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ABSTRACT

QUICKTALK: A Smalltalk-SO Dialect for Defining
Primitive Methods

I

J
Mark B. Ballard, M.S.

Oregon Graduate Center, 19S6

Supervising Professor: David Maier

QUICKTALK is a dialect of Smalltalk-SO that can be compiled directly into na-

tive machine code, instead of virtual machine bytecodes. The dialect includes "hints"

on the class of method arguments, instance variables, and class variables. The dialect

is designed to describe primitive Smalltalk methods. Improved performance over

bytecodes is achieved by eliminating the interpreter loop on bytecode execution, by

reducing the number of message send/returns via binding some target methods at

compilation, and by eliminating redundant class checking. Changes to the Smalltalk-

SO system and compiler to support the dialect are identified and performance meas-

urements are given.
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1. INTRODUCTION

Some problems require experimentation or prototyping to discover an accept-

t able programmed solution. One such classic problem is user-interface design since a

person's behavior in using the interface is so difficult to predict. Programming

languages and programming environments have varying degrees of flexibility to sup-

port prototyping. Some languages support prototyping better than others via requir-

ing less specification by the programmer. FORTRAN, at one extreme, requires

sufficient programmer specification so that everything can be bound at compile time,

including all storage allocation. Pascal binds all procedure calls and all the types of

variables but does provide for the dynamic allocation of data items. Lisp, at the

other extreme, has no compile-time typing or binding of procedures. Its flexibility

even allows a program to construct a function and evaluate it during execution.

Perlis [AbS85,Forward] described the spectrum of flexibility in languages as:

"Pascal is for building pyramids--imposing, breathtaking, static structures built by

armies pushing heavy blocks into place. Lisp is for building organisms--imposing,

breathtaking, dynamic structures built by squads fitting fluctuating myriads of

simpler organisms into place."
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Smalltalk, in the spirit of Lisp, binds procedure names to procedure implemen-

tations during execution. Unlike Lisp however, values are given abstract types rather

than just representation types and thus allow the interpreter to catch inappropriate

function applications at the abstract type level. With delayed binding of procedures

in Smalltalk, a programmer can change one part of the application program without

recompiling the whole program. Small talk encourages a programmer to concentrate

on the behavior of objects rather than structure. Specialized behavior and increased

structure can be factored incrementally with subclassing. As the application matures,

the need for flexibility decreases. The programmer can specify his task more precisely

and would be willing to trade flexibility for efficiency. The programmer may wan t to

state types of variables and move some pr<?cedure bindings and type checking to com-

pile time in order to get a faster execution of the application.

The idea of QUICKTALK is to allow the Smalltalk programmer a way to gain

efficiency in a mature application by typing variables in frequently used procedures.

QUICKTALK is a dialect of Smalltalk that can be compiled directly into native

machine code, instead of virtual machine bytecodes. The dialect includes declarations

of the classes of method arguments, instance variables, and class variables. Improved

performance is achieved by eliminating the interpreter loop on bytecode execution, by

reducing the number of message send/returns via binding some target methods at

compilation, and ~y eliminating redundant class checking.

Section 2 describes the Smalltalk-80 language, the interpreter, and the virtual

machine. Section 3 identifies the performance bottlenecks and proposes the QUICK-

TALK solution. Section 4 acknowledges related work. Section 5 defines the
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QUICKTALK dialect. Section 6 describes the design of the current QUICKTALK

compiler and Section 7 reports resulting speed optimizations. The thesis concludes

with a discussion of the limitations of the QUICKTALK approach and suggests some

extensions.
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2. SMALL TALK AND PRIM:ITIVES

The Smalltalk-801 system is a programming language plus a graphical, interac-

tive programming environment. The programming language offers attractive features

for experimental programming. A feature important in this thesis is the way names

get bound to procedures.

Entities in the Smalltalk-80 system are called obJects. An object has some

private memory called £nstance var£ables and a set of operations called methods, that

are written in the Smalltalk language. Instance variables can be named or indexed.

A named instance variable is accessed by its name while indexed instance variables

are accessed by an integer index. A message is a request for an object to carry out

one of its operations. The rece£ver of the message determines how to carry out the

operation the message selects, by performing a method it associates with that mes-

sage. A class describes the implementation of a set of objects that all represent the

same kind of entity. An individual object described by a class is called an £nstance of

the class. Each class has a method d£ct£onary where the methods defined for its

instances are stored. Classes are arranged in a hierarchy. Methods defined for

Ismalltalk-80 is a trademark of Xerox Corporation. The description of Smalltalk-80 in this intro-
duction models the description in [GoR83, Chapter 1 and Chapter 261.
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instances of a class are inherited by instances of its subclasses.

Figure 1 contains the Smalltalk source for an example method, with message

selector max:, for finding the maximum of two objects that can be compared by the

method denoted by the message selector >. This method could be invoked by the

expression

3.5 max: 2

which request the greater of 3.5 and 2 be returned. The method is contained in the

class Magnitude and is inherited by all subclasses of Magnitude, including Float and

SmallInteger. The method has one argument, named aMagnitude and one temporary

variable, named return Value.

Methods compute by sending messages to other objects. The pseudo-variable

self refers to the receiver of the message max:. The expression self> aMagnitude

says send the message > to yourself with the argument aMagnitude. The message

selector> is an example of a binary message selector, a selector coinposed of one or

two non alphanumeric characters that takes a single argument. The selector max: is

an example of a keyword message selector, that is used for a method with one or more

arguments. The keyword message selector irTrue:ifFalse has block expressions for

arguments. Block expressions describe objects that represent deferred activities. The

expression t return Value says return the value return Value to the sending method.
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The Smalltalk-80 system is specified by a stack-oriented virtual machine.

[GoR83] Source methods are translated by the system compiler into compiled

methods, that contain sequences of eight-bit instructions, called bytecodes, for the vir-

tual machine. Figure 2 has a textual representation of the bytecodes for the method

of Figure 1.2

The Smalltalk interpreter executes bytecodes. When called on to execute a

compiled method, it creates a method contex& that refers to an environment that

includes the compiled method being executed, an instruction pointer into the compiled

method, the receiver and arguments of the message that the sender used to invoke the

compiled method, temporary variables needed by the compiled method, and an

evaluation stack. The interpreter cycles through the following steps:

(1) Fetch the next bytecode from the compiled method,

(2) Increment the instruction pointer.

(3) Decode the bytecode.

(4) Perform the function of the bytecode.

The interpretation of most bytecodes involves the interpreter's stack.

Bytecodes can be grouped into those that push objects onto the evaluation stack,

store (and sometimes pop) objects from the stack, send messages, return from a

method, or jump to a bytecode within a method.

~he reader might be confused by the bytecodes generated for the irI'rue:ifFalse: message. .As
written, the message should be sent to the boolean value resulting from the> comparison with block ar-
guments. The boolean value would then choose which argument to evaluate. The compiler instead has
implemented with jump byte codes the selected evaluation.

sA method context can be thought of as an activation record.
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Class: Magnitude

max: aMagnitude
"Answer the receiver or the argument,

whichever has the greater magnitude."

IreturnValue I

self> aMagnitude
iITrue: [returnValue +- selfj
ifFalse: [returnValue +- aMagnitudej.

t returnValue

Figure 1: A Smalltalk Source Method

pc bytecode method statement

1 push: self
2 push: aMagnitude
3 send: > self> aMagnitude
4 jumpFalse: 8
5 push: self iITrue: [returnValue +- self]
6 storeInto: returnValue

7 jumpTo: 10
8 push: aMagnitude ifFalse: [returnValue +- aMagnitude]
9 storeInto: returnValue

10 pop
11 push: returnValue
12 returnTop t return Value

Figure 2: Bytecodes for Source Method max:
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The interpreter usually responds to a send bytecode, sometimes called a mes-

sage send, by interpreting a compiled method associated with the message name. The

class of the receiver determines which compiled method is indicated by the message

selector of the send bytecode. When the selected compiled method begins to execute,

the receiver of the message send and its arguments are on top of the evaluation stack

of the sending method. Upon completion of the compiled method, the value returned

replaces the receiver and arguments on the evaluation stack.

