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ABSTRACT 

Sensory processing disorder (SPD) is characterized by impairments in sensory 

processing, though the underlying neural correlates of these symptoms are largely 

unknown. Additionally, it is unclear what factors might lead to the development of SPD. 

Children with autism spectrum disorder (ASD) often report a SPD, so the two may share 

similar causes. Predictors of ASD include prenatal exposure to a Western-style diet 

(WSD), increased maternal adiposity, and increased maternal inflammation. These 

factors may contribute to ASD by stimulating neuroinflammation and thereby impacting 

microglia-mediated processes of neural circuit formation. However, these prenatal 

exposures and neuroinflammatory processes of circuit restructuring have not been 

sufficiently explored in SPD. 

The goal of the present work is to advance what is known about the etiology of 

SPD. Japanese macaques were studied because their metabolic responses to a WSD, as 

well as their trajectory of brain development, better reflect those of humans than do 

rodent models. Study 1 characterized the functional connectivity of relevant sensory and 

emotional processing areas across development to expand upon prior connectivity 

studies. Functional connectivity was explored in relation to perinatal WSD exposure, 

prenatal exposure to maternal adiposity, and postnatal amygdala inflammation. The study 

also investigated the connectivity of these areas in humans with a subtype of SPD, 

sensory over-responsivity, to provide a baseline for comparison across species. Study 2 

investigated whether neuroinflammation evident during the prenatal period persisted into 

the postnatal period to determine the timing of how neuroinflammation may impact 
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neural circuit formation. This study quantified microglia in the arcuate nucleus of the 

hypothalamus one year after birth. 

Findings from both studies revealed that perinatal exposure to a WSD was 

associated with noticeable differences in functional connectivity and neuroinflammation 

during the prenatal and early postnatal periods, but adverse impacts were not found 

beyond 4 months of age. The strongest connectivity impacts were to intra-somatosensory 

connectivity at 4 months of age, consistent with reports that sensory over-responsivity is 

most common in the tactile domain. A slight decrease in microglial number was observed 

one year after birth, indicating that offspring exposed to a perinatal WSD may experience 

reduced neuroinflammation at this age. The consistency between studies demonstrates 

that heightened neuroinflammatory impacts occur during the same period as impacts to 

connectivity, suggesting a relationship between the two. Taken together, these results 

indicate that the earlier periods of development are more susceptible to the transient 

impacts of perinatal WSD exposure. Furthermore, no major differences in connectivity 

were found in the preadolescent human cohort, which aligns with the null findings in 

macaques. 

The current work presents a coherent characterization of the impacts of perinatal 

WSD exposure in the context of SPD. This research advances what is known about a 

potential prenatal predictor of SPD, a potential mechanism by which neural circuits are 

altered, and the longitudinal functional connectivity patterns characteristic of SPD in 

relation to what is observed in humans. Future work can build from this foundation to 

develop a greater understanding of sensory processing and contribute to early detection 

methods and treatments. 
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CHAPTER 1.  INTRODUCTION 

1.1 Sensory Processing Disorder 

Sensory processing disorder (SPD) is a neurological condition that affects how 

the brain processes sensory information. SPD encompasses a broad range of symptoms 

and behaviors that can be categorized into three main types: sensory modulation disorder 

(SMD), sensory discrimination disorder (SDD), and sensory-based motor disorder 

(SBMD). Each of these types can be further divided into subtypes (Mulligan et al., 2021; 

Miller et al., 2007). 

SMD is characterized by demonstrated difficulties with noticing, reacting to, or 

adapting to ordinary sensory stimuli. The subtypes of SMD include sensory over-

responsivity (SOR), sensory under-responsivity (SUR), and sensory craving (SC), which 

is sometimes referred to as sensory-seeking. SOR is distinguished by strong, negative 

emotional responses to sensory stimuli that most people are able to tolerate well. SUR 

involves a reduced response to sensory stimuli, which can include a lack of awareness of 

the sensory event, a delay before responding, or indifference. Individuals with SC 

behavior seek sensory stimulation, often in a way that is disruptive or disorganized. 

SDD is an umbrella category of modality-specific disorders that involve difficulty 

detecting or interpreting the subtle qualities of, or differences between, sensory features. 

Individuals may experience a SDD within one or multiple sensory modalities. 

SBMD is defined by difficulties with balance, motor coordination, and dexterity, 

and it can be categorized into two subtypes. The first subtype, postural disorder, is 

characterized by weaknesses in stability, motor strength, endurance, proprioception, and 



2 
 

coordination. The second subtype, dyspraxia, involves impairments in conceptualizing, 

planning, and executing skilled, new, or synchronized motor sequences. 

Thus, SPD covers a wide range of symptoms that may have differing origins or 

neural correlates. For the purposes of this dissertation, SOR was selected as a primary 

research focus, as it is one of the more common subtypes of SPD (Ahn et al., 2004; Ben-

Sasson et al., 2009). SPD is estimated to occur in as much as 14% of the general 

population of preschoolers (Ahn et al., 2004), and it is highly comorbid with other 

developmental disorders, occurring in approximately 95% of individuals with ASD 

(Tomchek and Dunn, 2007; Crane et al., 2009; Leekam et al., 2007), 69% of individuals 

with attention-deficit/hyperactivity disorder (ADHD; Parush et al. 2007), and 40% of 

individuals with Fragile X syndrome (Baranek et al., 2008). The incidence of SOR in 

particular, as determined by a 41-item assessment derived from the Sensory Over-

Responsivity (SensOR) Scales (Schoen et al., 2008), was 16.5% in typically-developing 

school-aged children, indicating that the true incidence in the general population when 

including individuals with comorbid disorders may be higher. The study specifically 

assessed SOR in auditory and tactile modalities, and while 16.9% of children with SOR 

reported over-responsivity in both modalities, the vast majority only experienced tactile 

SOR (76.4%), further supporting the idea that even SPD subtypes may present as 

modality-specific and have potentially differing origins (Ben-Sasson et al., 2009). 

Children with tactile SOR are often bothered by textures like clothing tags, which 

can usually be avoided, but an aversion to other sensations like washing one’s face or 

receiving hugs can impede one’s engagement in self-care, social participation, and other 

daily activities (Ben-Sasson et al., 2009). The same is true for children with auditory 
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SOR who are distracted or aggravated by the sounds of appliances, conversations, and 

crowds. The inability to habituate to these sounds can further undermine academic 

performance (Ben-Sasson et al., 2009). Beyond these direct experiences, SOR is also 

associated with anxiety, negative affect, poor sleep quality, and increased stress for both 

the child and caregivers (Carpenter et al., 2019; Bar-Shalita and Cermak, 2016; Ben-

Sasson et al., 2009; Ben-Sasson et al., 2010; Carter et al., 2011; Critz et al., 2015; 

Gourley et al., 2013). 

The symptoms of SOR can therefore negatively impact the individual’s quality of 

life, as well as strain their relationships with family members and peers (Ben-Sasson et 

al., 2009). Thus, understanding the etiology of this disorder, including the factors that 

may cause, advance, or mitigate its symptoms, could increase support for the individuals 

who experience SPD and their families. 

Critically, SPD is not yet recognized in the fifth edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association, 

2013a) as its own disorder. As the DSM-5 is regarded by health care professionals 

internationally as the authoritative guide to the diagnosis of mental disorders (American 

Psychiatric Association, 2013b), this demonstrates that there is not yet a consensus on 

risk factors and suitable treatments for SPD. Furthermore, it limits the ability of 

researchers to secure funding to study SPD and limits the ability of patients to receive 

insurance reimbursement for alternative treatment plans. Part of the reason why SPD is 

not yet recognized in the DSM-5 as an independent diagnostic entity is because 

researchers and clinicians have conflicting theories about whether the symptoms of SPD 

are a manifestation of other psychiatric conditions. For example, SOR may be a 
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behavioral manifestation of emotion dysregulation, which is common to many psychiatric 

disorders, or it may be a manifestation of ASD specifically, with SOR in nonautistic 

individuals being attributed to subthreshold autistic traits in those individuals 

(Schwarzlose et al., 2023). In fact, SOR was added to the diagnostic criteria for ASD in 

the DSM-5, but a common confound to this theory is that few SOR studies control for 

autistic traits or seek to understand the disorder outside of the context of ASD. Another 

theory suggests the opposite relationship between SOR and psychopathology, where 

neurological differences in sensory processing lead to the development of heightened 

anxiety and associated behaviors (Schwarzlose et al., 2023). Further research is needed to 

settle this debate and distinguish whether SOR is a contributor to, or an effect of, another 

psychiatric condition. 

Studying the structure and function of brain regions using non-invasive 

approaches could help to identify differences specific to SPD and thereby elucidate the 

relationship between sensory symptoms and any overlapping neuronal correlates with 

other psychopathologies. While such studies are limited, several have begun to 

demonstrate differences unique to individuals with SPD. Fiber tractography conducted 

via diffusion tensor imaging (DTI) has characterized differences in the structural 

connectivity of white matter tracts in children with SPD compared to those with ASD and 

typically developing controls. The first study to explore fiber tracts in children with SPD 

compared twenty-four neurotypical males with sixteen males who were identified as 

having SPD via the Sensory Profile caregiver report questionnaire (Dunn and Westman, 

1997) and who did not have an ASD diagnosis, all between the ages of 8 and 11 years old 

(Owen et al., 2013). There were no volumetric differences in gray or white matter 
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between groups, but the SPD group exhibited substantially decreased white matter 

microstructural integrity in primary sensory cerebral tracts and pathways involved in 

multisensory integration. These posterior cerebral tracts included the projection pathways 

and commissural tracts of the posterior corpus callosum, posterior corona radiata, and 

posterior thalamic radiations. Reductions to white matter connectivity may indicate 

impaired action potential propagation and lead to challenges with registering and 

integrating sensory input. Indeed, there were strong correlations between white matter 

connectivity and behavioral measures of auditory symptoms, multisensory integration, 

and inattention, indicating that the observed white matter pathology likely contributes to 

the behaviors commonly observed in SPD. A follow-up study compared fiber tracts 

between a similar cohort of neurotypical controls, individuals with SPD, and individuals 

with ASD (Chang et al., 2014). The SPD and ASD groups demonstrated reduced 

connectivity in the sensory processing regions of the dorsal visual stream and posterior 

corona radiata compared to controls, though the SPD group alone demonstrated reduced 

connectivity in the splenium of the corpus callosum. These studies demonstrate that while 

there is some overlap in the structural abnormalities that are present in SPD and ASD, 

there are also some differences that may serve to differentiate the two. 

Resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is 

another method that may serve to characterize aberrant connectivity specific to SPD. One 

study compared children between the ages of 9 and 12 years old who were typically 

developing with those who scored strongly for SOR as determined by an item on the 

Short-Social Responsiveness Scale (Schwarzlose et al., 2023). When controlling for 

autistic traits, the children with SOR experienced reduced functional connectivity within 
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and between the sensorimotor networks, with no differences within or between other 

solely-sensory networks. This coincides with the aforementioned finding that most 

children with SOR tend to have difficulties solely with tactile processing (Ben-Sasson et 

al., 2009). There were other aberrant connections between the sensorimotor and visual 

networks and non-sensory areas, but no significant differences emerged for the auditory 

network. Additional connectivity findings indicated differences in stimulus-driven 

attention, determining stimulus salience, and sensory prediction. Taken together, these 

structural and functional findings indicate that SOR may be explained by sensory-specific 

neuronal underpinnings rather than manifest as an extension of emotion dysregulation or 

autism-associated traits. 

Behavioral evidence further suggests that aberrant connections between sensory 

pathways and the amygdala may contribute to the presence of auditory SOR in adults 

with ASD. A strong connection to the amygdala, which is a brain region involved in the 

processing of negative emotions and fear-based memories, may explain the strong, 

negative emotional reactions and aversions to certain sounds in these individuals. Altered 

connectivity between the amygdala and auditory processing pathways is plausible 

considering that alterations in amygdala volume and functioning are already highly 

implicated in ASD (Andrews et al., 2022; Shen et al., 2022; Schumann et al., 2004; 

Schulkin et al., 2007). Specifically, behavioral studies propose that auditory SOR in 

adults with ASD may be due to a persistence of the non-classical auditory pathway 

(NCAP), which integrates direct connections to the amygdala (Møller et al., 2005; Møller 

and Rollins, 2002). The NCAP is the default hearing pathway in all children until age 

eight, at which point the classical pathway predominates. For context, the ascending 
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classical auditory pathway in adults relays information from the auditory nerve to the 

primary auditory cortex (AI) through the cochlear nuclei, the lateral lemniscus nuclei 

(LL), the central nucleus of the inferior colliculus (ICC), and the ventral portion of the 

medial geniculate body (MGB). The NCAP branches off the classical pathway at various 

levels and recruits separate neuronal populations. Neurons from the LL project to and 

receive input from the reticular formation, a region involved in awareness, detection, and 

attention to sensory stimulation. These returning inputs are forwarded from the LL to 

regions of the thalamus that are not involved with auditory sensory processing, the dorsal 

and medial MGB. These regions of the MGB bypass AI and project directly to secondary 

auditory cortices (AII) and auditory association cortices (AAC). The dorsal MGB and 

AAC also project to the lateral amygdala, which can only be reached in the classical 

pathway via a long chain of connections in the cerebral cortex and association cortices. 

Another unique feature of the NCAP is that it integrates ascending somatosensory 

information through a projection from the dorsal column nuclei to the exterior nucleus of 

the inferior colliculus (ICx), which relays information to the medial MGB (Lucker and 

Doman, 2015; Møller, 2006). This somatosensory connection is key to the proposed 

theory that the NCAP persists in adults with ASD. 

A study by Møller’s group demonstrated that neurotypical children will perceive a 

sound as becoming louder once stimulation to the vagus nerve along the wrist is applied 

(Møller and Rollins, 2002). Although the sound did not change in volume, the ascending 

somatosensory information from the wrist likely passed through the NCAP, impacted 

auditory processing, and altered the perception of the auditory stimulus. Neurotypical 

adults, however, did not perceive an increase in volume with tactile stimulation, 
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consistent with evidence that the NCAP is suppressed in these individuals. The authors 

repeated the experiment in adults with ASD and found that they were more likely to 

perceive an increase in loudness than control subjects (Møller et al., 2005). Given that 

somatosensory-auditory integration is established in the NCAP but not the classical 

pathway, the authors of this work suggest that the NCAP may persist in ASD (Musiek et 

al., 2011). If true, then this would suggest that direct connections to the amygdala may 

also persist in individuals with ASD who experience auditory SOR. Critically, there are 

non-classical ascending sensory pathways for visual and somatosensory input which 

engage a connection between the dorsal MGB and lateral amygdala, as well (Møller et 

al., 2005), indicating that aberrant amygdala connectivity may play a similar role in the 

other major sensory modalities of SOR. On the other hand, the posterior, multisensory 

area of the human superior temporal sulcus, or the superior temporal polysensory area in 

macaques, also integrates auditory and tactile stimulation, so it is possible that this or 

another multisensory area could underlie the observations seen by those authors 

(Beauchamp et al., 2008; Russo et al., 2010). Further research using neuroimaging 

methods like rs-fcMRI could follow up on these behavioral studies and investigate 

whether amygdala or NCAP connectivity is implicated in adults with SOR. 

