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Abstract 

Cancers are among the most deadly and intractable of human diseases, for which the 

standard of care may involve aggressive yet only partially effective therapies. Immunotherapy, 

which harnesses the body’s immune system to target cancer cells and can lead to long-term 

remission in some of the most advanced treatment-refractory cases, and liquid biopsy assays, 

which can potentially detect cancer at an earlier and more easily treatable stage, require the 

identification of cancer-specific genetic variants. For immunotherapy, genetic mutations 

leading to non-self proteins can be identified through genomic sequencing, and the immune 

system primed to target these tumor-associated peptides. RNA-specific variants such as 

aberrant splicing have the potential to yield peptides that differ significantly from those arising 

from the germline genome, and accurate identification of cancer-specific splicing in RNA 

sequencing (RNA-seq) data is an important but complex problem. Identifying tumor-specific 

mutations requires comparison against a normal background for a patient, but RNA splicing is 

dynamic and can differ across tissues and time points, so that normal background splicing 

cannot be identified from a single normal RNA-seq experiment. My work focuses on the 

identification of aberrant cancer-specific splice variants in tumor samples, leveraging publicly 

available large-scale RNA-seq data from the Genotype Tissue Expression project, The Cancer 

Genome Atlas and the Sequence Read Archive. I first focus on calling aberrant exon-exon 

junctions, and the difficulties of correctly identifying true positive calls that are both true 

junctions and cancer-specific, while minimizing false positives. I explore the specificity of such 

calls, finding that many putatively cancer-specific junctions are found in normal samples, 

though in some cases rarely. I then explore the validity of these calls, querying peptides arising 

from cancer-specific junctions called by a variety of methods against the sample’s intracellular 
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proteome via mass spectrometry data from the Clinical Proteomics Tumor Analysis 

Consortium. Novel peptides can also arise from intron retention, where splicing that would 

normally occur does not, and an intron remains in the resulting processed transcript to be 

potentially translated. This presents different challenges from identifying exon-exon junctions, 

as the absence of evidence of splicing such as retained intronic sequence is not the same as the 

evidence of absence, i.e. that splicing across the junction does not actually occur. I develop a 

sample-matched test dataset with which I compare the performance of current short read 

retained intron detection methods against introns with evidence of retention in deep long read 

sequencing of the same sample, finding that short read detection performance is generally poor. 

Overall in this work, I show the potential scale of sample counts and types required for a 

comprehensive normal background of splicing against which truly cancer-specific RNA 

splicing can be identified; the instability of such identifications and their sensitivity to specific 

methods and filtering parameter values used; and the poor reliability of intron retention 

detection from short-read RNA-seq data. 
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Chapter 1: Introduction 
 
1.1 Introduction  

In the last decade, much computational genomics research has aimed to analyze cancer 

genomes and build tools to perform cancer-related immunological tasks, motivated by the 

growing success of immunotherapeutic treatment of cancers and fueled by the public release of 

large-scale normal and cancer datasets. These tasks include the search for neoantigens arising 

from cancer-specific mutations,3,4 the identification of peptide cleavage sites,5,6 and the 

prediction of peptide binding to major histocompatibility complex (MHC) molecules7–9 and of T-

cell receptor recognition of such potential targets.10–13 Within the large field of computational 

cancer genomics, this work focuses specifically on the analysis of RNA sequencing (RNA-seq) 

data, and specifically, the detection and identification of cancer- and sample-specific splicing 

variants.  

Here, I introduce background concepts that provide a framework for this research and a 

survey of the challenges that motivate it. Section 1.2 gives a brief overview of cancer as a 

genetic disease and the uses of detecting cancer variants for immunotherapeutic treatment and 

early detection. Section 1.3 introduces RNA splicing and splice variants, and how splicing can be 

dysregulated in cancer. Section 1.4 delves into the challenges in identification of aberrant and 

cancer-specific splicing. Finally, Section 1.5 reviews the challenges and opportunities that my 

research addresses, and the contributions made to the field in this dissertation. 

1.2 Utility of identifying cancer-specific variants 

Cancers are a group of genetic diseases, in which genetic mutations lead to phenotype 

modifications that provide the cancerous cells with advantage over surrounding normal cells, 

including disproportionate growth, resistance to cell death, and the abilities to stimulate 
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angiogenesis and to invade healthy tissue.14,15 While identifying the effects of specific mutations 

on phenotypes or pathways is complex,15,16 some of the mutations may make useful targets for 

fighting the cancer in various ways, including via early detection and immunotherapy.  

1.2.1 Cancer immunotherapy 

The promise of cancer immunotherapy lies in the natural ability of the body to rid itself 

of harmful cells, either from external sources including viruses and bacteria, or internally 

produced via somatic genomic mutations.17 The immune system’s mechanisms for recognizing 

“non-self” cells and targeting them for destruction can in fact recognize and eliminate many 

tumor cells in early stage cancers.17 This occurs when antigens are presented on a cell’s surface 

by MHC class I molecules and recognized as foreign by antibodies or mature T-cells (Figure 

1.118). Although this mechanism works for some early stage tumor cells, as a cancer tumor 

progresses it acquires immune tolerance.19 This takes different forms, including selective 

removal of immunogenic cells and changes to the tumor microenvironment such as 

downregulation of immune activation pathways and upregulation of immunosuppressive 

pathways.20 A mature cancer tumor, therefore, has very low immunogenicity, allowing for 

unregulated growth.18  

The term immunotherapy is broadly applied to multiple types of treatments that reactivate 

the immune system against cancerous tumor cells, including immune checkpoint inhibitor 

therapy, in which blockers of immune checkpoints such as cytotoxic T-lymphocyte-associated 

antigen 4 (CTLA-4) or programmed cell death protein 1 (PD-1) antibodies are given to a patient 

therapeutically to reduce immunosuppression.21 Toxicity is a risk, especially when CTLA-4 and 

PD-1 are combined, but finding predictors of efficacy and toxicity is an area of active 

research.22–24 T-cells can also be “primed” against the tumor by introducing neoantigens to be 
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targeted within the newly immune-permissive microenvironment.25,26 (“Neoepitope” is 

frequently used as an equivalent term to neoantigen, although technically refers to the segment of 

a neoantigen to which an antibody binds.) Correct identification of robust target neoepitopes is 

therefore critical to successful immunotherapeutic response. These must 1) be present in the 

tumor cells; 2) have a high binding affinity with MHC class I molecules; and 3) differ 

significantly from epitopes presented by normal tissue cells for non-self T-cell recognition. 

Epitopes presented on a cancer cell’s surface fall into several categories, including tumor-

associated antigens (which are still present in lower amounts in healthy tissue), viral antigens for 

those cancers originating from viral infections, and neoepitopes, or antigens unique to the 

cancerous tumor arising from mutations of the patient’s genome.27 Of these, neoepitopes are the 

most immunogenic, giving the strongest anti-tumor immune response28 and lowest chance of 

normal tissue toxicity.29 

 

Figure 1.1: Presentation of neoantigens on the cell surface by MHC I molecules.18 A cancer-specific 
mutation in an endogenously synthesized protein (upper left, blue) may yield both shared antigens 
(epitopes, red) and cancer-specific neoantigens (neoepitopes, blue) for potential MHC presentation on the 
cell surface and recognition by CD8+ T-cells (right). (© 2017 Nature Publishing Group) 
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1.2.2 Biomarkers for early detection and other applications 

Identified cancer-specific mutations can also be used as biomarkers for liquid biopsy 

early detection of cancer, in which an easily obtainable patient sample is examined for potential 

tumor byproducts. Cancer is generally more easily treatable, with higher life expectancies and 

likelihood of long term remission, when discovered early, and many cancers do not give rise to 

concerning symptoms until they have advanced past a more easily treatable stage.30 Target early 

detection biomarkers can include circulating tumor DNA, circulating tumor cells, cell-free DNA 

or RNA, peptides shed by tumor cells, exosomes, and more.31 Some requirements for such 

biomarkers are similar to those of immunotherapy targets: they must be highly expressed in 

cancer, and lowly or not at all expressed in normal tissue. Ideally, they would also be expressed 

specifically in early stage tumors, and with enough frequency across the larger cancer-type 

cohort that one or a panel of such biomarkers can be expected to cover a substantial subset of 

patients.32 Finally, they must be present in the target sample type (such as blood or urine) at a 

detectable concentration by being directly released into the blood, or being shed via exosomes or 

other mechanisms such as apoptosis.32,33 Genomic biomarkers of cancer may also be used for 

applications such as prognosis after a cancer has been diagnosed, or to monitor a patient for 

recurrence after a course of treatment has finished.32 

1.2.3 Cancer neoepitope identification 

The majority of cancer-specific neoepitopes arise from missense mutations – single 

nucleotide variants (SNVs) that cause a three-nucleotide DNA sequence to code for a different 

amino acid – but around 15% of neoepitopes may result from other types of mutations.16 Either 

in silico prediction or direct identification can be used to discover targetable, cancer-specific 

neoepitopes for use in immunotherapy. Direct identification, through mass spectrometry (MS)34 
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or screening of a patient’s tumor-infiltrating lymphocytes,35,36 is time consuming, expensive, and 

difficult.37 MS is the easier of the two, but has low sensitivity38 and still requires detection of 

differences between cancer and germline DNA sequence, purification and MS analysis of MHC-

bound neoepitopes from a sufficiently large tumor sample, and comparison between the MS and 

genomic results.39 Given these challenges, several in silico prediction tools have been developed, 

which search the cancer genome for mutated sequence that differs from the normal genome and 

may, when translated, produce neoepitopes. Many prediction tools, however, fail to search 

comprehensively across all possible somatic mutation types, searching for neoepitopes resulting 

from missense SNVs only, or possibly also insertions and deletions (indels)3,4,40 or gene 

fusions.40 SNVs and other DNA-specific variants can be easily identified by comparing DNA 

sequencing of a cancer sample against DNA sequence from a neutral, non-cancerous site in the 

body such as blood.41 However, neoepitopes arising from nonsynonymous missense SNVs differ 

from a normal self peptide by only one amino acid and may not result in a strong immune 

response, as immunogenicity is related to dissimilarity from the normal proteome.42 Neoepitopes 

arising from indels (especially those causing a shift in reading frame43) and gene fusions44 may 

be more immunogenic, but overall, searching for genome-level variants in DNA sequencing 

yields only a subset of potential immunogenic cancer variants.45 

1.3 RNA splicing and splice variants 
 
1.3.1 RNA and RNA splicing 

The historically described “central dogma” of molecular biology holds that DNA is the 

storage mechanism for genetic information; that DNA is transcribed into RNA, which 

determines what genetic information will be used and how; and that RNA is translated into 

protein products which perform biological functions.46 Although this somewhat limited view of 
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how genetic information is stored and used has been updated with the advent of new 

technologies,47,48 and it is now known that RNA has a variety of cellular functions and less than 

1/3 of human genes are protein-coding (19,954 out of 60,656 genes in GENCODE v.3549), this 

basic process still describes one of RNA’s most common roles.50 

Of primary interest here is one of the ways in which RNA is used to determine how genes 

are used, namely the creation from a single gene of different isoforms or transcripts (often 

interchangeably referring to different forms that a gene can take in mature RNA). These can 

differ in various ways, including the start or stop codons that indicate the region that will be 

translated to protein, but of greatest interest here is alternative splicing of the gene to yield 

different isoforms.51–53 A precursor, or immature, RNA molecule will contain the entire sequence 

from its gene’s DNA, comprising three categories: 1) untranslated regions (UTRs); 2) exons, or 

expressed regions that will remain in the mature RNA; and 3) introns, or intragenic regions that 

are spliced out (physically removed) from the sequence during the co-54–59 or post-60–62 

transcriptional RNA processing. The inclusion of different exons and splicing out of different 

introns within a given gene in varying combinations is called alternative splicing (AS), and leads 

to variable functionality of the resulting isoforms. In the case of protein-coding genes, alternative 

isoforms’ mature messenger RNA (mRNA) will have different functionality when translated into 

protein.63,64  

AS and the generation and use of different isoforms from a single gene regularly occurs 

in normal human biology.66 Over 90% of human genes undergo AS67,68 and 86% of genes have a 

minor isoform that is significantly expressed (>=15% frequency).67 AS and the related 

expression of certain isoforms over others is frequently associated with tissue type67, sex69–71 or 

developmental or life stage,72,73 and other biological states such as disease,72,74 whereas splicing 
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variation between individuals is much less common.67 The specific type of AS described above 

is that of differing exon-exon junction (hereafter, “junction”) usage, where a junction refers to a 

set of splice sites at the edges of two exons from between which an intron is removed (Figure 

1.265). 

 
Figure 1.2: Potential types of AS and resulting junctions.65 Exon A’ has an alternate 3’ splice site vs. 
exon A, and C’ an alternate 3’ splice site vs. exon C. Exon B is shown included or skipped. (© 2016 IEEE) 
 
1.3.2 Intron retention 

In addition to varying junction use, another form of AS is intron retention (IR), in which 

intronic sequence that is normally spliced out instead remains in the RNA sequence as a retained 

intron (RI).75 IR sometimes occurs in normal tissue; about 10% of almost 230,000 total 

transcripts covering over 60 thousand genes in GENCODE v.35 annotation have an IR flag, and 

IR is found to affect 80% of protein coding genes in humans76 and 51-77% of genes in other 

vertebrates.75 IR was originally understood as a transcriptional processing mistake77 with no 

functional use, since it will often lead to nonsense transcripts that quickly undergo nonsense 

mediated decay (NMD).78 However, the current understanding is that IR coupled with NMD can 

be used in a cell as a tool for mRNA localization79 and for regulating gene80–87 or transcript80,88 
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expression, splicing,89 and response to stress such as hypoxia 90 or other external stimuli.91,92 

Furthermore, although many transcripts containing retained introns contain premature 

termination codons (PTCs) and undergo NMD or other degradation, some escape NMD and 

yield alternative protein isoforms.79 (Up to 10% of potential NMD candidates that contain PTCs 

may escape NMD and be translated.93) Transcripts containing retained introns may also be 

detained in the nucleus (“intron detention”, or ID); some stable ID transcripts may be used to 

control gene expression over time.94 

1.3.3 Regulation of alternative splicing  

Splicing is a multi-step process involving the breaking of chemical bonds between the 

two ends of the intron and their neighboring exons and the forming of a new chemical bond 

between the two exons. This process is catalyzed by a ribonucleoprotein (RNP) complex called 

the spliceosome, comprising five small nuclear RNPs (snRNPs).95 Each snRNP contains a small 

nuclear RNA (snRNA) (U1, U2, U4, U5, and U6, after which their corresponding snRNPs are 

named)95 in complex with a number of associated protein factors.96 Spliceosomes may be 

recruited to a nascent unprocessed RNA as soon as transcription has been initiated.97 Splicing of 

a given intron may begin as soon as its 3’ splice site has been transcribed, and often proceeds 

rapidly.59,98 Most splicing in humans has been found to occur cotranscriptionally,54–58 although 

up to 20% of splicing may occur post-transcriptionally.54,58,60–62 Since splicing only begins after 

the full intronic sequence is available, an early hypothesis about the order in which introns are 

removed was the “first come first served” pattern of splicing, where introns at the 5’ end of the 

transcript are more likely to be spliced out first, having been transcribed first.99 Additional 

evidence for the “in-order” splicing effect is that splicing of a given intron is more likely to occur 

quickly after a neighboring intron is spliced.100 However, splicing has been shown to occur “out 
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of order”101–103 and is now understood to be a stochastic process.104,105 Splicing may follow the 

same order of introns in certain transcripts,106 with the caveats that variation from this order 

occurs more frequently in humans than other animals, and that the predicted orders have been 

validated only with synthetic data.107  

Splicing regulation falls under two categories, cis- and trans-acting, i.e. performed by 

regulators located physically in the same region as the splicing targets (cis), and by those 

physically remote from the target region (trans). Cis-regulatory elements include splicing 

silencers and enhancers located in the intron to be removed or in the exons flanking it, and 

comprise specific short base sequences that affect splice site selection. Exonic splicing enhancers 

act to include the exon in which they are located,108 whereas exonic and intronic splicing 

silencers lead to exclusion of an exon from the final spliced transcript.109 Intronic splicing 

enhancers promote the removal of the intron in which they are located and are commonly 

correlated with presence of nearby exonic splicing enhancers.110 When located in a region that 

may either be removed as an intron or remain in the processed transcript as an exon with splicing 

occurring at an alternate 5’ or 3’ splice site, these can act as splicing suppressors, inducing the 

removal of the potentially-exonic sequence in which they are located110 rather than inclusion of 

that exonic region in the transcript.  

Cis-regulatory elements can then act as binding sites for trans-acting regulatory elements, 

or splicing factors, such as heterogeneous nuclear RNP (hnRNP) complexes111 and 

serine/arginine-rich proteins112 which act in concert to regulate splicing.113 These proteins 

generally bind to splicing enhancer sequences and promote the inclusion of associated exons by 

stimulating the initial steps of the spliceosome assembly,114,115 while hnRNPs generally bind to 

splicing silencer sequences, physically blocking splice sites, leading to exon skipping.116 The 
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noncoding spliceosome component U1 (an snRNA) is responsible for recognizing and binding to 

5’ splice sites. 

A number of genomic features or metagenomic modifications can lead to IR. It can occur 

as the result of a histone modification117 that destabilizes the spliceosome and represses RNA 

Pol-II elongation.75,118,119 It can also be associated with genomic regions with high intronic CG 

content that can form secondary structures that may lead to the spliceosome pausing over introns, 

or to reduced binding of splicing enhancers.77,120 Regions with dense CG content may also have 

reduced methylation and reduced recruitment of splicing factors to the unprocessed RNA.121–123 

In other cases, weak splice sites with less conserved splicing motifs and weak polypyrimidine 

tracts, which promote spliceosome assembly, may not be as readily recognized by the 

spliceosome and may lead to increased IR.120,124 Short introns are also likelier to be retained, as 

they have less availability of splicing factor binding sites.120,124 An enrichment of RNA protein 

binding sites in an intronic region can also lead to increased IR, via an increase in binding of 

splicing repressors.125 Finally, reduced splicing factor expression can lead to higher IR.126,127 

1.3.4 Splicing dysregulation in cancer 

Splicing is known to be “noisier” in cancer than in normal tissue,128,129 and often 

comprises alternative splicing that is cancer-specific or different from expected normal 

alternative splicing, generally referred to as “aberrant.”130 Aberrant cancer-specific splicing has 

been associated with many cancer types, with functional effects on disease progression and 

response to treatment. In colorectal carcinoma, aberrant splicing related to protein kinase activity 

and signaling pathways has been observed.131,132 Alternative or aberrant splicing signatures may 

improve prognosis predictions in pancreatic,133 ovarian,134–136 and cervical137,138 cancer, as well 

as in hepatocellular carcinoma,139 in which dysregulated splicing factor expression is also 
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implicated in cancer development.74 AS in ERBB2,140 CD44, and TP53141 has been shown to 

promote breast cancer tumor growth142,143 and metastasis.140 In several cancer types, specific AS 

isoforms are associated with both oncogene activation and loss of function of tumor suppressors; 

for instance, a skipped exon in TNR6 can inhibit Fas-mediated cell death in breast144 and 

uterine145 cancers and in leukemia.146 Castration-resistant prostate cancer may take advantage of 

androgen receptor splice variants to promote growth in low-androgen conditions,147 mediating 

resistance to treatment.148,149  

High levels of IR have also been found across a wide range of cancer types150–152 and 

may contribute to the inactivation of tumor suppression.153 IR has known effects in cancer, such 

as regulation of gene expression,125 and probable ones, such as nonsense-induced transcriptional 

compensation and improved cell survival in nutrient-poor environments.125 Accurate detection of 

retained introns is also important for cancer immunotherapy as they may be a source of tumor 

neoepitopes,154–156 and RI neoepitope burden is correlated with prognosis in multiple 

myeloma,157 although current methods for calling RI neoepitopes may be inconsistent: RI 

neoepitope prediction on the same cell lines by two independent studies yielded different 

neoepitopes.154,155 

 The causes of splicing dysregulation in cancer also can be categorized under cis- and 

trans-acting effects. The former comprise mutations in splice site motifs or in local splice 

regulatory elements physically close to the dysregulated splice site in the genome. A new 5’ or 3’ 

cryptic splice site may be directly generated,158 or a normal splice site eliminated,153,159 by a 

mutation. A polypyrimidine tract may be weakened,160 or a mutation may occur in an exonic or 

intronic splicing enhancer or silencer sequence161 changing observed splicing patterns.162 
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Trans-acting dysregulation can be more complex, with remote mutations or cancer-

specific pathway changes leading to new splicing patterns at locations distant from the original 

mutation. Spliceosome components are frequently mutated in cancer,163 including SF3B1 in 

chronic lymphocytic leukemia,164,165 U2AF1 and SRSF2 in myelomonocytic leukemia and all 

three in myelodysplastic syndromes.166–169 Mutations in SF3B1 can induce the use of cryptic 3′ 

splice sites170 in breast cancer,171 uveal melanoma,172 and chronic lymphocytic leukemia,173 

while mutations in the snRNA spliceosome component U1174 can lead to cryptic 5’ splice site 

recognition.175 Even without direct mutations to spliceosome components, they may undergo 

changes in expression in cancer cells, leading to changes in splicing.176 The presence of binding 

motifs for the splicing factor RBM9 has been shown to cause breast cancer subtype-specific 

AS.177 Overexpression of polypyrimidine tract binding proteins can lead to increased AS in 

ovarian,178 colorectal,179 and bladder cancers,180 possibly by impairing autoregulation of 

SRSF3.181 Finally, genes other than spliceosome components can also affect splicing in cancer, 

such as the cytoplasmic adaptor CRKL, a participant in signaling pathways that regulate 

alternative splicing in cervical cancer.182 

1.4 Identification of aberrant splicing from RNA-seq data 

The identification of novel, sample-specific splicing in cancer can be useful for 

elucidating the biology of disease183–185 and identifying potential treatment targets.154–156,186 The 

search for neoepitope targets arising from splicing variants for immunotherapy treatment has 

been an area of active recent research.154–156,186 Novel junctions may create downstream frame 

shifts that yield codon usage not seen in normal tissue, or may include a 3’ splice site in what 

would normally be an intron or a UTR. Likewise, novel IR can also lead to transcribed sequence 

not translated under normal circumstances.125 In all cases, if the novel transcript escapes NMD 
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and is translated into a protein product, the resulting sequence may differ significantly from 

sequence represented in the normal human proteome. (Up to 10% of transcripts with PTCs may 

be translated instead of undergoing NMD.93) As noted above, peptides significantly different 

from normal human peptides are more likely to be immunogenic and to stimulate an immune 

response against the novel peptide generating cell.42  

1.4.1 Challenges of cancer-specific splicing identification 

Potential cancer-specific splicing variants have only in recent years begun to be studied 

because they are much more difficult to identify than variants in DNA. The sequence of a 

person’s DNA is largely static across a person’s lifetime; it may undergo mutations due to viral 

infections187, exposure to radiation188 or some chemicals,189 or duplication errors190 although the 

cell has mechanisms to repair most duplication errors before they become permanent, through 

proofreading or mismatch repair.191 Unrepaired DNA mutations may accumulate in the body 

over time, but only very slowly and only in the direct lineage of the cell in which the mutation 

originated.192 If an accumulation of these mutations leads to cancer,193 the DNA mutations occur 

only in the tumor cells, and DNA from other tissues and cells remains an appropriate baseline for 

identifying cancer-specific DNA mutations: the sequenced tumor DNA can be compared against 

a non-cancerous sample from the same patient to identify tumor-specific variants.3,4  

However, because RNA commonly undergoes AS across tissues and at different times in 

one organism, the “normal” background cannot be defined by sequencing a single sample of the 

patient’s blood or other normal tissue, as it can for the static DNA. Even using several samples 

or GENCODE annotation as “normal” will not fully represent the splicing breadth and diversity 

that can occur in normal tissues.194 What has allowed these cancer-specific splicing studies to 

move forward is the development, in the last decade, of several large-scale RNA-seq data 



14 

collection projects. These include the Genotype-Tissue Expression Project (GTEx)195 with nearly 

10,000 samples covering 29 normal tissues from hundreds of donors, and The Cancer Genome 

Atlas (TCGA),196 with over 11,000 tumor samples of 33 cancer types. The public release and 

uniform processing197,198 of these data have allowed for various large-scale analyses of “normal” 

and cancer splicing.154–156,186  

However, despite the advent of large sets of normal-tissue RNA-seq data, it remains 

difficult to define what truly comprises normal splicing, and by extension, what should be 

regarded as cancer specific. For novel junction identification, two questions are outstanding: 1) 

what can be positively identified as a real splice site? And 2), out of the set of real splice sites, 

what should be categorized as “normal” splicing and not included as cancer-specific?  

