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Abstract

Infectious diseases have historically been the leading cause of death worldwide. While
cardiovascular disease has slowly overtaken infectious diseases as the leading cause of death over
the last 100 years, infectious diseases continue to have a huge burden on our planet, costing millions
of life years and trillions of dollars as evidenced by our most recent COVID-19 pandemic. Viral
infections like SARS-CoV-2, can be detected and eliminated through the MHC class | antigen
presentation pathway. Identifying which viral targets can be recognized by each person’s individual
immune system is critical, both for evaluating whether current treatments can work, and for
developing future vaccines. In my dissertation, | developed a framework to predict and assess
susceptibility to infectious disease via peptide-MHC binding. First, | assessed the binding affinity of
SARS-CoV-2 peptides across a wide number of HLA -A, -B, and -C alleles and compared their ability
to bind SARS-CoV-2 with the closely related SARS-CoV, validating that this binding affinity analysis
predicted an allele HLA-B*46:01 as a deleterious allele for both SARS-CoV and SARS-CoV-2 as
previously found in hospital case studies during the first SARS outbreak. | then explored the potential
for cross-protective immunity by evaluating conserved peptides’ binding potential with different HLA
alleles across coronaviruses, finding that there was little to no relationship between predicted binding
and level of conservation. | reported global distributions of HLA types, identifying potentially
vulnerable populations to the current pandemic. In order to validate these predictions, | investigated
the relationship between severity of SARS-CoV-2 disease and HLA type in 3,235 individuals with
confirmed infection, finding that only the DPB1 locus to be associated with whether an individual
developed symptoms after multiple comparison correction. Age, BMI, asthma status, and
autoimmune disorder status were found to be comorbidities that far outweighed metrics such as
patient specific predicted binding to SARS-CoV-2 peptides. To improve upon this initial framework of
combining HLA genotypes with peptide-MHC binding to assess disease susceptibility as well as to

Vil



generally assess the validity of peptide-MHC binding predictors, which are widely used for
investigational and therapeutic application, | investigated 4 popular peptide-MHC binding affinity
predictors across a range of peptide sources and MHC class | alleles. | found significant
inconsistencies in binding affinity predictions across all tools. Further, | developed and applied a
method to evaluate the ability of peptide-MHC predictors to detect differences in amino acid physical
properties across peptide sets, finding that while these tools were unreliable across single tool and
allele combinations, for several alleles, they predicted strong preferences for specific physical
properties. My work raises fundamental questions about the reliability of peptide-MHC binding
prediction tools and their downstream implications. In summary, | demonstrate the potential of a
framework of assessing disease susceptibility from viral peptides, show that, at least for SARS-CoV-
2, the predictions from this framework were not confirmed by the clinical and survey data over a large
population, discover the poor reliability of peptide-MHC predictors which may have contributed to the
lack of predictive power for SARS-CoV-2, and outline a critical need to develop more accurate

peptide-MHC predictors.
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Chapter 1: Introduction

1.1 Introduction

March 11, 2020. After over 100,000 cases and 4,000 deaths in hundreds of countries, the
WHO declared COVID-19 as a global pandemic. 2 days later, in the United States, states began to
shut down to prevent the spread of the airborne virus. By March 17th, Moderna began human trials of
its vaccine, but emergency use authorization (EUA) would not be granted until December 18, 2020.
Social distancing measures quickly followed but these measures were not enough to stop the
rampant spread of disease. While many infected individuals were either asymptomatic or had mild
enough symptoms to avoid hospitalization, the threat of COVID-19 forced many individuals and
families, including mine, into personal lockdowns, with the uncertainty that the measures we took
would be enough to protect our family. As a family with a cancer survivor, the biggest question that
we asked daily was: what can we do to protect ourselves and each other? The best we could do was
guarantine to the best of our ability and take the vaccines and boosters when they were available.
Even today, after 4 shots of the vaccine, with monoclonal antibody prophylactics, and regular mask

usage, life has not yet returned to “normal” for us and many others.

While being immunocompromised makes one both much more likely to get and suffer more
severe COVID-19 disease (and generally more severe symptoms for any disease), the first applicable
guestion to any disease is who are the vulnerable individuals? COVID-19 is the most relevant disease
to ask this question today, however, it is neither the first, nor will be the last pandemic that we face,
nor does this question only apply to only infectious diseases. The second question is what are the
most effective ways to reduce the effects of disease? For COVID-19, it was the vaccine, even after
new variants reduced their effectiveness. For individuals with cancer, there is no one size fits all

solution.



