

Once the targets of interest have been segmented from an image, it is necessary

to extract biologically relevant features that can help researchers understand what

is happening to the cell or tissue. Although many common handcrafted features

and metrics exist for this purpose[138, 80], there are many more complicated fea-

tures that still need to be extracted and are not readily perceivable by the human

eye[78]. One tool commonly used to extract such features without researcher bias

is the Variational Autoencoder (VAE)[58], which compresses images into a series

of quantitative values that describe all the features within the image and then re-

constructs the original image from said vector in order to enforce that the represen-

tative values are relevant. The logic behind the model is that if you can adequately

reconstruct the image using the encoded values, then the values must contain all

the necessary the information about the image. Using a VAE not only allows re-

searchers to capture novel information not adequately represented in handcrafted
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metrics, but does so in an undirected and unbiased fashion[58, 78]. This means that

researchers can extract relevant information without having to know the features

of interest beforehand.

VAEs, however, come with their own limitations. This includes interpretability.

Because many features are quanti�ed in an overlapping and interconnected fash-

ion, it can be dif�cult to disentangle the biological meanings that come out of a

black box[44, 86]. VAEs are also reliant on the �ne tuning of many parameters, and

small changes in these parameters can completely change the way the models learn

or even cause the model to collapse, meaning that the model converges to state

where the encodings and predictions are meaningless in relation to the input but

optimize the loss function nonetheless[44]. Relevant to the work described here,

VAEs can be hypersensitive to transformation features, such as rotation, skew, and

scale, which are descriptors of the image but depending on the context might con-

tain no relevant biology, and this hypersensitivity inhibits the ability of models to

fully learn biological representations[35, 48, 8, 155, 84, 42]. This has been a topic

of considerable research, but most methods designed to overcome this hypersen-

sitivity are only directed at single features of disinterest at a time [48, 8, 155, 84, 42,

106, 93].

Using the information and features available from imaging data, researchers often

require the ability to predict realistic data that they do not currently have. Genera-

tive Adversarial Networks (GANs) allow for generator networks (like UNets) to be

pushed toward producing more realistic results necessary for synthetic data gen-

eration. It does this by coupling a discriminator network to the generator, which

punishes the generator if it produces results that can be distinguished from real
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data. Although commonly applied for synthetic image prediction[114, 33, 133],

their adversarial concept has also been applied to segmentation[140] and normal-

ization[153] tasks, since the adversarial penalty on the generator model is able to

encourage better results than the generator alone.

There are also many limitations that still plague machine learning as a whole. First

is the fact that deep learning requires incredibly large datasets to learn from[9].

Within the medical domain, medical images are expensive to create and dif�cult to

obtain and use. This problem is compounded for supervised deep learning meth-

ods, which require not only the original data, but also the corresponding ground

truths that they are attempting to predict[28]. In most applications, the creation

of these ground truths falls upon researchers who must annotate, segment, label,

and classify all the images in the large dataset. If these labeled datasets are not

suf�ciently large, the models will either fail to converge meaningfully or will learn

to over�t the small dataset, making them unsuitable for application.

Further complicating this is the need for variation in the dataset[9]. Generaliz-

ability of models is important because many things can cause batch effects in the

images, ranging from obvious things like the patient, operator, and laboratory to

more trivial things like the weather and time of day[126]. Despite how important

size and variation are to model training, there is no good method for estimating

what is required ahead of time. Finally, even though models are trained using a

provided ground truth, we must ask how we really de�ne ground truth, whether

the ground truths are adequate, and how much subjectivity we will accept in our

de�nitions of ground truth. As previously discussed, even simple tasks like cell
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counting produce various results between experts[111, 59], so when such manu-

ally labeled results are used as ground truth, the models will be subject to the data

used for training. This same principle applies to other objectives such as feature

extraction where there might not be easily identi�able/agreed upon truths that the

model is trying to predict. Although deep learning models are powerful, so long

as they are reliant on �awed human input for learning, they will be restricted in

the scope of what they can achieve.