In addition to characterizing the brain changes common to individuals with SPD, 

it is also important to understand the biological processes that shape these changes and 

the mechanisms that can initiate them. While more research is needed to fully understand 

the factors that contribute to the progression of SPD, there is a wide body of research 

describing factors that can increase the incidence of highly comorbid disorders such as 

ASD. The prenatal environment in particular has been shown to have a significant 
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influence on the development of ASD. A well-documented environmental risk factor for 

ASD phenotype susceptibility in animal studies is prenatal exposure to a Western-style 

diet (WSD; Gawlińska et al., 2021; Fernandes et al., 2021). Inflammation likely mediates 

this association, as consumption of a WSD increases inflammation, and inflammation has 

the ability to impact fetal brain circuit formation (Bolton and Bilbo, 2014). Thus, prenatal 

exposure to a WSD and associated inflammatory impacts may mediate the changes to 

structural and functional brain connectivity that are typically observed in individuals with 

SPD. 

 

1.2 Western-Style Diet Promotes Inflammation 

A WSD, distinguished by high sugar and saturated fat content, is highly prevalent 

in the US (Hohos and Skaznik-Wikiel, 2017), and prenatal WSD exposure is associated 

with an increased incidence of the component behaviors of ASD, ADHD, and other 

neurodevelopmental disorders (Gawlińska et al., 2021; Howard et al., 2011; Fernandes et 

al., 2021). A potential mediator for how prenatal WSD exposure might impact offspring 

neurodevelopment is through maternal inflammation, which is also an independent 

prenatal risk factor for these neurodevelopmental disorders (May-Benson et al., 2009; 

Bolton and Bilbo, 2014; Scola and Duong, 2017; Anderson and Maes, 2014). WSD 

consumption elevates maternal inflammation in two major ways: directly in response to 

the circulating nutritional components, and indirectly by increasing maternal adipose 

tissue. 

First, WSD consumption leads to an increased amount of fatty acids and sugars in 

the lumen of the small intestine. Intestinal epithelial cells (IECs) maintain a barrier 
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between the dietary components in the lumen and the lamina propria (LP), the layer of 

connective tissue that contains immune cells, blood vessels, and nerve fibers (Hunyady et 

al., 2000). One type of immune cell in the LP, the T helper 17 (Th17) cell, protects 

against diet-induced obesity and metabolic syndrome by regulating lipid intake (Kawano 

et al., 2022; Garidou et al., 2015; Hong et al., 2017). Th17 cells reduce lipid absorption 

by producing pro-inflammatory cytokine interleukin (IL)-17 which decreases IEC 

expression of the fatty acid transporter, CD36 (Kawano et al., 2022). Thus, Th17 cells 

ensure the overabundance of fatty acids from the WSD do not fully cross the IEC barrier 

and lead to metabolic disorders. However, the high presence of sugar from the WSD 

interferes with this protection by altering the intestinal microbiome. Sugars like sucrose 

expand the colonies of microbes like Faecalibaculum rodentium which in turn displace 

other members of the microbiota including segmented filamentous bacteria (SFB). SFB 

induces Th17 cell presence in the LP, so sugars indirectly reduce Th17 cell prevalence 

and lead to increased fatty acid absorption (Kawano et al., 2022). 

Additionally, dietary fats instigate an inflammatory response in the intestine 

through multiple pathways. Free fatty acids can directly increase the production of pro-

inflammatory cytokines such as IL-1β, IL-6, and tumor necrosis factor (TNF)-α in the 

intestine (Rohr et al., 2020; Kawano et al., 2016; Snodgrass et al., 2013; Duan et al., 

2018; Yoshida et al., 2001; Fujiyama et al., 2007). These cytokines further stimulate 

inflammation by enhancing intestinal permeability to endotoxins such as 

lipopolysaccharides (LPS). Dietary fat also increases intestinal permeability by reducing 

the expression of tight junction proteins in the IEC layer (Suzuki and Hara, 2010), 

decreasing levels of barrier-forming cytokines (Rohr et al., 2020), and altering the 
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microbiome in ways that promote barrier disruption (Rohr et al., 2020; Kim et al., 2012). 

Once these fatty acids, pro-inflammatory cytokines, and LPS toxins pass through the IEC 

barrier and enter circulation, a systemic, low-grade inflammatory state ensues (Duan et 

al., 2018; Konrad and Wueest, 2014). 

The second major way a WSD leads to inflammation is through increased adipose 

tissue. Circulating lipids accumulate in the adipose tissue and lead to tissue enlargement 

(hyperplasia) and increased adipocyte size (hypertrophy; Teng et al., 2014; Maury and 

Brichard, 2010; Jo et al., 2009; Ellulu et al., 2017; El Akoum et al., 2011; Funaki, 2009). 

This can promote hypoxia in adipose tissue and induce adipocyte cell death, macrophage 

infiltration, and increased expression of pro-inflammatory mediators including TNF-α, 

IL-6, and adipokines (Teng et al., 2014; Anghel and Wahli, 2007; Ellulu et al., 2017; 

Cinti et al., 2005; Karastergiou and Mohamed-Ali, 2010). Excess lipid accumulation 

additionally leads to ectopic lipid deposition in other tissues including the liver, pancreas, 

muscle, and blood vessels, which activates tissue leukocytes and further stimulates an 

inflammatory response (Duan et al., 2018; Lumeng and Saltiel, 2011). Thus, chronic 

consumption of a WSD can lead to a robust inflammatory state across many tissues and 

via a multitude of pathways. 

 

1.3 Developmental Programming  

During pregnancy, many of the fatty acids, sugars, and inflammatory mediators 

generated by the consumption of a WSD can impact the developing fetus by crossing 

through, or initiating a signaling cascade at, the placental barrier (Kabaran and Besler, 

2015; Quraishi and Illsley, 1999; Joshi et al., 2022; Michelsen et al., 2019; Bolton and 
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Bilbo, 2014; Bordeleau et al., 2021; Denizli et al., 2022; Schepanski et al., 2018), which 

additionally experiences increased inflammation and reduced blood flow (Frias et al., 

2011; Salati et al., 2019). Critically, this can lead to long-lasting outcomes through a 

phenomenon known as developmental programming. Developmental programming is the 

observation that the prenatal and early postnatal periods of rapid development are highly 

susceptible to epigenetic changes caused by environmental influences (Reynolds et al., 

2010; Kwon and Kim, 2017; Entringer et al., 2015; Sutton et al., 2016; Heim et al., 

2019). A prime example of this phenomenon occurred during the Dutch famine of 1944-

1945, where children who were exposed to prenatal malnutrition exhibited differential 

DNA methylation at various regions across the genome in whole blood samples when 

compared to unexposed siblings. These epigenetic modifications included increased 

methylation of INSR, a gene involved in growth and insulin signaling, which was 

associated with greater birth weights. Exposed individuals additionally experienced a 

higher BMI, an altered glucose response, and elevated LDL and cholesterol levels in 

adulthood (Tobi et al., 2014). Epigenetic changes, gene-environment interactions, and 

other physiological impacts during massive developmental events like cellular 

differentiation, neurogenesis, neural migration, myelination, microglial proliferation, and 

synaptic pruning can result in substantial or lifelong changes to health, behavior, and 

disease risk (Sidman and Rakic, 1973; Toga et al., 2006; Knuesel et al., 2014; Nayak et 

al., 2014; Bale et al., 2010; Kwon and Kim, 2017; DeCapo et al., 2019; Entringer et al., 

2015; Sutton et al., 2016). 

In particular, prenatal exposure to maternal inflammation programs for long-term 

increases in offspring inflammation (Bilbo and Schwarz, 2009; Romero et al., 2007; 
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Denizli et al., 2022); alters structural and functional connectivity (Rasmussen et al., 2019; 

Graham et al., 2018; Rudolph et al., 2018; Spann et al., 2018); impacts working memory, 

cognition, and negative affect (Rudolph et al., 2018; Rasmussen et al., 2018; Gustafsson 

et al., 2018; Graham et al., 2018); and is associated with an increased incidence of 

neurodevelopmental disorders including ASD (Careaga et al., 2017; Parker-Athill and 

Tan, 2010; Guma et al., 2019), ADHD (Dunn et al., 2019), and schizophrenia (Guma et 

al., 2019; Scola and Duong, 2017). 

The dietary components of a WSD may program offspring development in 

additive or alternative ways to the associated maternal inflammatory state. Like the 

vertical transfer of maternal immune cells and cytokines (Schepanski et al., 2018), fatty 

acids and glucose cross the placental barrier through diffusion and transport proteins to 

enter fetal circulation (DeCapo et al., 2019). Upon passing through the blood-brain 

barrier via similar active and passive transport pathways, these micronutrients impact 

neurodevelopment through impaired neurotransmission, reduced myelination, dendritic 

atrophy, and by further altering inflammatory cytokine levels in the brain (DeCapo et al., 

2019). 

Thus, the influx of maternal immune factors and dietary components to the 

developing fetus plays a major role in shaping the neurophysiological and behavioral 

outcomes of offspring. This indicates that factors from the maternal environment have 

significant effects on the brain. While it is a common misconception that the fetal blood-

brain barrier (BBB) is underdeveloped and highly permeable in utero, recent reviews 

highlight evidence that suggests it is a robust barrier as early as twelve weeks into 

gestation (Saunders et al., 2014; Goasdoué et al., 2017). As such, it is not that the fetal 
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brain is more vulnerable to the infiltration of peripheral factors so much as its 

neurodevelopmental processes are especially susceptible to being impacted by the factors 

that reach the brain through usual routes. Of the myriad ways that inflammation may 

impact neurodevelopment, a major mediator may involve the actions of microglia, the 

resident immune cell of the brain. 

 

1.4 Microglia Impact Neuronal Circuitry 

Microglia are critical to the health of central nervous system (CNS) tissue. 

Constantly surveying the environment with their motile processes, microglia are the first 

responders to infections and injuries (Pons and Rivest, 2020; Shemer et al., 2015; Li and 

Barres, 2018). Microglia launch an immune response by secreting cytokines, recruiting 

additional cell types, migrating to sites of damage, and phagocytosing debris and dying 

cells (Smith et al., 2012; Rock et al., 2004; Miller et al., 2019; Tremblay et al., 2011). 

They also contribute to regenerative processes after injury, such as by releasing growth 

factors to promote neurogenesis and remyelination (Pons and Rivest, 2020). During 

homeostatic conditions, microglia continue to monitor the environment; phagocytose 

debris, dying cells, and myelin; control adult neurogenesis; modulate neuronal activity; 

and promote the survival of oligodendrocyte progenitor cells, among other tasks (Li and 

Barres, 2018). Despite only accounting for 5% to 15% of all adult brain cells, microglia 

clearly have a far-reaching impact (Pons and Rivest, 2020; Thion et al., 2018; Aguzzi et 

al., 2013). Crucially, this impact begins during early prenatal development, when 

microglia expand their roles to include the direct and substantial shaping of neuronal 

circuitry. 
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Microglia develop early, with microglial colonization of the human cerebrum 

beginning around the fourth gestational week—preceding BBB development, 

neurogenesis, neuronal migration, and myelination in many areas—and becoming more 

established by the twenty-fourth week (Menassa and Gomez-Nicola, 2018). This 

foundation allows microglia to participate in shaping neurodevelopment from the early 

stages. 

Some of the neurodevelopmentally relevant processes that microglia engage in 

during the prenatal period include inducing neuronal cell death (Frade and Barde, 1998), 

limiting axonal outgrowth (Squarzoni et al., 2014), enhancing circuitry assembly by 

regulating the laminar positioning of cortical interneurons (Squarzoni et al., 2014), 

promoting axonal fasciculation to bind white matter tracts like the dorsal corpus callosum 

(Pont-Lezica et al., 2014), and fusing endothelial cells to increase vasculature network 

complexity (Li and Barres, 2018). During the perinatal and postnatal stages, microglia 

continue to remodel neural networks in pronounced ways: they regulate neurogenesis by 

phagocytosing neural precursor cells (Cunningham et al., 2013), and they conduct 

synaptic pruning. 

Synaptic pruning is a process by which select synapses are eliminated. During the 

course of development and learning, “weaker” synapses are typically removed to refine 

circuit formation (Peet et al., 2020; Goda and Davis, 2003). Recent studies suggest that 

these “weaker” synaptic terminals display an “eat-me” signal that prompts microglia to 

phagocytose the synaptic spines and boutons. This “eat-me” signal, phosphatidylserine 

(PS), is a phospholipid that usually faces the cytoplasm. Once it is exposed on the 

surface, it is recognized by microglia expressing triggering receptor expressed on 
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myeloid cells 2 (TREM2) or G protein-coupled receptor 56 (GPR56, S4 splicing isoform) 

receptors (Peet et al., 2020; Scott-Hewitt et al., 2020; Li et al., 2020) and destines the 

synaptic element for microglial engulfment. Disrupted synaptic pruning may lead to 

neurodevelopmental disorders, including ASD, schizophrenia, and epilepsy (Neniskyte 

and Gross, 2017), demonstrating that microglia play a strong role in determining 

behavioral outcomes. 

As a primary immune cell in the brain, microglia are necessarily sensitive to 

changes in the inflammatory state. Prenatal exposure to a WSD and the accompanying 

state of elevated inflammation stimulates an inflammatory response from the microglia in 

the fetal brain (Grayson et al., 2010). Immune activation may interfere with the ability of 

microglia to properly regulate the aforementioned neurodevelopmental processes, thereby 

leading to aberrant brain circuitry. Similarly, if inflammation persists into the early 

postnatal period, as is likely to occur due to the continued delivery of dietary components 

and maternal immune factors during lactation (Grant et al., 2011; DeCapo et al., 2019; 

Garofalo, 2010; Cabinian et al., 2016), then the microglial-dependent processes of neural 

precursor cell phagocytosis and synaptic pruning may also be impacted. Indeed, 

increased microglial activation and prevalence have been shown to increase neural 

precursor cell phagocytosis (Cunningham et al., 2013), and maternal immune activation 

in mice alters synaptic pruning and leads to social behavioral defects (Kim et al., 2017). 

Thus, microglia may serve as a potential mediator for the demonstrated relationship 

between prenatal exposure to WSD or inflammation and the aberrant brain connectivity 

implicated in neurodevelopmental disorders. 
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1.5 Resting-state Functional Connectivity MRI 

Resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is a 

method that non-invasively measures the strength of connections across the brain. Two 

spatially distinct brain regions may be structurally connected by a series of adjoining 

neurons, but it can be difficult to determine whether this physical connection is 

functionally relevant based solely on the structural properties of the connection, such as 

fiber density or number of synapses. As long as a structural connection exists between 

brain regions of interest, it is possible to measure the degree to which that pathway is 

utilized to coordinate brain activity between the areas using rs-fcMRI. 