What ties an infectious disease such as SARS-CoV-2 and cancer together is the need for the
immune system to recognize and rid itself of harmful cells. Here | introduce the background that
motivates my dissertation research. Section 1.2 introduces antigen processing and presentation in
cancer and viral infections. Section 1.3 delves into computational methods of modeling and predicting
antigen presentation. Section 1.4 discusses the broad application of these computational methods
and the success of their downstream products. Finally, Section 1.5 discusses the problems my

research addresses and the contributions to the field made by this dissertation.

1.2 Antigen processing and presentation

Medicine has 3 components: diagnosis, treatment, and prevention of disease. Vaccines are
often considered a modern medical miracle; they are simply products that teach your immune system
to recognize and eliminate enemies, satisfying 2 parts of medicine: treatment and prevention. This
starts with the ability of the immune system to recognize self from non-self. This process starts with
antigen processing and presentation: a key process where antigens, foreign substances which can
induce an immune response, are, along with our own peptides, subsequently displayed on the cell
surface for T cells to identify and for our immune system to generate an immune response (1-5). In
the context of infectious disease and cancer, antigen processing starts with the major
histocompatibility complex (MHC) class | proteins, which bind peptides, usually between 8-12 amino
acid residues, to their binding groove (6). MHC class Il proteins bind longer peptides, up to 25 amino
acids in length. These peptides are generated by breaking down intracellular proteins via the
proteasome. Antigenic peptides are specifically generated by the immunoproteasome, a highly
efficient version of the proteasome (7-9). After these peptides are generated, then processed further
by cytosolic and endoplasmic reticulum aminopeptidases, they then have the opportunity to bind to an

MHC class | molecule (Figure 1.1).
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Figure 1.1. Towards a systems understanding of MHC class | and MHC class Il antigen presentation
(5). The lifecycle of an antigen, starting from transcription and translation. Proteins are broken down
by proteasomal cleavage which then composes the peptide pool, which are further processed by
aminopeptidases. These smaller peptides are transported by Transporters associated with Antigen
Processing (TAP) protein complexes to respective MHC class | molecules for binding. Peptides that

fail to bind are transported back to the cytosol and further trimmed or recycled by various peptidases.

As the human cell fights foreign peptides from many sources, from bacteria, viruses, to cancer
cells, MHC class | proteins are able to recognize a wide array of peptides. This relies on the binding
of these peptides to the polymorphic region of the MHC molecule: the peptide-binding groove
(6,10,11). The majority of MHC class | molecules never bind to a peptide and are ultimately

degraded; this allows for almost all peptides to be “screened” by MHC class |, even when rates of
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peptide synthesis are increased during events such as a viral infection (12). MHC class | proteins are
encoded by some of the most highly polymorphic genes in humans, genes that contain the greatest
frequency of mutations; these polymorphism gives rise to different peptide-binding grooves and thus,
differing capacities to bind and recognize unique peptides (13). The majority of MHC class | proteins
in humans are encoded by genes at the HLA-A, HLA-B, and HLA-C regions of chromosome 6. Nearly
all individuals have two HLA-A/B/C haplotypes, giving rise to a minimum of 3 and a maximum of 6
distinct alleles (13,14). As of June 2022, there were over 24,000 different HLA class | alleles, giving
the possibility for an incredibly wide and unique repertoire of peptides an individual can recognize and
bind (15). Indeed, it is estimated that an average individual with 6 heterozygous alleles could present

on the order of 102 unique peptides (14,16).

After binding of the peptide to the MHC molecule, the peptide-MHC complex is transported to
the cell surface for T cell recognition. Within the cell, this process is continuous, allowing T cells to
constantly monitor the given cell’s proteome. When a peptide-MHC complex that a T cell has not
previously encountered during T cell maturation, for example during viral infection or oncogenesis, T
cell activation can occur, and an immune response can be stimulated (3,14). The identification of
these peptides is important for evaluating what can trigger an immune response; thus, antigen
identification is crucial for understanding both infectious and autoimmune diseases as well as the

development of immunotherapies and vaccines.

