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ABSTRACT

Public omics datasets from sequencing and array-based platforms now amount to millions of samples
across thousands of studies and projects. This wealth of data is difficult to access and analyze due
to heterogeneous and incomplete metadata, varying assay quality, and limited amounts of raw data
provided for certain platforms. Despite this, accessing and reusing public omics data is an economical
and prudent means of planning and conducting new experiments.

DNA methylation (DNAm) consisting of a cytosine-bound methyl group is an epigenetic mark that is
widely probed across the human genome using Illumina’s serialized Infinium BeadArray platforms.
While tens of thousands of samples now have raw DNAm array image data available in the Gene
Expression Omnibus (GEO), there have been few attempts to uniformly process sample metadata
and raw signals for these samples. We programmatically obtained public DNAm array data from
GEO, and we uniformly processed and compiled samples run on HM450K and EPIC, the two most
popular platforms. We provided access to these compilations with support functions and vignettes
for preprocessing and analyses in the recountmethylation Bioconductor package. We further
developed the recountmethylation_instance Snakemake workflow to support the generation of
future compilations.

Using the above data compilations, we conducted novel cross-study analyses of public DNAm array
data. We studied DNAm variance patterns across seven normal tissues, and identified probes with
either low variances across tissues or high tissue-specific variances. We further conducted cross-study
and cross-platform analyses of prevalent blood sample types, which we used in power analyses
as well as to replicate subsets of probes with differential methylation across sexes from two prior
epigenome-wide association studies (EWAS)). Our findings can inform future experiment design
efforts, expectations for replication of differentially methylated probes, and novel cross-study analyses
of public DNAm array data.

We further tested the reliability of several software tools for calling retained introns (RIs) from
short-read RNA-seq data by using long-read RNA-seq data as our reference. We identified and
obtained sample-matched public short-read and long-read RNA-seq data from the Sequence Read
Archive (SRA), including data from a human induced stem cell sample and from a human whole
blood sample. We found that RI-detection tool performances according to precision, recall, and
F1-score, were related to their key assumptions, and that tools showed uniformly low performances
for calling RIs which were also persistent in long-read data. Our results show the limitations of
widely used RI-detection tools, and they can inform future efforts to improve the reliability of tools
for calling alternatively spliced transcripts from short-read RNA-seq data.
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1 Introduction

1.1 Public omics data types and sources, and issues for reanalysis

Omics data refers to a variety of data types enabling study of entire classes of molecules like DNA, RNA, and proteins.
Analyses of omics data yield high-resolution snapshots of life inside a cell or tissue [[1]]. This drives the discovery and
characterization of gene networks whose coordinated expression gives rise to specialized phenotypes, cell signaling
pathways, tissue development, and much more. Comparative studies of omics data from normal and diseased tissues
can reveal the dynamic molecular mechanisms underlying health and illness. These studies can inform development of
novel clinical panels of molecular signatures called biomarkers, with the ultimate goal of improving screening protocol

efficacy, diagnosing diseases earlier and more accurately, and personalizing interventions and treatments.

Public omics datasets have grown immensely in the decades since the first publication of a sequenced human
genome [2]], and newer omics technologies continue to improve the resolution and reliability of data collected [3-5]].
With growth in available omics data, there is increasing need to make existing public omics data more readily
accessible. These datasets can be useful for planning new experiments, testing new hypotheses, and performing
independent validation and multi-omics analyses, especially when the raw or non-normalized assay data are paired with
complete and descriptive metadata. Unfortunately, inconsistent reporting standards and completeness in public omics
metadata remain common, making it difficult for other investigators to reuse samples in new analyses. Further, public
omics data compilations can be very large in size, making scalable memory-efficient methods crucial for

comprehensive and cross-study analyses.

This section provides an overview of the omics data types studied in this dissertation, how omics data are made
available and accessible from public repositories, obstacles to more extensive use of public omics data in research, and

modern issues surrounding reproducible research for computational disciplines.

1.1.1 Transcriptomics and the exome

Transcriptomics is the study of the transcriptome, or the set of all RNA molecules transcribed from DNA and processed
by splicing. RNA molecules can include sequence regions spliced together during transcript processing, called exons,
and these may cue the polymerization of amino acids into proteins. The entire set of such regions is called the “exome,”
and whole-exome studies focus specifically on these regions [[6]. Related to the concept of the exome is the set of all

possible products resulting from RNA splicing, or what is occasionally referred to as the “spliceome” [6]. As with other

omics data types, transcriptomics data can be generated from microarray-based or sequencing-based technologies,
where the latter is usually called RNA-seq]