The send bytecode causes a significant change to the state of the interpreter.

The sending method places the receiver and arguments on the interpreter's stack,

then requests a message send. The state of the sending method is remembered in the

method context so that the sending method may be resumed upon return from the

send. The method indicated by the message selector of the send must be found by the

following steps:

(1) Find the receiver on the stack.

(2) Look up the message selector in the method dictionary of the class of the

message receIver.

(3) If found, save the state of the sending method in the method context and

interpret the first bytecode of the compiled method associated with the

message selector. If not found, then search the method dictionary of the

superclass of the class just searched until found or report an error.

A method can be suspended between any two bytecodes; that is, between any

two instructions of the virtual machine. A frequent source of suspension is the
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unsuccessful search for a method to correspond with a message selector in the

attempt to interpret a send bytecode. In this case, an error is reported, and the exe-

cution of the compiled method containing the errant send bytecode is suspended.

In addition to Smalltalk source code, some methods, called primitive-calling (PC

methods) invoke a primitive routine4 in native machine code. Primitive routines give

Smalltalk the ability to create objects and evaluate expressions. They provide access

to and operations upon some virtual machine structures. They are used also to

optimize some critical methods that would run too slowly if written in Smalltalk.

A system primitive-calling method (SPC method) has a primitive section and a

failure section. The primitive section simply references a system-supplied primitive

routine by number. The interpreter has a table for a maximum of 256 of those rou-

tines. The failure section consists of regular Smalltalk code to be performed if the

primitive fails. A compiled SPC method compiles its failure section to a regular com-

piled method, except that a reference number to a system-supplied primitive routine

is included. Figure 3 shows the SPC method for the message selector +, that refer-

ences a system-supplied primitive routine number 1.

A primitive routine fails when it is called with arguments that it was not

designed to handle. The most common failure of a primitive occurs when it is called

with an argument of the wrong class. In some cases, the value of the argument can-

not be handled. The failure section handles these exceptional cases.

4primitive routines are described in IGoR83, Chapter 28].
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Class: SmallInteger

+ aNumber
"Add the receiver to aNumber and answer the result

if it is a SmallInteger. Otherwise fail the primitive and
try the superclass method."

<primitive: 1>

t super + aNumber

Figure 3: A System Primitive-Calling Method

A send bytecode that invokes a compiled SPC method is interpreted by first

trying the primitive routine. The primitive routine finds its receiver and arguments

on the top of the interpreter's evaluation stack. If the primitive routine completes

successfully, the primitive routine replaces the receiver and arguments on the

interpreter's stack by the result of the routine. Control passes to the bytecode after

the send. If the primitive routine fails, control returns to the interpreter, which inter-

prets the bytecodes for the failure section of the compiled SPC method. The failure

section must execute in an environment as if the primitive routine was not attempted.

Thus, a primitive must not create side effects until it has determined that its precon-

ditions for successful completion have been met. In Figure 3, primitive routine

Dumber 1 attempts to add two SmallIntegers that it finds on top of the interpreter's

evaluation stack. Should it not find two SmallIntegers, or the result is not a SmallIn-

teger, then primitive routine number 1 fails, leaving the receiver and argument



11

unmodified. The interpreter then executes the bytecodes of the failure section, that

is, the expression t super + aNumber. The pseudo-variable super instructs the inter-

preter to begin the search for the method to associate with the + message selector in

su perclass of Smallln teger.

Primitives exist in Smalltalk to perform the six types of operations listed in Fig-

ure 4. Arithmetic primitives allow the interpreter to take advantage of its knowledge

of number representation ,and the ALU of the native machine to implement arith-

metic much more efficiently than would be possible in the virtual machine. The

array-accessing primitives allow access to indexed instance variables. The storage-

management primitives use knowledge of the representation of objects to allow mani-

pulating object references, accessing instance variables of objects, creating new

instances of a class, and enumerating instances of a class. They also know the

representation of the compiled methods. Control primitives provide support for the

behavior of processes and semaphores, as well as messages that can take a selector as

a parameter. The Input/Output primitives provide access to the state of hardware

(1) Arithmetic, Comparison, and Bitwise

(2) Array and Stream Accessing
(3) Storage Management

(4) Control
(5) Input-Output
(6) Optimization of Critical Loops

Figure 4: Types of Primitive Operations
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devices. The optimization primitives include vector drawing and other graphics

operations as well as string comparisons and moves. Primitives were chosen to define

operations in terms of the hardware in the native machine and to increase efficiency.

Smalltalk programmers would like to write their own primitive methods to

express operations in the categories above to improve the performance of their appli-

cations. They would like to write these primitive methods without having to know

details of the virtual machine interpreter, such as the meaning of values in the regis-

ters and special memory locations, or of the native machine code. The QUICKTALK

compiler supplies a tool for them to do so. With the QUICKTALK compiler comes

the ability to compile critical sections of a Smalltalk application to native code so

that they will run much more efficiently than if interpreted by the virtual machine.

Users can write their own user PC methods whose primitive section is written in

QUICKTALK, rather than invoking one of a fixed set of system-supplied primitive

routines.
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3. PERFORMANCE BOTTLENECKS AND THE QUICKTALK

APPROACH

The following three assumptions [Hag83] about Smalltalk methods and the

Smalltalk interpreter motivate our expectations of performance improvements by

compiling user primitive-calling (UPC) methods. First, the overhead for delayed bind-

ing of messages to methods is high since each procedure call requires an associative

lookup in a dictionary of methods (or possibly a hierarchy of dictionaries). Second,

each bytecode of the virtual machine must be decoded by the interpreter. And third,

every primitive operation must check the types of its arguments.

A dynamic trace of the system would show that many methods send messages

to only the existing compiled primitive calling (PC) methods, and none to regular

compiled methods. It is the leaves of the method-calling tree that are most frequently

interpreted. A large portion of methods have arguments and results of the same class

for nearly every call of the method. Thus, many methods do not need the flexibility

of delayed binding and could have their message selectors bound to methods during

compilation.

QUICKTALK is designed to handle these methods that send messages to only

the existing compiled PC methods and whose arguments and results are from the
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same class for nearly every call. A primitive section for a UPC method can be writ-

ten in QUICKTALK, which is a, Smalltalk subset with types added. By providing

types, the QUICKTALK compiler can eliminate the dynamic lookup for methods used

within the primitive section. The compiler can find the correct methods once, thus

saving the method search during execution. In addition, the type information makes

many class checks unnecessary. For short methods5 used within the UPC method, the

QUICKTALK compiler trades space for time by copying the code of the method

rather than calling the method.

The QUICKTALK dialect adds type declarations for method arguments as well

as instance variable and class variables used in the method.6 It restricts the use of

block expressions to a set of control structures. The selectors that can be used in

QUICKTALK also are restricted.

Smalltalk methods that are candidates for compilation, that is, are efficiency

problems, can be identified by obtaining execution profiles of existing Smalltalk appli-

cations. The method for finding a substring within a string is a good example of a

Smalltalk method subject to optimization by rewriting it to be a UPC method. This

example is further examined in the chapter titled "Experimental Results."

The problems of adding statically typed UPC methods to Smalltalk without

violating the dynamic type security already provided are many. First, the user primi-

tive routine can be called from an untyped environment. Therefore, the routine must

check that it is called with arguments of the right type. For structured objects (such

bAilmethods in the current implementation of QUICKTALK copy inline,

&rhe current implementation does not handle class variables,
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as arrays), only those components actually used in the method should be type-

checked. For example, consider a UPC method that expects an array of integers and

is looking for the index of the first element equal to zero. The UPC method should

not care that a non-integer element might occur after the zero.