This neuroimaging technique relies on the fact that the brain is always active, 

even when an individual is at rest. Brain regions emit spontaneous, low-frequency brain 

signals (Fox and Raichle, 2007; Raichle and Mintun, 2006; Logothetis and Wandell, 

2004). If neurons in a particular region depolarize and fire an action potential, the 

electrical signal will travel down the axons and reach the post-synaptic targets on other 

neurons. This signal could continue through multiple synapses and evoke a synchronous 

response in a distal brain region. Rs-fcMRI compares the brain signals of two regions; if 

the brain signals are highly correlated, then the same spontaneous signal was found in 

both regions. This would indicate that a strong, structural connection capable of carrying 

the signal likely exists between them, and it would demonstrate that the two areas have a 

strong functional connection, meaning that the pathway is utilized often to purposefully 

coordinate neural activity (Fox and Raichle, 2007; Zhang et al., 2019a; Fox et al., 2005; 

Graham et al., 2015; Gao et al., 2017; Gao et al., 2015). The stronger the correlation 

strength, measured as a correlation coefficient, the more functionally connected two areas 
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are. A group of regions with correlated activity are often evaluated together as a resting-

state brain network (Grayson and Fair, 2017). 

In order to derive a correlation coefficient between areas, structural and functional 

brain scans must first be acquired. The process of acquiring the images is as follows. In 

simplified terms, MRI measures water content. The brain is roughly 75% water on 

average (Zhang et al., 2018; Mitchell et al., 1945), but water content varies across 

different tissue structures within the brain. Measuring water content elicits contrast 

between these different tissue structures, and those contrasting measurements can be 

converted into an image. The measurements are based on the magnetic properties of 

water. Water molecules contain hydrogen atoms. Each hydrogen atom has a proton that 

spins on its axis, generating a small magnetic field. Outside of the scanner, these protons 

are randomly positioned, but inside the scanner, the protons align with the direction of the 

scanner’s magnetic field. A radio frequency excitation pulse deflects the protons out of 

alignment; when the pulse is over, the protons emit the radio frequency energy as they 

return to equilibrium. The emitted radio frequency signals undergo a Fourier transform 

and are converted to grayscale images. Changing the radiofrequency pulse sequences, 

such as by varying the time between successive pulses and the time between delivery of 

the pulse and receipt of the echo signal, can create different types of structural scans, 

such as T1-weighted and T2-weighted scans. 

Functional images are collected in the same way as structural scans, but the 

contrast due to the hydrogen in the water molecules is impacted by the blood oxygen 

level dependent (BOLD) signal. Deoxygenated blood introduces inhomogeneities in the 

magnetic field, so the ratio between oxygenated and deoxygenated blood affects the 
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signal (Ogawa et al., 1990; Chavhan et al., 2009; Attwell and Iadecola, 2002). Neural 

activity increases blood flow, thereby recruiting more oxygenated blood to the active 

brain area, which results in a change in the ratio and a weaker signal (Malonek et al., 

1997; Huettel et al., 2008). Thus, functional MRI scans measure changes in blood flow 

that are indicative of increased neural activity. 

Once all of the structural and functional scans have been collected, the images are 

processed through a pipeline that corrects distortions, aligns brain structures to a 

standard, labelled atlas, and assigns the correct brain region label back to the functional 

signal. This image processing procedure is adapted from the Human Connectome Project 

(HCP) pipeline (Glasser et al., 2013). The output of this pipeline is a file that contains the 

functional time series data, or BOLD signal, for each labelled brain region. After quality 

checking and motion scrubbing steps are taken, a correlation matrix, where the 

correlation in signal between every combination of two brain regions, can be computed 

from this file and used for analyses. 

Recent advances have made it possible to image non-human primates (NHPs) 

with rs-fcMRI in a similar manner as in humans (Ramirez, 2019; Miranda-Dominguez et 

al., 2014; Grayson et al., 2016; Robinson et al., 2014; Milham et al., 2018; Ramirez et al., 

2020; Xu et al., 2018; Xu et al., 2020; Xu et al., 2019). Adaptations to the HCP 

preprocessing pipeline in particular have allowed NHP images to be processed using 

consistent methodology while overcoming species-related issues. For example, 

differentiating between head and brain tissue was a challenge, as larger orbital, neck, 

cheek, and forehead tissue in NHPs was previously mistaken for brain tissue due to 

similar image intensities (Ramirez, 2019). Advancements to image collection strategies 
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have additionally improved the quality of the data that are collected. One improvement 

used in this dissertation is in regards to the 15-channel knee coil that was adapted for use 

in macaques to accommodate their smaller head size. Use of this coil resulted in a 

reduced signal-to-noise ratio (SNR), so four structural images were acquired and 

averaged to improve the SNR. A challenge that continues to face the field is the use of 

anesthesia in NHP imaging procedures. While anesthesia is necessary to reduce the 

occurrence of motion artifacts in the scans (Fair et al., 2013; Power et al., 2012), it has a 

dampening effect on the functional BOLD signal strength. However, despite this 

potential limitation in signal strength, studies have validated that NHPs reproduce the 

same major functional networks that emerge in humans, such as all areas of the default 

mode network and primary motor network, thereby establishing reliable functional 

similarity between species (Miranda-Dominguez et al., 2014; Vincent et al., 2007; Van 

Essen and Glasser, 2018). 

Being able to apply rs-fcMRI techniques to NHPs allows findings to be translated 

between species. This is achieved through the use of a cross-species brain map, 

specifically the Bezgin Regional Map parcellation, which can map the same labelled 

brain regions to human and macaque images based on aligned functional network 

topologies and cross-species landmarks (Bezgin et al., 2012; Robinson et al. 2014; Xu et 

al., 2020). Functional connectivity results in one species can now be directly compared to 

spatially-matched results in the other species. 

Additionally, having a shared methodology between the two species can help 

relate non-MR findings. For example, while there is a growing body of research on the 

functional connectivity profiles of children with neurodevelopmental disorders like SPD, 



21 
 

some experimental manipulations that are related to SPD or that would be useful for 

understanding its etiology are unethical to perform in humans. These include directing 

pregnant individuals to consume an experimentally controlled WSD, due to its known 

associations with adverse offspring outcomes, and performing invasive procedures on 

offspring brain tissue to examine neuroinflammation. Dietary manipulations and brain 

sectioning are accepted procedures to perform in animal models presently, though it is 

not possible to ascribe an official behavioral diagnosis to animals as can be done in 

humans. Consequently, combining results from invasive procedures in animals with 

verified human diagnoses through shared functional connectivity profiles can bridge this 

cross-species gap and relate WSD- and neuroinflammation-specific findings to disorders 

like SPD. 

 

1.6 Goals of the Dissertation 

The goal of this dissertation is to advance the field of SPD research by 

characterizing the impacts of a potential risk factor for this disorder, prenatal WSD 

exposure. This work will leverage the advantages of a NHP model to explore these 

impacts in the context of human findings across two research aims. The model system 

and studies are summarized in Figure 1.1. 

Study 1 explores the functional connectivity of areas that are contextually 

relevant to SPD. These areas include regions of interest in sensory and emotional 

processing networks; this selection derives from prior work in humans which 

demonstrate impacts to the functional connectivity of sensory areas in individuals with 

SOR (Schwarzlose et al., 2023) and suggest that non-classical sensory processing 
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pathways, which include direct connections to the amygdala, may be active in individuals 

with ASD (Møller et al., 2005; Møller and Rollins, 2002; Musiek et al., 2011). Functional 

connectivity will be examined in NHP offspring that were exposed to a WSD during the 

full duration of the prenatal period through weaning, hereafter referred to as the perinatal 

period, at five distinct developmental time points ranging from infancy through early 

adolescence. Functional connectivity research for SPD is often conducted in older 

children; examining functional connectivity across development will reveal the trajectory 

of changing connectivity and bridge the gap between birth and the more commonly 

studied time points. This study will use a machine learning model to determine whether 

differences in connectivity exist at each time point. For the ages at which a difference is 

found, these differences will be characterized in more depth to elucidate which 

connections are responsible for the greatest differences between diet groups. 

Furthermore, the impacts of two alternative contributors to altered neural circuitry, 

maternal adiposity and postnatal neuroinflammation, will be tested at the latest 

developmental time point to explore multiple predictors of long-term functional 

connectivity. To complement the NHP findings, the analysis will be repeated in a cohort 

of human children with SOR using the identical set of sensory and emotional connections 

labelled by the cross-species Bezgin parcellation. Comparing connectivity findings across 

species will determine whether perinatal WSD exposure is implicated in the development 

of the sensory connectivity profile characteristic of SPD. 

Study 2 investigates a potential underlying mechanism of altered neural circuitry: 

postnatal neuroinflammation. Prior work in the NHP model used in this dissertation 

demonstrated an association between prenatal WSD exposure and elevated markers of 
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neuroinflammation in utero. These included increased levels of pro-inflammatory 

cytokines and increased microglial staining in the fetal hypothalamus (Grayson et al., 

2010). Prenatal inflammation and microglial activation are associated with disruptions in 

neuronal proliferation, migration, and other aspects of circuit formation that may 

contribute to the progression of neurodevelopmental disorders (Vasistha et al., 2020; 

Dong et al., 2020; Denizli et al., 2022). However, postnatal neuroinflammation may 

continue to impact circuit formation by disrupting the microglia-mediated processes of 

synaptic pruning and the phagocytosis of neural precursor cells. Given that prenatal 

exposure to inflammation is associated with altered postnatal immune states in offspring 

(Denizli et al., 2022), and given that an estimated 69% - 100% of children with ASD 

experience heightened levels of neuroinflammation (Kern et al., 2016), it is likely that the 

WSD-induced microglial response demonstrated in the fetal study will persist postnatally 

and continue to disrupt neurodevelopmental processes. To explore this possibility, Study 

2 probed for signs of postnatal neuroinflammation in one-year-old offspring who were 

exposed to a perinatal WSD. Neuroinflammation was assessed by counting the number of 

microglia and infiltrating macrophages present in the arcuate nucleus (ARC) of the 

hypothalamus, which is the same region that demonstrated increased microglial staining 

in the fetal study. ImageJ software (Fiji; Schindelin et al., 2012) was used to develop an 

automated procedure that would process the immunofluorescent images and measure the 

number of microglia and macrophage cells per image. A novel method of optimizing the 

parameters of the automated procedure was developed to ensure accurate cell counts 

when compared to a trained observer. A mixed effects model compared cell counts 

between diet groups and assessed the distribution of microglia and macrophages across 
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the rostral-caudal axis of the ARC; this is the first study to characterize the distribution in 

Japanese macaques and in juvenile NHPs more broadly. A further aim of this study tested 

whether maternal cytokine concentrations taken during the third trimester could predict 

offspring cell count. Results from these analyses elucidate the trajectory of 

neuroinflammation in response to perinatal WSD exposure and highlight the period when 

neural circuitry may be most affected by WSD-associated neuroinflammation. 

These two studies characterize distinct facets of perinatal WSD exposure, but 

taken together, they can inform how brain connectivity relevant to SPD is impacted 

across development. By placing evidence from a highly controlled NHP model into the 

context of human findings, this dissertation advances insights into the etiology of SPD 

and reaffirms the powerful influence the prenatal environment can have on 

neurodevelopmental outcomes. 
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Figure 1.1. Summary of model system and dissertation studies. 

This dissertation uses a non-human primate model of WSD-induced obesity to explore 

longitudinal impacts to functional connectivity and neuroinflammation in offspring. 

Consumption of a WSD elevates circulating levels of sugars and fatty acids, leading to 

increased adiposity and inflammation in the dams. The dietary components and 

inflammatory factors cross or act upon the placenta, which experiences increased 

inflammation and reduced blood flow, and enter or act upon the central nervous system 

of the developing fetus. Increased fetal neuroinflammation activates microglial cells and 

disrupts neural circuit formation through altered microglia-mediated processes such as 
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increased neural precursor cell phagocytosis. As WSD consumption additionally impacts 

breast milk composition, WSD exposure continues postnatally in offspring until weaning 

occurs at 7 months of age. This dissertation examines postnatal development at 4, 6, 11, 

21, and 36 months of age across two studies. Study 1 explores the functional connectivity 

of sensory systems and the amygdala to characterize the longitudinal impacts of perinatal 

WSD exposure on connections relevant to SPD. Study 2 examines microglia prevalence 

in the arcuate nucleus of the hypothalamus at the one year time point to assess whether 

neuroinflammation persists and serves as a potential mediator of altered connectivity 

findings. Full-color brain and microglia icons for Studies 1 and 2 indicate an analysis that 

yielded a statistically significant finding; grayscale brains for Study 1 indicate non-

significant results at those time points (6, 11, 21, and 36 months). Red up arrows indicate 

an increased effect; the blue down arrow indicates a reduced effect. 
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CHAPTER 2.  PERINATAL WESTERN-STYLE DIET EXPOSURE 

ASSOCIATED WITH ALTERED SENSORY FUNCTIONAL 

CONNECTIVITY IN INFANT JAPANESE MACAQUES 

2.1. Abstract 

Sensory processing disorder (SPD) is a neurological condition characterized by 

impaired sensory processing, but its causes and neural correlates remain poorly 

understood. The maternal environment is strongly implicated in the progression of 

neurodevelopmental disorders, and one environmental factor that is hypothesized to 

promote the development of SPD is prenatal Western-style diet (WSD) exposure. This 

study examined the effects of perinatal WSD exposure on functional connectivity in 

macaques to characterize impacts to the proposed neural correlates of SPD. Impacts were 

examined across development to explore longitudinal changes in the connectivity of 

sensory and emotional processing areas. The functional connectivity of children with 

sensory over-responsivity (SOR), a subtype of SPD, was additionally examined to allow 

for findings to be compared across species; this approach investigated whether perinatal 

WSD exposure could be associated with the functional connectivity patterns of SOR. A 

machine learning model was used to predict perinatal diet group or SOR based on 

differences in functional connectivity. Differences in the connectivity of sensory 

networks and the amygdala were only found in macaques at the earliest time point tested, 

4 months of age. Intra-somatomotor, visual-auditory, somatomotor-auditory, 

somatomotor-visual, and intra-visual network connections demonstrated the greatest 

differences between perinatal diet groups at 4 months of age, with impacts to the 
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connectivity of the primary motor cortex being the most pronounced. While the same set 

of sensory and amygdala connections were unable to predict SOR in children, this result 

is consistent with the poor model performance in macaques at the same developmental 

time point. These findings provide insight into the longitudinal impacts to functional 

connectivity in the context of SPD, and they suggest that impacts from perinatal WSD 

exposure are transiently present during early infancy. 

 

2.2. Introduction 

Sensory processing disorders (SPD) impact roughly 14% of children in the US 

(Ahn et al., 2004), yet the etiology of this condition remains poorly understood. Although 

many children with SPD do not have a comorbid psychiatric diagnosis, approximately 

95% of children with autism spectrum disorder (ASD) report a SPD (Tomchek and Dunn, 

2007; Crane et al., 2009; Leekam et al., 2007), indicating that there may be some overlap 

between the conditions that lead to ASD and those that lead to SPD. Many genetic and 

environmental factors have been linked to the development of ASD, though a particularly 

strong predictor involves the state of the maternal environment during gestation. Three 

highly correlated maternal factors have been shown to increase the incidence of ASD 

behaviors in offspring: the consumption of a Western-style diet (WSD), obesity, and an 

elevated inflammatory state (Gawlińska et al., 2021; Fernandes et al., 2021; Howard et 

al., 2011; DeCapo et al., 2019; Careaga et al., 2017; Parker-Athill and Tan, 2010; Guma 

et al., 2019). Animal studies commonly use a WSD to induce obesity and the associated 

inflammatory state in dams in order to study impacts to offspring neurodevelopment that 

are characteristic of the behaviors and phenotypes of many neurodevelopmental 
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disorders, including ASD (Sullivan et al., 2010; Peleg-Raibstein et al., 2012). However, 

more research is needed to determine whether prenatal WSD exposure is associated with 

SPD symptoms, as well. 