1.4.2 RNA sequencing, splice-aware alignment, and splice site identification 

Addressing the first question above requires an understanding of how splice sites are 

identified from short RNA-seq reads, which are generally in the range of 100-150 bases long. To 

determine splicing within a sample, the short reads are aligned to a reference genome via a 

splice-aware aligner, such as hisat2199 or STAR.200,201 Such an aligner will potentially accept 

large gaps in the alignment of a given read, where the read ends each map to separate exons and 

the gap corresponds to a spliced-out intron in between (Figure 1.365).200–202  

Splice-aware alignment can be done 1) with the help of a known set of annotated 

transcripts,200 such as those curated by GENCODE49 or ENSEMBL;203 2) via de novo junction 

identification, where the aligner attempts to find the best alignments without reference to known 

annotated isoforms; 3) in a two-pass system where an initial annotation-based alignment attempts 

to identify novel spliced alignments for reads that align neither to unspliced sequence nor to 
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annotated junctions, and then a second alignment uses as input both annotated junctions and 

those identified in the first-pass alignment;200,201 or 4) via a hybrid method, where novel 

junctions discovered as the alignment is performed are used to inform alignment of the 

remaining reads.202 (Many splice-aware aligners200,202 are capable of running in more than one of 

these modes, allowing the user to choose one- or two-pass, or annotation informed or agnostic, 

alignment.) 

 
Figure 1.3: Junction-spanning reads.65 A splice-aware aligner will map some reads to single exons 
(“exon reads”, yellow, red, teal), and others (“junction reads,” multicolored in the oval) with each end to 
separate exons, with spanning intronic sequence not included. (© 2016 IEEE) 
 

One source of error in junction identification from short-read RNA-seq arises from 

mistakes and noise in sequencing, which can lead to lower alignment accuracy. While many 

improvements have been made in next generation short-read sequencing, errors still may occur, 

and public data from older platforms has a potentially higher rate of errors. Median error rates on 

Illumina platforms range from 0.1-0.6%,204 with higher error rates occurring in certain sequence 

contexts.204  

Mistakes may also occur in alignment, even in the absence of sequencing errors, 

especially for junction-overlapping reads. For instance, it can be hard to determine the correct 

alignment of a potentially very short split read segment within a highly repetitive genomic 
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region.205 Some alignment decisions may affect error rates, such as the choice of final alignment 

for multimapping reads206 and the allowed anchor length. Anchor length is the minimum length 

of a segment into which a full read is split in splice-aware alignment. An anchor length set to 5 

may allow more reads to be aligned, since a junction may well occur close to the end of the read, 

but the 5-base segment could be difficult to align accurately; conversely an anchor length of 15 

would allow for more accurate alignment of the short end of the read, but fewer reads aligned 

overall. Confidence in a short-read identified junction can be increased by observing multiple 

reads aligned to the junction either within the same sample, or across samples generally or within 

a specific sample-type cohort. This does not guarantee that the junction is biologically 

meaningful, but does reduce the likelihood that it is an artifact of a sequencing or alignment 

mistake. Junctions can also be identified from long-read RNA-seq data, which provides higher 

confidence in alignment and deeper transcriptional context, although the current significantly 

higher cost of long-read sequencing reduces the frequency of long-read use.207 

1.4.3 Additional challenges in intron retention detection 

As noted above, in addition to identifying changes in observed splice sites, there has been 

interest in detecting intron retentions, where splicing that should normally occur does not and the 

intron remains to be translated in the resulting processed transcript. In theory, RI detection from 

RNA-seq data may seem straightforward: if intronic sequence that should be spliced out is 

instead found in data aligned with a splice-aware aligner, especially sequence running from an 

exon into an adjacent intron, this is evidence of an RI. However, in practice it is not so simple, 

and RIs are significantly more difficult to identify than junctions, where (with exceptions for 

uncertainty with multimapping or low confidence alignments) a single read clearly maps to two 

separate exons with a large intronic gap in between. In RI detection, seeing no evidence of 
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splicing is not the same as definitively proving that splicing would not actually occur, so simply 

identifying reads aligned to an intronic region is not sufficient for a confident RI call.  

There are two major challenges that lead to significant uncertainty in the quality of called 

intron retentions in any given sample. The first is that the coordinates of any given intron often 

overlap other non-intronic features (Figure 1.4208), such as exonic sequence from another 

transcript in the same gene, exons from an antisense transcript in the same genomic region, other 

overlapping features such as snoRNAs, and novel, unannotated exons that may be part of the true 

transcript from which the RNA-seq read arose.208 Short RNA-seq reads in the range of 100-150 

bases long are generally not long enough to give a true understanding of their transcript context 

when aligned to a reference genome; if a short RNA-seq read maps to the middle of an intronic 

sequence that overlaps one or more of the features mentioned above, it is hard to determine its 

overall splicing context or the original transcript molecule from which it was sequenced. 

Figure 1.4: Potential confounders of RI detection.208 These include overlapping or antisense features, 
the presence of novel unannotated exons, and low mappability regions. (© 2020 Lucile Broseus and 
William Ritchie) 
  



18 

The second challenge is that RI detection can be hampered by pre-mRNA or DNA 

contamination of the physical sample in an RNA-seq experiment, or in the case of public data 

use, the potential mislabeling of whole RNA-seq (unspliced) data as mRNA-seq (spliced). Any 

unspliced molecules will have a high rate of supposed IR, without giving a true representation of 

the sample’s IR. Some spliced introns may also form circular RNAs, which may be detected in 

RNA-seq data.209 (Additional uncertainty in RI detection occurs in cancer samples, in which 

cancer-specific transcript processing such as cancer-specific polyadenylation may occur.210,211) 

Several tools have been developed specifically to detect IR, including keep me around 

(KMA),212 IRCall,213 IRFinder,76 IntEREst,214 iREAD,215 superintronic,216 and IRFinder-S,217 

and which attempt to address these challenges. To handle potential confounding by overlapping 

features, many tools detect introns only across “measurable” intronic regions that do not overlap 

other annotated features, instead of across full annotated introns. Furthermore, many tools rely 

on poly(A)-selected library preparation to ensure that the sequenced RNA was spliced.76,215,216 In 

many cases, the assumption that poly(A)-selected data represents fully processed, mature RNA 

may be acceptable, although there is strong evidence that intronic sequence is commonly found 

in poly(A)-selected RNA-sequencing experiment data.54,75 Overall, these solutions have 

significant limitations: importantly, 1) the first leaves many potentially retained introns out of the 

scope of detection entirely, and 2) the stochastic nature of the splicing process and the significant 

proportion of transcripts that are post-transcriptionally spliced54,58 after polyadenylation 

increases the chance of false positive RI detection from poly(A)-selected data. 

1.4.4 Defining “normal” splicing 

Altogether, the question of what splicing is aberrant or cancer-specific hinges on what is 

conversely defined as “normal.” Even within the context of neoepitope identification, there is no 
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consensus on what should be included in normal splicing. This can span from the relatively small 

number of junctions annotated in GENCODE,218 or a handful of paired normal samples,154 to the 

full breadth of all normal samples attainable, for example across all of GTEx and the Sequence 

Read Archive (SRA),194 but is often defined somewhere in between. Many studies of retained 

introns in cancer samples only take into account the background retention common in normal 

tissues in a limited way, with only one150,151 or a handful154 of non-tumor samples as the normal 

comparator, or do not compare against a normal IR background at all.153,157 Most available tools 

for detecting retained introns allow only for comparison against a small number of samples,76,212–

216 with SplAdder219 as a notable exception, having been applied across all tumor RNA-seq 

samples from TCGA196 with ~10,000 normal RNA-seq samples from GTEx195 as the normal 

comparator.156 One other study155 has identified putatively cancer-specific neoepitopes arising 

from IR using GTEx, in the form of CHESS annotation,220 as the normal comparator. 

For cancer-specific junction identification, the current standard seems to converge on 

using a well-curated and large set of normals, namely GTEx,155,156 as the normal comparator. 

However, even with a defined set of samples assigned as normal, several questions remain, such 

as the acceptable leniency of the normal filter. If a junction or retained intron is detected in a 

single read in a single normal sample, is that sufficient to label it a product of normal splicing? If 

not, with what frequency is it allowable in the normal sample set? There likely will not be a 

single answer, with instead the ultimate goal of a given aberrant splicing detection experiment 

driving the leniency of its definition of normal. An application such as neoepitope identification 

for immunotherapy treatment, where cross-reactivity may cause negative side effects or in rare 

cases patient death,221–223 may need a stricter definition of normal than early cancer detection, 

where significant enrichment in a patient sample may be sufficient for an accurate result; a false 
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positive detection would produce some hardship for the patient in the form of mental distress and 

additional testing, but not risk of death. The question of transcript abundance in RNA compared 

to peptide abundance in the translated product is also important; if the end goal is the peptide 

product, such as in neoepitope identification, a low level of RNA expression of an isoform will 

not necessarily correspond to low expression of the resulting protein64,224 or to low presentation 

by MHC on the cell surface.225 

1.5 Summary 
 
1.5.1 Challenges and opportunities 

The accurate identification of aberrant splicing in cancer samples is of increasing 

importance, especially for applications to early detection and neoepitope identification for cancer 

immunotherapy. Steps have been made to improve the accuracy and precision of this 

identification, but much remains challenging. Notably, detecting legitimate sample- or cancer-

specific junctions in noisy splicing data with high confidence requires a delicate balance between 

demanding evidence for the junction’s existence while also ensuring that it does not fall in the 

realm of normal splicing. Establishing a definition of what is “normal” is also difficult, and 

likely will practically depend on the final application of detected junctions. Retained intron 

detection presents unique challenges in extracting signal from data of uncertain context and 

origin; leveraging information about the processing & splicing progression of transcripts and 

patterns of splicing within genes and transcripts may help to inform and improve RI detection. 

One of the primary problems of RI detection, and of cancer-specific junction identification, is the 

lack of known ground truth. The generation of large RNA-seq data sets; multi-omics experiments 

with paired long- and short-read RNA-seq or proteomics and RNA-seq assays on the same 
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physical sample; and the increasing availability of powerful computational resources has opened 

opportunities to address these challenges. 

1.5.2 Contributions 

In this work, I address the questions introduced above: In the identification of cancer-

specific splicing, how can we be confident both in the true biological reality of an aberrantly 

spliced transcript, and in its cancer-specificity? I use large public sets of short-read RNA-seq 

data to probe the cancer-specificity of junction identification, paired proteomics data to address 

the existence of peptide products from called novel junctions, and sample-paired short- and long-

read RNA-seq dataset to show the full transcript and splicing context of potential detected IR 

from current short-read detection tools. I show the limitations and potential scale required for a 

true normal background of splicing against which novel or aberrant RNA splicing can be 

accurately identified; the sensitivity of such identifications to specific filtering method and 

parameter values chosen; and the quality of current methods for detecting novel intron retentions 

from short-read RNA-seq data as well as issues that must be overcome to accurately detect these 

going forward.  
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Chapter 2: Exploring the cancer-specificity of tumor junctions 

This work has been formatted for inclusion in this dissertation from the manuscript “Putatively cancer-
specific exon-exon junctions are shared across patients and present in developmental and other non-
cancer cells” by Julianne K. David, Sean K. Maden, Benjamin R. Weeder, Reid F. Thompson, and 
Abhinav Nellore, published in NAR Cancer (2020).1 The author of this dissertation is the primary author 
of the manuscript. 

 

2.1 Abstract 

This study probes the distribution of putatively cancer-specific junctions across a broad 

set of publicly available non-cancer human RNA-seq datasets. We compared cancer and non-

cancer RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), the 

Genotype-Tissue Expression (GTEx) Project, and the Sequence Read Archive (SRA). We found 

that: 1) averaging across cancer types, 80.6% of exon-exon junctions thought to be cancer-

specific based on comparison with tissue-matched samples (σ = 13.0%) are in fact present in 

other adult non-cancer tissues throughout the body; 2) 30.8% of junctions not present in any 

GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type 

cohort, and 87.4% of these distinguish between different cancer types; and 3) many of these 

junctions not found in GTEx or TCGA normal tissues (15.4% on average, σ = 2.4%) are also 

found in embryological and other developmentally associated cells. These findings refine the 

meaning of RNA splicing event novelty, particularly with respect to the human neoepitope 

repertoire. Ultimately, cancer-specific exon-exon junctions may have a substantial causal 

relationship with the biology of disease. 

2.2 Background 

Aberrant RNA splicing is increasingly recognized as a feature of malignancy,176,183,226–228 

potentially driving cancer progression227 and with potential prognostic significance across many 
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cancer types including non-small cell lung cancer, ovarian cancer, breast cancer, colorectal 

cancer, uveal melanoma, and glioblastoma.134,229–233 Due to its potential for generating novel 

peptide sequences, aberrant RNA splicing is also interesting as a potential source of neoantigens 

for cancer immunotherapy targeting.158 For instance, retained intronic sequences can give rise to 

numerous potential antigens among patients with melanoma, although they are not a significant 

predictor of cancer immunotherapy response,154 and a patient-specific neoantigen arising from a 

gene fusion has been shown to lead to complete response from immune checkpoint blockade.44 

Novel cancer-specific exon-exon junctions have also been shown to be a source of peptide 

antigens,156,186 and represent compelling potential targets for personalized anti-cancer vaccines.45 

However, the ability of the adaptive immune system to target a given antigen as “foreign” 

depends on a complex prior tolerogenic education, and in particular on whether or not a given 

antigen has been previously “seen” by the immune system in a healthy context.234 Therefore, 

prediction of cancer-specific antigens depends explicitly on their sequence novelty, and thus 

requires a comparison with non-cancer cells. 

Choosing a “normal” tissue standard for comparison is difficult in the context of RNA-

seq data analysis, given the presence of alternative splicing throughout normal and cancerous 

biological processes.176,235,236 Previously, cancer-specific aberrant splicing has been detected by 

comparing tumor RNA-seq data against a single reference annotation218 or a limited “panel of 

normals”.154 A TCGA network paper156 used the large publicly available datasets of TCGA196 

and GTEx195,196 to identify and validate thousands of novel splicing events including exon-exon 

junctions present in a specific TCGA cancer type but not in the corresponding normal adult 

tissue in GTEx. This study also predicted alternative splicing neoepitopes via this comparison, 

and validated several of these neoepitopes shared between multiple patients with the intracellular 
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proteomics data available for select ovarian and breast cancer TCGA donors in the CPTAC 

dataset.156 More recently, another study has leveraged TCGA and GTEx, as well as cell line data, 

to discover and validate neoepitopes derived from alternative splicing.186 

Here, we propose that the comparison of cancer junctions with only matched-normal 

GTEx tissue data allows a significant number of junctions to be erroneously identified as cancer-

specific, and that GTEx provides neither an appropriately specific nor a fully comprehensive 

standard for normal splicing comparison. We investigate the sharedness of cancer junctions 

within and across cancer-type cohorts, and their presence across multiple normal cell and tissue 

types, including cohorts representing diverse developmental stages and potential cell types of 

cancer origin. 

2.3 Methods  

Data Download 

Previously called exon-exon junction data including phenotype table, BED and coverage 

files for both TCGA and GTEx v6 were downloaded from the recount2 service at 

https://jhubiostatistics.shinyapps.io/recount.197 These data were previously extracted198 from 

RNA-seq experiments encompassing 10,549 tumor samples across 33 TCGA cancer types, 788 

paired normal samples across 25 TCGA cancer types, 9,555 normal samples across 30 GTEx 

tissue types (Supplementary Table S2.1). recount2 used Rail-RNA201 to align RNA-seq samples, 

and all command-line parameters affecting alignment are referenced in supplementary 

information from the recount2 paper.198 The metaSRA237 web query form at 

http://metasra.biostat.wisc.edu/ (a tool for identifying SRA samples of interest) was queried for 

experiment accession numbers for 1) non-cancer cell and tissue type samples (see Supplementary 

Table S1 for cancer-matched samples and Supplementary Table S2.3 for non-cancer samples, 
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and “Comparison with SRA tissue and cell types” for a description of how these samples were 

chosen) and 2) TCGA-matched cancer types (see Supplementary Table S2.1). For the non-cancer 

samples, the term “cancer” was explicitly added as an excluded ontology term in the query, and 

the resulting files were filtered to remove any samples with “tumor” in the sample_name field. 

The resulting accession numbers represent 12,231 human samples from the SRA, specifically 

10,827 samples from 33 normal tissue and cell types and 1,404 samples from 14 cancer types 

(Supplementary Tables S2.1 and S2.3). These accession numbers were queried against the 

Snaptron junction database using the query snaptron tool (for interfacing with uniformly-

extracted recount2 junctions).198,238 This query yielded junctions also previously extracted by 

recount2 with the same pipeline used for the GTEx and TCGA samples for the tissue and cell 

types of interest,198 which were subsequently downloaded. TCGA tumor mutational burden 

(TMB) data (file mutation-load-updated.txt) were downloaded from 

https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin.239 Patient somatic mutation 

calls were downloaded from the GDAC firehose,240 while a list of human splicing-associated 

gene mutations (keyword search “mRNA splicing [KW-0508]”) was downloaded from the 

UniProt database.241 Two lists of cancer-associated genes were downloaded: the COSMIC cancer 

gene census cancer gene list from https://cancer.sanger.ac.uk/census,242 and the OncoKB cancer 

gene list from https://oncokb.org/cancerGenes.243 

Indexing of GTEx and TCGA junctions 

The GENCODE gene transfer format (GTF file was parsed to collect full coordinates and 

left and right splice sites of junctions from annotated transcripts and a searchable tree of protein-

coding gene boundaries. The GTEx phenotype file was parsed to collect tissue of origin 

information and donor gender; bone marrow samples derived from leukemia cell line cells were 
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eliminated. The TCGA phenotype file was parsed to collect information on cancer type, cancer 

stage at diagnosis, patient gender, vital status, and sample type (primary tumor, matched normal 

sample, recurrent tumor, or metastatic tumor). Cancer subtype classifications were collected for 

five cancer types beyond their TCGA designations (Figure 2.2B, Supplementary Table S2.1): 

cervical squamous cell carcinoma and endocervical adenocarcinoma was separated into cervical 

squamous cell carcinoma, endocervical adenocarcinoma, and cervical adenosquamous; 

esophageal carcinoma was separated into esophagus adenocarcinoma and esophagus squamous 

cell carcinoma; brain lower grade glioma was separated into astrocytoma, oligoastrocytoma, and 

oligodendroglioma; sarcoma was separated into leiomyosarcoma, myxofibrosarcoma, malignant 

peripheral nerve sheath tumors, desmoid tumors, dedifferentiated liposarcoma, synovial sarcoma, 

and undifferentiated pleomorphic sarcoma; and pheochromocytoma and paraganglioma were 

separated. A new SQLite3 database was created to index all GTEx and TCGA junctions, with 

linked tables containing 1) sample ids and associated junction ids; 2) sample ids and phenotype 

information for each sample; and 3) junction ids and junction information including 0-based 

closed junction coordinates, GENCODE annotation status, and location within protein coding 

gene boundaries. SQL indexes were created on junction ID and sample ID columns for fast and 

flexible querying. 

Selection of cancer-specific junction filters 

For all analyses we apply a light filter, requiring a junction to have at least a two-read 

coverage across GTEx, TCGA, and the selected cancer and non-cancer SRA samples, to exclude 

false positive junctions but allow for the existence of splicing noise; we do not require a 

minimum read count per sample. To characterize junction novelty in cancer with respect to 

normal cells, we defined a hierarchical filter that specifies inclusion and exclusion of junctions in 
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different RNA-seq datasets (Table 2.1). In order from most to least permissive, these filters are: 

1) junctions not found in tissue-matched GTEx or TCGA normal samples, 2) junctions not found 

in any GTEx or TCGA normal (“core normal”) samples, and 3) junctions not found in any core 

normal samples or in selected SRA tissue and cell type non-cancer samples. For our analyses, we 

do not explicitly filter on whether a junction is annotated in GENCODE. We do not set a limit on 

presence in the core normal sample cohorts: any junction present at any coverage level in only 

one sample is counted as “in” these cohorts. This yields a more stringent filter on normality than 

that used by the TCGA splicing paper, which uses the term “neojunctions” to refer to junctions 

not found in tissue-matched GTEx or TCGA normal samples, with a 10-read coverage 

requirement in TCGA, and allowing through the filter lowly expressed junctions in GTEx tissue-

matched samples.156 

Table 2.1: Junction novelty specification 

 Junction  
Novelty Stage 

Definition 

0  All junctions 

1+  Junctions not found in tissue-matched GTEx or TCGA normal samples 

2+  Junctions not found in any GTEx or TCGA normal (“core normal”) samples 

3+  
Junctions not found in any core normal samples or in selected SRA tissue and cell 
type non-cancer samples 

 

Extraction and analysis of cancer-specific junctions 

We queried the junction database to extract junctions of interest, specifically 1) all 

junctions for all tumor samples of each cancer type and 2) all junctions not present in any core 

normal samples for each cancer type cohort, with their cohort prevalence levels. All junctions are 

presented in a 0-based closed coordinate system. We also identified a set of “shared junctions” 
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for every cancer type, defined as up to 200 most highly recurring junctions that occur in at least 

1% of the cancer type samples and are not found in any core normal samples. Protein coding 

region presence was determined for all junctions, with location assessment as follows: the 

junction is categorized as protein-coding if it is present in a protein-coding gene region (with at 

least one junction splice site within the gene boundaries) and antisense if it is present on the 

reverse strand of a protein-coding gene region, based on gene regions described in GENCODE 

v.28.49 Cancer-associated genes were collected from the OncoKB and the COSMIC cancer gene 

census; any gene listed in one or both lists was categorized as a cancer-associated gene. Any 

junction assigned to a protein-coding gene region corresponding to one of these genes was 

categorized as associated with cancer-relevant loci.  

For comparison between cancer-sample junctions found vs. not found in core normal 

samples, we performed a Kruskal-Wallis H-test to determine the significance of the decreased 

sharedness levels, since the junction prevalence data is not normally distributed and there are 

many fewer cancer-specific junctions than junctions found in core normal samples.  