1.5 Dissertation contributions

In the following chapters, I will address several of the biomedical applications

and limitations of the deep learning architectures described above. In chapter 2, I

discuss the limitations of human annotators for segmenting cancer features from

whole slide images for which there is no stain. Furthermore, within the chap-

ter, I discuss the limitations of staining, thresholding, and normalization methods

used for such tasks. I propose a UNet-based ensemble method with intermediate

normalization steps called VIsual Semantic Tissue Analysis (VISTA)[126], which

I show performs tissue segmentation in a fraction of the time and can guide re-

searchers toward improved annotations.

The contents of chapter 2 are adapted from works listed below in chronological

order:

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Joe W.

Gray, John Muschler, Young Hwan Chang (2020, June 19). Utilizing Deep

Learning to Enhance and Accelerate Pancreatic Disease Quanti�cation in Murine
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Cohorts [Conference poster]. Brenden-Colson Center, Portland, OR, United

States.

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe W. Gray, John Muschler, and Young Hwan Chang. “Vista: Vi-

sual semantic tissue analysis for pancreatic disease quanti�cation in murine

cohorts”. In: Scienti�c Reports10.1 (2020).DOI : 10.1038/s41598-020-78061-

3

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe W. Gray, John Muschler, Young Hwan Chang (2019).VISTA: Vi-

sual semantic tissue analysis for pancreatic disease quanti�cation in murine cohorts

[Conference poster]. Machine Learning for Health Workshop, Portland, OR,

United States.

• Luke Ternes, Ge Huang, Christian Lanciault, Guillaume Thibault, Rachelle

Riggers, Joe Gray, John Muschler, and Young Hwan Chang. “Abstract PO-

014: VISTA: VIsual Semantic Tissue Analysis for pancreatic disease quanti�-

cation in murine cohorts”. In: Cancer Research81.22 Supplement (2021), PO–

014–PO–014.ISSN: 0008-5472.DOI : 10.1158/1538-7445.PANCA21-PO-014.

eprint: https : / / cancerres . aacrjournals . org / content . URL: https :

//cancerres.aacrjournals.org/content/81/22_Supplement/PO-014

In chapter 3, I demonstrate the limitations of current VAE architectures for ex-

tracting features from single cell imaging data. I propose a novel architecture (the

Multi-Encoder Variational AutoEncoder (ME-VAE)[124]) which attempts to over-

come the noisy and biologically irrelevant transformational information present in
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single cell images. I compare the tool to state-of-the-art methods and show that it

improves downstream analysis via our ability to cluster cell types, extract novel

features, and integrate with other modalities.

The contents of chapter 3 are adapted from works listed below in chronological

order:

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2020, De-

cember 14). Feature Controlled Variational Autoencoder for Single Cell Image

Analysis [Conference poster]. Learning Meaningful Representations of Life,

Virtual. https://www.lmrl.org/posters2020

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2021,

March). Feature Controlled Variational Autoencoder for Single Cell Image Analy-

sis [Conference presentation]. CSBC / PS-ON Image Analysis Working Group,

Virtual.

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang (2021, May

14). ME-VAE:Multi-Encoder Variational AutoEncoder for Controlling Multiple

Transformational Features in Single Cell Image Analysis [Conference poster]. Hu-

man Tumor Atlas Network: Face2Face, Virtual.

• Luke Ternes, Joe W. Gray, Laura Heiser, and Young Hwan Chang

(2021, July 25-30). ME-VAE: Multi-Encoder Variational AutoEncoder for

Controlling Multiple Transformational Features in Single Cell Image Analysis

[Conference poster]. International Society for Computational Biology, Virtual.

https://www.youtube.com/watch?v=fGgVYV0nBoA
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• Luke Ternes, Mark Dana, Marilyne Labrie, Gordon Mills, Joe W. Gray, Laura

Heiser, and Young Hwan Chang (2020, Nov 23-24). ME-VAE: Multi-Encoder

Variational AutoEncoder for Controlling Multiple Transformational Features in Sin-

gle Cell Image Analysis [Conference poster]. MLCB: Machine Learning in Com-

putational Biology, Virtual.

