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Chapter 1

Introduction

Medical images provide a non-invasive means of assessing structural and functional changes within

the human body [47]. They are a rich source of information on the internal body structures and

play a vital role in helping doctors diagnose, monitor and treat various medical conditions. Each

imaging technique is unique in terms of the image it captures and the information it provides

regarding the area of the body under study [159]. Such information helps in providing diagnosis of

a disease without the need for expensive invasive procedures, sparing patients risks and reducing

treatment costs [159]. It also helps in early diagnosis of several diseases, including cancer and

Alzheimer’s disease, providing an early opportunity to start treatment [18, 121, 163].

With recent advancements in imaging techniques, the volume of medical images being generated

is growing exponentially. Manual interpretation of these images is a time-consuming and tedious

task and the results are dependent on human expertise. Therefore, in order to achieve accurate

and timely diagnosis, there is a need to automate medical image analysis. Over the years, several

image processing algorithms have improved the diagnostic interpretability of medical images [14].

These algorithms help in processing, analyzing and extracting useful information from images.

Recent advances in image processing algorithms leverage machine learning models to improve

their performance on various tasks. Machine learning models learn to perform a task, without

being explicitly programmed to do so, based on the data provided to train the model.

Typically, analysis of medical images using machine learning algorithms follows a specific

pipeline. An image processing pipeline is a set of tasks executed in a sequence to transform

an image into a desired result. A generic example of this pipeline is shown in Figure 1.1. Each

stage in the pipeline employs one or more algorithms to improve the interpretabilty of the image.

The acquired image is first subjected to suitable pre-processing techniques, such as noise reduction

and contrast adjustment, to suppress undesired distortions and enhance image features relevant

for further processing and analysis steps. When dealing with images from multiple modalities or

1
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Figure 1.1: A typical image processing pipeline. Steps indicated in red are dealt with in this
dissertation.

a temporal sequence of images, an additional step of aligning these images using registration algo-

rithms is required to accurately relate information from all the images. The pre-processed images

can be interpreted by humans directly or be further analyzed by machine learning algorithms to

arrive at a diagnosis without human intervention.

After pre-processing, the next main step in medical image analysis is the segmentation of

anatomical regions of interest within the image to aid in targeted downstream analysis. Segmen-

tation and detection algorithms divide the image into regions and transform the representation of

medical images into a meaningful form [14]. Each segmented anatomical region can be character-

ized by extracting texture and shape related features. The extracted features represent a compact

form of the most relevant information regarding the region. By training classification models based

on these feature, different medical conditions can be identified. Machine learning methods, such as

deep learning, can combine multiple steps in the pipeline to directly arrive at a diagnostic decision

[104]. Though images are a rich source of information, certain applications such as gait analysis

and cardiac motion estimation require analysis of movement [78, 102]. In such cases, a series of

images capturing the entire movement are recorded as a video. The object of interest is detected

in each image using an object detection algorithm and is tracked across all images in the video

using a tracking algorithm [19, 186]. Multiple studies have shown that machine learning methods

perform as well, if not better, than humans in identifying features and classifying images quickly

and precisely [114, 9]. Medical images may contain information that is too subtle for the human

eye to see and interpret [143]. Machine learning algorithms aid in extracting such hidden insights

from medical images as they develop new ways of interpreting images, sometimes in ways that

humans do not understand [143]. Machine learning methods have proven to be a valuable ally to

doctors by improving their productivity as well as accuracy in diagnosing and monitoring various

medical conditions.
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1.1 Dissertation Problem and Statement

Medical images are one of the richest and often the most complex source of information regarding

patients. Analysis of medical images can provide vital insights that help doctors detect and di-

agnose various diseases. But as discussed in the previous section, we observe several problems in

analysis of medical images.

Problem 1: Manual interpretation: With recent advancements in imaging techniques, med-

ical images are being acquired at a pace much faster than the pace at which the human experts

can interpret them. Manual interpretation is an expensive and laborious process with subjective

results. Increase in the number of medical images being produced increases the burden on the radi-

ologist to efficiently interpret them in a short amount of time. This increased reading speed could

result in missing some details and making errors in the interpretation. In applications requiring

real-time analysis of medical images, a radiologist would always need to be present to interpret

the images. Thus, in order to achieve accurate and timely diagnosis automated image analysis

methods are essential.

Problem 2: Richer information not interpreted: Medical images contain a lot of rich

information that may not be visually available. Therefore, visual analysis alone may not be able

to capture the heterogeneity within the structures being imaged. Machine learning methods can

uncover patterns that are not evident to the naked eye and can help doctors gain richer insights.

Though imaging modalities such as the magnetic resonance imaging (MRI) and computational

tomography have been around for a while, they can be further explored to provide new insights

by extracting features using new machine learning methods. This opens up avenues to design

methods that answer unresolved problems in biology. For example, analysis of texture in dynamic

contrast enhanced MRI (DCE-MRI) images (which depict the vascular functionality) can help

predict the tumor’s response to chemotherapy at an early stage in breast cancer patients (see

Chapter 6). Early prediction of response to chemotherapy can spare patients from potential short-

and long-term toxicities associated with ineffective therapies.

Problem 3: Medical images getting richer and complicated: Recent advancements in 3D

and 4D medical imaging provide real-time visualization of the human body. 4D medical imaging

incorporates time information in addition to the volumetric imaging data. On the other end

of the spectrum, advances in electron microscopy have enabled 3D visualization of the cellular

ultrastructure. This nanometer resolution views of intra and intercellular interactions can provide
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a deeper understanding of the underlying cellular mechanisms and could reveal the exact cause of

a medical problem (see Chapter 5). Understanding of these dynamic interactions can facilitate the

design and development of efficient treatment strategies. In order to utilize the potential of these

technologies and make it accessible to a doctor for clinical applications, it is essential to develop

new ways to organize, process and store the data being generated.

Overall, with continuous advancements in medical imaging, there is a constant need for im-

proving our ability to process and interpret them. In this dissertation, we illustrate the potential

of machine learning in automatic processing of medical images. We develop a range of machine

learning techniques along the image processing pipeline to interpret medical images addressing

specific medical problems.

1.2 Contributions and Overview

In Chapter 2 we lay the foundation for our work by introducing the four steps in the image

processing pipeline dealt in this dissertation - registration, segmentation, characterization and

tracking. We discuss the current approaches for each of these steps. In the final section of this

chapter, we introduce the different imaging modalities analyzed in this dissertation.

Registration

In Chapter 3, we propose a new point set registration algorithm that preserves both the global

and local structure of the point set. The aim of point set registration is to align two sets of points

and obtain the transformation that maps one to the other [128]. Most of the current registration

algorithms attempt to align the point sets at a global level, paying little attention to the local

shape of the point set. Shape, represented as local proximity among points, is stable even in

the presence of moderate distortions, and can be helpful in differentiating objects and recovering

point correspondences. In this chapter, we propose a probability density estimation framework to

align the point sets by incorporating the local structural relationships among neighboring points.

The experimental results demonstrate that our approach outperforms other point set registration

algorithms, even when the point sets are degraded by various levels of noise, outliers, deformation,

occlusion, and rotation.

Segmentation

In Chapter 4, we experiment with various modifications to the U-Net architecture to improve its

performance in segmenting tumors in MRI images of human prostates. Segmentation of prostate
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tumors is an important step as it helps in further downstream analysis and is also used to guide

in-bore biopsy to obtain an accurate diagnosis. Therefore, automatic techniques to accurately

segment tumors from prostate scans is highly desirable. As the tumor occupies a small portion

of the image, there is an imbalance in the tumor and non-tumor classes. We show that the

Tversky loss [147], which was specially designed for datasets with imbalanced classes, improves

the segmentation performance as the weight of the false positive and false negative terms could

be controlled unlike the Dice loss function. We further modify the U-Net architecture by adding

attention gates [131], using auto-encoder style regularization [127] and using deep supervision

[103]. The attention gates prune the feature maps to retain only features relevant for tumor

detection, thus reducing false positive predictions. The auto-encoder based regularization helps

when the information in the image is sparse, but degrades the segmentation performance when

the image contains rich diverse information as the features required for reconstruction of rich data

could be different from those required for segmentation. Deep supervision forces the features to

be highly discriminative and therefore increases the segmentation performance and also leads to

faster convergence. As mentioned in problem 1 in section 1.1 automating the segmentation process

is a step towards quicker analysis of the MRI image.

In Chapter 5, we present a framework for segmentation of cells and sub-cellular ultrastruc-

ture in electron microscopy images of tumor biopsies. As mentioned in problem 3 in section 1.1,

electron microscopy is a rich source of information that can help understand cancer at cellular

level. In order to enable interpretative rendering and quantitative characterization of biologically

relevant features from the electron microscopy images, cells and intra-cellular organelles needs to

be accurately segmented. These quantitative features can be potentially linked to biologically

or clinically relevant variables such as patient drug response in downstream analysis. The intra-

cellular organelles are well distinguished from the surrounding ultrastructures enabling accurate

segmentation by training deep learning models on sparse manual labels. Cell segmentation on the

other hand is a complex task due to the lack of clear boundaries separating cells in the cancer

tissue. We propose a multi-pronged approach combining segmentation and tracking strategies for

cell segmentation. Our proposed method cuts down the time taken for cell segmentation from 8

months to 1-2 days.

Characterization

In Chapter 6, we characterize the texture of DCE-MRI parametric maps with a new spectral

texture analysis method called multi-resolution fractal analysis and evaluate its potential in early

prediction of breast cancer response to chemotherapy. Fractal analysis at multiple resolutions
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obtains a rich representation of the heterogeneity of the texture. Multi-resolution analysis filters

out irrelevant features and noise at different resolutions, rendering more emphasis on distinct

features, and fractal analysis at each level captures these distinct features. The multi-resolution

fractal features better predict breast cancer response to chemotherapy than those extracted with

the more conventional methods. As discussed in problem 2 in section 1.1, extraction of new features

can provide deeper insights from medical images than visual inspection and can be used to infer a

lot more than what the DCE-MRI images are currently being used for.

Tracking

In Chapter 7, we develop a hybrid tracking system, that combines measurements from a basic

camera and wearable sensors, thus benefiting from the superior spatial and temporal resolution

capabilities of either modality, to accurately track motion of infant limbs. We analyze the capability

of features extracted from the estimated motion to classify fidgety movements from non-fidgety

movements using support vector machine. We find that the proposed approach can not only

accurately estimate trajectories, including complex ones, but can also detect fidgety movements

with good accuracy. Tying back to problems 1, 2 and 3, automatic analysis of richer data with

new analysis methods can provide ways to capture even subtle changes and aid doctors in disease

diagnosis.

Finally in Chapter 8, we summarize our findings and present possible future directions.



Chapter 2

Background

In the first four sections of this chapter we introduce the four steps in the image processing pipeline

dealt with in this dissertation - registration, segmentation, characterization and tracking. We

present the current approaches and discuss the algorithms referenced throughout this dissertation.

In the final section, we provide a brief introduction of the imaging modalities on which the proposed

methods are applied.

2.1 Registration

Image registration is a fundamental component in computer vision that aligns two images and

recovers the transformation mapping from one to another. The two images are of the same ob-

ject but taken at different times, using different sensors, or from different perspectives. Its main

application domains include medical imaging, remote sensing, and motion tracking [79, 22, 149].

Rigid image registration methods align the images by performing rotation, scaling and translation,

while non-rigid image registration methods align the images through non-rigid geometric transfor-

mations as shown in Figure 2.1. Non-rigid transformations are common in medical imaging due

to soft-tissue deformations and modeling them is a challenging task. Even though there has been

extensive work done in this field, non-rigid image registration is still an open problem [81].

Image registration methods are classified into two categories: intensity-based and feature-based.

Intensity-based methods compare the intensity values of different pixels in the images and try

to find a transformation between them. Feature-based methods try to find a transformation by

aligning features, such as corners and boundary points, extracted from the image. A set of features

extracted from the image is called a point set. The process of finding the alignment between two

point sets is called point set registration. An example of point set registration is shown in Figure

2.2. In this dissertation, we focus on point set registration.

7
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Figure 2.1: Examples of rigid and non-rigid transformations

Figure 2.2: The point set registration problem: Finding a transformation that maps one point set
to the other

2.1.1 Current Point Set Registration Approaches

The iterative closest point (ICP) algorithm is the most popular rigid point matching algorithm

due to its simplicity and low computational complexity [24]. For each point in the first point

set, the ICP algorithm finds the closest point in the second set. Then the algorithm uses a mean

squared error cost function to estimate the rotation and translation values iteratively, until the

two matched points are aligned. However, the ICP algorithm requires the points to be adequately

close to each other.

To overcome this problem, probabilistic approaches were introduced [65, 40, 88, 128]. Among

these approaches, the most popular is the robust point matching (RPM) algorithm introduced by
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Gold et al. [65]. In their work, points in one set are represented as centroids of Gaussian mixture

models, while points in the other set are treated as data points. The alignment of points is esti-

mated by alternating between soft-assignment, and using the expectation-maximization algorithm

to estimate the new location of the centroids. The expectation-maximization algorithm consists

of two steps: the expectation step, which computes the probabilities, and the maximization step,

which evaluates the transformation. In most of the probability-based methods, a uniform distri-

bution is added to account for noise and outliers. Outliers are incorrectly extracted points that

do not correspond with any point in the other point set. The addition of this distribution makes

probability-based methods perform better than the ICP algorithm in the presence of noise and

outliers. Chui and Rangarajan used the thin-plate splines (TPS) parameterization on RPM (re-

sulting in the TPS-RPM algorithm) to find the transformation and the correspondence between

sets of points simultaneously [40, 39]. Jain and Vemuri proposed an algorithm (GMMREG) that

represents both point sets as centroids of Gaussians [87, 88]. One of the point sets is parameterized

as TPS, and the transformation parameters are estimated by minimizing the L2 norm [37] between

the distributions. The TPS formulation does not exist for dimensions greater than three, which

limits the generalization of this approach to multidimensional cases [128].

More recently, Myronenko and Song introduced the Coherent Point Drift (CPD) algorithm

[128]. They also treated point set registration as a density estimation problem and used a varia-

tional approach to derive a multidimensional solution. CPD uses radial basis functions instead of

TPS to simultaneously find both the transformation and correspondence between the two point

sets. The CPD algorithm uses a motion coherence constraint, introduced by Yuille et al. [195],

that ensures that all the points move in a coherent fashion, preserving the topological structure. It

assumes equal membership probability for each GMM component, and only considers the distance

to calculate similarity and does not consider the local structure of the point set.

Though the probability-based algorithms perform well, there are still few shortcomings. They

do not work well in the presence of large in-plane rotations. Typically, the point sets are compen-

sated for rotation by other techniques before applying the registration algorithms. In most cases,

the weight of the outlier distribution has to be predetermined by the user.

All the algorithms discussed so far preserve the global topological structure. As an attempt to

include local structural information, Ge and Fan included local linear embedding (LLE) and Lapla-

cian coordinate based energy terms as additional regularization terms into the CPD formulation

[58]. The LLE formulation preserves the structure by retaining neighborhood relationships, but is

insensitive to scaling. Ma and colleagues showed that the addition of local structural information

to the CPD algorithm can be helpful in recovering point correspondences [116]. They used shape
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context [21] as a local structural descriptor and the Hungarian method to match the points [135].

Using this approach slows down the CPD algorithm as the Hungarian method has cubic time

complexity (O(n3)). Also, during the process of matching, a fixed probability is assigned in an

ad-hoc manner to matched and unmatched points. The calculation of shape context is complex in

three or higher dimensions. To overcome these problems, in Chapter 3, we propose an algorithm

to preserve both the global and local structure of the point set without significant increase in the

time complexity. We compare our algorithm with GMMREG, CPD and Ma and coll algorithm

which we call CPD-SC.

2.2 Segmentation

Image segmentation is a sub-domain of computer vision which aims at dividing an image into differ-

ent regions. Grouping of similar pixels simplifies the information represented in the image and al-

lows for efficient analysis. It is the step following pre-processing in most image processing pipelines.

Segmentation therefore finds applications in various fields including robotics, autonomous vehicles

and medical imaging [153, 176, 131]. Previously, image processing methods such as region growing,

edge detection and thresholding often coupled with optimization algorithms were used to segment

images. Watershed segmentation is one such region growing method used for separating different

objects in an image [16, 25]. It represents the gray scale image as a topographic relief, flooded

with water, where watershed are lines dividing areas of water from different basins. The basic

idea of watershed algorithm consists of placing a water source in each local minimum in the relief

and flooding the entire relief from these sources. Watershed is built in places where waters from

different sources meet. These watershed lines represent the separation between the objects.

Recently, deep convolutional neural networks (CNN) with their rich feature representation ca-

pability have achieved extraordinary performance in image segmentation [117, 8, 124]. Specifically,

U-Net, introduced by Ronneberger et al., with an encoder-decoder architecture is the most promi-

nent network and U-Net along with its variants are widely used in medical imaging applications

[145].

U-Net consists of a contracting path that encodes the input image into feature representations

and a symmetric expanding path which projects the discriminative features learned by the con-

tracting path back to the spatial resolution of the input image to obtain a dense segmentation map.

This unique architecture captures global image context while preserving spatial accuracy, thereby

facilitating high-precision image segmentation. Each layer in the encoding path consists of two 3x3

convolutions each followed by a rectified linear unit (ReLU) as the activation function and a 2x2
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Figure 2.3: U-net architecture. Input size is written on the side of each box. The number of feature
maps in each layer is written on top of each box.

max-pooling operation to down-sample the feature maps (except the last layer). The number of

feature maps is doubled along each successive layer in the encoding path to enable richer feature

extraction. Each layer along the decoding path consists of up-sampling feature maps followed by

a 2x2 convolution (to half the number of feature maps), a concatenation of feature maps from

the encoding path and two 3x3 convolutions each followed by a Rectified Linear Unit (ReLU). An

architecture of U-Net is shown in Figure 2.3.

The skip connections in U-Net brings across many redundant low-level features to the decoder

as feature representation is poor in the initial layers of the encoder. Oktay et al. proposed an

attention mechanism to highlight only the relevant features in the encoder layers to pass through

the skip connections [131]. Attention mechanism is incorporated in the form of attention gates

integrated into the U-Net architecture before feature concatenation. The attention gates prune

the feature maps by generating an attention coefficient, which identifies relevant features. An

attention coefficient αli ∈ [0, 1] is generated for each pixel i in layer l based on the feature map

from the encoding layer xli and a gating vector gi from a coarser scale. The gating signal is used

to remove irrelevant and noisy responses in the feature map from the encoding layer. The output

of the attention mechanism is obtained by multiplying attention coefficients element-wise with

the encoder feature map xli thus highlighting only the relevant regions in the feature maps. The

attention coefficients are obtained using the following equations.

qlatt = ψT
(
σ1

(
WT
x x

l
i +WT

g g
l
i + bg

))
+ bψ (2.1)
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Figure 2.4: Schematic of the attention gate block. Input feature map xl are multiplied with
the attention coefficients (α) to generate a new map x̂l in which only the relevant features are
highlighted

αli = σ2(qlatt(x
l
i, gi)) (2.2)

where σ1 is the ReLU activation function, σ2 is the sigmoid activation function, Wx,Wg, ψ, bg and

bψ are the linear transformation parameters. The schematic of the attention gate is shown in

Figure 2.4.

However, as the depth of the U-Net increases, the gradient information propagated through

the layers to update the network weights gets vanishingly small, thus preventing effective training

of the network [64]. The residual learning technique was proposed to solve this problem by adding

a shortcut mapping to reuse data across subsequent layers such that each layer only fits a residual

mapping. The gradients could easily backpropagate through the shortcut connection making op-

timization of deeper networks feasible and faster [75]. The resulting ResUNet model architecture

combines the strengths of feature concatenation from the contracting and expanding structure of

U-Net and residual connections, facilitating propagation of local spatial information and ease the

training of the neural network.

Though the convolution operation in CNN helps capture good features it still has a few draw-

backs. Due to the small size of the convolution filter, the network does not encode the relative

position of different features. Large filters are required to encode long-range dependencies within

an image. However, using large filters will negate the computational and statistical efficiency ob-

tained by using local convolutional operations. In order to increase the receptive field without

greatly increasing computational efficiency, Yu and Kolten introduced dilated convolutions [193].

The dilated convolution operator applies the same convolution filter with different dilation rates

resulting in a lager receptive field. But even this operator increases the receptive field only to a

certain range and does not provide context from the entire image.

In the field of natural language processing, Vaswani et al. introduced Transformers - a self-

attention-based architecture - that allows every element in a sequence to interact with all other

elements and make an informed decision on whom to pay more attention to [180]. The self-attention
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mechanism helps update each component of the sequence by aggregating global information from

the complete input sequence. Inspired by their success in natural language processing, Doso-

vitskiy et al. applied Transformers on images by splitting an image into patches and providing

a linear embedding of these patches as an input sequence to the Transformer [48]. They ob-

served that Transformers outperformed CNNs in image recognition tasks in the presence of large

datasets. However they did not generalize well on smaller datasets as Transformers lack some of

the inductive biases inherent to CNNs, such as locality and translational equivariance. Chen et

al. designed a hybrid CNN-Transformer architecture, called TransUNet, to leverage both spatial

information from CNN features and global context from Transformers [34]. They demonstrated im-

proved results with TransUNet over pure convolutional-based ResUNet and pure attention-based

vision transformer [48] in segmenting multiple organs in CT images. Zheng et al. designed a

pure Transformer-based encoder combined with a simple decoder to yield a powerful segmentation

model, termed SEgmentation TRansformer (SETR), achieving state-of-the-art results on several

large image segmentation datasets [200]. In Chapters 4 and 5 we look at the application of U-Net

and its variants and Transformers in different medical image segmentation problems.

2.3 Characterization

The next step in the image processing pipeline after segmenting a region of interest is to characterize

the region. Characterization refers to the process of defining a set of features that most efficiently

represent the information essential for downstream analysis. Color, shape and texture are the three

commonly used features to characterize regions in an image. As most medical images are in gray

scale, color can often not be used as a distinguishing feature. Therefore, shape and texture are the

features predominantly used to characterize medical images. The shape and texture features used

in this dissertation are described in Sections 2.3.1 - 2.3.4. In all our applications we characterize

3D volumes of different objects and therefore all features are calculated in 3D.

2.3.1 Shape Features

Shape plays an important role in the perception of objects and shape features capturing the holistic

structure can provide a powerful clue in distinguishing different objects. Shape features can be

broadly classified into two groups - contour-based and region-based. Contour-based features such

as perimeter, curvature, bending energy and shape signature [61] represent the shape using only

the information present in the contour of the object. On the other hand, region-based features

such as area and eccentricity, use the entire area of the object for shape description.
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In this dissertation we use shape features to characterize the roundness of nuclei and nucleoli in

cells. Solidity, sperificity and circular variance are three shape features that characterize roundness

of objects. Solidity quantifies the concavities of a surface and is calculated as the ratio of the

volume of the object to the volume of the convex hull (smallest encompassing convex polygon) of

the object.

Solidity =
Volume

Convex Hull Volume
(2.3)

Sphericity is a measure of how close an object resembles a sphere. It is defined as the ratio of the

surface area of a sphere with same volume as the object to the surface area of the object.

Sphericity =
π1/3(6V )2/3

A
(2.4)

where V is the volume of the object and A is the surface area of the object [184]. Its value is 1 for

a perfect sphere and decreases as the shape varies from a sphere. Circularity variance provides a

measure of the spread of radii across the volume. A radius here denotes the distance between a

point on the contour and the centroid (geometric center) of the volume. The lower the value, the

tighter the clustering about a single mean.

Circularity varaince (O) =
1

|Surf(O)|µ2
r

∑
p∈Surf(O)

(‖p− C‖ − µr)2
(2.5)

where Surf is the surface contour of the object O, µr its mean radius and C its centroid.

2.3.2 Texture Features

Texture features measure the variations in the spatial arrangement of intensity values in an image to

quantify properties such as regularity and smoothness. Based on the domain from which the texture

features are extracted they are broadly divided into spatial and spectral texture features. Spatial

texture features are extracted by computing statistics on local pixel structures in the original

image. Spectral texture features transform an image into the frequency domain and calculate

features in the transformed domain. The spatial texture features - grey level co-occurance matrix

(GLCM), run-length matrix (RLM), size-zone matrix (SZM) and power spectrum - are discussed

in Section 2.3.3 and the spectral texture features - wavelet and fractal analysis - are discussed in

Section 2.3.4.

2.3.3 Spatial Texture Features

Grey Level Co-occurrence Matrix (GLCM)

A GLCM is created by calculating how often pairs of pixels with specified values and in a specified

spatial relationship occur in an image. GLCM summarizes the number of times two pixel values
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Figure 2.5: Top row shows a 4 × 4 grey-scale image, its corresponding GLCM for distance δ = 1
and angle θ = 0◦, the normalized GLCM and some examples of Haralick texture features. The
bottom row shows the construction of GLCM for distance δ = 1 and angles θ = 45◦, 90◦ and 135◦.

occur together in a given direction θ and at a given distance δ. GLCMs are constructed for different

values of distances δ and angle θ. If Ng is the number of gray levels in an image, a GLCM of size

Ng×Ng is constructed such that, the (i, j)th element of this matrix represents the number of times

the combination of levels i and j occur in two pixels in the image, that are separated by a distance

of δ pixels along angle θ. The GLCM is then normalized to represent the probability distribution

p(i, j|δ, θ) of the gray-level pairs in the image. Haralick texture features are then computed from

the normalized GLCM using equations in Table 2.1. Haralick features are extracted from each of

the GLCM constructed for different values of distances δ and angle θ. The final value of a feature

is taken as the average across all its values calculated from the individual GLCMs over different

values of δ and θ. An example of constructing a GLCM from an image having 4 grey level values

for distance δ = 1 and angles θ = 0◦, 45◦ and 90◦ are shown in Figure 2.5. Haralick texture

features computed from the GLCM are widely used to characterize textures as they are easy to

calculate and result in interpretable texture descriptors [73].

Run-Length Matrix (RLM)

A gray level Run Length Matrix (RLM) quantifies gray level runs, which are defined as the number

of consecutive pixels that have the same gray level value in a given direction [57]. In a RLM,

P (i, r|θ) is defined as the number of pixels with gray-level i and run-length r, along a given



16

Table 2.1: Haralick texture features.∗

Feature Equation What it measures

Energy

Ng∑
i=1

Ng∑
j=1

p(i, j)2
Uniformity of grey level distribution

Contrast

Ng−1∑
k=0

k2

Ng∑
i=1

Ng∑
j=1

δ|i−j|,kp(i, j) Amount of local gray level variations

Correlation

∑Ng
i=1

∑Ng
j=1(i · j)p(i, j)− µxµy

σxσy

Linear dependancy of grey levels on neigh-
boring pixels

Variance

Ng∑
i=1

Ng∑
j=1

(i− j)2p(i, j) Dispersion of gray level distributions

Homogeneity

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + (i− j)2 Smoothness of the gray level distribution

Sum average

2Ng∑
i=2

ipx+y(i) Mean of the gray level sum distribution

Sum variance
2Ng∑
i=2

i−
2Ng∑
i=2

ipx+y(i)

2

Dispersion of the gray level sum distribu-
tion

Sum entropy −
2Ng∑
i=2

px+y(i) log px+y(i)
Disorder related to gray level sum distri-
bution

Entropy −
Ng∑
i=1

Ng∑
j=1

p(i, j) log[p(i, j)] Degree of disorder among pixels

Difference variance
2Ng∑
i=2

i−
2Ng∑
i=2

ipx−y(i)

2

Dispersion of gray level difference distri-
bution

Difference entropy −
2Ng∑
i=2

px−y(i) log px−y(i)
Disorder related to the grey level differ-
ence distribution

Maximal correlation
coefficient

√
2nd largest
eigenvalue of

∑
k

p(i, k)p(j, k)

px(i)py(k)
Complexity of the texture

∗Ng is the number of discrete intensity levels in the image, µx, σx and µy , σy are the mean and standard
deviation of px and py respectively, where px and py are the marginal row and column probabilities. px+y(k) =∑Ng

i=1

∑Ng
j=1 p(i, j), where i + j = k and k = 2, 3, ..., 2Ng . px−y(k) =

∑Ng
i=1

∑Ng
j=1 p(i, j), where |i − j| = k and

k = 0, 1, ..., Ng − 1.
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Figure 2.6: Construction of RLM

Figure 2.7: Construction of SZM

direction θ. Features defining the underlying texture are extracted from RLM by using equations

in Table 2.2. Similar to features in GLCM, the final value of each feature is computed as the mean

of all values calculated along each angle separately. An example of constructing a RLM from a

5× 5 image having 4 discrete values for angle θ = 0◦ is shown in Figure 2.6.