Comparison with SRA tissue and cell types 

Non-cancer sample types from the SRA were chosen via manual curation informed by a 

clustering of junctions according to ontology term prevalence, with commonly occurring terms 

that do not meaningfully distinguish junctions eliminated. The selected sample types in 

Supplementary Table S2.3 comprise all non-cancer data from the SRA analyzed. All junctions 

for samples associated with these cell and tissue types but not with “cancer” were downloaded 

via Snaptron, translated to a 0-based closed coordinate system, and compared with those found in 

TCGA cancer samples. Junctions present in a TCGA cancer-type cohort and SRA samples from 

a specific assigned category determined set assignments, which were used for subsequent data 
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analysis. To exclude false positive junctions but allow for the existence of splicing noise, only 

junctions with at least two reads across GTEx, TCGA, and the selected cancer and non-cancer 

SRA samples are considered true junctions. All SRA junctions not found in TCGA cancer 

samples were ignored. For the supplementary 2-sample minimum filter analysis, we retained all 

junctions that are present in only 1 SRA sample, but required at least two samples across the 

broad SRA category (adult, developmental, or stem cell) for inclusion in that set. (For 

developmental subsets, only one sample within a subset category was required, as long as the 2-

sample criterion across the full developmental category was met.) 

For comparison between TCGA cancer-sample junctions not found in core normal 

samples with SRA junctions from matched cancer type samples, we performed a Kruskal-Wallis 

H-test to determine the significance of the increased sharedness levels, since the junction 

prevalence data is not normally distributed and the difference in junction counts between the two 

cohorts (TCGA junctions in or not-in the SRA matched cohort) is large. 

Comparison of junction burden and TMB  

Silent and non-silent mutations per Mb per patient were added to give a total TMB per 

patient. Junctions considered for the “junction burden” calculation were all tumor sample 

junctions not found in core normal samples. The total junction count per patient was divided by 

the mapped read count of the sample divided by 10,000 (scaling to “per Mb” with the 

assumption of 100-base pair reads) to give the final junction burden. A linear regression was 

performed on the junction burden vs. TMB across all TCGA tumor samples. 
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Splicing Factor Mutation Analysis 

Patient somatic mutation call files were downloaded from the GDAC firehose 

(http://gdac.broadinstitute.org/). While we note the potential importance of mutations in non-

coding sequences, we confined our attention exclusively to non-synonymous mutations. Patients 

were classified based on two different separation criteria: 1) a de novo analysis of whether or not 

they had at least one mutation in a gene that codes for a protein annotated as involved in mRNA 

splicing, based on the UniProt protein annotation database, and 2) whether or not they had at 

least 1 mutation in a gene previously identified as sQTL associated (U2AF1, SF3B1, TADA1, 

PPP2R1A, and/or IDH1) in the TCGA cohort by the TCGA splicing paper.156 For each cancer 

type, and each stratification method, the number of cancer-specific junctions per patient was 

compared for patients with and without at least one mutation in the defined set (Supplementary 

Figures S2.1F and S2.1G). Differences in the number of novel junctions across cancer types and 

stratification groups was assessed via two-way analysis of variance (ANOVA) with a Benjamini-

Hochberg p-value correction. 

In addition to comparing the levels of cancer specific junctions between patients with and 

without splicing associated mutations, we also compared junction sharedness based on the same 

two stratification criteria used above. For each cancer type, all junctions identified in two or 

more patients were selected. For each, the number of junction occurrences in patients with 

mutations in splicing associated genes was calculated and compared to the overall number of 

occurrences in the corresponding cancer cohort, using a Fisher’s exact test (Supplementary 

Figures S2.1H and S2.1I).  
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Survival analysis for ovarian cancer patients with target antisense MSLN junction 

All TCGA ovarian patients with data in columns “xml_days_to_last_followup” or 

“gdc_cases.diagnoses.days_to_death” in our TCGA phenotype file were included in the survival 

analysis. The survival curve was plotted for the second column, with dropout patients with no 

days-to-death data censored at days to last followup. 

Data and Software Availability 

All data is publicly available and accessible online as described in the Data Download 

section above. Python code and corresponding descriptors for the implementation of methods as 

described is publicly available on GitHub at https://github.com/JulianneDavid/ shared-cancer-

splicing. 

2.4 Results 

2.4.1 Cancers harbor many novel shared exon-exon junctions not present in adult non-cancer 

tissues or cells 

While cancer-specific exon-exon junctions identified using tissue-matched normal 

samples have the potential to give rise to neoantigens,156 we reasoned that they could be 

expressed in other normal tissues due to variability in patterns of transcription and alternative 

splicing among different tissues.244 In such cases, these junctions might not yield bona fide 

neoantigens due to the prior tolerogenic education of the immune system. We therefore re-

evaluated the incidence of cancer-specific junctions using RNA-seq data from TCGA and the 

large compendium of adult tissues from GTEx. We found that on average, across cancer types, 

80.6% of junctions potentially thought to be cancer-specific based on comparison only with 

tissue-matched samples (σ = 13.0%) are in fact present in other adult non-cancer tissues and cell 

types throughout the body. Across cancer types, an average of 90.2% of all junctions found in 
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cancer samples (σ = 9.1%) are also present in one or more adult normal samples from GTEx or 

TCGA [“core normals”] (Figure 2.1A). The overall number of these novel junctions varies both 

within and across different cancer types, with ovarian carcinoma and uveal melanoma having the 

highest and lowest average number of junctions per sample, respectively (Figure 2.1B, 

Supplementary Table S2.1), and is independent of TMB (Supplementary Figure S2.1A). The set 

of junctions defined as “novel” is highly sensitive to the filtering criteria used (see 

Supplementary Figure S2.1B, Supplementary Table S2.2, and “Selection of cancer-specific 

junction filters” in Methods). We are interested in junctions that are widely expressed across 

samples, and for this analysis we sought to optimize sensitivity and specificity to detect shared 

cancer-specific junctions. High prevalence across a cancer-type cohort provides strong support 

for the existence of junctions, despite low coverage of these junctions within any individual 

sample (we require a minimum of 2 reads across all studies, but do not set a lower bound on 

sample coverage). Going forward, we use strict lack of occurrence of a junction in core normals 

as our baseline definition of cancer specificity, where even a single read in the target “normal” 

set eliminates a junction from the cancer-specific designation (see “Selection of cancer-specific 

junction filters” in Methods). 

 

(A) 
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(B) 
 
 
 
 
 
 
 
 
 
 
 
(C) 

Figure 2.1: Distribution of exon-exon junctions across and 
within TCGA cancer cohorts. 
(A) Log-scale bar charts describing the percentage of all 
junctions of a given cancer-type cohort present in three  
sub-cohorts. Blue (left) bars give the percentage of cohort 
junctions found in GTEx or TCGA tissue-matched normal 
samples (Supplementary Table S2.1); green (center) bars give 
the percentage of the remaining junctions that are found in 
other core normals; and yellow (right) bars give the percentage 
of cohort junctions found in no core normals; cancer types are 
ordered by relative abundance of junctions in this last set. 
Cancer types with no blue (left) bar have no tissue-matched 
normal samples (Supplementary Table S2.1). (B) Log-scale 
sorted strip plots representing the number of non-core normals 
junctions per sample for each of 33 TCGA cancer types. Each 
point represents a single TCGA tumor sample and the width of 
each strip is proportional to the size of the cancer type 

cohort.156 Supplementary Figure S2.1B shows analogous data with additional filters applied. (C) Log-
scale box plots representing the prevalences within each cancer-type cohort of junctions occurring in at 
least 1% of cancer-type samples, summarized across all TCGA cancer types. Junction prevalences are 
shown in blue (left) for those found in GTEx or TCGA tissue-matched normal samples (Supplementary 
Table S2.1); junctions not present in tissue-matched normals but found in other core normals are shown in 
green (center); and junctions found in no core normals are shown in yellow (right). Note that any junction 
found in multiple cancer types is represented by multiple data points, one for each cancer type in which it 
is found. A detailed breakdown by TCGA cancer type is available in Supplementary Figure S2.1E. 
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We next assessed the extent to which a given junction not found in core normals might be 

shared among multiple samples of the same cancer type. We observed that over half (52.8%) of 

these junctions are confined to individual samples, although a small but significant subset 

(0.41%) is shared across at least 5% of samples in at least one cancer-type cohort 

(Supplementary Figure S2.1C). We also noted that 40.6% of novel junctions are shared between 

multiple cancer types, with a total of 1,609 junctions present in at least 5% of samples each 

across two or more TCGA cancer cohorts (Supplementary Figure S2.1D). Sharedness was 

significantly higher among junctions that were also present in normal tissues (Figure 2.1C and 

Supplementary Figure S2.1E). We observed that the number of junctions not found in core 

normals per patient was comparable for patients with and without splicing factor-associated 

mutations across all cancer types, with the exception of breast adenocarcinoma (Supplementary 

Figures S2.1F and S2.1G). We also observed that splicing-associated mutations had minimal 

effect on the sharedness within a cancer-type cohort of junctions not found in core normals 

(Supplementary Figures S2.1H and S2.1I).  

We finally assessed whether these junctions were also shared among independent cancer 

cohorts, using publicly available RNA-seq data in the SRA.245 Many TCGA cancer junctions not 

found in core normals were found to occur in cancer-type matched SRA samples: 11 of 14 

cancer types had more than 50 junctions in common between the matched cohorts. Moreover, we 

found that junctions also present in matched SRA cancer cohorts were associated with 

significantly higher levels of sharedness in the TCGA cohort (H statistic = 3.85-2,803 and p = 

<0.0001-0.0495; Supplementary Figure S2.1J).  
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2.4.2 Shared novel junctions in cancer distinguish cancer identity and subtype 

We hypothesized that a high level of exon-exon junction sharedness across samples is 

likely to be reflective of underlying conserved biological processes (e.g. among normal tissues). 

We therefore investigated the sharedness of novel junctions present in different cancer types. 

Interestingly, these novel junctions can readily distinguish disparate cancer types and show 

similarities among cancer types with shared biology, such as cutaneous and uveal melanomas 

(Figure 2.2A). These novel junctions also reflect shared biology among additional cancer types 

with similar anatomic origins: colon and rectal adenocarcinoma, clear cell, chromophobe, and 

papillary renal cell carcinomas, low and high grade gliomas, and stomach and esophageal 

adenocarcinomas (Figure 2.2A). Shared junctions from several cancer types also demonstrate 

similarities by histological subtype despite their differing anatomical origins, for instance 

squamous cell carcinomas of the lung, cervix, and head and neck (Figure 2.2A, Supplementary 

Figure S2.2A), consistent with previously published work.246 Moreover, shared novel junctions 

are readily able to distinguish distinct histological subtypes of sarcoma and cervical cancer, 

among other diseases (Figure 2.2B). Using non-cancer cell types from the SRA we found that 

“novel” junctions from cancers arising from cell and tissue types poorly represented in GTEx 

normal tissue samples (e.g. melanocytes), or not present in GTEx at all (e.g. thymus tissue), can 

be found in many samples of the corresponding cell or tissue types of origin (Figure 2.2C, 

Supplementary Table S1). Sample-to-sample comparisons of all junctions from these rare-cell 

type cancers also show more similarity with cell type-matched normal samples from the SRA 

than with bulk tissue from GTEx (Supplementary Figure S2.2B). 
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(B) 
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(C) 
 

 
Figure 2.2: Clustering by cohort prevalence of shared 
novel junctions not found in core normal samples. 
(A) Heatmap showing junction prevalences across every 
TCGA cohort for each cancer type’s top 200 shared 
junctions that are at least 1% prevalent in that cancer type 
and are not found in any core normal samples. (B) Heatmap 
showing shared junction prevalences across selected TCGA 
cancer types and their assigned histological subtypes for 
each subtype’s top 200 shared junctions that are at least 1% 
prevalent in that subtype and are not found in any core 
normal samples. See Supplementary Table S2.1 for TCGA 
subtype abbreviations. (C) Heatmap showing shared 
junction prevalences across selected TCGA cancer types 
and a set of their matched SRA tissue and cell types of 
origin, for each cancer type’s top 200 shared junctions that 
are at least 1% prevalent in that cancer cohort and are not 
found in any core normal samples. See Supplementary 
Table S2.3 for SRA sample type abbreviations. 
 
 
 
 
 
 
 
 

 

2.4.3 Novel junctions in cancer are found among developmental and known cancer-related 

pathways 

As many cancers are thought to recapitulate normal developmental pathways,247–249 we 

further hypothesized that a subset of cancer-specific junctions may reflect embryological and 

developmental splicing patterns. We therefore compared cancer junctions not found in core 

normals with those from SRA samples pertaining to zygotic, placental, embryological, and fetal 

developmental processes: on average, per cancer type, 15.4% of these cancer junctions (σ = 

2.4%) occur in SRA developmental cell or tissue samples. We also considered samples from 
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SRA normal stem cell samples and from selected SRA normal adult tissues and cell types: on 

average, per cancer type, 2.7% (σ = 1.4%) and 26.5% (σ = 3.3%) of cancer junctions not found 

in core normals occur in stem cell and selected adult tissues, respectively (Figure 2.3A and 

Supplementary Figure S2.3A). Furthermore, many of the junctions found in SRA developmental, 

stem cell, and selected adult tissues are highly prevalent shared junctions (Supplementary Figure 

S2.2A). The remaining significant majority of these cancer junctions not found in core normals 

were also not found in any non-cancer SRA tissue or cell type studied (64.9% on average per 

cancer type cohort (σ = 4.0%), Figure 2.3A and Supplementary Figure S2.3A). Many of these 

novel “unexplained” junctions still exhibit high levels of sharedness both within (Supplementary 

Figures S2.3B and S2.3C) and between (Supplementary Figure S2.3D) different cancer types. At 

the upper end, 16 of these shared junctions were found in more than 10% of samples in each of 

two or more cancer types (Supplementary Table S2.4).  

We note that the liberal set inclusion criterion we employed may reduce our ability to 

identify robust cancer-specific biology among unexplained junctions. For instance, the well-

described deletion causing a splicing of exons 1 and 8 (EGFRvIII) occurs in 29.4% of TCGA 

patients with glioblastoma multiforme (GBM) and in no core normals, but is also present in a 

single read from a single human epithelial cell line sample on SRA, and therefore is classified 

not as an unexplained cancer-specific junction but as “adult non-cancer.” However, this set 

inclusion condition does allow for the identification of some cancer-specific biology of interest. 

For instance, rarer alternative EGFR splicing events were detected in the unexplained set, such as 

EGFRvIII with an alternate exon 1 joined to exon 8 (chr7:55161631-55172981), detected in 2 

patients with GBM and 1 patient with low grade glioma; the same alternate exon 1 joined with 

two alternate exon 16s (chr7:55161631-55168521 and chr7:55161631-55170305) (detected in 1 
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and 2 GBM patients, respectively); and the same alternate exon 1 joined with exon 20 

(chr7:55161631-55191717) in 2 GBM patients. An alternative filtering approach that instead 

requires two samples per SRA category to define junction set membership yields a greater 

number of unexplained junctions (Supplementary Table S2.2 and Supplementary Figures S2.3E 

and S2.3F). 

We observed a number of unexplained junctions shared by unusually large proportions of 

ovarian cancer (OV) samples in TCGA, including one cancer-specific junction (chr16:766903-

768491 on the minus strand) present in the highest proportion of samples in any TCGA cohort 

(81.3%, or 350 of 430 samples in OV). This junction occurs in an antisense transcript of MSLN, 

which codes for a protein known to bind to the well-known ovarian cancer biomarker MUC16 

(CA125).250,251 The functional consequences of this junction are unknown, but it does not appear 

to affect overall survival (Supplementary Figure S2.3G). Another unexplained junction 

(chr19:8865972-8876532 on the minus strand) is in the MUC16 region itself and is present in 

42.8%, or 184 of 430 samples in OV. In all, we identified 34 cancer-specific junctions present in 

>40% of OV samples. We further identified several novel pan-cancer splice variants 

(chr16:11851406 with chr16:11820297, chr16:11821755, and chr16:11828391, each present 

across up to 8 different cancers) in RSL1D1 and its neighboring BCAR4, a long noncoding RNA 

known to promote breast cancer progression.252,253  

Among all otherwise unexplained junctions, an average of 4.78% (σ = 0.48%) across 

cancer types are associated with known cancer-predisposing or cancer-relevant loci. Further, an 

elevated proportion of otherwise unexplained junctions (on average, 40.9%, σ = 3.8%) occur in 

likely antisense transcripts and may therefore be of reduced interest as candidate neoantigens, but 

sustained interest in terms of cancer biology (Figure 3B, Supplementary Table S2.5). Finally, we 
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show that 20 genes not previously known to be cancer-associated each contain at least 25 novel, 

unexplained junctions present in at least 5% of samples of at least one cancer type 

(Supplementary Table S2.6). 

(A) 

 
(B) 

Figure 2.3: Junction set assignments and antisense 
junction prevalence in additional normal tissue and cell 
type categories from the Sequence Read Archive, across 
cancers.  
(A) Upset-style plot with bar plots showing junction 
abundances across major sets (left) and set overlaps (top) 
across 33 cancers (error bars). Shown junctions are absent 
from all core normals. Unexplained junctions (red 
highlights) comprise junctions not present in any set 
categories studied (see also expanded set assignments in 
Supplementary Figure S2.3A). The developmental set 
comprises human development-related junctions not present 
in the category placenta. Scale is log10 of percent of 
junctions not found in core normals, calculated for each 
cancer. 
(B) Box plots showing, for each TCGA cancer type, the 
percent of junctions that are antisense for (green) junctions 
found in core normals; (aqua) junctions not found in core 
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normals but found in other selected non-cancer adult tissue and cell samples from the SRA; (lavender) 
junctions not found in core normals or SRA non-cancer adult samples but found in selected 
developmental samples on the SRA; (apricot) junctions not found in core normals or SRA non-cancer 
adult samples but found in selected stem cell samples on the SRA; and (red) junctions not found in core 
normals or selected non-cancer adult, developmental, or stem cell samples from the SRA. Each point 
represents the percent of junctions from one cancer type in the given category (e.g. developmental) that 
are antisense. The table shows the median and IQR of the number of junctions in that category across all 
TCGA cancer types. 

2.5 Discussion 

Previous studies have established the importance of alternative and aberrant splicing in 

cancer prognosis134,229–233 and have begun to explore its potential relevance in cancer 

immunotherapy.156,186,254 In this study, we explore “novel” exon-exon junction use among 

cancers with respect to a broad collection of normal tissues and cells. This is the largest such 

study to-date, integrating RNA-seq data from 10,549 tumor samples across 33 TCGA cancer 

types, 788 paired normal samples across 25 TCGA cancer types, 9,555 normal samples across 30 

GTEx tissue types, and 12,231 human samples from the SRA (10,827 samples from 33 normal 

tissue and cell types and 1,404 samples from 14 cancer types) (Supplementary Tables S2.1 and 

S2.3). To the best of our knowledge, this is also the first study to examine the novelty of cancer 

junctions from the perspective of immune tolerance, considering all adult normal tissue types as 

potential sources of tolerogenic peptides rather than only the closest matched normal tissues. 

Moreover, this is the first study to quantitatively interrogate the sharedness of novel exon-exon 

junctions both within and across cancer types, demonstrating that these junctions can distinguish 

some cancers and their subtypes. We finally demonstrate that there is no one-size-fits-all 

definition of “novel” splicing, noting that purportedly cancer-specific junctions may in fact be 

present among, and perhaps biologically consistent with, a repertoire of embryological, 

developmentally-associated, and other cell types. 
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This study also has several limitations. We focus on the importance of exon-exon 

junctions as the predominant metric of alternative splicing, in particular on their presence or 

absence among different samples, but do not explore the potential for differences in gene dosage 

to drive differences in biology. Moreover, there are other sources of RNA variation (e.g. intron 

retention events154 and RNA editing) that we do not explicitly study here, but which could be 

equally good sources of novel, cancer-specific protein sequence for immunotherapeutic and other 

applications. Importantly, there is substantial variability among analytical methods for 

identifying these exon-exon junctions. We note significant discordance between results of 

analyses of the same data using different junction filtering methods. While the same phenomena 

and general results appear to hold true independent of analytical technique, the identity and 

relative novelty of individual “cancer-specific” junctions vary between our results and those 

previously published.156 We also acknowledge that GTEx and the SRA combined do not account 

for all sources of normal tissue(s) in the human body, and further acknowledge that the sample 

metadata used to search the SRA may be an imperfect surrogate for actual tissue/sample 

identities. Our assessment of embryological and developmentally-associated junctions is also 

limited by a relatively small number of relevant RNA-seq samples available on the SRA. Our 

splicing factor mutation analysis was also limited by sample size and was confined exclusively to 

non-synonymous mutations. Finally, due to the short-read nature of these RNA-seq data, we 

make no attempt to predict putative neoepitopes from cancer-specific junctions as we cannot 

confidently recapitulate reading frame or broader sequence context from isolated exon-exon 

junctions, particularly without access to the biological specimens to perform junction-level 

experimental validation. 
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While cancer-specific exon-exon junctions may indeed be a source of neoepitopes, their 

sharedness across individuals and occurrence in cancer-relevant loci (e.g. EGFR, MUC16) are 

suggestive of underlying but as-of-yet unexplored biology. This sharedness does not appear to be 

related to variants in splicing factor or splicing-associated proteins, and is not wholly explained 

by recapitulation of embryological/developmental transcriptional profiles. As such, we see this 

work as opening a broad area of future research into the role and relevance of these novel 

recurring exon-exon junctions. 
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Chapter 3: Exploring the validity of cancer-specific junctions 

This work has been formatted for inclusion in this dissertation from the manuscript “Methods for 
detection and validation of peptides from cancer-specific splicing” by Julianne K. David*, Laurie Prélot*, 
Andy Lin, André Kahles, Gunnar Rätsch, Reid F. Thompson, and Abhinav Nellore, in preparation (2022). 
The author of this dissertation is the co-primary author of the manuscript. (*co-first authors) 

 

3.1 Abstract 

Peptides arising from cancer-specific RNA splicing are of significant recent interest as 

neoepitopes for use in immunotherapy treatment, and identification of these potential targets 

implicitly relies on their biological reality and their cancer-specificity. Here, we explore methods 

for identifying cancer-specific exon-exon junctions and associated peptides on a set of 5 breast 

cancer and 5 ovarian cancer RNA-seq samples from The Cancer Genome Atlas (TCGA), against 

backgrounds of normal samples drawn from TCGA and the Genotype Tissue Expression Project. 

We find that using a method based on phasing short RNA reads into a splicing graph generates 

more potential cancer-specific junction peptides than filtering on junctions alone, and that 

splicing peptides are much more varied and novel across ovarian cancer samples compared with 

breast cancer. We query sample-matched mass spectrometry (MS) data from the Clinical 

Proteomic Tumor Analysis Consortium and find that the current MS detection method is highly 

variable between experiments and that under stringent filtering criteria, breast cancer samples 

produce too few junction peptides to detect via MS. 

3.2 Background 

Almost all genes undergo alternative splicing, a process of joining exons together in 

different combinations by which one gene can form various transcripts and, for protein-coding 

genes, translated proteins.67,68 This process is frequently disrupted in cancer,128 leading to noisy 
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alternative splicing and to aberrant splicing,130 where novel exon combinations not seen in 

normal tissue are used and the production of functional proteins may be disrupted.183 While 

many aberrantly spliced transcripts may undergo nonsense mediated decay due to the presence of 

premature stop codons,78 aberrant, cancer-specific splicing may in some cases lead to a stable 

protein product.255 This opens the possibility of using these potential junction-specific peptides 

as biomarkers176,256,257 or as immunotherapy targets.155,156,186,258 However, these uses rely on 1) 

confidence in the reality of the identified splicing, rather than it occurring as a technical artifact 

of sequencing or alignment, and 2) either true cancer-specificity, or aberrantly high expression in 

cancer, of the protein product, neither of which is straightforward to assess.  