SPD is a broad umbrella for conditions that affect sensory processing, including 

sensory modulation disorder (SMD), sensory discrimination disorder (SDD), and 

sensory-based motor disorder (SBMD; Mulligan et al., 2021; Miller et al., 2007). An 

important first step to understanding how these behaviors arise is to identify which areas 

of the brain may have altered functioning. A handful of studies to date have explored 

neural connectivity at the structural and functional level. A diffusion tensor imaging 

(DTI) study demonstrated substantially decreased white matter microstructural integrity 

in primary sensory cerebral tracts and pathways involved in multisensory integration 

(Owen et al., 2013). Another study identified several networks that had altered functional 

connectivity in children with sensory over-responsivity (SOR), a subtype of SPD, 

between the ages of 9 and 12 years old (Schwarzlose et al., 2023). These areas included 

sensorimotor and visual networks, as well as connections to non-sensory areas including 

the hippocampus and amygdala, among others. A behavioral study by Møller’s group 

(2005) further suggested that aberrant connections from sensory processing pathways to 

the amygdala may be implicated in individuals with ASD, potentially explaining the 

negative emotions that are part of SOR (Møller et al., 2005). These findings illustrate that 

sensory and amygdala connectivity may be altered in children with SPD, but it is still 

unclear what prenatal factors may increase the likelihood of these outcomes. 

Additionally, these limited studies have only revealed differences at a few ages around 

the preadolescent period. A comprehensive exploration of connectivity changes across 



30 
 

development could help identify markers for early detection of SPD and contribute to the 

understanding of how brain networks are remodeled over time. 

The present study bridges these gaps by comparing longitudinal functional 

connectivity findings from non-human primates (NHPs) exposed to a perinatal WSD to 

humans with SOR. A set of connections between the sensory networks and the amygdala 

were selected to probe for differences specifically in the areas that are hypothesized to be 

involved in SPD and SOR. Differences in connectivity trained a machine learning model 

to classify NHP subjects by perinatal diet group at the distinct ages of 4, 6, 11, 21, and 36 

months of age. The model successfully classified subjects at 4 months of age, so the 

connections that contributed the most to accurate model prediction were evaluated to 

identify the brain connections that were most impacted by perinatal WSD exposure. 

Additionally, differences in connectivity at the latest time point in NHPs, 36 months of 

age, were used to predict two other measures. First, connectivity was used to predict 

maternal adiposity in an effort to determine whether increased adiposity would have a 

separate impact from perinatal WSD exposure. Second, connectivity was used to predict 

a measure of neuroinflammation in offspring: the number of microglia and macrophages 

within the amygdala at the same time point. Microglia actively shape neural circuitry 

through processes like synaptic pruning. This analysis therefore probed for an association 

between altered connectivity and a potential mediator of altered connectivity within 

individuals. Neither of these measures were successfully predicted from connectivity, 

indicating no long-term impacts associated with maternal adiposity or postnatal 

neuroinflammation. Finally, a translational brain map was applied to the human 

functional connectivity data to allow for direct comparisons between species. The 
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machine learning model used the same set of sensory and amygdala connections to 

predict a measure of SOR in 9- and 10-year-old children. Like the findings from the 

NHPs at the same developmental age (36 months), this model was unable to successfully 

classify the children. These findings provide a longitudinal characterization of the 

connectivity of sensory and emotional processing areas across species and indicate that 

impacts are transiently present during early infancy. 

 

2.3. Materials and Methods 

2.3.1. Animal Model 

A well-established NHP model of WSD-induced obesity was chosen for this 

study (Sullivan et al., 2010; Sullivan et al., 2012). In this model, dams were fed either a 

WSD or a control diet (CTR). A larger proportion of dams on the WSD developed 

obesity, defined as greater than 19.6% body fat pre-pregnancy, though some dams on the 

CTR diet spontaneously developed obesity as well (McCurdy et al., 2009); as these 

macaques demonstrate the full range of human metabolism, this natural variation in 

weight gain is consistent with what is observed in humans (Thompson et al., 2018). 

Importantly, the offspring of dams that consumed a WSD have demonstrated the 

component behaviors of multiple neurodevelopmental disorders, including ASD. These 

behaviors include increased anxiety and aggression (Sullivan et al., 2010; Thompson et 

al., 2017), decreased social engagement, and increased idiosyncratic behaviors consisting 

of abnormal movement, abnormal posture, increased head tossing, and repetitive 

stereotypy (Mitchell et al., 2022b). 
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Additional maternal and offspring phenotypes from this model, including 

inflammatory profiles and neuronal impacts, have been characterized in earlier reports 

(Dunn et al., 2022; Mitchell et al., 2022b; Sullivan et al., 2010; Grayson et al., 2010; 

Ramirez et al., 2020; Ramirez et al., 2021; Thompson et al., 2018; McCurdy et al., 2009; 

Sullivan et al., 2017; Comstock et al., 2012). 

The MRI scans were collected and made available by the Sullivan lab. Image 

processing was performed in conjunction with other members of the Developmental 

Cognition and Neuroimaging (DCAN) Labs. All animal procedures were in accordance 

with National Institutes of Health guidelines on the ethical use of animals and were 

approved by the Oregon National Primate Research Center (ONPRC) Institutional 

Animal Care and Use Committee. 

 

2.3.1.1 Adult Female Macaques 

Adult Japanese macaques (Macaca fuscata) were housed in indoor/outdoor pens 

containing 4–12 individuals each (male/female group ratio of 1-2/3-10). Animals were 

given ad libitum access to food and water. Breeding groups were assigned to either the 

experimental control (CTR) diet or Western-style diet (WSD) and were provided with 

fruits and vegetables for daily nutritional enrichment. Experimental diet compositions are 

described below. Females consumed their assigned experimental diet for at least fourteen 

months prior to offspring birth. Females were sedated two to three times during 

pregnancy for fetal dating and third trimester measures. Pregnant females gave birth 

naturally in their social groups. Maternal age at offspring birth (mean + SEM) was 10.81 

+ 0.55 years for the CTR group and 8.52 + 0.41 years for the WSD group in the present 
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study. Maternal pre-pregnancy weight (mean + SEM) was 9.92 + 0.32 kg for the CTR 

group and 9.96 + 0.37 kg for the WSD group in the present study, with one missing value 

for one of the WSD offspring. 

 

2.3.1.2 Macaque Juvenile Offspring 

The juvenile subjects in the present study were born over the course of seven 

consecutive years, with no offspring born during the third year included for analysis. 

While offspring began consuming the maternal diet at 4 months of age, it became their 

primary food source by 6 months. This continued exposure to the same diet from 

gestation through lactation is therefore considered to be a perinatal rather than a purely 

prenatal dietary exposure. At a mean age of 7.22 ± 0.32 months for the CTR group and 

7.50 + 0.20 months for the WSD group (mean + SEM; 7 and 3 missing values for the 

CTR and WSD groups, respectively), the offspring were weaned and relocated to group-

housing with 6-10 similarly aged juveniles and 1-2 unrelated adult females. While the 

majority of juvenile subjects consumed the CTR diet after weaning, 14 subjects 

consumed a post-weaning WSD. This study included maternal siblings, (43 of the 69 

included subjects had at least one sibling in the study, with all 43 born from a total of 17 

dams), though paternal identification was unknown. 

A total of 81 juveniles were recruited and scanned for this study. Twelve subjects 

were excluded from analysis due to a variety of reasons, including medical issues, poor 

quality scans at every available age point, and a change in maternal diet partway through 

gestation. Of the 69 juveniles who remained in the study, 48 of them contributed 

acceptable-quality scans at more than one time point. Of these, 37 had quality scans at 
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three or more time points. This study sought to include a roughly equal number of 

subjects from each experimental perinatal diet group and balance for offspring sex (N = 

69; Perinatal CTR n = 33; Female n = 34). However, to increase the sample size, this 

study included offspring who consumed a post-weaning WSD (n = 14, Female n = 8) and 

combined scans that were collected under two separate acquisition parameter settings 

(Table 2.1). These two factors were not accounted for as covariates in the classification 

analyses of this study. While this presents a limitation, prior work in this model has 

established that post-weaning diet group does not have a significant effect on amygdala 

volume growth across the time points included in this study (Ramirez et al., 2020), and 

the scan acquisition protocol does not have a significant effect on mean cortical thickness 

across these same time points (Ramirez et al., 2021). 

 

2.3.1.3 Macaque Dietary Information 

Regarding energy sources, the CTR diet (Monkey Diet no. 5000, Purina Mills) 

provided approximately 14.7% of calories from fat, 58.5% from carbohydrates, and 

26.8% from protein. The WSD (TAD Primate Diet no. 5L0P, Test Diet, Purina Mills) 

provided approximately 36.6% of calories from fat, 45.0% from carbohydrates, and 

18.4% from protein. Representative of a typical Western-style diet, the chemical 

composition of the experimental WSD contained a larger proportion of fats and sugars 

compared to the CTR diet. Saturated fat comprised approximately 0.9% of the CTR diet 

formulation and 5.4% of the WSD. Monounsaturated and polyunsaturated fats comprised 

4.4% of the CTR diet and 9.0% of the WSD. Sugars (primarily fructose and sucrose) 

comprised approximately 3.1% of the CTR diet and 18.9% of the WSD. The animals that 
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were fed the WSD were also provided with calorically dense treats (35.7% of calories 

from fat, 56.2% from carbohydrates, and 8.1% from protein) once per day. Macronutrient 

composition was obtained from diet specification sheets and is previously described 

(Thompson et al., 2017). 

 

2.3.2. Macaque Subject Demographics 

MRI scans were acquired in offspring at roughly 4, 6, 11, 21, and 36 months of 

age. The demographic composition of each age group is summarized in Table 2.1. A total 

of 39 offspring, aged 4.39 + 0.03 months (mean + SEM), contributed scans for the 4-

month age group (Female n = 19; Perinatal CTR n = 22; Post-weaning WSD n = 2; Scan 

Protocol #1 n = 21). A total of 25 offspring, aged 6.59 + 0.04 months, contributed scans 

for the 6-month age group (Female n = 12; Perinatal CTR n = 16; Post-weaning WSD n = 

2; Scan Protocol #1 n = 9). A total of 37 offspring, aged 11.06 + 0.03 months, contributed 

scans for the 11-month age group (Female n = 17; Perinatal CTR n = 19; Post-weaning 

WSD n = 8; Scan Protocol #1 n = 19). A total of 32 offspring, aged 21.13 + 0.04 months, 

contributed scans for the 21-month age group (Female n = 14; Perinatal CTR n = 13; 

Post-weaning WSD n = 7; Scan Protocol #1 n = 21). A total of 35 offspring, aged 36.56 + 

0.07 months, contributed scans for the 36-month age group (Female n = 19; Perinatal 

CTR n = 14; Post-weaning WSD n = 10; Scan Protocol #1 n = 24).  
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Table 2.1. Demographic composition of macaque subjects at each age time point. 

Subjects in 4-month Group 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 3 0 9 0 3 0 5 0 
Female 7 0 2 0 7 2 1 0 
Total 39 

Subjects in 6-month Group 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 1 0 5 0 3 0 4 0 
Female 3 0 0 0 7 2 0 0 
Total 25 

Subjects in 11-month Group 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 1 1 6 2 3 0 7 0 
Female 4 2 1 2 7 1 0 0 
Total 37 

Subjects in 21-month Group 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 1 1 6 2 2 0 6 0 
Female 4 2 3 2 3 0 0 0 
Total 32 

Subjects in 36-month Group 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 2 3 5 1 1 0 4 0 
Female 2 2 5 4 4 0 2 0 
Total 35 
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2.3.3. Macaque MRI Acquisition 

The MRI acquisition protocols used in this dissertation have been previously 

described in prior publications from the research group (Ramirez et al., 2020; Ramirez et 

al., 2021; Ramirez, 2019).  

Imaging was obtained in a single session for each macaque subject at each time 

point. MRI scans were acquired on a Siemens TIM Trio 3.0 Tesla scanner. A 15-channel 

knee coil was modified to scan the heads of the macaque offspring. Ketamine (10-15 

mg/kg) was administered to allow for intubation, and macaques were maintained on 

<1.5% isoflurane anesthesia for the duration of the scan. Macaques were continuously 

monitored for irregularities in heart rate, respiration, and peripheral oxygen saturation. 

The scan acquisition protocol was updated partway through the study to optimize 

future outputs. Importantly, the acquisition parameters for the resting-state functional 

scan were not changed. The acquisition parameters for protocols #1 and #2 are as 

follows. Both protocols acquired a total of four T1-weighted (T1w) anatomical images 

(Scan Protocol #1: TE= 3.86 ms, TR= 2500 ms, TI= 1100 ms, flip angle= 12°, 0.5 mm 

isotropic voxel; Scan Protocol #2: TE= 3.33 ms, TR= 2600 ms, TI=900 ms, flip angle= 

8°, 0.5 mm isotropic voxel), which were averaged to improve the signal-to-noise ratio. 

Both protocols acquired one T2-weighted (T2w) anatomical image (Scan Protocol #1: 

TE= 95 ms, TR= 10240 ms, flip angle=150°, 0.5 mm isotropic voxel; Scan Protocol #2: 

TE= 407 ms, TR= 3200 ms, 0.5 mm isotropic voxel). Both protocols acquired a 30-

minute resting-state blood oxygen level dependent (BOLD) scan using the same 

acquisition settings. This scan was acquired 45 minutes after the initial ketamine injection 

and utilized a gradient echoplanar imaging (EPI) sequence (TR = 2070 ms, TE = 25 ms, 
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FA = 90°, 1.5 mm3 voxels, 32 slices with interleaved acquisition, FOV = 96 × 96 mm). 

For distortion correction purposes, Scan Protocol #1 acquired field map images (TR = 

450 ms, TE = 5.19 ms/7.65 ms, FA = 60°, 1.25 × 1.25 × 2 mm3 voxels, 40 slices, FOV = 

120 × 120 mm), and Scan Protocol #2 acquired a reverse EPI sequence. 

