
Representations and Circuits

for

Time Based Computation

Khaldoon Mhaidat

B.S., Electrical and Computer Engineering, Jordan University of Science &

Technology (1999)

M.S., Electrical and Computer Engineering, Oregon State University (2002)

A dissertation submitted to the faculty of

OGI School of Science & Engineering at

Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

March 2006

© Copyright by Khaldoon Mhaidat

March 2006

All rights reserved

iii

The dissertation “Representations and Circuits for Time Based Computation”

by Khaldoon Mhaidat has been examined and approved by the following Examination

Committee:

Dr. Marwan Jabri

Ph.D. Advisor

Gordon and Betty Moore Chair Professor of Electrical and Computer Engineering

OGI School of Science & Engineering at Oregon Health & Science University

Dr. Dan Hammerstrom

Professor of Electrical and Computer Engineering and Associate Dean for Research

Maseeh College of Engineering & Computer Science at Portland State University

Ali Muhtaroglu

Mobile Platform Group, Intel Corporation

John Lynch

Instructor, Department of Computer Science and Electrical Engineering

OGI School of Science & Engineering at Oregon Health & Science University

iv

Acknowledgments

First and most, I thank and praise God who has created me and bestowed

countless blessings upon me and all his creation. To him I dedicate all of this work and

to him I pray it will benefit all his creation in a good way.

I thank Dr. Marwan Jabri for giving me the great opportunity to work with him

and gain from his long and rich experience. Dr. Marwan’s supervision of my Ph.D.

research work and his reviews, comments, and feedback on it have been invaluable.

I also thank Dr. Dan Hammerstrom, Ali Muhtaroglu, John Lynch, and Dr.

Todd Leen for their invaluable reviews, comments, and feedback on this work.

I also thank Lava Raganathan for his help with chip design tools and John

Hunt for his help with chip testing.

I also thank my lovely wife and daughter, Tamara and Huda, for their help,

support, and patience during my Ph.D. years.

I also thank my dear mother, father, and family, who have always wanted me

to be excellent and successful and to get my master and Ph.D. degrees, and have been

putting up with me being away from them for long time to help me achieve that.

This work was supported in part by the Semiconductor Research Corporation,

Contract No. 2001-JH-924, and the National Science Foundation, Contract No. CCR-

0120369.

v

Statement of Originality

To the best of my knowledge, the following concepts, ideas, methods, and

designs are original and are my work:

1. The synchronous linear inter-pulse-interval (IPI) representation for negative,

zero, and positive values.

2. The IPI-to-Voltage conversion method and circuit design based on the

representation in 1.

3. The Voltage-to-IPI conversion method and circuit design based on the

representation in 1.

4. The addition method and circuit design based on the representation in 1.

5. The subtraction method and circuit design based on the representation in 1.

6. The division method and circuit design based on the representation in 1.

7. The multiplication method and circuit design based on the representation in 1.

vi

Contents

Acknowledgments.. iv

Statement of Originality... v

List of Tables..viii

List of Figures .. ix

Abstract ...xii

1. Introduction..1

2. Pulse Representations..7

2.1. The IPI Representation ..7
2.1.1. General Definitions for the IPI Representation ..7
2.1.2. Basic Considerations in Analog-to-IPI Conversion8
2.1.3. Conversion Schemes: Linear and Logarithmic ..9
2.1.4. Signaling Schemes: Asynchronous and Synchronous..............................10

2.2. Literature Review ..11
2.2.1. Pulse Modulation Techniques ..11
2.2.2. Pulse Computation Techniques ..15

3. A Novel Approach to IPI Representation..22

3.1. A Novel IPI Representation...22

3.2. Computation Error Analysis ..27
3.2.1. Linear Representation...28
3.2.2. Logarithmic Representation ...29

3.3. Conversion Schemes: Linear Versus Logarithmic30

3.4. Signaling Schemes: Synchronous Versus Asynchronous............................32

3.5. IPI Signal Timing Requirements ...33
3.5.1. Analog-to-IPI Conversion Timing Requirements34
3.5.2. Computation Timing Requirements ...35

vii

4. Novel Methods and Circuits for Time Based Conversion and
Computation ...37

4.1. IPI-to-Voltage and Voltage-to-IPI Conversions ..38

4.2. Addition ...42

4.3. Subtraction ...46

4.4. Division..47

4.5. Multiplication... 52

4.6. Four-Quadrant Division and Multiplication ..56

5. Experimental Results...59

5.1. Top Level Chip Design..59

5.2. Simulation and Test Results ..64
5.2.1. IPI-to-Voltage and Voltage-to-IPI Conversions.......................................65
5.2.2. Addition and Subtraction..66
5.2.3. Division and Multiplication..66
5.2.4. Summary... 67

6. System-Level Design and Applications ..72

6.1. System-Level Design...72
6.1.1. Artificial Neural Networks (ANNs) ...72
6.1.2. System-Level Design and Simulation ..76
6.1.3. Training and Programming and their Impact on Storage and
Resolution ..83
6.1.4. Estimation of Accuracy (Resolution), Power, Area, Dynamic Range,
and Speed...85

6.2. Applications and Comparisons with Other Implementations86
6.2.1. Comparison with Analog Implementations..87
6.2.2. Comparison with Digital Implementations ..100

7. Conclusions and Future Work.. 104

7.1. Conclusions..104

7.2. Future Work...107

Bibliography..113

Appendix A. MOSIS Parametric Test Results... 124

Appendix B. BSIM3v3.1 SPICE Models Used for ACCUSIM Simulations127

viii

List of Tables

Table 5.1. Summary of accuracy, power consumption, area, dynamic range, and speed
results of the IPI circuits. Results in Italic are from simulation. 4-Q division and
multiplication need about 60% more area and consume about 45% more power. 67

Table 6.1. Summary of system-level resolution, power consumption, area, dynamic
range, and speed results for one neuron with 6 synapses.86

Table 6.2. Comparison of the IPI multiplier versus analog multipliers. Results in Italic
are from simulation. Errors in [111] are for the adder and subtractor subcircuits. 90

Table 6.3. Comparison of the IPI divider versus analog dividers. Results in Italic are
from simulation..90

Table 6.4. Scaling relationships among CMOS device and circuit parameters.92

Table 6.5. Comparison of the V-to-IPI converter versus ADC implementations.101

Table 6.6. Comparison of the IPI multiplier versus digital multipliers. Area and power
results in Italic are estimates for an equivalent 5.6-bit x 5.6-bit multiplier.........102

ix

List of Figures

Figure 1.1. Information-carrying inter-pulse intervals (IPIs). ..2

Figure 2.1. IPI signaling schemes: (a) Asynchronous (b) Synchronous.10

Figure 2.2. Pulse modulation techniques: (a) the analog signal, (b) pulse amplitude
modulation (PAM), (c) pulse width modulation (PWM), (d) pulse frequency
modulation (PFM), and (e) pulse delay (or inter-pulse interval) modulation (PDM
or IPI-M). ...12

Figure 2.3. Synchronous IPI and PWM modulation. In asynchronous IPI and PWM,
no clock is used and S/H and the ramp are restarted as soon as the comparator
detects the equivalence between the input sample and the ramp...........................13

Figure 2.4. IPI and PWM demodulation: (a) PWM and (b) IPI.13

Figure 2.5. The transconductance multiplier. ...16

Figure 2.6. The pulse stream transconductance multiplier...18

Figure 2.7. Self-resetting integrate-and-fire circuit. The current source and the inverter
in the dashed box are common to all cells in winner-take-all (WTA) networks. ..20

Figure 3.1. Novel synchronous linear IPI representation for negative, zero, and
positive values: (a) t+ > t- for positive, (b) t+ = t-= Tf/2 for zero, and (c) t+ < t- for
negative. ...23

Figure 3.2. Analog-to-IPI conversion timing requirements. ..34

Figure 3.3. Computation timing requirements. ..35

Figure 4.1. IPI-to-V-to-IPI conversion circuit..39

Figure 4.2. Simulation of the IPI-to-V-to-IPI conversion circuit.41

Figure 4.3. IPI addition circuit. ..43

Figure 4.4. Simulation of the IPI addition circuit...44

Figure 4.5. Timing diagram of addition. ..44

x

Figure 4.6. Simulation of the IPI subtraction circuit. ...47

Figure 4.7. IPI division circuit..49

Figure 4.8. Simulation of the IPI division circuit. ..50

Figure 4.9. Timing diagram of division.. 50

Figure 4.10. IPI multiplication as two IPI divisions...53

Figure 4.11. Simulation of the IPI multiplication circuit. ..54

Figure 4.12. Timing diagram of multiplication. ...55

Figure 5.1. Layout of the OP-AMP/comparator cell. The cell was custom designed
since the ADK library does not have OP-AMP or comparator cells.60

Figure 5.2. Layout of the RS latch cell. Two standard NOR gate cells from the ADK
library were used to construct this cell. ...60

Figure 5.3. Layout of the addition, subtraction, and IPI-V-IPI conversion cell. The area
is about 480λ × 400λ, which is equal to 7680 um2 (λ = 0.2 um for 0.35 um
process). ...61

Figure 5.4. Layout of the division cell. The area is about 900λ × 720λ, which is equal
to 25920 um2 (λ = 0.2 um for 0.35 um process). ...62

Figure 5.5. Top-level chip layout. The area is 1.5 mm × 1.5 mm = 2.25 mm2.63

Figure 5.6. Chip microphotograph. ..64

Figure 5.7. Oscilloscope screen image showing the addition of two equal inputs. IPI-
to-V conversion of the two inputs is done in the first frame and V-to-IPI
conversion of the output voltage in the second.. 68

Figure 5.8. Test, simulation, and calculated results for addition when the first input is
varied while the second input is fixed at zero..68

Figure 5.9. Oscilloscope screen image showing the subtraction of two equal inputs.
The output voltage remains flat at Vmiddle during the first frame since the two
inputs are equal and therefore canceling each other. ...69

Figure 5.10. Test, simulation, and calculated results for subtraction when the second
input is varied while the first input is fixed at zero. ..69

xi

Figure 5.11. Oscilloscope screen image showing the division of two equal inputs.70

Figure 5.12. Test, simulation, and calculated results for division when the first input is
varied while the second input is fixed (t2+= 69ns). ..70

Figure 5.13. Test, simulation, and calculated results for multiplication when the two
inputs are equal and Tconst+ is fixed at 69ns. ..71

Figure 6.1. Feed-forward or multi-layer perceptron (MLP) ANN.73

Figure 6.2. Computational model of an abstract neuron and its synapses.73

Figure 6.3. The sigmoid function. ..74

Figure 6.4. The hyperbolic tangent function. ...75

Figure 6.5. System-level design of one neuron with 6 synapses using the IPI addition
and multiplication circuits. ..77

Figure 6.6. Simulation of the system-level design of one neuron with 6 synapses......78

Figure 6.7. System timing diagram. ...78

Figure 6.8. 6-input IPI addition which performs the summation and transformation
functions of a 6-synapse neuron. ...79

Figure 6.9. Simulation of the 6-synapse neuron: summation result saturates down to
the minimum when all inputs are large in negative. ..81

Figure 6.10. Simulation of the 6-synapse neuron: summation result is in the middle of
the range when all inputs are zero. ..81

Figure 6.11. Simulation of the 6-synapse neuron: summation result saturates up to the
maximum when all inputs are large in positive. ..82

Figure 6.12. Simulation results of the 6-synapse neuron: Vout versus inputs (t+ - t-). 82

Figure 6.13. Simulation results of the 6-synapse neuron: pulse output (t+ - t-) versus
inputs (t+ - t-)..83

Figure 6.14. Analog voltage adder used in the analog multiplier [111](b).94

xii

Abstract

Representations and Circuits for Time Based Computation
Khaldoon Mhaidat, B.S., M.S.

Ph.D., OGI School of Science & Engineering
at Oregon Health & Science University

March 2006
Thesis Advisor: Dr. Marwan Jabri

Analog signal representation will remain essential wherever there is a need to

interface with the analog world or to satisfy certain area, power consumption, or speed

requirements. This includes but is not limited to sensors, instrumentation, and

communications. Analog representation is also essential for the integration of analog

mixed-signal and RF functions into complex system-on-a-chip (SOC) designs. Today,

analog signals are still being represented mainly by current or voltage. Also, data is

usually obtained from sensors in voltage or current form. These analog signals are not

immune to noise, and therefore they have to be converted into digital for transmission.

In this thesis, we propose a third approach that converts the analog signal into a

pulse stream, using time rather than magnitude. This alternative approach uses the

inter-pulse time (IPI) to represent the signal values. The thesis will show that our

representation approach, unlike the other pulse time representation approaches, is very

useful not only in communication but in computation as well. Suitability for both

communication and computation is very important because it eliminates the need to

convert to/from the analog or digital domains to use their computation techniques if

computation is needed. One good example where computation would be needed with

communication is the use of averaging at the front end of the receiver to improve the

signal-to-noise ratio (SNR). The thesis will also show that our approach is a hybrid

xiii

approach that takes from digital the immunity to noise, cross-talk, and other problems

such as process variations, temperature, and reference voltage, and takes from analog

the compactness and low power consumption.

In this thesis, we also present a novel class of methods and circuits for basic

conversion and computation based on our novel IPI representation approach above.

These methods and circuits include Voltage-to-IPI, IPI-to-Voltage, addition,

subtraction, division, and multiplication. We validate these methods and circuits by

mathematical derivation, simulation, and chip fabrication and test in CMOS

technology. We also compare our IPI implementations versus analog and digital

implementations, show their advantages, and discuss how they can be used in

applications such as communications, instrumentation, telemetry, signal processing,

and ANN’s.

1

1. Introduction

Analog signal representation will remain essential wherever there is a need to

interface with the analog world or to satisfy certain design requirements such as power

consumption, area, or speed within its noise immunity and accuracy limits [4], [6], and

[21]. Example applications include but are not limited to sensors, instrumentation,

communications, signal processing, artificial neural networks (ANNs), biomedical

actuation, and industrial control. Moore’s law and further reduction of the feature size

in CMOS IC technology will continue as a technology imperative that drives the cost

of electronic products down to mass market level. And now we have system-on-a-chip

(SOC) integration which replaces multiple chips of different functions with a single

chip [64] and [65]. Such functions may include micro-processing, digital signal

processing (DSP), analog mixed-signal and RF functions, and others. A good example

for this is biomedical sensors. Analog signal representation is very important for the

integration of analog mixed signal and RF functions into such complex SOCs because

of problems such as noise, substrate coupling, and cross-talk, which are even more

serious for analog circuits [64-68]. These days, analog signals are still being

represented in the analog domain mainly by voltage or current signals [21]. Moreover,

data is usually obtained from sensors in voltage or current form. These analog signals

are not immune to noise and therefore cannot be used for data transfer [4], [6], and

[21]. To achieve high immunity to noise, they have to be converted into digital

immediately and transmitted digitally. This whole path also has an inverse which

would be used, for example, in actuators.

In this thesis, we propose a third alternative approach that converts the analog

representation into a pulse stream representation, using time rather than magnitude to

2

represent the signal values. Our alternative approach, as this thesis will show, is very

suitable and robust in both communication and computation. The thesis will also show

its advantages over traditional pure analog and pure digital representations. Suitability

of the representation for both conversion/communication and computation is very

important because it eliminates the need to convert to/from other analog or digital

domains to use their computation techniques if computation is needed. One good

example where computation would be needed with communication is the use of

averaging at the front end of the receiver to improve the signal-to-noise ratio (SNR)

[25]. Our approach uses the inter-pulse interval (IPI) time to represent the signal

values. Figure 1.1 shows one possible way of doing this. The time between each two

consecutive pulses encodes a value of the analog signal. The idea of using pulses to

encode and process information is not a new one and we are not the first to use it. It is

borrowed form neuroscience where information in the brain is encoded using pulses

[6], [7], and [21]. The basic framework for research into pulse modulation techniques

was laid down around 60 years ago in [71-74] but a significant interest has been

experienced with the advent of optical fiber communication systems [101].

Researchers have used pulses in both communication and computation. Section 2.2 of

this thesis is dedicated to reviewing their work. We will explain in the thesis how our

approach is different from theirs, why it is needed, and how it advances the state of the

art.

Figure 1.1. Information-carrying inter-pulse intervals (IPIs).

Before we discuss the main motivations for the IPI representation and its

advantages over traditional pure analog or pure digital representations, we would like

3

to emphasize that we do not believe it will replace all the existing representations but

it will rather be a useful mixed signal technique that is best suited to certain

applications or situations. The motivations for using pulses to encode information

using time rather than magnitude are discussed in [6], [7], [16], [101], and [102].

When considering communication, the main motivation is that pulses are much more

immune to noise than analog signals. Pulses are also much more immune to process

variations, temperature, and reference voltage, and to the serious problems that

challenge complex mixed-signal SOC integration in deep submicron and nano

technologies, such as substrate coupling, cross-talk, transmission line effects,

threshold inconsistency, subthreshold currents, hot-electron effects, and doping

variability [21] and [64-68]. The IPI representation provides significantly higher

immunity to all these problems than traditional voltage and current representations

because it encodes the information using the time between the pulses rather than their

magnitude [6], [7], [101], and [102]. This is basically converting the analog

information to carefully timed signal transitions that are similar to digital schemes. A

pulse is detected if it is above a certain voltage threshold, exactly in the same way a

binary 0 or 1 value is detected in the on-off digital scheme [105]. Another main

motivation is that pulses are much easier to transfer and refresh than analog signals

because of their similarity to digital signals, as just described. Pulses can be easily

refreshed using digital buffers while analog signals are sensitive to noise and degrade

in magnitude especially if they need to travel over a relatively long distance. This

makes pulses a much better choice for inter-chip communication [6] and [7], or even

for transferring the signal within the same chip if the wire is relatively long or noise or

cross-talk, for example, is a concern as in SOC.

When considering issues surrounding local computation, this thesis will show

that our IPI computation approach does not have the serious problems that analog

computation suffers from such as the body effect and the mobility degradation effect

[26], [111], and [1]. When considering issues surrounding global long-wire

computation, our IPI approach has all the local computation advantages, as well as the

4

advantages of communication discussed above, since the computation involves

communication of the signals over a relatively long distance (long wire).

When compared to representations in the digital domain, the main advantage

of the IPI representation, as this thesis will show, is that analog to IPI conversion

needs significantly less area and power than analog to digital conversion (ADC). This

makes the IPI technology the right choice for applications such as instrumentation,

communications, and telemetry if 98% of accuracy, which is equivalent to 5.6-bit

digital accuracy, is adequate. The thesis will show that the IPI representation is a

hybrid representation that takes good characteristics from both digital and analog

representations and blends them together. It takes the high immunity to noise and

other problems from the digital and it takes the compactness and low power

consumption from the analog [6], [7], [101], and [102].

In chapter 2 of this thesis, we discuss general definitions for the IPI

representation and some basic considerations that should be taken into account while

creating circuits that take advantage of this representation, and we will briefly review

two known IPI conversion schemes, the linear and the logarithmic, and two known IPI

signaling schemes: the synchronous and the asynchronous. Analyzing and evaluating

these conversion and signaling schemes against each other is carried out in the next

chapter when we present our novel representation, to justify the conversion and

signaling schemes that we have chosen for our representation. Then, we review the

literature and the previous work related to the IPI representation and other pulse

representation, modulation, and computation techniques.

In chapter 3, we present a novel IPI representation that is suitable for encoding

all values including negative, zero, and positive values, and suitable for all basic

conversions and computations as well. This specific IPI representation is synchronous

(SIPI) since the time difference is always relative to a reference pulse, and is different

than the asynchronous IPI representation (AIPI) as discussed by Ravi and

Hammerstrom [22]. We also explain how our new representation is different from the

other representations which we review in section 2.2, why it is needed, and how it

5

advances the state of the art. Furthermore, to justify our choice of linear conversion

versus nonlinear and synchronous signaling versus asynchronous, we will investigate

them and compare them against each other in terms of accuracy, bandwidth,

complexity, and suitability for computation. In the last section, we study the

conversion and computation timing requirements in general and their effect on the

timing of the IPI signal.

In chapter 4, we present novel methods and circuit designs for conversion and

computation based on our novel IPI representation in chapter 3. These methods and

circuits include IPI-to-Voltage conversion, Voltage-to-IPI conversion, and the basic

arithmetic computations: addition, subtraction, division, and multiplication. In light of

our explanation in chapter 3 of how our novel representation differs from the other

representations in chapter 2 and why it is needed, we explain how our new methods

and circuits are different from the other methods and circuits implementing the other

representations, why they are needed, and how they also advance the state of the art.

Simulation data is shown in this chapter only to show how the circuits operate.

We have fabricated the methods and circuits described in chapter 4 in a chip

using the TSMC 0.35 um mixed-signal CMOS process technology, thorough the

MOSIS-USA fabrication and packaging service [118] and [119]. In chapter 5, we

describe the top level design of the chip including the top level cells. For each of the

conversion and computation circuits, we present the simulation and test results at 10

MHz, in terms of accuracy, area, power consumption, and dynamic range. We also

present the simulation results for conversion, addition, and subtraction at 100 MHz,

and for division and multiplication at 50 MHz.

In chapter 6, we describe a system-level design which performs the functions

of a neuron with multiple synapses in ANNs. The design incorporates the basic

arithmetic building blocks that we present in chapter 4 and operates them together as a

system. We also provide the system-level simulation results at 50 MHz. We also

discuss how the IPI technology can be used in applications such as instrumentation,

communications, and telemetry, and signal processing. To demonstrate the advantages

6

of using the IPI technology in these applications, we compare our IPI based

conversion and computation implementations with other analog and digital

implementations.

In chapter 7, we summarize the importance of this work, and discuss future

areas of research.

7

2. Pulse Representations

In this chapter, we will present general definitions of the IPI representation and

some basic considerations that should be taken into account while developing an IPI

representation, and we will briefly review two known analog-to-time conversion

schemes, the linear and the logarithmic, and two known signaling schemes, the

synchronous and the asynchronous. Then, we will review the literature and the

previous work related to the IPI representation and other pulse representation,

modulation, and computation techniques.