In-sample RNA expression is often used as a proxy for the former, but no single value 

clearly delineates an appropriate coverage level to guarantee “real” splicing. The experiment 

sequencing depth will affect confidence, and since a true but rare isoform would have low 

expression in RNA-seq, setting a conservative threshold may preclude identification of valid 

cancer-specific isoforms. Furthermore, these may have high protein expression despite low RNA 

abundance.64,224  

The second problem, assessing cancer-specificity, is more complex and has been 

approached in different ways. The primary question, what is defined as “normal” splicing, has 

been addressed with varying set sizes and sample types comprising a normal cohort, and with 

varying levels of expression allowed within this cohort. The normal cohort can range from, 

leniently, a small number of tissue-matched samples154 to a stringent set of thousands of samples 

from many tissue types.155,156,186,258 However, setting even strict boundaries on lack of presence 

in large normal sample sets can allow “cancer specific” junctions to be identified that still occur 

in normal tissues.1 
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Other differences in approach include filtering at the RNA1,155,186 or peptide156 level (or 

both258), inclusion156 or not1,155,186 of peptides overlapping a normal junction that are novel due to 

non-splicing effects such as an upstream frame shift, and whether to attempt phasing of short 

RNA reads156,219 to generate full transcript and reading frame context for each junction. 

With no ground truth against which to assess the identification accuracy of cancer 

specific junctions or junction-associated peptides directly, a primary method of validation has 

been proteogenomics.259 Typically, this involves generating a protein sequence database by 

translating sequences obtained from RNA-Seq data which is then used in a proteomics database 

search of sample-156,258 or cell line-155,186 matched mass spectrometry (MS) proteome data to 

detect peptides found in a sample. Traditionally, tandem MS spectra are searched against a 

database of all proteins that are reasonably expected to be in the sample. However, in cancer 

samples the number of possible proteins greatly increases due to processes such as aberrant 

splicing, leading to a loss of power. In addition, additional power is lost as a result of hypotheses 

that result from validating non-cancer specific junctions. Recently, a new method, subset-

neighbor search (SNS) was developed allowing an MS data set to be queried specifically for a 

targeted subset of peptides directly relevant to a specific scientific question without sacrificing 

power and with proper false discovery rate estimation.260 In this work, we perform a 

comprehensive examination of method and filter value choices in identification of cancer-

specific splicing peptides, and use SNS on sample-paired proteomic data to determine the 

accuracy of identified peptide sets. 

3.3 Results 

3.3.1 Overview of filtering experiments and two pipelines 

Here, we study the detection of potential “alternative splicing neoepitopes” (pASNs), 
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defined as 9-mers overlapping an exon-exon junction that have passed filtering against a normal 

proteome. We probe detection by two distinct methods as implemented in junction- and graph-

based pipelines (JP and GP respectively). The JP identifies peptides translated directly from 

cancer-specific splice sites, and therefore performs most filtering on exon-exon junctions. The JP 

is explicitly annotation based, translating only junctions whose upstream splice site falls within 

the coding DNA sequence region (CDS) of an annotated protein-coding transcript, in the 

annotated reading frame. In contrast, the GP focuses on cancer-specific peptides arising from 

splice sites, which may not be novel or cancer-specific. A comprehensive graph219 representing 

splicing across a set of cohort samples is built, and targets are generated by applying annotated 

reading frames across both annotated transcripts and across novel transcript paths.   

We analyze the results of filter choices made during alternative splicing neoepitope 

(ASN) detection (Figure 3.1) by both methods, by exploring the parameter space of five 

independent filters that represent confidence in the biological reality of a given junction or 

peptide and its level of cancer-specificity. These filters are 1) thresholds for expression for the 

junction within the target sample’s RNA-seq data; 2) requiring, or not, the junction’s splice motif 

to be canonical (implemented by the JP only); 3) thresholds for expression across a sample-type 

cohort; 4) thresholds for expression across a normal tissue cohort; and 5) lack of pASN presence 

in the normal human proteome. Stringency in the first three filters increases confidence in the 

accuracy of the junction or peptide call, while stringency in the last two increases confidence in 

the peptide’s cancer specificity. 

We perform these combinatorial filter experiments on 10 tumor samples, five randomly 

selected from each of the TCGA breast cancer (BRCA) and ovarian cancer (OV) cohorts 

(Methods) for the JP, and on the five selected BRCA samples for the GP. 
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Figure 3.1: Decision points in an ASN detection experiment. Choices stem from the target research 
question, including the dataset in which the ASNs should be identified; the method of data collection, 
including sample sequencing, quality control, and alignment method and parameters; the method of 
identifying and filtering cancer-specific junctions; and the method of validation. We focus on the 
highlighted boxes in blue, for which detailed options are listed to the right. Created with BioRender.com. 
 

3.3.2 Junctions and junction peptides found in ovarian and breast cancer samples 

The unfiltered set of all junctions called from alignment was smaller for BRCA samples 

than OV, with averages of 265 and 444 thousand junctions per sample, respectively 

(Supplementary Table 3.1). More BRCA (63% on average) than OV (39%) junctions are fully 

annotated in GENCODE v.3249 (Figure 3.2). BRCA junctions follow an expected distribution261 

across canonical splice motifs, while an average of 16% of called junctions in OV have non-

canonical motifs (vs. 1.6% on average in BRCA) (Figure 3.2, Supplementary Table 3.1). Of the 

total sample junctions, 54% and 47% on average for BRCA and OV respectively are translated 

by the JP (Supplementary Table 3.2). OV contains a more 9-mers (40%) than BRCA (20%) that 

are not found in the normal human proteome (Supplementary Table 3.2).  
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Figure 3.2: Distributions of 9-mer splice motifs and annotation states. For all 9-mers generated by the 
JP (top panels), those passing cancer-specific filters (middle panels), and those validated in the CPTAC 
MS data (bottom panels), the left and right columns show breakdown by splice motifs and annotation 
states. Motif options are the three canonical splice motifs, GT-AG, GC-AG, and AT-AC, and all other 
(noncanonical) motifs. Annotation options are fully annotated in GENCODE; exon skip, or both ends 
annotated but not together; half, or one end only is annotated; and novel, where neither end is annotated. 
 
 

Across all BRCA samples, the JP translates 70% fewer junctions than the GP, and only 

91% and 27% respectively of the JP and GP total translated junctions are mutually translated by 

both pipelines (Supplementary Table 3.3). From the set of mutually translated junctions (MJ), the 

GP results in 75% more unique junction peptides than the JP (Supplementary Table 3.3). The 
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translated peptides arising from the two pipelines have high concordance: of all peptide-junction 

pairs arising from the set of mutually translated junctions, 98% of the JP peptides have a match 

within the GP set, and 78% of the GP set have a match within the JP set. Altogether, the GP 

yields more peptides per junction than the JP, with averages of 1.9 peptides per junction overall 

and 2.7 peptides per MJ, vs. 1.4 peptides per junction in both categories for the JP. 

3.3.3 Summary of filter experiment results 

Filter experiments were performed with the JP and the GP, and junction-spanning 9-mers 

(pASNs) were collected and compared across experiments. Across the 5 BRCA samples, an 

average of 4,237 translated junctions (3.0%) in protein-coding regions passed at least one set of 

filters, with the large majority of these (an average of 92.5% across samples) not fully annotated 

in GENCODE v.32 (Figure 3.2, Supplementary Table 3.4). The filtered junctions yielded an 

average of 34,295 junction-overlapping 9-mers, of which 85% were not found in the normal 

human proteome (Supplementary Table 3.4). The largest differences in output counts between 

filter experiments were due to the choice of normal cohort (Figures 3.3 and 3.4, Supplementary 

Figures 3.1, 3.2, and 3.3), where the most lenient normal cohort yielded on average 495–25,421 

pASNs, while the most stringent yielded 12–6,212 pASNs (Figure 3.4, Supplementary Figure 

3.2). Most pASNs arose from junctions with canonical splice motifs, although an unusually high 

proportion (average of 21% across samples) had non-canonical splicing (Figure 3.2).  

Filter stringency had a much lower effect on the number of pASNs output by the GP 

(Supplementary Figure 3.1), which ranged from an average across samples of 20,569–22,900 

from the most lenient to the most stringent filtering experiments. Altogether, the GP gave on 

average 5.6 times more peptides than the JP for the core GTEx filter set (an average of 21,584 

vs. 3,873 across samples). Very few pASNs were returned by both pipelines (Supplementary 
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Figure 3.4), and very few of either pipeline’s pASNs are even generated by the other (Table 3.1). 

 
Figure 3.3: Effect of filters on remaining 9-mer counts. Each panel depicts, for one cancer type (left 
and middle, BRCA; right, OV) and pipeline (left, GP; middle and right, JP), the number of initial 
junction-spanning 9-mers generated for each sample (marked on the left by a unique shape, see legend) 
and the number of 9-mers remaining (y-axis) for each filter experiment after each filter stage (x-axis). 
 

The OV samples yielded an order of magnitude (>13x) more translated junctions and 

pASNs across filter experiments (Supplementary Table 3.4), as well as a larger proportion (27% 

of all OV junctions, vs. 3% for BRCA). An average of 3,452 to 396,401 pASNs passed the most 

stringent to the most lenient JP filter experiments across the 5 OV samples. Filtered junctions 

contained a high proportion of fully unannotated junctions (79%) and those with non-canonical 

splice motifs (67%) (Figure 3.2, Supplementary Table 3.4). While the normal filter still had the 

largest effect on the output pASN counts as seen for BRCA, the OV results were also strongly 

affected by the canonical motif filter (as expected due to the high proportion of non-canonical 

motifs, Supplementary Table 3.4), the cancer-type cohort filter (perhaps due to the smaller 

number of OV samples than BRCA samples across TCGA), and the sample support filter (due to 

4 of the 5 target OV samples having a single read scaled to a normalized expression value <1, 

see Methods) (Figure 3.3, Supplementary Figure 3.1). 
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Figure 3.4: Effect of JP filters on final 9-mer count for BRCA sample TCGA-C8-A12P. Each 
vertical axis except the rightmost represents one filter, showing parameter options from most stringent 
(bottom) to most lenient (top). Each colored line represents one JP filter experiment, with its path passing 
through the filters parameters it uses and its color mapped to the final number of 9-mers passing the full 
set of filters (yellow == low, purple == high). The rightmost axis shows final filtered 9-mer counts for 
each filter experiment, with each filter experiment colored line terminating at its final value. Floating gray 
boxes show, across experiments passing through the corresponding filter parameter, the mean of the ratio 
of remaining 9-mers after that filter parameter has been applied to the sample’s total initial generated 9-
mers. 
 
Table 3.1: Proportion of filtered 9-mers generated by both pipelines. 

 
 

3.3.4 Mass spectrometry queries of BRCA peptides across experiments 

We queried junction-overlapping trypsin-digested peptides arising from the filtering 

experiments against sample-matched MS data from the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC). Most JP filter experiments (an average of 575/720 across samples), 

comprising the more stringent filter sets, had no validated pASNs due to fewer peptides 
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predicted than are required for discovery at a 5% false discovery rate (FDR). The remaining 

experiments yielded an average of 131 validated pASNs per experiment per sample (1.84% on 

average of predicted pASNs, the “validation ratio”), arising from an average of 18.4 junction 

peptides. These had a similar distribution of splice motifs and annotation states to predicted 

pASNs, with a large proportion (24.8% on average across samples) having non-canonical splice 

motifs (Figure 3.2, Supplementary Table 3.5). The distribution of both validation counts and 

ratios across filter parameters (Supplementary Figures 3.5 and 3.6) reflected the distribution of 

filtered 9-mers (Supplementary Figure 3.3). More validated 9-mers arose from lenient filter sets, 

although validation ratios tended to be higher for more stringent filters (Figure 3.5, 

Supplementary Figure 3.7). 

While the GP generated over an order of magnitude more pASNs than the JP, the two 

pipelines had similar numbers of unique junction-overlapping trypsin-digested peptides 

(Supplementary Figure 3.8). For the subset of matched filter experiments (the core GTEx normal 

cohort only and no motif filter applied), the GP had relatively high validated peptide counts (an 

average of 754 per experiment per sample) and low validation ratios (an average of 0.44% across 

samples) (Supplementary Figure 3.9), although its ratio of validated peptides to unique tryptic 

peptides tested was much higher (average 17% across samples). The range of validated counts 

within samples was low (average across samples of 17.8, or 2%) as also seen for filtered peptides 

(Figure 3.3, Supplementary Figure 3.1). Notably, the GP had higher validation ratios for 

experiments with more stringent sample expression support required (Supplementary Figures 3.9 

and 3.10). As the peptides from these filter experiments are a subset of those with more lenient 

required sample support, we note that this shows some instability in the proteomics validation. 
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Figure 3.5: Effect of JP filters on validated 9-mer count and validation ratios for BRCA sample 
TCGA-C8-A12P. Vertical axes except the rightmost represent one filter, with parameter options from 
most stringent (bottom) to most lenient (top). Each colored line shows one filter experiment, with its path 
passing through the parameters it uses, its color mapped to its validated 9-mer count (top) or validation 
ratio (bottom) (yellow = low, purple = high), and terminating at its final value on the rightmost axes. 
Floating boxes show, for experiments passing through the corresponding filter parameter, the mean of the 
ratio of remaining 9-mers after that filter parameter has been applied to the total initial sample 9-mers. 

 
4.4 Discussion 

With the goal of identifying cancer-specific peptides arising from real junctions (vs. from 

sequencing or alignment artifacts), we performed a set of cancer-specific splicing discovery 

experiments across many sets of filter parameters and two fundamentally different pipelines. The 

junction-based method takes a simpler and more stringent approach, where all junctions are 
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assumed to be associated with the annotated transcriptome. No context is assessed between short 

reads, so that any called junction may be associated with any transcript that has appropriate 

coordinates. This yields a fast and agile pipeline that may neglect some critical contextual 

information, but also may avoid detection of peptides from spurious transcripts. In contrast, the 

graph-based method allows for the discovery and use of novel, unannotated transcripts, and 

accounts for transcript context by phasing input short reads. A drawback of this method is the 

significant compute resources & time required for implementation. (Benchmarking timing 

studies were not performed, but an informal analysis shows that matched tasks performed by the 

JP are several orders of magnitude faster than by the GP using similar computing resources with 

similar parallelization.) 

The discrepancy in number of junctions translated by the two pipelines is partly due to 

the GP assembling and translating junction peptides from novel transcripts, where the JP 

translates junctions for which the 5’ splice site falls in the coding region of an annotated 

transcript and rejects translations where the junction peptide is less than 9 amino acids long or 

the junction creates a stop codon. Non-matching peptide-junction pairs from mutually translated 

junctions arise from the use of additional reading frames, primarily in novel transcripts generated 

by the GP. Many GP junction peptides contain degenerate sequence in the junction region, 

leading to the multiple order of magnitude drop in total to unique tryptic peptides in the GP. The 

GP’s small range of filtered pASNs counts may be partially related to the limited experiments 

performed, covering only one normal cohort (core GTEx) and not including the motif filter, and 

to the initial cohort graph support required. However, the GP’s lack of output sensitivity to the 

varying filter parameters was unexpected, as was the extreme similarity in output between 

samples. 
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This study was limited by the small number of samples and cancer types studied in depth. 

We also were limited computationally and by analysis bandwidth to a relatively small set of filter 

parameters, although we attempted to cover the range of reasonable choices. Implementation of 

the junction support and motif filters differed between the GP and the JP. We did not take into 

account potential somatic mutations occurring in the cancer samples, some of which (e.g. 

upstream frameshift indels) may have affected the translated junction peptide sequences. We 

used a large but still limited set of normal samples and tissue types in our normal cohorts, 

leaving open the possibility that some normal splicing may be declared “cancer specific” here.1 

Finally, we additionally did not test MHC binding of our pASNs and our MS queries were 

limited to intracellular data available from CPTAC instead of surface-presented peptides, so we 

have no information about the pASNs’ functionality as neoantigens.  

Ultimately, the large proportion of filtered 9-mers arising from junctions with non-

canonical splice motifs identified by the JP (Supplementary Table 3.4) calls into question the 

biological significance of filtered junction peptides. The lack of overlap between the two 

pipelines’ outputs (Supplementary Figure 3.4), and the fact that each pipeline’s pASNs are, for 

the most part, novelly generated by only that pipeline (Table 3.1), suggests that filter results may 

include a set of nonbiological artifacts of the alignment, translation, and filtering methods. Most 

junction-overlapping peptides initially generated are shared between both pipelines, but these 

may largely arise from transcripts that are easy to handle (e.g. annotated transcripts), with fewer 

pipeline-specific assumptions imposed on peptide generation. Finally, we note the instability of 

MS validation of identical peptides between filter experiments, and that the distribution of splice 

motifs of validated pASNs (Figure 3.2, Supplementary Table 3.5) suggests a high incidence of 

false positive MS detections. 
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3.4 Methods 

Experimental overview & filter parameters 

Table 3.2: Filter parameter values across pipelines. 

 Filter Stringency 

Filter type pipeline lowest Low2 high highest 

sample support 

GP  graph 
confidence 1 

graph 
confidence 2  

JP  1 normalized 
read/sample 

2 normalized 
reads/sample  

 
motif  

GP  no filter   

JP  no filter canonical 
motifs only  

minimum matched 
cohort samples both 0 1 2 10 

Min reads per 
cohort sample both 0 1 5  

normal cohort 
GP   core GTEx all GTEx + TCGA 

JP  paired normal  core GTEx all GTEx + TCGA 

Max normal 
samples  both any* 10 2 

0 
Max reads per 
normal sample both any* 10 3 

proteome both resulting 9-mers must not be present in Uniprot 

* “any” filters were applied in conjunction with a limiting value for the complementary filter, e.g. 3 samples with 
any expression, or any number of samples with 2 or fewer normalized reads. 

 
We analyzed the output of two pipelines, junction- (JP) and graph- (GP) based, that aim 

at detecting cancer-specific peptides arising from exon-exon junctions. Each pipeline executes 

multiple filters that allow for a range of parameters, which we explored across the space of 

parameter options by analyzing their effects on final outcomes (Table 3.2). Five independent 



58 

filters fall broadly into two categories, those supporting the detection of true junctions, and those 

supporting the cancer-specificity of the resulting peptides, as follows.  

Junction support filters include 1) RNA expression in the target sample, 2) RNA 

expression in a matched cancer type cohort, and 3) a filter on junction splice motif (implemented 

in the JP only). In the JP, junctions are represented by coordinates, while in the GP, junctions are 

represented by junction-overlapping 9-mers; in both pipelines, RNA expression quantification is 

based on junction-overlapping primary aligned reads. For filter 1), target sample minimum RNA 

expression thresholds were set to “any” (>0) or 2 normalized junction reads. For filter 2), a 

matched sample-type cohort is defined as the full set of TCGA matched tumor samples (breast or 

ovarian cancer, as appropriate). Junctions were then required to be expressed in 0 (no cohort 

requirement), or 1, 2, or 10 cohort samples, with 1 or 5 normalized reads required in each 

external sample. For filter 3), the JP toggles a requirement (or not) for the junction’s splice motif 

to be canonical (GT-AG, GC-AG, or AT-AC). 

Cancer-specificity filters comprise 4) full or partial absence of the junction from a set of 

normal samples, and 5) absence of resulting peptides from a normal human proteome database. 

For filter 4), three normal tissue cohorts were established to represent the breadth of normal 

alternative splicing. The more lenient set included paired normal samples only, comprising all 

normal tissue-matched samples across GTEx and TCGA, called the “paired normal” cohort. A 

more stringent set included all normal samples across all GTEx tissue types except for immune 

privileged tissues (testis and brain), called the “core GTEx” cohort. Finally, the most stringent 

normal cohort was all normal samples across GTEx and TCGA, called the “all GTEx + TCGA” 

cohort. Maximum RNA expression criteria in the normal cohort were established where a 

junction needed to be expressed in no more than a maximum number of samples across the 
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normal cohort, with a maximum expression level within each of the allowed normal samples. In 

the JP cancer junctions are filtered against normal junctions, while in the GP overlapping 

junction 9-mers are filtered against all cohort 9-mers, regardless of junction presence. A set of 

“lenient” conditions values (maximum sample count, maximum expression level per sample) 

were set as (2, 3), (2, 10), (2, any), (10, 3), and (any, 3). A “stringent” condition was also used, in 

which no expression across the normal cohort was allowed. Finally, the proteome filter 5) has no 

free parameters. In the GP, this filtering was performed with Leucine and Isoleucine equivalent.  

Selection of target samples 

Five samples from each of the TCGA breast and ovarian cancer cohorts were selected as 

follows. These two cancer types were chosen for having paired intracellular proteomics mass 

spectrometry CPTAC262 data for pASN validation, and for having been previously used for ASN 

detection and validation.156 Shortlist subsets of these cohorts were selected, including samples 

for which mass spectrometry intracellular proteomics analysis was done (as identified from the 

CPTAC262 iTRAQ sample file) and which previously passed quality control protocols.156 Five 

samples were then selected from each shortlist in a reproducibly random way, using the absolute 

value of the murmurhash (implemented with mmh3 v.2.4) of each TCGA cancer name string to 

seed the random selection for that cancer type, using python the random.sample method (python 

v.3.8.1). 

Reference data download 

A GTEx v6 phenotype table was downloaded from recount2197 at https://jhubiostatistics. 

shinyapps.io/recount. TCGA phenotype data was obtained from the GDC at https://portal.gdc 

.cancer.gov/repository. GENCODE v.32 gene annotations49 were downloaded from https:// 

www.gencodegenes.org/human/release_32.html for use with the GRCH38 reference genome. 
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The human proteome was downloaded from Uniprot241 (https://www.uniprot.org/proteomes 

/UP000005640). 

Sequencing data download and initial preparation 

All data was downloaded from the GDC data portal (https://portal.gdc.cancer.gov/), using 

a complete metadata dump from January 27th 2020. Download of all samples followed in the 

two weeks after. Alignments were performed with STAR, with the following parameters: 

 --sjdbOverhang 100, --runThreadN 8, --outFilterMultimapScoreRange 1,  --outFilterMultimapNmax 20,   
--outFilterMismatchNmax 10, --alignIntronMax 500000, --alignMatesGapMax 1000000, --sjdbScore 2,      
--alignSJDBoverhangMin 1, --genomeLoad NoSharedMemory, --readFilesCommand zcat,                             
--outFilterMatchNminOverLread 0.33, --outFilterScoreMinOverLread 0.33, --outSAMstrandField 
intronMotif, --outSAMmode Full, --limitBAMsortRAM 7000000000, --outSAMattributes NH HI NM MD AS 
XS, --outSAMunmapped Within, --limitSjdbInsertNsj 2000000, --outSAMtype BAM Unsorted, --
outSAMheaderHD @HD VN:1.4, --outSAMmultNmax 1" 

The library sizes are computed based on sequential STAR and SplAdder219 

quantifications. (SplAdder, part of the GP, will be described in the next sections.) Expression 

quantification is first performed by STAR, then passed on to SplAdder. The read support for 

each portion of the SplAdder graph in each sample is stored after discarding reads from regions 

with low coverage. These quantifications are used to calculate protein coding gene expressions. 

This set of genes is used to extract 75th quantile library sizes for samples of each cohort.  

