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Abstract 

 Infectious diseases have historically been the leading cause of death worldwide. While 

cardiovascular disease has slowly overtaken infectious diseases as the leading cause of death over 

the last 100 years, infectious diseases continue to have a huge burden on our planet, costing millions 

of life years and trillions of dollars as evidenced by our most recent COVID-19 pandemic. Viral 

infections like SARS-CoV-2, can be detected and eliminated through the MHC class I antigen 

presentation pathway. Identifying which viral targets can be recognized by each person’s individual 

immune system is critical, both for evaluating whether current treatments can work, and for 

developing future vaccines. In my dissertation, I developed a framework to predict and assess 

susceptibility to infectious disease via peptide-MHC binding. First, I assessed the binding affinity of 

SARS-CoV-2 peptides across a wide number of HLA -A, -B, and -C alleles and compared their ability 

to bind SARS-CoV-2 with the closely related SARS-CoV, validating that this binding affinity analysis 

predicted an allele HLA-B*46:01 as a deleterious allele for both SARS-CoV and SARS-CoV-2 as 

previously found in hospital case studies during the first SARS outbreak. I then explored the potential 

for cross-protective immunity by evaluating conserved peptides’ binding potential with different HLA 

alleles across coronaviruses, finding that there was little to no relationship between predicted binding 

and level of conservation. I reported global distributions of HLA types, identifying potentially 

vulnerable populations to the current pandemic. In order to validate these predictions, I investigated 

the relationship between severity of SARS-CoV-2 disease and HLA type in 3,235 individuals with 

confirmed infection, finding that only the DPB1 locus to be associated with whether an individual 

developed symptoms after multiple comparison correction. Age, BMI, asthma status, and 

autoimmune disorder status were found to be comorbidities that far outweighed metrics such as 

patient specific predicted binding to SARS-CoV-2 peptides. To improve upon this initial framework of 

combining HLA genotypes with peptide-MHC binding to assess disease susceptibility as well as to 
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generally assess the validity of peptide-MHC binding predictors, which are widely used for 

investigational and therapeutic application, I investigated 4 popular peptide-MHC binding affinity 

predictors across a range of peptide sources and MHC class I alleles. I found significant 

inconsistencies in binding affinity predictions across all tools. Further, I developed and applied a 

method to evaluate the ability of peptide-MHC predictors to detect differences in amino acid physical 

properties across peptide sets, finding that while these tools were unreliable across single tool and 

allele combinations, for several alleles, they predicted strong preferences for specific physical 

properties. My work raises fundamental questions about the reliability of peptide-MHC binding 

prediction tools and their downstream implications. In summary, I demonstrate the potential of a 

framework of assessing disease susceptibility from viral peptides, show that, at least for SARS-CoV-

2, the predictions from this framework were not confirmed by the clinical and survey data over a large 

population, discover the poor reliability of peptide-MHC predictors which may have contributed to the 

lack of predictive power for SARS-CoV-2, and outline a critical need to develop more accurate 

peptide-MHC predictors. 
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Chapter 1: Introduction 

1.1 Introduction 

March 11, 2020. After over 100,000 cases and 4,000 deaths in hundreds of countries, the 

WHO declared COVID-19 as a global pandemic. 2 days later, in the United States, states began to 

shut down to prevent the spread of the airborne virus. By March 17th, Moderna began human trials of 

its vaccine, but emergency use authorization (EUA) would not be granted until December 18, 2020. 

Social distancing measures quickly followed but these measures were not enough to stop the 

rampant spread of disease. While many infected individuals were either asymptomatic or had mild 

enough symptoms to avoid hospitalization, the threat of COVID-19 forced many individuals and 

families, including mine, into personal lockdowns, with the uncertainty that the measures we took 

would be enough to protect our family. As a family with a cancer survivor, the biggest question that 

we asked daily was: what can we do to protect ourselves and each other? The best we could do was 

quarantine to the best of our ability and take the vaccines and boosters when they were available. 

Even today, after 4 shots of the vaccine, with monoclonal antibody prophylactics, and regular mask 

usage, life has not yet returned to “normal” for us and many others. 

While being immunocompromised makes one both much more likely to get and suffer more 

severe COVID-19 disease (and generally more severe symptoms for any disease), the first applicable 

question to any disease is who are the vulnerable individuals? COVID-19 is the most relevant disease 

to ask this question today, however, it is neither the first, nor will be the last pandemic that we face, 

nor does this question only apply to only infectious diseases. The second question is what are the 

most effective ways to reduce the effects of disease? For COVID-19, it was the vaccine, even after 

new variants reduced their effectiveness. For individuals with cancer, there is no one size fits all 

solution. 
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What ties an infectious disease such as SARS-CoV-2 and cancer together is the need for the 

immune system to recognize and rid itself of harmful cells. Here I introduce the background that 

motivates my dissertation research. Section 1.2 introduces antigen processing and presentation in 

cancer and viral infections. Section 1.3 delves into computational methods of modeling and predicting 

antigen presentation. Section 1.4 discusses the broad application of these computational methods 

and the success of their downstream products. Finally, Section 1.5 discusses the problems my 

research addresses and the contributions to the field made by this dissertation. 

1.2 Antigen processing and presentation 

Medicine has 3 components: diagnosis, treatment, and prevention of disease. Vaccines are 

often considered a modern medical miracle; they are simply products that teach your immune system 

to recognize and eliminate enemies, satisfying 2 parts of medicine: treatment and prevention. This 

starts with the ability of the immune system to recognize self from non-self. This process starts with 

antigen processing and presentation: a key process where antigens, foreign substances which can 

induce an immune response, are, along with our own peptides, subsequently displayed on the cell 

surface for T cells to identify and for our immune system to generate an immune response (1–5). In 

the context of infectious disease and cancer, antigen processing starts with the major 

histocompatibility complex (MHC) class I proteins, which bind peptides, usually between 8-12 amino 

acid residues, to their binding groove (6). MHC class II proteins bind longer peptides, up to 25 amino 

acids in length. These peptides are generated by breaking down intracellular proteins via the 

proteasome. Antigenic peptides are specifically generated by the immunoproteasome, a highly 

efficient version of the proteasome (7–9). After these peptides are generated, then processed further 

by cytosolic and endoplasmic reticulum aminopeptidases, they then have the opportunity to bind to an 

MHC class I molecule (Figure 1.1). 

https://www.zotero.org/google-docs/?aMV6pS
https://www.zotero.org/google-docs/?2QqdgW
https://www.zotero.org/google-docs/?7lE6dg
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Figure 1.1. Towards a systems understanding of MHC class I and MHC class II antigen presentation 

(5). The lifecycle of an antigen, starting from transcription and translation. Proteins are broken down 

by proteasomal cleavage which then composes the peptide pool, which are further processed by 

aminopeptidases. These smaller peptides are transported by Transporters associated with Antigen 

Processing (TAP) protein complexes to respective MHC class I molecules for binding. Peptides that 

fail to bind are transported back to the cytosol and further trimmed or recycled by various peptidases.  

As the human cell fights foreign peptides from many sources, from bacteria, viruses, to cancer 

cells, MHC class I proteins are able to recognize a wide array of peptides. This relies on the binding 

of these peptides to the polymorphic region of the MHC molecule: the peptide-binding groove 

(6,10,11). The majority of MHC class I molecules never bind to a peptide and are ultimately 

degraded; this allows for almost all peptides to be “screened” by MHC class I, even when rates of 

https://www.zotero.org/google-docs/?MWaX6D
https://www.zotero.org/google-docs/?eeLaxj
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peptide synthesis are increased during events such as a viral infection (12). MHC class I proteins are 

encoded by some of the most highly polymorphic genes in humans, genes that contain the greatest 

frequency of mutations; these polymorphism gives rise to different peptide-binding grooves and thus, 

differing capacities to bind and recognize unique peptides (13). The majority of MHC class I proteins 

in humans are encoded by genes at the HLA-A, HLA-B, and HLA-C regions of chromosome 6. Nearly 

all individuals have two HLA-A/B/C haplotypes, giving rise to a minimum of 3 and a maximum of 6 

distinct alleles (13,14). As of June 2022, there were over 24,000 different HLA class I alleles, giving 

the possibility for an incredibly wide and unique repertoire of peptides an individual can recognize and 

bind (15). Indeed, it is estimated that an average individual with 6 heterozygous alleles could present 

on the order of 1012 unique peptides (14,16). 

After binding of the peptide to the MHC molecule, the peptide-MHC complex is transported to 

the cell surface for T cell recognition. Within the cell, this process is continuous, allowing T cells to 

constantly monitor the given cell’s proteome. When a peptide-MHC complex that a T cell has not 

previously encountered during T cell maturation, for example during viral infection or oncogenesis, T 

cell activation can occur, and an immune response can be stimulated (3,14). The identification of 

these peptides is important for evaluating what can trigger an immune response; thus, antigen 

identification is crucial for understanding both infectious and autoimmune diseases as well as the 

development of immunotherapies and vaccines.  

1.2.1 HLA type and disease association 

 Each person’s immune system has its own capacity to recognize and eliminate infectious 

disease. With the vast variety in individuals’ ability to bind peptides to their MHC repertoire, there is a 

likewise variety in both susceptibility and severity of disease. The association between many 

autoimmune disorders and HLA type has been known for decades; it accounts for half of all known 

genetic risk factors (17–19). The most well-studied, HLA-associated disease is Type 1 diabetes. A 

https://www.zotero.org/google-docs/?s8Masq
https://www.zotero.org/google-docs/?XNPibT
https://www.zotero.org/google-docs/?ZPUQGD
https://www.zotero.org/google-docs/?ErIKNv
https://www.zotero.org/google-docs/?BgrquO
https://www.zotero.org/google-docs/?c92mSe
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subset of HLA alleles, mostly class II DQ and DR haplotypes, are between 40-50% of the familial 

aggregation of Type 1 Diabetes (20), with many more alleles from both class I and class II presenting 

smaller protective or deleterious effects. 

 The relationship between HLA class I and infectious disease susceptibility is well documented. 

For example, HLA B27,51, and 57:01 all are associated with protection from HIV infection (21,22). 

Hepatitis B and C are another 2 viruses that both are globally widespread and have HLA alleles 

associated with either increased clearance or progression (23–26). The number of both autoimmune 

and infectious diseases with strong HLA associations and mechanistic explanations is increasing as 

we gather more disease and genotype data (27). Because we have increasing evidence that some 

HLA alleles provide stronger protection versus specific diseases, we next want to understand what 

about the HLA-disease relationship makes them more protective and how we can identify vulnerable 

populations. 

1.2.2 HLA evolution 

The HLA region, like most of the human genome, is subject to selective pressures. As HLA is 

incredibly important for immunity and each HLA type can recognize and bind specific peptides, 

increased diversity may be favored at the HLA locus as there may be a wider ability to present 

peptides (28). While there are multiple hypotheses about the specific events that drive HLA evolution, 

one of those with substantial evidence is pathogen-driven selections: specific alleles are favored 

because of their ability to provide protection from pathogen species or strains (29–32). Further, there 

is evidence that suggests that the selection of alleles available in a population is dictated by both 

specific pathogens and diversity of pathogens in the geographical region of the population (28). For 

example, several studies report that specific HLA alleles provide increased resistance while other 

alleles provide decreased fitness against single pathogens (33–39). There is evidence that there is a 

positive correlation between both pathogen diversity and HLA class I promiscuity as well as pathogen 

https://www.zotero.org/google-docs/?0mNtl7
https://www.zotero.org/google-docs/?H2QsIL
https://www.zotero.org/google-docs/?FD6FjJ
https://www.zotero.org/google-docs/?8iPRDO
https://www.zotero.org/google-docs/?9PApgh
https://www.zotero.org/google-docs/?U9obKw
https://www.zotero.org/google-docs/?uiNZ3J
https://www.zotero.org/google-docs/?C7ZZcl
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diversity and HLA variation (29,30). Heterozygotes at the MHC loci; with more available alleles and 

theoretically a greater range of recognition against pathogen peptides, are more likely to have higher 

fitness in general and against a variety of pathogens (29,31,40). 

1.2.3 Antigen targets in viral infections 

 The antigen processing and presentation are vitally important for dealing with viral infections. 

Viruses are infectious agents composed of nucleic acid surrounded by a protein shell and need to 

infect a host cell in order to replicate. Oftentimes, viruses are cleared from the body quickly such  as 

the common cold, or when they cause a persistent infection, they do not have any major symptoms, 

for example, the herpes simplex virus (41,42). However, both acute and chronic viral infections can 

have devastating effects on the host; SARS-CoV-2 alone has killed over 6.5 million at the time of 

writing, with hundreds of millions more with potential long term symptoms (43,44). 

In healthy individuals, presented peptides of viral origin, both from exogenous sources through 

endocytosis as well as endogenous viral antigen are similarly processed, presented, and recognized 

by T cells (6). Typically, viral infections elicit strong cytotoxic T lymphocyte responses which can allow 

for the quick clearance of a virus. However, when the immune system fails to recognize the virus, as 

in the case where antibodies are not effective (e.g. new variants of a virus), viruses will infect host 

cells and reproduce (45). There are two main methods for fighting viral infection: antiviral drugs and 

vaccines. Antiviral drugs follow 2 strategies: targeting the host cell or the virus themselves. Drugs that 

target the viruses directly can target a wide variety of mechanisms such as viral attachment, entry, 

protease inhibitors, and these drugs are often among the top drugs by sales (46). However, for many 

viral infections, there are no effective antiviral drugs; in fact, there are only 12 viruses in which there 

are antiviral drugs and the majority of antiviral drugs are used to treat HIV, with limited effectiveness. 

The most effective HIV drugs are geared towards prevention of HIV integration by inhibiting integrase, 

https://www.zotero.org/google-docs/?QhripF
https://www.zotero.org/google-docs/?1Vddqd
https://www.zotero.org/google-docs/?GuzFlO
https://www.zotero.org/google-docs/?W5NSB6
https://www.zotero.org/google-docs/?MeEU3z
https://www.zotero.org/google-docs/?S8B7Ky
https://www.zotero.org/google-docs/?1bf95s
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a critical viral protein that spices viral DNA into the chromosome (47). However, they have a 

significant number of side effects and are not yet well tolerated.  

Vaccines have been present in some form since the late 1700 with the discovery of smallpox 

immunization. Pasteur in the late 1800s developed the first vaccines using attenuated viruses in 

humans, and by the mid-1980, we eradicated smallpox with worldwide vaccination programs (48). As 

the number of known infectious diseases has increased, so has the number and variety of vaccines; 

currently there are 104 FDA approved vaccines for a wide variety of viruses (49). There are a wide 

variety of vaccines, but they generally separate into 2 categories: antibody inducing and T cell 

response inducing (48–54). Not all types of vaccines activate the antigen processing and presentation 

pathways and subsequently T cell response. Vaccines that induce T cell response are generally 

effective, some of which are even capable of producing broad responses against more than one 

strain of disease (50,51,54–58). For example, T cell responses are vitally important in the prevention 

of severe COVID-19 disease, especially for variants that escape antibody response (52). 

Determining viral targets that can induce a T cell response is vital; this process of determining 

immunogenicity again relies on the key step of peptide-MHC binding (59–62). The relationship 

between binding affinity and immunogenicity of approximately 100 different hepatitis B virus (HBV)- 

derived potential epitopes estimated that a binding affinity threshold (what concentration of peptide 

would be necessary to achieve 50% inhibition of the MHC molecule) of approximately 

500nMdetermines the capacity of a peptide epitope to elicit a CTL response (61). Additionally, both 

the strength of predicted binding and the measure of dissimilarity between a foreign peptide and its 

human counterpart is positively correlated with the likelihood of generating an immune response. With 

viral epitopes generally having a larger measure of dissimilarity against human peptides, this makes 

them good targets for therapeutics. 

https://www.zotero.org/google-docs/?NFoCJH
https://www.zotero.org/google-docs/?fppmJC
https://www.zotero.org/google-docs/?CcKhFJ
https://www.zotero.org/google-docs/?FtKYss
https://www.zotero.org/google-docs/?MrIBoV
https://www.zotero.org/google-docs/?L2tYMX
https://www.zotero.org/google-docs/?8hntya
https://www.zotero.org/google-docs/?JtMMwX
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1.2.4 Neoantigens in cancer 

 Cancer is a group of diseases where cells chronically proliferate and can spread throughout 

the body. Cancers are defined by a number of hallmarks including aberrant growth, resistance to cell 

death, angiogenesis, and invasion of healthy tissue (63–65). Genetic mutations that drive a cancer’s 

numerous survival advantages over normal cells can be targets for both early detection and treatment 

of the cancer. Some of these genetic mutations produce novel peptides called neoantigens which 

have the ability to elicit a strong immune response via the antigen processing and presentation 

pathways as described above (66–69). Not all mutations produce neoantigens; only mutations that 

result in a novel amino acid sequence relative to the individual’s regular proteome, expressed within 

the cancer cell, and bind with relatively high affinity to at least one of the individual’s MHC molecules 

can produce neoantigens. Neoantigens are both targets themselves and used to evaluate which 

treatments may be viable for patients (67,68,70–77). 

As targets, cancer immunotherapy, also known as immuno-oncology, aims to take advantage 

of these neoantigens by boosting and educating the immune system to recognize and eliminate 

cancer cells. Currently, there are 5 main forms of cancer immunotherapy: immune checkpoint 

inhibitors, adoptive cell therapy, monoclonal antibody, oncolytic viral therapy, and cancer vaccines 

(78,79). All 5 of these cancer immunotherapies, in some aspect, activate the antigen processing and 

presentation pathways. The targetability of these products varies widely; a peptide that is unique to 

the tumor and is not expressed anywhere in normal tissue is most likely to produce the strongest anti-

tumor response and the lowest chance of normal tissue toxicity (67,72,80). 

Not all cancer immunotherapies are effective for all patients. As biomarkers, neoantigen-

related metrics such as tumor mutational burden (the number of mutations unique to the tumor as 

compared to normal tissue- TMB) and quantity of nonsynonymous SNVs (single nucleotide variants 

that change the protein sequence) have been used as predictors of immunotherapy response (81–

https://www.zotero.org/google-docs/?Hv0oin
https://www.zotero.org/google-docs/?9BJ1WH
https://www.zotero.org/google-docs/?S3sgAd
https://www.zotero.org/google-docs/?h4nfBL
https://www.zotero.org/google-docs/?LPByts
https://www.zotero.org/google-docs/?3DN2jH


9 

83). Theoretically, the higher the number of mutations, the more tumor-specific targets the immune 

system has the opportunity to recognize and attack, thus improving the efficacy of immunotherapy. 

However, numerous studies have quantified the robustness of TMB as a predictor; TMB is only 

effective in some populations already receiving immunotherapies but not in immunotherapy-naive 

populations and as a partial predictor in a small number of cancers (69,84–87). 

Efforts have shown that downstream metrics of mutational burden that include adjustments for 

sequence novelty (measuring change from the original peptide) and MHC binding have been shown 

to increase predictive benefit (60,84,88). This again supports the importance of the antigen 

processing and presentation pathways in evaluating both targets and biomarkers in cancer.  

1.3 Predicting peptide-MHC binding 

For both viral infections and cancer, the ideal target is one that can generate a reliable immune 

response. A tight binding must occur between the peptide and MHC molecule to generate this, thus 

the majority of research in this area focuses on identifying these peptides which may bind to a MHC 

molecule. Using computational methods in order to predict the relationship between peptide and MHC 

molecules enables drug developers and clinicians to more rapidly identify and filter through potential 

therapeutic targets. This, combined with the rapidly increasing quantities and decreasing cost of next-

gen sequencing, has increased the availability and cost-effectiveness of therapies such as 

personalized vaccines (73,89). 

Initial work in predicting peptide-MHC binding started with binding motif-based models. In the 

late 1980s, structural characteristics of peptides binding to mouse MHC molecules were first 

described quantitatively (90). Subsequently, it was found that anchor positions, specific locations 

where the peptide would attach to pockets in the MHC molecule binding groove, were conserved 

across many different MHC molecules but with differing binding motifs. This led to the first models 

such as SYFPEITHI with position-based amino acid scoring (91). 

https://www.zotero.org/google-docs/?3DN2jH
https://www.zotero.org/google-docs/?69vhAS
https://www.zotero.org/google-docs/?vF1Xyq
https://www.zotero.org/google-docs/?ucZlZY
https://www.zotero.org/google-docs/?ekhGVc
https://www.zotero.org/google-docs/?olVukI
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The next generation of peptide-MHC binding affinity predictors were machine learning tools. 

There are 3 main types of ML peptide-MHC binding affinity predictors: predictors that are trained on 

eluted ligand (EL) data (ligands that are profiled using mass spectrometry from lysed antigen 

presenting cells), predictors trained on binding affinity (BA) data (normally obtained by observing 50% 

binding threshold of the peptide to MHC molecule in nM as described above), and predictors trained 

on mixed data (BA + EL). The first ML models suffered from a severe lack of training data; the first 

artificial neural network model in 1998 had fewer than 300 peptide-MHC data points (92). As binding 

affinity datasets became larger, models became more refined, being able to make predictions on new 

peptide-MHC pairs. 

With the increased number of mass spectrometry studies, eluted ligand data presented 

another opportunity for peptide-MHC binding software developers. This data was used as a stand-

alone for some tools and in tandem with binding affinity data for others (93–100). The difficulty in 2 

separate types of data comes from multi-allelic ligand data, meaning an eluted ligand may have come 

from any number of MHC molecules. Binding affinity data is much easier to model; it is a single event 

with 1 peptide and 1 MHC molecule. BA + EL models tend to pseudo-assign or multi-assign eluted 

ligand data points to a single allele. Despite the exponential increase in the amount of training data, 

the total number of peptides across all sources is still only estimated to capture an extremely small 

proportion of the set presented by MHC, thus computational imputation will continue to be an 

important tool in identifying and filtering peptide targets (59,94,101,102). 

There are a large number of peptide-MHC predictors in use today. Among the most commonly 

used are netMHCpan, MHCflurry, MHCnuggets, IEDB consensus, and SYFPEITHI(103–106).  

https://www.zotero.org/google-docs/?dZOcdP
https://www.zotero.org/google-docs/?gCIliY
https://www.zotero.org/google-docs/?98vdWC
https://www.zotero.org/google-docs/?broken=vW25Km
https://www.zotero.org/google-docs/?TcpDkv
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1.3.1 MHCflurry 

 

Figure 1.2. MHCflurry training and network architecture. Affinities are BA data, mass spec is 

eluted ligand data, and random are randomly generated peptides not found in BA or mass spec data. 