• Luke Ternes, Mark Dane, Sean Gross, Marilyne Labrie, Gordon Mills, Joe

Gray, Laura Heiser, and Young Hwan Chang. “ME-vae: Multi-encoder vari-

ational AutoEncoder for controlling multiple transformational features in

single cell image analysis”. In: (2021). DOI : 10.1101/2021.04.22.441005

• Luke Ternes, Mark Dana, Marilyne Labrie, Gordon Mills, Joe W. Gray, Laura

Heiser, and Young Hwan Chang (2022, Jan 3-7). Extracting more biologically

relevant features from multiplexed imaging with a Multi-Encoder Variational

AutoEncoder [Conference presentation]. Paci�c Symposium on Biocomputing,

Waimea, HI, United States.

In chapter 4, I work to mitigate the burden on the multiplex imaging pipeline

through three tasks: stain prediction in 3-dimensional tissue volumes, representa-

tive region-of-interest identi�cation via optimization, and quantitative multiplex

image panel reduction. I propose the use of a previously established stain pre-

diction algorithm (SHIFT)[133] for the prediction and propagation of multiplex

staining throughout a 3-dimensional tissue volume. I demonstrate the use of a

GAN-based XAE architecture and convex optimization function for discovering

representative regions-of-interest (ROIs) which can characterize whole slide im-

ages without the need to stain or analyze the whole section. Finally, I evaluate
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several methods for selecting an ideal/reduced panel for multiplex imaging that

maximizes the amount of information retained while eliminating stains whose in-

formation can be captured from markers elsewhere within the panel.

The contents of chapter 4 are adapted from works listed below in chronological

order:

• Luke Ternes, Erik Burlingame, Jia-Ren Lin, Yu-An Chen, Eun Na Kim, Joe W.

Gray, Sandro Santagata, Peter Sorger, and Young Hwan Chang (2021, Nov

18-19). 3D reconstruction of whole-slide multiplex tissue imaging and optimized

ROI selection. (paper in preparation).

• Luke Ternes, Erik Burlingame, Jia-Ren Lin, Yu-An Chen, Eun Na Kim, Joe W.

Gray, Sandro Santagata, Peter Sorger, and Young Hwan Chang (2021, Nov 18-

19). 3D reconstruction of whole-slide multiplex tissue imaging and optimized ROI

selection with deep learning [Conference poster]. Human Tumor Atlas Network

Face2Face, Virtual.

3D multiplexed tissue imaging reconstruction and optimized region-of-interest se-

lection through deep learning model of channels embedding.

1.6 Other contributions

Other contributions, manuscripts, and publications completed during my doctoral

studies have been omitted to maintain a clear focus in this dissertation. These

works are listed below in chronological order:
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• Luke Ternes, Caitlin Mills, Kartik Subramanian, Yunguan Wang, Clarence

Yapp, Sean Gross, LINCS MCF10A Consortium, Joe W. Gray, Peter Sorger,

Laura Heiser, and Young Hwan Chang, (2019, Oct 2-4). The Temporal Dynam-

ics of Ligand Treated MCF10A Cells Using Cyclic Immuno�uorescent Imaging Data

[Conference poster]. Allen Institute BioImage Informatics Symposium, Seattle,

WA, United States.

• Luke Ternes, (2020, Jan 9-10). Recursive Segmentation Re�nement Without

Manual Annotations [Conference presentation]. CSBC / PS-ON Image Analysis

Working Group, Seattle, WA, United States.

• Luke Ternes, Guillaume Thibault, Joe W. Gray, Young Hwan Chang, (2020,

Apr 3-7). Iterative deep learning based segmentation on cyclic immuno�uorescence

imaging by using recursive re�nement [Conference presentation]. IEEE Interna-

tional Symposium on Biomedical Imaging, Iowa City, IA, United States.

• Juan Carlos Vizcarra, Erik A. Burlingame, Clemens B. Hug, Yury Goltsev,

Brian S. White, Darren R. Tyson, and Artem Sokolov. “A community-

based approach to image analysis of cells, tissues and tumors”. In:

Computerized Medical Imaging and Graphics95 (2021), p. 102013. DOI :

10.1016/j.compmedimag.2021.102013

• Orit Rozenblatt-Rosen et al. “The Human Tumor Atlas Network: Charting

Tumor Transitions across Space and Time at Single-Cell Resolution”. In: Cell

181.2 (2020), pp. 236–249.ISSN: 0092-8674.DOI : https://doi.org/10.1016/

j.cell.2020.03.053 . URL: https://www.sciencedirect.com/science/

article/pii/S0092867420303469
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Chapter 2

Reproducible segmentation of

nuanced cancer features without

annotator bias

A frog in a well cannot discuss the ocean,
because he is limited by the size of his well.