Data preparation for junction-based pipeline 

GTEx and TCGA sample IDs were mapped to tissue and sample types using the GTEx 

and TCGA phenotype tables, respectively. All exon-exon junctions with sample coverage >0 

were extracted from the SplAdder graphs generated for all GTEx and TCGA ovarian and breast 

cancer samples. All junction coverages were normalized by dividing by the 75th quantile library 

sizes (as calculated above) and multiplying by 4x105. (Four BRCA and one OV sample had a 



61 

single read scale normalized to between 1 and 2; the remaining BRCA and OV samples had one 

read scale to over 2 and less than 1, respectively.) All junctions with nonzero coverage were 

collected for the 10 target samples, comprising a shortlist set of 1,347,000 junctions. For each 

shortlist junction, counts were collected of cohort samples with any nonzero coverage and of 

samples with coverage over each target threshold in the relevant filter type for cancer type, 

paired normal, and core GTEx sample cohorts. Splice site motifs were extracted for each 

junction from the reference genome with samtools v1.9.263 Annotated left, right, and matched 

splice site coordinates were extracted from the GENCODE gtf, and sample junction splice site 

coordinates compared against these, with labels 3, 2, 1, and 0 respectively representing 

annotated, exon-skip annotated, left- or right- splice site-only annotated, or unannotated 

junctions. Genome coordinates for protein coding regions were extracted from the GENCODE 

gtf, and each junction was labeled with potential gene IDs for any protein coding genes 

overlapping its left and right splice sites. Each junction was further labeled with all transcript IDs 

for which its upstream, 5’ splice site overlapped the transcript’s CDS. 

Translation of MS query peptides and junction-overlapping kmers via junction-based pipeline 

A custom class was written for junction translation, i.e. to translate junction-overlapping 

reference DNA sequence into junction-overlapping protein sequence. For each junction, all 

transcripts were previously identified for which the junction’s 5’ splice site was located within 

the transcripts’ coding regions. For BRCA and OV respectively, 20% and 31% of total junctions 

on average are not located in protein coding genes, and 26% and 22% on average are in protein 

coding genes but are untranslated for other reasons such as having upstream splice sites not 

located in the protein coding boundaries of an exon (Supplementary Table 3.2). Each junction-

transcript pair was then processed as follows. The junction was computationally inserted into the 
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transcript, with the junction’s upstream splice site either truncating the upstream exon in which it 

was located, or with no change if it already matched an annotated 5’ splice site in the transcript. 

The junction’s downstream splice site would then fall into one of the following categories: 1) 

matching an annotated 3’ splice site in the transcript, in which case no changes were made to 

exon coordinates; 2) falling in the middle of an annotated exon, in which the upstream end of the 

exon was truncated so that the exon’s new 5’ end coincided with the 3’ end of the junction; 3) 

falling between exons in the coding region of the transcript, in which case the 5’ end of the exon 

immediately downstream from the junction is adjusted to match the junction’s 3’ end; or 4) 

falling beyond the end of the transcript’s CDS, in which case an artificial exon was added to the 

end of the transcript, 150 bases long and whose 5’ end matched the junction’s 3’ end. In every 

case, all exons in the junction boundaries were removed from the transcript. 

Each artificial junction-modified transcript was then translated as follows, with a target 

length of 50 amino acids up- and downstream of the junction to maximize the possibility of 

obtaining a trypsin-digested junction-overlapping peptide size-appropriate for mass spectrometry 

queries. Therefore a target sequence length of 150 bases up- and downstream of the junction was 

collected, or fewer bases if the end of the transcript was reached, as well as the translation 

reading frame as propagated from the 5’ end of the original annotated transcript’s coding region. 

The sequence was then translated in silico in all three reading frames for potential reading frame-

agnostic peptide analysis, with the annotated reading frame, the junction position within the 

peptide, 5’ or 3’ transcript end overlap, and whether or not the junction split a codon or occurred 

within a codon noted for future use. The immediate peptide sequence around the junction was 

kmerized into up to 9 junction-overlapping 9-mers. The Uniprot human proteome was kmerized 
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into 9-mers, and the junction 9-mers not occurring in the normal human proteome set labeled as 

potential neoepitopes to undergo further filtering.  

Identification and filtering of cancer-specific peptides via junction-based pipeline 

For each target sample, the set of filter experiments described above was performed as 

follows. Junctions with nonzero expression in the target sample were collected; any junction 

falling outside of the target gene list accessible to the graph-based pipeline was removed. Filters 

were applied to the set of remaining junctions in a single order: target sample expression support, 

foreground cohort-matched sample support, background normal cohort normal filtering, and 

canonical splice motif identity. At each filter stage, the number of unique junction-overlapping 

9-mers was collected; any 9-mer arising from more than one filter-passing junction was counted 

only once. After the junction filtering was complete, a Uniprot normal human proteome filter 

was applied, to collect the number of unique potential neoepitope 9-mers. Finally, a list of 

potential sample-specific junction peptides resulting from each filter experiment was collected. 

Data preparation for graph-based pipeline 

The RNA-seq data was used to build cohort-wise splicing graphs with SplAdder. 

Foreground graphs for OV and BRCA were built, as well as background graphs for GTEx and 

TCGA, with STAR alignments of RNA-seq data and annotation file as input. Graph segments 

represent exons and edges represent exon-exon junctions. The annotation graph is then expanded 

sample-wise with the exons, introns, and junctions supported by the sample’s RNA-seq. The 

graphs are then merged across samples into a joint graph which recapitulates splicing across the 

cohort. Cross-sample filtering criteria are applied at the level of the graph. In graph “confidence 

level” 2,219 first, an intron is added to the graph if it has at least 5 average reads per nucleotide 

position in any of the cancer cohort samples, a sufficient fraction of intron positions are covered, 
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and the intron coverage relative to flanking exons falls within a defined range. Secondly, an 

unannotated edge is added if there are at least 2 reads supporting that edge in any of the cancer 

cohort samples, and if that edge meets anchor length requirements with low mismatches in the 

anchor regions. Given these inclusion criteria, each junction is associated with the number of 

primary reads aligned overlapping the junction. This metric is used later to quantify 9-mers.   

Translation of MS query peptides and junction-overlapping kmers via graph-based pipeline 

Each of the cohort graphs were translated with the ImmunoPepper (unpublished) 

software tool (https://github.com/ratschlab/immunopepper). ImmunoPepper is an algorithm 

which traverses a splicing graph to extract bi-exon peptides. In the following we refer to a single 

gene graph with cross sample information. First, the annotated CDSs of the gene were collected. 

Then, these were applied onto the graph and their reading frames were propagated downstream 

in the graph. Finally, all possible exon-exon pairs were extracted and translated according to the 

propagated CDSs. The translation was stopped when encountering a stop codon. The bi-exon 

peptides were cut into 9-mers. In the event of a bi-exon pair where the amino acid length of the 

second exon is smaller than the kmer length, the bi-exon peptide was expanded to the right with 

a third exon. For each sample, 9-mers were then quantified based on their region of origin. 

Junction overlapping  9-mers were quantified by the number of reads spanning the junction (edge 

expression value). Non-junction 9-mers were mapped to the segments from the splicing graph 

that span the 9-mer positions. Each segment structure in the splicing graph stores an expression 

value extracted from the alignment. The expression of the  9-mer was calculated as a sum of the 

different segment expressions weighted by the number of base pairs which originate from this 

segment (segment expression value). All 9-mers expressions were normalized by dividing by the 

75th quantile library sizes (see above) and multiplying by 4x105. 
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Identification and filtering of cancer-specific peptides via graph-based pipeline 

The filtering was performed at the level of the 9-mers peptide sequences. For each target 

sample, we consider as the initial set, the junction overlapping 9-mers translated from the OV or 

BRCA graphs (which share information across the cohort), minus the 9-mers not expressed in 

the sample. For synonymous 9-mers the maximum expression value was used. These junction 9-

mers were then filtered for target sample expression, and cancer-type matched cohort support, as 

described previously. For each background cohort, we extracted both the junction, and non-

junction overlapping 9-mers from the graphs, as we wish to remove all normal 9-mers passing 

the expression and sample criteria. Duplicated 9-mers were made unique by taking the maximum 

expression across junction and non-junction instances. The background normal cohort normal 

filter was applied as outlined previously. The annotated 9-mers were removed to focus on novel 

9-mers. Finally, the 9-mers were filtered out, Isoleucine and Leucine were made equivalent by 

substituting isoleucine characters by leucines.  

Comparison of translation between GP and JP 

Peptides from junctions mutually translated by both pipelines were compared. Each 

peptide may arise from multiple junctions, and the same junction may give rise to multiple 

peptides, so the comparison was done for each peptide-junction pair, for each pipeline. A match 

was called for a pair in a pipeline if any of the following were true: 1) an exact match between 

the peptide and a peptide generated for the same junction in the opposite pipeline; 2) the peptide 

falling wholly within a peptide generated for the same junction in the opposite pipeline; or 3) the 

beginning or the end of the peptide overlapping with, respectively, the end or the beginning of a 

peptide generated for the same junction in the opposite pipeline. 
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Proteomics validation of cancer-specific peptides with subset-neighbor search 

Following the translation of transcript to amino acid sequence, we then attempted to 

validate the existence of the cancer-specific peptides via proteomics analysis. In proteomics 

analysis, peptides are detected via database searching with experimental spectra and a peptide 

database given as input. Since the samples analyzed by mass spectrometry were digested using 

trypsin, the input peptide database must also contain tryptic peptides. Therefore, we extract a 

fully tryptic peptide from each transcript. This process was successful if the junction-spanning 

amino acid was between two tryptic sites. In addition, the process was successful if the junction-

spanning amino acid was between the beginning of the protein and the first tryptic site or the last 

tryptic site and the end of a protein. After this process we removed any peptides shorter than six 

or longer than 50 amino acids as these peptides are unlikely to be detected by proteomics. For 

each pipeline and cancer sample, we extracted the full set of tryptic peptides arising from 

transcripts from any filter experiment, encompassing the most lenient possible set of pASNs. We 

then concatenated these sequences to the human reference protein database for use in a database 

search. The human proteome was downloaded from Uniprot (https://www.uniprot.org 

/proteomes/UP000005640)241 on January 18th, 2022. In January 2022 we also downloaded 124 

raw mass spectrometry data from the Proteomics Data Commons (https://pdc.cancer.gov/pdc/ 

study/PDC000173) to use in the database search. Each of the raw files was converted to mgf file 

format using ThermoRawFileParser.264 

To detect peptides in our proteomics samples, we employed the subset-neighbor database 

search strategy260 using the XCorr score in Crux (version 3.2).265 Cancer-specific peptides were 

considered relevant while reference human peptides were considered to be irrelevant. An 

irrelevant peptide was relabeled as a neighbor peptide if the precursor mass was within 40ppm of 
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a relevant peptide and if the two peptides have at least 25% of fragment peaks in common. 

Peptides that were found to be both relevant and irrelevant were considered relevant. The 

modification used in the construction of our database included carbamidomethylation as well as 

a static iTRAQ labeling on lysines and the N-terminus of peptides. The precursor tolerance was 

set to 40ppm and was estimated using Param-medic.266 All other parameters were set to their 

default value. The false discovery rate of the resulting PSMs was estimated using target-decoy 

competition267 and filtered to a 5% FDR. FDR correction was applied to the specific set of 

peptides arising from each filter experiment individually, for each sample and pipeline. The 

resulting list of peptides were labeled as the set of confidently detected peptides. 
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Chapter 4: Testing the reliability of retained intron detection 

This work has been formatted for inclusion in this dissertation from the manuscript "Retained introns in 
long RNA-seq reads are not reliably detected in sample-matched short reads” by Julianne K. David*, 
Sean K. Maden*, Mary A. Wood, Reid F. Thompson, and Abhinav Nellore, under review (2022).2 The 
author of this dissertation is the co-primary author of the manuscript. (*co-first authors) 

 

4.1 Abstract 

A number of bioinformatics tools have been developed specifically to detect retained 

introns (RIs) from short-read RNA sequencing (RNA-seq) data, and they have been used to 

make confident statements about retained introns across a variety of biological circumstances. 

However, overlapping genes and transcripts and the presence of partially processed RNA in 

sequenced samples can lead to uncertainty in the detection of RIs, particularly from short-read 

data. We assembled a dataset to test RI detection, consisting of complementary publicly 

available short- and deep long-read RNA-seq data from the same biological specimens. Then we 

evaluated 5 short-read RI detection tools and found 1) significant disagreement (Fleiss' 𝜅 =

0.231) such that ~52% of called RIs were called by single tools only; 2) that no tool achieved 

greater than 20% precision or 35% recall under generous conditions; and 3) that RI detectability 

was adversely affected by greater intron length and overlap with annotated exons. 

4.2 Background 

During RNA transcription, multiple spliceosomes may act on the same transcript in 

parallel to remove segments of sequence called introns and splice together flanking exons.97 

Most splicing occurs stochastically104 during transcription,56–58 although up to 20% of splicing 

may occur after transcription and polyadenylation58,268 (Supplementary Figure S4.1). Introns are 

spliced by several known spliceosome types, of which the most studied are called U2 and 
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U12.269 Splicing is known to occur primarily in the nucleus,270 though there is evidence of 

cytoplasmic splicing.60,62,271,272 

Intron retention (IR) is a form of alternative splicing where an intron normally spliced out 

during transcript processing remains after processing is complete. IR occurs in up to 80% of 

protein-coding genes in humans76 and may affect gene expression regulation80–86 as well as 

response to stress.90–92 Transcripts containing introns may also be stably detained in the nucleus 

before undergoing delayed splicing (“intron detention”, or ID), with implications for temporal 

gene expression.94 In cancers, high levels of IR150–152 can generate aberrant splicing products 

with known and potential biological consequences for gene expression and cell survival.125 IR 

rarely gives rise to a protein product,79,93 but novel peptides derived from transcripts with RIs are 

increasingly being studied in disease contexts such as cancer.154–157,273 

Despite its biological relevance, detection of IR from bulk RNA-seq data remains 

challenging for two principal reasons: 1) A short RNA-seq read (e.g., from Illumina's HiSeq, 

NovaSeq, or MiSeq platforms) is almost never long enough to resolve a full intron or its context 

in a transcript, particularly in genome regions with multiple overlapping transcripts; 2) RNA-seq 

data may contain intronic sequence from unprocessed or partially processed transcripts, DNA 

contamination, and non-messenger RNA such as circular RNAs (cRNAs),57,209 potentially 

yielding spurious IR calls, independent of read length. 

Existing tools designed specifically for RI detection make simplifying assumptions to 

address the above issues. These tools include keep me around (KMA),212 IntEREst,214 iREAD,215 

superintronic,216 and IRFinder76 and its most recent implementation as IRFinder-S.217 Some 

mitigate the first challenge by ignoring from consideration any intronic regions that overlap other 
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features (KMA, IntEREst, iREAD), leaving biological blind spots in RI detection.212,214,215 Some 

attempt to mitigate the second challenge by recommending that a user provides poly(A)-selected 

data as their input,76,212,215,216 assuming that poly(A) selected data represents fully processed, 

mature RNA. However, poly(A) selection during library preparation has been shown not to 

remove all immature post-transcriptionally spliced RNA molecules, and intronic sequences are 

commonly found in poly(A)-selected RNA-sequencing data.54,75 To clarify the quality of and 

best practices for RI detection, we performed tests on poly(A)-selected, sample-matched long- 

and short-read sequencing runs for two biological specimens, with processed long-read data 

providing a standard against which we evaluated short read-based RI detection. 

4.3 Results 

4.3.1 Sample-paired short- and deep long-read RNA-seq data can robustly test RI detection  

To generate a dataset to test RI detection, we identified two human biological specimens 

on the SRA with RNA-seq data from both Illumina short-read (SR) and PacBio Iso-Seq RS II 

long-read (LR) platforms (Figure 4.1). These were a human whole blood sample (HX1)274 and a 

human induced pluripotent stem cell line sample (iPSC),275 with, respectively, 46 and 27 Iso-Seq 

runs, 24.4 and 91.3 million aligned short reads, and 945 and 840 thousand aligned long reads 

(Supplementary Table S4.1). To confine attention to robustly represented loci, we identified a set 

of 4,369 and 4,639 target genes in HX1 and iPSC samples, respectively, each with ≥2 short reads 

per base median coverage across the full gene length and ≥5 long reads assigned to at least one 

isoform of the gene (Supplementary Figure S4.2).  

We sought to quantify IR in each biological specimen using LR data, accounting for 

random splicing and sample contamination that may lead to noisy splicing patterns. For a given 

intron 𝑖 and transcript t, we defined persistence 𝑃!,#	 as  
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𝑃!,# 	= 	𝑑! ⋅ ∑ 		
{&	'	(!}

*",$	⋅	,-",$	⋅	.",$	
|(!|  ,  (4.1) 

where 𝑟 is a read among the set of all reads 𝑀# assigned as best matches to transcript 𝑡, 

information density 𝑑! is the proportion of 𝑀# covering intron 𝑖, the binary variable 𝑅&,! is 1 if 

and only if 𝑟 provides evidence for the retention of 𝑖, and the spliced fraction 𝑆𝐹&,! and scaled 

Hamming similarity 𝐻&,! are defined in Methods (see Equations 4.3 and 4.4). In brief, the intron 

persistence 𝑃!,#	incorporates the extent and similarity of splicing across transcript reads, 

accounting for stochastic splicing initiation and progression (Supplementary Figure S4.1). 

Finally, to address ambiguity in transcripts of origin in short-read data, we defined intron 𝑖's 

persistence 𝑃! as its maximum persistence across all isoforms 𝑇! that contain 𝑖: 

𝑃!		 = 𝑚𝑎𝑥#	'	0$4𝑃!,#5	.  (4.2)  

Going forward, we define a “persistent intron" as an intron for which 𝑃! >= 0.1. 

Across all transcripts studied in both samples, a substantial majority (83.7%) of introns 

were fully spliced out (𝑃!,# = 0), and a small minority (0.15%) of introns were always unspliced 

within a transcript (𝑃!,# = 1) (Figure 4.2A and Supplementary Figure S4.3). These extreme 

values are in keeping with our qualitative understanding of splicing patterns; however, the range 

of intermediate persistence values appears to represent a spectrum with varying extents of 

inconsistent splicing across and between reads. While we tested short-read RI detection on a per-

sample basis, we also compared intron persistence patterns between HX1 and iPSC samples and 

found significant similarity in splicing patterns across matched transcripts (Supplementary 

Figures S4.3 and S4.4). 
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Figure 4.1: Overview of experimental plan. Created with BioRender.com. Long and short read RNA-
seq data from the same biological specimen274,275 were downloaded from the SRA and subject to 
processing and analysis. Short reads (left path) were aligned and quantified according to the requirements 
of five short read RI detection tools,212,214–217 and retained introns were called by each of these. The raw 
long Iso-Seq reads (right path) were processed to the stage of full-length non-concatemer (FLNC) reads, 
but left unclustered. After long reads were aligned to the reference genome, each aligned read was 
assigned to a best match transcript or discarded, and intron persistence was calculated. The called RI 
output of each short read detection tool was compared against the set of persistent introns identified in the 
long-read data (where 𝑃" >= 0.1).  
 

4.3.2 Intron properties explain similarities across short-read RI detection tool outputs 

We compared RIs called by five detection tools for short-read data (Table 4.1). While 

most introns were consistently spliced out, 39.9% (1,743/4,369) and 31.4% (1,457/4,639) of 

target genes in HX1 and iPSC, respectively, had at least one RI identified in either short- or long-

read data. Expression of called RIs varied substantially between tools in both HX1 (Fleiss’ 𝜅 =
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0.282) and iPSC (Fleiss’ 𝜅 = 0.162), though we did observe moderate overall correlation 

between the output of IntEREst, superintronic, and KMA (Supplementary Figure S4.5). Further, 

using circBase276 to probe whether cRNA contamination may have affected RI detection, we 

identified only a small percent (<5%) of called RIs that appeared to overlap intronic cRNAs 

(Supplementary Figure S4.6). 

(A)       (B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 4.2: Intron persistence and other properties. (A) Distribution of intron persistence (𝑃",$) and 
representative transcript examples for iPSC. The black line shows the number of introns (y-axis) having a 
given persistence value (x-axis); note that a large number of introns with 𝑃" = 0 are omitted from this 
analysis. Along the line, gray circles indicate the 𝑃" value corresponding to each of nine introns from 
representative transcript examples with each transcript labeled by Ensembl ID. Read-level data is shown 
for each transcript as a colored matrix, where each row is a single long read assigned to the transcript and 
each column represents a given intron, and color indicates whether an intron is retained (light green), 
spliced out (dark green), or lacking sequence coverage (white) in a given read. (B) Distributions of 
properties of persistent and called RIs. Each panel contains a series of boxplots depicting the distribution 
of intron length (top, log-scale), relative position in transcript (middle), and % of intron bases with 
overlapping annotated exons (bottom) for HX1 (left) and iPSC (right). The distribution of each of these 
features is shown for long-read persistent introns (“PacBio”, gray) and RIs called by each of the five short 
read tools: IRFinder-S (red), superintronic (yellow), iREAD (green), KMA (blue), IntEREst (purple). 
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Table 4.1. Short read tools studied. 

Tool IRFinder-S217 superintronic216 iREAD215 KMA212 IntEREst214 

Year 2021 2020 2020 2015 2018 

IR measure† IRratio log2 coverage FPKM TPM FPKM or PSI 

Language C++ R Python Python, R R 

Host website GitHub GitHub GitHub GitHub Bioconductor 

Sample data 
format BAM or FASTQ BAM BAM FASTQ BAM 

Reference 
format GTF GTF/GFF3 BED FASTA, 

GTF/GFF3 GTF/GFF3 

Intron 
definition All introns All introns Independent 

introns* 
Independent 

introns* 
Independent 

introns* 

* Independent introns are intron regions not overlapping features from other annotated transcripts. 
† See Methods for IR measure definitions and details 
 

We next examined the distributions of several intron properties (length, relative position 

in transcript, and annotated exon overlap) and their relationships with the set of RIs called by 

each short-read tool and their relative expression levels (Figure 4.2B, Supplementary Figure 

S4.7). Unsurprisingly, tools that exclude introns with overlapping genomic features (i.e. KMA, 

IntEREst, iREAD; Table 4.1) had exceedingly low overlap between exons and the IRs they 

reported. We also note that KMA and IntEREst called extremely long RIs (up to >297 

kilobases), compared to those called by other short-read tools or the persistent introns identified 

from long read data (maximum 6,275 and 5,926 bases in HX1 and iPSC). We observed a slight 

overall 3’ bias among persistent introns from long-read data, as well as the set of RIs from 

several short-read tools (Figure 4.2B), potentially reflecting the relatively shorter duration of 

exposure of 3’ introns to the cotranscriptional splicing machinery and/or implicit 3’ bias of the 

Clontech sample prep277 used in both samples.274,275 Despite this slight 3’ tendency, there was no 

appreciable association between intron persistence and intron position in transcript 
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(Supplementary Figure S4.8). Among all tools, IRFinder-S called a set of RIs with characteristics 

most similar to persistent introns from long-read data (Figure 4.2B). 