Size Zone Matrix (SZM)

A gray level Size Zone Matrix (SZM) provides a statistical representation of the clusters of gray

levels in the image [168, 169, 167]. Each element P (i, j) in a SZM is equal to the number of

zones of size j with gray level i. Unlike GLCM and RLM, SZM is rotation invariant. Features are

extracted from SZM by using equations in Tables 2.3 and 2.4. An example of constructing a SZM

for a 5× 5 image having 4 discrete values is shown in Figure 2.7. SZM is useful in characterizing

texture homogeneity [167, ?].
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Table 2.2: Run Length Matrix features.∗

Feature Equation What it measures

Short Run Emphasis

∑Ng
i=1

∑Nr
j=1

P (i, j|θ)
j2

Nr(θ)
Distribution of short run lengths

Long Run Emphasis

∑Ng
i=1

∑Nr
j=1 P (i, j|θ)j2

Nr(θ)
Distribution of long run lengths

Gray Level
Non-Uniformity

∑Ng
i=1

(∑Nr
j=1 P (i, j|θ)

)2

Nr(θ)

Similarity of gray-level intensity
values

Run Length
Non-Uniformity

∑Nr
j=1

(∑Ng
i=1 P (i, j|θ)

)2

Nr(θ)
Similarity of run lengths

Run Percentage
Nr(θ)

Np
Coarseness of the texture

Gray Level Variance

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)(i− µ)2 Variance in gray level intensity
for the runs

Run Variance

Ng∑
i=1

Nr∑
j=1

p(i, j|θ)(j − µ)2 Variance in runs for the run
lengths

Low Gray Level Run
Emphasis

∑Ng
i=1

∑Nr
j=1

P (i, j|θ)
i2

Nr(θ)

Distribution of low gray-level val-
ues

High Gray Level Run
Emphasis

∑Ng
i=1

∑Nr
j=1 P (i, j|θ)i2

Nr(θ)

Distribution of higher gray-level
values

Short Run Low Gray
Level Emphasis

∑Ng
i=1

∑Nr
j=1

P (i, j|θ)
i2j2

Nr(θ)

Joint distribution of shorter run
lengths with lower gray-level val-
ues

Short Run High Gray
Level Emphasis

∑Ng
i=1

∑Nr
j=1

P (i, j|θ)i2

j2

Nr(θ)

Joint distribution of shorter run
lengths with higher gray-level val-
ues

Long Run Low Gray
Level Emphasis

∑Ng
i=1

∑Nr
j=1

P (i, j|θ)j2

i2

Nr(θ)

Joint distribution of long run
lengths with lower gray-level val-
ues

Long Run High Gray
Level Emphasis

∑Ng
i=1

∑Nr
j=1 P (i, j|θ)i2j2

Nr(θ)

Joint distribution of long run
lengths with higher gray-level val-
ues

∗Ng is the number of discrete intensity values, Nr is the number of discrete run lengths, Np is the number of
voxels in the image, Nr(θ) is the number of runs in the image along angle θ, P (i, j|θ) is the RLM for an arbitrary

direction θ and p(i, j|θ) is the normalized RLM defined as p(i, j|θ) =
P (i, j|θ)
Nr(θ)

.
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Table 2.3: Size Zone Matrix features - Part 1.∗

Feature Equation What it measures

Short Area Emphasis

∑Ng
i=1

∑Ns
j=1

P (i, j)

j2

Nz

Distribution of small size zones

Large Area Emphasis

∑Ng
i=1

∑Ns
j=1 P (i, j)j2

Nz

Distribution of large area size
zones

Gray Level
Non-Uniformity

∑Ng
i=1

(∑Ns
j=1 P (i, j)

)2

Nz

Variability of gray-level intensity
values

Gray Level
Non-Uniformity
Normalized

∑Ng
i=1

(∑Ns
j=1 P (i, j)

)2

N2
z

Variability of gray-level intensity
values

Size-Zone
Non-Uniformity

∑Ns
j=1

(∑Ng
i=1 P (i, j)

)2

Nz
Variability of size zone volumes

Size-Zone
Non-Uniformity
Normalized

∑Ns
j=1

(∑Ng
i=1 P (i, j)

)2

N2
z

Variability of size zone volumes

Zone Percentage
Nz
Np

Coarseness of the texture

Gray Level Variance

Ng∑
i=1

Ns∑
j=1

p(i, j)(i− µ)2 Variance in gray level intensities
for the zones

Zone Variance

Ng∑
i=1

Ns∑
j=1

p(i, j)(j − µ)2 Variance in zone size volumes for
the zones

Zone Entropy −
Ng∑
i=1

Ns∑
j=1

p(i, j) log2(p(i, j) + ε)
Uncertainty in the distribution of
zone sizes and gray levels.

Low Gray Level
Zone Emphasis

∑Ng
i=1

∑Ns
j=1

P (i, j)

i2

Nz

Distribution of lower gray-level
size zones

High Gray Level
Zone Emphasis

∑Ng
i=1

∑Ns
j=1 P (i, j)i2

Nz

Distribution of higher gray-level
size zones

∗Ng is the number of discrete intensity values, Ns is the number of discrete zone sizes, Np is the number of
voxels in the image, Nz is the number of zones in the image, P (i, j) is the SZM and p(i, j|θ) is the normalized SZM

defined as p(i, j) =
P (i, j)

Nz
.
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Table 2.4: Size Zone Matrix features - Part 2

Feature Equation What it measures

Small Area Low Gray
Level Emphasis

∑Ng
i=1

∑Ns
j=1

P (i, j)

i2j2

Nz

Joint distribution of smaller size
zones with lower gray-level values

Small Area High
Gray Level Emphasis

∑Ng
i=1

∑Ns
j=1

P (i, j)i2

j2

Nz

Joint distribution of smaller size
zones with higher gray-level val-
ues

Large Area Low Gray
Level Emphasis

∑Ng
i=1

∑Ns
j=1

P (i, j)j2

i2

Nz

Joint distribution of larger size
zones with lower gray-level values

Large Area High
Gray Level Emphasis

∑Ng
i=1

∑Ns
j=1 P (i, j)i2j2

Nz

Joint distribution of larger size
zones with higher gray-level val-
ues

Power spectrum

Power spectrum is a gray level rotation and intensity invariant texture descriptor [170]. It describes

the shape and size of structures in an image. It is calculated by iteratively opening and closing an

image with morphological operators and recording the resulting areas. Morphological operators are

a set of image processing operators that process images based on shapes. They apply a structuring

element to an input image, creating an output image of the same size. A structuring element

is a matrix with the size and shape of the object that needs to be analyzed in the input image.

For example to find a line, the structuring element represents a line. If n is the size factor for a

structuring element, then the family of morphological openings Γ = (γn)n≥0 and morphological

closings Φ = (φn)n≥0 can help in the study of all the object sizes present in an image. The analysis

of an image f with respect to an operator for example Γ, involves evaluating each opening of size

n with a measurement
∫
γn(f). The power spectrum curve of an image f with respect to Γ and Φ

is defined as the following.

PSn(f) =
1∫
f


∫
γn(f)−

∫
γn+1(f) for n ≥ 0∫

φn(f)−
∫
φn−1(f) for n < 0

(2.6)

It defines a probability distribution and the moments of this distribution are employed as signature

patterns to characterize textures. A peak in power spectrum at a given scale n indicates the

presence of many image structures of this scale or size.
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2.3.4 Spectral Texture Features

Wavelet Analysis

Wavelet analysis is used to decompose a signal into a set of frequency sub-bands based on small

basis functions of varying frequency and limited time duration, called wavelets. It can decompose

special patterns hidden in data and is used extensively to extract information from audio signals

and images. The wavelet is scaled and translated to cover the time-frequency domain which enables

study of local characteristics in this domain. Wavelet transforms take a signal and express it in

terms of scaled and translated wavelets. The resulting wavelet transform is a representation of the

signal at different scales. Decomposition of image using wavelets enables the characterization of

texture as it analyzes the image at different resolutions [185]. The discrete wavelet transform for

a function f(x, y, z) of size (M,N,K) can be represented as

Wφ(j0,m, n, k) =
1√

MNK

M−1∑
x=0

N−1∑
y=0

K−1∑
z=0

f(x, y, z)φj0,m,n,k(x, y, z), (2.7)

Wφ(j0,m, n, k) =
1√

MNK

M−1∑
x=0

N−1∑
y=0

K−1∑
z=0

f(x, y, z)ψij,m,n,k(x, y, z), i = {H,V,D}, (2.8)

where, Wφ(j0,m, n, k) is the approximation of f(x, y, z) at scale j0, Wφ(j0,m, n, k) coefficients

define the horizontal (H), vertical (V ), and diagonal (D) details for scales j ≥ j0, φ is the scaling

function and ψ is the wavelet function. The wavelet transform depends mainly on the scaling (φ)

and wavelet (ψ) functions, but it is not necessary to define their explicit form. Instead, a low pass

and high pass filter that characterize the interaction of these functions are used.

Fractal Analysis

Textures can also be characterized by fractals, which describe irregular structures that show self-

similarity at various scales. Fractal based texture analysis correlates texture heterogeneity to fractal

dimension (FD), which is a mathematical descriptor of a structure’s geometrical complexity, based

on the concept of spatial pattern self-similarity. The fractal dimension is calculated based on the

power spectrum analysis of the Fourier transformation of the 3D volume [97]. The 3D discrete

Fourier transform is defined as

F (x, y, z) =

M−1∑
x=0

N−1∑
y=0

K−1∑
z=0

I(m,n, k)e−j2π(xmM +y nN +z kK ), (2.9)

where I(m,n, k) is the 3D volume of size (M,N,K) and x, y and z are the spatial frequencies.

The power spectral density (P ) is estimated as the following.

P (x, y, z) = |F (x, y, z)|2, (2.10)
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The frequency space is evenly divided into 12 zenith and 24 azimuth directions, and 30 points

are uniformly sampled along the radial component in each of these directions. The power spectral

density is plotted against sampled radial frequency in a log-log plot. The slope (β) of a least-squares

regression line of the log-log plot is related to the fractal dimension as

FD =
11− β

2
. (2.11)

Convolutional Neural Networks

All the above mentioned methods aim at extracting features defining a specific attribute, shape

or texture, from the image. On the other hand, convolutional neural networks have demonstrated

powerful overall feature extraction capabilities for downstream analysis such as classification or

segmentation. A CNN has multiple convolutional layers extracting features from the inputs. Each

convolutional layer has multiple filter banks that compute different features from the input. The

encoder part of the U-Net described in Section 2.2 acts as a feature extractor. Unlike other texture

analysis methods which have pre-designed filter banks, CNN can learn appropriate features from

the data provided through forward and backward propagation during training. Given a set of

training images xi and their labels yi, CNN learns the filter banks (W ) by solving an optimization

problem

min
W

m∑
i=1

l(f(W ;xi), yi) (2.12)

where f(W ;xi) is the prediction of the network for input xi, and l is the log-likelihood loss function

defined in terms of the normalized soft-max probability.

Though standalone CNN features cannot be used to describe specific attributes of the image,

they are more powerful in capturing the differences between images than the shape and texture

features as they are learnt with the objective to accurately differentiate the images belonging to

different classes. We use the features described in this section to characterize different medical

images in Chapters 5 and 6.

2.4 Tracking

A sequence of images is a richer source of information than a still image as it captures the motion

in the scene. Tracking the motion of objects can provide objective measurements characterizing

their movement. In this section, we delve into the fourth component of the image analysis pipeline

dealt in this dissertation - Tracking. Tracking objects in a video is an important step in many

computer vision applications such as autonomous driving, surveillance and robotics [105, 5, 178].
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In the medical field, tracking algorithms are used in many applications including tracking of cells

in microscopy images, instruments in surgery videos [43] and movements of eye in a video. Eye-

tracking is used as a diagnostic tool for neural disorders such as schizophrenia and Autism [74].

We discuss two commonly used tracking algorithms - optical flow and Kalman filter in Sections

2.4.1 and 2.4.2.

2.4.1 Optical Flow

Optical flow is a widely used approach to track the movement of objects. It gives the flow vectors

representing the apparent motion of individual pixels between two images [54]. There are multiple

methods of estimating optical flow between two frames, including differential, energy, phase and

region-based methods. The differential method is the most commonly used method and is based on

the assumption that for really small space-time steps the brightness of each pixel in two consecutive

image frames remains constant. Given a sequence of images, if I(x, y, t) represents the intensity

of a pixel (x, y) of the tth frame and (δx, δy, δt) is the small change in movement between two

consecutive frames, the brightness constancy assumption can be expressed as the following.

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (2.13)

The differential methods expand the above equation using Taylor series expansion to arrive at

the brightness constancy equation

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (2.14)

where Vx, Vy are the x and y components of the velocity or optical flow and ∂I
∂x ,

∂I
∂y and ∂I

∂t are the

derivatives of the image at (x, y, t) in the corresponding directions. Since there are two unknowns

per pixel but only one equation, the problem is under constrained. Horn and Schunck solve this

problem by assuming that the underlying optical flow is smooth and add a smoothness constraint

leading to the minimization of the energy functional given by the following equation [198].

J(u, v) =

∫ ∫ ((
∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t

)2

+ λ(u2
x + u2

y + v2
x + v2

y)

)
dxdy (2.15)

Lucas and Kanade, on the other hand, solve the brightness constancy equation by assuming that

the optical flow is constant within a small window [198]. They use a least square approach to solve

for optical flow by combining together several brightness constancy equations for a given window

(N ×N), i.e. they minimize the following quantity.

J(u, v) =

N2∑
i=1

(
∂I

∂xi
Vx +

∂I

∂yi
Vy +

∂I

∂ti

)2

(2.16)
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Lucas-Kanade method is a local method as it solves several small problems independently (and

therefore is more robust to noise), while the Horn and Schunck method is a global method as it

solves the problem globally to yield dense flow fields.

Alternatively, Farnebäck proposed an optical flow algorithm based on polynomial expansion to

obtain dense optical flow [52]. The algorithm first approximates the neighborhood of each pixel

with a polynomial

f1(x) = xTA1x+ bT1 x+ c1 (2.17)

where A is a symmetrix matrix, b a vector and c a scalar. The coefficients of the polynomial

are estimated by a least square fit to the intensity values in the neighborhood considered. If the

displacement between two images is represented as d, the new pixel is constructed as the following.

f2(x) = f1(x− d)

= (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x+ (b1 − 2A1d)Tx+ dTA1d− bT1 d+ c1

= xTA2x+ bT2 x+ c2 (2.18)

Equating the coefficients of both the polynomials yields the following equations.

A2 = A1 (2.19)

b2 = b1 − 2A1d (2.20)

c2 = dTA1d− bT1 d+ c1 (2.21)

The global displacement d can be solved by using Equation 2.20.

2A1d = −(b2 − b1) (2.22)

d = −1

2
A−1

1 (b2 − b1) (2.23)

Since it is unrealistic to assume an entire image to be represented by a single polynomial, the global

variables in Equation 2.17 are replaced by local polynomial approximations, giving coefficients

A1(x), b1(x) and c1(x) for the first image and A2(x), b2(x) and c2(x) for the second image. Ideally

A2 = A1 according to Equation 2.19, but in practice it is approximated as A(x) = A1(x)+A2(x)
2 .

Also − 1
2 (b2(x)− b1(x)) is represented as ∆b(x) to obtain the primary constraint

A(x)d(x) = ∆b(x) (2.24)

where d(x) indicates the spatially varying displacement field instead of the global displacement

field d in Equation 2.18. Farnebäck assumes that the displacement field is slowly varying and
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therefore tries to find d(x) satisfying 2.18 over a neighborhood I of the pixel x by minimizing∑
∆x∈I

w(∆x) ‖A(x+ ∆x)d(x)−∆b(x+ ∆x)‖2 (2.25)

where w(∆x) is a weight function for points in the neighborhood. Therefore the minimum is

obtained as the following.

d(x) =
(∑

wATA
)−1∑

wAT∆b (2.26)

If the displacement field is parameterized by a motion model such as the eight parameter model

given as

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (2.27)

then the displacement can be rewritten as the following.

d = Sp (2.28)

S =

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

 (2.29)

p = (a1 a2 a3 a4 a5 a6 a7 a8) (2.30)

Inserting into Equation 2.25, the weighted least square problem can be rewritten as∑
i

wi ‖AiSip−∆di‖2 (2.31)

where i is used to index the coordinates in a neighborhood. The solution for the parameter p is

given as the following.

p =

(∑
i

STi A
T
i AiSi

)−1∑
i

STi A
T
i ∆bi (2.32)

In order to account for large displacements, the motion is first estimated at a coarser scale to

obtain a rough estimate of the displacement. This displacement is propagated through finer scales

to obtain increasingly accurate estimates. We use the Farnebäck’s optical flow method in Chapter

5 to propagate contour along images in a stack of electron microscopy images.

2.4.2 Kalman Filter

The Kalman filter is an algorithm that estimates the state of a system from measurements observed

over time [150]. It enables tracking of objects while fusing data from multiple sources. A dynamic

system is a system that evolves through time and the system’s state is a set of parameters that
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describe the system at time k. A dynamic model of the system defines the evolution of state x

from time k − 1 to time k. The Kalman filter fuses measurement data from one or more sources

with a dynamic model of a system to optimally estimate the system’s state. The Kalman filter

assumes a linear dynamic model defined by the process equation

xk = Fxk−1 +Buk + wk (2.33)

where F is the state transition matrix applied to the previous state xk−1, B is the control-input

matrix applied to the control vector uk and wk is the process noise, which is assumed to be drawn

from a zero mean Gaussian distribution N , with covariance Qk : wk ∼ N (0, Qk).

An observation zk of the true state xk at time k is made according to the observation equation

zk = Hxk + vk (2.34)

where H is the observation matrix, which maps the true state into the observed state, and vk is

the observation noise, which is assumed to be zero mean Gaussian white noise with covariance

Rk : vk ∼ N (0, Rk)

The Kalman filter algorithm provides an estimate of the system’s state xk at time k, given the

initial estimate x0, the series of measurements z1, z2, ..., zk, and the information of the model given

by the matrices F,B,H,Q and R. It does so in a recursive process consisting of two steps - predict

and update. The predict step, estimates the next state of the system and the update step corrects

the estimated state with actual measurements. The predict and update steps are summarized by

the following equations.

Predict:

Predicted state estimate x̂k|k−1 = Fkx̂k−1|k−1 +Buk (2.35)

Predicted error covariance Pk|k−1 = FkPk−1|k−1F
T
k +Q (2.36)

Update:

Measurement residual ỹ = zk −Hkx̂k|k−1 (2.37)

Kalman gain Kk =
Pk|k−1H

T
k

HkPk|k−1H
T
k +R

(2.38)

Updated state estimate x̂k|k = x̂k|k−1 +Kkỹ (2.39)

Updated error covariance Pk|k = (I −KkHk)Pk|k−1 (2.40)

The state of the Kalman filter is represented by two variables - x̂k|k, the state estimate at time

k, and Pk|k, the state error covariance matrix, which gives a measure of the estimated accuracy
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of the state estimate x̂k|k. The predict step computes an estimate of the state x̂k|k−1 and Pk|k−1

based on the state transition matrix F as shown in Equations 2.35 and 2.36.

The update step, updates the estimates of the state variables x̂k|k−1 and Pk|k−1 based on the

true measurement at time k. It first calculates the measurement residual given by Equation 2.37.

The measurement residual is the difference between the true measurement zk and the estimated

measurement Hx̂k|k−1. The estimated measurement is calculated by multiplying the estimated

state x̂k|k−1 with the observation matrix H. As mentioned earlier the observation matrix maps

the state space into the observed space. The residual ỹ is multiplied by the Kalman gain Kk

to provide the correction to the state estimate x̂k|k−1 from the prediction step. The Kalman

gain Kk represents the relative importance of the measurement residual ỹ with respect to the

estimate x̂k|k−1. From Equations 2.38 and 2.39 it can be seen that the relative magnitudes of

matrices Pk|k−1 and R control the relation between the filter’s use of estimated state x̂k|k−1 and

measurement residual ỹ. When magnitude of the observation noise covariance matrix R is small, it

implies that the measurements are accurate, and the updated state estimate x̂k|k depends mostly

on the measurement. When the state is estimated accurately by the predict step, the state error

covariance matrix Pk|k−1 will be small compared to R and the Kalman gain will be close to zero.

In this case, the filter will ignore the measurements and rely on the state estimates from the predict

step. Finally, the update step calculates the updated error covariance Pk|k, which will be used in

the subsequent predict step.

The Kalman filter assumes the system to be linear, but most systems in reality are non-linear

and cannot be represented by a simple state transition matrix or observation martix as in Equations

2.33 and 2.34. Extended Kalman filter (EKF) is a non-linear version of the Kalman filter which

linearizes the model about a current estimate via a Taylor series expansion. In EKF the state

transition and observation models can be represented by differentiable functions.

xk = f(xk−1, uk) + wk (2.41)

zk = h(xk) + vk (2.42)

The function f computes the estimate of the current state based on the previous state xk−1 and

the control input uk. The function h computes the predicted measurement from the current state

estimate xk. As f and h are non-linear functions, they cannot be multiplied with the covariance

matrices directly as in Equations 2.36 and 2.38. Instead, the Jacobian - a matrix of first order

partial derivatives - is computed to represent the state transition matrix Fk and the observation
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matrix Hk.

Fk =
∂f

∂x

∣∣∣∣
x̂k−1,k−1,uk

(2.43)

Hk =
∂h

∂x

∣∣∣∣
x̂k,k−1

(2.44)

The EKF algorithm is similar to Kalman filter algorithm with the predict and update steps applied

recursively. Equations 2.35 and 2.37 are replaced by the following two equations.

Predicted state estimate x̂k|k−1 = f(x̂k−1|k−1, uk) (2.45)

Measurement residual ỹ = zk − h(x̂k|k−1) (2.46)

In Chapter 7 we design a system using EKF to combine image and sensor-based signals to track

movements of infants.

2.5 Imaging Techniques

The processes and structures within the human body that are largely hidden from the eye can

be visualized through medical images. Anatomical visualization through structural and functional

imaging has become a vital tool for early detection, diagnosis and treatment of cancer and other

diseases [177]. Structural imaging techniques such as radiography, computed tomography and

magnetic resonance imaging (MRI) are specialized for visualization of the anatomical structures

enabling geometrical quantification, such as shape and size, of a given structure. On the other

hand, functional imaging techniques such as positron emission tomography and dynamic contrast

enhanced MRI (DCE-MRI) provide visualization of changes in blood flow or metabolism within

the structures. Recently, high resolution microscopy techniques have offered views into the deepest

structure of organs, providing scientists a means of understanding biological mechanisms down to

sub-cellular level. In this dissertation, over various chapters, we work with images captured by

MRI, diffusion-based MRI, DCE-MRI, electron microscopy (EM) and videos captured by a video

camera.

2.5.1 Magnetic Resonance Imaging (MRI)

MRI uses a magnetic field and radio waves to produce detailed images of internal body structures

[182]. The MRI technique makes use of the fact that body tissue contains lots of water, and

hence protons (1H nuclei). To obtain an MRI, the person is made to lie in a scanner and a strong

magnetic field is applied around the area to be imaged. The average magnetic moment of the
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protons in the water molecules of the body get aligned in the direction of the applied magnetic

field. A radio frequency current is briefly turned on, producing a varying electromagnetic field.

The protons absorb this field and flip their spin. When the electromagnetic field is turned off, the

spins of the protons return to equilibrium and the bulk magnetization becomes re-aligned with the

static magnetic field. A radio frequency signal emitted during this relaxation is measured using

receiver coils and processed to deduce positional information and form the final image. The rate at

which the protons return to equilibrium is different for different tissues and determines the contrast

in MRI images. Capturing signals at proton level results in high soft tissue contrast in MRI and

can help depict anatomy in great detail. Based on the process used to characterize the return of

protons to equilibrium, two different MRI images are obtained. T1-weighted image is produced by

allowing magnetization to recover before measuring the signal by changing the repetition time (time

between successive pulse sequences). T2-weighted image is produced by allowing magnetization

to decay before measuring the signal by changing the echo time (time between delivery of pulse

and receipt of echo signal). T1-weighted images highlight the fat tissue within the body, whereas

T2-weighted images highlight fat tissue and water within the body. Therefore, T1-weighted images

are helpful in obtaining structural information, while T2-weighted images are helpful in detecting

edema, tumors and assessing anatomy of prostate and uterus.

2.5.2 Diffusion-weighted MRI

Diffusion-weighted MRI is a form of MRI imaging that uses diffusion of water molecules to generate

contrast in images [182]. Various fibers and membranes in tissues alter the water diffusion pattern

and therefore its visualization can reveal microscopic details of tissue architecture. To disentangle

the effect of T1 or T2 weighting on the image contrast and obtain a quantitative measure of

diffusion of water within a tissue, an apparent diffusion coefficient (ADC) image is calculated

from diffusion-weighted MRIs. The ADC values are calculated by acquiring two diffusion-weighted

images with different b values (degrees of diffusion sensitization). The change in signal between

the two images is proportional to the rate of diffusion. ADC images are useful in detecting lesions

that restrict diffusion (strokes, abscesses) and also in characterizing tumors.

2.5.3 Dynamic Contrast Enhanced MRI

DCE-MRI is a technique for in-vivo mapping of vascular function by acquiring sequential images

during the passage of contrast agent within a tissue of interest [192]. The contrast agent uptake

curves obtained from the acquired images are analyzed using compartmental modeling approaches
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to infer the properties of tissue vasculature. It allows one to study microcirculation in tumors and

helps evaluate tumor response to therapy in vivo.

2.5.4 Electron Microscopy (EM)

While images of entire tissues provide a holistic view, visualization at cellular and sub-cellular

levels help in understanding the underlying biological changes causing normal cells to become

diseased. Electron microscopy provides visualization of entire cellular ultrastructure at nanometer-

resolution [144]. Electron microscopes use a beam of electrons as a source of illumination instead

of a beam of light. With up to 100,000 times shorter wavelength than light photons, electrons have

higher resolving power and can reveal structure of smaller objects. There are two main forms of

EM – transmission EM (TEM) and scanning EM (SEM). TEM is analogous to the conventional

microscope and generates a projection image by passing electrons through a thin specimen. TEM is

used in various biological applications including visualization of interiors of cells, protein molecules

in cell membranes and organization of molecules in viruses. SEM forms an image by scanning a

focused electron beam onto the surface in a raster pattern and collecting secondary electrons

emitted from the point of interaction between the electron beam and surface. The relative number

of electrons detected translates to the brightness in the SEM image. SEM provides detailed images

of the surfaces of cells and whole organisms, while TEM provides details of internal composition

and morphology.

Advances in focused ion beam-scanning electron microscopy (FIB-SEM) enabled generation

of detailed 3D images providing deeper insights into cellular organization and interactions. FIB-

SEM imaging proceeds via serial steps of SEM imaging of a sample surface and FIB removal of a

uniform thin layer of the tissue with size comparable to the spatial resolution in x-y plane, thereby

revealing a new surface to be imaged. This process is fully automated and ensures that imaged

data is equidimensional in all three axes, which significantly improves the accuracy of feature

recognition within the dataset.

2.5.5 Other Imaging Techniques

In certain cases, regular camera photos and videos are used to arrive at medical diagnosis. Pho-

tographs of skin rashes can help identify skin conditions such as eczema, psoriasis and dermatitis.

Video-based motion analysis is used by physical therapists to assess movement. Gait analysis –

a comprehensive evaluation of the way an individual stands and walks - helps identify medical

conditions such as Parkinson’s disease, osteoarthritis, cerebral palsy and muscle dystrophy. It is
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performed by analyzing a combination of data provided by video cameras and sensors.

In Chapter 3 we register lung radiography images, in Chapter 4 we segment tumors from MRI

and ADC images, in Chapter 5 we segment and characterize cells and intra-cellular structures

from FIB-SEM images, in Chapter 6 we extract features from DCE-MRI images to predict breast

cancer therapy response and in Chapter 7 we track the movement of infant limbs by combining

measurements from video and sensors to predict cerebral palsy.



Chapter 3

Registration: Point Set Registration

Incorporating Local Shape Information

Registration is one of the first steps in the image processing pipeline. As seen in Chapter 2 point

set registration is an important task in many computer vision problems. The purpose of point

set registration is to align two sets of points and obtain the transformation that maps one to the

other. Most of the current registration algorithms only try to align the point sets at a global

level, paying little attention to the local shape of the point sets. Shape, represented as local

proximity among points, is stable even in the presence of slight distortions, and can be helpful in

differentiating between different objects and in recovering point correspondences. In this chapter,

we propose a probability density estimation framework to align the point sets by incorporating

the local structural relationships among neighboring points. The experimental results demonstrate

that our approach outperforms other point set registration algorithms, even when the point sets

are degraded by various levels of noise, outliers, deformation, occlusion, and rotation.∗

3.1 Introduction

In Section 2.1 we discussed that most often the alignment of two point sets is considered as a density

estimation problem and thin-plate splines (TPS) are used to model the transformation between

them. There they made the assumption that the points in one set are normally distributed around

the points in the other set. This process preserves the global structure of the point set.

However, even in non-rigid deformations the local structure is preserved due to some physical

constraints. For example, though the human face is non-rigid, the nose, eyes and mouth cannot

deform independently due to the constrain on their movements owing to the bone structure [201].

Therefore, the rough shape of the point set is preserved even in non-rigid deformations, else it

∗The work in this chapter was presented as part of my qualifying exam in 2017.

32



33

would be difficult even for humans to match different objects. As a major contribution of this

chapter, we introduce a new measure to define the local structure of the point set and propose an

algorithm to integrate this measure into the density estimation framework.

We formulate the point set registration problem in a probabilistic framework. Points in one set

are represented as centroids of a Gaussian mixture model (GMM) and points in the other set are

represented as data samples drawn from the Gaussians. We define a new local structural measure

that represents distances between points as probability distributions. We use the proposed local

structural measure to arrive at the membership probabilities of the mixture densities. This results

in different membership probabilities of the points based on their relative distances to a given point

unlike the approach using the Hungarian method [21] where fixed probability values are assigned.

Then the expectation maximization algorithm is used to fit the Gaussian centroids to the data

samples. Incorporation of local structural information in the probabilistic framework will help

preserve both the global and local structure of the point set.

The rest of the chapter is organized as follows. In Section 3.2, the proposed algorithm to

preserve both the local and global structure is introduced. In Section 3.3, the performance of this

algorithm is compared with other approaches. Finally in Section 3.4 we summarize and present

possible future directions.

3.2 Proposed Algorithm

We formulate the point set registration as a density estimation problem using Gaussian Mixture

Model (GMM) similar to Myronenko and Song [128]. We then propose a new local structural

measure to calculate the membership probabilities of the mixture densities and solve the point set

registration problem using expectation maximization algorithm. The coordinates of the reference

point set are denoted as XN×D = [x1, x2, . . . , xN ]T and the coordinates of the template point set

are denoted as YN×D = [y1, y2, . . . , yN ]T. The aim of the algorithm is to obtain the transformation

T that best aligns the template point set Y with reference point set X. We formulate the point

set registration as a density estimation problem, where we fit GMM centroids to the data points,

by maximizing the likelihood function. The points in Y are considered as centroids of Gaussians

and the points in X are considered as data points. The non-rigid transformation T which needs to

be estimated, is defined as a continuous velocity function v, which is added to the initial centroid

positions Y, such that the current position of the centroids can be given as, T(Y, v) = Y + v(Y).



34

Consider the GMM probability density function given as

p(x) =

M+1∑
m=1

P (m)p(x|m) (3.1)

where, the first factor represents the membership probability and the second term defines the

Gaussian

p(x|m) =
1

(2πσ2)D/2
e−
‖x−T (ym,v)‖2

2σ2 (3.2)

with equal isotropic covariances σ2. Here y represents the centroids of the GMM and x represent

the data point. We add an additional uniform distribution p(x|M + 1) = 1
N to Equation 3.2, to

account for noise and outliers. The weight of the uniform distribution is denoted by w, 0 ≤ w ≤ 1.