 

2.3.4. Macaque MRI Preprocessing 

MRI preprocessing steps are detailed in prior publications from the research 

group (Ramirez et al., 2020; Ramirez, 2019; Xu et al., 2018; Xu et al., 2019) and follow 

the standards for human data and the Adolescent Brain Cognitive Development (ABCD) 

project (Ramirez, 2019). Briefly, preprocessing was accomplished by modifying the 

Human Connectome Project (HCP) minimal preprocessing pipeline (Glasser et al., 2013) 

for use in macaques. Study-specific templates were created from averaged T1w images 

for each age group (Scott et al., 2016). During structural preprocessing, the age-matched 

study-specific template was registered and warped to each subject’s averaged T1w image 

using tools from the FMRIB Software Library (FSL) (Smith et al., 2004; Woolrich et al., 

2009; Jenkinson et al., 2012; Andersson et al., 2003) and Advanced Normalization Tools 

(ANTs) packages (version 1.9; ANTs, 2022). White and gray matter structures, as well as 

subcortical regions, were segmented after applying the affine transformations and warps 

from this registration to the template mask. Segmented and masked structural images 

were then processed through modified versions of the PreFreeSurfer, FreeSurfer, and 

PostFreeSurfer stages of the modified HCP pipeline using the FreeSurfer image analysis 

suite (FreeSurfer, 2022; Dale et al., 1999; Fischl et al., 1999). Subjects were aligned to 

the Yerkes19 macaque surface-based atlas (Donahue et al., 2016) for normalized 
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registrations. Functional preprocessing was accomplished in the fMRIVolume and 

fMRISurface stages of the modified HCP pipeline. These stages included distortion 

corrections, motion correction, alignments of functional EPI to structural T1w data, 

resampling, smoothing, and mapping the volumetric data to the standard Connectivity 

Informatics Technology Initiative (CIFTI) grayordinates space. This grayordinates space 

consisted of the 56,522 surface anchor points of the Yerkes19 standard space. The final 

output from this pipeline was a single matrix that contained the cortical surface timeseries 

and subcortical volume timeseries. 

After the MRI data had been processed through the pipeline, trained raters 

performed a rigorous quality control assessment on the outputs. Raters evaluated the data 

on a scale of 1 to 3, with 1 indicating good quality and 3 indicating poor quality. A score 

of 2 required a second trained rater to assess the image; the two raters conferred and 

agreed on whether to include or exclude the subject. Artifacts that merited a subject for 

exclusion from the study included poor delineations of white and gray matter, brain 

warping, excessive blurriness, ringing artifacts from motion in the scanner, and in the 

case of functional data, poor registration to the T1w image or signal dropout over a large 

area. 

Motion censoring was conducted by measuring the total framewise displacement 

(FD), calculated as the sum of the absolute values of the backward-difference for all 

translation and rotation measures, across a 30 mm brain radius. Frames with FD > 0.3 

mm were excluded, as well as any isolated frames that came from a group of fewer than 

five contiguous frames below this threshold, and exactly 20 minutes of data was extracted 

from the remainder by selecting frames for inclusion at random. Prior studies have 
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validated this motion correction protocol (Fair et al., 2013; Power et al., 2012; Power et 

al., 2014). 

Once the functional timeseries data had been quality checked and motion 

censored, the Bezgin Regional Map parcellation (Bezgin et al., 2012) was applied to 

assign labelled, monkey-specific, brain regions of interest (ROIs) to the data. This 

yielded 82 ROIs belonging to seven functional networks defined in monkeys (Grayson et 

al., 2016). The correlation between the timeseries signals for every pair of ROIs was 

calculated using the Pearson product-moment coefficient and saved as a functional 

connectivity matrix of correlation coefficients (Feczko et al., 2018). The subset of 

correlation coefficients selected for this analysis consisted exclusively of the correlation 

coefficients for any pair of ROIs that belonged to either the Auditory, Somatomotor, or 

Visual networks; the correlation coefficients for any pair that included an ROI from the 

aforementioned networks and one of the two ROIs that represented the amygdala (one for 

each brain hemisphere); and the single correlation coefficient denoting the connectivity 

strength between the pair of amygdala ROIs. In total, this resulted in correlation 

coefficients for 378 functional connections within and between all of the sensory 

networks and the amygdala. Specifically, this included connections within and between 

the 4 ROIs of the Auditory network, the 14 ROIs of the Somatomotor network, the 8 

ROIs of the Visual network, and the 2 ROIs from the Limbic network that denote the left- 

and right-hemisphere amygdala. 
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2.3.5. Statistical Analysis of Macaque Data 

The Functional Random Forest (FRF; Github, 2022b) is a machine learning 

algorithm that constructs a series of decision trees to predict an outcome. For this 

classification analysis, the input predictors were the 378 correlation coefficients for the 

set of sensory and amygdala connections, and the outcome measure was the perinatal diet 

group of the juvenile subject. A separate FRF model was created for each age group. 

Each model constructed a series of 1000 decision trees. Each tree trained on a random 

selection of 90% of the data and tested classification prediction on the remaining 10% of 

the data. During training, a bootstrapped dataset was randomly selected from a subset of 

the training data for each tree. A random subset of input features was evaluated at each 

node where a tree would split; the feature that provided the greatest reduction in 

classification error was retained in the constructed decision tree. The maximum variable 

importance, or greatest amount of error reduction, provided by each of the 378 features 

across model repetitions was exported to identify the features that contributed the most to 

perinatal diet group distinction. During testing, a random subset of testing data was used 

to evaluate the accuracy of the model. This was accomplished through 6 repetitions of 5-

fold cross-validation. The perinatal diet group for each test subject was predicted by each 

of the 1000 trees in the model, and the final classification was determined by majority 

vote from the 1000 trees. In addition to predicting correctly-labelled data, the model was 

also used to predict null data, wherein the diet group label had been randomly permuted 

across subjects. Distributions of overall accuracy, specificity (accurate identification of 

true negatives when classifying perinatal CTR subjects), and sensitivity (accurate 

identification of true positives when classifying perinatal WSD subjects) were 
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constructed from the predictions of the observed and null models. A Wilcoxon rank sum 

test was used to evaluate the significance of these three performance metrics. If all three 

metrics were significantly better for the observed models than for the null models, then 

the FRF model was considered valid for predicting perinatal diet group from the set of 

connectivity features. Further details regarding the implementation of the FRF have been 

previously described (Feczko et al., 2018; Cordova et al., 2020; Feczko et al., 2019).  

The performance metrics were tested separately for each age-specific FRF model. 

If the age-specific model was deemed valid, then the variable importance of the features 

were evaluated to identify the connections that drove accurate model prediction. To 

assess how these features differed between groups, boxplots were generated to inform 

visual trends; however, further statistical testing for significant differences in the feature 

distributions was not performed as the features were already identified by a statistically 

significant analytical model. The most important features were further grouped by the 

networks to which the component ROIs belonged; intra- and inter-network representation 

was evaluated to characterize the types of connections that were most important to model 

performance. 

 

2.3.6. Human Participants and MRI Processing 

Data were obtained from the ABCD Study at the baseline time point (year 1 arm 

1) when participants were between the ages of 9 and 10 years old (108-131 months). The 

ABCD Study has been described previously (Garavan et al., 2018; Heeringa and 

Berglund, 2020; Collection 3165, 2022a). Participants were included in the present study 

if they met the following criteria: 1) MRI scans passed quality control; 2) functional data 
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passed motion quality thresholds; 3) the number of frames in the motion and CIFTI files 

matched; 4) the participant had an SOR score. This yielded a total of 6,806 participants. 

Details on these four criteria follow. 

1) MRI scans were collected at 21 sites across the United States and uploaded to 

the National Institute of Mental Health (NIMH) Data Archive (NDA; NIMH Data 

Archive, 2022). Imaging data from this shared repository was included in the present 

study only if it had passed the quality control standards set by the ABCD Data Analytics 

and Informatics Core (DAIC), also known as the Data Analysis, Informatics & Resource 

Center (DAIRC; Collection 3165, 2022a; Saragosa-Harris et al., 2022; Hagler et al., 

2019; ABCD Study, 2022). Imaging data were processed using a modified version of the 

HCP Pipeline by the Developmental Cognition and Neuroimaging (DCAN) Labs 

(Collection 3165, 2022b; Sturgeon et al., 2022). The Bezgin Regional Map parcellation 

(Bezgin et al., 2012), which identifies functional network parcellations in macaques, was 

deformed and registered into human space using a previously described method of joint-

embedding to align cortical surfaces across species (Ramirez, 2019; Xu et al., 2020). This 

human-aligned Bezgin parcellation was applied to the functional outputs to label the 

human brain in the same way as the macaque brain and allow for cross-species ROI-

based comparisons. 

2) Motion censoring was performed in the same way as described for the macaque 

imaging data. Frames with FD > 0.2 mm were excluded, as well as the first five frames 

and any isolated frames that came from a group of fewer than five contiguous frames 

below this threshold. Exactly 8 minutes of data that passed this motion threshold was 

extracted. Participants with fewer than 8 minutes of motion-censored data were excluded. 
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3) The Brain Imaging Connectivity Extraction Program Solution (BICEPS), a 

MATLAB-based tool (MATLAB, 2022) developed by the DCAN Labs, was used to 

perform motion censoring (Github, 2022a; GUI_environments, 2022). After motion 

censoring, the software extracted the correct number of frames and created a connectivity 

matrix, or a file that recorded the correlation between the time series signals for every 

pair of ROIs identified by the Bezgin parcellation. During this process, the number of 

frames found in the motion numbers file was compared to the number of frames found in 

the CIFTI parcellated time series file. A mismatch in the number of frames could lead to 

the inclusion of frames that did not pass the motion quality threshold. Three subjects 

were excluded due to a mismatched number of frames. 

4) The 11-item Short-Social Responsiveness Scale was administered when 

participants were 10 to 11 years of age. One of the items stated that the participant 

“Seems overly sensitive to sounds, textures, or smells.” Parents responded to this item 

with “Not True”, “Sometimes True,” “Often True,” or “Almost Always True.” These 

responses were converted to an ordinal variable with the levels 1, 2, 3, and 4 respectively. 

This item was considered to be a measure of SOR and was used as the outcome variable 

for the analysis. Subjects that did not have an SOR score were excluded. 

Of the final set of 6,806 subjects, 5,670 had an SOR score of 1; 805 had a score of 

2; 229 had a score of 3; and 102 had a score of 4. 

 

2.3.7. Statistical Analysis of Human Data 

The analysis method used for the macaque data was repeated with the human data 

to better allow for direct cross-species comparisons. Three separate FRF models were 
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constructed to assess the data in slightly different ways. The first was a regression model, 

where the four possible SOR scores were treated as a continuous variable for the full set 

of 6,806 subjects. The second was a classification model where the subjects were 

grouped into two categories: those with an SOR score of 1 (n = 5,670), and those with an 

SOR score of 2, 3, or 4 (n = 1,136). Unlike for regression, it is useful to have balanced 

group sizes for classification, so the algorithm randomly selected 1,136 subjects from 

each of the two categories when constructing the model. The third model was also a 

classification model, but it excluded subjects that had an SOR score of 2. As a result, 

subjects with a score of 1 (n = 5,670) were compared to subjects with a score of 3 or 4 (n 

= 331). While this model trained with the smallest number of subjects (random selection 

of 331 per group), it is possible that connectivity differences between subjects on distal 

ends of the SOR scale would be pronounced enough to overcome this limitation. 

The input predictors for all models consisted of the same 378 features used in the 

macaque models, and the outcome measure was the SOR score of the human subject. A 

random selection of 80% of the data was used for training, and the remaining 20% was 

reserved for testing. Models were tested using three repetitions of 10-fold cross-

validation. The regression model was constructed with 1,000 trees, whereas the two 

classification models were constructed with 2,000 trees each. Model performance for the 

regression model was determined by improvements to three measures: the mean absolute 

error (MAE) in predicting the SOR score, the correlation between subjects’ observed and 

predicted SOR scores, and the intraclass-correlation coefficient (ICC). Model 

performance for the classification models was determined by assessing the distributions 
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of overall accuracy, specificity, and sensitivity between the observed and null models, as 

described previously for the macaque analysis. 

 

2.4. Results 

2.4.1. Sensory connections accurately predicted perinatal diet exposure 

at 4 months of age 

FRF model performance metrics for each age group are shown in Figure 2.1. The 

FRF model used 378 functional connectivity features between sensory networks and the 

amygdala to classify offspring by perinatal diet group with a mean overall accuracy of 

73.9% at 4 months of age. A Wilcoxon rank sum test revealed that this model was 

significantly more accurate than the permuted model which achieved 51.1% overall 

accuracy (p < 0.001). The specificity and sensitivity of the model at the 4-month old time 

point was also significantly greater than those metrics for the permuted models. The 

model had a specificity of 78.3% when classifying offspring exposed to a perinatal CTR 

diet, indicating the ability of the model to correctly identify true negatives, and a 

Wilcoxon rank sum test determined that this was significantly more accurate than the 

permutation specificity of 64.1% (p = 0.050). The model had a sensitivity of 66.9% when 

classifying offspring exposed to a perinatal WSD, indicating the ability of the model to 

correctly identify true positives, and a Wilcoxon rank sum test determined that this was 

significantly more accurate than the permutation sensitivity of 37.6% (p < 0.001). Given 

that these three metrics were significantly improved in the model with correctly-labelled, 

observed data, this indicates that the FRF model is valid for predicting perinatal diet 

group from the set of connectivity features. Perinatal exposure to a WSD alters the set of 
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sensory and amygdala connectivity strengths at 4 months of age to the extent that they 

can be used to predict the perinatal diet exposure for any given subject. 

The FRF model did not achieve significance across all three performance metrics 

at any other age point. Thus, the model is not valid for predicting perinatal diet exposure 

at the later developmental time points. While there may still be discrete differences in 

connectivity between perinatal diet groups at these age points, this result indicates that 

there is not a strong enough pattern of differences in sensory and amygdala connectivity 

to differentiate between groups.  
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Figure 2.1. Performance metrics for each age-specific FRF model. 

The functional connectivity of 378 connections within and between all sensory network 

regions and the amygdala were used to predict perinatal diet exposure at 4 (A), 6 (B), 11 

(C), 21 (D), and 36 (E) months of age. Overall accuracy is measured in the left-most 

panels entitled, “Total.” Specificity is measured in the center panels entitled, “Group 1 

(CTR).” Sensitivity is measured in the right-most panels entitled, “Group 2 (WSD).” The 

performance accuracy scores of the model repetitions with labelled data (“observed”) 

were compared to those of the repetitions that used permuted data (“permuted”). Wide 
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bars refer to the 25th/75th percentiles; thinner bars refer to the 2.5th/97.5th percentiles. 

Significance was determined by a Wilcoxon rank sum test. 

 

2.4.2. Intra-Somatomotor and Visual-Auditory network connections 

disproportionately aided model prediction at 4 months of age 

The FRF model accurately classified subjects at 4 months of age based on 378 

functional connectivity input features. Features that differed more between groups likely 

played a more prominent role in helping the decision tree distinguish between groups. 

One way to measure the importance of a feature to a model is by calculating the variable 

importance, or the sum of the decrease in error when a decision tree is split by that 

feature. The variable importance of each of the 378 features was calculated for each of 

the six model repetitions that were run. The maximum variable importance that each 

feature achieved across the six repetitions was selected. 

The maximum variable importance values for the 378 features ranged from -0.032 

to 0.193 (Figure 2.2A), where a more positive value denoted a greater reduction in error 

and, therefore, a more important feature. The midpoint of this range is 0.080; thus, a 

maximum variable importance value of 0.080 or above denoted an importance to the 

model that was greater than at least half of all possible importance values. Only 8% of 

features, or a total of 30 features, achieved a maximum variable importance value that 

was in the upper half of the demonstrated range. 