Peptide sequence is inputted into 3 15-mers concatenated together: left aligned, center aligned, and 

right aligned, creating a sequence of length 45 as input. 

MHCflurry is a BA+EL model, trained specifically to discriminate published mass spectrometry 

data from unobserved peptides. MHCflurry uses a neural network architecture with 1 input layer, 3 

hidden layers, and 1 output layer, as they found in their preliminary analysis that the deeper networks 

consistently outperformed shallower versions; however, the authors noted that the gains from 

additional layers were small compared to additional training data. MHCflurry distinguishes itself from 

other peptide-MHC tools by combining mass spectrometry identified peptides with unobserved 

decoys against the BA predictor (Figure 1.2). They found that the binding peptides in held back sets 

that contained established motifs were favored in the BA prediction and in a test set of held-out mass 

spec data, MHCflurry outperformed netMHCpan 4.0 and MixMHCpred 2 (97). A possible drawback of 

https://www.zotero.org/google-docs/?6mK04a
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using decoys, which have no prior information on whether they bind, as an automatic negative, is that 

for predictions outside the space of known mass spectrometry may result in false negative binders. 

 

1.3.2 MHCnuggets 

 

Figure 1.3. MHCnuggets network architecture. Inputs are peptide sequences of variable 

length. MHCnuggets uses transfer learning in order to generate predictions for alleles not directly in 

the training data or with fewer training examples. 

 MHCnuggets is a recurrent neural network with an input layer, an LSTM layer, a fully 

connected layer, and a single output node (Figure 1.3). They use this method in order to gain 

information from sequential data inputs (amino acid sequence) and can handle peptides of variable 

length. The authors report that MHCnuggets had higher positive predictive value (PPV) than 

MHCflurry and the netMHCpan suite of tools, and fewer overall binders than other methods, resulting 

in a smaller number of false-positive predictions for the alleles tested. They attribute this overall 

improvement to the LSTM network architecture, which handles a variety of lengths well without 

coercion to a specific k-mer length (98). 

https://www.zotero.org/google-docs/?qWHYj6
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1.3.3 netMHCpan 

 

Figure 1.4. netMHCpan network architecture. netMHCpan converts all peptides into 9-mers as 

inputs using insertions or deletions of the original peptide sequence to the closest BLOSUM62 

9-mers. 

netMHCpan is an eluted ligand and binding affinity mixed model that combines MHC 

molecules, input data types, and multiple peptide lengths into neural network input (96,107,108). 

netMHCpan uses the simplest architecture of the tools mentioned: a machine learning framework 

consisting of 3 layers: an input layer, a single hidden layer, and an output layer (Figure 1.4). All 

networks were trained with back-propagation with stochastic gradient descent (96,109). Features of 

netMHCpan that other models such as MHCnuggets, which uses an LSTM model, do not have is the 

coercion of peptide input into 9-mers. This refers to the either insertion or deletion of peptides to the 

nearest 9-mer (95,110); for example, an 8-mer peptide input will have wildcard X amino acids 

attached in each possible position to make it a “9-mer”, then the highest predicted binding score of 

the peptides is kept as the score of the original 8-mer. The authors of netMHCpan benchmark 

https://www.zotero.org/google-docs/?PPvuky
https://www.zotero.org/google-docs/?C8cZ6p
https://www.zotero.org/google-docs/?AC4xBS
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FRANK (per protein-based accuracy score) and PPV scores versus MHCflurry and MixMHCpred, but 

conclude that they are “significantly superior” over all other methods for both metrics. 

1.3.4 HLAthena 

 

Figure 1.5. HLAthena network architecture and additional inputs. Inputs into HLAthena’s model 

are eluted ligands from up to 50 million single-HLA expressing cells per allele. Cleavability information 

was obtained from predicted cleavability (cleavnn). HLA expression and presentation bias information 

was obtained from mass spectrometry and ribosomal profiling respectively.  

  HLAthena is an eluted ligand model that is trained solely on in-house data. The authors claim 

that current prediction algorithms were not trained on high-quality epitope data and that with primarily 

BA data, “[other tools] do not account for intracellular availability of the peptide precursors or their 

processing by proteases” and “uneven accuracy in the prediction of epitopes binding to less common 

alleles in Caucasians, or those highly prevalent in other populations'' (93). These statements directly 

point to the heavy reliance of the aforementioned tools on the IEDB database (111) BA data, the most 

populous of all peptide-MHC data. HLAthena’s in-house dataset is composed of over 185,000 

peptides eluted from mono-allelic cell lines, removing any possible confounding factors resulting from 

the use of EL multi-allelic data as with netMHCpan. At the time of publication, their mono-allelic data 

doubled the IEDB database’s repository of mono-allelic data. HLAthena found that their predictions 

for 8-mers was less accurate as those were observed to have lower cleavage scores. The authors 

https://www.zotero.org/google-docs/?AytuKQ
https://www.zotero.org/google-docs/?1lICqR
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also suggested an additional explanation for the less accurate 8-mer prediction scores; 8-mers had 

the highest entropy as compared to the other k-mer lengths and integrating more features, such as 

cleavability, expression, and gene presentation bias, into the neural network increased performances 

for 8-mer predictions more than the other lengths (Figure 1.5). Benchmarking against MHCflurry, 

netMHCpan, and MixMHCpred, HLAthena outperformed all tools in PPV at multiple recall 

percentages.  

1.4 Current uses of peptide-MHC binding predictors 
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Figure 1.6 Neoepitope prediction pipeline diagram describing canonical neoepiscope workflow.  

Global inputs are shown at the top of the figure, connecting to neoepiscope with each option for 

processing listed to the right. Direct neoepiscope functionality is depicted within the outlined box, with 

example sequences showing both somatic (underlined) and background germline variants 

(underlined, italic) in a mock transcript sequence, and their translation and kmerization into short 

peptides (8-mers). 

Peptide-MHC binding predictors have been widely used in cancer neoepitope discovery. One 

of the first pipelines for computationally identifying tumor neoantigens, pVAC-seq, relies on the use of 

epitope binding prediction software (netMHC/netMHCpan) (74). Subsequent software pipelines which 

used a wider variety of tools followed suit such as CloudNeo (112), MuPeXi (113), and Neoepiscope 

(71). The starting points for all of these software begins with tumor and normal DNA-seq, then 

performing alignment and variant calling to obtain lists of germline and somatic variants. The tumor 

variants may be validated with RNA-seq if available (Figure 1.6). neoepiscope additionally takes 

advantage of additional RNA-seq data to confirm any predicted phased variants in earlier steps. After 

a list of potential peptides is created from the lists of variants, these peptides are inputted into 

peptide-MHC prediction software. The majority of these tools use tools from the netMHCpan suite 

(71,74,112,113), with some tools such as neoepiscope offering prediction alternatives with MHCflurry 

and MHCnuggets. 

The results from the peptide-MHC predictors are sorted and filtered, typically using a threshold 

of 500nM. As mentioned above, 500nM has been the accepted value for immunogenicity as it was 

discovered that hepatitis B epitopes elicited a cytotoxic T lymphocyte response at approximately the 

500nM threshold (61). These peptides are usually filtered further by comparing the sets of tumor 

peptides and the normal peptides and removing any duplicates as well as by coverage if given RNA-

seq data to the user specified thresholds. Finally, this end result is outputted as a list of possibly 

immunogenic targets. 

https://www.zotero.org/google-docs/?RJOawr
https://www.zotero.org/google-docs/?5g85CJ
https://www.zotero.org/google-docs/?Oqeyq3
https://www.zotero.org/google-docs/?I9xr1r
https://www.zotero.org/google-docs/?KR49wO
https://www.zotero.org/google-docs/?6Gv10m
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Despite the use of the aforementioned pipelines and numerous other custom pipelines used to 

identify tumor-specific neoantigens across a wide variety of cancers (59,68,72,75,76,114–121), the 

number of successful tumor-specific vaccines is small, in no small part due the low translatability of 

the potential immunogenic targets. The extreme complexity of the immune system response to a 

vaccine, even without the added complications of cancer, involve a high degree of moving parts from 

B and T cell epitopes to other immune structures such as pathogen associated molecular pattern 

responses. While in theory, we can identify and incorporate into our models many of the factors that 

contribute to immunogenicity, we have not yet been able to incorporate factors such as the 

attractiveness of specific peptide-MHC pairs to antigen presenting cells or ability to up-regulate 

immune response. 

Cancer therapeutics pipelines are far from the only uses of peptide-MHC binding predictors. 

They are used widely in transplantation and autoimmune research (122,123). The majority of the 

recent literature citing and using tools such as netMHCpan are studies investigating the SARS-CoV-2 

virus, many of which are looking to computationally design vaccine candidates. Importantly, 

computational design of vaccines may allow us to match the ever-increasing number of circulating 

variants (124). Many of these studies lack key nuances for creating a broadly applicable vaccine. For 

example, some only predict against a small number or single allele and do not provide affinity 

predictions for other common alleles, which both broadens the number of candidates and reduces the 

number of individuals in which the vaccine would be most effective (125–128), nor do they evaluate 

peptides outside those arising from specific proteins of interest such as the spike, which severely 

limits the available number of peptides as it represents only a small number of possible SARS-CoV-2 

peptides.  

https://www.zotero.org/google-docs/?BSfo2i
https://www.zotero.org/google-docs/?sf7mQ4
https://www.zotero.org/google-docs/?hjDsPV
https://www.zotero.org/google-docs/?Q8qp6o
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1.5 Summary 

1.5.1 Challenges and opportunities 

 As the global burden of cancer and infectious disease increases, there will be an increased 

need to develop new therapies with high efficacy and equitably. There is significant potential to use 

peptide-MHC predictions, incorporated with more refined metrics of predicting potential 

immunogenicity, to more effectively narrow down targets in cancer and infectious disease, as well as 

identify populations that may be susceptible to both based on their HLA type. Further, as the amount 

of genotyping data continues to grow exponentially, the amount of personalization in evaluating 

individual risk factors to disease and in the development of personalized therapies can only increase. 

It is easy to envision a future pandemic in which a vaccine can be rapidly developed and deployed 

strategically first to genotypically at-risk populations when HLA typing becomes more ubiquitous. 

 One of the key challenges in the computational design of therapeutics for both infectious 

disease and cancer is establishing the reliability of peptide-MHC prediction tools. The number of 

successful targets out of a theoretical pool of thousands or even millions of peptides is small and the 

translatability of these targets into efficacious therapeutics is smaller still. While improvements have 

been made to these tools for nearly a decade, establishing a gold standard pipeline to predict 

immunogenicity has been difficult, without efforts to determine why such methods fail, especially 

when facing new datasets outside the space of known BA or EL peptides. 

SARS-CoV-2 has given us a unique opportunity to study an infectious disease with the largest 

number of patients and the most amount of associated genotyping data in history. With new variants 

of SARS-CoV-2 and the increasing threat of a future pandemic(s), the accurate identification of 

targets is of escalating importance. Developing vaccines and other therapeutics in a timeline manner 

can and will save millions of lives.  Our ability to more quickly synthesize an mRNA vaccine, a 

vaccine that introduces mRNA that corresponds to a viral protein which will be produced inside the 
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cell and recognized by the immune system, will be widely applicable to both more current and future 

infectious diseases, and being able to narrow down potential targets to minimize the development of 

this therapy will be vital to continued wellbeing for all of us. 

1.5.2 Contributions 

In this dissertation, I address some of the numerous questions above: how can we use 

people’s genotyping data combined with peptide-MHC predictions to identify populations that may be 

at higher risk of disease, how can we evaluate peptide-MHC predictors, and how can we identify 

current challenges that are currently unaddressed to improve the translatability of peptide-MHC 

predictors. I use data from RefSeq (129) and a number of peptide-MHC binding predictors to create 

new metrics that may be able to identify populations at risk of severe COVID-19 disease, combine 

these predictions with clinical and survey data to show the relationship between HLA, peptide binding 

predictors, and severity of disease, and finally, extend these predictions to a larger number of viruses 

as well as self-antigens and randomly generated peptides in order to gain insight in the widespread 

applicability of peptide-MHC prediction tools. I show a number of limitations of the peptide-MHC tools 

and how there is a lack of reliability across tools, even for a single peptide and single allele pair, and 

demonstrate the relationship between predicted binding and the physical properties of peptides. 

Lastly, I identify implications and future directions for this work, specifically describing areas to further 

investigate the relationship between binding and physical properties, as well as offer possible 

improvements and solutions to the problem of peptide-MHC binding affinity prediction. 

 

  

https://www.zotero.org/google-docs/?178NL0
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Chapter 2: A peptide-MHC framework for evaluating 

susceptibility to infectious disease.  

This work has been formatted for inclusion in this dissertation from the manuscript “Human leukocyte 

antigen susceptibility map for SARS-CoV-2” by Austin Nguyen, Julianne K. David, Sean K. Maden, 

Mary A. Wood, Benjamin R. Weeder, Abhinav Nellore, Reid F. Thompson published in the Journal of 

Virology (130). The author of this dissertation is the primary author of the manuscript. 

 

2.1 Abstract 

Genetic variability across the three major histocompatibility complex (MHC) class I genes 

(human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to and severity of severe acute 

respiratory syndrome 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-

19). We execute a comprehensive in silico analysis of viral peptide-MHC class I binding affinity 

across 145 HLA -A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explore the 

potential for cross-protective immunity conferred by prior exposure to four common human 

coronaviruses. The SARS-CoV-2 proteome is successfully sampled and presented by a diversity of 

HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for 

SARS-CoV-2, suggesting individuals with this allele may be particularly vulnerable to COVID-19, as 

they were previously shown to be for SARS (36). Conversely, we found that HLA-B*15:03 showed the 

greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common 

human coronaviruses, suggesting it could enable cross-protective T-cell based immunity. Finally, we 

report global distributions of HLA types with potential epidemiological ramifications in the setting of 

the current pandemic.   

https://www.zotero.org/google-docs/?hn86YM
https://www.zotero.org/google-docs/?Gcw3pr
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2.2 Importance 

Individual genetic variation may help to explain different immune responses to a virus across a 

population. In particular, understanding how variation in HLA may affect the course of COVID-19 

could help identify individuals at higher risk from the disease. HLA typing can be fast and 

inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of 

viral severity in the population. Following the development of a vaccine against SARS-CoV-2, the 

virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination. 

 

2.3 Introduction 

Recently, a new strain of betacoronavirus (severe acute respiratory syndrome coronavirus 2, 

or SARS-CoV-2) has emerged as a global pathogen, prompting the World Health Organization in 

January 2020 to declare an international public health emergency (131) . 

In the large coronavirus family, comprising enveloped positive-strand RNA viruses, SARS-

CoV-2 is the seventh encountered strain that causes respiratory disease in humans (132) ranging 

from mild -- the common cold -- to severe -- the zoonotic Middle East Respiratory Syndrome (MERS-

CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). As of April 2020, there are over one 

million presumed or confirmed cases of coronavirus disease 19 (COVID-19) worldwide, with total 

deaths exceeding 50,000 (133).  

While age and many comorbidities, including cardiovascular and pulmonary disease, appear to 

increase the severity and mortality of COVID-19 (134–139), approximately 80% of infected individuals 

have mild symptoms (140). As with SARS-CoV (141,142)and MERS-CoV (143,144), children seem to 

have low susceptibility to the disease (145–147); despite similar infection rates as adults only 5.9% of 

https://www.zotero.org/google-docs/?ZEHXyF
https://www.zotero.org/google-docs/?oLhBgU
https://www.zotero.org/google-docs/?eS2jAA
https://www.zotero.org/google-docs/?WgEygH
https://www.zotero.org/google-docs/?cVEslW
https://www.zotero.org/google-docs/?KaJ7Bn
https://www.zotero.org/google-docs/?V6Jnxm
https://www.zotero.org/google-docs/?cwNCE1
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pediatric cases are severe or critical, possibly due to lower binding ability of the ACE2 receptor in 

children or generally higher levels of antiviral antibodies (148). Other similarities (149–151) including 

genomic (152,153) and immune system response (154–162) between SARS-CoV-2 and other 

coronaviruses (32), especially SARS-CoV and MERS-CoV, are topics of ongoing active research, 

results of which may inform an understanding of the severity of infection (163) and improve the 

ongoing work of immune landscape profiling (164–167) and vaccine discovery (157,165,168–175) 

(29, 38, 42–49). 

Human leukocyte antigen (HLA) alleles, which are critical components of the viral antigen 

presentation pathway, have been shown in previous studies to confer differential viral susceptibility 

and severity of disease. For instance, disease caused by the closely-related SARS-CoV shows 

increased severity among individuals with the HLA-B*46:01 genotype (1). Associations between HLA 

genotype and disease severity extend broadly to several other unrelated viruses. For example, in 

human immunodeficiency virus 1 (HIV-1), certain HLA types (e.g. HLA-A*02:05) may reduce risk of 

seroconversion (35), and in dengue virus, certain HLA alleles (e.g. HLA-A*02:07, HLA-B*51) are 

associated with increased secondary disease severity among ethnic Thais (34). 

While a detailed clinical picture of the COVID-19 pandemic continues to emerge, there remain 

substantial unanswered questions regarding the role of individual genetic variability in the immune 

response against SARS-CoV-2. We hypothesize that individual HLA genotypes may differentially 

induce the T-cell mediated antiviral response, and could potentially alter the course of disease and its 

transmission. In this study, we performed a comprehensive in silico analysis of viral peptide-MHC 

class I binding affinity, across 145 different HLA types, for the entire SARS-CoV-2 proteome. 

 

https://www.zotero.org/google-docs/?Rqgizs
https://www.zotero.org/google-docs/?mU3RYp
https://www.zotero.org/google-docs/?0ZMAVC
https://www.zotero.org/google-docs/?CukMI0
https://www.zotero.org/google-docs/?eVCB5i
https://www.zotero.org/google-docs/?R2aJ54
https://www.zotero.org/google-docs/?OCx8IV
https://www.zotero.org/google-docs/?Nzq7uo
https://www.zotero.org/google-docs/?iGWSf4
https://www.zotero.org/google-docs/?UxCiML
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2.4 Results 

2.4.1 SARS-CoV-2 presentation is similar to SARS-CoV presentation 

To explore the potential for a given HLA allele to produce an antiviral response, we assessed 

the HLA binding affinity of all possible 8- to 12-mers from the SARS-CoV-2 proteome (n=48,395 

peptides). We then removed from further consideration 16,138 peptides that were not predicted to 

enter the MHC class I antigen processing pathway via proteasomal cleavage. For the remaining 

32,257 peptides, we repeated binding affinity predictions for a total of 145 different HLA types, and 

we show here the SARS-CoV-2-specific distribution of per-allele proteome presentation (predicted 

binding affinity threshold <500nM, Figure 2.1, Supplementary Table 2.1). Importantly, we note that the 

putative capacity for SARS-CoV-2 antigen presentation is unrelated to the HLA allelic frequency in 

the population (Figure 2.1). We identify HLA-B*46:01 as the HLA allele with the fewest predicted 

binding peptides for SARS-CoV-2. We performed the same analyses for the closely-related SARS-

CoV proteome (Supplementary Figure 2.1) and similarly note that HLA-B*46:01 was predicted to 

present the fewest SARS-CoV peptides, keeping with previous clinical data associating this allele with 

severe disease (36). 

 

https://www.zotero.org/google-docs/?gZtkna
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Figure 2.1: Distribution of HLA allelic presentation of 8- to 12-mers from the SARS-CoV-2 proteome. 

At right, the number of peptides (see Supplementary Table S1) that putatively bind to each of 145 

HLA alleles is shown as a series of horizontal bars, with dark and light shading indicating the number 

of tightly (<50nM) and loosely (<500nM) binding peptides respectively, and with green, orange, and 

purple colors representing HLA-A, -B, and -C alleles, respectively. Alleles are sorted in descending 

order based on the number of peptides they bind (<500nM). The corresponding estimated allelic 

frequency in the global population is also shown (to left), with length of horizontal bar indicating 

absolute frequency in the population. 

2.4.2 Conserved peptides do not show preferential binding 

To assess the potential for cross-protective immunity conferred by prior exposure to common 

human coronaviruses (i.e. HKU1, OC43, NL63, and 229E), we next sought to characterize the 
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conservation of the SARS-CoV-2 proteome across diverse coronavirus subgenera to identify highly 

conserved linear epitopes. After aligning reference proteome sequence data for 5 essential viral 

components (ORF1ab, S, E, M, and N proteins) across 34 distinct alpha- and betacoronaviruses, 

including all known human coronaviruses, we identified 48 highly conserved amino acid sequence 

spans (Appendix 1). Acknowledging the challenges inferring cross-protective immunity among closely 

related peptides, we confined attention exclusively to identical peptide matches.  Among conserved 

sequences, 44 SARS-CoV-2 sequences would each be anticipated to generate at least one 8- to 12-

mer linear peptide epitope also present within at least one other common human coronavirus 

(Supplementary Table 2.2, Figure 2.2). In total, 564 such 8- to 12-mer peptides were found to share 

100% identity with corresponding OC43, HKU1, NL63, and 229E sequences (467, 460, 179, and 157 

peptides, respectively) (Supplementary Table 2.3).  

 

 

Figure 2.2: Amino acid sequence conservation of four linear peptide example sequences from three 

human coronavirus proteins. Protein sequence alignments are shown for nucleocapsid (N), 
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membrane (M), and ORF1ab polyprotein (Helicase) across all five known human betacoronaviruses 

(SARS-CoV-2, SARS-CoV, HKU1, OC43, and MERS-CoV) and two known human 

alphacoronaviruses (229E and NL63). Each row in the three depicted sequence alignments 

corresponds to the protein sequence from the indicated coronavirus, with starting coordinate of the 

viral protein sequence shown at left and position coordinates of the overall alignment displayed 

above. Blue shading indicates the extent of sequence identity, with the darkest blue shading 

indicating 100% match for that amino acid across all sequences. The four red highlighted sequences 

correspond to highly conserved peptides ≥8 amino acids in length (PRWYFYYLGTGP, WSFNPETN, 

QPPGTGKSH, VYTACSHAAVDALCEKA, see Supplementary Table 2.2). 