4.3.3 Precision and recall are poor across short-read RI detection tools  

We tested performance (precision, recall, and F1-score) of RI detection by five short-read 

tools, comparing sets of called RIs against persistent introns identified from long read data 

(defined as 𝑃! ≥ 0.1). Overall tool performance was poor in all cases (Figure 4.3A, 

Supplementary Table S4.2). Many persistent introns (55% and 48% in iPSC and HX1, 

respectively, Supplementary Figure S4.9) were not called by any short-read tool, and the 

majority of called RIs were neither identified among persistent introns in long-read data nor 

consistently called between short-read tools (Figure 4.3B, Supplementary Figure S4.9). In HX1 

and iPSC, respectively, 54% and 49% of called RIs were not called by more than one tool 

(52.4% overall). IRFinder-S had the best performance across most metrics, possibly due to the 

similarity between the properties of its called RIs and properties of persistent introns. By 

contrast, iREAD demonstrated the lowest recall across all tools, likely due to its sparse calling of 

RIs (Supplementary Figure S4.10). Performance metrics for IntEREst and KMA were very 

similar across both samples (Figure 4.3C).  

To address sensitivity in persistent intron identification, we also considered short-read 

tool performance on subsets of LR introns with increasing minimum thresholds of intron 

persistence (𝑃! >= 0.1− 0.9 in 10% increments). We found that overall performance remained 

poor across all levels of intron persistence, with uniformly worse precision, recall and F1 score 

as intron persistence increased (Figure 4.3A, Supplementary Figure S4.11). While individual tool 

performance varied significantly, IRFinder-S and superintronic were consistently best 

performers, albeit interchangeably depending on the sample, metric assessed, and intron 
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persistence threshold. For instance, IRFinder-S demonstrated highest recall in HX1 at the lowest 

cutoff values (𝑃! >= 0.1− 0.4 ), while superintronic demonstrated higher recall across higher 

thresholds in HX1 and for all cutoffs in iPSC (Supplementary Table S4.2). 

(A)              (B) 
 
 
 
 
 
 
 
 
 
(C) 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Performance of short read tools. (A.) Short-read tool performance across different 
thresholds of intron persistence. Each panel displays tool performance along the y-axis (measured by 
either precision, recall, or F1-score as labeled) for a set of introns defined by the indicated threshold for 
intron persistence along the x-axis. Data for HX1 and iPSC are shown at left and right, respectively, with 
each tool’s per-sample performance depicted in a different color (IRFinder-S [red], superintronic 
[yellow], iREAD [green], IntEREst [purple], and KMA [blue]). (B.) Varying degrees of consensus of 
retained intron calls among short-read tools. Bar plots depict the number of true positive (green), false 
positive (pink), and false negative (blue) intron calls (y-axis) consistent across a specified number of 
short-read (SR) tools (x-axis). Upper and lower panels depict HX1 and iPSC data, respectively. LR 
denotes long-read data. (C.) Variation in short-read tool performance across intron persistence thresholds 
for potential vs. called RIs.  Each panel displays tool performance as measured by precision (left), recall 
(middle), and F1-score (right) for HX1 (top) and iPSC (bottom) samples. The performances for each 
tool’s potential RIs and called RIs are shown along the x- and y-axes, respectively, with centroid and 
whiskers denoting, respectively, the median and interquartile range of tool performance across intron 
persistence thresholds. Tools are depicted by color (IRFinder-S [red], superintronic [yellow], iREAD 
[green], IntEREst [purple], and KMA [blue]). Reference lines with slope = 1 are shown. 
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Finally, since each tool is capable of calling RIs with different levels of stringency, we 

evaluated tool performance on a raw set of all potential RIs (all expressed introns detected by 

that tool) vs. the corresponding subset of introns called as RIs by that tool. Rather than 

improving overall performance by retaining persistent RIs and removing false positive ones, 

stringency filters improved precision at the expense of recall, with a slight corresponding 

improvement in F1-score across tools (Figure 4.3C, Supplementary Table S4.3). 

4.3.4. Short introns and introns that do not overlap exons are more reliably called 
 

We next compared the distributions of six intronic properties (length, position, exonic 

overlap, splice site motifs, U2- vs. U12-type spliceosomes, and uniformity of coverage by 

mapped reads) between the sets of true positive (TP), false positive (FP) and false negative (FN) 

RIs for each tool. Every tool except IRFinder-S had difficulty identifying shorter RIs (<600 

bases) (Figures 4.4A, 4.4B). FPs tended to be longer than either TPs or FNs, and were distributed 

more centrally within a transcript compared to persistent introns (both TPs and FNs) across all 

tools (Figure 4.4A, Supplementary Figure S4.12). Further, there was a relative 3’ bias for the 

small subset of FPs that were shared across all short-read tools, potentially reflective of the 

minimum coverage filters for most tools combined with sequencing coverage bias278 

(Supplementary Figure S4.13). As expected, the overwhelming majority of introns across all 

tools had canonical GT-AG splice motifs and splicing by the U2 spliceosome, while FNs showed 

increased frequencies of other motifs and spliceosome types relative to FPs and TPs 

(Supplementary Fig S4.14). 
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Figure 4.4: Properties of introns across detection truth categories. (A) Distributions of TP, FP, and 
FN RI properties across short-read detection tools. Panels contain boxplot distributions of intron length 
(top, log scale), relative position in transcript (middle), and % of intron bases with overlapping annotated 
exons (bottom) for each of five short-read tools (from left to right: IRFinder-S, superintronic, iREAD, 
KMA, IntEREst). Y-axes correspond to intron properties; each boxplot along the x-axis corresponds to 
the TP (green, left boxes), FP (pink, middle boxes), and FN (blue, right boxes) calls for HX1 (left) and 
iPSC (right). (B) Short-read tool performance vs. intron length. Panels depict precision (top), recall 
(middle), or F1-score (bottom) for five short-read tools applied to either HX1 (left) or iPSC (right). Tool 
performance (y-axis) for the subset of introns of a given length (x-axis) is colored by tool (red = 
IRFinder-S, yellow = superintronic, green = iREAD, purple = IntEREst, blue = KMA). (C.) Read 
coverage and exon overlap vs. position within an intron. LOESS-smoothed SR data (see Methods) show 
median log-scaled coverage (top row, y-axes) and fractions of introns with overlapping exons (bottom 
row, y-axes) as a function of position (x-axis, 5’ → 3’ on positive strand) for HX1 (left column) and iPSC 
(right column). Introns were grouped by truth category membership for at least 4/5 tools (colors, blue = 
FN, pink = FP, green = TP). 
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We also probed how much distributional uniformity of mapped read coverage across an 

intron (coverage “flatness” 215,217) and incidence of overlapping exons differed among TPs, FPs, 

and FNs. Coverage of FPs and to a greater degree FNs was nonuniform, where coverage 

decreased roughly monotonically from 5' to 3' intron ends. Coverage of TPs was comparatively 

uniform, where coverage was in general substantially lower than for FPs and FNs (Figure 4.4C, 

top two plots). Closer to their 5' ends, FNs were distinguished by their tendency to overlap exons 

(Figure 4.4C, bottom two plots). Indeed, for superintronic, iREAD, KMA, and IntEREst, the 

majority of FNs appear to be accounted for by overlapping exons (Figure 4.4A). Overlapping 

exons may thus be a key obstacle to improving recall of many short-read RI detection tools. 

4.3.5 Persistent introns or called RIs occur in genes with experimentally validated IR 

Finally, we searched the literature and third-party resources for independent evidence of 

persistent introns appearing in the HX1 and iPSC samples studied here. We examined RI 

presence in 9 genes (5 in HX1 and 7 in iPSC) that have experimentally validated IR from a 

variety of cell types and tissues (Supplementary Table S4.4).83,279–281 We found that intron 

retention across these 9 genes varied substantially by sample (no TP introns were observed in 

both HX1 and iPSC) (Figure 4.5). We also found significant variation between the set of RIs in 

these genes called by different short-read tools, with only a single TP intron in IGSF8 identified 

across all tools for iPSC (Supplementary Figure S4.15). Interestingly, the genes SRSF7 94,282 and 

AP1G2 283 appear to be generally enriched for persistent introns, potentially consistent with post-

transcriptional splicing.61,268  
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Figure 4.5: Short-read tool performance across nine genes with experimentally validated RIs. 
Comparison of short-read tool called RIs with introns detected in long-read data are shown as a pair of 
matrices for each of nine genes (AP1G2, CELF1, LBR, CLASRP, CTSD, SRSF7, IGSF8, FAHD2A, and 
FAHD2B). The rows in each matrix correspond to the results from each of five short-read tools (from top 
to bottom: 1: IntEREst, 2: iREAD, 3:IRFinder-S, 4: superintronic, 5: KMA) applied to either HX1 (top) 
or iPSC (bottom) data; columns correspond to all introns found across all annotated transcript isoforms of 
the indicated gene, ordered by left and then right genomic coordinates. Each cell in the matrix depicts the 
presence or absence of an intron in short-read and/or long-read data as a TP (green), FN (blue), FP (pink), 
and TN (peach) assessment; white boxes indicate introns found only in transcripts with <5 assigned long 
reads. Black outlines indicate the experimentally validated RI(s) in each gene. 
 

4.4 Discussion 

This is the first study to evaluate the quality of short-read RI detection using short- and 

long-read RNA-seq data from the same biological specimen. This study also establishes a novel 

metric capturing the persistence of an intron in a transcript as it is processed using deep long read 

RNA-seq, and it is the first to interrogate the potential effects of splicing progression during 
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transcript processing and spurious sources of intronic sequence. We find that short-read tools 

detect IR with poor recall and even worse precision, calling into question the completeness and 

validity of a large percentage of putatively retained introns called by commonly used methods. 

While our results indicate that it may be possible to improve precision slightly by applying 

expression filters to potential RIs, this appears to come at significant expense to recall. 

This work raises fundamental questions regarding how results from short-read RI 

detection tools should be interpreted. We have taken IR to mean the persistence of an intron in a 

transcript after processing is complete, in alignment with the biological literature on IR. Short-

read RI detection tools are commonly thought to identify such retained introns, with the 

assumption that poly(A) selection is sufficient to guarantee fully spliced and mature transcripts 

for sequencing; however, these tools are not inherently designed to distinguish intron retention 

from contaminating events such as partial transcript processing. This disconnect between how 

tool developers and tool users employ the same language may be responsible for false assertions 

in the published literature about which introns are retained. We note, for instance, that the 

prediction of putative neoepitopes arising from IR154–157,273 requires confidence in the detection 

of stable, persistent IR with a high likelihood of translation and a low likelihood of undergoing 

NMD, none of which is assured by short-read RI detection tools.  

Limitations of this work include the small number of biological specimens with matched 

short and deep long read RNA-seq available in the public domain, the lack of replicates of short-

read RNA-seq data in this setting, and the limited depth of the long-read sequencing data. As a 

result, we were unable to study the patterns of IR across tissue type and other distinguishing 

sample characteristics. We confined attention to introns that occur in genes with high coverage in 

both short and long read data, and did not address either confidence in IR as a function of read 
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depth or systematic biases in gene coverage as a function of sequencing platform. While an 

improvement, our intron persistence metric only partially accounts for admixed splicing patterns 

from different cell types in a mixed-cell sample such as HX1. Like other RI detection 

studies,75,81–83,150,154,157 our approach is explicitly linked to annotation (here, GENCODE v35) 

and therefore reports IR only relative to annotated transcripts, ignoring potential unannotated 

transcripts. We also did not explore the entanglement of biological and technical effects in the 

length of persistent introns: shorter introns are more likely to be retained,75,120,124 but the length 

limit of PacBio Iso-Seq reads of up to 10 kilobases means that any molecules with longer 

persistent introns were not considered in this study. Furthermore, we calculated length-weighted 

median expression to harmonize short-read tool outputs to LR intron ranges (Supplementary 

Figure S4.16), and this stringent approach may have inflated false negative rates in regions 

returning high expression magnitudes and variances. Finally, we were only able to evaluate a 

small subset of the tools available for short read-based RI detection, as many of these tools 

harbor substantial software implementation and reproducibility challenges. 

While there is evidence for cytoplasmic splicing, the phenomenon is rare in many tissues 

and cell types.60,62,271,272 It may be worth exploring the extent to which sequencing only 

cytoplasmic RNAs focuses attention on fully processed RNA transcripts in future work. 

4.5 Methods 

Identification of paired short- and long-read data 

Two advanced-search queries were performed on the Sequence Read Archive (SRA) 

(https://www.ncbi.nlm.nih.gov/sra) on July 13, 2021, and all experiment accession numbers were 

collected from the query results by downloading the resulting “RunInfo” csv files. For both 

searches, the query terms included organism “human,” source “transcriptomic,” strategy “rna 
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seq,” and access “public,” with platform varying between the two searches: “pacbio smrt” for the 

long-read query and “illumina” for the short-read query. The RunInfo files were merged and 

projects with both Illumina and PacBio sequencing performed on the same National Center for 

Biotechnology Information (NCBI) Biosample  (biological specimen) were identified. Due to 

relatively low sequencing depth of PacBio experiments, all projects with less than 20 PacBio 

sequencing runs were eliminated. PacBio experiments conducted on any PacBio platform earlier 

than RS II were also removed. Two remaining biosamples were chosen as data on which to test 

RI detection: 1) biosample SAMN07611993, an iPS cell line collected and processed by 

bioproject PRJNA475610, study SRP098984, with 1 short-read and 27 long-read runs,275 and 2) 

biosample SAMN04251426 (HX1), a whole blood sample collected and processed by bioproject 

PRJNA301527, study SRP065930, with 1 short-read and 46 long-read runs.274 (See the project 

repository at https://github.com/pdxgx/ri-tests for accession numbers.) 

Long-read data collection, initial processing, and alignment 

Raw Iso-Seq RS II data were downloaded from the SRA trace site (https:// 

trace.ncbi.nlm.nih.gov/Traces/sra), via the “Original format” links under the “Data access” tab 

for each run. These comprised three .bax.h5 files for both samples, with an additional .bas.h5 and 

metadata file for each HX1 run. For both samples, individual runs were processed separately as 

follows, with differences in handling of the two samples as noted. Subreads were extracted to 

BAM files from the raw movie files using bax2bam (v0.0.8). Circular consensus sequences were 

extracted using ccs (v3.4.0) with --minPasses set to 1 and --minPredictedAccuracy set to 0.90. 

Barcodes were removed from ccs reads and samples were demultiplexed with lima (v2.2.0). For 

HX1, the input barcode fasta files were generated from the Clontech_5p and NEB_Clontech_3p 

lines from “Example 1” primer.fasta (https://github.com/PacificBiosciences/IsoSeq/blob/master/ 



84 

isoseq-deduplication.md). For iPSC, forward and reverse barcode fasta files were downloaded 

from the study’s GitHub page (https://github.com/EichlerLab/isoseq_pipeline/tree/master/data) 

and merged into a single fasta file per the lima input requirements. Since lima generates an 

output file for each 5’-3’ primer set, these were merged using samtools merge (samtools and 

htslib v1.9). Demultiplexed reads were refined and poly-A tails removed using isoseq3 refine 

(isoseq v3.4.0) to generate full length non-concatemer (FLNC) reads. FLNC reads were 

extracted to fastq files using bedtools bamtofastq (bedtools v2.30.0), and aligned to GRCh38 

with minimap2 (v2.20-r1061) using setting -ax splice:hq. Sequence download and processing 

scripts, and alignment statistics, are available at https://github.com/pdxgx/ri-tests. 

Assignment of long reads to transcripts  

The long-read alignment files were parsed as follows. GENCODE v.3549 annotated 

transcripts’ introns, strand, and start/end positions were extracted from the gencode v.35 GTF 

file. Then for each aligned long read, spliced-out introns, strand and start/end positions were 

extracted using pysam (v.0.16.0.1, using samtools v.1.10).263,284 A set of possible annotated 

transcripts was generated, comprising transcripts for which the read’s set of introns exactly 

matched the annotated transcripts’ introns sets (“all introns”), or if no such transcripts were 

found, transcripts for which the read’s introns were a subset of the transcripts’ intron sets 

(“skipped splicing”). Then the best transcript match was chosen from the shortlist of potential 

matches as the transcript whose length most closely matched the read length. Some reads did not 

cover the full length of their best-matched transcripts, defined by the read alignment start and 

end position encompassing all introns in the annotated transcript (“full length”); in the case 

where not all intron coordinates were covered, these were labeled “partial” reads. 
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Intron persistence calculation 
 

Intron persistence was calculated only for every transcript that was assigned as the best 

match for at least 5 reads. We calculated persistence for each intron within these transcripts as 

the information density of the intron 𝑑! (i.e., the proportion of reads assigned to the transcript 

that cover intron 𝑖) multiplied by the mean of the product of three terms across all long reads 

assigned to that isoform: 

1) The retention, or presence, 𝑅&,! of a given intron 𝑖 is 1 if the read wholly contains 𝑖 or 0 if it is 

absent/spliced out as annotated in read 𝑟. 

2) The spliced fraction (𝑆𝐹&,!) for a given intron 𝑖 and read 𝑟 is defined as 

𝑆𝐹&,! 	= 	
12!′	'	3:	*",$′	5	0617*",$81	

|3|	8	1
      (4.3),  

where 𝐼 is the set of introns spanned by 𝑟 and 𝑅&,! is defined above. This fraction of spliced 

introns in a read, with the target intron excluded, represents the splicing progression of the read. 

A mature RNA molecule should tend to have fewer unspliced introns present than an RNA from 

the same transcript at an earlier point in splicing progression.  

3) The scaled Hamming similarity (𝐻&,!) for a given read 𝑟 and intron 𝑖 is defined as the 

average number of spliced or unspliced introns that match between the target read and other 

reads assigned to the transcript that have intron 𝑖 spliced the same as in read 𝑟, scaled to the 

number of introns in the isoform: 

𝐻&,! 	= 	
1

1{&′	'	(!:	*"′,$	5	*",$}1
⋅ 9∑ 		

{&′	'	(!:	*"′,$	5	*",$}
12!′	'	(3"′	∩	3"):	*"′,$′	5	*",$′61

|3"′	∩	3"|
:  (4.4),  

where 𝐼& is the set of introns spanned by 𝑟,	(𝐼&′ 	∩ 	𝐼&) is the set of introns covered by both 𝑟 and 

𝑟′, 𝑀# is the set of reads assigned as best matches to the same transcript as 𝑟 and span the target 
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intron 𝑖, and 𝑅&,!′ is as defined above. Any partial reads that are assigned to the transcript as a 

best match but do not span the target intron are not included in this calculation, and the scaled 

Hamming similarity between two reads is only calculated for introns covered by both reads. This 

term accounts for the stochasticity of splicing initiation and progression, since a collection of 

reads would be more likely to have a dissimilar pattern of unspliced introns if the splicing 

process remained incomplete. 

Persistence 𝑃!,#	  was calculated for each intron 𝑖 in a given transcript isoform (𝑡) as 

information density of the intron 𝑑! times the mean of the product of the three terms above per 

Equation (4.1). Since short reads are not assignable to specific transcripts or isoforms, and 

certain introns fully or partially recur across multiple transcripts, we set the intron persistence 

(𝑃!	) for a given intron 𝑖 as the maximum 𝑃!,#	  found for that intron across all transcripts in which 

it occurs per Equation (4.2). 

Alignment and BAM generation for short-read data 

FASTQs were previously generated by other groups using either Illumina’s NextSeq 500 

(iPSC,275 run id SRR6026510) or HiSeq 2000 (HX1,274 run id SRR2911306), and files were 

obtained from the SRA using the “fastq-dump” command from the SRA Toolkit software 

(v2.10.8). A STAR (v2.7.6a)200 index was generated based on the GRCh38 primary assembly 

genome FASTA (ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/ 

GRCh38. primary_assembly.genome.fa.gz) and GTF (ftp://ftp.ebi.ac.uk/pub/databases/gencode 

/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz) files from 

GENCODE version 35.49 Reads were aligned with STAR to this index using the                         

“--outSAMstrandField intronMotif” option. Primary alignments were retained for reads mapping 
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to multiple genome regions. SAM alignment files from STAR were converted to both sorted and 

unsorted BAM files using samtools (v1.3.1)263 sort and view, respectively. 

Additionally, for use with KMA,212 bowtie2 (v2.3.4.3)285 alignments were performed. 

Alignment statistics may be found in the project repository (https://github.com/pdxgx/ri-tests) 

and are summarized in Supplementary Figure S4.17. A FASTA file with intron sequences was 

generated based on the GRCh38 primary assembly genome FASTA and GTF files from 

GENCODE version 35 using the generate_introns.py script from the KMA package setting 0 bp 

for the extension flag. These intron sequences were combined with the GRCh38 transcript 

sequence FASTA file from GENCODE version 35 (ftp://ftp.ebi.ac.uk/pub/databases/gencode/ 

Gencode_human/release_35/gencode.v35.transcripts.fa.gz), and this combined FASTA was used 

to create a bowtie2 index. Reads were aligned to this index using bowtie2 according to 

specifications from KMA.286 To quantify expression from the Bowtie 2 alignments, eXpress 

(v1.5.1)287,288 was used. 

Selection of target gene subset 

Due to variable short- and long-read coverage across the genome, we selected a subset of 

genes to use for our test dataset to ensure adequate sequencing coverage for RI detection on both 

platforms. For the short-read data, we chose a coverage cutoff based on the requirements of the 

short-read RI detection tools used. The two tools with clear coverage requirements are iREAD, 

which requires coverage of 20 reads across an intron for RI detection, and superintronic, which 

requires 3 reads per region. Since these are short-reads (126 bases for iPSC and 90 for HX1) 

required over potentially long intronic regions, we chose a median gene-wide coverage 

(including both intronic and exonic regions) of 2 reads per base, ensuring either consistent 

coverage across the gene or high coverage in some areas. For the PacBio data, we selected 5 long 
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reads per gene, and at least 5 reads aligned to a single transcript of the gene, as giving enough 

information for comparing splicing progression and splicing patterns between reads. The target 

gene sets, 4,639 genes for iPSC and 4,369 for HX1, were chosen from the aligned data, naive to 

potential RI detection, and then for both short and long read data, the gene subset was applied as 

a filter after running metric calculations or RI detection by short read tools. Within these genes, 

only transcripts with at least 5 long reads were studied. 

Intron feature annotation 

For the set of target genes, transcripts with at least 5 long reads were selected for 

analysis. Features of each intron in these transcripts including intron lengths, splice motif 

sequences, relative transcript position, spliceosome category, and transcript feature overlap 

properties were extracted as follows. Length was calculated as the difference between the right 

and left genomic coordinates of the intron ends. Relative position within the transcript is an 

intron-count normalized fraction where 0 represents the transcript’s 5’ end and 1 represents the 

3’ end. Splice motifs were assigned to each intron by querying the GRCh38 reference genome 

with samtools faidx (samtools v.1.10) for the two coordinate positions at each end of the intron, 

and assigned to one of three canonical motif sequences (GT-AG, GC-AG, and AT-AC, and their 

reverse complements for - strand genes) or labeled as “other” for noncanonical motifs. Three 

feature overlap properties were studied: the total number of exons from other transcripts with any 

overlap of the intron region; the percent of intron bases with at least one overlapping exon from 

another transcript; and the maximum number of exons overlapping a single base in the intron. 

These were calculated by extracting all exon coordinates from the GENCODE v.35 annotation 

file, and using an interval tree to query each intron base position against the set of annotated 

exon coordinates. Spliceosome category was determined from recent U2 and U12 intron 
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annotations.269 BED files of U2 and U12 introns for GRCh38 were downloaded from the Intron 

Annotation and Orthology Database (https://introndb.lerner.ccf.org/) on 1/25/22. Introns were 

labeled “U2” or “U12” if they only overlapped ranges from one of either spliceosome category, 

and remaining introns were labeled “other”. 