Second, types have an abstract component, that is, the operations allowed 'on

them, and a representation component. For example, the string type in Smalltalk

provides the message at: to access a component character by position number. A

string is not actually represented as an array of character objects, but as an array of

bytes. So the at: message first fetches the correct byte and then returns the charac-

ter object that corresponds to it. Some UPC methods might be able to ignore the

character objects and operate directly on the byte representation. Thus QUICK-

TALK must provide a way for a UPC methods to declare its intention to operate on

the representation of an object. Declaring that a particular string object should be

treated as an array of bytes, for example, would alter the meaning of at: to return

the byte.

Third, QUICKTALK type declarations are meant to be "hints" or "expecta-

tions". The primitive section of the UPC method is meant to handle a majority of its

invocations, while providing a failure section for infrequent invocations with argu-

ments of the wrong type. A failed primitive should be side-effect free. Simple type

checking (a structural test) might not guarantee the successful completion of a prim i-

tive, for example, SmallInteger overflow. Having QUICKTALK guarantee an undo

facility seems too expensive, so the responsibility for restoring state if changes are

made rests with the programmer.
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Fourth, one must decide what to type. In QUICKTALK, types are associated

with arguments to a method and variables used within the method rather than typing

the instance variables of a class. Restricting a method to operate on objects of a

specified type seemed to be a better way to localize and isolate the constraints

imposed by types on a Smalltalk application. Concentrating on typing frequently

used methods promised a great increase in efficiency with a minimum of constraint.

Consistent with typing methods rather than the instance variables of a class, the

object-accessing selectors are typed.

Fifth, most types are equivalent to Smalltalk classes. For reasons of efficient

type checking, instances of a subclass are not considered to be of the same type as

instances of its parent class.

Sixth, block expressions are not considered values in QUICKTALK and are thus

not typed. The complexity introduced by treating functions as values does not seem

justified for a language intended to write primitives.

QUICKTALK is designed for writing primitive routines that cannot be

suspended. Therefore, the interpreter of a QUICKTALK method need not provide a

mapping from its execution environment to that defined by the Smalltalk virtual

machine.
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Although the focus of this research was on adding types to Smalltalk, a major

performance advantage of compiling user-defined primitive methods is the elimination

of the interpreter loop on bytecode execution. In the Tektronix Smalltalk interpreter,

for example, decoding and dispatching a bytecode takes a minimum of five machine

instructions, or between 3-4 microseconds. [Wir85]
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4. RELATED WORK

Work related to QUICKTALK can be divided into three areas: adding optional

typing to Smalltalk, compiling Smalltalk, and improving the performance of inter-

preted Smalltalk. The goals of proposals for adding typing to Smalltalk include

improving program readability and documentation as well as improving code

efficiency.

4.1. Typing Smalltalk

Borning and Ingalls [BoI81] concentrate on adding a type system to Smalltalk

to support compile-time checking and thus adding machine-checkable documentation

to programs. They think of types as abstracting classes. Like classes, types specify

the messages that an object of that type understands and come in hierarchies. Unlike

classes, types can have parameters; e.g. "Collection of: X" where X can be any type.

In their proposal, they add to the Smalltalk language explicit type declarations to

method arguments and returned values. They mention a need to type instance, class,

and global variables but show no examples. The compiler infers the types of tem-

porary variables. They use the explicit declarations to check that messages within

the method have acceptable arguments, that only objects of the correct type will be

assigned to variables, and that an object of the correct type will be returned.



19

assigned to variables, and that an object of the correct type will be returned.'

Suzuki ISuz81] infers types in the absence of declarations. His types are unions

of Small talk classes. Types are associated with variables; methods map a Cartesian

product of types to types. He wanted to design tools to supply type declaration to

current Smalltalk programs. He does not attempt to handle types with parameters.

Suzuki and Terada [SuT84] decided that many type inferences were not tight

enough to allow efficient code generation. They introduce type expressions for vari-

ables, method arguments, and blocks that will allow them to bind some messages to

methods at compilation. They allow union types, which means some messages require

a case selection of methods based on the class of the receiver. They do not handle

types with parameters.

4.2. Compiling Smalltalk

Hagmann IHag83], adds a class declaration to method arguments; the class that

is expected in the vast majority of method activations. Thus, his types are "hints".

For methods where preferred classes are declared, he produces two compiled methods;

the standard compiled method and a machine code version. If the machine code ver-

sion should return a value that does not match the preferred class, then the execution

must be continued in the corresponding position in the standard compiled method.

Thus, he must be able to support mappings between the native code environment

(very different from the virtual machine) and the virtual machine environment. He

also attempts to compile any Smalltalk method, not just Small talk methods at the

leaves of the message-send tree. He must deal therefore with the possibility that his
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methods can be interrupted and suspended. Mappings between the machine code

version and the standard compiled method must be supported for the Smalltalk

debugger to work properly.

Larus and Bush [LaB83] propose applying source-to-source transformations on

non-polymorphic Smalltalk methods. They require class declarations for variables

and libraries of method rewrites. If the class of a receiver of a message is known,

then the method associated is known and can be substituted. Their major perfor-

mance improvement comes from telescoping the message send tree by substituting

inline for the message sends. In addition, the operations within a method rewrite

might be able to safely forego some type checking and array bounds checking.

4.3. Improving Smalltalk Performance

Deutsch [DeS84] suggested many techniques for improving the efficiency of inter-

preting Smalltalk. First, he discovered that 95% of all sends, as measured from each

point of sending, execute the same method as the previous send from that point.

Therefore, Deutsch proposed in line caching of the last method lookup for each send

bytecode to reduce this overhead. The cached method must check the class of the

receiver to see if it applies. Second, he allocated method contexts (activation records)

on a linear stack, only promoting them to standard Smalltalk objects when necessary.

This allocation strategy decreased reference counting and garbage collection. These

two ideas made the Smalltalk interpreter more efficient instead of improving the code.
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To improve the code's efficiency, he suggested that the bytecodes could be

dynamically expanded (similar to macro expansion) into their equivalent native code

and optimized in native code. Using this technique for arbitrary Smalltalk means he,

like Hagmann, must support mappings between the native code and the bytecodes.
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5. QUICK TALK LANGUAGE DEFINITION

This section describes the QUICKTALK dialect as it differs from Smalltalk-80.

The subsections introduce the user primitive-calling (UPC) method format, the typing

discipline, the control structures, and the message selectors that are permitted in the

dialect. The section ends with a discussion of side effects in UPC methods, UPC

methods as subroutines, and a methodology for using QUICKTALK.

5.1. UPC Method Format

A UPC method follows the structure of a SPC method, that is, a single message

selector followed by a primitive section and a failure section. The primitive section is

delimited by set braces. See Figure 5 for a BNF description. See Figure 6 for an

example UPC method with the sections annotated.

<UPC method> ::= <message selector> <user-primitive section> <failure section>.
<user-primitive section> ::= '{' <temporaries> <QUICKTALK statements> '}'.
<failure section> ::= <temporaries> <Smalltalk statements>.

Figure 5: BNF for a UPC Method



23

example: argl and: arg2 "message selector"

{
I upcTemp I "primitive section temporary"
argl declare: SmallInteger. "type declaration"

arg2 declare:SmallInteger. t primitive section
upcTemp ~ argl < arg2.
t upcTemp

}

IfailureTempI "failuresectiontemporary"

}

failureTemp ~ argl < arg2. failure section

t failureTemp

Figure 6: Example UPC Method

In Figure 6, notice that the type declaration statements (identified in the next

section) appear among the QUICKTALK statements within the user-primitive sec-

tion. Also, notice that the primitive section and the failure section each has its own

set of temporary variables.

5.2. Typing

The previous chapter reviewed various efforts to add a typing discipline to

Smalltalk. In QUICKTALK, types are used to discriminate which instance of a

polymorphic operator applies. For example, a + can mean either of the following two

operators:

+ SmallInteger X SmallInteger -+ SmallInteger
+ Float X Float -+ Float



The notation a X (3-+ ~means the operator takes two arguments, the first of type a,

the second of type (3, and returns a value of type~. All method arguments and class

variables used in the primitive section of a UPC method must have declared types. In

addition, the value returned by object-accessing selectors must be typed. Typing the

value returned by object-accessing selectors is the way that instance variables of

objects are typed. The types of temporary variables are inferred when assigned the

value of an expression that can be typed. In the current implementation of QUICK-

TALK, the assignment to' a temporary variable must be made textually before it is

used in another expression and each temporary can have only a single type.