For the subset of these potentially cross-protective peptides that are anticipated to be 

generated via the MHC class I antigen processing pathway, we performed binding affinity predictions 

across 145 different HLA-A, -B, and -C alleles. As above, we demonstrate the SARS-CoV-2-specific 

distribution of per-allele presentation for these conserved peptides. We found that alleles HLA-

A*02:02, HLA-B*15:03, and HLA-C*12:03 were the top presenters of conserved peptides. 

Conversely, we note that 56 different HLA alleles demonstrated no appreciable binding affinity 

(<500nM) to any of the conserved SARS-CoV-2 peptides, suggesting a concomitant lack of potential 

for cross-protective immunity from other human coronaviruses. We note, in particular, HLA-B*46:01 is 

among these alleles. Note also that the putative capacity for conserved peptide presentation is 

unrelated to the HLA allelic frequency in the population (Figure 2.3). Moreover, we see no 

appreciable global correlation between conservation of the SARS-CoV-2 proteome and its predicted 

MHC binding affinity, suggesting a lack of selective pressure for or against the capacity to present 

coronavirus epitopes (p=0.27 [Fisher’s exact test], Supplementary Figure 2.2). 
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Figure 2.3: Distribution of HLA allelic presentation of highly conserved human coronavirus peptides 

with potential to elicit cross-protective immunity to COVID-19. At right, the number of conserved 

peptides (see Supplementary Table 2.3) that putatively bind to a subset of 89 HLA alleles is shown as 

a series of horizontal bars, with dark and light shading indicating the number of tightly (<50nM) and 

loosely (<500nM) binding peptides, respectively, and with green, orange, and purple colors 

representing HLA-A, -B, and -C alleles, respectively. Alleles are sorted in descending order based on 

the number of peptides they are anticipated to present (binding affinity <500nM). The corresponding 

allelic frequency in the global population is also shown (to left), with length of horizontal bar indicating 

absolute frequency in the population. 

We were further interested in whether certain regions of the SARS-CoV-2 proteome showed 

differential presentation by the MHC class I pathway.  Accordingly, we surveyed the distribution of 
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antigen presentation capacity across the entire proteome, highlighting its most conserved peptide 

sequences (Figure 2.4). Throughout the entire proteome, HLA-A and HLA-C alleles exhibited the 

relative largest and smallest capacity to present SARS-CoV-2 antigens, respectively. However each 

of the three major class I genes exhibited a very similar pattern of peptide presentation across the 

proteome (Supplementary Figure 2.3).  We additionally note that peptide presentation appears to be 

independent of estimated time of peptide production during viral life cycle, with indistinguishable 

levels of peptide presentation of both early and late SARS-CoV-2 peptides (Supplementary Figure 

2.4). 
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Figure 2.4: Distribution of allelic presentation of conserved 8- to 12-mers across the entire SARS-

CoV-2 proteome for all HLA alleles and individually for HLA-A, HLA-B, and HLA-C (first, second, third, 

and fourth plots from top, respectively) with dark and light shading indicating the number of tightly 

(<50nM) and loosely (<500nM) binding peptides, respectively. Positions are derived from a 

concatenation of coding sequences (CDSes) indicated in the bottom panel. Tightly binding peptides 
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are confined to ORF1ab. The sequence begins with only the last 12 amino acids of ORF1a because 

all but the last four amino acids of ORF1a are contained in ORF1ab, and we considered binding 

peptides up to 12 amino acids in length. 

Given the global nature of the current COVID-19 pandemic, we sought to describe population-

level distributions of the HLA alleles best (and least) able to generate a repertoire of SARS-CoV-2 

epitopes in support of a T-cell based immune response.  While we present global maps of individual 

HLA allele frequencies for the full set of 145 different alleles studied herein (Appendix 2), we 

specifically highlight the global distributions of the three best-presenting (A*02:02, B*15:03, C*12:03) 

and three of the worst-presenting (A*25:01, B*46:01, C*01:02) HLA-A, -B, and -C alleles (Figure 5). 

Note that all allelic frequencies are aggregated by country, but implicitly reflect the distribution of HLA 

data available on the Allele Frequency Net Database (176). 

https://www.zotero.org/google-docs/?gDVedf
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.  

Figure 2.5: Global HLA allele frequency distribution heatmaps for six HLA-A, -B, and -C alleles. The 

leftmost panels show the global allele frequency distributions by country for three representative 

alleles (HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03) with the predicted capacities to present the 

greatest repertoire of epitopes from the SARS-CoV-2 proteome (21.1%, 19.1%, and 7.9%  of 

presentable epitopes, respectively). Conversely, the rightmost panels show the global allele 

frequency distributions by country for three representative alleles (HLA-A*25:01, HLA-B*46:01, and 

HLA-C*01:02) with the least predicted epitope presentation from the SARS-CoV-2 proteome (0.2%, 

0%, 0% of presentable epitopes, respectively). Heatmap color corresponds to the individual HLA 
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allele frequency within each country ranging from least (white/yellow) to most (red) frequent as 

indicated in the legend below each map. 

2.4.3 Individual haplotype presentation has significant variability  

Finally, we acknowledge that nearly all individuals have two HLA-A/B/C haplotypes constituting 

as few as three but as many as six distinct alleles, potentially buffering against the lack of 

presentation from a single poorly-presenting allele. We sought to describe whether allele-specific 

variability in SARS-CoV-2 presentation extends to full HLA haplotypes and to whole individual HLA 

genotypes. For six representative alleles with the highest (HLA-A*02:02, HLA-B*15:03, and HLA-

C*12:03) and lowest (HLA-A*25:01, HLA-B*46:01, and HLA-C*01:02) predicted capacity for SARS-

CoV-2 epitope presentation, these differences remain significant at the haplotype level, albeit with 

wide variability in presentation among different haplotypes (Figure 2.6).  Haplotype-level data for all 

145 alleles is included in Supplementary Figure 2.5 and Appendix 2.  We then identified 3,382 

individuals with full HLA genotype data and noted wide variability in their capacity to present peptides 

from the SARS-CoV-2 proteome, albeit with a small minority of individuals at either extreme 

(Supplementary Figure 2.6).  
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Figure 2.6: Distributions of SARS-CoV-2 peptide presentation across HLA haplotypes. The leftmost 

panels show the distributions of SARS-CoV-2 peptide presentation capacity for haplotypes containing 

one of three representative HLA alleles (HLA-A*02:02, HLA-B*15:03, and HLA-C*12:03) with the 

greatest predicted repertoire of epitopes from the SARS-CoV-2 proteome. Conversely, the rightmost 

panels show the distributions of SARS-CoV-2 peptide presentation capacity for haplotypes containing 

one of three representative alleles (HLA-A*25:01, HLA-B*46:01, and HLA-C*01:02) with the least 

predicted epitope presentation from the SARS-CoV-2 proteome. Black and gray bars represent full or 

partial haplotypes, respectively. Blue and red Dashed lines represent the percent of presented SARS-
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CoV-2 peptides for the indicated allele itself (blue) and its global population frequency weighted 

average presentation across its observed haplotypes (red). 

 

2.5 Discussion 

To the best of our knowledge, this is the first study to evaluate per-allele viral proteome 

presentation across a wide range of HLA alleles using peptide-MHC binding affinity predictors. This 

study also introduces the relationship between coronavirus sequence conservation and MHC class I 

antigen presentation. We show that individual HLA, haplotype, and full genotype variability likely 

influence the capacity to respond to SARS-CoV-2 infection, and we note certain alleles in particular 

(e.g. HLA-B*46:01) that could be associated with more severe infection, as previously shown with 

SARS-CoV. Indeed, we further compare SARS-CoV and SARS-CoV-2 peptide presentation and note 

a high degree of similarity between the two across HLA types. Finally, this is the first study to report 

global distributions of HLA types and haplotypes with potential epidemiological ramifications in the 

setting of the current pandemic. We found that in general, there is no correlation between the HLA 

allelic frequency in the population and allelic capacity to bind SARS-CoV or SARS-CoV-2 peptides, 

irrespective of estimated timing of peptide production during the viral replication cycle. While we are 

not aware of any studies explicitly reporting the relationship between human coronavirus epitope 

abundance and immune response, there is data in vaccinia virus that suggests that early peptide 

antigens are more likely to generate CD8+ T-cell responses while antibody and CD4+ T-cell 

responses are more likely to target later mRNA expression with higher peptide abundance in the 

virion (177). 

We note, however, several limitations to our work. First and foremost, while we note that a 

handful of our binding affinity predictions were borne out in experimentally validated SARS-CoV 

peptides (Supplementary Table 2.4), we acknowledge that this is an entirely in silico study. As we are 

https://www.zotero.org/google-docs/?4gOwy1


35 

unable to obtain individual-level HLA typing and clinical outcomes data for any real-world COVID-19 

populations at this time, the data presented is theoretical in nature, and subject to many of the same 

limitations implicit to the MHC binding affinity prediction tool(s) upon which it is based. As such, we 

are unable to assess the relative importance of HLA type compared to known disease-modifying risk 

factors such as age and clinical comorbidities. We further note that peptide-MHC binding affinity is 

limited as a predictor of subsequent T-cell responses (178–180), and we do not study T-cell 

responses herein. As such, we are ill-equipped to explore phenomena such as original antigenic sin 

(53,181–183), where prior exposure to closely related infection(s) may trigger T-cell anergy or 

immunopathogenesis in the setting of a novel infection (184–186). We explored only a limited set of 

145 well-studied HLA alleles, but note that this analysis could be performed across a wider diversity 

of genotypes (49). Additionally, we did not assess genotypic heterogeneity or in vivo evolution of 

SARS-CoV-2, which could modify the repertoire of viral epitopes presented, or otherwise modulate 

virulence in an HLA-independent manner (187,188)(https://nextstrain.org/ncov). We also do not 

address the potential for individual-level genetic variation in other proteins (e.g. angiotensin 

converting enzyme 2 [ACE2] or transmembrane serine protease 2 [TMPRSS2], essential host 

proteins for SARS-CoV-2 priming and cell entry (189) to modulate the host-pathogen interface. 

Unless and until the findings we present here are clinically validated, they should not be 

employed for any clinical purposes. However, we do at this juncture recommend integrating HLA 

testing into clinical trials and pairing HLA typing with COVID-19 testing where feasible to more rapidly 

develop and deploy predictor(s) of viral severity in the population, and potentially to tailor future 

vaccination strategies to genotypically at-risk populations. This approach may have additional 

implications for the management of a broad array of other viruses. 

 

https://www.zotero.org/google-docs/?acjL2p
https://www.zotero.org/google-docs/?9JnoJg
https://www.zotero.org/google-docs/?QSAwuB
https://www.zotero.org/google-docs/?SjpvEj
https://www.zotero.org/google-docs/?FwEsS5
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2.6 Materials and Methods 

2.6.1 Sequence retrieval and alignments 

Full polyprotein 1ab (ORF1ab), spike (S) protein, membrane (M) protein, envelope (E) protein, 

and nucleocapsid (N) protein sequences were obtained for each of 34 distinct but representative 

alpha and betacoronaviruses from a broad genus and subgenus distribution, including all known 

human coronaviruses (i.e. SARS-CoV, SARS-CoV-2, MERS-CoV, HKU1, OC43, NL63, and 229E). 

FASTA-formatted protein sequence data (full accession number list available in Supplementary Table 

2.4,2.5) was retrieved from the National Center of Biotechnology Information (NCBI) (190). For each 

protein class (i.e. ORF1ab, S, M, E, N), all 34 coronavirus sequences were aligned using the Clustal 

Omega v1.2.4 multisequence aligner tool employing the following parameters: sequence type 

[Protein], output alignment format [clustal_num], dealign [false], mBed-like clustering guide-tree [true], 

mBed-like clustering iteration [true], number of combined iterations [0], maximum guide tree iterations 

[-1], and maximum HMM iterations [-1] (191). For the purposes of estimating time of viral peptide 

production, we classified ORF1a and ORF1b peptides as “early” while all other peptides produced by 

subgenomic mRNAs were classified as “late” (192,193).  

2.6.2 Conserved peptide assessment 

Aligned sequences were imported into Jalview v. 2.1.1 (194) with automated generation of the 

following alignment annotations: 1) sequence consensus, calculated as the percentage of the modal 

residue per column, 2) sequence conservation (0-11), measured as a numerical index reflecting 

conservation of amino acid physico-chemical properties in the alignment, 3) alignment quality (0-1), 

measured as a normalized sum of BLOSUM62 ratios for all residues at each position, 4) occupancy, 

calculated as the number of aligned residues (not including gaps) for each position. In all cases, 

sequence conservation was assessed for each of three groups: only human coronaviruses (n=7), all 

https://www.zotero.org/google-docs/?7OZHXb
https://www.zotero.org/google-docs/?A2JVZD
https://www.zotero.org/google-docs/?98DfV1
https://www.zotero.org/google-docs/?GNnnY0
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betacoronaviruses (n=16), and combined alpha- and betacoronavirus sequences (n=34). Aligned 

SARS-CoV-2 sequence and all annotations were manually exported for subsequent analysis. 

Conserved human coronavirus peptides were defined as those with a length ≥8 consecutive amino 

acids, each with an agreement of SARS-CoV-2 and ≥4 other human coronavirus sequences with the 

consensus sequence (Supplementary Table 2.2). For each of these conserved peptides, we also 

assessed the component number of 8- to 12-mers sharing identical amino acid sequence between 

SARS-CoV-2 and each of the four other common human coronaviruses (i.e. OC43, HKU1, NL63, 

229E) (Supplementary Table 2.3). For all peptides, human, beta, and combined conservation scores 

were obtained using a custom R v.3.6.2 script as the mean sequence conservation (minus gap 

penalties where relevant) (see https://github.com/pdxgx/covid19). 

2.6.3 Peptide-MHC class I binding affinity predictions 

FASTA-formatted input protein sequences from the entire SARS-CoV-2 and SARS-CoV 

proteomes were obtained from NCBI RefSeq database under accession numbers NC_045512.2 and 

NC_004718.3. We kmerized each of these sequences into 8- to 12-mers to assess MHC class I-

peptide binding affinity across the entire proteome. MHC class I binding affinity predictions were 

performed using 145 different HLA alleles for which global allele frequency data was available as 

described previously (60) (see Supplementary Table 2.1, 2.5) with netMHCpan v4.0 (110) using the ‘-

BA’ option to include binding affinity predictions and the ‘-l’ option to specify peptides of lengths 8-12 

(Supplementary Table 2.1). Binding affinity was not predicted for peptides containing the character ‘|’ 

in their sequences. Additional MHC class I binding affinity predictions were performed on all 66 

MHCflurry supported alleles (--list-supported-alleles, Supplementary Table 2.6) using both 

MHCnuggets 2.3.2 (98) and MHCflurry 1.4.3 (195) (Supplementary Tables 2.7 and 2.8, 

Supplementary Figures 2.7-10). We further cross-referenced these lists of peptides with existing 

experimentally validated SARS-CoV epitopes present in the Immune Epitope Database 

(Supplementary Table 2.4) (111). We then performed consensus binding affinity predictions for the 66 

https://www.zotero.org/google-docs/?8YIaZF
https://www.zotero.org/google-docs/?24A7ZT
https://www.zotero.org/google-docs/?fc5lxa
https://www.zotero.org/google-docs/?oRfZxC
https://www.zotero.org/google-docs/?e3aisf
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supported alleles shared by all three tools by taking the union set of alleles and filtering for peptide-

allele pairs matching the union set of alleles. For the SARS-CoV and SARS-CoV-2 specific 

distribution of per-allele proteome presentation, we exclude all peptides-allele pairs with >500nM 

predicted binding. In all cases, we used the netchop v3.0 (196) “C-term” model with a cleavage 

threshold of 0.1 to further remove any peptides that were not predicted to undergo canonical MHC 

class I antigen processing via proteasomal cleavage (of the peptide’s C-terminus). 

2.6.4 Global HLA allele and haplotype frequencies 

HLA-A, -B, and -C allele and haplotype frequency data were obtained from the Allele 

Frequency Net Database (176)for 805 distinct populations pertaining to 101 different countries and 

2628 distinct major/minor (4-digit) alleles, corresponding to 20,478 distinct haplotypes 

(https://github.com/pdxgx/covid19). We also identified full HLA genotype data for 3,382 individuals 

whose HLA types were confined to the 145 HLA alleles studied herein.  Population allele and 

haplotype frequency data were aggregated by country as a mean of all constituent population allele 

or haplotype frequencies weighted by sample size of the population, but not accounting for 

representative ethnic demographic size of the population. Global allele frequency maps were 

generated using the rworldmap v1.3-6 package (197), with total global allele and haplotype frequency 

estimates calculated as the mean of per-country allele and haplotype frequencies, weighted by each 

country’s population in 2005. 

  

https://www.zotero.org/google-docs/?saXZaS
https://www.zotero.org/google-docs/?R1YJUR
https://www.zotero.org/google-docs/?ib1WDL
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Chapter 3: The relationship between HLA genotype, peptide-

MHC binding, and disease severity. 

This work has been formatted for inclusion in this dissertation from the manuscript “Minimal observed 

impact of HLA genotype on hospitalization and severity of SARS-CoV-2 infection” by Austin Nguyen, 

Tasneem Yusufali, Jill A. Hollenbach, Abhinav Nellore, and Reid F. Thompson published in HLA 

(198). The author of this dissertation is the primary author of the manuscript. 

 

3.1 Abstract 

HLA is a critical component of the viral antigen presentation pathway. We investigated the 

relationship between severity of SARS-CoV-2 disease and HLA type in 3,235 individuals with 

confirmed SARS-CoV-2 infection. We found only the DPB1 locus to be associated with the binary 

outcome of whether an individual developed any COVID-19 symptoms, suggesting that HLA class II 

was able to initiate early immune response. The number of peptides predicted to bind to an HLA 

allele had no significant relationship with disease severity both when stratifying individuals by 

ancestry or age and in a pooled analysis. Age, BMI, asthma status, and autoimmune disorder status 

were predictive of severity across multiple age and individual ancestry stratifications. Overall, at the 

population level, we found HLA type is significantly less predictive of COVID-19 disease severity than 

certain demographic factors and clinical comorbidities. 

 

https://www.zotero.org/google-docs/?5ABakS
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3.2 Introduction 

The global COVID-19 pandemic has exposed significant gaps in our ability to predict disease 

trajectory among individuals, with many people experiencing asymptomatic infections while others 

may be hospitalized with or die from COVID-19.  Observational analyses have identified disease 

severity risk factors such as age, BMI, and sex (199–201). However, host immunogenetic factors 

such as human leukocyte antigen (HLA) type may help determine the severity of SARS-CoV-2 

infection. HLA is a critical component of the viral antigen presentation pathway, and previous studies 

have shown that individual HLA alleles may confer differential susceptibility and severity across viral 

diseases, including SARS-CoV-2 (2,33,202–207).  

While large genotype association studies have investigated the relationship between genetic 

variants and severity of COVID-19 disease, they have not generally implicated the HLA locus 

(206,208–210). Further, while a growing collection of single institution or regional hospital system-

based studies have reported HLA associations with COVID-19 disease (211–214), the statistical 

significance of these associations does not withstand correction for multiple comparisons. The 

relationship between HLA genotype and severity of COVID-19 disease, especially across a large and 

diverse population, thus remains unclear. 

In this study, we investigated the specific relationship between HLA type and COVID-19 

severity in a cohort of 3,235 individuals obtained from AncestryDNA (206,215) with confirmed SARS-

CoV-2 infection. 

 

3.3 Results 

We extracted basic demographic and clinical data for 3,235 individuals among the 

AncestryDNA cohort (206,215) with a positive SARS-CoV-2 nasal swab and classified the severity of 

https://www.zotero.org/google-docs/?ZFZE9g
https://www.zotero.org/google-docs/?qBvixv
https://www.zotero.org/google-docs/?9OXOcA
https://www.zotero.org/google-docs/?a2GXOJ
https://www.zotero.org/google-docs/?Zm9jyu
https://www.zotero.org/google-docs/?boK78I
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their COVID-19 disease according to patient survey responses (Table 1).  We next assessed the 

extent to which these demographic and clinical features predicted COVID-19 severity, and we found 

comorbidities that are contributors in a linear model predicting hospitalization (Supplementary Table 

3.1). 

 

Table 1 

 Severity 

score 1 

Severity 

score 2 

Severity 

score 3 

Severity 

score 4 

Severity 

score 5 

Severity 

score 6 

Count 607 965 1418 136 83 26 

Male (%) 201 (18) 394 (36) 398 (36) 46 (4) 45 (4) 15 (1) 

Female (%) 299 (14) 678 (32) 1020 (48) 90 (4) 38 (3) 11 (1) 

EUR (%) 365 (16) 769 (33) 1008 (44) 92 (4) 61 (3) 21 (1) 

AS (%) 11 (20) 19 (33) 23 (40) 3 (5) 0 (0) 1 (1) 

AMR (%) 88 (13) 237 (34) 320 (46) 30 (4) 17 (2) 2 (0) 

AFR (%) 36 (21) 47 (28) 67 (40) 11 (7) 5 (3) 2 ( 1) 

Median Age 
52 (19-88) 43.5 (19-85) 45 (19-85) 51 (21-86) 56 (20-84) 

61.5 (29-
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(range) 88) 

 

Table 1: Demographic breakdown of the AncestryDNA cohort. Severity score 0 is left out since it 

corresponds to individuals who tested negative for SARS-CoV-2 infection. Severity scores 1-6 are 

described in Materials and Methods: Severity scoring and hospitalization. 

 

 

Figure 3.1: Forest plot of comorbidities including putative viral peptide presentation as a function of 

HLA type (Predicted Peptides) in the pooled multivariate model for predicting severity score. The 

estimate column shows the coefficients of variables in the linear model. Each line represents the 95% 

confidence interval for the estimate value. For the sex variable, female is 1 and male is 0. Positive 
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values for the estimate are predicted to contribute to a higher severity score and vice versa for 

negative values. 

We next assessed the contribution of genetic variability across the HLA locus to hospitalization 

as a binary outcome.  Using BIGDAWG for case-control association analysis (216), we found no 

individual HLA types or specific amino acid variants across the HLA locus that were associated with 

hospitalization (Supplementary File 3.1). Only the DPB1 locus (p=0.04) was found to be associated 

with the binary outcome of whether an individual developed any COVID-19 symptoms. 