Selection of short-read RI detection algorithms and identification of likely RIs 

We successfully downloaded and ran five IR-specific detection tools for short-read data 

on our remote server using the CentOS v7 operating system. To run superintronic, KMA, 

IntEREst, and iREAD, we used conda virtual environments (see https://github.com/pdxgx/ri-

tests). We ran IRFinder-S from a fully self-contained Dropbox image per the tool’s instructions 

(see below). IntEREst and superintronic are provided as R libraries which we ran from 

interactive R sessions, while iREAD, IRFinder-S, and KMA were run from command line, and a 

separate R package was used for RI detection for KMA. Outputs from all tools were read into R 

and harmonized to a single set of intron ranges after applying minimum coverage filters based on 

both short-read and long-read data. After running tools according to their provided 

documentation, we consulted literature and documentation on a tool-by-tool basis to devise 

starting filter criteria based on expression magnitude and other properties. We used these starting 

criteria to find the subset of most likely RIs, then we modified filter criteria to ensure filtered 

intron quantities were roughly one order of magnitude lower than unfiltered introns in both iPSC 

and HX1. 

IR quantification with IntEREst 

To run IntEREst (v1.6.2),214 the referencePrepare function from the package was used to 

generate a reference from the GENCODE version 35 primary assembly GTF file.49 This 

reference was used along with the sorted STAR BAM alignment from each sample to detect 
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intron retention with the interest function, considering all reads and not just those that map to 

junctions. We used the interest() function with the “IntRet” setting, which takes into account 

both intron-spanning and intron-exon junction reads and returns expression as a normalized 

fragments per kilobase of exon per million mapped fragments (FPKM). The filter FPKM >= 3, 

recommended for iREAD, left >90% of introns in both samples, so we increased the minimum 

filter to FPKM >= 45, and this retained (5038/32544 = ) 15% of introns in HX1 and (6832/21820 

= ) 31% of introns in iPSC (Supplementary Figure S4.10). 

IR quantification with keep me around (KMA) 

To run KMA,212 we used devtools to install a patched version of the software which 

resolves a bug unaddressed by the authors, available at https://github.com/adamtongji/kma. The 

read_express function was used to load expression quantification data output from eXpress, and 

the newIntronRetention function was used to detect intron retention. Returned intron expression 

was scaled as transcripts per million (TPM). We noted the recommended filters of unique counts 

>= 3 and TPM >= 1 left just 7.2% of introns in iPSC versus 19% in HX1, so we a less stringent 

filter of unique counts >= 10 for both samples, which left (6437/14155) 45% of introns in iPSC 

and (5089/20484) 25% of introns in HX1 (Supplementary Figure S4.10). 

IR quantification with iREAD 

To run iREAD (v0.8.5),76 a custom intron BED file was made from the GENCODE 

version 35 primary assembly GTF file using GTFtools (v0.6.9).289 The total number of mapped 

reads in each sorted STAR BAM alignment was determined using samtools, and used as input to 

the iREAD python script to detect intron retention. Intron expression was calculated as FPKM. 

To identify the most likely RIs, we applied previously published filter recommendations for 

entropy score (>= 0.9) and junction reads (>= 1). Since there were relatively few introns 
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remaining after applying published filters to the iPSC SR data (313/19316 = 1.6% versus 

583/7748 = 7.5% in HX1), we applied lower filters for FPKM (>= 1 versus 3) and read 

fragments (>= 10 versus 20) (Supplementary Figure S4.10). 

IR quantification with superintronic 

To run superintronic (v0.99.4),216 intronic and exonic regions were gathered from the 

GENCODE version 35 primary assembly GTF file49 using the collect_parts function. The 

compute_coverage function was used to compute coverage scores for each sample from sorted 

STAR BAM alignments, and the join_parts function was used to convert these scores to per-

feature coverage scores. Intron expression was returned as log2-scaled coverage, and we 

identified retained intron ranges as those overlapping long read-normalized ranges with LWM 

>= 3, per the expressed introns filter described in Lee et al.216 (Supplementary Figure S4.10). 

IR quantification with IRFinder-S 

We ran IRFinder-S v.2.0-beta using the Docker image obtained from https://github.com/ 

RitchieLabIGH/IRFinder. We prepared the IRFinder reference files using the Gencode v35 

genome sequence reference and intron annotations.49 Our analyses focused on the coverage and 

IRratio metrics, and the intron expression profile flags returned under warnings. Intron 

expression was returned as an IRratio, which is similar to percent spliced in (PSI), and we 

identified likely retained introns as having IRratio >= 0.5 without any flags per the methods in 

Lorenzi et al.217 (Supplementary Figure S4.10). 

Harmonization of intron retention metrics across algorithms and runs 

Prior to analysis, we harmonized algorithm outputs on intron ranges returned by analysis 

of available long read runs. We harmonized intron expressions from short read RI detection tools 
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to intron ranges remaining after long reads were uniquely mapped to transcript isoforms. For 

each short-read RI detection tool, we calculated the region median intron expression value after 

weighting values on overlapping range lengths (a.k.a. length-weighted medians [LWM]). 

Calculation of LWMs is shown for an example intron in Supplementary Fig S4.16. Inter-rater 

agreement among the output from different short-read algorithms was assessed by Fleiss’ 

kappa290 using the R package irr v.0.84.1.291 

Calculation of performances by intron length bins 

We calculated called RI performance metrics across five short-read tools for a series of 

overlapping intron length bins. In total, 41 bins were calculated for each sample by sliding 300 

bp-wide windows from 0 to 4300 bp lengths at 100 bp intervals. Plots were generated by 

computing LOESS smooths of the binned performance results. 

Calculation of normalized binned coverages  

We evaluated binned intron characteristics across intron truth metric categories for each 

sample. We assigned introns to truth categories if they were recurrent in that category for >=4 of 

5 short-read tools (e.g. an intron that was recurrent TP for four tools in iPSC, etc.). We then 

calculated the log10 median short-read coverage for 1,000 evenly-spaced bins per intron for each 

truth category. We further calculated percent of introns overlapping an intron for each bin using 

the GENCODE v35 GTF. Plots were generated by computing the LOESS smooths of the binned 

results.  

Comparison of detected RIs with circular RNA and validated RIs  

We downloaded a database of human circular RNAs from circbase276 (http:// 

www.circbase.org/download/hsa_hg19_circRNA.txt), most recently updated in 2017. We 
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extracted all cRNAs labeled with the “intronic” flag in the annotation column and performed a 

liftover of genomic coordinates for these cRNAs from hg19 to GRCh38 using the University of 

California Santa Cruz (UCSC) Genome Browser liftover tool (https://genome.ucsc.edu/cgi-bin/ 

hgLiftOver). For each sample, we determined the percent of introns overlapping at least one 

cRNA for the 4+ consensus truth metric groups TP, FP, and FN (i.e. TP introns in >= 4 tools). 

In order to test introns in this study against experimentally validated RIs, we identified 

wet lab studies in the literature that had first predicted, and then validated intron retention. We 

identified 4 such studies83,279–281 that validated a total of 9 RIs in our sets of target genes as 

defined above (5 and 7 in HX1 and iPSC respectively) (Supplementary Table S4.4). (The above 

four plus an additional ten60,79,88,292–298 studies experimentally validated RIs in an additional 6 

and 9 genes that were found in our target gene sets for in HX1 and iPSC respectively, but 

without evidence of IR in our samples, and 41 and 36 genes, respectively, that did not pass our 

sample coverage thresholds for inclusion in this study.) The validated intron coordinates 

(Supplementary Table S4.4) were extracted either from the published intron number,83,279,280 

assuming a count from the gene’s 5’ to 3’ end, or via BLAT queries of the target sequence281. In 

each sample and tool, we determined the truth status (TP, FP, TN, or FN) of all introns of all 

transcripts in the target gene for transcripts with >= 5 long reads. Adequate intron expression 

information was available in both samples for the genes LBR, CELF1, and AB1G2, but only one 

sample each for remaining genes.  
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Chapter 5: Conclusion 

5.1 Summary 

In this work, I explored the detection and validation of cancer- and sample-specific splice 

events from short-read RNA-seq data. I found that even large normal datasets such as GTEx do 

not fully represent the breadth of normal human splicing. Some tissues are not sampled by GTEx 

and so their tissue-specific junctions are not included; similarly, GTEx contains only adult 

samples and so does not include junctions specific to early developmental stages. Bulk tissue 

samples, such as skin, may not contain certain low-prevalence cell types such as melanocytes, 

and even though some melanocyte-specific junctions are present in the GTEx data, some are still 

neglected. I also found that the detection of cancer-specific junctions and associated peptides is 

highly sensitive to filtering methods and parameter values chosen, and that MS validation of 

these may have a high rate of false positives. Finally, I found that retained intron detection in 

short-read RNA-seq data is highly inconsistent, and the tools tested are each likely to call many 

introns that are not truly retained while missing true RIs. 

5.2 Future directions 

Many interesting experiments suggest themselves as extensions of this work. First, other 

types of publicly available data can be leveraged to explore validity of detected junctions or RIs 

or deepen our biological understanding of these. Ribosome profiling (RNA-seq performed on 

transcripts being actively translated) could provide another layer of insight on whether or not 

target junctions are translated, and the possibility of using peptides arising from target junctions 

for immunotherapy or other applications. Deep long-read RNA-seq would provide rich 

transcriptional context for understanding the association of aberrant splice sites within transcripts 

and allow for more accurate generation of junction-associated peptide sequence.299 Using, in 
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particular, longer reads than currently obtainable with PacBio Iso-Seq would provide a better 

scope of intron persistence across all introns. Paired nascent RNA-seq data would provide insight 

into co- and post-transcriptional splicing, and whether transcript- or gene-specific patterns exist, 

increasing understanding of potential transcript processing states in RI detection studies.  

Furthermore, all RI detection currently is linked to annotation, but the development of 

annotation-free RI detection would open up new frontiers of exploration. This could potentially 

involve observing occurrence and recurrence of short sequences, i.e. kmerizing sequenced reads 

from large normal datasets as well the target sample, and identifying and reassembling kmers 

occurring only in the target sample.  

Finally, many outstanding disease-specific questions remain, such as whether splicing 

changes in response to cancer treatment, which could be explored with pre- and post-treatment 

RNA-seq tumor data. As more RNA-seq data is eventually generated and becomes publicly 

available the scope of cancer-specific junction detection could be extended, with deeper 

exploration of cancer subtypes or stage-specific splicing. More data would also increase 

detection power for analyses such as observing the effect of splicing factor mutations on 

observed tumor junctions. Additional normal RNA-seq samples, such as the recently released 

GTEx v8 data (comprising >17,000 normal samples) will allow for increasingly detailed 

association of splicing with specific tissues and disease states. 

5.3 Concluding remarks 

The overall message of this dissertation is to urge caution when attempting to identify 

cancer- or sample-specific splicing from short-read RNA-seq data. In junction detection, many 

potentially cancer-specific junctions are simply rare in normal tissues or occur in normal tissues 



96 

not frequently sampled. This work also raises concerns about the confidence with which protein 

products of rare junctions can be detected with current methods and data. The high proportion of 

noncanonical splice motifs for splicing neoepitopes peptides validated by MS data indicates that 

either these are falsely called junctions, or that they represent modes of splicing significantly 

outside of current understanding; the former is a real possibility, especially with lowly-expressed 

junctions. Other mutations can also be misidentified as splicing by an aligner, such as the known 

long deletion of exons 2-7 in EGFR in GBM, identified as a junction in Chapter 2.1 For intron 

retention detection, uncertainties lie in the processing state of any given transcript, and 

convolution of overlapping annotated transcript features. Viewing transcript processing as a 

continuum instead of a set of binary states (fully processed or unprocessed) adds valuable nuance 

to RI detection that is currently not used in other RI detection studies.150,154,155 Altogether, a 

number of recent studies have confidently declared detection of neoepitopes arising from cancer-

specific junctions155,156,186,258 and intron retention154–156 from short-read RNA-seq data, supported 

by MS validation of associated peptides. I propose that these should be viewed with some lack of 

certainty based on the results set forth here.  

Ultimately, using long-read sequencing to examine transcript splicing context and reduce 

the probability of misalignment would add clarity and confidence to the detection of novel 

junctions and retained introns, and associated proteins.299 Current limitations of long-read 

sequencing experiments such as read length, sequencing quality, and cost will continue to be 

mitigated as technology improves.207  
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Supplementary Figure S2.1: Distribution and prevalences of TCGA cancer sample junctions. 
(A) Log-scale scatterplot showing no relationship between junction burden (number of junctions per 
sample scaled by mapped read count) and tumor mutational burden. Each point represents one TCGA 
sample, colored based on cancer type (as in Figure 1B and Supplementary Figures S1B and S1C). 
(B) Log-scale sorted strip plots representing the number of high-support junctions per sample for each of 
33 TCGA cancer types where each point is a single TCGA tumor sample and the width of each strip is 
proportional to the size of the cancer type cohort.156 High support requires junction coverage within a 
sample to be equivalent to at least 5 out of 100 million 100-base pair reads. The upper panel counts 
junctions not found in GENCODE annotation or in tissue-matched normal GTEx or TCGA samples 
(Supplementary Table S1); the lower panel counts junctions not found in GENCODE annotation or in any 
core normal samples, differing from Figure 1B in that here, GENCODE-annotated junctions are also 
removed and the coverage filter is applied. The gray bars highlight TCGA cancer types with no or few 
tissue-matched normal samples (Supplementary Table S1); note that there are orders of magnitude fewer 
GENCODE-annotated junctions than junctions found in tissue-matched normal samples, partially 
explaining the high values for THYM, CESC, UVM, and DLBC in the upper panel. 
(C) Log-scale scatter plot showing, for 33 TCGA cancer types, the number of junctions shared within 
each cancer-type cohort at each prevalence level, counting only junctions not found in any core normal 
samples. TCGA cancer type colors are as specified in Figures 1B, 2A, and S1B. Of interest with 
significant intra-cohort junction sharedness are, among others, ovarian carcinoma (tan), leukemia (pink), 
testicular germ cell tumors (red), and uveal melanoma (dark green). 
(D) Log-scale histogram showing inter-cancer sharedness of junctions not found in core normal samples. 
Most junctions occur in only one cancer type, but many are shared between 2 or more.  
(E) Log-scale box plots representing, for all TCGA cancer types individually, the prevalences within each 
cancer-type cohort of junctions occurring in at least 1% of cancer-type samples, separated into 
prevalences for (blue, left) junctions found in GTEx or TCGA tissue-matched normal samples 
(Supplementary Table S1); (green, center) junctions not found in tissue-matched normals but found in 
other core normal samples; and (yellow, right) junctions found in no core normal samples. Any junction 
found in multiple cancer types is represented by multiple data points, one for each cancer type in which it 
is found. Figure 1C condenses all data from this figure into one pan-cancer set. 
(F) Cancer specific splicing junctions in patients with and without splicing associated gene mutations: log 
count of junctions not found in any core normal samples for each patient are plotted (top) across each 
cancer type in TCGA. Within each cancer, boxplots represent either patients with mutations in UniProt 
annotated splicing-related genes (left) or patients without any related mutations (right). Overall 
prevalence of relevant mutations in splicing-related for each cancer type are plotted below.  
(G) Presents data in the same manner as E, but with comparison between patients with mutations only in 
genes described in the TCGA splicing paper156 vs all other patients. 
(H) Analysis of junction sharedness for patients within mutational cohorts: for each cancer, junctions not 
found in core normal samples are plotted based on sharedness across all patients in the cancer cohort (y-
axis) compared to deviation from expected sharedness (estimated odds ratio (log scale) based on Fisher’s 
exact test) for only patients with mutations in UniProt annotated splicing-related genes (x-axis).  
(I) Presents data in the same manner as G, but with deviation from expected sharedness calculated only 
for patients with mutations in genes described in the TCGA splicing paper156. We found that no specific 
junctions show significantly enriched sharedness in patients carrying relevant mutations (Fisher’s exact 
test FDR > 0.05 for all in both A and B), however there is a consistent shift towards higher than expected 
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sharedness across the majority of cancers for patients carrying at least one of the mutations defined by the 
TCGA splicing paper.156 
(J) Comparison of TCGA-cohort prevalence of junctions occurring vs. not occurring in SRA cancer 
samples: log-scale box plots representing, for selected TCGA cancer types, the prevalences within each 
cancer-type cohort of junctions occurring in at least 1% of cancer-type samples, separated into 
prevalences for junctions (orange, left) found or (blue, right) not found in type-matched cancer sample(s) 
from the SRA. Selected TCGA cancer types are those for which cancer-matched SRA sample junctions 
are available from Snaptron 238 and at least 50 TCGA cancer junctions not found in core normal samples 
are present in the cancer-type matched SRA samples. Most junctions are TCGA-specific, but junctions 
that are also found in a type-matched SRA cancer cohort have on average higher TCGA-cohort 
prevalences. 
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(B) 

 
Supplementary Figure S2.2: Similarity of TCGA junctions and non-cancer SRA junctions. 
(A) Clustering by cohort prevalence of junctions not found in core normal samples: heatmap showing 
shared junction prevalences across all TCGA cancer types and associated histological subtypes with at 
least 20 samples. The clustered junctions are the 200 most prevalent junctions of each cancer type or 
subtype that are at least 1% prevalent in that subtype and are not found in any core normal samples but 
are found in at least one of the 22 non-cancer tissue and cell type SRA samples. Each heatmap row 
represents a junction’s prevalence in each of the TCGA and SRA sample-type cohorts. The colorbar 
beneath the plot shows SRA tissue and cell types colored according to their assigned categories 
(Supplementary Table S3), where white represents adult normal samples, light gray represents stem cell 
samples, and darker gray represents developmental samples. 
(B) Samplewise comparison of junctions from TCGA melanoma samples and select normal samples: 
boxplots showing the percent of junctions shared for every pairwise combination of TCGA melanoma 
tumor samples with (brown) TCGA melanoma tumor samples, (grass green) the single TCGA melanoma 
paired normal sample, (pink) SRA normal melanocyte samples (see Supplementary Tables S1 and S3), 
and (blue) GTEx normal skin samples. The percent of junctions shared between two samples is given by 
%	𝑠ℎ𝑎𝑟𝑒𝑑	 = 	 (𝑠𝑒𝑡	𝐴	&	𝑠𝑒𝑡	𝐵)	/	𝑚𝑖𝑛(𝑙𝑒𝑛(𝑠𝑒𝑡	𝐴), 𝑙𝑒𝑛(𝑠𝑒𝑡	𝐵)), where a set comprises all junctions 
identified in the single cancer or normal sample. TCGA melanoma cancer samples have on average a 
greater similarity of junctions to SRA normal melanocyte samples than to GTEx or TCGA bulk skin 
normal samples. 
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Supplementary Figure S2.3: Distribution of junctions not found in core normal samples and 
unexplained junctions.  
(A) Expanded junction set assignments in normal tissue and cell type categories from the Sequence Read 
Archive, across cancers: upset-style plot with bar plots showing junction abundances across major sets 
and subsets (left) and set overlaps (top) across 33 cancers (error bars). Shown junctions are absent from 
all core normals. Unexplained junctions (red highlights) comprise junctions not present in any set 
categories studied (see also Figure 3A). The developmental set comprises human development-related 
junctions not present in the category placenta. Scale is log10 of percent of junctions not found in core 
normals, calculated for each cancer. 
(B) Analysis of inter- and intra-cancer sharedness of stage-3+ “unexplained” junctions: log-scale box 
plots as in Supplementary Figure S1J but including only stage-3+ unexplained junctions not found in core 
normal samples or selected SRA normal adult, developmental, or stem cell samples (Table 1). Plots are 
presented for TCGA cancer types for which cancer-matched SRA sample junctions are available from 
Snaptron 238 and at least 30 unexplained junctions are present in the cancer-type matched SRA samples. 
Prevalences are given within each cancer-type cohort of junctions occurring in at least 0.5% of cancer-
type samples, separated into prevalences for junctions (orange, left) found or (blue, right) not found in 
type-matched cancer sample(s) from the SRA. For all cancer types except DLBC, most junctions are 
TCGA-specific, but junctions that are also found in a type-matched SRA cancer cohort have on average 
higher TCGA-cohort prevalences.  
(C) Log-scale scatter plot showing, for 33 TCGA cancer types, the number of level-3+ unexplained 
junctions shared within each cancer-type cohort at each prevalence level as in Figure Supplementary S1C. 
TCGA cancer type colors are as specified in Figures 1B, 2A, and S1B. Again, among others, ovarian 
carcinoma (tan), leukemia (pink), testicular germ cell tumors (red), and uveal melanoma (dark green) 
have significant intra-cohort junction sharedness. 
(D) Log-scale histogram showing inter-cancer sharedness of stage-3+ unexplained junctions as in 
Supplementary Figure S1D. Again, most junctions occur in only one cancer type, but many are shared 
between 2 or more.  
(E) Upset-style plot with bar plots showing junction abundances across major sets (left) and set overlaps 
(top) across 33 cancers (error bars); similar to Figure 3A, but presence in 2 samples across the SRA 
sample-type category is required for inclusion in a set. Shown junctions are absent from all core normals. 
Unexplained junctions (red highlights) comprise junctions not present in any set categories studied. The 
developmental set comprises human development-related junctions not present in the category placenta. 
Scale is log10 of percent of junctions not found in core normals, calculated for each cancer. 
(F) Upset-style plot with bar plots showing junction abundances across major sets and subsets (left) and 
set overlaps (top) across 33 cancers (error bars); similar to Figure 3A, but presence in 2 samples across 
the SRA sample-type category is required for inclusion in a set. Shown junctions are absent from all core 
normals. Unexplained junctions (red highlights) comprise junctions not present in any set categories 
studied. The developmental set comprises human development-related junctions not present in the 
category placenta. Scale is log10 of percent of junctions not found in core normals, calculated for each 
cancer. 
(G) Survival curve for patients with or without the target high-prevalence antisense MSLN junction of 
interest (chr16;766903;768491;-), censored at last registered follow-up appointment. 
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Supplementary Table S2.1: Sources and counts of tumor and tissue-matched normal samples. 
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Supplementary Table S2.2: Percent of junctions not found in core normal samples, averaged across 
cancer types 

SRA category: Adult Developmental Stem Cells Unexplained 

Number of samples per SRA category  
required for set membership 

1 26.5% 15.4% 2.7% 64.9% 

2 19.6% 5.92% 2.2% 76.4% 

  



132 

Supplementary Table S2.3: Selection of additional normal tissue and cell types analyzed 

SRA cell  
or tissue type 

Sample types 
(abbreviation: # of samples) 

Assigned category > subcategory  
(if applicable) 