Types of identifiers (method arguments and class variables), and object-

accessing selectors are declared by the messages in Figure 7.7 The figure shows

the syntax of the messages. The declaration messages may appear as statements any-

where in the user-primitive section. In the current implementation, identifiers and

<ident> declare: <class>
<ident> declarelnternal: <representation>
<ident> declareArrayOf: <class>

<symbol>
<sym bol>
<sym bol>
<symbol>

declareAccess: <class> inClass: <class> forFieldNamed: <ident>
declareAccess: <class> inClass: <class>

declareUpdatelnClass: <class> forFieldNamed: <ident>
declareUpdatelnClass: <class>

Figure 7: Type-declaring and Object-accessing Selectors

7The syntax of the deciareAccess: messages is different in the current implementation. Also, the
declareUpdateInCI&88: messages have not been implemented.
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object-accessing selectors must be declared before they are used. The message

declare: declares an identifier that will denote only objects of the given class.

Subclasses of the given class are excluded by the declaration. For example,

x declare: Point.

declares the identifier x will denote an object of class Point. An exception to exclud-

ing subclasses with this declaration occurs when the declared class is Object. This

exception allows a method to accept an arbitrary object when its type is not needed

by any operations, for example, when only the object's identity or size is used by the

method. The class Object is assumed for all undeclared variables.

The message declarelnternal: declares an intent to treat the object denoted

by the identifier in terms of its internal representation rather than its external inter-

face when interpreting messages sent to the object. Externally, Smalltalk objects

appear to be indivisible units (SmallInteger, Character, Boolean) or composed of refer-

ences to other objects. Internally, however, some objects that look externally like an

Array of Characters or an Array of Boolean are represented internally as lists of

numbers or bit strings rather than lists of references. The writer of a primitive may

need to exploit the internal representation of objects for efficiency. For example,

y declareInternal: ByteArray.

declares the identifier y will denote an object which is represented as a ByteArray.

Note that this declaration is subtly different from

y declare: ByteArray

since the second declaration declares y to be an object of exactly the class ByteArray
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and not, for example, a String, which is a subclass. The message at: app.lied to a

String means to return a Character object. When applied to a ByteArray object, it

mea.ns return a SmallInteger between 0-255.

The message declareArrayOC: is used to declare that an identifier denotes an

Arra.y' whose elements are of a single class. Note that the syntax allows one to

declare an Array whose elements are Array's, but the elements of the second Array

cannot be typed. For example,

a declareArrayOf: SmallInteger

decla.res the identifier a to be an Array of SmallInteger elements.

The messages declareAcce8s:inClass: and

declareAcce8s:inClass:CorFieldNamed: are used to type an object's instance vari-

abIes by typing the value returned by an instance variable selector. For example,

#Origin declareAccess: Point inClass: Rectangle forFieldNamed: origin.

declares that the message origin returns the instance variable named origin of type

Point when applied to any object of the class Rectangle. When the message name is

the same as that of the instance variable name, the above declaration can be abbrevi-

ated to:

#Origin declareAccess: Point inClass: Rectangle

The messages declareUpdatelnClass: and

declareUpdateInClass:CorFieldNamed: are used to identify a selector used to

update an instance variable of a class. For example,
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#Origin: declareUpdatelnClass: Rectangle forFieldNamed: origin

declares that the message origin: can be used to assign a value to the instance vari-

able named origin for any object in the class Rectangle. Again, if the field name is

not specified, it defaults to the name of the selector.

The various declarations determine the way types are checked. All identifier:s

declared to be of a particular class are checked upon entry to see if they match the

declaration. Identifiers declared to have an internal representation or to be an Array

of elements are also checked upon entry. Elements of Array's are checked upon

extraction by the message basicAt:, so elements not extracted will never be checked.

Object-accessing selectors declared with the message

declareAcce8s:inClass:rorFieldNamed: invoke methods which check the type of

the value they return. QUICKTALK selectors (defined in the next section) invoke

methods that do not check the types of their arguments but must check the type of

the value returned.

Of the Smalltalk pseud<rvariables, only self, nil, true, false, are allowed in

QUICKTALK user primitive sections. The type of self is assumed to be the same as

the class containing the method definition unless it is declared otherwise. The

pseudo-variable nil is given the type UndefinedObject.8 The pseud<rvariables true and

false are given the type Boolean. The pseud<rvariables super and thisContext are not

allowed in QUICKTALK user-primitive sections.

&rhe use of nil in QUICKTALK user-primitive sections has not been implemented.
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5.3. Blocks

A block expressions in Smalltalk describes an object representing a deferred

sequence of actions. The sequence of actions actually takes place when the block

receives the message value. Blocks are most often used to implement nonsequential

contr.ol structures. Blocks also are used as an iterator over Collections or Arrays as

in OLU [LSA77], to express actions under exceptional conditions, and as a simple way

to pass a function as an argument to another method. The class SortedCollection

uses a Block to store a function that can determine the order of any pair of the

Collection's elements.

A QUICKTALK method may use blocks only with the selectors identified in

Figure 8. These blocks and selectors supply the Smalltalk programmer with the stan-

dard conditional and looping control structures. The occurrence of block expressions

is severely constrained in QUICKT ALK. In particular, blocks cannot be assigned to

<BooI> iITrue: <Block>
<BooI> ifFalse: <Block>
<BooI> iITrue: <Block>
<BooI> ifFalse: <Block>
<BooI> and: <Block>
<BooI> or: <Block>

ifFalse: <Block>
iITrue: <Block>

<Block> whileTrue: <Block>
<Block> whi.eFalse: <Block>

<SmallInteger> to: <SmallInteger> do: <BlockWithOneArgument>

Figure 8: Primitive Blocks
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variables, cannot be evaluated explicitly, and cannot be returned by UPC methods,

since the simple typing discipline does not support function types. Typed blocks are

not essential for primitive methods and would make QUICKTALK significantly more

complex.

5.4. Selectors

Figures 9, 10, and 11 (and Figure 7 on type-declaring and object-accessing selec-

tors) contain the set of all selectors that can be used in UPC methods.9 The Greek

letters in the figures are type variables. Thus,

basicAt: (Array of: a) X SmallInteger -+ a

means that the selector basicAt: can be applied with a Smalllnteger argument to an

Array of objects of any type a and will return an object of type a. These typed selec-

tors are the only selectors that QUICKTALK allows.

Figure 11 list messages that are novel in QUICKTALK in addition to those in

Figure 7. The selectors failIITrue and failIrFalse allow a UPC method to fail after

computing an arbitrary predicate.

5.5. Side Effects

A UPC method must determine that its preconditions for success have been met

before it can update arguments or global objects. Upon failure, the failure section of

the primitive calling methods must execute in an environment as if the primitive had

not been tried. Responsibility for insuring that the primitive leaves its environment

I!f'loating point selectors have not been implemented.
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+
+

<
<
<

-
-

bitShift:

SmallInteger X SmallInteger -+- SmallInteger
Float X Float -+- Float
... similarly for -, *, /

SmallInteger X SmallInteger -+- Boolean
Float X Float -+- Boolean
Character X Character -+- Boolean

... similarlyfor>, <=, >=

Float X Float. -+-Boolean
a X a -+- Boolean (interpreted as identity except Float)
... similarly for - =

SmallInteger X SmallInteger -+- SmallInteger
... similarly for bitAnd:, bitOr:, II, \\
Figure 9: Compiler-Known Selectors - Arithmetic selectors

@
@

basicAt:
basicAt:

basicAt:put:
basicAt:put:

basicSize
-

SmallInteger X SmallInteger -+- Point
Float X Float -+- Point

ByteArray X SmallInteger -+- SmallInteger
(Array of: a) X SmallInteger -+- a

ByteArray X Smalllnteger X Smalllnteger -+- Smalllnteger

(Array of: a) X SmallInteger X a -+- a

a -+- Smalllnteger
a X a -+-Boolean

Figure 10: Compiler-Known Selectors - Non-Arithmetic



31

failIfFalse
failIITrue

Boolean -+ (causes control change)
Boolean -+ (causes control change)

Figure 11: Compiler-Known Selectors - Additional

unchanged upon failure rests solely with the programmer. QUICKTALK provides no

support for recovering from exceptions that depend on the values of types when the

primitive has already performed some operations with side effects.