1.2.1 HLA type and disease association

Each person’s immune system has its own capacity to recognize and eliminate infectious
disease. With the vast variety in individuals’ ability to bind peptides to their MHC repertoire, there is a
likewise variety in both susceptibility and severity of disease. The association between many
autoimmune disorders and HLA type has been known for decades; it accounts for half of all known

genetic risk factors (17-19). The most well-studied, HLA-associated disease is Type 1 diabetes. A
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subset of HLA alleles, mostly class Il DQ and DR haplotypes, are between 40-50% of the familial
aggregation of Type 1 Diabetes (20), with many more alleles from both class | and class Il presenting

smaller protective or deleterious effects.

The relationship between HLA class | and infectious disease susceptibility is well documented.
For example, HLA B27,51, and 57:01 all are associated with protection from HIV infection (21,22).
Hepatitis B and C are another 2 viruses that both are globally widespread and have HLA alleles
associated with either increased clearance or progression (23—-26). The number of both autoimmune
and infectious diseases with strong HLA associations and mechanistic explanations is increasing as
we gather more disease and genotype data (27). Because we have increasing evidence that some
HLA alleles provide stronger protection versus specific diseases, we next want to understand what
about the HLA-disease relationship makes them more protective and how we can identify vulnerable

populations.

1.2.2 HLA evolution

The HLA region, like most of the human genome, is subject to selective pressures. As HLA is
incredibly important for immunity and each HLA type can recognize and bind specific peptides,
increased diversity may be favored at the HLA locus as there may be a wider ability to present
peptides (28). While there are multiple hypotheses about the specific events that drive HLA evolution,
one of those with substantial evidence is pathogen-driven selections: specific alleles are favored
because of their ability to provide protection from pathogen species or strains (29-32). Further, there
is evidence that suggests that the selection of alleles available in a population is dictated by both
specific pathogens and diversity of pathogens in the geographical region of the population (28). For
example, several studies report that specific HLA alleles provide increased resistance while other
alleles provide decreased fitness against single pathogens (33—-39). There is evidence that there is a

positive correlation between both pathogen diversity and HLA class | promiscuity as well as pathogen
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diversity and HLA variation (29,30). Heterozygotes at the MHC loci; with more available alleles and
theoretically a greater range of recognition against pathogen peptides, are more likely to have higher

fitness in general and against a variety of pathogens (29,31,40).

1.2.3 Antigen targets in viral infections

The antigen processing and presentation are vitally important for dealing with viral infections.
Viruses are infectious agents composed of nucleic acid surrounded by a protein shell and need to
infect a host cell in order to replicate. Oftentimes, viruses are cleared from the body quickly such as
the common cold, or when they cause a persistent infection, they do not have any major symptoms,
for example, the herpes simplex virus (41,42). However, both acute and chronic viral infections can
have devastating effects on the host; SARS-CoV-2 alone has killed over 6.5 million at the time of

writing, with hundreds of millions more with potential long term symptoms (43,44).

In healthy individuals, presented peptides of viral origin, both from exogenous sources through
endocytosis as well as endogenous viral antigen are similarly processed, presented, and recognized
by T cells (6). Typically, viral infections elicit strong cytotoxic T lymphocyte responses which can allow
for the quick clearance of a virus. However, when the immune system fails to recognize the virus, as
in the case where antibodies are not effective (e.g. new variants of a virus), viruses will infect host
cells and reproduce (45). There are two main methods for fighting viral infection: antiviral drugs and
vaccines. Antiviral drugs follow 2 strategies: targeting the host cell or the virus themselves. Drugs that
target the viruses directly can target a wide variety of mechanisms such as viral attachment, entry,
protease inhibitors, and these drugs are often among the top drugs by sales (46). However, for many
viral infections, there are no effective antiviral drugs; in fact, there are only 12 viruses in which there
are antiviral drugs and the majority of antiviral drugs are used to treat HIV, with limited effectiveness.

The most effective HIV drugs are geared towards prevention of HIV integration by inhibiting integrase,
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a critical viral protein that spices viral DNA into the chromosome (47). However, they have a

significant number of side effects and are not yet well tolerated.

Vaccines have been present in some form since the late 1700 with the discovery of smallpox
immunization. Pasteur in the late 1800s developed the first vaccines using attenuated viruses in
humans, and by the mid-1980, we eradicated smallpox with worldwide vaccination programs (48). As
the number of known infectious diseases has increased, so has the number and variety of vaccines;
currently there are 104 FDA approved vaccines for a wide variety of viruses (49). There are a wide
variety of vaccines, but they generally separate into 2 categories: antibody inducing and T cell
response inducing (48-54). Not all types of vaccines activate the antigen processing and presentation
pathways and subsequently T cell response. Vaccines that induce T cell response are generally
effective, some of which are even capable of producing broad responses against more than one
strain of disease (50,51,54-58). For example, T cell responses are vitally important in the prevention

of severe COVID-19 disease, especially for variants that escape antibody response (52).