During sample processing, most sequencing platforms produce reads, and understanding read characteristics can
be central to differentiating sequencing platforms. Reads commonly consist of hundreds to tens of thousands
nucleotides, and they are produced by the amplification of library-specified DNA sequences where these are present in

the sample being processed. Reads are sequenced, mapped to a reference genome sequence, then analyzed to determine



the genes and transcripts expressed the processed sample. Next-generation sequencing (NGS) technologies include
many high-throughput platforms which produce upwards of millions of reads per sample and can target regions
throughout the human genome. Many platforms are used to produce RNA-seq data, of which we draw attention to
Ilumina’s NextSeq and HiSeq platforms for short-read sequencing and [PacBiofs long-read sequencing platform
(Section[I.3.3). In Sectiond] we use public data from these platforms to study the reliability of tools for calling
alternatively spliced transcripts containing retained introns [5] (Section[I.3). Short-read platforms have historically
been more widely used than long-read platforms, but long-read platforms are gaining in popularity as costs to run

samples decline and methods for preprocessing and analyzing short-read data have matured.

1.1.2 Epigenomics and the methylome

Epigenomics is the study of the epigenome, which refers to a large set of physical or chemical phenomena that can
impact gene expression. For example, many types of non-protein encoding RNAs are considered part of the epigenome.
The addition of methyl groups to a DNA nucleotide, otherwise called DNA methylation (DNAm), is the epigenetic
mark of focus for this dissertation. The collective set of all DNAm in a cell is called the methylome. Just as the exome
refers to a subclass of molecules in the transcriptome, the methylome is a subclass of molecules in the epigenome. The
methylome is commonly studied in Epigenome-Wide Association Studies using several types of
high-throughput microarray platforms. Platforms for studying vary widely in their scope, resolution, reliability,
and costs (Section[I.2.4). In depth discussion of the biological and clinical relevance of DNAm and its quantification in
omics data are provided in Section|[I.2] This informs the cross-study analyses appearing in following chapters

(Sections 2] and 3)).

1.1.3 Omics data sources and access

Public omics data is typically accessed from a data source, called a public data repository, using a browser or FTP
connection. Many resources varying in size and scope provide access to public omics data in some form [[7-9]. Some of
the most comprehensive resources contain data produced by large consortia, such as the Encyclopedia Of DNA
Elements [10L[11]], the Cancer Cell Line Encyclopedia [12], the Genotype-Tissue Expression
Project (13, [14]], and the The Cancer Genome Atlas (TCGA) [15]]. Data from these consortia represent the
efforts of many labs over many years, or sometimes decades, and it is common to see these datasets cited in hundreds or
thousands of papers [14]. Alongside consortia are smaller datasets hosted in the and [SRA|repositories maintained
by|[NCBI|[8] [9,[16]. These repositories commonly host data published from one or several labs, to accompany one or
several studies. The stated purpose of repositories like GEO and SRA is to archive data for published work on behalf of
authors [8} 9L [16]. Since there is limited curation, spot checking, and error correction performed on data and metadata

hosted by these sources, these important tasks are largely left to researchers 3| |4, |17].

In many ways, [GEOJ's name belies its effective role as a metadata purveyor and a source for supplemental data,

including epigenomics data. Many experiments are accompanied by a GEO study record ID, which corresponds to a
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unique record in the database which includes important study and sample metadata. Each record may also include a
section for supplemental data that may include the platform annotations, processed forms of the analyzed data, and
even raw data from array platforms. While raw or unprocessed array data can be found in the supplemental sections of
GEO records, corresponding raw data from sequencing platforms is provided through the SRA| This includes all
manner of sequencing data, from[RNA-seq] to genome sequencing, to bisulfite sequencing and less popular data types
from human, and non-human organisms. Despite this, many sequencing experiments will host study and sample
metadata in GEO and other databases. This means researchers can often query GEO to learn details about sequencing

experiments whose data is hosted in SRA.

and other [NCBI| repositories include helpful search features accessible from the browser. However,
browser interaction is not optimal for automation and reproducibility. Thus, most computational researchers will find
the Entrez Programming Utilities [[18]] software extremely valuable for programmatically accessing NCBI database
Application Programming Interfaces (APIs). APIs provide an interface between the repository and the data miner,
where key properties of the data are exposed for query. APIs can also dictate the query logic which a programmer can
apply to reliably obtain a result based on certain information provided in the query. The Entrez software provides a
standard way of identifying studies and samples by properties of the data type, platform, metadata, and so on. We used
this software to automatically find sample and study record IDs for DNAm arrays and RNA-seq datasets across
multiple platforms (Sections [2.2.T]and [3.2.T). We conducted Entrez queries using a Python script to automatically find

record IDs and construct the download URLSs to obtain supplemental files (Appendix [A.T)).