2.1. The IPI Representation

2.1.1. General Definitions for the IPI Representation

In this section, we define the IPI representation in general terms. Here are

definitions of the terminology and the notations that we will use:

 ti = pulse start time

 xi = analog value represented by the IPI time difference between the pulse

starting at ti and the reference pulse

 tw = pulse width time

 xmin = minimum analog value

 xmax = maximum analog value

8

 (x) = analog-to-IPI conversion function

  -1(x) = IPI-to-analog conversion function

 tmin = (xmin)

 tmax = (xmax)

 δ = time error in conversion. This defines the resolution or accuracy of time

measurement. We will see in chapter 3 that this will help us evaluate the effect

of the conversion function on the computation errors.

Factors like noise, accuracy, speed, and practical design limitations will affect

how short the shortest IPI can be.

2.1.2. Basic Considerations in Analog-to-IPI Conversion

It is very important to carefully examine the analog-to-IPI conversion function

before developing the IPI representation itself or designing any IPI hardware, because

it directly impacts the conversion and computation methods and the complexity,

accuracy, speed, power consumption, and area of their circuit implementations. Any

analog-to-IPI conversion function should meet the following criteria:

1. Can be efficiently implemented in available IC technologies, represented by

CMOS.

2. Is reversible, that is, the inverse function can also be implemented in available

IC technologies, represented by CMOS.

3. Is continuous, to achieve better accuracy by avoiding the quantization error. If

we consider two versions of the same analog-to-IPI mapping function, one

continuous and another discrete (quantized), then the continuous version will

have better resolution than the discrete one and therefore better accuracy. This

9

is not an absolute requirement and the designer may choose a discrete function

for a number of reasons.

4. Can be used to represent all values including negative, zero, and positive. If it

does not meet this criterion, it will be considered as incomplete.

2.1.3. Conversion Schemes: Linear and Logarithmic

In the linear representation, the time t is linearly proportional to the encoded

analog value x [69] and [70]. The general form of the linear conversion function is

t = (x) = ax + b (2.1)

where a and b are real constant numbers. In the nonlinear representations such as the

hyper-tangent or the logarithmic [7-10], the relationship between the time and the

analog value is not linear. In the logarithmic representation, for example, the general

form of the conversion function is

t = (x) = a logb(x) + c (2.2)

where a, b, and c are real constant numbers. A more general form of the logarithmic

function that can be used to deal with the cases when x is zero or negative is

t = (x) = a logb(x + d) + c (2.3)

where d is a real positive constant that can be added to x so that the input to the log

function is always positive. This constant d needs to be accounted for when converting

back from the time domain to the analog domain. Analyzing and evaluating the linear

and logarithmic schemes relative to each other will be carried out in the next chapter

10

as part of explaining why the novel IPI representation scheme, which is also presented

in the next chapter, is suitable for computation.

2.1.4. Signaling Schemes: Asynchronous and Synchronous

Figure 2.1 shows two known signaling schemes: asynchronous, as in [83] and

[94-97], and synchronous as in [69], [70], [75-81] and [98]. In the asynchronous

scheme, information is encoded in each IPI. The pulses are asynchronous because the

IPI time is completely dependent on the encoded value and is measured between a

pulse and the pulse immediately preceding it. The synchronous scheme imposes more

constraints on the timing of the pulses by using a framing clock pulse as a reference.

One full time frame Tf is dedicated to each value to be encoded. The time between the

two framing pulses define the time frame Tf. In its simplest form, the IPI time is the

time between the first framing pulse and the data pulse that appears between two

framing pulses.

Figure 2.1. IPI signaling schemes: (a) Asynchronous (b) Synchronous.

11

2.2. Literature Review

Although we have very few ideas that are closely related to our work, in this

section, we will review the literature and the previous work on other pulse

representation, modulation, and computation techniques. In fact, one of the main

challenges with the research described here is the shortage of previous work which

could directly help us, considering our objective of developing an IPI representation

suitable for all values (negative, zero, and positive) and all basic conversion and

computation operations at the same time. This has made our research problem more

interesting and challenging. To the best of our knowledge, this thesis is the first to

develop a novel IPI representation that is suitable for encoding all values including

negative, zero, and positive, and then to use it to develop a class of novel time-based

methods and circuits for all basic conversion and computation.

2.2.1. Pulse Modulation Techniques

The idea of using pulses to encode and process information is not a new one. It

is borrowed form neuroscience where information in the brain is encoded using pulses

[6], [7], and [21]. The basic framework for research into pulse modulation techniques

was developed around 60 years ago in [71-74] but a significant interest has been

experienced with the advent of optical fiber communication systems [101]. Reviews

and discussions of various pulse modulation techniques and how they can be used to

encode information can be found in [6], [7], and [101]. Figure 2.2 shows four main

techniques. In pulse amplitude modulation (PAM), the input signal modulates only the

amplitude of the pulse. In pulse width modulation (PWM), the input signal modulates

only the width of the pulse. Some literature also calls this pulse length modulation or

pulse duration modulation. In pulse delay modulation (PDM), the input signal

modulates only the delay of the pulse with respect to another pulse. In some literature,

the synchronous version of this technique is called pulse position (PPM) modulation

12

and the asynchronous version of it is called pulse interval modulation (PIM). In pulse

frequency modulation (PFM), the input signal modulates only the frequency of the

pulse. Some literature also calls this pulse rate modulation. To be consistent, we will

refer to PDM as inter-pulse interval modulation (IPI-M) or simply IPI throughout the

thesis. Another technique which is not shown in the figure is called pulse-code

modulation (PCM). PCM is basically a digital representation in which a single analog

sample is encoded using multiple binary-weighted pulses (bits). PWM, IPI, PFM, and

PCM are significantly more immune to noise than PAM since it uses the amplitude of

the pulse to encode the information while they use only time-dependent features of the

pulses [6], [7], [101], and [102].

Figure 2.2. Pulse modulation techniques: (a) the analog signal, (b) pulse amplitude
modulation (PAM), (c) pulse width modulation (PWM), (d) pulse frequency

modulation (PFM), and (e) pulse delay (or inter-pulse interval) modulation (PDM or
IPI-M).

13

Figure 2.3. Synchronous IPI and PWM modulation. In asynchronous IPI and PWM,
no clock is used and S/H and the ramp are restarted as soon as the comparator detects

the equivalence between the input sample and the ramp.

Figure 2.4. IPI and PWM demodulation: (a) PWM and (b) IPI.

14

Riter et al. in [69] and [70] give a block level description of a synchronous IPI

modulation technique which they use for transmitting information via underwater

acoustic channel. It is similar to the block diagram in Figure 2.3. Pulse modulation

techniques have been adapted for use in optical fiber transmission of analog and video

signals: Synchronous PWM [75-81] and [98], PFM [82], [84-93], and [103], and

asynchronous IPI and PWM [83] and [94-97]. IPI and PWM are very similar and can

be easily obtained from each other. The IPI signal is obtained from the PWM signal by

differentiating the PWM signal to generate narrow pulses at the edge transitions. The

PWM signal is obtained from the IPI signal by simply using a bistable circuit like a

latch or a flip-flop. All the IPI and PWM applications in [69], [70], [75-81], [98], [83],

and [94-97] use a modulator and a demodulator similar to the ones depicted in Figures

2.3 and 2.4, respectively. The modulator samples and holds (S/H) the analog signal

and compares the sample with a sawtooth ramp signal. If equivalence is detected then

the comparator output goes from high to low. The PWM signal is taken from the

output of the comparator. The IPI signal is obtained by differentiating the PWM

signal. In synchronous IPI and PWM, a periodic clock is used to control the timing of

the S/H operation and the ramp generation. In asynchronous IPI and PWM, however,

no clock is used and the S/H operation and the ramp generation are restarted as soon

as the comparator detects the equivalence between the input sample and the ramp. The

input signal has to be DC-shifted to accommodate the most negative value. Otherwise,

it will be limited by the ramp minimum voltage and the comparator input range.

Demodulation of PWM is performed by converting the PWM signal to IPI first

and then performing IPI demodulation as shown in Figure 2.4. For IPI demodulation,

the first input pulse is used to initiate the generation of a sawtooth ramp signal and the

second input pulse is used to sample and hold the ramp signal. This produces the

voltage sample equivalent to the IPI. A low pass filter (LPF) can then be used to

recover the baseband signal component from the frequency spectrum [101]. The ramp

signal used in all the IPI and PWM applications above is linear, which leads to a linear

relationship between the voltage signal and the IPI and the pulse width. It is possible

15

to use a nonlinear ramp instead if the application requires that. For example, Murray et

al. in [7-10] use a sigmoidal ramp in order to model the nonlinear and squashing

properties of the neuron transformation function in ANNs, as we will see in the next

subsection. IPI consumes less power than PWM since it encodes the information in the

time between fixed-width narrow pulses while PWM encodes it in the variable width

of the pulses [101].

For PFM modulation, [82], [84-93], and [103] use a voltage-controlled

oscillator (VCO) followed by a monostable circuit to generate fixed-width narrow

pulses. For demodulation, they use a monostable circuit to reconstruct fixed-width

narrow pulses from the input stream, followed by a LPF to recover the base-band

signal component from the frequency spectrum [101].

2.2.2. Pulse Computation Techniques

All the pulse based computation circuits and techniques we have found

reported in the literature deal mainly with two operations: addition and multiplication.

The reason is that these two operations, as we will see in chapter 6, are heavily used in

many applications like ANNs and signal processing. We will first discuss the addition

techniques then the multiplication ones.

A logical OR gate can be used to add PFM pulse streams together [6]. The

output will also be a PFM pulse stream. This is a very cheap solution but its accuracy

decreases as the pulse overlap increases. Therefore, it is suitable for a small number of

inputs with a very small Mark-Space ratio (High time to Low time ratio) to reduce the

probability of pulse overlap. Murray and Smith in [11-13] succeeded to achieve 97%

accuracy because the number of inputs to the OR gates (in a small ANN of only 10

neurons) was small and the maximum Mark-Space ratio was 0.01.

The pulse overlap problem in the technique above can be avoided by treating

the pulses as current pulses instead of voltage pulses [6]. Current pulses add together if

they overlap producing more current unlike voltage pulses going into an OR gate

16

which will count as one pulse if they overlap. The total current can then be integrated

as charge on a capacitor according the following equation

C

Idt

C

Q
VC

 (2.4)

The output of this current integration is a voltage. To convert it to a PFM pulse stream

for example, a voltage-controlled oscillator (VCO) can be used, followed by a

monostable circuit to generate fixed-width narrow pulses.

Murray et al. in [7-10] present pulse stream computation techniques and apply

them to ANNs. An introduction to ANNs can be found in section 6.1. The operation of

a neuron with its synapses can be modeled by the following equation









 





1

1

N

i
ii xwfy (2.5)

where xi is an input, wi is the synaptic weight for that input, and f is the neuron

transformation function. A common function is the sigmoid function

sume
sumf




1

1
)((2.6)

Figure 2.5. The transconductance multiplier.

17

In (2.5), the synapse performs the multiplication and the neuron performs the

summation and the transformation. The synapse design that was used in [7-10] uses

the analog transconductance multiplier described in [14] and [15]. Figure 2.5 shows

the transconductance multiplier. As a first order approximation, the drain current of

the MOSFET transistor when operating in the triode region can be calculated as

  









2

2
DS

DStGS

V
VVVI  (2.7)

where VGS is the gate to source voltage, VDS is the drain to source voltage, Vt is the

threshold voltage, and β is the gain. If the two transistors M1 and M2 are identical and

VDS1 is equal to VDS2 then

  inGSGS VVVIII 21213   (2.8)

Now we can see that the resultant current is a scaled value of the multiplication of two

voltage quantities. The undesired nonlinear components in the individual drain

currents have been cancelled by subtracting one from the other. Nonlinearity

cancellation by addition or subtraction is a common technique in almost all analog

multipliers.

Figure 2.6 shows the pulse stream transconductance multiplier used in [7-10].

The weight wi is stored as a voltage on a capacitor and refreshed periodically from an

external random access memory (RAM) using a digital to analog converter (DAC).

The synapse uses the transconductance multiplier to convert the weight voltage into

current. The input xi is a pulse stream. It can be a PFM or a PWM stream. It controls

the transistor M3 by turning it on when the pulse is high and off when the pulse is low.

The amplitude of the current pulse through M3 when it is on is proportional to wi and

its frequency and duration is the same as the input pulse stream xi. Therefore, the

synaptic weight wi performs pulse amplitude modulation (PAM) while the input pulse

stream xi performs pulse frequency modulation (PFM) and pulse width modulation

18

(PWM). The operational amplifier (OP-AMP) in negative feedback with the transistor

buffers M4 and M5 provide stronger current drive to support current demand from

many other synapses that connect to the OP-AMP. It converts the current pulses into

voltage pulses Vouti. It is then followed by a voltage integrator to aggregate these

voltage pulses. To convert the voltage integrator output to a PFM signal, a VCO is

used. Higher voltage level generates more oscillations (pulses). To convert the

integrator output to a PWM signal, a comparator with a sigmoidal ramp connected to

its negative input is used. Higher voltage level generates a wider pulse since the

sigmoidal ramp will be below it for longer time. The sigmoidal ramp is provided to the

chip externally and it provides the desired nonlinear and squashing behavior of the

neuron transformation function.

Figure 2.6. The pulse stream transconductance multiplier.

19

Del Corso et al. in [16-18] present a mixed digital/analog technique which

incorporates both PFM and PWM techniques and applies them to ANNs. The input

pulse stream xi is coded in its frequency and used for PFM while the weight wi is

coded as a binary number in a shift register and used for PWM. When a pulse comes

from the input xi, it triggers a full rotation of the shift register. The shift register clock

has a varying binary-weighted cycle time (T, 2T, 4T, 8T, …, 2N-1T) where N is the bit

resolution of wi. This will let a bit stay at the output of the shift register for time

proportional to its binary weight (its position in the shift register). If the output bit is

‘1’ then it enables a current switch and generates a current pulse of width equal to its

time. The total width of the current pulses is proportional to wi. The current pulses

charge a capacitor and its voltage is therefore proportional to wi. wi is a 2’s

compliment number and the sign bit is used to direct the current in or out of the

capacitor (in the negative or positive direction) based on its value, 1 or 0, respectively.

Since this process is repeated at the input pulse frequency (rate) then the capacitor

voltage is also proportional the input pulse frequency. The output voltage drives a

VCO to convert it to a PFM signal.

Mead in [5] presents a self-resetting integrate-and-fire neuron design. It is

similar to the integrate-and-fire circuit shown in Figure 2.7. From its name, the

integrate-and-fire technique integrates the input current I as a voltage on the capacitor

C. When the voltage reaches above the comparator threshold, it fires a pulse. The

pulse then turns the transistor M3 on. This causes the reset signal to go high which

disconnects the input and discharges the capacitor to be ready for a new cycle. More

current means the capacitor will charge and reach the threshold faster. This means that

the time between the generated pulses will be shorter. This integrate-and-fire

technique is an IPI modulation technique since the input current modulates the inter-

pulse time interval (IPI). IPI is inversely proportional to the input current. It can also

be thought of as a PFM technique because shorter IPIs mean a higher pulse frequency.

Winner-take-all (WTA) networks like the ones in [47] and [48] rely on the

integrate-and-fire technique. The current source and inverter in the dashed box in

20

Figure 2.7 are common to all neurons or cells in the network. Once the first neuron or

cell reaches the threshold, the reset signal resets all of them. This means that the cell

with the maximum input will win and shut-off all the other cells. This is useful in

sensory array applications when the interest is focused on the sensor with the strongest

input. Because of its parallel processing capability, it is much faster to solve this

problem using a dedicated on-chip WTA network than to solve it using some

maximum search algorithm.

One useful asynchronous time-domain pulse-stream communication protocol is

called the address-event representation (AER). It is described in [49] and [50]. It

allows multiple pulse senders, such as winner-take-all networks or sensor arrays, to

share the same line. To signal an event (pulse), the sender requests access to the

transmission line and puts its binary address on it when access is granted. On the

receiver side, the binary address is decoded to determine the source (sender) and the

pulse is reconstructed. The inter-pulse time for a sender is measured between two

consecutive assertions of its address.

Figure 2.7. Self-resetting integrate-and-fire circuit. The current source and the inverter
in the dashed box are common to all cells in winner-take-all (WTA) networks.

21

Culurciello et al. in [51] present a fully-arbitrated digital imager based on the

integrate-and-fire and the AER techniques. The photosensor generates a current that is

linearly proportional to the light intensity. Therefore, the inter-pulse time is inversely

proportional to the light intensity. The imager has higher bandwidth than traditional

imagers and a superior signal to noise ratio. The higher bandwidth is because it favors

(gives more bandwidth to) pixels with higher intensity, unlike traditional imagers

which scan the pixel array serially and give equal bandwidth to each pixel regardless

of its intensity. It also consumes less power because there is no serial scanner that is

active all the time and because the pixel’s power consumption depends on its activity

(intensity). Bright pixels consume more power than dark pixels. Abrahamsen et al. in

[48] present a motion detection imager based on the AER and the WTA techniques

above. Similar to the imager in [51], the inter-pulse time is inversely proportional to

the light intensity.

22

3. A Novel Approach to IPI Representation

In this chapter, we will present a novel IPI representation that is suitable for

encoding all values including negative, zero, and positive values, and also suitable for

all basic conversions and computations. We will also explain how our new

representation is different from the other representations we reviewed in section 2.2,

why it is needed, and how it advances the state of the art. Furthermore, to justify our

choice of linear versus nonlinear conversion, and synchronous versus asynchronous

signaling, we will compare them against each other in terms of accuracy, bandwidth,

complexity, and suitability for computation. In the last section, we will study the

conversion and computation timing requirements in general and their effect on the

timing of the IPI signal.

3.1. A Novel IPI Representation

The IPI representation we are presenting here is linear and synchronous. It is

linear because the relationship between the value and the IPI time representing it is

linear. It is synchronous because the pulses are referenced with respect to a periodic

framing or reference clock signal which also controls the conversion and computation.

Figure 3.1 shows the representation and how it encodes negative, zero, and positive

values. Tf is the frame time. The time between the first framing pulse and the pulse in

between is defined as t+. The time between the pulse in between and the second

framing pulse is defined as t-. If t+ is greater than t- then the value is positive. If t+ is

23

equal to t- then the value is zero. And if t+ is less than t- then the value is negative. The

relationship between Tf, t+, and t- is governed by the following equation

  tTt f
(3.1)

Figure 3.1. Novel synchronous linear IPI representation for negative, zero, and
positive values: (a) t+ > t- for positive, (b) t+ = t-= Tf/2 for zero, and (c) t+ < t- for

negative.

When compared to other pulse representations, our representation is novel in

the way it encodes negative, zero, and positive values. The representations [69], [70],

[75-81] and [98], are all linear and synchronous, but these representations use only one

24

part of the frame (the time between the framing pulse and the pulse in between), let us

call it t, while our representation uses both parts t+ and t-. I.e., our representation

introduces the concept of negative time while the other representations do not have

such concept. This makes our representation more suitable for computation of

negative, zero, and positive values because it allows for “time-based” computation in

the time domain with no need to convert to the analog or digital domains for

computation, as we will explain.

This thesis shows, in subsection 6.2.1, how time-based computation using our

representation, not just communication, is more robust than analog computation. It is

true that the other pulse time representations can still represent or convert negative

values or any range of the signal by using a sawtooth ramp signal and/or DC offset of

the input signal relative to the comparator, as we have described in section 2.2. But,

direct time-based computation using these representations is more difficult. Let us use

addition as an example. Consider the following simple linear function which is similar

to the voltage-time relationship used in [69], [70], [75-81] and [98]. For simplicity, we

will assume the slope is 1 since it has no impact on the discussion.

Btx  (3.2)

where x is the analog value, t is the time representing it, and B is an offset that allows

the representation of negative values. This offset can be achieved by letting the

sawtooth ramp start from negative and/or by adding a DC offset to the input signal. On

the other hand, the following function is similar to the representation that we are

proposing. Again for simplicity, we will assume the slope is 1.

  ttx (3.3)

Now, let us consider the task of adding three analog values in the time domain. The

values are x1, x2, and x3. Using (3.2), we can find

25

Bxxxttt 3321321  (3.4)

but using (3.3), we can find

321332211)()()(xxxtttttt   (3.5)

Equation (3.4) which uses the other representations approach, shows that if we

add the times representing the three analog values then the result will be a time that

represents their sum plus an offset that is equal to the sum of their individual offsets.

In this case the offset is 3B and N inputs will have an offset of NB. This offset then

needs to be subtracted from the result. Time-based subtraction will have the same

problem but the offset will be negative not positive. Each addition/subtraction circuit

will need to subtract/add a different offset value based on the number of inputs and

their signs, so that the result can be delivered to the next time-based computation

block offset-free. These offsets will limit the dynamic range of operation as they grow

in either direction. They will also impact the accuracy and increase the cost of

computation and calibration circuitry. The offset problem is even more serious when

we consider time-based multiplication and division. In multiplication, for example, the

offsets will get mixed (multiplied) with the inputs and removing them from the final

result will be difficult.

Equation (3.5), which uses our representation approach, shows that the time

resulting from adding and subtracting the t+ and t- times of the individual inputs, does

not have the DC offset problem described above and therefore no DC shift or

adjustment of the result is needed. The same thing applies to the other computations,

multiplication and division. Using this approach, all computation blocks can use the

same representation, and will therefore be able to directly receive and generate results

in the same form. It is true that from (3.1), equation (3.3), which uses our approach,

can be rewritten as

26

fTtx  2 (3.6)

which is similar to (3.2), and which uses the other approach, if we ignore the slope of

2 and think of Tf as the offset. Equations (3.3) and (3.6) are equivalent from a

conversion and representation perspective. However, the difference is that (3.6) uses

the t+ and Tf information to represent the signal value instead of the t+ and t-

information used by (3.3). If we choose to use the t+ and Tf information instead of the

t+ and t- information then we will run into the same DC offset problem that exists in

the other approach, as can be seen from the similarity between (3.2) and (3.6).

