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Abstract 

Single-cell technologies have created a new taxonomic challenge: to create a shared 

language for defining individual cells within complex organisms. In this work, I 

complicate the taxonomic task by developing a novel assay that captures spatially 

resolved single-cell chromatin accessibility and also explore and define epigenomic cell 

states in the mouse and human brains.  

First, I present a novel assay: Single-cell Combinatorial Indexing on Microbiopsies 

Assigned to Positions for the Assay of Transposase Accessible Chromatin, or sciMAP-

ATAC, which captures spatially-resolved single-cell chromatin accessibility data from 

intact tissue. I applied sciMAP-ATAC to resolve the layers of the mouse and human 

cortices and demonstrate the ability of sciMAP-ATAC to generate a rich dataset that 

captures layer-specific single-cell epigenomic features. I then applied sciMAP-ATAC to 

define the gradient of cellular state shifts in response to cerebral ischemia within the 

stroke infarction area and the surrounding penumbra. I show that significant epigenetic 

remodeling occurs in the brain tissue surrounding infarction. 

Secondly, I present the Human Glial Atlas (HGA), which includes a comprehensive and 

publicly available dataset of 378,270 glial cells derived from the healthy adult human 

brain's hippocampus and cortex regions. I provide this resource as a baseline for the 

unperturbed, healthy state of the human brain and provide characterizations of rare cell 

states. Notably, I characterize cell states that are commonly defined in disease. I 

demonstrate a gradient of activation of glial reactivity in the absence of disease-

associated inflammation, thus revealing that persistent yet rare populations of reactive 

glial cell types exist in the unperturbed cortex and hippocampus. 
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Together, these works provide a new single-cell omic method, sciMAP-ATAC, that 

collects an essential data type – the spatial orientation of cells, and provide a rigorous 

definition of cell states in the human brain in an attempt to fill in the branches and twigs 

of the emerging single-cell taxonomy of the human brain. 
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Chapter 1: Introductions 

1.1 Overview and rationale 

Our understanding of the natural world begins with exploring and defining our 

observations. While naturalists have observed and described biological phenomena 

throughout human history, sequencing technologies that emerged in 19771 allowed us to 

discern the natural world through the new lens of genomics. In the next frontier, Next 

Generation Sequencing (NGS) technologies emerged in 20002 and enabled omics 

studies with both broader and finer resolution investigation of the genome. Broadly, NGS 

technologies allow us to resolve entire genomes and address inter-organismal omic 

variation. Finely, NGS technologies have allowed us to assess cellular intra-organismal 

omic variation. While inter-organismal studies consider genomic differences between 

organisms, intra-organismal studies focus on the genomically uniform organism and 

define the epigenomic variation that gives rise to the diverse cell types and cell functions 

that form the organ systems within a single multicellular organism. More specifically, we 

can characterize how single cells behave in both health and disease. Here, I explored 

and defined the intra-organismal epigenomic variation of cells in the human brain and 

model organisms – focusing on clinically translational interpretations for the 

improvement of human medicine. To achieve this, I used and developed novel single-

cell technologies. I expanded on both the arsenal of NGS-based methods for assessing 

the epigenomic features of single cells and created an atlas of non-neuronal cell types to 

fill in the branches and twigs of non-neuronal cellular biology in the taxonomic tree of 

cellular heterogeneity in the human brain.  
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1.2 The evolution of taxonomy in the natural sciences 

We understand the natural world by defining its component parts and by using these 

shared definitions and nomenclatures to begin to understand complex observations. This 

field of biological systematics focuses on the characterization of living things and the 

curation of nomenclature to describe them – and encompasses many similar and 

overlapping disciplines in the biological and philosophical sciences. Biological 

systematics includes the identification, taxonomy, and nomenclature of organisms and 

their relationship to each other. The delineation of taxonomy from biological systematics 

is granular and debated3. Taxonomy, specifically, focuses on recognizing and delimiting 

organisms into hierarchical categories through observation, as in the Linnaean 

approach, or through genetic variation, as in phylogeny. When we parse the similarities 

and differences between overlapping fields of study, we ask ourselves: Why is it 

essential to devote entire disciplines to definition? Simply, it is through language, and 

therefore nomenclature, that we describe the natural world. Without a system for 

description, scientists would not be able to use shared verbiage to communicate their 

observations.  

Early philosophers made the first contributions to biological systematics. Aristotle 

bifurcated living things into 'Anima,' animals with no red blood, and 'Enaima,' animals 

with red blood, in one of the earliest (384–322 BC) attempts to create a shared language 

for partitioning living organisms. This classification persists today, pertaining to 

vertebrate and invertebrate organisms. Early modern Europe, which emerged from the 

medieval period, adopted Latin as the shared language for scientific naming. However, 

no defined system for scientific Latin existed. Carl Linnaeus addressed this need and 

created the modern taxonomic system in Systema Naturae (1735). This Linnaean 

taxonomy designated groups in a binomial naming system of: genus and species. 
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Incredibly, as initially defined by Linnaeus in 1735 (Fig. 1), the tree of life persists as the 

naming schema and overarching hierarchical taxonomy that taxonomists use today.  

Linnaean taxonomy, however, relies on assumptions that were reasonable for the time 

but are no longer accurate based on our current understanding of the evolution of 

species. Notably, Linnaean taxonomy 

relies on an assumption of creationism – 

stipulating that the total number of 

species is static and finite, and also 

assumes that no natural order exists 

between species. Therefore, Linnaean 

taxonomy does not account for the 

longitudinal evolution of species over 

time. Instead, Linnaean taxonomy 

defines morphological characteristics as 

the critical delimiter between species. 

Morphology, however, is not a reliable 

data type for discerning species because 

organisms can: (i) occupy unique 

morphological states throughout their life 

cycle and (ii) also occupy cryptic states. 

For instance, at the beginning of the life 

cycle, the butterfly morphologically resembles a caterpillar, while at the end of its life 

cycle, the butterfly is dramatically morphologically altered and winged. Additionally, 

species can occupy cryptic states where two or more genetically unrelated species are 

morphologically indistinguishable due to convergent evolution. In his time, Linnaeus 

 

Figure 1. Haeckel tree of life. Constructed from the 
Linnaean system of taxonomy. Illustration of the tree 
of life, grossly divided into Plantae (left), Protista 
(middle), and Animalia (right)4. 
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characterized and named 5,900 plants and 4,378 animals according to his system of 

taxonomy5. From this legacy, modern taxonomists have named nearly 1.5 million of the 

estimated 5 ± 3 million species on Earth6 and are increasingly finding that modern 

genetic technologies are required to correct the antiquated assumptions of Linnaean 

taxonomy7.  

Sequencing technologies have revolutionized the field of biological systematics and 

challenged the core assumptions of Linnaean taxonomy. Darwin published his theory of 

evolution in 18598, which both challenged and supported Linnaean taxonomy. For 

example, Linnaeus originally introduced the order of Anthropomorpha, which included 

the closely evolutionarily related humans and apes without prior knowledge of their 

shared genetic ancestry. Darwin hypothesized a genetically defined tree of life (Fig. 2a) 

that reflected the phylogenetic system of classifying evolutionary relationships between 

species that reflects our modern knowledge of genomic relationships between species 

(Fig. 2b). 

 

Figure 2. Evolution of the tree of life. a, Charles Darwin’s hypothesized evolutionarily divided 
tree of life8. b, The modern phylogenetic tree of life subdivides clades based on species' 
evolutionary relationship9. Evolutionary distance also represents tree branch length. 
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The advent of sequencing technologies, and a new methodology for genetically defining 

species, called DNA barcoding, has allowed for a reinvention of the taxonomy of 

species, from the morphologically-based Linnaean system to the phylogenetic-based 

cladistic system. This inclusion of data derived from sequencing technologies has 

bifurcated the taxonomy field into alpha-taxonomy, the morphological and Linnaean 

delineation of species, and beta-taxonomy, the approach to taxonomy that incorporates 

data types other than morphology. DNA barcoding delineates species by sequencing a 

single gene that is commonly variable between species but is not variable between 

organisms within a species – and is the predominant beta-taxonomy approach to 

defining the taxon of organisms. This evolution-based genetic hierarchical taxonomy of 

biological types gave rise to the taxonomic impediment, which is broadly defined as the 

difficulty presented to taxonomists to both: (i) collect and interpret the enormous amount 

of sequencing data needed to reevaluate the taxonomic hierarchy and (ii) harmonize the 

genetic and morphological taxonomy10,11. 

While the field of biological systematics reels from the advent of new technologies and 

data types, the natural world remains unchanged. Therefore, despite the philosophical 

arguments between alpha and beta taxonomies – the data types, such as the DNA 

sequences that we are only recently able to access, have always been present in the 

organisms that biological systematics has sought to define. Therefore, I propose that 

taxonomy should not focus on the inclusion or exclusion of data types but instead on a 

complete mapping of heritable genetic material within the domains of biological life. 

1.2.1 The epigenomic taxonomy of single cells 

The discovery of a wealth of previously unexplored biological types in the Linnaean era 

echoes the age of single-cell omics that we are experiencing today. Linnaean taxonomy 

is considered one of the earliest and most successful bioinformatic crises12. The 
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increase in globalization in the mid-1700s resulted in an influx of newly identified species 

to Europe from the American, Asian, and African continents. And with these discoveries 

came new names for these species, which met no criteria other than being Latin in 

origin. For instance, in naming a briar rose, naturalists alternately named it "Rosa 

sylvestris inodora seu canina" and "Rosa sylvestris alba cum rubore, folio glabro," where 

the length of the name scaled with the heuristically chosen adjectives used to describe it. 

As naturalists faced a wealth of newly identified biological organisms, they shared no 

standard nomenclature, method of characterization, or hierarchy within which to place 

their discoveries. Historians have lauded Linnaeus for his, perhaps oversimplistic, 

approach to creating a taxonomic system. Linnaeus chose specific characteristics, i.e., 

reproductive organ structure, to create a hierarchy and naming system for all organisms 

– with the primary objective of creating an ontology, or shared understanding, that 

allowed for meaningful scientific discourse. With this first informatic challenge in mind, 

we now must consider the current taxonomic challenge of single cells. 

A comprehensive system of single-cell taxonomical hierarchy has not been defined 

though there are significant efforts underway. Notably, the field of single-cell omics 

remains in the discovery phase, much in the same way that the identification of species 

blossomed before the advent of Linnaean taxonomy. Single-cell taxonomy requires an 

intra-organismal approach based on the assumption that organisms within a species are 

genetically homogenous. Defining taxons of single cells from the intra-organismal view 

requires reconfiguring the Linnaean schema. Linnaean taxonomy assumes that an 

organism is genetically homogenous and that organisms are arranged into genetically 

similar "types" or species. Similarly, cellular taxonomy can be viewed as a subset of 

Linnaean taxonomy, where the same assumptions are made about the genetic 

homogeneity within an organism and within a species. However, single-cell taxonomy 
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progresses beyond Linnaean taxonomy by characterizing the parts of organisms, or 

cells, based on features of the genome other than the DNA sequence or epigenomics. 

Therefore, in contrast to the Linnaean taxonomic hierarchy of species: domain, kingdom, 

phylum, class, order, family, genus, and species, the single-cell epigenomic taxonomic 

hierarchy can extend beyond the species classification to: organs, tissues, tissues sub-

structures, and cells. Single-cell taxonomy, therefore, must rely on defining the 

epigenomic states of cells within organisms. There are difficulties, however, in defining a 

comprehensive single-cell taxonomy.  

Genetic homogeneity must be established to develop a single-cell taxonomic tree. In 

efforts that have been undertaken to genomically characterize cells in humans, the 

species of homo sapiens has been assumed to be approximately homogeneous. This 

assumption of approximate genetic homogeneity does stand in contrast to many efforts 

to characterize the impact of genetic heterogeneity in the human population. In efforts to 

epigenomically characterize cells in mice, genetically homogenous mice strains are used 

to control for genomic variation. These differences in approaches between mouse and 

human single-cell studies highlight the field's infancy and the challenges of genetic 

research in humans. Human inter-individual omic variability is substantial and is a core 

focus of the Human Cell Atlas initiative and this work13,14 (see Chapter 3). One 

consideration for formulating a comprehensive single-cell systematics paradigm is the 

presence of omic inter-individual variation. 

Secondly, a single-cell epigenomic taxonomy must account for the mutability of cell 

states. For example, cells differentiate in the developing organisms, thus potentially 

creating a string of multiple taxonomies along the time axis. Similarly, diseases affect 

organs, tissues, and cells, resulting in a potential series of single-cell taxonomies along 

the axis of pathogenicity. However, these cell state shifts do not make single-cell 
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epigenomic taxonomy moot. Classical Linnaean taxonomy faces similar challenges. 

Linnaean taxonomy assumes a genetically static organism with a framework of 

categorically separated species. These assumptions were founded on the creationist 

view of a pre-ordained finite number of species but do not reflect our modern 

understanding of genetic diversity. In contrast, organisms are not genetically 

homogeneous and static. 

Organisms are genetically mosaic15 and accumulate genetic mutations with age16 that 

can have gross effects, including cancer17,18. However, taxonomists today support the 

Linnaean system because the assumption of genetic homogeneity is an acceptable 

imperfection that allows for a comprehensive system for defining all organisms. Similarly, 

while epigenomic states of cells are variable, assumptions can be made to create a 

shared and interpretable taxonomic system for single cells. Here I propose that a 

common single-cell epigenomic taxonomy is both possible and necessary for the future 

of sub-organismal omic research. 

1.3 The epigenome of single cells 

To create a taxonomy of single cells, we must first understand the epigenome of cells 

and the importance of assaying single cells. Understanding epigenetics comes most 

easily to me when I consider that all cells in our body are approximately genetically 

identical, meaning that the DNA sequence in the cells of the human body is the same 

across all of the organ systems and tissues. Additionally, we know from the fundamental 

experimentation of early geneticists, such as Mendel, that the sequence of DNA that all 

cells share serves as the blueprint for developing an entire organism. When we consider 

these two foundational features of genetics, (i) that all cells within an organism share the 

same DNA, and (ii) this uniform DNA sequence gives rise to many disparate functional 

units of an organism, then it is clear that there is a biological mechanism that leads to 
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differential utilization of the genome between functionally distinct cell types that 

compromise tissues. C.H. Waddington addressed this exact biological mechanism in 

1957 in his pioneering publication, “The Strategy of the Genes,” where he proposed that 

cells, like marbles on a landscape, roll along the peaks and valleys toward terminally 

differentiated states (Fig. 3a)19. 

If we consider our first assumption that cells begin development with the same genome 

– then we can think of cells sitting on an entirely smooth and flat genomic landscape that 

represents their shared DNA sequence. These cells would remain stationary and 

homogenous. Given that cells are not homogenous, Waddington proposed that the 

landscape must have an irregular topology with peaks and valleys, which cause cells to 

probabilistically select a pathway toward differentiated states. He described the 

underpinning of the landscape as pegs attached to a base, representing genes, and 

“guy-lines,” shown as lines, which represent the epigenetic “forces” exerted on genes 

that manipulate the genomic landscape to create the epigenomic landscape (Fig. 3b). 

These epigenomic forces on the genomes of cells give rise to the heterogeneous and 

complex cellular populations that comprise organisms. 

 
 
Figure 3. Waddington epigenetic landscape. a, Topology of the epigenetic landscape 
that cells (shown as a marble) traverse pathways from undifferentiated to differentiated 
cell types. b, Representation of the many epigenetic features (lines) which influence 
gene (peg) expression and define the epigenetic landscape. 
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Remarkably, Waddington’s hypothesis remains relevant and serves as the basis for the 

field of epigenetics. We now know that many genome modifications regulate the fate of 

cells and lead to their differentiation into functional and morphological states. 

1.3.1 Cell type variation 

From the intra-organism perspective of taxonomy, the hierarchy of functional 

specification begins with organs, progresses downward to tissues, then to individual 

cells. Epigenetic assessment of single cells has revealed an astounding diversity 

between and within tissues. Many research efforts currently focus on the epigenomic 

characterization of cells in distinct tissues. These studies demonstrate that cells vary 

between tissues and confer different functions to organs in the body. 

Developing a comprehensive map of the cell types that comprise the different tissues of 

the healthy human body is of prime interest in the research and medical communities. A 

well-defined inter-tissue cell atlas would allow for a comprehensive understanding of the 

“normal” human body and provide a baseline for knowing which cells are affected in 

disease states. As a result, many efforts are underway to define this “baseline.”  

One such effort, the Human Cell Atlas, aims to generate a comprehensive reference 

map of all human cells by generating organ-specific datasets13. Single-cell studies of the 

epigenome have revealed that the human body contains many distinct cell types, which 

can be singular or shared between tissues20. Single-cell epigenomics is reaching a 

consensus on the complete range of cell types present within each tissue (e.g., 1.5.1 

Glial cell types of the central nervous system). While assessing the epigenomic 

variability of cells in humans is of prime interest for medicine, many single-cell studies 

have focused on mice as a model organism. Entire atlas level datasets of individual mice 

have been developed, which has not been possible in human subjects21. These studies 

provide a reference for the depth and breadth of cellular epigenomic cell types. 



11 
 

1.3.2 Cell state variation in health and disease 

C.H. Waddington described a continuous epigenetic landscape (Fig. 3a). As previously 

described, cells traverse this landscape toward differentiated cell types. However, the 

continuity of this landscape represents all of the possible states that cells can exist in, 

within, and between defined cell types. Single-cell technologies have allowed for the 

unbiased sampling of cells from tissues and have led to the discovery and 

characterization of (i) defined cell types and (ii) intra-cell-type and disease-associated 

cell states. The distinction between cell types and states remains fluid within single-cell 

omics22. Cell types are commonly defined as the terminally differentiated states of cells, 

whereas cell states are defined as both the variation within cell types and epigenetically 

distinct cell populations that arise from a perturbation such as disease. 

1.3.3 Spatial variation 

Single-cell technologies have grown to include assessments of the genome, epigenome,  

and intra- and extra-cellular moieties, which has 

allowed for precise quantification of the 

heterogeneity of complex tissues. As 

technologies for assessing cellular features 

improve, studies capture increasingly high 

numbers of cells in single experiments with 

increasingly high informational content per cell24–

27. These approaches, however, rely on 

aggregate dissociation of tissues, which results in 

loss of the positions of cells within the intact 

tissue. However, there is substantial evidence 

that cells can encompass a range of omic states 

 
 
Figure 4. The structure of the 
cortex. Neurons (left), cell bodies 
(middle), myelinated axons (right)23. 
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in response to their spatial orientation within a tissue, specifically in spatially-progressive 

phenotypes. As in histological assessment of oncological samples, spatial assessment 

of cells in the tumor microenvironment is necessary to define the spatial limits of the 

cancerous cells, or the margins. Additionally, the healthy tissues of the human body are 

comprised of spatially organized organs. For example, the brain, which represents one 

continuous organ, is compartmentalized into distinct functional regions. In the case of 

the cortex, cells are spatially stratified across six layers (Fig. 4), and this cortical layering 

is essential for neurotypical development28–30. Many spatially-resolved gene expression 

and transcriptomic assays have been developed to address this next challenge in 

resolving complex tissues – and there is an interest in developing spatially-resolved 

single-cell assays for many epigenomic features (see Chapter 2)31,32. While grouping 

cells by their shared epigenomic profiles reveals cellular similarities, spatially-resolved 

methods add a valuable data type that allows for the assessment of cell-cell interactions 

that allows for a comprehensive understating of the complete picture (Fig. 5). 

 

 
 
Figure 5. The addition of spatial orientation to single-cell characterization. a, 
Representative UMAP of single-cell, shown as points, oriented in two-dimensions based on 
similarity. b, Cells, shown as points, as in a, shown in the intact painting, revealing information 
displayed when cell position is known. Eragny Landscape by Camille Pissarro (1886)33. 
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1.4 Chromatin accessibility as a feature of the epigenome 

Epigenetics encompasses all modifications to and the use of the genome. The scope of 

epigenetics, which comprise the “epigenome,” is best defined by the term's etymology. 

“Epi,” in Greek, means “in addition to” or “on top of.”  C.H. Waddington coined the term 

“epigenetics” to define all features regulating cell fates other than the genome. As shown 

in Fig. 3b, the epigenome encompasses the guy-lines and anchors that warp the 

genomic landscape. In this work, I focus on the epigenetic feature of chromatin 

accessibility. 

Each cell contains an entire genome that is organized within the nucleus. The high-level 

organization of the genome has been observable since 1842 when botanist Karl Nägeli 

identified distinct chromosomes in pollen34. Today, the gross observation of the 

organization of the human genome in chromosomes by cytogenetic assessment is a 

standard of human clinical care. In this approach, dark and light bands represent 

“closed” heterochromatin and “open” euchromatin, depending on the staining modality. 

While cytogenetics has been essential to human medicine, chromatin compaction at 

finer resolution than banding is required to identify the DNA sequences accessible to the 

proteins that bind DNA. The data type that provides base pair-level resolution of DNA, 

which is accessible and not sterically blocked by histone proteins, is chromatin 

accessibility. Chromatin accessibility of single cells corresponds to cell types35–37, cell 

states38,39 (see Chapter 3), and gene expression – where accessible genes are 

preferentially expressed, in contrast to inaccessible chromatin. Numerous chromatin 

accessibility assays capture accessible DNA in bulk (multi-cell) or single-cell formats. 

Given that individual cells demonstrate unique chromatin accessibility profiles across 

their entire genome, single-cell methods are required to capture the finest unit of 

chromatin variation. In contrast, bulk methods capture the cumulative DNA accessibility 
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across all cells. Therefore, the assessment of chromatin accessibility in bulk or single-

cell contexts should be determined based on the specific scientific questions being 

asked, as no one method is appropriate for all scientific questions. 

1.4.1 Single-cell ATAC-seq as a solution to interpreting cellular genomic 

usage 

Methods for the assessment of chromatin accessibility utilize a variety of biochemical 

approaches to capture genomic fragments which are unoccupied by DNA binding 

proteins. Historically, the DNAse hypersensitivity assay used the DNAse I endonuclease 

enzyme to digest unbound DNA40. An improved methodology for capturing chromatin 

accessibility utilized a transposase enzyme, Tn5, which was first discovered in a study of 

kanamycin resistance in 197541. Evolutionarily, transposases catalyze transposition, a 

process by which transposable elements are integrated into the genome through double-

stranded cleavage of genomic DNA and ligation-mediated insertion of transposed 

elements42. Recent advancements in biochemical library preparation for NGS motivated 

the use of Tn5 for catalytic ligation of the addition of universal sequencing adapters to 

DNA sequencing libraries43. Additional co-option of the inability of Tn5 to catalytically 

cleave protein-bound DNA resulted in the use of Tn5 to capture chromatin accessibility 

data in an approach termed the Assay for Transposase Accessible Chromatin using 

sequencing (ATAC-seq)44. ATAC-seq utilizes the tagmentation reaction, where Tn5, 

nuclei, and sequencing adapters are combined to result in a purified sequencing library 

pool comprised of excised open chromatin fragments ligated to sequencing adapters. 

Many biochemical variations of the ATAC-seq methodology have been developed to 

facilitate single-cell assessment. Approaches vary from single-cell single-well 

tagmentation reactions to microfluidic isolation of single cells within reaction micelles to 

combinatorial indexing approaches to capturing single-cell ATAC-seq data. 
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In this work, I utilized the single-cell combinatorial indexed assay for chromatin 

accessibility using sequencing (sci-ATAC-seq)45. This approach relies on a probabilistic 

sampling approach to create a high likelihood that open, or accessible, chromatin 

sequencing reads can be assigned to one nucleus (Fig. 6). Isolated nuclei are randomly 

 distributed across wells, and in the work presented here, 96-well plates were used for all 

sci-ATAC-seq experiments. 

Uniquely indexed Tn5 

tagmentation reactions are then 

performed in each well, such that 

the resulting excised accessible 

chromatin fragments contained in 

intact nuclei are uniquely indexed 

– as denoted by the uniquely 

colored well in Fig. 6 (see 

Transpose, Index 1 

Incorporation). All tagmented 

nuclei are then pooled and 

sparsely Fluorescence-Activated 

Nucleus Sorted (FANS) into new 

wells (e.g., 96-well plates). The number of nuclei sorted into each well is metered such 

that the likelihood of any two same-indexed Index 1 cells, or same-colored cells as in 

Fig. 6, being sorted into the same Index 2 well is highly unlikely. We find in practice that 

sci-ATAC-seq barnyard experiments between mouse and human cells result in a 5% 

collision rate, or a 5% incidence of same-indexed cells being sorted into a single well. 

Nuclei sorted into wells in this second tier of indexing contain excised chromatin 

 

 

Figure 6.  Single-cell combinatorial indexing assay 
for transposase accessible chromatin. Circles 
represent single nuclei. Dashed boxes represent 
individual reaction wells. Colors indicate unique 
indexes which are ligated to excised genomic open 
chromatin fragments. Note that Index 2 PCR is scaled 
by the number of Index 1 tagmentation well (15 * 96-
well plates = n cells per well in Index 2 PCR). 
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fragments which are then polymerase chain reaction (PCR) amplified to duplicate the 

unique and genomic open chromatin regions (see Fig. 6, PCR, Index 2 Incorporation). 

Post-PCR, the combinatorially indexed accessible chromatin fragments are pooled, 

cleaned, and sequenced. This approach to single-cell ATAC-seq is highly scalable, low-

cost, and presents unique opportunities to multiplex different samples based on 

transposase index. 

1.4.2 Technical considerations of single-cell ATAC-seq experiments 

Single-cell ATAC-seq, and all single-cell assay experiments, should be carefully 

designed and analyzed to ensure that technical variables do not influence biological 

conclusions derived from the data. 

Firstly, bioinformatics data analysis relies on the minimization of batch effect. As single-

cell assays have grown in popularity and funding, so have the number of single-cell 

experiments and data caches. However, data integration poses a substantial barrier to 

analyzing these data. The batch effect, or the non-biological factors in an experiment 

that can cause changes in the data produced by the experiment, can be introduced in 

many stages of single-cell data acquisition and analysis. Batch-effect can be introduced 

into the processing of multiple samples through any experimental or computational 

segregation of samples by any technical feature of the data, such as individual (e.g., 

patient ID, or mouse ID), biological condition/control, timepoint, sex, or age. Therefore, 

experiments must be carefully designed to generate a dataset that can be interpreted 

independently of these technical variables. Sample acquisition can, however, pose 

significant barriers to batch effect reduction. For example, longitudinal studies that 

require sequential sampling and tissue processing result in datasets where the 

experimental batch corresponds to the sample time point. This batch effect can be 

mitigated by collecting all samples across all time points and then including a mixture of 
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all time points in each experimental preparation. In cases where samples must be 

immediately processed, as in many RNA sequencing experiments, the technical batch 

effect is an unavoidable artifact of the dataset. In this era of single-cell analysis and 

meta-analysis, technical batch effects affect the conclusions derived from studies – 

however, the technical batch effect is not always addressed in manuscripts. As a result, 

it is essential, as consumers of single-cell studies, to independently assess the quality of 

the biological conclusions presented by single-cell studies. 

Secondly, single-cell studies routinely rely on dimensionality reduction algorithms to 

create limited dimensional representations of the data – and the interpretability of those 

figures is highly debated. Again, as consumers of these studies, it falls on the reader to 

understand the use of these algorithms and determine whether the conclusions 

presented in a single-cell study are based on multi-dimensional data or two-dimensional 

data representation. One such dimensionality algorithm, Uniform Manifold Approximation 

Projection (UMAP), projects a manifold, or topology, through the multidimensional data 

space46, i.e., the single-cell by feature space, in the case of single-cell studies. In single-

cell publications, UMAP is commonly used to generate two- or three- dimensions for 

each cell such that the local space between similar cells is minimized and the global 

space between dissimilar cells is maximized. Plotting the cells by UMAP dimensions 

results in individual cells plotted in a two-dimensional or three-dimensional 

representation of the feature space. Importantly, all such dimensionality reduction 

algorithms rely on parameter variables to manipulate the minimization and maximization 

of cells' global and local separation within the output dimensions. Therefore, limited (e.g., 

two- or three-) dimensional representations of high-dimensionality data should be 

considered as one visualization of the relationship between cells of an infinite number of 

possible visualizations. 
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Recent investigations and opinions have raised concerns about the over-interpretation of 

single-cell limited-dimensionality representations47. However, it is essential to remember 

that dimensionality reductions such as UMAP are tools used to process data, and it is an 

academic understanding of that tool that must be maintained to interpret the output from 

it correctly. Therefore, it is the responsibility of those reporting single-cell results and 

those interpreting single-cell results to understand the strengths and limitations of the 

biological tools being used. 

1.5 Toward a cellular ontology of the mammalian brain 

The Gene Ontology (GO) initiative has developed a consistent nomenclature for 

describing features associated with known genes to facilitate genomic research. Since 

the advent of single-cell technologies, we are approaching a complete set of known cell 

types in mammalian brains – particularly in the human and mouse brains. Therefore, we 

are approaching a consistent representation of cellular kinds in the mammalian brain, or 

a complete cellular ontology. 