To assess an individual’s capacity to present SARS-CoV-2 peptides, we computed HLA-

specific MHC binding affinities of all k-mers of sizes between 8 and 12 inclusive from the SARS-CoV-

2 proteome (n=48,395 unique peptides) passing a proteasomal cleavage propensity filter.  We used 

two different predictive tools: netMHCpan and HLAthena (93,96). In agreement with our prior work 

(207), we find a wide variety in putative peptide presentation capacity across different HLA types 

(Supplementary Figure 3.1). 

 

https://www.zotero.org/google-docs/?3PZ3HA
https://www.zotero.org/google-docs/?Qv4Lyb
https://www.zotero.org/google-docs/?SQkmbR
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Figure 3.2: Scatter plot of HLA alleles with the number of predicted peptides vs. average severity 

score in the AncestryDNA dataset. Each data point represents a distinct HLA allele, with larger points 

representing larger numbers of individuals in the AncestryDNA dataset imputed to have the allele and 

the red, green, and blue colors representing HLA-A, HLA-B, and HLA-C respectively. 

We next developed a pooled multivariate model of severity score, accounting for comorbidities 

as well as putative viral peptide presentation as a function of HLA type, and we found that age (p < 

0.01), BMI (p < 0.01), asthma status (p < 0.01), diabetes status (p < 0.01), and other lung conditions 

(p < 0.05) were all predictive (Figure 3.1; Supplementary Table 1- 

Stratified_LM_models_corrected.csv). There was no association between the number of putatively 

presented class I peptides and COVID-19 severity (Figure 3.2). The significance of the association 

between BMI and severity of disease was diminished for age >60 years. This is consistent with CDC 

reports of obesity as a risk factor in hospitalization and death, specifically among individuals <65 

years (201). 

 

https://www.zotero.org/google-docs/?51YOXB
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Figure 3.3: Distribution of unique predicted peptides vs. severity score. The half-violin plots represent 

the distribution of unique predicted peptides of the 3,235 AncestryDNA individuals who had the 

corresponding severity score. The boxplot shows the IQR of the unique predicted peptides and each 

point in the rain cloud below the boxplot represents the number of predicted peptides of each 

individual. 

Predicted number of presented viral peptides demonstrated no significant relationship with 

disease severity when stratifying by individual ancestry., but the significance of various comorbidities 

was affected. Among individuals with EUR or AFR ancestry (2316 or 168 individuals, respectively) no 

clinical features were associated with disease severity score. , while BMI (p<0.05), age (p<0.05), and 

hypertension (p<0.001) were all predictive of disease among individuals of AS ancestry (57 

individuals), and BMI (p<0.05) was predictive among individuals of AMR ancestry (694 individuals). 
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3.4 Discussion 

HLA genes are generally considered important for host response to novel infectious diseases. 

In this study, we found that age, BMI, and other comorbidities determined clinical outcome across 

3,235 individuals as described in the literature (199–201,209), and to a far greater degree than an 

individual’s HLA-specific capacity to present SARS-CoV-2-specific peptides. Only in healthy, young 

(30-50) individuals did we see any type of association between HLA/peptide predictions with severity 

outcomes. While we previously explored the potential of HLA-peptide binding to predict COVID-19 

severity (207), we do not see evidence for this phenomenon in the large real-world clinical cohort 

explored here.  While the majority of the individuals were imputed to be of European ancestry, there 

were sizable numbers of individuals of Amerindian, Asian, and African descent. While Roberts et al. 

(206) performed a stratified GWAS analysis using this same dataset, with binary endpoints of 

hospitalization and whether an individual developed any COVID-19 symptoms, they did not 

specifically explore the role of HLA, which has a high level of variability that reduces power to detect 

differences in populations. Further, we investigated SARS-CoV-2 specific peptide presentation as a 

nonlinear function of HLA type, where some HLA types may be more similar to each other in the 

number of predicted peptides they can bind than they may be in canonical HLA supergroups. 

We note several limitations to our work. Firstly, the proportion of SARS-CoV-2 peptides that we 

tested were generated through whole-peptidome in silico analysis of SARS-CoV-2. This may not be 

representative of the actual SARS-CoV-2 peptides presented in a given individual, whether due to 

biological sources such as viral variation, or methodological sources such as potential inaccuracies in 

peptide-MHC binding affinity predictions. Secondly, individuals who suffered debilitating infections 

may have been less likely to participate in the survey, and no individuals who died of COVID-19 were 

able to participate in the study, potentially resulting in an undercounting of the most severe 

phenotypes. Further, the cohort was primarily European, with much smaller sample sizes for African, 

https://www.zotero.org/google-docs/?t5gKij
https://www.zotero.org/google-docs/?50W9lt
https://www.zotero.org/google-docs/?Xlj8l1
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Asian, and Amerindian ancestry. Lastly, these data were composed entirely of the unvaccinated 

cohort, as this population was tested and surveyed before the release of the many SARS-CoV-2 

vaccines. 

A number of other studies (211–214,217–219) have examined the relationship between HLA 

alleles and COVID-19 severity, and few have found alleles significantly associated with severity. In 

the majority of these studies, the large number of possible alleles in each study reduced the statistical 

power to identify significant alleles after multiple testing correction. Further, a number of studies 

reporting statistical significant associations between severity and HLA type were regional; they 

tended to have more ethnically and geographically homogeneous cohorts, likely resulting in 

overrepresentation of some alleles. Taken together with our analysis of the AncestryDNA dataset, we 

suggest that the literature does not reliably support the role of HLA type in modifying real-world 

COVID-19 disease severity across a population.  There are multiple potential explanations for this, 

including that the data and analyses to date do not accurately reflect the true potential disease-

modifying effects of HLA genes.  On an individual basis, HLA type may indeed influence the severity 

of COVID-19 disease; however, this hypothesis is not readily borne out at a population level, at least 

in this cohort. Multiple demographic features and clinical comorbidities are significantly more 

predictive of disease severity in a population. While we acknowledge the potential for other studies 

such as the COVID-19 Host Genetics Initiative to uncover a disease modifying role of HLA, future 

work should take a very critical and individualized approach towards evaluating any connections 

between HLA variation and differences in COVID-19 disease severity. 

 

https://www.zotero.org/google-docs/?2wdfUo
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3.5 Materials and Methods 

3.5.1 Genotyping 

Data from 15000 individuals belonging to the Ancestry COVID-19 study was obtained through 

an IRB-approved project (Ancestry Human Diversity Project). The data authorized for reuse by 

AncestryDNA included: AncestryDNA genome-wide scale genotypes, AncestryDNA research 

participants’ self-reported age, gender, height, weight, and smoking status, and survey answers for 

the AncestryDNA COVID-19 questionnaire. As reported by the AncestryDNA COVID-19 study, the 

study participants’ genotype data were obtained using an Illumina genotyping array (Illumina 

OmniExpress platform) composed of 730,525 SNPs. Genotyping array data was processed by 

Illumina or Quest/Athena Diagnostics (206). 

3.5.2 Ancestry imputation 

Genetic ancestry was determined using plinkQC v1.9 (220) to combine genotypes of the 

cohort with genotypes of a reference dataset (14) consisting of individuals of known ethnicities. 

Principal component analysis (PCA) on the combined genotype panel was used to detect population 

structure of the reference dataset to the level of continental ancestry. A→T and C→G SNPs were 

removed from study and reference data as they are more difficult to align and only a subset of SNPs 

were required for the analysis. The study data were pruned for variants in linkage disequilibrium (LD) 

with an r2 > 0.2 in a 50kb window, and that list of pruned variants was used to reduce the size of the 

reference dataset. Checks were performed to ensure matching variant IDs and chromosomal 

positions between the study and reference dataset before merging and running PCA. Ancestries for 

the study population were then imputed from the principal components provided for the labeled 

reference dataset. 

https://www.zotero.org/google-docs/?PpwCoe
https://www.zotero.org/google-docs/?Kh56FO
https://www.zotero.org/google-docs/?GBZGll
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3.5.3 HLA class I + II imputation 

HLA Class I/II alleles were obtained using HIBAG v1.3 (221), a prediction method for HLA 

imputation that utilizes large training sets with known HLA and SNP genotypes in combination with 

attribute bagging. Ancestry-specific pre-fit models available within HIBAG for European, Asian, 

African, and Amerindian populations were applied to the subgroups of distinct ancestries within the 

AncestryDNA cohort using 1,042 SNPs across and nearby the HLA locus. 

3.5.4 Severity scoring and hospitalization 

We collapsed the 10 point WHO COVID-19 Ordinal Scale of disease severity (222) into a 7-

point scale to accommodate available phenotype information in the AncestryDNA COVID-19 study. 

AncestryDNA 

Survey State 

Severity 

Score WHO Patient State WHO Score 

Uninfected 0 Uninfected 0 

Asymptomatic 1 Asymptomatic 1 

Symptomatic, mild 

symptoms 2 Symptomatic, no assistance needed  2 

Symptomatic, severe 

symptoms 3 Symptomatic, assistance needed 3 

Hospitalized, no 
4 Hospitalized, no oxygen 4 

https://www.zotero.org/google-docs/?r9Kw5H
https://www.zotero.org/google-docs/?EhagQd
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oxygen 

Hospitalized, oxygen 5 

Hospitalized, oxygen by mask/nasal 

prongs 5 

  Hospitalized, oxygen by NIV/high flow 6 

Hospitalized, 

ventilator 6 Intubation and mechanical ventilation 7 

  

Mechanical ventilation and 

vasopressors 8 

  

Mechanical ventilation, vasopressors, 

dialysis, or ECMO 9 

 

The possible symptoms in the AncestryDNA cohort are fever, shortness of breath, dry cough, 

body aches, abdominal pain, cough producing phlegm, and nausea. There are 3 levels of severity to 

each symptom: normal, severe, and very severe. We defined severe symptoms (Severity Score 3) as 

any of the listed symptoms at the severe or very severe level. In models where we used 

hospitalization as an endpoint, we added hospitalization as a binary variable, with scores >=4 

considered hospitalized. 
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Note that COVID-19 survey response data were consistent with CDC case and hospitalization 

rates over similar time periods, with 14% v. 12% test positivity and 11% v. 14% hospitalization rate in 

the AncestryDNA and CDC datasets, respectively (206,223).  

3.5.5 HLA-peptide predicted binding 

We obtained SARS-CoV-2 peptide sequences by k-merizing FASTA protein sequences 

obtained from the NCBI RefSeq database (NC_045512.2 and NC_004718.3) into 8- to 12-mers. 

These k-mers were filtered by NetChop v3.1 using default settings with a cutoff of 0.1. MHC class I 

binding affinity predictions were performed using netMHCpan v4.0 using the ‘-BA’ option to include 

binding affinity predictions and the ‘-l’ option to specify peptides 8 to 12 amino acids in length. 

Additional MHC class I binding affinity predictions were performed using HLAthena. For predicted 

peptide binding, we used the cutoff of <500nM for peptides predicted by netMHCpan v4.0 and the 

cutoff of >0.5 probability score for peptides predicted by HLAthena. While nearly all individuals have 

two HLA-A/B/C haplotypes constituting as few as three but as many as six distinct alleles, a single 

peptide may be predicted to bind to more than one of an individual’s HLA alleles. While there is no 

definitive evidence that a peptide is more likely to be presented when predicted to bind to more than 

one allele, we wanted to capture this possibility by using 2 metrics: an overall predicted peptide value 

and a unique predicted peptide value. For each individual, to calculate capacity to bind SARS-CoV-2 

peptides, we summed the number of predicted peptides bound to each individual’s allele (min 3, max 

6). For a unique-peptide specific capacity, the peptides were filtered to remove duplicates after 

summation. 

3.5.6 Statistical analyses 

We performed statistical tests for HLA vs. hospitalization using the Bridging ImmunoGenomic 

Data-Analysis Workflow Gaps (BIGDAWG) pipeline and a comprehensive SARS-CoV-2 peptide-

genotype binding analysis for all individuals in our dataset. All statistical analyses were performed 

https://www.zotero.org/google-docs/?bHJunX
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using R version 4.0.3. For each statistical test, we performed pooled and ancestry-stratified testing. 

For multivariate linear modeling, we used the R function lm for multivariate regression with one of 

severity index, hospitalization status, or asymptomatic/symptomatic as the endpoint. Tests of Hardy-

Weinberg equilibrium using Chi-squared testing for haplotypes, loci, and HLA-amino acid positions 

were performed using the BIGDAWG v1.3.4 R package. Note that all reported p-values have been 

corrected for multiple hypothesis testing, where relevant, using Benjamini-Hochberg correction. 
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Chapter 4: Discordant results among MHC binding affinity 

prediction tools.  

This work has been formatted for inclusion in this dissertation from the manuscript “Discordant results 

among MHC binding affinity prediction tools.” by Austin Nguyen, Abhinav Nellore, and Reid F. 

Thompson submitted to Nucleic Acids Research. The author of this dissertation is the primary author 

of the manuscript. 

 

4.1 Abstract 

A large number of machine learning-based Major Histocompatibility Complex (MHC) binding 

affinity (BA) prediction tools have been developed and are widely used for both investigational and 

therapeutic applications, so it is important to explore differences in tool outputs. We examined 

predictions of four popular tools (netMHCpan, HLAthena, MHCflurry, and MHCnuggets) across a 

range of possible peptide sources (human, viral, and randomly generated) and MHC class I alleles. 

We uncovered inconsistencies in predictions of BA, allele promiscuity, the relationship between 

physical properties of peptides by source and BA predictions, as well as quality of training data. Our 

work raises fundamental questions about the fidelity of peptide-MHC binding prediction tools and their 

real-world implications. 

 

4.2 Introduction 

Human Leukocyte Antigen (HLA) alleles are critical components of the immune system’s ability 

to recognize and eliminate tumors and infections (224). Infectious diseases in particular are thought 

to be a major source of selective pressure on the Major Histocompatibility Complex (MHC) region 

https://www.zotero.org/google-docs/?Vd6bmN
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which encodes HLA alleles and is one of the most diverse regions of the human genome 

(33,202,225–229). There is large diversity in the antigenic peptide sequences which individual HLA 

alleles can recognize and ultimately present to the adaptive immune system (10), with a positive 

correlation between increased sequence diversity recognition and fitness (40). 

Tools that can predict the extent to which a given HLA allele may have an affinity for a given 

peptide have critical implications for our ability to understand and translationally leverage antigen-

specific immune response pathways. For instance, MHC binding affinity predictors have been – or 

otherwise have the potential to be – used to evaluate an individual or population’s susceptibility to 

viral infection (130), to develop an understanding of specific autoimmune conditions (123), to improve 

transplantation technologies (122), or even to assist in the development of personalized cancer 

vaccines (73,230–233). Numerous peptide-MHC binding prediction tools exist, and are key 

components in broader antigen prediction methodologies (71,74,112,113).   

The most widely adopted MHC binding prediction tools rely on neural network models trained 

on binding affinity (BA) and/or eluted ligand (EL) data. The most commonly cited tool, netMHCpan 

(96,110), uses both BA and EL data in a neural network architecture with a single hidden layer to 

predict allele-specific binding affinities. MHCflurry (97) attempts to improve upon netMHCpan by 

increasing the number of hidden layers and augmenting BA and EL training data with unobserved 

decoys. MHCnuggets (234) again trains on BA and EL data but uses a different architecture, with a 

long short-term memory layer and a fully connected layer to improve its predictions further across 

different peptide lengths. Lastly, HLAthena (93), while most similar in architecture to netMHCpan, 

relies on independently generated EL data from mono-allelic cell lines for training. 

We sought to better characterize the outputs of these tools over a large and diverse set of 

peptides, across different tools and HLA alleles, as well as quantify the stability of these predictions. 

We also sought to measure allelic binding preferences and whether they may enrich for foreign v. self 

https://www.zotero.org/google-docs/?RCQWhW
https://www.zotero.org/google-docs/?xPesa3
https://www.zotero.org/google-docs/?MdIjjc
https://www.zotero.org/google-docs/?2zNrFx
https://www.zotero.org/google-docs/?YQympD
https://www.zotero.org/google-docs/?rLKNRj
https://www.zotero.org/google-docs/?bXc608
https://www.zotero.org/google-docs/?cmVOJP
https://www.zotero.org/google-docs/?vQkHFF
https://www.zotero.org/google-docs/?XWlmKs
https://www.zotero.org/google-docs/?RweTEb
https://www.zotero.org/google-docs/?5WBD1D
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peptides. In this study, we performed a comprehensive in silico analysis of peptides from multiple viral 

proteomes, the human proteome, and randomly generated peptides across HLA class I alleles.  

 

4.3 Results 

 

4.3.1 Peptide predictions are inconsistent across tools 

We first assessed the consistency of peptide-specific MHC I binding affinity predictions across 

four tools (MHCnuggets, MHCflurry, HLAthena, netMHCpan) and 52 different HLA alleles. We found 

substantial disagreement in peptide-specific predictions between each tool, independent of allele 

(Figure 4.1A), with median intraclass correlation coefficient (ICC) of 0.207 and only 0.48% of peptides 

having ICC > 0.75. On a per-allele basis, we found a wide range in consistency of predictions across 

tools, with a mean intraclass correlation as low as 0.12 for A02:07 and as high as 0.64 for A23:01 

(Figure 4.1B). Among all of the peptides predicted by at least one tool to bind to at least one allele, 

only 7.9% were consistently predicted across all tools to bind to the same allele (Figure 4.1C). 
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Figure 4.1. Inconsistency of peptide predictions across tools. A) Histogram of intraclass correlation 

coefficients (ICC) calculated for a set of 1 million random peptides across four tools (MHCnuggets, 

MHCflurry, HLAthena, netMHCpan), with ICC calculated as the overall correlation among tools across 

52 HLA alleles. The dotted vertical line indicates the median ICC value (0.207) across all peptides. B) 

Histogram of ICCs for 52 HLA alleles between four tools (MHCnuggets, MHCflurry, HLAthena, 

netMHCpan). The number of alleles is shown on the y-axis and the ICC is shown on the x-axis. The 

dotted lines show the mean ICC for alleles belonging to each HLA class.  Red, green, and blue colors 

represent data from -A, -B, and -C alleles, respectively. C) Detailed comparison of the complete set of 

random peptides predicted to bind (binding score >=0.5) to HLA alleles according to each of four 

tools. Patterns of agreement or disagreement among groups of peptides predicted by different 

combinations of tools across 1 million random peptides are shown along each column (e.g. the first 

column corresponds to peptides predicted by HLAthena while the final column corresponds to 

peptides predicted by all tools). Each row indicates the predictions associated with the indicated tool. 
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The number of peptides in each column (vertical bars) corresponds to the size of the subset predicted 

by the indicated combination of tools. 

We next investigated aggregate peptide binding predictions across different HLA alleles 

according to each tool.  As others have noted differential HLA allelic promiscuity in peptide 

presentation (11,62,235,236), we too found a wide range in the proportion of peptides a given allele 

was predicted to bind (Supplementary Figure 4.1). We uncovered significant inconsistencies in these 

predictions between tools (Figure 4.2). Note that this phenomenon is independent of binding affinity 

threshold (Supplementary Figure 4.2). 

 

 

Figure 4.2: The correlation of HLA allelic presentation of 8-11mers from the random proteome 

between tools. The lower left grouping of plots displays scatter plots of peptides predicted to bind (>= 

https://www.zotero.org/google-docs/?3MzTAl
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0.5 binding probability score) between 2 tools with each point representing the number of predicted 

binders for each HLA allele. The upper right grouping represents the Spearman correlation of the 

number of peptides predicted to bind to all alleles between tools. Note that MHCnuggets has a 

number of alleles with 0 random peptides predicted to bind. The diagonal panels show distribution of 

HLA allelic presentation from the random proteome for each tool. The number of peptides that 

putatively bind to each of the HLA alleles is shown along the x-axis as a series of horizontal bars with 

green, orange, and purple colors representing HLA-A, -B, and -C alleles, respectively, sorted in order 

of decreasing quantity of binders.  

 

4.3.2 Amount of training data does not explain inconsistencies between tools 

As each allele has a different amount of training data, we were next interested in exploring to 

what extent the quantity and quality of training data available to each tool might influence its allele-

specific predictions. Indeed, some netMHCpan predictive models for some alleles are based on as 

few as 101 peptides, while others from MHCflurry are based on as many as 31,775 peptides 

(Supplementary Table 4.1). Note that we excluded from consideration the ~95% of alleles (4108) that 

were available for prediction but had no underlying allele-specific training data available 

(Supplementary Table 4.2). Ultimately, we found that the amount of training data available was not 

significantly related to the consistency of binding predictions between tools (Figure 4.3a), nor was it 

clearly related to the quantity of binding peptides predicted by tools (Figure 4.3b). 
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Figure 4.3. The relationship between training data and consistency of predictions. A) Scatterplot of 

ICC vs mean training data across 4 tools with each point representing data for a single HLA allele. 

The mean number of training peptides is shown on the x-axis while the ICC score is shown on the y-

axis. B) Scatterplot of the relationship between training data and predicted peptide binding. The 

number of peptides used as training data for an allele is shown on the x-axis whereas the number of 

peptides predicted to bind for the same allele is shown on the y-axis. Each dot is a single allele with 

each color representing a different tool:  red circles (HLAthena), green triangles (MHCflurry), blue 

squares (MHCnuggets), purple plus signs (netMHCpan). We note that netMHCpan does not make all 

of their training data available, thus the depicted quantity of training data represents an estimate.  

 

4.3.3 Predicted binding quantities are similar between human and viral proteomes 

According to the pathogen driven selection theory of MHC evolution, different HLA alleles are 

anticipated to be particularly attuned to foreign as opposed to self-antigens (29–31,39,225,229). We 

therefore sought to compare the predicted capacity of different HLA alleles to present different viral 

vs. self-antigens. Further, we wished to establish which specific alleles had the propensity to bind a 

larger fraction of peptides in general (allele promiscuity) by observing the relationship between an 

allele’s ability to bind random peptides versus peptides from a viral or human proteome. 

