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Analog signal representation will remain essential wherever there is a need to 

interface with the analog world or to satisfy certain area, power consumption, or speed 

requirements. This includes but is not limited to sensors, instrumentation, and 

communications. Analog representation is also essential for the integration of analog 

mixed-signal and RF functions into complex system-on-a-chip (SOC) designs. Today,

analog signals are still being represented mainly by current or voltage. Also, data is 

usually obtained from sensors in voltage or current form. These analog signals are not 

immune to noise, and therefore they have to be converted into digital for transmission. 

In this thesis, we propose a third approach that converts the analog signal into a 

pulse stream, using time rather than magnitude.  This alternative approach uses the 

inter-pulse time (IPI) to represent the signal values. The thesis will show that our

representation approach, unlike the other pulse time representation approaches, is very

useful not only in communication but in computation as well. Suitability for both 

communication and computation is very important because it eliminates the need to 

convert to/from the analog or digital domains to use their computation techniques if 

computation is needed. One good example where computation would be needed with 

communication is the use of averaging at the front end of the receiver to improve the 

signal-to-noise ratio (SNR). The thesis will also show that our approach is a hybrid 
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approach that takes from digital the immunity to noise, cross-talk, and other problems

such as process variations, temperature, and reference voltage, and takes from analog 

the compactness and low power consumption.

In this thesis, we also present a novel class of methods and circuits for basic 

conversion and computation based on our novel IPI representation approach above.

These methods and circuits include Voltage-to-IPI, IPI-to-Voltage, addition, 

subtraction, division, and multiplication. We validate these methods and circuits by 

mathematical derivation, simulation, and chip fabrication and test in CMOS 

technology. We also compare our IPI implementations versus analog and digital 

implementations, show their advantages, and discuss how they can be used in 

applications such as communications, instrumentation, telemetry, signal processing, 

and ANN’s. 
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1. Introduction

Analog signal representation will remain essential wherever there is a need to 

interface with the analog world or to satisfy certain design requirements such as power 

consumption, area, or speed within its noise immunity and accuracy limits [4], [6], and 

[21]. Example applications include but are not limited to sensors, instrumentation, 

communications, signal processing, artificial neural networks (ANNs), biomedical 

actuation, and industrial control. Moore’s law and further reduction of the feature size 

in CMOS IC technology will continue as a technology imperative that drives the cost 

of electronic products down to mass market level. And now we have system-on-a-chip 

(SOC) integration which replaces multiple chips of different functions with a single 

chip [64] and [65]. Such functions may include micro-processing, digital signal 

processing (DSP), analog mixed-signal and RF functions, and others. A good example

for this is biomedical sensors. Analog signal representation is very important for the 

integration of analog mixed signal and RF functions into such complex SOCs because 

of problems such as noise, substrate coupling, and cross-talk, which are even more 

serious for analog circuits [64-68]. These days, analog signals are still being 

represented in the analog domain mainly by voltage or current signals [21]. Moreover, 

data is usually obtained from sensors in voltage or current form. These analog signals 

are not immune to noise and therefore cannot be used for data transfer [4], [6], and 

[21]. To achieve high immunity to noise, they have to be converted into digital 

immediately and transmitted digitally. This whole path also has an inverse which 

would be used, for example, in actuators. 

In this thesis, we propose a third alternative approach that converts the analog 

representation into a pulse stream representation, using time rather than magnitude to 



2

represent the signal values.  Our alternative approach, as this thesis will show, is very

suitable and robust in both communication and computation. The thesis will also show 

its advantages over traditional pure analog and pure digital representations. Suitability 

of the representation for both conversion/communication and computation is very 

important because it eliminates the need to convert to/from other analog or digital 

domains to use their computation techniques if computation is needed. One good 

example where computation would be needed with communication is the use of 

averaging at the front end of the receiver to improve the signal-to-noise ratio (SNR) 

[25]. Our approach uses the inter-pulse interval (IPI) time to represent the signal 

values. Figure 1.1 shows one possible way of doing this. The time between each two 

consecutive pulses encodes a value of the analog signal. The idea of using pulses to 

encode and process information is not a new one and we are not the first to use it. It is 

borrowed form neuroscience where information in the brain is encoded using pulses 

[6], [7], and [21]. The basic framework for research into pulse modulation techniques 

was laid down around 60 years ago in [71-74] but a significant interest has been 

experienced with the advent of optical fiber communication systems [101]. 

Researchers have used pulses in both communication and computation. Section 2.2 of 

this thesis is dedicated to reviewing their work. We will explain in the thesis how our 

approach is different from theirs, why it is needed, and how it advances the state of the 

art.

Figure 1.1. Information-carrying inter-pulse intervals (IPIs).

Before we discuss the main motivations for the IPI representation and its 

advantages over traditional pure analog or pure digital representations, we would like 



3

to emphasize that we do not believe it will replace all the existing representations but 

it will rather be a useful mixed signal technique that is best suited to certain 

applications or situations. The motivations for using pulses to encode information 

using time rather than magnitude are discussed in [6], [7], [16], [101], and [102]. 

When considering communication, the main motivation is that pulses are much more 

immune to noise than analog signals. Pulses are also much more immune to process

variations, temperature, and reference voltage, and to the serious problems that 

challenge complex mixed-signal SOC integration in deep submicron and nano 

technologies, such as substrate coupling, cross-talk, transmission line effects, 

threshold inconsistency, subthreshold currents, hot-electron effects, and doping 

variability [21] and [64-68]. The IPI representation provides significantly higher 

immunity to all these problems than traditional voltage and current representations 

because it encodes the information using the time between the pulses rather than their 

magnitude [6], [7], [101], and [102]. This is basically converting the analog 

information to carefully timed signal transitions that are similar to digital schemes. A 

pulse is detected if it is above a certain voltage threshold, exactly in the same way a 

binary 0 or 1 value is detected in the on-off digital scheme [105]. Another main 

motivation is that pulses are much easier to transfer and refresh than analog signals

because of their similarity to digital signals, as just described. Pulses can be easily 

refreshed using digital buffers while analog signals are sensitive to noise and degrade 

in magnitude especially if they need to travel over a relatively long distance.  This 

makes pulses a much better choice for inter-chip communication [6] and [7], or even 

for transferring the signal within the same chip if the wire is relatively long or noise or 

cross-talk, for example, is a concern as in SOC.

When considering issues surrounding local computation, this thesis will show 

that our IPI computation approach does not have the serious problems that analog 

computation suffers from such as the body effect and the mobility degradation effect 

[26], [111], and [1]. When considering issues surrounding global long-wire 

computation, our IPI approach has all the local computation advantages, as well as the 
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advantages of communication discussed above, since the computation involves 

communication of the signals over a relatively long distance (long wire). 

When compared to representations in the digital domain, the main advantage

of the IPI representation, as this thesis will show, is that analog to IPI conversion 

needs significantly less area and power than analog to digital conversion (ADC). This

makes the IPI technology the right choice for applications such as instrumentation, 

communications, and telemetry if 98% of accuracy, which is equivalent to 5.6-bit 

digital accuracy, is adequate. The thesis will show that the IPI representation is a 

hybrid representation that takes good characteristics from both digital and analog 

representations and blends them together. It takes the high immunity to noise and 

other problems from the digital and it takes the compactness and low power 

consumption from the analog [6], [7], [101], and [102].

In chapter 2 of this thesis, we discuss general definitions for the IPI 

representation and some basic considerations that should be taken into account while 

creating circuits that take advantage of this representation, and we will briefly review 

two known IPI conversion schemes, the linear and the logarithmic, and two known IPI 

signaling schemes: the synchronous and the asynchronous. Analyzing and evaluating 

these conversion and signaling schemes against each other is carried out in the next 

chapter when we present our novel representation, to justify the conversion and 

signaling schemes that we have chosen for our representation.  Then, we review the 

literature and the previous work related to the IPI representation and other pulse 

representation, modulation, and computation techniques. 

In chapter 3, we present a novel IPI representation that is suitable for encoding

all values including negative, zero, and positive values, and suitable for all basic 

conversions and computations as well. This specific IPI representation is synchronous 

(SIPI) since the time difference is always relative to a reference pulse, and is different 

than the asynchronous IPI representation (AIPI) as discussed by Ravi and 

Hammerstrom [22]. We also explain how our new representation is different from the 

other representations which we review in section 2.2, why it is needed, and how it 
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advances the state of the art. Furthermore, to justify our choice of linear conversion 

versus nonlinear and synchronous signaling versus asynchronous, we will investigate

them and compare them against each other in terms of accuracy, bandwidth, 

complexity, and suitability for computation. In the last section, we study the 

conversion and computation timing requirements in general and their effect on the 

timing of the IPI signal. 

In chapter 4, we present novel methods and circuit designs for conversion and

computation based on our novel IPI representation in chapter 3. These methods and

circuits include IPI-to-Voltage conversion, Voltage-to-IPI conversion, and the basic 

arithmetic computations: addition, subtraction, division, and multiplication. In light of

our explanation in chapter 3 of how our novel representation differs from the other 

representations in chapter 2 and why it is needed, we explain how our new methods 

and circuits are different from the other methods and circuits implementing the other 

representations, why they are needed, and how they also advance the state of the art.

Simulation data is shown in this chapter only to show how the circuits operate.

We have fabricated the methods and circuits described in chapter 4 in a chip 

using the TSMC 0.35 um mixed-signal CMOS process technology, thorough the 

MOSIS-USA fabrication and packaging service [118] and [119]. In chapter 5, we 

describe the top level design of the chip including the top level cells. For each of the 

conversion and computation circuits, we present the simulation and test results at 10 

MHz, in terms of accuracy, area, power consumption, and dynamic range. We also 

present the simulation results for conversion, addition, and subtraction at 100 MHz,

and for division and multiplication at 50 MHz. 

In chapter 6, we describe a system-level design which performs the functions 

of a neuron with multiple synapses in ANNs. The design incorporates the basic 

arithmetic building blocks that we present in chapter 4 and operates them together as a 

system. We also provide the system-level simulation results at 50 MHz. We also 

discuss how the IPI technology can be used in applications such as instrumentation, 

communications, and telemetry, and signal processing. To demonstrate the advantages 
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of using the IPI technology in these applications, we compare our IPI based 

conversion and computation implementations with other analog and digital 

implementations.

In chapter 7, we summarize the importance of this work, and discuss future 

areas of research.
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2. Pulse Representations

In this chapter, we will present general definitions of the IPI representation and 

some basic considerations that should be taken into account while developing an IPI 

representation, and we will briefly review two known analog-to-time conversion 

schemes, the linear and the logarithmic, and two known signaling schemes, the 

synchronous and the asynchronous. Then, we will review the literature and the 

previous work related to the IPI representation and other pulse representation, 

modulation, and computation techniques.

2.1. The IPI Representation

2.1.1. General Definitions for the IPI Representation

In this section, we define the IPI representation in general terms. Here are 

definitions of the terminology and the notations that we will use:

 ti = pulse start time

 xi = analog value represented by the IPI time difference between the pulse 

starting at ti and the reference pulse

 tw = pulse width time

 xmin = minimum analog value 

 xmax = maximum analog value
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 (x) = analog-to-IPI conversion function

  -1(x) = IPI-to-analog conversion function

 tmin = (xmin)

 tmax = (xmax)

 δ = time error in conversion. This defines the resolution or accuracy of time 

measurement. We will see in chapter 3 that this will help us evaluate the effect 

of the conversion function on the computation errors.

Factors like noise, accuracy, speed, and practical design limitations will affect 

how short the shortest IPI can be.

2.1.2. Basic Considerations in Analog-to-IPI Conversion 

It is very important to carefully examine the analog-to-IPI conversion function 

before developing the IPI representation itself or designing any IPI hardware, because 

it directly impacts the conversion and computation methods and the complexity, 

accuracy, speed, power consumption, and area of their circuit implementations. Any 

analog-to-IPI conversion function should meet the following criteria:

1. Can be efficiently implemented in available IC technologies, represented by 

CMOS. 

2. Is reversible, that is, the inverse function can also be implemented in available 

IC technologies, represented by CMOS.

3. Is continuous, to achieve better accuracy by avoiding the quantization error. If 

we consider two versions of the same analog-to-IPI mapping function, one 

continuous and another discrete (quantized), then the continuous version will 

have better resolution than the discrete one and therefore better accuracy. This 
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is not an absolute requirement and the designer may choose a discrete function 

for a number of reasons.

4. Can be used to represent all values including negative, zero, and positive. If it 

does not meet this criterion, it will be considered as incomplete.

2.1.3. Conversion Schemes: Linear and Logarithmic

In the linear representation, the time t is linearly proportional to the encoded 

analog value x [69] and [70]. The general form of the linear conversion function is

t = (x) = ax + b   (2.1)

where a and b are real constant numbers. In the nonlinear representations such as the 

hyper-tangent or the logarithmic [7-10], the relationship between the time and the 

analog value is not linear. In the logarithmic representation, for example, the general 

form of the conversion function is

t = (x) = a logb(x) + c (2.2)

where a, b, and c are real constant numbers. A more general form of the logarithmic 

function that can be used to deal with the cases when x is zero or negative is 

t = (x) = a logb(x + d) + c (2.3)

where d is a real positive constant that can be added to x so that the input to the log 

function is always positive. This constant d needs to be accounted for when converting 

back from the time domain to the analog domain. Analyzing and evaluating the linear 

and logarithmic schemes relative to each other will be carried out in the next chapter 



10

as part of explaining why the novel IPI representation scheme, which is also presented 

in the next chapter, is suitable for computation. 

2.1.4. Signaling Schemes: Asynchronous and Synchronous

Figure 2.1 shows two known signaling schemes: asynchronous, as in [83] and 

[94-97], and synchronous as in [69], [70], [75-81] and [98]. In the asynchronous

scheme, information is encoded in each IPI. The pulses are asynchronous because the

IPI time is completely dependent on the encoded value and is measured between a

pulse and the pulse immediately preceding it. The synchronous scheme imposes more 

constraints on the timing of the pulses by using a framing clock pulse as a reference. 

One full time frame Tf is dedicated to each value to be encoded. The time between the 

two framing pulses define the time frame Tf. In its simplest form, the IPI time is the 

time between the first framing pulse and the data pulse that appears between two 

framing pulses.

Figure 2.1. IPI signaling schemes: (a) Asynchronous (b) Synchronous.
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2.2. Literature Review

Although we have very few ideas that are closely related to our work, in this 

section, we will review the literature and the previous work on other pulse 

representation, modulation, and computation techniques. In fact, one of the main 

challenges with the research described here is the shortage of previous work which 

could directly help us, considering our objective of developing an IPI representation 

suitable for all values (negative, zero, and positive) and all basic conversion and 

computation operations at the same time. This has made our research problem more 

interesting and challenging. To the best of our knowledge, this thesis is the first to 

develop a novel IPI representation that is suitable for encoding all values including 

negative, zero, and positive, and then to use it to develop a class of novel time-based

methods and circuits for all basic conversion and computation.

2.2.1. Pulse Modulation Techniques

The idea of using pulses to encode and process information is not a new one. It 

is borrowed form neuroscience where information in the brain is encoded using pulses

[6], [7], and [21]. The basic framework for research into pulse modulation techniques 

was developed around 60 years ago in [71-74] but a significant interest has been 

experienced with the advent of optical fiber communication systems [101]. Reviews 

and discussions of various pulse modulation techniques and how they can be used to 

encode information can be found in [6], [7], and [101]. Figure 2.2 shows four main 

techniques. In pulse amplitude modulation (PAM), the input signal modulates only the 

amplitude of the pulse. In pulse width modulation (PWM), the input signal modulates 

only the width of the pulse. Some literature also calls this pulse length modulation or 

pulse duration modulation. In pulse delay modulation (PDM), the input signal 

modulates only the delay of the pulse with respect to another pulse. In some literature, 

the synchronous version of this technique is called pulse position (PPM) modulation 
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and the asynchronous version of it is called pulse interval modulation (PIM). In pulse 

frequency modulation (PFM), the input signal modulates only the frequency of the 

pulse. Some literature also calls this pulse rate modulation. To be consistent, we will 

refer to PDM as inter-pulse interval modulation (IPI-M) or simply IPI throughout the 

thesis. Another technique which is not shown in the figure is called pulse-code 

modulation (PCM). PCM is basically a digital representation in which a single analog 

sample is encoded using multiple binary-weighted pulses (bits). PWM, IPI, PFM, and

PCM are significantly more immune to noise than PAM since it uses the amplitude of 

the pulse to encode the information while they use only time-dependent features of the 

pulses [6], [7], [101], and [102].

Figure 2.2. Pulse modulation techniques: (a) the analog signal, (b) pulse amplitude 
modulation (PAM), (c) pulse width modulation (PWM), (d) pulse frequency 

modulation (PFM), and (e) pulse delay (or inter-pulse interval) modulation (PDM or 
IPI-M).
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Figure 2.3. Synchronous IPI and PWM modulation. In asynchronous IPI and PWM, 
no clock is used and S/H and the ramp are restarted as soon as the comparator detects 

the equivalence between the input sample and the ramp.

Figure 2.4. IPI and PWM demodulation: (a) PWM and (b) IPI.
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Riter et al. in [69] and [70] give a block level description of a synchronous IPI 

modulation technique which they use for transmitting information via underwater 

acoustic channel. It is similar to the block diagram in Figure 2.3. Pulse modulation 

techniques have been adapted for use in optical fiber transmission of analog and video 

signals: Synchronous PWM [75-81] and [98], PFM [82], [84-93], and [103], and

asynchronous IPI and PWM [83] and [94-97]. IPI and PWM are very similar and can 

be easily obtained from each other. The IPI signal is obtained from the PWM signal by 

differentiating the PWM signal to generate narrow pulses at the edge transitions. The 

PWM signal is obtained from the IPI signal by simply using a bistable circuit like a 

latch or a flip-flop. All the IPI and PWM applications in [69], [70], [75-81], [98], [83], 

and [94-97] use a modulator and a demodulator similar to the ones depicted in Figures

2.3 and 2.4, respectively. The modulator samples and holds (S/H) the analog signal 

and compares the sample with a sawtooth ramp signal. If equivalence is detected then 

the comparator output goes from high to low. The PWM signal is taken from the 

output of the comparator. The IPI signal is obtained by differentiating the PWM 

signal. In synchronous IPI and PWM, a periodic clock is used to control the timing of 

the S/H operation and the ramp generation. In asynchronous IPI and PWM, however, 

no clock is used and the S/H operation and the ramp generation are restarted as soon 

as the comparator detects the equivalence between the input sample and the ramp. The 

input signal has to be DC-shifted to accommodate the most negative value. Otherwise, 

it will be limited by the ramp minimum voltage and the comparator input range.