Determining viral targets that can induce a T cell response is vital; this process of determining
immunogenicity again relies on the key step of peptide-MHC binding (59-62). The relationship
between binding affinity and immunogenicity of approximately 100 different hepatitis B virus (HBV)-
derived potential epitopes estimated that a binding affinity threshold (what concentration of peptide
would be necessary to achieve 50% inhibition of the MHC molecule) of approximately
500nMdetermines the capacity of a peptide epitope to elicit a CTL response (61). Additionally, both
the strength of predicted binding and the measure of dissimilarity between a foreign peptide and its
human counterpart is positively correlated with the likelihood of generating an immune response. With
viral epitopes generally having a larger measure of dissimilarity against human peptides, this makes

them good targets for therapeutics.
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1.2.4 Neoantigens in cancer

Cancer is a group of diseases where cells chronically proliferate and can spread throughout
the body. Cancers are defined by a number of hallmarks including aberrant growth, resistance to cell
death, angiogenesis, and invasion of healthy tissue (63-65). Genetic mutations that drive a cancer’s
numerous survival advantages over normal cells can be targets for both early detection and treatment
of the cancer. Some of these genetic mutations produce novel peptides called neoantigens which
have the ability to elicit a strong immune response via the antigen processing and presentation
pathways as described above (66—69). Not all mutations produce neoantigens; only mutations that
result in a novel amino acid sequence relative to the individual’s regular proteome, expressed within
the cancer cell, and bind with relatively high affinity to at least one of the individual’s MHC molecules
can produce neoantigens. Neoantigens are both targets themselves and used to evaluate which

treatments may be viable for patients (67,68,70—-77).

As targets, cancer immunotherapy, also known as immuno-oncology, aims to take advantage
of these neoantigens by boosting and educating the immune system to recognize and eliminate
cancer cells. Currently, there are 5 main forms of cancer immunotherapy: immune checkpoint
inhibitors, adoptive cell therapy, monoclonal antibody, oncolytic viral therapy, and cancer vaccines
(78,79). All 5 of these cancer immunotherapies, in some aspect, activate the antigen processing and
presentation pathways. The targetability of these products varies widely; a peptide that is unique to
the tumor and is not expressed anywhere in normal tissue is most likely to produce the strongest anti-

tumor response and the lowest chance of normal tissue toxicity (67,72,80).

Not all cancer immunotherapies are effective for all patients. As biomarkers, neoantigen-
related metrics such as tumor mutational burden (the number of mutations unique to the tumor as
compared to normal tissue- TMB) and quantity of nonsynonymous SNVs (single nucleotide variants

that change the protein sequence) have been used as predictors of immunotherapy response (81—
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83). Theoretically, the higher the number of mutations, the more tumor-specific targets the immune
system has the opportunity to recognize and attack, thus improving the efficacy of immunotherapy.
However, numerous studies have quantified the robustness of TMB as a predictor; TMB is only
effective in some populations already receiving immunotherapies but not in immunotherapy-naive

populations and as a partial predictor in a small number of cancers (69,84-87).

Efforts have shown that downstream metrics of mutational burden that include adjustments for
sequence novelty (measuring change from the original peptide) and MHC binding have been shown
to increase predictive benefit (60,84,88). This again supports the importance of the antigen

processing and presentation pathways in evaluating both targets and biomarkers in cancer.

1.3 Predicting peptide-MHC binding

For both viral infections and cancer, the ideal target is one that can generate a reliable immune
response. A tight binding must occur between the peptide and MHC molecule to generate this, thus
the majority of research in this area focuses on identifying these peptides which may bind to a MHC
molecule. Using computational methods in order to predict the relationship between peptide and MHC
molecules enables drug developers and clinicians to more rapidly identify and filter through potential
therapeutic targets. This, combined with the rapidly increasing quantities and decreasing cost of next-
gen sequencing, has increased the availability and cost-effectiveness of therapies such as

personalized vaccines (73,89).