We examined distribution of predicted allelic promiscuity across alleles for 9 sets of peptides of 

viral, human, and random origin (See Methods). Confining attention to human and viral proteomes, 

we again found a wide range in the proportion of peptides a given allele was predicted to bind and 

also significant inconsistencies between tools (Supplementary Figure 4.3). 

https://www.zotero.org/google-docs/?f3kf4W
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We found that the alleles with highest mean binding percentage for human and viral peptides 

were B15:03 (2.68%) and B15:02 (2.36%) and the allele lowest mean binding percentage were 

B18:01 (0.24%) and A01:01 (0.33%) (Supplementary Table 4.3). No alleles were predicted by any 

tool to preferentially present either viral or human peptides. Further, the distribution of predicted allelic 

promiscuity across alleles was highly consistent between human and viral proteomes, but not when 

applied to a set of random peptides (Figure 4.4). We noted that this phenomenon holds for closely 

related viruses across all tools and to a lesser extent for more distantly related viruses 

(Supplementary Figure 4.4). 

 

A B  
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Figure 4.4. The correlation between peptide sources of predicted allelic promiscuity across alleles. A) 

Heatmap of spearman correlation between peptide sources for HLAthena-based predictions for 

human peptides, viral peptides, and randomly generated peptides. Numbers show Spearman 

correlation coefficients between each pair respectively, while color reflects the Spearman correlation 

with red approaching a Spearman correlation of 1. Analogous data is shown for netMHCpan, 

MHCflurry, and MHCnuggets in panels B, C, and D, respectively. 

 

Confining attention to the 9 alleles whose predictive models were likely most robust (based on a 

minimum of 2000 training peptides for every tool), we again found that the distribution of predicted 

allelic promiscuity across alleles was consistent between closely related viruses and to a lesser 

extent between more distantly related viruses (Supplementary Figure 4.5). 
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4.3.4 Peptide physical properties are associated with allele-specific binding predictions 

Reasoning that differences in peptide characteristics were the likeliest explanation for 

predicted differences in binding affinity between different alleles and peptide sources, we next studied 

the distribution of physical properties among different peptide sets. Human, viral, and random peptide 

sets all exhibited the same range of physical properties, but were differentially enriched among 

different physical properties (Supplementary Figure 4.6). Between individual peptide sets, the 

differential enrichment ranged from 10% (CMV v. human) to 63% (BK v. random) of peptides 

(Supplementary Figure 4.7). 

We next sought to discover the relationship between the peptide similarity in physical property 

space and distribution of predicted allelic promiscuity across alleles. Across all tools, there was a 

positive relationship between similarity in physical property space and distribution of predicted allelic 

promiscuity across alleles as evidenced by the negative correlation between peptide set difference 

and Spearman correlation coefficient (Figure 4.6). 

 

A B  
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Figure 4.6. The relationship between physical property similarity vs peptide binding similarity. A) 

Scatterplot for HLAthena-based predictions, where each point represents predictions for a species vs 

species pair.  Peptide dissimilarity is shown on the x-axis, whereas Spearman correlation coefficients 

of predicted allelic promiscuity across alleles.  Color represents the length of peptide, with 8-, 9-, 10-, 

and 11-mers shown in red, green, blue and purple, respectively.  Analogous data is shown for 

netMHCpan, MHCflurr, and MHCnuggets in panels B, C, and D, respectively. 

Next, we found that each allele has distinct preferences for different peptide physical 

properties, independent of peptide length (Figure 4.7A, Supplementary Figure 4.8). Some alleles (e.g. 

A01:01 and B08:01) have stronger preference for certain physical properties (Figure 4.7B,C), while 

others (B45:01) do not have as clear of a preference (Figure 4.7D). 
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Figure 4.7. Differential distributions of physical properties for 9-mer peptides predicted to bind to HLA 

alleles. A) The plotting coordinates represent the first two dimensions of a UMAP transform of peptide 

physical properties, which is divided into 1600 (40x40) equivalently-sized square bins (see Methods). 

For each bin where there is at least one HLA allele with >0.2% difference in proportion of all peptides 

predicted to bind v. non-binders, the identity of the most enriched allele is shaded in the color 

corresponding to that allele’s supertype as corresponding to the legend. B-D) Example plots of three 

different alleles (A01:01, B08:01, and B45:01) with different distributions of binders. Each box 
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represents enrichment as the percent peptide difference between predicted binders and non-binders 

for the given allele. The color scale shows the percent of peptides difference in the given box, with 

red meaning a larger number of predicted binders and blue meaning a larger number of predicted 

non-binders. 

 

4.4 Discussion 

To the best of our knowledge, this is the first study to examine the consistency of predictions of 

peptide-MHC binding across different tools, and to explore the quality and quantity of training data in 

this context. We note several limitations to this work. Firstly, we confined attention to MHC class I 

peptides and did not include predictions for MHC class II (237), of which there are numerous alleles. 

We also excluded from consideration any potential contributions of proteasomal cleavage or other 

antigen processing machinery to MHC binding (238–240). We did not seek to comprehensively 

assess all available tools for peptide-MHC binding affinity prediction, but rather confined our attention 

to four of the most widely used tools. The majority of our randomly generated peptides are not known 

to be found in nature and may not represent the optimal background distribution for measuring allele 

promiscuity or interrater reliability between tools primarily used for human and pathogenic peptides. 

While our analysis of peptides leveraged four essential and well-described amino acid physical 

properties, there may exist unassessed latent features that could capture additional variance and 

improve dimensionally-reduced comparisons. We did not assess the extent to which mass 

spectrometry biases in the training datasets might affect peptide-MHC predictions (241–244). Lastly, 

we did not evaluate individual tool performance based on known epitopes as this has been previously 

reported (93,96,97,103–105,110,234,245,246). 

Our work raises fundamental questions about the fidelity of peptide-MHC binding prediction 

tools.  Why, for instance, can predictions be so discordant among tools for which training datasets are 

https://www.zotero.org/google-docs/?6tY8u4
https://www.zotero.org/google-docs/?B7xkJS
https://www.zotero.org/google-docs/?yPkSXA
https://www.zotero.org/google-docs/?oHMgbz
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otherwise so similar?  We especially worry about the real-world use of these prediction tools for 

alleles without any direct basis in training data. Why is the predicted range of allele promiscuity so 

substantial, and yet not demonstrative of any meaningful differences in enrichment between potential 

foreign versus self antigens?  Moreover, is this differential promiscuity a universal biological 

phenomenon, with certain alleles being generally poor functional presenters of antigen?  If this is the 

case, what selective advantage might have evolutionarily maintained these alleles in the population? 

Evaluating more viruses – as well as bacteria, fungi, and other pathogens – and linking these 

analyses with metrics such as evolutionary distance may give greater insight into the relationship 

between HLA evolution and disease. 

 

4.5 Methods 

4.5.1 Sequence retrieval, peptide filtering, and kmerization 

FASTA-formatted protein sequence data was retrieved from the National Center of 

Biotechnology Information (NCBI) (129,190) using RefSeq as of 1-31-22 for BK, SARS-CoV-2, HHV-

5, HHV-6, HSV-1, HSV-2, HSV-4, and Human. Protein sequence data was inputted into netchop v3.0 

“C-term” model with a cleavage threshold of 0.1 to remove peptides that were not predicted to 

undergo canonical MHC class I antigen processing via proteasomal cleavage (of the peptide’s C-

terminus). The results from netchop v3.0 were then kmerized sequentially into 8- to 12-mers. Code 

used for kmerization and netchop filtering can be found at: https://github.com/pdxgx/covid19. We 

additionally generated a set of 1 million random peptides of length 8-12 drawn uniformly at random. 

Peptide sets had negligible overlap (<1% shared between human vs viral vs random peptides).  

https://www.zotero.org/google-docs/?LCGUIo
https://github.com/pdxgx/covid19
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4.5.2 Peptide-MHC class I binding affinity predictions 

MHC class I binding affinity predictions were performed for the peptides generated from the 

kmerization process above using 4 tools: netMHCpan v4.1 (96), HLAthena v1.0 (93), MHCflurry v2.0 

(97), and MHCnuggets v2.3 (98). netMHCpan was run with default options with the ‘-l’ option to 

specify peptides of lengths 8-12. MHCflurry was run with default options. MHCnuggets was run with 

default options. HLAthena was run using the dockerized version of HLAthena with default options, 

which predicts peptides of length 8-11. MHC class I binding affinity predictions were performed for 

each of 24, 26, and 2, HLA-A, -B, and -C alleles, respectively. Only alleles that were in common 

between all 4 tools were used (52 total alleles in common between 2489 possible alleles). Binding 

affinity values were converted to binding probability values for MHCflurry and MHCnuggets using 1- 

log(binding affinity) / log(50000) in order to match HLAthena and netMHCpan binding probability 

predictions. Alleles were grouped into supertypes when applicable using the HLA class I revised 

classification (11). 

4.5.3 Dimensional reduction and binning analysis 

Peptides were converted into physical property matrices using amino acid sequence mapping 

into a 4*kmer length matrix containing each amino acid’s properties in sequence. The following 

physical properties of the amino acids were encoded: side chain polarity was recorded as its 

isoelectric point (pI) (247), the molecular volume of each side chain was recorded as its partial molar 

volume at 37°C (248),  the hydrophobicity of each side chain was characterized by its simulated 

contact angle with nanodroplets of water (249) and conformational entropy was derived from peptide 

bond angular observations among protein sequences without observed secondary structure (250). 

Each dimensional reduction was performed on the pooled set of k-mers. UMAP dimensionality 

was performed using uwot UMAP R implementation v0.1.11. PCA was performed using default 

prcomp() functions in base R v4.1.3.  

https://www.zotero.org/google-docs/?HGmSKF
https://www.zotero.org/google-docs/?u7WBTc
https://www.zotero.org/google-docs/?8cit8a
https://www.zotero.org/google-docs/?cG2FJ2
https://www.zotero.org/google-docs/?dVXKHg
https://www.zotero.org/google-docs/?mhCjzo
https://www.zotero.org/google-docs/?GPTzlw
https://www.zotero.org/google-docs/?NwD56k
https://www.zotero.org/google-docs/?szCTBD


70 

For each peptide source, binned matrices were computed using the bin2() function with 40x40 

(1600) bins from the Ash v1.0.15 package (251) in R v4.1.3. Bin values were then divided by the total 

number of peptides to create bins with the % of total peptides. In order to compare between 2 peptide 

sources, a matrix, called the difference matrix, is created by subtracting one matrix of a peptide 

source from another. Taking the absolute value of each bin in the difference matrix, then summing the 

values together, results in a single metric ranging from 0-2 measuring the difference in binned density 

between 2 peptide sources, the value 2 indicating that no peptides were shared between bins and the 

value 0 indicating the same percentage of peptides in every bin (Figure 4.8). 

 

Figure 4.8.  

4.5.4 Allele ordering similarity 

For each allele-peptide source combination, the percentage of peptides predicted to bind with 

a binding probability score of 0.5 or greater was calculated for all processed peptides. 0.5 binding 

score is estimated to be equivalent to 250-300nM depending on the tool used. For each peptide 

https://www.zotero.org/google-docs/?qRXjmm
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source, alleles were ranked from best to worst binders (most to least peptides >= 0.5 score) t. In 

order to compute allele ordering similarity between 2 peptide sources for a single tool, Spearman’s 

Rank Correlation Coefficient was calculated between the 2 sets of allele ranks. 

For the random group 1 vs random group 2 analysis, we conducted 100 replicates of dividing 

the randomly generated peptides into 2 random groups and performed a Spearman rank test of allele 

ordering between these groups for each of the tools. 

4.5.5 Interrater reliability 

Intraclass correlation coefficients (ICCs) were calculated using the ICC() function from the IRR 

v0.84.1 R package (252). Binding prediction scores for all 1 million randomly generated peptides 

were separated by tool and HLA allele, and an ICC was calculated as the interrater reliability metric 

between the 4 tools for each allele. ICC was also between the 4 tools on a per peptide basis, each 

peptide receiving a score across 4 tools using predictions separated by tool and peptide. 

 

  

https://www.zotero.org/google-docs/?vQfJDZ
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Conclusion 

5.1 Summary 

 In this dissertation, I examined the utility of peptide-MHC prediction as a predictor of health 

outcomes and identified new challenges and opportunities in this space. I found that in SARS-CoV, a 

pipeline based on peptide-MHC prediction could recapitulate hospital studies that associated severity 

with specific HLA alleles, and applying this method to SARS-CoV-2 identified similar alleles that could 

be associated with more severe infection. However, when applying this pipeline to a large cohort of 

individuals with genotyping and clinical outcomes data, I showed that age, BMI, and other 

comorbidities determined the likelihood of developing symptoms and severity of disease to a far 

greater degree than any single allele or any metric based on potential SARS-CoV-2 peptide 

presentation. Only when individuals were young and had no other comorbidities did HLA have any 

sort of association. Further, I found the majority of literature studies on the same topic attempting to 

associate disease outcomes with HLA showed clear statistical biases, without applying corrections or 

making conclusions with limited sample size. I attempted to apply this method to a greater number of 

viruses, the human proteome, and a randomly generated background distribution in hopes of 

gleaning more insight into why there was little to no relationship between SARS-CoV-2 binding and 

severity of disease but found that there are fundamental questions on the fidelity of peptide-MHC 

binders as a whole, namely the inconsistency of peptide prediction across tools. Finally, I illustrate the 

relationship between similarities in physical properties and similarities in binding predictions between 

pairs of peptide sets. 

5.2 Future directions and implications 

 The number of potential future directions of this work are vast. With the exponential discovery 

rate of viruses and the increasing number of other infectious diseases, experiments that can build 
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upon this work to identify important predictors of susceptibility and severity to disease based on 

individual genomic variation such as HLA may lead to critical developments in disease prevention and 

treatment.  

More critical may be additional studies assessing the validity of peptide-MHC predictors. My 

work has demonstrated serious inconsistencies in agreement between peptide prediction. As 

described in Figure 4.1c, HLAthena, which evaluates its predictions as compared to other tools using 

PPV, shows the most peptide-MHC pairs without agreement with the other tools. Similarly, 

benchmarking using AUC has displayed “improvements” in accuracy despite what seems to be 

general unreliability. As peptide-MHC binding may be viewed more of as an outlier detection machine 

learning problem where the number of true negatives (non-binders) is far larger than the number of 

true positives (binders), it is important to evaluate accuracy by probing all of true positive, true 

negative, false positive, and false negative rates, possibly by using a summary metric of these such 

as F1 and AUPR in addition to than AUC (253) and PPV. Further, I have demonstrated the lack of 

improvement with increased training data for allele predictions and agreement. However, this does 

not entirely mean that more training data is not necessary. There is a possibility that available training 

data is orders of magnitude smaller than is necessary for accurate predictors, which may be why 

tools such as HLAthena had found that models trained going from 100 peptides to 1000 peptides was 

jump in improvement but not 1000 to 2000 peptides. However, it may possible that the current 

magnitude of data is sufficient if there were a significant number of negative binders. Conducting 

more experiments on potential negative binders (peptides generated at random, peptides not known 

to be eluted/not yet profiled by mass spectrometry) would add significant value to future work on 

developing new peptide-MHC predictors to balance training data, as current training data is heavily 

skewed towards positive examples (93,111). 

 Peptide-MHC binding is only one step towards assessing immunogenicity. A number of studies 

found that binding affinity and immunogenicity are related (61,254) and a cutoff of 500nM is often 

https://www.zotero.org/google-docs/?5PXWeV
https://www.zotero.org/google-docs/?BUnU4v
https://www.zotero.org/google-docs/?LtWOv9
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used to identify potential T cell epitopes. These experiments, as well as other works supporting this 

hypothesis, have primarily been conducted on limited numbers of viral peptides. Determining better 

immunogenic cutoffs as well as assessing closely related but distinct metrics such as peptide-MHC 

stability and quantifying mathematically the probability of a peptide to be a T cell epitope, for example 

using some logistic regression model, would vastly increase the translatability of work in this entire 

field. 

As certain regions in peptide space, despite the general disagreement between tools in 

predictions, were heavily favored for predicted binders for specific alleles, there are 2 possible 

implications. The first implication is that, for specific alleles, there are amino acid properties at specific 

positions that would cause a peptide to be more likely to bind to a specific MHC molecule. This is 

supported by the concept of anchor residues, where peptide residues bind to specific regions of MHC 

I, enhancing the stability of peptide-MHC binding (254–256). The second possible implication is that 

there are technical artifacts during the training of all the models, with specific amino acid inputs as 

predicted binders regardless of the physical properties. This phenomenon does not apply to all 

alleles, however, there are alleles with enriched regions of binding across alleles of different 

supertypes. As HLA is extremely polymorphic and assigning peptides to specific HLA alleles would 

result in extremely low coverage, grouping alleles into supertypes is primarily used to group alleles by 

“largely overlapping peptide specificity” (257). However, because there are alleles with the same 

enriched binding region across supertypes, we may reevaluate both assignment of these alleles into 

more than one supertype as well as determine binding features based on HLA mutations rather than 

using supertype grouping entirely. This may prove to better utilize the small amounts of training data 

that we do have and result in further identification of physical binding motifs that are not yet 

characterized by binding affinity studies. 

 Extending this work to more than the small number of viruses assessed here and to a wider 

range of alleles would provide further insight into the relationship between HLA evolution and 

https://www.zotero.org/google-docs/?bZ1Rau
https://www.zotero.org/google-docs/?yoNzTK
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disease. For example, further analyses can be performed on viruses in comparison with phylogenetic 

distances. Combining a whole peptide set distance metric with predicted peptide binding and 

phylogenetic differences may yield further insight into the evolution of peptide-MHC binding. Many 

more disease-specific questions remain and may lead to improvements in vaccine development, and 

while we would all hope that this is not the case, identification and prioritization of susceptible 

populations to the next pandemic. 

 One final possible future direction starts in higher fidelity MHC-region sequencing. With 

increased resolution, we may be able to start developing a better sequence-to-sequence predictor of 

binding between peptide and MHC. While this would result in “less” training data per individual 

mutation in the MHC, we may glean more insight into the relationship between MHC sequence and 

peptide sequence, which gives potential for cross learning and each future training example adding to 

the accuracy of the whole model, no matter the allele.This may allow for better multi-allelic training 

and further enlighten specific motif binding pairs by sequence. 

 

5.4 Concluding Remarks 

On a final note, this dissertation constitutes an initial framework to predict and assess 

susceptibility to infectious disease. It also serves to caution when attempting to use peptide-MHC 

predictors as important steps in the critical healthcare decisions such as the development of 

therapeutics or evaluating immunotherapies. This work has demonstrated fundamental 

inconsistencies in commonly used peptide-MHC predictors, which are used used to evaluate an 

individual or population’s susceptibility to viral infection (207), to develop an understanding of specific 

autoimmune conditions (123), to improve transplantation technologies (122), or even to assist in the 

development of personalized cancer vaccines (73,230–233). 

https://www.zotero.org/google-docs/?wiHb3j
https://www.zotero.org/google-docs/?3iYlQV
https://www.zotero.org/google-docs/?JvYLQf
https://www.zotero.org/google-docs/?rqhMTg
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 Ultimately, if we are able to improve peptide-MHC predictors and further establish our ability to 

predict immunogenicity on both population and patient specific levels, we will be able to improve 

disease outcomes for a wide variety of infectious and autoimmune disorders. One can imagine an 

idealized situation where we have the ability to rapidly synthesize a personal vaccine, where a patient 

merely has to have their HLA region sequenced and would quickly be able to receive a vaccine that 

would prime the patient’s immune system to rapidly fight the disease or cancer. 
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Appendix A: Supplementary Figures and Tables 

Supplementary Figure 2.1: Distribution of HLA allelic presentation of 8-12mers from the SARS CoV 

proteome (see Supplementary Table S6). At right, the number of peptides that putatively  bind to 

each of 145 HLA alleles is shown as a series of horizontal bars, with dark and light   

shading indicating the number of tightly (<50nM) and loosely (<500nM) binding peptides  

respectively, and with green, orange, and purple colors representing HLA-A, -B, and -C alleles,  

respectively. Alleles are sorted in descending order based on the number of peptides they bind  

(<500nM). The corresponding estimated allelic frequency in the global population is also shown  (to 

left), with length of horizontal bar indicating absolute frequency in the population. 
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Supplementary Figure 2.2: Relationship between predicted peptide-MHC binding affinity and  

peptide conservation across coronaviruses. Every point represents a single unique peptide  

covering, together, the entirety of the SARS-CoV-2 proteome. The best predicted MHC binding  

affinity scores across 145 different HLA alleles are shown for each peptide along the x-axis.  

Sequence conservation (Clustal Omega alignment score) is shown for each peptide along the y  

axis. 
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Supplementary Figure 2.3: Pairwise relationship of peptide presentation between HLA-A, -B,  and -

C. In the bottom left three panels, every point represents the pairwise comparison of the  number 

of peptide-allele interactions for all position coordinates. Taken together, the position coordinates 

cover the entirety of the SARS-CoV-2 proteome. The top right three panels show  the quantitative 
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correlation scores between each pair of HLA type comparisons (*** indicates  statistical 

significance).  

 

 

 

Supplementary Figure 2.4: Boxplot distributions of estimated epitope presentation across 145  HLA 

alleles for early and late SARS-CoV-2 peptides. Capacity for peptide presentation is shown along the 
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y-axis for 145 distinct HLA alleles, for three non-overlapping sets of peptides  produced at different 

timepoints in the viral life cycle as indicated (x-axis). Y-axis percentiles are  calculated as the number 

of peptides from the indicated compartment of the SARS-CoV-2  proteome divided by the total 

number of presentable 8- to 12-mer peptides from that  compartment of the proteome. Dark black 

lines represent median values, with boxes indicating  the 25% and 75% quantiles, with whiskers 

representing the 25% and 75% quantiles minus or  plus the interquartile range, respectively, and with 

additional outliers shown as open circles. 

 

 

Supplementary Figure 2.5: Histogram of SARS-CoV-2 peptide presentation for 5,905 distinct  
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HLA-A/B/C haplotypes. Number of haplotypes are counted along the y-axis, corresponding to  

their individual capacity (aggregated across all their three component HLA types) to present  

peptides from the SARS-CoV-2 proteome, shown along the x-axis (percentile is calculated as  

number of unique peptides presented divided by the total number of presentable 8- to 12-mer  

peptides from the SARS-CoV-2 proteome). Dashed red line corresponds to the median  

presentation capacity, while dark and light pink highlighted regions correspond to the 25/75%  

and 5/95% quantiles, respectively, with numerical values shown in the upper aspect of the  

plotting region. 