Demodulation of PWM is performed by converting the PWM signal to IPI first 

and then performing IPI demodulation as shown in Figure 2.4. For IPI demodulation, 

the first input pulse is used to initiate the generation of a sawtooth ramp signal and the 

second input pulse is used to sample and hold the ramp signal. This produces the 

voltage sample equivalent to the IPI. A low pass filter (LPF) can then be used to 

recover the baseband signal component from the frequency spectrum [101]. The ramp 

signal used in all the IPI and PWM applications above is linear, which leads to a linear 

relationship between the voltage signal and the IPI and the pulse width. It is possible 
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to use a nonlinear ramp instead if the application requires that. For example, Murray et 

al. in [7-10] use a sigmoidal ramp in order to model the nonlinear and squashing 

properties of the neuron transformation function in ANNs, as we will see in the next 

subsection. IPI consumes less power than PWM since it encodes the information in the 

time between fixed-width narrow pulses while PWM encodes it in the variable width 

of the pulses [101].

For PFM modulation, [82], [84-93], and [103] use a voltage-controlled 

oscillator (VCO) followed by a monostable circuit to generate fixed-width narrow 

pulses. For demodulation, they use a monostable circuit to reconstruct fixed-width 

narrow pulses from the input stream, followed by a LPF to recover the base-band 

signal component from the frequency spectrum [101].

2.2.2. Pulse Computation Techniques

All the pulse based computation circuits and techniques we have found 

reported in the literature deal mainly with two operations: addition and multiplication. 

The reason is that these two operations, as we will see in chapter 6, are heavily used in 

many applications like ANNs and signal processing. We will first discuss the addition 

techniques then the multiplication ones.

A logical OR gate can be used to add PFM pulse streams together [6]. The 

output will also be a PFM pulse stream. This is a very cheap solution but its accuracy 

decreases as the pulse overlap increases. Therefore, it is suitable for a small number of 

inputs with a very small Mark-Space ratio (High time to Low time ratio) to reduce the 

probability of pulse overlap. Murray and Smith in [11-13] succeeded to achieve 97% 

accuracy because the number of inputs to the OR gates (in a small ANN of only 10 

neurons) was small and the maximum Mark-Space ratio was 0.01.

The pulse overlap problem in the technique above can be avoided by treating 

the pulses as current pulses instead of voltage pulses [6]. Current pulses add together if 

they overlap producing more current unlike voltage pulses going into an OR gate
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which will count as one pulse if they overlap. The total current can then be integrated 

as charge on a capacitor according the following equation

C

Idt

C

Q
VC

 (2.4)

The output of this current integration is a voltage. To convert it to a PFM pulse stream 

for example, a voltage-controlled oscillator (VCO) can be used, followed by a 

monostable circuit to generate fixed-width narrow pulses.

Murray et al. in [7-10] present pulse stream computation techniques and apply

them to ANNs. An introduction to ANNs can be found in section 6.1. The operation of 

a neuron with its synapses can be modeled by the following equation
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where xi is an input, wi is the synaptic weight for that input, and f is the neuron 

transformation function. A common function is the sigmoid function
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Figure 2.5. The transconductance multiplier.
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In (2.5), the synapse performs the multiplication and the neuron performs the 

summation and the transformation. The synapse design that was used in [7-10] uses 

the analog transconductance multiplier described in [14] and [15]. Figure 2.5 shows 

the transconductance multiplier. As a first order approximation, the drain current of 

the MOSFET transistor when operating in the triode region can be calculated as

  









2

2
DS

DStGS

V
VVVI  (2.7)

where VGS is the gate to source voltage, VDS is the drain to source voltage, Vt is the 

threshold voltage, and β is the gain. If the two transistors M1 and M2 are identical and 

VDS1 is equal to VDS2 then

  inGSGS VVVIII 21213   (2.8)

Now we can see that the resultant current is a scaled value of the multiplication of two 

voltage quantities. The undesired nonlinear components in the individual drain 

currents have been cancelled by subtracting one from the other. Nonlinearity 

cancellation by addition or subtraction is a common technique in almost all analog 

multipliers.

Figure 2.6 shows the pulse stream transconductance multiplier used in [7-10].  

The weight wi is stored as a voltage on a capacitor and refreshed periodically from an 

external random access memory (RAM) using a digital to analog converter (DAC). 

The synapse uses the transconductance multiplier to convert the weight voltage into 

current. The input xi is a pulse stream. It can be a PFM or a PWM stream. It controls 

the transistor M3 by turning it on when the pulse is high and off when the pulse is low. 

The amplitude of the current pulse through M3 when it is on is proportional to wi and 

its frequency and duration is the same as the input pulse stream xi. Therefore, the 

synaptic weight wi performs pulse amplitude modulation (PAM) while the input pulse 

stream xi performs pulse frequency modulation (PFM) and pulse width modulation 
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(PWM). The operational amplifier (OP-AMP) in negative feedback with the transistor 

buffers M4 and M5 provide stronger current drive to support current demand from 

many other synapses that connect to the OP-AMP. It converts the current pulses into 

voltage pulses Vouti. It is then followed by a voltage integrator to aggregate these 

voltage pulses. To convert the voltage integrator output to a PFM signal, a VCO is 

used. Higher voltage level generates more oscillations (pulses). To convert the 

integrator output to a PWM signal, a comparator with a sigmoidal ramp connected to 

its negative input is used. Higher voltage level generates a wider pulse since the 

sigmoidal ramp will be below it for longer time. The sigmoidal ramp is provided to the 

chip externally and it provides the desired nonlinear and squashing behavior of the 

neuron transformation function.   

Figure 2.6. The pulse stream transconductance multiplier.
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Del Corso et al. in [16-18] present a mixed digital/analog technique which 

incorporates both PFM and PWM techniques and applies them to ANNs. The input 

pulse stream xi is coded in its frequency and used for PFM while the weight wi is 

coded as a binary number in a shift register and used for PWM. When a pulse comes 

from the input xi, it triggers a full rotation of the shift register. The shift register clock 

has a varying binary-weighted cycle time (T, 2T, 4T, 8T, …, 2N-1T ) where N is the bit 

resolution of wi. This will let a bit stay at the output of the shift register for time 

proportional to its binary weight (its position in the shift register). If the output bit is 

‘1’ then it enables a current switch and generates a current pulse of width equal to its 

time. The total width of the current pulses is proportional to wi. The current pulses 

charge a capacitor and its voltage is therefore proportional to wi. wi is a 2’s 

compliment number and the sign bit is used to direct the current in or out of the 

capacitor (in the negative or positive direction) based on its value, 1 or 0, respectively.

Since this process is repeated at the input pulse frequency (rate) then the capacitor 

voltage is also proportional the input pulse frequency. The output voltage drives a 

VCO to convert it to a PFM signal.

Mead in [5] presents a self-resetting integrate-and-fire neuron design. It is 

similar to the integrate-and-fire circuit shown in Figure 2.7. From its name, the 

integrate-and-fire technique integrates the input current I as a voltage on the capacitor 

C. When the voltage reaches above the comparator threshold, it fires a pulse. The 

pulse then turns the transistor M3 on. This causes the reset signal to go high which 

disconnects the input and discharges the capacitor to be ready for a new cycle. More 

current means the capacitor will charge and reach the threshold faster. This means that 

the time between the generated pulses will be shorter. This integrate-and-fire 

technique is an IPI modulation technique since the input current modulates the inter-

pulse time interval (IPI). IPI is inversely proportional to the input current. It can also 

be thought of as a PFM technique because shorter IPIs mean a higher pulse frequency.

Winner-take-all (WTA) networks like the ones in [47] and [48] rely on the 

integrate-and-fire technique. The current source and inverter in the dashed box in 
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Figure 2.7 are common to all neurons or cells in the network. Once the first neuron or 

cell reaches the threshold, the reset signal resets all of them. This means that the cell 

with the maximum input will win and shut-off all the other cells. This is useful in 

sensory array applications when the interest is focused on the sensor with the strongest 

input. Because of its parallel processing capability, it is much faster to solve this 

problem using a dedicated on-chip WTA network than to solve it using some 

maximum search algorithm.

One useful asynchronous time-domain pulse-stream communication protocol is 

called the address-event representation (AER). It is described in [49] and [50]. It 

allows multiple pulse senders, such as winner-take-all networks or sensor arrays, to 

share the same line. To signal an event (pulse), the sender requests access to the 

transmission line and puts its binary address on it when access is granted. On the 

receiver side, the binary address is decoded to determine the source (sender) and the 

pulse is reconstructed.  The inter-pulse time for a sender is measured between two 

consecutive assertions of its address. 

Figure 2.7. Self-resetting integrate-and-fire circuit. The current source and the inverter 
in the dashed box are common to all cells in winner-take-all (WTA) networks.
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Culurciello et al. in [51] present a fully-arbitrated digital imager based on the 

integrate-and-fire and the AER techniques. The photosensor generates a current that is

linearly proportional to the light intensity. Therefore, the inter-pulse time is inversely 

proportional to the light intensity. The imager has higher bandwidth than traditional 

imagers and a superior signal to noise ratio. The higher bandwidth is because it favors 

(gives more bandwidth to) pixels with higher intensity, unlike traditional imagers 

which scan the pixel array serially and give equal bandwidth to each pixel regardless 

of its intensity. It also consumes less power because there is no serial scanner that is 

active all the time and because the pixel’s power consumption depends on its activity 

(intensity). Bright pixels consume more power than dark pixels. Abrahamsen et al. in 

[48] present a motion detection imager based on the AER and the WTA techniques 

above. Similar to the imager in [51], the inter-pulse time is inversely proportional to 

the light intensity.
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3. A Novel Approach to IPI Representation

In this chapter, we will present a novel IPI representation that is suitable for 

encoding all values including negative, zero, and positive values, and also suitable for 

all basic conversions and computations. We will also explain how our new 

representation is different from the other representations we reviewed in section 2.2, 

why it is needed, and how it advances the state of the art. Furthermore, to justify our 

choice of linear versus nonlinear conversion, and synchronous versus asynchronous

signaling, we will compare them against each other in terms of accuracy, bandwidth, 

complexity, and suitability for computation. In the last section, we will study the 

conversion and computation timing requirements in general and their effect on the 

timing of the IPI signal. 

3.1. A Novel IPI Representation

The IPI representation we are presenting here is linear and synchronous. It is 

linear because the relationship between the value and the IPI time representing it is 

linear. It is synchronous because the pulses are referenced with respect to a periodic 

framing or reference clock signal which also controls the conversion and computation. 

Figure 3.1 shows the representation and how it encodes negative, zero, and positive 

values. Tf is the frame time. The time between the first framing pulse and the pulse in 

between is defined as t+. The time between the pulse in between and the second 

framing pulse is defined as t-. If t+ is greater than t- then the value is positive. If t+ is 
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equal to t- then the value is zero. And if t+ is less than t- then the value is negative. The 

relationship between Tf, t+, and t- is governed by the following equation

  tTt f
(3.1)

Figure 3.1. Novel synchronous linear IPI representation for negative, zero, and 
positive values:  (a) t+ > t- for positive, (b) t+ = t-= Tf/2 for zero, and (c) t+ < t- for 

negative.

When compared to other pulse representations, our representation is novel in 

the way it encodes negative, zero, and positive values. The representations [69], [70], 

[75-81] and [98], are all linear and synchronous, but these representations use only one 
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part of the frame (the time between the framing pulse and the pulse in between), let us 

call it t, while our representation uses both parts t+ and t-. I.e., our representation 

introduces the concept of negative time while the other representations do not have 

such concept. This makes our representation more suitable for computation of 

negative, zero, and positive values because it allows for “time-based” computation in 

the time domain with no need to convert to the analog or digital domains for 

computation, as we will explain.

This thesis shows, in subsection 6.2.1, how time-based computation using our 

representation, not just communication, is more robust than analog computation. It is 

true that the other pulse time representations can still represent or convert negative

values or any range of the signal by using a sawtooth ramp signal and/or DC offset of 

the input signal relative to the comparator, as we have described in section 2.2. But, 

direct time-based computation using these representations is more difficult.  Let us use 

addition as an example. Consider the following simple linear function which is similar 

to the voltage-time relationship used in [69], [70], [75-81] and [98]. For simplicity, we 

will assume the slope is 1 since it has no impact on the discussion.

Btx  (3.2)

where x is the analog value, t is the time representing it, and B is an offset that allows

the representation of negative values. This offset can be achieved by letting the 

sawtooth ramp start from negative and/or by adding a DC offset to the input signal. On 

the other hand, the following function is similar to the representation that we are 

proposing. Again for simplicity, we will assume the slope is 1.

  ttx (3.3)

Now, let us consider the task of adding three analog values in the time domain. The 

values are x1, x2, and x3. Using (3.2), we can find
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Bxxxttt 3321321  (3.4)

but using (3.3), we can find

321332211 )()()( xxxtttttt   (3.5)

Equation (3.4) which uses the other representations approach, shows that if we 

add the times representing the three analog values then the result will be a time that 

represents their sum plus an offset that is equal to the sum of their individual offsets.

In this case the offset is 3B and N inputs will have an offset of NB. This offset then 

needs to be subtracted from the result. Time-based subtraction will have the same 

problem but the offset will be negative not positive. Each addition/subtraction circuit 

will need to subtract/add a different offset value based on the number of inputs and 

their signs, so that the result can be delivered to the next time-based computation 

block offset-free. These offsets will limit the dynamic range of operation as they grow 

in either direction. They will also impact the accuracy and increase the cost of 

computation and calibration circuitry. The offset problem is even more serious when 

we consider time-based multiplication and division. In multiplication, for example, the 

offsets will get mixed (multiplied) with the inputs and removing them from the final 

result will be difficult. 

Equation (3.5), which uses our representation approach, shows that the time 

resulting from adding and subtracting the t+ and t- times of the individual inputs, does 

not have the DC offset problem described above and therefore no DC shift or 

adjustment of the result is needed. The same thing applies to the other computations, 

multiplication and division. Using this approach, all computation blocks can use the 

same representation, and will therefore be able to directly receive and generate results 

in the same form. It is true that from (3.1), equation (3.3), which uses our approach, 

can be rewritten as
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fTtx  2 (3.6)

which is similar to (3.2), and which uses the other approach, if we ignore the slope of 

2 and think of Tf as the offset. Equations (3.3) and (3.6) are equivalent from a 

conversion and representation perspective. However, the difference is that (3.6) uses 

the t+ and Tf information to represent the signal value instead of the t+ and t-

information used by (3.3). If we choose to use the t+ and Tf information instead of the 

t+ and t- information then we will run into the same DC offset problem that exists in 

the other approach, as can be seen from the similarity between (3.2) and (3.6).

Based on our t+-t- representation approach, we were able to develop methods 

and circuits for all basic time-based conversions and computations, including Voltage-

to-IPI, IPI-to-Voltage, addition, subtraction, division, and multiplication.  Suitability 

of the representation for both conversion/communication and computation is very 

important because it eliminates the need to convert to/from other analog or digital 

domains if computation is needed. One good example where such computation would 

be needed is at the front end of a receiver to improve the signal-to-noise ratio (SNR) 

by averaging the over-sampled signal [25]. If the pulse time representation in [69], 

[70], [75-81] and [98], is used for communication, then to perform computation, the 

pulse stream signal has to be converted to either analog or digital in order to use the 

analog or digital computation techniques. This thesis will show that computation 

based on our approach here does not have the problems that analog computation 

suffers from such as the body effect and the mobility degradation effect, just 

considering local short-wire computation issues. Converting from time (IPI or PWM) 

to digital will require a fast counter and clock. The thesis will show that our approach 

has accuracy better than 98%, which is comparable to 6-bit digital accuracy, using a 

10 ns time frame. Assuming that the other representations in [69], [70], [75-81] and 

[98] have the same accuracy as ours for the same time frame, to convert from them to 

the digital domain while maintaining the same level of accuracy and speed, a 6-bit 

counter with a clock cycle as short as 10/64 = 0.15625 ns is necessary. The clock cycle 

time required is almost as short as the delay of a single fast inverter cell in the TSMC 
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0.35um process [117]. So, such a fast counter is not actually possible and therefore we 

need to make the time frame much longer to accommodate the time-to-digital

conversion. This will, of course, slow the speed down significantly, and it will also 

consume much more power.

It is possible to convert from the time domain back to the analog domain, and 

then from the analog domain to the digital domain using a fast ADC, to avoid the very 

fast counter problem. However, this thesis shows that the ADC operation is much 

more expensive in terms of area and power consumption than Voltage-to-IPI

conversion. After all these conversion/computation scenarios, we can see that 

performing both conversion/communication and computation in the same time domain 

using the same representation, is the best option if 98% accuracy is enough and area 

and power consumption are important.

3.2. Computation Error Analysis

The objective of this section is to examine in more depth the linear and 

logarithmic representations that were introduced in the previous chapter and their 

effect on error accumulation in various computations. The error analysis results from 

this section will be used to compare the linear and logarithmic representation schemes 

in the next section.  The errors we will calculate are:

 ec , conversion error

 ea , N-input addition error

 es , N-input subtraction error

 em , N-input multiplication error

 ed , N-input (one dividend and N divisors) division error
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3.2.1. Linear Representation

We will use the following simple linear conversion function to evaluate the 

effect of the linear function on the error when performing various arithmetic 

operations in the time domain

t = x (3.7)

The maximum conversion error is determined by the time resolution which is . 