Based on our t+-t- representation approach, we were able to develop methods

and circuits for all basic time-based conversions and computations, including Voltage-

to-IPI, IPI-to-Voltage, addition, subtraction, division, and multiplication. Suitability

of the representation for both conversion/communication and computation is very

important because it eliminates the need to convert to/from other analog or digital

domains if computation is needed. One good example where such computation would

be needed is at the front end of a receiver to improve the signal-to-noise ratio (SNR)

by averaging the over-sampled signal [25]. If the pulse time representation in [69],

[70], [75-81] and [98], is used for communication, then to perform computation, the

pulse stream signal has to be converted to either analog or digital in order to use the

analog or digital computation techniques. This thesis will show that computation

based on our approach here does not have the problems that analog computation

suffers from such as the body effect and the mobility degradation effect, just

considering local short-wire computation issues. Converting from time (IPI or PWM)

to digital will require a fast counter and clock. The thesis will show that our approach

has accuracy better than 98%, which is comparable to 6-bit digital accuracy, using a

10 ns time frame. Assuming that the other representations in [69], [70], [75-81] and

[98] have the same accuracy as ours for the same time frame, to convert from them to

the digital domain while maintaining the same level of accuracy and speed, a 6-bit

counter with a clock cycle as short as 10/64 = 0.15625 ns is necessary. The clock cycle

time required is almost as short as the delay of a single fast inverter cell in the TSMC

27

0.35um process [117]. So, such a fast counter is not actually possible and therefore we

need to make the time frame much longer to accommodate the time-to-digital

conversion. This will, of course, slow the speed down significantly, and it will also

consume much more power.

It is possible to convert from the time domain back to the analog domain, and

then from the analog domain to the digital domain using a fast ADC, to avoid the very

fast counter problem. However, this thesis shows that the ADC operation is much

more expensive in terms of area and power consumption than Voltage-to-IPI

conversion. After all these conversion/computation scenarios, we can see that

performing both conversion/communication and computation in the same time domain

using the same representation, is the best option if 98% accuracy is enough and area

and power consumption are important.

3.2. Computation Error Analysis

The objective of this section is to examine in more depth the linear and

logarithmic representations that were introduced in the previous chapter and their

effect on error accumulation in various computations. The error analysis results from

this section will be used to compare the linear and logarithmic representation schemes

in the next section. The errors we will calculate are:

 ec , conversion error

 ea , N-input addition error

 es , N-input subtraction error

 em , N-input multiplication error

 ed , N-input (one dividend and N divisors) division error

28

3.2.1. Linear Representation

We will use the following simple linear conversion function to evaluate the

effect of the linear function on the error when performing various arithmetic

operations in the time domain

t = x (3.7)

The maximum conversion error is determined by the time resolution which is .

Therefore,

ec,max = (t + ) – t =  (3.8)

Since each one of the N inputs to the addition or subtraction will contribute a

maximum error of  to the total error, the maximum addition and subtraction errors are

ea,max = es,max = N (3.9)

To evaluate the multiplication error of N inputs, we will first use a binomial expansion

to evaluate the following formula

     






 
N

i

iNi

i

N
N

i

iNi

i

N tNttNt
10

 (3.10)

where

    !!

!

iiN

N
N
i 
 (3.11)

Using (3.10), we can find that the multiplication error is

29

   



N

i

iNi

i

NN
m tNtte

1

 (3.12)

and therefore the maximum multiplication error is

 



N

i

Ni

i
m tNe

1

1
maxmax,  (3.13)

The division error is

ed = (1/tN) - (1/(t + )N) = (1/xN) - (1/(x + )N) (3.14)

The maximum division error will depend on the smallest magnitude allowed for the

divisors.

3.2.2. Logarithmic Representation

We will use the following simple logarithmic conversion function to calculate

the error when performing various arithmetic operations

t = logB(x) (3.15)

which means

x = Bt (3.16)

The conversion error is

ec = B(t+) – Bt = Bt (B - 1) = x (B - 1) (3.17)

30

and the maximum conversion error is

ec,max = xmax (B
 - 1) (3.18)

In the same way, we can find that the maximum error of addition and subtraction is

ea,max = es,max = Nxmax (B
 - 1) (3.19)

The multiplication error is

em = (B(t+))N – (Bt)N = BNt (BN - 1) = xN (BN - 1) (3.20)

and the maximum multiplication error is

em = (xmax)
N (BN - 1) (3.21)

The division error is

ed = 1/(B(t+))N – 1/(Bt)N = B-Nt (B-N - 1) = x-N (B-N - 1) (3.22)

The maximum division error will depend on the smallest magnitude allowed for the

divisors.

3.3. Conversion Schemes: Linear Versus Logarithmic

The IPI representation we presented in section 3.1 is linear. There are a number

of reasons to use a linear scheme over a logarithmic scheme. One of the most

important is accuracy. One advantage of the logarithmic scheme is that it provides

more bandwidth and therefore more speed than the linear representation. It also

31

provides greater dynamic range, since the logarithmic function compresses the IPI

time needed to encode the analog signal, that is, it represents the same signal with

shorter IPI intervals. As the base of the logarithm b increases, the IPI time decreases

which increases bandwidth. Unfortunately the price for this is mainly in reduced

accuracy. From the error analysis and equations in the previous section, we can see

that the amount of error in conversion and computation increases as the base of the

logarithm B increases. The linear scheme does not have this problem and therefore we

have chosen it to achieve better accuracy.

The second reason why we have chosen a linear scheme over a logarithmic is

that addition and subtraction are more difficult to perform in the logarithmic domain

than in the linear domain. We were able to develop novel methods and circuits to

perform addition and subtraction using the linear scheme, as we will see in the next

chapter. One potential advantage of using the logarithmic scheme however is that

multiplication and division can be performed as addition and subtraction respectively,

but this potential advantage is compromised by the lack of simple methods and circuits

to do addition and subtraction. Furthermore, we were able to find novel methods and

circuits to perform division and multiplication using the linear scheme, as we will see

in the next chapter.

The third reason is that it is difficult to deal with negative, zero, and positive

values less than 1 in the logarithmic domain because negative and zero are out of the

input range of the logarithmic function, and positive values less than 1 requires a

negative IPI representation. To overcome this problem, a DC offset may be added in

the beginning when converting from analog to IPI and then the same offset needs to be

subtracted if IPI to analog conversion is needed. The impact of the DC offset on the

computation result will depend on the type of operation being performed. For

example, in the case of addition, the offset in the result will be the sum of the offsets

in the individual inputs. When multiplying two inputs, since the offset of one input

will get multiplied by the other input, isolating the offset will be difficult.

Consequently, using a DC offset to solve the initial problem of not being able to

32

represent negative, zero, and positive values less than 1 in the logarithmic domain can

lead to significantly greater complexity especially in the case of multiplication and

division.

3.4. Signaling Schemes: Synchronous Versus Asynchronous

The IPI signal representation presented in section 3.1 is synchronous. We have

chosen the synchronous version since it meets our needs for both communication and

computation. In this section we discuss the reasons for this decision.

In the asynchronous scheme, information is encoded in each IPI and the pulses

are asynchronous with each other. Time-based computation using this scheme is very

difficult especially on negative values because of the DC offset problem described in

section 3.1. It is possible to convert the asynchronous IPI streams to analog voltages

and then use analog computation techniques, but this thesis will show that time-based

computation using our approach does not have the problems that analog computation

suffers from such as the body effect and the mobility degradation effect. Our

synchronous representation is more suitable for performing time-based computation

on all values including negative, zero, and positive, because it uses both parts of the

frame to represent the value, and this approach is not possible with the asynchronous

scheme.

The synchronous scheme imposes more constraints on the arrival times of the

pulses by using a framing clock pulse as a reference. One full time frame Tf is

dedicated to each value to be encoded, which creates a natural trade-off between

accuracy and responsiveness. Shorter intervals are more responsive but less accurate,

etc. The IPI times are measured with respect to the framing clock pulse, and therefore

synchronization of different streams is easy. Some IPI information storage or delay

may be needed but not for many time frames. This will depend on the nature of the

computation needed and whether it needs inputs or results to be aligned or

synchronized with other IPI inputs or results. Synchronization would be a problem for

33

synchronous IPI signaling when the inputs have different frame times. In our work, we

assume that all IPI signals in the system have the same frame time. This assumption

can be made if one global clock is used to synchronize sampling and framing of all

inputs. This is not a likely possibility with a network of remote sensors, and therefore

a more sophisticated clock recovery and synchronization scheme such as a phase-

locked loop (PLL) [120] is needed.

One advantage of the asynchronous scheme however is that it has higher

bandwidth, and can potentially be more responsive than the synchronous scheme since

it does not allocate a fixed-width time slot (frame) for each IPI regardless of the

encoded value. Another advantage is that if a pulse is lost or a spurious pulse is

received then there will be a maximum of two errors. However, with synchronous

signaling, the synchronization circuitry may get stuck in an incorrect phase causing all

subsequent IPIs to be erroneous. Therefore, to improve the reliability of the

synchronous signaling, a more sophisticated clock-recovery scheme such as a phase-

locked loop (PLL) is needed. Furthermore, a “resynch” capability is almost mandatory

in any synchronous IPI representation. Despite these advantages of the asynchronous

scheme, we have decided to choose the synchronous scheme for the reasons discussed

above.

3.5. IPI Signal Timing Requirements

We now discuss the analog-to-IPI conversion and computation timing

requirements and their effects on the IPI signal timing. These requirements are based

on the synchronous signaling scheme and do not depend on any particular design

implementation, i.e., they will be needed regardless of the design implementation

details.

34

3.5.1. Analog-to-IPI Conversion Timing Requirements

Figure 3.2 shows the Analog-to-IPI conversion timing requirements. The

Analog-to-IPI conversion time is equal to the IPI time, i.e., the conversion starts at the

beginning of the frame and ends when the second pulse of the IPI is generated.

Figure 3.2. Analog-to-IPI conversion timing requirements.

To start the conversion, the analog value should be ready at the beginning of

the frame. This means that the analog input should be sampled first and then converted

to IPI. This also means that the sampling must begin at least Tsd before the frame

beginning where Tsd is the sampling delay of the signal. To support the previous

operation, we need a periodic sampling signal that has the same frequency as the

framing signal but leads it by at least Tsd. To satisfy the Analog-to-IPI conversion

timing requirements, the time frame Tf must satisfy the following two relationships:

1. Tf > Tsd + Tmax , where Tmax is the maximum IPI time.

2. Tf = Ts = 1/Fs < 1/(2Fm) , where Fs is the sampling frequency and Fm is the

maximum frequency in the analog signal spectrum. According to the sampling

theory, the sampling frequency Fs needs to be at least twice the maximum

frequency Fm in the signal spectrum in order for the samples to completely

encode all the information in the signal [105].

35

A possible speed optimization is to use pipelining to overlap the sampling and

conversion operations so that Tmax and Tsd in the first relationship above are no longer

additive and Tf then needs to satisfy the following relationship: Tf > max (Tsd , Tmax).

3.5.2. Computation Timing Requirements

Figure 3.3 shows the computation timing requirements. Since the computation

result may have an IPI shorter than the longest input IPI, the result cannot be

represented in the same frame as the inputs. However, it can be represented in the next

frame. Similar to the Analog-to-IPI conversion, the computation result must be ready

in some form by the beginning of the next frame. The full computation can be viewed

as two steps:

1. Receiving the inputs and calculating the result in some form in the current

frame.

2. Converting the result from that form to IPI and generating the pulse in the next

frame.

Figure 3.3. Computation timing requirements.

This is just a simple description of the basic requirements. Different

computations may require different timing. For example, calculation of the result in

some form may take one or more time frames. To satisfy the computation timing, the

36

frame length Tf must satisfy the following relationship: Tf > Tcmp + Tmax where Tcmp is

any computation delay that may be needed in the first frame beyond Tmax if calculating

the result in some form does not complete during Tmax. A possible speed optimization

is to use pipelining to overlap the conversion and computation operations above.

37

4. Novel Methods and Circuits for Time Based Conversion and

Computation

In this chapter, we will present novel methods and circuits for time-based

conversion and computation. These methods and circuits include IPI-to-Voltage

conversion, Voltage-to-IPI conversion, and the basic arithmetic computations:

addition, subtraction, division, and multiplication. These methods and circuits are

based on the novel IPI representation presented in this dissertation. Therefore, their

significance and novelty versus that of other pulse time representations (IPI and

PWM) [69], [70], [75-81] and [98], are in many ways very similar to the significance

and novelty of our IPI representation versus the other representations. The significance

of these methods and circuits come also from the advantages of being able to use the

same time-based representation to perform both conversion/communication and

computation without the need to convert the pulse stream to and from the analog or the

digital domain for computation.

Simulation results will be shown in this chapter only to demonstrate how the

circuits operate. The simulation results along with the experimental test results will be

presented in the next chapter. Square wave (or PWM) signals are used to convey the

IPI timing information of the IPI inputs. Typically, the IPI input signal is received by a

toggle flip-flop (T-FF) at the front end which generates an equivalent square wave (or

PWM) signal that carries the IPI timing information. The signal is low during t+ and

high during t-. Figure 4.1 shows how the T-FF should be connected. The intent was to

focus on designing and testing the main part of each circuit and to have more direct

control over the signals controlling the switching logic for better testability.

38

4.1. IPI-to-Voltage and Voltage-to-IPI Conversions

The relationship between Tf, t+, and t- is governed by the following equation

  tTt f
(4.1)

Figure 4.1 shows the IPI-to-V-to-IPI conversion circuit. Figure 4.2 is a simulation

chart that shows its operation. It takes two time frames to perform both conversions. It

performs the IPI-to-V conversion in the first frame and the V-to-IPI conversion in the

second frame. Initially, the capacitor voltage VC is at Vmiddle which is the zero

reference. In the first frame, each transistor is in saturation mode for its corresponding

IPI time. MP1 is turned on for t+ and MN1 is turned on for t-. The current I in the P-

channel MOS transistor should be equal in amount but opposite in direction to the

current in the N-channel MOS transistor. The idea here is to linearly charge the

capacitor in the positive direction during the IPI time t+ and to linearly charge it in the

negative direction at the same rate during the IPI time t-. At the end of the first frame

the output voltage on the capacitor is

   tt
C

I
VC

(4.2)

In the second frame, the input transistors are turned off and MN3 and MN4

transistors are turned on in saturation mode to linearly decrease the output voltage

toward –VM where –VM is the minimum output voltage (i.e., the lower limit of the

output dynamic range). VM is the maximum output voltage (i.e., the upper limit of the

output dynamic range) and is equal to

fM T
C

I
V  (4.3)

39

MN3 and MN4 transistors should provide the same amount of current I each.

Therefore, the output voltage on the capacitor in this frame follows the following

equation

    t
C

I
tt

C

I
tVC

2
 

(4.4)

Figure 4.1. IPI-to-V-to-IPI conversion circuit.

When VC reaches just below –VM, the comparator output goes high. This sets the RS

latch and causes its Q output to go high as well. The Q output then turns the MN5

switch on, which in turn charges the capacitor back up to its initial voltage Vmiddle.

After that, the circuit is again in its initial state and is ready to start a new cycle of

conversion. When VC increases to just above –VM in its way back up to Vmiddle, the

comparator output is unasserted (low), which determines the shape of the output pulse.

40

Some capacitance can be used to delay the rise of the Q output to adjust the width of

the IPI output pulse, where a larger capacitance gives wider pulse. This extra

capacitance does not affect the time at which the pulse is fired because this is decided

mainly by the comparator. The pulse is generated when VC decreases down to –VM.

Using (4.3) and (4.4), we can find that this happens at time

  ttout
(4.5)

and this recovers the IPI times of the original input.

The IPI-to-V conversion circuit consumes the silicon area of the following

devices:

 1 capacitor

 1 NMOS and 1 PMOS transistor for the current source

 1 big NMOS discharge transistor

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input

 1 T-FF per IPI input to generate from the IPI input signal the square wave

signals that controls the input transistors

And the V-to-IPI conversion circuit costs the following devices:

 1 capacitor (shared with IPI-to-V conversion in IPI-to-V-to-IPI conversion)

 4 NMOS transistors which decrease the capacitor voltage towards –VM at twice

the rate of IPI-to-V conversion

 1 big NMOS discharge transistor

 1 comparator

 1 RS latch

41

Figure 4.2. Simulation of the IPI-to-V-to-IPI conversion circuit.

Before we compare our conversion (modulation and demodulation) techniques

and circuits to the other pulse time (IPI and PWM) techniques and circuits in [69],

[70], [75-81] and [98], which we have reviewed in section 2.2, we would like to say

that any of them can be used for conversion. However, the benefits of our

representation and conversion techniques lie actually in their use for computation of

negative, zero, and positive values, as we will see when we present the addition,

subtraction, division, and multiplication. When compared to the other pulse time

modulation (IPI and PWM) techniques and circuits in [69], [70], [75-81] and [98], our

Voltage-to-IPI converter (modulator) stores the voltage sample on the capacitor. Then,

as we explained above, it charges the capacitor linearly down toward –VM at twice the

charging rate of the IPI-to-V conversion. When equivalence is detected, the

42

comparator generates the pulse. The other techniques, however, do not ramp the input

voltage on the capacitor. Instead, a sawtooth ramp signal is provided and compared

against the input sample for equivalence. The ramp itself and/or a DC offset can be

used to represent negative values. When compared to the other pulse time

demodulation (IPI and PWM) techniques and circuits in [69], [70], [75-81] and [98],

our IPI-to-voltage converter (demodulator), as we described above, charges the

capacitor in the positive direction during the first part of the frame t+, and in the

negative direction during the second part of the frame t-. This basically realizes (4.2),

which is a mathematical description of the novel IPI representation presented in

section 3.1. In the other techniques, however, PWM signals are converted to IPI

signals first. Then, IPI demodulation is performed. For IPI demodulation, the first

input pulse is used to initiate the generation of a sawtooth ramp signal and the second

input pulse is used to sample and hold the ramp signal. This produces the voltage

sample equivalent to the IPI.

4.2. Addition

Figure 4.3 shows the IPI addition circuit. Figure 4.4 is a simulation chart that

shows its operation and Figure 4.5 is a timing diagram that shows the phases and

sequence of computation. Its operation is very similar to the IPI-to-V-to-IPI

conversion except for having a second input. Initially the capacitor voltage VC is at

Vmiddle. In the first frame, each input transistor is turned on in saturation mode for its

corresponding IPI time. MP1 is turned on for t1+ and MN1 is turned on for t1-.

Similarly, MP2 is turned on for t2+ and MN2 is turned on for t2-. Therefore, each input

transistor contributes linearly to the output voltage on the shared capacitor and

positively or negatively according to its t+ and t- times. At the end of the first frame

the output voltage on the capacitor is

43

      2211 tttt
C

I
VC

(4.6)

In the second frame, the operation is identical to the voltage-to-IPI conversion

explained in the previous section. All the input transistors are turned off and MN3 and

MN4 transistors are in saturation mode to linearly decrease the output voltage toward

–VM. In this frame, the output voltage on the capacitor follows the following equation

       t
C

I
tttt

C

I
tVC

2
2211  

(4.7)

The output pulse is generated when VC decreases to –VM. Using (4.3) and (4.7), we can

find that this happens at time

Figure 4.3. IPI addition circuit.

44

Figure 4.4. Simulation of the IPI addition circuit.

Figure 4.5. Timing diagram of addition.

45

 
2213

fT
ttt  

(4.8)

and using (4.1) and (4.8), we can find

     221133 tttttt (4.9)

The addition circuit consumes the silicon area of the following devices:

 1 capacitor

 1 NMOS and 1 PMOS transistor for the current source

 1 big NMOS discharge transistor

 4 NMOS transistors which decrease the capacitor voltage towards –VM at twice

the rate of IPI-to-V conversion

 1 comparator

 1 RS latch

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input

 1 T-FF per IPI input to generate from the IPI input signal the square wave

signals that controls the input transistors

While it is true that we can use the pulse time (IPI and PWM) representation

techniques, which we have reviewed in section 2.2, for conversion/communication,

their use for direct “time-based” computation has not been demonstrated anywhere,

and is difficult, as we explained in section 3.1. Analog computation can be used with

these representations, after converting the pulse streams to analog, but the thesis will

show that analog computation suffers from problems that our circuits do not have such

as the body effect and the mobility degradation effect. In this section, we have

demonstrated how to use our representation approach and IPI-to-V and V-to-IPI

46

conversion techniques, to perform addition of negative, zero, and positive values. All

the inputs are IPI and the output is also IPI and is ready for use by other IPI

computation blocks. This discussion is also valid for all the other computation circuits,

which we discuss next.

4.3. Subtraction

The subtraction circuit is the same as the addition circuit in Figure 4.3 except

for the second input is inverted so that its logic and transistors operate in an opposite

manner. MN2 is turned on during t2+ instead of MP2 and MP2 is turned on during t2-

instead of MN2. This way the second input is subtracted from the first input not added

to it. Figure 4.6 is a simulation chart that shows the subtraction operation. At the end

of the first frame the output voltage on the capacitor is

      2211 tttt
C

I
VC

(4.10)

In the second frame, the output voltage on the capacitor follows the following

equation

       t
C

I
tttt

C

I
tVC

2
2211  

(4.11)

The output pulse is generated when VC decreases to –VM. Using (4.3) and (4.11), we

can find that this happens at time

 
2213

fT
ttt  

(4.12)

and using (4.1) and (4.12), we can find

47

Figure 4.6. Simulation of the IPI subtraction circuit.

     221133 tttttt (4.13)

4.4. Division

Figure 4.7 shows the time-based division circuit. Figure 4.8 is a simulation

chart that shows its operation and Figure 4.9 is a timing diagram that shows the phases

and sequence of computation. This division circuit, which is also used for

multiplication in the next section, operates in the first quarter but it is the core of the

four-quadrant (4-Q) operation. In section 4.6, we will explain how it can be used for 4-

Q operation with minimum modifications.

48

Initially, all capacitors in the circuit are at Vmiddle. In the first frame, each input

transistor is turned on in saturation mode for its corresponding IPI time. MP1 is turned

on for t1+ and MN1 is turned on for t1-. Similarly, MP2 is turned on for t2+ and MN2 is

turned on for t2-. At the end of the first frame, the voltages on the capacitors C1 and C2

are

   11
1

1
1 tt

C

I
VC

(4.14)

   22
2

2
2 tt

C

I
VC

(4.15)

VC1 is connected to the positive input of the voltage follower OP-AMP. This sets the

voltage across the resistor R to VC1 and therefore the current in R is

R

V
I C

R
1 (4.16)

The current in M3 and M4 is equal to IR. In the second half of the second frame, M5 is

turned on and therefore the current charging the capacitor C3 is

 
 

 
  RMMMC I

LW

LW
I

LW

LW
III

44

66
4

44

66
653  (4.17)

where W4, W6, L4, and L6 are the channel widths and lengths of MN4 and MN6,

respectively. Consequently, VC3 will increase linearly according to the following

equation











23

3
3

fC
C

T
t

C

I
V (4.18)

49

When VC3 reaches a level equivalent to VC2 the comparator detects that situation and

the output pulse is generated. Using (4.14)-(4.18), we can find that the time when this

happens is

 
 

 
  211

22

44

66

2

31

1

2
3

f

C

C
T

tt

tt

LW

LW

C

CRC

I

I
t 



























(4.19)

Figure 4.7. IPI division circuit.