The Gaussian mixture model with the addition of uniform distribution and the transformation

function expanded as T(Y, v) = Y + v(Y) has the following form.

p(x) = w
1

N
+ (1− w)

M∑
m=1

P (m)

(2πσ2)D/2
e−
‖x−ym−v(ym)))‖

2

2σ2 (3.3)

Assuming all Gaussian components are independently distributed, the joint GMM probability

density function, also called the likelihood function, that needs to be maximized can be written as

the following.

p(X) =

N∏
n=1

p(xn) =

N∏
n=1

M+1∑
m=1

P (m)p(xn|m) (3.4)

As maximizing a likelihood function is equivalent to minimizing its negative log-likelihood,

taking the negative log of Equation 3.4 gives the energy function that needs to be minimized.

E = −
N∑
n=1

log

M+1∑
m=1

P (m)p(xn|m) (3.5)

3.2.1 Incorporation of Local Similarity Measure

As mentioned in Section 2.1, most of the algorithms assume equal membership probabilities P (m)

for all GMM components irrespective of how similar or dissimilar the neighborhoods of the points

in one point set are to the other. They do not look into the local structural similarities among

the point sets. However, lot of information can be gained by incorporating this knowledge into the

registration framework. Therefore, instead of using equal membership probabilities, we propose

a measure based on local structural information to estimate the membership probabilities. We

assume that the spatial proximities between points in a local neighborhood of a point set remain

the same, even in the presence of moderate deformation and noise.

Figure 3.1 shows two fishes where the red fish is a deformed version of the blue fish. It can

be seen from Figures 3.1a and 3.1b that the distribution of distances between the eye and some
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Figure 3.1: The red fish is a deformed version of the blue fish. Comparing (a) and (b) it can be
seen that the relative distances between points are maintained even in the presence of non-rigid
deformation. Comparing (a) and (c) it can be seen that the distribution of distances is different
around different points.

random points in both the fish is similar. In contrast, from Figure 3.1c it can be seen that the

distribution of distances from another point to the same three random points is different. Therefore,

the distribution of distances around a point can give a rough idea of the overall shape of the object.

Here we use only the distance and not the angle to keep the measure simple.

We introduce a distance metric DX
ij which measures the distance between points xi and xj in

a given point set X, and is defined as

DX
ij =

e
−
‖xi − xj‖2

2c2

∑
k e
−
‖xi − xk‖2

2c2

(3.6)

such that
∑
j Dij = 1 and c2 is the variance of the Gaussian and is set to 0.01. In the matrix DX , dij

represents the probability that xi will pick xj as a neighbor. This probability is proportional to

the probability density of xj under a Gaussian centered at xi. Therefore, this probability is high

for nearby points and lower for points further away. Each row in DX represents a distribution

of distances between one point and the remaining N − 1 points. This gives an approximate

representation of the shape of the point set relative to that point. Similarly, DY represents the

distribution of distances between points in set Y .

The more similar the local structure around two points xn and ym, the more likely is the

correspondence between these two points. This similarity between local structures is measured

by calculating the Kullback-Leibler (KL) distance between the distance metrics corresponding to

points xn and ym.

KL(DX
n ||DY

m) =
∑
j

DX
nj log

DX
nj

DY
mj

(3.7)



36

where, DX
n is the row of DX representing distances from point xn to all other points in point set X,

and DY
m is the row of DY representing distances from point ym to all other points in point set Y .

In order to use the KL distances as membership probabilities in GMM, they need to be converted

into a probability measure. To achieve this, we used Gibb’s measure, which defines the probability

of points xn and ym matching to be proportional to the exponential of the KLnm distance. After

normalizing over all the points, the similarity measure is given as

Snm =
e−β·KLnm∑M
m=1 e

−β·KLnm
(3.8)

where β controls the spatial width of the distribution. The term Snm represents the similarity

between the local structure of a point xn to that of a point ym. This is a point-wise similarity

measure that is sensitive to its local neighborhood. For points with similar neighborhoods in the

two datasets this measure is high, and it decreases exponentially as the local structure between

the two points changes. This eliminates the need to manually set a matching value as done while

using shape context [116]. This measure is inherently invariant to rotation and translation as it is

calculated with the help of relative point locations. It can be made scale invariant by normalizing

the distances by the mean distance between all point pairs. It can be used for dimensions greater

than two, since the measure depends only on the distance between the points. The proposed local

structural similarity measure is used to represent the membership probability P (m) in Equation

3.5.

E(v, σ2, w) = −
N∑
n=1

log

M+1∑
m=1

Snmp(xn|m)

= −
N∑
n=1

log

[
w

1

N
+ (1− w)

M∑
m=1

Snm
(2πσ2)D/2

e−
‖x−ym−v(ym)))‖

2

2σ2

]
(3.9)

There are three unknown parameters in this formulation: v, the velocity field; σ2, the variance of

the Gaussians and w, weight of the outliers, that need to be estimated.

3.2.2 Regularization by Incorporating Motion Coherence

The velocity field v is non-rigid and unknown, and therefore can have a broad class of solutions,

making its determination an ill-posed problem. In order to choose one particular solution, a

regularization term containing knowledge regarding the desired properties of the velocity fields

need to be added. Here we want the velocity field v created by the displacement of the template

point set to be smooth, which captures the idea that points close to one other tend to move

coherently. Smoothness is a measure of the oscillatory behavior of a function. A function is said to

be smooth if it exhibits few oscillations; in frequency domain it translates to less energy in the high
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frequency range. The high frequency content of a function can be estimated by high-pass filtering

the function, and then measuring the resultant power, which is the L2 norm, of the result. This

power is used as the regularization function and is expressed as, φ(v) = ‖v‖2H =
∫
Rd
|ṽ(s)|2

G̃(s)
ds,

where ṽ indicates the Fourier transform of the velocity and G̃ is the Fourier transform of a function

G such that it approaches zero as ‖s‖ → ∞, so that
1

G̃
represents a high pass filter. Here G is

chosen to be a Gaussian low-pass filter. The Fourier transform of a Gaussian is another Gaussian,

where G̃(s) decreases exponentially fast with s. So if v has to have a finite value, its Fourier

transform must drop even faster than that of G. This effectively results in v having only a few low

frequency components with high weights. A function with only low frequency components does

not oscillate much and is smooth. The size of the Gaussian filter controls the range of frequencies

filtered and thus the amount of spatial smoothness. Thus, the regularization function φ(v), ensures

that the velocity field is smooth. This process is analogous to taking the norm of a function v in

the Reproducing Kernel Hilbert Space (RKHS) with a Gaussian as the reproducing kernel [20]. If

λ is the weight given to the regularization term, Equation 3.9 is extended to give the following.

E(v, σ2, w) = −
N∑
n=1

log

M+1∑
m=1

Snmp(xn|m) +
λ

2
φ(v) (3.10)

3.2.3 Optimization using the Expectation Maximization Algorithm

The three unknown parameters v, σ2 and w are estimated by using the expectation maximization

algorithm. In the expectation step, the posterior probability of the mixture components is eval-

uated. In the maximization step, the new values of the parameters are estimated by minimizing

the expectation of the negative log likelihood function.

E-step: We first evaluate the membership probabilities between the two point sets using Equa-

tions 3.6 - 3.8. We then compute the posterior probability P old(m|xn) using the old values of v, σ2

and w and applying Bayes rule.

P old(m|xn) =
Smne

− ‖xn−ym−v(ym)‖2

2σ2∑M
k=1 Smne

− ‖xn−ym−v(ym)‖2
2σ2 + w

(1−w)N (2πσ2)D/2
. (3.11)

This posterior probability indicates to what degree the centroid ym coincides with the data point

xn under the estimated transformation T(Y, v) = Y + v(Y). To obtain the objective function the

negative log likelihood function is multiplied and divided with P old(m|xn) inside the logarithm.

L = −
N∑
n=1

log

M+1∑
m=1

Snmp(xn|m)
P old(m|xn)

P old(m|xn)
(3.12)

Jensen’s inequality takes the form ϕ
∑
i aibi ≤

∑
i ai(ϕ(bi)) for a convex function ϕ and positive

weights ai, such that
∑
i ai = 1 [98]. Here the negative logarithm is a convex function and
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P old(m|xn) is a probability distribution. Applying Jensen’s inequality to Equation 3.10 gives the

following.

L ≤ −
M+1,N∑
m,n=1

SnmP
old(m|xn)log

Snmp(xn|m)

P old(m|xn)
(3.13)

L ≤ −
M+1,N∑
m,n=1

SnmP
old(m|xn)log(Snmp(xn|m))−

M+1,N∑
m,n=1

SnmP
old(m|xn)log

(
P old(m|xn)

)
(3.14)

The upper bound on the negative log-likelihood function is the objective function Q that is

minimized in the M-step.

Q = −
N∑
n=1

M+1∑
m=1

P old(m|xn)log[Snmp(xn|m)] (3.15)

Here the second term is ignored as P old(m|xn) are old posterior probabilities and are already

known and need not be estimated.

M-step: In this step the new parameter values are obtained by minimizing the objective function

given by Equation 3.15. Ignoring the constants independent of v, σ2 and w, the objective function

including the regularization term φ(v) is expanded.

Q(v, σ2, w) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)‖xn − ym − v(ym)‖2 +
NpD

2
log σ2

−Np log(1− w)− (N −NP ) logw +
λ

2
‖v‖2H (3.16)

where, Np =
∑N
n=1

∑M
m=1 P

old(m|xn) ≤ N . Taking the derivative of Equation 3.16 with respect

to w and σ2, and equating it to zero, we obtain the following.

w = 1− Np
N

(3.17)

σ2 =
1

NpD

N∑
n=1

M∑
m=1

‖xn − ym − v(ym)‖2 (3.18)

Next we look at the solution for the velocity field v. As mentioned previously, it is modeled to

lie within a Reproducing Kernel Hilbert Space H, defined by a diagonal Gaussian matrix kernel G,

where gij = e
−
‖yi − yj‖2

2β2
, and its square norm is used as the regularization term i.e. φ(v) = ‖v‖2H .

The objective function given by Equation 3.16 is a special form of the regularization functional

introduced by Tikhonov to solve ill-posed problems [187, 37]. According to the Representer theorem

[123], the optimal solution for velocity field v, which minimizes Equation 3.16, is unique and is

given as

v(y) =

M∑
m=1

wmG(y, ym) (3.19)
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where G is a kernel matrix with elements Gij = e
−
‖yi−yj‖

2

2β2 , and wm are Gaussian kernel weights

(the proof of the theorem is given in Appendix A). The regularization term is taken as the square

norm of the velocity field and can be expressed using the inner product as

φ(v) = ‖v‖2H = 〈v, v〉H =

〈
M∑
i=1

wiG(., yi),

M∑
j=1

wjG(., yj)

〉
H

=

M∑
i,j=1

wiwjG(yi, yj) = W TGW (3.20)

where W = (w1, w2, ..., wm)T are the Gaussian kernel weights. Next we substitute the solution

from Equation 3.20 into Equation 3.16.

Q(v, σ2, w) =
1

2σ2

N∑
n=1

M∑
m=1

P old(ym|xn)‖xn − ym − v(ym)‖2 +
NpD

2
log σ2

−Np log(1− w)− (N −NP ) logw +
λ

2
(W TGW ) (3.21)

We next take the the derivative of Equation 3.21 with respect to W .

∂Q

∂W
= − 1

σ2
G

[
N∑
n=1

M∑
m=1

P old(m|xn)(xn − ym −GW )

]
+ λGW (3.22)

=
1

σ2
G [d(P1)(Y + GW )− PX] + λGW = 0 (3.23)

Rewriting Equation 3.22 we obtain a linear system of equations

(G + λσ2d(P1)−1)W = d(P1)−1PX − Y (3.24)

which are solved to obtain the weights W = (w1, w2, ..., wm)T . G is the Gaussian kernel matrix,

P is the posterior probability matrix P old(m|xn), 1 is a column vector of ones and d(·) is the

diagonal matrix. The proposed algorithm is summarized in Algorithm 1. The algorithm has two

free parameters β and λ. The regularization weight λ acts as a tradeoff to determine how smooth

we want the solution to be and β determines the width of the smoothing kernel.

3.3 Experimental Results

To evaluate the performance of the proposed algorithm, we performed several experiments on 2D

points, 3D points and real biomedical data. The experiments were implemented in Matlab and

run on a 2.4 GHz Intel Core i5 CPU with 8GB memory.
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Algorithm 1 Registration Algorithm

Input: Two point sets X and Y, parameters β, λ.
Output: Optimal transformation T.

Initialize : β > 0, λ > 0, 0 ≥ w ≥ 1, W = 0, σ2 = 1
DNM

∑M,N
m,n=1 ‖xn − ym‖2.

1: Construct G : gij = e
− 1

2β2
‖yi−yj‖2

2: Compute feature matrix A for point set X.
3: EM optimization, repeat until convergence.
4: E-step:
5: Compute feature matrix B, for point set Y.
6: Calculate KL divergence between A and B.
7: Initialize Smn according to Equation 3.8.
8: Compute posterior probability P according to Equation 3.11.
9: M-step:

10: Solve
(
G + λσ2d(P1−1)

)
W = d(P1−1)PX−Y

11: T = Y +GW
12: w = 1− Np

N

13: σ2 = 1
NpD

(
tr(XTd(PT1)X)

)
− 2tr((PX)TT) + tr

(
TTd(P1)T

)
14: The aligned point set is T = Y + GW.
15: The probability of correspondences is given by P.

Figure 3.2: Results of the proposed algorithm on fish (top two rows) and Chinese character (bottom
two rows) shapes, with deformation, noise, outliers, rotation and occlusion (left to right). The
template point set (blue) is aligned with the reference point set (red). For each shape the top row
represents the initialization and bottom row represents the registration result.



41

Figure 3.3: Registration results of on Chinese character and fish in the presence of (a) deformation,
(b) rotation, (c) occlusion, (d) outliers and (e) noise. From left to right, point set initialization,
result of CPD, CPD-SC and proposed algorithm.
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Figure 3.4: Performance of the proposed algorithm (black) in comparison with CPD (red),
CPD+SC (blue) and GMMREG (magenta) on 2D fish dataset (left) and 2D Chinese charac-
ter (right) in the presence of (top to bottom) (a) deformation, (b) noise, (c) occlusion, (d) outliers
and (e) rotation.
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Figure 3.5: Comparison between CPD (red), CPD+SC (blue) and proposed algorithm (yellow)
based on of time taken on on 2D fish dataset (left) and 2D Chinese character (right) in the
presence of (top to bottom) (a) deformation, (b) noise, (c) occlusion, (d) outliers and (e) rotation
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3.3.1 2D Fish and Chinese Character Dataset

To test the performance in the 2D case, we used the synthesized datasets of the fish and the

Chinese character generated by Chui and Rangarajan [40]. For both the fish and Chinese character,

there are five sets of data to measure the robustness of the algorithm in the presence of different

levels of noise, outliers, rotations, occlusions and deformations. Each set at each level had 100

representative example created by the following modifications. The addition of zero-mean white

noise with standard deviation ranging from 0 to 0.05 to the point set produced the five levels

of noise. To produce the outlier dataset, points generated randomly from a normal zero-mean

distribution were added, with outlier to data ratio ranging from 0 to 2. The data points were

rotated by 0, 30, 60, 90, 120, and 180 degrees to generate the rotation dataset. Deletion of data

points, with the ratio of deleted points to original points ranging from 0 to 0.05 generated the

occlusion dataset. The deformations were generated by parameterizing the data points by a mesh

of control points, perturbing these control points and using splines to interpolate the deformation.

The mesh points were perturbed by using Gaussians of mean zero and standard deviations varying

from 0.02 to 0.08. The results obtained after registration for different settings for both fish and

Chinese character are shown in Figure 3.2

To test the performance for purely rigid deformations, we took a fish point set and applied

various levels of rotations, scaling and translations. The proposed algorithm converged in two

iterations while CPD took around twenty iterations, as the proposed local structural measure is

rotation, translation and scale invariant. Further CPD does not perform well for rotations greater

than 60 degrees, while the proposed similarity measure can handle any angle of rotation.

3.3.2 Results on 2D Data

Analysis of Registration Error

To evaluate the performance of the proposed algorithm, we compared it with GMMREG [88], CPD

[128] and CPD-SC [116] algorithms described in 2.1. Here we are referring to the work by Ma and

colleagues as CPD-SC. The GMMREG and CPD algorithms had the source code available, but for

CPD-SC we re-implemented it based on the authors’ description of their algorithm as the source

code was not available. The results obtained after registration for different settings in the non-rigid

case for both the fish and Chinese character using CPD, CPD-SC and the proposed algorithm are

shown in Figure 3.3. In the experiments, we set the value of λ = 1, and β = 2. The registration

performance of GMMREG, CPD, CPD-SC and the proposed algorithm for different scenarios on

2D fish and Chinese character are compared in Figure 3.4. The mean squared distance between
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corresponding points after the registration is taken as the error measure. The error-bars indicate

the results for each test averaged over 100 runs. From these figures it can be seen that the proposed

algorithm outperforms the other three algorithms in all scenarios. The first row of Figure 3.4 shows

that addition of local structural information results in lower error compared to other algorithms

in the presence of deformation. The advantage of including our structural similarity measure is

more significant as the level of deformation increases. In addition to the mean value of error being

decreased, the standard deviation of error is also reduced using the proposed algorithm.

A similar trend can be observed in the experiments involving various levels of occlusion, rota-

tion, noise, and outliers. In CPD-SC, the shape context similarity measure is calculated only once

for every ten iterations as it is a computationally expensive step. Therefore, in CPD-SC if a wrong

correspondence is given high probability at the beginning it will be difficult to change in further

iterations. Further in CPD-SC the matched points are assigned fixed high probability and all other

points are assigned a fixed low probability, which are set by the user. In our proposed algorithm

the membership probabilities vary depending on the local structural similarity. Matching points

have the maximum probability and the probability keeps decreasing as the local structure changes.

In this setting, the probability of non-matching far off points is assigned a much smaller value com-

pared to the one used in CPD-SC as in the proposed measure the value decreases exponentially

according to Equation 3.8. This leads to a faster decrease in the variance of the Gaussians when

compared to CPD-SC as seen in Figure 3.5 (c).

Analysis of Computational Efficiency

We also compared the computational efficiency of these algorithms. The time taken to converge by

CPD, CDP-SC and the proposed algorithm for 2D fish and Chinese character dataset under various

settings are shown in Figure 3.5. Even though the shape context similarity measure is calculated

only once for every ten iterations, CPD-SC algorithm takes longer time than both CPD and the

proposed algorithm. This increase in time is due to the Hungarian algorithm used to calculate the

correspondences in CPD-SC. The proposed algorithm converges in far less number of iterations

when compared to the other two algorithms. This is because the proposed similarity measure forces

similar points to align, leading to faster convergence. Though calculating the similarity measure

in each iteration takes extra time, as the number of iterations to convergence is much smaller than

CPD, the overall runtime of the proposed algorithm is smaller.

To examine how the proposed measure helps improve the performance, we considered an exam-

ple from the fish dataset with the smallest level of deformation. It can be seen from Figure 3.6 that

CPD, CPD-SC and the proposed algorithm all lead to good correspondences, but the proposed
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Figure 3.6: Top row shows the initialization and registration results for CPD, CPD-SC and the
proposed algorithm. The graphs compare the variation of (a) Mean square error, (b) Log-likelihood
value, (c) Variance of the Gaussians in the GMM, and (d) Mean posterior probability along different
iterations.

algorithm converges in 3 iterations, whereas CPD+SC takes 12 and CPD 28 iterations to reach

convergence. Figure 3.6(a) shows the variation of mean square error with iterations. As CPD-SC

and the proposed algorithm use local structural measure to define the membership probabilities,

the initial error is much lower when compared to CPD. As the local membership probability nar-

rows the range of corresponding points the width of the Gaussians is also reduced as compared to

CPD as seen in Figure 3.6(c).

The variation of the log-likelihood value, which is minimized to obtain registration result, is

shown in Figure 3.6(b). It can be seen that addition of local structural measure helps in steeper

reduction of the function, and the proposed method has much steeper reduction as the membership

probability is varied according to the structural similarity, instead of keeping it constant as in CPD-

SC. As the true correspondences are known, we calculated the mean posterior probability for the

corresponding points at each iteration. From figure 3.6(d) it can be seen that the proposed method

finds the correct matches (probability one) much faster than the other two algorithms.

Unlike CPD where the weight of the outliers w, was set by the user, we have solved for w

as an unknown parameter in the EM framework. The variation of the weight of the outliers

w, is examined over different iterations. From Figure 3.7 it can be seen that irrespective of the

initialization, the weight eventually converged to the correct percentage of outliers.
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(a) (b)

Figure 3.7: Variation of weight (w) along iterations for different initializations

3.3.3 Non-Rigid 3D Race Registration

To test the performance of the algorithm on 3D data, we took the 3D face point set and introduced

various levels of noise and rotations. The initialization and final alignment at different settings are

shown in Figure 3.8. The proposed algorithm performs better than CPD in the presence of various

levels of both noise and rotation as seen from Figure 3.9. Our method of calculating probabilistic

distances is computationally less complex than calculating shape context for 3D case.

3.3.4 Non-Rigid 2D Tools Registration

We evaluated the performance of the proposed algorithm on 2D tools dataset [29]. This dataset

consists of articulated shapes for shape similarity experiments. We selected boundary points

from the silhouettes of the different shapes and performed point set registration using different

algorithms. It can be observed from Figure 3.10 that the addition of local structural information

led to better performance. The first row shows the two shapes to be registered and the remaining

rows show the results of registration using different algorithms. The proposed algorithm results

in better correspondences between points than the other three. The negative log-likelihood value

which is the objective function we are minimizing was much lower for the proposed algorithm when

compared to CPD or CPD+SC suggesting better correspondence between the points.

3.3.5 Non-Rigid 2D Lung Point Set Registration

We also evaluated our algorithm on real data from chest radiography images. We used chest

radiographs from the Japanese Society of Thoracic Radiology database [152], which had manual
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Figure 3.8: Initialization (left) and final alignment (right) of 3D face point sets in the presence of
noise (top) and rotation (bottom)

(a) (b)

Figure 3.9: Comparison of performance between CPD and proposed algorithm in the presence of
rotation and noise in 3D face dataset.

segmentations of the lungs, heart and clavicles for each image [179]. The registration results show

that inclusion of local structural information during registration helps in better alignment of point

sets. This can be observed in the alignment of the right lung in Figure 3.11.

3.4 Conclusion

In this chapter, we proposed a new algorithm for point set registration. The key feature of this

algorithm is that it helps preserve the local structure as well as the global structure of the point set.

We introduced a new measure to capture the local structure of the point set. This measure is used
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Figure 3.10: Comparison of performance between GMMREG, CPD, CPD+SC and proposed al-
gorithm on articulated tools dataset

(a) (b) (c)

Figure 3.11: Comparison of performance between CPD and proposed algorithm on chest radiogra-
phy images (a) Initializations (b) Registration with CPD (c) Registration with proposed algorithm

to represent the membership probabilities of GMM, which in turn helps in faster convergence of the

algorithm. We derived the weight of the outlier distribution by considering it to be an unknown in

the expectation maximization framework. We tested this algorithm on 2D, 3D and real datasets.

The proposed algorithm yields better results even in the presence of noise, deformation, outliers,

occlusion and rotation than the existing algorithms.

Having observed that the proposed local structural measure reduces the computational time and

error in pairwise point set registration, the next step is to apply this measure in group-wise point set

registration setting to see if it results in comparable outcome. The present group-wise registration

algorithms take a few hours to obtain results on small datasets [28]. Reducing computational time

in this setting would be a prominent contribution. Further in group-wise registration of sequence
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of images (e.g. Heart MRI sequence), there is temporal information that can be modeled into the

registration algorithm, to give better registration results.

Noise and outliers are presently accounted by a uniform distribution. This can probably be

improved by modeling noise and outliers using better fitting models. In addition to improving

registration performance, a local structural measure can also help in modeling noise and outliers.

When we see an image containing an object along with outliers and noise, we may be able to

roughly estimate which of the points belong to the object and which among them are outliers. We

can identify two different distributions of points. If we come up with a measure to model these two

distributions mathematically, then the error in the registration process can be further reduced.

The regularization in the proposed algorithm only makes sure that the motion is coherent. A

regularization method conserving local structure along with motion coherence can help achieve

better registration preserving the overall structure. Further, the proposed algorithm is still slow

when applied to large datasets. There is a need to come up with a new framework that can speed

up the registration process to greater extent.



Chapter 4

Segmentation: Modifications to Enhance

the Performance of U-Net

4.1 Introduction

Once the images are pre-processed using registration, the next step in most image processing

pipelines is segmenting the region of interest. In Section 2.2 we discussed that U-Net is the most

commonly used segmentation architecture. It consists of an encoding path that extracts features,

and a decoding path that up-samples the extracted features to obtain the final segmentation.

Though U-Net performs well in segmenting most objects, modifying its design to better suit the

problem in hand could further improve its performance. In this chapter, we experiment with several

modifications to the U-Net architecture to improve its performance in segmenting tumors in MRI

images of human prostates. As tumor occupies a very small region in the entire image, using a

method designed to deal with such class imbalance could improve the segmentation performance.

We experiment with Tversky loss and Focal loss, which are specially designed for datasets with

imbalanced classes. We explore the effect of pruning the extracted features with attention gates so

as to only retain features relevant for segmentation. We also explore the effect of adding auxillary

functions, such as an auto-encoder branch and companion objective functions at each level of the

U-Net, to provide additional guidance in extracting representative features.∗

∗The work in this chapter related to attention gates has been published in A. Machireddy, N. Meermeier,

F. Coakley, and X. Song, 2020, Malignancy detection in prostate multi-parametric MR images using U-Net with

attention, in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society

(EMBC) (pp. 1520-1523).

51
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4.2 Background and Related Work

4.2.1 Prostate Cancer Diagnosis

Prostate cancer is the most common cancer diagnosed among men in the United States and is the

second leading cause of death due to cancer [154]. Prostate cancer detected when still localized

provides the highest chance of being cured [31]. Current screening tests include a digital rectal

exam and a blood test to detect the level of prostate specific antigen (PSA) - a protein made

by the cells in the prostate [126]. An elevated level of PSA is indicative of prostate cancer or

other prostate related problems. A transrectal ultrasound guided biopsy is performed to confirm

a diagnosis of prostate cancer when the rectal exam or the blood test results are abnormal. The

transrectal ultrasound guided biopsy randomly extracts 12 specimens from several areas of the

prostate [35]. Due to random sampling, it misses clinically significant tumors in 30-40% of the

cases [83] and sometimes underestimates the aggressiveness and extent of the cancer [99].

An elevated PSA but negative transrectal ultrasound guided biopsy could indicate that the

tumor might have been missed and such patients are referred to undergo multi-parametric MRI

imaging. As mentioned in Section 2.5, MRI scans can be programmed for several different pulse

sequences, or parameters, to obtain images that highlight specific differences between healthy and

unhealthy tissue. When two or more parameters are used, it is called multi-parametric MRI imag-

ing. For localizing prostate tumors, multi-parametric MRI includes T2-weighted images, diffusion

weighted images and DCE-MRI images. The T2-weighted image is a high-resolution image, which

are helpful in defining anatomical features. A Malignant tumor appears as a homogeneous low-

intensity region against the high-signal-intensity prostate tissue in a T2 image [194]. From diffusion

weighted images we derive apparent diffusion coefficient (ADC) images and use the diffusion of

water molecules to generate the contrast in MRI as discussed in Section 2.5. A malignant tumor

appears as a darker region in ADC images due to restricted diffusion in the tumor regions because

cells in tumors are densely packed and do not allow for free diffusion of water [194].

Recent studies have shown that multi-parametric magnetic resonance imaging can provide

accurate localization and staging of prostate cancer [126, 60, 17, 126]. Staging is the process of

determining how much cancer is within the body (tumor size) and how far it has spread from

where it originated. Interpreting MRI sequences manually requires expertise from the radiologist

and is time consuming and error prone. Segmentation of prostate tumors is an important step

as it helps in further downstream analysis and is also used to guide in-bore biopsy to obtain an

accurate diagnosis. Therefore, an automated technique for segmenting tumors from MRI images

is highly desirable.
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4.2.2 Related Work

Several studies have attempted to segment malignant tumors from multi-parametric MRI images

of prostate. Artan et al. classifying pixels of the peripheral zone of prostate as malignant vs. non-

tumor by combining support vector machines with conditional random fields and achieved a Dice

score of 0.56 using T2 and ADC images and the kep parametric map from DCE-MRI images

[10]. Dice score is an overlap index most commonly used to validate medical segmentation results

[145]. It ranges between 0 and 1, where Dice score of 1 denotes perfect overlap and 0 denotes no

overlap. Chan et al. used the anatomical location of the tumor and texture features (gray level

concurrence matrix and discrete cosine transform) from T2-weighted, T2-mapping and line scan

diffusion imaging to classify pixels in the peripheral zone of the prostate as malignant vs. non-

tumor using SVM and Fisher’s linear discriminant and achieved area under the receiver operating

curve (ROC AUC) values of 0.76 and 0.84 respectively [32]. Liu et al. achieved a Dice score

of 0.62 using fuzzy Markov random fields for malignant tumor segmentation by combining MR

spectroscopic images, T2, DWI and DCE-MRI [115]. Guo et al. used fuzzy c-means clustering

and Bayesian modeling to produce a membership degree map, which is used to make a decision on

cancer regions and achieved a Dice score of 0.76 by combining MR spectroscopic imaging, T2, DWI

and DCE-MRI images [70]. Lavasani et al. extracted semi-quantitative and wavelet-based features

from DCE-MRI voxel time courses and used fuzzy c-means clustering to segment malignant tumors

and achieved a Dice score of 0.83 [100]. Yang et al. generated a cancer response map at the last

convolutional layer of a network trained to classify MRI images as cancerous or benign and achieved

a Dice score of 0.66 by combining T2 and ADC images [188]. Kohl et al. used adversarial networks

to segment malignant tumors from T2, ADC and DWI images to achieve a Dice score of 0.41 [95].