While Entrez Programming Ultilities enables programmatic access to records and data from the
SRA-Toolkit [[16,[19] software enables programmatic access to sequencing data from [SRA] For short-read samples, raw
data takes the form of a pair of [FASTQ}Hormatted files containing the reads generated in either the forward or reverse
DNA strand. We downloaded [FASTQE using the toolkit’s fastq-dump or fasterq-dump functions. By contrast, the
toolkit functions don’t presently support download of raw long-read data, called movie files, and these files needed to

be batch downloaded using custom scripts (Section[4.2.2)).

1.1.4 Obstacles for analysis of public omics data

Several key obstacles impede analysis of public omics data. First, available information from published experiments
can vary widely. A scan of public archives shows varying completeness of experiment records, ranging from only study
metadata, to limited sample metadata paired with normalized assay data, to complete sample metadata provided with
raw or non-processed assay data. The latter is the most reproducible way of reporting an experiment because the raw
data can be used to repeat the entire preprocessing and analysis workflow from the beginning. Complete and thorough
metadata is crucial for relating samples across projects and fully understanding the origins of assay data. In addition to
data and code, studies should describe their pipelines in sufficient detail so that they can be fully reproduced. Better yet,

a runnable workflow or pipeline script can be provided. Studies of omics data frequently use multistage pipelines that



need to be thoroughly documented to ensure their reproducibility (Section [[.1.10), many studies unfortunately don’t

report their methods in sufficient detail to be reproduced [20].

Next, public omics datasets can be difficult to analyze and interpret. Manipulation of omics data often requires
specialized training and skills, and omics data studies demand careful planning. Further, even well-designed omics
studies can be difficult to interpret because of statistical assumptions and because observational data is usually
insufficient to show a causal relationship between some molecular marker or signature and a condition of interest
(Section[I.4.4). Many omics studies focus on discovering biological indicators of disease or pre-disease conditions, a
pursuit called “biomarker discovery.” Biomarker discovery describes a significant portion of biomedical research, yet
even exceptionally robust and informative biomarkers need only be consistently indicative or correlated with a condition
and need not have any causal relationship to the condition of interest [2124]. Thus there is constant need to elucidate

biological mechanisms and processes that explain health and disease at a deeper levels beyond robust correlations.

Finally, metadata heterogeneity and varying completeness can confound cross-study omics data analyses even
where individual studies have provided raw data and sufficient sample metadata. Metadata heterogeneity arises due to
lack of standards for metadata reporting, which might dictate how information is conveyed and organized, and which
could entail the mapping of controlled vocabularies [[17, 25]] (Section[I.1.6). Varying metadata completeness
contributes to metadata heterogeneity, and can arise in three key ways. First, metadata may be omitted to protect subject
identity. For example, this could be a concern for studies of exceedingly rare disease, where there is reasonable concern
a patient could be identified from provided metadata and/or provided omics data. Second, incomplete metadata can
arise due to negligence or ignorance on the part of the researcher or data recorder. Lack of widespread metadata
reporting standards exacerbates this particular problem, as this means more work on the part of researchers to
familiarize themselves with previously archived metadata to determine how best to represent metadata for their own
study. Third, metadata may appear to be lacking if metadata mapping or learning pipelines cannot access it. This can
happen if metadata is erroneously recorded in an unexpected location or using a non-standard format. Finally,
non-standardized and highly specialized recorded metadata contributes to metadata heterogeneity. For example, sample
identifier codes are often meaningless outside of a particular lab or consortium, and manifests describing the meaning
of sample codes are not always readily available. Ultimately, metadata heterogeneity confounds omics data discovery
and reuse, and moving forward it will become more crucial to introduce standard metadata reporting practices as well

as develop tools to help researchers properly represent published data in public archives [3} 4} 26].

1.1.5 The role of raw data

The above obstacles for analysis of public omics data can be overcome through several means. First, data miners can
limit the scope of their data searches to include only records with raw or non-normalized data available. The rawest
possible form of data for an assay is typically the most desirable for follow-up analyses. This is because follow-up

analyses may involve data from several studies, and disparate normalization strategies can confound analysis of
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samples across studies and pipelines. Further, the bias introduced by disparate normalization procedures can impede

efforts to perform bias correction across studies, and this is a major obstacle for most meta-analyses (Section|1.1.8]).

For array experiments, raw data consists of two paired color intensity (a.k.a. ") files, one each for
the red and green color channels on the array reader. These paired files are read by software such as Genome Studio or
minfi [27] R package, then parsed into methylated and unmethylated (U) signals for further processing. These are
discussed in greater detail in Section[I.2.5] Raw data from sequencing experiments consists of files for
short-read data, and movie files for[PacBio|long-read data. These are discussed in greater detail below (Section [I.3).