50

Figure 4.8. Simulation of the IPI division circuit.

Figure 4.9. Timing diagram of division.

51

and using (4.1) and (4.19),

 
 


 




11

22
33 tt

tt
Ktt div

(4.20)

where

 
 44

66

2

31

1

22
LW

LW

C

CRC

I

I
K

C

C
div 
















 (4.21)

As we can see from (4.20), the output represented by the IPI times t3+ and t3- is a

scaled value of the division of the second input represented by the IPI times t2+ and t2-,

by the first input represented by the IPI times t1+ and t1-. The scaling factor Kdiv can be

set by choosing the right values for the design parameters IC1, IC2, R, C1, C2, C3, W4,

W6, L4, and L6 based on the design requirements such as power, area, speed, and

accuracy.

The division circuit has the following silicon cost:

 3 capacitors

 1 resistor

 1 NMOS and 1 PMOS transistor for the current source

 3 big NMOS discharge transistors per capacitor

 1 comparator

 1 OP-AMP

 1 RS latch

 1 NOR gate and 1 AND gate

 2 NMOS and 2 PMOS to mirror the current in the resistor to C3

 2 NMOS transistors per input

 2 PMOS transistors per input

 1 NOR gate, 1 OR gate, 1 inverter per input

52

 1 T-FF per IPI input to generate from the IPI input signal the square wave

signals that controls the input transistors

As the divisor gets very small or zero, the division result grows very large and

the output pulse will never be generated. The capability of detecting such situation can

be added to our circuit by employing a timeout/saturation mechanism. Maximum

output pulse signal, say IPIMAX, is derived from the framing pulse signal but it leads it

by a short time tlead. This short time should be long enough to accommodate the pulse

width and the circuit reset time. It can be inserted using an even number of inverters.

If an output pulse is generated during the output frame then there is no need for the

IPIMAX pulse and it should be masked by the IPI_level_out signal. On the other hand,

if no output pulse has been generated then the IPIMAX pulse should not be masked and

should be taken as the output pulse.

4.5. Multiplication

Figure 4.10 shows a block diagram of the IPI based multiplication circuit.

Figure 4.11 is a simulation chart that shows its operation and Figure 4.12 is a timing

diagram that shows the phases and sequence of computation. It uses two division

circuits. The idea of using division to compute the multiplication comes from the fact

that multiplying by a number is equivalent to dividing by its inverse. Thus, the

multiplication can be performed as two consecutive divisions as follows

 yxxy 1 (4.22)

The first division circuit takes the first input to be multiplied as its first input and a

constant signal as its second input and computes the following result in the second

frame

53

Figure 4.10. IPI multiplication as two IPI divisions.

 
 


 




11
133 tt

TT
Ktt constconst

div
(4.23)

where Tconst+ and Tconst- are the IPI times representing the constant input. The second

division circuit takes the result, which the first division circuit computes, as its first

input and the second input to be multiplied as its second input and computes the

following result in the third frame

 
 


 




33

22
244 tt

tt
Ktt div

(4.24)

Using (4.23) and (4.24), we can find

    221144 ttttKtt mult
(4.25)

where

  










constconstdiv

div
mult TTK

K
K

1

1

2 (4.26)

As we can see from (4.25), the output represented by the IPI times t4+ and t4- is a

scaled value of the multiplication of the first input represented by the IPI times t1+ and

t1-, by the second input represented by the IPI times t2+ and t2-. The scaling factor Kmult

54

can be set by choosing the right values for Kdiv1, Kdiv2, and the constant input IPI times.

From process variations point of view, this multiplication method has a great

advantage since these variations in devices like transistors, capacitors, resistors will

cancel out if the two division circuits are close from each other, since Kdiv2 is divided

by Kdiv1.

Since the multiplication uses two division circuits, it has the same problem

with small or zero inputs as the division does. Therefore, the timeout/saturation

capability described above for division is also needed. It also takes care of any

situation in which the output pulse is not generated for any reason.

Figure 4.11. Simulation of the IPI multiplication circuit.

55

Figure 4.12. Timing diagram of multiplication.

Multiplication runs at the same speed as division, one operation per two

frames. The first result requires three frames but subsequent results are available every

two frames. This is because the two division blocks operate in a pipelined fashion. As

the first division block is producing its result in one frame, the second division block

is taking this result as input and performing the IPI-to-V conversion of the inputs in

the same frame. This can be seen by looking at the timing diagram in Figure 4.12.

Unlike the pulse based multiplication techniques and circuits in [7-10] and [16-

18], which we reviewed in section 2.2, the inputs to our time-based multiplier are all

time-based (IPI or PWM) and the output is also time based (IPI or PWM) and is ready

for use by other computation blocks or for communication. Moreover, our multiplier

does not use any analog or digital multiplication techniques. In [7-10], one input is a

voltage while the other can be a PFM/PWM signal and an analog transconductance

multiplier is used. In [16-18], one input is digital while the other is a PFM signal and a

shift register with a clock that has a varying binary-weighted cycle time (T, 2T, 4T, 8T,

…, 2N-1T) is used. As we explained in section 3.1, doing both

conversion/communication and computation in the same time domain with no need to

convert to/from analog or digital has certain advantages. Avoiding analog computation

eliminates serious problems such as the body effect and the mobility degradation

effect, as we will see in subsection 6.2.1. There are situations however where a

designer may be willing to choose the analog computation for its simplicity and speed.

56

Avoiding digital computation eliminates the need for ADC, which is very expensive in

terms of area and power consumption, as we will see in subsection 6.2.2.

4.6. Four-Quadrant Division and Multiplication

In this section, we will explain how the first-quadrant (1-Q)

division/multiplication circuit above can be used for 4-Q operation. The discussion

uses division but it also applies to multiplication.

If we have two inputs x and y then their division























00

00

00

00

yandxifyx

yandxifyx

yandxifyx

yandxifyx

yxz
(4.27)

This means that we only need to compute two results +|x/y| and -|x/y|. Then, based on

the signs of the two inputs, we select one of them as the final result. Our IPI circuit has

the result in PWM form (square wave form). Obtaining -|x/y| from +|x/y| can be done

simply using an inverter. The delay of the inverter has negligible impact on the

accuracy since its low-to-high and high-to-low propagation delays, tpLH and tpHL, are

practically equal and therefore will have negligible impact on the high and low

durations of the inverted output. The result in IPI form can be easily obtained from the

PWM result if needed. In light of this, our problem has been reduced to calculating

only one value +|x/y| whatever the signs of the two inputs are, obtaining -|x/y| using

an inverter, and then selecting one of them as the final result based on the signs using

a 2-by-1 multiplexer (MUX).

Our 1-Q circuit computes the result +|x/y|. The voltages VC1 and VC2 are ready

by the end of the first frame. Therefore, the signs of the two inputs can be generated at

the end of the first frame by using two comparators with their negative terminals

57

connected to Vmiddle. If the voltage is above Vmiddle then it is positive and if it is below

Vmiddle then it is negative. The sign of the final result can be generated from the signs

of the two inputs using a logical XOR gate, and it is used to control the 2-by-1 MUX.

If the two signs are similar then +|xy| will be selected as the final result and if they are

different then -|xy| will be selected. Our 1-Q circuit works for positive values of VC1

and VC2. VC1 is connected to the positive terminal of the feedback voltage follower OP-

AMP and VC2 is connected to the positive terminal of the comparator which compares

VC3 against VC2. We need to provide the voltage follower OP-AMP and the comparator

with the absolute values of VC1 and VC2 (|VC1| and |VC2|), respectively. To do this, we

need to generate -VC1 and -VC2 using IPI-to-V converters but with the PWM inputs

inverted. Full IPI-to-V converters are not needed. Only the switches, current sources,

and the capacitor are needed. The PWM signals controlling the switches are available

from the already existing IPI-to-V converters used to generate VC1 or VC2. They should

be swapped though to negate the inputs. Then, the value or its negative is passed to the

OP-AMP or the comparator using a pass gate controlled by its sign. If the value is

positive then it will pass. If it is negative then its absolute value will be passed. This

will ensure that the OP-AMP and the comparator always get the absolute values of VC1

and VC2, respectively.

As we can see from the discussion above, the 1-Q circuit is the core of the 4-Q

operation and it only needs the following to operate as 4-Q:

 1 inverter to obtain -|xy| from +|xy|

 2 comparators to generate the signs of the two inputs

 1 XOR gate to generate the sign of the final result and select +|xy| or -|xy|

 1 2-by-1 MUX

 2 IPI-to-V converters to negate VC1 and VC2. T-FFs and input logic gates are

not necessary since signals controlling the switches are available from the

other IPI-to-V converters generating VC1 and VC2.

 2 pass gates to pass VC1 or -VC1 to the voltage-follower OP-AMP

58

 2 pass gates to pass VC2 or -VC2 to the comparator

Based on our 0.35 um implementation of the 1-Q circuit in chapter 5, this extra

circuitry will increase the area by about 60% and the power consumption by about

45%. The 4-Q circuit does not require any extra time frames and therefore runs at the

same speed as the 1-Q circuit. There are delays added by the inverter and the MUX in

the path of the PWM output signal but these delays are usually very small compared to

the time frame. Also, as we explained above, their propagation delays have negligible

impact on the high and low durations of the PWM output signal since the low-to-high

delay practically cancels the high-to-low delay. Furthermore, the parasitic

capacitances of the pass gates are negligible if the capacitors are made large enough.

Therefore, the accuracy of the 4-Q circuit is very similar to that of its core, the 1-Q

circuit.

59

5. Experimental Results

We have implemented the methods and circuits described in the previous

chapter in a chip using the TSMC 0.35 um mixed-signal CMOS fabrication process

technology thorough the MOSIS-USA fabrication and packaging service [118] and

[119]. The process has four metal layers and two poly Silicon layers. In this chapter,

we describe the design of the chip including the top level cells. We have simulated and

tested the circuits at a 10 MHz framing speed which corresponds to a 100 ns time

frame. We have also simulated the conversion, addition, and subtraction circuits at 100

MHz and the division and multiplication circuits at 50 MHz. We present the

experimental test and simulation results for each of the conversion and computation

circuits in terms of accuracy, area, power consumption, and dynamic range.

5.1. Top Level Chip Design

The chip design, layout, simulation, and verification were performed using the

Mentor Graphics ASICs Design Kit (ADK) and tools [116]. The chip has one addition

circuit that can also be used to demonstrate subtraction and IPI-to-V-to-IPI

conversion. The chip also has two division circuits to demonstrate division and

multiplication. Figures 5.1-5.5 show the layout design of the OP-AMP/comparator, RS

latch, addition/subtraction/IPI-V-IPI conversion, division, and top level cells,

respectively. The OP-AMP/comparator and RS latch cells are lower level cells used by

the addition and division cells. Figure 5.6 is a microphotograph of the chip. The total

chip area including the input and output pads is 2.25 mm2 (1.5 mm × 1.5 mm).

60

Figure 5.1. Layout of the OP-AMP/comparator cell. The cell was custom designed
since the ADK library does not have OP-AMP or comparator cells.

Figure 5.2. Layout of the RS latch cell. Two standard NOR gate cells from the ADK
library were used to construct this cell.

61

Figure 5.3. Layout of the addition, subtraction, and IPI-V-IPI conversion cell. The area
is about 480λ × 400λ, which is equal to 7680 um2 (λ = 0.2 um for 0.35 um process).

62

Figure 5.4. Layout of the division cell. The area is about 900λ × 720λ, which is equal
to 25920 um2 (λ = 0.2 um for 0.35 um process).

63

Figure 5.5. Top-level chip layout. The area is 1.5 mm × 1.5 mm = 2.25 mm2.

64

Figure 5.6. Chip microphotograph.

5.2. Simulation and Test Results

For error and accuracy results, we define the percentage error as the absolute

error in the output voltage divided by the output full range and multiplied by 100%.

The full range is equal to 2VM since the output changes from –VM to +VM. Using (4.2)

and (4.3), we can find that error and accuracy translate into time as

65

   
%100

2



 

f

measmeascalcal

T

tttt
Error (5.1)

   
%100

2
1 









 
 

f

measmeascalcal

T

tttt
Accuracy (5.2)

where tcal is the calculated time and tmeas is the measured time. All the results presented

here are for 3.2 V supply voltage.

5.2.1. IPI-to-Voltage and Voltage-to-IPI Conversions

Adding two inputs requires IPI-to-V conversion of each input in the first frame

and V-IPI conversion of the voltage on the shared capacitor in the second frame.

Figure 5.7 shows the operation of IPI-to-V-to-IPI conversion as addition of two equal

inputs. In this case, t1+= t2+=60 ns, t1-= t2-=40 ns, and the output t3+=71 ns. Accuracy

in this case is 98%. Figure 5.8 is a graph of the chip test and simulation results for

addition when the first input is varied while the second input is fixed at zero (t2+= t2-=

50 ns). Worst case accuracy from test is better than 96%, and from simulation, it is

better than 98%. This miscorrelation between test and simulation is due to capacitive

loading effects from the package pins, the wires, and the oscilloscope. Test and

simulation results are optimized to have optimum accuracy around the zero point by

adjusting V1 to 980 mV and 960 mV, respectively. This also applies to the addition

and subtraction results in the next subsection. The IPI-to-V conversion part of the

circuit occupies 4.544x10-3 mm2 of chip area and consumes 0.96 mW of power. The

V-to-IPI conversion part of the circuit occupies 5.12x10-3 mm2 of chip area and

consumes 2.24 mW of power. Each conversion operation takes only one time frame to

finish. The dynamic range of both conversions is 1200 mV.

66

5.2.2. Addition and Subtraction

As described above, Figure 5.7 shows the addition of two equal inputs and

Figure 5.8 is a graph of the chip test and simulation results for this operation along

with the calculated ideal results. Worst case accuracy from test is better than 96%, and

from simulation, it is better than 98%. Subtraction was tested using the addition

circuit by simply inverting the second input. Figure 5.9 shows the subtraction of two

equal inputs. In this case, t1+= t2+=78 ns, t1-= t2-=22 ns, and the output t3+=49 ns.

Accuracy in this case is 98%. Figure 5.10 is a graph of the chip test and simulation

results along with the calculated results for subtraction when the first input is set to

zero (t1+= t1-= 50 ns) while the second input is varied. Worst case accuracy from test is

better than 96%, and from simulation, it is better than 98%. The addition/subtraction

circuit occupies 7.68x10-3 mm2 of chip area and consumes 1.92 mW during the first

frame and 2.24 mW during the second frame. So, the average power consumption is

2.08 mW. Addition/subtraction takes two time frames to finish. The dynamic range of

operation is 1200 mV.

5.2.3. Division and Multiplication

Figure 5.11 shows the division operation. In this case, t1+= t2+=92 ns, t1-= t2-=8

ns, Kdiv1=33.3 ns and the output t3+=88 ns. The accuracy of division in this case is

95.3%. Figure 5.12 is a graph of the chip test and simulation results for division along

with the calculated ideal results when the first input is varied while the second input is

fixed (t2+= 69ns). Worst case accuracy from test is better than 96%, and from

simulation, it is better than 98%. Figure 5.13 is a graph of the chip test and simulation

results for multiplication along with the calculated ideal results when the two inputs

are equal and Tconst+ is fixed at 69ns. Worst case accuracy from test is better than 95%,

and from simulation, it is better than 97%. The division circuit occupies 25.92x10-3

mm2 of chip area and consumes 2.88 mW during the first frame and 3.84 mW during

67

the second frame. So, the average power consumption is 3.36 mW. Multiplication

occupies twice the area and consumes twice the power. It occupies 51.84x10-3 mm2 of

chip area and consumes 6.72 mW of power. Division and multiplication each take two

time frames to finish. Their dynamic range is 600 mV.

5.2.4. Summary

We have demonstrated the functionality and implementation of the IPI based

conversion and computation methods and circuits presented in chapter 4 by fabricating

them in a chip using the TSMC 0.35 um mixed-signal CMOS process and by testing

the chip at 10 MHz framing speed, which corresponds to 100 ns time frame. The test

results agree well with both theoretical results and SPICE simulation results. However,

accuracy from test is 2% worse than predicted by simulation. We believe that this

miscorrelation between test and simulation is due to capacitive loading effects from

the package pins, the wires, and the oscilloscope. Table 5.1 is a summary of the

accuracy, power consumption, area, dynamic range, and speed results for all circuits.

0.35 um CMOS process
VDD = 3.2 V

Accuracy
(%)

Average
power
(mW)

Area
(10-3 mm2)

Speed
(MHz)

(Mop/s)

Dynamic
range
(mV)

IPI-to-V 98, 96 0.96 4.544 100, 10
100, 10

1200

V-to-IPI 98, 96 2.24 5.12 100, 10
100, 10

1200

Addition/Subtraction 98, 96 2.08 7.68 100, 10
50, 5

1200

Division 98, 96 3.36 25.92 50, 10
25, 5

600

Multiplication 97, 95 6.72 51.84 50, 10
25, 5

600

Table 5.1. Summary of accuracy, power consumption, area, dynamic range, and speed
results of the IPI circuits. Results in Italic are from simulation. 4-Q division and
multiplication need about 60% more area and consume about 45% more power.

68

Figure 5.7. Oscilloscope screen image showing the addition of two equal inputs. IPI-
to-V conversion of the two inputs is done in the first frame and V-to-IPI conversion of

the output voltage in the second.

-100

-50

0

50

100

-100 -50 0 50 100

t1+ - t1- (ns)

t3
+

 -
 t

3-
 (

n
s)

Test

Calculated

Simulation

Figure 5.8. Test, simulation, and calculated results for addition when the first input is
varied while the second input is fixed at zero.

69

Figure 5.9. Oscilloscope screen image showing the subtraction of two equal inputs.
The output voltage remains flat at Vmiddle during the first frame since the two inputs are

equal and therefore canceling each other.

-100

-50

0

50

100

-100 -50 0 50 100

t2+ - t2- (ns)

t3
+

 -
 t

3-
 (

n
s)

Test

Calculated

Simulation

Figure 5.10. Test, simulation, and calculated results for subtraction when the second
input is varied while the first input is fixed at zero.

70

Figure 5.11. Oscilloscope screen image showing the division of two equal inputs.

0

20

40

60

80

100

0 20 40 60 80 100

t1+ - t1- (ns)

t3
+

 -
 t

3-
 (

n
s)

Test

Calculated

Simulation

Figure 5.12. Test, simulation, and calculated results for division when the first input is
varied while the second input is fixed (t2+= 69ns).

71

0

20

40

60

80

100

30 35 40 45 50 55 60

t1+ - t1- (ns)

t3
+

 -
 t

3-
 (

n
s)

Test

Calculated

Simulation

Figure 5.13. Test, simulation, and calculated results for multiplication when the two
inputs are equal and Tconst+ is fixed at 69ns.

72

6. System-Level Design and Applications

In this Chapter, we will describe a system-level design which executes a

computation based on an artificial neuron with multiple synapses. The design

incorporates the basic arithmetic building blocks we have developed in chapter 4 and

integrates them together into a simple system. We will also provide the SPICE

simulation results based on the same TSMC 0.35um CMOS technology that was used

for the basic IPI building blocks. We will also discuss how the IPI technology can be

used in applications such as sensors, instrumentation, communications, telemetry,

signal processing, and ANNs. To demonstrate the advantages of using the IPI

technology in these applications, we will compare our IPI based conversion and

computation implementations against other analog and digital implementations.

6.1. System-Level Design

6.1.1. Artificial Neural Networks (ANNs)

ANNs get their computational processing power from the fact that they try to

resemble real biological neural networks found in the brain. They have been

successfully used in many real life applications such as data classification, pattern

recognition, function approximation, and adaptive signal processing [4] and [5]. An

ANN is built from several layers of neurons each connecting to each by synapses.

Figure 6.1 shows an example of ANN architecture (topology). This type is the most

popular and is called feed-forward or multi-layer perceptron (MLP) network.

73

Figure 6.1. Feed-forward or multi-layer perceptron (MLP) ANN.

Figure 6.2. Computational model of an abstract neuron and its synapses.

74

Figure 6.2 is a computational model of the neuron and its synapses. It has N

inputs (x0, x1, …, xN-1) . To model the synaptic strength of the connections, each input

xi is weighted (multiplied) by a weight wi. Then, the neuron combines (sums) the

weighted inputs and applies a nonlinear transformation function f on the summation

result to generate the output y. In mathematical terms, the neuron can be modeled

using the following equation









 





1

1

N

i
ii xwfy (6.1)

Figures 6.3 and 6.4 show two of the most popular neuron transformation functions, the

sigmoid function defined as

sume
sumf




1

1
)((6.2)

Figure 6.3. The sigmoid function.

75

Figure 6.4. The hyperbolic tangent function.

and the hyperbolic tangent function defined as

sumsum

sumsum

ee

ee
sumsumf








)tanh()((6.3)

The following characterizes the neuron transformation function: It is nonlinear, it is

monotonically increasing for the range of operation, and it saturates to a minimum or a

maximum when the sum magnitude becomes large in the negative or positive direction

respectively.

In pattern recognition and classification applications, the inputs are the features

of the object to be classified. Each output neuron is associated with a class. The

neuron in the output layer with the strongest output indicates the class of the object. In

function approximation, the inputs are the input variables of the function to be

approximated and the output of the neuron is the output of the function to be

approximated. Before an ANN reaches to the optimum solution (optimum weight

76

values assuming the topology is fixed), it needs to learn (we need to train it). This can

be done by providing it with the desired output d and comparing its output y with it.

The error (difference between y and d) can then be used to adjust the synaptic weights

until the error is minimal. One way of doing this is the error back-propagation

algorithm proposed by Rumelhart et al. in [52]. Such learning algorithms are beyond

the scope of this dissertation and are not discussed further. Our objective here is to

demonstrate the operation of the basic IPI building blocks as a system.