Therefore,

ec,max = (t + ) – t =  (3.8)

Since each one of the N inputs to the addition or subtraction will contribute a 

maximum error of  to the total error, the maximum addition and subtraction errors are 

ea,max = es,max = N (3.9)

To evaluate the multiplication error of N inputs, we will first use a binomial expansion

to evaluate the following formula
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Using (3.10), we can find that the multiplication error is
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and therefore the maximum multiplication error is
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The division error is

ed = (1/tN) - (1/(t + )N) = (1/xN) - (1/(x + )N) (3.14)

The maximum division error will depend on the smallest magnitude allowed for the 

divisors. 

3.2.2. Logarithmic Representation

We will use the following simple logarithmic conversion function to calculate 

the error when performing various arithmetic operations

t = logB(x) (3.15)

which means

x = Bt (3.16)

The conversion error is

ec = B(t+) – Bt = Bt (B - 1) = x (B - 1) (3.17)
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and the maximum conversion error is

ec,max = xmax (B
 - 1) (3.18)

In the same way, we can find that the maximum error of addition and subtraction is

ea,max = es,max = Nxmax (B
 - 1) (3.19)

The multiplication error is

em = (B(t+))N – (Bt)N = BNt (BN - 1) = xN (BN - 1) (3.20)

and the maximum multiplication error is

em = (xmax)
N (BN - 1) (3.21)

The division error is

ed = 1/(B(t+))N – 1/(Bt)N = B-Nt (B-N - 1) = x-N (B-N - 1) (3.22)

The maximum division error will depend on the smallest magnitude allowed for the 

divisors.

3.3. Conversion Schemes: Linear Versus Logarithmic

The IPI representation we presented in section 3.1 is linear. There are a number 

of reasons to use a linear scheme over a logarithmic scheme. One of the most 

important is accuracy. One advantage of the logarithmic scheme is that it provides 

more bandwidth and therefore more speed than the linear representation. It also 
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provides greater dynamic range, since the logarithmic function compresses the IPI 

time needed to encode the analog signal, that is, it represents the same signal with 

shorter IPI intervals. As the base of the logarithm b increases, the IPI time decreases

which increases bandwidth. Unfortunately the price for this is mainly in reduced 

accuracy.  From the error analysis and equations in the previous section, we can see 

that the amount of error in conversion and computation increases as the base of the 

logarithm B increases. The linear scheme does not have this problem and therefore we 

have chosen it to achieve better accuracy.

The second reason why we have chosen a linear scheme over a logarithmic is 

that addition and subtraction are more difficult to perform in the logarithmic domain 

than in the linear domain. We were able to develop novel methods and circuits to 

perform addition and subtraction using the linear scheme, as we will see in the next 

chapter. One potential advantage of using the logarithmic scheme however is that 

multiplication and division can be performed as addition and subtraction respectively, 

but this potential advantage is compromised by the lack of simple methods and circuits 

to do addition and subtraction. Furthermore, we were able to find novel methods and

circuits to perform division and multiplication using the linear scheme, as we will see 

in the next chapter.

The third reason is that it is difficult to deal with negative, zero, and positive 

values less than 1 in the logarithmic domain because negative and zero are out of the 

input range of the logarithmic function, and positive values less than 1 requires a 

negative IPI representation. To overcome this problem, a DC offset may be added in 

the beginning when converting from analog to IPI and then the same offset needs to be 

subtracted if IPI to analog conversion is needed. The impact of the DC offset on the 

computation result will depend on the type of operation being performed. For 

example, in the case of addition, the offset in the result will be the sum of the offsets 

in the individual inputs. When multiplying two inputs, since the offset of one input 

will get multiplied by the other input, isolating the offset will be difficult.

Consequently, using a DC offset to solve the initial problem of not being able to 
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represent negative, zero, and positive values less than 1 in the logarithmic domain can 

lead to significantly greater complexity especially in the case of multiplication and 

division. 

3.4. Signaling Schemes: Synchronous Versus Asynchronous

The IPI signal representation presented in section 3.1 is synchronous. We have 

chosen the synchronous version since it meets our needs for both communication and 

computation. In this section we discuss the reasons for this decision.

In the asynchronous scheme, information is encoded in each IPI and the pulses 

are asynchronous with each other. Time-based computation using this scheme is very 

difficult especially on negative values because of the DC offset problem described in 

section 3.1. It is possible to convert the asynchronous IPI streams to analog voltages 

and then use analog computation techniques, but this thesis will show that time-based

computation using our approach does not have the problems that analog computation 

suffers from such as the body effect and the mobility degradation effect. Our 

synchronous representation is more suitable for performing time-based computation 

on all values including negative, zero, and positive, because it uses both parts of the 

frame to represent the value, and this approach is not possible with the asynchronous 

scheme.

The synchronous scheme imposes more constraints on the arrival times of the 

pulses by using a framing clock pulse as a reference. One full time frame Tf is

dedicated to each value to be encoded, which creates a natural trade-off between 

accuracy and responsiveness.  Shorter intervals are more responsive but less accurate, 

etc. The IPI times are measured with respect to the framing clock pulse, and therefore

synchronization of different streams is easy. Some IPI information storage or delay 

may be needed but not for many time frames. This will depend on the nature of the 

computation needed and whether it needs inputs or results to be aligned or 

synchronized with other IPI inputs or results. Synchronization would be a problem for 
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synchronous IPI signaling when the inputs have different frame times. In our work, we 

assume that all IPI signals in the system have the same frame time. This assumption

can be made if one global clock is used to synchronize sampling and framing of all 

inputs. This is not a likely possibility with a network of remote sensors, and therefore 

a more sophisticated clock recovery and synchronization scheme such as a phase-

locked loop (PLL) [120] is needed.

One advantage of the asynchronous scheme however is that it has higher 

bandwidth, and can potentially be more responsive than the synchronous scheme since 

it does not allocate a fixed-width time slot (frame) for each IPI regardless of the 

encoded value. Another advantage is that if a pulse is lost or a spurious pulse is 

received then there will be a maximum of two errors. However, with synchronous 

signaling, the synchronization circuitry may get stuck in an incorrect phase causing all 

subsequent IPIs to be erroneous. Therefore, to improve the reliability of the 

synchronous signaling, a more sophisticated clock-recovery scheme such as a phase-

locked loop (PLL) is needed. Furthermore, a “resynch” capability is almost mandatory 

in any synchronous IPI representation. Despite these advantages of the asynchronous

scheme, we have decided to choose the synchronous scheme for the reasons discussed 

above.

3.5. IPI Signal Timing Requirements

We now discuss the analog-to-IPI conversion and computation timing 

requirements and their effects on the IPI signal timing. These requirements are based 

on the synchronous signaling scheme and do not depend on any particular design 

implementation, i.e., they will be needed regardless of the design implementation 

details.
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3.5.1.  Analog-to-IPI Conversion Timing Requirements

Figure 3.2 shows the Analog-to-IPI conversion timing requirements. The 

Analog-to-IPI conversion time is equal to the IPI time, i.e., the conversion starts at the 

beginning of the frame and ends when the second pulse of the IPI is generated.

Figure 3.2. Analog-to-IPI conversion timing requirements.

To start the conversion, the analog value should be ready at the beginning of 

the frame. This means that the analog input should be sampled first and then converted 

to IPI. This also means that the sampling must begin at least Tsd before the frame 

beginning where Tsd is the sampling delay of the signal. To support the previous 

operation, we need a periodic sampling signal that has the same frequency as the 

framing signal but leads it by at least Tsd. To satisfy the Analog-to-IPI conversion 

timing requirements, the time frame Tf must satisfy the following two relationships:

1. Tf > Tsd + Tmax , where Tmax is the maximum IPI time.

2. Tf = Ts = 1/Fs < 1/(2Fm) , where Fs is the sampling frequency and Fm is the 

maximum  frequency in the analog signal spectrum. According to the sampling 

theory, the sampling frequency Fs needs to be at least twice the maximum 

frequency Fm in the signal spectrum in order for the samples to completely 

encode all the information in the signal [105].
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A possible speed optimization is to use pipelining to overlap the sampling and 

conversion operations so that Tmax and Tsd in the first relationship above are no longer 

additive and Tf then needs to satisfy the following relationship: Tf > max (Tsd , Tmax). 

3.5.2. Computation Timing Requirements

Figure 3.3 shows the computation timing requirements. Since the computation 

result may have an IPI shorter than the longest input IPI, the result cannot be 

represented in the same frame as the inputs. However, it can be represented in the next 

frame. Similar to the Analog-to-IPI conversion, the computation result must be ready 

in some form by the beginning of the next frame. The full computation can be viewed 

as two steps:

1. Receiving the inputs and calculating the result in some form in the current 

frame.

2. Converting the result from that form to IPI and generating the pulse in the next 

frame.

Figure 3.3. Computation timing requirements.

This is just a simple description of the basic requirements. Different 

computations may require different timing. For example, calculation of the result in 

some form may take one or more time frames. To satisfy the computation timing, the 
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frame length Tf must satisfy the following relationship: Tf > Tcmp + Tmax where Tcmp is 

any computation delay that may be needed in the first frame beyond Tmax if calculating 

the result in some form does not complete during Tmax. A possible speed optimization 

is to use pipelining to overlap the conversion and computation operations above.
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4. Novel Methods and Circuits for Time Based Conversion and

Computation

In this chapter, we will present novel methods and circuits for time-based 

conversion and computation. These methods and circuits include IPI-to-Voltage 

conversion, Voltage-to-IPI conversion, and the basic arithmetic computations: 

addition, subtraction, division, and multiplication. These methods and circuits are

based on the novel IPI representation presented in this dissertation. Therefore, their 

significance and novelty versus that of other pulse time representations (IPI and 

PWM) [69], [70], [75-81] and [98], are in many ways very similar to the significance 

and novelty of our IPI representation versus the other representations. The significance 

of these methods and circuits come also from the advantages of being able to use the 

same time-based representation to perform both conversion/communication and 

computation without the need to convert the pulse stream to and from the analog or the 

digital domain for computation.

Simulation results will be shown in this chapter only to demonstrate how the 

circuits operate. The simulation results along with the experimental test results will be 

presented in the next chapter. Square wave (or PWM) signals are used to convey the 

IPI timing information of the IPI inputs. Typically, the IPI input signal is received by a 

toggle flip-flop (T-FF) at the front end which generates an equivalent square wave (or 

PWM) signal that carries the IPI timing information. The signal is low during t+ and

high during t-. Figure 4.1 shows how the T-FF should be connected. The intent was to 

focus on designing and testing the main part of each circuit and to have more direct 

control over the signals controlling the switching logic for better testability.
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4.1. IPI-to-Voltage and Voltage-to-IPI Conversions

The relationship between Tf, t+, and t- is governed by the following equation

  tTt f
(4.1)

Figure 4.1 shows the IPI-to-V-to-IPI conversion circuit. Figure 4.2 is a simulation 

chart that shows its operation. It takes two time frames to perform both conversions. It 

performs the IPI-to-V conversion in the first frame and the V-to-IPI conversion in the 

second frame. Initially, the capacitor voltage VC is at Vmiddle which is the zero 

reference. In the first frame, each transistor is in saturation mode for its corresponding 

IPI time. MP1 is turned on for t+ and MN1 is turned on for t-. The current I in the P-

channel MOS transistor should be equal in amount but opposite in direction to the 

current in the N-channel MOS transistor. The idea here is to linearly charge the 

capacitor in the positive direction during the IPI time t+ and to linearly charge it in the 

negative direction at the same rate during the IPI time t-. At the end of the first frame 

the output voltage on the capacitor is

   tt
C

I
VC

(4.2)

In the second frame, the input transistors are turned off and MN3 and MN4 

transistors are turned on in saturation mode to linearly decrease the output voltage 

toward –VM where –VM is the minimum output voltage (i.e., the lower limit of the 

output dynamic range). VM is the maximum output voltage (i.e., the upper limit of the 

output dynamic range) and is equal to 

fM T
C

I
V  (4.3)
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MN3 and MN4 transistors should provide the same amount of current I each. 

Therefore, the output voltage on the capacitor in this frame follows the following 

equation

    t
C

I
tt

C

I
tVC

2
 

(4.4)

Figure 4.1. IPI-to-V-to-IPI conversion circuit.

When VC reaches just below –VM, the comparator output goes high. This sets the RS 

latch and causes its Q output to go high as well. The Q output then turns the MN5 

switch on, which in turn charges the capacitor back up to its initial voltage Vmiddle.

After that, the circuit is again in its initial state and is ready to start a new cycle of 

conversion. When VC increases to just above –VM in its way back up to Vmiddle, the 

comparator output is unasserted (low), which determines the shape of the output pulse. 
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Some capacitance can be used to delay the rise of the Q output to adjust the width of 

the IPI output pulse, where a larger capacitance gives wider pulse. This extra 

capacitance does not affect the time at which the pulse is fired because this is decided 

mainly by the comparator. The pulse is generated when VC decreases down to –VM. 

Using (4.3) and (4.4), we can find that this happens at time

  ttout
(4.5)

and this recovers the IPI times of the original input.

The IPI-to-V conversion circuit consumes the silicon area of the following 

devices:

 1 capacitor

 1 NMOS and 1 PMOS transistor for the current source

 1 big NMOS discharge transistor

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input

 1 T-FF per IPI input to generate from the IPI input signal the square wave 

signals that controls the input transistors 

And the V-to-IPI conversion circuit costs the following devices:

 1 capacitor (shared with IPI-to-V conversion in IPI-to-V-to-IPI conversion)

 4 NMOS transistors which decrease the capacitor voltage towards –VM at twice 

the rate of IPI-to-V conversion

 1 big NMOS discharge transistor

 1 comparator

 1 RS latch
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Figure 4.2. Simulation of the IPI-to-V-to-IPI conversion circuit.

Before we compare our conversion (modulation and demodulation) techniques 

and circuits to the other pulse time (IPI and PWM) techniques and circuits in [69], 

[70], [75-81] and [98], which we have reviewed in section 2.2, we would like to say 

that any of them can be used for conversion. However, the benefits of our 

representation and conversion techniques lie actually in their use for computation of 

negative, zero, and positive values, as we will see when we present the addition, 

subtraction, division, and multiplication.  When compared to the other pulse time 

modulation (IPI and PWM) techniques and circuits in [69], [70], [75-81] and [98], our 

Voltage-to-IPI converter (modulator) stores the voltage sample on the capacitor. Then, 

as we explained above, it charges the capacitor linearly down toward –VM at twice the 

charging rate of the IPI-to-V conversion. When equivalence is detected, the 
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comparator generates the pulse. The other techniques, however, do not ramp the input 

voltage on the capacitor. Instead, a sawtooth ramp signal is provided and compared 

against the input sample for equivalence. The ramp itself and/or a DC offset can be 

used to represent negative values. When compared to the other pulse time 

demodulation (IPI and PWM) techniques and circuits in [69], [70], [75-81] and [98], 

our IPI-to-voltage converter (demodulator), as we described above, charges the 

capacitor in the positive direction during the first part of the frame t+, and in the 

negative direction during the second part of the frame t-. This basically realizes (4.2), 

which is a mathematical description of the novel IPI representation presented in 

section 3.1. In the other techniques, however, PWM signals are converted to IPI 

signals first. Then, IPI demodulation is performed. For IPI demodulation, the first 

input pulse is used to initiate the generation of a sawtooth ramp signal and the second 

input pulse is used to sample and hold the ramp signal. This produces the voltage 

sample equivalent to the IPI.

4.2. Addition

Figure 4.3 shows the IPI addition circuit. Figure 4.4 is a simulation chart that 

shows its operation and Figure 4.5 is a timing diagram that shows the phases and 

sequence of computation. Its operation is very similar to the IPI-to-V-to-IPI 

conversion except for having a second input. Initially the capacitor voltage VC is at 

Vmiddle. In the first frame, each input transistor is turned on in saturation mode for its 

corresponding IPI time. MP1 is turned on for t1+ and MN1 is turned on for t1-. 

Similarly, MP2 is turned on for t2+ and MN2 is turned on for t2-. Therefore, each input 

transistor contributes linearly to the output voltage on the shared capacitor and

positively or negatively according to its t+ and t- times. At the end of the first frame 

the output voltage on the capacitor is
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      2211 tttt
C

I
VC

(4.6)

In the second frame, the operation is identical to the voltage-to-IPI conversion 

explained in the previous section. All the input transistors are turned off and MN3 and 

MN4 transistors are in saturation mode to linearly decrease the output voltage toward 

–VM. In this frame, the output voltage on the capacitor follows the following equation

       t
C

I
tttt

C

I
tVC

2
2211  

(4.7)

The output pulse is generated when VC decreases to –VM. Using (4.3) and (4.7), we can 

find that this happens at time

Figure 4.3. IPI addition circuit.
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Figure 4.4. Simulation of the IPI addition circuit.

Figure 4.5. Timing diagram of addition.
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 
2213

fT
ttt  

(4.8)

and using (4.1) and (4.8), we can find

     221133 tttttt (4.9)

The addition circuit consumes the silicon area of the following devices:

 1 capacitor

 1 NMOS and 1 PMOS transistor for the current source

 1 big NMOS discharge transistor

 4 NMOS transistors which decrease the capacitor voltage towards –VM at twice 

the rate of IPI-to-V conversion

 1 comparator

 1 RS latch

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input

 1 T-FF per IPI input to generate from the IPI input signal the square wave 

signals that controls the input transistors 

While it is true that we can use the pulse time (IPI and PWM) representation 

techniques, which we have reviewed in section 2.2, for conversion/communication, 

their use for direct “time-based” computation has not been demonstrated anywhere, 

and is difficult, as we explained in section 3.1. Analog computation can be used with 

these representations, after converting the pulse streams to analog, but the thesis will 

show that analog computation suffers from problems that our circuits do not have such 

as the body effect and the mobility degradation effect. In this section, we have 

demonstrated how to use our representation approach and IPI-to-V and V-to-IPI
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conversion techniques, to perform addition of negative, zero, and positive values. All 

the inputs are IPI and the output is also IPI and is ready for use by other IPI 

computation blocks. This discussion is also valid for all the other computation circuits, 

which we discuss next.