Several benign conditions, such as fibrosis, post-biopsy hemorrhage and prostatitis, appear as

low T2 signal mimicking prostate cancer [94]. Due to similar image properties, over-segmentation

of tumor tends to occur in prostate multi-parametric MRI images. In this chapter we explore

multiple strategies to reduce the over-segmentation.

4.3 Proposed Approach

4.3.1 Segmentation network

We first design a network based on the U-Net architecture defined in Section 2.2 to segment tumors

from T2 and ADC images. We experiment with different depths of the network to determine the

best architecture. In order to reduce over-segmentation, we experiment with multiple strategies
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that can be broadly classified into two types - modifying the loss function and modifying the U-Net

architecture. In addition to the commonly used Dice loss, we experiment with Tversky loss and

Focal loss, which are specially designed for datasets with imbalanced classes. We further modify

the U-Net architecture by adding attention gates, adding an auto-encoder branch and using deep

supervision.

Loss Functions

We experiment with three loss functions - Dice loss, Tversky loss and Focal loss. Dice loss is a

standard loss function used for segmentation. Tversky loss and Focal loss were introduced to deal

with class imbalance problems. As the tumor occupies a small region in the entire image, we look

into the ability of Tversky and Focal losses in improving the segmentation results.

Dice Loss: As described in Section 4.2.2, dice coefficient is an overlap index most commonly used

to validate medical segmentation results [145]. It ranges between 0 and 1, where Dice coefficient

of 1 denotes perfect overlap and 0 denotes no overlap. Dice coefficient is defined as

Dice =
2
∑N
i pigi∑N

i p
2
i +

∑N
i g

2
i

=
2TP

2TP + FP + FN
(4.1)

where N is the total number of pixels, pi and gi are the binary labels from the predicted segmen-

tation and ground truth labels respectively, TP is true positives, FP is false positives and FN is

false negatives. As neural networks require a loss function that can be minimized, we use 1−Dice

as the loss function.

Dice loss = 1−Dice (4.2)

Tversky loss: Tversky loss is a generalization of Dice loss that allows for better control over

trade-off between precision and recall [147].

Tversky Index =
|PG|

|PG|+ α|P\G|+ β|G\P |
=

TP

TP + αFP + βFN
(4.3)

Here P and G represent the set of predicted and ground truth binary labels respectively, PG

represents the set of pixels labeled as tumor in both the predicted segmentation and ground truth,

P\G represents the set of pixels labeled as tumor in the predicted segmentation and non-tumor in

the ground truth and G\P represents the set of pixels labeled as tumor in the ground truth and

non-tumor in the predicted segmentation. The values of α and β control the magnitude of penalties

for false positives and false negatives. In the case of α = β = 0.5 the Tversky index simplifies to
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be the same as the Dice coefficient in Equation 4.1. Similar to Dice loss, 1−TverskyIndex is used

as the loss function to train U-Net.

Tversky loss = 1− Tversky Index (4.4)

Focal loss: Focal loss emphasizes learning hard misclassified examples by applying a modulating

term on the cross entropy loss function [111].

Focal loss = −αt(1− pt)γ log(pt) (4.5)

pt =

p if y = 1

1− p otherwise

(4.6)

Here γ is the focusing parameter, α is a weighting factor to balance classes and p is the predicted

probability for the class with label y = 1. If an example is classified correctly, its predicted

probability p will be close to 1 and therefore the value of pt will also be close to 1. When pt is close

to 1, the value of the modulation factor (1− pt)γ becomes close to 0 and therefore the loss for well

classified examples is down-weighted. The focusing parameter γ controls the rate at which the easy

examples are down-weighted. Therefore, α balances the importance given to positive vs. negative

examples, while γ balances the importance given to easy vs. hard examples. If the weight of one

class is set to α, the weight of the other class is set to 1− α.

U-Net Modifications

Attention U-Net: We design a network similar to U-Net and incorporate attention gates to

highlight relevant features for tumor segmentation. The architecture of a basic U-Net and the

attention gates were discussed in Section 2.2. The proposed network architecture is shown in

Figure 4.1. In the conventional U-Net, feature maps of similar resolution from the encoding path

are directly concatenated with the up-sampled feature maps in the decoding path. The tumor only

occupies a small portion of the entire image and exhibits large shape variability among patients.

Due to successive down sampling in the encoding path, the information regarding the precise

location of tumor is lost at coarser spatial levels. Direct concatenation of feature maps to the

decoding path lacks locational precision and tends to increase the false positive predictions [131].

Similar to work done by Oktay [131] as discussed in Section 2.2, we modify the U-Net architecture

by incorporating attention gates to prune the feature maps before concatenation to preserve only

the activations relevant for tumor segmentation and suppress the irrelevant background regions.
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Figure 4.1: U-Net architecture with attention gates.

Auto-encoder branch: Inspired by the work of Myronenko et al. [127], we incorporate an

additional variational auto-encoder branch to the decoder of the U-Net to provide added guidance

and also regularize the shared encoder as shown in Figure 4.2. By providing an extra task, the

encoder is forced to learn richer feature representations. The variational auto-encoder maps the

features of the encoder endpoint to a multivariate latent distribution representative of the training

images. The output of the encoder endpoint is reduced to a low-dimensional latent space of 2N

(N to represent mean and N to represent standard deviation). Then a sample is drawn from the

latent distribution to reconstruct the input image following the same architecture as the decoder

in the U-Net. The loss function here is the sum of the losses from the decoder branch and the

VAE branch. The first term of the VAE loss represents the reconstruction error and the second

term represents the regularization which ensures that the learnt distribution is similar to a unit

Gaussian distribution.

L = Ldice + λLvae (4.7)

Lvae = ‖Iinput − Ipred‖2 +
1

N

∑
µ2 + σ2 − log σ2 − 1 (4.8)

Deep supervision: Chen et al. introduced the concept of deeply supervised nets for classifica-

tion by introducing companion objective functions at each hidden layer in addition to the overall

objective function [103]. Inspired by this work, we down-sample the final output to the dimensions

of the decoder outputs at multiple intermediate levels and calculate the Dice loss at each level of
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Figure 4.2: U-Net architecture with the added auto-encoder branch.

the U-Net in addition to the final level. The proposed network with deep-supervision is shown

in Figure 4.3. Deep supervision serves as a proxy for the discriminativeness of the feature maps

at each level and to the quality of the upper layer feature map. It influences the weight update

process to favor highly discriminative feature maps.

4.4 Methods

4.4.1 Patient Cohort and Image Acquisition

A number of subjects with elevated PSA but negative transrectal ultrasound guided biopsy were

referred to undergo multi-parametric MRI imaging. The T2, ADC and DCE-MRI images were

acquired using a Philips system at Oregon Health and Science University in Portland, USA. The

in-plane resolution and spacing between slices for T2 were 0.321 mm and 3 mm respectively, and

for ADC 1.023 mm and 3.3 mm respectively. Based on the information from all three scans, a

radiologist identified tumors in seventy eight subjects and manually outlined the prostate tumor

regions on the T2 images. Based on these manually labeled tumor regions, an image guided in-

bore biopsy was performed. A specimen obtained from the targeted biopsy provides a more reliable

ground truth than that obtained using transrectal ultrasound guided biopsy. Based on the in-bore

biopsy, 55 tumors were found to be malignant while 23 were benign.
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Figure 4.3: U-Net architecture with deep-supervision.

4.4.2 Mapping between T2 and ADC Images

The tumor regions are manually outlined only on T2 images. Due to the difference in in-plane

resolution and spacing between slices of T2 and ADC images, the manual segmentation cannot

be directly transferred to the ADC images. The ADC images need to be registered with the

T2 images in order to transfer the manual segmentation. As seen from Figure 4.4, the T2 and

ADC images are too dissimilar to apply any intensity or mutual information based registration

algorithms. Therefore, we use the attributes in the DICOM header file to map the 3D coordinates

of T2 and ADC images. The DICOM standard defines a reference coordinate system that is patient

oriented. The reference coordinate system allows us to measure the position and orientation of an

image with respect to the patient. Three attributes in the DICOM header file that provide this

information are - image position (S, the x, y, and z coordinates of the upper left hand corner of

the image, in mm), pixel spacing (∆i, ∆j the adjacent row and column spacing in mm) and image

orientation (X, Y the direction cosines of the first row and the first column with respect to the

patient). Using these three attributes the T2 and ADC image stacks are converted to a common
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Figure 4.4: T2 and ADC images are dissimilar to apply any intensity or mutual information based
registration algorithms.

reference coordinate system based on the following equation.
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Here Pxyz represents the 3D coordinates of the pixel (i, j) in the reference coordinate system, Sxyz

represents the three values of image position (which gives the position of the center of the first

voxel in the reference coordinate system), Xxyz and Yxyz represent the X and Y direction cosines

of the image orientation and ∆i and ∆j represent the pixel spacing. The 3D coordinates of pixels

in T2 and ADC image stacks in the reference coordinate system are obtained using Equation 4.9.

The ADC images are up-sampled by interpolating the 3D ADC data and querying for its value

corresponding to each (x, y, z) location from the T2 image stack. The process of mapping T2

and ADC images is represented in Figure 4.5 and the results after mapping images from both

modalities are shown in Figure 4.6.

4.4.3 Implementation details

The proposed and the baseline U-Nets are implemented using the Keras and TensorFlow [1] li-

braries. We use an Adam optimizer with a learning rate of 1e-4. We normalize all input images

to have zero mean and unit standard deviation. We augment data using rotation (0-180 degree),

horizontal mirror flips, zooming (0-20%), and horizontal and vertical shifts (0-20%) of the image.

We use a batch size of 1, drawing each training image once per epoch in a random order.
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Figure 4.5: Process of establishing correspondences between image stacks.

Figure 4.6: Mapped T2 and ADC images

The T2 and ADC image slices of the 78 patients are divided into test and train sets as shown

in Table 4.1. All 2D images from a given patient would go to either train or test set but not both.

For the experiments each slice is considered as a separate case. The total number of T2 and ADC

slices are 165 and 132 for malignant and 65 and 48 for the benign cases respectively. The number of

slices in ADC is lower than T2 as ADC signal is distorted in few cases due to the presence of metal

implants. We use U-Net as the baseline to compare the performance of all other modifications in

segmenting tumors from T2 and ADC images of the prostate.

4.4.4 Evaluation metric

The tumor segmentation is evaluated using three metrics: Dice coefficient, recall, precision. The

Dice coefficient provides a measure of overlap between the segmentation output and the ground

truth. Recall is the fraction of tumor pixels correctly predicted as tumor and precision is the
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Table 4.1: Train and test data in each category by subjects and slices.

Total Train Test

Malignant

Number of subjects 55 43 12

Number of T2 slices 156 117 38

Number of ADC slices 132 102 30

Benign

Number of subjects 23 18 5

Number of T2 slices 65 51 14

Number of ADC slices 48 38 10

fraction of the predicted pixels that belong to the tumor. Here the recall and precision are metrics

calculated on the tumor pixels and not on the fraction of patients. If P is the predicted output

and G the ground truth, the Dice, recall and precision measures are represented as the following:

Dice =
2|P ∩G|
|P |+ |G|

(4.10)

Recall =
|P ∩G|
|G|

(4.11)

Precision =
|P ∩G|
|P |

(4.12)

4.5 Results

We concentrate on segmenting the tumor (from both malignant and benign cases), as tumor seg-

mentation is required to guide the in-bore biopsy. Segmentation results using U-Net are presented

in Section 4.5.1, while results on different loss functions and U-Net modifications are presented

in Sections 4.5.2 and 4.5.3 respectively. In Section 4.5.4, we briefly explore the segmentation of

malignant tumors alone. In Section 4.5.5, we explore two ways of combining data from T2 and

ADC images to improve the segmentation performance.

4.5.1 Tumor Segmentation using U-Net

We first present the tumor segmentation results obtained using U-Net with Dice loss function. We

initially use the entire T2 and ADC images to segment the tumors as shown in Figure 4.7. But we

observe that in a few cases, regions outside the prostate are also segmented as tumors, as in the last
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column in Figure 4.7. There is an automatic prostate segmentation algorithm already employed

in the system capturing the T2 and ADC images. We therefore can segment the prostate region

from the T2 and ADC images and perform tumor segmentation only on the prostate region. The

qualitative results of performing segmentation on prostate region alone are shown in Figure 4.8.

Using the prostate alone to segment the tumors increases the segmentation performance as shown

in Table 4.2.

The overall segmentation performance was better on ADC images than on T2, due to the highly

discriminable presentation of the malignancy in the ADC images as a darker region against the

generally bright appearance of prostate. T2 images have rich anatomical information and present

a higher chance of other regions mimicking the low intensity signal characteristic of tumor tissue.

We experiment with the depth of the U-Net to design a network suitable for the tumor seg-

mentation problem. We observe that a 4 level deep network with 512 filters in the deepest layer

(Figure 2.3) resulted in the best Dice score for T2 images, while a 5 layer network resulted in best

performance for ADC images as seen in Table 4.3. We start with 32 filters and double the number

of filters as we go down each level. A network with 64 filters represents a one level U-Net. For all

evaluations in the following sections we used the 4-level deep U-Net with 512 filters at its deepest

layer as the base against which the performance of the modified networks are evaluated. This is

also the network used to obtain the results in Table 4.2. Therefore the best Dice, precision and

recall values obtained for this setting for T2 images are 0.49, 0.77 and 0.36 respectively and for

ADC images are 0.61, 0.88 and 0.46 respectively.

As seen in Table 4.4, 50% of the tumor pixels are segmented in 88% of slices in T2 and 85%

of the slices in ADC. Using U-Net the overall recall is high, i.e. the tumor pixels are segmented

correctly, but the precision is low, i.e. a portion of the predicted pixels are not tumorous, in other

words there is over-segmentation, as can be seen in Figure 4.8 and Table 4.3. We employ several

techniques to reduce the over-segmentation and improve the overall segmentation accuracy. We

present the results of using different loss functions in Section 4.5.2 and different modifications of

the U-Net architecture in Section 4.5.3.

4.5.2 Loss Functions

We use the 4-level deep U-Net with 512 filters at its deepest layer trained with Dice loss as the

base and perform all modifications on this architecture. To improve the segmentation performance

we employ 2 loss functions that are designed for imbalanced datasets. The tumor occupies a very

small region on the whole image and therefore the number of tumor pixels are much lower than

the number of non-tumor pixels.
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Figure 4.7: Tumor segmentation from the full T2 and ADC images using U-Net. First and third
rows show T2 and ADC images respectively, with ground truth labels of tumors marked in green.
Second and fourth rows show the same T2 and ADC images with segmentation result from U-Net
marked in green.

We first look at the Tversky loss (Equation 4.3). A higher value of α in the Tversky loss will

shift the emphasis to reduce false positives and boost the precision. The results are shown in Table

4.5 using a range of values for α and β. With for α = 0.75 and β = 0.25 in the Tversky loss, dice

score improved from 0.49 to 0.55 in T2 images and 0.61 to 0.67 in ADC images. But with the

increase in precision value we observe a slight decrease in the recall value. This could be due to

the fact that some non-tumor regions display features similar to that of the tumor and when the

network is encouraged to avoid such regions, certain regions of the tumor also get avoided, leading

to the reduced recall value.

We next look at the Focal loss (Equation 4.5). We experiment with values of focusing parameter

γ and weighting factor α in the Focal loss. The results for various values of the parameters are

shown in Table 4.6. As we increase the focusing parameter γ, we observe an increase in the recall

value but a decrease in the precision value. It seems to focus on the misclassified tumor pixels but

not on the misclassified non-tumor pixels. There is no improvement in Dice score in T2 images

but in ADC images we obtain a Dice score of 0.67 with Focal loss compared to 0.61 with Dice loss.
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Figure 4.8: Tumor segmentation from segmented prostate regions in T2 and ADC images using
U-Net. First and third rows show T2 and ADC images respectively, with ground truth labels
of tumors marked in green. Second and fourth rows show the same T2 and ADC images with
segmentation result from U-Net marked in green.

On closer observation, this increase is not due to the focusing effect of the Focal loss but rather

due to better balancing of weights between the two classes as seen from Table 4.6 with γ = 0 and

α = 0.75. When γ = 0, Focal loss is equivalent to weighted cross entropy loss. Weighting the

tumor pixel more allows the network to pay more attention to pixels representing tumor. This

weighting is helpful as there are very few pixels representing tumor compared to non-tumor in the

image, and cross-entropy loss without this weighting would be dominated by the contribution from

the non-tumor pixels.

Overall, we observe that the Tversky loss improves the segmentation performance as the weight

of the false positive and false negative terms could be controlled unlike in the Dice loss function.

Experiments using Focal loss show that modifying the weights of the classes in the loss function to

represent the class imbalance improves the results in ADC images but did not help in T2 images.

4.5.3 U-Net Modifications

Though we observe better performance using different loss functions, in this section we still use the

4-level deep U-Net with 512 filters at its deepest layer trained with Dice loss as the base. Table 4.7
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Table 4.2: Quantitative results comparing tumor segmentation from full image and prostate alone.

Modality Image type Dice Recall Precision

T2
Full 0.43 0.63 0.33

Prostate 0.49 0.77 0.36

ADC
Full 0.54 0.70 0.44

Prostate 0.61 0.88 0.46

Table 4.3: Dice score for different network sizes for tumor segmentation.

Number of filters
in deepest

encoder level

T2 ADC

Dice Recall Precision Dice Recall Precision

64 0.33 0.82 0.21 0.58 0.83 0.44

128 0.45 0.75 0.32 0.60 0.84 0.47

256 0.49 0.79 0.36 0.62 0.84 0.49

512 0.49 0.77 0.36 0.61 0.88 0.46

1024 0.39 0.82 0.26 0.64 0.80 0.54

presents the segmentation performance using the three modifications on the U-Net architecture.

Integrating attention gates appears to increase the precision and the overall Dice score in both T2

and ADC images. The attention gates prune the feature maps to suppress features of irrelevant

background regions from showing up in the final segmentation map. This reduces the false positive

predictions and thus improves the overall precision.

Addition of the auto-encoder branch slightly helps ADC images but not T2 images. The main

idea behind adding the auto-encoder branch is to provide an auxillary task that can offer extra

guidance to the encoder in extracting better representative features. However, with the addition

of the auto-encoder branch, the encoder needs to learn features that are both representive of the

input image to reconstruct it and discriminative enough to enable segmentation of the tumor.

We assume the poor performance in T2 images is due to its rich representation of anatomical

information. The features required to differentiate the tumor pixels from the non-tumor pixels

could be different from the features required to reconstruct the rich anatomical information in T2
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Table 4.4: Percentage of slices tumor was identified based on recall.

Recall > 5% Recall > 10% Recall > 50% Recall > 80%

T2 100% 100% 88% 78%

ADC 100% 98% 85% 65%

Table 4.5: Quantitative results comparing tumor segmentation for different setting of α and β in
the Tversky loss function.

T2 ADC

α β Dice Recall Precision Dice Recall Precision

0.5 0.5 0.49 0.77 0.36 0.61 0.88 0.46

0.67 0.33 0.50 0.54 0.47 0.66 0.69 0.63

0.75 0.25 0.55 0.60 0.51 0.67 0.66 0.69

0.8 0.2 0.53 0.56 0.51 0.63 0.61 0.65

0.83 0.17 0.49 0.54 0.46 0.63 0.58 0.69

Table 4.6: Quantitative results for prostate tumor segmentation for different setting of γ and α in
the Focal loss function.

T2 ADC

γ α Dice Recall Precision Dice Recall Precision

0 0.75 0.49 0.79 0.35 0.67 0.88 0.54

0.1 0.75 0.40 0.86 0.26 0.60 0.86 0.51

0.5 0.75 0.43 0.85 0.29 0.61 0.89 0.47

0.2 0.5 0.42 0.86 0.28 0.59 0.88 0.47

0.5 0.5 0.49 0.77 0.36 0.60 0.88 0.46

1 0.25 0.43 0.86 0.29 0.59 0.90 0.44

2 0.25 0.30 0.96 0.18 0.45 0.94 0.30
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Table 4.7: Quantitative results for prostate tumor segmentation for different modifications to
U-Net.

T2 ADC

Network type Dice Recall Precision Dice Recall Precision

U-Net 0.49 0.77 0.36 0.605 0.88 0.46

Attention U-Net 0.52 0.55 0.49 0.644 0.67 0.62

U-Net VAE 0.38 0.76 0.25 0.606 0.85 0.47

U-Net with deep supervision 0.50 0.80 0.36 0.637 0.88 0.50

images. This mismatch in the feature set required by the two tasks could be the reason for the

reduced performance. On the other hand, ADC images contain simpler image content, and the

features required to reconstruct these images could be simpler and more aligned with the features

required for the segmentation task. Therefore, in ADC images the auto-encoder branch works as a

complementary task enhancing the performance while in T2 images it degrades the performance.

Deep supervision increases the Dice score as it forces the network to learn better features at

each level of the U-Net. Providing feedback at each level offers an extra input to correct the weights

and forces the network to learn better features at each level.

4.5.4 Prostate Cancer Segmentation

So far we have been segmenting tumors - both malignant and benign - from the T2 and ADC

images. The results so far have not been as strong as what we hoped for. The low performance

could be due to the presence of benign tumors that present themselves with features similar to

malignant sometimes and non-tumor regions sometimes as seen in Figure 4.9. We therefore try to

access the segmentation performance on malignant tumors alone.

Segmentation of Malignant Tumors

Here we remove all the benign cases from the dataset and analyze the performance of the network

in segmenting tumors only in the malignant cases. Examples of segmentation results obtained

on malignant tumors in T2 and ADC images using U-Net and U-Net with attention mechanism

trained with Dice loss function are shown in Figure 4.10. Using U-Net the mean Dice, recall and

precision values obtained for T2 images are 0.58, 0.70 and 0.49 respectively and for ADC images



68

Figure 4.9: Example of malignant and benign tumors. The benign tumors did not have significant
distinguishing image features.

are 0.71, 0.70 and 0.71 respectively. The Dice score increased from 0.49 to 0.58 for T2 images and

0.60 to 0.71 in ADC images by removing the images with benign tumors. Integrating attention

units appears to increase the precision and the overall Dice score in both T2 and ADC images as

observed from Table 4.8. Percentage of T2 and ADC slices with greater than 50% of the malignant

pixels correctly detected increased with the addition of attention mechanism as seen in Table 4.9.

The Dice score obtained in malignancy segmentation analyzing each modality separately is higher

than some of the studies using a combination of MRI images. Combining features from both T2

and ADC images could further improve accuracy of malignancy segmentation.

4.5.5 Multi-Parametric Segmentation - Combining T2 and ADC

The Dice score obtained in malignancy segmentation analyzing each modality separately is higher

than some of the studies using a combination of MRI images. Combining features from both T2

and ADC images could further improve accuracy of malignancy segmentation. We experiment with

two methods of combining the information from T2 and ADC images to improve the segmentation

performance. In the first method, we stack T2 and ADC images and provide that as the input
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Figure 4.10: Malignant tumor segmentation on T2 and ADC images using classic and attention
U-Nets. The green region in the ground truth column indicates the prostate cancer manually
outlined by the radiologist and in the U-Net and U-Net with attention columns indicate the
predicted prostate cancer regions.

Table 4.8: Comparison of Dice score, recall and precision using classic U-Net and U-Net with
attention gates for malignancy segmentation.

T2 ADC

Network type Dice Recall Precision Dice Recall Precision

U-Net 0.58 0.70 0.49 0.71 0.70 0.71

Attention U-Net 0.59 0.69 0.51 0.74 0.77 0.72
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Table 4.9: Percentage of slices malignant tumor was identified on based on recall using classic
U-Net and U-Net with attention gates.

Recall > 50% Recall > 90%

T2
U-Net 76% 18%

U-Net with attention 84% 18%

ADC
U-Net 77% 17%

U-Net with attention 90% 43%

Figure 4.11: Methods of combining T2 and ADC image features for tumor segmentation.

to the U-Net and in the second method we design a separate encoder for each ADC and T2 and

concatenate their features and pass them through a single decoder. Both methods are illustrated in

Figure 4.11. The use T2 and ADC images aligned using the method in Section 4.4.2 as inputs. As

seen from Table 4.10 and Figure 4.12, stacking T2 and ADC images did not improve the segmen-

tation accuracy. Encoding T2 and ADC images with separate encoders improves the segmentation

performance over considering T2 images alone but is much lower than the performance obtained

by considering ADC images alone.

4.6 Conclusion

In this chapter we improve the tumor segmentation performance in T2 and ADC images of prostate

by incorporating several modifications to the standard U-Net architecture. We observed that the

Tversky loss improved the segmentation performance as the weight of the false positive and false
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Figure 4.12: Segmentation results using features from both T2 and ADC images.

Table 4.10: Quantitative results for prostate tumor segmentation using T2 and ADC images si-
multaneously.

Dice Recall Precision

T2 0.49 0.77 0.36

ADC 0.61 0.88 0.46

Method 1 0.40 0.89 0.26

Method 2 0.55 0.80 0.42
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negative terms could be controlled unlike in the Dice loss function. Experiments using Focal loss

showed that modifying the weights of the classes in the loss function to represent the class imbalance

improved the results in ADC images but did not help in T2 images. U-Net with attention gates

outperformed the baseline U-Net in Dice score and precision on both T2 and ADC images. The

improvement is due to the pruning of feature maps by the attention gates to retain only features

relevant for tumor segmentation, thus reducing false positive predictions. Addition of auto-encoder

branch helped in ADC images but not in T2 images. We assume this is because ADC images

contain less information and the features used for segmentation and reconstruction are similar.

On the other hand, T2 images exhibit richer data representation. Reconstruction of T2 images

by the auto-encoder probably requires different feature representation than those required by the

decoder for segmentation. Therefore it does not help the encoder in learning features helpful for

segmentation, but rather deteriorates the segmentation performance as the network has to learn

a more diverse set of features. Deep-supervision forces the features to be highly discriminative

at every level of the network and therefore increased the segmentation performance. The two

approaches of combining information from T2 and ADC images did not produce promising results.

In further studies, other methods of combining information from T2 and ADC images need

to be explored. In this chapter, each modification to the U-Net has been analyzed separately. A

combination of these modifications can lead to further improvement of the segmentation perfor-

mance. The results suggest that an attention U-Net with deep supervision trained with Tversky

loss could increase the segmentation performance. We used only T2 and ADC images from the

multi-parametric MRI suite. DCE-MRI images also contain information pertinent to tumor iden-

tification in prostate and the ability of its features in segmenting tumors can be explored in further

studies.



Chapter 5

Segmentation: Combining Learning and

Tracking-Based Approaches

5.1 Introduction

In the previous chapter, we explored various methods to improve the segmentation performance

of U-Net, which performs semantic segmentation. Semantic segmentation approaches cannot sep-

arate multiple instances of objects within a category. Instance segmentation networks have been

proposed to segment object instances, but they rely on the similarity in appearance of multiple

instances of the object in order to learn its representation and segment it. However, in certain

applications, such as cell segmentation in electron microscopy images, multiple instances of the

object are highly variable and cannot be learnt from a small dataset. Instead, an alternate ap-

proach combining information from multiple techniques could aid in separating instances in such

settings. In this chapter, we combine a learning based approach - semantic segmentation network -

with a tracking based approach - optical flow - to segment instances of cells in electron microscopy

images.∗

We apply the proposed approach to segment cells and explore convolution and attention-based

networks to segment a few key organelles pertinent to cancer development, including nuclei, nucle-

oli, mitochondria, endosomes and lysosomes from 3D FIB-SEM images [203, 46]. We segment six

datasets comprising tissues from breast and prostate cancer and a microspheroid prepared using a

breast cancer cell line. Microspheroid refers to cells cultured in a lab. Targeting the structural and

functional changes in intra-cellular organelles is emerging as a promising therapeutic approach for

∗The work in this chapter is being submitted as a journal article and has been accepted as an extending abstract

in A. Machireddy, G. Thibault, K. G. Loftis, K. Stoltz, C. E. Bueno, H. R. Smith, J. L. Riesterer, J. Gray, and X.

Song, A Framework to Segment Cellular Ultrastructure from 3D Electron Microscopy Images of Human Biopsies.

In Microscopy and Microanalysis 2022.

73
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treatment of cancer [36, 55, 112, 59]. The segmentation of the 3D FIB-SEM image stack of the

biopsy sample enables visualization and quantification of ultrastructural inter- and intra-cellular

compositions and interactions, and makes it possible to not only identify potential nanoscale sites

for targeted therapies, but also construct an ultra-structural atlas of developing cancer from normal

to malignant.

5.2 Background

Recent advances in tumor biology have shown that the plethora of interactions between tumor cells

and their surrounding environment can significantly influence the behavior of cancer and response

to treatment [161, 80, 56]. A deeper understanding of the underlying cellular mechanisms will

shed light on how cancer evolves and develops resistance to therapy [165]. Understanding of these

dynamic interactions can be used to develop novel approaches to disrupt key inter- and intracellular

interactions and facilitate the design and development of efficient therapeutic strategies to fight

cancer [12].

Electron microscopy (EM) provides nanometer resolution views of intra and intercellular in-

teractions that are not apparent in images generated using light microscopy [89]. This complete

picture of spatial relationships can reveal potential therapeutic targets that can be related back

to the macroscale heterogeneity and microenvironment of the tissue. Focused ion beam scanning

electron microscopy (FIB-SEM) is especially informative, generating 2D stacks of SEM images that

provide 3D information on sub-cellular features in large tissue volumes [62]. FIB-SEM imaging

proceeds via serial steps of SEM imaging of a sample surface and FIB removal of a uniform thin

layer of the tissue with size comparable to the spatial resolution in x-y plane, thereby revealing a

new surface to be imaged. This process is fully automated and ensures that imaged data is equidi-

mensional in all three axes, which significantly improves the accuracy of feature recognition within

the dataset. The workflow from FIB-SEM imaging and volume rendering in shown in Figure 5.1.