For example, suppose a QUICKTALK UPC method expects an Array of

SmallInteger, where it will double each element. It proceeds to replace each element

by its double until it finds a Float that it did not expect and fails. The failure section

can observe that the primitive section was attempted thus violating the Smalltalk

definition of a primitive.

5.6. UserPrimitive-Calling Methods As Subroutines

This first design of QUICKTALK does not allow UPC methods to invoke other

UPC methods. Allowing this important capability must be postponed to later work,

although there does not seem to be any fundamental problem. At that time, primi-

tive routines will need the concept of an activation record and there might be a

different argument-passing mechanism.

5.7. Methodology

QUICKTALK can be used to gain better performance from an existing proto-

type written in Smalltalk. By using the profiling capabilities of the Smalltalk system,
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the most active branches on the method-call tree can be identified. After the classes

of the method arguments are identified, the branches can then be collapsed into a sin-

gle QUICKTALK method. The methods might need some modifications to fit into the

QUICKTALK subset of Smalltalk.

Consider the existing Smalltalk compiler as an application prototype needing

some performance improvement. Running a profile on the standard benchmark for

the compiler reveals that ~5% of the execution time is spent in building the parse tree

and symbol table and 32% of the time is spent generating bytecodes. At the leaves,

6.8% is spent in a Dictionary method, findKeyOrNil:, and 5% of the compilation is

spent in a Scanner method, xLetter, that forms a word or keyword. A special

method for accessing the symbol table (the most active Dictionary) could be written

in QUICKTALK to replace the use of method findKeyOrNil:. The method,

xLetter, has some sections that could be easily converted to QUICKTALK.
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6. SYSTEM DESIGN

This section describes design decisions and changes made to the Smalltalk-80

system to support user primitive-calling (UPC) methods.

6.1. UserInterface

The user defines his UPC methods through the Smalltalk system browser, the

standard interface to class and message definitions. A browser presents a hierarchical

index to classes and messages. The compiler is invoked on the UPC method by the

same mechanism as for a regular source method. In concept, compiling a UPC

method creates a compiled method for the failure section that refers to the primitive

routine for the primitive section.

6.1.1. Browser Interface

No change was made to the browser. It might be useful to place the primitive

section and the failure section in separate browser panes.

6.1.2. Compiler Interface

Upon unsuccessful compilation of the primitive section of a UPC method, the

compiler indicates why it failed. The QUICKTALK compiler can fail in all the ways

the current compiler fails. In addition, a syntactically correct primitive section might
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not be compiled if an expression cannot be typed, a temporary variable is assigned

with conflicting types, or a message selector appears that is not among the ones

allowed for QUICKTALK. As an enhancement, the compiler could suggest changes

that would allow it to complete.

6.2. Smalltalk Compiler

The Smalltalk-80 compiler was changed to store the compiled primitive

methods. The next sections will describe this change as well as the changes made to

the parser and code generator.

6.2.1. Storing Primitive Compiled Methods

A new dictionary called the primitive method dictionary (PMD), which is not

associated with any class, has keys that are selectors of the messsages available in

QUICKTALK. Since the same selector can refer to different methods based on the

types of its arguments, the dictionary's values are an ordered list of primitive method

descriptions. A primitive method description has the selector, receiver type, argument

types, and return type, plus a selector and arguments, which, when sent to the code

generator, will return machine code. The PMD currently holds the primitive method

descriptions for the selectors that the compiler knows about; that is, those selectors

identified in Section 5.4. In addition, the PMD holds the descriptions of the object-

accessmg selectors. When UPC methods are allowed as messages .in other UPC

methods, we plan for the PMD to index the UPC method selectors as well.
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6.2.2. Changes to System Parser

The standard Smalltalk parser, after handling the message selector in a

method, checks for a primitive section. This check has been generalized to handle

either a system-primitive section (in angle brackets) or a user-primitive section (in set

braces). The unmodified standard system parser handles the failure section while a

modified parser handles the user-primitive section. For a user-primitive section, the

parser must maintain a new temporary-variable name environment and create a

separate parse tree.

The standard parser creates a parse tree whose root node is called the method

r.oot. (See Figure 12.) The method root has an instance variable that holds the

integer for the system primitive referenced. If the method being parsed is not a PC

method, this variable is zero. In the case of a UPC method, the new parser general-

nes this instance variable to be a primitive-method root. The primitive-method root

heads the primitive parse tree.

Each node of a primitive parse tree has an additional instance variable where it

can store the type of expression it represents. The node type is assigned in a pass of

;the primitive parse tree before code generation. The node types are used to decide

which primitive method description in the PMD is meant by a selector.

6.2.3. Changes to Code Generation

The first pass of the primitive parse tree produces a compiled method nearly

identical to the standard system compiled method. Bytecodes are generated as a

linearized intermediate form of the parse tree. (See Figure 13.)
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Method Root

Primitive Method Root

primitive

parse tree

Parse Tree

parse tree

Primitive Parse Tree

Figure 12: A Parse Tree for a User Primitive-Calling Method



37

iITrue:ifFalse:

ParseTree

15:

Bytecodes 16:
. 17:

18:

pushSelf
push Constant: SA
send: >= Character x Character - Boolean

jumpFalse: 23

Figure 13: Code Generation

pcl5: move.w (receiver), rreeReg

pel6: move.w 6+LiteralOffset( myHeader), anotherReg

pcl7: sub.w freeReg, anotherReg
68010 bgt.s if

NativeCode move.w #trueOop, anotherReg
bra 2f

1 move.w #ralseOop, anotherReg
2

pel8: sub.w #falseOop, anotherReg

beq pc23
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In a standard Smalltalk compiled method, send bytecodes reference their selec-

~ors as symbols stored in the literal frame, an area for storing constants that cannot

be stored in bytecodes. In a compiled UPC method, for the QUICKTALK section,

send bytecodes reference their selectors stored as primitive method descriptions. In

Figure 13, the send bytecode (numbered 17) references the primitive method descrip-

tion for a character comparison.

The bytecode form is converted to assembler code for the native machine. Each

bytecode in the compiled method is expanded to equivalent native code. Each send is

expanded to inline code found in its primitive-method description. The native code

uses unallocated registers to simulate the primitive routine's evaluation stack. The

hardware stack of the native machine is used to spill registers. Register receiver of

the native machine points to the message receiver on the interpreter's evaluation

stack. It is used to access the receiver and method arguments. Register myHeader of

the native machine points to the head of the primitive routine being executed. It is

used to access the literals of the primitive routine. Finally, the assembler code is

assembled to object code, which then replaces the bytecodes of the primitive routine.

6.3. Compiled Methods

A compiled UPC method consists of two objects; a compiled method for the

failure section and a user-defined primitive routine. The user-defined primitive rou-

tine is the compiled version of the primitive section of a UPC method. The compiled

method has an extra literal field that contains the object pointer of its user-defined

primitive routine. This extra literal field is just above (ahead of) the literal field
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reserved for the extension of the header. (See Figure 14.)

A user-defined primitive routine is represented as a CompiledMethod that con-

tains a header, literal frame, native code, and a trailer. The header contains the

same information as the header of compiled methods. For example, the header con-

tains the number of temporaries used by the compiled method. The literal frame con-

tains references to floats, strings, arrays, and other constants that cannot be stored in

immediate instructions. The trailer is retained to conform to the description of a

CompiledMethod. Its contents are not yet defined.