Initial work in predicting peptide-MHC binding started with binding motif-based models. In the
late 1980s, structural characteristics of peptides binding to mouse MHC molecules were first
described quantitatively (90). Subsequently, it was found that anchor positions, specific locations
where the peptide would attach to pockets in the MHC molecule binding groove, were conserved
across many different MHC molecules but with differing binding motifs. This led to the first models

such as SYFPEITHI with position-based amino acid scoring (91).
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The next generation of peptide-MHC binding affinity predictors were machine learning tools.
There are 3 main types of ML peptide-MHC binding affinity predictors: predictors that are trained on
eluted ligand (EL) data (ligands that are profiled using mass spectrometry from lysed antigen
presenting cells), predictors trained on binding affinity (BA) data (normally obtained by observing 50%
binding threshold of the peptide to MHC molecule in nM as described above), and predictors trained
on mixed data (BA + EL). The first ML models suffered from a severe lack of training data; the first
artificial neural network model in 1998 had fewer than 300 peptide-MHC data points (92). As binding
affinity datasets became larger, models became more refined, being able to make predictions on new

peptide-MHC pairs.

With the increased number of mass spectrometry studies, eluted ligand data presented
another opportunity for peptide-MHC binding software developers. This data was used as a stand-
alone for some tools and in tandem with binding affinity data for others (93-100). The difficulty in 2
separate types of data comes from multi-allelic ligand data, meaning an eluted ligand may have come
from any number of MHC molecules. Binding affinity data is much easier to model; it is a single event
with 1 peptide and 1 MHC molecule. BA + EL models tend to pseudo-assign or multi-assign eluted
ligand data points to a single allele. Despite the exponential increase in the amount of training data,
the total number of peptides across all sources is still only estimated to capture an extremely small
proportion of the set presented by MHC, thus computational imputation will continue to be an

important tool in identifying and filtering peptide targets (59,94,101,102).

There are a large number of peptide-MHC predictors in use today. Among the most commonly

used are netMHCpan, MHCflurry, MHCnuggets, IEDB consensus, and SYFPEITHI(103-106).

10
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1.3.1 MHCflurry
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Figure 1.2. MHCflurry training and network architecture. Affinities are BA data, mass spec is
eluted ligand data, and random are randomly generated peptides not found in BA or mass spec data.
Peptide sequence is inputted into 3 15-mers concatenated together: left aligned, center aligned, and

right aligned, creating a sequence of length 45 as input.

MHCflurry is a BA+EL model, trained specifically to discriminate published mass spectrometry
data from unobserved peptides. MHCflurry uses a neural network architecture with 1 input layer, 3
hidden layers, and 1 output layer, as they found in their preliminary analysis that the deeper networks
consistently outperformed shallower versions; however, the authors noted that the gains from
additional layers were small compared to additional training data. MHCflurry distinguishes itself from
other peptide-MHC tools by combining mass spectrometry identified peptides with unobserved
decoys against the BA predictor (Figure 1.2). They found that the binding peptides in held back sets
that contained established motifs were favored in the BA prediction and in a test set of held-out mass

spec data, MHCflurry outperformed netMHCpan 4.0 and MixMHCpred 2 (97). A possible drawback of

11
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using decoys, which have no prior information on whether they bind, as an automatic negative, is that

for predictions outside the space of known mass spectrometry may result in false negative binders.

1.3.2 MHCnuggets
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Figure 1.3. MHCnuggets network architecture. Inputs are peptide sequences of variable
length. MHCnuggets uses transfer learning in order to generate predictions for alleles not directly in

the training data or with fewer training examples.

MHCnuggets is a recurrent neural network with an input layer, an LSTM layer, a fully
connected layer, and a single output node (Figure 1.3). They use this method in order to gain
information from sequential data inputs (amino acid sequence) and can handle peptides of variable
length. The authors report that MHCnuggets had higher positive predictive value (PPV) than
MHCflurry and the netMHCpan suite of tools, and fewer overall binders than other methods, resulting
in a smaller number of false-positive predictions for the alleles tested. They attribute this overall
improvement to the LSTM network architecture, which handles a variety of lengths well without

coercion to a specific k-mer length (98).
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1.3.3 netMHCpan
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Figure 1.4. netMHCpan network architecture. netMHCpan converts all peptides into 9-mers as

inputs using insertions or deletions of the original peptide sequence to the closest BLOSUM®62

9-mers.