The focus of this work, the central nervous system (CNS), comprises a diverse range of 

neuronal and non-neuronal cell types that give rise to cognition. Characterization of 

neuronal cell types has elucidated sub-classifications of neurons that execute disparate 

functions throughout the human brain48. In contrast, single-cell characterization of non-

neuronal cells, or glia, in the mammalian brain has lagged. As a result, documentation of 

the regulatory elements that give rise to the multifaceted functions of glial cell types is 

required to create a complete map of cellular heterogeneity in the mammalian brain. 

1.5.1 Glial cell types of the central nervous system 

Previous work has advanced our understanding of the vital role of non-neuronal cells in 

the central nervous system, and single-cell studies have begun to converge on the 
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abundant glial cell types in the mouse and human brains. In the absence of a shared 

taxonomy and nomenclature for defining cell types and states, there are many names for 

cell types and many features used to determine the naming schema used in each study.  

Historically, glial cell types have been grossly grouped into astrocytes, microglia, 

oligodendrocytes, oligodendrocyte progenitor cells, and vascular cells. In the healthy 

white matter, axonal projections of neurons receive trophic factors through astrocytes 

and oligodendrocytes20. In this reciprocal relationship, neurons release the 

neurotransmitter glutamate that is taken up by oligodendrocytes and astrocytes. 

Additionally, oligodendrocytes myelinate neuronal projections, thus allowing for rapid 

signal transduction21. Astrocytic membranes cover 90% of the brain vasculature, making 

astrocytes the primary conduit for glucose, iron, and other essential molecules and a 

vital part of the blood-brain barrier20. Additionally, astrocytes and microglia are critical for 

synaptogenesis, synapse pruning, and elimination22. Astrocytic release of D-serine is 

essential for long-term potentiation and neuronal plasticity, lending to the tripartite 

synapse model of symbiotic reliance between astrocytes and neurons23,24. 

While many essential functions are associated with these gross cell types, single-cell 

omic characterization of glia has, revealed that these cell types might be an 

oversimplification of a diverse range of glial states. Table 1 summarizes the cell types 

and marker genes commonly used to define them in single-cell chromatin accessibility 

(ATAC-seq) and gene expression (RNA-seq) studies. The astrocyte cell type is widely 

reported; however, variations – such as astroependymocytes and astroendothelial cell 

type variations have been reported – due to the similarities between astrocytes and the 

cells that they complex with to maintain the blood-brain barrier (BBB). BBB-associated 

cell types are commonly grouped and referred to as vascular cells. However, the cells 

included in this designation are highly variable. Vascular cells typically consist of the cell 
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types: endothelial cells, ependymal cells, and mural cells (pericytes and vascular smooth 

muscle cells, VSMCs). Immune cell types are commonly reported as microglia, the 

resident immune cells of the CNS, and perivascular macrophages, which invade the 

CNS in response to inflammation. The oligodendroglial lineage is frequently reported as 

oligodendrocytes and oligodendrocyte progenitor cells (OPCs). Some studies 

characterize oligodendrocytes by maturity stage (from OPC to post-myelinating 

oligodendrocytes) and report corresponding maturity marker genes (Table 1). 

Table 1. Common gene markers for cell types identified in single-cell studies. A review of 
gene markers, named according to mouse nomenclature, that are used to identify cell types. 

Cell type Sub-Classification Marker 

Astrocytes Pan-astrocyte Aqp4, F3, Gfap, Glt1, Aldh11, Aqp4, Mfge849,50 

Vascular cells 

Endothelia Flt1, Xdh, Ly6c149,50 

Ependymal cells Foxj1, Myb, Rfx2, Zmynd1050 

Pericytes Kcnj8, Pdgfrb, Acta2, Tbx1850–52 

VSMCs Bgn, My1949 

Immune cells 

Microglia C1qa, C1qc, Itgam, Ctss, Cx3cr1, Aif149,50 

Perivascular 
macrophages Mrc1, Lyve1, Lyl1, Spic50 

Oligodendroglial 
Lineage 

OPC 
Pdgfra, Cspg4, Dcc, Ephb2, Ptch1, Mki67, Myrf, 
Enpp649,53,54 

Pan-oligodendrocyte Mog, Hapln2, Sox10, Olig249,50,54  

Newly Generated 
Enpp6, Mbp, Galc, Plp, Mag, Mog, Olig1, 
Itpr2, Prom1, Gpr17, Tcf7l2, Idh1, Cnksr3, Rnf12249 

Pre-myelinating H2afj, Tmem141, Cd81, Rhob49 

Myelinating 
Opalin, Mrf,Klk6, S100b, Pmp22, S100a1, 
Sec11c,Ptgds, Grm3, Car2, Mobp, Mbp, Cldn1149,50 

Post-myelinating Klk6, Sec11c50 

 

1.5.2 Glial cell states of the central nervous system 

In addition to terminally differentiated cell types, CNS cells present epigenomic variability 

within these types in the healthy and diseased brain. This variability mirrors the genomic 

variability between organisms within a species. Within an organism, cells exhibit 

epigenomic variability within a cell type. Within a single glial cell type, different cell states 

have been shown to have diverse functions between and within brain regions. Single-cell 

RNA-seq studies have found regionally restricted astrocyte types that correlate to 



21 
 

glutamate/glycine neurotransmitter spatial patterning25. In contrast, oligodendrocytes, 

which have been reported to account for 50-70% of the glia in the cerebral cortex, exhibit 

no regional identity25. This work defines the known glial cell state diversity of the healthy 

human brain and provides a novel characterization of rare glial cell state populations in 

Chapter 3. Here, I present the glial the cell state diversity that arises from inflammation 

responses in the diseased tissue that results from cerebral ischemia. 

1.5.2.2 Cell state shifts in cerebral ischemia 

Reactive glial cell types, astrocytes, and microglia alter their morphology and function in 

response to inflammation signals. Here, I present the glial cell state diversity in the 

disease focus of this work, cerebral ischemia. 

Cerebral ischemia is a focal and acute loss of blood flow, which induces epigenetic 

remodeling in a gradient radiating away from the site of infarction. This impaired blood 

flow results in a loss of oxygen and glucose to the ischemic microenvironment, which 

initiates a cascade of spatial and temporal pathogenic events. Accumulation of lactic 

acid, a dearth of ATP, and accumulation of calcium and sodium in neurons decrease the 

osmotic pressure, leading to cytotoxic edema and excitotoxic neuron death26. The 

products of this ischemic cascade flood the tissue microenvironment with 

neurotransmitters and apoptotic factors that potentiate spreading depolarization, 

excitotoxicity, hypoxic and nitric stress responses, and secondary phenomena like 

inflammation and cell death in the hours and weeks following ischemia26–28. In the form 

of ischemic stroke, this acute focal cerebral hypoperfusion leads to cell death at the site 

of infarction and a lesion that expands in volume over time27. This well-characterized 

disease state exhibits a spatially progressive etiology. 

The central nervous system (CNS) network of tightly regulated cell-cell interactions is 

dysregulated upon hypoperfusion, and sustained epigenetically shifted cell states persist 
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in the peri-infarct area. Glial cell types in the surrounding tissue adopt novel functions, 

and epigenomic remodeling occurs in the injured tissue29–32. Previous work has shown 

that diverse epigenetic remodeling occurs post-ischemia33,34. Cells in the peri-infarct 

area undergo epigenomic shifts, including global transcription repression via a three-fold 

increase in DNA methylation32, global histone methylation30,31,35 and global de-

acetylation35,36 in the days and weeks post-ischemia. Glial cell types adopt reactive 

states, leading to the adoption of novel cell functions that promote gliosis, where glia in 

the tissue surrounding the infract enter immunoreactive states, adopt CNS damage 

associated functions, and form a protective glial scar37,38. Cells that persist in this 

ischemic lesion undergo cell state changes dependent on cell type. 

Additionally, post-ischemic myelin depletion is attributed to a dearth of mature 

differentiated myelinating oligodendrocytes and an accumulation of oligodendrocyte 

precursor cells (OPCs) in the infarct penumbra39. After an ischemic injury, OPCs 

proliferate normally but fail to migrate and differentiate into mature oligodendrocytes. 

This accumulation of OPCs and spatiotemporal depletion of mature oligodendrocytes in 

the penumbra leads to impaired trophic factor transmission from oligodendrocytes to 

neurons and neuron death38,40,41. 

While cerebral ischemia is an acute hypoperfusion event, a reduction in blood flow to 

watershed areas of the human brain is also associated with aging. In human patients, 

this chronic cerebral hypoperfusion (see 1.5.3 Discrepancies between the mouse and 

human brain) contributes to neurodegenerative injuries in the brain42,43. However, there 

is no comprehensive understanding of single-cell epigenomic cell state shifts that occur 

after cerebral ischemia. The chronic form of cerebral hypoperfusion has been shown to 

increase with patient age and has long been hypothesized to be the etiological basis of a 

brain lesion termed white matter hyperintensities (WMH)44,45. Despite the prevalence of 
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acute and chronic hypoperfusion injuries, no targeted clinical therapies currently exist. 

As the population age increases, the incidence of hypoperfusion injuries will increase, 

thus creating a need to characterize pathogenic cell-type-specific epigenetic state shifts 

to identify candidates for targeted therapies. 

1.5.3 Discrepancies between the human and mouse brain 

The mouse brain serves as a robust model for the human brain, and it allows for 

longitudinal and perturbation studies that would not be possible in human subjects. 

Taxonomically, humans and mice both fall within the mammalian class; however, 

evolutionarily, humans and mice are distantly related. Investigation into these genomes 

reveals 70% similarity between the protein-coding DNA sequences, which account for 

1.5% of these genomes overall. This loose-genomic relationship is borne out when we 

compare the anatomy of the human and mouse brain. Humans are the only species with 

a larger white matter volume than grey matter volume55. This white matter is also the 

most recently evolved feature of the human brain and is thought to be uniquely involved 

in psychological disorders56. Unsurprisingly, some pathologies that are associated with 

the human brain are not observed in the mouse model organism. 

One such pathology is leukoaraiosis, or white matter hyperintensities (WMH). In 

humans, WMH accumulate in advanced-age patients at a prevalence of 50.9% in 

healthy persons aged 44 to 48 years and 95% in healthy persons aged 60 to 90 years – 

and are associated with an increased risk of dementia, chronic depression, stroke, brain 

atrophy, and abnormal gait57,58. These WMHs present as high-intensity signals on a T2-

weighted MRI and fluid-attenuated inversion recovery (FLAIR) sequences; however, 

their etiology is not known59. WMH resemble ischemic lesions in that they have low-

myelin density and occur in low-perfusion regions of the brain59. Currently, hypotheses 

suggest that age-related and cerebral small vessel disease (CSVD)-related 
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hypoperfusion cause slight decreases in cerebral perfusion, which result in brief 

asymptomatic cerebral ischemic events, which present as WMHs59,60. While this 

ubiquitous and compelling pathology seems to be an age-related feature in humans, 

these same features are not observed in mice – likely due to the limited size of the 

murine white matter, the resulting lack of low-perfusion, or “watershed” areas on the 

mouse white matter, and their limited lifespan61. While humans experience age-related 

white matter pathologies that are unsurprisingly not recapitulated in mouse models, 

acute cerebral ischemia also varies between humans and mice. 

The anatomical discrepancy in white matter volume is relevant to mouse models of 

cerebral ischemia. Ischemic strokes are experienced ubiquitously throughout the United 

States and the world62,63, where 75–89% of strokes occur in individuals over the age of 

6560 and are highly correlated with heart disease, high blood pressure, and aging in 

humans. Additionally, cerebral ischemia induces epigenetic remodeling in cells in a 

gradient radiating away from the site of infarction64,65. Mouse white matter is limited to 

the corpus callosum and induced white-matter ischemic injury models commonly result 

in infarct expansion that encompasses both the white and grey matters66,67. While a 

mouse model of white-matter cerebral ischemia can reveal many critical biological 

components of hypoperfusion injury in humans, mice are an imperfect model, particularly 

for the study of white matter pathologies68. 

Studies that have explored the cellular diversity in the human and mouse brain have also 

revealed chromatin accessibility, transcriptomic, and functional differences between 

comparable mouse and human cell populations in health and disease. While 

investigations into murine neuronal circuits have provided a framework for the 

mammalian brain, human astrocytes vary significantly from murine astrocytes69. Human 

astrocytes are larger with more branched processes which make contact with 100x more 
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synapses, and also have been shown to have 5x faster calcium wave propagation than 

mouse astrocytes70. While the functional effect of these differences between human and 

mouse astrocytes is not fully understood, we do know that pathologies such as 

Alexander’s Disease (AxD), caused by a mutant form of GFAP, dramatically inhibit 

neurodevelopment in humans but do not present with neurodevelopmental deficiencies 

in AxD mouse models70. This disease case of a morphologically and functionally distinct 

astrocyte response in humans that does not occur in mice suggests that we should 

practice caution when assuming that mice and humans share cell types and states. 

Additionally, in the research presented here and in a meta-analysis of numerous 

chromatin accessibility and transcriptomic studies, I find that oligodendrocytes 

demonstrate clear maturity stages in the mouse brain, which have not been observed in 

the human brain (see 3.5.7 Oligodendrocytes occupy a continuous chromatin 

accessibility landscape with few distinct sub-states). 
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Chapter 2: Spatially mapped single-cell chromatin 

accessibility 

This chapter contains a modified version of material that appeared in the author’s 

publication: Thornton, Casey A., et al. “Spatially mapped single-cell chromatin 

accessibility” Nature Communications 12, 1274 (2021). Copyright © 2021, The 

Author(s). 
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2.3 Abstract 

High-throughput single-cell epigenomic assays can resolve cell type heterogeneity in 

complex tissues; however, spatial orientation is lost. Here, we present single-cell 

combinatorial indexing on Microbiopsies Assigned to Positions for the Assay for 

Transposase Accessible Chromatin, or sciMAP-ATAC, as a method for highly scalable, 

spatially resolved, single-cell profiling of chromatin states. sciMAP-ATAC produces data 

of equivalent quality to non-spatial sci-ATAC and retains the positional information of 

each cell within a 214-micron cubic region, with up to hundreds of tracked positions in a 

single experiment. We apply sciMAP-ATAC to assess cortical lamination in the adult 

mouse primary somatosensory cortex and in the human primary visual cortex, where we 

produce spatial trajectories and integrate our data with non-spatial single-nucleus RNA 

and other chromatin accessibility single-cell datasets. Finally, we characterize the 

spatially progressive nature of cerebral ischemic infarction in the mouse brain using a 

model of transient middle cerebral artery occlusion. 
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2.4 Introduction 

Heterogeneous cell types coordinate in complex networks to generate emergent 

properties of tissues. These cell types are not evenly dispersed across tissues, creating 

spatially localized functionality. In many disease states, this becomes more apparent as 

the affected organ experiences spatially progressive etiologies. For example, following 

cerebral ischemic injury, astrocytes and microglia enter reactive states that are metered 

by proximity to the site of infarction71, but this spatial information has, so far, been 

difficult to assess. Single-cell technologies have advanced cell type and state 

characterization efforts by enabling the isolation of signals from individual cells within a 

sample, thus resolving the heterogeneity of complex tissues. Applications of single-cell 

technologies have identified novel cell types with characteristic -omic signatures in the 

highly complex tissue of the brain21,49. In the cerebral cortex, specifically, cells form an 

intricate layered hierarchical structure comprised of both neuronal and glial cell types 

that generate sensory, motor, and associational percepts72. Layer-specific gene 

expression profiles of cortical neurons and astrocytes have been characterized by 

spatial transcriptomic approaches and immunohistochemical (IHC) staining; however, 

spatially mapped epigenetic states of cortical cells have yet to be directly assayed 

without relying on the data integration73–75. 

To address this challenge, several strategies have emerged to assay transcription either 

directly in situ or a regional manner. The former techniques utilize fluorescence in situ 

hybridization (FISH)76–78 or in situ RNA sequencing32,79. While powerful, FISH methods 

require the use of a defined probe set and are limited to the identification of DNA and 

RNA sequences. In contrast, technologies that utilize array-based mRNA barcoding do 

not require a defined set of genes and operate similarly to single-cell RNA-seq 

methods80,81, thus allowing for whole transcriptome profiling. Initial iterations of these 
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platforms capture regional transcription over multiple cells; however, higher resolution 

variants may facilitate single-cell resolution. Unfortunately, these platforms rely on the 

relatively easy access to mRNA molecules that can be released from the cytoplasm and 

hybridized to barcoding probes, making the expansion into nuclear epigenetic properties 

challenging. With the wealth of epigenetic information that resides in the nucleus and the 

value it can add to characterizing complex biological systems82–84, we sought to address 

this challenge by harnessing the inherent throughput characteristics of single-cell 

combinatorial indexing assays85,86. 

Here, we present single-cell combinatorial indexing from Microbiopsies with Assigned 

Positions for the Assay for Transposase Accessible Chromatin (sciMAP-ATAC). sciMAP-

ATAC preserves the cellular localization within intact tissues and generates thousands of 

spatially resolved high-quality single-cell ATAC-seq profiles. As with other “sci-” 

technologies, sciMAP-ATAC does not require specialized equipment and scales 

nonlinearly, enabling high-throughput potential. Building upon multiregional sampling 

strategies87,88, where several regions are isolated, we reasoned that the sample 

multiplexing capabilities of combinatorial indexing could be utilized to perform high-

throughput sampling at resolutions approaching those of array-based spatial 

transcriptional profiling, all while retaining true single-cell profiles. Unlike multiregional 

sampling, we perform high-density microbiopsy sampling, ranging from 100 to 500 µm in 

diameter, on cryosectioned tissue sections, between 100 and 300 µm in thickness, to 

produce up to hundreds of spatially mapped punches of tissue, each producing a set of 

single-cell chromatin accessibility profiles (Fig. 7a). We demonstrate the utility of 

sciMAP-ATAC by profiling the murine and human cortex, where distinct cell type 

compositions and chromatin profiles are observed based on the spatial orientation of the 

punches, and further extend the platform to characterize cerebral ischemic injury in a 
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mouse model system, where cell type compositions and epigenetic states are metered 

by proximity to the injury site (Fig. 8). 

 

 
 
Figure 7. sciMAP-ATAC schematic and performance. a, sciMAP-ATAC workflow. 
Cryosectioning of alternating 20 µm (histological) and 100–300 µm (sciMAP-ATAC) slices are 
obtained. Thin (20 µm) slices are stained and imaged for use in spatial registration (scale bar, 
1 mm) to a reference atlas (Allen Mouse Brain Atlas: http://atlas.brain-
map.org/atlas?atlas=1&plate=100960312, ref. 25). Thick (100–300 µm) slices are carried 
through high-density microbiopsy punching (100–500 µm diameter) in the cryostat chamber. 
Punches are placed directly into wells of a microwell plate for nuclei isolation, and washed prior 
to splitting into multiple wells for indexed transposition and the sci-ATAC-seq workflow. b, Four 
punch volumes were assessed for nuclei yield using either a 250 or 500 μm diameter punch on 
a 200 or 300 μm thick section. Total nuclei isolated for each punch is shown on the left, and 
normalized for tissue voxel volume on the right, representing the efficiency of extraction from 
each punch, for punches with dimensions 250 ×200 μm (n = 48), 250 × 300 μm (n = 15), 
500 × 200 μm (n = 46), and 500 × 300 μm (n = 7). Center line represents median, lower and 
upper hinges represent first and third quartiles, and whiskers extend from hinge to ±1.5 × IQR. 
c, Passing reads per cell from sci-ATAC-seq (n = 4102 cells examined from a single mouse 
brain experiment) and sciMAP-ATAC (n = 15,552 cells examined from two independent mouse 
brain experiments), which are comparable at the level of depth sequenced. Center line 
represents median, lower and upper hinges represent first and third quartiles, whiskers extend 
from hinge to ±1.5 × IQR, individual cells represented as colored dots. d, ATAC read signal at 
transcription start sites (TSSs) and surrounding base pairs (bps) for sci-ATAC-seq and 
sciMAP-ATAC. Enrichment for sci-ATAC-seq is greater than that of sciMAP-ATAC, likely due 
to increased processing time of isolated nuclei prior to transposition. e, UMAP of sciMAP-
ATAC and sci-ATAC-seq libraries from mouse brain group closely together. Asterisk indicates 
a population of 734 cells, derived from spinal cord, which was not sampled during microbiopsy 
punching. Source data are provided as a Source data file. 

 

http://atlas.brain-map.org/atlas?atlas=1&plate=100960312
http://atlas.brain-map.org/atlas?atlas=1&plate=100960312
https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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Figure 8. Overview of single-cell ATAC profiles produced across experimental 
conditions. Quality-passing single-cell ATAC-seq profiles for each experimental condition or 
spatially resolved punch (for sciMAP-ATAC) as a percentage of the experiment (or mean ± SD) 
for: a, sci-ATAC-seq on fresh vs. frozen mouse whole brain hemisphere; b, sciMAP-ATAC 
development across four dissociation methods and punches; colored by each dissociation 
method (n = 315 individual punches); c, sciMAP-ATAC on mouse SSp by biological replicate, 
class of sampled region, individual section, and punch (n = 95 individual punches).; d, Human 
VISp sciMAP-ATAC by section, position of sampled region, individual trajectory (T) and punch 
(n = 188 individual punches); and e, sciMAP-ATAC on a mouse model of cerebral ischemia by 
biological replicate, class of sampled region, section and punch (n = 233 individual punches). 
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2.5 Results 

2.5.1 Single-cell combinatorial indexed ATAC-seq from microbiopsy 

punches 

Single-cell ATAC-seq requires the isolation and processing of nuclei such that the 

nuclear scaffold remains intact to facilitate library preparation via transposition in situ; it 

also requires that the chromatin structure is maintained to produce a chromatin 

accessibility signal. We and others have explored methods for tissue preservation that 

are compatible with single-cell ATAC-seq85,89; however, we sought to confirm that these 

strategies are compatible with freezing techniques used for cryosectioning and IHC 

staining of tissue. We tested our workflow on mouse whole brain samples by processing 

one hemisphere using flash-freezing methods designed for tissue freezing medium 

(TFM) embedding and cryosectioning (see 2.7 Methods) and processing the paired 

hemisphere as fresh tissue. Our previously established non-spatially resolved sci-ATAC-

seq workflow89 was performed on both hemispheres, including pooling post-transposition 

for sorting, PCR amplification, and sequencing. Flash-frozen and fresh nuclei produced 

nearly identical passing reads per cell at the depth they were sequenced, along with 

comparable fractions of reads present in a set of aggregate mouse ATAC-seq peaks 

(FRiS; 0.93 and 0.91 for fresh and frozen, respectively; Fig. 9a,b). 

We then explored techniques for cryosectioning flash-frozen TFM-embedded tissue at 

thicknesses compatible with microbiopsy punching. Typically, cryosectioning is used to 

produce sections for imaging applications, and thicker sectioning results in tissue 

fracture. Drawing on past literature90, we carried out a series of experiments testing 

several sectioning thicknesses and punch diameters, followed by nuclei isolation and 

debris cleanup on flash-frozen, embedded mouse brain microbiopsy punches. We found 
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that holding cryo-chamber and chuck temperatures at −11 °C improves the flexibility of 

the fragile flash-frozen tissue while maintaining adherence of embedded tissue to the 

sample mount, thus allowing for uninterrupted sectioning of alternating 100–300 µm 

sections for punching and paired 20 µm sections for histology (Fig. 7a). This approach 

facilitates the acquisition of both sections for microbiopsy punching and paired sections 

compatible with IHC staining and high-resolution microscopy. Cryopreservation of 100–

300 µm/20 µm slide decks at −80 °C allow for long-term sample storage and the ability to 

test hypotheses by staining after analysis of the spatially resolved chromatin accessibility 

profiles; however, we note that sections stored for ~3 months result in an overall loss of 

quality in transcription start site (TSS) enrichment. 

Microbiopsy punching of 100–300 µm sections performed within a cooled chamber (see 

2.7 Methods) allows for the isolation of microscopic pellets of nuclei that readily 

dissociate in nuclear isolation buffer (NIB) after mechanical dissociation by trituration. 

We observed minimal loss after pelleting and washing nuclei, an important step for the 

removal of mitochondria, which can deplete the available pool of transposase because 

of the high transposition efficiency into mitochondrial DNA91. Nuclei isolation, as 

measured by nuclei per cubic micron, was more efficient for volumetrically smaller 

punches (Fig. 7b). This implies that smaller punches dissociate more readily because of 

a higher surface area to volume ratio. Thus, higher resolution punches yield more nuclei, 

respective of volume. 
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Figure 9. Quality metrics across all experiments. a, Log10 passing reads obtained per cell 
at the depth of sequencing for all experiments: mouse whole brain sciATAC (n = 4,569 cells), 
mouse dissociation development sciMAP-ATAC (n = 8,011 cells), mouse SSp cortex sciMAP-
ATAC (n = 7,779 cells), mouse VISp cortex sciMAP-ATAC (n = 4,547 cells), and mouse 
cerebral ischemia sciMAP-ATAC (n = 5,081 cells); as described in Fig. 8. Center line 
represents median, lower and upper hinges represent first and third quartiles, whiskers extend 
from hinge to ± 1.5x IQR, individual cells represented as dots. b, The fraction of reads present 
in a reference set of peaks (FRiS) for all cells in each experiment as in a. The master list of 
peaks for mouse are aggregated from ATAC-seq data produced by the ENCODE project, and 
for human it is from a single study on DNAse hypersensitivity28. Center line represents 
median, lower and upper hinges represent first and third quartiles, whiskers extend from hinge 
to ± 1.5x IQR, individual cells represented as colored dots. c, Insert size distributions for all 
experiments. d-f, Left: aggregate read density at transcription start sites (TSSs) and 
surrounding base pairs (bps) present in the genome with TSS enrichment values listed by each 
class calculated using the ENCODE method; middle: FRiS distributions for all cells within each 
punch produced in the experiment split by section and mouse cerebral ischemia sciMAP-ATAC 
(); and right: Punch distributions of cell counts for each category within the experiment split by 
section, for mouse SSp (d, n = 7,779 cells examined over 95 independent punches taken from 
8 sections), human VISp (e, n = 4,547 cells examined over 188 independent punches taken 
from 3 sections) and mouse cerebral ischemia (f, n = 5,081 cells examined over 233 
independent punches taken from 15 sections) experiments. Center line represents median, 
lower and upper hinges represent first and third quartiles, whiskers extend from hinge to ± 1.5x 
IQR, individual cells represented as dots. 

 

2.5.2 sciMAP-ATAC performance and quality assessment 

We applied these techniques to perform sciMAP-ATAC, where we tested four methods 

of punch dissociation (see 2.7 Methods). We utilized a workflow similar to our 

established sci-ATAC-seq method, with each indexed transposition reaction performed 

on an individual punch, for a total of 384 transposition reactions performed in four 96-

well plates. Reactions were pooled, and indexed nuclei were distributed via 

fluorescence-assisted nuclei sorting (FANS) to wells of four new 96-well plates for 

indexed real-time PCR, followed by pooling and sequencing. The resulting library 

produced 8011 cells passing filters, for an estimated doublet rate of 2.5% based on the 

total indexing space of 384 × 384 (see 2.7 Methods) and a mean of 12,052 passing 

reads per cell (unique reads, aligned to autosomes or X chromosome at q10 or higher; 

Fig. 9a) at the depth sequenced and potential to reach 23,830 mean passing reads per 

cell with additional sequencing (see 2.7 Methods). This is comparable to the mean 

passing reads per cell from the whole brain sci-ATAC-seq library at 11,987 (projected 
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mean passing reads of 24,672 and 32,029 for fresh and frozen preparations, 

respectively; Fig. 7c and Fig. 9a). We observed a mean of 112 passing cells per punch. 