Each feature represents a functional connection between two ROIs. Each ROI 

belongs to a functional network. The 30 most important features were grouped by the 

networks represented by each ROI in the connection pair. For example, the most 
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important feature with a maximum variable importance of 0.193 belonged to the 

functional connection between the primary motor cortex ROI of the left hemisphere and 

the medial premotor cortex ROI of the left hemisphere. Each ROI was a member of the 

somatomotor network, so the network grouping for this connection would be the 

“somatomotor-somatomotor” or “intra-somatomotor” group. For clarity, any grouping 

that included a connection to the amygdala included the term “amygdala” in the grouping 

name rather than its functional network, “limbic.” 

The 30 most important features belonged to five network groups, with the greatest 

proportion of features, at 43%, deriving from the somatomotor-somatomotor network 

group (Figure 2.2B). Another 30% of features were connections between the 

somatomotor and visual networks, 17% were visual-auditory connections, 7% were 

somatomotor-auditory connections, and 3% were visual-visual connections. 

These proportions were not representative of the overall distribution of network 

groupings across the full set of 378 connections (Figure 2.2C). For example, 

somatomotor-somatomotor network connections comprised just 24% of all 378 

connections, yet they comprised 43% of the 30 most important features, indicating that 

they were over-represented in the set of features that drove model performance. Visual-

auditory connections were also over-represented, encompassing 17% of the 30 most 

important features when only an 8% representation was expected by chance. On the other 

hand, the somatomotor-auditory group, visual-visual group, and the combined groups of 

features that contained any connection to the amygdala were all underrepresented in the 

set of 30 most important features. Two groups, the somatomotor-visual and auditory-
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auditory features, were included in the set of 30 most important features in proportions 

that were representative of their respective shares among all 378 features.  
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A 

 

B      C 

 

Figure 2.2. Top 30 features most important to 4 month model performance. 

(A) The maximum variable importance value for each of the 378 functional connectivity 

features is displayed. The 378 features are ordered along the x-axis from highest to 

lowest maximum variable importance value. The midpoint of the range of variable 

importance values is marked with a horizontal line at 0.080. A vertical line at position 30 

along the x-axis visually separates the 30 features that achieved a maximum variable 

importance value greater than the midpoint of the range of values from the remaining 

features. (B) Chart displaying the percentage of the 30 most important features that 
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belong to each of the represented network groupings. (C) Comparison of network 

grouping representation. Dark blue bars, on the left side of each pair, display the 

percentage of all 378 features that belong to the respective network grouping. Lighter 

blue bars, on the right side of each pair, display the percentage of the 30 most important 

features that belong to the respective network grouping. Abbreviations from (B) and (C): 

Amyg-Any, amygdala-any network; Aud-Aud, auditory-auditory; SM-Aud, 

somatomotor-auditory; SM-SM, somatomotor-somatomotor; SM-Vis, somatomotor-

visual; Vis-Aud, visual-auditory; Vis-Vis, visual-visual. 

 

The 30 most important features are listed in Table 2.2. Notably, many individual 

ROIs appear more than once. Table 2.3 summarizes the ROIs that appeared in at least 

three of the 30 most important features. The right primary motor cortex and left primary 

somatosensory cortex were the two connections that appeared the most, appearing in 7 

and 5 features respectively. Both of these ROIs are part of the somatomotor network, 

demonstrating again that differences in somatomotor network connectivity were strong 

drivers of model performance.  
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Table 2.2. The 30 features with maximum variable importance values in the upper 

half of the observed range of values. 

Abbreviations: Hemi, brain hemisphere; ROI, region of interest (Bezgin et al., 2012). 

  
ROI 1 ROI 2 

Order of 
Importance 

Maximum 
Variable 

Importance 
Network Hemi. ROI Name Network Hemi. ROI Name 

1 0.1925 Somatomotor Left 
Primary Motor 

Cortex 
Somatomotor Left 

Medial 
Premotor 

Cortex 

2 0.1588 Somatomotor Left 
Secondary 

Somatosensory 
Cortex 

Somatomotor Right 
Primary Motor 

Cortex 

3 0.1560 Visual Right 
Visual Anterior 
Cortex, Dorsal 

Part 
Somatomotor Right 

Medial 
Premotor 

Cortex 

4 0.1441 Visual Left 
Visual Anterior 
Cortex, Ventral 

Part 
Somatomotor Right 

Secondary 
Somatosensory 

Cortex 

5 0.1404 Somatomotor Left 
Anterior 

Cingulate 
Gyrus 

Somatomotor Right 
Primary Motor 

Cortex 

6 0.1360 Auditory Right 
Secondary 
Auditory 
Cortex 

Somatomotor Right 
Primary 

Somatosensory 
Cortex 

7 0.1359 Visual Left 
 

Visual Area 2  
Visual Right Visual Area 1 

8 0.1226 Somatomotor Left 
Secondary 

Somatosensory 
Cortex 

Somatomotor Right 
Medial 

Premotor 
Cortex 

9 0.1226 Somatomotor Left 
Primary 

Somatosensory 
Cortex 

Somatomotor Right 
Primary Motor 

Cortex 

10 0.1210 Visual Right Visual Area 1 Somatomotor Left 
Secondary 

Somatosensory 
Cortex 

11 0.1166 Somatomotor Left 
Primary 

Somatosensory 
Cortex 

Somatomotor Left 
Medial 

Premotor 
Cortex 

12 0.1134 Visual Right 
Visual Anterior 
Cortex, Ventral 

Part 
Somatomotor Right 

Primary Motor 
Cortex 

13 0.1124 Somatomotor Left 
Primary 

Somatosensory 
Cortex 

Somatomotor Left 
Primary Motor 

Cortex 
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14 0.1106 Visual Right 
Visual Anterior 
Cortex, Dorsal 

Part 
Auditory Right 

Secondary 
Auditory 
Cortex 

15 0.1053 Visual Left 
Visual Anterior 
Cortex, Ventral 

Part 
Somatomotor Left 

Primary 
Somatosensory 

Cortex 

16 0.1042 Visual Right 
 

Visual Area 1  
Somatomotor Right Posterior Insula 

17 0.1036 Visual Right Visual Area 2 Auditory Left 
Primary 
Auditory 
Cortex 

18 0.0994 Visual Right 
 

Visual Area 2  
Somatomotor Right Posterior Insula 

19 0.0974 Somatomotor Right Posterior Insula Somatomotor Right 
Primary 

Somatosensory 
Cortex 

20 0.0957 Visual Left 
Visual Anterior 
Cortex, Dorsal 

Part 
Auditory Left 

Primary 
Auditory 
Cortex 

21 0.0942 Visual Right 
Visual Anterior 
Cortex, Dorsal 

Part 
Somatomotor Right Posterior Insula 

22 0.0926 Visual Left Visual Area 1 Somatomotor Left 
Medial 

Premotor 
Cortex 

23 0.0919 Somatomotor Left 
Anterior 

Cingulate 
Gyrus 

Somatomotor Right 
Medial 

Premotor 
Cortex 

24 0.0879 Somatomotor Left 
Medial 

Premotor 
Cortex 

Somatomotor Right 
Primary Motor 

Cortex 

25 0.0859 Visual Left Visual Area 1 Auditory Left 
Primary 
Auditory 
Cortex 

26 0.0841 Somatomotor Right 
Primary Motor 

Cortex 
Somatomotor Right 

Medial 
Premotor 

Cortex 

27 0.0823 Somatomotor Right 
Secondary 

Somatosensory 
Cortex 

Somatomotor Right 
Primary Motor 

Cortex 

28 0.0821 Somatomotor Left 
Primary 

Somatosensory 
Cortex 

Somatomotor Right 
Superior 

Parietal Cortex 

29 0.0811 Visual Left Visual Area 2 Auditory Right 
Primary 
Auditory 
Cortex 

30 0.0804 Auditory Left 
Primary 
Auditory 
Cortex 

Somatomotor Left 
Secondary 

Somatosensory 
Cortex 



56 
 

Table 2.3. ROIs that were included in at least three of the 30 features with the 

greatest maximum variable importance. 

The table is ordered first by the number of times an ROI appears in a feature, and then 

alphabetically by network and ROI name. 

Network Hemisphere ROI Name 
Number of 
Instances 

Somatomotor Right Primary Motor Cortex 7 
Somatomotor Left Primary Somatosensory Cortex 5 

Auditory Left Primary Auditory Cortex 4 
Somatomotor Left Medial Premotor Cortex 4 
Somatomotor Right Medial Premotor Cortex 4 
Somatomotor Right Posterior Insula 4 
Somatomotor Left Secondary Somatosensory Cortex 4 

Visual Right Visual Anterior Cortex, Dorsal Part 3 
Visual Right Visual Area 1 3 

 

2.4.3. Perinatal WSD exposure was associated with consistent, network-

specific changes in connectivity strength at 4 months of age 

Each of the thirty features that achieved the greatest maximum variable 

importance in the FRF model constructed on the 4 month old offspring data was assessed 

for differences between perinatal diet groups. The distribution of connectivity strengths, 

measured as correlation coefficients, among offspring exposed to a perinatal WSD and 

CTR were compared for each feature (Figure 2.3). For example, the feature that 

contributed the most to accurate model performance was the connection between the left 

primary motor cortex and left medial premotor cortex. Offspring that were perinatally 

exposed to a WSD showed decreased connectivity in that feature (0.057 + 0.010, mean + 

SEM) compared to controls (0.158 + 0.030) at four months of age.  
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Figure 2.3. Distribution of connectivity strengths between perinatal diet groups for 

each of the 30 features with the greatest maximum variable importance. 

The 30 features are ordered along the x-axis from highest to lowest maximum variable 

importance value. Boxplots are clustered by network group. Pink boxplots, on the left 

side of each pair, represent the distribution for the perinatal CTR diet offspring. Blue 

boxplots, on the right side of each pair, represent the distribution for the perinatal WSD 

offspring. Wide bars refer to the 25th/75th percentiles; thinner bars refer to the 

2.5th/97.5th percentiles. 
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All of the features that belonged to the two network groupings that were over-

represented in the 30 most important features followed a consistent pattern of altered 

connectivity (Figure 2.3). The perinatal WSD offspring displayed weaker connectivity 

across all 13 connections in the somatomotor-somatomotor network group, and they 

displayed stronger connectivity across all 5 connections in the visual-auditory network 

group. The two connections in the somatomotor-auditory network group were also 

consistent, with decreased connectivity in the perinatal WSD group. Differences in 

connectivity strength were mixed for the somatomotor-visual network group. While 

perinatal WSD offspring displayed trends toward decreased connectivity for the first two 

connections in the network group, the remaining seven connections were characterized by 

trends toward increased connectivity. The only connection for the visual-visual network 

group demonstrated decreased connectivity for the perinatal WSD group. Significance 

testing was not performed on these distributions as they were already identified as being 

important for a statistically significant model prediction. 

 

2.4.4. Amygdala-Somatomotor connectivity weakly contributed to 

model performance at 4 months of age 

Connections to the amygdala were not present in the 30 most important features. 

However, amygdala connectivity may still be a weak driver of accurate model 

performance. While amygdala connections were not present in the 30 most important 

features, or the top 8% of all 378 features, four amygdala connections were present in the 

top 15% of all features, or within the 56 most important features. These four connections 

were between the amygdala and somatomotor network (Table 2.4), and they ranked at 44, 
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47, 49, and 50 when all features were ordered by maximum variable importance. The 

maximum variable importance values for these connections ranged from 0.068 to 0.064 

(highest to lowest). A maximum variable importance of 0.064 is greater than 46% of the 

values in the range exhibited by the model. This suggests that amygdala-somatomotor 

connectivity may still provide valuable information to the model as it learns to 

distinguish between diet groups. 

The distributions of amygdala connectivity strengths were characterized by weak 

differences between diet groups (Figure 2.4). Additionally, when looking across the 

amygdala connections that were present within the upper 50% of most important features 

(or the 189 most important features), a consistent pattern of altered connectivity did not 

emerge in any network grouping. Thus, amygdala-somatomotor connectivity, while 

constituting the most important amygdala connections, may have only weakly 

contributed to accurate model performance at 4 months of age.  
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Table 2.4. The 27 amygdala connections within the upper half of most important 

features. 

Abbreviations: Hemi, brain hemisphere; ROI, region of interest (Bezgin et al., 2012). 

  
ROI 1 ROI 2 

Order of 
Importance 

Maximum 
Variable 

Importance 
Network Hemi. ROI Name Network Hemi. ROI Name 

44 0.0678 Somatomotor Left 
Anterior 

Cingulate 
Gyrus 

Limbic Right Amygdala 

47 0.0663 
 

Somatomotor  
Right Posterior Insula Limbic Left Amygdala 

49 0.0653 Somatomotor Right 
Medial 

Premotor 
Cortex 

Limbic Right Amygdala 

50 0.0641 
 

Somatomotor  
Left Posterior Insula Limbic Right Amygdala 

58 0.0592 
 

Somatomotor  
Left 

Primary Motor 
Cortex 

Limbic Left Amygdala 

61 0.0583 
 

Somatomotor  
Left Posterior Insula Limbic Left Amygdala 

62 0.0583 Visual Right 
Visual Anterior 
Cortex, Ventral 

Part 
Limbic Right Amygdala 

69 0.0561 Visual Right 
Visual Anterior 
Cortex, Dorsal 

Part 
Limbic Right Amygdala 

85 0.0519 
 

Visual  
Right Visual Area 1 Limbic Right Amygdala 

86 0.0516 Somatomotor Right 
Primary 

Somatosensory 
Cortex 

Limbic Left Amygdala 

96 0.0491 
 

Visual  
Right Visual Area 2 Limbic Left Amygdala 

109 0.0474 Somatomotor Left 
Secondary 

Somatosensory 
Cortex 

Limbic Right Amygdala 

119 0.0455 
 

Somatomotor  
Right 

Primary Motor 
Cortex 

Limbic Right Amygdala 

121 0.0454 
 

Somatomotor  
Right 

Primary Motor 
Cortex 

Limbic Left Amygdala 

124 0.0451 Somatomotor Right 
Anterior 

Cingulate 
Gyrus 

Limbic Right Amygdala 
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138 0.0434 Auditory Left 
Primary 
Auditory 
Cortex 

Limbic Right Amygdala 

140 0.0430 Somatomotor Right 
Anterior 

Cingulate 
Gyrus 

Limbic Left Amygdala 

141 0.0430 Somatomotor Left 
Primary 

Somatosensory 
Cortex 

Limbic Left Amygdala 

146 0.0427 Auditory Right 
Secondary 
Auditory 
Cortex 

Limbic Right Amygdala 

147 0.0427 Visual Left 
Visual Anterior 
Cortex, Dorsal 

Part 
Limbic Left Amygdala 

148 0.0426 
 

Somatomotor  
Right 

Superior 
Parietal Cortex 

Limbic Right Amygdala 

150 0.0424 Auditory Right 
Primary 
Auditory 
Cortex 

Limbic Left Amygdala 

152 0.0422 
 

Visual  
Left Visual Area 1 Limbic Right Amygdala 

155 0.0418 
 

Somatomotor  
Right 

Superior 
Parietal Cortex 

Limbic Left Amygdala 

157 0.0413 
 

Somatomotor  
Left 

Primary Motor 
Cortex 

Limbic Right Amygdala 

160 0.0409 Visual Left 
Visual Anterior 
Cortex, Ventral 

Part 
Limbic Left Amygdala 

184 0.0369 Somatomotor Left 
Anterior 

Cingulate 
Gyrus 

Limbic Left Amygdala 
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Figure 2.4. Distribution of connectivity strengths between perinatal diet groups for 

amygdala connections within the upper 50% of features with the greatest maximum 

variable importance. 