 

 

Supplementary Figure 2.6: Histogram of SARS-CoV-2 peptide presentation for 3,382 individuals’  
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full HLA repertoires. Individuals are counted along the y-axis, corresponding to their individual  

capacity (aggregated across all 6 of their HLA types) to present peptides from the SARS-CoV-2  

proteome, shown along the x-axis (percentile is calculated as number of unique peptides  

presented divided by the total number of presentable 8- to 12-mer peptides from the SARS CoV-2 

proteome). Dashed red line corresponds to the median presentation capacity, while dark  and light 

pink highlighted regions correspond to the 25/75% and 5/95% quantiles, respectively,  with 

numerical values shown in the upper aspect of the plotting region.  

 

 

Supplementary Figure 2.7: Distribution of HLA allelic presentation of 8- to 12-mers from the  SARS-

CoV-2 proteome using the tool MHCflurry. At right, the number of peptides that putatively bind to 
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each of 66 HLA alleles is shown as a series of  horizontal bars, with dark and light shading indicating 

the number of tightly (<50nM) and loosely  (<500nM) binding peptides respectively, and with green, 

orange, and purple colors representing  HLA-A, -B, and -C alleles, respectively. Alleles are sorted in 

descending order based on the  number of peptides they bind (<500nM). The corresponding 

estimated allelic frequency in the  global population is also shown (to left), with length of horizontal 

bar indicating absolute  frequency in the population.  

 

Supplementary Figure 2.8: Distribution of HLA allelic presentation of 8- to 12-mers from the  SARS-

CoV proteome using the tool MHCflurry. At right, the number of peptides (see  Supplementary Table 

S8) that putatively bind to each of 66 HLA alleles is shown as a series of horizontal bars, with dark 

and light shading indicating the number of tightly (<50nM) and loosely  (<500nM) binding peptides 
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respectively, and with green, orange, and purple colors representing  HLA-A, -B, and -C alleles, 

respectively. Alleles are sorted in descending order based on the  number of peptides they bind 

(<500nM). The corresponding estimated allelic frequency in the  global population is also shown (to 

left), with length of horizontal bar indicating absolute  frequency in the population. 

 

Supplementary Figure 2.9: Distribution of HLA allelic presentation of 8- to 12-mers from the  SARS-

CoV-2 proteome using the tool MHCnuggets. At right, the number of peptides (see  Supplementary 

Table S7) that putatively bind to each of 66 HLA alleles is shown as a series of  horizontal bars, with 

dark and light shading indicating the number of tightly (<50nM) and loosely  (<500nM) binding 

peptides respectively, and with green, orange, and purple colors representing  HLA-A, -B, and -C 

alleles, respectively. Alleles are sorted in descending order based on the  number of peptides they 

bind (<500nM). The corresponding estimated allelic frequency in the  global population is also shown 
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(to left), with length of horizontal bar indicating absolute  frequency in the population. 

 

Supplementary Figure 2.10: Distribution of HLA allelic presentation of 8- to 12-mers from the  

SARS-CoV proteome using the tool MHCnuggets. At right, the number of peptides (see  

Supplementary Table S8) that putatively bind to each of 66 HLA alleles is shown as a series of  

horizontal bars, with dark and light shading indicating the number of tightly (<50nM) and loosely  

(<500nM) binding peptides respectively, and with green, orange, and purple colors representing  

HLA-A, -B, and -C alleles, respectively. Alleles are sorted in descending order based on the  

number of peptides they bind (<500nM). The corresponding estimated allelic frequency in the  

global population is also shown (to left), with length of horizontal bar indicating absolute  

frequency in the population. 
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Supplementary Table 2.1: Attached 

 

 

Peptide Source protein Positi

on 

(aa) 

OC43.km

ers 

HKU1.kme

rs 

NL63.km

ers 

229E.km

ers 

Quality 

score 

Conservation.b

eta 

Conservation.hu

man 

Conservation.combi

ned 

KHFSMMILSDD ORF1ab (RNA 

polymerase) 

5143-

5153 

10 10 10 10 239.0909

97 

10.8181818 11 10.8181818 

GPHEFCSQHTM ORF1ab (RNA 

polymerase) 

5200-

5210 

10 10 10 10 238.0967

75 

10.8181818 10.8181818 10.8181818 

YLPYPDPSRIL ORF1ab (RNA 

polymerase) 

5220-

5230 

0 10 10 6 237.2418

86 

10.5454546 10.4545455 10.6363636 

NVNRFNVAITRAK ORF1ab 

(helicase) 

5881-

5893 

20 20 20 10 237.0376

72 

10.2307692 10.3846154 10.1538462 

LKLFAAET ORF1ab 

(helicase) 

5454-

5461 

1 1 0 0 236.6966

79 

11 10.75 10.5 

LMGWDYPKCDRAMPNM ORF1ab (RNA 

polymerase) 

5006-

5021 

30 30 15 25 236.1517

21 

10.875 10.625 10.625 

CITRCNLGGAVC ORF1ab (3'-to-

5' exonuclease) 

6398-

6409 

15 15 0 0 234.9038

91 

10.25 10.1666667 10.0833333 

VGVLTLDNQDLNG ORF1ab (RNA 

polymerase) 

4594-

4606 

20 10 20 20 234.6813

39 

10.3846154 10.6923077 10.3076923 

KAVFISPYNSQN ORF1ab 

(helicase) 

5832-

5843 

15 10 15 15 234.0961

12 

10.4166667 10.5 10.1666667 

QGSEYDYVI ORF1ab 

(helicase) 

5861-

5869 

3 3 3 3 232.9154

19 

9.88888889 10.5555556 9.88888889 

KLALGGSVAIKITE ORF1ab (2'-O-

ribose 

methyltransfera

se) 

6958-

6971 

25 10 6 0 231.4057

09 

10.0714286 9.92857143 9.42857143 
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CLFWNCNVD ORF1ab (3'-to-

5' exonuclease) 

6307-

6315 

0 0 3 3 229.4385

11 

9.77777778 10.2222222 10 

LYYQNNVFMSE ORF1ab (RNA 

polymerase) 

5178-

5188 

10 10 6 0 229.3444

97 

10.6363636 10.1818182 10.0909091 

LYLGGMSYYC ORF1ab 

(helicase) 

5387-

5396 

6 6 0 0 227.7068

71 

10.8 10.4 10.1 

QFKHLIPLM ORF1ab (3'-to-

5' exonuclease) 

6070-

6078 

3 1 0 0 226.3303

67 

10.1111111 9.44444444 9.55555556 

GGSLYVNKHAFHTPA ORF1ab (3'-to-

5' exonuclease) 

6341-

6355 

20 20 30 0 225.9914

49 

9.86666667 9.93333333 9.66666667 

CFSVAALT ORF1ab (RNA 

polymerase) 

4787-

4794 

0 0 0 0 225.1771

39 

9.75 10.5 9.625 

IVCRFDTRV ORF1ab (3'-to-

5' exonuclease) 

6322-

6330 

1 3 1 1 224.8808

84 

10.2222222 10.4444444 10.3333333 

VYTACSHAAVDALCEKA ORF1ab 

(helicase) 

5629-

5645 

15 15 0 3 222.4839

24 

10.6470588 9.82352941 9.64705882 

YVKPGGTSSGDATTAYANSVFN

I 

ORF1ab (RNA 

polymerase) 

5066-

5088 

30 30 0 30 222.4664

57 

10.3043478 10.0434783 9.86956522 

ERFVSLAIDAYPL ORF1ab (RNA 

polymerase) 

5249-

5261 

20 0 6 6 220.8272

3 

9.92307692 10.1538462 10.0769231 

MMNVAKYTQLCQYLNT ORF1ab (2'-O-

ribose 

methyltransfera

se) 

6839-

6854 

35 35 6 1 219.7028

55 

9.8125 9.625 9.25 

VYCPRHVI ORF1ab (3CL) 3299-

3306 

1 1 0 1 219.3148

19 

10 10.375 9.75 

QGPPGTGKSH ORF1ab 

(helicase) 

5605-

5614 

6 6 0 0 215.5883

4 

9.9 9.9 9.9 

GDPAQLPAPR ORF1ab 

(helicase) 

5724-

5733 

6 6 0 0 215.5883

4 

9.9 9.9 9.9 
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GAGSDKGVAPGTAVLRQWLP ORF1ab (2'-O-

ribose 

methyltransfera

se) 

6869-

6888 

1 1 15 3 215.4330

72 

9.05 9.25 8.75 

DAIMTRCLAV ORF1ab (3'-to-

5' exonuclease) 

6198-

6207 

6 3 0 6 214.2633

39 

9.7 9.7 9.7 

LKSIAATRGATVVIGT ORF1ab (RNA 

polymerase) 

4968-

4983 

3 3 0 0 213.5599

46 

9.6875 9.625 9.1875 

SQTSLRCG ORF1ab 

(helicase) 

5334-

5341 

1 1 0 0 208.2339

44 

9.625 9.625 9.5 

PYVCNAPGC ORF1ab 

(helicase) 

5371-

5379 

3 0 0 0 203.6607

9 

10.1111111 9.77777778 8.88888889 

TQMNLKYAISAKNRARTVAGVSI ORF1ab (RNA 

polymerase) 

4932-

4954 

70 70 0 0 202.9694

43 

9.56521739 9.30434783 9.08695652 

PPLNRNYVFTGY ORF1ab 

(helicase) 

5498-

5509 

0 0 0 0 202.8680

71 

9.75 9.58333333 9.41666667 

TLNGLWLDD ORF1ab (3CL) 3289-

3297 

3 3 0 0 199.9297

32 

9.22222222 8.88888889 8.77777778 

RFYRLANECAQVLSE ORF1ab (RNA 

polymerase) 

5043-

5057 

30 30 0 0 199.4001

83 

9.4 9.2 8.86666667 

VNNLDKSAG ORF1ab (RNA 

polymerase) 

4887-

4895 

0 0 0 0 197.8918

89 

9.11111111 9 8.88888889 

PRWYFYYLGTGP Nucleocapsid 

(N protein) 

106-

117 

15 15 0 0 195.8642

83 

10 9.83333333 8.25 

FQTVKPGNFN ORF1ab (RNA 

polymerase) 

4799-

4808 

6 6 0 0 194.7755

47 

9.7 8.8 8.5 

WSFNPETN Membrane (M 

protein) 

110-

117 

1 1 0 0 194.4485

8 

9.75 10 9.125 

FGPLVRKIFVDGVPFVVS ORF1ab (RNA 

polymerase) 

4718-

4735 

10 10 0 0 194.0985

09 

8.94444444 8.83333333 8.22222222 
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TGLFKDCS ORF1ab (3'-to-

5' exonuclease) 

5930-

5937 

0 0 0 0 193.8196

9 

8.5 8.25 7.625 

LCCKCCYDHV ORF1ab 

(helicase) 

5349-

5358 

6 6 0 0 191.6340

8 

8.8 8.8 8.8 

SKEGFFTY ORF1ab (2'-O-

ribose 

methyltransfera

se) 

6943-

6950 

0 0 0 1 191.4900

65 

7.75 9.125 8.375 

LGGLHLLIGL ORF1ab 

(endoRNAse) 

6697-

6706 

3 3 1 1 189.6057

19 

8.5 8.5 8.4 

VIDLLLDDFV ORF1ab 

(endoRNAse) 

6746-

6755 

0 6 1 1 186.5365

63 

7.7 8.2 8.1 

TVSALVYDNKL ORF1ab 

(helicase) 

5775-

5785 

0 10 0 0 184.8263

49 

7.90909091 8.36363636 7.63636364 

TNVNASSSE ORF1ab (2'-O-

ribose 

methyltransfera

se) 

6993-

7001 

0 3 0 0 181.9510

97 

7.88888889 8.22222222 8.11111111 

WYDFVENPDI ORF1ab (RNA 

polymerase) 

4554-

4563 

6 6 0 0 179.6533

65 

7.7 7.8 7.3 

SLVLARKH ORF1ab (RNA 

polymerase) 

5027-

5034 

1 1 0 0 89.82847

5 

4.125 4.125 4.125 

 

Supplementary Table 2.2 SARS-CoV-2 peptides conserved across diverse coronavirus sequences. 

Peptide = amino acid sequence of peptide; Source protein = SARS-CoV-2 source protein containing 

the peptide sequence; Position (aa) = amino acid position within source protein; OC43.kmers = 

number of component 8-12mers also present in OC43; HKU1.kmers = number of component 8-

12mers also present in HKU1; NL63.kmers = number of component 8-12mers also present in NL63; 

229E.kmers = number of component 8-12mers also present in 229E; Quality score = average 

alignment quality score (calculated by Clustal Omega) across all constituent amino acids; 

Conservation.beta = BLOSUM62-based sequence conservation for all betacoronavirus sequences 
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(calculated by Clustal Omega), averaged across all constituent amino acids; Conservation.human = 

BLOSUM62-based sequence conservation for all human coronavirus sequences (calculated by 

Clustal Omega), averaged across all constituent amino acids; Conservation.combined = BLOSUM62-

based sequence conservation for all alpha- and betacoronavirus sequences (calculated by Clustal 

Omega), averaged across all constituent amino acids. 

 

 

Peptide OC43 HKU1 NL63 229E Cleaved.bound Source 

KHFSMMIL 1 1 1 1 N KHFSMMILSDD 

HFSMMILS 1 1 1 1 N KHFSMMILSDD 

FSMMILSD 1 1 1 1 N KHFSMMILSDD 

SMMILSDD 1 1 1 1 N KHFSMMILSDD 

GPHEFCSQ 1 1 1 1 N GPHEFCSQHTM 

PHEFCSQH 1 1 1 1 N GPHEFCSQHTM 

HEFCSQHT 1 1 1 1 N GPHEFCSQHTM 

EFCSQHTM 1 1 1 1 N GPHEFCSQHTM 

YLPYPDPS 0 1 1 1 N YLPYPDPSRIL 

LPYPDPSR 0 1 1 1 N YLPYPDPSRIL 

PYPDPSRI 0 1 1 1 N YLPYPDPSRIL 

YPDPSRIL 0 1 1 0 N YLPYPDPSRIL 
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NVNRFNVA 1 1 1 0 N NVNRFNVAITRAK 

VNRFNVAI 1 1 1 0 N NVNRFNVAITRAK 

NRFNVAIT 1 1 1 1 N NVNRFNVAITRAK 

RFNVAITR 1 1 1 1 N NVNRFNVAITRAK 

FNVAITRA 1 1 1 1 N NVNRFNVAITRAK 

NVAITRAK 1 1 1 1 N NVNRFNVAITRAK 

LKLFAAET 1 1 0 0 N LKLFAAET 

LMGWDYPK 1 1 1 1 N LMGWDYPKCDRAMPNM 

MGWDYPKC 1 1 1 1 N LMGWDYPKCDRAMPNM 

GWDYPKCD 1 1 1 1 N LMGWDYPKCDRAMPNM 

WDYPKCDR 1 1 1 1 N LMGWDYPKCDRAMPNM 

DYPKCDRA 1 1 1 1 N LMGWDYPKCDRAMPNM 

YPKCDRAM 1 1 0 1 N LMGWDYPKCDRAMPNM 

PKCDRAMP 1 1 0 1 N LMGWDYPKCDRAMPNM 

KCDRAMPN 1 1 0 0 N LMGWDYPKCDRAMPNM 

CITRCNLG 1 1 0 0 N CITRCNLGGAVC 

ITRCNLGG 1 1 0 0 N CITRCNLGGAVC 

TRCNLGGA 1 1 0 0 N CITRCNLGGAVC 

RCNLGGAV 1 1 0 0 N CITRCNLGGAVC 
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CNLGGAVC 1 1 0 0 N CITRCNLGGAVC 

VGVLTLDN 1 1 1 1 N VGVLTLDNQDLNG 

GVLTLDNQ 1 1 1 1 N VGVLTLDNQDLNG 

VLTLDNQD 1 1 1 1 N VGVLTLDNQDLNG 

LTLDNQDL 1 1 1 1 N VGVLTLDNQDLNG 

TLDNQDLN 1 0 1 1 N VGVLTLDNQDLNG 

LDNQDLNG 1 0 1 1 N VGVLTLDNQDLNG 

KAVFISPY 1 0 1 1 Y KAVFISPYNSQN 

AVFISPYN 1 1 1 1 N KAVFISPYNSQN 

VFISPYNS 1 1 1 1 N KAVFISPYNSQN 

FISPYNSQ 1 1 1 1 N KAVFISPYNSQN 

ISPYNSQN 1 1 1 1 N KAVFISPYNSQN 

QGSEYDYV 1 1 1 1 N QGSEYDYVI 

GSEYDYVI 1 1 1 1 N QGSEYDYVI 

KLALGGSV 1 0 0 0 N KLALGGSVAIKITE 

LALGGSVA 1 0 0 0 N KLALGGSVAIKITE 

ALGGSVAI 1 0 0 0 N KLALGGSVAIKITE 

LGGSVAIK 1 1 0 0 N KLALGGSVAIKITE 

GGSVAIKI 1 1 1 0 N KLALGGSVAIKITE 
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GSVAIKIT 1 1 1 0 N KLALGGSVAIKITE 

SVAIKITE 1 1 1 0 N KLALGGSVAIKITE 

CLFWNCNV 0 0 1 1 N CLFWNCNVD 

LFWNCNVD 0 0 1 1 N CLFWNCNVD 

LYYQNNVF 1 1 1 0 N LYYQNNVFMSE 

YYQNNVFM 1 1 1 0 N LYYQNNVFMSE 

YQNNVFMS 1 1 1 0 Y LYYQNNVFMSE 

QNNVFMSE 1 1 0 0 N LYYQNNVFMSE 

LYLGGMSY 1 1 0 0 Y LYLGGMSYYC 

YLGGMSYY 1 1 0 0 N LYLGGMSYYC 

LGGMSYYC 1 1 0 0 N LYLGGMSYYC 

QFKHLIPL 1 0 0 0 N QFKHLIPLM 

FKHLIPLM 1 1 0 0 N QFKHLIPLM 

GGSLYVNK 1 1 1 0 N GGSLYVNKHAFHTPA 

GSLYVNKH 1 1 1 0 N GGSLYVNKHAFHTPA 

SLYVNKHA 1 1 1 0 N GGSLYVNKHAFHTPA 

LYVNKHAF 1 1 1 0 Y GGSLYVNKHAFHTPA 

YVNKHAFH 1 1 1 0 N GGSLYVNKHAFHTPA 

VNKHAFHT 1 1 1 0 N GGSLYVNKHAFHTPA 
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NKHAFHTP 0 0 1 0 N GGSLYVNKHAFHTPA 

KHAFHTPA 0 0 1 0 N GGSLYVNKHAFHTPA 

IVCRFDTR 0 1 1 1 N IVCRFDTRV 

VCRFDTRV 1 1 0 0 N IVCRFDTRV 

TACSHAAV 0 0 0 1 N VYTACSHAAVDALCEKA 

ACSHAAVD 0 0 0 1 N VYTACSHAAVDALCEKA 

SHAAVDAL 1 1 0 0 Y VYTACSHAAVDALCEKA 

HAAVDALC 1 1 0 0 N VYTACSHAAVDALCEKA 

AAVDALCE 1 1 0 0 N VYTACSHAAVDALCEKA 

AVDALCEK 1 1 0 0 N VYTACSHAAVDALCEKA 

VDALCEKA 1 1 0 0 N VYTACSHAAVDALCEKA 

YVKPGGTS 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

VKPGGTSS 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

KPGGTSSG 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

PGGTSSGD 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GGTSSGDA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GTSSGDAT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

TSSGDATT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

SSGDATTA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 
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SGDATTAY 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

GDATTAYA 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

DATTAYAN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

ATTAYANS 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

TTAYANSV 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

TAYANSVF 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

AYANSVFN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

YANSVFNI 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

ERFVSLAI 1 1 0 0 Y ERFVSLAIDAYPL 

RFVSLAID 1 1 0 0 N ERFVSLAIDAYPL 

FVSLAIDA 1 1 0 0 N ERFVSLAIDAYPL 

VSLAIDAY 1 1 1 1 N ERFVSLAIDAYPL 

SLAIDAYP 1 1 1 1 N ERFVSLAIDAYPL 

LAIDAYPL 1 1 1 1 Y ERFVSLAIDAYPL 

MMNVAKYT 1 1 0 0 N MMNVAKYTQLCQYLNT 

MNVAKYTQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

NVAKYTQL 1 1 0 0 Y MMNVAKYTQLCQYLNT 

VAKYTQLC 1 1 0 0 N MMNVAKYTQLCQYLNT 

AKYTQLCQ 1 1 0 0 N MMNVAKYTQLCQYLNT 
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KYTQLCQY 1 1 1 1 N MMNVAKYTQLCQYLNT 

YTQLCQYL 1 1 1 0 N MMNVAKYTQLCQYLNT 

TQLCQYLN 1 1 1 0 N MMNVAKYTQLCQYLNT 

QLCQYLNT 1 1 0 0 N MMNVAKYTQLCQYLNT 

VYCPRHVI 1 1 0 1 N VYCPRHVI 

QGPPGTGK 1 1 0 0 N QGPPGTGKSH 

GPPGTGKS 1 1 0 0 N QGPPGTGKSH 

PPGTGKSH 1 1 0 0 N QGPPGTGKSH 

GDPAQLPA 1 1 0 0 N GDPAQLPAPR 

DPAQLPAP 1 1 0 0 N GDPAQLPAPR 

PAQLPAPR 1 1 0 0 N GDPAQLPAPR 

GAGSDKGV 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

AGSDKGVA 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

GSDKGVAP 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

SDKGVAPG 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

DKGVAPGT 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

GVAPGTAV 0 0 0 1 N GAGSDKGVAPGTAVLRQWLP 

VAPGTAVL 0 0 0 1 N GAGSDKGVAPGTAVLRQWLP 

AVLRQWLP 1 1 0 0 N GAGSDKGVAPGTAVLRQWLP 
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DAIMTRCL 1 1 0 1 N DAIMTRCLAV 