This could be increased if additional PCR plates were sorted, as the pool of indexed 

nuclei was not depleted during FANS. A comparison between the four dissociation 

methods enabled us to identify an optimal means of punch processing that produced the 

highest cell counts per punch with high-quality cell profiles (see 2.7 Methods; Figs. 8b 

and 9a), which was used for all subsequent experiments. Across all sciMAP-ATAC 

datasets produced in this study on healthy mouse brain tissue, we achieve a TSS 

enrichment of 14.73, within the “acceptable” range prescribed by ENCODE (10–15, 

mm10 RefSeq annotation) and just shy of “ideal” (>15). This is substantially below that of 

our sci-ATAC-seq preparation, with a TSS enrichment of 31.25; however, we note that 

enrichment of more than double the “ideal” standard is exceptionally high (see 2.7 

Methods, Fig. 7d). In line with the lower TSS enrichment in sciMAP-ATAC, we also 

observed a reduction in the fraction of reads present in a mouse reference peak set 

(FRiS; see 2.7 Methods), with a mean ranging from 0.83 to 0.87, compared to 0.91 and 

0.93 for sci-ATAC-seq (Fig. 9b). Finally, we performed an integrated analysis across 

these preparations that revealed negligible batch effects (Fig. 7e and Fig. 11a, b). We 

observed a single exception in the form of a population of cells present only in the 

nonspatial dataset, which, upon inspection, were determined to be spinal cord-derived 

interneurons (Fig. 11c, d) and not present in coronal sections that were used in spatial 

experiments. Taken together, with improvements and validation on sample preparation, 

cryosectioning, nuclei isolation, and the general sci-ATAC-seq protocol, we generated a 

robust method to obtain the spatial information that we sought to test in a complex 

system. 
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2.5.3 sciMAP-ATAC in the adult mouse somatosensory cortex 

To establish the ability of sciMAP-ATAC to characterize single cells within a spatially 

organized tissue, we applied the technique to resolve murine cortical lamination within 

the primary somatosensory cortex (SSp). We harvested intact whole brain tissue from 

three wild-type C57/Bl6J adult male mice, flash-froze the tissue and prepared whole-

brain slide decks of 200 µm microbiopsy slides, each interspersed with three 20 µm 

histological slides. To orient sections to intact mouse brain and to establish the quality of 

histological section prepared according to the sciMAP-ATAC protocol, we stained nuclei 

using DAPI and IHC stained for SATB2 to resolve cortical layers (see 2.7 Methods, Fig. 

10a). DAPI imaging was then matched to the adult mouse Allen Brain Reference Atlas92, 

which enabled the determination of the SSp location within adjacent sections for punch 

acquisition. SATB2 imaging demonstrated the quality of histological sections across 

diverse fixation protocols (4% PFA post-fixation for 10 min and 70% ethanol post-fixation 

for 30 s) and generated a high signal-to-noise ratio canonical for SATB2 IHC staining93 

(Fig. 10b). Microbiopsy punches were then taken from three regions: (i) outer (L2–4) 

SSp cortical layers, (ii) inner (L5 and 6) SSp cortical layers, and (iii) throughout the 

striatum. The striatum is rich in glia and is absent of cortical glutamatergic neurons and 

cortical lamination. Therefore, the striatum punches served as a negative control for 

these features and also bolstered single-cell glial cell type identification. In total, 96 

individual tissue punches were obtained, split evenly between the three categories over 

eight coronal sections spanning the SSp (Fig. 10a). After nuclei isolation, each well of 

the plate containing a single punch was split across four wells, resulting in four 96-well 

plates for subsequent indexed transposition, providing four tagmentation technical 

replicates for each punch. Post-transposition, nuclei were pooled and distributed to two 

96-well PCR plates for the second tier of indexing and then sequenced (see 2.7 

Methods). 
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Figure 10. sciMAP-ATAC reveals spatially distinct cell type composition in the mouse 
somatosensory cortex. a, Experiment schematic of sciMAP-ATAC in the mouse 
somatosensory cortex. b, DAPI and SATB2 staining of SSp cortex from sciMAP-ATAC 
histological section (scale bar, 50 µm) in reference to matched rerference atlas image (Allen 
Mouse Brain Atlas: http://atlas.brain-map.org/atlas?atlas=1&plate=100960312, 
ref. 25). c, UMAP of 7779 cells colored by punch location category. Each category contains 
cells from 32 spatially distinct tissue punches. d, UMAP as in c, colored by cell type (OPC 
oligodendrocyte precursor cells, Int Olig intermediate oligodendrocytes, Mat Olig mature 
oligodendrocytes, Astro astrocytes, Endo endothelia, Micro microglia, MSN medium spiny 
neurons, GABA GABAergic (inhibitory) neurons, Glut glutamatergic (excitatory) 
neurons). e, ATAC-seq profiles for cells aggregated by cell type for marker genes; colored by 
cell type as in d. f, Aggregate cell type composition over punches belonging to the broad 
region categories; colored by cell type as in d. g, Cell type composition for each of the 96 
individual punches split by broad region category; colored by cell type as in d. Source data are 
provided as a Source data file. 

 
We processed the raw sequence data (see 2.7 Methods), which resulted in 7,779 cells 

passing quality filters (estimated doublet rate of 4.9%; see 2.7 Methods). Our mean 

passing reads per cell was 17,388, with a projected total passing mean reads per cell of 

37,079 (“Methods”), a TSS enrichment ranging from 13.74 to 15.26, and nucleosomal 

banding present in the library insert size distribution (Fig. 9a–d). A median of 81 single-

cell profiles was obtained per punch, with little bias for punch target region or section 

(Fig. 9d). Subsequent peak calling, topic modeling, and dimensionality reduction (see 

2.7 Methods) revealed cell groupings that were either mixed between the three regional 

categories or highly enriched for cells derived from the cortex, which was further divided 

http://atlas.brain-map.org/atlas?atlas=1&plate=100960312
https://www.nature.com/articles/s41467-021-21515-7#ref-CR25
https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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by outer versus inner punch location (Fig. 10c, Fig. 11e, f and Fig. 9). The overlay of 

spatial data on the UMAP projection fits with our expectation that glutamatergic 

(excitatory) neurons are cortex exclusive, displaying an absence of punch-to-punch 

cross-talk or contamination. In addition, these cells were integrated with prior sciMAP-

ATAC and sci-ATAC-seq experiments where excitatory neuron clusters were also 

dominated by cortex-derived punches, with a shared spatial bias between upper and 

lower punch positions. This demonstrates that spatial datasets can be integrated with 

nonspatial datasets to provide additional spatial information to those datasets, using 

label transfer or other analysis techniques (Fig. 11a, b). 

 

 
 
Figure 11. Extended analysis of the mouse somatosensory cortex sciMAP-ATAC 
dataset. a, Integration of all healthy mouse brain sci-ATAC-seq and sciMAP-ATAC datasets 
visualized in a UMAP. From left to right: all cells colored by the regional category of punch 
position (outer cortex, inner cortex, striatum) for the SSp experiment and then cells from whole 
brain experiments (sciMAP-ATAC and sci-ATAC-seq). Asterisk indicates the population of cells 
only present in the whole brain dataset. Cells are grayed out except for those from punches 
taken from the outer cortex, inner cortex, stratum and then whole brain. Below the whole brain 
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panel, cells derived from the sci-ATAC-seq experiment on fresh and frozen brain hemispheres 
are indicated. b, The same integrated UMAP with cells colored by identified cell type, as 
defined in Fig. 10d. Asterisk indicates the population of GABAergic neurons only present in 
whole brain datasets that represent spinal cord derived interneurons. c, HOXB5 and HOXB7 
are two example motifs that exhibit increased accessibility in the spinal cord derived 
interneuron population. d, ATAC reads for cells (rows) are shown for the Gna14 locus with 
cells colored by cell type, as defined in Fig. 10d, with the addition of the spinal GABAergic 
neuron subcluster. The cluster representing spinal cord derived interneurons is shown in black 
with the uniquely accessible loci circled. e, UMAP of the SSp dataset with cells colored by 
log10 passing read counts. f, UMAP of the SSp dataset with cells grayed out except for each of 
the three regional punch categories; outer cortex, inner cortex, and striatum. 

 
We identified eleven clusters over eight broad cell type groups corresponding to 

glutamatergic neurons, GABAergic (inhibitory) neurons, GABAergic medium spiny 

neurons (MSNs; also referred to as spiny projection neurons (SPNs)), oligodendrocyte 

precursor cells (OPCs), newly formed or intermediate oligodendrocytes, mature 

oligodendrocytes, astrocytes, microglia, and endothelial cells based on the chromatin 

accessibility signature of regulatory elements proximal to marker genes (see 2.7 

Methods; Fig. 10d, e and Supplementary Data 1). GABAergic neurons subdivide into 

non-layer-specific cortical GABAergic neurons and striatum-derived MSNs. In contrast, 

glutamatergic neurons separate along the dorsal-ventral axis, as determined by punch 

position. This recapitulates known neuronal cell state biology, where glutamatergic 

pyramidal neurons express cortical layer(s)-specific markers that define the spatially 

defined cortical layers. Within the SSp-derived cells, we observed 66.6%, 62.4%, and 

49.9% of cells corresponding to neurons in the inner cortex, outer cortex, and striatum, 

respectively. These equate to glia to neuron ratios (GNRs) of 0.50, 0.60, and 1.00 from 

the inner cortex, outer cortex, and striatum, respectively, which correspond to previously 

reported mouse cerebral cortex and striatum GNRs of 0.66 and 0.97, respectively94. In 

addition to coarse cell type characterization across the major punch categories, we 

determined cell type composition for each individual spatially resolved punch (Fig. 10g). 

For cortical punches, little variance was observed within the outer and inner punch 

categories; however, we did observe increased variability in the proportion of MSNs in 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
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the striatum punches, ranging between 2.78% and 72.64%, suggesting a non-even 

distribution of these cells, which is confirmed by MSN cell type marker, Drd1, in situ 

hybridization in adult C57BL/6J striatum (Allen Mouse Brain Atlas)92. 

2.5.4 Analysis of individual punch sciMAP-ATAC profiles and spatial 

comparisons 

We next characterized the single-cell ATAC profiles produced from a single tissue 

punch. We isolated cell profiles that were from punch F5 (n = 90 cells), an inner cortex 

punch, and performed the same analysis as above using the set of peaks called on the 

full dataset. This produced a set of topic weights that contained a clear structure and 

were associated with specific cell types (Fig. 12a). This was also clear in the UMAP 

projection, with three primary clusters of cells identified (Fig. 12b). Two of these groups 

were dominated by one cell type, including glutamatergic neurons and GABAergic 

neurons, with the third group comprised predominantly of glial cell types. 

 

 
 
Figure 12. sciMAP-ATAC enables the analysis and comparison of cells and cell types 
from individual spatial positions. a, Topic weight matrix for cells present only in a single 
punch (F5, inner cortex punch), annotated by cell type (bottom); colored by cell type from the 
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full dataset (Fig. 10d). b, UMAP of cells from punch F5 showing spatially distinct groupings for 
cell type; colored by cell type from the full dataset (Fig. 10d). c, Isolated analysis of cells from 
Punch F5 for peak calling, topic modeling, and visualized via UMAP; colored by cell type from 
the full dataset (Fig. 10d). d, Two major clusters identified from the isolated analysis of punch 
F5 (Glut glutamatergic (excitatory) neurons). e, Transcription factor motif enrichments for the 
isolated analysis of punch F5, indicating that cluster 1 (n = 44 cells) is made up of glutamatergic 
neurons and cluster 2 (n = 45 cells) is made up of other cell types. Center line represents 
median, lower, and upper hinges represent first and third quartiles, whiskers extend from hinge 
to ±1.5 × IQR, individual cells represented as colored dots. f, UMAP of all glutamatergic neuron 
cells from two adjacent punches (C5, inner cortex, and B5, outer cortex) after topic modeling 
on the isolated cell profiles. g, Transcription factor motif enrichments for glutamatergic cells 
from adjacent punches from inner cortex (n = 39 cells) and outer cortex (n = 30 cells) shown 
in f; colored by individual punch as in f. Two-sided Mann–Whitney U test with Bonferroni–Holm 
correction. Center line represents median, lower and upper hinges represent first and third 
quartiles, whiskers extend from hinge to ±1.5 × IQR, individual cells represented as colored 
dots. h, Motif enrichments across glutamatergic neurons across all punch pairs. TFME 
transcription factor motif enrichment. Source data are provided as a Source data file. 

 
We then took the examination of this individual punch further by performing all aspects 

of the analysis, including peak calling, on only the cell profiles present in punch F5. From 

those 90 cells, we were able to call 8460 peaks which were sufficient to perform topic 

modeling and UMAP visualization and identify two distinct clusters: one comprised of 

glutamatergic neurons and the second containing all other cell types, based on the cell 

type identities established in the analysis of the full dataset (Fig. 12c, d). A comparison 

of global motif enrichment between the two clusters revealed elevated NEUROD6 and 

TBR1 and depleted SOX9 motif accessibility in the cluster comprised of glutamatergic 

neurons, suggesting very coarse cell type class assignment can be performed on data 

from a single punch analyzed in isolation (Fig. 12e). Further resolution of cell types on 

such a small number of cells, especially without leveraging larger peak sets, is not likely 

feasible simply due to the low abundance of certain cell types—for example, there was 

only one endothelial cell present in punch F5. However, it is unlikely that individual 

punches would be profiled alone in an experiment and the throughput provided in 

sciMAP-ATAC enables the identification of low-abundance cell types in the aggregate 

dataset, which can be used when performing analysis on individual punch positions. 

https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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Finally, we explored whether we could identify and characterize spatially distinct 

chromatin properties from a single cell type present within two adjacent punches. We 

isolated cells that were identified as glutamatergic neurons in two punches, C5 (inner 

cortex) and B5 (outer cortex), that were immediately adjacent with 83 and 65 total cells 

and 42 and 35 glutamatergic cells, respectively. Similar to the single punch analysis, we 

produced a counts matrix including only these cells and used the full set of peaks to 

perform topic analysis and visualization using UMAP, which showed a clear separation 

between the two locations (Fig. 12f). We then assessed global motif accessibility, which 

revealed clear enrichment for motifs associated with upper or lower cortical layers, 

including RORB, enriched in the outer cortex, and TBR1, enriched in the inner cortex 

(Fig. 12g). To systematically assess this spatial TF motif enrichment (TFME), we applied 

this same analysis to the glutamatergic cell populations identified in every pair of inner 

and outer cortical punches. This produced a consistent pattern with very few punch pairs 

deviating from the expected enrichment pattern (Fig. 12h). 

2.5.5 Spatial trajectories of single-cell ATAC-seq in the human cortex 

With the ability to probe spatial single-cell chromatin accessibility established in the 

mouse cortical lamination experiment, we next deployed sciMAP-ATAC on human brain 

tissue to profile lamination in the adult primary visual cortex (VISp) using an equivalent 

voxel-diameter resolution of 215 cubic microns. Samples of human VISp tissue were 

obtained from an adult (60-year male) with no known neurodegenerative disorders at 

5.5 hours postmortem. Samples were oriented and flash-frozen in TFM prior to storage 

at −80 °C. The sample was cryosectioned using the same alternating thick (200 μm) and 

thin (20 μm) pattern as previously described. We designed and implemented a 250 μm 

diameter punch schematic across three adjacent 200 μm sections to produce 21 distinct 

trajectories comprised of eight punches spanning the cortex, with an additional 20 
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punches distributed in the subcortical white matter for a total of 188 spatially mapped 

tissue punches (Fig. 13a,b). In total, 4547 cells passed quality filters with a mean of 

30,212 reads per cell (estimated mean of 98,274 passing reads per cell with additional 

sequencing; see 2.7 Methods, Figs. 9a and 14a), a mean TSS enrichment of 15.80—

more than twice the “ideal” ENCODE standard for bulk ATAC-seq datasets (>7, GRCh38 

RefSeq annotation), a FRiS of 0.45 using a human reference dataset95, and prominent 

nucleosomal banding (see 2.7 Methods, Fig. 9b, c, e). 

 

 
 
Figure 13. sciMAP-ATAC trajectories through the human primary visual cortex. 
a, sciMAP-ATAC punching schematic showing one of three adjacent sections from one 
individual. A total of 21 eight-punch trajectories (T) spanning the cortex were 
produced. b, UMAP of cells colored by position within their respective trajectory as in a. Top 
right shows the same UMAP with all cells grayed out with the exception of cells from the third 
trajectory from section 2. Bottom right shows all cells grayed out with the exception of cells 
from a single punch; the outermost cortical position (1) from the third trajectory of the second 
section. c, UMAP as in b colored by cell type (OPC oligodendrocyte precursor cells, Olig 
oligodendrocytes, Astro astrocytes, Micro microglia, GABA GABAergic (inhibitory) neurons, 
Glut glutamatergic (excitatory) neurons). d, ATAC-seq profiles for cells aggregated by cell type 
for marker genes; colored by cell type as in c. e, Aggregate cell type composition across the 21 
trajectories (n = 4547 cells over 188 independent punches); colored by cell type as in d. Data 
are presented as mean values ± SD. f, Cell type composition for each of the 188 individual 
punches split by trajectory position. Punches from the WM indicated by an asterisk are 
aggregated by section. Colored by cell type as in d. Source data are provided as a Source 
data file. 

 
Cell profiles were generated as described in prior experiments, which resulted in six 

distinct clusters representing the major cell types (Fig. 13c, d). Similar to the murine 

https://www.nature.com/articles/s41467-021-21515-7#MOESM10
https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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cortex, glutamatergic neurons exhibited the most distinct spatial patterning with a clear 

gradient spanning cortical trajectories (Fig. 13a–c), which was also determined to be the 

most significant (Moran’s I test Bonferroni corrected p-value = 0.87 × 10−4, see: 2.7 

Methods, Supplementary Table 1). Further sub-clustering of GABAergic interneurons 

revealed minimal spatial bias across four distinct subtypes comprised of two MGE-

derived and two CGE-derived clusters (Fig. 14b–e). Each of the 21 individual trajectories 

through the cortex produced similar distributions of cells through UMAP projections with 

a lack of glutamatergic neurons present in the punches obtained from subcortical white 

matter (Supplementary Data 2). Our astrocyte to neuron ratio (0.15:1) was low yet 

comparable to the previously published snRNA-seq of the human VISp (0.12:1)96. 

Average cell type composition along these trajectories revealed the expected pattern of 

an increased proportion of oligodendrocytes and decreased glutamatergic neuron 

abundance as the trajectory approached or entered the subcortical white matter region 

(Fig. 13e). Individual punches largely matched the corresponding average position 

profile (1–8, WM), with higher variability at the first punch where some trajectories 

overlapped the pial surface of the cortex (Fig. 13f). 

 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
https://www.nature.com/articles/s41467-021-21515-7#Sec34
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Figure 14. Extended analysis of the human primary visual cortex sciMAP-ATAC dataset. 
a, UMAP of all cells from the experiment colored by log10 passing read counts. b, UMAP of the 
full dataset with all cells grayed out except for those identified as GABAergic neurons. c, 
UMAP of GABAergic neurons analyzed using topic modeling individually colored by punch 
position. d, Four interneuron clusters identified, including two MGE-derived and two CGE-
derived cell types. e, Aggregate ATAC-seq profiles for marker genes for each of the 
interneuron cell types. f, UMAP of the full dataset with all cells grayed out except for those 
belonging to the fourth trajectory, of 8 consecutive punches, on the first section (Trajectory 
1.4). g, UMAP of cells from Trajectory 1.4 that were processed using peaks from the full VISp 
dataset colored by the punch position; h, the cell type classification as determined from the full 
dataset; and i, the six clusters that were identified. j, UMAP of cells from Trajectory 1.4 that 
were processed using peaks called using only those cells, colored by the punch position; k, the 
cell type classification as determined from the full dataset; and l, the four clusters that were 
identified. 
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2.5.6 Integration of sciMAP-ATAC with scTHS-seq and snRNA-seq reveals 

epigenetic spatial patterning concordant with transcriptional neuronal 

subtypes 

Previously, Lake et al. produced single-cell transposase hypersensitivity (scTHS-seq, an 

assay for chromatin accessibility similar to ATAC-seq) and single-nucleus RNA-seq from 

the human VISp96. We integrated our sciMAP-ATAC dataset with each of these using 

Seurat97 and visualized the joint UMAP projections with cell type information, along with 

the positional breakdown of glutamatergic neurons (Fig. 15 a,b). The joint manifold for 

each integration largely agreed, with the exception of a population of cells in our 

sciMAP-ATAC dataset that did not co-embed with any cell types present in the snRNA-

seq dataset. These cells represent all of the cell types called within the sciMAP-ATAC 

dataset and cluster clearly with their cell types in the sciMAP-ATAC analysis on its own, 

suggesting that it may be an effect of the gene activity score intermediate that is used for 

co-embedding with ATAC-based data (see 2.7 Methods). 
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Figure 15. Integration of sciMAP-ATAC with snRNA-seq and scTHS-seq human VISp 
datasets. a, Co-embedding of sciMAP-ATAC and scTHS-seq cell profiles from Lake et 
al.29 using Signac75 in a joint UMAP. Top right shows only scTHS-seq cells colored by cell type 
identified in Lake et al.29 and bottom shows sciMAP-ATAC cells colored by our called cell types 
as in Fig. 13c, except for glutamatergic neurons which are colored by spatial positions 1–8 
(Glut glutamatergic (excitatory) neurons, GABA GABAergic (inhibitory) neurons, Astro 
astrocytes, Micro microglia, Olig oligodendrocytes, OPC oligodendrocyte precursor cells, Endo 
endothelial cells, NA not applicable—no cell type provided). b, Co-embedding of sciMAP-ATAC 
and snRNA-seq transcriptional profiles from Lake et al.29 using Signac. Top right shows only 
snRNA-seq cells. Abbreviations as in a, but with the addition of Per = pericytes, and 
glutamatergic (excitatory) neurons (Ex) are colored by subtype identified in Lake et al.29. 
Bottom right shows only sciMAP-ATAC cells, with glutamatergic neurons colored by spatial 
position 1–8. c, Confusion matrix representing the percent agreement in predicting the cell type 
of a cell from one dataset using the other between sciMAP-ATAC and scTHS-seq cells. d, As 
in c, but between sciMAP-ATAC and snRNA-seq. Spatial agreement between excitatory 
neuron subtypes identified in the snRNA-seq data correspond to the spatial positioning of cells 
within our sciMAP-ATAC dataset. Source data are provided as a Source data file. 

 
To directly assess the performance of the dataset integration, we used the joint manifold 

to perform cell-type label transfer, effectively using one assay’s cell type identities to 

predict the others, and compared the overlap in the form of a confusion matrix. For the 

scTHS-seq integration, the top concordance was between the two corresponding cell 

types in nearly every case, including across all eight of the spatial glutamatergic neuron 

cell sets within the sciMAP-ATAC dataset that all corresponded to the single 

https://www.nature.com/articles/s41467-021-21515-7#ref-CR29
https://www.nature.com/articles/s41467-021-21515-7#ref-CR75
https://www.nature.com/articles/s41467-021-21515-7#ref-CR29
https://www.nature.com/articles/s41467-021-21515-7#ref-CR29
https://www.nature.com/articles/s41467-021-21515-7#ref-CR29
https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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glutamatergic cell type in the scTHS-seq dataset (Fig. 15c). One exception was the 

association of a subset of microglia within the sciMAP-ATAC dataset with the endothelial 

cell population identified in the scTHS-seq dataset, which is a population we did not 

define. This suggests that a portion of our cells identified as microglia are likely 

endothelial cells. Integration with snRNA-seq data also produced concordance for the 

majority of cell types (Fig. 15d), with the exception of a group of cells spanning all cell 

types that did not co-embed as cleanly and thus projected into the center of the UMAP. 

The snRNA-seq data provided in Lake et al. includes a more granular breakdown of 

glutamatergic neurons when compared to the single classification provided for scTHS-

seq cells. Within the confusion matrix where cell types were predicted across modalities, 

we observed a clear spatial progression that corresponded to the subtypes of 

glutamatergic neurons identified by snRNA-seq, which Lake et al. previously identified 

as being enriched for layer-specific transcripts. The concordance between these 

subtypes and our spatial assignments confirms that sciMAP-ATAC spatially registers 

biological features of single cells from structured tissue. 

2.5.7 Spatial excitatory neuron epigenetic patterning at the individual 

trajectory level 

Using our cell-type assignments, we isolated all human VISp glutamatergic neurons and 

split them by position along their respective trajectories (Fig. 16a and Supplementary 

Data 3). We examined ATAC signal at layer-specific marker genes broken down by each 

spatially distinct category, which revealed increased accessibility at genes associated 

with outer cortical layers within the outer cortical punches and vice versa (Fig. 16b). We 

next selected all cells from the centermost trajectory of section 1 (T1.4, n = 358 cells) 

and performed an isolated analysis using peaks called on the full dataset for topic 

analysis, cluster identification, and visualization with UMAP (Fig. 16c and Fig. 14f, i). A 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
https://www.nature.com/articles/s41467-021-21515-7#Sec34
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clear separation was observed between major cell types across six clusters, with two 

distinct clusters of oligodendrocytes, two clusters of glutamatergic neurons, one cluster 

comprised of GABAergic neurons, and finally, a cluster made up of all other cell types 

(astrocytes, endothelial, and OPCs). When performing the analysis in isolation using 

only T1.4 cells for peak calling, we identified 16,493 peaks that were used for 

subsequent analysis to produce four clusters with notably less cell type separation than 

when leveraging the set of peaks from the full dataset (Fig. 14j,l). The first cluster was 

comprised of both glutamatergic and GABAergic neurons, the second was primarily 

oligodendrocytes, the third included oligodendrocytes, as well as the majority of cells 

from all other nonneuronal cell types, with the fourth cluster comprised of only a handful 

of cells with no dominant cell type. In line with the previous assessment of a single 

punch from the mouse SSp, cell type separation can be distinct for major cell types 

when leveraging larger peak sets than the limited number that can be called on small 

cell count datasets. This supports the assertion that computational improvements to 

enable peak calling on low cell count datasets can substantially boost analytical power98. 
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Figure 16. sciMAP-ATAC shows spatial epigenetic patterns of glutamatergic neurons. 
a, Isolation and UMAP visualization of human VISp glutamatergic neurons from all cells (top 
right), colored by punch position. An interactive, three-dimensional UMAP embedding is 
available as Supplementary Data 4. b, ATAC-seq profiles for glutamatergic neurons along 
trajectory positions for layer (L)-specific marker genes CALB1 (layers 2 and 3), LMO4 (layer 5), 
and CTGF (layer 6b); colored by punch position as in a. c, Cells from section 1, Trajectory 4 
(T1.4, top) are shown in color on the UMAP of all cells, with other cells shown in gray (bottom); 
colored by position as in a. d, UMAP of glutamatergic neurons from Trajectory 1.4 after topic 
modeling on the isolated cells; colored by position along the trajectory as in a. e, DNA-binding 
motif enrichment for layer-specific factors for Trajectory 1.4 shown in d, with cells split by their 
positions along the trajectory. Source data are provided as a Source data file. 

 
Finally, we isolated only cells determined to be glutamatergic neurons based on the full 

dataset cell type assignment within Trajectory 1.4 (n = 121 cells). We assessed these 

cells again using the full peak set through the same analysis workflow (see 2.7 

Methods). As in the UMAP projections on cells from the full experiment, these cells were 

positioned along a gradient that reflected their position along the trajectory (Fig. 16d). 

We then assessed the global accessibility of DNA-binding motifs that captured spatially 

distinct enrichments through the trajectory, reflecting the expected pattern of 

transcription factor (TF) activities through cortical layers (Fig. 16e). This included 

enrichment for FOXP2 motif accessibility in the outer cortical layers, slightly increased 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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accessibility for NEUROD6 toward the inner cortex, and increased accessibility for 

RORB motifs in punches 4–6 along the trajectory, corresponding to canonical cortical 

layer 4 RORB expression. Taken together, sciMAP-ATAC is capable of producing high-

quality single-cell ATAC-seq profiles from human postmortem tissue with a spatial 

resolution capable of identifying the major components of cortical lamination, with the 

capability to characterize a single spatial trajectory through the cortex. 

2.5.8 sciMAP-ATAC in a mouse model of cerebral ischemia 

Cerebral ischemia produces a complex spatially progressive phenotype with extensive 

tissue alterations and shifts in cell type abundance and epigenetic states99–104. Cerebral 

ischemic infarction induces gliosis, a process in which glia in the surrounding tissue 

enter reactive states that are potentially aimed at restoring tissue homeostasis but can 

involve the loss of normal function (or adoption of a damaging function) and form a glial 

scar. Many components involved in the ischemic cascade are well studied, including 

factors that promote postischemic inflammation (e.g., IRF1, NF-kB, ATF2, STAT3, 

EGR1, and CEBPB) and prevent postischemic inflammation and neuronal damage (e.g., 

HIF-1, CREB, C-FOS, PPARα, PPARγ, and P53)105. Reactive gliosis can be 

characterized by increased GFAP expression in astrocytes and increased IBA1 in 

microglia. Myelination depletion is a hallmark of cerebral ischemic injury due to acute 

oligodendrocyte cell death and impaired OPC differentiation106,107. Far less is known, 

however, about glial cell state transitions in the area surrounding ischemic infarction in 

the brain. We reasoned that our sciMAP-ATAC technology could reveal, with cell type 

and spatial specificity, the epigenetic alterations that occur to accompany and/or drive 

the ischemic cascade and postischemic pathology. 