The amygdala features are ordered along the x-axis from highest to lowest maximum 

variable importance value, with the x-axis position denoting the variable importance 

order among all 378 connections. Boxplots are clustered by network group. Pink 

boxplots, on the left side of each pair, represent the distribution for the perinatal CTR diet 

offspring. Blue boxplots, on the right side of each pair, represent the distribution for the 

perinatal WSD offspring. Wide bars refer to the 25th/75th percentiles; thinner bars refer 

to the 2.5th/97.5th percentiles.  
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2.4.5. SOR score in children was not predicted by differences in sensory 

and amygdala connectivity 

Three FRF models were run on slightly different subsets of human imaging data 

from the ABCD study. None of the models demonstrated significant predictive 

capabilities (Table 2.5, Figure 2.5). Thus, these models are not valid for predicting a 

child’s SOR score from the functional connectivity within and between their sensory 

networks and the amygdala. 

 

Table 2.5. Performance metrics for the human SOR regression model. 

Performance metrics for the FRF regression model were not significantly different 

between the observed and null (permuted data) models (p > 0.05 for each metric). Values 

displayed are the means across three model repetitions. Abbreviations: ICC, intraclass-

correlation coefficient; MAE, mean absolute error; R, Pearson’s correlation coefficient; 

SOR, sensory over-responsivity. 

Model R ICC MAE 

 Observed Permuted Observed Permuted Observed Permuted 

   Regression 0.0187 0.0010 0.5171 0.5140 0.3946 0.3968 
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Figure 2.5. Performance metrics for the human SOR classification models. 

The functional connectivity of 378 connections within and between all sensory network 

regions and the amygdala were used to predict SOR score in children. (A) This 

classification model predicted two classes of SOR score: one class was defined by a score 

of “1,” and the other was defined by a score of “2,” “3,” or “4.” (B) This classification 



65 
 

model predicted two classes of SOR score: one class was defined by a score of “1,” and 

the other was defined by a score of “3” or “4.” Specificity is the prediction accuracy for 

the group of subjects with an SOR score of 1. Sensitivity is the prediction accuracy for 

the group of subjects with an SOR score of 2, 3, or 4 in (A), and an SOR score of 3 or 4 

in (B). The performance accuracy scores of the model repetitions with labelled data 

(“observed”) were compared to those of the repetitions that used permuted data 

(“permuted”). Wide bars refer to the 25th/75th percentiles; thinner bars refer to the 

2.5th/97.5th percentiles. Significance was determined by a Wilcoxon rank sum test. *p < 

0.05; **p < 0.01; ***p < 0.001; NS = non-significant. 

 

2.5. Discussion 

There are several conflicting theories about the origins of the symptoms of SPD. 

While some evidence suggests SPD may be a manifestation of other root psychiatric 

conditions, other data supports the hypothesis that SPD may stem from direct disruptions 

to sensory processing, in some cases leading to the emotional dysregulation seen in 

psychiatric conditions as a consequence of the experience of living with the symptoms of 

SPD. This study took the position of the latter theory and explored the connectivity of a 

subset of brain regions that represent the primary cortical areas for processing sensory 

input. Prior evidence suggested that connections to the amygdala may be a strong 

component of ascending sensory processing pathways, especially in non-classical sensory 

pathways that may persist in adults with ASD (Møller et al., 2005; Møller and Rollins, 

2002; Musiek et al., 2011), so the amygdala was included in the ROI subset, as well. The 

amygdala is intrinsic to the processing of negative emotions, so even if purely-sensory 
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connectivity was not found to be disrupted, alterations to amygdala connectivity could 

support the hypothesis that emotional dysregulation is a driving factor behind the 

symptoms of SPD. 

While the juvenile macaques used in this study were not tested explicitly for 

symptoms of SPD, prior work in this animal model established that the offspring who 

were exposed to a WSD during the perinatal period displayed the component behaviors 

of ASD, including sensorimotor behaviors that involved abnormal movements, posture, 

and increased head tossing and pacing (Mitchell et al., 2022b). Prenatal exposure to a 

WSD is associated with an increased incidence of ASD, but that does not mean that every 

subject in the perinatal WSD group would develop the component behaviors of ASD. 

However, given that an estimated 95% of children with ASD experience a SPD 

(Tomchek and Dunn, 2007; Crane et al., 2009; Leekam et al., 2007), it is likely that the 

perinatal WSD offspring that did develop the behaviors typical of ASD would also 

experience a SPD and the underlying brain circuitry responsible for the symptoms. 

Following this logic, it was expected that the perinatal WSD group would include an 

increased proportion of subjects that displayed altered circuitry representative of 

disruptions to sensory or emotional processing. 

This expectation was supported when offspring were 4 months of age, but the 

machine learning algorithm was unable to successfully predict perinatal diet group at the 

later time points of 6, 11, 21, and 36 months of age. A follow-up characterization of the 4 

month model results revealed that differences in intra-somatomotor, visual-auditory, 

somatomotor-auditory, somatomotor-visual, and intra-visual network connections were 

the most distinct between perinatal diet groups, with the first two network groupings 
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being over-represented in the set of the 30 features that contributed the most to improving 

model prediction. Connectivity was impacted in the same direction for each network 

grouping except the somatomotor-visual group, demonstrating a largely consistent impact 

of perinatal WSD exposure on network-wide connectivity. Impacts to the connectivity of 

the primary motor cortex seemed to be the most pronounced, as the ROI was part of the 

connection that was identified as being the most important to the model, and it appeared 

in seven of the 30 most important features, more than any other ROI. Amygdala 

connectivity was not found to be a strong contributor to model performance, though weak 

differences in connectivity may have still improved the model. Amygdala-somatomotor 

connections, in an inconsistent pattern within the network grouping, displayed a 

maximum variable importance greater than 46% of the other values in the demonstrated 

range from the model, placing these connections within the top 15% of connections when 

ordered by importance. While the same set of sensory and amygdala connections were 

unable to predict a measure of SOR in a cohort of 9 and 10 year old children, this finding 

is consistent with the poor model performance in macaques at the same developmental 

time point. 

 

2.5.1. Functional connectivity may be more susceptible to WSD-

associated disruptions during prenatal and early postnatal 

development 

Perinatal WSD exposure in macaques was associated with differences in the 

functional connectivity of sensory systems and the amygdala at 4 months of age but not 

at 6, 11, 21, or 36 months of age. This suggests that neural circuitry is impacted during 
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prenatal and early postnatal development, but once the perinatal dietary exposure is 

removed, these functional circuits recover and become indistinguishable from the 

connectivity patterns present in control subjects. 

Importantly, there may be a further distinction between prenatal and perinatal 

WSD exposure. Integral to this distinction is the observation that the juvenile offspring 

were exposed to their perinatal diet through lactation and solid food consumption until 

weaning at 7.22 ± 0.32 (mean + SEM) months of age for the CTR group and 7.50 + 0.20 

months of age for the WSD group. Thus, the exposure from the in utero environment 

matched the dietary exposure at both the 4 and 6 month old time points, yet differences in 

functional connectivity were only strong enough to drive model prediction at 4 months of 

age. If prolonged postnatal WSD exposure had the ability to impact connectivity strongly, 

then differences should have been greater after an additional two months of exposure at 6 

months of age. Additionally, the 11 month time point was fewer than four months after 

weaning; if significant results were present four months after birth, it is surprising that 

strong results were not found four months after weaning, despite a longer exposure to the 

WSD by that point. 

These findings can be interpreted in multiple ways. First, it is possible that the 

maternal environment associated with WSD consumption may lead to in utero impacts 

that differ from the impacts of postnatal WSD exposure. For example, it is well-

established that WSD consumption during pregnancy can lead to an elevated 

inflammatory state (Grayson et al., 2010). It is also known that the immune system is still 

developing in neonates and infants (Basha et al., 2014; Christensen et al., 2014). Thus, 

the inflammatory response to WSD consumption generated in the dam may differ 
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significantly from the response generated in the offspring during postnatal WSD 

exposure. Neuroinflammation may impact neural circuit formation, so a difference in 

neuroinflammatory influences between the prenatal and postnatal periods may explain the 

lack of continued impacts at 6 and 11 months of age despite current and recent WSD 

exposure. 

Another interpretation is that neurodevelopment proceeds through different stages 

and may be more susceptible to disruptions at different times. The third trimester in 

particular is a highly dynamic period characterized by rapid cortical maturation and 

dramatically increased neuronal connectivity (Marr, 2020; Tau and Peterson, 2010; 

Andescavage et al., 2017; van den Heuvel et al., 2015; Thomason et al., 2015). Prenatal 

inflammatory influences like elevated maternal immune activation, increased maternal 

IL-6 concentrations, and infection with SARS-CoV-2 during the third trimester are all 

associated with impacts to offspring neurodevelopment: these impacts consisted of 

altered neonatal functional connectivity within the salience network, reduced working 

memory at two years of age, and an increased incidence of neurodevelopmental disorder 

diagnosis at one year of age compared to infection during the first or second trimester, 

respectively (Spann et al., 2018; Rudolph et al., 2018; Edlow et al., 2022). Rapid 

synaptogenesis continues through the first year of life, and synaptic pruning does not 

outpace synapse formation until later in childhood (Eltokhi et al., 2020; Levitt, 2003). It 

therefore makes sense that impacts during the third trimester and first year of life, when 

cerebral connectivity is undergoing its greatest period of development, would be more 

pronounced than effects that occur at other time points. When comparing developmental 

stages across species, a 4 month old macaque (rhesus) is roughly the equivalent of an 8 
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month old human, 6 months in macaques is roughly equivalent to 15 months in humans, 

and 11 months in macaques is roughly equivalent to 36 months in humans (Workman et 

al., 2013; Translating Time, 2022). Only the 4 month old time point falls within the first 

year of comparable human development. Thus, if the 4 month time point is the only one 

in which connections are undergoing dramatic construction, then this increased 

susceptibility to perturbations in circuit remodeling would explain why the perinatal 

WSD exposure is associated with an impact at 4 months but not 6 or 11 months. 

A combination of the above two interpretations would suggest that prenatal WSD 

exposure may play a greater role in altering circuitry than postnatal WSD exposure due to 

the direct impacts of the inflammatory maternal environment during the most dynamic, 

and therefore most vulnerable, period of connectome development. Even if separation 

from the maternal environment removes the most impactful exposure, the 4 month time 

point may be near enough to the point of separation that effects can still be detected by 

the FRF model. Six months would appear to be enough time for the trajectory of 

functional connectivity to recover and assume a pattern similar to that of control subjects, 

even in the face of postnatal WSD exposure. 

Regardless of which of the three proposed interpretations holds the most weight, 

the long-term outcome is shared: the functional connectivity of the sensory systems and 

the amygdala is plastic and robust against long-lasting impacts from earlier periods of 

WSD exposure. Future research could explore what mechanistic changes allow the 

pronounced differences at earlier time points to rapidly resolve and revert to the typical 

connectivity patterns of the control group. 
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2.5.2. Impacts to functional connectivity at later ages may be too weak 

to drive model performance 

Although the present findings only indicate strong impacts to functional 

connectivity at the 4 month time point, the null model findings at the later time points do 

not necessarily rule out the possibility of altered connectivity at these ages. For example, 

it is possible that only a subset of the WSD offspring developed the characteristics of 

ASD and SPD, and the remaining WSD offspring may have displayed behavior and 

functional connectivity that was more similar to that of the control subjects. Thus, the 

differences in connectivity driven by the most impacted WSD offspring at 4 months of 

age may have subsided slightly at later time points such that the entire group’s 

connectivity profile—which would include the connectivity of subjects who did not 

experience the component behaviors of ASD or SPD despite exposure to the perinatal 

risk factor—was no longer substantially different from that of the control subjects. This 

would erode the ability of the machine learning model to distinguish between groups, but 

it does not confirm that the most impacted WSD offspring no longer experienced 

differences in functional connectivity. Repeating the FRF with the exclusion of subjects 

in the WSD group that did not display the component behaviors of ASD could improve 

group-wide consistency and increase model performance, as long as a large enough 

sample size was retained. Alternatively, the FRF could be replaced with a more detailed 

analysis of each connection to test for discrete differences between groups without the 

effect being diluted or overpowered by a majority of connections that were not 

significantly different between groups. 
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Another major limitation to the analysis is the limited sample sizes, which can 

lead to insufficient model training. The 4 month sample had the greatest number of 

subjects (N = 39), and it was also the time point with the greatest consistency in life 

experiences among the five ages. Thus, the significant predictive ability of the model 

may be due to congruent connectivity patterns within each group that differed in a 

consistent way between groups. This consistency may have diminished over time as 

offspring experienced a natural variation in neurodevelopmental trajectories. Thus, it is 

possible that the null findings at these later time points were not due to the WSD 

offspring developing the same connectivity pattern as seen in the controls, but they may 

instead indicate that the variety of connectivity patterns within the WSD group was 

highly variable, inconsistent, and partially overlapping with connectivity patterns seen in 

the CTR group, thereby leading to an inability to accurately classify these subjects 

against permuted data. Greatly increasing the sample sizes may reduce group variance 

and allow the models to learn to detect the various connectivity patterns that characterize 

the WSD group and distinguish them from the patterns typical of the CTR group. 

An additional consideration is that diet exposures were only consistent during the 

4 and 6 month old time points. At the later time points, a roughly equal proportion of 

subjects from each perinatal diet group consumed a post-weaning WSD (11 months: 

21.1% of perinatal CTR and 22.2% of perinatal WSD offspring consumed a post-weaning 

WSD; 21 months: 23.1% perinatal CTR and 21.1% perinatal WSD; 36 months: 35.7% 

perinatal CTR and 23.8% perinatal WSD). Thus, any impacts from post-weaning WSD 

exposure were equally distributed across the two groups, such that the model would not 

be able to distinguish between groups based on any differences in functional connectivity 
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inherent to the impacts of a post-weaning WSD. However, this also meant that there was 

less differentiation in diet exposures between groups at later ages. For example, at 4 

months of age, 100% of the perinatal CTR group had never been exposed to a WSD, and 

100% of the perinatal WSD had been exposed to the WSD since conception. At 11 

months of age, those proportions dropped to roughly 78.9% and 22.2% respectively. This 

drop was the result of a deliberate effort to ensure the majority of subjects consumed a 

post-weaning CTR diet so as to predominantly test the effects of the perinatal exposure. 

However, it also meant that 21.1% and 77.8% of the perinatal CTR and WSD groups, 

respectively, had a similar experience of exposure to a WSD at some point in their lives. 

While it is unlikely that WSD exposures at different time points would lead to the same, 

indistinguishable connectivity patterns at 11 months of age, it may be a potential 

contributor to poor model prediction, especially in light of the small sample sizes.  