AIMTRCLA 1 1 0 1 N DAIMTRCLAV 

IMTRCLAV 1 0 0 1 Y DAIMTRCLAV 

LKSIAATR 1 1 0 0 N LKSIAATRGATVVIGT 

KSIAATRG 1 1 0 0 N LKSIAATRGATVVIGT 

SQTSLRCG 1 1 0 0 N SQTSLRCG 

PYVCNAPG 1 0 0 0 N PYVCNAPGC 

YVCNAPGC 1 0 0 0 N PYVCNAPGC 

TQMNLKYA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

QMNLKYAI 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

MNLKYAIS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NLKYAISA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

LKYAISAK 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KYAISAKN 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

YAISAKNR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AISAKNRA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

ISAKNRAR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

SAKNRART 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AKNRARTV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 
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KNRARTVA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NRARTVAG 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RARTVAGV 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

ARTVAGVS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RTVAGVSI 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

TLNGLWLD 1 1 0 0 N TLNGLWLDD 

LNGLWLDD 1 1 0 0 N TLNGLWLDD 

RFYRLANE 1 1 0 0 N RFYRLANECAQVLSE 

FYRLANEC 1 1 0 0 N RFYRLANECAQVLSE 

YRLANECA 1 1 0 0 N RFYRLANECAQVLSE 

RLANECAQ 1 1 0 0 N RFYRLANECAQVLSE 

LANECAQV 1 1 0 0 N RFYRLANECAQVLSE 

ANECAQVL 1 1 0 0 N RFYRLANECAQVLSE 

NECAQVLS 1 1 0 0 N RFYRLANECAQVLSE 

ECAQVLSE 1 1 0 0 N RFYRLANECAQVLSE 

PRWYFYYL 1 1 0 0 N PRWYFYYLGTGP 

RWYFYYLG 1 1 0 0 N PRWYFYYLGTGP 

WYFYYLGT 1 1 0 0 N PRWYFYYLGTGP 

YFYYLGTG 1 1 0 0 N PRWYFYYLGTGP 
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FYYLGTGP 1 1 1 1 N PRWYFYYLGTGP 

FQTVKPGN 1 1 0 0 N FQTVKPGNFN 

QTVKPGNF 1 1 0 0 N FQTVKPGNFN 

TVKPGNFN 1 1 0 0 N FQTVKPGNFN 

WSFNPETN 1 1 0 0 N WSFNPETN 

IFVDGVPF 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

FVDGVPFV 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

VDGVPFVV 1 1 0 0 N FGPLVRKIFVDGVPFVVS 

DGVPFVVS 1 1 0 0 N FGPLVRKIFVDGVPFVVS 

LCCKCCYD 1 1 0 0 N LCCKCCYDHV 

CCKCCYDH 1 1 0 0 N LCCKCCYDHV 

CKCCYDHV 1 1 0 0 N LCCKCCYDHV 

SKEGFFTY 0 0 0 1 N SKEGFFTY 

LGGLHLLI 0 0 1 1 N LGGLHLLIGL 

GGLHLLIG 1 1 0 0 N LGGLHLLIGL 

GLHLLIGL 1 1 0 0 N LGGLHLLIGL 

VIDLLLDD 0 1 0 0 N VIDLLLDDFV 

IDLLLDDF 0 1 0 0 N VIDLLLDDFV 

DLLLDDFV 0 1 1 1 N VIDLLLDDFV 
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TVSALVYD 0 1 0 0 N TVSALVYDNKL 

VSALVYDN 0 1 0 0 N TVSALVYDNKL 

SALVYDNK 0 1 0 0 N TVSALVYDNKL 

ALVYDNKL 0 1 0 0 N TVSALVYDNKL 

TNVNASSS 0 1 0 0 N TNVNASSSE 

NVNASSSE 0 1 0 0 N TNVNASSSE 

WYDFVENP 1 1 0 0 N WYDFVENPDI 

YDFVENPD 1 1 0 0 N WYDFVENPDI 

DFVENPDI 1 1 0 0 N WYDFVENPDI 

SLVLARKH 1 1 0 0 N SLVLARKH 

KHFSMMILS 1 1 1 1 N KHFSMMILSDD 

HFSMMILSD 1 1 1 1 N KHFSMMILSDD 

FSMMILSDD 1 1 1 1 N KHFSMMILSDD 

GPHEFCSQH 1 1 1 1 N GPHEFCSQHTM 

PHEFCSQHT 1 1 1 1 N GPHEFCSQHTM 

HEFCSQHTM 1 1 1 1 N GPHEFCSQHTM 

YLPYPDPSR 0 1 1 1 Y YLPYPDPSRIL 

LPYPDPSRI 0 1 1 1 N YLPYPDPSRIL 

PYPDPSRIL 0 1 1 0 N YLPYPDPSRIL 
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NVNRFNVAI 1 1 1 0 Y NVNRFNVAITRAK 

VNRFNVAIT 1 1 1 0 N NVNRFNVAITRAK 

NRFNVAITR 1 1 1 1 N NVNRFNVAITRAK 

RFNVAITRA 1 1 1 1 N NVNRFNVAITRAK 

FNVAITRAK 1 1 1 1 N NVNRFNVAITRAK 

LMGWDYPKC 1 1 1 1 N LMGWDYPKCDRAMPNM 

MGWDYPKCD 1 1 1 1 N LMGWDYPKCDRAMPNM 

GWDYPKCDR 1 1 1 1 N LMGWDYPKCDRAMPNM 

WDYPKCDRA 1 1 1 1 N LMGWDYPKCDRAMPNM 

DYPKCDRAM 1 1 0 1 N LMGWDYPKCDRAMPNM 

YPKCDRAMP 1 1 0 1 N LMGWDYPKCDRAMPNM 

PKCDRAMPN 1 1 0 0 N LMGWDYPKCDRAMPNM 

CITRCNLGG 1 1 0 0 N CITRCNLGGAVC 

ITRCNLGGA 1 1 0 0 Y CITRCNLGGAVC 

TRCNLGGAV 1 1 0 0 N CITRCNLGGAVC 

RCNLGGAVC 1 1 0 0 N CITRCNLGGAVC 

VGVLTLDNQ 1 1 1 1 N VGVLTLDNQDLNG 

GVLTLDNQD 1 1 1 1 N VGVLTLDNQDLNG 

VLTLDNQDL 1 1 1 1 N VGVLTLDNQDLNG 
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LTLDNQDLN 1 0 1 1 N VGVLTLDNQDLNG 

TLDNQDLNG 1 0 1 1 N VGVLTLDNQDLNG 

KAVFISPYN 1 0 1 1 N KAVFISPYNSQN 

AVFISPYNS 1 1 1 1 N KAVFISPYNSQN 

VFISPYNSQ 1 1 1 1 N KAVFISPYNSQN 

FISPYNSQN 1 1 1 1 N KAVFISPYNSQN 

QGSEYDYVI 1 1 1 1 N QGSEYDYVI 

KLALGGSVA 1 0 0 0 N KLALGGSVAIKITE 

LALGGSVAI 1 0 0 0 N KLALGGSVAIKITE 

ALGGSVAIK 1 0 0 0 Y KLALGGSVAIKITE 

LGGSVAIKI 1 1 0 0 N KLALGGSVAIKITE 

GGSVAIKIT 1 1 1 0 N KLALGGSVAIKITE 

GSVAIKITE 1 1 1 0 N KLALGGSVAIKITE 

CLFWNCNVD 0 0 1 1 N CLFWNCNVD 

LYYQNNVFM 1 1 1 0 N LYYQNNVFMSE 

YYQNNVFMS 1 1 1 0 N LYYQNNVFMSE 

YQNNVFMSE 1 1 0 0 Y LYYQNNVFMSE 

LYLGGMSYY 1 1 0 0 Y LYLGGMSYYC 

YLGGMSYYC 1 1 0 0 N LYLGGMSYYC 
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QFKHLIPLM 1 0 0 0 N QFKHLIPLM 

GGSLYVNKH 1 1 1 0 N GGSLYVNKHAFHTPA 

GSLYVNKHA 1 1 1 0 N GGSLYVNKHAFHTPA 

SLYVNKHAF 1 1 1 0 Y GGSLYVNKHAFHTPA 

LYVNKHAFH 1 1 1 0 N GGSLYVNKHAFHTPA 

YVNKHAFHT 1 1 1 0 N GGSLYVNKHAFHTPA 

VNKHAFHTP 0 0 1 0 N GGSLYVNKHAFHTPA 

NKHAFHTPA 0 0 1 0 N GGSLYVNKHAFHTPA 

IVCRFDTRV 0 1 0 0 N IVCRFDTRV 

TACSHAAVD 0 0 0 1 N VYTACSHAAVDALCEKA 

SHAAVDALC 1 1 0 0 Y VYTACSHAAVDALCEKA 

HAAVDALCE 1 1 0 0 N VYTACSHAAVDALCEKA 

AAVDALCEK 1 1 0 0 Y VYTACSHAAVDALCEKA 

AVDALCEKA 1 1 0 0 N VYTACSHAAVDALCEKA 

YVKPGGTSS 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

VKPGGTSSG 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

KPGGTSSGD 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

PGGTSSGDA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GGTSSGDAT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 
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GTSSGDATT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

TSSGDATTA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

SGDATTAYA 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

GDATTAYAN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

DATTAYANS 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

ATTAYANSV 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

TTAYANSVF 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

TAYANSVFN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

AYANSVFNI 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

ERFVSLAID 1 1 0 0 N ERFVSLAIDAYPL 

RFVSLAIDA 1 1 0 0 N ERFVSLAIDAYPL 

FVSLAIDAY 1 1 0 0 N ERFVSLAIDAYPL 

VSLAIDAYP 1 1 1 1 N ERFVSLAIDAYPL 

SLAIDAYPL 1 1 1 1 N ERFVSLAIDAYPL 

MMNVAKYTQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

MNVAKYTQL 1 1 0 0 Y MMNVAKYTQLCQYLNT 

NVAKYTQLC 1 1 0 0 N MMNVAKYTQLCQYLNT 

VAKYTQLCQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

AKYTQLCQY 1 1 0 0 N MMNVAKYTQLCQYLNT 



125 

KYTQLCQYL 1 1 1 0 Y MMNVAKYTQLCQYLNT 

YTQLCQYLN 1 1 1 0 N MMNVAKYTQLCQYLNT 

TQLCQYLNT 1 1 0 0 N MMNVAKYTQLCQYLNT 

QGPPGTGKS 1 1 0 0 N QGPPGTGKSH 

GPPGTGKSH 1 1 0 0 N QGPPGTGKSH 

GDPAQLPAP 1 1 0 0 N GDPAQLPAPR 

DPAQLPAPR 1 1 0 0 N GDPAQLPAPR 

GAGSDKGVA 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

AGSDKGVAP 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

GSDKGVAPG 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

SDKGVAPGT 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

GVAPGTAVL 0 0 0 1 N GAGSDKGVAPGTAVLRQWLP 

DAIMTRCLA 1 1 0 1 N DAIMTRCLAV 

AIMTRCLAV 1 0 0 1 Y DAIMTRCLAV 

LKSIAATRG 1 1 0 0 N LKSIAATRGATVVIGT 

PYVCNAPGC 1 0 0 0 N PYVCNAPGC 

TQMNLKYAI 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

QMNLKYAIS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

MNLKYAISA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 
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NLKYAISAK 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

LKYAISAKN 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KYAISAKNR 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

YAISAKNRA 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

AISAKNRAR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

ISAKNRART 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

SAKNRARTV 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

AKNRARTVA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KNRARTVAG 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NRARTVAGV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RARTVAGVS 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

ARTVAGVSI 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

TLNGLWLDD 1 1 0 0 N TLNGLWLDD 

RFYRLANEC 1 1 0 0 N RFYRLANECAQVLSE 

FYRLANECA 1 1 0 0 N RFYRLANECAQVLSE 

YRLANECAQ 1 1 0 0 N RFYRLANECAQVLSE 

RLANECAQV 1 1 0 0 N RFYRLANECAQVLSE 

LANECAQVL 1 1 0 0 N RFYRLANECAQVLSE 

ANECAQVLS 1 1 0 0 N RFYRLANECAQVLSE 
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NECAQVLSE 1 1 0 0 N RFYRLANECAQVLSE 

PRWYFYYLG 1 1 0 0 N PRWYFYYLGTGP 

RWYFYYLGT 1 1 0 0 N PRWYFYYLGTGP 

WYFYYLGTG 1 1 0 0 N PRWYFYYLGTGP 

YFYYLGTGP 1 1 0 0 N PRWYFYYLGTGP 

FQTVKPGNF 1 1 0 0 N FQTVKPGNFN 

QTVKPGNFN 1 1 0 0 N FQTVKPGNFN 

IFVDGVPFV 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

FVDGVPFVV 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

VDGVPFVVS 1 1 0 0 N FGPLVRKIFVDGVPFVVS 

LCCKCCYDH 1 1 0 0 N LCCKCCYDHV 

CCKCCYDHV 1 1 0 0 N LCCKCCYDHV 

GGLHLLIGL 1 1 0 0 N LGGLHLLIGL 

VIDLLLDDF 0 1 0 0 N VIDLLLDDFV 

IDLLLDDFV 0 1 0 0 N VIDLLLDDFV 

TVSALVYDN 0 1 0 0 N TVSALVYDNKL 

VSALVYDNK 0 1 0 0 Y TVSALVYDNKL 

SALVYDNKL 0 1 0 0 N TVSALVYDNKL 

TNVNASSSE 0 1 0 0 N TNVNASSSE 
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WYDFVENPD 1 1 0 0 N WYDFVENPDI 

YDFVENPDI 1 1 0 0 N WYDFVENPDI 

KHFSMMILSD 1 1 1 1 N KHFSMMILSDD 

HFSMMILSDD 1 1 1 1 N KHFSMMILSDD 

GPHEFCSQHT 1 1 1 1 N GPHEFCSQHTM 

PHEFCSQHTM 1 1 1 1 N GPHEFCSQHTM 

YLPYPDPSRI 0 1 1 1 Y YLPYPDPSRIL 

LPYPDPSRIL 0 1 1 0 N YLPYPDPSRIL 

NVNRFNVAIT 1 1 1 0 N NVNRFNVAITRAK 

VNRFNVAITR 1 1 1 0 Y NVNRFNVAITRAK 

NRFNVAITRA 1 1 1 1 N NVNRFNVAITRAK 

RFNVAITRAK 1 1 1 1 N NVNRFNVAITRAK 

LMGWDYPKCD 1 1 1 1 N LMGWDYPKCDRAMPNM 

MGWDYPKCDR 1 1 1 1 Y LMGWDYPKCDRAMPNM 

GWDYPKCDRA 1 1 1 1 N LMGWDYPKCDRAMPNM 

WDYPKCDRAM 1 1 0 1 N LMGWDYPKCDRAMPNM 

DYPKCDRAMP 1 1 0 1 N LMGWDYPKCDRAMPNM 

YPKCDRAMPN 1 1 0 0 N LMGWDYPKCDRAMPNM 

CITRCNLGGA 1 1 0 0 N CITRCNLGGAVC 
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ITRCNLGGAV 1 1 0 0 Y CITRCNLGGAVC 

TRCNLGGAVC 1 1 0 0 N CITRCNLGGAVC 

VGVLTLDNQD 1 1 1 1 N VGVLTLDNQDLNG 

GVLTLDNQDL 1 1 1 1 N VGVLTLDNQDLNG 

VLTLDNQDLN 1 0 1 1 N VGVLTLDNQDLNG 

LTLDNQDLNG 1 0 1 1 N VGVLTLDNQDLNG 

KAVFISPYNS 1 0 1 1 N KAVFISPYNSQN 

AVFISPYNSQ 1 1 1 1 N KAVFISPYNSQN 

VFISPYNSQN 1 1 1 1 N KAVFISPYNSQN 

KLALGGSVAI 1 0 0 0 N KLALGGSVAIKITE 

LALGGSVAIK 1 0 0 0 N KLALGGSVAIKITE 

ALGGSVAIKI 1 0 0 0 Y KLALGGSVAIKITE 

LGGSVAIKIT 1 1 0 0 N KLALGGSVAIKITE 

GGSVAIKITE 1 1 1 0 N KLALGGSVAIKITE 

LYYQNNVFMS 1 1 1 0 N LYYQNNVFMSE 

YYQNNVFMSE 1 1 0 0 N LYYQNNVFMSE 

LYLGGMSYYC 1 1 0 0 N LYLGGMSYYC 

GGSLYVNKHA 1 1 1 0 N GGSLYVNKHAFHTPA 

GSLYVNKHAF 1 1 1 0 N GGSLYVNKHAFHTPA 
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SLYVNKHAFH 1 1 1 0 N GGSLYVNKHAFHTPA 

LYVNKHAFHT 1 1 1 0 N GGSLYVNKHAFHTPA 

YVNKHAFHTP 0 0 1 0 N GGSLYVNKHAFHTPA 

VNKHAFHTPA 0 0 1 0 N GGSLYVNKHAFHTPA 

SHAAVDALCE 1 1 0 0 N VYTACSHAAVDALCEKA 

HAAVDALCEK 1 1 0 0 Y VYTACSHAAVDALCEKA 

AAVDALCEKA 1 1 0 0 N VYTACSHAAVDALCEKA 

YVKPGGTSSG 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

VKPGGTSSGD 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

KPGGTSSGDA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

PGGTSSGDAT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GGTSSGDATT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GTSSGDATTA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

SGDATTAYAN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

GDATTAYANS 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

DATTAYANSV 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

ATTAYANSVF 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

TTAYANSVFN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

TAYANSVFNI 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 
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ERFVSLAIDA 1 1 0 0 N ERFVSLAIDAYPL 

RFVSLAIDAY 1 1 0 0 Y ERFVSLAIDAYPL 

FVSLAIDAYP 1 1 0 0 N ERFVSLAIDAYPL 

VSLAIDAYPL 1 1 1 1 N ERFVSLAIDAYPL 

MMNVAKYTQL 1 1 0 0 Y MMNVAKYTQLCQYLNT 

MNVAKYTQLC 1 1 0 0 N MMNVAKYTQLCQYLNT 

NVAKYTQLCQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

VAKYTQLCQY 1 1 0 0 Y MMNVAKYTQLCQYLNT 

AKYTQLCQYL 1 1 0 0 N MMNVAKYTQLCQYLNT 

KYTQLCQYLN 1 1 1 0 Y MMNVAKYTQLCQYLNT 

YTQLCQYLNT 1 1 0 0 N MMNVAKYTQLCQYLNT 

QGPPGTGKSH 1 1 0 0 N QGPPGTGKSH 

GDPAQLPAPR 1 1 0 0 N GDPAQLPAPR 

GAGSDKGVAP 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

AGSDKGVAPG 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

GSDKGVAPGT 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

DAIMTRCLAV 1 0 0 1 N DAIMTRCLAV 

TQMNLKYAIS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

QMNLKYAISA 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 
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MNLKYAISAK 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NLKYAISAKN 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

LKYAISAKNR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KYAISAKNRA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

YAISAKNRAR 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

AISAKNRART 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

ISAKNRARTV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

SAKNRARTVA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AKNRARTVAG 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KNRARTVAGV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NRARTVAGVS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RARTVAGVSI 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

RFYRLANECA 1 1 0 0 N RFYRLANECAQVLSE 

FYRLANECAQ 1 1 0 0 N RFYRLANECAQVLSE 

YRLANECAQV 1 1 0 0 Y RFYRLANECAQVLSE 

RLANECAQVL 1 1 0 0 N RFYRLANECAQVLSE 

LANECAQVLS 1 1 0 0 N RFYRLANECAQVLSE 

ANECAQVLSE 1 1 0 0 N RFYRLANECAQVLSE 

PRWYFYYLGT 1 1 0 0 N PRWYFYYLGTGP 
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RWYFYYLGTG 1 1 0 0 N PRWYFYYLGTGP 

WYFYYLGTGP 1 1 0 0 N PRWYFYYLGTGP 

FQTVKPGNFN 1 1 0 0 N FQTVKPGNFN 

IFVDGVPFVV 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

FVDGVPFVVS 1 1 0 0 Y FGPLVRKIFVDGVPFVVS 

LCCKCCYDHV 1 1 0 0 N LCCKCCYDHV 

VIDLLLDDFV 0 1 0 0 Y VIDLLLDDFV 

TVSALVYDNK 0 1 0 0 N TVSALVYDNKL 

VSALVYDNKL 0 1 0 0 N TVSALVYDNKL 

WYDFVENPDI 1 1 0 0 N WYDFVENPDI 

KHFSMMILSDD 1 1 1 1 N KHFSMMILSDD 

GPHEFCSQHTM 1 1 1 1 N GPHEFCSQHTM 

YLPYPDPSRIL 0 1 1 0 Y YLPYPDPSRIL 

NVNRFNVAITR 1 1 1 0 Y NVNRFNVAITRAK 

VNRFNVAITRA 1 1 1 0 N NVNRFNVAITRAK 

NRFNVAITRAK 1 1 1 1 N NVNRFNVAITRAK 

LMGWDYPKCDR 1 1 1 1 N LMGWDYPKCDRAMPNM 

MGWDYPKCDRA 1 1 1 1 N LMGWDYPKCDRAMPNM 

GWDYPKCDRAM 1 1 0 1 N LMGWDYPKCDRAMPNM 
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WDYPKCDRAMP 1 1 0 1 N LMGWDYPKCDRAMPNM 

DYPKCDRAMPN 1 1 0 0 N LMGWDYPKCDRAMPNM 

CITRCNLGGAV 1 1 0 0 N CITRCNLGGAVC 

ITRCNLGGAVC 1 1 0 0 N CITRCNLGGAVC 

VGVLTLDNQDL 1 1 1 1 N VGVLTLDNQDLNG 

GVLTLDNQDLN 1 0 1 1 N VGVLTLDNQDLNG 

VLTLDNQDLNG 1 0 1 1 N VGVLTLDNQDLNG 

KAVFISPYNSQ 1 0 1 1 N KAVFISPYNSQN 

AVFISPYNSQN 1 1 1 1 N KAVFISPYNSQN 

KLALGGSVAIK 1 0 0 0 N KLALGGSVAIKITE 

LALGGSVAIKI 1 0 0 0 N KLALGGSVAIKITE 

ALGGSVAIKIT 1 0 0 0 N KLALGGSVAIKITE 

LGGSVAIKITE 1 1 0 0 N KLALGGSVAIKITE 

LYYQNNVFMSE 1 1 0 0 N LYYQNNVFMSE 

GGSLYVNKHAF 1 1 1 0 N GGSLYVNKHAFHTPA 

GSLYVNKHAFH 1 1 1 0 N GGSLYVNKHAFHTPA 

SLYVNKHAFHT 1 1 1 0 N GGSLYVNKHAFHTPA 

LYVNKHAFHTP 0 0 1 0 N GGSLYVNKHAFHTPA 

YVNKHAFHTPA 0 0 1 0 Y GGSLYVNKHAFHTPA 
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SHAAVDALCEK 1 1 0 0 N VYTACSHAAVDALCEKA 