To accomplish this, we used a transient middle cerebral artery occlusion (MCAO) mouse 

model of ischemic injury with reperfusion (see 2.7 Methods; Fig. 17a). Each ischemic 
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(n = 2 animals) and naive (n = 3) brain was flash-frozen 3 days after surgery, embedded 

in TFM, sectioned, alternating between 200 µm for sciMAP-ATAC and 20 µm for IHC for 

IBA1 (microglia), GFAP (astrocytes, Fig. 17b), and counterstained using DAPI. We used 

these images to define the infarct area by the absence of GFAP-positive astrocytes 

while being surrounded by reactive astrocytes exhibiting increased GFAP signal at the 

infarct border (Fig. 18a). We next defined two axes for targeting the sciMAP-ATAC 

punches, the first progressing from the pial surface of the cortex to the striatum, all within 

the infarct core (punch position axis 1–4), and the second progressing from the infarct 

core toward the infarct border (punch position axis 5–8). GFAP immunolabeling was 

absent in the infarct core (punch positions 5–7) but increased at the infarct border in 

punch position 8, recapitulating known features of glial scar formation surrounding the 

infarct area. We then performed sciMAP-ATAC on the 200 µm sections along each axis 

to produce 5081 cells with a mean passing reads per cell of 33,832 (estimated mean 

passing reads per cell of 225,670 with further sequencing) and a mean of 26.6 high-

quality cell profiles per punch (Figs. 9a, f and 18b). TSS enrichment for this preparation 

was notably lower than previous preparations ranging from 5.05 (stroke hemisphere) to 

7.50 (naive brain), which we suspect is due to several factors (Fig. 9e). The first is that 

the stroke hemisphere contained many dead or dying cells that exhibit reduced ATAC 

signal, which we describe in more detail below, and the second is that these sections 

were stored for >3 months prior to sciMAP-ATAC processing, suggesting that long-term 

storage of sections may result in a reduction in data quality. Despite the reduced TSS 

enrichment and comparably lower FRiS (0.79–0.82; Fig. 9b), we called 140,772 

accessible genomic loci that were used in subsequent analysis. 
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Figure 17. sciMAP-ATAC applied to a mouse model of ischemic injury. a, Experimental 
design using a mouse MCAO model of ischemic injury. Mice were sacrificed 3 days post-
surgery (dps) and brains flash-frozen in TFM. Alternating thin (20 µm) and thick (200 µm) 
sections were processed using IHC to define infarction (red outline) and peri-infarct area (pink 
outline) and sciMAP-ATAC punching schematic, respectively. b, GFAP IHC of a 20 µm coronal 
section of an ischemic mouse brain. Punch positions along the 5–8 axis (core-to-border) are 
indicated. Background corrected GFAP fluorescence along the 5–8 axis is shown to the right 
for stroke and contralateral hemispheres (n = 10). Data are presented as linear fitted 
model ± SEM; boxplot center line represents median, lower and upper hinges represent first 
and third quartiles, and whiskers extend from hinge to ±1.5 × IQR, (scale bar, 1 mm) c, UMAP 
of cells colored by the three conditions. d, UMAP as in c, colored by clusters assigned to cell 
type (Olig oligodendrocytes, Astro astrocytes, Micro/MΦ microglia/macrophage, GABA 
GABAergic (inhibitory) neurons, Glut glutamatergic (excitatory) neurons). e, Cell × topic matrix 
colored by normalized topic weights, as in c, d and annotated by conditions and cell type as 
given at the bottom reveals substantially divergent topic weighting in cells from the stroke 
punches (left). Topic 30, enriched specifically in the stroke cells belonging to the chromatin-
disrupted cluster, has peaks enriched for ontologies associated with ischemic injury with 
reperfusion. Colored by −log10 false discovery rate (FDR) Q-value, height by log2 fold 
enrichment (right). Source data are provided as a Source data file. 

 
We performed topic modeling, followed by clustering, cell type identification, and 

visualization of the cell × topic matrix (Fig. 17c–e), which revealed comparable cell-type 

proportions across biological samples with exceptions for microglia/macrophages and a 

chromatin-disrupted cluster that were highly enriched within the infarct. We profiled cell 

type proportions along both of the axes (Fig. 18c); however, the pial to striatum axis 

(punch positions 1–4) in stroke hemisphere samples is completely within the infarct core. 

In contrast, the infarct core-to-border axis (punch positions 5–8) progresses from the 

center of the infarct to the glial scar along the infarct border, capturing a transition zone 

https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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of reactive gliosis, and is the spatial trajectory that we focus on in our subsequent 

analysis. 
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Figure 18. Extended analysis of the cerebral ischemia sciMAP-ATAC dataset. a, 
Representative GFAP immunostaining of a histological section from a stroke brain (left), with 
punch positions and labels shown (middle), and punch positions with the stroke region overlaid 
in red (right). b, UMAP of cells from the cerebral ischemia experiment colored by the log10 
passing read counts. c, Cell type composition for each punch in the experiment grouped by 
individual section and more broadly by category; colored by cell type as defined in Fig. 17d. d, 
Aggregated cell type composition for the 1-4 axis (top) and 5-8 axis (bottom) split by category 
of tissue; colored by cell type as defined in Fig. 17d. e, FRiS values for cells split by cell type 
indicating a substantial decrease in FRiS for the chromatin-disrupted cluster (n = 5,081 cells); 
colored by cell type as defined in Fig. 17d. Center line represents median, lower and upper 
hinges represent first and third quartiles, whiskers extend from hinge to ± 1.5x IQR, individual 
cells represented as colored dots. f, Enrichment for topics with respect to genomic category 
showing that Topic 30, which is elevated in cells within the chromatin-disrupted cluster, is 
enriched for distal intergenic regions – further supporting a global laxing of chromatin, likely 
due to cell death. g, Regulatory elements that change significantly and uniformly along the 5-8 
axis. P value of the two-way ANOVA from the interaction of regulatory element site enrichment 
per punch by condition without multiple comparison correction (p < 0.05). h, Motif enrichment 
along the 5-8 axis for stroke and contralateral hemispheres split by cell type as defined in Fig. 
17d. l, REST and SP1 normalized motif enrichment along the 5-8 axis shows opposite trends 
between the two factors as well as for each factor between the stroke and contra hemispheres. 
Data are presented as linear fitted model ± SEM. Source data are provided as a Source Data 
file. 

 
Along with this progression, we found that the stroke hemisphere had diminished neural 

cell types (depletion of glutamatergic and GABAergic neurons, oligodendrocytes, and 

astrocytes), as well as a progressive increase in cells within a cluster exhibiting globally 

disrupted chromatin structure up to punch position 7 and a drop at punch position 8 upon 

entering the infarct border (Fig. 18d). This state is predominantly characterized by 

globally increased chromatin accessibility, with a decrease in TSS enrichment, a 

decrease in FRiS, and an increase in reads falling within distal intergenic regions, which 

is likely caused by cell death (Fig. 18e, f). In addition to the global effects on chromatin 

structure, the chromatin-disrupted cell population also showed strong enrichment in one 

of the topics (Topic 30; Fig. 17e, left). A gene ontology (GO) enrichment analysis of the 

peaks that define topic 30 revealed that cells within the ischemic hemisphere undergo a 

chromatin state shift as a result of the ischemic cascade, which leads to enrichment for 

processes canonically associated with ischemia (Fig. 17e, right). Most notably, positive 

regulation of synaptic membrane adhesion, synaptic depression, assembly, 

transmission, and membrane potential were all enriched in ischemia-derived cells, 
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indicating that CNS synaptogenesis is upregulated in a subset of cells 3 days post 

ischemia108,109. In addition, while the percentage of microglia increased in the stroke 

condition (13.2%) as compared to contralateral (6.7%) and naive (4.3%), depletion of 

immune response processes (B-cell-mediated immunity, humoral immune response 

mediated by circulating immunoglobulins) was seen in ischemia-derived cells. This 

recapitulates previous findings that acute ischemic immune response is followed by 

post-stroke immunodepression and dysregulation110,111. 

2.5.9 Spatially progressive chromatin features in cerebral ischemia 

To directly characterize the relationship between space and epigenetic state in cerebral 

ischemia, we assessed TF DNA-binding motif enrichments for each cell and performed a 

regression for all cells across the infarct core-to-border axis (punch positions 5–8) in the 

stroke and contralateral hemispheres. We used the difference between linear model 

coefficients for paired affected (stroke) and unaffected (contralateral) hemispheres along 

with the significance of the hemisphere motif enrichment differences to identify TFs that 

undergo spatially progressive regulatory changes (see 2.7 Methods). In total, we 

identified 95 TF motifs that were significantly altered with a spatial component, many of 

which have been previously reported as key factors identified in cerebral ischemia (Fig. 

19a, b). KLF9, a member of the Kruppel-like factor family, demonstrated the most 

significant increase in accessibility with proximity to the peri-infarct area. The 17 KLF 

family TFs are key factors in neuronal development, plasticity, and axon regeneration 

and are ubiquitously expressed in the CNS. Several KLF family members, namely KLF2, 

4, 5, 6, and 11, have been specifically linked to cerebral ischemia pathogenesis112,113. 

Notably, KLF2 and KLF11 have been shown to contribute to the protection of the blood-

brain barrier in cerebral ischemia114–116. However, as DNA-binding motifs within the KLF 

family are similar, members of the KLF family other than KLF9 may be driving this motif 



59 
 

accessibility change. Finally, we assessed the accessibility of individual elements and 

identified 73 accessible chromatin sites that varied significantly through the 5–8 axis of 

spatial progression (see 2.7 Methods; Fig. 18g). 

 

 
 
Figure 19. Spatially progressive epigenetic remodeling in ischemic injury. a, Volcano plot 
of Z-scored transcription factor (TF) motif enrichment slope change across punch positions 5–8 
(Δslope = slopestroke − slopecontralateral) by −log10 p value of the two-way ANOVA from the 
interaction of TF motif enrichment per punch by condition (stroke, contralateral) without 
multiple comparison correction. Colored by significance (N.S. not significant, Sig. Δ 
slope = significant change in slope, Sig. Δ Slope and p = significant change in slope and 
significant p value). b, Top hits for significantly different changes in TF motif enrichment over 
space as compared between stroke (red) and contralateral (blue); KLF9 (top) and BHLHA15 
(bottom). −Log10 p value of the two-way ANOVA from the interaction of TF motif enrichment 
per punch by condition without multiple comparison correction. Data are presented as linear 
fitted model ± SEM. c, KLF9 TF motif enrichment over space reveals cell type contribution to 
KLF9 enrichment from infarct core to peri-infarct area. Cell types as defined in Fig. 
17d. d, Comparison of TF motif enrichment at the infarct border (punch position 8) between 
stroke (punch 40) and contralateral (punch 48) single-cell profiles. Oligodendrocyte (Olig) TF 
motif enrichment shown for BCL11B and RXRG for punch 40 (n = 4 cells) and punch 48 (n = 6 
cells). Glutamatergic neuron (Glut) TF motif enrichment shown for KLF4 and KLF7 for punch 
40 (n = 5 cells) and punch 48 (n = 3 cells). Two-sided Mann–Whitney U test with Bonferroni–
Holm correction. Center line represents median, lower and upper hinges represent first and 
third quartiles, whiskers extend from hinge to ±1.5 × IQR, individual cells represented as 
colored dots. Source data are provided as a Source data file. 

 
We next explored the cell-type specificity of the KLF9 motif accessibility changes (Fig. 

19c). In the stroke hemisphere chromatin-disrupted cell subset, we observed a reduction 

in KLF9 motif accessibility in all punch positions except punch position 8, at the infarct 

border, with all cell types other than microglia showing a reduction in accessibility at the 

center of the infarct core (punch position 5). Uniquely, microglia are largely unaffected 

and have comparable KLF9 TF-binding motif enrichment at the infarct core in 

comparison to the contralateral hemisphere. In addition to KLF9, we also identified 

https://www.nature.com/articles/s41467-021-21515-7#MOESM10
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STAT3 as varying significantly over space (Fig. 18h), which was also an enriched GO 

term in stroke cells (Fig. 17e). STAT3 has been extensively studied in the JAK/STAT3 

pathway, which is a key regulator of apoptosis in cerebral ischemia injuries with 

reperfusion117, as well as an initiator of reactive astrogliosis under diverse conditions118. 

Accordingly, we found that STAT3 was largely absent from astrocytes in punches 

positions 5–7, but was enriched in the reactive astrocytes at the infarct border zone at 

punch position 8. In contrast, we find that the RE1-silencing factor (REST) is significantly 

elevated at the ischemic core and decreases with proximity to the infarct border. 

Accordingly, REST has been shown to form a histone deacetylase complex that is a 

director repressor of SP1 in cerebral ischemia, a TF we identify as varying significantly 

over space, in the opposite direction of REST104 (Fig. 18i). 

Finally, we sought to characterize chromatin accessibility profiles of cells isolated from a 

single punch at the glial scar (Fig. 19d). To do this, we isolated two punches (punch 40 

and punch 48), both originating from the same section (15.SB2), from punch position 8 

of the stroke (punch 40) and contralateral hemisphere (punch 48). We processed the 

cells in isolation as described in prior individual punch analyses, using the peak set from 

the full experiment. We performed DNA-binding motif enrichment analysis across all 

cells119 and then performed cell-type-specific comparisons for a glial (oligodendrocyte) 

and neuronal (glutamatergic neuron) cell type. In oligodendrocytes, 56 TF motifs were 

significantly different between the stroke and contralateral hemisphere, many of which 

(44; 78.6%) corresponded to higher enrichment in stroke as compared to contralateral. 

Specifically, we found BCL11B (CTIP2), a negative regulator of glial progenitor cell 

differentiation, to be significantly increased at the glial scar (Fig. 19d, left)120. Conversely, 

we found RXRG, a positive regulator of OPC differentiation and remyelination, to be 

significantly depleted (Fig. 19d, left)121. Together these findings indicate an impaired 
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ability of OPCs to differentiate into mature oligodendrocytes at the glial scar. In 

glutamatergic neurons, we found neuron-associated TFs such as NEUROD2 to be 

significantly depleted in the stroke hemisphere, which corresponds with decreased 

neuronal cell types at punch position 8 in the stroke hemisphere. In accordance with our 

infarct core-to-border axis (punch positions 5–8) analysis, we found that seven of the 

KLF family of TFs (KLF2–4, 6–8, and 12) were significantly depleted in glutamatergic 

neurons at the glial scar in the stroke hemisphere (Fig. 19d, right; KLF4 and KLF7 

shown). Interestingly, previous studies have found that in response to cerebral ischemia, 

KLF4, 5, and 6 are induced in astrocytes, while KLF2 is depleted in endothelia and 

induced in microglia122. With these data, we identify that motif enrichment for many 

members of the KLF family not only significantly varies over space across all cell types 

we also indicate novel depletion of multiple KLFs, specifically in glutamatergic neurons 

at the ischemic glial scar. 

2.6 Discussion 

sciMAP-ATAC provides a low-cost, highly scalable, hypothesis-independent approach to 

acquiring spatially resolved epigenomic single-cell data with the use of immediately 

available commercial tools. In addition, sciMAP-ATAC is translatable to any tissue, 

culture, or model system compatible with cryosectioning. While many methods rely on 

signal-to-noise optical detection of densely packed molecules and computationally 

intensive spatial reconstruction, sciMAP-ATAC encodes nuclear localization directly into 

each library molecule, allowing for rapid subsetting of cells by localization and mapping 

of cells across vector space in 3D between adjacent sections. We demonstrate the use 

of sciMAP-ATAC to profile the murine somatosensory cortex, as well as multi-punch 

trajectories through the human primary visual cortex, recapitulating known marker gene 

progression through cortical layering and cell type composition based on the category 
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and positioning of spatially registered microbiopsy punches. We further show the utility 

of sciMAP-ATAC to resolve the progressive epigenomic changes in a cerebral ischemia 

model system, revealing distinct trends in chromatin accessibility, cell-type composition, 

and cell states along the axes of tissue damage and altered morphology. Application of 

sciMAP-ATAC to other highly structured systems or tissues with a gradient of disease 

phenotype will be particularly valuable areas for this technology. The primary limitation of 

sciMAP-ATAC is that punches are currently performed manually and registered with 

adjacent imaged sections post-punching. This limits the precision of desired punch 

positions, as well as throughput; however, automated processing of tissue sections 

using robotics123, where punch patterns are designed on adjacent imaged sections and 

registered to the target section, will enable high precision, as well as increased 

throughput into the range of thousands. Furthermore, as spatial transcriptomic 

technologies evolve, they may enable the acquisition of chromatin accessibility 

information; however, substantial technical hurdles must first be overcome, and profiles 

produced would be in aggregate over the feature size and not necessarily single cell. 

Finally, here we applied the sciMAP strategy to assess chromatin accessibility; however, 

it can, in theory, be applied to any single-cell combinatorial indexing technique to enable 

spatially registered single-cell genome86, transcriptome124, chromatin folding125, 

methylation126, or multi-omic24,26,127 assays. 

2.7 Methods 

2.7.1 Mouse brain and human VISp cortex sample preparation 

A step-by-step protocol describing the sciMAP-ATAC methods can be found at 

Protocols.io. All animal studies were approved by the Oregon Health and Science 

University Institutional Animal Care and Use Committee. Male C57Bl/6 J mice aged 8 

weeks were purchased from Jackson Laboratories for the mouse whole brain sciATAC, 
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punch dissociation development sciMAP-ATAC, and mouse SSp cortex sciMAP-ATAC 

experiments. All mouse cages were kept on a 12 h light/dark cycle at a temperature of 

70 °F and within a humidity range of 30–70%. Animals were sacrificed by carbon dioxide 

primary euthanasia and cervical dislocation secondary euthanasia. Animals were 

immediately decapitated, intact brain tissue was harvested, washed in ice-cold 

phosphate-buffered saline (PBS; pH 7.4), submerged in TFM (Cat. TFM-C) within a 

disposable embedding mold (Cat. EMS 70183). Human VISp cortex samples were 

provided by the Oregon Brain Bank 5.5 h postmortem and were submerged in TFM. The 

use of human samples in this study falls under the NIH defined Exempt Human Subjects 

Research, under Exemption 4 (https://humansubjects.nih.gov/). Embedded mouse whole 

brain and human VISp cortex samples were flash-frozen in liquid nitrogen-cooled 

isopentane by lowering the sample into the isopentane bath without submerging within 

5 min of embedding. Samples were immediately transferred to dry ice, paraffin wrapped 

to delay sample dehydration, and stored in an airtight container at −80 °C. 

2.7.2 Mouse cerebral ischemia model 

Two C57BL/6 9-week-old (P63) female mice were placed under isoflurane anesthesia 

(5% induction, 1.5% maintenance) in 30% oxygen-enriched air. Body temperature was 

maintained at 37 ± 0.5 °C throughout the procedure. Middle cerebral artery (MCA) 

occlusion was performed using a previously described method by Longa et al. with slight 

modifications128. Briefly, a laser Doppler flowmeter (Moore Instruments) probe was 

affixed over the right parietal bone overlying the MCA territory to monitor changes in 

cerebral blood flow. A midline incision was made, the right common carotid artery 

(RCCA) bifurcation was exposed by gentle dissection, and the external carotid artery 

(ECA) was permanently ligated distal to the occipital artery using electrocautery, such 

that a short ECA stump remained attached to the bifurcation. The RCCA and internal 

https://humansubjects.nih.gov/
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carotid arteries (ICA) were temporarily closed with reversible slip knots before an 

arteriotomy was made in the ECA stump. A silicone-coated 6.0 nylon monofilament was 

inserted into the ICA via the arteriotomy and gently advanced to the ICA/MCA bifurcation 

to occlude CBF to the MCA territory, and confirmed by a laser Doppler signal drop of 

<30% of baseline. After 60 min occlusion, the filament was gently retracted, the ECA 

permanently ligated, the slip knot of the common carotid artery removed, and the 

incision sites sutured closed. The mice exposed to MCAO were euthanized 3 days after 

the MCAO procedure, intact brain tissue harvested, washed in ice-cold PBS (pH 7.4), 

submerged in TFM, and flash-frozen in liquid nitrogen-cooled isopentane. Samples were 

paraffin wrapped and stored at −80 °C, and intact embedded whole mouse brains were 

sectioned at the time of the experiment. 

2.7.3 Sample sectioning 

All embedded samples were sectioned in a cryostat (Leica CM3050) at −11 °C chuck 

and chamber temperature and collected on Superfrost Plus microscope slides 

(Fisherbrand, Cat. 22-037-246). Sectioning was performed in sets of one section at 100–

300 µm paired with three sections at 20 µm to generate sets of four slides consisting of 

microbiopsy (1) and histology (3) sections at one section per slide. Slide boxes were 

sealed with paraffin to prevent sample dehydration and stored long term at −80 °C. 

2.7.4 Mouse whole brain coronal section immunohistochemistry and 

mapping 

To determine the mouse brain atlas coordinate of each coronal microbiopsy section, the 

histological section immediately adjacent to each microbiopsy section was fixed in 4% 

PFA for 10 min and counterstained using 300 µM DAPI (Thermo Fisher, Cat. D1306) in 

1× (pH 7.4) PBS (Thermo Fisher, Cat. 10010023) for 5 min. Slides were rinsed with 1× 

PBS and mounted in Fluoromount-G (Thermo Fisher, Cat. 00-4958-02). Slides stained 
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for Satb2 were equilibrated to room temperature and circumscribed with a hydrophobic 

barrier pen (Invignome, Cat. GPF-VPSA-V). Sections were washed twice with PBS for 

10 min then blocked for 1 h at room temperature in permeabilization/blocking buffer 

comprised of PBS with 10% normal goat serum (NGS, Jackson ImmunoResearch, Cat. 

005-000-121), 1% bovine serum albumin (BSA, Millipore, Cat. 126626), 0.3% Triton X-

100 (TX-100, Sigma, Cat. 11332481001), 0.05% Tween-20 (Sigma, Cat. P1379), 0.3 M 

glycine (Sigma, Cat. G7126), and 0.01% sodium azide (Sigma, Cat. S2002). During the 

blocking step, the primary antibody rabbit anti-Satb2 (Abcam Cat. ab92446) was diluted 

1:1000 in a buffer containing PBS, 2% NGS, 1% BSA, 0.01% TX-100, 0.05% Tween-20, 

and 0.01% sodium azide. The diluted primary antibody was applied to sections and then 

incubated overnight at 4 °C. The primary antibody was washed from the sections five 

times with PBS for 5 min at room temperature. Secondary antibody AF488 goat anti-

rabbit (Thermo Fisher Cat. A32731) was prepared by diluting 1:1000 in the same buffer 

used to dilute primary antibodies. Sections were incubated with the diluted secondary 

antibody for 1 h in the dark at room temperature. Secondary antibodies were washed 

from the sections three times with PBS for 5 min; then nuclei were counterstained with 

DAPI for 10 min at room temperature. After DAPI staining, sections were washed an 

additional two times then glass coverslips were mounted with ProLong Diamond Anti-

Fade Mounting Medium (Thermo Fisher, Cat. P36961). Slides were imaged on a Zeiss 

ApoTome AxioImager M2 fluorescent upright microscope and processed using Fiji 

software (v1.52p)129. Coronal section images were mapped to the Adult Mouse Allen 

Brain Atlas92 according to anatomical regions. 

2.7.5 Mouse cerebral ischemia immunohistochemistry and mapping 

One of the histological sections corresponding to each microbiopsy section was stained 

for GFAP to identify the infarct. Slides were equilibrated to room temperature and 
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circumscribed with a hydrophobic barrier pen. Sections were washed twice with PBS for 

10 min and then blocked for 1 hour at room temperature in permeabilization/blocking 

buffer comprised of PBS with 10% normal donkey serum, 1% BSA, and 0.05% TX-100. 

The sections were next incubated in a primary antibody solution comprised of 1:1000 

goat anti-GFAP (Abcam, ab53554) and 1:5000 rabbit anti-Iba1 (Fujifilm Wako, NCNP24) 

diluted in PBS with 1% NGS, 0.1% BSA, and 0.005% TX-100 overnight at 4 °C. The 

sections were then washed three times with PBS for 5 min each at room temperature 

and next incubated for 2 h at room temperature in a secondary antibody solution 

containing 1:500 donkey anti-goat conjugated to Alexa Fluor 488 (Invitrogen) and 1:500 

donkey anti-rabbit conjugated to Alexa Fluor 555 (Invitrogen) prepared in the same 

buffer as the primary antibodies. Following the secondary incubation, sections were 

washed three times with PBS for 5 min each, counterstained with DAPI for 10 min, 

washed an additional two times for 5 min each, then coverslipped with Fluoromount-G. 

Slides were imaged on a Zeiss AxioScan.Z1 Slide Scanner and processed using Fiji 

software (v1.52p). Coronal cerebral ischemia section images were mapped to the Adult 

Mouse Allen Brain Atlas92 according to anatomical regions using the DAPI channel, as 

described above. 

Immunohistochemistry fluorescence was quantified using Fiji software (v1.52p). Punch 

positions were mapped to regions of interest (ROIs), along with three negative naive 

ROIs for each image. Corrected total fluorescence was calculated as the difference 

between the integrated density (ROI area × mean fluorescence) of an ROI for a given 

punch and the average integrated density of negative naive ROIs. GFAP-corrected total 

fluorescence was plotted using geom_boxplot and geom_smooth, method lm using 

ggplot (v3.2.1) in R (v3.5.1). 



67 
 

2.7.6 Mouse whole brain dissociation and nuclei isolation 

To evaluate the effect of flash-freezing on chromatin accessibility in mouse brain tissue, 

we evaluated single-cell chromatin accessibility profiles from an intact mouse brain, in 

which one hemisphere was flash-frozen, and one hemisphere remained unfrozen. Both 

hemispheres were processed in parallel and underwent dissociation and nuclear 

isolation. Tissue was diced in NIB (10 mM Tris HCl, pH 7.5 [Fisher, Cat. T1503 and 

Fisher, Cat. A144], 10 mM NaCl [Fisher, Cat. M-11624], 3 mM MgCl2 [Sigma, Cat. 

M8226], 0.1% IGEPAL [v/v; Sigma, I8896], 0.1% Tween-20 [v/v, Sigma, Cat. P7949], 

and 1× protease inhibitor [Roche, Cat. 11873580001]) in a petri dish on ice using a 

chilled razor blade. Diced tissue was transferred to 2 mL chilled NIB in a 7 mL Dounce-

homogenizer on ice. The tissue was incubated on ice for 5 min and then homogenized 

via 10 gentle strokes of the loose pestle (A) on ice, a 5-min incubation on ice, then ten 

gentle strokes of the tight pestle (B) on ice. The homogenate was then strained through 

a 35 µm strainer and centrifuged at 500 × g for 10 min. Samples were aspirated, 

resuspended in 5 mL of ice-cold NIB, and nuclei were counted on a hemocytometer. 

Samples were diluted to 500 nuclei per 1 µL to facilitate tagmentation reaction assembly 

at ~5000 nuclei per 10 µL of NIB. 

2.7.7 Tissue microbiopsy acquisition and nuclear isolation 

Tissue microbiopsies were acquired from 100–300 µm sections. Punches were isolated 

in four experiments: (1) mouse dissociation development sciMAP-ATAC (384 punches), 

(2) mouse SSp cortex sciMAP-ATAC (96 punches), (3) mouse cerebral ischemia 

sciMAP-ATAC (240 punches), and (4) human VISp cortex sciMAP-ATAC (192 punches; 

for details refer to Fig. 8). Microbiopsy coronal sections were acclimated to −20 °C in a 

cryostat (Leica CM3050), and microbiopsy punch tools (EMS, Cat. 57401) were cooled 

on dry ice prior to punching to prevent warming of the tissue. Microbiopsy punches were 
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acquired according to the location identified from section atlas mapping, and frozen 

microbiopsies were deposited directly into 100 µL of ice-cold NIB in a 96-well plate. 

Punch deposition into each well of the 96-well plate was visually confirmed under a 

dissecting microscope. To facilitate tissue dissociation and nuclear isolation, 96-well 

plates of microbiopsy punches were then gently shaken (80 r.p.m.) while covered for 1 h 

on ice. We then tested mechanical dissociation by varying the number of triturations 

performed via multichannel pipette per well (punch dissociation development sciMAP-

ATAC). We found the following averaged metrics across the four dissociation methods: 

15 triturations (26 cells per punch, 5679 unique passing reads per cell, 0.844 FRis), 30 

triturations (35 cells per punch, 7189 unique passing reads per cell, 0.835 FRis), 60 

triturations (28 cells per punch, 7611 unique passing reads per cell, 0.827 FRis), and 

100 triturations (8 cells per punch, 7611 unique passing reads per cell, 0.821 FRis). 