6.4. Interpreter

The interpreter has a new Smalltalk primitive numbered 137. This primitive

cannot be accessed from a user program directly, but is inserted in a compiled method

by the QUICKTALK compiler. The primitive knows how to find the object reference

to a user-defined primitive routine stored in a compiled method. The primitive per-

forms the following steps:

(1) It finds the offset in the user-defined primitive routine where the native

code begins.

(2) It jumps to the user-defined primitive routine's native code, passing two

items: (a) the address of the top of interpreter stack, so the primitive rou-

tine can find its receiver and arguments, and (b) the header of the primi-

tive routine, so the routine can find its literals.

The primitive routine assumes that the receiver and the method arguments are

on top of the interpreter stack. Upon completion, the primitive routine returns
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header

literal
frame

bytecodes

trailer

aPrimitiveCompiledMethod

nativecode

Figure 14: Compiled Method with a User-Defined Primitive Routine
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control to primitive 137 and passes to primitive 137 a return value (an object refer-

ence) and a return code. The return code value can mean:

0- failure, or
n - success, where n is the number of object pointers to pop from

the interpreter stack.

Upon successful completion of the primitive routine, primitive 137 should

(1) pop the number of object pointers specified from interpreter evaluation

stack,

(2) push the return value onto the evaluation stack, and

(3) proceed to the next bytecode.

Upon failure of the primitive routine, 'primitive 137 jumps to the part of the inter-

preter that knows how to start tQe failure section. The interpreter assumes that the

failed primitive routine has had no side effects.

6.5. Method Dependencies

Keeping a dictionary of methods that are dependent upon each other is not

necessary until user-defined primitives can reference other user-defined primitives. At

that time, dictionaries of dependencies of compiled primitive methods on types of

instance variables, class variables, and other primitive-method argument types must

be maintained. A technique for lazy recompilation could be devised so as not to

degrade the interactive programming environment when a change to a method

requires recompilation of its dependents.
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6.6. Context Switching

Smalltalk primitive methods are considered indivisible operations. They need

not be prepared to be interrupted. Thus, we need not worry about suspended execu-

tions of user-defined primitive routines.

6.7. Debugger

The normal Small talk debugger need not be modified. These new primitive

Smalltalk methods are unobservable in the same way that normal primitives are not

observable. Since QUICKTALK is a subset of Smalltalk, one can debug the logic of

QUICKTALK methods by transforming them back to Smalltalk. This transformation

consists of providing in the class Object a method that is just a no-op for each of the

declaration messages, commenting out the failure section, and removing the set braces

delimiting the QUICKTALK section. The resulting Smalltalk method sho~ld have the

same meaning as the QUICKTALK method. In practice, some debugger should be

provided to observe any incorrect behavior introduced by the implementation pro-

vided by the QUICKTALK compiler.
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7. EXPERIMENTAL RESULTS

To measure the improvements in speed gained with UPC methods, some exam-

pIe methods have been compiled by the current QUICKTALK compiler and executed

by a modified Smalltalk interpreterlO that knows about UPC methods. QUICKTALK

methods decrease execution time but increase the amount of space needed to

represent compiled methods. This section quantifies the tradeoff for the example

methods.

The execution times reported used the Smalltalk timing facility. The object

Time is sent the message millisecondsToRun:, whose argument is a block containing

the expression to be timed. Within that block, a message to:do: executes repeatedly

the expression of interest it surrounds in order to get a valid measurement. The time

required just for the to:do: looping was computed by timing the to:do: surrounding a

null expression. This overhead time has been subtracted from the reported timing

figures. The difference in time required for the lookup of these timed methods in its

method dictionary is believed to be of negligible importance.ll The speedup factor is

the time required to execute the regular Smalltalk method divided by the time

lC>yheinterpreter was Version X1.5e Experiment < Fri Sep 6 1985 > running on a Tektronix 4404
68010 based workstation with two megabytes of memory.

HEach method should reside in the method cache after the initial lookup. Thus the difference in
lookup, if any, would be amortized over each iteration.
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required to execute the UPC method.

The speedup factors for the dot product of arrays, substring searching, and sub-

string replacement methods depended on the size of the problem. A percentage of the

execution time difference is due to a one-time setup, and the rest depends upon the

size of the objects involved. The results reported are for problems sizes where the

speedup is near the asymptotic speedup.

7.1. Character Testing'

Figure 15 compares a Smalltalk method and a QUICKTALK method for testing

if a character is uppercase. Figure 16 compares the code-size expansion. Figure 17

reports timing results for the two methods. The expression $A means the character

A. Characters are ordered as in ASCII; that is, $A-$Z < $a-$z. The UPC method

Class: Character

Regular Method

isUppercase
"Answer whether the receiver is an uppercase letter."

t self >= $A and: [self<= $Zj
User Primitive-Calling Method

new Is Uppercase
"Answer whether the receiver is an uppercase letter."

{

}
t self >= $A and: [self<= $Zj

self error: 'newlsUppercase failed'

Figure 15: isUppercase Methods
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UPC method - 111 bytes
regular method -19 bytes
expansion factor - 5.84

Figure 16: isUppercase Code Expansion

Time millisecondsToRun: [1 to: iteration do: [ :each I $a isUppercase]].
Time millisecondsToRun: [1 to: iteration do: [ :each I $a newlsUppercase]].

isU

1000
10000

830
8314

factor

12.77
12.81

iteration

Figure 17: isUppercase Timing

executes faster for two reasons. First, the sends for the Boolean tests are eliminated

and, second, the comparison can be done with the character's object pointer instead

of extracting the ASCII representation as defined in the Smalltalk class Character .12

The timing results reveal a 12.8 speedup factor. Running the timing experiment

where $A is tested for uppercase increased the UPC method execution times very

slightly but only reduced the speedup factor to 11.9.

Figure 18 shows the bytecodes for the method isUppercase. Notice that the

normal Smalltalk compiler compromises the meaning of the and: message by assum-

ing the receiver is of the class Boolean. The block evaluation of and: is compiled to

~he correspondence between the ordering of the character's object pointer and the character's
ASCII value is implementation dependent.
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truth-valued jump bytecodes. Since the message and: is not sent within the method,

no class can reimplement its meaning. Without this optimization in the Smalltalk-80

compiler, the qUICKTALK method demonstrates a 21.4-fold speedup.

pc byte code method statement

7 push: self
8 push: $A
9 send: >= self >= $A

10 jumpFalse: 15
11 push: self
12 push: $Z
13 send: <= self <= $Z
14 jumpTo: 16
15 push: false
16 returnTop t

Figure 18: isUppercase Bytecodes
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7.2. Iterative Sum

Figure 19 compares a Smalltalk method with a QUICKTALK method to add all

the integers in an interval to the message receiver. Figure 20 compares the code-size

expansion. Figure 21 compares the performance of these two methods. The experi-

ment demonstrates a 22-fold speedup for integer addition with the compiled iterative

control structure to:do:. Half of the speed up is due to eliminating the block evalua-

tion.13 The rest is due to eliminating bytecode decoding and simplifying the increment

of the loop control variable.

Figure 22 shows the Smalltalk bytecodes for the method 8umFrom:to:. The

block for the increment of sum is compiled into all the bytecodes between the send:

blockCopy: bytecode and the blockReturn bytecode. The blockCopy: message

creats a block context. The method to:do: (bytecodes not shown) repeatedly evalu-

ates this block context by sending it the message value: with the argument of the

next element of the interval between start and stop.

l~he Smalltalk method was rewritten to use a whileTrue: message which optimized the block
evaluation to jump instructions. This method ran twice as fast as the Smalltalk method with to:do:.
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Class: SmallInteger
Regular Method

sumFrom: start to: stop
"Add to the receiver the sum of the integers between

start and stop; inclusive"
Isu m I
I I
sum +- self.
start to: stop do: [:indexIsum +-sum + index].
t sum

User Primitive-Calling Method

mySumFrom: start to: stop
"Add to the receiver the sum of the integers between

start and stop; inclusive"
{

I su m I
I I
start declare: SmallInteger.
stop declare: SmallInteger.
sum +- self.

start to: stop do: [ :index : sum +- sum + index].
t sum

}
t self sumFrom: start to: stop

Figure 19:sumFrom:to: Methods

UPC method - 133 bytes
regular method - 27 bytes
expansion factor - 4.93

Figure 20: sumFrom:to: Code Expansion
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Time millisecondsToRun:

[1 to: iteration do: [ :each I0 sumFrom: 1 to: 100]].
Time millisecondsToRun:

[1 to: iteration do: [ :each I0 mySumFrom: 1 to: 100]].