HAAVDALCEKA 1 1 0 0 N VYTACSHAAVDALCEKA 

YVKPGGTSSGD 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

VKPGGTSSGDA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

KPGGTSSGDAT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

PGGTSSGDATT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

GGTSSGDATTA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

SGDATTAYANS 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

GDATTAYANSV 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

DATTAYANSVF 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

ATTAYANSVFN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

TTAYANSVFNI 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

ERFVSLAIDAY 1 1 0 0 Y ERFVSLAIDAYPL 

RFVSLAIDAYP 1 1 0 0 N ERFVSLAIDAYPL 

FVSLAIDAYPL 1 1 0 0 N ERFVSLAIDAYPL 

MMNVAKYTQLC 1 1 0 0 N MMNVAKYTQLCQYLNT 

MNVAKYTQLCQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

NVAKYTQLCQY 1 1 0 0 Y MMNVAKYTQLCQYLNT 

VAKYTQLCQYL 1 1 0 0 Y MMNVAKYTQLCQYLNT 
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AKYTQLCQYLN 1 1 0 0 N MMNVAKYTQLCQYLNT 

KYTQLCQYLNT 1 1 0 0 N MMNVAKYTQLCQYLNT 

GAGSDKGVAPG 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

AGSDKGVAPGT 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

TQMNLKYAISA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

QMNLKYAISAK 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

MNLKYAISAKN 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NLKYAISAKNR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

LKYAISAKNRA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KYAISAKNRAR 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

YAISAKNRART 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AISAKNRARTV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

ISAKNRARTVA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

SAKNRARTVAG 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AKNRARTVAGV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KNRARTVAGVS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NRARTVAGVSI 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RFYRLANECAQ 1 1 0 0 N RFYRLANECAQVLSE 

FYRLANECAQV 1 1 0 0 N RFYRLANECAQVLSE 
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YRLANECAQVL 1 1 0 0 Y RFYRLANECAQVLSE 

RLANECAQVLS 1 1 0 0 N RFYRLANECAQVLSE 

LANECAQVLSE 1 1 0 0 N RFYRLANECAQVLSE 

PRWYFYYLGTG 1 1 0 0 N PRWYFYYLGTGP 

RWYFYYLGTGP 1 1 0 0 N PRWYFYYLGTGP 

IFVDGVPFVVS 1 1 0 0 N FGPLVRKIFVDGVPFVVS 

TVSALVYDNKL 0 1 0 0 N TVSALVYDNKL 

NVNRFNVAITRA 1 1 1 0 N NVNRFNVAITRAK 

VNRFNVAITRAK 1 1 1 0 N NVNRFNVAITRAK 

LMGWDYPKCDRA 1 1 1 1 N LMGWDYPKCDRAMPNM 

MGWDYPKCDRAM 1 1 0 1 N LMGWDYPKCDRAMPNM 

GWDYPKCDRAMP 1 1 0 1 N LMGWDYPKCDRAMPNM 

WDYPKCDRAMPN 1 1 0 0 N LMGWDYPKCDRAMPNM 

CITRCNLGGAVC 1 1 0 0 N CITRCNLGGAVC 

VGVLTLDNQDLN 1 0 1 1 N VGVLTLDNQDLNG 

GVLTLDNQDLNG 1 0 1 1 N VGVLTLDNQDLNG 

KAVFISPYNSQN 1 0 1 1 N KAVFISPYNSQN 

KLALGGSVAIKI 1 0 0 0 N KLALGGSVAIKITE 

LALGGSVAIKIT 1 0 0 0 N KLALGGSVAIKITE 
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ALGGSVAIKITE 1 0 0 0 N KLALGGSVAIKITE 

GGSLYVNKHAFH 1 1 1 0 N GGSLYVNKHAFHTPA 

GSLYVNKHAFHT 1 1 1 0 N GGSLYVNKHAFHTPA 

SLYVNKHAFHTP 0 0 1 0 N GGSLYVNKHAFHTPA 

LYVNKHAFHTPA 0 0 1 0 N GGSLYVNKHAFHTPA 

SHAAVDALCEKA 1 1 0 0 N VYTACSHAAVDALCEKA 

YVKPGGTSSGDA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

VKPGGTSSGDAT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

KPGGTSSGDATT 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

PGGTSSGDATTA 1 1 0 0 N YVKPGGTSSGDATTAYANSVFNI 

SGDATTAYANSV 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

GDATTAYANSVF 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

DATTAYANSVFN 0 0 0 1 N YVKPGGTSSGDATTAYANSVFNI 

ATTAYANSVFNI 0 0 0 1 Y YVKPGGTSSGDATTAYANSVFNI 

ERFVSLAIDAYP 1 1 0 0 N ERFVSLAIDAYPL 

RFVSLAIDAYPL 1 1 0 0 Y ERFVSLAIDAYPL 

MMNVAKYTQLCQ 1 1 0 0 N MMNVAKYTQLCQYLNT 

MNVAKYTQLCQY 1 1 0 0 Y MMNVAKYTQLCQYLNT 

NVAKYTQLCQYL 1 1 0 0 N MMNVAKYTQLCQYLNT 
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VAKYTQLCQYLN 1 1 0 0 N MMNVAKYTQLCQYLNT 

AKYTQLCQYLNT 1 1 0 0 N MMNVAKYTQLCQYLNT 

GAGSDKGVAPGT 0 0 1 0 N GAGSDKGVAPGTAVLRQWLP 

TQMNLKYAISAK 1 1 0 0 Y TQMNLKYAISAKNRARTVAGVSI 

QMNLKYAISAKN 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

MNLKYAISAKNR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

NLKYAISAKNRA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

LKYAISAKNRAR 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KYAISAKNRART 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

YAISAKNRARTV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AISAKNRARTVA 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

ISAKNRARTVAG 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

SAKNRARTVAGV 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

AKNRARTVAGVS 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

KNRARTVAGVSI 1 1 0 0 N TQMNLKYAISAKNRARTVAGVSI 

RFYRLANECAQV 1 1 0 0 N RFYRLANECAQVLSE 

FYRLANECAQVL 1 1 0 0 N RFYRLANECAQVLSE 

YRLANECAQVLS 1 1 0 0 N RFYRLANECAQVLSE 

RLANECAQVLSE 1 1 0 0 N RFYRLANECAQVLSE 
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PRWYFYYLGTGP 1 1 0 0 N PRWYFYYLGTGP 

 

Supplementary Table 2.3. Presence of 8-12mer peptides across four human coronavirus sequences. 

Peptide = 8-12mer peptide amino acid sequence; OC43 = value indicating presence (1) or absence 

(0) of kmer in OC43 proteome; HKU1 = value indicating presence (1) or absence (0) of kmer in HKU1 

proteome; NL63 = value indicating presence (1) or absence (0) of kmer in NL63 proteome; 229E = 

value indicating presence (1) or absence (0) of kmer in 229E proteome; Cleaved.bound = value 

indicating whether peptide is predicted to be cleaved at C-terminus AND whether one or more HLA 

alleles are predicted to bind with affinity <500nM (Y=yes, N=no); Source = source peptide from which 

kmer was obtained. 

 

 

Peptide Validated allele(s) Other allele(s) Predicted allele(s) 

ALNTLVKQL A*02:01 NA A*02:02, A*02:03 

GETALALLLL B*40:01, B*40:02, B*44:02, B*44:03 A*02:01, A*02:07, B*18:01, B*45:01, B*46:01 A*68:02, B*13:01, B*40:01, B*40:02, B*41:01, 

B*41:02, B*44:02, B*44:03, B*44:10, B*47:01, 

B*47:03 

GLMWLSYFV A*02:01, A*02:02, A*02:03, A*02:06, A*68:02 A*01:01, A*03:01, A*11:01, A*24:02, A*26:01, 

A*31:01, A*69:01, B*07:02, B*08:01, B*15:01, 

B*27:05, B*40:01, B*58:01 

A*02:01, A*02:02, A*02:03, A*02:05, A*02:06, 

A*02:07, A*32:01, A*68:02 

HLRMAGHSL NA NA A*02:03, A*30:01, B*07:02, B*07:04, B*07:05, 

B*08:01, B*15:01, B*15:02, B*15:03, B*15:07, 

B*15:25, B*15:27, B*15:32, B*39:10, B*42:01, 

B*42:02, B*81:01, C*12:03, C*14:02, C*14:03, 

C*16:01 

MEVTPSGTWL B*40:01 NA B*40:01, B*40:02, B*41:01, B*44:02, B*44:03 

NLNESLIDL A*02:01 NA A*02:01, A*02:02, A*02:03, A*02:05, A*02:06 

QFKDNVILL A*24:02 A*01:01, A*23:01, A*26:01, A*29:02, A*30:02 A*24:03, C*07:02, C*14:02, C*14:03 

RLNQLESKV A*02:01 NA A*02:02, A*02:03 

SIVAYTMSL A*02:01, A*02:02, A*02:03, A*02:06, A*68:02

  

NA A*02:01, A*02:02, A*02:03, A*02:05, A*02:06, 

A*26:02, A*32:01, A*68:02, B*15:01, B*15:03, 
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B*15:05, B*15:07, B*15:17, B*15:25, B*15:32, 

B*39:10, B*42:01, B*67:01, C*03:02, C*03:03, 

C*03:04, C*12:02, C*12:03, C*14:02, C*14:03, 

C*16:01 

VLNDILSRL A*02:01 NA A*02:01, A*02:02, A*02:03, A*02:05, A*02:06, 

C*02:02, C*02:10, C*12:02, C*12:03, C*16:01, 

C*17:01 

 

Supplementary Table 2.4: Prediction of validated SARS-CoV peptides from IEDB. Peptide = amino 

acid sequence of peptide; Validated allele(s) = experimentally validated HLA types shown to present 

the corresponding peptide which are also predicted to bind the same alleles in our analysis (full bold 

underline indicates 4-digit HLA match, while partial under underline indicates major allele match); 

Other allele(s) = experimentally validated HLA types shown to present the corresponding peptide 

which are not predicted to bind the same alleles in our analysis; Predicted allele(s) = HLA alleles 

predicted in silico to bind the indicated peptide with a binding affinity <500nM. 

 

  

Name Genus Subgenus Taxonomy ID ORF1ab Spike Envelope Membrane Nucleocapsid 

SARS-CoV-

2* 

Betacoronavirus Sarbecovirus NCBI:txid2697049 YP_009724389.1 YP_009724390.1 YP_009724392.1 YP_009724393.1 YP_009724397.2 

SARS-CoV* Betacoronavirus Sarbecovirus NCBI:txid694009 NP_828849.2 NP_828851.1 NP_828854.1 NP_828855.1 NP_828858.1 

OC43* Betacoronavirus Embecovirus NCBI:txid31631 YP_009555238.1 YP_009555241.1 YP_009555243.1 YP_009555244.1 YP_009555245.1 

Bovine-CoV Betacoronavirus Embecovirus NCBI:txid11128 NP_150073.2 NP_150077.1 NP_150081.1 NP_150082.1 NP_150083.1 

HKU24 Betacoronavirus Embecovirus NCBI:txid2501960 YP_009113022.1 YP_009113025.1 YP_009113028.1 YP_009113029.1 YP_009113031.1 

HKU1* Betacoronavirus Embecovirus NCBI:txid290028 YP_173236.1 YP_173238.1 YP_173240.1 YP_173241.1 YP_173242.1 
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MHV Betacoronavirus Embecovirus NCBI:txid11138 AAU06353.1 AAU06356.1 AAU06359.1 AAU06360.1 NP_045302.1 

Rat-CoV Betacoronavirus Embecovirus NCBI:txid31632 YP_003029844.1 YP_003029848.1 YP_003029850.1 YP_003029851.1 YP_003029852.1 

Bat-BCoV Betacoronavirus Hibecovirus NCBI:txid2501961 YP_009072438.1 YP_009072440.1 YP_009072442.1 YP_009072443.1 YP_009072446.1 

Hedgehog-

CoV 

Betacoronavirus Merbecovirus NCBI:txid1965093 YP_009513008.1 YP_009513010.1 YP_009513016.1 YP_009513017.1 YP_009513018.1 

MERS-CoV* Betacoronavirus Merbecovirus NCBI:txid1335626 YP_009047202.1 YP_009047204.1 YP_009047209.1 YP_009047210.1 YP_009047211.1 

HKU4 Betacoronavirus Merbecovirus NCBI:txid694007 YP_001039952.1 YP_001039953.1 YP_001039958.1 YP_001039959.1 YP_001039960.1 

HKU5 Betacoronavirus Merbecovirus NCBI:txid694008 YP_001039961.1 YP_001039962.1 YP_001039967.1 YP_001039968.1 YP_001039969.1 

GCCDC1 Betacoronavirus Nobecovirus NCBI:txid2501962 YP_009273004.1 YP_009273005.1 YP_009273007.1 YP_009273008.1 YP_009273009.1 

HKU9 Betacoronavirus Nobecovirus NCBI:txid694006 YP_001039970.1 YP_001039971.1 YP_001039973.1 YP_001039974.1 YP_001039975.1 

HKU14 Betacoronavirus Unclassified NCBI:txid1160968 YP_005454239.1 YP_005454245.1 YP_005454247.1 YP_005454248.1 YP_005454249.1 

CDPHE15 Alphacoronavirus Colacovirus NCBI:txid1913643 YP_008439200.1 YP_008439202.1 YP_008439204.1 YP_008439205.1 YP_008439206.1 

HKU10 Alphacoronavirus Decacovirus NCBI:txid1244203 YP_006908641.2 YP_006908642.1 YP_006908644.1 YP_006908645.1 YP_006908646.1 

BtRf-

AlphaCoV 

Alphacoronavirus Decacovirus NCBI:txid2501926 YP_009199789.1 YP_009199790.1 YP_009199792.1 YP_009199793.1 YP_009199794.1 

229E* Alphacoronavirus Duvinacovirus NCBI:txid11137 ARU07599.1 ARU07601.1 ARU07603.1 ARU07604.1 ARU07605.1 

LuchengRn-

CoV 

Alphacoronavirus Luchacovirus NCBI:txid1508224 YP_009336483.1 YP_009336484.1 YP_009336485.1 YP_009336486.1 YP_009336487.1 

Ferret-CoV Alphacoronavirus Minacovirus NCBI:txid1264898 YP_009256195.1 YP_009256197.1 YP_009256199.1 YP_009256200.1 YP_009256201.1 

Mink-CoV Alphacoronavirus Minacovirus NCBI:txid1913642 YP_009019180.1 YP_009019182.1 YP_009019184.1 YP_009019185.1 YP_009019186.1 
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Bat-CoV-1A Alphacoronavirus Minunacovirus NCBI:txid694000 YP_001718603.1 YP_001718605.1 YP_001718607.1 YP_001718608.1 YP_001718609.1 

HKU8 Alphacoronavirus Minunacovirus NCBI:txid694001 YP_001718610.1 YP_001718612.1 YP_001718614.1 YP_001718615.1 YP_001718616.1 

BtMr-

AlphaCoV 

Alphacoronavirus Myotacovirus NCBI:txid2501927 YP_009199608.1 YP_009199609.1 YP_009199611.1 YP_009199612.1 YP_009199613.1 

BtNv-

AlphaCoV 

Alphacoronavirus Nyctacovirus NCBI:txid2501928 YP_009201729.1 YP_009201730.1 YP_009201732.1 YP_009201733.1 YP_009201734.1 

Porcine-EDV Alphacoronavirus Pedacovirus NCBI:txid28295 NP_598309.2 NP_598310.1 NP_598312.1 NP_598313.1 NP_598314.1 

BtCoV512 Alphacoronavirus Pedacovirus NCBI:txid693999 YP_001351683.1 YP_001351684.1 YP_001351686.1 YP_001351687.1 YP_001351688.1 

HKU2 Alphacoronavirus Rhinacovirus NCBI:txid693998 YP_001552234.1 YP_001552236.1 YP_001552238.1 YP_001552239.1 YP_001552240.1 

NL63* Alphacoronavirus Setracovirus NCBI:txid277944 YP_003766.2 YP_003767.1 YP_003769.1 YP_003770.1 YP_003771.1 

NL63-related Alphacoronavirus Setracovirus NCBI:txid2501929 YP_009328933.1 YP_009328935.1 YP_009328937.1 YP_009328938.1 YP_009328939.1 

FCoV Alphacoronavirus Tegacovirus NCBI:txid12663 YP_004070193.2 YP_004070194.1 YP_004070197.1 YP_004070198.1 YP_004070199.1 

TGE Alphacoronavirus Tegacovirus NCBI:txid11149 NP_058422.1 NP_058424.1 NP_058426.1 NP_058427.2 NP_058428.1 

Supplementary Table 2.5: Coronavirus taxonomy and sequence accession numbers for conserved 

coronavirus proteins. Name = coronavirus name used for sequence alignments (note that * indicates 

a known human coronavirus); Genus = Taxonomic classification as alpha- or betacoronavirus; 

Subgenus = further taxonomic classification at sub-genus level; Taxonomy ID = NCBI taxonomy ID 

accession for each virus species; ORF1ab = NCBI sequence accession number used for multi-

sequence alignment for ORF1ab polyprotein; Spike = NCBI sequence accession number used for 

multi-sequence alignment for Spike protein; Envelope = NCBI sequence accession number used for 

multi-sequence alignment for Envelope protein; Membrane = NCBI sequence accession number used 
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for multi-sequence alignment for Membrane protein; Nucleocapsid = NCBI sequence accession 

number used for multi-sequence alignment for Nucleocapsid protein. 

 

Supplementary File 3.1. Can be found at: https://onlinelibrary.wiley.com/doi/10.1111/tan.14574. 

 

 

Supplementary Figure 4.1: Boxplots of the relationship between predicted binding and the threshold 

used to determine binding for random peptides. Each color represents a different tool with each 

boxplot representing the IQR of predicted percent peptides to bind for the given threshold. 
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Supplementary Figure 4.2. Pairplot of HLA allelic presentation of 8-11mers from the random 

proteome. The lower left triangle displays scatter plots of peptides predicted to bind using 0.6 (A) and 

0.7 (B) as cutoffs respectively between 2 tools with each point representing an HLA allele. The upper 

right triangle represents the Spearman correlation of the number of peptides predicted to bind to all 

alleles between tools. Note that MHCnuggets has a number of alleles with 0 random peptides 

predicted to bind. The diagonal panels show distribution of HLA allelic presentation from the random 

proteome for each tool. The number of peptides that putatively bind to each of the HLA alleles is 

shown along the x-axis as a series of horizontal bars with green, orange, and purple colors 

representing HLA-A, -B, and -C alleles, respectively, sorted in order of decreasing quantity of binders.  
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Supplementary Figure 4.3: Pairplot of HLA allelic presentation of 8-11mers from the human and viral 

proteome. The lower left triangle displays scatter plots of peptides predicted to bind (>= 0.5 binding 

probability score) between 2 tools with each point representing an HLA allele. The upper right triangle 

represents the Spearman correlation of the number of peptides predicted to bind to all alleles 

between tools. Note that MHCnuggets has a number of alleles with 0 random peptides predicted to 

bind. The diagonal panels show distribution of HLA allelic presentation from the random proteome for 

each tool. The number of peptides that putatively bind to each of the HLA alleles is shown along the 

x-axis as a series of horizontal bars with green, orange, and purple colors representing HLA-A, -B, 

and -C alleles, respectively, sorted in order of decreasing quantity of binders.  
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Supplementary Figure 4.4. Heatmaps of correlation between peptides for each species of predicted 

allelic promiscuity across alleles. A) Spearman correlation is shown between peptide sources for 

HLAthena-based predictions. Analogous data is shown for netMHCpan, MHCflurry, and MHCnuggets 

in panels B, C, and D, respectively. 
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Supplementary Figure 4.5. Heatmaps of correlation between peptides for each species of predicted 

allelic promiscuity across alleles for which there was a minimum of 2000 peptides of training data. A) 

Spearman correlation is shown between peptide sources for HLAthena-based predictions. Analogous 

data is shown for netMHCpan, MHCflurry, and MHCnuggets in panels B, C, and D, respectively.  
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Supplementary Figure 4.6. Peptide physical property differences between different peptide sources. 

Each tile plot is composed of 1600 tiles, with each tile colored by the percent peptide difference 

between the 2 peptide sources in that particular tile. Red indicates an enrichment of the first label 

(e.g. viral vs human, viral enrichment will be red) while blue indicates enrichment of the second label. 
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A B  

C D  

Supplementary Figure 4.7. Peptide physical property difference by k-mer length. Each heatmap is the 

pairwise percent difference metric between each pair of peptide sets. The redder the value, the more 

difference in the percent difference metric. 

 

 

A B  
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C D  

 

E F  

Supplementary Figure 4.8. Differential distributions of physical properties for 8,10, and 11-mer 

peptides predicted to bind to HLA alleles. A,C,E) Tile plots highlighting binders enrichment 8, 10, and 

11-mers respectively. The plotting coordinates represent the first two dimensions of a UMAP 

transform of peptide physical properties, which is divided into 1600 (40x40) equivalently-sized square 

bins (see Methods). For each bin where there is at least one HLA allele with >0.2% difference in 

proportion of all peptides predicted to bind v. non-binders, the identity of the most enriched allele is 

shaded in the color corresponding to that allele’s supertype as corresponding to the legend. B,D,F) 
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Example plots of alleles with different distributions of binders for 8, 10, and 11-mers respectively. 

Each box represents enrichment as the percent peptide difference between predicted binders and 

non-binders for the given allele. The color scale shows the percent of peptides difference in the given 

box, with red meaning a larger number of predicted binders and blue meaning a larger number of 

predicted non-binders. 

 

Supplementary Tables 4.1-4.3. Attached and will be found on bioRxiv  