Given that 60-trituration mechanical dissociation yielded the highest number of cells per 

punch, with otherwise comparable metrics, we proceeded with 60 triturations for all 

future experiments. Post-mechanical dissociation, sample plates were then centrifuged 

at 500 × g for 10 min. While nuclear pellets were not visible, we found that aspiration of 

90 µL of supernatant and resuspension in an added 30 µL of NIB results in a final 

isolated nuclear volume of 40 µL with ~15,000 nuclei per well (for microbiopsy punching 

conditions: 200 µm section, 250 µm diameter microbiopsy punch used in the human 

VISp and mouse cerebral ischemia preparations). Nuclei were split across four 96-well 

plates such that nuclei were aliquoted to 10 µL, or ~3750 nuclei per well. This enabled 

four independent indexed transposase complexes to be utilized for each individual 

punch, or 384 uniquely indexed transposition reactions in one experiment. To calculate 

the approximate resolution for each preparation, we took the cubed root of the cylindrical 

volume. 
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2.7.8 Location indexing via tagmentation 

Transposase catalyzed excision of the chromatin accessible regions via tagmentation 

results in the addition of unique molecular identifiers (indexes) for each tagmentation 

reaction. Uniquely indexed transposase adapter sequences are reported in 

Supplementary Table 2. To encode microbiopsy punch location into library molecules, 

we recorded the corresponding tagmentation well within each 96-well plate to the user-

identified microbiopsy punch location. The incorporation of location information is 

therefore inherently encoded by the first tier of indexing in our established sci-ATAC-seq 

method. Tagmentation reactions were assembled at 10 µL of isolated nuclei at 500 

nuclei per 1 µL, 10 µL 2× tagmentation buffer (Illumina, Cat. FC-121-1031), and 1 µL of 

8 µM loaded indexed synthesized Tn5 transposase was added per well (see Picelli et al. 

for transposase synthesis protocol)130. As an alternative to Tn5 synthesis, EZTn5 

transposase (https://www.lucigen.com/EZ-Tn5-Transposase/) can be purchased 

commercially and diluted, salt adjusted, and loaded with sci indexes according to the 

sciMAP-ATAC protocol131. Each assembled 96-well plate of tagmentation reactions was 

incubated at 55 °C for 15 min. For the mouse whole brain sci-ATAC-seq preparation on 

fresh and frozen tissue, as well as the sciMAP-ATAC preparations, four 96-well plates of 

tagmentation were used (384 uniquely indexed tagmentation reactions). For whole-brain 

sci-ATAC-seq preparation on fresh and frozen tissue experiment, tagmentation wells 

were pooled separately for fresh and frozen hemisphere samples. For the microbiopsy 

punch-derived experiments, all reactions were pooled post-tagmentation. 

2.7.9 Combinatorial indexing 

To lyse nuclei and release bound transposase, PCR plates are prepared with protease 

buffer (PB), primers, and sparsely sorted nuclei and then incubated. Uniquely indexed 

PCR primer sequences are reported in Supplementary Table 2. Post-denaturation, the 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
https://www.nature.com/articles/s41467-021-21515-7#Sec34
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remaining PCR reagents are added, and the incorporation of the PCR primers results in 

the incorporation of the secondary index for single-combinatorial indexing. For the 

denaturation step, 96-well PCR plates of 8.5 µL PB (30 mM Tris HCl, pH 7.5, 2 mM 

EDTA [Ambion, Cat. AM9261], 20 mM KCl [Fisher, Cat. P217 and Fisher, Cat. A144], 

0.2% TX-100 [v/v], 500 µg/mL serine protease [Fisher, Cat. NC9221823]), 1 µL 10 mM 

indexed i5, and 1 µL indexed i7 per well were prepared. Pooled tagmented nuclei were 

stained by adding 3 µL of DAPI (5 mg/mL) per 1 mL of sample. Each sample was then 

FAN sorted using BD FACSDiva software (v8.0.1) on a Sony SH800 FACS machine at 

22 events per well per 96-well Tn5 plate (e.g., 88 for 384 indexes) into prepared 96-well 

plate(s). Event numbers were selected based on the expected success rate of events as 

actual cells for a given target cell doublet rate (see “Doublet rate estimations” section 

below). Across the sciMAP-ATAC experiments, four PCR plates (384 uniquely indexed 

wells) were utilized for the initial punch-derived sci-ATAC-seq preparation from whole 

brain-derived punches, two PCR plates (192 uniquely indexed wells) were used for the 

mouse SSp cortex experiment, one full and one partial plate (128 uniquely indexed 

wells) for the human VISp experiment, two plates (192 uniquely indexed wells) for the 

mouse cerebral ischemia experiment, and finally, two PCR plates (192 uniquely indexed 

wells) were utilized for the nonspatial whole-brain sci-ATAC-seq preparation on fresh 

and frozen tissue. Transposase denaturation was performed by sealing each sorted 

plate and incubating at 55 °C for 15 min. Plates were immediately transferred to ice post-

incubation, and 12 µL of PCR mix (7.5 µL NPM [Illumina Inc. Cat FC-131-1096], 4 µL 

nuclease-free water, and 0.5 µL 100× SYBR Green) was added to each well. For each 

experiment, plates were then sealed and PCR amplified on a BioRad CFX real-time 

cycler running CFX Manager (v3.1) software, using the following protocol: 72 °C for 5:00, 

98 °C for 0:30, cycles of (98 °C for 0:10, 63 °C for 0:30, 72 °C for 1:00, plate read, 72 °C 

for 0:10) for 18–22 cycles. PCR plates were transferred to 4 °C once all wells reached 
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mid-exponential amplification on average. Each PCR plate is then pooled at 10 µL per 

well, and DNA libraries are isolated using a QIAquick PCR Purification column. Each 

pooled PCR plate library is then quantified using a Qubit 2.0 fluorimeter, diluted to 

4 ng/µL with nuclease-free water, and quantification of library size performed on Agilent 

Bioanalyzer using a dsDNA high sensitivity chip. Libraries were then sequenced on a 

NextSeqTM 500 sequencer (Illumina Inc.) running NextSeq500 NCS (v4.0) software 

loaded within a range of 1.2–1.6 pM with a custom sequencing chemistry protocol (read 

1:50 imaged cycles; index read 1:8 imaged cycles, 27 dark cycles, 10 imaged cycles; 

index read 2:8 imaged cycles, 21 dark cycles, 10 imaged cycles; read 2:50 imaged 

cycles) using custom sequencing primers supplied in Supplementary Table 2. 

2.7.10 Doublet rate estimations 

An important factor in single-cell studies is the expected doublet or collision rate. This 

manifests in droplet-based platforms as two cells being encapsulated within the same 

droplet, thus having the same cell barcode for their genomic information. This is tunable 

by the number of cells or nuclei loaded onto the instrument, with typical doublet rates 

targeted to be at or <5%. This is also true for combinatorial indexing workflows, where 

doublets are present in the form of two cells or nuclei with the same level 1 index—which 

is the transposase index for ATAC—that end up in the same level 2 indexing well (i.e., 

the PCR well). This results in an identical pair of indexes for the two cells. This rate, like 

with droplet methods, is also tunable by altering the number of indexed cells or nuclei 

that are deposited into each well, with a typical experiment targeting at or below a 5% 

doublet rate. This rate is approximated by leveraging the “birthday problem” formulation 

in statistics, where the transposase index space (days in the year) and number of 

indexed nuclei per well (number of people at each table) are taken into account. These 

predictions assume that there is complete mixing of nuclei prior to distribution and that 

https://www.nature.com/articles/s41467-021-21515-7#Sec34
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the distribution is unbiased, which are reasonable given the single-nuclei suspension 

and use of flow sorting for the distribution process, and hold up when compared to 

empirical data produced by multispecies cell mixing experiments85,86,126 (i.e., barnyard 

experiments, typically mixing human and mouse cells). However, in the case of sciMAP-

ATAC, nuclei are directly isolated and then indexed within the same well, making a true 

barnyard experiment not feasible. Any experiment that would use tissue punches from 

two different species into different wells would not capture doublets because of the de 

facto unique indexes for each species imparted by the different wells for the first level of 

indexing. We, therefore, assumed that the assumptions that have been made and tested 

for standard sci-ATAC-seq and related combinatorial technologies also apply to sciMAP-

ATAC, as the novel components of the workflow are in the processing prior to the 

combinatorial indexing stages. 

With our set of 384 unique transposase indexes and the sorting of 88 nuclei per well 

across experiments, this would result in a doublet rate (i.e., two nuclei of the same 

transposase index ending up in the same PCR well) of 10.5% if the yield of sorted nuclei 

was perfect. However, we favor speed over precise quantification during the sorting 

step, as the actual number of sorted cells does not matter as long as it ends up being 

below the target number. We have found that using our fast-sorting workflow, of the 

target number of events that are sorted, only between 25 and 50% are true nuclei. The 

rest of the events are empty droplets. We also note that these droplets do not contain 

ambient chromatin based on human-mouse mixing experiments86. Using the high end of 

the ~50% true nuclei yield, the expected doublet rate is 5.4%, in line with other 

commercially available single-cell platforms. When factoring in the actual yield with 

respect to single-cell profiles produced, the doublet rate is even lower. For example, the 

punch dissociation development sciMAP-ATAC preparation produced 8012 single-cell 
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profiles over 384 unique indexed transposition wells, for an average of just under 21 

cells produced per well out of the 88 events that were sorted—a 23.7% yield. The final 

expected doublet rate is, therefore, most accurately calculated according to 21 indexed 

nuclei produced per well with a transposase index space of 384 for a doublet rate of 

2.5%, which is well within the accepted range. 

2.7.11 Sequence data processing 

Fastq files were generated from BCL files using bcl2fastq (Illumina Inc., v2.19.0). Fastq 

files were aligned, filtered, and analyzed primarily using the “scitools” software 

(github.com/adeylab/scitools)89, which includes wrappers for numerous external tools. 

Raw sequence reads had their index combinations matched to a whitelist of expected 

indexed using “scitools fastq-dump”, which allows for a hamming distance of two and 

produces error-corrected fastq files. These were then aligned to a mouse or human 

reference genome (mm10 or hg38) via bwa mem (v0.7.15-r1140)132 and sorted using 

“scitools align”. PCR duplicate removal and filtering for quality ten aligned autosomal and 

chromosome X reads (i.e., excluding mitochondrial, chromosome Y, and unanchored 

contigs) was performed using “scitools rmdup” with default parameters and plotted using 

“scitools plot-complexity”. Projections of passing reads given increased sequencing 

depth were performed using “scitools bam-project” on the pre-duplicate removed bam 

file, which generates a model for every single cell based on sampling reads and 

calculating the passing read percentage that empirically falls within 2% accuracy86. Bam 

files were then filtered to only contain cell barcodes that contained a minimum of 1000 

passing reads and a percent unique reads <80 (any overly complex cell libraries may be 

doublets and were therefore excluded). For the human VISp dataset, cells were also 

filtered to have a TSS enrichment (per cell calculation) of 2 (see section “Quality metric 

calculations”). 
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2.7.12 Chromatin accessibility analysis 

The filtered bam file was used for chromatin accessibility peak calling for each of the five 

experiments individually, as well as on a combined bam file from the mouse whole brain 

sciATAC-seq, mouse punch dissociation development sciMAP-ATAC, and mouse SSp 

cortex sciMAP-ATAC experiments for the combined dataset analysis. Peak calling was 

run using the wrapper function “scitools callpeak”, which utilized macs2 

(v2.1.1.20160309) for peak calling, and then filtering and peak extension to 500 bp 

(ref.133). Called peaks from mouse whole brain sciATAC-seq, mouse punch dissociation 

development sciMAP-ATAC, and mouse SSp cortex sciMAP-ATAC datasets were 

merged to generate a union peak set that was used to compare sciATAC-seq and 

sciMAP-ATAC clustering. Peak bed files and filtered bam files were then used to 

construct counts matrix of cells × peaks. Latent Dirichlet Allocation using the package 

cisTopic (v0.2.0)134 was performed using the scitools wrapper function “scitools cistopic”. 

Topic enrichments for region type annotations (Fig. 14g) were annotated using cisTopic 

function annotateRegions, using the Bioconductor package 

TxDb.Hsapiens.UCSC.hg38.knownGene (v3.4.7) and annotation database 

org.Mm.eg.db (v3.8.2). The topic by annotation heatmap was plotted using cisTopic 

function signaturesHeatmap. The cells × topics matrix was biclustered and plotted using 

“scitools matrix-bicluster”, which utilizes the Heatmap function in the ComplexHeatmap 

package (v1.20.1) in R (v3.5.1)135. Two-dimensional visualization was performed using 

UMAP via “scitools umap” and plotted using “scitools plot-dims”. Visualization of topic 

weights on the UMAP coordinates was performed using “scitools plot-dims” with -M as 

the cells × topics matrix. Clustering was performed on the cells × topics matrix using the 

package Rphenograph (v0.99.1) in R (v3.5.1), which employs Louvain clustering and 

was executed using the wrapper function “scitools matrix-pg”136. In addition to topic 

analyses, we utilized ChromVAR (v1.4.1)119 to assess the global motif accessibility 
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profiles of cells using the wrapper function “scitools chromvar” on the bam file with 

added read group tags using “scitools addrg”. Boxplots illustrating TFME per cell were 

generated using values from the ChromVAR deviations_scores matrix and plotted using 

geom_boxplot from the package ggplot (v3.2.1) in R (3.5.1), where lower and upper 

hinges indicate the first and third quartiles, the center line indicates median, upper, and 

lower whiskers indicate 1.5 times the inner quartile range (IQR). Data points beyond the 

end of the whiskers are plotted individually. All boxplot comparison significance 

calculations were performed using the compare_means function in the ggpubr package 

(v0.2.5), indicating paired = FALSE and p.adjust.method set to Bonferroni–Holm 

correction in R (v3.5.1). 

2.7.13 Quality metric calculations 

To generate tagmentation site density plots centered around TSSs, we first subset 

filtered experiment bam files into respective annotations. We used the alignment position 

(chromosome and start site) for each read to generate a bed file that was then fed into 

the BEDOPS closest-feature command mapped the distance between all read start sites 

and TSSs (v2.4.36, ref.137). From this, we collapsed distances into a counts table 

respective to experiment and annotation and generated a percentage of read start site 

distances within each counts table. We plotted these data using R (v3.6.1) and ggplot2 

(v3.3.2) geom_line function (default parameters) subset to 2000 base pairs around the 

start site to visualize enrichment. TSS enrichment values were calculated for each 

experimental condition using the method established by the ENCODE project 

(https://www.encodeproject.org/data-standards/terms/enrichment), whereby the 

aggregate distribution of reads ±1000 bp centered on the set of TSSs is then used to 

generate 100 bp windows at the flanks of the distribution as the background and then 

through the distribution, where the maximum window centered on the TSS is used to 

https://www.encodeproject.org/data-standards/terms/enrichment
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calculate the fold enrichment over the outer flanking windows. The fraction of reads in a 

defined read set (FRiS) was used as an alternative to the fraction of reads in peaks for 

two major reasons. The first is that FRiP is highly dependent on the number of peaks 

that are called, which is, in turn, highly dependent on (a) the number of cells profiled, 

and (b) the depth of sequencing. One can increase FRiP values by sequencing a library 

more deeply or profiling larger numbers of cells at the same depth without reflecting any 

difference in underlying data quality. Second, peak calling on a population of cells favors 

peaks in high abundance cell types, as they make up more of the data going into the 

peak calling. Therefore, cells of a cell type that is lower abundance will have fewer peaks 

called that are specifically associated with that cell type, owing to the dominance of 

signal by the more abundant cell type and consequently reducing the FRiP of those 

cells. Using FRiS instead largely avoids the challenges associated with peak calling by 

leveraging a comprehensive reference dataset. For the mouse FRiS calculations, we 

aggregated peaks that are available from mouse bulk ATAC-seq and DNAse 

hypersensitivity experiments provided by the ENCODE project, followed by peak 

collapsing, resulting in 2,377,227 total peaks averaging 744.9 bp. For the human 

dataset, we used a human reference dataset for DNAse hypersensitivity95 that contains 

3,591,898 loci defined as TF footprints with an average size of 203.9 bp leading to the 

lower FRiS values when compared to the aggregate mouse ATAC-seq peak dataset. 

2.7.14 Cell type identification 

The identified clusters were assigned to their respective cell type by examining the 

chromatin accessibility profile of marker genes that correspond to known cell types. 

Gene regions were plotted using “scitools plot-reads” using the filtered bam file, and 

genome track plots were generated using CoveragePlots from the analysis suite of tools, 

Signac (v0.2.5, https://github.com/timoast/signac). Additional support for identified cell 

https://github.com/timoast/signac
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types was performed by assessing the chromVAR results for global motif accessibility. 

Marker genes used for cell-type identification included: Gfap, Glul, and Agt for 

astrocytes, Col19a1 for all neuronal cell types, Gad1, Gad2, Pvalb, Dlx1, and Dlx2 for 

GABAergic neurons, Slc17a7, Drd1, Drd2, Bcl11b (Ctip2), and Ppp1r1b for GABAergic 

MSNs, also referred to as SPNs, C1qa, C1qc, and Cx3cr1 for microglia, Mrc1 for 

macrophages within the microglia cluster, Kdr and Flt1 for endothelia, Olig1 for all 

oligodendrocyte cell types, Top2a and Cspg4 (NG2) for OPCs, Fyn, and Prox1 for newly 

formed oligodendrocytes, and Mobp, Mog, Cldn11, and Prox1 for mature myelinating 

oligodendrocytes. 

2.7.15 Gene ontology enrichment analysis 

GO enrichment analysis was performed for the genomic regions defined within topic 30, 

the topic enriched in ischemia-specific cells. Single nearest genes to topic 30 regions 

were identified using GREAT (v4.0.4) for reference genome mm10 (ref.138). GO term 

statistical overrepresentation for GO biological processes was calculated using Panther 

(v14) binomial test with false discovery rate (FDR) correction for overrepresentation of 

topic 30 genomic regions in comparison to all mouse (mm10) genes. Data were plotted 

using ggplot (v3.2.1) plotting function geom_barplot in R (v3.5.1) with height 

corresponding to log2 GO term fold enrichment and colored by GO term −log10 FDR Q-

value. 

2.7.16 Transcription factor and site enrichment throughout trajectories 

TF motif enrichment analysis was performed using chromVAR (v1.4.1) in R (v3.5.1) on 

all cells derived from ischemia mouse models, including the ischemic (stroke) 

hemisphere and contralateral (contra) hemisphere. For the cells × TFME matrix, cells 

were annotated by the punch they were derived from, and a linear regression of TFME 

as a function of punch location for each cell using the base function lm in R (v3.6.1). 
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Slopes of the linear model for the ischemic and contralateral hemispheres were defined 

as the coefficient of the fit. The statistical significance of the interaction between TFME 

over space and disease condition (stroke versus contralateral hemisphere) was 

calculated by performing an analysis of variance (ANOVA, anova base R v3.6.1) on the 

interaction of hemisphere on the linear regression defined by TFME as a function of 

punch position (TFME ~ punch × hemisphere(stroke/contra)), and slopes were compared 

using the lsmeans package function lstrends (v2.30-0). Slopes were compared between 

the stroke and contralateral hemispheres by taking the difference between the slopes (Δ 

slope = slopestroke − slopecontra). The change in slope was z-scored to center and scale 

TFME difference, where z-score Δ slope is equal to two standard deviations from the 

mean. Volcano plot of −log10p value by Δ slope was generated using the package 

EnhancedVolcano (v1.4.0) in R (v3.5.1). Line plots vignettes were generated by plotting 

volcano plot data using ggplot (v3.2.1) plotting function geom_smooth, method lm. 

Heatmaps illustrating cell-type-specific TFME over space were generated by subsetting 

ischemia mouse model cells by cell type and plotting TFME by punch, compared 

between stroke and contralateral hemispheres using package ComplexHeatmap (v2.0.0) 

in R. 

Analysis of putative regulatory elements was performed by assessing the ATAC peak 

probabilistic weight per cell (cisTopic predictive distribution) across cells derived from 

punches taken from the infarct core to infarct border axis (punch positions 5–8) in the 

stroke and contralateral hemispheres, aggregated across all MCAO mice. This was 

performed similarly to TFME described above, where ATAC peak probability per cell was 

averaged by punch position (punch positions 5–8). ATAC peak probability along the 5–8 

axis was fit to a linear model, and the slope in the stroke hemisphere as compared to the 

slope in the contralateral hemisphere in order to generate significance and delta-slope 
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values. We found that 3852 peaks out of 104,773 total peaks (4.8%) vary significantly 

across the 5–8 axis in MCAO stroke hemispheres in contrast to the contralateral 

hemispheres. In order to identify putative regulatory elements which are associated with 

the progressive gradient of glial reactivity from the infarct core to the infarct border in 

stroke hemispheres, we subset our spatially significant peak set to those which uniformly 

increase or decrease along the 5–8 axis in stroke hemispheres. We found 73 sites that 

uniformly increase with increasing proximity to the infarct border and no sites which 

uniformly decrease. We report these 73 spatially significant peaks as a reference for 

future MCAO regulatory element studies. 

2.7.17 Moran’s I spatial autocorrelation analysis 

We performed a Moran’s I test to assess spatial autocorrelation between punch 

locations, wherein a higher Moran’s I value signifies a higher chance of cells from the 

same punch location being nearby in Euclidean space. Cells sourced from white matter 

punches were excluded. The test was performed using the same 27 topic weight matrix 

used for UMAP projections. Cells were split by assigned types and processed in parallel 

in R (v4.0) using a modified version of the “Moran_I” method in the function graph_test in 

monocle3 (v0.2.3.0)139. Briefly, we used a bootstrapping method wherein each punch 

location (1–8) was randomly assigned a new location for all punches and all trajectories, 

such that all cells from the same punch still shared the same location. The Moran’s I 

value was calculated for 1000 iterations using this random location reassignment 

strategy. The resulting null distribution was then compared to our true punch location 

Moran’s I using the pnorm function to perform an unpaired one-sided 

(lower.tail = FALSE) z-test. To account for multiple testing, we applied a Bonferroni 

correction to the p values. 
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2.7.18 Integration with snDrop-seq and scTHS-seq data 

We applied cross-data-modality integration based in canonical correlation analysis 

(CCA) to coanchor our sciMAP-ATAC-seq dataset with publicly available snDrop-seq 

and scTHS-seq visual cortex datasets96,140 (Fig. 15). For single-cell chromatin 

accessibility data, we used Signac (v1.1.0)140 to perform latent semantic indexing (LSI) 

on the filtered chromatin accessibility matrices (for both scTHS-seq and sciMAP-ATAC-

seq) and calculated the normalized LSI loadings scores (using dims: 2:30) for anchor 

weighting. We then created gene activity matrices using the R package Cicero 

(v1.3.4.10)141. Similarly, we preprocessed the snDrop-seq expression matrix using the 

standard Seurat 3 (v3.2.1) workflow, where we filtered for variable features (5000 

features), scaled and normalized data, and reduced dimensions via PCA and UMAP. For 

RNA-ATAC integration, we first learned the transfer anchors based on the gene activity 

and expression data by applying FindTransferAnchor (with the parameters dims = 1:30 

and reduction = “cca”). We then used TransferData (weight.reduction = atac[[“lsi”]]), to 

project scRNA-seq data labels onto sciMAP-ATAC-seq cells. We finally created a 

confusion count matrix based on the label matches between the snDrop-seq predicted 

and sciMAP-ATAC-seq labels. Using a similar method for feature imputation at variable 

genes, we transferred the scRNA-seq data onto the sciMAP-ATAC-seq cells and 

performed PCA on the combined datasets, followed by visualization via UMAP46. We 

applied a matching CCA-based strategy to coanchor scTHS-seq and sciMAP-ATAC-seq 

cells, using 70,832 overlapping accessibility sites between the datasets. For label 

transfer, we used the normalized LSI loadings scores for anchor weighting of the scTHS-

seq data and then compared labels via a confusion matrix (Fig. 15). 
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2.7.19 Statistics 

Data are presented as mean ± SEM unless otherwise specified. Statistical analysis was 

generally performed by a two-sided, unpaired Wilcoxon nonparametric test or two-way 

ANOVA and the Bonferroni method of correction for pairwise multiple comparisons, or as 

specified in the figure legends. Significance was assigned to p < 0.05. All analyses were 

performed using R version 3.5.1 or scitools scripts (github.com/adeylab/scitools) unless 

otherwise specified. Plots were generated primarily using R ggplot2 version 3.2.1. 

2.8 Data availability 

Raw and processed single-cell library sequencing data, as well as single-cell metadata, 

have been submitted to the National Center for Biotechnology Information Gene 

Expression Omnibus (GEO) under the accession code GSE164849. All other data 

supporting the findings of this study are available with the article and its Supplementary 

Information files and from the corresponding author upon reasonable request. Source 

data are provided with this paper. 

2.9 Code availability 

Data analysis and plotting was performed using functions contained within the publicly 

available scitools software suite of single-cell analysis tools 

(github.com/adeylab/scitools). 
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Chapter 3: An atlas of glial chromatin accessibility in the 

human cortex and hippocampus 

This chapter contains a modified version of material that appeared in the author’s 

submitted manuscript: Thornton, Casey A., et al. “An atlas of glial chromatin accessibility 

in the human cortex and hippocampus.” 
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3.3 Abstract 

The human central nervous system is a complex tissue comprising neuronal and non-

neuronal cell types that orchestrate cognition. Single-cell characterization of neurons has 

revealed cellular sub-types with diverse functions; however, non-neuronal cells have not 

been characterized to the same resolution. This discrepancy in our understanding of 

neuronal and glial molecular diversity is an obstacle to creating a complete map of cell 

state heterogeneity and, therefore, glial function in the human brain. In this study, we 

focused on the cortex and hippocampus of the human brain in nine cognitively healthy 

adults. We assessed the cellular diversity of glia using the single-cell chromatin 

accessibility assay sci-ATAC-seq to epigenetically characterize 378,270 cells with 

779,149 open chromatin regions. By selecting against NeuN immunolabelling, we 

achieved an 88.47% glial identity in cells processed across cortex and hippocampus 

samples. After sub-clustering of glial cell types, we uncovered intra-cell-type 

heterogeneity and multiple activated glial cell states in the healthy adult brain that are 

typically associated with the disease. Taken together, we produced a high cell coverage 

reference dataset of healthy human glia with profound heterogeneity of cell states. 
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3.4 Introduction 

Single-cell approaches have enabled characterization of this cellular heterogeneity via 

assessment of genomic and epigenomic features127,142. Notably, single-cell chromatin 

accessibility characterizes cells by the organization of chromatin, providing insight into 

gene regulatory control and allowing for the assessment of epigenetically distinct cellular 

states, including those associated with health and disease. Single-cell characterization 

of neurons has been of prime interest in neuroscience, as neurons vary by regional 

specificity throughout the brain, exhibit variable morphologies, and assemble circuits that 

perform diverse information processing functions48. While single-cell chromatin 

accessibility has expanded the taxonomic classification of neurons in the human brain, 

the characterization of glia in the human brain is incomplete. 

Glia in mammalian brains, like neurons, demonstrate disparate functions and 

morphologies both inter- and intra- regionally and also adopt heterogeneous states in 

tissue environments experiencing inflammatory pathologies. For instance, astrocytes 

and microglia are essential for synaptogenesis, synapse pruning, and elimination in the 

healthy CNS143, yet also adopt reactive states in response to inflammation. Previous 

work has categorized reactive states of glia based on cellular function and injury type in 

various mouse models, characterizing reactive astrocytes in mice into distinct A1 

immune responsive and A2 phagocytic states and reactive microglia into M1 pro-

inflammatory and M2 anti-inflammatory states143. Though these characterizations of glial 

cell types have provided a basic framework for describing the heterogeneity of reactive 

glial cells, such a binary categorization is considered overly simplistic. Instead, as glial 

reactivity is induced in response to a wide array of disparate pathological contexts, the 

reactive glia themselves are expected to showcase just as broad a heterogeneity 

depending on the specific context144,145. To understand the heterogeneity of reactive glial 



87 
 

cells, however, it is necessary to first possess a rigorous and complete catalog of glial 

cell types and cell states in the cognitively healthy brain.  

In this study, we used the single-cell combinatorial indexing assay for transposase 

accessible chromatin using sequencing (sci-ATAC-seq)85,89 to generate a glia-enriched 

atlas of 378,270 cells from the human brain. We focused on two regions, the frontal 

cortex (middle frontal gyrus) and hippocampus, from nine cognitively healthy individuals 

in order to assess baseline glial heterogeneity. We present our findings on major glial 

cell types, including oligodendrocyte progenitor cells (OPCs, also known as 

polydendrocytes), astrocytes, microglia, and oligodendrocytes. In these gross cell types, 

we identify sub-types that have been previously described using other methodologies as 

well as novel sub-classifications with distinct epigenetic states. Importantly, we found 

that key features of astrocytes and microglia that have been described in disease states 

of the brain are present in low abundance in healthy aging individuals, supporting the 

premise that high cell numbers are required to identify rare cell states. We believe that 

these findings provide a necessary baseline for future investigations into diseases of the 

brain. 