6.1.2. System-Level Design and Simulation

In this section, we will put the basic IPI building blocks together in a design that can

perform the computational functions of the neuron and its synapses as defined in (6.1)

and shown in Figure 6.2. In this design example, the neuron has six inputs (the number

of synaptic connections N is equal to 6). Figure 6.5 shows the design, Figure 6.6

shows its simulation, and Figure 6.7 is a timing diagram that shows the phases and

sequence of the computations. Six IPI multiplication circuit instances are used to

model the strength of the six synaptic connections. The input xi and the synaptic

weight wi are both in IPI form. The outputs of all the multiplications are fed into a six-

input IPI addition circuit. The addition circuit performs both functions of the neuron,

summation and transformation. We were able to exploit the nonlinearity and saturation

properties of the circuit to achieve the desired nonlinear and saturating behavior

needed in the transformation function of the neuron.

The system runs at the speed of one operation per two frames. It is only the

first result that takes four frames to come out but after that results come out every two

frames. This is because the two division blocks (in each multiplier) and the addition

block operate in a pipelined fashion. As a block is producing its result and providing it

to the receiving block in one frame, the receiving block is taking this result as input

and performing the IPI-to-V conversion of the inputs in the same frame. This

pipelining can be seen by looking at the timing diagram in Figure 6.7, and is

77

analogous to a pipelined digital processor in the pipe latency is N clock cycles, where

N is the number of stages [121]. Once the pipe is full, one instruction finishes every

clock cycle.

Figure 6.5. System-level design of one neuron with 6 synapses using the IPI addition
and multiplication circuits.

78

Figure 6.6. Simulation of the system-level design of one neuron with 6 synapses.

Figure 6.7. System timing diagram.

79

Figure 6.8. 6-input IPI addition which performs the summation and transformation
functions of a 6-synapse neuron.

Figure 6.8 shows the 6-input addition (6-synapse neuron) circuit which is

based on the 2-input addition circuit presented in section 4.2. Figures 6.9, 6.10, and

6.11 show three simulation cases: i) the summation result saturates to the minimum

80

when all inputs are large and negative, ii) the summation result is in the middle of the

range when all inputs are zero, and iii) the summation result saturates to the maximum

when all inputs are large and positive. Figures 6.12 and 6.13 are graphs of the

simulation results for the voltage and the pulse time output over the full dynamic

range. The graphs show a behavior similar to that of the sigmoid and hyperbolic

tangent transformation functions shown in the previous subsection. One difference

though which can be easily seen by looking at the simulation results in Figure 6.13, is

that the output is not zero when all inputs are zeros. It is negative. This is due to some

nonlinearity in the output voltage of the addition circuit which happens during the first

half of the input frame but does not happen in the second half. During the first half of

the input frame, all inputs cause the output capacitor to be charged in the positive

direction. The voltage on the capacitor is linear initially, but then becomes nonlinear

when it is high enough to reduce the source-drain voltage of the PMOS current

sources and cause them to operate in the triode region. This decreases the positive

current charging the capacitor. On the other hand, during the second half of the input

frame, all inputs cause the capacitor to be charged in the negative direction. The

voltage on the capacitor stays linear because the source-drain voltage of the NMOS

current sources remains high enough to keep them in the saturation region. This keeps

the negative current charging the capacitor constant. The difference in the output is

negative because the negative current remains constant while the positive current

decreases when the PMOS current sources begin to operate in the triode region.

This inaccuracy will be a problem for ANNs which use back-propagation

based learning [52] but not for those which use weight perturbation based learning

[60-63], since the back-propagation method requires the derivative of the neuron

transfer function to compute the gradient descent of the error with respect to the

weight, while the weight perturbation method approximates the gradient descent using

the finite differences. A perturbation is injected at the weight and the error in the

network output is measured before and after the injection to approximate the gradient

descent [4].

81

Figure 6.9. Simulation of the 6-synapse neuron: summation result saturates down to
the minimum when all inputs are large in negative.

Figure 6.10. Simulation of the 6-synapse neuron: summation result is in the middle of
the range when all inputs are zero.

82

Figure 6.11. Simulation of the 6-synapse neuron: summation result saturates up to the
maximum when all inputs are large in positive.

0

500

1000

1500

2000

2500

3000

3500

-20 -18 -16 -12 -8 -4 0 4 8 12 16 18 20

Inputs (t+ - t-) (ns)

V
o

u
t

(m
V

)

Figure 6.12. Simulation results of the 6-synapse neuron: Vout versus inputs (t+ - t-).

83

-20

-16

-12

-8

-4

0

4

8

12

16

20

-20 -18 -16 -12 -8 -4 0 4 8 12 16 18 20

Inputs (t+ - t-) (ns)

P
u

ls
e

O
u

tp
u

t
(t

+
 -

 t
-)

 (
n

s)

Figure 6.13. Simulation results of the 6-synapse neuron: pulse output (t+ - t-) versus
inputs (t+ - t-).

6.1.3. Training and Programming and their Impact on Storage and
Resolution

The way we train and program an ANN has a big impact on the cost and

complexity of memory storage and therefore on resolution. ANNs can learn or be

trained to perform a certain task by providing it with a desired output. The learning

algorithm such as the error back-propagation in [52] can be used to calculate the new

values of synaptic weights based on the error. This process of updating the synaptic

weight values repeat until the error reaches to some acceptable minimum value.

Assuming that the topology of the network is fixed, programming the network is then

done by the synaptic weights. There are two types of programmable ANNs: non-

adaptive and adaptive. Non-adaptive networks learn once and then they “freeze” the

optimum weights. Adaptive networks learn continuously, updating the synaptic

weights during normal operation. Many applications require this kind of adaptive

signal processing as in [53] and [54] for example.

84

Non-adaptive networks require memory cells that can store the programming

information (the synaptic weights) for an indefinite period of time. Long term memory

cells can be digital such as dynamic or static random access memory (RAM) or they

can be analog such as self-refreshing capacitor based cells as in [55] and [56], which

rely on the periodic refresh of the voltage on a capacitor to predefined quantized

voltage levels to avoid loss of voltage (charge) through leakage currents. The

resolution is defined as

FR
resolution


 (6.4)

where δ is the step size and FR is the full range. Therefore, for networks that use

binary values for the synaptic weights, the resolution is

N
resolution




2

1 (6.5)

where N here is the number of bits. For example, if N=6 then the resolution is 1.56%.

For networks that use self-refreshing capacitor based analog cells, the resolution

depends on the steps between the predefined quantized voltage levels. If the maximum

step size is 20 mV and the full range is 1 V then the resolution is 2%.

Although we are not implementing the learning algorithm hardware here, we

suggest that such an implementation should generate the new values for synaptic

weights in the IPI form. This will allow weights to be stored in the capacitor that

corresponds to the weight input in the IPI multiplication circuit so that no extra

capacitors are needed for storing the weights since the capacitor is already a part of the

multiplication circuit.

85

6.1.4. Estimation of Accuracy (Resolution), Power, Area, Dynamic
Range, and Speed

As we explained above, the overall accuracy (or resolution) of the final outputs

(solutions) of the full ANN will depend mainly on the resolution of the synaptic

weight signals generated by the learning hardware and how the output of the neuron

changes with respect to their change. In IPI form, the full range of the weight signal in

our system-level simulation is 20ns which corresponds to 600mV. For non-adaptive

networks which require long-term storage of the weight value, the capacitor voltage

need to be refreshed to one of the pre-defined quantized voltage levels. If we choose

the number of levels to be 64 for example then the step size would be about 9mV and

the resolution would be 1.56%. For adaptive networks, no refreshing is needed and the

resolution should be better since the weight value is not quantized, i.e., it has a

continuous range of values. However, the learning hardware will be more complex,

since it needs to learn and keep updating the weights while the network is working.

The system-level design consumes 6.72 mW per synapse (multiplier) and 1.76

mW per neuron (adder) plus 0.16 mW per adder input. So, the total average power

consumption of the system-level design of one neuron with 6 synapses is 43 mW. In

general, the following formula can be used to compute the total average power

consumption in mW for a system of one neuron with N synapses

)16.076.1(72.6 NNPTotal  (6.6)

The power consumed per synapse is about 4 times the power consumed by the neuron.

The system-level design occupies 51.84x10-3 mm2 per synapse and 6.58x10-3

mm2 per neuron plus 0.55x10-3 mm2 per neuron input. So, the total area needed for the

system of one neuron with 6 synapses is 321x10-3 mm2. In general, the following

formula can be used to compute the total area in 10-3 mm2 for a system of one neuron

with N synapses

86

)55.058.6(84.51 NNATotal  (6.7)

The area needed per synapse is about 8 times the area of the neuron.

From the simulation results graph in Figure 6.11, the dynamic range of the

output including the nonlinear and saturation regions is 2.5 V. Table 6.1 has a

summary of the system-level resolution (based on the assumption of 64 quantized

capacitor refresh levels), power consumption, area, dynamic range, and speed results

for one neuron with 6 synapses.

Resolution
(%)

Average Power
(mW)

Area
(10-3 mm2)

Frame speed
(MHz)

Dynamic range
(V)

1.56 43 321 50 2.5

Table 6.1. Summary of system-level resolution, power consumption, area, dynamic
range, and speed results for one neuron with 6 synapses.

6.2. Applications and Comparisons with Other Implementations

The IPI technology can be useful in many applications. Among these

applications are sensors, instrumentation, communications, telemetry, signal

processing, and ANNs. In communication, the signal can be sampled and converted to

an IPI pulse stream using the V-to-IPI converter (modulator). The pulse transmission

method can be electrical (wired or wireless), acoustic, or even optical if necessary.

Along the way, the pulses can be refreshed using a digital buffer. On the receiver side,

the SNR can be improved by averaging the pulse stream. If necessary, the pulse

stream can be converted back to the analog domain using the IPI-to-V converter

(demodulator). In sensors/instrumentation, the sensor senses the analog quantity

(temperature, pressure, light, etc) and generates a voltage or current quantity. If it is

current then it can be easily converted to voltage by directing it through a resistor or

by accumulating it as charge on a capacitor. The voltage signal is then sampled and

87

converted to an IPI pulse stream using the V-to-IPI converter. Telemetry combines

both instrumentation and communications, and can be performed as we just explained

for both of them. If the distance is very long and inserting repeaters (digital buffers)

along the pulse trip is not possible then optical communication can even be used and

the pulses can be transmitted as light pulses (infra-red or laser). In signal processing,

the dot-product and the multiply-and-accumulate (MAAC) operations are heavily used

operations. The IPI addition and multiplication can be used together to perform these

operations in the time domain, as we demonstrated for ANNs in the previous section.

In this section, we will compare our IPI based conversion and computation

implementations with other analog and digital implementations. We will also tie our

comparison findings with the applications that we just discussed above. For detailed

descriptions of the analog and digital implementations with which we are comparing,

the interested reader is referred to the reference section. Since addition and subtraction

are easier to design and less expensive in terms of power, area, and speed than

multiplication and division, we will focus our comparison on multiplication and

division. When comparing against digital implementations, we will also compare V-

to-IPI against analog-to-digital conversion (ADC).

6.2.1. Comparison with Analog Implementations

Mead in [5] and Jabri et al. in [4] describe several analog techniques and

circuits for arithmetic computation including addition and multiplication. Addition and

subtraction of voltages and currents in the analog domain can be performed by simply

utilizing Kirchoff’s voltage and current laws, respectively. As we will see in this

subsection, analog computation in CMOS circuits depends directly on the MOSFET

transistor I-V characteristics in order to implement a certain arithmetic operation. The

following are simple equations that approximately model the MOSFET transistor I-V

characteristics in the triode and the saturation regions, respectively,

88

  









2

2
DS

DStGSox

V
VVV

L

W
CI  (6.8)

 2
tGSox VV

L

W
CI   (6.9)

where VGS is the gate to source voltage, VDS is the drain to source voltage, Vt is the

threshold voltage, W is the channel width, L is the channel length, µ is the carrier

mobility, and Cox is the gate oxide capacitance per unit area and is equal to

ox

ox
ox t

C


 (6.10)

where εox and tox are the oxide permittivity and thickness, respectively.

Han and Sanchez-Sinencio in [26] survey all types and architectures of analog

CMOS multipliers. All analog multipliers use the same basic idea. Similar to the

transconductance multiplier that we described in subsection 2.2.2, all analog

multipliers utilize the MOSFET transistor I-V characteristics in the triode or the

saturation region, to produce intermediate results. Then, they use addition and

subtraction to add and subtract these intermediate results to or from each other, to

cancel undesirable nonlinear terms and keep only the desirable linear term kxy, where

k is a scaling factor and x and y are the two analog inputs to be multiplied. The

following equation is an example of this,

          
           kxy

yYxXyYxX

yYxXyYxX
kz 8

22

22

















 (6.11)

where X and Y are DC common mode signals, and x and y are the small signal inputs

to be multiplied. The DC common mode signals are also used to correctly bias the

transistors that will receive the inputs. Here is how (6.11) can be implemented using

MOSFET devices:

89

1. Differential small signals ±x and ±y need to be generated and DC-shifted by X

and Y, respectively.

2. Then, four voltage adders are used to calculate the four terms (X±x+Y±y).

3. Then, individual results from the adders are squared by applying them to the

gates of identical MOSFET transistors operating in their saturation region. This

will produce four currents according to (6.9).

4. Then, these currents (squaring results) are added and subtracted from each

other according to equation (6.11). The output current will be 8kxy where the

scaling factor k in this case is equal to

L

W
Ck ox (6.12)

Table 6.2 is a comparison of the IPI multiplier versus analog CMOS

multipliers: [28] is based on the Gilbert multiplier cell [27], [29] is a transconductance

multiplier operating in the linear (triode) region as does [14] and [15], [30] and [31]

are transconductance multipliers operating in the saturation region, and the last three

multipliers are described in [110] and [111] and they are transconductance multipliers

operating in the saturation region and based on the Vgs2 technique (they are classified

as VII type in [26] and are similar to the example above). In [111], the adder and

subtractor subcircuits on which the last three multipliers are based, are referred to as

Fig. 1(a), (b), and (c), respectively. To be consistent with [111] while avoiding

confusion with the figures in this thesis, we will refer to them as [111](a), (b), and (c),

respectively. Table 6.3 shows a comparison of the IPI divider versus analog dividers.

Sanchez-Sinencio et al. in [28] describe how to synthesize nonlinear functions

including an analog divider from transconductance amplifiers (multipliers). Liu and

Chang in [32] describe a divider based on the MOSFET square-law and the pool

(current-equilibrium) circuits in [33]. Vlassis and Siskos in [34] describe a divider that

consists of a voltage-variable resistor and a current conveyer that performs voltage and

current follower operations. Unfortunately, we did not find analog implementations

90

that use 0.35 um processes or a comparable process to compare our IPI multiplier

with, except the ones in [111]. Therefore, before we make any comparison, we will

discuss the impact of technology scaling on area, power, and speed.

Error
(%)

Speed
(MHz)

(Mop/s)

Average
Power
(mW)

Area
(mm2)

Dynamic
range
(mV)

Power
supply

(V)

CMOS
Process

(um)

IPI
multiplier

3, 5 100, 10
50, 5

6.72 51.8x10-3 600 3.2 0.35

[28] 3.5 1KHz
Continuous

10 154x10-3 660 ±5 3

[29] 1 1KHz N/A N/A ±1000 ±5 Discrete
chips

[30] 0.89
@20KHz

2.2 (-3dB)
Continuous

2.76 22.7x10-3 440 1.2 0.80

[31] 2
@20KHz

5 (-3dB)
Continuous

N/A N/A ±800 ±1.5 0.80

[111](a) 17 (body)
±16 (Vt)

N/A N/A N/A 200 3.3 0.35

[111](b) 27 (body)
±10 (Vt)

48 (-3dB)
Continuous

N/A N/A 200 3.3 0.35

[111](c) -5.8 (body)
±16 (Vt)

84 (-3dB)
Continuous

N/A N/A 200 3.3 0.35

Table 6.2. Comparison of the IPI multiplier versus analog multipliers. Results in Italic
are from simulation. Errors in [111] are for the adder and subtractor subcircuits.

Accuracy
(%)

Speed
(MHz)

(Mop/s)

Average
Power
(mW)

Area
(mm2)

Dynamic
range
(mV)

Power
supply

(V)

CMOS
Process

(um)
IPI divider 2, 4 100, 10

50, 5
3.36 25.9x10-3 600 3.2 0.35

[32] 1 9 (-3dB)
Continuous

N/A N/A 500 ±5 2

[34] 5
@20KHz

400 (-3dB)
Continuous

N/A N/A ±1500 ±2.5 2

Table 6.3. Comparison of the IPI divider versus analog dividers. Results in Italic are
from simulation.

91

A good discussion of how technology scaling can impact area, power, and

speed, can be found in [2]. Suppose S is the scaling factor (if greater than 1, the feature

size decreases). Table 6.4 is a summary of the scaling relationships among device and

circuit parameters. As transistor dimensions decrease by a factor of S, their area

decreases by a factor of S2. In examining the impact of scaling on power and speed,

we will consider two cases. The first case is full scaling where all horizontal and

vertical dimensions, as well as threshold voltages and supply voltage VDD, are reduced

by the same factor S. The second case is when supply voltage VDD and threshold

voltages are kept constant. Impact on power and speed can be found in a similar way if

voltages are scaled by a factor different than S. DC power consumption is proportional

to the product IDVDD. We can find from (6.9) and (6.10) that as oxide thickness tox

decreases by a factor of S, the drain current ID decreases by a factor of S for reduced

VDD, and increases by a factor of S for constant VDD. This means that DC power

consumption decreases by a factor of S2 for reduced VDD, and increases by a factor of

S for constant VDD. Speed is proportional to current and inversely proportional to

capacitance and voltage swing (Speed α I/CV). From (6.10), as oxide thickness tox

decreases by a factor of S, Cox increases by a factor of S. But since the area of the gate

is decreased by a factor of S2, its capacitance is decreased by a factor of S. This means

that speed increases by a factor of S for reduced VDD and by a factor of S2 for constant

VDD. Average AC power consumption of CMOS circuits is proportional to frequency

(speed) in addition to the voltage swing and the average current charging the

capacitive load (average AC power α fIavV). The average current in turn is

proportional to the load capacitance and the voltage swing. Therefore, the average AC

power consumption is proportional to frequency, load capacitance, and the square of

voltage swing (average AC power α fCV2). This means that average AC power

consumption decreases by a factor of S2 for reduced VDD, and increases by a factor of

S for constant VDD. This is similar to the conclusion we have reached for DC power

consumption.

92

Parameter Full scaling Constant voltage

W, L, tox 1/S 1/S

VDD, Vt 1/S 1

Cox 1/S 1/S

ID 1/S S

Area 1/S2 1/S2

DC power consumption 1/S2 S

AC power consumption 1/S2 S

Speed S S2

Table 6.4. Scaling relationships among CMOS device and circuit parameters.

When comparing our IPI multiplier with the analog multipliers in Table 6.2,

we will discuss the issues surrounding local computation and the issues surrounding

global (long wire) computation. When considering local computation, analog suffers

from the following problems [26], [111], and [1]:

1. Body effect.

2. Device mismatch.

3. Mobility degradation.

4. Channel length modulation.

5. Velocity saturation in short-channel devices [1].

Excellent description and explanation of these problems can be found in [1].

The body effect is a main source of errors in analog computation. In CMOS

circuits, the body of the transistor is usually connected to a constant voltage, which is

the maximum voltage (VDD) for PMOS, and the minimum voltage (VSS or the ground)

for NMOS. The reason for this is to avoid the possibility of forming forward-biased P-

N junctions between the body and the drain or the source, to ensure correct operation.

If the source voltage is changing while the body voltage is constant then VSB is

changing. Changes in VSB will cause changes in the threshold voltage because VSB

changes the potential required to produce channel surface inversion, which is

93

necessary for the channel to start conducting current. Therefore, this will cause

changes in the drain current. From a small signal point of view, the body acts like a

second gate. The body transconductance is typically about 0.1 to 0.3 of the main gate

transconductance [1]. To explain how the body effect impacts the analog computation,

we will use Figure 6.14. The figure shows the voltage adder used in the analog

multiplier [111](b) to add the input voltages X±x and Y±y as in (6.11).

Let us first explain the ideal operation of the adder while ignoring all the

problems described above. For ideal operation, each two transistors in series have to

be identical. M1 has to be identical to M2 and M3 has to be identical to M4. Also, all

of them have to be operating in saturation. Since the same current flows in M1 and M2

and they are identical and operating in saturation, their gate-source voltage is the

same. This means

121 VVVVV DDgsDDd  (6.13)

By using the same reasoning for the PMOS pair, M3 and M4, and using (6.13), we can

find

  12124232 VVVVVVVVVV dDDsgsgout  (6.14)

which is the ideal addition result we seek. However, M2 and M3 have the body effect

problem because their source terminals are not connected to the ground and VDD,

respectively, as their body terminals. As we discussed above, this will change their

threshold voltages. For NMOS, it will increase, and for PMOS, it will decrease

(become more negative). This means their gate-source voltages are not equal to those

of M1 and M4, respectively. For example, Vgs2 needs to be higher than Vgs1 so that M2

can produce the same current as M1 because its threshold voltage is higher than that of

M1. This will make the addition deviate from its ideal operation and therefore cause

some errors.

94

Figure 6.14. Analog voltage adder used in the analog multiplier [111](b).

Device mismatch due to process variations in the device parameters such as

threshold voltage Vt, oxide thickness tox, channel width W, and channel length L, are

also a main source of errors in analog computation. In (6.11), we assumed that all

MOSFET transistors used for squaring, are identical and have the same scaling factor

k. Mismatch in tox, W, or L will make our assumption invalid as (6.12) suggests. If we

rewrite (6.11) without making that assumption then the new equation will be

          
          














2
4

2
3

2
2

2
1

yYxXkyYxXk

yYxXkyYxXk
z (6.15)

where k1, k2, k3, and k4 are the different scaling factors. From 6.15, we can see that

undesirable terms may not cancel with each other because of the different scaling

factors. The result will have terms that cause DC offset errors such as XY, X2, and Y2.

It will also have terms that cause nonlinearity errors such as x2 and y2. Moreover,

mismatch in the threshold voltages of the squaring transistors will also affect the

voltage being squared, as (6.9) suggests, causing more errors. Device mismatch also

causes errors in the addition and subtraction results. Consider our adder circuit

example above. If two transistors in series (M1 and M2 or M3 and M4) are not

95

identical then there will be errors in the addition result because their gate-source

voltages are not equal.