Readings from Chuang Tzu

2.1 Abstract

Mechanistic disease progression studies using animal models require objective and

quanti�able assessment of tissue pathology. Currently quanti�cation relies heav-

ily on staining methods which can be expensive, labor/time-intensive, inconsis-

tent across laboratories and batch, and produce uneven staining that is prone to

misinterpretation and investigator bias. I developed an automated segmentation
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tool (VISTA) utilizing deep learning for rapid and objective quanti�cation of his-

tologic features at the pixel-level, relying solely on hematoxylin and eosin stained

pancreatic tissue sections. The tool segments normal acinar structures, the ductal

phenotype of acinar-to-ductal metaplasia (ADM), and dysplasia with Dice coef�-

cients of 0.79, 0.70, and 0.79, respectively. To deal with inaccurate pixelwise manual

annotations, prediction accuracy was also evaluated against biological truth us-

ing immunostaining mean structural similarity indexes (SSIM) of 0.925 and 0.920

for amylase and pan-keratin respectively. Our tool's disease area quanti�cations

were correlated to the quanti�cations of immunostaining markers (DAPI, amy-

lase, and pan-keratin; Spearman correlation score= 0.86, 0.97, and 0.92) in unseen

dataset (n=25). Moreover, our tool distinguishes ADM from dysplasia, which are

not reliably distinguished with immunostaining, and demonstrates generalizabil-

ity across murine cohorts with pancreatic disease. I quanti�ed the changes in his-

tologic feature abundance for murine cohorts with oncogenic Kras-driven disease,

and the predictions �t biological expectations, showing stromal expansion, a re-

duction of normal acinar tissue, and an increase in both ADM and dysplasia as

disease progresses. Our tool promises to accelerate and improve the quanti�cation

of pancreatic disease in animal studies and become a unifying quanti�cation tool

across laboratories.
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2.2 Introduction

Advances in deep learning technologies are creating opportunities for the rapid

and objective assessment of both normal tissue and pathologic processes in bio-

logic specimens. Computer-aided interrogation of medical imaging is being ap-

plied to accelerate and improve diagnosis in human patients[17, 74, 20, 110]. Sim-

ilarly, deep learning technologies can greatly improve analyses in animal disease

models which require the measurement of disease progression in large numbers

of tissue samples resulting either from pharmacological or genetic manipulations.

The extensive and growing use of murine models in disease studies creates a sig-

ni�cant need for tissue assessment methods that are rapid, objective and quanti�-

able in order to permit statistically validated disease measurements among animal

cohorts, free of technical variability and investigator bias.

The challenge of objective quanti�cation of tissue changes among animal cohorts

is signi�cant. Evaluation of tissue by either histochemical stains or antigen-speci�c

immunohistochemistry offers distinct and sometimes overlapping information,

but both have limitations. Hematoxylin and eosin (H&E) staining is a rapid,

reliable and inexpensive method; however, lack of molecular speci�city and

requirement for manual segmentation have, thus far, limited its use for extraction

of quanti�able data. Consequently, disease assessments by H&E staining are

typically qualitative and vulnerable to inter-observer variation and bias[31, 149,

27]. Immunohistochemical stains offer a degree of speci�city, but immunostaining

can be labor- and time-intensive, expensive and results are often challenging to

objectively quantify over broad tissue regions. In addition, tissue features of



24
Chapter 2. Reproducible segmentation of nuanced cancer features without

annotator bias

interest are not always cleanly distinguishable by immunostaining markers, and

so tissue assessments can be limited by reliance on the molecular speci�city of

antibodies.