4.3. Subtraction

The subtraction circuit is the same as the addition circuit in Figure 4.3 except 

for the second input is inverted so that its logic and transistors operate in an opposite 

manner. MN2 is turned on during t2+ instead of MP2 and MP2 is turned on during t2-

instead of MN2. This way the second input is subtracted from the first input not added 

to it. Figure 4.6 is a simulation chart that shows the subtraction operation. At the end 

of the first frame the output voltage on the capacitor is

      2211 tttt
C

I
VC

(4.10)

In the second frame, the output voltage on the capacitor follows the following 

equation

       t
C

I
tttt

C

I
tVC

2
2211  

(4.11)

The output pulse is generated when VC decreases to –VM. Using (4.3) and (4.11), we 

can find that this happens at time

 
2213

fT
ttt  

(4.12)

and using (4.1) and (4.12), we can find
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Figure 4.6. Simulation of the IPI subtraction circuit.

     221133 tttttt (4.13)

4.4. Division

Figure 4.7 shows the time-based division circuit. Figure 4.8 is a simulation 

chart that shows its operation and Figure 4.9 is a timing diagram that shows the phases 

and sequence of computation. This division circuit, which is also used for 

multiplication in the next section, operates in the first quarter but it is the core of the 

four-quadrant (4-Q) operation. In section 4.6, we will explain how it can be used for 4-

Q  operation with minimum modifications.
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Initially, all capacitors in the circuit are at Vmiddle. In the first frame, each input 

transistor is turned on in saturation mode for its corresponding IPI time. MP1 is turned 

on for t1+ and MN1 is turned on for t1-. Similarly, MP2 is turned on for t2+ and MN2 is 

turned on for t2-. At the end of the first frame, the voltages on the capacitors C1 and C2

are

   11
1

1
1 tt

C

I
VC

(4.14)

   22
2

2
2 tt

C

I
VC

(4.15)

VC1 is connected to the positive input of the voltage follower OP-AMP. This sets the 

voltage across the resistor R to VC1 and therefore the current in R is

R

V
I C

R
1 (4.16)

The current in M3 and M4 is equal to IR. In the second half of the second frame, M5 is 

turned on and therefore the current charging the capacitor C3 is

 
 

 
  RMMMC I

LW

LW
I

LW

LW
III

44

66
4

44

66
653  (4.17)

where W4, W6, L4, and L6 are the channel widths and lengths of MN4 and MN6, 

respectively. Consequently, VC3 will increase linearly according to the following 

equation











23

3
3

fC
C

T
t

C

I
V (4.18)
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When VC3 reaches a level equivalent to VC2 the comparator detects that situation and 

the output pulse is generated. Using (4.14)-(4.18), we can find that the time when this 

happens is

 
 

 
  211

22

44

66

2

31

1

2
3

f

C

C
T

tt

tt

LW

LW

C

CRC

I

I
t 



























(4.19)

Figure 4.7. IPI division circuit.
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Figure 4.8. Simulation of the IPI division circuit.

Figure 4.9. Timing diagram of division.
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and using (4.1) and (4.19),

 
 


 




11

22
33 tt

tt
Ktt div

(4.20)

where

 
 44

66

2

31

1
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LW

C
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I

I
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C
div 
















 (4.21)

As we can see from (4.20), the output represented by the IPI times t3+ and t3- is a 

scaled value of the division of the second input represented by the IPI times t2+ and t2-, 

by the first input represented by the IPI times t1+ and t1-. The scaling factor Kdiv can be 

set by choosing the right values for the design parameters IC1, IC2, R, C1, C2, C3, W4, 

W6, L4, and L6 based on the design requirements such as power, area, speed, and

accuracy.

The division circuit has the following silicon cost:

 3 capacitors

 1 resistor

 1 NMOS and 1 PMOS transistor for the current source

 3 big NMOS discharge transistors per capacitor

 1 comparator

 1 OP-AMP

 1 RS latch

 1 NOR gate and 1 AND gate

 2 NMOS and 2 PMOS to mirror the current in the resistor to C3

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input
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 1 T-FF per IPI input to generate from the IPI input signal the square wave 

signals that controls the input transistors 

As the divisor gets very small or zero, the division result grows very large and 

the output pulse will never be generated. The capability of detecting such situation can 

be added to our circuit by employing a timeout/saturation mechanism. Maximum 

output pulse signal, say IPIMAX, is derived from the framing pulse signal but it leads it 

by a short time tlead. This short time should be long enough to accommodate the pulse 

width and the circuit reset time. It can be inserted using an even number of inverters. 

If an output pulse is generated during the output frame then there is no need for the 

IPIMAX pulse and it should be masked by the IPI_level_out signal. On the other hand, 

if no output pulse has been generated then the IPIMAX pulse should not be masked and 

should be taken as the output pulse.

4.5. Multiplication

Figure 4.10 shows a block diagram of the IPI based multiplication circuit. 

Figure 4.11 is a simulation chart that shows its operation and Figure 4.12 is a timing 

diagram that shows the phases and sequence of computation. It uses two division 

circuits. The idea of using division to compute the multiplication comes from the fact 

that multiplying by a number is equivalent to dividing by its inverse. Thus, the 

multiplication can be performed as two consecutive divisions as follows

 yxxy 1 (4.22)

The first division circuit takes the first input to be multiplied as its first input and a 

constant signal as its second input and computes the following result in the second 

frame
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Figure 4.10. IPI multiplication as two IPI divisions.

 
 


 




11
133 tt

TT
Ktt constconst

div
(4.23)

where Tconst+ and Tconst- are the IPI times representing the constant input. The second 

division circuit takes the result, which the first division circuit computes, as its first 

input and the second input to be multiplied as its second input and computes the 

following result in the third frame

 
 


 




33

22
244 tt

tt
Ktt div

(4.24)

Using (4.23) and (4.24), we can find

    221144 ttttKtt mult
(4.25)

where

  




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




constconstdiv
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mult TTK

K
K

1

1

2 (4.26)

As we can see from (4.25), the output represented by the IPI times t4+ and t4- is a 

scaled value of the multiplication of the first input represented by the IPI times t1+ and 

t1-, by the second input represented by the IPI times t2+ and t2-. The scaling factor Kmult
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can be set by choosing the right values for Kdiv1, Kdiv2, and the constant input IPI times. 

From process variations point of view, this multiplication method has a great 

advantage since these variations in devices like transistors, capacitors, resistors will 

cancel out if the two division circuits are close from each other, since Kdiv2 is divided 

by Kdiv1.

Since the multiplication uses two division circuits, it has the same problem 

with small or zero inputs as the division does. Therefore, the timeout/saturation 

capability described above for division is also needed. It also takes care of any 

situation in which the output pulse is not generated for any reason.

Figure 4.11. Simulation of the IPI multiplication circuit.
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Figure 4.12. Timing diagram of multiplication.

Multiplication runs at the same speed as division, one operation per two

frames. The first result requires three frames but subsequent results are available every 

two frames. This is because the two division blocks operate in a pipelined fashion. As 

the first division block is producing its result in one frame, the second division block 

is taking this result as input and performing the IPI-to-V conversion of the inputs in 

the same frame. This can be seen by looking at the timing diagram in Figure 4.12.

Unlike the pulse based multiplication techniques and circuits in [7-10] and [16-

18], which we reviewed in section 2.2, the inputs to our time-based multiplier are all 

time-based (IPI or PWM) and the output is also time based (IPI or PWM) and is ready 

for use by other computation blocks or for communication. Moreover, our multiplier 

does not use any analog or digital multiplication techniques. In [7-10], one input is a 

voltage while the other can be a PFM/PWM signal and an analog transconductance 

multiplier is used. In [16-18], one input is digital while the other is a PFM signal and a 

shift register with a clock that has a varying binary-weighted cycle time (T, 2T, 4T, 8T, 

…, 2N-1T ) is used. As we explained in section 3.1, doing both 

conversion/communication and computation in the same time domain with no need to 

convert to/from analog or digital has certain advantages. Avoiding analog computation 

eliminates serious problems such as the body effect and the mobility degradation 

effect, as we will see in subsection 6.2.1. There are situations however where a 

designer may be willing to choose the analog computation for its simplicity and speed. 
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Avoiding digital computation eliminates the need for ADC, which is very expensive in 

terms of area and power consumption, as we will see in subsection 6.2.2.

4.6. Four-Quadrant Division and Multiplication

In this section, we will explain how the first-quadrant (1-Q) 

division/multiplication circuit above can be used for 4-Q operation. The discussion 

uses division but it also applies to multiplication.

If we have two inputs x and y then their division
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(4.27)

This means that we only need to compute two results +|x/y| and -|x/y|. Then, based on 

the signs of the two inputs, we select one of them as the final result. Our IPI circuit has 

the result in PWM form (square wave form). Obtaining -|x/y| from +|x/y| can be done 

simply using an inverter. The delay of the inverter has negligible impact on the 

accuracy since its low-to-high and high-to-low propagation delays, tpLH and tpHL, are 

practically equal and therefore will have negligible impact on the high and low 

durations of the inverted output. The result in IPI form can be easily obtained from the 

PWM result if needed. In light of this, our problem has been reduced to calculating 

only one value +|x/y| whatever the signs of the two inputs are, obtaining -|x/y| using 

an inverter, and then selecting one of them as the final result based on the signs using 

a 2-by-1 multiplexer (MUX).

Our 1-Q circuit computes the result +|x/y|. The voltages VC1 and VC2 are ready 

by the end of the first frame. Therefore, the signs of the two inputs can be generated at 

the end of the first frame by using two comparators with their negative terminals
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connected to Vmiddle. If the voltage is above Vmiddle then it is positive and if it is below 

Vmiddle then it is negative. The sign of the final result can be generated from the signs 

of the two inputs using a logical XOR gate, and it is used to control the 2-by-1 MUX. 

If the two signs are similar then +|xy| will be selected as the final result and if they are 

different then -|xy| will be selected. Our 1-Q circuit works for positive values of VC1

and VC2. VC1 is connected to the positive terminal of the feedback voltage follower OP-

AMP and VC2 is connected to the positive terminal of the comparator which compares 

VC3 against VC2. We need to provide the voltage follower OP-AMP and the comparator

with the absolute values of VC1 and VC2 (|VC1| and |VC2|), respectively. To do this, we 

need to generate -VC1 and -VC2 using IPI-to-V converters but with the PWM inputs 

inverted. Full IPI-to-V converters are not needed. Only the switches, current sources, 

and the capacitor are needed. The PWM signals controlling the switches are available 

from the already existing IPI-to-V converters used to generate VC1 or VC2. They should 

be swapped though to negate the inputs. Then, the value or its negative is passed to the 

OP-AMP or the comparator using a pass gate controlled by its sign. If the value is 

positive then it will pass. If it is negative then its absolute value will be passed. This 

will ensure that the OP-AMP and the comparator always get the absolute values of VC1

and VC2, respectively.

As we can see from the discussion above, the 1-Q circuit is the core of the 4-Q 

operation and it only needs the following to operate as 4-Q:

 1 inverter to obtain -|xy| from +|xy|

 2 comparators to generate the signs of the two inputs

 1 XOR gate to generate the sign of the final result and select +|xy| or -|xy|

 1 2-by-1 MUX

 2 IPI-to-V converters to negate VC1 and VC2. T-FFs and input logic gates are 

not necessary since signals controlling the switches are available from the

other IPI-to-V converters generating VC1 and VC2.  

 2 pass gates to pass  VC1 or -VC1 to the voltage-follower OP-AMP
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 2 pass gates to pass  VC2 or -VC2 to the comparator

Based on our 0.35 um implementation of the 1-Q circuit in chapter 5, this extra 

circuitry will increase the area by about 60% and the power consumption by about 

45%. The 4-Q circuit does not require any extra time frames and therefore runs at the 

same speed as the 1-Q circuit. There are delays added by the inverter and the MUX in 

the path of the PWM output signal but these delays are usually very small compared to 

the time frame. Also, as we explained above, their propagation delays have negligible 

impact on the high and low durations of the PWM output signal since the low-to-high 

delay practically cancels the high-to-low delay. Furthermore, the parasitic 

capacitances of the pass gates are negligible if the capacitors are made large enough.

Therefore, the accuracy of the 4-Q circuit is very similar to that of its core, the 1-Q 

circuit.
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5. Experimental Results

We have implemented the methods and circuits described in the previous 

chapter in a chip using the TSMC 0.35 um mixed-signal CMOS fabrication process 

technology thorough the MOSIS-USA fabrication and packaging service [118] and 

[119]. The process has four metal layers and two poly Silicon layers. In this chapter, 

we describe the design of the chip including the top level cells. We have simulated and

tested the circuits at a 10 MHz framing speed which corresponds to a 100 ns time 

frame. We have also simulated the conversion, addition, and subtraction circuits at 100 

MHz and the division and multiplication circuits at 50 MHz. We present the 

experimental test and simulation results for each of the conversion and computation 

circuits in terms of accuracy, area, power consumption, and dynamic range. 

5.1. Top Level Chip Design

The chip design, layout, simulation, and verification were performed using the 

Mentor Graphics ASICs Design Kit (ADK) and tools [116]. The chip has one addition 

circuit that can also be used to demonstrate subtraction and IPI-to-V-to-IPI 

conversion. The chip also has two division circuits to demonstrate division and

multiplication. Figures 5.1-5.5 show the layout design of the OP-AMP/comparator, RS 

latch, addition/subtraction/IPI-V-IPI conversion, division, and top level cells, 

respectively. The OP-AMP/comparator and RS latch cells are lower level cells used by 

the addition and division cells. Figure 5.6 is a microphotograph of the chip. The total 

chip area including the input and output pads is 2.25 mm2 (1.5 mm × 1.5 mm).
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Figure 5.1. Layout of the OP-AMP/comparator cell. The cell was custom designed 
since the ADK library does not have OP-AMP or comparator cells.

Figure 5.2. Layout of the RS latch cell. Two standard NOR gate cells from the ADK 
library were used to construct this cell.



61

Figure 5.3. Layout of the addition, subtraction, and IPI-V-IPI conversion cell. The area 
is about 480λ × 400λ, which is equal to 7680 um2 (λ = 0.2 um for 0.35 um process).
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Figure 5.4. Layout of the division cell. The area is about 900λ × 720λ, which is equal 
to 25920 um2 (λ = 0.2 um for 0.35 um process).
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Figure 5.5. Top-level chip layout. The area is 1.5 mm × 1.5 mm = 2.25 mm2.
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Figure 5.6. Chip microphotograph.

5.2. Simulation and Test Results

For error and accuracy results, we define the percentage error as the absolute 

error in the output voltage divided by the output full range and multiplied by 100%. 

The full range is equal to 2VM since the output changes from –VM to +VM. Using (4.2) 

and (4.3), we can find that error and accuracy translate into time as
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where tcal is the calculated time and tmeas is the measured time. All the results presented 

here are for 3.2 V supply voltage.

5.2.1. IPI-to-Voltage and Voltage-to-IPI Conversions

Adding two inputs requires IPI-to-V conversion of each input in the first frame 

and V-IPI conversion of the voltage on the shared capacitor in the second frame.

Figure 5.7 shows the operation of IPI-to-V-to-IPI conversion as addition of two equal 

inputs. In this case, t1+= t2+=60 ns, t1-= t2-=40 ns, and the output t3+=71 ns.  Accuracy 

in this case is 98%. Figure 5.8 is a graph of the chip test and simulation results for 

addition when the first input is varied while the second input is fixed at zero (t2+= t2-= 

50 ns). Worst case accuracy from test is better than 96%, and from simulation, it is 

better than 98%. This miscorrelation between test and simulation is due to capacitive 

loading effects from the package pins, the wires, and the oscilloscope. Test and

simulation results are optimized to have optimum accuracy around the zero point by 

adjusting V1 to 980 mV and 960 mV, respectively. This also applies to the addition 

and subtraction results in the next subsection. The IPI-to-V conversion part of the 

circuit occupies 4.544x10-3 mm2 of chip area and consumes 0.96 mW of power. The 

V-to-IPI conversion part of the circuit occupies 5.12x10-3 mm2 of chip area and

consumes 2.24 mW of power. Each conversion operation takes only one time frame to 

finish. The dynamic range of both conversions is 1200 mV.
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5.2.2. Addition and Subtraction

As described above, Figure 5.7 shows the addition of two equal inputs and

Figure 5.8 is a graph of the chip test and simulation results for this operation along 

with the calculated ideal results. Worst case accuracy from test is better than 96%, and 

from simulation, it is better than 98%. Subtraction was tested using the addition 

circuit by simply inverting the second input. Figure 5.9 shows the subtraction of two 

equal inputs. In this case, t1+= t2+=78 ns, t1-= t2-=22 ns, and the output t3+=49 ns.  

Accuracy in this case is 98%. Figure 5.10 is a graph of the chip test and simulation 

results along with the calculated results for subtraction when the first input is set to 

zero (t1+= t1-= 50 ns) while the second input is varied. Worst case accuracy from test is 

better than 96%, and from simulation, it is better than 98%. The addition/subtraction 

circuit occupies 7.68x10-3 mm2 of chip area and consumes 1.92 mW during the first 

frame and 2.24 mW during the second frame. So, the average power consumption is 

2.08 mW. Addition/subtraction takes two time frames to finish. The dynamic range of 

operation is 1200 mV.

5.2.3. Division and Multiplication

Figure 5.11 shows the division operation. In this case, t1+= t2+=92 ns, t1-= t2-=8 

ns, Kdiv1=33.3 ns and the output t3+=88 ns.  The accuracy of division in this case is 

95.3%. Figure 5.12 is a graph of the chip test and simulation results for division along 

with the calculated ideal results when the first input is varied while the second input is 

fixed (t2+= 69ns). Worst case accuracy from test is better than 96%, and from 

simulation, it is better than 98%. Figure 5.13 is a graph of the chip test and simulation 

results for multiplication along with the calculated ideal results when the two inputs 

are equal and Tconst+ is fixed at 69ns. Worst case accuracy from test is better than 95%, 

and from simulation, it is better than 97%. The division circuit occupies 25.92x10-3

mm2 of chip area and consumes 2.88 mW during the first frame and 3.84 mW during 
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the second frame. So, the average power consumption is 3.36 mW. Multiplication 

occupies twice the area and consumes twice the power. It occupies 51.84x10-3 mm2 of 

chip area and consumes 6.72 mW of power. Division and multiplication each take two 

time frames to finish. Their dynamic range is 600 mV.