Mobility degradation is another main source of errors in analog computation.

When the vertical electrical field between the gate and channel increases, it forces the

carriers closer to the surface of the silicon, where surface imperfections impede their

movement from the source to the drain, reducing mobility [1] and [112]. For

simplicity, this effect can be modeled by the following equation

 tgs

n
eff VV 






1

(6.16)

where µn is the mobility with zero vertical field, and θ is inversely proportional to the

oxide thickness. For 100 Å oxide thickness, θ is typically in the range from 0.1 V-1 to

0.4 V-1. Typical oxide thickness of a 0.4 um process is 80 Å [1].

Channel length modulation is another source of errors in analog computation.

Ideally, if the transistor is in saturation, its current should stay constant even if the

drain-source voltage VDS changes. This ideal I-V relationship in saturation is described

by (6.9). In practice, however, the drain-source voltage VDS does modulate the current

slightly. The physical explanation of this is that VDS modulates the channel length by

modulating the width of the depletion region between the drain and the channel pinch-

off point [1]. To account for this effect, (6.9) is rewritten as

   DStGSox VVV
L

W
CI   12 (6.17)

where λ is called the channel length modulation parameter. It is difficult to calculate λ

from the device structure and effective values of it are usually obtained from

experimental measurements. λ is inversely proportional to the effective channel length.

Therefore, channel modulation effects can be reduced by increasing the channel length

at the expense of increasing the area and slowing the speed down [1] and [111].

Typical values of λ are in the range from 0.05 V-1 to 0.005 V-1 [1].

96

The most important short-channel effect in MOSFET transistors stems from

the velocity saturation of carriers in the channel [113]. When VDS is low and/or the

channel is long, the horizontal electric field is low, and the relationship between the

carrier velocity and the field is linear, leading to the square-law I-V characteristics

defined in (6.8) and (6.9). At high field values, however, the carrier velocity

approaches a constant called the scattering-limited velocity vscl. This phenomenon

causes the MOSFET I-V characteristics to deviate from the classical square-law

characteristics and to be more linear. Therefore, in processes with 1 um or less

capability, many transistors in analog computation circuits may need to be deliberately

designed to have lengths larger than the minimum, so they can be approximated by the

square-law models [1]. This effect and the channel length modulation effect are clear

examples on how analog computation circuits do not scale well in submicron, deep

submicron, and nano technologies.

We are now ready to compare our IPI multiplier with the analog multipliers in

Table 6.2. We will focus the comparison on the three multipliers in [111] for the

following two reasons:

1. The multipliers in [28]-[31] are implemented using a different process.

2. The reported nonlinearity error in [28]-[31] is very small, but unfortunately the

experimental results do not have data on how accuracy changes with respect to

body effect, device mismatch due to process variations, mobility degradation,

or channel length modulation. Reference [111] does have such data at least for

the body effect and threshold voltage mismatch.

From the table, we can see that our IPI multiplier is, in general, comparable to the

analog multipliers in terms of area and power consumption. However, as discussed

above, due to the channel length modulation effect and the carrier velocity saturation

effect, the analog multipliers do not scale well in advanced processes, and cannot take

advantage of the small area and the high speed their short-channel devices can offer.

On the other hand, the IPI multiplier and the other IPI circuits have the channel length

modulation problem only in the current sources that charge the capacitors. Therefore,

97

we have used long-channel devices for these current sources. All the other transistors

do not have the channel length modulation problem, and therefore we were able to use

the minimum length for these transistors and take advantage of the small area and the

high speed they can offer. For the adder subcircuits used in the multipliers [111](a)

and [111](b) and the subtractor subcircuit used in the multiplier [111](c), the body

effects accounted for percentage errors of 17%, 27%, and -5.8%, respectively, in the

output voltage of each subcircuit from its ideal value. Body effect is not a problem in

our IPI circuits because the source terminals of the PMOS and NMOS current sources

are connected to their body terminals, which are connected to VDD and VSS (ground),

respectively. Body effect can be reduced by using a twin-well process that has isolated

wells and allows the transistor source to be connected to its well (body) [114] and

[115]. These extra processing steps are not needed for our IPI circuits. Using

mismatch data in Vt provided by the foundry, worst case mismatch errors in the output

voltage accounted for about ±16% for [111](a) and [111](c), and about ±10% for

[111](b). In the IPI circuits, if there is an inaccuracy or a mismatch in the capacitors or

the current sources which generate the currents that charge the capacitors, then they

will cause a scaling error in the output. Whereas in analog multipliers, device

mismatch causes DC offset and nonlinearity errors in addition to the scaling error. If

an exact scaling factor is desired then scaling errors in the IPI circuits can be

minimized by calibration, as we will discuss in section 7.2. As we explained above,

mobility degradation is a primary source of errors in analog computation. Our IPI

circuits do not have the mobility degradation problem because the IPI inputs only

control the ON/OFF switching of the input transistors and do not modulate the

magnitudes of the currents passing through them. The currents magnitudes are decided

by the current sources, which they do not have the mobility degradation problem

because their gate-source bias voltages (their vertical fields) are fixed.

With regard to minimum power supply requirements, several low-voltage

analog multipliers have been reported [30] and [31]. As examples, the multipliers in

[30] and [31] can operate from 1.2 V supply and ±1.5 V (3 V total) supplies,

98

respectively, while achieving a good dynamic range of 440 mV and ±800 mV,

respectively. The multiplier in [30] achieves a lower supply voltage because it uses

only one stack of transistors with resistors while the one in [31] uses two stacks with

resistors. Our IPI multiplier operates from 3.2 V (±1.6 V). Our IPI circuits do not have

many stacks of transistors between the power rails. There are only two transistors

between VDD (3.2 V) and Vmiddle (1.6 V). One serves as a current source and the other

serves as an ON/OFF switch. The ON/OFF switch can be sized and strongly turned on

so that its voltage drop is minimized. This is almost like having only one transistor

(the current source) between VDD (3.2 V) and Vmiddle (1.6 V). Therefore, our IPI

circuits should be able to run at a voltage lower than 3.2 V, although in our work, we

have chosen 3.2 V which is close to the TSMC foundry recommendation of 3.3 V

[118]. Optimizing the IPI circuits for low-voltage operation in deep submicron

technologies such as 0.18 um or 0.13 um or even nano technologies is a promising

area for future research.

When considering issues surrounding global long-wire computation, IPI has all

the local computation advantages above, as well as the advantages of communication

since the computation involves communication of the signals over a relatively long

distance (long wire). As we have discussed in the introduction chapter, the main

advantage of IPI in communication is its immunity to noise [6], [7], [16], [101], and

[102], process variations, temperature, and reference voltage, and its immunity to the

problems that challenge complex mixed-signal SOC integration in deep submicron

and nano technologies, such as substrate coupling, cross-talk, transmission line effects,

threshold inconsistency, subthreshold currents, hot-electron effects, and doping

variability [21] and [64-68]. The reason is that IPI encodes the information using the

time between the pulses rather than their magnitude. This is basically converting the

analog information to carefully timed signal transitions that are similar to digital

schemes. A pulse is detected if it is above a certain voltage threshold, exactly in the

same way a binary 0 or 1 value is detected in the on-off digital scheme [105]. Because

of this also, pulses can be easily transferred and refreshed using digital buffers, unlike

99

analog signals which are sensitive to noise and degrade in magnitude especially if they

need to travel over a relatively long distance. This makes pulses a much better choice

for inter-chip communication [6] and [7], or even for transferring the signal within the

same chip if the wire is relatively long or noise or cross-talk, for example, is a concern

as in SOC.

Switched-capacitor (SC) circuits are clocked sampled-data analog systems, and

therefore they occupy an intermediate position between fully analog (continuous-

time/continuous-amplitude) and fully digital (discrete-time/discrete-amplitude)

systems [127]. In analog signal processing, SC filters have certain advantages over

active RC filters. The most important advantages are the accuracy and the center (cut-

off) frequency tunability [128] and [131]. These advantages come from the ability of

the SC circuits to simulate the resistor element needed in active RC filters using an on-

chip capacitor and two switches such that the value of the simulated resistor is

C

T
R  (6.18)

where T is the cycle time of the clock controlling the switches. A time constant, say

τ2=R1C2 is then equal to

1

2
212 C

C
TCR  (6.19)

From (6.19), the cut-off frequency of the SC filter can by easily and accurately

tuned using only an external accurate clock with no need for external components such

as resistors or capacitors. Also from (6.19), the cut-off frequency is dependent on the

ratio of the capacitor values (not the values themselves), which is very accurate

especially if the capacitors are placed close to each other [128]. SC circuits can also be

used to implement other operations such as ADC, DAC, integration (accumulation),

and amplification [128]. Some multipliers based on the SC techniques have also been

reported [124-126]. Similar to the continuous analog multipliers described above, they

100

rely on identical CMOS transistors operating in the triode region [124] and [125] or

the saturation region [126]. They also use subtraction to cancel undesired DC and

nonlinear terms. Therefore, device mismatch and deviation from the square-law I-V

MOSFET characteristics will cause DC offset and nonlinearity errors. The multiplier

in [126] does not have the body effect problem but the multipliers in [124] and [125]

do. All of them have the mobility degradation problem. Our IPI implementations and

SC implementations both need to use capacitor values large enough to reduce

inaccuracy due to parasitic capacitances. IPI is comparable to SC in terms of area and

power consumption since they both use capacitors, switches, and OP-AMPs, and with

comparable numbers. However, what makes our IPI implementations different from

the SC implementations is that the inputs to the SC circuits are voltages and the

outputs are also voltages. Therefore, SC circuits, as continuous analog circuits, are not

suitable for long-wire or inter-chip communication or computation, and the signal has

to be converted to digital or pulses for transmission if high noise immunity is needed.

6.2.2. Comparison with Digital Implementations

It is important here to remember that the IPI representation is mainly intended

for signals that are originally analog not digital. So, it is not completely fair to the IPI

computation if we compare it against other digital computations while forgetting that

digital computation needs analog-to-digital conversion (ADC) before they can have

their digital inputs. So, we will first compare the V-to-IPI conversion against some

ADC implementations.

There are multiple techniques for ADC depending on the speed, accuracy (or

bit resolution), area, power and other design requirements. Table 6.5 is a comparison

of the V-to-IPI converter versus various ADC implementations. The 1-step full-flash

ADC like [35] is the fastest but the most expensive in terms of area and power since it

needs 2N-1 comparators for N-bit resolution. The folding and current interpolating

ADC like [36]-[39] achieves high speed but with less number of comparators. The 2-

101

step flash ADC like [40] also achieves a relatively high speed with less area and power

than the 1-step full-flash ADC by the use of subranging (two ADCs are used, one for

the coarse bits and another for the fine bits). Test results of the V-to-IPI show

accuracy better than 96% at 10 MHz and SPICE simulation results show accuracy

better than 98% at 100 MHz. This is equivalent to 5.6-bit digital accuracy.

From the results in table 6.5, we can see that the ADC with the least area and

power consumption at 3.3 V power supply occupies 59 times the area and consumes

36 times the power of our V-to-IPI converter. Its sampling speed is comparable, 80

MS/s versus 100 MS/s. However, its resolution is 8-bit versus 5.6-bit. The results in

the table show that our V-to-IPI converter is very compact and consumes very low

power compared to all ADCs. This makes it a significantly better choice than ADC for

applications such as sensors, instrumentation, communications, and telemetry if 98%

accuracy, which is equivalent to 5.6-bit accuracy, is adequate.

Resolution
(bits)

Speed
(MS/s)

Average
Power
(mW)

Area
(mm2)

Power
supply

(V)

CMOS
Process

(um)
V-to-IPI 98%(5.6) 100 2.24 5.12x10-3 3.2 0.35

[35] 6 500 225 0.8 3.3 0.35
[36] 8 80 80 0.3 3.3 0.50
[37] 8 200 210 0.96 3.0 0.35
[38] 6 50 20 4.8 1.0 0.35
[39] 7 300 200 1.2 3.3 0.35
[40] 10 25 195 0.66 3.3 0.35

Table 6.5. Comparison of the V-to-IPI converter versus ADC implementations.

Table 6.6 is a comparison of the IPI multiplier versus some digital

implementations: a pipelined multiplier [41], a multiplier based on redundant-addition

with improved redundant-binary to normal-binary conversion of the final result [42], a

full-array multiplier [43], and a look-up table estimated based on the 64M bit DRAM

implementation in [44]. The size of the look-up table is 4K x 12-bit. The inputs are

102

each 6-bit and the output is 12-bit. The area and power for the look-up table were

calculated from the area and power results of the 64 M bit DRAM in [44] by simple

averaging. The access time and cycle speed are difficult to estimate but they will be

much faster for the look-up table since it needs a much smaller address decoder. We

have chosen 6-bit resolution for the look-up table so it is comparable to the equivalent

resolution of the IPI multiplier (97% is equivalent to 5.6-bit resolution). The actual

64M bit DRAM has a 20 ns access time for 3.3 V power supply and draws 57 mA of

current at 80 ns cycle time. The memory cell is a stacked type capacitor with a cell

size of 3.04 um2.

Resolution
(bits)

Speed
(MHz)

Mega
operations
per second

(Mop/s)

Average
Power
(mW)

Area
(mm2)

Power
supply

(V)

CMOS
Process

(um)

IPI multiplier Eqiv. to
5.6x5.6

100 33.3 6.72 51.8x10-3 3.2 0.35

[41] 8x8 300 300 if full
pipeline

52.4
36.6

N/A 3.3 0.6

[42] 54x54 100 100 540
5.8

9.4
101x10-3

3.3 0.50

[43] 54x54 100 100 870
9.4

12.49
134x10-3

3.3 0.50

Look-up table
estimate based on

DRAM in [44]

6x6 (input)
12 (output)

>50 >50 0.6
@80ns
cycle

304x10-3 3.3 0.50

Multiply-and-
Accumulate[45]

32x32
64(Accum)

56.5 56.5 330 2.35 2.9 0.40

Multiply-and-
Accumulate[46]

12x12
27(Accum)

200 200 1300 9.25 5 1

Table 6.6. Comparison of the IPI multiplier versus digital multipliers. Area and power
results in Italic are estimates for an equivalent 5.6-bit x 5.6-bit multiplier.

When comparing the results in the table, we should remember that the area and

power consumption of digital multipliers (except sequential multipliers which use one

adder repeatedly), increase exponentially with the bit resolution. For example, a 16x16

103

full-array multiplier needs area and power 4 times more than an 8x8 multiplier of the

same type. So, we need to keep this consideration in mind to be fair to the high

resolution digital multipliers in the table. The area and power results in Italic are

estimates if the high resolution multipliers are shrunk to a smaller multiplier of

hypothetical size of 5.6-bit x 5.6-bit. We can conclude from the results in the table that

digital multipliers in general are comparable in terms of power and area to the IPI

multiplier. The look-up table DRAM solution however consumes the least power of

all, about 10 times less power than the IPI multiplier. As we emphasized in the

beginning, judging between the IPI solution and any digital solution should be based

on the total cost of conversion and computation and not only on one of them. As we

have found above, IPI conversion is much less expensive than the least expensive

ADC. So, the IPI solution is better than the digital in applications where 98% accuracy

(5.6-bit resolution) is adequate. This is particularly true if the number of analog inputs

(conversions from analog) is large to the point that the cost of ADCs outweighs the

cost of computations. These conclusions are also valid for the other arithmetic

functions: division, addition, and subtraction.

The fan-out of our IPI circuits is large, as in digital CMOS, since the pulse

output drives CMOS logic gates. However, in both IPI and digital, the output rise and

fall times increase as the number of inputs the output is driving increases because the

load interconnect and gate capacitances increase. The fan-in of our IPI circuits is also

large since each input has its own gates and switches. This makes them very scalable

to any number of inputs within the dynamic range of operation, of course.

104

7. Conclusions and Future Work

In this Chapter, we will summarize the importance of this work and discuss

future areas of research.

7.1. Conclusions

Analog signal representation is essential wherever there is a need to interface

with the analog world or to satisfy certain design requirements such as power

consumption, area, or speed. Analog signal representation is also useful when

integrating analog mixed-signal and RF functions into complex SOCs. Moreover, data

is usually obtained from sensors in analog form (voltage or current). The analog

signals are not immune to noise and therefore cannot be used for data transfer.

Therefore, they are usually converted into digital immediately and transmitted

digitally. This whole path also has an inverse which would be used, for example, in

actuators.

In this thesis, we have proposed an alternative approach that converts the

analog signal into a pulse stream, using time (IPI) rather than magnitude to represent

the signal values. Our approach is suitable and robust in both

conversion/communication and computation. Its capabilities in both

conversion/communication and computation are useful because they eliminate the

need to convert to/from other analog or digital domains for computation, when

needed. One good example where computation would be needed with communication

is the use of averaging at the front end of the receiver to improve the SNR. We

105

showed that our approach is hybrid in that it blends noise immunity of digital with the

compactness and low power consumption of analog.

Other pulse time (IPI and PWM) representations where reviewed in this thesis.

We showed that our approach is more suitable when negative, zero, and positive

values are needed, because our representation uses both parts of the frame (t+ and t-)

not just one part, which eliminates the need to keep track of offsets during

computation. The other approaches can convert to analog or digital and use their

techniques for computation but each method has its own disadvantages. Considering

only local analog computation, it suffers from serious problems such as the body

effect and the mobility degradation effect. Choosing digital computation means that

we have to convert from these time representations into digital, which requires a very

fast counter and clock assuming that their conversion speed is as good as ours. This is

not practical and therefore speed has to be significantly slowed down to accommodate

the digital counter operation. Our approach allows for both conversion/communication

and computation in the same time domain and at comparable speeds.

Different conversion schemes, linear and nonlinear (logarithmic), and also

different signaling schemes, synchronous and asynchronous, were investigated. Our

representation is linear and synchronous. The linear scheme provides better accuracy,

is less complex to realize in CMOS, and is more suitable for computation than the

logarithmic scheme. These advantages outweighed the advantage of higher bandwidth

(speed) due to time compression in the logarithmic scheme. The synchronous scheme

is more suitable for computation than the asynchronous scheme, especially on

negative values. This advantage outweighed the advantage of higher bandwidth

(speed) coming from the fact that the asynchronous scheme does not allocate a full

time frame for each value as the synchronous scheme does.

We demonstrated the feasibility of our novel IPI representation in both

conversion/communication and computation by developing a class of novel methods

and circuits for basic conversion and computation based on it. These methods and

circuits include IPI-to-V conversion, V-to-IPI conversion, and the basic computations:

106

addition, subtraction, division, and multiplication. These methods and circuits were

successfully demonstrated through mathematical derivations, complex BSIM3v3.1

SPICE simulations, and chip design, fabrication, and test using the TSMC 0.35 um

mixed-signal CMOS fabrication process technology. They were simulated and tested

at a 10 MHz framing speed (100 ns time frame). Test and simulation results agreed

with the calculated results. We have also simulated the conversion, addition, and

subtraction circuits at 100 MHz, and the division and multiplication circuits at 50

MHz, and simulation results agreed with the calculated results. To demonstrate the

operation of these basic IPI blocks together at the system-level, a 6-synapse neuron

was designed and simulated.

Simulation results have shown similar accuracy and dynamic range at both low

and high speeds. Accuracy of more than 98%, low power consumption of less than 2.1

mW, small area of less than 7.68x10-3 mm2, and a wide dynamic range of 1200 mV

were achieved for conversion, addition, and subtraction. For division, accuracy of

more than 98%, low power consumption of 3.36 mW, small area of 25.92x10-3 mm2,

and a dynamic range of 600 mV were achieved. And for multiplication, accuracy of

more than 97%, low power consumption of 6.72 mW, small area of 51.84x10-3 mm2,

and a dynamic range of 600 mV were achieved.

This thesis also discussed how the IPI technology can be used in applications

such as sensors, instrumentation, communications, telemetry, signal processing, and

ANNs. We have compared our IPI based conversion and computation

implementations against other analog and digital implementations and tied the results

with the applications. Our IPI implementations are comparable to the more traditional

analog implementations in terms of area and power consumption. However, they are

more robust than the analog implementations studied here. In communication whether

on-chip or off-chip, the main advantage of the IPI over analog is its digital-like

immunity to noise, process variations, temperature, reference voltage, and other

serious problems such as cross-talk and substrate coupling, because of the fact the IPI

uses time between pulses rather than magnitude to represent the analog signal.

107

Issues surrounding local analog computation were discussed. Our IPI

implementations do not have the serious problems that analog computation suffers

from such as the body effect, the mobility degradation effect, the offset and

nonlinearity errors due to device mismatch, and the unsuitability for scaling in short-

channel deep submicron and nano technologies due to deviation from the MOSFET I-

V square-law caused by carrier velocity saturation.

When compared with digital implementations, V-to-IPI conversion is

significantly less expensive in terms of area and power consumption than the least

expensive ADC. Therefore, V-to-IPI is a significantly better choice than ADC when

98% (5.6-bit) accuracy is adequate. IPI computation is comparable to digital

computation in terms of area and power consumption but the look-up table DRAM

solution consumes the least power among all. Therefore, the decision of using IPI

versus digital for computation should be based on the total cost of conversion and

computation.

7.2. Future Work

One possible speed optimization that one can try in the future is to use

pipelining to overlap the sampling and conversion operations so that Tmax and Tsd are

no longer additive and Tf then needs to satisfy the relationship Tf > max (Tsd , Tmax)

instead of the relationship Tf > (Tsd + Tmax). The V-to-IPI conversion circuitry

described in section 4.1 can be modified to implement this capability by the use of a

second capacitor. The two capacitors interchange their roles in each frame. In one

frame, the first capacitor is used to sample the signal while the other capacitor is used

to convert the previous sample. In the next frame, the first capacitor is used to convert

its sample while the second capacitor is used to get a new sample of the signal, and so

on. This should improve the speed by a factor of

108

  %1001
,max

%1001%1001
max

max

2

1

1

2 
































TT

TT

T

T

speed

speed
K

sd

sd

f

f

speed
(7.1)

The cost of this speed gain is, of course, the extra area and power needed for the

second capacitor and the logic gates and the switches that will be required to control

the interchange of the two capacitors.