While 3D FIB-SEM images are being generated with ever increasing rate in ongoing clinical

programs, the rate limiting step in their analysis is the delineation of the cellular structures to

enable rendering of the images into interpretable forms. Currently, this is done by experts manually

annotating images, and while effective, is extremely time consuming, tedious and dependent on the

skill of the expert. The development of rapid, robust and automated machine learning methods to

segment ultrastructural features is acutely needed for wide spread use of EM in large scale studies

[136]. Ultrastructure refers to the structure of the cell and its organelles that is visible only with

the high magnification obtainable with electron microscope.
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Figure 5.1: FIB-SEM-to-volume rendering workflow. FIB-source sequentially slices a few nanome-
ters from the sample to expose a fresh surface for subsequent imaging using the electron beam.
An image stack is acquired and after image alignment and cropping, a small subset of the stack
of images was segmented manually to generate a training set for the deep learning model. Once
trained, the deep learning model is used to predict segmentation masks for the rest of the im-
ages in the stack. These predictions are used to create volume renderings for examination of 3D
ultrastructural properties.

5.3 Related Work

Early research on automated EM segmentation was focused on neuronal ultrastructure segmenta-

tion of brain tissue. 2D U-Net and its variants using residual connection such as FusionNet [140],

fully connected networks (FCN) with skip connections [49] and M2FCN [151] have been proposed

for neuronal membrane segmentation in EM images to yield large neurite superpixels which are

combined into 3D neuronal object using iterative region agglomeration algorithms. 2D CNNs have

the advantage of requiring only 2D ground truth and having a computationally inexpensive train-

ing process [85]. The recent automated neurite reconstruction methods use 3D CNNs to yield

highly accurate 3D boundary probability maps requiring a simple watershed algorithm for final

segmentation [113, 197].

More recently, efforts have been made towards segmentation of organelles in EM images of

non-neural tissues. 3D U-Net followed by mutex watershed algorithm was used to segment nuclei

and Lifted Multicut-based approach was used for cell segmentation to characterize the morphology

of cells in an EM volume of a complete Platynereis worm [181]. Insulin secretory granules and

Golgi apparatus segmented using 3D and 2D U-Net respectively helped in generating a compre-

hensive spatial map of organelle interactions in mouse β cells and facilitated understanding of

the supportive role played by secretory granules in insulin secretion [125]. 3D U-Net was used

to segment 35 organelles from EM images of HeLa, Jurkat, Macrophage and SUM159 cells [76].

Subcellular structures of liver tissue in mice segmented using 3D U-Net helped demonstrate sub-

stantial alterations in hepatic endoplasmic reticulum of lean and obese mice [134]. Though the

3D CNNs exhibit enhanced performance, they necessitate greater number of labelled images for

training. In order to reduce the amount of manual labeling required per volume, in this chapter
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Figure 5.2: Electron microscopy images of a neural tissue and a cancer tissue.

we train models on a small subset of labeled 2D images.

Segmentation of individual cells from EM images is an essential step to perform quantitative

cellular analysis. But the ultrastructure of tumor cells and the tumor microenvironment is different

from the widely studied neural and other normal cells as seen from Figure 5.2 [11, 203, 41]. The

segmentation methodologies designed for the neural cells use cell boundaries as the strongest cue

to delineate a cell [151, 113, 181, 125]. Due to the lack of clear boundaries separating cells in

cancer tissues, segmentation methodologies designed for neural cells cannot be directly applied for

cancer cell segmentation. The convoluted and intertwined nature of cancer cells and the presence

of filopodia-like protrusions make it even more challenging [89]. Recently, optical flow has been

used to segment cells in EM images of Hepatoblastoma-patient-derived xenograft tissue [45, 52].

In that work, cells were labelled on one image for every 10 images and propogated to the images

in-between using optical flow. Propagation-based methods can only propagate the contour of the

cells labeled in the ground truth images. But the filopodia-like protrusions present in cancer cells

appear as island-like blobs detached from the main cell and a propagation-based method cannot

track such islands if they are not present in the ground truth image.

5.4 Proposed approach

We aim to segment the cells and five cell organelles - nuclei, nucleoli, mitochondria, endosomes

and lysosomes - from 3D FIB-SEM images. As the organelles mostly appear as distant objects

with boundaries they can be segmented using a semantic segmentation network. We use ResUNet
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Figure 5.3: The six FIB-SEM datasets and their sizes. The 3D FIB-SEM volumes collected from
the biopsy samples Bx1, Bx2 and Bx4 acquired from a patient with metastatic breast ductal
carcinoma, two biopsy sample (PTT, PDAC) acquired from two patients with pancreatic ductal
adenocarcinoma and a microspheroid prepared using a breast cancer cell line (MCF7)

as the base network for semantic segmentation where we combine residual blocks with the U-

Net architecture. Similar to U-Net described in Section 2.2, the proposed network consists of an

encoding path that extracts features, and a decoding path that up-samples the extracted features

to obtain full-resolution segmentation, but uses residual blocks of convolutional layers as building

units (Figure 5.5). A residual block consists of two convolutional layers with a kernel size of 3× 3

each preceded by batch normalization and a rectified Linear Unit (ReLU), along with a residual

shortcut connection (Figure 5.4).

The encoding path in the proposed network consists of four residual blocks. Instead of using

pooling to down-sample the feature maps, a convolution with stride two is performed in the first

layer of the residual block, which reduces the computational load on the subsequent layers, as

they perform computations on a smaller image. The number of feature maps is doubled along

each successive block in the encoding path to enable richer feature extraction. The encoding path

is followed by a residual block which acts as a bridge between the encoding and decoding paths.

Corresponding to the encoding path, the decoding path also consists of four residual blocks. The

decoding path begins with the up-sampling of the feature maps found in the previous level of the
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Figure 5.4: Residual block used in ResUNet. Residual block used in ResUNet, BN stands for batch
normalization and ReLU stands for rectified linear unit. Xl and Xl+1 are the input and output
features for the residual layer l, and F represents the residual function

Figure 5.5: ResUNet architecture. Input size is written on the side of each box. The number of
feature maps in each residual layer is written on top of each box.



79

Figure 5.6: Cell segmentation using ResUNet. All cells are grouped into one big blob.

decoding path, followed by a 2x2 convolution to half the number of feature maps. These feature

maps are then concatenated with the feature maps at the same level in the encoding path through

a skip connection. This concatenation step helps combine the deep, semantic, coarse-grained

feature maps from decoder path with high resolution feature maps from encoder path enabling

effective recovery of fine-grained details. These concatenated feature maps are then passed through

the residual block. The output of the last residual block is passed through a 1x1 convolutional

layer followed by sigmoid activation to provide the final segmentation mask. We compare the

segmentation results of ResUNet with TransUNet and SETR described in Section 2.2. Leveraging

the similarities of structures contained in a 3D EM image stack, the neural network is trained on

a small subset of manually labeled 2D images evenly distributed in the 3D EM image stack to

efficiently segment the rest of the images in the stack.

As discussed earlier, the cell organelles generally don’t appear to be attached and also have

a clear boundary around them, therefore they can be segmented with semantic segmentation

networks like ResUNet. But cancer cells in electron microscopy images do not have clear boundaries

separating them. ResUNet segments all cells together as one big blob as shown in Figure 5.6. Also,

cancer cells have filopodia-like protrusions which are thin long finger-like protrusions from the

cell membrane that act like antennas to probe the surrounding environment (Figure 5.2). While

capturing the FIB-SEM image if the filopodia-like protrusions are cut perpendicular to their length

they appear as island-like blobs detached from the main cell as seen in Figure 5.2. In order to

capture the main body and the filopodia-like protrusions we propose a multi-pronged approach

combining segmentation, propagation and tracking strategies for cell segmentation as shown in

Figure 5.7.

Instead of training the ResUNet to segment only the cell interior region, we train the network

to segment the cell boundaries along with the cell interior region. To do so we provide two
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Figure 5.7: Proposed multi-pronged approach for cell segmentation

ground truth maps to the network, one containing the cell masks and another containing the cell

boundaries. The cell mask map is an image with all pixels representing cell interior region marked

as 1. Thus, using ResUNet we segment the cell interior, cell boundaries and the protrusions

that appear as island-like blobs (as they are also marked as cell interior region). However, the

boundary segmentation from the neural network alone could not separate adjacent cells with

similar intensity and texture variations. In order to obtain a precise separation of adjacent cells

with similar appearances, the boundary information from neural network is combined with the

boundary propagated using optical flow from the small subset of manually labeled 2D images

evenly distributed in the 3D EM image stack that are used to train the ResUNet.

As discussed in Section 2.4.1, optical flow gives the flow vectors representing the apparent

motion of individual pixels between two images. We use the Farneback algorithm as it computes

a dense optical flow - a flow vector for each pixel [52]. Though it is computationally slower, it

produces more accurate results. The Farneback algorithm generates an image pyramid to estimate

displacement at multi-scales, starting at a coarser level and refining the estimate on finer levels.

The pyramid decomposition enables the algorithm to handle both large and small pixel motions.

We experiment with the parameter setting for the Farneback algorithm. The settings that work

best for our images are number of pyramid levels = 6, neighborhood size = 5, filter size = 30,

pyramid scale = 0.2, number of iterations = 3.

We now have boundary information from optical flow and ResUNet. We experiment with 3

ways of using the boundary information in separating the cells. First we directly overlay the

optical flow boundaries on the cell interior mask prediction from ResUNet. Second, we selectively

include cell boundaries propagated using optical flow only in regions with overlapping cells. In the

analysis so far, propagation of cell boundaries using optical flow was performed as a separate task

independent of the estimate from the segmentation model. In order to obtain a better continuity of
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the cell boundary, instead of propagating the cell boundaries from the manually labeled image to

all the following images, we propagate it only onto the image immediately following the manually

labeled image. We then use method two to combine it with boundary from ResUNet output of

that image to obtain its cell segmentation. Now optical flow is applied to these newly estimated

cell boundaries which have the combined information from ResUNet and optical flow. This is the

third method of using the boundary information of separate cells. Once we combine the boundary

information using one of these methods, it is then overlaid on the cell-interior mask segmented

using ResUNet. Individual cells are then separated from the cell-interior mask by performing

watershed (Section 2.2) using centroids of cells in the nearest manually labeled image as seeds.

Now for every image in the 3D FIB-SEM stack we have individual cells and the island like

blobs segmented. Each isolated region is given a unique label. The next step is to track each of

these regions across images and associate the protrusions to their corresponding cells. We use an

overlap-based label propagation technique to obtain the cell associations. Intersection over union

(IoU) is a metric that measures the overlap between two regions. Here, the IoU metric given in

5.1 is used to track isolated region across images.

IoU =
Area of overlap

Area of union
(5.1)

In the first image in the stack, all isolated regions are given unique tracking labels. For each

of the isolated regions in the next image, IoU is calculated against all the labeled regions in the

previous image. Each isolated region gets assigned the tracking label associated with the region

it has maximum IoU value with in the previous image. If there is no overlap and a new region is

detected, a new tracking label is assigned to that region which can then be tracked in subsequent

frames. The individual main cell bodies of the cells in EM image are very big. We first run the

tracking algorithm on just the individual main cells by using the cell ids in the manually labeled

images as the tracking labels. Once we have the main cell body tracked across all the images, we

track the island like blobs to these cells. As the blobs are tracked across images, when they meet

the main big cell, their label gets modified to that of the big cell and therefore all the regions

associated with that blob (now a protrusion from a cell) in the previous slices will also have their

label modified to that of the main cell. When a protrusion breaks off from a cell it still retains

the label of that cell. As there could be hundreds of blobs in one image, comparing each blob

with every other blob in the previous image would take a long time. As the movement of regions

between two successive images is small, the corresponding region if present in the next image would

be in the vicinity of the region in the previous image and not in some other far off region of the

image. Therefore, instead of searching for overlapping regions all across the 6000 × 4000 image,
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we look for a region matching an existing track label in its local neighborhood of 512× 512.

Once all cells and the organelles are segmented they can be rendered to visualize them in 3D

and quantitative image features can be extracted for further analysis.

5.5 Methods

5.5.1 3D Focused Ion Beam-Scanning Electron Microscopy Dataset Col-

lection

Under an institutional review board approved observational study, three tissue biopsy samples

(Bx1, Bx2 and Bx4) were acquired over three time points of cancer treatment from a patient

with metastatic ER+ breast ductal carcinoma and two biopsy sample (PTT, PDAC) were ac-

quired from two patients with pancreatic ductal adenocarcinoma at Oregon Health and Science

University, Portland. The last sample is a micro-spheroid prepared using a breast cancer cell

line (MCF7). Extensive additional information regarding the three biopsies from the patient with

metastatic breast cancer are available [89]. The samples were preserved in Karnovsky’s fixative

(2.0% PFA, 2.5% Gluteraldehyde), post-fixed using an OsO4-TCH-OsO4 staining protocol, and

embedded in Epon resin. Post-fixation staining binds heavy metals to lipid-rich membranes to

provide contrast in EM imaging. Conductive coating with 8nm-thick carbon was necessary to

achieve high-resolution, charge-free, high contrast, and low noise images. A FEI Helios NanoLab

660 DualBeamTM FIB-SEM was used to collect high resolution 3D volumes of the resin-embedded

blocks. Targeted volumes were collected by using a Ga+ FIB-source to sequentially slice a few

nanometers from the sample to expose a slightly fresh surface for subsequent imaging. The slic-

ing/imaging cycle was automated using the FEI AutoSlice and ViewTM software extended package,

while image collection during 3D data acquisition used the in-column detector. Metastatic breast

cancer, primary pancreatic tissues and the micro-spheroid were imaged with an isotropic resolution

of 4 nm, 6 nm and 6nm respectively.

5.5.2 Image preprocessing and ground truth generation

After data acquisition, images within the stack are translationally aligned in the XY-plane using

an in-house stochastic version of TurboReg affine transformation [166]. The alignment step zero-

pads the images in order to maintain a uniform size, which are subsequently cropped to yield

the final 3D image volumes. The registration and edge cropping process yields a final resolution

of 5634 × 1912 × 757 for the Bx1, 5728 × 3511 × 2526 for Bx2, 5990 × 3812 × 1884 for Bx4,

6065× 3976× 792 for the PTT, 6114× 3874× 1583 for PDAC and 6083× 3740× 2208 for MCF7.
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The third dimension refers to the number of slices in each stack. Intermittently, the brightness of a

few images in the stack varied, increasing the complexity of the images and making segmentation

more challenging. Histogram equalization was applied to ensure consistency across the stack and

reduce complexity of the images.

Table 5.1: The availability of ground truth labels over different datasets. XXdenotes all images
labelled, Xdenotes images sparsely labelled and a blank denotes no images labelled.

Type Dataset Cell Nucleus Nucleolus Mitochondria Lysosomes Endosomes

Breast cancer

Bx1 XX XX XX XX

Bx2 XX XX XX XX

Bx4 X X

Pancreatic cancer
PTT XX XX

PDAC XX X X X X X

Cultured breast
cancer cells

MCF7 X X X X X X

The cells and organelles were manually labeled using microscopy image browser [20]. The

availability of ground truth labels over different datasets is shown in Figure 5.1. Nucleus and

nucleolus are labelled on all slices of PTT, Bx1 and Bx2 dataset and only 19, 16 and 24 slices of

Bx4, PDAC and MCF7 datasets respectively. Mitochondria are labelled on all slices of Bx1 and

Bx2 datasets and only 13 and 10 slices of PDAC and MCF7 datasets. Only PDAC dataset has

all cells labelled in all slices. Bx1, Bx2 and MCF7 datasets have all cells labeled in only on 10,

23 and 22 slices respectively. For Bx1 and Bx2 datasets 6 and 11 cells are selected respectively

and labeled completely across all the slices in the datasets. Lysosome and endosomes are labelled

on 10-25 images for different dataset. Sparse labeling of nuclei and nucleoli takes 1-2 days, and

mitochondria, lysosomes, endosomes and cells about 5-10 days each. Manual labeling of nucleus

and nucleolus on all images of PTT, Bx1, and Bx2 datasets required roughly 50-80 hours each.

Manual labeling of mitochondria and cells on all images of a dataset took around 8 months each.

5.5.3 Training data

The proposed ResUNet architecture is used to segment each 3D FIB-SEM stack by training on

a small subset of manually labeled images and predicting on the remaining images. To estimate

the number of manually labeled images required for effective segmentation, the size of the training
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set is varied by selecting 7, 10, 15, 25 or 50 images evenly distributed across the dataset. The

full resolution of the EM images cannot be analyzed directly by the network due to the memory

restrictions of the GPU hardware. Therefore, image crop size of 512 × 512 is chosen in order

to fit a meaningfully large number of images in a batch. We use a batch size of five in all our

experiments, meaning that five image tiles are used to estimate the error gradient at each iteration

of the network weight update. Using multiple training examples in a batch for error gradient

estimation helps make the training process more stable. We choose a batch size of five as it is the

maximum number of tiles that could fit in the GPU memory in our case. The nuclei occupied

15-35% of the pixels in each image and random selection of five 512× 512 tiles per image ensured

there was enough representation of nucleus in a batch. Mitochondria, endosomes, lysosomes and

cells also had good representation. However, nucleoli are smaller and sparser, occupying less than

1% of a full image. As a result, if sampled randomly, a large number of tiles would need to be

considered in order to form a batch with enough nucleoli representation, which would exceed the

GPU memory. To ensure that the model encounters sufficient representation of nucleoli during

training, the batch size is still maintained at five but the tiles are selected such that at least 4 out

of the 5 randomly selected tiles contain no less than 100 pixels related to nucleolus. Horizontal

and vertical flips are randomly applied as data augmentation steps.

5.5.4 Implementational details

The proposed network is implemented using Keras framework [69] with TensorFlow [1] as backend.

The network is optimized by adaptive moment estimation (Adam) with 10−4 learning rate, expo-

nential decay rates for moment estimates β1 = 0.9, β2 = 0.999, and epsilon = 10−7. It is trained

to minimize the Dice loss function for 5, 000 weight updates. The experiments were performed on

a single NVIDIA Tesla P100 GPU.

5.5.5 Inference Methodology

As the size of an EM image is much larger than the 512× 512 crop size processed by the network,

each image is parsed into multiple overlapping tiles. Each tile is passed through the network

to predict a probability for every pixel, and pixels with value greater than or equal to 0.5 are

assigned to the foreground class. The resulting overlapping segmentation maps are blended by

multiplying each map with a 2-dimensional tapered cosine window and adding the result to reduce

the edge artifact at tile borders. If we do not perform any blending or averaging then the resulting

overlapping segmentation maps often present some step effect like artifact at the tile borders.
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Figure 5.8: Illustration of net volume and filled volume used in the fenestrated volume percentage
measure shown on images instead of volumes and distances dcc and ds used in proximity of nucleolus
to the nuclear membrane measure.

5.6 Quantification and Statistical Analysis

5.6.1 Evaluation Metrics

The segmentation is evaluated using three metrics: Dice coefficient, recall and precision as defined

in Section 4.4.4.

5.6.2 Morphological and Texture Features

Segmentation of organelles allows us to characterize biologically relevant features such as their

morphology and texture. Morphology refers to the structure of the organelle. The morpholog-

ical measures are designed to capture the size and shape, and include features such as solidity,

sphericity, circular variance. The texture features are designed to capture the spatial distribution

of intensity patterns, and include features from GLCM, SZM and power spectrum. The mathe-

matical definitions of these features are provided in Section 2.3.

In addition to the standard morphological features, we design two new features to capture

properties of nucleolus in cancer cells. The nucleolus in cancer cells are characterized by formation

of fenestrations and movement towards the cell membrane. Fenestrations refer to all the cavities

inside the nucleolus. We design two measures - percentage of volume fenestrated, and proximity

of nucleolus to nuclear membrane - to capture the above mentioned properties.

The percentage of fenestrated volume in the nucleoli is calculated as the ratio of the difference

of filled in volume and net volume to the filled in volume. The volume is filled in by performing a

fill holes operation as shown in Figure 5.8. This measure is different from solidity as it measures

the volume of cavities within the nucleolus, while solidity measures concavities in the outer surface.

Fenestrated volume percentage =
Filled volume−Net volume

Filled volume
(5.2)

If dcc is the distance between centroids of the nucleus and nucleolus and ds is the distance between

the centroid of nucleolus and the nearest point on the surface of the object, the proximity of
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nucleolus to nuclear membrane measure is calculated as the following.

Proximity to nuclear membrane =
dcc

dcc + ds
(5.3)

The distances dcc and ds are visualized in Figure 5.8. It takes a value of 0 when the nucleolus is

at the center of the nucleus and increases as it moves towards the nuclear membrane.

5.7 Results

5.7.1 Model Training Setup Evaluated

We apply the proposed segmentation approach on the six datasets comprising tissues from breast

and prostate cancer and a microspheroid prepared using a breast cancer cell line (MCF7). Quan-

titative evaluations are performed only on features that are manually labeled on all images in the

dataset. The availability of ground truth labels over different datasets is shown in Table 5.1.

Overall we perform quantitative evaluation of cell, nuclei and nucleoli segmentation on 3

datasets and mitochondria segmentation on 2 datasets. Few organelles in certain datasets are

labeled only on few images which are used for training the segmentation model. In such cases we

present only qualitative results. For each dataset, a segmentation model is trained using a small

subset of manually labeled images and the trained model is used to generate segmentation masks

on the rest of the unlabeled images. We experiment with convolution and attention-based models

for semantic segmentation.

5.7.2 Deep Learning Models can Accurately Segment Intra-cellular Or-

ganelles

We primarily use the convolution-based ResUNet discussed in 5.4 as the segmentation model.

To train the segmentation model, a sparse subset of training images (typically between 7 to 50

slices) was randomly selected from the 3D image stack and used to tune the network weights,

by minimizing the difference between the ground truth segmentation and the network generated

segmentation on these training slices. Once trained, the network is used to segment the rest of

the slices in the stack that were not used for training, and performance in terms of Dice score,

precision and recall are calculated. We randomly select the input images ten times, and the mean

performance metrics over the ten runs was reported. Figure 5.10B shows the performance metrics

for nuclei and nucleoli segmentation in PTT, Bx1 and Bx2 datasets (nuclei results in the top row,

and nucleoli results in the bottom row). Depending on the datasets and the training set size, overall

Dice scores of 0.95-0.99 and 0.70-0.98 are achieved for nuclei and nucleoli segmentation, respectively.
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Figure 5.9: Nuclei and nucleoli volume renderings and nucleoli segmentation results. (A) Volume
renderings showing the 3D structure of ground truth masks and predicted segmentation masks
for PTT, Bx1 and Bx2 datasets (B) Volume rendering showing the 3D structure of predicted
segmentation masks for Bx4 dataset. (C) Representative qualitative results showing input images
(first column), ground truth (second column) and predicted nucleoli (third column) for PTT (first
row), Bx1 (second row) and Bx2 (third row) datasets. (D) Volume renderings of the fenestrations
in nucleoli of PTT, Bx1, Bx2 and Bx4 datasets. (E) and (G) Volume renderings showing the
FIB-SEM image stack and (F) and (H) the predicted segmentation masks of cells and organelles
for the PDAC and MCF7 datasets respectively.
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In addition to the nucleoli boundary, the model accurately segments the fenestrations within the

nucleoli (Figure 5.9C). Dice score of 0.86 and 0.76 are obtained in segmenting mitochondria from

Bx1 and Bx2 datasets respectively. Segmentation performances of endosomes and lysosomes are

evaluated qualitatively (Figure 5.12) as they are labeled only on a few slices that are used to train

the segmentation model. Figure 5.9A displays the comparison between volumes rendered from

manual annotations and those from predicted segmentation, with nucleoli nested inside the nuclei

for PTT, Bx1 and Bx2 datasets. Figure 5.9B only displays the volume rendered from predicted

segmentation for Bx4 dataset as it does not have ground truth labels for the entire stack. Figure

5.9D displays the volume rendering of the fenestrations inside nucleolus in all six datasets. 2D

image slices overlaid with ground truth and predicted segmentation for PTT and Bx4 datasets

are shown in Figure 5.11 and for Bx1, Bx2, PDAC and MCF7 datasets are shown in Figure 5.12.

They illustrate the accuracy of model segmentation compared to the ground truth annotation.

5.7.3 Larger Context Improves Segmentation Performances

The cancer cells in EM images are relatively large. A 512 × 512 tile typically includes only a

small section of the cell (for example a small part of the nucleus), and therefore, does not contain

enough spatial context. We hypothesize that providing better contextual information regarding the

surroundings of the organelles could lead to improved segmentation. In order to incorporate more

global context while subjected to GPU memory restrictions, we extract tiles of size 2048 × 2048

and down sample them to 512× 512 and train segmentation models on these down sampled tiles.

We also experimented with 1024 × 1024 and 3072 × 3072 sized tiles, but found that 2048 × 2048

tiles produced superior segmentation results. We also compare the segmentation performance of

fully-convolutional ResUNet with the more recent TransUNet and SETR where the global context

is captured by transformers with self-attention mechanism for segmentation of nuclei.

Providing larger context during training improves all three metrics in nuclei (Figure 5.10A,

top row) and nucleoli (Figure 5.10A, bottom row) segmentation. The information provided by

the larger context seems to outweigh any information loss due to down sampling. Further, using

larger tile size enables faster processing of an entire EM image as fewer tiles would be required to

reconstruct the final result. Performance of TransUNet and SETR are on par or slightly lower than

ResUNet and did not provide any added advantage in segmentation as shown in Figure 5.13. As

experimented in Chapter 4, we tried using attention mechanism, deep-supervision, Tversky, focal

and also dual-Dice loss functions but did not observe considerable improvement in segmentation

performance.
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Figure 5.10: Nuclei and nucleoli segmentation performance. (A) Effect of image tile size (context
window). Segmentation performances for nuclei (top row) and nucleoli (bottom row) using different
input tile sizes measured by Dice score (first column), precision (second column) and recall (third
column) on the Bx1 and PTT datasets. The blue bar represents the results of training the network
directly on the 512x512 sized tiles from the FIB-SEM images. The orange bar represents the results
of training the network on image tiles of size 2048x2048 down-sampled to 512x512, which provide
larger contextual information. Each error bar represents 10 separate experiments in which a new
model was trained from scratch using the specified number of training images. (B) Effect of
training set size. Segmentation performances for nuclei (top row) and nucleoli (bottom row) using
different training set sizes, measured by Dice score (first column), precision (second column) and
recall (third column) on PTT (blue), Bx1 (orange) and Bx2 (green) datasets. For each dataset,
performance was evaluated over training set sizes of [7,10,15,25,50] in order to find the minimum
number of images required to generate accurate segmentation. Each error bar represents the mean
and standard deviation of results obtained from 10 separate experiments in which a new model
was trained from scratch using the specified number of training images.
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Figure 5.11: Nuclei and nucleoli segmentation results on PTT and Bx4 datasets. Representative
qualitative results showing input images (top row) overlaid with nuclei (green) and nucleoli (red)
ground truth masks (middle row) and predicted nuclei (yellow) and nucleoli (pink) segmentation
masks (bottom row) for (A) PTT and (B) Bx1 datasets. Numbers in the lower right-hand corner
of images indicate the slice position of the image in the full image stack.

5.7.4 Small Training Set is Adequate and Larger Training Set Brings

Further Improvement

We experiment with varying the number of manually labeled full images used for training by

selecting 7, 10, 15, 25 or 50 training images evenly distributed across the image stack. The models

are trained on 2048 × 2048 sized tiles down sampled to 512 × 512 pixels. The model performs

well with just 7 training images, with an overall dice score of 0.95-0.99 for nuclei (Figure 5.10B,

top row), and a dice score of 0.70-0.98 for nucleoli (Figure 5.10B, bottom row), depending on the

data sets. The performance continues to improve with more training images for all three metrics

for both nuclei and nucleoli, reaching a dice score range of 0.97-0.99 for nuclei and 0.80-0.99 for
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Figure 5.12: Cell and organelle segmentation results on Bx1, Bx2, PDAC and MCF7 datasets.
Qualitative results showing input images (first row) overlaid with nuclei (yellow), nucleoli (red),
mitochondria (pink), endosomes (white), lysosomes (black) and cell segmentation (random colors)
on ground truth masks (second row) and predicted segmentation masks (third row) for (A) Bx1
(B) Bx2, (C) PDAC, and (D) MCF7 datasets.

nucleoli with 50 training images. Even with 50 training images, it is still a very small training

set, representing only 2-5% of all the images in the stack. This illustrates that it is possible to

train a reliable model with sparse manual labeling for 3D EM segmentation. The performances

for the Bx2 dataset are lower than the other two datasets as it is a larger image stack exhibiting

significant variability among the nuclei and nucleoli within the dataset.

5.7.5 Generalizability of the Segmentation Model

In the current setting, we train a separate model for each organelle in each dataset. We experiment

training a model to segment all organelles of a dataset at once. Qualitatively the results appeared

very similar to the results from individually trained networks as seen in Figure 5.14. We compare

the segmentations of nuclei and mitochondria quantitatively in Bx1 and Bx2 datasets (Table 5.2).

In Bx1 dataset, the segmentation performance is similar to single organelle segmentation networks.

But in Bx2 dataset, the recall remains the same while the precision decreases. This could be due

to the larger intra-organelle variability in the Bx2 dataset which could make it harder for the

segmentation model to eliminate the patterns similar to the target organelle simultaneously for

all organelles and therefore introduces few false positives. Nucleoli cannot be segmented by a

network trained for all organelles together as they occupy a very small portion of the image and

a random sample of crops does not provide enough representative examples. Therefore, nucleolus
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Figure 5.13: Nuclei segmentation performance using ResUNet, TransUNet and SETR. Segmenta-
tion performances for nuclei using different input tile sizes measured by Dice score (first column),
precision (second column) and recall (third column) on the PTT, Bx1 and Bx2 datasets. The
lighter bar represents the results of training the network directly on the 512x512 sized tiles from
the FIB-SEM images. The darker bar represents the results of training the network on image tiles
of size 2048x2048 down-sampled to 512x512, which provide larger contextual information.

Figure 5.14: Segmentation results on multiple organelles in Bx1 and Bx2 datasets by models
trained on each organelle separately and by a model trained all organelles together.
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Table 5.2: Segmentation performance for nuclei and mitochondria in Bx1 and Bx2 datasets using
models trained individually on each organelle vs model trained on multiple organelles together.