3.5 Results 

3.5.1 Sci-ATAC-seq enriched for glial cells in human post-mortem brain 

tissue 

We performed sci-ATAC-seq on two regions of the human brain: the frontal cortex 

(middle frontal gyrus) and hippocampus, in order to assess heterogeneity in the glial 

chromatin landscapes (Fig. 23a). Nuclei were isolated from cryopreserved samples 

collected from nine cognitively normal post-mortem individuals (4 male, 5 female) 

ranging from 37-73 years of age to identify shared glial heterogeneity between 

individuals (Fig. 23b, Supplementary Table 3), and then stained with an anti-NeuN 
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antibody with a secondary GFP antibody to enable the enrichment of NeuN-negative 

nuclei. We applied sci-ATAC-seq and sequencing across fifteen experimental 

preparations, generating chromatin accessibility profiles of 378,270 cells (Fig. 23c, Fig. 

20). We identified 779,149 open chromatin regions from the complete dataset with a 

mean number of 20,520 unique reads per cell (Fig. 23d, Fig. 21a,c,e) and an ideal global 

transcription start site (TSS) enrichment of 17.85, according to ENCODE standards146 

(ideal TSS ≥ 7, Fig. 23e, Fig. 21b,d,f).  

 
 
Figure 20. Overview of single-cell ATAC profiles produced across experimental 
conditions. Quality-passing single-cell ATAC-seq profiles for all, cortex and hippocampus cells 
(or mean ± SD) for a, All human glial atlas cells (n=378,270 cells); b, Cortex-derived cells 
(n=176,696 cells); c, Hippocampus-derived cells (n=201,574 cells). 
 

We initially performed our analysis respective of brain regions to identify canonical 

cortex and hippocampus cell types within the glial-enriched dataset. For each region, we 
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performed topic-based dimensionality reduction134, followed by cluster identification on 

the cell by topic matrix, and then visualization of chromatin accessibility in canonical cell 

type marker genes on a UMAP projection. In line with expectations, a small number of 

neuronal nuclei made it through the NeuN-negative selection based on the gating used 

during sorting. In the cortex, we identified six gross cell types that encompass several 

merged clusters; the first two corresponding to glutamatergic and GABAergic neurons, 

and the remaining four representing the four primary glial cell types: oligodendrocytes, 

OPCs, astrocytes, and microglia (Fig. 23f). In the hippocampus, we identified the same 

four broad glial cell types: oligodendrocytes, OPCs, astrocytes, and microglia, as well as 

three neuron cell types: dentate granule cells, pyramidal neurons, and inhibitory neurons 

(Fig. 23g). 
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Figure 21. Quality assessment of single-cell ATAC-seq profiles. a, Passing reads per cell 
split by individual from cortex (blues) and hippocampus (oranges). b, Transcription start site 
(TSS) enrichment scores split by individual. c, Cortex passing reads per cell split by cell type. 
d, TSS enrichment scores of cortex cells split by cell type. e, Hippocampus passing reads per 
cell split by cell type. f, TSS enrichment scores of hippocampus cells split by cell type. g, TSS 
enrichment values of individual cells by post-mortem interval. 
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Figure 22. Cell type annotation validation by single-cell integrations. a, Human Glia Atlas 
(HGA) 5% cortex subset integration with Thornton et al. sci-ATAC-seq mouse primary 
somatosensory cortex cells (n=10,326 HGA cortex cells, n=4,547 Thornton et al. cells). b, 
UMAP of Seurat integration of HGA sci-ATAC-seq frontal cortex 5% cellular subset (blue, 
n=10,326 cells) and Lake et al. mouse frontal cortex (pink, n=10,319 cells), colored by dataset. 
c, UMAP, as shown in b, of only HGA cortex sci-ATAC-seq cells, colored by HGA annotated 
cell types (n=10,326 cells). d, UMAP, as shown in b, of only Lake et al. scRNA-seq cells, 
colored by Lake et al. annotated cell types (n=10,319 cells). e, Confusion matrix heatmap of 
percent assignment of predicted cell type label transfer from Lake et al. scRNA-seq to HGA 
cortex sci-ATAC-seq cells. Left-to-right diagonal marked by black outline to predicted cell type 
assignment agreement. Dotted blue outline signifies cell type assignment disagreement (off-
diagonal). f, ATAC-seq profiles of HGA cortex astrocytes at excitatory neuron marker gene 
SLC17A7, split by predicted cell type (e.g., HGA astrocytes predicted to be astrocytes, HGA 
astrocytes predicted to be Excitatory Neuron 1, etc.), (n=2,415 HGA astrocyte cells). 

 
To confirm the validity of our cell type assignment, we integrated a subset of our cortex 

dataset (5% downsampling of each cell type, n=10,326 cells) with the previously 

generated Thornton et al. adult human primary somatosensory cortex sci-ATAC-seq 

dataset (n=4,547 cells)147 and, separately, the Lake et al. adult human frontal cortex 

snRNA-seq dataset (n=10,319, Fig. 22)148. We found perfect agreement across all cell 

types between the sci-ATAC-seq libraries from Thornton et al. and our cortex dataset 

(Fig. 22a) and high concordance with Lake et al. snRNA-seq after label transfer of cell-
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type identity (Fig. 22e). In both integrations, cells that were annotated as low-quality due 

to low TSS and low unique reads demonstrated no clustering or label transfer cell type 

prediction with any previously identified cell type (Fig. 21c-f, Fig. 22a,c). As a result, 

these low-quality cells were excluded from future analysis (n=746). We then assessed 

the validity of cell type assignment discrepancies. This included cells that we had 

annotated as astrocytes but that Lake et al. label transfer predicted to be excitatory 

neurons, which we found exhibited no accessibility for the canonical excitatory neuron 

marker SLC17A7 and clear accessibility in the astrocyte marker GFAP (Fig. 22e,f), 

suggesting that the issue may lie in the ATAC-to-RNA label transfer process and not 

with our assignments. As a result of our confirmed cell type annotation, we achieved 

88.47% glial cell identity in a high-powered single-cell dataset derived from the human 

cortex and hippocampus. 
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Figure 23. Chromatin accessibility profiling of 378,270 glia in the adult human cortex 
and hippocampus. a, Human glial atlas data generation workflow. Nuclei were isolated from 
nine post-mortem samples (5 cortex, 4 hippocampus, “hippo”) and immunolabeled with NeuN. 
NeuN-negative nuclei were then flow sorted into wells for sci-ATAC-seq combinatorial indexed 
transposition, single-cell library generation and sequencing. b, Dot plot of post-mortem sample 
count by donor age and region. c, Barplot of total number of cells assayed split by region 
sampled (top) and individual sampled (bottom). d, Violin plot of number of passing reads per 
cell, split by region sampled. Center line represents median, lower and upper hinges represent 
first and third quartiles, whiskers extend from hinge to ±1.5 × IQR, individual cells represented 
as colored dots (n=378,270 cells). e, ATAC read signal at transcription start sites (TSSs) and 
surrounding base pairs (bps) for all cells. TSS of 17.85 for all cells. f, UMAP of cortex cells 
colored by gross cell type (n=176,696 cells). g, UMAP of hippocampus cell colored by gross 
cell type (n=201,574 cells). 
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Data from each regional glial cell type were then merged to produce cell-type-specific 

combined datasets, using a union peak set between the two regions (n=779,149 peaks). 

This resulted in the following datasets: oligodendrocytes (236,680 combined: 104,799 

cortical, 13,1881 hippocampal cells), OPCs (16,534 combined: 7,842 cortical, 8,692 

hippocampal cells), astrocytes (49,992 total: 24,151 cortical, 21,246 hippocampal cells), 

and microglia (30,478 combined: 12,541 cortical, 17,937 hippocampal cells). Topic-

based dimensionality reduction and UMAP visualization was then performed on each of 

the cell-type count matrices, revealing varied levels of individual-specific clustering 

across the cell types (Fig. 24b,d,f). We found that oligodendrocytes, astrocytes, and 

microglia clustering were driven by individual subjects, while OPCs revealed no 

individual effect (Fig. 24a, 5c). To allow for inter-individual assessment of glial cell type 

heterogeneity, we corrected for this individual-based batch effect by projecting cells from 

each individual into shared embeddings using Harmony149. The resulting 

oligodendrocyte, astrocyte, and microglia Harmony-weighted cell-by-topic matrix that we 

utilized in the following cell type analysis resulted in clustering with improved 

homogeneity of individuals across clusters (Fig. 24c,e,g). In all subsequent cell type-

specific analyses, we generated gene activity scores for each cell from chromatin cis-co-

accessibility networks141 and assigned the most significantly enriched gene for each 

cluster, or marker gene, as the cluster identifier. 
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Figure 24. Individual-based batch-effect. Pre- and post-Harmony glial cell type UMAPs 
colored by individual. a, (Left) Combined OPC UMAP colored by individual (n=16,534 cells). 
(Right) Individuals mapped separately (black) onto all other OPC cells (grey). b, Pre-Harmony 
combined oligodendrocyte UMAP (n=236,680 cells). c, Post-Harmony combined 
oligodendrocyte UMAP (n=236,680 cells). d, Pre-Harmony combined astrocyte UMAP 
(n=49,992 cells). e, Post-Harmony combined astrocyte UMAP (n=49,992 cells). f, Pre-
Harmony combined microglia UMAP (n=30,478 cells). g, Post-Harmony combined microglia 
UMAP (n=30,478 cells). 

 

3.5.2 Astrocytes exhibit a wide range of sub-states stratified by GFAP gene 

activity 

Astrocytes in the CNS have diverse functions, ranging from complexing with vascular 

cells for blood-brain barrier maintenance to interacting with neurons for synapse 

formation, pruning, and elimination. We identified astrocytes in the cortical and 

hippocampal datasets from defined clusters (Fig. 25a) with elevated accessibility of the 
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markers: glial fibrillary acidic protein (GFAP) and angiotensinogen (AGT) as compared to 

non-astrocytic cell types (Fig. 25b)150. Initial processing of astrocytes revealed 

contaminating hippocampal dentate granule neurons, which were removed, resulting in a 

combined astrocyte dataset of 49,992 cells (48.3% cortex, 51.7% hippocampus, Fig. 26). 

We then identified eleven clusters using our Harmony-weighted cell by topic matrix, each 

labeled by its top marker gene: AST-SNHG14, AST-C1orf61, AST-GFAP, AST-KCNJ3, 

AST-FOXG1, AST-5S-rRNA, AST-SNHG14-2 (also marked by SNHG14, delineated with 

‘-2’), AST-KCNT1, AST-TPRN, AST-HIC1, AST-GPM6A (Fig. 25c,g). These marker 

genes highlight some that have previously been identified in resting healthy and reactive 

disease-associated states. For instance, lncRNA-small nucleolar RNA host gene 14, 

SNHG14, is upregulated in astrocytes following stroke and promotes neuron survival 

while reducing inflammation151; however, the role of SNHG14 in unperturbed astrocytes 

remains poorly understood. A complete list of top cluster marker genes for all cell types 

along with significance values is available in Supplemental Table 4. 
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Figure 25. GFAP delineates eleven astrocyte clusters into resting and reactive cell 
states. a, Cortex (left) and hippocampus (right) UMAPs with astrocyte annotated cells 
highlighted (green) in contrast to all cells (grey). b, ATAC-seq profiles of astrocyte marker 
genes GFAP and AGT of all cells from cortex and hippocampus (n=378,270 cells). c, UMAP of 
combined cortex and hippocampus astrocytes colored by cluster (n=49,992). d, Astrocyte 
harmony-weighted topic matrix split and colored by cluster, as in c. e, UMAP of astrocytes 
colored by GFAP gene activity (n=49,992 cells). f, ATAC-seq profiles of astrocyte marker gene 
GFAP of astrocytes from cortex (left) and hippocampus (right) split by cluster, as in c 
(n=49,992 cells). g, Heatmap of gene activities for the top gene markers identified for each 
astrocyte cluster. All values are available in Supplementary Table 4. h, Heatmap of 
transcription factor motif enrichment scores for the top transcription factor markers for each 
astrocyte cluster. Clusters AST-GFAP, AST-KCNJ3, and AST-FOXG1 had no significantly 
enriched gene markers. All values are available in Supplementary Table 4. 
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We found that for individual topics, i.e., sets of associated open chromatin regions, accessibility 

was enriched in separate clusters, thus establishing the differential chromatin accessibility 

landscapes between putative astrocyte subtypes (Fig. 25d). We visualized these clusters using 

UMAP in three dimensions, where we observed a 3D topology that is not visible in the 2D UMAP, 

where for instance, cluster AST-KCNT1 is separated from the bulk of astrocytes on the UMAP 3 

axis (Fig. 28a). Assessment of individual patient distribution between clusters revealed that AST-

SNHG14-2 and AST-GPM6A were represented predominantly by one individual. Individual 

M3363 comprised 49.5% of AST-SNHG14-2 cells and F3956 comprised 98% of AST-GPM6A 

(Fig. 27a). As SNHG14 is upregulated in ischemic reperfusion injuries, cluster AST-SNHG14-2 

may represent an individual-specific inflammatory astrocyte subtype. 

 
 
Figure 26. Neuronal contamination in astrocytes based on Harmony-weighted cisTopic 
matrix clustering. a, Louvain clustering of combined astrocytes. Outlier cluster identified as 
cluster PG1 (n= 50,312 cells). Dashed circle indicates cluster PG1. b, UMAP of combined 
astrocytes colored by all astrocytes (left), hippocampus-derived astrocytes (upper right), and 
UMAP of cortex-derived astrocytes (lower right), (n= 50,312 cells). Dashed circle indicates 
cluster PG1. c, Outlier PG1 cells (pink) on hippocampus UMAP colored by cell type 
(n=378,270 cells). 

 
For our initial analysis, we assessed the distribution of GFAP gene activity across 

astrocytes. The GFAP protein is an intermediate filament that is expressed widely, at 

varying levels, in healthy astrocytes and is used as a canonical marker of the cell type. 

Expression of the GFAP gene is often elevated in reactive astrocytes144,152. While 

reactive states are primarily associated with inflammation and disease pathologies, 

rodent studies suggest that reactive astrocytes also exist in the normal brain, particularly 
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with aging153. Thus, we explored whether astrocytic reactive states exist in the healthy 

human brain as well. In our data, we observed one cluster that was marked by GFAP 

(AST-GFAP), and we found elevated GFAP gene activity in multiple clusters and 

corresponding elevated chromatin accessibility in both cortex and hippocampus (Fig. 

25e,f). Additionally, we assessed the gene activity of vimentin (VIM), an alternative 

marker of astrocyte reactivity144,154, and observed concordance between GFAP-high and 

VIM-high clusters (Fig. 28a,b). Therefore, we subdivided our analysis into characterizing 

GFAP-high: AST-C1orf61, AST-GFAP, AST-KCNJ3, AST-SNHG14-2, and AST-GPM6A; 

and GFAP-low: AST-SNHG14, AST-FOXG1, AST-5S-rRNA, AST-KCNT1, AST-TPRN, 

AST-HIC1 astrocytic subtypes. 
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Figure 27. Percent identity of each individual per cluster. Cell counts normalized per 
individual to account for total number of cells for each individual. a, Astrocytes (n=49,992 cells), 
b, Microglia (n=30,478 cells), c, OPCs (n=16,534 cells), d, Oligodendrocytes (n=236,680 cells). 

 

3.5.3 Resting state astrocytes vary from ion channel-enriched to blood 

brain barrier-associated sub-states 

Assessment of GFAP-low astrocytes revealed two clusters with marker genes and 

transcription factors that were distinct from the other astrocyte clusters: AST-KCNT1 and 

AST-HIC1 (Fig. 25g,h). AST-KCNT1 gene activity revealed strong enrichment of genes 

associated with the synaptic function (Fig. 25g). Top gene markers encoding ionotropic 

channels included KCNT1, a sodium-activated potassium channel; CACNA1H, a 

voltage-gated calcium channel; SCNN1D, a subunit of the sodium channel ENaC; as 

well as receptors GRIN1, a glutamate NMDA receptor; and TBXA2R, thromboxane A2 
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receptor155. Additionally, AST-KCNT1 was marked by genes involved in cell signaling, 

such as CABP2, a calcium-binding protein; PLPP3, a modulator of bioactive 

phospholipids involved in astrocytic paracrine signaling156. These markers have been 

previously identified in astrocytes and are associated with synaptic regulation157–159. 

Specifically, recent work has shown that SCNN1D is expressed in a subset of fibrous 

astrocytes160, and PLPP3 is highly expressed in low-GFAP expressing astrocytes156. 

Together, these markers delineate AST-KCNT1 as a GFAP-low astrocytic subtype that 

has elevated expression of synaptic signaling channels, receptors, and mediators.  

In AST-KCNT1, we also found enrichment of transcription factor motifs REST and 

NEUROD1 (Fig. 25h). The transcription factor REST binds to NEUROD1/4 loci and has 

been shown to be highly expressed in a subset of astrocytes actively signaling with 

neurons161,162. Astrocytes are already known to be essential for the maintenance of 

synapses, as calcium-dependent release of D-serine from astrocytes is essential for 

long-term potentiation of synapses163. Additionally, recent work assessing transcriptomic 

heterogeneity of astrocytes identified a subset of ionotropically active astrocytes that 

aligns with our characterization of AST-KCNT1164, thus compounding evidence that 

astrocytes may have an ionotropically active sub-state in at least the cortex and 

hippocampus. 

After non-NeuN enrichment of cortex and hippocampus tissues, we expected to identify 

cell types that support the blood-brain barrier, such as astrocytes, as well as sparse non-

astrocytic cell types such as pericytes, vascular smooth muscle cells (VSMCs), and 

endothelial cells, which form the brain vasculature. Analysis of cluster AST-HIC1 

revealed diagnostic marker genes of mural cells, TBX18 and PDGFB, which include 

pericytes and VSMCs (Fig. 25g, Fig. 26c,d)165–167. Inspection of endothelial identity 

revealed no AST-HIC1 specificity of the endothelial cell marker FLT1, though a small 
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subset of AST-HIC1 cells did display elevated chromatin accessibility at the promoter of 

endothelial cell marker ICAM2 (Fig. 28e,f). Transcription factor motif enrichment (TFME) 

analysis of all astrocytes revealed AST-HIC1 to be uniquely enriched for E26 

transformation-specific (ETS) family transcription factors, which are involved in vascular 

development (Fig. 25h)168. Transcription factor ETS-1 has been shown to be associated 

with endothelial cells in angiogenesis169. Our data reveal the similarities between 

vascular cells and astrocytes in the healthy human cortex and hippocampus, as well as 

the distinct differences highlighted by the lack of shared transcription factors and gene 

markers. 

 
 
Figure 28. Feature of astrocytic heterogeneity. a, 3D UMAP of combined astrocytes colored 
by clusters as in Fig. 25c (n=49,992 cells). b, 2D combined astrocyte UMAP colored by 
vimentin, VIM, gene activity. c, ATAC-seq profiles of astrocyte marker gene VIM of astrocytes 
from cortex (left) and hippocampus (right) split by cluster, as in a (n=49,992 cells). d-g, ATAC-
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seq profiles of combined astrocytes for mural cell genes TBX18 and PDGFB; and endothelial 
genes FLT1 and ICAM2, split by cluster, as in a. 

 

3.5.4 Multiple reactive astrocytic states associated with disease 

pathologies are present in the healthy human CNS 

In GFAP-high clusters, we identified key features of reactive astrocytic states. Although 

reactive astrocytic states are likely to be as varied as the contexts that trigger them, 

previous work has described two such states, A1 and A2, which are specifically induced 

by lipopolysaccharide (LPS) injection and middle cerebral artery occlusion (MCAO), 

respectively170. While both states show elevated GFAP, the A1 state is characterized by 

increased immune activity induced by reactive microglia, while the less characterized A2 

state is marked by increased metabolism and cell-cycling143,170,171. In our GFAP-high 

clusters, we identified markers of the A1 state in cluster AST-GFAP and the A2 state in 

clusters AST-C1orf61 and AST-KCNJ3. We found that the top marker genes of AST-

GFAP included not only GFAP, but also PLEC, the gene that encodes plectin, a 

cytoskeleton protein that aids in remodeling of intermediate filaments, including GFAP, 

to morphologically alter astrocytes for glial scar or, more accurately, astrocyte border 

formation (Fig. 25g)172–175. Additionally, elevated plectin mRNA is associated with 

increased mobility in A2 astrocytes. Similarly, other top marker genes of AST-GFAP 

included APC2, which encodes a cytoskeletal protein required for intermediate filament 

reorganization in astrocyte migration176, and SEPT9, which is a key marker of the 

reactive amoeboid microglial cells (AMC) and also facilitates microtubule-dependent 

transport177,178.  

The remaining GFAP-high clusters, AST-C1orf61 and AST-KCNJ3, exhibited gene 

markers that have been implicated in A2 state astrogliosis. A top marker gene of AST-

C1orf61 is SEMA4B, which regulates astrogliosis post-brain injury179 and is associated 

with synaptogenesis after MCAO164. AST-KCNJ3 is marked by ADAMTS1 and 
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ADAMTS3, which are both upregulated following MCAO180,181. Together, we found that 

the top marker genes for GFAP-high clusters are associated with known reactive 

astrocyte states associated with neuroinflammation and cerebral ischemic events. 

Strikingly, we found these reactive astrocytes in healthy adult human brain tissue – 

leading us to consider that reactive astrocytic states may be features of normal aging 

and physiology153. 

3.5.5 Microglia occupy multiple reactive amoeboid and resting ramified 

microglial chromatin sub-states 

The other primary reactive glial cell type in the brain is microglia, which arise from 

primitive myeloid precursors in the yolk sac and infiltrate the brain early in embryonic 

development182. Microglia are the resident immune cells of the CNS, resembling 

peripheral macrophages in function and adopting reactive states in response to 

inflammation145,183. The cell type annotation of the cortex and hippocampus datasets 

revealed 30,478 microglia, identified by elevated chromatin accessibility of canonical 

markers C1QA, C1QC, and CX3CR1 (41.1% cortex, 58.9% hippocampus, Fig. 29a,b). 

Clustering of the Harmony-weighted microglia revealed stratification across six clusters 

labeled by their top marker gene: MIC-RHBD2, MIC-FOXP2, MIC-OBSCN, MIC-

CLDN11, MIC-SEPT9, MIC-SESTD1 (Fig. 29c, left), distributed evenly across 

individuals, except in the cases of cluster MIC-CLDN11, which was overrepresented for 

individual M3353 (46.9%) and cluster MIC-SESTD1, which was overrepresented for 

individual F3142 (40.3%, Fig. 27b). Plotting the six microglial clusters on the regional 

cortex and hippocampus UMAPs revealed MIC-SESTD1 to be embedded within the 

hippocampal astrocytes (Fig. 29c, right). Investigation into the microglial identity of MIC-

SESTD1 and the astrocyte clusters confirmed that MIC-SESTD1 is highly accessible for 

the diagnostic microglial marker C1QC, while all annotated astrocytes lacked C1QC 
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accessibility (Fig. 29d), thus confirming the microglial identity of cluster MIC-SESTD1. 

Similarly, the top marker gene of cluster MIC-CLDN11, CLDN11, is considered an 

oligodendrocyte marker gene. However, we found high chromatin accessibility for 

microglia marker C1QC in MIC-CLDN11 and a lack of C1QC accessibility across all 

oligodendrocyte clusters, thus also confirming the microglial identity of MIC-CLDN11. 

Claudin-like (CLDN) family transmembrane tight junction genes have been found to be 

upregulated in microglia in systemic inflammation184 and, therefore, may represent a 

sparse CLDN11-expressing microglial population.  
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Figure 29. Microglia clusters exhibit features of resting RMC and reactive AMC states. a, 
Cortex (left) and hippocampus (right) UMAPs with microglia annotated cells highlighted (red) in 
contrast to all cells (grey). b, ATAC-seq profiles of microglia marker genes C1QA, C1QC, and 
CX3CR1 of all cells from cortex hippocampus (n=378,270 cells). c, UMAP of the combined 
cortex and hippocampus microglia colored by cluster (left, n= 30,478), all cortex cells colored 
by microglia clusters (top right, n=176,696 cells), all hippocampus cells colored by microglia 
clusters (bottom right, n=201,574 cells). d, ATAC-seq profiles of microglia marker genes C1QA 
(left) and C1QC (right) with tracks split by microglia and astrocyte clusters, colored by microglia 
clusters, as in c (n=30,478 microglia cells, n=49,992 astrocyte cells). e, Heatmap of gene 
activities for the top gene markers identified for each microglia cluster. All values are available 
in Supplementary Table 4. f, Dot plot of gene activity of two AMC-specific genes (RUNX1T1 
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and SEPT9) and two RMC-specific genes (SEPT4 and MBP) split by microglia cluster, as in c. 
Dot size scaled by percent of cells in cluster with gene activity expression. g, Harmony-
weighted cisTopic matrix split by microglia cluster (n=30,78 cells). h, Dot plot of GO term 
enrichment for microglia cluster MIC-CLDN11 enriched topics 1 and 26. Dot size scaled to 
number of genes in the test set with the annotation and colored by GO term -log10 GO term 
Bonferroni corrected p-values. Select genes highlighted in text, MAG and MBP, underlying GO 
term. All GO enrichment values available in Supplementary Table 5. 

 
Previous work has found that microglia stratify into two morphological states: resting 

ramified microglial cells (RMC) and reactive amoeboid microglial cells (AMC), which are 

thought to correspond to quiescent sensing activity and macrophage-like phagocytic 

activity, respectively177,185–187. Although this binomial stratification is likely to be a crude 

underestimation of microglial morphology and diversity145, nonetheless, it serves as a 

useful compass to probe our dataset for key genes associated with each category. In the 

present study, we found that identified microglia clusters were differentially enriched for 

AMC- and RMC-associated genes identified in a previous AMC/RMC transcriptome 

analysis177. Notably, we found that SEPT9, a marker of AMC microglia, was found to be 

the top marker gene of MIC-SEPT9 and was enriched in clusters MIC-FOXP2 and MIC-

SESTD1, while SEPT4, a marker of RMC microglia, was enriched in cluster MIC-

OBCSN (Fig. 29e). To assess the AMC versus RMC identity of the microglia clusters, we 

assessed the percentage of cells expressing key markers of the two states, AMC: 

SEPT9 and RUNX1T1, and RMC: SEPT4 and MBP. MIC-SEPT9 was significantly 

enriched for the AMC marker SEPT9 in a majority of cells, while MIC-SESTD1 was 

uniquely enriched for AMC marker RUNX1T1 (Fig. 29f). This analysis provides single-

cell context to previous bulk, morphologically driven microglial studies by revealing that 

AMC and RMC microglia do not exist in two homogenous states. Our findings 

demonstrate two AMC states, clusters MIC-SEPT9 and MIC-SESTD1, and three RMC 

states, MIC-RHBD2, MIC-FOXP2, and MIC-OBSCN, which are shared across all 

individuals.  
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Notably, MIC-CLDN11 exhibited elevated gene activity for both AMC and RMC markers. 

Investigation into unique features of MIC-CLDN11 revealed that two Harmony-weighted 

topics were specifically enriched in MIC-CLDN11, topics 1 and 26 (Fig. 29g). We 

hypothesized that MIC-CLDN11 might occupy an intermediate AMC/RMC state that 

shares chromatin accessibility from both morphologies. To test this hypothesis, we 

performed a gene ontology (GO) enrichment analysis (Fig. 29h). We found that topics 1 

and 26 were associated with biological processes, including those related to 

oligodendrocytes (axon ensheathment, myelination), viral processes, and gliogenesis. 

Previous transcriptomic analysis of RMC microglia has found that canonically 

oligodendrocyte-associated genes, MOBP, MOG, MBP, MAG, and OPALIN have 

elevated expression in RMC as opposed to AMC microglia (7.99-623.18 fold change)177. 

In our topic analysis, we found that MAG and MBP were two of the genes leading to the 

oligodendrocyte-associated GO terms, thus establishing the RMC-like chromatin state of 

MIC-CLDN11. 

3.5.6 Oligodendrocyte progenitor cells occupy a gradient of cellular states 

toward differentiation 

OPCs are a multipotent cell type in the human brain that serve multiple functions as 

precursors of oligodendrocytes. However, OPCs are also capable of differentiating into 

other cell types and are therefore also referred to as polydendrocytes188. In the human 

brain, OPCs persist throughout adulthood and play a multifaceted role beyond 

oligodendrocyte generation: they are electrically active cells that form synapses with 

neurons, support the blood-brain barrier, and may even play an immune role189. 

In our study, we identified 16,534 OPCs in the cortical and hippocampal datasets from 

defined clusters with elevated accessibility of the markers OLIG1 and from integration 

with public scRNA-seq and scATAC-seq datasets (47.4% cortex, 52.6 % hippocampus, 
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Fig. 31a, Fig. 22). We found that the number of OPCs was comparable between 

individuals with minimal variation by age (1837.1 ± 367.9 cells, mean ± s.e., Fig. 30a). 