Figure 21: sumFrom:to: Timing

pc bytecode method statement

5 push: self
6 popInto: sum sum ~ self.
7 push: start
8 push: stop
9 push: ThisContext

10 push: 1
11 send: blockCopy: (create block context with one arg)
12 jumpTo: 19
13 popInto: index
14 push: sum
15 push: index
16 send: +
17 storeInto: sum sum ~ sum + index.
18 blockReturn

19 send: to:do: start to: stop do:[]
20 pop
21 push: sum
22 I'eturnTop t sum

Figure 22: sumFrom:to: Bytecodes

sumFrom Timine: Results

iteration UPC reular speed-up factor
100 81 1799 22.21

1000 807 17573 21.78
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7.3. Integer Point Addition

Figure 23 compares a Smalltalk method with a QUICKTALK method to return

the Point that represents the sum of two Points. The Smalltalk method is much more

general than the QUICKTALK method, since it can accept any argument that can be

. coerced to a Point by the message asPoint, and the Points can have coordinates that

are a kind of Number. The QUICKTALK method, in contrast, is designed to handle

only a Point argument wh.ose coordinates are SmallIntegers. Figure 24 compares the

code-size expansion. Figure 25 compares timing results for these two methods. Vari-

abies x and y name the coordinates. The message @ constructs a Point from two

SmallIntegers. The experiment demonstrates a minor 1.38-fold speedup due to elim-

inating bytecode decoding. The large code expansion results from the in line type

checking and the inline object allocation. Thus, the code expansion could be

moderated with a small increase in execution time by jumping to a subroutine.
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Class: Point

Regular Method

+ delta
"Answer a new Point that is the sum of the receiver and delta
(which is a Point or Number)."

IdeltaPoint I
deltaPoint +- delta asPoint.
t x + deltaPoint x @ (y + deltaPoint y)

UserPrimitive-Calling Method
intPlus: deltaPoint

"Answer a new Point that is the sum of the receiver and deltaPoint.
Both points should have SmallInteger coordinates."

{
x declare: SmalIInteger.
y declare: SmalIInteger.
deltaPoint declare: Point.

x declareAccess: SmallInteger inClass: Point forFieldNamed: #X.
y declareAccess: SmallInteger inClass: Point forFieldNamed: #yo
t (x + (deltaPoint x)) @ (y + (deltaPoint y))

}
Transcript show: 'intPlus user primitive calling method failed'.
t self + deltaPoint

Figure 23: intPlus: Methods

UPC method - 511 bytes
regular method - 20 bytes
expansion factor - 25.55

Figure 24: intPlus: Code Expansion
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aPoint +- 3 @ 4.
bPoint +- 5 @ 6.
Time millisecondsToRun:

[1 to: iteration do: [ :each I aPoint + bPointJJ.
Time millisecondsToRun:

[1 to: iteration do: [ :each : aPoint intPlus: bPointlJ.

Figure 25: intPlus: Timing

7.4. Dot Product

Figure 26 compares a Smalltalk method with a QUICKTALK method that

answers the sum of the products of corresponding elements of two vectors with

SmallInteger elements. Figure 27 compares the code-size expansion. Figure 28 com-

pares the performance of these two methods. The experiment demonstrates a 5.O-fold

speedup due to converting the to:do: block evaluation to a simple loop and by speci-

alizing the at: accessing message to the Array's basicAt:.

intPlus: Timin!!"Results
iteration UPC regular sDeed-up factor

1000 211 291 1.38
10000 2179 2999 1.38
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Class: Array
Regular Method

dot: anArray

"Answer the sum of corresponding elements of self and anArray."
I sum'I I
sum +- O.

1 to: selfsize do: [:indexIsum +- sum + ((self at: index)
* (anArray at: index))].

t sum

User Primitive-Calling Method

myDot: anArray
"Answer the sum of corresponding SmallInteger elements of self
and anArray."

{
'sum I, I
self declareArrayOf: SmallInteger.
anArray declareArrayOf: SmallInteger.
sum +- O.

1 to: self basicSize do: [:index Isum +- sum + ((self basicAt: index)
* (anArray basicAt: index))].

t sum
}

Transcript show: 'myDot user primitive calling method failed'.
t self dot: anArray

Figure 26: myDot: Methods

UPC method - 435 bytes
regular method - 34 bytes
expansion factor - 12.79

Figure 27: myDot: Code Expansion
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aArray - Array new: 128. "with each element an integer"
bArray - Array new: 128. "with each element an integer"
Time millisecondsToRun:

[1 to: iteration do: [ :each I aArray dot: bArray]].
Time millisecondsToRun:

[1 to: iteration do: [ :each I aArray myDot: bArray]].

iterations
1000

10000
34281

342751

factor

5.01
5.01

Figure 28: myDot: Timing

7.5. Substring Search

Figure 29 compares the standard Smalltalk system method for finding a sub-

string of a given string with an equivalent QUICKTALK method. Figure 30 compares

the code-size expansion. Figure 31 compares the performance of these two methods.

The experiment demonstrates a 5.13-fold speedup. AB before, the speedup is mainly

due to eliminating the to:do: block evaluation. In addition, the messages size and

isEmpty are specialized to basicSize and at: to basicAt:.
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Class: String
Regular Method

findString: subString startingAt: start
"Answer the index of subString within the receiver, starting
at start. If the receiver does not contain subString, answer 0."

IaCharacter index:
subString isEmpty iITrue: [t 0].
aCharacter - subString first.
start to: self size - subString size + 1 do:

[:startlndex :
(self at: startIndex) = aCharacter iITrue:

[index - 1.
[(self at: startlndex+index-I) =

(subString at: index)] whileTrue:
[index = subString size iITrue: [t startlndex].
index - index+I]J].

to
UserPrimitive-Calling Method

myFindString: subString startingAt: start
"Answer the index of subString within the receiver, starting
at start. If the receiver does not contain subString, answer 0."

{
: charRep index:
self declarelnternal: ByteArray.
subString declarelnternal: ByteArray.
start declare: Smalllnteger.
subString basicSize = 0 iITrue: [t 0].
charRep - subString basicAt: 1.
start to: self basicSize -subString basicSize+ 1 do:

[:startlndex I
(self basicAt: startlndex) = charRep iITrue:

[index - I.
[(self basicAt: startIndex+index-I) =

(subString basicAt: index)] whileTrue:
[index = subString basicSize iITrue: [t startIndexj.
index - index+I]]].

to
}

Transcript show: 'findString:startingAt: user primitive calling method failed'.
Aself findString: subString startingAt: start

Figure 29: myFindString: Methods
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UPC method -965 bytes
regular method -76 bytes
expansion factor - 12.70

Figure 30: my FindString: Code Expansion

targetString .- '...eef'. "string 163 characters long ending with
eef containing many false patterns starting eex"

searchString .- 'eef'.
start .- 1.
Time millisecondsToRun:

[1 to: iteration do: [ :each I
targetString findString: searchString startingAt: start]].