Dataset Organelle
Models trained individually Models trained all together

Dice Precision Recall Dice Precision Recall

Bx1
Nucleus 0.98 0.96 0.99 0.98 0.96 0.99

Mitochondria 0.86 0.85 0.86 0.85 0.84 0.87

Bx2
Nucleus 0.98 0.98 0.98 0.94 0.90 0.98

Mitochondria 0.76 0.78 0.75 0.70 0.64 0.78

Figure 5.15: Results of Histogram matching. The first column represents the target image, sec-
ond row represents the source image (source of the histogram) and the third row represents the
histogram matched target image

segmentation requires training of individual segmentation models while other organelles could be

trained together in a single model.

Due to intensity variations between datasets we observe that a model trained on one dataset

does not generalize well on other datasets. We try three methods to adapt models trained on one

dataset to produce good results on other datasets. First, we perform simple histogram matching

by adjusting the histogram of the images of a dataset to match those of the images the model was

trained on. Second, we try to match the style of the images using CycleGAN [202]. The CycleGAN

is an approach of training a neural network to translate an image from a source domain to a target

domain in the absence of paired examples. Third, we finetune the model with few labeled images.

We evaluate the performance metrics for these methods on nuclei segmentation in Bx1 and Bx2

datasets. Overall, we observe that a model trained on Bx2 could segment Bx1 images with the
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Table 5.3: Nuclei segmentation performance in Bx1 and Bx2 datasets using model trained on one
dataset to predict on images from the other dataset

Train Predict on Histogram Style transfer Finetune

Measure from unseen adjustment using

scratch dataset cycleGAN 1 image 3 images

Trained on Bx2,
Predicted on Bx1

Dice 0.98 0.48 0.80 0.67 0.96 0.97

Precision 0.96 0.94 0.68 0.58 0.96 0.95

Recall 0.99 0.34 0.97 0.80 0.97 0.98

Trained on Bx1,
Predicted on Bx2

Dice 0.98 0.13 0.37 0.45 0.51 0.95

Precision 0.98 0.56 0.29 0.72 0.95 0.96

Recall 0.98 0.09 0.53 0.35 0.36 0.94

help of the above mentioned methods better than the Bx1 model on Bx2 images (Table 5.3).

This is because Bx2 dataset has a larger variability among the nuclei and contained representative

examples of different presentations of the nuclei and therefore could generalize better. As Bx1

dataset has only three nuclei with less variability its training examples are not rich enough to

capture the variability of nuclei in Bx2 datasets and therefore could not segment some nuclei no

matter which adaptation method is employed. Simple histogram adjustment of Bx1 images to Bx2

images results in a recall of 0.97 while predicting nucleus in Bx1 dataset with a model trained

on Bx2 dataset. Histogram matched images for Bx1 and Bx2 datasets are shown in Figure 5.15

and segmentation results on these images in shown in Figure 5.16. Style transfer using CycleGAN

modifies the content of the image while trying to match the styles as seen in Figure 5.17, which

results in poorer segmentation performance as seen in Figures 5.18 and 5.19. Finetuning Bx2

model with one image from Bx1 dataset produces results comparative to a Bx1 model trained with 7

images. Though finetuning Bx1 model with one Bx2 image increased the Dice score when compared

to histogram adjustment and CycleGAN style transfer it is still low as it is not representative of the

variability of the dataset. Finetuning with 3 images results in good segmentation performance for

both datasets. But we observe that a segmentation model trained from scratch with 3 images for

each dataset produces results similar to those of models pretrained with images from one dataset

and finetuned with 3 images from other dataset. We therefore feel that if we can build a model with

data containing representive examples of the variability of an organelle it can generalize to new

datasets with simple techniques like histogram adjustment. Further if we can build a model from
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Figure 5.16: Representative segmentation results on histogram adjusted images. The first row
represents ground truth images and second third and fourth row represent segmentation results
using models trained on Bx1, Bx2 and PTT datasets respectively. The first, second and third
columns represent the Bx1, Bx2 and PTT images. If an image is not used to train the model it is
histogram adjusted to the images of that model.

Figure 5.17: Results of CycleGAN style transfer. The first column represents images from Bx1
dataset. The second column is the style transferred version of the first column image. It is
transferred to the style of Bx2 dataset. Similarly, the third column represents images from Bx2
dataset and the fourth column is the style transferred version of the third column image. It is
transferred to the style of Bx1 dataset.
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Figure 5.18: Representative segmentation results on Bx2 dataset using a model trained on Bx1
dataset using style transfer and fine tuning approaches

Figure 5.19: Representative segmentation results on Bx1 dataset using a model trained on Bx2
dataset using style transfer and fine tuning approaches
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multiple datasets with different acquisition parameters resulting in different intensity distributions

the model will be robust and could probably directly predict on new datasets with good accuracy.

5.7.6 Cell Segmentation

Figure 5.20: Cell segmentation results on Bx1 dataset. Representative qualitative results showing
(A) input image, (B) ground truth segmentation (few cells are not labeled in the ground truth),
(C) segmentation of cells using cell-interior mask alone, (D) segmentation of cells using cell-interior
mask and boundary predictions from segmentation model, (E) segmentation of cells using optical
flow alone, (F) segmentation of cells by overlaying boundaries propagated using optical flow on
cell-interior mask obtained from segmentation model to separate cells, (G) segmentation of cells by
selectively combining optical flow boundary estimate with the boundary estimated from segmen-
tation model and (H) segmentation of cells by propagating boundaries estimated in the previous
frame using optical flow and combining with the boundary estimated from segmentation model for
Bx1 dataset

A multi-pronged approach combining propagation, segmentation and tracking strategies is used

for cell segmentation, as described in Section 5.4. Optical flow is the propagation-based method

used to propagate the cell boundaries from the nearest labeled ground truth image. We observe

that as we moved farther from the ground truth image the accuracy of the propagated boundary
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Figure 5.21: Cell segmentation results on Bx2 dataset. Representative qualitative results showing
(A) input image, (B) ground truth segmentation (few cells are not labeled in the ground truth),
(C) segmentation of cells using cell-interior mask alone, (D) segmentation of cells using cell-interior
mask and boundary predictions from segmentation model, (E) segmentation of cells using optical
flow alone, (F) segmentation of cells by overlaying boundaries propagated using optical flow on
cell-interior mask obtained from segmentation model to separate cells, (G) segmentation of cells by
selectively combining optical flow boundary estimate with the boundary estimated from segmen-
tation model and (H) segmentation of cells by propagating boundaries estimated in the previous
frame using optical flow and combining with the boundary estimated from segmentation model for
Bx2 dataset

decreased. Further, the filopodia-like protrusions of cancer cells that appear as island-like blobs

detached from the cell body, begin and end within a few images in the stack. Therefore, optical

flow cannot track such islands if they are not present in the ground truth image and also cannot

detect the start and end of such islands (Figure 5.20E and 5.21E). Therefore, in addition to

boundary propagation, methods to detect these islands in each image and track them to the

corresponding main cell are required. To do so, we train a ResUNet to segment the cell-interior

mask and boundaries of all cells in the EM images. ResUNet provided precise cell boundaries even

on images farther from ground truth images. However, the boundary segmentation from ResUNet

could not separate adjacent cells that looked alike (Figure 5.20D and 5.21D). We combine the

strengths of ResUNet and optical flow by taking the boundary segmentation from ResUNet and

adding in the boundary propagated by optical flow in regions where ResUNet could not predict the

boundary (in the presence of similar adjacent cells). By doing so, we retain the precise boundary
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Figure 5.22: Volume rendering of a cell from Bx2 dataset. Volume rendering of the (a) ground truth,
(b) cell segmented using ResUNet result and watershed, (c) cell segmented using boundary obtained
from ground truth using optical flow, (d) cell segmented by combining boundary information from
both ResUNet and optical flow.

segmentation from ResUNet while benefiting from the cell separating ability of the optical flow

estimate. The combined boundary information is then overlaid on the cell-interior mask segmented

using ResUNet. Individual cells are then separated from the cell-interior mask by performing

watershed using centroids of cells in the nearest ground truth image as seeds. We experiment with

different approaches of combining the segmentation and optical flow boundary estimates. First, we

directly overlay the optical flow boundaries on the cell interior mask prediction and separated cells

using the watershed algorithm (Figure 5.20E and 5.21E). We observe that as optical flow does not

move the boundary accurately there was a step effect in the final 3D reconstruction of segmentation

as seen in Figure 5.22. Therefore, we selectively include cell boundaries propagated using optical

flow only in regions with overlapping cells. This helps retain the accurate cell boundaries from

the segmentation model while separating overlapping cells (Figure 5.20F and 5.21F). In order to

obtain a better continuity of the cell boundary, we propagate the combined cell boundary estimate

of the previous image instead of the optical flow estimate alone (Figure 5.20G and 5.21G). All three

methods of combining the segmentation and propagation boundary results improved the overall

cell segmentation performance when compared to using the segmentation or propagation methods

alone as shown in Table 5.4 and Figure 5.22. In PDAC dataset the cells mostly had extra-cellular

matrix between them and therefore just using segmentation could result in good separation of cells

as seen from Table 5.4. But still in cases were filopodia-like protrusions touched each other the

combined method with propagation of boundary using optical flow based on the boundary estimate

of the previous image produced better separation of the filopodia-like protrusions. Finally, for the

third task, we track the islands to the main cells by calculating the intersection over union measure

for all regions detected in consecutive images and associating regions with maximum overlap. As
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Table 5.4: Cell segmentation performance measured by Dice score in Bx1, Bx2 and PDAC datasets.

Bx1 Bx2 PDAC

Segmentation alone
Mask 0.900 0.704 0.889

Mask + Border 0.927 0.841 0.888

Propagation alone Optical flow 0.936 0.881 0.888

Segmentation +
propagation

Mask + optical flow 0.952 0.902 0.888

Mask + Border + OF (selective) 0.950 0.900 0.888

Mask + Border + OF
(propagate through frames)

0.952 0.894 0.888

movement of regions between frames is minute, an overlap-based measure works well in tracking

protrusions and cells in EM images. Volume renderings showing the FIB-SEM volume and the

predicted cell and organelle segmentations for PDAC and MCF7 dataset are shown in Figure 5.24.

Segmentation of cells enables quantitative cellular analysis, where we can localize organelles to a

cell and estimate their variations in density, size and number among different cells. Figure 5.23

shows the volume occupied by the predicted organelles for each cell in each dataset.

The training of the segmentation model takes about 4 hours and prediction and splitting of the

cells about 2-3 hours. Tracking of protrusions to main cells takes a longer time as each image has

to be processed serially and the time also varies depending on the number of islands present in each

image. It approximately takes around a minute to process each image in tracking of protrusions

step. Complete cell segmentation of Bx1, PDAC, Bx2 and MCF7 take approximately 1, 1.5, 2 and

2 days respectively. This is a huge reduction from months it takes to manually segment cells in

these datasets.

5.7.7 Quantitative Characterization of Nuclei and Nucleoli Morphology

and Texture

Segmentation of nuclei and nucleoli allows us to characterize biologically relevant features such as

their morphology and texture. Figure 5.25 shows some of the morphological features we extract

for nuclei (Figure 5.25A) and nucleoli (Figure 5.25B and 5.25C). The solidity feature, measuring

the concavity of a surface, captures the nuclear envelope invaginations. The higher level of in-

vaginations in Bx2 and Bx4 when compared to PTT, Bx1, PDAC and MCF7 (Figure 5.9A) is
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(a) Bx1 dataset (b) Bx2 dataset

(c) PDAC dataset (d) MCF7 dataset

Figure 5.23: Volume occupied by the predicted organelles for each cell in each dataset.

reflected by their lower solidity value (Figure 5.25A). Similarly, the relatively smooth envelope of

nucleoli in PTT is reflected by its higher solidity value (Figure 5.25B). The solidity of the nucleolus

is calculated by filling the holes in the volume to exclude the effect of the volume fenestrated by

pores and quantify only the overall change in shape. The sphericity and circular variance features

measure roundness of an object, and can be used to capture shape irregularities of nuclei and

nucleoli, common characteristics of cancer cell. Additionally, for the nucleolus, we calculate the

percentage of volume fenestrated by pores. These values are high for the PTT and Bx4 datasets as

a result of the complex structure of pores within the nucleoli. Finally, varying levels of proximity of

nucleoli to the nucleus membrane are also observed. This observation is consistent with published

studies which suggest that nucleoli in cancer cells often move towards the nuclear membrane and

form intranuclear canalicular systems between nuclear membrane and nucleolus [11]. Accordingly,

the proximity of nucleolus to nuclear membrane feature captures the more centered positioning of

nucleoli in the PPT dataset and the close proximity of nucleoli to nuclear membrane in the Bx2
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(a) PDAC dataset (b) PDAC dataset segmentations rendered

(c) MCF7 dataset (d) MCF7 dataset segmentations rendered

Figure 5.24: Volume renderings showing the FIB-SEM volume and the predicted cell and organelle
segmentations.

dataset. While most of the nuclei contain one nucleolus, few nuclei contain 2-6 nucleoli (figure

5.25C).

Figure 5.26 shows the texture features we extract for nuclei (Figure 5.26A) and nucleoli (Figure

5.26B). The texture features capture the spatial distribution of intensity patterns associated with

chromatin and other internal structures. Texture characterization is well studied in the field

of image processing. We use three classic methods, namely the grey level co-occurrence matrix

(GLCM), the pattern spectrum, and the size zone matrix (SZM), to derive a set of texture features

listed in Figure 5.26. GLCM captures the distribution of co-occurring gray-level intensities [15].

From GLCM, we extracted features such as homogeneity, correlation, variance and contrast for

the four datasets (Figure 5.26A). The pattern spectrum feature characterizes the distribution of

the sizes of various objects in an image [170]. The SZM quantifies the size of homogenous grey
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Figure 5.25: Morphological features extracted from nuclei and nucleoli. Solidity, sphericity and
circular variance measures for (A) nuclei and (B) nucleoli in PTT, Bx1, Bx2 and Bx4 datasets.
(C) Percentage of fenestrated volume in nucleoli and proximity of nucleoli to nuclear membrane
for all datasets. Each dot represents the value of the feature for a nucleus or nucleolus.

level zones in an image [168], from which we extracted three features - zone sizes centroid, zone

percentage and small zone high grey level emphasis. These features capture the sizes of groups

of voxels of similar gray level intensities and can characterize the granularity of the chromatin

structure in nuclei. These texture features are capable of capturing the differences between the

tissue samples, and can be potentially used for downstream analysis.

5.8 Conclusion

We present here a framework for segmentation of cellular ultrastructure of cancer tissues from 3D

FIB-SEM images, enabling rendering of the ultrastructure into interpretable forms and extraction

of quantitive features. We used a ResUNet architecture to segment cells, nuclei, nucleoli, mitochon-

dria, lysosomes and endosomes and evaluated the performance of the model on five human cancer
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Figure 5.26: Texture features extracted from nuclei and nucleoli. GLCM features (top row),
pattern spectrum and SZM features (bottom row) for (A) nuclei and (B) nucleoli in PTT, Bx1,
Bx2 and Bx4 datasets. Each dot represents the value of the feature for a nucleus or nucleolus.

biopsy samples from a clinical trial at OHSU supported by HTAN and a microspheroid prepared

using a breast cancer cell line. The ResUNet architecture was trained with different sizes of training

datasets to evaluate the number of manually labeled images required for accurate segmentation.

It was observed that the number of manually labeled images required greatly depended on the

variability of the structure across the dataset. When the structure was uniform across the dataset,

roughly 1% of the dataset labeled was enough to train an efficient model. Even in the presence of

large variations in the structure, 2% of dataset labeled seemed to be sufficient for good segmen-

tation results. Also, using image tiles of size 2048 × 2048 down sampled to 512 × 512 improved

segmentation results when compared to using 512 × 512 crops directly, as larger crops provided

greater context which appeared to increase the segmentation performance. We demonstrated that

ResUNet provided segmentation of nuclei with dice score 0.99, 0.99 and 0.98 and nucleoli with dice
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score 0.98, 0.93 and 0.80 for PTT, Bx1 and Bx2 datasets respectively and mitochondria with 0.86

and 0.76 for Bx1 and Bx2 datasets respectively. We presented a multi-pronged approach combin-

ing segmentation, propagation and tracking strategies to segment cells in EM images. Combining

propagation and segmentation methods helped to accurately segment cells even in the presence of

adjacent cells with similar intensity and texture variations. In PDAC dataset the cells mostly had

extra-cellular matrix between them and therefore just using segmentation could result in good sep-

aration of cells. But still in cases were filopodia-like protrusions touched each other the combined

method with propagation of boundary using optical flow based on the boundary estimate of the

previous image produced better separation of the filopodia-like protrusions. The two extreme cases

are when all cells in the dataset are either separate or all are closely packed touching each other.

When all are separate with exra-cellular matrix between them, a segmentation method alone can

result in good cell segmentation and when all cells are closely packed and adjacent cells look alike

only propagation based methods can separate them. But in most of the cancer datasets we observe

that only parts of the cells lie adjacent to another cell and therefore an approach combining the

merits of segmentation and propagation methods is beneficial. The filopodia-like protrusions in

cancer cells are an important feature in understanding the interactions of cancer cells and therefore

it is necessary to segment them accurately. We demonstrated a tracking mechanism that can track

the ends of filopodia-like protrusions that appear as island-like blobs detached from the main cell

in few images and correctly associate them with their respective main cells.

Structures in 3D data collected via FIB-SEM exhibit high variability due to several factors,

including the sample quality, tissue type, sample preparation techniques, microscope settings,

and the imaging pixel resolution [129]. A small subset of the whole dataset contains enough

information to capture most of the variability of a given structure with respect to the dataset,

and we demonstrate that a ResUNet trained with sparse labels is able to generate segmentation

masks for the rest of the images in the stack. Due to intensity variations caused by acquisition

parameters and the variability of features among datasets the generalizability of the segmentation

models is currently limited. In order to have an automatic segmentation framework which does

not necessitate sparse manual labeling for every new dataset it is necessary to have a model that

has enough representative training data. Our initial trials to segment individual 3D volumes by

sparsely labeling each volume is a step towards building a dataset large enough to capture the

variability among different organelles and the variability caused by different image acquisition

settings. Segmentation of cells and organelles allowed us to extract quantitative features from the

datasets. We also demonstrate the feasibility of morphology and texture quantification in nuclei

and nucleoli. These quantitative features can be extracted efficiently, robustly, and reproducibly.
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While it is beyond the scope of our work, we anticipate linking them to clinically relevant variables

such as patient drug response in the future. This method can be extended to other cellular

structures, enabling deeper analysis of inter- and intracellular state and interactions. The proposed

segmentation of EM images fills the gap that has prevented modern EM imaging from being used

routinely for research and clinical practices. It will enable interpretative rendering and provide

quantitative image features to be associated with the observed therapeutic responses.



Chapter 6

Characterization: Multi-Resolution

Fractal Analysis

6.1 Introduction

The next step in the image processing pipeline after segmenting a region of interest is to character-

ize the region. Characterization provides informative numerical features facilitating downstream

analysis. The two spectral texture features defined in Section 2.3.4, fractal analysis - measure

of structure’s geometrical complexity, and wavelet analysis - multi-resolution representation, have

been used separately as features in multiple applications. In this chapter, we combine the two spec-

tral texture analysis methods to obtain a new method, multi-resolution fractal analysis, wherein

we perform fractal analysis at multiple resolutions to obtain a richer representation of the hetero-

geneity of the texture. We analyze the texture of DCE-MRI parametric maps with the new method

to evaluate its potential in early prediction of breast cancer pathologic response to chemotherapy.∗

∗The work in this chapter has been published in

• A. Machireddy, G. Thibault, A. Tudorica, A. Afzal, M. Mishal, K. Kemmer, A. Naik, M. Troxell, E. Goranson,

K. Oh, N. Roy, N. Jafarian , X. Song, 2019, Early Prediction of Breast Cancer Therapy Response using
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• A. Machireddy A, G. Thibault, W. Huang, and X. Song, 2018, Analysis of DCE-MRI for Early Prediction

of Breast Cancer Therapy Response, in 40th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (pp. 682-685).
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K. Oh, N. Roy, N. Jafarian , X. Song, 2019, Integration of DCE-MRI Texture Features with Clinical Data for

Improved Early Prediction of Breast Cancer Therapy Response, in Annual meeting of International Society
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6.2 Background and Related Work

6.2.1 Breast Cancer Response to Chemotherapy

Breast cancer is the second leading cause of death amongst all cancers occurring in American

women [155]. The survival rate and prognosis of a breast cancer patient is dependent on the

stage of cancer at diagnosis. Locally advanced breast cancers (generally with tumor size > 2 cm)

are often treated with neoadjuvant chemotherapy (NACT) before surgery to reduce the tumor

size for breast conserving surgery [33, 92]. The NACT regimen typically consists of 4 cycles of

doxorubicin–cyclophosphamide administration every 2 weeks followed by 4 cycles of a taxane every

2 weeks, or 6 cycles of the combination of all three drugs every 3 weeks [173, 170]. The targeted

agent, trastuzumab, is added to the regimen for tumors with positive HER2 (human epidermal

growth factor receptor 2) receptor status. A full NACT course therefore would normally last 4− 5

months.

Pathological analysis of the post-NACT surgical specimens is performed to determine the re-

sponse to NACT. The values of the cross-sectional size of the tumor in 2D, tumor cell density,

number of lymph nodes involved, and the greatest dimension in the largest involved node are mea-

sured and used in the equation given by Symmans et al. to compute the residual cancer burden

[160]. A pathological complete response (pCR) is defined as the absence of residual invasive tumor,

indicated by residual cancer burden = 0. Non-pCR includes all cases with residual cancer burden

> 0.

A pathological complete response to NACT is considered a surrogate marker for overall and

long-term disease free survival [142]. A surrogate marker is a measure that correlates with a

real clinical endpoint and hence is used as its substitute in many studies. However, the pCR

rate is only 6% − 45% depending on breast cancer subtypes and treatment regimen [26, 183,

196]. It is therefore important to identify the non-responders at an early stage of NACT so that

their treatment regimen can be modified, sparing them the long- and short-term toxicities from

ineffective chemotherapies. In the current standard of care, the response to NACT is evaluated

based on the histological examination of a surgical specimen taken after the completion of NACT.

Noninvasive or minimally invasive methods that can predict therapy response at the early stages

of NACT can potentially play an important role in the emerging era of precision medicine to help

guide regimen de-escalation/alteration in NACT treatment of breast cancer [173].
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6.2.2 Indicators of Response

A significant change in the microenvironment of the tumor, such as perfusion and metabolism,

usually precedes a reduction in tumor size as a response to chemotherapy [101, 191, 138, 107]. As a

noninvasive imaging method for assessment of microvascular perfusion, dynamic contrast enhanced

magnetic resonance imaging (DCE-MRI) is increasingly used in research and early phase clinical

trial settings to predict and evaluate cancer response to treatment [173, 101].

Several studies [173, 109, 84, 108, 162, 106, 86, 4, 190, 133] have shown that changes in quan-

titative parameters estimated from pharmacokinetic modeling of DCR-MRI data can be useful

markers for early prediction of breast cancer response to NACT. When compared to normal tissue

vasculature (arrangement of blood vessels), tumor vasculature exhibits greater spatio-temporal

heterogeneity. The heterogeneity of the tumor vasculature reflects the tumor stage and the disease

progression [50]. Therefore, texture features capable of capturing the change of heterogeneity in

tumor microvasculature can provide early prediction of breast cancer response to NACT.

6.2.3 Prediction of Response

The aforementioned DCE-MRI studies [173, 109, 84, 108, 162, 106, 86, 4, 190, 133] generally re-

ported changes in mean parameter values of the entire breast tumor, masking the potential changes

in spatial heterogeneity of the microvasculature in response to NACT. Image texture features that

can capture the heterogeneity of tumor vasculature from DCE-MRI images or parametric maps

could be highly useful in assessing tumor response to NACT.

Analysis directly on images: We first look at methods that analyze the texture from the

DCE-MRI images directly. Several texture analysis methods such as grey-level co-occurrence

matrix (GLCM) and gray-level run length matrix (RLM) (Section 2.3.3) have been frequently used

in DCE-MRI analysis [164, 66]. They were initially used on DCE-MRI images directly. Teruel

et al. analyzed T1-weighted DCE-MRI images using GLCM features to predict breast cancer

response to NACT [164]. They extracted sixteen textural features at each time point of a DCE-

MRI acquisition and the most significant feature yielded an area under the receiver operating curve

(ROC AUC) of 0.77 for prediction of pCR vs. stable disease. Similarly, Golden et al. used GLCM

features from pre- and post-NACT DCE-MRI images to evaluate NACT response [66]. The pre-

NACT features were able to predict pCR with an AUC of 0.68. Though the post-NACT features

showed favorable performances in predicting pCR, these were obtained after the completion of

NACT and are not useful for early prediction of pCR.
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Analysis on parametric maps: In contrast to analyzing the DCE-MRI images, several studies

have performed the same texture analysis on parameteric maps. A paramatric map is estimated

from pharmacokinetic modeling of DCE-MRI data. The DCE-MRI time-course data from the

voxels within the tumor ROI is fitted with a two-compartment-three-parameter shutter speed model

[173, 192], using a population averaged arterial input function from the axillary artery [173, 192].

This pharmacokinetic analysis yields the following four parametric maps: Ktrans (volume transfer

rate constant), ve (volume fraction of extravascular and extracellular space), kep (= Ktrans/ve,

efflux rate constant), and τi (mean intracellular water lifetime). A flowchart of DCE-MRI data

acquisition and analysis is shown in Figure 6.6.

Banerjee et al. extracted a combination of intensity, texture, shape and edge-based features from

2D maps of pharmacokinetic parameters before and after NACT to assess treatment response [13].

Their best model obtained an AUC of 0.83, using a concatenation of Riesz and first-order statistical

features. However, the use of pre- and post-NACT data limits the utility of this model for early

prediction of NACT response. Thibault et al. extracted multiple statistical texture features from

3D pharmacokinetic parametric maps before and after one cycle of NACT, and correlated them

with residual cancer burden values using a regression model [170]. They found that 3D GLCM

features were most effective for early prediction of NACT response.

Fractal analysis: In all the analysis methods described above, texture has been studied on a

statistical level, by analyzing the spatial distribution of the grey-level values. Textures can also be

characterized by fractals, which describe irregular structures that show self-similarity at various

scales, as elaborated in Section 2.3.4. Fractal based texture analysis correlates texture hetero-

geneity to fractal dimension (FD), which is a mathematical descriptor of a structure’s geometrical

complexity based on the concept of spatial pattern self-similarity. Rose et al. showed that fractal

analysis could be used to quantify spatial heterogeneity in DCE-MRI parametric maps and differ-

entiate between low and high-grade tumors [146]. Several other studies have used fractal analysis

of breast DCE-MRI images to classify benign vs. malignant tumors [156, 130].

Multi-resolution analysis: Another important aspect while considering textures is the reso-

lution at which it is analyzed. Due to the highly heterogeneous nature of the tumor vasculature,

analyzing images at a single resolution may not be able to capture the entire complexity of the

tumor vasculature. A multi-resolution approach can decompose an image into different levels of

resolution, giving an opportunity to extract informative features at each level. Lower resolution
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levels best represent large structures or high contrast objects, while higher resolution levels repre-

sent small structures or low contrast objects [67]. Multi-resolution analysis gives the advantage of

analyzing both small and large object characteristics in a single image at several resolutions and

therefore may be better suited to describe the highly heterogeneous tumor vasculature structure.

Multi-resolution methods, such as the wavelet analysis (Section 2.3.4), transform images into

a representation containing both frequency and spatial information [148]. The mean and entropy

values extracted from the sub-images resulting from wavelet decomposition of DCE-MRI images

have been used to classify malignant and benign breast tumors [174, 175]. Braman et al. used

Gabor wavelet to generate 1980 features from DCE-MRI images to predict breast cancer response

to NACT [28]. A feature selection step was carried out to select the top 10 features for final

classification.

6.2.4 Combining Multi-Resolution and Fractal Analysis

Al-Kadi et al. combined wavelet analysis with fractal analysis to characterize tissue in ultrasound

images of liver tumors and showed that multi-scale analysis of tumor-heterogeneity improved pre-

diction of response to therapy and disease characterization [6]. Inspired by that work, in this

chapter, we design a multi-resolution fractal analysis framework for analysis of tumor heterogene-

ity in DCE-MRI parametric maps.

6.3 Proposed Approach

In this chapter, we combine the two spectral texture analysis methods, fractal and wavelet analysis,

to obtain a new method, multi-resolution fractal analysis, wherein we perform fractal analysis at

multiple resolutions to obtain a richer representation of the heterogeneity of the texture. As cur-

rently many image analysis tasks are seeing great results from general purpose convolutional neural

network over methods specifically developed for a task, we analyze the potential of convolutional

neural network in extracting reliable features for early prediction of NACT response.

6.3.1 Multi-Resolution Fractal Analysis

Wavelet Analysis for Multi-Resolution Decomposition

As seen in Section 2.3.4 wavelet analysis decomposes an image into a set of frequency sub-bands

based on small basis functions of varying frequency and limited time duration called wavelets,

enabling the characterization of texture at appropriate frequency levels. We decompose each of
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Figure 6.1: One level of wavelet transform for a 3D volume. The down arrow in the circle represents
downsampling, L represents low-pass filter and H represents high-pass filter.

the four DCE-MRI parametric maps (described in Section 6.4.2) into a multi-resolution repre-

sentation using wavelet analysis. One level of the wavelet decomposition for a 3D volume is

shown in Figure 6.1. The 3D wavelets can be constructed as separable products of 1-D wavelets

in the three spatial directions x, y and z. The process of decomposing a parametric map with

a 1-D wavelet can be viewed as passing it through a low-pass and high-pass filter and down-

sampling. The 3D volume is first filtered along the x-direction resulting in a low-pass filtered

sub-volume L and a high-pass filtered sub-volume H. These resulting sub-volumes are further fil-

tered along y-direction, resulting in four decomposed sub-volumes: LL, LH, HL, and HH. Then

each of the four sub-volumes are filtered along the z-direction, resulting in eight sub-volumes:

LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH. We use Daubechies wavelets, as they

account for signal discontinuities and self-similarity, which make them the most suitable wavelet

for describing signals exhibiting fractal patterns [44]. Unlike Haar wavelets, they use overlapping

windows that help capture changes in high frequency, and they also demonstrate better recogni-

tion of fine characteristic structures [119]. One level of decomposition results in eight sub-volumes.