As in previous cell type analyses, we selected cell profiles for OPCs from both the cortex 

and hippocampus and then performed topic-based dimensionality reduction and UMAP 

visualization (Fig. 31b). While all other glial cell types were separated in the UMAP 

space by the individual, the combined cortex and hippocampus OPC UMAP did not 

exhibit a detectable, individual-based batch-effect between clusters (Fig. 24a, Fig. 27c). 

Given that individuals were processed in multiple experiments, this lack of batch-effect 

indicated that OPCs did not exhibit the same degree of person-to-person-based variation 

that other glial cell types (astrocytes, microglia, and oligodendrocytes) exhibited (Fig. 

24b,d,f). This may be due to the undifferentiated progenitor state of the OPCs, where the 

OPC progenitor pool is more homogenous than the other mature differentiated glial cell 

types. Therefore, we did not use Harmony batch-correction on the combined OPC 

dataset and performed analysis on the unweighted cell by topic matrix. 
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Figure 30. Features of OPC heterogeneity. a, Percent OPC cell count per individual patient. 
b, Bar chart of OPC cell count per brain region. c, OPC clusters plotted on regional cortex (left) 
and hippocampus (right) UMAPs. d, OPC cluster cell count across all nine individuals. e, Violin 
plot of Log10 Features in peaks between clusters OPC-BCL11B (right, blue) and OPC-MAG 
(right, coral) f, Gene activity violin plot of cell cycle marker genes: MKI67, PCNA, TOP2A, 
MCM6. 

 
From the 16,534 OPCs derived from both regions, we identified two clusters labeled by 

their top marker gene: OPC-BCL11B and OPC-MAG, which did not coincide with a 

region (cortex or hippocampus) or localization within the cortex and hippocampus 

UMAPs (Fig. 30b,c). Visualizing these clusters in 3D revealed a previously hidden 

spatial stratification between the two clusters (Fig. 31c). We found that 91.4% of OPC 

cells fell into cluster OPC-BCL11B (7,146 cortex; 7,964 hippocampus; 15,110 total cells) 

and 8.6% into OPC-MAG (696 cortex; 728 hippocampus; 1,424 total cells). The percent 

of cells belonging to each cluster was also consistent across all nine individuals (OPC-

BCL11B: 91.3 ± 1.3%; OPC-MAG: 8.7 ± 1.3%, mean ± s.e., Fig. 30d) and OPC-BCL11B 
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and OPC-MAG did not stratify by the quality metric of the number of features of peaks 

per cell (Fig. 30e). 

 
 
Figure 31. OPC clusters are differentially enriched for oligodendrocyte maturation 
genes. a, Cortex (left) and hippocampus (right) UMAPs with OPCs annotated cells highlighted 
(yellow) in contrast to all cells (grey). b, Combined OPC UMAP of 16,534 cells colored by 
cluster identity. c, 3D combined OPC UMAP plotted along UMAP1 and UMAP3 axes, colored 
by OPC cluster, as in b (n=16,534 cells). d, Violin plot of S (grey) and G2M (yellow) cell cycle 
phase gene set enrichment score for each OPC cluster, as in b. e, ATAC-seq profiles of cell 
cycle marker genes PCNA, TOP2A, MCM6, and MKI67 split by OPC clusters. f, Scatter plot of 
gene activity fold change by –log10 P value between OPC-BCL11B (left, blue) and OPC-MAG 
(right, coral). Dotted line represents P vale threshold of 0.05. Each point represents a unique 
gene. Marker genes highlighted in the text, BCL11B, MAG, S1PR5, circled in yellow.  g, ATAC-
seq profiles of oligodendrolineage differentiation marker genes S1PR5 and MAG; and mature 
oligodendrocyte markers MOG and CLDN11, between OPC-BCL11B and OPC-MAG clusters 
and brain region: cortex and hippocampus. 
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A previous single-cell transcriptomic study that assessed glial heterogeneity in the adult 

mouse brain identified two clusters of OPCs that were hypothesized to correspond to 

cycling and non-cycling cells37. To address this hypothesis in our data, we assessed our 

combined OPCs for the enrichment of genes associated with cell cycling. We found that 

our clusters were not defined by any cell cycle phase (Fig. 31d). Assessment of key cell 

cycle markers such as MKI67, PCNA, TOP2A, and MCM6 also revealed no significant 

cluster bias in read coverage (Fig. 31e) or in gene activity (Fig. 30f)190. Additionally, our 

sci-ATAC-seq FANS gating strategy stratifies nuclei by DAPI-stained DNA content, thus 

allowing for the selection of quiescent diploid nuclei in G0 phase. As a result, we did not 

find that clusters OPC-BCL11B and OPC-MAG were defined by cell cycle stages. 

To identify features that stratify clusters OPC-BCL11B and OPC-MAG, we assessed 

differential gene activities between them. Markers known to be associated with OPC-to-

oligodendrocyte maturation were found to be significantly enriched in OPC-MAG. The 

two most significantly enriched markers, S1PR5 and MAG, are both associated with pro-

oligodendrocyte OPC differentiation (Fig. 31f). The expression levels of sphingosine-1-

phosphate receptor (S1PRs) 1, 2, 3, and 5 are modulated in OPCs by PDGF, a 

canonical OPC marker, which titers S1PR expression in different stages of 

oligodendrolineage cell maturation191. S1PR5 becomes the most highly expressed S1PR 

as OPCs differentiate into oligodendrocytes191–193. Additionally, MAG, or myelin-

associated glycoprotein, is expressed in pro-oligodendrocyte OPCs (Fig. 31f)194. We 

found that both S1PR5 and MAG had elevated chromatin accessibility in OPC-MAG in 

both the cortex and hippocampus. However, mature oligodendrocyte markers MOG and 

CLDN11 were not comparably accessible (Fig. 31g). This marks OPC-MAG as a post-

OPC and pre-oligodendrocyte cellular state. In contrast, cluster OPC-BCL11B, which 

contained the majority of OPCs, lacked oligodendrocyte-associated gene activity. The 
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top marker gene, BCL11B (CTIP2), is associated with many cell types throughout the 

brain, primarily GABAergic neurons and astrocytes; however, BCL11B expression has 

also been shown to promote oligodendrolineage progression120. We found BCL11B to be 

suppressed upon OPC-to-oligodendrocyte differentiation between OPC-BCL11B and 

OPC-MAG (Fig. 31g). Therefore, our analysis identified cluster OPC-BCL11B as an 

undifferentiated progenitor state and OPC-MAG as a differentiation-committed 

oligodendrocyte precursor (COP) population39. Taken together, we demonstrate that, 

with sufficient cellular sampling, it is possible to resolve distinct OPC cellular states in 

the adult human brain that correspond to the genomic reorganization accompanying 

oligodendrolineage differentiation. 

3.5.7 Oligodendrocytes occupy a continuous chromatin accessibility 

landscape with few distinct sub-states 

Oligodendrocytes are the glial cell type in the CNS that produce myelin, which surrounds 

neuronal axon tracts and allows for saltatory conduction of action potentials. This myelin 

production remains plastic throughout the lifetime of the cell and is essential for learning 

and memory195. Additionally, oligodendrocytes provide metabolic support to the neuronal 

processes they ensheath and also regulate neuronal axon sprouting and 

synaptogenesis196. Investigations into spatially and functionally mediated 

oligodendrocyte heterogeneity have revealed distinctions between oligodendrocytes that 

are hypothesized to be driven by extrinsic signals such as synaptic activity and 

perturbations in disease states, such as multiple sclerosis (MS), as opposed to multiple 

differentiation trajectories38,54. Here, we sought to robustly assess the heterogeneity of 

oligodendrocyte chromatin accessibility in the unperturbed, healthy, adult human brain 

with high cell numbers in order to define the baseline of oligodendrocyte heterogeneity in 

the cortex and hippocampus. 
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Figure 32. Oligodendrocytes occupy largely homogenous chromatin state. a, Cortex (top) 
and hippocampus (bottom) UMAPs with oligodendrocyte annotated cells highlighted (tan) in 
contrast to all cells (grey). b, UMAP of combined cortex and hippocampus oligodendrocytes 
colored by cluster (n=236,6878 cells). Cluster OLIG-4 excluded (n=2 cells). c, Harmony-weight 
cisTopic matrix split by oligodendrocyte clusters, as in b (n=236,678 cells). d, Combined 
oligodendrocyte UMAP with cells derived from experiment P200201 colored in black, split by 
individual patient cells from experiment P200201. e, ATAC-seq profiles of oligodendrolineage 
markers genes: OLIG2, CSPG4, PDGFRA, MOBP and CLDN11 split by oligodendrocyte 
clusters (n=236,678 cells). 

 
We identified 236,680 oligodendrocytes in the cortical and hippocampal datasets from 

defined clusters with elevated accessibility of the markers OLIG1, OLIG2 and from 

integration with public scRNA-seq and scATAC-seq datasets (44.3% cortex, 55.7% 

hippocampus, Fig. 32a, Fig. 22). Clustering of the Harmony-weighted oligodendrocytes 

stratified the cells into five clusters (OLIG-0-4, Fig. 32b); however, we found no 

significantly enriched marker genes for any cluster. OLIG-4 contained only two cells, 

8.4e-4% of oligodendrocytes, from one individual (F3824) and, as a result, was excluded 

from future analyses. Notably, the bulk of oligodendrocytes occupied a single large 
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grouping, clusters OLIG-0-2, and a second small grouping, cluster OLIG-3 (3170 cells, 

1.34% of oligodendrocytes). Assessment of the Harmony-weighted cell by topic matrix 

across the clusters revealed no clearly defined topic enrichments between clusters, 

implying largely uniform chromatin accessibility across all oligodendrocytes (Fig. 32c).  

Mapping of the satellite cluster, OLIG-3, onto the cortex and hippocampus regional 

UMAPs revealed clustering of OLIG-3 cells within the cortex and hippocampus 

oligodendrocyte clusters and not in any other cell type (Fig. 32b, right). Upon 

investigation, we found OLIG-3 to be comprised of cells derived from one experiment 

(94% experiment P200201) and from one of the three individuals in experiment 

P200201, F3956, comprising 95% of the cells in OLIG-3 (Fig. 32d). OLIG-3 did not, 

however, represent all cells from individual F3956. In contrast, cells from individual 

F3956 were stratified across all clusters (35.1% OLIG-0, 34.9% OLIG-1, 15.2% OLIG-2, 

and 14.8% OLIG-3, Fig. 32d). Therefore, OLIG-3 represented a single-individual 

oligodendrocyte population that did not correspond with any experimental batch. 

Assessment of canonical oligodendrocyte lineage markers in our dataset revealed 

accessibility of pan-oligodendrocyte marker OLIG2 across all clusters (Fig. 32e). 

Interestingly, OLIG-3 had elevated chromatin accessibility of oligodendrocyte progenitor 

markers CSPG4 (NG2) and PDGFRA in addition to mature oligodendrocyte markers 

MOG and CLDN11, in comparison to other oligodendrocyte clusters (Fig. 32f). 

Additionally, we found elevated TOP2A chromatin accessibility in OLIG-3, which is 

associated with cell proliferation (Fig. 33e). Due to OLIG-3 representing a single 

sampling of one individual, these cells may represent a patient-specific functional, 

spatial, or disease-associated state. 
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Figure 33. Comparison of oligodendrocyte ATAC profiles with previous oligodendrocyte 
characterizations. a, Dot plot of oligodendrolineage maturation markers derived from Zeisel et 
al. scRNA-seq in adult mouse, split by oligodendrocyte clusters, as in Fig. 32b. Markers 
progress from OPC (left) to myelinating oligodendrocyte (right). b, Dot plot of 
oligodendrolineage maturation markers derived from Marques et al. scRNA-seq in adult 
mouse, split by oligodendrocyte clusters, as in Fig. 32b. Markers progress from pan-
oligodendrocytes markers (left) to clusters defined in Marquez et al. NFOL1/2 = Newly Formed 
Oligodendrocyte clusters 1 and 2, MOL1/6 = Mature Oligodendrocyte clusters 1 and 6, 
MFOL1/2 = Myelin Forming Oligodendrocytes clusters 1 and 2. c, Dot plot of 
oligodendrolineage maturation markers used in Thornton et al. sci-ATAC-seq in adult mouse, 
split by oligodendrocyte clusters, as in Fig. 32b. d, Dot plot of oligodendrolineage maturation 
markers derived from Jäkel et al. scRNA-seq in adult human oligodendrocytes derived from 
control and MS white matter tissue, split by oligodendrocyte clusters, as in Fig. 32b. Markers 
progress from OPC (left) to clusters defined in Jäkel et al. ImOLG = Immune oligodendroglia, 
OLIG1,2,5,6 = Numbered oligodendrocyte clusters. e, ATAC-seq profiles of combined 
oligodendrocytes for cell cycling marker TOP2A, split by cluster, as in Fig. 32b. 

 
Given that no genes were significantly differentially active between any of the 

oligodendrocyte clusters, further establishing the homogeneity of oligodendrocytes in 
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both the cortex and hippocampus, we compared our gene activities to previously 

identified oligodendrocyte sub-population markers. Previously, single-cell transcriptomic 

studies have revealed that adult mouse oligodendrocytes robustly stratify by 

oligodendrocyte maturation stage37,39,50,197. However, this robust stratification is not 

similarly observed in adult humans38,147. We confirm this in our human database as we 

found no clear stratification of oligodendrocytes gene activity by maturation marker (Fig. 

33a-c). In human white matter oligodendrocytes, a previous study by Jäkel et al. found 

healthy- and MS-associated sub-populations38. We compared gene activities of our 

oligodendrocyte clusters with Jäkel et al. markers, but we found low concordance (Fig. 

33b). Taken together, we demonstrate that the homogenous state of oligodendrocytes is 

in contrast to other glial cell types assayed in this study. 

3.6 Discussion 

In this study, we demonstrate the utility of single-cell chromatin accessibility profiling of 

cells in characterizing intra-cell type diversity, and we provide a curated dataset that 

provides additional context to ongoing investigations of glial heterogeneity from an 

epigenetic perspective. These datasets are available in an interactive form at the UCSC 

genome browser that includes downloadable analysis objects, as well as in raw form via 

the Neuroscience Multi-omic Archive (NeMO). 

In astrocytes, we found eleven sub-types stratified by GFAP accessibility, a marker 

associated with astrocytic reactivity. Bifurcating clusters into GFAP-high and GFAP-low 

clusters revealed five GFAP-high clusters, including cells from multiple individuals, with 

features previously found to be associated with neuroinflammation pathologies such as 

cerebral ischemia and multiple sclerosis. However, we found disease-associated 

characteristics in the healthy adult human CNS, thus establishing the natural diversity of 

astrocytes along a gradient of reactivity. Additionally, characterization of the six GFAP-
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low clusters revealed functionally distinct resting astrocyte clusters, ranging from 

astrocytes enriched for ion transport channels to those enriched for BBB support. 

Furthermore, future analyses of astrocytes in diseased human brains are likely to 

expand upon the classifications described in this study, revealing increasingly diverse 

reactive astrocyte states, as dictated by the specific context. 

In microglia, we address long-standing hypotheses associated with resting ramified and 

reactive amoeboid subtypes. We identified enriched features of ramified and amoeboid 

microglia in our data and found that in contrast to a bimodal AMC/RMC classification of 

microglia, we found six clusters, each demonstrating variable features of the subtypes. 

In this analysis, we demonstrate the utility of single-cell studies to provide additional 

information to previously proposed cell states. 

Within the oligodendroglia lineage, we found a clear delineation between 

oligodendrocytes and OPCs in the cortex and hippocampus but observed minimal 

subtype heterogeneity. OPCs occupied a de-differentiated progenitor pool with a small 

percentage of cells entering differentiation. Oligodendrocytes were found to have 

minimal chromatin accessibility variation between clusters, in direct contrast to the 

heterogeneity observed in astrocytes, which were subdivided into functional domains. 

This homogeneity also highlights the potential differences between genome 

organization, assayed through chromatin accessibility, and actual transcription, assayed 

through RNA sequencing, as previous transcriptomic oligodendrocyte sub-classifications 

were not reproduced in this study. 

Our study is, however, limited. In order to account for the individual-based batch effect, 

integration between tissue from individuals was performed. In addition to eliminating 

signals that corresponded to batch-effect, this integration eliminates the ability to cluster 

cells by the individual, as well as by cortical and hippocampal tissues. As a result, we 
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were unable to assess the heterogeneity of glial cell types in the context of these 

conditions. Future studies assessing the region-specific features of a cell type such as 

astrocytes with sufficient numbers of individuals could provide insight into the hypothesis 

that hippocampal and cortical astrocytes exhibit disparate cellular states. 

Additionally, the glial sub-type classifications in this study are descriptive of the observed 

glial heterogeneity across nine patients, ranging from 37-73 years of age. Glial reactivity 

increases with age153,198,199; however, in the present study, an insufficient number of 

individuals at distinct ages were assessed to address hypotheses pertinent to this topic. 

This study provides a foundation for future investigation of the epigenetic landscape of 

glia in the context of normal aging. 

3.7 Methods 

3.7.1 Human sample collection 

All samples were provided by the Oregon Brain Bank. Five middle frontal gyrus cortex 

samples were collected from two female, and three male deceased individuals, and four 

hippocampus samples were collected from three male and one female deceased 

individual. Individual ages range from 37-73 years old. Samples were collected by an 

OHSU neuropathologist, placed into a labeled cassette, and cryopreserved in an airtight 

container in a -80°C freezer. The duration of time between the patient time of death and 

brain biopsy sample freezing, or post-mortem interim (PMI), ranged from 3-27 hours. We 

find no significant correlation between PMI and ATAC data quality as assessed by 

transcription start site enrichment (Figure 21g). Detailed information on each sample is 

provided in Supplementary Table 3. 
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3.7.2 Nuclei isolation 

We performed nuclei isolation on all fresh-frozen human samples. Approximately 0.1 mg 

of tissue (2-3 mm3) was resected from the sample cassette using a razor blade on dry 

ice. Resected tissue was transferred to 2 ml chilled NIB (10 mM HEPES-KOH, pH 7.2 

[Fisher, Cat. BP310-1], 10 mM NaCl [Fisher, Cat. M-11624], 3 mM MgCl2 [Sigma, Cat. 

M8226], 0.1% IGEPAL [v/v; Sigma, I8896], 0.1% Tween-20 [v/v, Sigma, Cat. P7949], 

and 1x protease inhibitor [Roche, Cat. 11873580001]) in a 7 ml Dounce-homogenizer on 

ice. Minor NIB formulation variations were used in two experiments, which utilized 20 

mM Tris in place of 10 mM HEPES (see Supplementary Table 3).  The tissue was 

incubated on ice for 5 min. then homogenized via 5 gentle strokes of the loose pestle (A) 

on ice, a 5 min. incubation on ice, then 5 gentle strokes of the tight pestle (B) on ice. The 

homogenate was then strained through a 35 µm strainer and centrifuged at 500 × g for 

10 min. at 4°C to pellet. Samples were aspirated, resuspended in 1 ml of ice-cold 

blocking buffer (0.5%. Bovine serum albumin (BSA), 5% normal goat serum [Fisher, Cat. 

50062Z], in 1x PBS [VWR, Cat. 75800-992]), and incubated for 15 min. on ice. 

3.7.3 Immunolabeling of neuronal nuclei 

Neuronal nuclei were labeled using mouse monoclonal anti-NeuN primary antibody 

(Sigma, Cat. MAB377) conjugated to a fluorescent goat anti-mouse IgG Alexa Fluor 647 

secondary antibody. The conjugated staining solution (2X 2 µg/ml MAB377:AF647) was 

shaken on an orbital shaker at 80 rpm for 10 min. in a light-protected container. Control 

solutions of primary-only (2X 2 µg/ml MAB377) and secondary-only (2X 2 µg/ml AF647) 

staining solutions were prepared as negative controls. Nuclei were stained by combining 

equal volumes of 2X conjugated staining solution and nuclei incubated in blocking buffer. 

Negative controls were prepared by combining equal volumes of nuclei incubated in 

blocking buffer with i) antibody-free blocking buffer, ii) primary-only staining solution, and 
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iii) secondary-only staining solution. Nuclei staining reactions, including negative 

controls, were incubated in light-blocking microcentrifuge tubes for 1 hour at 4°C on an 

orbital shaker at 80 rpm. Post-incubation, 1 ml of 1x PBS was added to all reactions, 

which were then centrifuged at 500 × g for 10 min. at 4°C to pellet. Samples were 

aspirated, resuspended in 400 µl of ice-cold NIB, and counterstained using DAPI 

(Thermo Fisher, Cat. D1306) for all reactions, excluding the antibody-free staining 

reaction negative control, for a final concentration of 5 µg/ml DAPI. 

3.7.4 Glial enrichment by FANS 

Each sample was fluorescence-activated nuclei sorted (FANS) using BD FACSDiva 

software (v8.0.1) on a Sony SH800 FACS machine into two tubes of 500 µl NIB, for 

neuronal NeuN+ and glial NeuN- nuclei populations. DAPI-stained nuclei we used to 

define the singlet nuclei population and all negative controls were used to set a 

background fluorescence threshold. Nuclei stained with the conjugated primary and 

secondary antibody staining solution were sorted into NeuN+ and NeuN- collection tubes 

based on the threshold that divided the bimodal AF647 fluorescence. The NeuN- nuclei 

suspended in NIB were diluted to 500 nuclei/µl to facilitate tagmentation reaction 

assembly at 5,000 nuclei per 10 µl of NIB. 

3.7.5 Nuclei tagmentation 

Transposase catalyzed excision of chromatin accessible regions via tagmentation 

results in the addition of unique molecular identifiers (indexes) for each tagmentation 

reaction. Uniquely indexed transposase adapter sequences are reported in 

Supplementary Table 6. Tagmentation reactions were assembled from 7.5 µl of isolated 

nuclei at 500 nuclei/µl and 2.5 µl fresh 4X TAPS-TD buffer (132 mM TAPS pH=8.5, 264 

mM potassium acetate, 40 mM magnesium acetate, and 64% dimethylformamide). We 

use TAPS (N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid) for added 



122 
 

buffering at elevated temperatures130. 1 µl of 8 µM loaded indexed synthesized Tn5 

transposase was added per well (see Picelli et al. for transposase synthesis protocol)130. 

As an alternative to Tn5 synthesis, EZTn5 transposase (https://www.lucigen.com/EZ-

Tn5-Transposase) can be purchased commercially, diluted, salt adjusted, and loaded 

with sci indexes200. Each assembled 96-well plate of tagmentation reactions was 

incubated at 55°C for 15 min. We targeted 50,000-100,000 cells per individual. In total, 

we used 6-18 96-well tagmentation plates, where each well contains a unique 

combination of transposase indexes per individual (Supplementary Table 3). A total of 

107 tagmentation plates were used across all nine individuals, totaling 10,272 (107 x 96) 

uniquely indexed wells. We found that NIB-HEPES extended the integrity of the nuclei 

from frozen brain tissue during tagmentation and FANS as compared to NIB-Tris. To 

preserve tagmented nuclei for later PCR amplification, we cryopreserved tagmented 

nuclei at -20°C in a modified Nuclear Freezing Buffer (NFB: 10 mM HEPES-KOH, pH 

7.2, [Fisher, Cat. BP310-1] 25% glycerol, 5 mM Mg(OAc)2, 0.1 mM EDTA, 5 mM DTT, 

1× protease inhibitor [Roche, Cat. 11873580001] , 1:2500 superasin [Ambion])201. 

3.7.6 Combinatorial indexing via PCR 

To lyse nuclei and release bound transposase, PCR plates were prepared beforehand 

with SDS buffer (0.25 µl BSA [NEB, Cat. B9000S], 0.5 µl 1% SDS, 7.75 µl dH20 per well) 

and primers (2.5 µl i5 and 2.5 µl i7 PCR indexing primers at 10 µM). Uniquely indexed 

PCR primer sequences are reported in Supplementary Table 6. Pooled tagmented 

nuclei were stained by adding 3 µl of DAPI (5 mg/ml) per 1 ml of sample. Each sample 

was then FAN sorted using BD FACSDiva software (v8.0.1) on a Sony SH800 FACS 

machine at 15 events per well per 96-well Tn5 plate (e.g., 88 for 384 indexes) into the 

prepared 96-well plate(s). Event numbers were selected based on the expected success 

rate of events as actual cells for a given target cell doublet rate86. In total, we used 6-20 



123 
 

96-well PCR plates, where each well contained a unique combination of forward and 

reverse primers per individual (Supplementary Table 3). In total, 109 PCR plates were 

used across all nine individuals, totaling 10,464 (109 x 96) uniquely indexed wells. 

Transposase denaturation was performed by sealing each sorted plate and incubating at 

55°C for 15 min. Plates were immediately transferred to ice post-incubation, and 11.5 µl 

of PCR mix (1 µl Kapa Hi Fi [Roche Diagnostics, cat 07958846001], 5X GC buffer 5 µl, 

10mM dNTP 0.75 µl, 0.25 µl Sybr 100x, 5 µl dH20) was added to each well. For each 

experiment, plates were then sealed, and one plate was PCR amplified on a BioRad 

CFX real-time cycler running CFX Manager (v3.1) software, using the following protocol: 

72°C for 5:00, 98°C for 0:30, cycles of (98°C for 0:10, 63°C for 0:30, 72°C for 1:00, plate 

read, 72°C for 0:10) for 15–22 cycles. PCR plates were transferred to 4°C once all wells 

reached mid-exponential amplification on average on the CFX. The remaining plates 

from the same experiment were amplified for the number of cycles determined on the 

CFX and were transferred to 4°C. Each PCR plate was pooled at 10 µl per well, and 

DNA libraries were isolated using a QIAquick PCR Purification column. Each pooled 

PCR plate library was then quantified using a Qubit 2.0 fluorometer, diluted to 4 ng/µl 

with nuclease-free water, and quantification of library fragment size was performed on 

an Agilent Tapestation using a D1000 or D5000 tape. Libraries were then sequenced on 

a NextSeqTM 500 sequencer (Illumina Inc.) running NextSeq500 NCS (v4.0) software 

loaded within a range of 1.2–1.6 pM with a custom sequencing chemistry protocol (read 

1:50 imaged cycles; index read 1:8 imaged cycles, 27 dark cycles, 10 imaged cycles; 

index read 2:8 imaged cycles, 21 dark cycles, 10 imaged cycles; read 2:50 imaged 

cycles). Custom sequencing primers are provided in Supplementary Table 6. 
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3.7.7 Sequencing data processing 

FASTQ files were generated from BCL files using bcl2fastq (Illumina Inc., v2.19.0). 

FASTQ files were aligned, filtered, and analyzed primarily using the ‘scitools’ software 

suite (github.com/adeylab/scitools)202, which includes wrappers for numerous external 

tools. Raw sequence read index combinations were matched to a whitelist of expected 

indexes using ‘scitools fastq-dump’, which allows for a hamming distance of two from sci 

indexes and produces error-corrected FASTQ files. These were then aligned to the 

human reference genome (hg38) via BWA-MEM (v0.7.15-r1140)132 and sorted using 

‘scitools align’. PCR duplicate removal and filtering for quality ten aligned autosomal and 

chromosome X reads (i.e., excluding mitochondrial, chromosome Y, and unanchored 

contigs) was performed using ‘scitools rmdup’ with default parameters and plotted using 

‘scitools plot-complexity’. BAM files were filtered to only contain cell barcodes that 

contained a minimum of 1000 passing reads and a percent unique read of ≤80%, as any 

overly complex cell libraries may be doublets and were therefore excluded. 

3.7.8 Regional chromatin accessibility processing 

Chromatin accessibility peak calling was performed on the filtered BAM file comprised of 

the aligned reads from the sci-ATAC-seq data collected from all individuals. Peak calling 

was run on pseudo-bulk data (irrespective of single cells) to call read pile-ups, or peaks, 

using the wrapper function ‘scitools callpeak’, which utilized MACS2 (v.2.2.7.1) for peak 

calling, filtering, and peak extension to 500 bp133. The 779,149 called peak set and 

filtered BAM files of the cortex sample data and hippocampus sample data, respectively, 

were then used to construct region-specific cortex and hippocampus, peak × cellID count 

matrix of the count occurrence of reads within peak regions per cell. Latent Dirichlet 

Allocation (LDA) dimensionality reduction of the peak × cellID count matrix was 

performed using the package cisTopic (v0.2.0)134 using the scitools wrapper function 



125 
 

‘scitools cistopic’ for models 20, 30, and 40. Topic count was selected using 

‘selectModel’ based on the second derivative of model perplexity. Two-dimensional 

visualization of regional datasets was performed using ‘scitools umap’ and plotted using 

‘scitools plot-dims’. Louvain clustering was performed on the topic × cellID  matrix using 

the wrapper function ‘scitools matrix-pg’ that utilizes the R (v4.0.0) package 

Rphenograph (v0.99.1)136. A tabix fragment file was generated using samtools and tabix 

(v1.7). The counts matrix and tabix files were then input into a Signac (v1.0.0) 

SeuratObject for chromatin accessibility analysis140. 