Here I develop and validate deep learning approaches that enable the rapid, reli-

able, and automated quanti�cation of disease progression over large tissue areas,

solely based on H&E staining, using murine models of pancreatic cancer progres-

sion and pancreatitis. Murine models of pancreatic cancer were chosen as they

have proven useful for mechanistic investigations of pancreatic cancer progres-

sion, modeling well the human disease both genetically and phenotypically, par-

ticularly during the evolution of pre-cancerous lesions[45, 46]. The murine mod-

els have produced an explosion of studies including pre-clinical drug tests and

evaluation of additional genetic perturbations that expose tumor-suppressing and

tumor-promoting disease modi�ers[148, 132, 141].

The early stages of pancreatic cancer evolution are well described in the mouse

models[45, 46]. The normal pancreas consists predominantly of acinar and ductal

epithelial cells forming the exocrine compartment, along with islet cells of the

endocrine compartment, vasculature and the varied �broblasts of the stromal

compartment. The earliest stages of oncogene-induced pre-cancer evolution are

marked by an expansion of ductal cells or by the conversion of the acinar cells to

a ductal phenotype in an adaptive process known as acinar-to ductal metaplasia

(ADM)[118]. ADM is also characteristic of acute and chronic pancreatitis,

in�ammatory conditions that can predispose to cancer[118]. The next stage in

cancer evolution is the development of low-grade dysplasia, also referred to as

pancreatic intraepithelial neoplasias (PanINs 1 and 2). Low-grade dysplasia is a
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pre-invasive neoplasia that can evolve to high-grade dysplasia (PanIN 3) and then

progress to invasive pancreatic ductal adenocarcinoma (PDAC)[97]. Both ADM

and dysplasia are accompanied by a prominent stromal reaction and immune

cell in�ltrate[118]. The stages of ADM and dysplasia evolution are believed to

encompass a long phase of pre-cancer evolution that is a valuable window for

early intervention[97].

Within this work, I describe the model training work�ow and application of deep

learning on H&E stained samples of murine pre-cancerous lesions, segmenting the

normal acini, the ductal phenotype of ADM, and dysplasia. With the rapid growth

of computer vision, more speci�cally deep learning, novel image analysis archi-

tectures have been developed for accessing image information that is not readily

observed through traditional methods. Several research groups have worked to-

wards inter-modality image translation and have developed tools that attempt to

convert medical images such as H&E stained tissue and bright�eld microscopy to

more detailed ones such as �uorescent immunostains[16, 23, 91, 61]. The target

of such models has been the direct translation of stain intensities for the purpose

of constructing entirely new images. Our developed tool seeks to go further, pre-

dicting binarized masks of positive staining area and augment immunostaining by

segmenting key histologic features that current stains cannot reliably differentiate.

Results presented here demonstrate a well validated segmentation tool that can

automatically, rapidly, and objectively quantify pancreatic tissue and disease pro-

gression in mice, relying solely on easily replicated and low-cost H&E staining of

whole pancreas tissue sections, free of experimental variability and investigator
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bias. Our work provides a tool that is immediately applicable to the improve-

ment and acceleration of pancreatic disease studies in animal cohorts, and pro-

vides work�ows for similar tool development in other disease models. Moreover,

the ease of use and availability allows for this tool to be a common thread for com-

paring different studies performed throughout the world.

2.3 Results

In order to predict the histologic feature distributions and immuno�uorescent stain

positivity in murine pancreatic pre-cancerous tissues, several UNet models[102]

were trained using intensity normalized H&E image tiles paired with annotated

ground truth tiles (Figure 2.1). All pancreas tissue sections in training, validation,

and testing sets were stained with H&E (Table 2.1). First testing was conducted by

evaluating spatial overlap of predictions and expert annotations for normal acinar,

ADM, and dysplasia. A second test was performed by correlating predictions to bi-

narized immuno�uorescence staining (IF): amylase (AMY), labeling normal acini,

pan-keratin (panK), labeling primarily the oncogenic Kras-transformed epithelial

population, and DAPI, labeling all nuclei. A third test was performed qualitatively

analyzing predictions in pancreatitis and normal samples, and comparing to bio-

logical expectations.