Fractal dimension is calculated for each of these sub-volumes.

Multi-Resolution Fractal Analysis

We calculate the fractal dimension based on the power spectrum analysis of the 3D Fourier trans-

formation of the sub-volumes as defined in Section 2.3.4. In standard wavelet analysis, the energy

of the sub-volume is used to guide further decomposition, but this value is highly dependent on

the intensity values of the sub-volume [185]. Instead of using energy, we select the sub-volume

with the highest fractal dimension for further decomposition as it represents the roughness of the
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Figure 6.2: Schematic of decomposition of parametric map and a flowchart of multi-resolution
fractal analysis of parametric maps of DCE-MRI to evaluate cancer response to NACT.

texture surface and does not depend on the local intensity variations.

We decompose each parametric map down to four levels using fractal dimension to guide the

sub-band tree structure. We experimented with multiple combinations of features from the four

levels. For the results presented in this chapter, we concatenate the highest and the lowest fractal

dimension at each level of decomposition to form a feature vector. Therefore, for each paramet-

ric map we generate an 8-dimensional feature vector from multi-resolution fractal analysis. The

schematic of decomposition of parametric map and a flowchart of multi-resolution fractal analysis

of parametric maps of DCE-MRI to evaluate cancer response to NACT is shown in Figure 6.2.

6.3.2 Convolutional Neural Network as Feature Extractor

We also analyze the potential of 2D convolutional neural networks in extracting reliable features for

early prediction of NACT response. As the size of the dataset is small, we design a small network

with five layers consisting of two convolutional layers and three fully connected layers. A pooling

layer performing a 2 x 2 max pooling follows each convolutional layer. The proposed convolutional

network is shown in Figure 6.3. All parametric maps are resized to a fixed resolution of 128 x 128

before feeding into the CNN. The first convolutional layer uses filters of size 5 x 5, whereas the

second layer uses filters of size 3 x 3. In order to avoid over-fitting, dropout and data augmentation
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Figure 6.3: The architecture of the convolutional neural network used to analyze the parametric
map

methods are applied. The dropout method randomly sets a fraction of input units to 0 at each

update during training time, thus reducing over-fitting. In order to further reduce over-fitting the

network on the small dataset, we augmented the data using rotations and horizontal reflections.

6.4 Methods

6.4.1 Patient Cohort and Study Schema

Fifty-five patients diagnosed with locally advanced breast cancer received standard of care NACT.

They were consented to participate in a longitudinal research DCE-MRI study approved by the

local IRB. The DCE-MRI images were collected at Oregon Health and Science University, Portland.

A total of four DCE-MRI exams are performed before, during, and after the NACT course:

pre-NACT (visit-1), after the first NACT cycle (visit-2), at NACT midpoint (visit-3; usually after

3 or 4 cycles of NACT, or before the change of NACT agents), and after the completion of NACT

but before surgery (visit-4). The DCE-MRI schedule is shown in Figure 6.4. Except for the visit-1

exam, all exams are performed at least a week after administering the latest cycle of NACT agents

to allow time for the drugs to take effect.

In this chapter, only data from the visit-1 and visit-2 DCE-MRI studies are used as we want

to predict the response to NACT at an early stage of the NACT cycle.
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Figure 6.4: The schedule of DCE-MRI scans during the longitudinal study. We only use data from
visit-1 and visit-2 to assess the capability for early prediction of breast cancer response to NACT.

6.4.2 DCE-MRI Data Acquisition and Analysis

Data Acquisition

DCE-MRI data acquisition is performed using a Siemens 3T system with the body coil as the

transmitter and a 4-channel bilateral phased-array breast coil as the receiver. During each MRI

session, following pilot scans and pre-contrast axial T1- and T2-weighted MRI acquisitions, axial

bilateral DCE-MRI images with full breast coverage are acquired using a three-dimensional gradient

echo-based time-resolved angiography with stochastic trajectories sequence [173, 192]. DCE-MRI

acquisition parameters include 10◦ flip angle, 2.9/6.2 millisecond echo time/repetition time, a

parallel imaging acceleration factor of two, 30 to 34 cm field of view, 320 × 320 in-plane matrix

size, and 1.4-mm slice thickness. About 32 − 34 image volume sets of 104 − 128 slices each are

acquired over a period of about 10 min with a temporal resolution of 14−20 seconds. The contrast

agent Gd (HP-DO3A) is injected intravenously (0.1 mmol/kg at 2 ml/s) using a programmable

power injector after acquisition of two baseline image volumes, followed by a 20-ml saline flush at

the same injection rate.

Delineation of the Tumor Region

Three experienced breast radiologists manually delineated the tumor region of interest (ROI) on

post-contrast (90 − 120 seconds after the injection of the contrast agent) DCE-MRI image slices

that contain the contrast-enhanced tumor. To minimize inter-observer variability in tumor ROI

drawing for the same patient, one radiologist drew ROIs for the entire longitudinal study of a

single patient. With only two patients having multi-focal disease, ROIs are drawn for the primary

breast tumors only. Figure 6.5 shows an example of post-contrast DCE images from a pCR patient,

drawn tumor ROIs, and ROI mean signal intensity ratio time-courses at visit-1 and visit-2. For
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Figure 6.5: The visit-1 and visit-2 post-contrast DCE-MRI image slice (a and c, respectively)
through the center of the primary breast tumor of a pCR patient [35 years, grade 2 invasive ductal
carcinoma, 2.9 cm in the longest diameter at visit-1, ER (estrogen receptor) -, PR (progesterone
receptor) +, HER2 + receptor status]. The tumor ROI boundries are shown in yellow. The time
courses of mean signal intensity ratio, S/S0, in the tumor ROI are shown in b and d for visit-1
and visit-2, respectively. S0: signal intensity at baseline prior to contrast injection.

Figure 6.6: Steps in DCE-MRI Data Acquisition and Analysis.
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(a) pCR subject (b) non-pCR subject

Figure 6.7: The central slices of the parametric maps Ktrans, kep, ve and τi of the tumor from the
patient with (a) pCR and (b) non-pCR

pharmacokinetic analysis, pre-contrast tissue T1 value, T10, is determined using a proton density

method [173, 192] by acquiring proton density images just before DCE-MRI that are spatially

co-registered with the DCE images.

Generation of Parametric Maps

As mentioned earlier pharmacokinetic analysis on DCE-MRI yields the following four parametric

maps: Ktrans, ve, kep, and τi. The variation of the parametric maps during the four DCE-MRI

acquisitions for a patient achieving pCR and non-pCR are shown in Figure 6.7. Previous studies

have observed that there is a significant decrease in the values of Ktrans and kep in patients

achieving pCR, whereas patients achieving non-pCR have a significant increase in ve during the

initial stages of NACT [139]. Similar trends are observed in the data as seen in Figure 6.7. Figure

6.8 shows examples of voxel based parametric maps of the four parameters for a pCR (6.8a) and

a non-pCR (6.8b) tumor at visit-1 and visit-2. The parametric maps from the visit-1 and visit-2

studies of all patients are subjected to multi-resolution fractal analysis.

6.4.3 Conventional Texture Feature Analysis

We compare the performance of our multi-resolution fractal analysis features with that of GLCM,

RLM and single resolution fractal analysis described in Sections 2.3.3 and 2.3.4. GLCM is a second

order statistical method, which estimates the joint probability P (i, j|d, θ), where two voxels with

intensity i and j are separated by distance d and direction θ. A GLCM matrix is constructed by
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Figure 6.8: The visit-1 and visit-2 parametric maps of Ktrans, kep, ve, and τi of the tumor ROI
on an image slice through the center of the tumor: (a) a 27 year-old pCR patient with a grade
3 invasive ductal carcinima (5.0 cm in the longest diameter at visit-1) and ER -, PR -, HER2 +
receptor status; (b) a 45 year-old non-pCR patient with a grade 2 invasive mammary carcinoma
(11.9 cm in the longest diameter at visit-1) and ER +, PR +, HER2 - receptor status.

averaging the matrices obtained over 13 directional offsets at distance d = 1 [146]. Twelve Harlick

features are derived from this GLCM matrix [73]. RLM P (i, r|θ) is defined as the number of pixels

with gray-level i and run-length r, for a given direction θ. RLM is computed by adding all possible

run lengths in the 13 directions of the 3D space and thirteen statistical features are derived from

this matrix [57]. Fractal analysis describes the roughness or smoothness of the texture through

the fractal dimension measure. Here, single-resolution fractal analysis refers to the estimation of

fractal dimension of the tumor ROI from 3D parametric maps directly [192].

6.4.4 Evaluation of Predictive Performance for NACT Response

For each of the features obtained from the GLCM, RLM, multi- and single-resolution fractal

analysis, the percentage change in the feature values is calculated between the visit-1 and visit-2

DCE-MRI studies. These percentage changes are given as input to support vector machine (SVM)

[42], a robust classifier, to generate a predictive model for classification of pCR vs. non-pCR. The

performances of the models are evaluated using accuracy, sensitivity, specificity and ROC AUC
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analysis.

Accuracy =
True positive + True negative

Total positive + Total negative
(6.1)

Sensitivity =
True positive

Total positive
(6.2)

Specificity =
True negative

Total negative
(6.3)

Sensitivity here refers to the proportion of pCRs correctly identified as pCRs, while specificity

refers to the proportion of non-pCRs correctly identified as non-pCRs. ROC AUC represents the

model’s capability of distinguishing between pCRs and non-pCRs. The ROC curve is created

by plotting the true positive rate against the false positive rate at various threshold settings.

The area under the ROC curve provides an aggregate measure of performance across all possible

classification thresholds. The ROC curve visualizes all possible classification thresholds, whereas

accuracy, specificity and sensitivity represent results for a single threshold.

Among the fifty-five patients in the study cohort, fourteen achieved pCR to NACT, while

the other 41 patients are non-pCRs based on pathological analysis of the surgical specimens.

Table 6.1 shows the clinicopathologic characteristics of the pCR and non-pCR groups. The SVM

classification performance is evaluated by calculating the average over ten random partitions of

the data for training and testing. Each partition is formed by randomly selecting 9 pCRs/31 non-

pCRs and 5 pCRs/10 non-pCRs to form the training and testing sets, respectively. The mean and

standard deviation of accuracy, sensitivity, specificity and ROC AUC values obtained over the ten

partitions of training and testing datasets are reported. The predictive performance is assessed

for the features extracted from each of the four parametric maps as well as those constructed

by concatenating the texture features from all four parametric maps of Ktrans, kep, ve and τi,

designated as ‘All’. The ROC AUC values of the multi-resolution fractal features are compared

with those of the conventional features by calculating the critical ratio according to the Hanley

and McNeil’s formula [72]. The statistical significance is set at P < 0.05.

6.5 Results

In Section 6.5.1, we compare the performance of multi-resolution fractal analysis with the conven-

tional methods of GLCM, RLM and single-resolution fractal analysis. In Section 6.5.2 we evaluate

the potential of 2D convolutional neural networks in extracting reliable features for early prediction

of NACT response. In Section 6.5.3 we evaluate the potential of integrating DCE-MRI features

with clinical data in further improving the response prediction.
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Table 6.1: Clinicopathologic characteristics of pCR and non-pCR groups. (IDC, invasive ductal
carcinoma; ILC, invasive lobular carcinoma; IMC, invasive mammary carcinoma.)

pCR (n=14) non-pCR (n=41)

Age at diagnosis
(years) 27-63 27-79

34 - IDC
Tumor type 14 - IDC 3 - ILC

4 - IMC
Tumor grade

1 1 4
2 7 16
3 6 21

Tumor size in
longest diameter (cm) 1.0 - 6.9 1.2 - 12.8

ER
Positive 2 24
Negative 12 17

PR
Positive 3 26
Negative 11 15
HER-2
Positive 12 25
Negative 2 16

6.5.1 Comparision with Classical Methods

Design of feature vector: We first experimented with the design of the feature vector from

multi-resolution fractal analysis. Each level of decomposition results in eight sub-volumes and

fractal dimension is calculated for each of these sub-volumes. We experiment with two designs

for the feature vector. First, we formed the feature vector by concatenating all fractal dimensions

at each level. Next, we chose only the maximum and minimum valued fractal dimension at each

level. Classification accuracy using both choices is shown in Figure 6.9. We observe that though

using all features from each level results in better training accuracy, its test accuracy is lower when

compared to choosing only maximum and minimum values at each level. This could be due to the

high dimentionality of the feature vector in comparison to the size of the dataset leading to over-

fitting. Further, the fractal dimensions of all sub-volumes may not have the same discrimination

power, and inclusion of weak sub-bands may have a negative impact on the performance of the

classifier. Therefore, we concatenate the maximum and minimum valued fractal dimension at each

level of decomposition to form a feature vector.
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(a) (b)

Figure 6.9: The accuracy values for classification of pCR from non-pCR patients in the training
(a) and testing (b) datasets using the feature vector with all values (red) and feature vector with
maximum and minimum values at each level of decomposition (blue) for Ktrans, kep, ve, and τi
parametric maps.

Comparison with classical methods: Figure 6.10 shows the ROC AUC values for classifica-

tion of pCR vs. non-pCR using the GLCM, RLM, single-resolution fractal, and multi-resolution

fractal features from parametric maps of different DCE-MRI parameters considered individually

and the concatenated features from all four parametric maps. GLCM and RLM features over-fit

on the training data as they show high training AUCs but low testing AUCs. For example, the

AUC values are 0.76 and 0.75 from the training Ktrans maps, and 0.47 and 0.40 from the testing

Ktrans maps for the GLCM and RLM methods, respectively.

Overall, the multi-resolution fractal features from each DCE-MRI parametric map and the

concatenated features perform the best in prediction of pCR vs. non-pCR in both the training

and testing datasets with AUC = 0.85, 0.86, 0.87, 0.86, 0.91 (for Ktrans, kep, ve, τi, and All,

respectively), and 0.80, 0.63, 0.74, 0.70, 0.78 for the training and testing datasets, respectively.

The only exception is from the kep maps in the testing datasets, where the single-resolution fractal

analysis provides the highest AUC of 0.71 among the four feature analysis methods. Within

the testing or training sets, the predictive performances of multi-resolution fractal features are

significantly better than the GLCM features from the Ktrans map (AUC = 0.47, P = 0.022) in

the testing set, RLM features from the τi map (AUC = 0.71, P = 0.012) in the training set, RLM

features from the Ktrans (AUC = 0.40, P = 0.013) and ‘All’ (AUC = 0.47, P = 0.049) maps in

the testing set, and single-resolution fractal features from the ve (AUC = 0.71, P = 0.012) and τi

(AUC = 0.67, P = 0.037) maps in the training set (indicated by * in Figure 6.10).
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Figure 6.10: The ROC AUC values for classification of pCR from non-pCR patients in the training
(a) and testing (b) datasets using the GLCM (red), RLM (blue), single-resolution fractal (yellow)
and multi-resolution fractal (black) features extracted from the Ktrans, kep, ve, and τi parametric
maps. The final column ‘All’ represents the concatenated features from all four parametric maps.
The error bars represent the standard deviation obtained over the 10 different partitions of train
and test data. *: significant (P < 0.05) difference in AUC compared to that of multi-resolution
fractal features.

(a) (b)

Figure 6.11: The accuracy values for classification of pCR from non-pCR patients in the training
(a) and testing (b) datasets using the GLCM (red), RLM (blue), single-resolution fractal (yellow)
and multi-resolution fractal (black) features extracted from the Ktrans, kep, ve, and τi parametric
maps. The final column ‘All’ represents the concatenated features from all four parametric maps.
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Table 6.2: Specificity values [mean (standard deviation)] in the testing data set for the GLCM,
RLM, single-resolution fractal and multi-resolution fractal methods with sensitivity set at 60% and
80%.

Single-resolution Multi-resolution

GLCM RLM fractal fractal

Sensitivity = 60

Ktrans 49.3 (22.3) 34.7 (27.5) 84.0 (16.1) 89.3 (11.4)

Kkep 73.3 (9.40) 67.3 (17.9) 84.0 (7.2) 70.7 (23.3)

ve 64.0 (31.6) 82.0 (14.4) 75.3 (7.1) 80.7 (12.4)

τi 40.7 (28.4) 44.0 (21.6) 57.3 (27.6) 68.7 (25.0)

All 49.3 (21.6) 42.0 (18.1) 82.0 (15.7) 82.7 (17.0)

Sensitivity = 80

Ktrans 19.3 (16.2) 25.3 (14.7) 63.3 (25.4) 68.7 (13.7)

kep 49.3 (19.9) 45.3 (19.1) 55.3 (29.3) 49.3 (27.8)

ve 22.0 (30.0) 67.3 (19.7) 56.0 (20.7) 62.0 (17.2)

τi 18.0 (23.1) 30.0 (24.6) 47.3 (24.2) 62.0 (37.7)

All 32.0 (21.5) 28.7 (16.3) 62.0 (26.9) 62.0 (17.8)

We evaluate the specificities of the classification models at two levels of sensitivities for the

testing datasets: 60% (3 out of 5 pCRs were classified correctly) and at 80% (4 out of 5 pCRs were

classified correctly), as shown in Table 6.2. At both sensitivity levels, with a few exceptions, fractal

features presents higher specificities than the GLCM and RLM features with the multi-resolution

method generally outperforming the single-resolution method (except when they were applied to

the kep map). A similar observation can be made from the accuracy measure shown in Figure

6.11, the multi-resolution fractal analysis outperforms the conventional texture analysis measures

in classifying pCR from non-pCR patients.

Effect of each level of decomposition: We decompose each parametric map down to 4 levels

using wavelet analysis. We analyze the ability of features from each level of decomposition in

predicting response to NACT. Figure 6.12 shows the accuracy values (for the training and testing
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Figure 6.12: The accuracy values for classification of pCR from non-pCR patients in the training (a)
and testing (b) datasets using feature vectors obtained from the Ktrans, kep, ve, and τi parametric
maps. The final column ‘All’ represents the concatenated features from all four parametric maps.
The error bars represent the standard deviation obtained over the 10 different partitions of train
and test data. The increasing saturation of grey levels represent the first, second, third, and fourth
level of decompositions, while the black column corresponds to the combination of features from
all four levels.

datasets) for each level of decomposition of Ktrans, kep, ve, and τi parametric maps and the

concatenated feature vector from all four parametric maps. The combination of features from all

four levels is represented by the black bar. In the training dataset the combination of features

from all four levels always outperforms features from individual levels, while in the testing dataset,

in kep and ‘All’, level-3 and level-1 features outperform the combination of all features. Features

from level-3 consistently seem to perform poorly.

Comparison of single and multi-resolution fractal analysis: The mean accuracy, sensitiv-

ity, specificity and ROC curves obtained by 10-fold cross-validation for single and multi-resolution

fractal analysis are shown in Figure 6.13. Multi-resolution FD demonstrates better predictive

performance than single-resolution FD in both the training and testing data sets. The multi-

resolution FD estimated from voxel-based DCE-MRI parametric maps provides good early pre-

diction of breast cancer response to NACT (ROC AUC > 0.8), and has better predictive ability

than single-resolution FD, though the difference in ROC AUC was not statistically significant (P

= 0.15) in this small data sets. The advantage of multi-resolution FD analysis may be due to its

capability of filtering out irrelevant features and noise at different resolutions and simultaneously

rendering more emphasis on distinct features.
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Figure 6.13: Performance comparison for Fractal and multi-resolution Fractal analysis. First row:
accuracy, second row: sensitivity, third row: specificity and fourth row: ROC AUC. Left and right
columns represent train and test results respectively.
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Table 6.3: Classification accuracy of PCR vs. non-PCR scores using different parameters

Parameter Visit 1 (%) Visit 2 (%)

Ktrans 75 66

kep 75 66

ve 72 64

τi 70 68

6.5.2 Analysis using Convolutional Neural Networks

We examined the capability of a convolutional neural network as a combined feature extractor

and classifier to classify pCR vs. non-pCR patients. We consider data from visit-1 and visit-2

separately. As we use a 2D CNN we classify individual slice from the parametric map instead of

the whole 3D volume. In this analysis each slice from a parametric map of a patient is considered

as a separate sample. For each visit, a CNN is built for each of the four parametric maps to

classify slices as pCR or non-pCR. The classification accuracies obtained in classification of pCR

vs. non-pCR using the four parametric maps from DCE-MRI scans are shown in Table 6.3. The

features from the parametric maps Ktrans and kep from visit-1 result in the best classification

accuracy of 75%. We experimentally determine a dropout rate of 0.2 to work well for extracting

features in this dataset.

The feature from the parametric maps from visit-1 result in better classification accuracies

than those from visit-2. This may be attributed to the fact that, in response to the treatment

the heterogeneity of the tumor is reduced, and therefore there is lesser information to gather from

scans during visit-2. Considering the change in features between visit-1 and visit-2 as we did in

the previous section may improve the classification performance rather than considering each visit

separately. This cannot be done in 2-dimensional analysis, as the DCE-MRI scans from the two

visits cannot be matched at a slice level. In further studies, 3D convolutional networks may be

explored for this purpose.

Further, the non-pCR patients could be divided into three classes based on the residual cancer

burden score. We perform four-class classification based on residual cancer burden scores, as

accurate assessment of residual cancer burden after NACT can help in making an informed decision

in considering breast conservation surgery versus mastectomy. But we observe that the accuracy

for classification based on residual cancer burden is low. This may be due to the low sample size
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Figure 6.14: The mean ROC AUC values for classification of pCR vs. non-pCR in the training (a)
and testing (b) datasets using the GLCM (light red) and RLM (grey) features extracted from PK
parametric maps alone “All” represents the concatenated features from all four parametric maps)
and in combination with clinical features: GLCM+Clinical (dark red) and RLM+Clinical (black).
The error bars represent the standard deviation from 10 different partitions of the training and
testing datasets. *: significant (P < 0.05) difference in AUC compared to combined features with
clinical data.

per class, which probably over-fit the network. Smaller networks or different architectures need to

be explored to obtain better performance.

6.5.3 Integration of DCE-MRI Texture Features with Clinical Data

It has been reported that molecular markers of estrogen receptor (ER), progesterone receptor

(PR), and human epidermal growth factor receptor 2 (HER2) are independently associated with

pCR rate [82]. In this section, we evaluate the potential of integrating DCE-MRI texture features

with clinical data (including the molecular markers) for early prediction of breast cancer pathologic

response to NACT. To analyze the predictive performance of integrated DCE-MRI texture features

and clinical features, the two feature vectors are concatenated and submitted to SVM. The clinical

features consist of age, tumor type, tumor grade, ER, PR, HER2 status, and TNM (tumor, node,

and metastasis) stage. The 12-dimensional GLCM features and 13-dimensional RLM features are

each concatenated with the 9-dimensional clinical features to form new feature vectors of 21 and

22 dimensions, respectively. Critical ratio calculated using the Hanley and McNeil’s formula is

used to compare the AUC values, with statistical significance set at P < 0.05.

The mean ROC AUC values for classifying pCR vs. non-pCR using GLCM and RLM image
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Table 6.4: ROC AUC values for prediction of pCR vs. non-pCR. In each row, the increase in AUC
from “imaging features alone” to “imaging + clinical feature” is statistically significant (P < 0.05)
based on analysis using the Hanley and McNeil method.(PK represents pharmacokinetic)

Texture feature map Imaging + Clinical

Dataset and PK map Imaging features alone features

Training

RLM, Ktrans 0.647 0.819

GLCM, τi 0.701 0.867

RLM, τi 0.696 0.829

Testing

GLCM, Ktrans 0.430 0.640

RLM, kep 0.527 0.683

GLCM, τi 0.440 0.640

RLM, τi 0.440 0.617

GLCM, All 0.530 0.737

features alone and in combination with the clinical data are shown in Figure 6.14. Addition of

clinical features to image features improves predictive performances in both the training and testing

datasets. Table 6.4 shows the AUC values for the pairs of texture feature and pharmacokinetic

parameter for which the integration with clinical features increased the AUC values significantly

(P < 0.05). Our results suggest that integration of DCE-MRI texture features with clinical data

provide even better prediction of NACT response, with the improvement in predictive performance

statistically significant for several imaging features.

6.6 Discussion

This preliminary study shows that multi-resolution fractal analysis has the potential to better

capture the heterogeneity in the breast tumor vasculature as measured by DCE-MRI and that

the extracted features from voxel-based DCE-MRI parametric maps are good early predictors of

breast cancer response to NACT. In general, the concatenated features extracted from parametric

maps of all the DCE-MRI parameters provide the best predictive performance. Multi-resolution

analysis filters out irrelevant features and noise at different resolutions, rendering more emphasis

on distinct features, and fractal analysis at each level appears to be able to capture these distinct
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features. The GLCM and RLM features reflect the overall correlation between adjacent voxels in

terms of second-order and higher-order statistical features, respectively [26]. For the small dataset

used in this study, the generally higher AUC values from the multi-resolution fractal analysis when

compared to GLCM and RLM methods, suggest that decomposing the texture may give further

insights into the heterogeneity of the tumor microvasculature shown on DCE-MRI parametric

maps and help capture the subtle variations in the texture which cannot be assessed by the single-

resolution approach. However, this observation needs to be validated with a larger patient cohort.

Consistent with the studies reporting mean parameter changes [8, 13 – 21], the results from this

study provide further proof that changes in vascular perfusion represented by DCE-MRI imaging

biomarkers are important features in identifying responders and non-responders at the early stage

of NACT.

The AUC values from Figure 6.10, show that the single-resolution fractal features perform con-

sistently well in prediction of response for both the training and testing sets, though not as well

as the multi-resolution approach. The higher AUCs for fractal based features suggest that they

provide a richer representation of the heterogeneity in the tumor when compared to GLCM and

RLM methods. The low dimensionality (d = 1) of single-resolution fractal feature is less likely

to cause over-fitting for the small sample size of our dataset and therefore could lead to a good

discriminative model. This could be one of the reasons that contributed to its effectiveness. On the

other hand, in spite of increased dimensionality (d = 32), multi-resolution fractal features exhibit

better predictive performance, suggesting that analyzing heterogeneity at multiple resolutions pro-

vides a more comprehensive measure of the texture and thus increases the discriminative power

of the feature. At each level of decomposition, the approximation coefficient (Wφ from Equa-

tion 2.7) represents the low-frequency component, which characterizes the coarse structure of the

data, and the detail coefficients (W i
ψ from Equation 2.8) represent the high-frequency components,

which capture the discontinuities and singularities in the data. Therefore, combination of features

from different scales and frequencies gives a richer representation of the overall underlying texture.

The advantages of multi-resolution fractals can be expected to be even more significant when the

dataset is large enough to offset their high dimensionality.

The tumor heterogeneity appears to be captured well at the first two levels of decomposition as

shown by Figure 6.12. Each decomposition level analyzes the signal at a particular band of frequen-

cies. Higher decomposition levels have better frequency resolution. The first level of decomposition

encompasses the entire frequency band of the input data in its sub-volumes. Thereafter, we select

the sub-volume with the highest fractal dimension and perform multi-resolution fractal analysis on

that sub-band alone. By doing this we are effectively looking at finer frequency resolutions of the
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selected sub-band frequencies alone. Few features from finer frequency resolutions exhibit lower

discriminative power when considered in isolation, but when combined with features from other

levels appears to enrich the representation and provide incremental improvement.

As shown in Table 6.2 for the test dataset, at fixed sensitivity, the higher AUC values from the

multi-resolution fractal features generally result in higher specificity values compared to those from

other features. It is important to have high sensitivities so that most pCR patients will be correctly

identified and continue with the original or de-escalated NACT regimen. At 80% sensitivity, the

> 60% specificity (except for the kep features) of the multi-resolution fractal features implies

that were this method used in clinical care, more than half of the non-pCRs would be correctly

classified after the first NACT cycle, potentially enabling alteration of treatment plans for these

non-responders at the early stage of NACT to receive more personalized care.

The features extracted by convolutional neural networks from parametric maps from visit-1

demonstrate better classification accuracies than those from visit-2 as shown in 6.3. The features

from kep and Ktrans parametric maps from visit-1 could classify pCR vs. non-pCR patients with

75% accuracy. Rather than the current setting of using a slice of a parametric map from a single

visit, using combination of parametric maps and comparing features from multiple visits (like we

did in multi-resolution fractal analysis) can potentially better represent the variations in the classes

and help improve the classification accuracy.

Addition of clinical features to image texture features increases the predictive capability in

discriminating pCR vs. non-pCR compared to using imaging features alone as shown in Figure

6.14. In the emerging era of precision medicine, the “big data” approach of integrating imaging,

proteomic, and genomic data is the way forward in management of cancer patients. In addition

to validating our encouraging preliminary results with a larger patient cohort, other relevant data

such as genetic test score and NACT regimen can be included in the predictive model for NACT

response in future investigations.

6.7 Conclusion

In this chapter, we demonstrated that multi-resolution fractal analysis of voxel-based DCE-MRI

parametric maps could be a promising tool for early prediction of breast cancer response to NACT.

The multi-resolution fractal features generally have better predictive performances than those ex-

tracted with the more conventional methods of GLCM, RLM and single-resolution fractal analysis.

Furthermore, compared to features extracted from individual DCE-MRI parametric maps, the use
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of concatenated features from all DCE-MRI parameters further improved prediction of NACT re-

sponse. Convolutional neural networks could extract reliable features to predict response to NACT

using scans from just one visit, but a measure comparing parametric maps from two visits would

be a stronger indicator than using maps from a single visit. Finally, we showed that addition of

clinical features to image texture features further increases the predictive capability.

This study has several limitations. The first being the small size of the dataset used. The

preliminary results obtained need to be evaluated on a larger patient cohort. Also due to the

small size of the dataset, dimensionality increase in feature vectors impedes the performance of the

classifier. Larger dataset can enable the choice of a richer feature vector from different levels in the

multi-resolution fractal decomposition, which might consistently outperform the other features.

Finally, the DCE-MRI parametric maps used for feature analysis were obtained with the shutter-

speed model, which is not commonly used in pharmacokinetic analysis of DCE-MRI data. In future

studies, parametric maps obtained with the widely used standard Tofts model [172, 171], which

generates only the Ktrans, ve, and kep parameters and thus results in reduced dimensionality of

the feature vector, can be used for feature extractions.