Another possible speed optimization is to use pipelining to overlap the input

conversion and output pulse generation steps needed in computation, which would

apply to all of the computation circuits in chapter 4. In the case of division, for

example, this can be done by using a second set of capacitors. The two sets

interchange their roles in each frame. In one frame, C1 and C2 of the first set are used

for input conversion while the second set is used to generate the output pulse. In the

next frame, C1 and C2 of the second set are used for input conversion while the first set

is used to generate the output pulse, and so on. This should double the speed. As for

V-to-IPI conversion, the cost of this speed gain is the extra area and power needed for

the second set of capacitors and the logic gates and switches that will be required to

control the interchange of the two sets.

While developing and designing our IPI methods/circuits, our main design

concern or target was functionality. Once we had the basic designs, we then started

optimizing them for accuracy, then for area and power consumption so that our IPI

circuits are comparable with their analog counterparts. During this process, we found

that their dynamic range and speed can be very good. Speed was not among our top

priorities because we were initially designing these circuits for communication and

signal processing of analog sensory data in the low to medium speed range [122].

Further optimization of our IPI circuits is possible and should be investigated in future

work. Consider the following equation which describes the voltage of a capacitor C

being charged by the current I. As we have seen in chapter 4, this equation is at the

heart of each of our IPI circuits.

109

t
C

I
V  (7.2)

As we have also explained in chapter 4, the dynamic range of operation of our IPI

circuits is from -VM to +VM where VM is equal to

fM T
C

I
V  (7.3)

Equations (7.2) and (7.3) tell us how to optimize our circuits for area, power

consumption, speed, or dynamic range. Speed is inversely proportional to the frame

time Tf. If we rearrange (7.3), we get

Mf V
I

C
T  (7.3)

We can improve speed by doing one or more of the following:

1. Decreasing C: This will also decrease the area needed by C. However, we

should not make C very small because this will increase the ratio of parasitic

capacitance to desired capacitance and consequently decrease accuracy [123].

2. Increasing I: this will increase the power consumption. It will also increase the

area needed by the current sources.

3. Decreasing VM: This means decreasing the dynamic range of operation.

Increasing speed by decreasing C will lead to a much smaller increase in the

power consumption than increasing it by increasing I. The reason is that using the first

method, the current I stays fixed and the small increase in power consumption will

come from the fact that the CMOS dynamic logic will be switching more often

because of the higher speed. CMOS logic consumes power mainly during switching

and power consumption is almost zero during steady state [2]. The very small steady-

state power consumption is due to leakage currents. Therefore, most of the power

consumption is coming from the sources charging the capacitors. While this suggests

110

that it is better to increase speed by decreasing C and not by increasing I, we cannot

make C too small since that will degrade accuracy.

Equation (7.3) also suggests that we can reduce both area and power

consumption while keeping the same speed and dynamic range. This can be done by

decreasing both C and I by the same factor, so that the ratio I/C is constant. The

savings in area will come from the smaller capacitance and the smaller current

sources. The savings in power consumption will come from the smaller currents

needed to charge and discharge these smaller capacitors.

There can also be some area and power savings that may be achieved by

making the reset switches smaller but this will widen the pulse generated by the

comparator and the reset circuitry. This optimization depends on how short the

generated pulse needs to be and how much time it can take from the frame.

Another important suggestion for future work is to implement a calibration

scheme for the IPI circuits. As we have explained in subsection 6.2.1, process

variations in capacitors and current sources and the reference voltage variations cause

scaling and offset errors, respectively. Therefore, a calibration scheme is crucial to the

maximum accuracy of the IPI circuits. As a simple example, on-die reference voltage

can be obtained by a voltage divider. A simple voltage divider can be implemented

using two or more diode-connected transistors connected in series between VDD and

VSS (or the ground). A diode-connected CMOS transistor does not actually behave like

a diode. “Diode-connected” is just a term that is used to describe a CMOS transistor

whose drain and gate are connected to each other like a diode-connected bipolar

transistor whose collector and base are connected to each other to operate it as a diode

[1]. Suppose that VREF is some reference voltage that we take from the source or the

drain of one of these transistors in series. These transistors operate as resistors. We can

calibrate VREF by varying their resistance. We can vary their resistance by connecting

more or less transistors in parallel to them. Connecting or disconnecting these

transistors can be done digitally. For automatic calibration, some counter and decoder

will be needed to decide how many and which transistors should be connected in order

111

to minimize the offset error. Automatic calibration of current sources and capacitors

can be done in a very similar way: Connect more or less of them until the error is

minimum.

The choice of whether to calibrate I or C depends on, of course, area and

power optimization targets, as we explained above. Of course, calibration requires that

we provide the chip with the expected output in order for the calibration circuit to

calculate the error and come up with the digital numbers that give the minimum error

(the maximum accuracy). High resolution calibration will require higher digital

accuracy and therefore more area and power consumption. Calibration can be done

once or periodically depending on whether there are other time-dependent variations

that it needs to account for or not, such as temperature for example. As we can see

from this discussion, a calibration scheme can be also exploited to serve as a

programming scheme that can be used to program the current sources and/or the

capacitors so that the chip can run at different speed and power consumption levels.

Coarse settings can be used for programming the chip for different speed and power

consumption levels while fine settings can be used to calibrate for maximum accuracy.

Such an implementation is basically similar to an analog field programmable array

(FPGA) implementation.

As we have explained in subsection 6.2.1, our IPI circuits should be able to run

at low-voltage because they do not have many stacks of transistors. In this work, we

use 3.2 V supply voltage which is close to the TSMC foundry recommendation of 3.3

V [118]. Optimizing the IPI circuits for low-voltage operation in deep submicron

technologies such as 0.18 um or 0.13 um or even for nanoscale circuits is an area of

potential research.

In chapter 4, we described a simple scheme for receiving the synchronous IPI

inputs and converting them to local square wave (PWM) signals which carry the same

t+ and t- IPI information. The scheme uses toggle flip-flops. The problem with this

method is that if a pulse is lost or a spurious pulse is received then the T-FF will be

stuck in an incorrect phase and all subsequent IPI values will be erroneous. Another

112

promising topic for future work is to use a more sophisticated clock-recovery scheme

such as phase-locked loop (PLL) [120] to address this reliability problem with

synchronous IPI signaling. Such a problem does not exist in asynchronous IPI

signaling since a lost pulse or a spurious pulse will cause a maximum of two errors

only.

113

Bibliography

1. Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, Analysis and Design of

Analog Integrated Circuits, 4th ed., New York: Wiley, 2001.

2. David A. Hodges, Horace G. Jackson, Analysis and Design of Digital Integrated Circuits, 2nd ed.,

New York: McGraw-Hill, 1983.

3. John F. Wakerly, Digital Design Principles and Practices, 2nd ed., Englewood Cliffs, NJ:
Prentice-Hall, 1994.

4. M.A. Jabri, R.J. Coggins, and B.G. Flower, Adaptive Analog VLSI Neural Systems, London,
England: Chapman and Hall, 1996.

5. Carver A. Mead, Analog VLSI and Neural Systems, Reading, MA: Addison-Wesley, 1989.

6. A. F. Murray, D. Del Corso, and L. Tarassenko, “Pulse-Stream VLSI Neural
Networks Mixing Analog and Digital Techniques,” IEEE Trans. Neural Networks,
vol. 2, no. 2, March 1991, pp. 193-204.

7. Hamilton, A., Murray, A.F., Baxter, D.J., Churcher, S., Reekie, H.M., and
Tarassenko, L., "Integrated pulse stream neural networks: results, issues, and
pointers," IEEE Transactions on Neural Networks, vol. 3, no. 3, May 1992, pp.
385-393.

8. A.F. Murray et al., "Pulse stream VLSI neural networks," IEEE Micro, vol. 14, no.
3, June 1994, pp. 29-39.

9. Brownlow, M.J., Tarassenko, L., and Murray, A.F., "Analogue computation using
VLSI neural network devices," Electronics Letters, vol. 26, no. 16, Aug. 1990, pp.
1297-1299.

10. Woodburn, R. and Murray, A.F., "Pulse-stream techniques and circuits," IEEE
Circuits and Devices Magazine, vol. 12, no. 4, July 1996, pp. 43-47.

11. A.F. Murray and A.V.W. Smith, "Asynchronous arithmetic for VLSI neural
systems," Electorn. Lett., vol. 23, no. 12, June, 1987, pp. 642-643.

12. A.F. Murray and A.V.W. Smith, "A novel computational and signaling method for
VLSI neural networks," in Proc. European Solid State Circuits Conf., 1987, pp.
10-22

114

13. Murray, A.F. and Smith, A.V.W., "Asynchronous VLSI neural networks using
pulse-stream arithmetic," IEEE Journal of Solid-State Circuits, Volume 23, Issue
3, June 1988, pp. 688–697.

14. P.B. Denyer and J. Mavor, "MOST transconductance multipliers for array
applications," Proc. Inst. Elec. Eng., pt. 1, vol. 128, no. 3, June 1981, pp. 81-86.

15. Han, I.S. and Park, S.B., "Voltage-controlled linear resistor by two MOS
transistors and its application to active RC filter MOS integration," Proceedings of
the IEEE, Volume 72, Issue 11, Nov. 1984, pp. 1655–1657.

16. Del Corso, D. and Reyneri, L.M., "Mixing analog and digital techniques for silicon
neural networks," IEEE International Symposium on Circuits and Systems, vol. 3,
1990., 1-3 May 1990, pp. 2446-2449.

17. D. Del Corso, F. Gregoretti, C. Pellegrini, and L.M. Reyneri, "A pulse stream
synapse based on a closed loop register," in Proc. Third Int. Conf. Parallel
Archeictures and Neural Networks (Vietri sul Mare, Italy), May 1990.

18. D. Del Corso, F. Gregoretti, and L.M. Reyneri, "Use of pulse rate and width
modulations in mixed analog digital cell for artificial neural systems," in Proc.
NATO ARW Neuro computing, Algorithm, Archetictures and Applicatoins (Les
Arcs), Feb. 1989.

19. E. Culurciello and A. G. Andreou, “ALOHA CMOS imager,” in Proceedings of
the 2004 IEEE International Symposium on Circuits and Systems, ISCAS ’04,
May 2004.

20. Teixeira, T., Andreou, A.G., and Culurciello, E., "Event-based imaging with active
illumination in sensor networks,” IEEE International Symposium on Circuits and
Systems, vol. 1, 23-26 May 2005, pp. 644-647.

21. D. Hammerstrom, M. Jabri, and R. Etienne-Cummings, "Inter-Pulse-Interval
Based Mixed Signal Representations," Research proposal submitted to the
Semiconductor Research Corporation, 2001.

22. S. Ravi and D. Hammerstrom, "Inter-Pulse-Interval Analog Signal Representation
for Low Power Sensor Data Collection," In Preparation.

23. D. Clein, CMOS IC Layout: Concepts, Methodologies, and Tools, 1st ed., Woburn, MA: Newnes,
1999.

24. R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, 1st ed., New York: Wiley, 1997.

115

25. R. Jacob Baker, CMOS Mixed-Signal Circuit Design, 1st ed., New York: Wiley, 2002.

26. G. Han and E. Sanchez-Sinencio, “CMOS transconductance multipliers: A
tutorial,” IEEE Trans. Circuits Syst. II, vol. 45, pp. 1550–1563, Dec. 1998.

27. B. Gilbert, “A precision four-quadrant multiplier with subnanosecond response,”
IEEE J. Solid-State Circuits, vol. SC-3, pp. 353–365, Dec. 1968.

28. E. Sanchez-Sinencio et al., “Operational transconductance amplifier-based
nonlinear function syntheses, IEEE J. Solid-State Circuits, vol. 24, Dec. 1989.

29. S. Liu and Y. Hwang, “CMOS four-quadrant multiplier using bias feedback
techniques,” IEEE J. Solid-State Circuits, vol. 29, pp. 750–752, June 1994.

30. Shuo-Yuan Hsiao and Chung-Yu Wu, “A parallel structure for CMOS four-
quadrant analog multipliers and its application to a 2-GHz RF downconversion
mixer,” IEEE Journal of Solid-State Circuits, vol. 33, no. 6, June 1998, pp. 859-
869.

31. S.-I. Liu and C.-C. Chang, “Low-voltage CMOS four-quadrant multiplier,”
Electron. Lett., vol. 33, no. 3, Jan. 1997, pp. 207–208.

32. S. Liu and C. Chang, “CMOS analog divider and four-quadrant multiplier using
pool circuits,” IEEE J. Solid-State Circuits, vol. 30, pp. 1025–1029, Sept. 1995.

33. Tsay, S.W. and Newcomb, R.W., "A neural-type pool arithmetic unit,” IEEE
International Sympoisum on Circuits and Systems, vol. 5, 11-14 June 1991, pp.
2518–2521.

34. Vlassis, S. and Siskos, S., "Analog CMOS four-quadrant multiplier and divider,”
Proceedings of the 1999 IEEE International Symposium on Circuits and Systems,
Volume 5, 30 May-2 June 1999, pp. 383 – 386.

35. I. Mehr and D. Dalton, "A 500-MSample/s, 6-Bit Nyquist-Rate ADC for Disk-
Drive Read-Channel Applications,” IEEE J. Solid-State Circuits, vol. 34, no. 7,
July 1999.

36. A. G. W. Venes and R. J. van de Plassche, “An 80-MHz, 8-b CMOS folding A/D
converter with distributed track-and-hold preprocessing,” IEEE J. Solid-State
Circuits, vol. 31, pp. 1846–1853, Dec. 1996.

116

37. S. Kim and M. Song, “An 8-b 200 MSPS CMOS A/D converter for analog
interface module of TFT-LCD driver,” in Proc. IEEE Int. Symp. Circuits and
Systems, 2001, pp. 528–531.

38. B. Song, P. Rakers, and S. Gillig, “A 1-V 6-b 50-Msamples/s current interpolating
CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 647–651, Apr. 2000.

39. Y. Li and E. Sánchez-Sinencio, "A Wide Input Bandwidth 7-bit 300-MSample/s
Folding and Current-Mode Interpolating ADC," IEEE JOURNAL OF SOLID-
STATE CIRCUITS, VOL. 38, NO. 8, AUGUST 2003.

40. H. van der Ploeg and R. Remmers, "A 3.3-V, 10-b, 25-MSample/s Two-Step ADC
in 0.35- m CMOS," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34,
NO. 12, DECEMBER 1999.

41. J. Wang, P. Yang, and D. Sheng, "Design of a 3-V 300-MHz Low-Power 8-b X 8-
b Pipelined Multiplier Using Pulse-Triggered TSPC Flip-Flops," IEEE JOURNAL
OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000, pp. 583-592.

42. H. Makino et al., "An 8.8-ns 54 x 54-Bit Multiplier with High Speed Redundant
Binary Architecture," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31,
NO. 6, JUNE 1996, pp. 773-783.

43. J. Mori et al., "A 10-ns 54 x 54-b Parallel Structured Full Array Multiplier with
0.5-pm CMOS Technology," IEEE JOURNAL OF SOLID-STATE CIRCUITS,
VOL. 26, NO. 4, APRIL 1991, pp. 600-606.

44. M. Agata et al., "A Circuit Technology for High-speed Battery-Operated 16-Mb
CMOS DRAM’s," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 28,
NO. 11, NOVEMBER 1993, pp. 1084-1091.

45. H. Murakami et al., "A Multiplier-Accumulator Macro for a 45 MIPS Embedded
RISC Processor," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31,
NO. 7, JULY 1996, pp. 1067-1071.

46. F. Lu and H. Samueli, "A 200-MHz CMOS Pipelined Multiplier-Accumulator
Using a Quasi-Domino Dynamic Full- Adder Cell Design," IEEE JOURNAL OF
SOLID-STATE CIRCUITS, VOL. 28, NO. 2, FEBRUARY 1993, pp. 123-132.

47. J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C.A. Mead. Winner-take-all
networks of o(n) complexity. NIPS, 1, 1988.

48. Abrahamsen, J.P., Hafliger, P., and Lande, T.S., "A time domain winner-take-all
network of integrate-and-fire neurons,” Proceedings of the 2004 International

117

Symposium on Circuits and Systems, Volume 5, 23-26 May 2004, pp. V-361 - V-
364.

49. M. Mahowald, “VLSI Analogs of Neuronal Visual Processing: A Synthesis of
Form and Function,” Ph.D. Thesis, Computation and Neural Systems, California
Institute of Technology, 1992.

50. A. Mortara and E.A. Vittoz, “A Communication Architecture Tailored for Analog
VLSI Artificial Neural Networks: Intrinsic Performance and Limitations,” IEEE
Trans. Neural Networks, vol. 5, no. 3, May 1994, pp. 459 - 466.

51. E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomorphic digital
image sensor,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, February
2003, pp. 281–294.

52. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning internal
representations by error propagation. In D. E. Rumelhart, and J. L. McClelland
(Eds.), Parallel distributed processing: Explorations in the microstructure of
cognition. Vol. 1: Foundations (pp. 318--362). Cambridge, MA: MIT Press.

53. Amari, S. I. and Cichocki, A.: Adaptive blind signal processing – Neural network
approaches, Proceedings of the IEEE, 86 (1998), 2026–2048.

54. Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice-Hall, Upper Saddle
River, New Jersey, 1994.

55. Hochet, B., "Multivalued MOS memory for variable-synapse neural networks,"
Electronics Letters, Volume 25, Issue 10, 11 May 1989, pp. 669 – 670.

56. Hochet, B., Peiris, V., Abdo, S., and Declercq, M.J., "Implementation of a learning
Kohonen neuron based on a new multilevel storage technique," Solid-State
Circuits, IEEE Journal of, Volume 26, Issue 3, Mar 1991, pp. 262 – 267.

57. M. Mahowald, “VLSI Analogs of Neuronal Visual Processing: A Synthesis of
Form and Function,” Ph.D. Thesis, Computation and Neural Systems, California
Institute of Technology, 1992.

58. A. Mortara, E.A. Vittoz, “A Communication Architecture Tailored for Analog
VLSI Artificial Neural Networks: Intrinsic Performance and Limitations,” IEEE
Trans. Neural Networks, vol. 5, no. 3, May 1994, pp. 459 - 466.

59. E. Culurciello, R. Etienne-Cummings, K. A. Boahen, “A biomorphic digital image
sensor,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, February 2003, pp.
281–294.

118

60. M. Jabri and B. Flower, “Weight perturbation: an optimal architecture and learning
technique for analog VLSI feedforward and recurrent multilayer networks,” IEEE
Transactions on Neural Networks, Volume 3, Issue 1, January 1992, pp. 154 –
157.

61. G. Cauwenberghs, "A fast stochastic error-descent algorithm for supervised
learning and optimisation," Advances in Neural Information Processing Systems,
S.J. Hanson, J.D. Cowan and C.L. Giles Editors, Morgan Kaufmann Publishers, 5,
1993, pp. 244-251.

62. J. Alspector, R. Meir, B. Yuhas, and A. Jayakumar, "A parallel gradient descent
method for learning in analog VLSI neural networks," Advances in Neural
Information Processing Systems, S.J. Hanson, J.D. Cowan and C.L. Giles Editors,
Morgan Kaufmann Publishers, 5, 1993, 836-844.

63. B.F. Flower and M.A. Jabri, "Summed Weight Neuron Perturbation: an O(N)
improvement over Weight Perturbation. Morgan Kaufmann Publishers, NIPS, 5,
1993, pp. 212-219.

64. D. Buss, “Technology in the Internet age,” in ISSCC 2002 Dig. Tech. Papers, pp.
18–21.

65. D. Buss et al., “SOC CMOS technology for personal internet products,” IEEE
Transactions on Electron Devices, vol. 50, no. 3, March 2003, pp. 546-556.

66. P. van Zeijl et al., “A Bluetooth radio in 0.18um CMOS,” IEEE Journal of Solid-
State Circuits, vol. 37, no. 12, Dec. 2002, pp. 1679-1687.

67. Samavedam, A., Sadate, A., Mayaram, K., and Fiez, T.S., “A scalable substrate
noise coupling model for design of mixed-signal IC’s,” IEEE Journal of Solid-
State Circuits, vol. 35, no. 6, June 2000, pp. 895-904.

68. Yang, M.T. et al., "Characterization and model of on-chip flicker noise with deep
Nwell (DNW) isolation for 130nm and beyond SOC," Proceedings of the 2005
International Conference on Microelectronic Test Structures, 4-7 April 2005, pp.
125-129.

69. Riter, S. and Boatright, P., "Design considerations for a pulse position modulation
underwater acoustic communications system," OCEANS, Vol. 2, Sept. 1970, pp.
139 – 141.

119

70. Riter, S., Boatright, P., and Shay, M., "Pulse position modulation acoustic
communications," IEEE Transactions on Audio and Electroacoustics, Vol. 19, no.
2, June 1971, pp. 166 – 173.

71. COOKE, D., JELONEK, Z., OXFORD, A.J., and FITCH, E., ‘Pulse
communication’, J. IEE, 94, Part IIIA, 1947, pp. 83-105

72. FITCH, E., ‘The spectrum of modulated pulses’, J. IEE, 94, Part IIIA, 1947, pp.
556-564

73. JELONEK, Z., ‘Noise problems in pulse communication’, J. IEE, 94, Part IIIA,
1947, pp. 533-545

74. LEVY, M.M., ‘Some theoretical and practical considerations of pulse modulation’,
J. IEE, 94, Part IIIA, 1947, pp. 565-572

75. SCHROCKS, C.B., ‘Proposal for a hub controlled cable television system using
optical fiber’, IEEE Trans. on cable television, vol. CATV-4, no. 2, 1979, pp. 70-
77.

76. BERRY, M.C., ‘Pulse width modulation for optical fibre transmission,’ PhD
Thesis, Nottingham University, England, 1983.

77. BERRY, M.C., and ARNOLD, J.M., ‘Pulse width modulation for optical fibre
transmission of video’. IEE Int. Conf. on the Impact of VLSI Technology on
Communication Systems, London, 1983.

78. SUH, S.Y., ‘Pulse width modulation for analog fiber-optic communications’, IEEE
Journal of Lightwave Technology, vol. 5, no. 1, Jan. 1987, pp. 102-112.

79. WILSON, B., and GHASSEMLOOY, Z., ‘Optical pulse width modulation for
electrically isolated analogue transmission’, J. Phys. (E), 1985, 18, pp. 954-958.

80. WILSON, B., and GHASSEMLOOY, Z., ‘Optical PWM data link for high quality
analogue and video signals’, J. Phys. (E), 1987, 20, 7, pp. 841-845.