Provision of raw data also encourages reproducibility because it allows one to repeat the published data processing
and analyses exactly as described by the authors. However, raw data can consist of very large files requiring large and
expensive servers to host. As with whole-genome bisulfite sequencing data, the raw form of some data further may not
be its most informative or useful representation (Section @ Further, some metadata must be excluded from
archived experiments to protect subject identity, and grants or other official sources can impose limits on information
that can be made publicly available. For these and other reasons, many studies neglect to provide access to raw forms of

omics datasets [3]] (Section [2.3.T)).

1.1.6 Harmonization of heterogeneous metadata

Next, metadata heterogeneity may be addressed using metadata harmonization [|17} 25]]. This technique aims to
combine samples under a single set of standardized descriptive terms using standard and well-defined vocabularies
describing biological, medical, demographic, and technical aspects of the sample [3| |4, [28]. Harmonized metadata can
be obtained by either systematically mapping controlled vocabularies to encountered metadata, by learning controlled
vocabularies or predictions using natural language processing, or by prediction or imputation from omics assays
themselves. For metadata mapping, many entire curated term hierarchy dictionaries, or “ontologies,” are now freely
available through projects such as [29]. These were previously used to map [SRA|metadata and make them
queryable as the MetaSRA resource [17]. Despite their availability, there is no standard way of using ontologies for
research, and even the MetaSRA makes use of just a handful of the dozens of available term ontologies [[17]. This means

it is largely upon individual researchers to determine how best to harmonize metadata mined from public repositories.

Fortunately, metadata mapping is not an intractable problem. For recountmethylation data compilations, we
incorporated metadata mapping using R scripts applying regular expressions, an extremely common and useful syntax
for matching complex character patterns. First, sample metadata in[JSON|file format, which is stored using a
predictable “key:value” format, is coerced into a flat table (Appendix [A.3). Then these data are postprocessed by
mapping a more informative and controlled vocabulary under informative variables for characteristics like sample type,
disease condition, and so on (details in Section[2.2.7), which was an approach inspired by a prior compilation of DNAm
array data [28] (Appendix [A.4). While we did not map terms from[ENCODE] ontology dictionaries, we used descriptive
terms capturing the most common information in the archived metadata, as determined by a combination of

observation, manual review, spot checks, analysis, and summarization. We also used the MetaSRA-pipeline



(Section [2.2.6), which was used to compile the MetaSRA and which we found was also generalizable to metadata
encountered in We further expanded the harmonized data using variables predicted from DNAm with canonical

models, including the attributes sex [27]], age [30], blood cell fractions [31]], and genetic ancestry [32] (Section @])

1.1.7 Previous public omics data compilations of note

Several notable efforts have been made to compile public omics data, where we take data compilations to be resources
combining metadata and assay data in some way, such as in a relational database, where compiled data has usually been
subjected to some kind of uniform processing. This definition excludes utilities which may mirror public data or
perhaps provide a new dashboard or browser interface to query and summarize datasets [[33-37]. While these resources
can be useful, they don’t strictly provide a means of jointly preprocessing and analyzing sample metadata and assay

data without considerable additional effort.

Many projects have attempted to comprehensively compile and process public data. Importantly for this
dissertation is the recount project, from which the recountmethylation [38]] Bioconductor [39] package gets its
name. The recount project now spans three key versions [26, 40, |41]] and a separate project for data from brain
samples [42]]. For recount, researchers compiled sequencing data mined from the [SRA] In its newest manifestation as
recount3, the project includes human and mouse samples from a wide array of bulk and single cell sample types [26].
Importantly, the recount data compilations are supported by helpful browser interfaces and complementary
Bioconductor packages [39} 43|, 44]]. These resources ensure it is easy to summarize experiment and sample metadata,
query the compiled data, and apply the same processing methods to new data. Further, data from recount was used to
make a queryable index of splice junctions called Snaptron. Thus recount is a prime example of how public omics

data can be made more accessible and used to develop new research tools.

For[DNAm|array data, the Marmal-aid [28] resource compiled uniformly processed [45]/46] and
HM27K]samples from [GEO] It was initially released in 2013, and updated for several years after. Importantly, it

included harmonized and uniformly formatted metadata under several variables such as tissue, disease, sex, and age.
These variables informed the metadata variables we used in recountmethylation (Sections[2.2.5|and [3.2.2)). While
an impressive effort, the maraml-aid resource is now out of date, as relatively few HM27K samples have ultimately
been published to GEO, and the newer EPIC [47] platform is now overtaking the HM450K platform in popularity and
prevalence. Harmonized metadata can be further enhanced with reliable DNAm-based attribute predictions using
canonical models. We were able to predict age, sex, blood cell fractions, and genetic ancestry for samples in the
recountmethylation data compilations. Detailed discussion of the Illumina Infinium BeadArray platforms for

DNAm array data are provided in Sections[I.2.4]and [T.2.5](Section [2.3.3] Appendix [6.).

1.1.8 Cross-study analyses versus meta-analyses