5.2.4. Summary

We have demonstrated the functionality and implementation of the IPI based

conversion and computation methods and circuits presented in chapter 4 by fabricating 

them in a chip using the TSMC 0.35 um mixed-signal CMOS process and by testing 

the chip at 10 MHz framing speed, which corresponds to 100 ns time frame. The test 

results agree well with both theoretical results and SPICE simulation results. However, 

accuracy from test is 2% worse than predicted by simulation. We believe that this 

miscorrelation between test and simulation is due to capacitive loading effects from 

the package pins, the wires, and the oscilloscope. Table 5.1 is a summary of the 

accuracy, power consumption, area, dynamic range, and speed results for all circuits.

0.35 um CMOS process
VDD = 3.2 V

Accuracy 
(%)

Average
power
(mW)

Area
(10-3 mm2 )

Speed 
(MHz) 

(Mop/s)

Dynamic 
range    
(mV)

IPI-to-V 98, 96 0.96 4.544 100, 10 
100, 10

1200

V-to-IPI 98, 96 2.24 5.12 100, 10 
100, 10

1200

Addition/Subtraction 98, 96 2.08 7.68 100, 10 
50, 5

1200

Division 98, 96 3.36 25.92 50, 10   
25, 5

600

Multiplication 97, 95 6.72 51.84 50, 10   
25, 5

600

Table 5.1. Summary of accuracy, power consumption, area, dynamic range, and speed 
results of the IPI circuits. Results in Italic are from simulation. 4-Q division and 
multiplication need about 60% more area and consume about 45% more power.
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Figure 5.7. Oscilloscope screen image showing the addition of two equal inputs.  IPI-
to-V conversion of the two inputs is done in the first frame and V-to-IPI conversion of 

the output voltage in the second.
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Figure 5.8. Test, simulation, and calculated results for addition when the first input is 
varied while the second input is fixed at zero.
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Figure 5.9. Oscilloscope screen image showing the subtraction of two equal inputs.
The output voltage remains flat at Vmiddle during the first frame since the two inputs are 

equal and therefore canceling each other.
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Figure 5.10. Test, simulation, and calculated results for subtraction when the second 
input is varied while the first input is fixed at zero.
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Figure 5.11. Oscilloscope screen image showing the division of two equal inputs.
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Figure 5.12. Test, simulation, and calculated results for division when the first input is 
varied while the second input is fixed (t2+= 69ns).
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inputs are equal and Tconst+ is fixed at 69ns.
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6. System-Level Design and Applications

In this Chapter, we will describe a system-level design which executes a 

computation based on an artificial neuron with multiple synapses. The design 

incorporates the basic arithmetic building blocks we have developed in chapter 4 and 

integrates them together into a simple system. We will also provide the SPICE 

simulation results based on the same TSMC 0.35um CMOS technology that was used 

for the basic IPI building blocks. We will also discuss how the IPI technology can be 

used in applications such as sensors, instrumentation, communications, telemetry, 

signal processing, and ANNs. To demonstrate the advantages of using the IPI 

technology in these applications, we will compare our IPI based conversion and 

computation implementations against other analog and digital implementations.

6.1. System-Level Design

6.1.1. Artificial Neural Networks (ANNs)

ANNs get their computational processing power from the fact that they try to 

resemble real biological neural networks found in the brain. They have been 

successfully used in many real life applications such as data classification, pattern 

recognition, function approximation, and adaptive signal processing [4] and [5]. An

ANN is built from several layers of neurons each connecting to each by synapses. 

Figure 6.1 shows an example of ANN architecture (topology). This type is the most 

popular and is called feed-forward or multi-layer perceptron (MLP) network.
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Figure 6.1. Feed-forward or multi-layer perceptron (MLP) ANN.

Figure 6.2. Computational model of an abstract neuron and its synapses.
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Figure 6.2 is a computational model of the neuron and its synapses.  It has N 

inputs (x0, x1, …, xN-1) . To model the synaptic strength of the connections, each input 

xi is weighted (multiplied) by a weight wi. Then, the neuron combines (sums) the 

weighted inputs and applies a nonlinear transformation function f on the summation 

result to generate the output y. In mathematical terms, the neuron can be modeled 

using the following equation
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Figures 6.3 and 6.4 show two of the most popular neuron transformation functions, the 

sigmoid function defined as
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1
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Figure 6.3. The sigmoid function.
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Figure 6.4. The hyperbolic tangent function.

and the hyperbolic tangent function defined as
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The following characterizes the neuron transformation function: It is nonlinear, it is 

monotonically increasing for the range of operation, and it saturates to a minimum or a 

maximum when the sum magnitude becomes large in the negative or positive direction 

respectively.   

In pattern recognition and classification applications, the inputs are the features 

of the object to be classified. Each output neuron is associated with a class. The 

neuron in the output layer with the strongest output indicates the class of the object. In 

function approximation, the inputs are the input variables of the function to be 

approximated and the output of the neuron is the output of the function to be 

approximated. Before an ANN reaches to the optimum solution (optimum weight 
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values assuming the topology is fixed), it needs to learn (we need to train it). This can 

be done by providing it with the desired output d and comparing its output y with it. 

The error (difference between y and d) can then be used to adjust the synaptic weights 

until the error is minimal. One way of doing this is the error back-propagation 

algorithm proposed by Rumelhart et al. in [52].  Such learning algorithms are beyond 

the scope of this dissertation and are not discussed further. Our objective here is to 

demonstrate the operation of the basic IPI building blocks as a system.

6.1.2. System-Level Design and Simulation

In this section, we will put the basic IPI building blocks together in a design that can 

perform the computational functions of the neuron and its synapses as defined in (6.1) 

and shown in Figure 6.2. In this design example, the neuron has six inputs (the number 

of synaptic connections N is equal to 6). Figure 6.5 shows the design, Figure 6.6 

shows its simulation, and Figure 6.7 is a timing diagram that shows the phases and 

sequence of the computations. Six IPI multiplication circuit instances are used to 

model the strength of the six synaptic connections. The input xi and the synaptic 

weight wi are both in IPI form. The outputs of all the multiplications are fed into a six-

input IPI addition circuit. The addition circuit performs both functions of the neuron,

summation and transformation. We were able to exploit the nonlinearity and saturation 

properties of the circuit to achieve the desired nonlinear and saturating behavior 

needed in the transformation function of the neuron.

The system runs at the speed of one operation per two frames. It is only the 

first result that takes four frames to come out but after that results come out every two

frames. This is because the two division blocks (in each multiplier) and the addition 

block operate in a pipelined fashion. As a block is producing its result and providing it 

to the receiving block in one frame, the receiving block is taking this result as input 

and performing the IPI-to-V conversion of the inputs in the same frame. This 

pipelining can be seen by looking at the timing diagram in Figure 6.7, and is 
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analogous to a pipelined digital processor in the pipe latency is N clock cycles, where 

N is the number of stages [121]. Once the pipe is full, one instruction finishes every 

clock cycle.

Figure 6.5. System-level design of one neuron with 6 synapses using the IPI addition 
and multiplication circuits.
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Figure 6.6. Simulation of the system-level design of one neuron with 6 synapses.

Figure 6.7. System timing diagram.
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Figure 6.8. 6-input IPI addition which performs the summation and transformation 
functions of a 6-synapse neuron.

Figure 6.8 shows the 6-input addition (6-synapse neuron) circuit which is 

based on the 2-input addition circuit presented in section 4.2. Figures 6.9, 6.10, and 

6.11 show three simulation cases: i) the summation result saturates to the minimum 
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when all inputs are large and negative, ii) the summation result is in the middle of the 

range when all inputs are zero, and iii) the summation result saturates to the maximum 

when all inputs are large and positive. Figures 6.12 and 6.13 are graphs of the 

simulation results for the voltage and the pulse time output over the full dynamic 

range. The graphs show a behavior similar to that of the sigmoid and hyperbolic 

tangent transformation functions shown in the previous subsection. One difference 

though which can be easily seen by looking at the simulation results in Figure 6.13, is 

that the output is not zero when all inputs are zeros. It is negative. This is due to some 

nonlinearity in the output voltage of the addition circuit which happens during the first 

half of the input frame but does not happen in the second half. During the first half of 

the input frame, all inputs cause the output capacitor to be charged in the positive 

direction. The voltage on the capacitor is linear initially, but then becomes nonlinear 

when it is high enough to reduce the source-drain voltage of the PMOS current 

sources and cause them to operate in the triode region. This decreases the positive 

current charging the capacitor. On the other hand, during the second half of the input 

frame, all inputs cause the capacitor to be charged in the negative direction. The 

voltage on the capacitor stays linear because the source-drain voltage of the NMOS 

current sources remains high enough to keep them in the saturation region. This keeps 

the negative current charging the capacitor constant. The difference in the output is 

negative because the negative current remains constant while the positive current 

decreases when the PMOS current sources begin to operate in the triode region. 

This inaccuracy will be a problem for ANNs which use back-propagation 

based learning [52] but not for those which use weight perturbation based learning 

[60-63], since the back-propagation method requires the derivative of the neuron 

transfer function to compute the gradient descent of the error with respect to the 

weight, while the weight perturbation method approximates the gradient descent using 

the finite differences. A perturbation is injected at the weight and the error in the 

network output is measured before and after the injection to approximate the gradient 

descent [4].
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Figure 6.9. Simulation of the 6-synapse neuron: summation result saturates down to 
the minimum when all inputs are large in negative.

Figure 6.10. Simulation of the 6-synapse neuron: summation result is in the middle of 
the range when all inputs are zero.
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Figure 6.11. Simulation of the 6-synapse neuron: summation result saturates up to the 
maximum when all inputs are large in positive.
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Figure 6.12. Simulation results of the 6-synapse neuron: Vout versus inputs (t+ - t-).
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Figure 6.13. Simulation results of the 6-synapse neuron: pulse output (t+ - t-) versus 
inputs (t+ - t-).

6.1.3. Training and Programming and their Impact on Storage and 
Resolution

The way we train and program an ANN has a big impact on the cost and 

complexity of memory storage and therefore on resolution. ANNs can learn or be 

trained to perform a certain task by providing it with a desired output. The learning 

algorithm such as the error back-propagation in [52] can be used to calculate the new 

values of synaptic weights based on the error. This process of updating the synaptic 

weight values repeat until the error reaches to some acceptable minimum value. 

Assuming that the topology of the network is fixed, programming the network is then 

done by the synaptic weights. There are two types of programmable ANNs: non-

adaptive and adaptive. Non-adaptive networks learn once and then they “freeze” the 

optimum weights. Adaptive networks learn continuously, updating the synaptic 

weights during normal operation.  Many applications require this kind of adaptive 

signal processing as in [53] and [54] for example.
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Non-adaptive networks require memory cells that can store the programming 

information (the synaptic weights) for an indefinite period of time. Long term memory 

cells can be digital such as dynamic or static random access memory (RAM) or they 

can be analog such as self-refreshing capacitor based cells as in [55] and [56], which 

rely on the periodic refresh of the voltage on a capacitor to predefined quantized 

voltage levels to avoid loss of voltage (charge) through leakage currents. The 

resolution is defined as

FR
resolution


 (6.4)

where δ is the step size and FR is the full range. Therefore, for networks that use 

binary values for the synaptic weights, the resolution is

N
resolution




2

1 (6.5)

where N here is the number of bits. For example, if N=6 then the resolution is 1.56%. 

For networks that use self-refreshing capacitor based analog cells, the resolution 

depends on the steps between the predefined quantized voltage levels. If the maximum 

step size is 20 mV and the full range is 1 V then the resolution is 2%.

Although we are not implementing the learning algorithm hardware here, we 

suggest that such an implementation should generate the new values for synaptic 

weights in the IPI form. This will allow weights to be stored in the capacitor that 

corresponds to the weight input in the IPI multiplication circuit so that no extra 

capacitors are needed for storing the weights since the capacitor is already a part of the 

multiplication circuit.
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6.1.4. Estimation of Accuracy (Resolution), Power, Area, Dynamic 
Range, and Speed   

As we explained above, the overall accuracy (or resolution) of the final outputs

(solutions) of the full ANN will depend mainly on the resolution of the synaptic 

weight signals generated by the learning hardware and how the output of the neuron 

changes with respect to their change. In IPI form, the full range of the weight signal in 

our system-level simulation is 20ns which corresponds to 600mV. For non-adaptive 

networks which require long-term storage of the weight value, the capacitor voltage 

need to be refreshed to one of the pre-defined quantized voltage levels. If we choose 

the number of levels to be 64 for example then the step size would be about 9mV and 

the resolution would be 1.56%. For adaptive networks, no refreshing is needed and the 

resolution should be better since the weight value is not quantized, i.e., it has a 

continuous range of values. However, the learning hardware will be more complex,

since it needs to learn and keep updating the weights while the network is working.

The system-level design consumes 6.72 mW per synapse (multiplier) and 1.76

mW per neuron (adder) plus 0.16 mW per adder input. So, the total average power 

consumption of the system-level design of one neuron with 6 synapses is 43 mW. In 

general, the following formula can be used to compute the total average power 

consumption in mW for a system of one neuron with N synapses

)16.076.1(72.6 NNPTotal  (6.6)

The power consumed per synapse is about 4 times the power consumed by the neuron.

The system-level design occupies 51.84x10-3 mm2 per synapse and 6.58x10-3

mm2 per neuron plus 0.55x10-3 mm2 per neuron input. So, the total area needed for the 

system of one neuron with 6 synapses is 321x10-3 mm2. In general, the following 

formula can be used to compute the total area in 10-3 mm2 for a system of one neuron 

with N synapses
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)55.058.6(84.51 NNATotal  (6.7)

The area needed per synapse is about 8 times the area of the neuron.

From the simulation results graph in Figure 6.11, the dynamic range of the 

output including the nonlinear and saturation regions is 2.5 V. Table 6.1 has a 

summary of the system-level resolution (based on the assumption of 64 quantized 

capacitor refresh levels), power consumption, area, dynamic range, and speed results 

for one neuron with 6 synapses.

Resolution 
(%)

Average Power 
(mW)

Area           
(10-3 mm2 )

Frame speed 
(MHz)

Dynamic range  
(V)

1.56 43 321 50 2.5

Table 6.1. Summary of system-level resolution, power consumption, area, dynamic 
range, and speed results for one neuron with 6 synapses.

6.2. Applications and Comparisons with Other Implementations

The IPI technology can be useful in many applications. Among these 

applications are sensors, instrumentation, communications, telemetry, signal 

processing, and ANNs. In communication, the signal can be sampled and converted to 

an IPI pulse stream using the V-to-IPI converter (modulator). The pulse transmission 

method can be electrical (wired or wireless), acoustic, or even optical if necessary. 

Along the way, the pulses can be refreshed using a digital buffer. On the receiver side, 

the SNR can be improved by averaging the pulse stream. If necessary, the pulse 

stream can be converted back to the analog domain using the IPI-to-V converter

(demodulator). In sensors/instrumentation, the sensor senses the analog quantity 

(temperature, pressure, light, etc) and generates a voltage or current quantity. If it is 

current then it can be easily converted to voltage by directing it through a resistor or 

by accumulating it as charge on a capacitor. The voltage signal is then sampled and 
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converted to an IPI pulse stream using the V-to-IPI converter. Telemetry combines 

both instrumentation and communications, and can be performed as we just explained 

for both of them. If the distance is very long and inserting repeaters (digital buffers) 

along the pulse trip is not possible then optical communication can even be used and 

the pulses can be transmitted as light pulses (infra-red or laser). In signal processing, 

the dot-product and the multiply-and-accumulate (MAAC) operations are heavily used 

operations. The IPI addition and multiplication can be used together to perform these 

operations in the time domain, as we demonstrated for ANNs in the previous section.

In this section, we will compare our IPI based conversion and computation 

implementations with other analog and digital implementations. We will also tie our 

comparison findings with the applications that we just discussed above. For detailed 

descriptions of the analog and digital implementations with which we are comparing, 

the interested reader is referred to the reference section. Since addition and subtraction 

are easier to design and less expensive in terms of power, area, and speed than 

multiplication and division, we will focus our comparison on multiplication and 

division. When comparing against digital implementations, we will also compare V-

to-IPI against analog-to-digital conversion (ADC).

6.2.1. Comparison with Analog Implementations

Mead in [5] and Jabri et al. in [4] describe several analog techniques and 

circuits for arithmetic computation including addition and multiplication. Addition and 

subtraction of voltages and currents in the analog domain can be performed by simply

utilizing Kirchoff’s voltage and current laws, respectively. As we will see in this 

subsection, analog computation in CMOS circuits depends directly on the MOSFET 

transistor I-V characteristics in order to implement a certain arithmetic operation. The 

following are simple equations that approximately model the MOSFET transistor I-V 

characteristics in the triode and the saturation regions, respectively,
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where VGS is the gate to source voltage, VDS is the drain to source voltage, Vt is the 

threshold voltage, W is the channel width, L is the channel length, µ is the carrier 

mobility, and Cox is the gate oxide capacitance per unit area and is equal to

ox

ox
ox t

C


 (6.10)

where εox and tox are the oxide permittivity and thickness, respectively.

Han and Sanchez-Sinencio in [26] survey all types and architectures of analog 

CMOS multipliers. All analog multipliers use the same basic idea. Similar to the 

transconductance multiplier that we described in subsection 2.2.2, all analog 

multipliers utilize the MOSFET transistor I-V characteristics in the triode or the 

saturation region, to produce intermediate results. Then, they use addition and

subtraction to add and subtract these intermediate results to or from each other, to

cancel undesirable nonlinear terms and keep only the desirable linear term kxy, where 

k is a scaling factor and x and y are the two analog inputs to be multiplied. The 

following equation is an example of this,

          
           kxy

yYxXyYxX

yYxXyYxX
kz 8

22

22

















 (6.11)

where X and Y are DC common mode signals, and x and y are the small signal inputs 

to be multiplied. The DC common mode signals are also used to correctly bias the 

transistors that will receive the inputs. Here is how (6.11) can be implemented using 

MOSFET devices:
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1. Differential small signals ±x and ±y need to be generated and DC-shifted by X

and Y, respectively.