81. WILSON, B., and GHASSEMLOOY, Z., ‘Optical fibre transmission of
multiplexed video signals using PWM, Int. J. Optoelectron., 1989, 4, pp. 3-17.

82. HEATLEY, D.J.T., ‘Video transmission in optical fibre local networks using pulse
time modulation’. ECOC 83 - 9th European Conference on Optical
Communication, Geneva, September 1983, pp. 343-346.

120

83. OKAZAKI, A., ‘Still picture transmission by pulse interval modulation’, IEEE
Trans., 1979, CATV4 pp. 17-22.

84. HEATLEY, D.J.T., ‘Unrepeatered video transmission using pulse frequency
modulation over 100 km of monomode optical fibre’, Electron. Lett., 1982, 18, pp.
369-371.

85. HEATLEY, D.J.T., and HODGKINSON, T.G., ‘Video transmission over cabled
monomode fibre at 1.5 pm using PFM with 2-PSK heterodyne detection’,
Electron. Lett., 1984,20, pp, 110-112.

86. HEKER, S.F., HERSKOWITZ, G.J., GREBEL, H., and WICHANSKY, H.,
‘Video transmission in optical fiber communication systems using pulse frequency
modulation’, IEEE Trans. Commun., 1988,36, (2), pp. 191-194.

87. KANADA, T., HAKODA, K., and YONEDA, E., ‘SNR fluctuation and non-linear
distortion in PFM optical NTSC video transmission systems’, IEEE Trans. on
Communications, 1982, 30, (8), pp. 1868-1875.

88. LU, C., ‘Optical transmission of wideband video signals using SWFM (PhD
Thesis, University of Manchester Institute of Science and Technology,
Manchester, England, 1990).

89. POPHILLAT, L., ‘Video transmission using a 1.3 pm LED and monomode fiter’,
10th European Conf. on Optical Communications, Stuttgart, W. Germany, 1984,
pp. 238-239.

90. SATO, K., AOYGAI, S., and KITAMI, T., ‘Fiber optic video transmission
employing square wave frequency modulation’, IEEE Trans., 1985iC6M-33,’(5),
pp. 417-423.

91. WILSON, B., GHASSEMLOOY, Z., DARWAZEH, I., LU, C., and CHAN. D.,
‘Optical sauarewave frequency modulation for wideband instrumentation ahd
video signals’. IEE Colloquium on Analogue Optical Communications’, London,
1989, Digest 1989/165, Paper 9.

92. WILSON, B., GHASSEMLOOY, Z., and LU, C., ‘Optical fibre transmission of
high-definition television signals using squarewave frequency modulation’. Third
Bangor Symposium on Communications, University of Wales, Bangor, May 1991,
pp. 258-262.

93. WILSON, B., GHASSEMLOOY, Z., and LU, C., ‘Squarewave FM optical fibre
transmission for high definition television signals’ (Fibre Optics 90, 1990,
London), Proc. Int. Soc. Optical Eng., 1990, 1314, pp. 90-97.

121

94. OKAZAKI, A., ‘Pulse interval modulation applicable to narrowband
transmission’, IEEE Trans., 1978, CATV-3, pp. 155-164.

95. SATO, M., MURATA, M., and NAMEKAWA, T., ‘Pulse interval and width
modulation for video transmission’, IEEE Trans., 1978, CATV-3, (4), pp. 166-
173.

96. SATO, M., MURATA, M., and NAMEKAWA, T., ‘A new optical communication
system using the Dulse interval and width modulated code’, IEEE-Trans, 1979,
CATV-4, (l), pp. 1-9.

97. WILSON, B., GHASSEMLOOY, Z., and CHEUNG, J.C.S., ‘Spectral predictions
for pulse interval and width modulation’, Electron.Lett., 1991, 27, (7), pp. 580-
581.

98. Wilson, B. and Ghassemlooy, Z., "Pulse time modulation techniques for analogue
optical fibre transmission," IEE Colloquium on Analogue Optical
Communications, 18 Dec 1989, pp. 7/1-7/4.

99. Wilson, B., Ghassemlooy, Z., and Cheung, J.C.S., "Optical pulse interval and
width modulation for analogue fibre communications,” IEE Proceedings Journal,
Vol. 139, no. 6, Dec. 1992, pp. 376-382.

100. Ghassemlooy, Z. and Wilson, B., "Optical compound pulse time modulation
for analogue fibre transmission," Proceedings of IEEE Singapore International
Conference on Networks, Vol. 2, 6-11 Sept. 1993, pp. 630-634.

101. Wilson, B. and Ghassemlooy, Z., "Pulse time modulation techniques for
optical communications: a review," IEE Proceedings Journal, Vol. 140, no. 6, Dec.
1993, pp. 347-357.

102. Lu, C., Wilson, B., and Ghassemlooy, Z., "Pulse time modulation techniques
for low cost analog signal transmission systems," Proceedings of IEEE Singapore
International Conference on Networks, vol. 2, 6-11 Sept. 1993, pp. 635-638.

103. Cowen, S., "Fiber Optic Video Transmission System Employing Pulse
Frequency Modulation," OCEANS, vol. 11, Sep 1979, pp. 253-259.

104. DAS, J., and SHARMA, P.D.: ‘Pulse interval modulation’, Electron. Lett.,
1967, 3, pp. 288-289.

105. Haykin, S., Communication Systems, 3rd ed., New York: Wiley, 1994.

122

106. R. Gabel and R. Roberts, Signals and Linear Systems, 3rd ed., New York: Wiley, 1987.

107. BLACK, H.S., Modulation theory, Princeton, N.J.: Van Nostrand, 1953.

108. W. Hayt and J. Kemmerly, Engineering Circuit Analysis, 5th ed., New York: McGraw-
Hill, 1993.

109. E. Sanchez-Sinencio and A. Andreou, Low-Voltage/Low-Power Integrated Circuits and

Systems: Low-Voltage Mixed-Signal Circuits, 1st ed., New York: Wiley, 1999.

110. 110. B. Maundy and P. Aronhime, “Useful multipliers for low-voltage
applications,” Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, May 2002, pp.
737–740.

111. B. Maundy and M. Maini, "A Comparison of Three Multipliers Based on the
Vgs2 Technique for Low-Voltage Applications," IEEE Transactions on Circuits
and Systems-I: Fundamental Theory and Applications, vol. 50, no. 7, July 2003,
pp. 937-940.

112. Y.P. Tsividis, Operation and Modeling of the MOS Transistor, New York: McGraw-Hill,
1987.

113. R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits, New York:
Wiley, 1986.

114. K. Bult and H. Wallinga, “A class of analog CMOS circuits based on the
square-law characteristics of an MOS transistor in saturation,” IEEE J. Solid-State
Circuits, vol. SC-22, no. 3, June 1987, pp. 357–365.

115. A. Stolmever. “A twin-well CMOS process using high energy ion
implantation," IEEE Trans. Electron Devices, vol. ED-33, no. 4, Apr. 1986, pp.
450-457.

116. Mentor Graphics, Designing ASICs with the ADK Design Kit and Mentor
Graphics Tools, Version 2.0, Dec. 2001.

117. Mentor Graphics, Cell Builder, Version 6.1.3, Oct. 2001.

118. TSMC 0.35um Process, http://www.mosis.org/products/fab/vendors/tsmc/
tsmc035/, Feb. 10th, 2006.

119. MOSIS, Parametric Test Results, http://www.mosis.org/cgi-bin/cgiwrap/
umosis/swp/params/tsmc-035/t4be_mm_epi-params.txt, Feb. 10th, 2006.

123

120. Lee, T.H. and Bulzacchelli, J.F., “A 155-MHz clock recovery delay- and
phase-locked loop,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, Dec.
1992, pp. 1736-1746.

121. Hennessy, John L. and Patterson, David A., Computer Architecture: A Quantitative

Approach, San Francisco, CA: Morgan Kaufman Publishers, 1996.

122. Maxim, “A Simple ADC Comparison Matrix,” Application Note 2094, Jun.
2nd, 2003.

123. Allen, Phillip E. and Holberg, Douglas R., CMOS Analog Circuit Design, 2nd ed., New
York: Oxford University Press, Jan. 2002.

124. Yasumoto, M., Enomoto, T., Watanabe, K., and Ishihara, T., "Single-Chip
Adaptive Transversal Filter IC Employing Switched Capacitor Technology," IEEE
Journal on Selected Areas in Communications, vol. 2, no. 2, March 1984, pp.324-
333.

125. Enomoto, T. and Yasumoto, M., "Integrated MOS four-quadrant analog
multiplier using switched capacitor technology for analog signal processor ICs,"
Solid-State Circuits, IEEE Journal of, vol. 20, no. 4, Aug. 1985, pp. 852-859.

126. Grech, I., Micallef, J., and Vladimirova, T., "±0.9 V switched-capacitor CMOS
multiplier with rail-to-rail input," Electronics Letters, vol. 35, no. 20, Sept. 1999,
pp. 1688-1689.

127. Temes, G.C. and Tsividis, Y., "The special section on switched-capacitor
circuits," Proceedings of the IEEE, vol. 71, no. 8, Aug. 1983, pp. 915-916.

128. Gregorian, R., Martin, K.W., and Temes, G.C., "Switched-capacitor circuit
design," Proceedings of the IEEE, vol. 71, no. 8, Aug. 1983, pp. 941-966.

129. Tsividis, Y., "Principles of operation and analysis of switched-capacitor
circuits," Proceedings of the IEEE, vol. 71, no. 8, Aug. 1983, pp. 926-940.

130. Allstot, D.J. and Black, W.C., Jr., "Technological design considerations for
monolithic MOS switched-capacitor filtering systems," Proceedings of the IEEE,
vol. 71, no. 8, Aug. 1983, pp. 967-986.

131. National Semiconductor, “A Basic Introduction to Filters - Active, Passive,
and Switched-Capacitor,” Application Note 779, Apr. 1991.

124

Appendix A. MOSIS Parametric Test Results

* Source: http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/tsmc-035/t4be_mm_epi-
params.txt, Feb. 10th, 2006.

 MOSIS PARAMETRIC TEST RESULTS

 RUN: T4BE (MM_EPI) VENDOR: TSMC
 TECHNOLOGY: SCN035 FEATURE SIZE: 0.35 microns

INTRODUCTION: This report contains the lot average results obtained by MOSIS
 from measurements of MOSIS test structures on each wafer of
 this fabrication lot. SPICE parameters obtained from similar
 measurements on a selected wafer are also attached.

COMMENTS: TSMC 035

TRANSISTOR PARAMETERS W/L N-CHANNEL P-CHANNEL UNITS

 MINIMUM 0.6/0.4
 Vth 0.55 -0.76 volts

 SHORT 20.0/0.4
 Idss 513 -220 uA/um
 Vth 0.59 -0.75 volts
 Vpt 9.1 -9.7 volts

 WIDE 20.0/0.4
 Ids0 < 2.5 < 2.5 pA/um

 LARGE 50/50
 Vth 0.52 -0.75 volts
 Vjbkd 8.7 -8.5 volts
 Ijlk <50.0 <50.0 pA
 Gamma 0.60 0.37 V^0.5

 K' (Uo*Cox/2) 89.1 -30.8 uA/V^2
Low-field Mobility 402.53 139.15 cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask
 bias use the appropriate value for the parameter XL in your
 SPICE model card.
 Design Technology XL (um) XW (um)
 ----------------- ------- ------
 SCMOS_SUBM (lambda=0.20) -0.05 0.15
 thick oxide -0.10 0.15
 SCMOS (lambda=0.25) -0.15 0.15
 thick oxide -0.25 0.15

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS
 Vth Poly >10.0 <-10.0 volts

PROCESS PARAMETERS N+ P+ POLY POLY2 POLY2_ME M1 M2 UNITS
 Sheet Resistance 78.9 151.7 8.5 48.6 48.6 0.07 0.07 ohms/sq
 Contact Resistance 62.5 6.8 ohms
 Gate Oxide Thickness 78 angstrom
PROCESS PARAMETERS M3 M4 N_W N\PLY UNITS

125

 Sheet Resistance 0.07 0.04 1006 1050 ohms/sq
 Contact Resistance 2.06 2.99 ohms

COMMENTS: N\POLY is N-well under polysilicon.

CAPACITANCE PARAMETERS N+ P+ POLY POLY2 M1 M2 M3 M4 N_W UNITS
 Area (substrate) 914 1401 101 99 aF/um^2
 Area (N+active) 4440 17 12 10 aF/um^2
 Area (P+active) 4478 aF/um^2
 Area (poly) 868 49 15 9 6 aF/um^2
 Area (poly2) 47 aF/um^2
Area (metal1) 36 14 8 aF/um^2
 Area (metal2) 37 13 aF/um^2
 Area (metal3) 36 aF/um^2
 Fringe (substrate) 251 295 aF/um
 Fringe (poly) 67 38 29 23 aF/um
 Fringe (metal1) 51 34 27 aF/um
 Fringe (metal2) 37 aF/um
 Fringe (metal3) 57 aF/um
Overlap (N+active) 340 aF/um
 Overlap (P+active) 383 aF/um

CIRCUIT PARAMETERS UNITS
 Inverters K
 Vinv 1.0 1.21 volts
 Vinv 1.5 1.35 volts
 Vol (100 uA) 2.0 0.23 volts
 Voh (100 uA) 2.0 2.88 volts
 Vinv 2.0 1.45 volts
 Gain 2.0 -17.91
 Ring Oscillator Freq.
 DIV256 (31-stg,3.3V) 175.82 MHz
 D256_THK (31-stg,5.0V) 112.34 MHz
 Ring Oscillator Power
 DIV256 (31-stg,3.3V) 0.15 uW/MHz/gate
 D256_THK (31-stg,5.0V) 0.30 uW/MHz/gate

COMMENTS: SUBMICRON

T4BE SPICE BSIM3 VERSION 3.1 PARAMETERS

SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8

* DATE: Dec 17/04
* LOT: T4BE WAF: 1005
* Temperature_parameters=Default
.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 7.8E-9
+XJ = 1E-7 NCH = 2.2E17 VTH0 = 0.4867759
+K1 = 0.5982003 K2 = 7.110775E-3 K3 = 74.853704
+K3B = -10 W0 = 5E-5 NLX = 2.522198E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 2.8489298 DVT1 = 0.8382014 DVT2 = -0.2705174
+U0 = 364.7816729 UA = -7.07762E-10 UB = 2.214939E-18
+UC = 3.217876E-11 VSAT = 1.427282E5 A0 = 1.0943978
+AGS = 0.1518849 B0 = 9.486928E-7 B1 = 5E-6
+KETA = 2.703951E-3 A1 = 1.331977E-4 A2 = 0.5082922
+RDSW = 1.03395E3 PRWG = -0.0999764 PRWB = -0.1019712
+WR = 1 WINT = 1.517735E-7 LINT = 0
+XL = -5E-8 XW = 1.5E-7 DWG = -3.822451E-9
+DWB = 3.625123E-9 VOFF = -0.0834415 NFACTOR = 1.4572053

126

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 1 ETAB = 0.0333683
+DSUB = 0.8054936 PCLM = 1.4582292 PDIBLC1 = 1.807793E-3
+PDIBLC2 = 1.210914E-4 PDIBLCB = 0.0219649 DROUT = 3.881351E-4
+PSCBE1 = 7.237622E8 PSCBE2 = 1E-3 PVAG = 0
+DELTA = 0.01 RSH = 78.9 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 3.4E-10 CGSO = 3.4E-10 CGBO = 1E-12
+CJ = 9.085053E-4 PB = 0.8 MJ = 0.3519913
+CJSW = 2.378884E-10 PBSW = 0.8 MJSW = 0.1980245
+CJSWG = 1.82E-10 PBSWG = 0.8 MJSWG = 0.1980245
+CF = 0 PVTH0 = -0.0232737 PRDSW = -96.6778453
+PK2 = 4.200437E-3 WKETA = -9.87476E-4 LKETA = -1.128415E-4)
*
.MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 7.8E-9
+XJ = 1E-7 NCH = 8.52E16 VTH0 = -0.7127409
+K1 = 0.426131 K2 = -8.52838E-3 K3 = 53.6180914
+K3B = -4.1856702 W0 = 4.117358E-6 NLX = 2.421492E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 1.697126 DVT1 = 0.5602561 DVT2 = 1.795544E-3
+U0 = 150.0058707 UA = 1.051947E-10 UB = 1.832285E-18
+UC = -2.03335E-11 VSAT = 1.149727E5 A0 = 1.1206664
+AGS = 0.3393834 B0 = 2.49922E-6 B1 = 5E-6
+KETA = -2.847654E-3 A1 = 0 A2 = 0.7697629
+RDSW = 4E3 PRWG = -0.12597 PRWB = 0.1740295
+WR = 1 WINT = 1.54103E-7 LINT = 0
+XL = -5E-8 XW = 1.5E-7 DWG = -1.498245E-8
+DWB = 7.89723E-9 VOFF = -0.135593 NFACTOR = 2
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.0150933 ETAB = 2.717128E-3
+DSUB = 0.2430503 PCLM = 4.39905 PDIBLC1 = 7.528966E-4
+PDIBLC2 = 3.163274E-3 PDIBLCB = -1E-3 DROUT = 8.227276E-3
+PSCBE1 = 7.936256E10 PSCBE2 = 5E-10 PVAG = 3.1637761
+DELTA = 0.01 RSH = 151.7 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 3.83E-10 CGSO = 3.83E-10 CGBO = 1E-12
+CJ = 1.404522E-3 PB = 0.99 MJ = 0.5637342
+CJSW = 2.976181E-10 PBSW = 0.8386314 MJSW = 0.350651
+CJSWG = 4.42E-11 PBSWG = 0.8386314 MJSWG = 0.350651
+CF = 0 PVTH0 = 7.323739E-3 PRDSW = 57.2472155
+PK2 = 1.982984E-3 WKETA = -3.979881E-4 LKETA = -0.0121896)
*

127

Appendix B. BSIM3v3.1 SPICE Models Used for ACCUSIM

Simulations

* In Mentor ASIC Design Kit (ADK), Accusim uses LEVEL 53 for BSIM3v3.1 SPICE Modeling.
* So, LEVEL was set to 53 instead of 49 for HSPICE.

.MODEL n NMOS (LEVEL = 53
+VERSION = 3.1 TNOM = 27 TOX = 7.7E-9
+XJ = 1E-7 NCH = 2.2E17 VTH0 = 0.4737706
+K1 = 0.5824799 K2 = 8.11778E-3 K3 = 96.2727323
+K3B = -6.1947761 W0 = 2.700191E-5 NLX = 2.083266E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 4.3980137 DVT1 = 0.7171277 DVT2 = -0.1080294
+U0 = 362.8973445 UA = -7.42132E-10 UB = 2.200466E-18
+UC = 3.827538E-11 VSAT = 1.452933E5 A0 = 1.1270999
+AGS = 0.1655255 B0 = 1.060433E-6 B1 = 5E-6
+KETA = 2.011502E-3 A1 = 0 A2 = 0.4936368
+RDSW = 855.0105543 PRWG = -0.0459015 PRWB = -0.0966899
+WR = 1 WINT = 1.486341E-7 LINT = 5.292541E-10
+XL = -5E-8 XW = 1.5E-7 DWG = -4.068542E-9
+DWB = 8.2373E-9 VOFF = -0.0796631 NFACTOR = 1.2068796
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.7492832 ETAB = -0.0390417
+DSUB = 0.78159 PCLM = 1.490984 PDIBLC1 = 1.944604E-3
+PDIBLC2 = 5.987715E-7 PDIBLCB = 0.1 DROUT = 0
+PSCBE1 = 7.310861E8 PSCBE2 = 9.494637E-4 PVAG = 0
+DELTA = 0.01 RSH = 79.8 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 2.79E-10 CGSO = 2.79E-10 CGBO = 1E-12
+CJ = 8.918562E-4 PB = 0.8 MJ = 0.3534487
+CJSW = 3.57525E-10 PBSW = 0.8146587 MJSW = 0.1331765
+CJSWG = 1.82E-10 PBSWG = 0.8146587 MJSWG = 0.1331765
+CF = 0 PVTH0 = -0.0199259 PRDSW = -87.5466049
+PK2 = 2.754154E-3 WKETA = -7.698947E-4 LKETA = -2.706215E-3)

.MODEL p PMOS (LEVEL = 53
+VERSION = 3.1 TNOM = 27 TOX = 7.7E-9
+XJ = 1E-7 NCH = 8.52E16 VTH0 = -0.7482928
+K1 = 0.4088906 K2 = -8.575971E-3 K3 = 64.9719334
+K3B = -5 W0 = 5.652246E-6 NLX = 2.411327E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 2.4385401 DVT1 = 0.6534475 DVT2 = 0.0336004
+U0 = 146.6363388 UA = 1E-10 UB = 1.554136E-18
+UC = -2.50914E-11 VSAT = 1.158448E5 A0 = 0.9834203
+AGS = 0.3498974 B0 = 3.014933E-6 B1 = 5E-6
+KETA = -5.567367E-3 A1 = 0 A2 = 0.6767726
+RDSW = 4E3 PRWG = -0.1174124 PRWB = 0.1956899
+WR = 1 WINT = 1.481075E-7 LINT = 0
+XL = -5E-8 XW = 1.5E-7 DWG = -1.237406E-8
+DWB = 1.314322E-8 VOFF = -0.1341843 NFACTOR = 2

128

+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.0247927 ETAB = -5.470312E-3
+DSUB = 0.4066258 PCLM = 4.3395303 PDIBLC1 = 3.712474E-3
+PDIBLC2 = 2.843199E-3 PDIBLCB = -1E-3 DROUT = 0.0493039
+PSCBE1 = 7.972605E10 PSCBE2 = 5.002845E-10 PVAG = 2.4985005
+DELTA = 0.01 RSH = 154.7 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 2.75E-10 CGSO = 2.75E-10 CGBO = 1E-12
+CJ = 1.429787E-3 PB = 0.99 MJ = 0.5495301
+CJSW = 3.794122E-10 PBSW = 0.99 MJSW = 0.3012354
+CJSWG = 4.42E-11 PBSWG = 0.99 MJSWG = 0.3012354
+CF = 0 PVTH0 = 3.478791E-3 PRDSW = 33.4845306
+PK2 = 1.529109E-3 WKETA = 2.584294E-3 LKETA = -1.775326E-3)