To ensure that UNet[102] model predictions were able to generalize well and

overcome staining differences within and between tissue sections, Dice Coef�cient

were calculated comparing model predictions to expert annotations made in

Cytomine[82] after training with several different normalization techniques
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FIGURE 2.1: A subset of murine pancreas H&E images were annotated by three experts in
Cytomine[82]. The images and their annotations were cropped and normalized at inter-
mediate intervals, and these intermediate crops were then tiled into images that can be fed
into a UNet architecture[102]. 80% of tiles were used for training and validation, and 20%
of tiles were used for testing. A model was trained for each histologic feature label. The
best models were chosen and used to predict stain and feature distributions on unseen
H&E images. These predictions were then correlated with the stained image counterparts
to determine model accuracy.

(Reinhard[98], Vahadane[134], and Macenko[76]). As observed in Table 2.2, the

models implementing Reinhard normalization achieved better scores on average,

relative to Vahadane and Macenko. Furthermore, the models achieved the best

scores when the normalization process was applied on intermediate crops rather

than across the whole image. This is because staining can be uneven within

a single section, and normalizing crops helps to overcome these differences in
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Sample Size H&E IF Annotations Used For

KC (2 months) 12 x x
- IF Correlation
-Area evaluations in pre-cancer
histopathology

KC (5 months) 16 x
x

(n=13)
x

(n=3)

- Training and validation
- Dice evaluation (H&E-based
prediction vs Annotations)
- IF Spearman correlations
- Area evaluations in pre-cancer
histopathology
- SSIM evaluation (H&E-based
prediction vs IF stain)
- Synthetic stain generalizability

Induced
Pancreatitis

6 x - New tissue generalizability

Normal Tissue 3 x - New tissue generalizability

TABLE 2.1: Datasets Used

intensity; whereas, normalizing across a whole section only helps overcome

differences between images.

The models were trained using 80% of the training dataset, and 20% of that train-

ing dataset was held out for cross-validation to evaluate and tune the models' per-

formance with unbiased data. The unseen labeled test data, comprising 20% of

the annotated dataset was used for �nal evaluation of the models. The best mod-

els yielded Dice Coef�cients of � 0.79, � 0.70, and � 0.79 on the hold-out set for

normal acinar tissue, ADM, and dysplastic features, respectively (Table 2.2). The

segmentations match the expert annotations with a high degree of qualitative accu-

racy (Figure 2.2a). The reason that the models' Dice scores are lower than expected

from successful models is because the models actually re�ned approximations in

the experts' annotations leading to discrepancies between prediction and annota-

tion (Figure 2.2b). Due to the limitations of the annotation method used, entire le-

sions (including empty lumina, mixed morphologies (Figure 2.3e), and additional
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negative space) were labeled as one type of tissue (i.e., ADM or dysplasia). The

models, however, accurately differentiate between the tissue types within a lesion

and avoid labeling lumina. Despite the predicted histology labels being biologi-

cally correct, they differ than the experts' manual annotations, resulting in a nega-

tive impact on the measured Dice Coef�cients. This means that the performance of

the models is actually greater than reported by Dice due to inconsistent biological

error in the annotations which were used for model evaluation.

Normalization Method Metric Normal Acinar ADM Dysplasia

Reinhard Normalization of Intermediate Crops
Dice 0.78691 0.70239 0.79403
BCE 0.16131 0.17112 0.22374

Reinhard Normalization[98]
Dice 0.71750 0.60303 0.76210
BCE 0.20561 0.16635 0.21966

Vahadane Normalization[134]
Dice 0.69311 0.58241 0.73684
BCE 0.20753 0.18726 0.24471

Macenko Normalization[76]
Dice 0.70686 0.56660 0.77210
BCE 0.21784 0.18370 0.19711

TABLE 2.2: Evaluation of Model Performances

To test the accuracy of the trained models further, a comparison was made between

quanti�ed model predictions and a second unseen test set of immunostained im-

ages that have been binarized. Quanti�cation of the tissue area occupied by nor-

mal acinar cell and transformed pancreatic epithelial cells was achieved by im-

munostaining for amylase and panK, respectively, with DAPI staining of nuclei

used to detect all cellular regions. The comparable calculation was then made

using tool predictions on adjacent H&E stained tissue sections. For the tool predic-

tion, ADM and dysplasia predictions were grouped into the panK stain because

panK immunostaining does not distinguish ADM and neoplastic tissues. Because

stain area is speci�c and more biologically targeted than the rough annotations

that incorporate empty lumens and mislabeled features, the models' immunostain
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