2. Then, four voltage adders are used to calculate the four terms (X±x+Y±y).

3. Then, individual results from the adders are squared by applying them to the 

gates of identical MOSFET transistors operating in their saturation region. This 

will produce four currents according to (6.9).

4. Then, these currents (squaring results) are added and subtracted from each 

other according to equation (6.11). The output current will be 8kxy where the 

scaling factor k in this case is equal to 

L

W
Ck ox (6.12)

Table 6.2 is a comparison of the IPI multiplier versus analog CMOS 

multipliers: [28] is based on the Gilbert multiplier cell [27], [29] is a transconductance 

multiplier operating in the linear (triode) region as does [14] and [15], [30] and [31] 

are transconductance multipliers operating in the saturation region, and the last three 

multipliers are described in [110] and [111] and they are transconductance multipliers 

operating in the saturation region and based on the Vgs2 technique (they are classified 

as VII type in [26] and are similar to the example above). In [111], the adder and 

subtractor subcircuits on which the last three multipliers are based, are referred to as 

Fig. 1(a), (b), and (c), respectively. To be consistent with [111] while avoiding 

confusion with the figures in this thesis, we will refer to them as [111](a), (b), and (c), 

respectively. Table 6.3 shows a comparison of the IPI divider versus analog dividers. 

Sanchez-Sinencio et al. in [28] describe how to synthesize nonlinear functions 

including an analog divider from transconductance amplifiers (multipliers). Liu and 

Chang in [32] describe a divider based on the MOSFET square-law and the pool 

(current-equilibrium) circuits in [33]. Vlassis and Siskos in [34] describe a divider that 

consists of a voltage-variable resistor and a current conveyer that performs voltage and 

current follower operations. Unfortunately, we did not find analog implementations
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that use 0.35 um processes or a comparable process to compare our IPI multiplier 

with, except the ones in [111]. Therefore, before we make any comparison, we will 

discuss the impact of technology scaling on area, power, and speed.

Error
(%)

Speed    
(MHz)   

(Mop/s)

Average 
Power 
(mW)

Area      
(mm2 )

Dynamic 
range 
(mV)

Power 
supply  

(V)

CMOS 
Process 

(um)

IPI 
multiplier

3, 5 100, 10           
50, 5

6.72 51.8x10-3 600 3.2 0.35

[28] 3.5 1KHz 
Continuous

10 154x10-3 660 ±5 3

[29] 1 1KHz N/A N/A ±1000 ±5 Discrete 
chips

[30] 0.89   
@20KHz

2.2 (-3dB) 
Continuous

2.76 22.7x10-3 440 1.2 0.80

[31] 2
@20KHz

5 (-3dB) 
Continuous

N/A N/A ±800 ±1.5 0.80

[111](a) 17 (body)
±16 (Vt)

N/A N/A N/A 200 3.3 0.35

[111](b) 27 (body)
±10  (Vt)

48 (-3dB) 
Continuous

N/A N/A 200 3.3 0.35

[111](c) -5.8 (body)
±16 (Vt)

84 (-3dB) 
Continuous

N/A N/A 200 3.3 0.35

Table 6.2. Comparison of the IPI multiplier versus analog multipliers. Results in Italic
are from simulation. Errors in [111] are for the adder and subtractor subcircuits.

Accuracy 
(%)

Speed    
(MHz)   

(Mop/s)

Average 
Power 
(mW)

Area    
(mm2 )

Dynamic 
range 
(mV)

Power 
supply  

(V)

CMOS 
Process 

(um)
IPI divider 2, 4 100, 10           

50, 5
3.36 25.9x10-3 600 3.2 0.35

[32] 1 9 (-3dB) 
Continuous

N/A N/A 500 ±5 2

[34] 5 
@20KHz

400 (-3dB) 
Continuous

N/A N/A ±1500 ±2.5 2

Table 6.3. Comparison of the IPI divider versus analog dividers. Results in Italic are 
from simulation.
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A good discussion of how technology scaling can impact area, power, and 

speed, can be found in [2]. Suppose S is the scaling factor (if greater than 1, the feature 

size decreases). Table 6.4 is a summary of the scaling relationships among device and 

circuit parameters. As transistor dimensions decrease by a factor of S, their area 

decreases by a factor of S2.  In examining the impact of scaling on power and speed, 

we will consider two cases. The first case is full scaling where all horizontal and 

vertical dimensions, as well as threshold voltages and supply voltage VDD, are reduced 

by the same factor S. The second case is when supply voltage VDD and threshold 

voltages are kept constant. Impact on power and speed can be found in a similar way if 

voltages are scaled by a factor different than S. DC power consumption is proportional 

to the product IDVDD. We can find from (6.9) and (6.10) that as oxide thickness tox

decreases by a factor of S, the drain current ID decreases by a factor of S for reduced 

VDD, and increases by a factor of S for constant VDD. This means that DC power 

consumption decreases by a factor of S2 for reduced VDD, and increases by a factor of 

S for constant VDD. Speed is proportional to current and inversely proportional to

capacitance and voltage swing (Speed α I/CV). From (6.10), as oxide thickness tox

decreases by a factor of S, Cox increases by a factor of S. But since the area of the gate 

is decreased by a factor of S2, its capacitance is decreased by a factor of S. This means 

that speed increases by a factor of S for reduced VDD and by a factor of S2 for constant 

VDD. Average AC power consumption of CMOS circuits is proportional to frequency

(speed) in addition to the voltage swing and the average current charging the 

capacitive load (average AC power α fIavV). The average current in turn is 

proportional to the load capacitance and the voltage swing. Therefore, the average AC 

power consumption is proportional to frequency, load capacitance, and the square of 

voltage swing (average AC power α fCV2).  This means that average AC power 

consumption decreases by a factor of S2 for reduced VDD, and increases by a factor of 

S for constant VDD. This is similar to the conclusion we have reached for DC power 

consumption. 
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Parameter Full scaling Constant voltage

W, L, tox 1/S 1/S

VDD, Vt 1/S 1

Cox 1/S 1/S

ID 1/S S

Area 1/S2 1/S2

DC power consumption 1/S2 S

AC power consumption 1/S2 S

Speed S S2

Table 6.4. Scaling relationships among CMOS device and circuit parameters.

When comparing our IPI multiplier with the analog multipliers in Table 6.2, 

we will discuss the issues surrounding local computation and the issues surrounding 

global (long wire) computation. When considering local computation, analog suffers 

from the following problems [26], [111], and [1]:

1. Body effect.

2. Device mismatch.

3. Mobility degradation.

4. Channel length modulation.

5. Velocity saturation in short-channel devices [1].

Excellent description and explanation of these problems can be found in [1].

The body effect is a main source of errors in analog computation. In CMOS 

circuits, the body of the transistor is usually connected to a constant voltage, which is

the maximum voltage (VDD) for PMOS, and the minimum voltage (VSS or the ground)

for NMOS. The reason for this is to avoid the possibility of forming forward-biased P-

N junctions between the body and the drain or the source, to ensure correct operation.

If the source voltage is changing while the body voltage is constant then VSB is

changing. Changes in VSB will cause changes in the threshold voltage because VSB

changes the potential required to produce channel surface inversion, which is
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necessary for the channel to start conducting current. Therefore, this will cause 

changes in the drain current. From a small signal point of view, the body acts like a 

second gate. The body transconductance is typically about 0.1 to 0.3 of the main gate 

transconductance [1]. To explain how the body effect impacts the analog computation, 

we will use Figure 6.14. The figure shows the voltage adder used in the analog 

multiplier [111](b) to add the input voltages X±x and Y±y as in (6.11).

Let us first explain the ideal operation of the adder while ignoring all the 

problems described above. For ideal operation, each two transistors in series have to 

be identical. M1 has to be identical to M2 and M3 has to be identical to M4. Also, all 

of them have to be operating in saturation. Since the same current flows in M1 and M2 

and they are identical and operating in saturation, their gate-source voltage is the 

same. This means

121 VVVVV DDgsDDd  (6.13)

By using the same reasoning for the PMOS pair, M3 and M4, and using (6.13), we can 

find

  12124232 VVVVVVVVVV dDDsgsgout  (6.14)

which is the ideal addition result we seek. However, M2 and M3 have the body effect 

problem because their source terminals are not connected to the ground and VDD, 

respectively, as their body terminals. As we discussed above, this will change their 

threshold voltages. For NMOS, it will increase, and for PMOS, it will decrease 

(become more negative). This means their gate-source voltages are not equal to those 

of M1 and M4, respectively. For example, Vgs2 needs to be higher than Vgs1 so that M2 

can produce the same current as M1 because its threshold voltage is higher than that of 

M1. This will make the addition deviate from its ideal operation and therefore cause 

some errors.
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Figure 6.14. Analog voltage adder used in the analog multiplier [111](b).

Device mismatch due to process variations in the device parameters such as 

threshold voltage Vt, oxide thickness tox, channel width W, and channel length L, are 

also a main source of errors in analog computation. In (6.11), we assumed that all 

MOSFET transistors used for squaring, are identical and have the same scaling factor 

k. Mismatch in tox, W, or L will make our assumption invalid as (6.12) suggests. If we 

rewrite (6.11) without making that assumption then the new equation will be

          
          
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yYxXkyYxXk

yYxXkyYxXk
z (6.15)

where k1, k2, k3, and k4 are the different scaling factors. From 6.15, we can see that 

undesirable terms may not cancel with each other because of the different scaling 

factors. The result will have terms that cause DC offset errors such as XY, X2, and Y2. 

It will also have terms that cause nonlinearity errors such as x2 and y2. Moreover,

mismatch in the threshold voltages of the squaring transistors will also affect the 

voltage being squared, as (6.9) suggests, causing more errors. Device mismatch also 

causes errors in the addition and subtraction results. Consider our adder circuit 

example above. If two transistors in series (M1 and M2 or M3 and M4) are not 
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identical then there will be errors in the addition result because their gate-source 

voltages are not equal.

Mobility degradation is another main source of errors in analog computation. 

When the vertical electrical field between the gate and channel increases, it forces the 

carriers closer to the surface of the silicon, where surface imperfections impede their 

movement from the source to the drain, reducing mobility [1] and [112]. For 

simplicity, this effect can be modeled by the following equation

 tgs

n
eff VV 






1

(6.16)

where µn is the mobility with zero vertical field, and θ is inversely proportional to the 

oxide thickness. For 100 Å oxide thickness, θ is typically in the range from 0.1 V-1 to 

0.4 V-1. Typical oxide thickness of a 0.4 um process is 80 Å [1].

Channel length modulation is another source of errors in analog computation. 

Ideally, if the transistor is in saturation, its current should stay constant even if the 

drain-source voltage VDS changes. This ideal I-V relationship in saturation is described 

by (6.9). In practice, however, the drain-source voltage VDS does modulate the current 

slightly. The physical explanation of this is that VDS modulates the channel length by 

modulating the width of the depletion region between the drain and the channel pinch-

off point [1]. To account for this effect, (6.9) is rewritten as

   DStGSox VVV
L

W
CI   12 (6.17)

where λ is called the channel length modulation parameter. It is difficult to calculate λ

from the device structure and effective values of it are usually obtained from 

experimental measurements. λ is inversely proportional to the effective channel length. 

Therefore, channel modulation effects can be reduced by increasing the channel length

at the expense of increasing the area and slowing the speed down [1] and [111].

Typical values of λ are in the range from 0.05 V-1 to 0.005 V-1 [1].
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The most important short-channel effect in MOSFET transistors stems from 

the velocity saturation of carriers in the channel [113]. When VDS is low and/or the 

channel is long, the horizontal electric field is low, and the relationship between the 

carrier velocity and the field is linear, leading to the square-law I-V characteristics 

defined in (6.8) and (6.9). At high field values, however, the carrier velocity 

approaches a constant called the scattering-limited velocity vscl. This phenomenon 

causes the MOSFET I-V characteristics to deviate from the classical square-law 

characteristics and to be more linear. Therefore, in processes with 1 um or less 

capability, many transistors in analog computation circuits may need to be deliberately 

designed to have lengths larger than the minimum, so they can be approximated by the 

square-law models [1]. This effect and the channel length modulation effect are clear 

examples on how analog computation circuits do not scale well in submicron, deep 

submicron, and nano technologies.

We are now ready to compare our IPI multiplier with the analog multipliers in 

Table 6.2. We will focus the comparison on the three multipliers in [111] for the 

following two reasons:

1. The multipliers in [28]-[31] are implemented using a different process.

2. The reported nonlinearity error in [28]-[31] is very small, but unfortunately the 

experimental results do not have data on how accuracy changes with respect to 

body effect, device mismatch due to process variations, mobility degradation, 

or channel length modulation. Reference [111] does have such data at least for 

the body effect and threshold voltage mismatch.

From the table, we can see that our IPI multiplier is, in general, comparable to the 

analog multipliers in terms of area and power consumption. However, as discussed 

above, due to the channel length modulation effect and the carrier velocity saturation 

effect, the analog multipliers do not scale well in advanced processes, and cannot take 

advantage of the small area and the high speed their short-channel devices can offer.

On the other hand, the IPI multiplier and the other IPI circuits have the channel length 

modulation problem only in the current sources that charge the capacitors. Therefore, 



97

we have used long-channel devices for these current sources. All the other transistors 

do not have the channel length modulation problem, and therefore we were able to use 

the minimum length for these transistors and take advantage of the small area and the 

high speed they can offer. For the adder subcircuits used in the multipliers [111](a) 

and [111](b) and the subtractor subcircuit used in the multiplier [111](c), the body 

effects accounted for percentage errors of 17%, 27%, and -5.8%, respectively, in the 

output voltage of each subcircuit from its ideal value. Body effect is not a problem in 

our IPI circuits because the source terminals of the PMOS and NMOS current sources 

are connected to their body terminals, which are connected to VDD and VSS (ground), 

respectively. Body effect can be reduced by using a twin-well process that has isolated 

wells and allows the transistor source to be connected to its well (body) [114] and 

[115]. These extra processing steps are not needed for our IPI circuits. Using 

mismatch data in Vt provided by the foundry, worst case mismatch errors in the output 

voltage accounted for about ±16% for [111](a) and [111](c), and about ±10% for 

[111](b). In the IPI circuits, if there is an inaccuracy or a mismatch in the capacitors or

the current sources which generate the currents that charge the capacitors, then they 

will cause a scaling error in the output. Whereas in analog multipliers, device 

mismatch causes DC offset and nonlinearity errors in addition to the scaling error. If 

an exact scaling factor is desired then scaling errors in the IPI circuits can be 

minimized by calibration, as we will discuss in section 7.2. As we explained above, 

mobility degradation is a primary source of errors in analog computation. Our IPI 

circuits do not have the mobility degradation problem because the IPI inputs only 

control the ON/OFF switching of the input transistors and do not modulate the 

magnitudes of the currents passing through them. The currents magnitudes are decided 

by the current sources, which they do not have the mobility degradation problem 

because their gate-source bias voltages (their vertical fields) are fixed.

With regard to minimum power supply requirements, several low-voltage 

analog multipliers have been reported [30] and [31]. As examples, the multipliers in 

[30] and [31] can operate from 1.2 V supply and ±1.5 V (3 V total) supplies, 
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respectively, while achieving a good dynamic range of 440 mV and ±800 mV, 

respectively. The multiplier in [30] achieves a lower supply voltage because it uses 

only one stack of transistors with resistors while the one in [31] uses two stacks with 

resistors. Our IPI multiplier operates from 3.2 V (±1.6 V). Our IPI circuits do not have 

many stacks of transistors between the power rails. There are only two transistors 

between VDD (3.2 V) and Vmiddle (1.6 V). One serves as a current source and the other 

serves as an ON/OFF switch. The ON/OFF switch can be sized and strongly turned on 

so that its voltage drop is minimized.  This is almost like having only one transistor 

(the current source) between VDD (3.2 V) and Vmiddle (1.6 V). Therefore, our IPI 

circuits should be able to run at a voltage lower than 3.2 V, although in our work, we 

have chosen 3.2 V which is close to the TSMC foundry recommendation of 3.3 V

[118]. Optimizing the IPI circuits for low-voltage operation in deep submicron 

technologies such as 0.18 um or 0.13 um or even nano technologies is a promising 

area for future research.

When considering issues surrounding global long-wire computation, IPI has all 

the local computation advantages above, as well as the advantages of communication 

since the computation involves communication of the signals over a relatively long 

distance (long wire). As we have discussed in the introduction chapter, the main 

advantage of IPI in communication is its immunity to noise [6], [7], [16], [101], and 

[102], process variations, temperature, and reference voltage, and its immunity to the 

problems that challenge complex mixed-signal SOC integration in deep submicron 

and nano technologies, such as substrate coupling, cross-talk, transmission line effects, 

threshold inconsistency, subthreshold currents, hot-electron effects, and doping 

variability [21] and [64-68].  The reason is that IPI encodes the information using the 

time between the pulses rather than their magnitude. This is basically converting the 

analog information to carefully timed signal transitions that are similar to digital 

schemes. A pulse is detected if it is above a certain voltage threshold, exactly in the 

same way a binary 0 or 1 value is detected in the on-off digital scheme [105]. Because 

of this also, pulses can be easily transferred and refreshed using digital buffers, unlike 
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analog signals which are sensitive to noise and degrade in magnitude especially if they 

need to travel over a relatively long distance.  This makes pulses a much better choice 

for inter-chip communication [6] and [7], or even for transferring the signal within the 

same chip if the wire is relatively long or noise or cross-talk, for example, is a concern 

as in SOC.