Chapter 7

Tracking: Vision and Sensor Fusion

7.1 Introduction

A sequence of images is a richer source of information than a still image as it captures the motion

in the scene. Tracking the motion of objects can provide objective measurements characteriz-

ing their movement. In this chapter, we delve into the fourth component of the image analysis

pipeline dealt with in this dissertation - tracking. Though a regular video camera can capture

a scene with high spatial resolution, its temporal resolution might not be sufficient to capture

subtle movements. Certain applications, such as tracking fidgety movements in infants, require

analysis of subtle movements. Fidgety movements are defined as small circular motions of mod-

erate speed with variable acceleration [51] and their absence in infants has shown to be a strong

early marker for cerebral palsy [3]. Wearable sensors like accelerometer and gyroscope have high

temporal resolution capable of tracking subtle movements, but lack the spatial information [120].

In this chapter, we develop a hybrid system that combines measurements from a basic camera and

wearable sensors thus benefiting from the superior spatial and temporal resolution capabilities of

each modality. Specifically, we use inertial measurement units, containing accelerometer, magne-

tometer and gyroscope unlike other motion analysis studies related to cerebral palsy where only one

of these sensors was used [120]. The true 3D motion is estimated using an extended Kalman filter,

which combines measurements from video and inertial measurement unit. Features extracted from

the estimated motion are used to classify fidgety movements from non-fidgety movements using

SVM.∗

∗The work in this chapter has been published in A. Machireddy, J. Van Santen, J. L. Wilson, J. Myers, M.

Hadders-Algra, X. and Song, A video/IMU hybrid system for movement estimation in infants, in 2017 39th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 730-733).

132
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7.2 Background and Related Work

7.2.1 Diagnosis of Cerebral Palsy

It is estimated that around 15 million babies are born preterm (before 37 weeks of gestation)

worldwide every year [132]. Preterm infants are at increased risk of developing neurological and

motor impairments [204]. The most common motor impairment affecting preterm infants is cerebral

palsy (CP) and is found in 4-20% of preterm infants based on their gestational age [7]. Cerebral

palsy is a non-progressive disorder causing functional impairment of the brain. The neurological

damage leads to complex dysfunctions affecting movement, motor skill and muscle co-ordination.

Although the primary damage cannot be repaired, identifying CP at an early stage enables early

intervention, which can help minimize resultant impairments [122]. Currently, the diagnosis of CP

in infants is based on the assessment of their spontaneous “general movements”, i.e., movements

made while lying in supine position on a flat surface, not surrounded by any objects that obstruct

movement or attract attention. The development of movements in early infancy is a good predictor

of movement and cognitive performance later on [53]. Prechtl and Einspieler [51] studied the

development of spontaneous movements in infants, and came up with Prechtl’s general movement

assessment, which can predict CP with sensitivity of 98% [27]. Notably, the absence of fidgety

movements in infants between 2 to 4 months has shown to be a strong marker in identifying infants

who will develop CP [3].

7.2.2 Automated Methods for Analyzing Motion

Although Prechtl’s general movement assessment can predict CP with high accuracy, it is not

widely adopted clinically as it requires clinicians to be trained specifically in the method and the

judgments are subjective [3]. This led to the development of automated methods for analyzing

motion in infants. An infant’s limb movements can be captured by using a video camera or wearable

sensors such as accelerometers, and analyzed to identify different movements [120]. Video based

movement analysis gives high spatial resolution and is easy to interpret, but can be hampered by

occlusion, and generally has low temporal resolution unless expensive special-purpose high frame

rate cameras are used. To detect fidgety movements it is necessary to capture subtle changes

in movements of the limbs, which may not be possible using video based methods. In contrast,

accelerometer based methods have high temporal resolution, which can be helpful to track subtle

changes, but they lack spatial information [120]. The automated methods currently used for

analysis of motion in infants can be broadly classified into video-based, sensor-based and hybrid

(video and sensor -based) methods.
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7.2.3 Related Work

Video-Based Assessment

We first discuss methods used to analyze motion from videos. Meinecke et al. performed 3D motion

analysis by placing reflective markers on infant and capturing motion using seven infrared cameras

[122]. They extracted 53 quantitative parameters among which they found an optimal combination

of eight parameters by cluster analysis. These optimal eight parameters were used as features for

quadratic discriminant analysis to obtain an overall CP detection rate of 73%. But such 3D motion

capture systems are costly, hard to set-up, and have high computational complexity, thus limiting

their clinical use. Kanumera et al. also used reflective markers, but used a digital video camera to

capture motion [90]. They examined different features extracted from the 2D-positional data from

the video. They found that the movements of infants who develop CP were jerkier than those of

normal infants. As only the 2D-positional data was considered, movement perpendicular to the

camera was completely overlooked.

Adde et al. developed a general movements toolbox to detect fidgety movements in video

recordings [2]. They used the 2D representation of movement over time, called the motiongram,

to extract eight quantitative features. They achieved a sensitivity of 81.5% in classifying fidgety

movements. Stahl et al. extracted motion information by applying optical flow [157]. Features were

extracted using wavelet analysis and classified using SVM to achieve 93% accuracy in identifying

fidgety movements.

But these studies used marker-less tracking, which could be less accurate as subtle differences in

moving patterns cannot be detected due to low temporal resolution of a camera. The advantage of

using standard video cameras is the reduced cost of the system and the set-up effort, enabling ap-

plications beyond the research setting, to regular clinics as well as allowing for continuous analysis

even at home.

Sensor-Based Assessment

Next we discuss methods used to analyze motion using sensors. Gravem et al. used accelerometers

to monitor movements in ten preterm infants to identify cramped synchronous general movements

[68]. Their statistical models were able to predict cramped synchronous general movements with

70-90% accuracy. No attempts were made to predict CP and the age of the infants studied (30-43

weeks) was too old for predicting CP from general movements [71].

Heinze et al. extracted 32 features based on velocity and acceleration extracted from the ac-

celerometer data for 19 healthy and 4 affected subjects [77]. They used decision trees to obtain a
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detection rate between 88-92%. Philippi et al. used a magnetic tracking system to record move-

ments [137, 91]. They extracted three kinematic features out of which repetitive movement in the

upper limbs proved to be a good predictor of CP. But the accelerometer and magnetic tracking

system used by the above two studies were wired and large in size, posing significant practical

problems.

Hybrid Systems

Berge et al. proposed a software tool called ENIGMA (enhanced interactive general movement

assessment) which helped visualize movement patterns in a video [23]. In their system, the motion

was captured using a video camera and a set of six wired sensors. They proposed a periodicity

feature for detecting fidgety movement, but did not provide any quantitative analysis on how well

this feature performed.

7.3 Proposed approach

To estimate the true 3D motion, we designed an extended Kalman filter based on the framework

described in Section 2.4.2 by fusing the positional estimates from the camera with the inertial

measurement unit signals.

7.3.1 Position Estimation from Video

We decided to use a fiducial-based motion tracking approach to track the movement of infant

limbs. We sewed color patches on the wrist, ankle and chest bands holding the sensors as shown

in Figure 7.1. Doing so would ensure that the patches would be stable with respect to the sensors.

The locations of these patches on the image plane can be detected accurately since each patch has

a unique and predetermined color. We placed five patches of different colors, one each on four

sides of the wrist and one on top of the mitten so that we have at least one patch visible at all

times, irrespective of the orientation of the hand. Since the relative positions of the color patches

to one another are known, the position of the color patch on the sensor can be estimated, even

when it is occluded. The sensor on the chest had only had only one colored patch on it.

We determined the accurate position of the limb by segmenting the colored patches by setting

thresholds for each color. We used the HSV (hue, saturation, value) color space to segment

the patches. The main advantage of HSV over RGB color space is that it separates color from

intensity information [38]. We set thresholds, using the exact range of hue, saturation and value

measures representing each color patch to segment them. We estimated the true 2D positions
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(a) (b)

Figure 7.1: (a) Baby with the Shimmer sensors and color patches (b) detected color patches.

of the patches by back projecting the point on the image plane through the camera calibration

matrix. The camera calibration matrix maps the pixel coordinates on the image to their true 3D

world coordinates. It is calculated using the camera calibrator application in Matlab which uses

the algorithm developed by Zhang [199]. We also use the color patches to obtain an estimate of

depth (z dimension). As the true size of the color patch (w) and the focal length of the camera (f)

are known, we use the triangular similarity to get its distance from the camera using the formula

D = (w ∗ f)/p, where p is the width of the patch on the image in pixels [158]. Therefore, this

provides the 3D spatial position of the colored patch.

7.3.2 Synchronizing Data from the Two Modalities

Each sensor records its measurements locally and the camera captures video separately. In order to

combine data from all sensors and the video camera, we need to synchronize them. The sampling

rate for the video signal is 60 frames per second, while for the Shimmer sensor it was 256 Hz.

To synchronize these two modalities, a buzzer connected to an additional Shimmer is used. It

simultaneously produces a 4175 Hz audio signal and a voltage spike in the Shimmer signal. As all

Shimmers are synchronized, the timing of voltage spike is looked up on the other Shimmers. The

Goertzel algorithm [93] is used to detect the 4175Hz audio signal from the video, which is then
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aligned with all the Shimmers.

7.3.3 Combining Measurements using Extended Kalman Filter

Segmenting the colored patches from the video gives the positional information regarding the

limbs, while accelerometer, gyroscope and magnetometer give the acceleration, angular velocity

and the magnetic field respectively. To track the movements of the limbs by combining information

from the video and the sensors we use the EKF framework. As shown in Section 2.4.2, the EKF

propagates an estimate of the system state x (e.g. position, orientation), given a sequence of

observations z (e.g. Shimmer output, image features) using the equations xk = f(xk−1) + ηk and

zk = h(xk)+ εk, where f is the system model, h the observation model, and η and ε are the system

and observation noise, respectively. Formulation of EKF requires definition of the state vector (x)

and information of the model given by system model (f), observation model (h) and covariance

matrices of the process (Qk) and observation noise (Rk), each of which is described below.

State vector In order to track the limb we need its position and orientation at every time instant.

We define the state vector as x = [p v a q w]T , where p, v and a are the 3D position, velocity and

acceleration, q is the quaternion describing rotation from world frame to sensor frame, and w is the

angular velocity. A quaternion is a four-dimensional vector describing rotation. Here, world frame

refers to the real-world coordinate system and the sensor frame refers to the coordinate system of

the sensor. The quaternion q describes the rotation of the sensor with respect to the world.

System model The system model and process noise covariance matrix (Qk) are given by Equa-

tions 7.1 and 7.2, where I is a 3× 3 identity matrix, and Z, Z1 and Z2 are 3× 3, 3× 4 and 4× 3

zero matrices respectively (Equations 7.3 and 7.4 are used in Equations 7.1 and 7.2). Similar to

previous work on modeling human motion, we assume constant acceleration and angular velocity

[96]. The actual variation is modeled by zero-mean white Gaussian noise with covariance matrices

Σa = σ2
aI and Σw = σ2

wI, respectively.

Observation model The measurements we obtain are the position of the limbs from the camera,

acceleration from the accelorometer, angular velocity from the gyroscope and the magnetic field

from the magnetometer. Using these measurements we define the observation vector as y =

[po ao wo mo]
T , where po is the 3D position estimated from video, and ao, wo and mo are the

measurements from accelerometer, gyroscope and magnetometer, respectively. The observation

equations and the observation noise covariance matrix (Rk) are given by Equations 7.5 - 7.9. The
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reason to adopt the EKF approach, instead of the Kalman filter, is the nonlinear nature of the

measurement equations (due to the presence of rotation matrix R). It can be seen from Equation

7.6 that the observed acceleration is the sum of the true body acceleration and the gravitational

acceleration (g) as perceived in the sensor frame. The rotation matrix R defined by Equation

7.10 projects the measurement from the real-world coordinates to the sensor coordinates. As the

magnetic field in a room can be distorted due to the presence of other metal structures, we use a

distortion compensation method proposed by Madgwick et al., wherein the earth’s magnetic field

is represented as b =
[√

h2
x + h2

y 0 hz

]
, where h = Rmo, so that it is has the same inclination as

the measurement [118].

State equation: 

pk+1

vk+1

ak+1

qk+1

wk+1
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State noise covariance matrix:

Qk =



dt5

20 Σa
dt4

8 Σa
dt3

6 Σa Z1 Z

dt4
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dt3
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dt2
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dt3
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dt2
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dt2
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Sq =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q2

−q2 q1 q0

 (7.3)

Sw =


0 −wx −wy −wz
wx 0 −wz −wy
wy wz 0 −wx
wz −wy wx 0

 (7.4)

Observation equations:
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po = pk + εp (7.5)

ao = R(ak + g) + εa (7.6)

wo = wk + εw (7.7)

mo = R(b) + εm (7.8)

Observation noise covariance matrix:

Rk =


σ2
poI Z Z Z

Z σ2
poI Z Z

Z Z σ2
poI Z

Z Z Z σ2
poI

 (7.9)

Rotation matrix:

R =


q2
0 + q2

1 − q2
2 − q2
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3
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(7.10)

Processing schedule As the two modalities are sampled at different rates, a multi-rate filtering

strategy is employed. The exact time instances of the visual and shimmer measurements are

known, therefore the time difference between successive measurements (dt) is known. The state

equations are updated for every time instant that has a measurement from either modality, and

the rows of the observation vector for the modality missing the measurement at that instant are

set to zero [110].

The proposed hybrid system provides an estimate of the 3D position, velocity, acceleration,

orientation and angular velocity of the infant’s limbs with high spatial and temporal resolution.

As fidgety movements are characterized by their velocity and acceleration, we use the estimated

3D velocity, acceleration, angular velocity and their magnitudes to predict fidgety movement.

7.4 Methods

7.4.1 Participants

We collected the data at our lab in Oregon Health and Science University in Portland. Twenty

infants between the ages of 2-4 months were recruited for this study. A research assistant obtained

a written consent from all parents. We placed the infants in the supine position on a mattress

with sensors attached, and placed a stationary video camera above, which captured movement in
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the horizontal plane. We recorded a video for 30 minutes when the infant was in an active wakeful

state.

7.4.2 Sensor Recording

We use five Shimmer3 sensors from Shimmer Inc. [30], and attach them to the left leg, left hand,

right leg, right hand and the chest using soft wrist and ankle bands, and a vest as shown in Figure

7.1. Shimmer3 sensors have an accelerometer, a gyroscope and a magnetometer. A sampling rate

of 256Hz is used. To calibrate the sensor, the constant bias in the accelerometer and gyroscope

are determined beforehand from static recordings and subtracted from the measurements.

7.4.3 Camera Recording

We use a down-pointing video camera (Panasonic HC-V550) and calibrate it using the algorithm

developed by Zhang [199] to obtain intrinsic parameters (focal length, scaling and skewing factors

along the horizontal and vertical axis of the image plane) and extrinsic parameters (rotation and

translation of the camera coordinates relative to the world coordinates). To avoid the difficulty of

calibrating camera arrays and reducing distraction to the infants, we use only one camera, which

captures only the 2D projection of true 3D motion.

7.5 Results

7.5.1 3D Motion Estimation using Simulated Data

We first test our model using simulated data so that the exact ground truth motion is known. To

evaluate the accuracy of the EKF model in predicting the position and orientation and in particular

the prediction of depth, we made a model of human arm using plywood, and simulated circular

motion by rotating it using a drill. Knowing the length of the arm, exact position and angle of the

drill, the ground truth movement is determined. A Shimmer3 sensor is placed on the plywood-arm

with a color marker and the motion is recorded using a camera. This motion is estimated using

EKF as explained above.

From Figure 7.2a and 7.2b, it can be seen that the EKF framework is able to correctly predict

the position and orientation of the plywood-arm during the simulated circular motion. We simulate

other movements such as the 3D spiral motion and the model is able to estimate the positions

accurately as seen from Figure 7.2c.
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(a) (b) (c)

Figure 7.2: (a) The ground truth (red) and estimated (blue) position of the sensor on plywood arm
during circular motion; (b) estimated orientation at different time points during circular motion.
(c) 3D Spiral motion.

7.5.2 3D Motion Estimation in Infants to Detect Fidgety Movements

The videos of two at-risk infants and three not at-risk infants are analyzed by an expert to mark

time intervals with fidgety movements and non-fidgety movements. The motions of different limbs

are estimated using the hybrid system. The estimated velocity, acceleration, angular velocity and

their magnitude values are chosen to form a 12 dimensional feature at each time instant. Equal

lengths of fidgety and non-fidgety movement segments are chosen to form a balanced dataset. The

dataset consists of 100 segments of fidgety and non-fidgety movements each. A 10-fold classification

using SVM on data from all limbs results in 84% accuracy in classifying fidgety from non-fidgety

movements. A 10-fold classification on data from a single limb (i.e. train and test data from same

limb) results in an accuracy of 90%, while using train and test data from different limbs results in

70% classification accuracy.

7.6 Conclusion

A novel method combining video and IMU sensor inputs to estimate 3D infant body movements

was presented. A new approach to estimate depth by using markers captured by a video was

demonstrated. Accelerometer, gyroscope and magnetometer features are combined with the posi-

tional information from video using EKF to derive the 3D position and orientation of the limbs of

infants. The proposed method was shown to be able to accurately estimate 3D motion.

Based on the estimated motion, fidgety movements were classified with over 84% accuracy. The

results in detecting fidgety movements are promising on the small dataset used, but need to be

further assessed on a larger population. Currently we assume constant acceleration and angular

velocity in the system model of EKF. A dynamic model characteristic of infant’s limb movements
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can give better features and deeper insights into the behavior of the fidgety movement. Addition

of dynamic features will further help capture the temporal behavior of fidgety movement and help

increase the classification accuracy. The applicability of fidgety movements in predicting cerebral

palsy needs to be evaluated in further studies by recruiting high-risk population and carrying out

a long-term neurological study.



Chapter 8

Summary and Future Work

The primary goal of this dissertation was to develop machine learning methods to aid in automatic

processing of medical images. To this end we developed multiple methods addressing different

aspects of the image processing pipeline while tacking specific medical problems. In this chapter

we summarize the proposed methods and provide future directions for each of the problems.

8.1 Point Set Registration

In Chapter 3, we proposed a new point set registration algorithm that preserved both the global

and local structure of the point set. We proposed a probability density estimation framework to

align the point sets by incorporating the local structural relationships among neighboring points.

We defined a new local structural measure that represents distances between points as probability

distributions and calculated the Kullback-Leibler distance between the distributions to define a

new measure of local structural similarity. This measure defined the membership probabilities for

the GMMs in the density estimation framework. This process resulted in different membership

probabilities of the points based on their local structure unlike previous approach where fixed

probability values were assigned [116]. This method could be used for dimensions greater than

two, since the measure depends only on the distance between the points. The experimental results

demonstrated that our approach outperformed other point set registration algorithms, even when

the point sets are degraded by various levels of noise, outliers, deformation, occlusion, and rotation.

We observed that the proposed local structural measure reduced the computational time and

error in pairwise point set registration. The next step is to apply this measure in group-wise

point set registration setting to see if it results in comparable outcome. The present group-

wise registration algorithms take a few hours to obtain results on small datasets [141]. Reducing

computational time in this setting would be a prominent contribution. Further in group-wise

registration of sequence of images (e.g. Heart MRI sequence), there is temporal information that

143
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can be modeled into the registration algorithm, to give better registration results.

Noise and outliers are presently accounted by a uniform distribution. This can probably be

improved by modeling noise and outliers using better fitting models. In addition to improving

registration performance, a local structural measure can also help in modeling noise and outliers.

When we see an image containing an object along with outliers and noise, we may be able to

roughly estimate which of the points belong to the object and which among them are outliers. We

can identify two different distributions of points. If we come up with a measure to model these two

distributions mathematically, then the error in the registration process can be further reduced.

The regularization in the proposed algorithm only makes sure that the motion is coherent. A

regularization method conserving local structure along with motion coherence can help achieve

better registration, preserving the overall structure. Further, the proposed algorithm is still slow

when applied to large datasets. There is a need to come up with a new framework that can speed

up the registration process to greater extent.

8.2 Prostate Tumor Segmentation

In Chapter 4, we experimented with various modification to the U-Net architecture to improve its

performance in segmenting tumors in MRI images of human prostates. As the tumor occupied a

small portion of the image, there was imbalance in the tumor and non-tumor classes. We showed

that the Tversky loss, which was specially designed for datasets with imbalanced classes, improved

the segmentation performance as the weight of the false positive and false negative terms could

be controlled unlike the Dice loss function. We further modified the U-Net architecture by adding

attention gates, using auto-encoder style regularization and using deep supervision. The attention

gates pruned the feature maps to retain only features relevant for tumor detection, thus reduced

false positive predictions. The auto-encoder based regularization helped when the information in

the image was sparse but degraded the segmentation performance when the image contained rich

diverse information as the features required for reconstruction of rich data could be different from

those required for segmentation. Deep-supervision forced the features to be highly discriminative

and therefore increased the segmentation performance and also lead to faster convergence.

We analyzed the performance of each modification separately. However, a combination of these

modifications can lead to further improvement of the segmentation performance. We experimented

two ways of combining data from T2 and ADC images, but did not improve the performance over

using ADC images alone. New methods of combining data from multiple scans can be explored.

DCE-MRI images also contain information pertinent to tumor identification in prostate and the
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ability of its features in segmenting tumors can be explored in further studies.

8.3 Cell Segmentation by Combining Learning and Tracking

Based Approaches

In Chapter 5, we presented a framework for segmentation of cells and sub-cellular ultrastructure in

electron microscopy images of tumor biopsies. The intracellular organelles were well distinguished

from the surrounding ultrastructures enabling accurate segmentation by training deep learning

models on sparse manual labels. Cell segmentation on the other hand was a complex task due to

the lack of clear boundaries separating cells in the cancer tissue. We used a multi-pronged approach

combining segmentation and tracking strategies for cell segmentation. Our proposed method cut

down the time taken for cell segmentation from 8 months to 1-2 days. The proposed segmentation

of electron microscopy images enabled interpretative rendering and quantitative characterization

of biologically relevant features. These features were capable of capturing the differences between

the tissue samples, and could be potentially linked to biologically or clinically relevant variables

such as patient drug response in downstream analysis.

We trained the segmentation network with only the images containing the ground truth la-

bels and did not utilize the unlabeled images in the 3D stack. The unlabeled images could be a

rich source of information and could be used for self-supervised pre-training or labeled and unla-

beled images could be used together for semi-supervised training. This could further improve the

segmentation performance. Due to intensity variations caused by acquition parameters and the

variability of features among datasets the generalizability of the segmentation models is currently

limited. In order to have an automatic segmentation framework that does not necessitate sparse

manual labeling for every new dataset, it is necessary to have a model that has enough represen-

tative training data. Our initial trials to segment individual 3D volumes by sparsely labeling each

volume is a step towards building a dataset large enough to capture the variability among different

organelles and the variability caused by different image acquisition settings. A model trained on

a larger dataset could generalize to a new dataset without requiring any manual labeling. Style

transfer techniques could be explored to transfer the style of the new dataset to be similar to the

images the network was trained on. Further, associating objects with transformers style approach

[189] could be adopted as a single step solution for cell segmentation.
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8.4 Multi-Resolution Fractal Analysis of DCE-MRI Para-

metric Maps for Early Prediction of NACT Response

In Chapter 6, we characterized the texture of DCE-MRI parametric maps with a new spectral

texture analysis method called multi-resolution fractal analysis, to evaluate its potential in early

prediction of breast cancer pathologic response to chemotherapy. Multi-resolution analysis filtered

out irrelevant features and noise at different resolutions, rendering more emphasis on distinct fea-

tures, and fractal analysis at each level captured these distinct features. The multi-resolution

fractal features generally had better predictive performances than those extracted with the more

conventional methods of GLCM, RLM and single-resolution fractal analysis. Furthermore, com-

pared to features extracted from individual DCE-MRI parametric maps, the use of concatenated

features from all DCE-MRI parameters generally further improved prediction of NACT response.

Addition of clinical features to image texture features, GLCM and RLM, increased predictive

capability in discriminating pCR vs. non-pCR compared to using imaging features alone.

The preliminary results obtained need to be evaluated on a larger patient cohort. Also due to

the small size of the dataset, dimensionality increase in feature vectors impedes the performance

of the classifier. Larger dataset can enable the choice of a richer feature vector from different

levels in the multi-resolution fractal decomposition, which might consistently outperform the other

features. Further, the DCE-MRI parametric maps used for feature analysis were obtained with

the Shutter-Speed model, which is not commonly used in pharmacokinetic analysis of DCE-MRI

data. In future studies, parametric maps obtained with the widely used standard Tofts model

[172, 171], which generates only the Ktrans, ve, and kep parameters and thus results in reduced

dimensionality of the feature vector, can be used for feature extractions.

8.5 Tracking Infant Limb Movements

In Chapter 7, we developed a hybrid tracking system, that combined measurements from a basic

camera and wearable sensors, thus benefiting from the superior spatial and temporal resolution

capabilities of either modality, to accurately track motion of infant limbs. Features extracted from

the estimated motion classified fidgety movements from non-fidgety movements using Support

Vector Machine. The proposed approach could not only accurately estimate trajectories, including

complex ones, but could also – and with good accuracy given the dearth of training data – detect

fidgety movements.

The results in detecting fidgety movements are promising on the small dataset used, but need
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to be further assessed on a larger population. A dynamic model characteristic of infant’s limb

movements can give better features and deeper insights into the behavior of the fidgety movement.

Addition of dynamic features will further help capture the temporal behavior of fidgety movement

and aid in increasing the classification accuracy. The applicability of fidgety movements in pre-

dicting cerebral palsy needs to be evaluated in further studies by recruiting high-risk population

and carrying out a long-term neurological study.
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Appendix A

Reproducing Kernel Hilbert Spaces and

Representer Theorem

The aim of regularization is to find a solution to an ill-posed problem by making the result depend

smoothly on the data by restricting the hypothesis space H. The hypothesis space is a set of all

possible hypotheses that approximate an unknown function and the goal of a learning process is to

find the final hypothesis in this space that best approximates the unknown function. One way of

imposing regularization is to introduce a regularization term in the error minimization equation,

which will force the minimization to seek for simpler functions, which incur less penalty. The most

commonly used regularization method to solve ill-posed problems was introduced by Tikhonov and

can be written as,

E(f) = Err(f) +
λ

2
‖f‖2H (A.1)

where Err(f) is the empirical error term, λ is the regularization parameter and ‖.‖ is the norm of

the function in the hypothesis space H. This is similar to Equation 3.16 in our formulation, where

velocity field ν is the function being evaluated. In order to solve such problems, some hypothesis

spaces with specific desirable properties have been defined. One such space is the Reproducing

Kernel Hilbert Space. We are discussing only the basic theory here and detailed explanation can

be found in [37, 123, 63, 98, 187]. Hilbert space is a space, which extends the concept of Euclidean

space to infinite dimensions. It is a complete metric space with respect to a distance function and

has an inner product.

Definition A.1. An evaluation functional over the Hilbert space H is a linear functional F that

evaluates each function in the space at the point x,

Ft[f ] = f(x) ∀f ∈ H. (A.2)

Definition A.2. A Hilbert space H is a Reproducing Kernel Hilbert Space, if the evaluation
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functionals are bounded, i.e. if for all x there exists some M > 0, such that

|Ft[f ]| = |f(x)| ≤M‖f‖H . (A.3)

Definition A.3. A function K is a reproducing kernel if it is symmetric i.e. K(x, y) = K(y, x)

and positive definite
n∑

i,j=1

cicjK(xi, xj) ≥ 0 (A.4)

for any n ∈ N and choice of x1, x2, . . . , xn ∈ X and c1, c2, . . . , cn ∈ R. A reproducing kernel K

reproduces the value of a function f ∈ H at a point x ∈ X. This gives the reproducing property

which states that for every x ∈ X there exists a function Kx ∈ H, called the representer of x, such

that Ft[f ] = 〈Kx, f〉 = f(x).

Theorem A.1. A RKHS defines a corresponding reproducing kernel. Conversely a reproducing

kernel defines a unique RKHS.

Given a reproducing kernel K, a unique RKHS can be defined as H =
N∑
n=1

ciK(x, xi), whose norm

is defined by the inner product,

〈f, g〉 =

s∑
i=1

s′∑
j=1

cicjK(x, x′j) (A.5)

where f(x) =
s∑
i=1

ciKxi(x) and g(x) =
s′∑
i=1

ciKx′i
(x).

Theorem A.2. (The Representer Theorem) The optimal solution f̂ that minimizes a regularized

error functional of the form

E(f) = Err(f) +
λ

2
‖f‖2H (A.6)

can be represented as

f̂ =

N∑
i=1

ciK(x, xi) (A.7)

Proof. Given a reproducing kernel K, we can define a unique RKHS H0 in the subspace of H as,

H0 =

{
f ∈ H|f =

N∑
i=1

ciK(x, xi)

}
. (A.8)

Let H⊥0 be a linear subspace of H orthogonal to H0, i.e.

H⊥0 = {g ∈ H| 〈g, f〉 = 0} ∀f ∈ H0. (A.9)

As H0 is finite dimensional and closed we can write, H = H0⊕H⊥0 . Now, every function f ∈ H can

be uniquely decomposed into a component alongH0, denoted by f0, and a component perpendicular

to H⊥0 , denoted by f⊥0 i.e., f = f0 + f⊥0 . By orthogonality, ‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2 and by

the reproducing property, Err(f0 + f⊥0 ) = Err(f0) (since evaluating f(x) = f0(x) + f⊥0 (x) to
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compute the empirical error requires taking the inner product with the representer Kxi , and doing

so nullifies the f⊥0 term while preserving the f0 term). Combining these two facts, we can see that,

E(f) = Err(f) +
λ

2
‖f‖2H = Err

(
f0 + f⊥0

)
+
λ

2
‖f0 + f⊥0 ‖2H (A.10)

= Err(f0) +
λ

2
‖f0‖2H +

λ

2
‖f⊥0 ‖2H (A.11)

≥ Err(f0) +
λ

2
‖f0‖2H . (A.12)

Hence, the optimal minimum of the regularized error functional comes from the space H0 and has

the form f̂ =
∑N
i=1 ciK(x, xi). In our solution for the velocity field ν, we have used a Gaussian

as the reproducing kernel as it helps extract the high frequency content of the function, which is

minimized to obtain a smooth result.