Time millisecondsToRun:

[1 to: iteration do: [ :each I
targetString myFindString: searchString startingAt: start]].

m
iterations

1000 77882
. factor

5.13

Figure 31: myFindString: Timing

7.6. String Replacement

Figure 32 compares a Small talk PC method, a QUICKT ALK method, and a

Smalltalk method. Each method destructively replaces characters in a range of the

receiving string using a range of elements in the replacement string. The Smalltalk

PC method uses a. system primitive whose functionality can be easily expressed in

Smalltalk but is provided as a primitive for performance. Figure 33 compares the

code-size expansion. Figure 34 compares the performance of the Smalltalk PC
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method (which has a handcoded primitive section) and the QUICKTALK UPC

method. The experiment demonstrates a 0.038-fold speedup compared with the

handcoded primitive, that is, 25-30 times slower. The handcoded primitive takes

advantage of knowing that Array elements are stored in sequential memory. It

insures that the arguments to the method replace do not violate array boundaries and

then copies memory from one Array to the other. The qUICKTALK method accesses

both Arrays one element at a time and checks bounds on each access.

Figure 35 compares the performance of the UPC method with the normal

Smalltalk code. A 3.31-fold speedup results compared with the equivalent Smalltalk

method.
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Class: String
Regular Method

primReplaceFrom: start to: stop with: replacement startingAt: repStart
"This destructively replaces elements from start to stop in the receiver
starting at index, repStart, in the collection, replacement. Answer the
receiver. The range errors cause the primitive to fail.".

<primitive: 105>

super replaceFrom: start to: stop with: replacement startingAt: repStart

UserPrimitive-Calling Method

DlyReplaceFrom: start to: stop with: replacement startingAt: repStart

"This destructively replaces elements from start to stop in the receiver
starting at index, repS tart, in the string, replacement. Answer the. "receiver.

{
I index repOfJ I
self declareInternal: ByteArray.
start declare: SmallInteger.
stop declare: SmallInteger.
replacement declarelnternal: ByteArray.
repS tart declare: SmallInteger.
repOfJ - repStart - start.
index- start - 1.
[(index- index + 1) <= stop]

whileTrue:[selfbasicAt:index put: (replacementbasicAt: r~pOfJ+ index)]
}

Transcript show: 'replace: user primitive calling method failed'.

Regular Non-Primitive Method

lailedReplaceFrom: start to: stop with: replacement startingAt: repStart
"This destructively replaces elements from start to stop in the receiver
starting at index, repStart, in the string, replacement. Answer the. "receiver.
Iindex repOfJ :
repOfJ - repStart - start.
index - start - 1.
[(index- index + 1) <= stop]

whileTrue: [self at: index put: (replacement at: repOfJ + index)]

Figure 32:myReplaceFrom: Methods
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UPC method -469 bytes
regular method - 45 bytes
expansion factor - 10.42

handcoded primitive method - 266 bytes

Figure 34:myReplaceFrom: Code Expansion

target -+- 'aaa...a'. "200 a's"
replSource -+- 'bb...b'. "160 b's"
initial -+- 6.

stop -+- replSource size + initial - 1.
start -+- 1.
Time millisecondsToRun:

[1 to: iteration do: [ :each I target primReplaceFrom: initial
to: stop with: replSource startingAt: start n.

Time millisecondsToRun:

[1 to: iteration do: [ :each I target myReplaceFrom: initial
to: stop with: replSource startingAt: start n.

1000
10000

350
3445

~ctor
0.038
0.038

Figure 34:my ReplaceFrom: Timing Against Handcoded Primitive
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target +- 'aaa...a'. "200a's"
replSource +- 'bb...b'. "160 b's"
initial +- 6.
stop +- replSource size + initial - 1.
start +- 1.
Time millisecondsToRun:

[1 to: iteration do: [ :each I target failedReplaceFrom: initial
to: stop with: replSource startingAt: start ]].

Time millisecondsToRun:

[1to: iteration do: I :each Itarget myReplaceFrom: initial
to: stop with: replSource startingAt: start ]].

1000
10000

30218
302128

lac tor
3.31
3.31

Figure 35:myReplaceFrom:Timing Against Equivalent Small talk
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8. SUMMARY AND EXTENSIONS

The following sections summarize limitations in the design of QUICKTALK.

We propose extensions that have been ordered beginning with those we feel most

important. Each proposed extension in the dialect must be evaluated against the pur-

pose of the dialect, producing primitive methods. The quality of code produced by the

compiler must not be degraded by adding features to the dialect, since the major

motivation for writing a primitive is performance.

8.1. Limitation ofApproach

The most severe constraint in the design of QUICKTALK is that imposed by

maintaining the semantics of primitives as transactions whose execution cannot be

suspended and whose effects are not visible upon failure. On the other hand, not sup-

porting suspensions makes QUICKTALK attractive from the engineering viewpoint.

A mapping does not need to be provided between suspended QUICKTALK methods

and the bytecodes of the Smalltalk virtual machine.

A second limitation lies in the amount of performance improvement one should

expect from a QUICKTALK compiler. Recall the QUICKTALK method for replacing

a substring of a string. The current, very naive, QUICKTALK compiler generated
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code for this method which compared most unfavorably with the equivalent

handcoded primitive. It would be hard, though not impossible, to construct a com-

piler sufficient to recognize the block memory move and thus approach the speed of

the handcoded primitive.

8.2. Float Operations

Adding floating-point operations will complete the arithmetic. We expect to get

much performance improvement here. QUICKTALK should be able to use a native-

machine-dependent representation of floating-point numbers, converting to the

Smalltalk form for returned values. For example, computing the dot product of two

arrays of floating-point numbers should perform much faster in a QUICKTALK primi-

tive than in an equivalent Smalltalk method.

8.3. Creation of Objects

User-defined primitives need to create objects for internal use and to return

computed objects to the calling environment. With object creation comes the possi-

bility that the garbage collector might interrupt a user-defined primitive routine and

move any object in memory. Most insidiously, the primitive routine itself is an object

and might be moved by the garbage collector. Thus, if the primitive routine wishes to

call any interpreter subroutines, like object creation, a simple return address mechan-

ism for returning to the primitive method is not sufficient.
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8.4. Robust Compiler

A robust compiler should be able to explain its failures to compile. It should

Cail when the UPC method is syntactically incorrect or mistyped. Of course, QUICK-

TALK code should have the same semantics as the Small talk code. If the code that

QUICKTALK generated Cor system primitives used in user-defined primitives was

copied from the same source as the interpreter's primitive, then maintaining

equivalent semantics woul~ be more easily guaranteed.

After the above extensions, that is, floating-point operations, secure linkage to

interpreter subroutines, and a robust compiler are completed, QUICKTALK should be

quite useful.

8.5. Improved Code Generation

A significant improvement in code size and speed was gained by simulating the

evaluation stack inside the compiler and using the 6801O's registers. More sophisti-

cated techniques could uncover Curther optimizations. For example, the compiler

could identify redundant bounds checks on an Array access. Thus, the reported code

expansions should be understood as an upper bound and the speedup factors a lower

bound on what is readily achievable.

8.6. Inline Insertion vs. Subroutines

Currently, QUICKTALK only generates inline code. It should be able to share

common support routines, such as, object allocation. It should be able to call existing

UPC methods. This ability requires the concept of an activation record for the primi-

tive. The compiler could then make the space/time tradeoff of jumping to a



64

subroutine or copying the subroutine inline. Calling subroutines would make recursion

possible. The UPC method writer should be aware of the ramifications of a primitive

method preventing interrupts from being serviced and should use care. UPC methods

requiring intensive computation might lock out a user from his terminal.

8.7. UPC Methods with Union Types

Some UPC methods would be more conveniently expressed if they were allowed

to operate on arguments each of which might come from a set of classes. For exam-

pIe, a method to add two Points should be able to accept Points with SmallInteger or

Float coordinates. The type system could be generalized to allow union types. With

a more general type system, the compiler would be responsible for generating the case

selection.

8.8. Summary

The QUICKTALK dialect of Smalltalk-80 can be viewed as an experiment in

adding a notion of static typing to a dynamically typed language. The dialect is

designed to describe primitive Smalltalk methods. Improved performance over

bytecodes is achieved by eliminating the interpreter loop on bytecode execution, by

reducing the number of message send/returns via binding some target methods at

compilation, and by eliminating redundant class checking.
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