Switched-capacitor (SC) circuits are clocked sampled-data analog systems, and 

therefore they occupy an intermediate position between fully analog (continuous-

time/continuous-amplitude) and fully digital (discrete-time/discrete-amplitude) 

systems [127]. In analog signal processing, SC filters have certain advantages over 

active RC filters. The most important advantages are the accuracy and the center (cut-

off) frequency tunability [128] and [131]. These advantages come from the ability of

the SC circuits to simulate the resistor element needed in active RC filters using an on-

chip capacitor and two switches such that the value of the simulated resistor is

C

T
R  (6.18)

where T is the cycle time of the clock controlling the switches. A time constant, say 

τ2=R1C2 is then equal to

1

2
212 C

C
TCR  (6.19)

From (6.19), the cut-off frequency of the SC filter can by easily and accurately 

tuned using only an external accurate clock with no need for external components such 

as resistors or capacitors. Also from (6.19), the cut-off frequency is dependent on the 

ratio of the capacitor values (not the values themselves), which is very accurate

especially if the capacitors are placed close to each other [128]. SC circuits can also be 

used to implement other operations such as ADC, DAC, integration (accumulation), 

and amplification [128]. Some multipliers based on the SC techniques have also been 

reported [124-126]. Similar to the continuous analog multipliers described above, they 
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rely on identical CMOS transistors operating in the triode region [124] and [125] or 

the saturation region [126]. They also use subtraction to cancel undesired DC and 

nonlinear terms. Therefore, device mismatch and deviation from the square-law I-V 

MOSFET characteristics will cause DC offset and nonlinearity errors. The multiplier 

in [126] does not have the body effect problem but the multipliers in [124] and [125] 

do. All of them have the mobility degradation problem. Our IPI implementations and 

SC implementations both need to use capacitor values large enough to reduce 

inaccuracy due to parasitic capacitances. IPI is comparable to SC in terms of area and 

power consumption since they both use capacitors, switches, and OP-AMPs, and with 

comparable numbers. However, what makes our IPI implementations different from 

the SC implementations is that the inputs to the SC circuits are voltages and the 

outputs are also voltages. Therefore, SC circuits, as continuous analog circuits, are not 

suitable for long-wire or inter-chip communication or computation, and the signal has 

to be converted to digital or pulses for transmission if high noise immunity is needed.

6.2.2. Comparison with Digital Implementations

It is important here to remember that the IPI representation is mainly intended 

for signals that are originally analog not digital. So, it is not completely fair to the IPI 

computation if we compare it against other digital computations while forgetting that 

digital computation needs analog-to-digital conversion (ADC) before they can have 

their digital inputs. So, we will first compare the V-to-IPI conversion against some 

ADC implementations.

There are multiple techniques for ADC depending on the speed, accuracy (or 

bit resolution), area, power and other design requirements. Table 6.5 is a comparison 

of the V-to-IPI converter versus various ADC implementations. The 1-step full-flash 

ADC like [35] is the fastest but the most expensive in terms of area and power since it 

needs 2N-1 comparators for N-bit resolution. The folding and current interpolating

ADC like [36]-[39] achieves high speed but with less number of comparators. The 2-
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step flash ADC like [40] also achieves a relatively high speed with less area and power 

than the 1-step full-flash ADC by the use of subranging (two ADCs are used, one for 

the coarse bits and another for the fine bits). Test results of the V-to-IPI show 

accuracy better than 96% at 10 MHz and SPICE simulation results show accuracy 

better than 98% at 100 MHz. This is equivalent to 5.6-bit digital accuracy.

From the results in table 6.5, we can see that the ADC with the least area and 

power consumption at 3.3 V power supply occupies 59 times the area and consumes 

36 times the power of our V-to-IPI converter. Its sampling speed is comparable, 80 

MS/s versus 100 MS/s. However, its resolution is 8-bit versus 5.6-bit. The results in 

the table show that our V-to-IPI converter is very compact and consumes very low 

power compared to all ADCs. This makes it a significantly better choice than ADC for 

applications such as sensors, instrumentation, communications, and telemetry if 98% 

accuracy, which is equivalent to 5.6-bit accuracy, is adequate.

Resolution 
(bits)

Speed 
(MS/s)

Average 
Power 
(mW)

Area      
(mm2 )

Power 
supply  

(V)

CMOS 
Process 

(um)
V-to-IPI 98%(5.6) 100 2.24 5.12x10-3 3.2 0.35

[35] 6 500 225 0.8 3.3 0.35
[36] 8 80 80 0.3 3.3 0.50
[37] 8 200 210 0.96 3.0 0.35
[38] 6 50 20 4.8 1.0 0.35
[39] 7 300 200 1.2 3.3 0.35
[40] 10 25 195 0.66 3.3 0.35

Table 6.5. Comparison of the V-to-IPI converter versus ADC implementations.

Table 6.6 is a comparison of the IPI multiplier versus some digital 

implementations: a pipelined multiplier [41], a multiplier based on redundant-addition 

with improved redundant-binary to normal-binary conversion of the final result [42], a 

full-array multiplier [43], and a look-up table estimated based on the 64M bit DRAM 

implementation in [44]. The size of the look-up table is 4K x 12-bit. The inputs are 
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each 6-bit and the output is 12-bit. The area and power for the look-up table were 

calculated from the area and power results of the 64 M bit DRAM in [44] by simple 

averaging. The access time and cycle speed are difficult to estimate but they will be 

much faster for the look-up table since it needs a much smaller address decoder. We 

have chosen 6-bit resolution for the look-up table so it is comparable to the equivalent 

resolution of the IPI multiplier (97% is equivalent to 5.6-bit resolution). The actual 

64M bit DRAM has a 20 ns access time for 3.3 V power supply and draws 57 mA of 

current at 80 ns cycle time. The memory cell is a stacked type capacitor with a cell 

size of 3.04 um2.

Resolution 
(bits)

Speed 
(MHz)

Mega 
operations 
per second          

(Mop/s)

Average 
Power 
(mW)

Area      
(mm2 )

Power 
supply  

(V)

CMOS 
Process 

(um)

IPI multiplier Eqiv. to 
5.6x5.6

100 33.3 6.72 51.8x10-3 3.2 0.35

[41] 8x8 300 300 if full 
pipeline

52.4 
36.6

N/A 3.3 0.6

[42] 54x54 100 100 540   
5.8

9.4 
101x10-3

3.3 0.50

[43] 54x54 100 100 870   
9.4

12.49 
134x10-3

3.3 0.50

Look-up table 
estimate based on 

DRAM in [44]

6x6 (input) 
12 (output)

>50 >50 0.6 
@80ns 
cycle

304x10-3 3.3 0.50

Multiply-and-
Accumulate[45]

32x32 
64(Accum)

56.5 56.5 330 2.35 2.9 0.40

Multiply-and-
Accumulate[46]

12x12 
27(Accum)

200 200 1300 9.25 5 1

Table 6.6. Comparison of the IPI multiplier versus digital multipliers. Area and power 
results in Italic are estimates for an equivalent 5.6-bit x 5.6-bit multiplier.

When comparing the results in the table, we should remember that the area and 

power consumption of digital multipliers (except sequential multipliers which use one 

adder repeatedly), increase exponentially with the bit resolution. For example, a 16x16 
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full-array multiplier needs area and power 4 times more than an 8x8 multiplier of the 

same type. So, we need to keep this consideration in mind to be fair to the high 

resolution digital multipliers in the table. The area and power results in Italic are 

estimates if the high resolution multipliers are shrunk to a smaller multiplier of 

hypothetical size of 5.6-bit x 5.6-bit. We can conclude from the results in the table that 

digital multipliers in general are comparable in terms of power and area to the IPI 

multiplier. The look-up table DRAM solution however consumes the least power of 

all, about 10 times less power than the IPI multiplier. As we emphasized in the 

beginning, judging between the IPI solution and any digital solution should be based 

on the total cost of conversion and computation and not only on one of them. As we 

have found above, IPI conversion is much less expensive than the least expensive 

ADC. So, the IPI solution is better than the digital in applications where 98% accuracy 

(5.6-bit resolution) is adequate. This is particularly true if the number of analog inputs 

(conversions from analog) is large to the point that the cost of ADCs outweighs the 

cost of computations. These conclusions are also valid for the other arithmetic 

functions: division, addition, and subtraction.

The fan-out of our IPI circuits is large, as in digital CMOS, since the pulse 

output drives CMOS logic gates. However, in both IPI and digital, the output rise and 

fall times increase as the number of inputs the output is driving increases because the 

load interconnect and gate capacitances increase. The fan-in of our IPI circuits is also 

large since each input has its own gates and switches. This makes them very scalable 

to any number of inputs within the dynamic range of operation, of course.
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7. Conclusions and Future Work

In this Chapter, we will summarize the importance of this work and discuss 

future areas of research.

7.1. Conclusions

Analog signal representation is essential wherever there is a need to interface 

with the analog world or to satisfy certain design requirements such as power 

consumption, area, or speed. Analog signal representation is also useful when 

integrating analog mixed-signal and RF functions into complex SOCs. Moreover, data 

is usually obtained from sensors in analog form (voltage or current). The analog 

signals are not immune to noise and therefore cannot be used for data transfer. 

Therefore, they are usually converted into digital immediately and transmitted 

digitally. This whole path also has an inverse which would be used, for example, in 

actuators. 

In this thesis, we have proposed an alternative approach that converts the

analog signal into a pulse stream, using time (IPI) rather than magnitude to represent 

the signal values. Our approach is suitable and robust in both 

conversion/communication and computation. Its capabilities in both 

conversion/communication and computation are useful because they eliminate the 

need to convert to/from other analog or digital domains for computation, when 

needed. One good example where computation would be needed with communication 

is the use of averaging at the front end of the receiver to improve the SNR. We 
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showed that our approach is hybrid in that it blends noise immunity of digital with the 

compactness and low power consumption of analog.

Other pulse time (IPI and PWM) representations where reviewed in this thesis. 

We showed that our approach is more suitable when negative, zero, and positive 

values are needed, because our representation uses both parts of the frame (t+ and t-) 

not just one part, which eliminates the need to keep track of offsets during 

computation. The other approaches can convert to analog or digital and use their 

techniques for computation but each method has its own disadvantages. Considering 

only local analog computation, it suffers from serious problems such as the body 

effect and the mobility degradation effect. Choosing digital computation means that 

we have to convert from these time representations into digital, which requires a very 

fast counter and clock assuming that their conversion speed is as good as ours. This is 

not practical and therefore speed has to be significantly slowed down to accommodate 

the digital counter operation. Our approach allows for both conversion/communication 

and computation in the same time domain and at comparable speeds.

Different conversion schemes, linear and nonlinear (logarithmic), and also 

different signaling schemes, synchronous and asynchronous, were investigated. Our 

representation is linear and synchronous. The linear scheme provides better accuracy, 

is less complex to realize in CMOS, and is more suitable for computation than the 

logarithmic scheme. These advantages outweighed the advantage of higher bandwidth 

(speed) due to time compression in the logarithmic scheme. The synchronous scheme

is more suitable for computation than the asynchronous scheme, especially on 

negative values. This advantage outweighed the advantage of higher bandwidth 

(speed) coming from the fact that the asynchronous scheme does not allocate a full 

time frame for each value as the synchronous scheme does. 

We demonstrated the feasibility of our novel IPI representation in both 

conversion/communication and computation by developing a class of novel methods 

and circuits for basic conversion and computation based on it. These methods and

circuits include IPI-to-V conversion, V-to-IPI conversion, and the basic computations: 
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addition, subtraction, division, and multiplication. These methods and circuits were 

successfully demonstrated through mathematical derivations, complex BSIM3v3.1 

SPICE simulations, and chip design, fabrication, and test using the TSMC 0.35 um 

mixed-signal CMOS fabrication process technology. They were simulated and tested 

at a 10 MHz framing speed (100 ns time frame). Test and simulation results agreed 

with the calculated results. We have also simulated the conversion, addition, and 

subtraction circuits at 100 MHz, and the division and multiplication circuits at 50 

MHz, and simulation results agreed with the calculated results. To demonstrate the 

operation of these basic IPI blocks together at the system-level, a 6-synapse neuron 

was designed and simulated. 

Simulation results have shown similar accuracy and dynamic range at both low 

and high speeds. Accuracy of more than 98%, low power consumption of less than 2.1 

mW, small area of less than 7.68x10-3 mm2, and a wide dynamic range of 1200 mV 

were achieved for conversion, addition, and subtraction.  For division, accuracy of 

more than 98%, low power consumption of 3.36 mW, small area of 25.92x10-3 mm2, 

and a dynamic range of 600 mV were achieved. And for multiplication, accuracy of 

more than 97%, low power consumption of 6.72 mW, small area of 51.84x10-3 mm2, 

and a dynamic range of 600 mV were achieved.

This thesis also discussed how the IPI technology can be used in applications 

such as sensors, instrumentation, communications, telemetry, signal processing, and 

ANNs. We have compared our IPI based conversion and computation 

implementations against other analog and digital implementations and tied the results

with the applications. Our IPI implementations are comparable to the more traditional 

analog implementations in terms of area and power consumption. However, they are 

more robust than the analog implementations studied here. In communication whether

on-chip or off-chip, the main advantage of the IPI over analog is its digital-like 

immunity to noise, process variations, temperature, reference voltage, and other 

serious problems such as cross-talk and substrate coupling, because of the fact the IPI 

uses time between pulses rather than magnitude to represent the analog signal.
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Issues surrounding local analog computation were discussed. Our IPI 

implementations do not have the serious problems that analog computation suffers 

from such as the body effect, the mobility degradation effect, the offset and 

nonlinearity errors due to device mismatch, and the unsuitability for scaling in short-

channel deep submicron and nano technologies due to deviation from the MOSFET I-

V square-law caused by carrier velocity saturation.

When compared with digital implementations, V-to-IPI conversion is 

significantly less expensive in terms of area and power consumption than the least 

expensive ADC. Therefore, V-to-IPI is a significantly better choice than ADC when

98% (5.6-bit) accuracy is adequate. IPI computation is comparable to digital 

computation in terms of area and power consumption but the look-up table DRAM 

solution consumes the least power among all. Therefore, the decision of using IPI 

versus digital for computation should be based on the total cost of conversion and 

computation.

7.2. Future Work

One possible speed optimization that one can try in the future is to use 

pipelining to overlap the sampling and conversion operations so that Tmax and Tsd are 

no longer additive and Tf then needs to satisfy the relationship Tf > max (Tsd , Tmax)

instead of the relationship Tf > (Tsd + Tmax). The V-to-IPI conversion circuitry 

described in section 4.1 can be modified to implement this capability by the use of a 

second capacitor. The two capacitors interchange their roles in each frame. In one 

frame, the first capacitor is used to sample the signal while the other capacitor is used 

to convert the previous sample. In the next frame, the first capacitor is used to convert 

its sample while the second capacitor is used to get a new sample of the signal, and so 

on. This should improve the speed by a factor of
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The cost of this speed gain is, of course, the extra area and power needed for the 

second capacitor and the logic gates and the switches that will be required to control 

the interchange of the two capacitors. 

Another possible speed optimization is to use pipelining to overlap the input 

conversion and output pulse generation steps needed in computation, which would 

apply to all of the computation circuits in chapter 4. In the case of division, for 

example, this can be done by using a second set of capacitors. The two sets 

interchange their roles in each frame. In one frame, C1 and C2 of the first set are used 

for input conversion while the second set is used to generate the output pulse. In the 

next frame, C1 and C2 of the second set are used for input conversion while the first set 

is used to generate the output pulse, and so on. This should double the speed. As for 

V-to-IPI conversion, the cost of this speed gain is the extra area and power needed for 

the second set of capacitors and the logic gates and switches that will be required to 

control the interchange of the two sets.

While developing and designing our IPI methods/circuits, our main design 

concern or target was functionality. Once we had the basic designs, we then started 

optimizing them for accuracy, then for area and power consumption so that our IPI 

circuits are comparable with their analog counterparts. During this process, we found 

that their dynamic range and speed can be very good. Speed was not among our top

priorities because we were initially designing these circuits for communication and 

signal processing of analog sensory data in the low to medium speed range [122]. 

Further optimization of our IPI circuits is possible and should be investigated in future 

work. Consider the following equation which describes the voltage of a capacitor C 

being charged by the current I. As we have seen in chapter 4, this equation is at the 

heart of each of our IPI circuits.
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t
C

I
V  (7.2)

As we have also explained in chapter 4, the dynamic range of operation of our IPI 

circuits is from -VM to +VM where VM is equal to 

fM T
C

I
V  (7.3)

Equations (7.2) and (7.3) tell us how to optimize our circuits for area, power 

consumption, speed, or dynamic range. Speed is inversely proportional to the frame 

time Tf. If we rearrange (7.3), we get

Mf V
I

C
T  (7.3)

We can improve speed by doing one or more of the following:

1. Decreasing C: This will also decrease the area needed by C. However, we 

should not make C very small because this will increase the ratio of parasitic 

capacitance to desired capacitance and consequently decrease accuracy [123].

2. Increasing I: this will increase the power consumption. It will also increase the 

area needed by the current sources.

3. Decreasing VM: This means decreasing the dynamic range of operation.

Increasing speed by decreasing C will lead to a much smaller increase in the 

power consumption than increasing it by increasing I. The reason is that using the first 

method, the current I stays fixed and the small increase in power consumption will 

come from the fact that the CMOS dynamic logic will be switching more often 

because of the higher speed. CMOS logic consumes power mainly during switching 

and power consumption is almost zero during steady state [2]. The very small steady-

state power consumption is due to leakage currents. Therefore, most of the power 

consumption is coming from the sources charging the capacitors. While this suggests
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that it is better to increase speed by decreasing C and not by increasing I, we cannot 

make C too small since that will degrade accuracy.

Equation (7.3) also suggests that we can reduce both area and power 

consumption while keeping the same speed and dynamic range. This can be done by 

decreasing both C and I by the same factor, so that the ratio I/C is constant. The 

savings in area will come from the smaller capacitance and the smaller current 

sources. The savings in power consumption will come from the smaller currents 

needed to charge and discharge these smaller capacitors.

There can also be some area and power savings that may be achieved by 

making the reset switches smaller but this will widen the pulse generated by the 

comparator and the reset circuitry. This optimization depends on how short the 

generated pulse needs to be and how much time it can take from the frame.