netMHCpan is an eluted ligand and binding affinity mixed model that combines MHC
molecules, input data types, and multiple peptide lengths into neural network input (96,107,108).
netMHCpan uses the simplest architecture of the tools mentioned: a machine learning framework
consisting of 3 layers: an input layer, a single hidden layer, and an output layer (Figure 1.4). All
networks were trained with back-propagation with stochastic gradient descent (96,109). Features of
netMHCpan that other models such as MHCnhuggets, which uses an LSTM model, do not have is the
coercion of peptide input into 9-mers. This refers to the either insertion or deletion of peptides to the
nearest 9-mer (95,110); for example, an 8-mer peptide input will have wildcard X amino acids
attached in each possible position to make it a “9-mer”, then the highest predicted binding score of

the peptides is kept as the score of the original 8-mer. The authors of netMHCpan benchmark
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FRANK (per protein-based accuracy score) and PPV scores versus MHCflurry and MixMHCpred, but

conclude that they are “significantly superior” over all other methods for both metrics.

1.3.4 HLAthena
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Figure 1.5. HLAthena network architecture and additional inputs. Inputs into HLAthena’s model
are eluted ligands from up to 50 million single-HLA expressing cells per allele. Cleavability information
was obtained from predicted cleavability (cleavnn). HLA expression and presentation bias information

was obtained from mass spectrometry and ribosomal profiling respectively.

HLAthena is an eluted ligand model that is trained solely on in-house data. The authors claim
that current prediction algorithms were not trained on high-quality epitope data and that with primarily
BA data, “[other tools] do not account for intracellular availability of the peptide precursors or their
processing by proteases” and “uneven accuracy in the prediction of epitopes binding to less common
alleles in Caucasians, or those highly prevalent in other populations” (93). These statements directly
point to the heavy reliance of the aforementioned tools on the IEDB database (111) BA data, the most
populous of all peptide-MHC data. HLAthena’s in-house dataset is composed of over 185,000
peptides eluted from mono-allelic cell lines, removing any possible confounding factors resulting from
the use of EL multi-allelic data as with netMHCpan. At the time of publication, their mono-allelic data
doubled the IEDB database’s repository of mono-allelic data. HLAthena found that their predictions

for 8-mers was less accurate as those were observed to have lower cleavage scores. The authors
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also suggested an additional explanation for the less accurate 8-mer prediction scores; 8-mers had
the highest entropy as compared to the other k-mer lengths and integrating more features, such as
cleavability, expression, and gene presentation bias, into the neural network increased performances
for 8-mer predictions more than the other lengths (Figure 1.5). Benchmarking against MHCflurry,
netMHCpan, and MixMHCpred, HLAthena outperformed all tools in PPV at multiple recall

percentages.

1.4 Current uses of peptide-MHC binding predictors
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Figure 1.6 Neoepitope prediction pipeline diagram describing canonical neoepiscope workflow.
Global inputs are shown at the top of the figure, connecting to neoepiscope with each option for
processing listed to the right. Direct neoepiscope functionality is depicted within the outlined box, with
example sequences showing both somatic (underlined) and background germline variants
(underlined, italic) in a mock transcript sequence, and their translation and kmerization into short

peptides (8-mers).

Peptide-MHC binding predictors have been widely used in cancer neoepitope discovery. One
of the first pipelines for computationally identifying tumor neoantigens, pVAC-seq, relies on the use of
epitope binding prediction software (netMHC/netMHCpan) (74). Subsequent software pipelines which
used a wider variety of tools followed suit such as CloudNeo (112), MuPeXi (113), and Neoepiscope
(71). The starting points for all of these software begins with tumor and normal DNA-seq, then
performing alignment and variant calling to obtain lists of germline and somatic variants. The tumor
variants may be validated with RNA-seq if available (Figure 1.6). neoepiscope additionally takes
advantage of additional RNA-seq data to confirm any predicted phased variants in earlier steps. After
a list of potential peptides is created from the lists of variants, these peptides are inputted into
peptide-MHC prediction software. The majority of these tools use tools from the netMHCpan suite
(71,74,112,113), with some tools such as neoepiscope offering prediction alternatives with MHCflurry

and MHCnuggets.

The results from the peptide-MHC predictors are sorted and filtered, typically using a threshold
of 500nM. As mentioned above, 500nM has been the accepted value for immunogenicity as it was
discovered that hepatitis B epitopes elicited a cytotoxic T lymphocyte response at approximately the
500nM threshold (61). These peptides are usually filtered further by comparing the sets of tumor
peptides and the normal peptides and removing any duplicates as well as by coverage if given RNA-
seq data to the user specified thresholds. Finally, this end result is outputted as a list of possibly

immunogenic targets.
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