Aorta tissue (aor_tis: 266) adult 

Astrocyte cell line (ast_cl: 4), 
 primary cells (ast_pc: 83) 

adult 

Biliary Tree combined group of tissue (4 samples)  
and stem cells (3 samples) (bt_all: 7) 

adult 

Bone cell line (bone_cl: 20), tissue (bone_tis: 58) adult 

Ectoderm cell line (ect_cl: 17) developmental > embryonic 

Embryo cell line (emb_cl: 929), primary cells (emb_pc: 904), 
stem cells (emb_sc: 34), tissue (emb_tis: 989) 

developmental > embryonic 

Epithelial Cell 
 

cell line (ec_cl: 853), primary cell (ec_pc: 621) adult 

stem cells (ec_sc: 57) stem cells 

Eye cell line (eye_cl: 42), primary cell (eye_pc: 4),  
tissue (eye_tis: 53) 

adult 

Fallopian Tube tissue (ft_tis: 13) adult 

Fibroblast 
 

cell line (fb_cl: 1660), primary cell (fb_pc: 351) adult 

stem cells (fb_sc: 9) stem cells 

Glial Cell cell line (gc_cl: 10), primary cells (gc_pc: 136) adult 
 

Hematopoietic Cell cell line (hpc_cl: 603), primary cell ( hpc_pc: 2679) adult 

stem cells (hpc_sc: 18) stem cells 

Hepatocyte cell line (hep_cl: 7), primary cell (hep_pc: 77) adult 

Induced Pluripotent  
Stem Cell 

cell line (ips_cl: 139) stem cells 

Islet of Langerhans cell line (ilh_cl: 3), primary cell (ilh_pc: 285) adult 

Leukocyte cell line (lk_cl: 370), primary cell (lk_pc: 2178) adult 

Lymphocyte cell line (lym_cl: 255), primary cell (lym_pc: 1073) adult 

Macrophage cell line (mph_cl: 19), primary cell (mph_pc: 130) adult 

Melanocyte cell line (mel_cl: 22), primary cell (mel_pc: 8) adult 
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Mesenchymal Stem 
Cell 

stem cells (msc_sc: 65) stem cells 

Mesenchyme stem cells (mes_sc: 19) stem cells 

Mesothelium cell line (mes_cl: 4) adult 

Myeloid Cell cell line (myl_cl: 29), primary cell (myl_pc: 794) adult 

Myoblast cell line (myo_cl: 7), primary cell (myo_pc: 402) developmental > embryonic 

Neonate cell line (nn_cl: 250), primary cell (nn_pc: 105),  
tissue (nn_tis: 21) 

developmental > fetal 

Oligodendrocyte primary cell (odg_pc: 37) adult 

Oocyte primary cell (ooc_pc: 11) developmental > oocyte 

Placenta tissue (plc_tis: 264) developmental > placental 

Platelet primary cell (plt_pc: 6) adult 

Pluripotent Stem 
Cell 

cell line (pps_cl: 139), stem cells (pps_sc: 6) stem cells 

Somatic Stem Cell stem cells (ssc_sc: 86) stem cells 

Thymus primary cell (thym_pc: 20), tissue (thym_tis: 119) adult 

Zygote primary cell (zyg_pc: 27) developmental > zygote 
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Supplementary Table S2.4: Unexplained junctions occurring in >10% of samples in multiple cancer 
types 
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Supplementary Table S2.5: Junction counts and ratio of antisense junctions for TCGA cancer types 
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Supplementary Table S2.6: Genes not currently cancer-associated with high novel junction burdens 
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Supplementary Figure 3.1: Effect of filter steps on remaining 9-mer counts in log10 scale. Each line 
represents the number of initial junction-spanning 9-mers generated for each sample at the far left and the 
number of 9-mers remaining (y-axis, log scale) for each filter experiment after each filter stage (x-axis). 
Lines are colored by the sample type and pipeline (green = GP on BRCA samples, pink = JP on BRCA 
samples, blue = JP on OV samples). 
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Supplementary Figure 3.2: Effect of JP filters on final 9-mer count for BRCA samples. For samples 
(A) TCGA-A2-A0D2, (B) TCGA-A2-A0SX, (C) TCGA-AO-A0JM, and (D) TCGA-BH-A18V. Each 
vertical axis except the rightmost represents one filter, with its parameter options arranged from most 
stringent (bottom) to most lenient (top). Each colored line represents one JP filter experiment, with its 
path passing through the filters parameters it uses and its color mapped to the final number of 9-mers 
passing the full set of filters (yellow == low, purple == high). The rightmost axis shows final filtered 9-
mer counts for each filter experiment, with each filter experiment colored line terminating at its final 
value. Floating gray boxes show, across experiments passing through the corresponding filter parameter, 
the mean of the ratio of remaining 9-mers after that filter parameter has been applied to the total initial 
generated 9-mers for the sample. 
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Supplementary Figure 3.3: Aggregate effect of JP filter parameters on filtered 9-mer count across 
BRCA samples. Panels contain boxplots of filter experiment results, with each point representing the 
filtered 9-mer count (y-axis) for one filter experiment and one sample (within-panel boxplot sets, left to 
right, TCGA-BH-A18V, TCGA-A2-A0SX, TCGA-A2-A0D2, TCGA-C8-A12P, and TCGA-AO-A0JM). 
Each panel represents the same data, with boxplots broken out according to parameter options used for 
each filter type, top to bottom, the minimum expression (normalized read count) in the target sample; the 
normal filter cohort used; the maximum number of normal samples allowed with junction expression; the 
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maximum expression (normalized read count) per normal sample; the minimum number of cancer cohort 
samples with junction support; the minimum number of reads required per cohort sample; and the 
canonical motif filter. Within each panel, the box color saturation corresponds to filter leniency (the 
lightest color represents the most stringent parameter and the darkest color is the most lenient value). 
 
 
 
 

 
Supplementary Figure 3.4: Proportion and overlap of TCGA-AO-A0JM 9-mers predicted by two 
pipelines. Bars show proportion of generated 9-mers (“kmers”) retained by the JP (top panel) and GP 
(bottom panel) after filtering for each of the subset of experiments that include the core GTEx normal 
cohort and no motif filter; experiments are sorted by most to fewest 9-mers output by the JP. Blue 
indicates 9-mers present after JP filtering only, red shows 9-mers present after GP filtering only, and 
green on top and bottom shows the shared 9-mers present across both pipelines after filtering for each 
experiment. 
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Supplementary Figure 3.5: Aggregate effect of JP filter parameters on validated 9-mer counts and 
validation ratios across BRCA samples. Panels contain boxplots of filter experiment results, with each 
point representing, in the left column, the validated k-mer count and in the right column, validation ratio 
(y-axis) for one filter experiment and one sample (within-panel boxplot sets, left to right, TCGA-BH-
A18V, TCGA-A2-A0SX, TCGA-A2-A0D2, TCGA-C8-A12P, and TCGA-AO-A0JM). Each panel 
represents the same data, with boxplots broken out according to parameter options used for each filter 
type, top to bottom, the minimum expression (normalized read count) in the target sample; the normal 
filter cohort used; the maximum number of normal samples allowed with junction expression; the 
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maximum expression (normalized read count) per normal sample; the minimum number of cancer cohort 
samples with junction support; the minimum number of reads required per cohort sample; and the 
canonical motif filter. Within each panel, the box color saturation corresponds to filter leniency (the 
lightest color represents the most stringent parameter and the darkest color is the most lenient value). 
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Supplementary Figure 3.6: Effect of JP filter parameters on validated and filtered junction peptide 
counts across BRCA samples. Panels contain scatter plots of filter experiment results, with each point 
representing the number of validated junction 9-mers (y-axis) vs. the number of predicted (filtered) 
junction 9-mers for one filter experiment. Panel columns represent samples, left to right, TCGA-AO-
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A0JM, TCGA-BH-A18V, TCGA-A2-A0D2, TCGA-A2-A0SX, and TCGA-C8-A12P, with each column 
panel showing the same data but colored according to parameter options used for each filter type. Rows 
top to bottom show the minimum expression (normalized read count) in the target sample; the maximum 
number of normal samples allowed with junction expression; the maximum expression (normalized read 
count) per normal sample; the minimum number of cancer cohort samples with junction support; and the 
minimum number of reads required per cohort sample. Within each panel, the point color saturation 
corresponds to filter leniency (the lightest color represents the most stringent parameter and the darkest 
color is the most lenient value). 
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Supplementary Figure 3.7: Effect of JP filters on validated 9-mer count and validation ratios for 
BRCA samples. For samples (A) TCGA-AO-A0JM and (B) TCGA-BH-A18V, each vertical axis except 
the rightmost represents one filter, with its parameter options arranged from most stringent (bottom) to 
most lenient (top). Each colored line represents one filter experiment, with its path passing through the 
filters parameters it uses and its color mapped to its validated 9-mer count (top) and validation ratio 
(bottom) (yellow == low, purple == high). The rightmost axis shows validated 9-mer count (top) and 
validation ratio (bottom) for each filter experiment, with each filter experiment colored line terminating at 
its final value. Floating gray boxes show, across experiments passing through the corresponding filter 
parameter, the mean of the ratio of remaining 9-mers after that filter parameter has been applied to the 
total initial generated 9-mers for the sample. 
 
 
 
 
 

 
Supplementary Figure 3.8: Tryptic peptide counts per sample resulting from the JP and the GP. 
Left, all tryptic peptides generated by the JP filter experiments (y-axis) and GP filter experiments (x-axis) 
for each of 5 BRCA samples, indicated by color and shape (legend). Right, the unique set of tryptic 
peptides generated by the JP filter experiments (y-axis) and GP filter experiments (x-axis) for each of 5 
BRCA samples, with point color and shape matched to the left panel. 
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Supplementary Figure 3.9: Aggregate effect of GP filter parameters on validated junction peptide 
counts and validation ratios across BRCA samples. Panels contain boxplots of filter experiment 
results, with each point representing, in the left column, the validated junction peptide count and in the 
right column, validation ratio (y-axis) for one filter experiment and one sample (within-panel boxplot sets, 
left to right, TCGA-BH-A18V, TCGA-A2-A0SX, TCGA-A2-A0D2, TCGA-C8-A12P, and TCGA-AO-
A0JM). Each panel represents the same data, with boxplots broken out according to parameter options 
used for each filter type, top to bottom, the minimum expression (normalized read count) in the target 
sample; the maximum number of normal samples allowed with junction expression; the maximum 
expression (normalized read count) per normal sample; the minimum number of cancer cohort samples 
with junction support; and the minimum number of reads required per cohort sample. Within each panel, 
the box color saturation corresponds to filter leniency (the lightest color represents the most stringent 
parameter and the darkest color is the most lenient value). 
 



150 

 
Supplementary Figure 3.10: Effect of GP filter parameters on validated and filtered junction 
peptide counts across BRCA samples. Panels contain scatter plots of filter experiment results, with each 
point representing the number of validated junction peptides (y-axis) vs. the number of predicted (filtered) 
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junction peptides for one filter experiment. Panel columns represent samples, left to right, TCGA-AO-
A0JM, TCGA-BH-A18V, TCGA-A2-A0D2, TCGA-A2-A0SX, and TCGA-C8-A12P, with each column 
panel showing the same data but colored according to parameter options used for each filter type. Rows 
top to bottom show the minimum expression (normalized read count) in the target sample; the maximum 
number of normal samples allowed with junction expression; the maximum expression (normalized read 
count) per normal sample; the minimum number of cancer cohort samples with junction support; and the 
minimum number of reads required per cohort sample. Within each panel, the point color saturation 
corresponds to filter leniency (the lightest color represents the most stringent parameter and the darkest 
color is the most lenient value). 
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Supplementary Table 3.1: JP annotation and summary across cancer types, for junctions and 9-
mers. 

 
 
 
 
Supplementary Table 3.2: Summary of JP junction translation across cancer types. 

 
 
  



153 

Supplementary Table 3.3: Mutual GP and JP junctions and translation across BRCA samples. 

 
 
Supplementary Table 3.4: Annotation and motif summary for JP filtered junctions and 9-mers. 
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Supplementary Table 3.5: Annotation and motif summary for JP junctions and 9-mers validated in 
BRCA. 
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Supplementary Figure S4.1: Progression of transcription and splicing. Diagram depicts successive 
steps in transcript processing which progress from top to bottom. At the top is shown the presumed 
canonical transcript isoform with its expected splice pattern, followed by pre-mRNA processing steps, 
which branch between transcription by RNA polymerase II, co-transcriptional splicing (CTS), intron 
persistence, and poly(A) addition. At the bottom are the possible mature mRNA endpoints, including 
results from post-transcriptional mRNA splicing (PTS) and processing, which include translation and 
nonsense-mediated decay (NMD). Arrows are labeled with the events they represent, where arrow width 
sizes indicate their expected event frequencies Diagram created with BioRender.com.   
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Supplementary Figure S4.2: Short- and long-read coverage of genes by sample. The maximum 
number of long reads assigned to one transcript of each gene (y-axis) vs. the median short-read coverage 
per base across the entire gene (x-axis) for HX1 (red) and iPSC (blue) samples, in log scale. The vertical 
line represents the minimum median short-read coverage (2) and the horizontal line represents the 
minimum total long read coverage per transcript (5) required for a gene to be included in our analysis; 
genes considered are in the upper left segment of the plot. 
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Supplementary Figure S4.3: Distribution of intron persistence values for introns in HX1 and iPSC 
samples. For introns included in both sample studies, bottom left quadrant represents introns with no 
persistence across both samples (73.8%), upper left represents introns with persistence in iPSC but not 
HX1 (6.7%), bottom right represents introns with persistence in HX1 but not iPSC (8.6%), and upper 
right is a scatterplot of persistences in iPSC (y-axis) vs. HX1 (x-axis) for introns with persistence in both 
(10.9%). 
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Supplementary Figure S4.4: Splicing similarity between samples. Heatmaps of splicing patterns for a 
selection of matched transcripts between HX1 and iPSC. Each subplot shows data for one transcript in 
HX1 (left) and iPSC (right) with rows representing transcript-matched long reads and columns 
representing transcript introns in 5’-->3’ order. Transcripts were selected from a subset with 5–20 
matched long reads in each sample and 5–20 introns. Dark green indicates a spliced out intron in a given 
read, light green indicates a retained intron, and white indicates no coverage of the intron in the read. 
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Supplementary Figure S4.5 Correlations between intron expression values output by short-read 
tools. (A) Pairwise correlations among the intron expression values output by five short-read tools. Each 
element in this heatmap depicts the correlation in intron expression values (Spearman’s test) between the 
indicated pair of short-read tools, as labeled along the x- and y-axes. Cell text indicates Spearman 𝞺 
coefficient, with corresponding color value obtained by the color gradient scale shown (from white to 
orange). Cell outline color indicates the sample for which inter-tool correlation was assessed (iPSC [top 
left] and HX1 [bottom right] are outlined in blue and red, respectively). (B) Intron expression scatter plots 
between all SR IR-detection tool pairs (lower and upper triangles of plot grid) and density plots for each 
of the five individual tools (diagonal plot grid) for HX1. (C) Intron expression scatter plots between all 
SR IR-detection tool pairs (lower and upper triangles of plot grid) and density plots for each of the five 
individual tools (diagonal plot grid) for iPSC. 
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Supplementary Figure S4.6: cRNA overlap of called RIs. Barplots quantify the percent of called RIs 
(y-axes/bar heights) overlapping cRNAs are shown for 5 short-read tools (x-axes/bar colors, purple = 
IntEREst, blue = KMA, green = iREAD, yellow = superintronic, red = IRFinder-S), grouped by sample 
(rows/titles, top HX1, bottom iPSC). 
 
 

 
Supplementary Figure S4.7: Correlation of short-read expression with intron properties. Heatmap 
color fills and text show the Spearman ρ (purple = negative, white = near zero, orange = positive) 
between intron expression at five short-read tools (columns) and five continuous intron properties (rows), 
for samples HX1 (left heatmap) and iPSC (right heatmap).  
      
     
    
   
 
 



162 

 
Supplementary Figure S4.8: Association of intron persistence with transcript position. Scatterplots 
of intron persistence vs. position within a transcript for HX1 (left, red), iPSC (right, blue). Each point 
represents one or more introns, with point size representing the number of points at each coordinate. 
Intron position is an intron-count normalized fraction where 0 represents the transcript’s 5’ end and 1 
represents the 3’ end. Plotted lines show the linear fit with equations shown in the inset legends. 
 
 

 
Supplementary Figure S4.9: Set overlaps of persistent introns and called RIs. Upset plots showing 
overlaps of sets of short-read called RIs and long read persistent introns for iPSC (above, blue) and HX1 
(below, red). Sets of true positive persistent introns are highlighted in green for iPSC (above) and orange 
for HX1 (below). 
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Supplementary Figure S4.10: Potential vs. called RI set sizes across short-read detection tools. For 
HX1 (left) and iPSC (right), counts of all potential (calculated nonzero expression) RIs (dotted hatch, left 
for each tool) and called (filtered) RIs (no hatch, right for each tool) for each SR detection tool (IRFinder-
S, red; superintronic, yellow; iREAD, green; KMA, blue; IntEREst, purple). 
 

 
Supplementary Figure S4.11: Performance summaries across persistence cutoffs. Scatter plots of 
precision (y-axes) vs. recall (x-axes), and barplot of F1-scores (y-axes), for samples HX1 (left plots) and 
iPSC (right plots). Colors indicate short-read RI detection tools (red = IRFinder-S, yellow = superintronic, 
green = iREAD, purple = IntEREst, blue = KMA). Centroids and whiskers indicate the measure medians 
and interquartile ranges across persistence cutoffs varied from 0.1 to 0.9 at 0.1 intervals (Methods).  
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Supplementary Figure S4.12: Intron properties by truth category for potential called RIs, length 
(top), position along the direction of transcription (0 = 5’, 1 = 3’) and % of bases with an overlapping 
annotated exon vs. TP, FP, and FN calls for HX1 and iPSC via potential RIs (darker) and called RIs 
(lighter), at long read persistence of 0.1 for 5 short read tools.  
 

 
Supplementary Figure S4.13: Distribution of intron properties for shared false positive introns. 
(FPs) called across all five SR tools. Properties are, left to right, intron length in # of bases (log scale), 
transcript position, and % of bases with overlapping exons, for, in each panel, HX1 (left, red) and iPSC 
(right, blue). 
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Supplementary Figure S4.14: Distributions of binned intron properties by truth category. Barplots 
of intron counts (left column) and percentages (right column) across unique levels (fill colors indicated in 
legends) for binned intron properties (plot titles). Results were binned by sample group types (columns, 
either HX1, iPSC, or the background of all unique introns) and intron 4+ truth metric categories TP, FP, 
and FN (ribbon labels, e.g. intron was TP in at least 4 tools for iPSC, etc.). Qualitative properties were 
binned by the top three most frequent levels (e.g. “intron type annotation” and “motif binned”), and 
quantitative properties were binned using the 50th quantile cutoff (e.g. “length”, total overlapping features 
or “tof,” max features per base or “mfb,” and bases overlapped or “bol”).  
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Supplementary Figure S4.15: Intron abundance by truth category across genes with validated RIs. 
Barplots show intron counts and percentages (y-axes) grouped by short-read tool (x-axes), gene (titles), 
for samples HX1 (left two plot columns) and iPSC (right two plot columns). Bar color fills indicate the 
short-read tool-specific truth category (green = TP, pink = FP, blue = FN).  
 
 



167 

 
 
Supplementary Figure S4.16: Example length-weighted median expression (LWM) at intron 
chr1:29053313-29064981. Intron expression (y-axes) is shown for genomic coordinates (x-axes), where 
expressed regions are represented by semi-transparent black rectangles which overlap the target intron. 
Results are grouped by each of the five short-read tools studied, and the LWM value calculated for each 
tool is shown in the plot titles and horizontal red lines.  
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Supplementary Figure S4.17: Processing and alignment quality control. Results (y-axes, fill colors) 
across long-read (A-B) and short-read (C-F) data runs for the samples HX1 and iPSC (x-axes) as follows. 
(a) LIMA quality among long-reads. Barplot y-axes quantify long-read counts (left) and percentages 
(right) relative to the quality threshold (blue = above, pink = below), where medians across all runs are 
shown for iPSC. (b) LIMA flags among long-reads. Barplot y-axes quantify long-reads, where bar colors 
and x-axes indicate one of the five quality flags (magenta = below minimum length or “minlen”, blue = 
undesired 5-prime 5-prime pairs as “undesired5p5ppairs”, green = below reference span as “minrefspan”, 
yellow = undesired 3-prime 3-prime pairs as “undesired3p3ppairs”, and pink = below minimum end score 
as “minendscore”). (c) Unique mapping among STAR-aligned short-reads. Barplot y-axes quantify short-
read counts (left) and percentages (right) by mappability (blue/1 = uniquely mapping, pink/0 = not 
uniquely mapping). (d) Annotation among STAR-aligned short-reads. Barplot y- axes as in (c) with color 
indicating annotation (blue/1 = annotated, pink/0 = not annotated). (e) Alignment counts among bowtie2-
aligned short-reads. Barplot y-axes as in (c), where bar colors show alignment counts (blue = > 1 times, 
green = 1 time, pink = 0 times). (f) IRFinder-S flag quantities. Barplot y-axes as in (c), where bar colors 
show flag (magenta = low coverage as “LowCover”, blue = none, green = non-uniform intron coverage as 
“NonUniformIntronCover”, yellow = minor isoform presence as “MinorIsoform”, pink = low splicing as 
“LowSplicing”).  
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Supplementary Table S4.1. Sample & run availability by platform. 

Sample iPSC HX1 

Type Induced pluripotent stem cell line Whole blood (non-cancer) 

Biosample ID SAMN07611993 SAMN04251426 

SRA Study ID SRP098984 SRP065930 

Long read platform PacBio Iso-Seq RSII PacBio Iso-Seq RSII 

Size fractionated No Yes 

Iso-Seq runs 27 46 

Aligned long reads 839,558 945,180 

Short-read platform Illumina NextSeq 500 Illumina HiSeq 2000 

Short read runs 1 1 

Aligned short reads (% uniquely aligned) 91,330,785 (59%) 24,463,210 (88%) 
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Supplementary Table S4.2 Performance metrics for called RIs across persistence thresholds. 

 
* Green indicates the highest value per threshold and sample for each metric. 
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Supplementary Table S4.3A. Counts and performance metrics of called iPSC RIs.
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Supplementary Table S4.3B. Counts and performance metrics of called HX1 RIs. 
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Supplementary Table S4.3C. Counts and performance metrics of all potential iPSC RIs. 
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Supplementary Table S4.3D. Counts and performance metrics of all potential HX1 RIs. 
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Supplementary Table S4.4 Properties and sources of experimentally validated RIs studied. 

Gene 
name Source Intron coordinates Discovery 

assay 
Validation 

assay 
Disease or  
cell type 

association 

Coverage 
in 

samples 

Sample 
intron 

persistence 

AP1G2 Jeong 
2021279 

chr14:23565702-23565815 
(intron 5) 

short-read 
RNA-seq RT-PCR mesenchymal 

stem cell 
HX1,  
iPSC 

0.06,  
0 

CELF1 Li  
2021281 

chr11:47478953-47482694 
chr11:47478941-47482694 

short-read 
RNA-seq Nanostring Alzheimer’s 

disease 
HX1, 
 iPSC 0, 0 

CLASRP Li 
2021281 chr19:45069249-45070021 short-read 

RNA-seq Nanostring Alzheimer’s 
disease HX1 0 

CTSD Wong 
201383 

chr11:1755029-1757323  
(intron 5) 

short-read 
RNA-seq 

RT-PCR, 
RNA-seq granulocyte HX1 0 

FAHD2A Li  
2021281 chr2:95412765-95412894 short-read 

RNA-seq Nanostring Alzheimer’s 
disease iPSC 0.06 

FAHD2B Li  
2021281 chr2:97083818-97083947 short-read 

RNA-seq Nanostring Alzheimer’s 
disease iPSC 0.05 

IGSF8 Li 
 2021281 

chr1:160094172-
160094868 

short-read 
RNA-seq Nanostring Alzheimer’s 

disease iPSC 0.02 

LBR Wong 
201383 

chr1:225410417-
225411336 (intron 9) 

short-read 
RNA-seq 

RT-PCR, 
RNA-seq granulocyte HX1, 

 iPSC 
0.02,  
0.01 

SRSF7 Lejeune 
2001280 

chr2:38748654-38749528 
(intron 3) 

in vitro splicing 
assays 

Northern 
blot -- iPSC 0.17 

 
 
 