Another important suggestion for future work is to implement a calibration 

scheme for the IPI circuits. As we have explained in subsection 6.2.1, process 

variations in capacitors and current sources and the reference voltage variations cause

scaling and offset errors, respectively. Therefore, a calibration scheme is crucial to the 

maximum accuracy of the IPI circuits. As a simple example, on-die reference voltage

can be obtained by a voltage divider. A simple voltage divider can be implemented 

using two or more diode-connected transistors connected in series between VDD and 

VSS (or the ground). A diode-connected CMOS transistor does not actually behave like

a diode. “Diode-connected” is just a term that is used to describe a CMOS transistor 

whose drain and gate are connected to each other like a diode-connected bipolar 

transistor whose collector and base are connected to each other to operate it as a diode 

[1]. Suppose that VREF is some reference voltage that we take from the source or the 

drain of one of these transistors in series. These transistors operate as resistors. We can

calibrate VREF by varying their resistance. We can vary their resistance by connecting 

more or less transistors in parallel to them. Connecting or disconnecting these 

transistors can be done digitally. For automatic calibration, some counter and decoder 

will be needed to decide how many and which transistors should be connected in order 
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to minimize the offset error. Automatic calibration of current sources and capacitors 

can be done in a very similar way: Connect more or less of them until the error is 

minimum.

The choice of whether to calibrate I or C depends on, of course, area and 

power optimization targets, as we explained above. Of course, calibration requires that 

we provide the chip with the expected output in order for the calibration circuit to 

calculate the error and come up with the digital numbers that give the minimum error 

(the maximum accuracy). High resolution calibration will require higher digital 

accuracy and therefore more area and power consumption. Calibration can be done 

once or periodically depending on whether there are other time-dependent variations

that it needs to account for or not, such as temperature for example. As we can see 

from this discussion, a calibration scheme can be also exploited to serve as a 

programming scheme that can be used to program the current sources and/or the 

capacitors so that the chip can run at different speed and power consumption levels. 

Coarse settings can be used for programming the chip for different speed and power 

consumption levels while fine settings can be used to calibrate for maximum accuracy. 

Such an implementation is basically similar to an analog field programmable array 

(FPGA) implementation.

As we have explained in subsection 6.2.1, our IPI circuits should be able to run 

at low-voltage because they do not have many stacks of transistors. In this work, we 

use 3.2 V supply voltage which is close to the TSMC foundry recommendation of 3.3 

V [118]. Optimizing the IPI circuits for low-voltage operation in deep submicron 

technologies such as 0.18 um or 0.13 um or even for nanoscale circuits is an area of 

potential research.

In chapter 4, we described a simple scheme for receiving the synchronous IPI 

inputs and converting them to local square wave (PWM) signals which carry the same 

t+ and t- IPI information. The scheme uses toggle flip-flops. The problem with this 

method is that if a pulse is lost or a spurious pulse is received then the T-FF will be 

stuck in an incorrect phase and all subsequent IPI values will be erroneous. Another 
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promising topic for future work is to use a more sophisticated clock-recovery scheme 

such as phase-locked loop (PLL) [120] to address this reliability problem with 

synchronous IPI signaling. Such a problem does not exist in asynchronous IPI 

signaling since a lost pulse or a spurious pulse will cause a maximum of two errors 

only.
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Appendix A. MOSIS Parametric Test Results

* Source: http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/tsmc-035/t4be_mm_epi-
params.txt, Feb. 10th, 2006.

                          MOSIS PARAMETRIC TEST RESULTS
                                         
          RUN: T4BE (MM_EPI)                                VENDOR: TSMC
   TECHNOLOGY: SCN035                                FEATURE SIZE: 0.35 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS
              from measurements of MOSIS test structures on each wafer of
              this fabrication lot. SPICE parameters obtained from similar
              measurements on a selected wafer are also attached.

COMMENTS: TSMC 035

TRANSISTOR PARAMETERS     W/L      N-CHANNEL P-CHANNEL  UNITS
                                                       
 MINIMUM                  0.6/0.4                      
  Vth                                   0.55     -0.76  volts
                                                       
 SHORT                    20.0/0.4                     
  Idss                                513      -220     uA/um
  Vth                                   0.59     -0.75  volts
  Vpt                                   9.1      -9.7   volts
                                                       
 WIDE                     20.0/0.4                     
  Ids0                                < 2.5     < 2.5   pA/um
                                                       
 LARGE                    50/50                        
  Vth                                   0.52     -0.75  volts
  Vjbkd                                 8.7      -8.5   volts
  Ijlk                                <50.0     <50.0   pA
  Gamma                                 0.60      0.37  V^0.5
                                                       
 K' (Uo*Cox/2)                         89.1     -30.8   uA/V^2
Low-field Mobility                   402.53    139.15  cm^2/V*s
                                                       
COMMENTS: Poly bias varies with design technology. To account for mask
           bias use the appropriate value for the parameter XL in your
           SPICE model card.
                       Design Technology                   XL (um)  XW (um)
                       -----------------                   -------  ------
                       SCMOS_SUBM (lambda=0.20)            -0.05     0.15
                                     thick oxide           -0.10     0.15
                       SCMOS      (lambda=0.25)            -0.15     0.15
                                     thick oxide           -0.25     0.15

FOX TRANSISTORS           GATE      N+ACTIVE  P+ACTIVE  UNITS
 Vth                      Poly        >10.0    <-10.0   volts

PROCESS PARAMETERS     N+     P+    POLY  POLY2  POLY2_ME   M1    M2   UNITS
 Sheet Resistance      78.9  151.7  8.5   48.6      48.6   0.07  0.07  ohms/sq
 Contact Resistance    62.5         6.8                                ohms
 Gate Oxide Thickness  78                                              angstrom                                                                     
PROCESS PARAMETERS             M3        M4    N_W      N\PLY     UNITS
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 Sheet Resistance             0.07      0.04   1006      1050     ohms/sq
 Contact Resistance           2.06      2.99                      ohms
                                                       
COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS  N+    P+   POLY  POLY2  M1  M2   M3   M4  N_W   UNITS
 Area (substrate)      914  1401   101                             99  aF/um^2
 Area (N+active)                  4440              17   12   10        aF/um^2
 Area (P+active)                  4478                                  aF/um^2
 Area (poly)                             868    49  15    9    6        aF/um^2
 Area (poly2)                                   47                      aF/um^2
Area (metal1)                                      36   14    8        aF/um^2
 Area (metal2)                                           37   13        aF/um^2
 Area (metal3)                                                36        aF/um^2
 Fringe (substrate)    251   295                                        aF/um
 Fringe (poly)                                  67  38   29   23        aF/um
 Fringe (metal1)                                    51   34   27        aF/um
 Fringe (metal2)                                              37        aF/um
 Fringe (metal3)                                              57        aF/um
Overlap (N+active)                340                                  aF/um
 Overlap (P+active)                383                                  aF/um
                                                                       

CIRCUIT PARAMETERS                            UNITS      
 Inverters                     K                         
  Vinv                        1.0       1.21  volts      
  Vinv                        1.5       1.35  volts      
  Vol (100 uA)                2.0       0.23  volts      
  Voh (100 uA)                2.0       2.88  volts      
  Vinv                        2.0       1.45  volts      
  Gain                        2.0     -17.91             
 Ring Oscillator Freq.                                   
  DIV256 (31-stg,3.3V)                175.82  MHz        
  D256_THK  (31-stg,5.0V)             112.34  MHz        
 Ring Oscillator Power                                   
  DIV256 (31-stg,3.3V)                  0.15  uW/MHz/gate
  D256_THK  (31-stg,5.0V)               0.30  uW/MHz/gate
                                                         
COMMENTS: SUBMICRON

T4BE SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Dec 17/04
* LOT: T4BE                  WAF: 1005
* Temperature_parameters=Default
.MODEL CMOSN NMOS (                                LEVEL   = 49
+VERSION = 3.1            TNOM    = 27             TOX     = 7.8E-9
+XJ      = 1E-7           NCH     = 2.2E17         VTH0    = 0.4867759
+K1      = 0.5982003      K2      = 7.110775E-3    K3      = 74.853704
+K3B     = -10            W0      = 5E-5           NLX     = 2.522198E-7
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 2.8489298      DVT1    = 0.8382014      DVT2    = -0.2705174
+U0      = 364.7816729    UA      = -7.07762E-10   UB      = 2.214939E-18
+UC      = 3.217876E-11   VSAT    = 1.427282E5     A0      = 1.0943978
+AGS     = 0.1518849      B0      = 9.486928E-7    B1      = 5E-6
+KETA    = 2.703951E-3    A1      = 1.331977E-4    A2      = 0.5082922
+RDSW    = 1.03395E3      PRWG    = -0.0999764     PRWB    = -0.1019712
+WR      = 1              WINT    = 1.517735E-7    LINT    = 0
+XL      = -5E-8          XW      = 1.5E-7         DWG     = -3.822451E-9
+DWB     = 3.625123E-9    VOFF    = -0.0834415     NFACTOR = 1.4572053
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+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 1              ETAB    = 0.0333683
+DSUB    = 0.8054936      PCLM    = 1.4582292      PDIBLC1 = 1.807793E-3
+PDIBLC2 = 1.210914E-4    PDIBLCB = 0.0219649      DROUT   = 3.881351E-4
+PSCBE1  = 7.237622E8     PSCBE2  = 1E-3           PVAG    = 0
+DELTA   = 0.01           RSH     = 78.9           MOBMOD  = 1
+PRT     = 0              UTE     = -1.5           KT1     = -0.11
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4
+WL      = 0              WLN     = 1              WW      = 0
+WWN     = 1              WWL     = 0              LL      = 0
+LLN     = 1              LW      = 0              LWN     = 1
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5
+CGDO    = 3.4E-10        CGSO    = 3.4E-10        CGBO    = 1E-12
+CJ      = 9.085053E-4    PB      = 0.8            MJ      = 0.3519913
+CJSW    = 2.378884E-10   PBSW    = 0.8            MJSW    = 0.1980245
+CJSWG   = 1.82E-10       PBSWG   = 0.8            MJSWG   = 0.1980245
+CF      = 0              PVTH0   = -0.0232737     PRDSW   = -96.6778453
+PK2     = 4.200437E-3    WKETA   = -9.87476E-4    LKETA   = -1.128415E-4    )
*
.MODEL CMOSP PMOS (                                LEVEL   = 49
+VERSION = 3.1            TNOM    = 27             TOX     = 7.8E-9
+XJ      = 1E-7           NCH     = 8.52E16        VTH0    = -0.7127409
+K1      = 0.426131       K2      = -8.52838E-3    K3      = 53.6180914
+K3B     = -4.1856702     W0      = 4.117358E-6    NLX     = 2.421492E-7
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 1.697126       DVT1    = 0.5602561      DVT2    = 1.795544E-3
+U0      = 150.0058707    UA      = 1.051947E-10   UB      = 1.832285E-18
+UC      = -2.03335E-11   VSAT    = 1.149727E5     A0      = 1.1206664
+AGS     = 0.3393834      B0      = 2.49922E-6     B1      = 5E-6
+KETA    = -2.847654E-3   A1      = 0              A2      = 0.7697629
+RDSW    = 4E3            PRWG    = -0.12597       PRWB    = 0.1740295
+WR      = 1              WINT    = 1.54103E-7     LINT    = 0
+XL      = -5E-8          XW      = 1.5E-7         DWG     = -1.498245E-8
+DWB     = 7.89723E-9     VOFF    = -0.135593      NFACTOR = 2
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 0.0150933      ETAB    = 2.717128E-3
+DSUB    = 0.2430503      PCLM    = 4.39905        PDIBLC1 = 7.528966E-4
+PDIBLC2 = 3.163274E-3    PDIBLCB = -1E-3          DROUT   = 8.227276E-3
+PSCBE1  = 7.936256E10    PSCBE2  = 5E-10          PVAG    = 3.1637761
+DELTA   = 0.01           RSH     = 151.7          MOBMOD  = 1
+PRT     = 0              UTE     = -1.5           KT1     = -0.11
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4
+WL      = 0              WLN     = 1              WW      = 0
+WWN     = 1              WWL     = 0              LL      = 0
+LLN     = 1              LW      = 0              LWN     = 1
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5
+CGDO    = 3.83E-10       CGSO    = 3.83E-10       CGBO    = 1E-12
+CJ      = 1.404522E-3    PB      = 0.99           MJ      = 0.5637342
+CJSW    = 2.976181E-10   PBSW    = 0.8386314      MJSW    = 0.350651
+CJSWG   = 4.42E-11       PBSWG   = 0.8386314      MJSWG   = 0.350651
+CF      = 0              PVTH0   = 7.323739E-3    PRDSW   = 57.2472155
+PK2     = 1.982984E-3    WKETA   = -3.979881E-4   LKETA   = -0.0121896      )
*
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Appendix B. BSIM3v3.1 SPICE Models Used for ACCUSIM 

Simulations

* In Mentor ASIC Design Kit (ADK), Accusim uses LEVEL 53 for BSIM3v3.1 SPICE Modeling.
* So, LEVEL was set to 53 instead of 49 for HSPICE.

.MODEL n NMOS (                                LEVEL   = 53
+VERSION = 3.1            TNOM    = 27             TOX     = 7.7E-9
+XJ      = 1E-7           NCH     = 2.2E17         VTH0    = 0.4737706
+K1      = 0.5824799      K2      = 8.11778E-3     K3      = 96.2727323
+K3B     = -6.1947761     W0      = 2.700191E-5    NLX     = 2.083266E-7
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 4.3980137      DVT1    = 0.7171277      DVT2    = -0.1080294
+U0      = 362.8973445    UA      = -7.42132E-10   UB      = 2.200466E-18
+UC      = 3.827538E-11   VSAT    = 1.452933E5     A0      = 1.1270999
+AGS     = 0.1655255      B0      = 1.060433E-6    B1      = 5E-6
+KETA    = 2.011502E-3    A1      = 0              A2      = 0.4936368
+RDSW    = 855.0105543    PRWG    = -0.0459015     PRWB    = -0.0966899
+WR      = 1              WINT    = 1.486341E-7    LINT    = 5.292541E-10
+XL      = -5E-8          XW      = 1.5E-7         DWG     = -4.068542E-9
+DWB     = 8.2373E-9      VOFF    = -0.0796631     NFACTOR = 1.2068796
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 0.7492832      ETAB    = -0.0390417
+DSUB    = 0.78159        PCLM    = 1.490984       PDIBLC1 = 1.944604E-3
+PDIBLC2 = 5.987715E-7    PDIBLCB = 0.1            DROUT   = 0
+PSCBE1  = 7.310861E8     PSCBE2  = 9.494637E-4    PVAG    = 0
+DELTA   = 0.01           RSH     = 79.8           MOBMOD  = 1
+PRT     = 0              UTE     = -1.5           KT1     = -0.11
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4
+WL      = 0              WLN     = 1              WW      = 0
+WWN     = 1              WWL     = 0              LL      = 0
+LLN     = 1              LW      = 0              LWN     = 1
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5
+CGDO    = 2.79E-10       CGSO    = 2.79E-10       CGBO    = 1E-12
+CJ      = 8.918562E-4    PB      = 0.8            MJ      = 0.3534487
+CJSW    = 3.57525E-10    PBSW    = 0.8146587      MJSW    = 0.1331765
+CJSWG   = 1.82E-10       PBSWG   = 0.8146587      MJSWG   = 0.1331765
+CF      = 0              PVTH0   = -0.0199259     PRDSW   = -87.5466049
+PK2     = 2.754154E-3    WKETA   = -7.698947E-4   LKETA   = -2.706215E-3    )

.MODEL p PMOS (                                LEVEL   = 53
+VERSION = 3.1            TNOM    = 27             TOX     = 7.7E-9
+XJ      = 1E-7           NCH     = 8.52E16        VTH0    = -0.7482928
+K1      = 0.4088906      K2      = -8.575971E-3   K3      = 64.9719334
+K3B     = -5             W0      = 5.652246E-6    NLX     = 2.411327E-7
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0
+DVT0    = 2.4385401      DVT1    = 0.6534475      DVT2    = 0.0336004
+U0      = 146.6363388    UA      = 1E-10          UB      = 1.554136E-18
+UC      = -2.50914E-11   VSAT    = 1.158448E5     A0      = 0.9834203
+AGS     = 0.3498974      B0      = 3.014933E-6    B1      = 5E-6
+KETA    = -5.567367E-3   A1      = 0              A2      = 0.6767726
+RDSW    = 4E3            PRWG    = -0.1174124     PRWB    = 0.1956899
+WR      = 1              WINT    = 1.481075E-7    LINT    = 0
+XL      = -5E-8          XW      = 1.5E-7         DWG     = -1.237406E-8
+DWB     = 1.314322E-8    VOFF    = -0.1341843     NFACTOR = 2
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+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0
+CDSCB   = 0              ETA0    = 0.0247927      ETAB    = -5.470312E-3
+DSUB    = 0.4066258      PCLM    = 4.3395303      PDIBLC1 = 3.712474E-3
+PDIBLC2 = 2.843199E-3    PDIBLCB = -1E-3          DROUT   = 0.0493039
+PSCBE1  = 7.972605E10    PSCBE2  = 5.002845E-10   PVAG    = 2.4985005
+DELTA   = 0.01           RSH     = 154.7          MOBMOD  = 1
+PRT     = 0              UTE     = -1.5           KT1     = -0.11
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4
+WL      = 0              WLN     = 1              WW      = 0
+WWN     = 1              WWL     = 0              LL      = 0
+LLN     = 1              LW      = 0              LWN     = 1
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5
+CGDO    = 2.75E-10       CGSO    = 2.75E-10       CGBO    = 1E-12
+CJ      = 1.429787E-3    PB      = 0.99           MJ      = 0.5495301
+CJSW    = 3.794122E-10   PBSW    = 0.99           MJSW    = 0.3012354
+CJSWG   = 4.42E-11       PBSWG   = 0.99           MJSWG   = 0.3012354
+CF      = 0              PVTH0   = 3.478791E-3    PRDSW   = 33.4845306
+PK2     = 1.529109E-3    WKETA   = 2.584294E-3    LKETA   = -1.775326E-3    )