3.7.9 Cell type annotation 

The clusters defined in the cortex and hippocampus UMAPs were assigned to their 

respective cell type by examining the chromatin accessibility profiles of marker genes 

that correspond to known cell types and also through integration with public single-cell 

human brain datasets. Tn5 insertion frequency at marker genes from regional filtered 

BAM files was plotted using ‘scitools plot-reads’ and from using the R (v4.0.0) package 

Signac (v1.0.0) function ‘CoveragePlot.’ Marker genes used for cell-type identification 

included: GFAP, GLUL, and AGT for astrocytes, SLC17A7 and DKK3 for glutamatergic 

neurons, also referred to as pyramidal neurons, PROX1 and DSP for dentate granule 

cells, GAD1, GAD2, DLX1, and DLX2 for GABAergic neurons, also referred to as 

interneurons, C1QA and C1QC for microglia, OLIG1 and OLIG2 for all oligodendrocyte 

cell types, OLIG1 for OPCs, and OLIG1 and OLIG2 for oligodendrocytes. A cluster of 

cells identified as having low unique reads per cell and low TSS (Fig. 21) was labeled as 

“Low-quality” and was excluded from future analysis. 

3.7.10 ATAC-ATAC single-cell integration 

Combined processing of the Thornton et al.147 human primary somatosensory (SSp) 

cortex sciMAP-ATAC dataset and a subset of the cortex dataset from this study was 
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performed to validate cell type annotations. The cortex SeuratObject was subset to 5% 

by randomly subsampling barcodes from the count matrix (n=10,326 cells). We found 

the sciMAP-ATAC peak set (n=132,695 peaks) to be primarily a subset of the peaks 

called from all cells in this study (n=779,149 peaks), with 96% of sciMAP-ATAC peaks 

being encompassed in our peak set. As a result, we used the peaks from this study to 

generate a peak × cellID count matrix for all cells from the 5% cortex subset (n=10,326 

cells) and sciMAP-ATAC human SSp dataset (n=4,547 cells). This count matrix (14873 

cellIDs x 779,149 peaks) was imported into a Signac (v1.0.0) SeuratObject with cell type 

annotations from both studies imported as metadata. Dimensionality reduction was 

performed using the package cisTopic (v0.2.0)134 function ‘runWarpLDAModels’, for 

models 20, 25, 28, 30, 33, 35, and 38, selecting the topic count using ‘selectModel’ 

based on the second derivative of model perplexity. The topic × cellID matrix was then 

projected into two-dimensional space using R (v4.0.0) package uwot (v0.1.8) function 

‘umap’ and plotted using ‘scitools plot-dims’, colored by cell types identified in Thornton 

et al. and from cell type annotations in this study (Fig. 22a). 

3.7.11 RNA-ATAC cell-type label transfer 

Canonical correlation analysis (CCA)-based single-cell dataset integration between Lake 

et al.148 human frontal cortex DROP-seq RNA dataset (n=10,319) and the 5% cortex 

subset dataset from this study was also performed to validate cell type annotations. The 

Lake et al. transcriptomic dataset was imported into a Seurat (v3.2.1) SeuratObject and 

processed using the standard Seurat 3 (v3.2.1) workflow. The SeuratObject was created 

using ‘CreateSeuratObject’ using the expression matrix and cell metadata, scaled and 

normalized using ‘ScaleData’  and ‘NormalizeData’ based on the top 5,000 variable 

features that were identified using the function ‘FindVariable’ specifying 

‘nfeatures=5000’. Dimensionality reduction and clustering were performed using 
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‘RunPCA’, ‘FindNeighbors’, ‘FindClusters’, and ‘RunUMAP’. The 5% cortex subset from 

this study was imported into a Signac (v1.0.0) SeuratObject and processed using the 

standard Signac (v1.0.0) workflow. Dimensionality reduction was performed using 

‘RunTFIDF’, ‘FindTopFeatures’, ‘RunSVD’, and ‘RunUMAP’. Clustering was performed 

using ‘FindNeighbors’, and ‘FindClusters’ with ‘resolution=1.2’. In order to integrate our 

ATAC data with Lake et al. RNA data, we generated a gene activity matrix from the 5% 

cortex subset ATAC SeuratObject from cis-coaccessibility networks generated through 

the Signac wrapper of cicero (v1.3.4.10)141 and the Signac function 

‘build_gene_activity_matrix’. Gene activities were normalized using 

‘normalize_gene_activities’.  

To integrate the processed RNA and ATAC SeuratObjects, we learned the transfer 

anchors based on the gene activity and expression data using ‘FindTransferAnchors’ 

and then used ‘TransferData’ to project the RNA cell type labels onto the ATAC cells as 

described in the ‘Integrating scRNA-seq and scATAC-seq data’ Seurat vignette 

(https://github.com/satijalab/seurat/blob/master/vignettes/atacseq_integration_vignette.R

md). The UMAP of the integrated datasets were plotted using ‘scitools plot-dims’ colored 

by dataset of origin (Fig. 22b), cell type annotations from this study (Fig. 22c), and cell 

type annotations defined in Lake et al. (Fig. 22d). The confusion matrix of the RNA cell 

type labels projected onto the ATAC cells was plotted using the R (v4.0.0) package 

ggplot2 (v3.3.2) function ‘geom_tile’ on the row normalized confusion matrix (Fig. 22e). 

Discrepancies in cell type assignment (5% cortex subset astrocytes predictively labeled 

as ‘Ex8’ Lake et al. excitatory neurons) were assessed for astrocyte and glutamatergic 

neuron chromatin accessibility at marker genes using Signac (v1.0.0) function 

‘CoveragePlot’. 
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3.7.12 Quality assessment 

We calculated the transcription start site (TSS) density for all data (Fig. 23e) and for 

each cell type (Fig. 21b,d,f) identified from each region. To calculate cell type TSS, we 

subset the filtered BAM of all cells by annotated cell type. TSS enrichment values were 

calculated using the method established by the ENCODE project146 

(https://www.encodeproject.org/data-standards/terms/enrichment), whereby the 

aggregate distribution of reads ±1000 bp centered on the set of TSSs is then used to 

generate 100 bp windows at the flanks of the distribution as the background and then 

through the distribution, where the maximum window centered on the TSS is used to 

calculate the fold enrichment over the outer flanking windows. We plotted these data 

using R (v4.0.0) package ggplot2 (v3.3.2) function ‘geom_line’ using default parameters. 

The total number of unique reads per cell was plotted using ‘geom_violin’ and 

‘geom_boxplot’. Violin width represents the mirrored continuous distribution of cell 

values. Boxplot lower and upper hinges indicate first and third quartiles, the center line 

indicates the median, upper, and lower whiskers indicate 1.5 times the inner quartile 

range (IQR). Data points beyond the end of the whiskers are plotted individually. 

3.7.13 Cell type chromatin accessibility processing 

Cell type-specific SeuratObjects were generated from cortex and hippocampus-derived 

cells based on cell type annotation. To achieve this, the cell-type-specific duplicate 

removed and filtered BAM for all cells from the cortex and hippocampus was split by cell 

type annotation into cell type-specific BAMS using ‘scitools bam-split’. Cell x peak count 

matrices were generated from the cell-type-specific BAM and all peaks were called on 

the entire dataset (n=779,149 peaks). These count matrices and the tabix fragment file 

were then input into a Signac (v1.0.0) SeuratObject for chromatin accessibility analysis, 

resulting in four combined cortex and hippocampus glial cell-type-specific SeuratObjects: 
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astrocytes, microglia, oligodendrocytes, and OPCs. LDA dimensionality reduction of the 

peak × cellID count matrix was performed using the package cisTopic (v0.2.0) was 

performed using the scitools wrapper function ‘scitools cistopic’ for models 25, 28, 30, 

33, 35, 37, and 40, selecting the topic count using ‘selectModel’ based on the second 

derivative of model perplexity. Two-dimensional visualization was performed using 

UMAP via ‘scitools umap’ colored by individual and plotted using ‘scitools plot-dims’ (Fig. 

24a,b,d,f). All genome track coverage plots were generated using R (v4.0.0) package 

Signac (v1.0.0) plotting function ‘CoveragePlot’. Coverage plots that compare Tn5 

insertion site frequency between cell types were plotted with ‘scale.factor=1e8’ to scale 

different plots equivalently and allow for inter-SeuratObject comparisons. 

3.7.14 Batch-effect correction using Harmony 

We found that experimental bias was minimally present in the 2D UMAPs generated by 

region, for the cortex and hippocampus and did not present a barrier to cell type 

identification. However, we did find that upon cell-type-specific sub-clustering, individual 

and experimental batches were non-randomly distributed across the UMAP (Fig. 24b,d,f) 

in three cell types: astrocytes, microglia, oligodendrocytes. In order to reduce the 

partitioning of cells by batch, we used the Seurat (v3.3.2.1) wrapper for Harmony149 

(v1.0) on each cell-type-specific dataset to integrate experimental batches. The function 

‘RunHarmony’ was run on astrocyte, microglia, and oligodendrocyte cell-type-specific 

SeuratObjects, using options ‘group.by.vars=Experiment', to remove the effect of 

experimental bias, and ‘reduction='cistopic' in order to perform integration on the entire 

cell x topic cisTopic matrix. Dimensionality reduction using UMAP was reperformed on 

the Harmony matrix using the function ‘RunUMAP’. We found that Harmony mitigated 

the batch effect in the 2D UMAP projections (Fig. 24c,e,g). Visualization of Harmony-



130 
 

weighted topic x cell matrices was performed using the Heatmap function in the 

ComplexHeatmap package (v2.5.5) in R (v4.0.0)135. 

3.7.15 Batch-corrected cell type chromatin accessibility processing 

For each cell type, clustering was performed with Seurat (v3.2.1) ‘FindNeighbors’ and 

‘FindClusters’ functions on the topic × cellID data frame. For the ‘FindClusters’ function 

call, resolutions ranging from 0.01 to 0.6 were run for all cell types. We observed robust 

clustering across multiple resolutions in all cell types. As high resolutions generate 

artificially high cluster numbers, the clustering resolution was set at the lowest resolution 

that resulted in this robust clustering and is provided as ‘seurat_clusters’ in the metadata 

of all cell-type-specific SeuratObjects. To assess the distribution of individuals across all 

clusters in each cell type, we calculated the percent that each individual contributes to 

the cell count of a given cluster based on the normalized individual cell count 

(normalized by the total number of cells for each individual within a given cell type). 

These values, or the contributions of each individual to each cluster, were plotted using 

the ‘Heatmap’ function in the ComplexHeatmap package (v2.5.5) in R (v4.0.0, Fig. 27). 

3.7.16 Cell type-specific cluster marker gene analysis 

The most significantly elevated markers of each cell-type-specific cluster were identified 

in order to elucidate the biological underpinning on cell type-specific cellular sub-states. 

We identified cis-coaccessibile networks (CCANs) in single cells using the Cicero 

(v1.3.4.10) function ‘generate_ccans’ and, from those chromatin accessible interactions, 

generated a normalized gene activity matrix for each cell type using the function 

‘build_gene_activity_matrix’ and ‘normalize_gene_activities’. Gene activity was plotted 

on the cell type UMAP using Seurat (v.3.2.1) function ‘FeaturePlot’ (Fig. 25e, Fig. 28b), 

and plotted as violin density plots using ‘VlnPlot’ (Fig. 30f). Marker genes for each 

cluster were identified by cluster in one by rest comparisons that were generated using 
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Seurat (v.3.2.1) function ‘FindMarkers’ using options: ‘test.use = ‘LR’’, ‘only.pos = T’, and 

‘logfc.threshold=0.2’ with ‘latent.vars = ‘nCount_peaks’’ to account for read depth. All 

marker gene activities are provided with fold-change and Bonferroni corrected p-value in 

Supplementary Table 4. Heatmaps of gene activity values of the top marker genes were 

plotted using the ‘Heatmap’ function in the ComplexHeatmap package (v2.5.5) in R 

(v4.0.0), split by cluster (Fig. 21g, 29e). Scatter plots of gene activity values of top 

marker genes were plotted using ggplot2 (v3.3.2) ‘geom_scatter’ (Extended Data Fig. 

24f). Gene activity dot plots were plotted using ‘geom_point’ with size corresponding to 

the percent of cells expressing a given gene and color corresponding to average gene 

activity.  

3.7.17 Cell type-specific cluster maker transcription factor analysis 

We used the Seurat (v.3.2.1) chromVAR package wrapper function ‘RunChromVAR’ to 

quantify transcription factor (TF) motif occurrence in each peak and to calculate 

transcription factor motif enrichment (TFME) in each cell, using the JASPAR set of 

motifs (v2020_0.99.10). Marker transcription factors for each cluster were identified by 

cluster in one by rest comparisons that were generated using Seurat (v.3.2.1) function 

‘FindMarkers’ using options: ‘test.use = ‘LR’’, ‘only.pos = T’, and ‘logfc.threshold=0.2’ with 

‘latent.vars = ‘nCount_peaks’’ to account for read depth. Marker TF activities of the top 

markers of cell-type-specific clusters were plotted using the ‘Heatmap’ function in the 

ComplexHeatmap package (v2.5.5) in R (v4.0.0), split by cluster. All marker TFs are 

provided with fold-change and Bonferroni corrected p-value in Supplementary Table 4. 

3.7.18 Gene ontology enrichment analysis 

GO enrichment analysis was performed on the genomic regions defined within 

Harmony-weighted topic 1 (n=8,579 peaks) and 26 (n=8,157 peaks) of the microglial 

SeuratObject, which were enriched in microglial cluster MIC-CLDN11. The single 
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nearest gene within 1,000 kb to topic1 (n= 4,926 genes) and 26 (n= 5,408 genes) 

regions were identified using GREAT (v4.0.4) for reference genome hg38203. Statistical 

overrepresentation for GO biological processes was calculated using GREAT (v4.0.4) 

binomial test with Bonferroni correction of p-values (≤ 0.05) for overrepresentation of 

topic 1 and 26 genomic regions in comparison to all human (hg38) genes. We used 

Revigo on the GREAT output to summarize them by removing redundant GO terms, 

specifying the parameters of a medium output list, and providing p-values associated 

with GO terms204. Data were plotted using ggplot2 (v3.3.2) plotting function ‘geom_point’ 

in R (v4.0.0) with size corresponding to the number of genes in the test set with the 

annotation and colored by GO term -log10 GO term Bonferroni corrected p-values. 

3.7.19 Cell cycle analysis 

We performed cell cycle phase scoring on OPC cells in order to determine the impact of 

cell cycle heterogeneity on OPC clustering by testing for the enrichment of canonical cell 

cycle genes in OPC clusters. Cell cycle scoring was based on gene activity of G2/M and 

S phase marker enrichment scoring from a human mid-gestation neocortical 

development cell cycle marker list from Polioudakis et al.205. We used the Seurat (v3.2.1) 

function ‘CellCycleScoring’ to calculate the S phase score, G2M phase score, and 

Phase prediction for each cell. All values are available in the OPC SeuratObject 

metadata. Phase scores for each cell were plotted using ‘geom_violin’ and 

‘geom_boxplot’ from the package ggplot2 (v3.3.2) in R (v4.0.0). Violin width represents 

the mirrored continuous distribution of cell values. Boxplot lower and upper hinges 

indicate first and third quartiles, centerline indicates the median, upper, and lower 

whiskers indicate 1.5 times the inner quartile range (IQR). Data points beyond the end of 

the whiskers are plotted individually. 
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3.8 Data and materials availability 

Analysis was performed using functions contained within the scitools software 

(github.com/adeylab/scitools). Additional code used to analyze the data will be made 

available as a Github repository (github.com/thorntca). Raw and processed single-cell 

library sequencing data will also be made available through the NeMo archive and 

UCSC Cell Browser (includes Seurat Object Download links). 
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Chapter 4: Conclusions 

4.1 Growing the taxonomic tree of single cells 

Here, I present my work exploring and defining the intra-organismal epigenomic variation 

of cells in human and mouse brains. First, I developed a novel method for studying the 

intra-organismal epigenomic heterogeneity of cells while maintaining cellular spatial 

orientation. I applied this method, sciMAP-ATAC, in multiple contexts. Using sciMAP-

ATAC, I resolved the cortical layering structure in the primary visual cortex in the human 

brain and the primary somatosensory cortex in the mouse brain. This application of 

sciMAP-ATAC in cortical regions served as a validation of sciMAP-ATAC by confirming 

that we could identify the layer-specific features of the cortex. The development of 

sciMAP-ATAC represents methods-development-driven science and applying sciMAP-

ATAC to the known spatially resolved structure of the cortex served as a validation 

experiment. In this work, I generated data that adds to the cellular taxonomy of the 

healthy human and mouse brain tissue sub-structure level of the taxonomic hierarchy of 

single-cells. 

Additionally, I applied sciMAP-ATAC to a mouse model of cerebral ischemia and was 

able to identify the response of specific cell types in the space surrounding focal 

hypoperfusion. This study revealed regulatory elements and transcription factors that 

vary, i.e., increase or decrease, with spatial relation to the infarction. This application of 

sciMAP-ATAC in cerebral ischemia highlights how previously observed functional and 

morphological changes in tissues in disease are tied to epigenomic changes and thus 

require spatially-resolved single-cell methods to assess them. 

Secondly, I explored and defined cells in the human cortex and hippocampus and 

provided a publicly explorable atlas of cells that can be used for future basic and 
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translational research. We focused on non-neuronal cells in order to balance the 

abundance of single-cell neuron epigenomic data and cellular characterizations. In the 

context of single-cell epigenomic taxonomy, this work offers characterization in taxon: 

Domain: Eukarya, Kingdom: Animalia, Phylum: Chordata, Class: Mammalia, Order: 

Primates, Family: Hominids, Genus: Homo, Species: Homo Sapiens, Organ: Brain, 

Tissues: Cortex and Hippocampus, Tissue Sub-Structure: All, cortical layers and 

hippocampal regions, Cell: Glia, Cell state: All. Tissue sub-structure selection was not 

performed and therefore was not assigned a priori. Cell selection for non-neuronal cells 

was performed, however, and therefore our classification and naming of cell types and 

cell states pertained to all non-neuronal cells. Without a taxonomical nomenclature for 

this work, I was able to develop my own based on Linnaeas' example; designating a 

binomial English naming system of (i) cell type, as commonly used in glial research (see 

Table 1) and (ii) cell state as defined by the name of the top gene marker. While this 

naming schema has been sporadically employed in single-cell epigenomic 

characterization studies, it is not a standardized approach. Therefore, the human glial 

atlas is one of many works which identifies cell states but does not represent a shared 

taxonomy. 

This human glial atlas corroborates the breadth of previously identified cell types and 

provides new and essential representations and interpretations of glial cell states based 

on cellular chromatin accessibility. I substantiate findings in the field that show a gross 

homogeneity of oligodendrocytes between tissue sub-substructures in the brain and 

spatially within tissue sub-structures in the brain (e.g., along the rostral-caudal axis 

within the cortex)37. I established low regional specificity in oligodendrocytes coupled 

with high homogeneity and low inter-individual heterogeneity in oligodendrocyte 
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progenitors. I also identified a rare (0.37% of all cells) population of early-differentiating 

oligodendrocyte precursors present across all individuals.  

Conversely, we demonstrate robust heterogeneity within the other canonical glial cell 

types in the healthy human brain. Thus, adding context to glial heterogeneity studies, 

which primarily focus on disease states. I identified several subpopulations of astrocytes 

across all healthy individuals (including A1 and A2 reactive cell states) that exhibit 

signatures of neuroinflammation, suggesting that this may represent a normal 

component of aging and not a cell state specifically associated with disease. 

Additionally, we directly address the long-standing hypothesis regarding the bimodality 

of ramified and reactive amoeboid states in microglia, identifying multiple subtypes that 

bridge the two states.  

4.1.1 The strength and limitations of single-cell assays in glial 

characterization 

The methods used to capture features of all cells, and specifically glia, significantly 

impact the scope and conclusions that can be derived from a study of cellular 

heterogeneity. As previously noted, the field of glial research has provided our current 

understanding of glial states and activity in healthy and diseased tissues. As referenced 

in our analysis of microglia (see Section 3.5.5), previous research has characterized 

microglia by morphology, identifying ramified microglial cell (RMC) and amoeboid 

microglial cell (AMC), by staining and imaging methodologies185. Additionally, these 

morphological states are correlated with functional states, e.g., cellular macrophage-like 

phagocytic activity in the AMC, and quiescent sensing activity in the RMC, 

morphologies. Morphological and functional characterizations of glia are, however, 

limited in that the partitioning of different cell states is limited to the physical 

presentations of cells.  



137 
 

In this work, I demonstrate that cells can vary epigenomically within a morphological 

subtype. For example, I found two clusters of microglia that demonstrated two distinct 

chromatin landscapes (MIC-SEPT9, MIC-RUNX1T1) that shared markers for the AMC 

morphological subtype and found statistically significant marker genes which 

differentiated MIC-SEPT9 from MIC-RUNX1T1. Therefore, single-cell epigenomic 

methodologies are necessary to distinguish morphologically similar but epigenomically 

dissimilar cell states.  

Single-cell assays are also valuable for glial characterization because they facilitate high 

cell count and hypothesis-independent cell state discovery. In the case of AMC and 

RMC microglia, previous work assayed the bulk transcriptomes of batched AMC and 

RMC, respectively177. As a result, the aggregate transcriptome of AMC and RMC were 

revealed. This morphologically driven and hypothesis-dependent approach relied on the 

known physical characteristics of cells to discover features of the epigenome. In 

contrast, single-cell assays, such as sci-ATAC-seq, provide an unbiased and 

morphology-independent methodology for cell state discovery. 

The computational characterization of single-cell omic data is one of many necessary 

methodological approaches required to develop a comprehensive understanding of glia. 

For instance, in single-cell epigenomic assay analysis, it is difficult to discern whether 

statistically significant omic variation, especially in non-coding regions of the genome, 

contributes to the morphology or function of a cell. Therefore, omic data alone cannot 

determine the effect of omic variation between glia, and so multiple methods, including 

those that epigenomically, morphologically, and functionally characterize glia, must be 

used in concert to describe cellular variation, and most importantly – define the features 

that affect how glia function and react to stimuli in-situ. 
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The Human Glial Atlas, presented in this work, succeeds in using sci-ATAC-seq and 

computational omic characterization to define robust cell state differences within glial cell 

types, that are shared between the human cortex and hippocampus. Additionally, the 

Human Glial Atlas also serves as a launching pad for future research that 

morphologically and functionally characterizes the glial states described in this work. In 

total, the development of sciMAP-ATAC, its application in healthy and diseased tissues, 

and the development and characterization of the Human Glial Atlas represent substantial 

contributions to the taxonomic characterization of single-cells within the mouse and 

human brains. 

4.1.2 The complicated task of incorporating space into taxonomy 

The classical system of Linnaean taxonomy does not account for mutable features of 

biological moieties. As the epigenomics of single cells is incorporated into a new 

epigenomic tier of the tree of life – we must consider the multitude of data types to be 

included in defining the many types and states of cells. Incorporating omic data types 

into taxonomy presents the next great taxonomic bioinformatic challenge. As Linnaeus 

developed the taxonomic binomial naming system to make sense of the many species 

being identified in his lifetime, so to, we must address the bioinformatic challenge of 

incorporating omic data types into an interpretable map of cellular heterogeneity. 

In this work, I demonstrate that we can capture the location of cells and their chromatin 

accessibility in complex tissues. I show that we can resolve the different cell types and 

the different cell states in healthy tissue through the cortical lamina and in the disease 

state through the infarction and penumbra area. I posit that this spatial data type is one 

of many features that will be used to define epigenomic cell states. For example, in the 

taxonomic tree of the human brain, within the: Species: Homo Sapiens, Organ: Brain, 

Tissue: Cortex, Cell type: Neuron, we will use the spatial orientation of cells as one data 
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type that will be descriptive of distinct neuronal states in the cortical layers. For instance, 

in the case of oligodendrocytes, our work and others have found that the spatial 

orientation of oligodendrocytes within and between tissues of the human brain do not 

correspond to transcriptomic or chromatin accessibility differences between cells. 

Therefore, the spatial data type reveals that oligodendrocyte subtypes, if there are any, 

are not spatially distinct. In contrast, neurons, as described, do exhibit spatial variability, 

and as a result, the data type of spatial orientation will be used to describe distinct 

neuronal cell states. While spatial orientation is a new data type in single-cell omics 

analysis, we are poised to address this new omic challenge with the same incremental 

reasoning that Linnaeus was able to use long ago. 

4.2 An opportunity for advancement: expanding epigenetic 

assessment in clinical genetics 

Epigenetic assessment of cell types within diseased tissues is essential to 

understanding how conditions affect networks of interconnected cells and what, if any, 

therapeutic approaches are possible. Here I provide a perspective on the current and 

potential applications of single-cell omic technologies in improving patient medical care.  

4.2.1 The clinical relevance of single-cell technologies 

The relatively recent emergence of the field of single-cell technologies presents barriers 

to clinical actionability at present. The two primary barriers to single-cell assessment in 

clinical genetics are (i) the lack of a comprehensive understanding of epigenetic states in 

health and diseases and (ii) the high cost of exploratory single-cell diagnostics.  

Clinical genetic testing relies on a shared knowledge of disease states. For example, 

cytogenetic assessment depends on understanding the number, banding, and 

organization of chromosomes in the normal human cell. In the case of single-cell 
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epigenetic evaluation in the clinical setting, too little is known, at this time, about the 

normal range of epigenomic features in any given cell type to allow for diagnosis or an 

actionable therapeutic strategy based on epigenomic feature information. However, 

there are cases where single-cell assessment is being trialed in the clinical setting. 

Single-cell omics technologies have had the most pronounced impact on oncological 

care. Cancers are a group of diseases resulting from genomic instability, leading to 

unchecked cell growth and proliferation and dysfunction of tissues and organ systems. A 

marked feature of cancers is the heterogeneity of the tumor microenvironment, which 

has been shown to contain non-cancerous cells, cancerous cells, and infiltrating immune 

cell populations. This spatial heterogeneity lends itself to a spatially-resolved single-cell 

omic approach to understanding the impact of each cell type on tumor progression. An 

immense amount of focus and research has been dedicated to assessing cell genomic 

and epigenomic states within the tumor microenvironment. For instance, the National 

Cancer Institute’s Human Tumor Atlas Network (HTAN) aims to generate a spatially-

resolved single-cell atlas of cellular cancer progression from the pre-cancerous lesion to 

late-stage cancers206. Some single-cell approaches to oncological care are, however, in 

clinical trials. In the case of melanoma, single-cell transcriptomic analyses of the 

melanoma tumor microenvironment have revealed an immune T-cell population that is 

resistant to a commonly used immune checkpoint inhibitor (ICI) drug207. From this 

finding, a clinical trial is being conducted to first test melanoma patients for the 

abundance of ICI-resistant T cells, then treat patients with ICI-resistant T cells with a 

combination therapy that uses FDA-approved cancer drugs to deplete the ICI-resistant T 

cell population.  

Single-cell omics technologies have also led to advances in identifying druggable targets 

in specific diseases. In the case of lung fibrosis, a condition that leads to scar tissue 
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accumulation in the lungs, a single-cell transcriptomics study was able to identify an 

immune cell population, monocyte-derived alveolar macrophages, that expanded with 

disease progression208. This mechanistic understanding of lung fibrosis has led to efforts 

to screen for the abundance of the disease-associated cell type and identify cell-type-

specific druggable targets. Additionally, single-cell research into the expression of the 

defective CFTR gene that leads to reduced respiratory function in cystic fibrosis (CF) 

revealed a rare, previously unknown cell type, termed ionocytes, that produce nearly 

50% of the defective CFTR protein in CF patients209. Similarly, this finding is now being 

used to develop therapeutics that target the sparse ionocyte cell population.  

A second impediment to applying single-cell technologies in clinical genetic diagnostics 

is the high cost. The costliness of single-cell studies is due to the expense of sequencing 

and is also due to the specialized materials, such as microfluidics equipment, indexed 

oligonucleotides, and expertise that is required to perform and interpret single-cell 

studies. Commercial applications are, however, increasing the accessibility of single-cell 

experiments210. However, the cost decrease of single-cell experiments for research has 

not had a substantial impact on the clinical application of single-cell technologies. The 

delay between technology development in the research space and the application of 

these technologies in the clinical space is because the field of single-cell omics is still in 

the discovery phase. Clinical genetics laboratories will be able to utilize single-cell 

technologies using commercial platforms when known single-cell results have actionable 

conclusions based on human diseases. The field of single-cell omics is still defining the 

normal and diseased states of human tissues, and therefore utilization of single-cell 

technologies in clinical genetics laboratories remains cost and time prohibitive. 
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