 

2.5.3. Functional connectivity outcomes are consistent between macaque 

and human cohorts 

The FRF analysis performed in macaques was repeated in humans using highly 

conserved methodology to reduce potential confounds and variance. This included the 

use of the same minimal MRI preprocessing standards via similar pipelines, the same 

brain parcellation to label ROIs, the same set of 378 connections within and between 

sensory areas and the amygdala, and the same FRF algorithm for analysis. Major 

differences included a much larger sample size in humans (up to 6,806 subjects), higher 

motion censoring standards in humans (8 min at FD < 0.2 mm instead of 20 minutes at 

FD < 0.3 mm), and different outcome measures. 
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The predicted outcome measure in humans was an SOR score that ranged from no 

observed issues with seeming overly sensitive to sensory stimuli (a score of “1”) to 

sometimes (“2”), often (“3”), and almost always seeming overly sensitive (“4”). This 

SOR score was condensed into a binary variable that separated the subjects with a score 

of 1 from subjects who scored either a 2, 3, or 4 for one classification model, and those 

who scored either a 3 or 4 for another classification model. In all cases, these group 

separations were meant to mimic the grouping variable for the macaque data. Given that 

a prenatal WSD is a known predictor of the behavioral phenotypes of ASD—a 

neurodevelopmental disorder which is highly comorbid with SPD—and given that the 

WSD offspring displayed the component behaviors of ASD, the following hypothesis 

was made: the children with an SOR score of 1 were hypothesized to have functional 

connectivity similar to macaques with perinatal CTR diet exposure, and children with a 

score of 2, 3, or 4 were hypothesized to show connectivity patterns consistent with the 

perinatal WSD macaque cohort. If the FRF model that trained on the human data was 

valid for predicting SOR score from the set of functional connections, then the model 

could have been applied to the macaque data. The cross-species brain parcellation would 

enable the identical set of functional connections in macaques to be processed through 

the human-based decision trees. Each macaque would have been assigned an SOR score 

or binary SOR class, and a follow-up analysis could have determined whether the 

perinatal WSD group was assigned a higher SOR score. This would have indicated that 

the functional connectivity patterns seen in WSD macaques were similar to those of 

children with SOR, thereby implicating perinatal WSD exposure in the development of 

SOR. This analytical exploration could not be conducted, however, because none of the 
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variations of the human FRF model achieved significance across all three performance 

metrics. 

Instead, poor model performance indicates that the functional connectivity of the 

sensory systems and the amygdala did not differ substantially between children with 

different SOR scores. This result is consistent with what was demonstrated in macaques. 

Macaques at 36 months of age are at roughly the equivalent developmental time point as 

the 9 and 10 year old children in the human cohort used for this analysis. Neither the 

children nor the 36 month old macaques displayed enough differences in functional 

connectivity to accurately predict the respective SPD-related outcome measure. While a 

concrete relationship cannot be established between null results for the macaque and 

human analyses, this at least demonstrates a consistent absence of distributed, SPD-

related impacts to functional connectivity in late childhood. Alternatively, it is also 

possible that fewer or weaker connectivity differences existed in the human cohort but 

were not pronounced enough to train the FRF model, or that the SOR score was an 

unreliable measure of the intended SPD symptom. Further analyses would be required to 

test whether functional connectivity patterns and impacts to discrete connections 

correspond across species. 

In fact, a recent study has identified differences in discrete connections using the 

same human cohort as in the present study. Schwarzlose and colleagues (2023) examined 

connectivity in children from the ABCD study at the 9-10 year old time point and at 12 

years of age (Schwarzlose et al., 2023). Image processing methods were largely 

conserved, though there were some differences in motion censoring, and a different brain 

parcellation was used to map ROIs—the Gordon parcellation (Gordon et al., 2016). 
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Connectivity strengths of connections within a shared network grouping were averaged; 

these single averages for each network grouping were tested separately for differences 

between groups using linear mixed-effects models. The two subject groups consisted of 

subjects with an SOR score of 1 and subjects with an SOR score of 3 or 4. This study 

tested connections in the same general network groupings as explored in the present 

study and only found a significant difference for one grouping: decreased intra-

somatomotor network connectivity in children with an SOR of 3 or 4. The study did not 

indicate effect size, so it is unclear whether this difference was substantial in addition to 

being significant. There were no other significant connections within or between the 

other sensory networks and the amygdala. These findings are roughly consistent with the 

present finding: if differences in functional connectivity between SOR groups were 

limited to the set of intra-somatomotor connections as demonstrated by Schwarzlose and 

colleagues (2023), then this might not have constituted a robust enough difference to 

drive accurate model performance. Thus, this consistency further supports the 

interpretation that perinatal WSD and SOR are not characterized by altered sensory 

connectivity at the preadolescent developmental time point, save for differences in intra-

somatomotor connectivity in humans. While this coherence between three studies might 

seem to suggest that the symptoms of SPD and SOR arise from other cognitive areas 

rather than purely sensory areas, Schwarzlose and colleagues (2023) demonstrated 

impacts to others connections that are still in line with a sensory-specific account of SOR. 

These areas included connections between the cingulo-opercular network and amygdala, 

which might account for atypical error detection and not just-right sensory experiences, 
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as well as connections between the hippocampus and sensory networks (sensorimotor and 

visual networks), which might explain impaired sensory prediction. 

Additionally, it is promising that the only sensory-specific difference found by 

Schwarzlose and colleagues (2023) was decreased intra-somatomotor connectivity. 

Results from the 4 month old macaque data indicated that decreased intra-somatomotor 

connectivity was the strongest driver of model performance as evidenced by over-

representation in the set of the 30 most important features as well as by occupying the top 

two spots in the feature set. The consistent direction of decreased connectivity in the 

perinatal WSD and highly-symptomatic SOR groups hints at a link between the dietary 

exposure and the behavioral outcome. It also suggests a plausible trajectory where the 

strongest differences at 4 months of age may persist and present as some of the only 

remaining differences in sensory connectivity at a later age. Altered intra-somatomotor 

connectivity is also in line with behavioral findings that show that most children with 

SOR experience over-responsivity in the somatosensory domain (Ben-Sasson et al., 

2009). 

Taken together, the present human analysis and the human study by Schwarzlose 

and colleagues (2023) provide outcomes that are consistent with the results demonstrated 

in the macaque analyses, encouraging further investigation into the relationship between 

perinatal WSD exposure and altered functional connectivity. 
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2.5.4. Maternal obesity and inflammation may be additive or alternative 

factors to maternal diet regarding impacts to functional connectivity 

This study found an association between perinatal WSD and altered functional 

connectivity at 4 months of age, but it is possible that alternative, related factors may 

have had a different impact. For example, a WSD often induces an increase in adiposity, 

and it is possible that the increased adiposity is the downstream mechanism that impacts 

offspring functional connectivity. Thus, the higher incidence of increased adiposity in the 

WSD group would be the factor that drives group-level differences that are generally 

attributed to diet in this scenario. However, there is metabolic variability within the 

human and macaque populations, such that some individuals on a WSD remain lean and 

some individuals on a “control” diet develop obesity. Grouping by perinatal diet exposure 

therefore mixes subjects from different maternal adiposity exposures and dilutes any 

impact of adiposity. Grouping explicitly by maternal adiposity could instead lead to 

greater differences in functional connectivity between groups if adiposity is truly the 

downstream mechanism that impacts functional connectivity. Alternatively, maternal 

adiposity might not be the underlying mediator of dietary impacts but rather a separate 

factor that leads to different outcomes. Grouping explicitly by maternal adiposity could 

still reveal important information about whether these two factors act on neural circuitry 

in the same way or through different mechanisms. To explore these possibilities, the FRF 

analysis in 36 month old macaques was repeated using the same subjects and functional 

connections but a different predicted outcome measure: maternal adiposity (see 

Supplementary Material). Roughly half of the subjects from each perinatal diet group 

were exposed to a high level of maternal adiposity, so the two prenatal factors led to 
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distinct groupings. Maternal adiposity was measured as the percent body fat of the dam 

prior to pregnancy with the subject. However, both a regression model predicting percent 

body fat and a classification model comparing binary categories of maternal adiposity 

were unable to achieve significant performance metrics (Figure 2.7). This indicates that 

neither perinatal WSD exposure nor maternal adiposity were associated with altered 

functional connectivity of sensory and emotional processing areas at 36 months of age. 

This result adds confidence to the conclusion that the neural circuitry of the selected areas 

is relatively robust against long-term environmental impacts from the prenatal period. 

Another potential mediator of altered circuitry related to WSD exposure is 

neuroinflammation. As mentioned previously, prenatal exposure to maternal 

inflammation may impact circuit formation in utero, but it is also possible for prenatal 

inflammation to program for long-term postnatal inflammation (Bilbo and Schwarz, 

2009; Romero et al., 2007; Denizli et al., 2022). Postnatal inflammation, either deriving 

from prenatal WSD exposure or other life experiences, could continue to impact circuit 

formation through the process of synaptic pruning. Synaptic pruning is the process of 

removing weak connections between neurons. It is conducted by microglia, which are the 

resident immune cells of the brain. In a state of heightened neuroinflammation, microglia 

become activated. Research demonstrates that microglial activation can lead to dramatic 

differences in synaptic pruning activity, which impacts neural circuit formation and 

behavioral outcomes (Kim et al., 2017; Cowan and Petri, 2018; Kleinhans et al., 2016; 

Huang et al., 2016; Ypma et al., 2016). Thus, if differences in functional connectivity are 

able to predict a marker of increased neuroinflammation, then this would suggest that 

disruption to a microglial-mediated process like synaptic pruning may be responsible for 
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the alterations in circuitry. To explore this possibility, the FRF analysis in 36 month old 

macaques was repeated using a subset of subjects that had undergone a procedure for 

measuring neuroinflammation in the amygdala (see Supplementary Material). Increased 

neuroinflammation can lead to increased microglial proliferation and migration (Sarlus 

and Heneka, 2017; Belhocine et al., 2022; Lively and Schlichter, 2013), so the number of 

microglia in the amygdala was quantified for ten subjects from the 36 month imaging 

group. A subset of 53 connections between the amygdala and all ROIs within the sensory 

networks was used to predict microglial count with an FRF regression model. The model 

was unable to achieve significant performance metrics, however, so an association 

between amygdala connectivity and neuroinflammation could not be drawn (Figure 2.8). 

This finding is limited by the small sample size, so further research should seek to expand 

the analysis to a larger sample. Additionally, it would be interesting to repeat this analysis 

at the 4 month age point to see whether increased neuroinflammation leads to the same 

changes in functional connectivity as seen with perinatal WSD exposure. If both factors 

are associated with similar changes, and if there is high overlap between the perinatal 

WSD group and the subjects with increased neuroinflammation, this would suggest that 

perinatal WSD exposure may impact neural circuitry through increased 

neuroinflammation. Further research could identify whether microglia in particular 

mediate that relationship. 

 

2.5.5. Limitations and Future Directions 

The FRF is a powerful tool for predicting an outcome measure from a large set of 

independent and dependent features, but there are limitations to its capabilities. A 
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primary limitation is the reliance on widespread differences across many features 

between groups, or at least dramatic differences if restricted to a smaller subset of 

features. The FRF is not as effective at identifying differences in isolated features, as it is 

designed to learn patterns associated with each group rather than test for significant 

differences for each feature. Analyses that implement other approaches could be useful in 

identifying more subtle differences in connectivity associated with WSD exposure or a 

higher SOR score. 

Several other analyses were attempted on the macaque and human data sets, but 

they did not reach significance. A latent growth curve analysis was performed on the 

macaque data to explore changes in connectivity strengths over time. This analysis 

models the trajectory of an outcome measure across the five time points, fits a line 

(linear, quadratic, or cubic) to the data, and reports the intercept and slope of the best-

fitting line. The outcome measure could consist of a single connection, such as the 

connectivity strength between the amygdala and primary visual cortex at each time point, 

or it could consist of a latent variable measure derived from all connections within a 

network grouping, such as all amygdala-visual network connections. Once a best-fitting 

line was modeled across the data from all subjects, known as the “unconditional model,” 

predictor variables like perinatal WSD exposure could be applied in a “conditional 

model” to examine whether the predictor resulted in a change in the trajectory. A 

significant difference in intercept between perinatal CTR and WSD subjects would 

indicate that the functional connectivity of the outcome connection was different prior to 

the 4 month time point, and a significant difference in slope would indicate that perinatal 

WSD exposure impacted the rate of change in the strength of the connection over time. 
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This analysis would have been useful for characterizing how connectivity changes across 

development with perinatal WSD exposure. However, the model was unable to fit an 

unconditional model for any single connection between the amygdala and any of the 

sensory ROIs used in the present study, and it was unable to fit an unconditional model 

for any latent variables derived from any network grouping that included the amygdala. 

Sensory-only connections and network groupings, which did not include a connection to 

the amygdala, were not tested in this analysis, as the goal was to test for altered 

connectivity to the amygdala as a potential explanation for SOR behaviors that are 

characterized by negative emotional responses to sensory stimuli. The latent growth 

curve model was unable to fit the data because there was high variance in connectivity 

strengths across subjects. For example, some subjects would start with a positive 

correlation for a given connection at 4 months of age, drop to a negative correlation by 11 

months, and return to a positive correlation by 36 months of age, while other subjects 

would display the opposite trajectory. The resulting average from these data points would 

be a flat line around a correlation of 0, and the high variance across subjects would yield 

poor model fit metrics, meaning the model was not valid for fitting the data. Given that a 

coherent trajectory could not be modeled for any connection, it was determined that 

evaluating connections at each time point separately would be necessary. The strength of 

the FRF is that it can evaluate the entire set of connections, including sensory-only 

connections, in the same model, and the variability across subjects and connections 

would be beneficial as it would add information to the model. A future direction for the 

macaque data would be to apply another type of analysis that might be more sensitive at 

detecting focal differences between groups. The sparse supervised principal component 
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analysis (SSPCA) is one such analysis that is better equipped to identify focal differences 

across a wide set of features and may be better suited to the macaque data. 

The human data similarly was unable to train the FRF, so several other analytical 

methods were pursued to attempt to better characterize the data. A partial least squares 

regression (PLSR) was performed to see whether the network groupings of the 378 

features would form sub-groups, or components, that were associated with the SOR score 

outcome measure. This analysis yielded poor performance and could not be used to 

assess the data. Similarly, a repeated measures ANOVA demonstrated that there was no 

significant interaction between network grouping and SOR score; this was the same when 

using 4 SOR scores as when using 2, with the scores of “2,” “3,” and “4” aggregated into 

a group together. This analysis was adapted from a previously described method 

(Miranda-Dominguez et al., 2022). Lastly, an iterative SSPCA (Github, 2023) was run to 

attempt to identify focal differences across the set of 378 connections between the 4 SOR 

groups. The analysis implements a sparsity penalty that reduces the contributions of 

features with small effects so as to reduce their propensity to act as noise within the data 

set. This analysis was run with 3 principal components, using the delta kernel for the 

SOR output variable, with the sparsity penalty set to either 10 (a relatively low value) or 

the square root of 300 (relatively high, as the maximum value is the square root of 378, 

the number of features). However, the misclassification error rate never deviated 

significantly from chance, indicating that the set of 378 connections could not be used to 

reliably predict the SOR score in children, even when adjusting for noise. 

Another major limitation to this study was the small sample sizes for the macaque 

data. Increased sample sizes may have reduced the variability in the connectivity patterns 
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observed within each group, which would have aided FRF model prediction. 

Additionally, even if perinatal WSD exposure was not associated with differences in 

connectivity at later time points, it would be interesting to see whether differences would 

emerge if only subjects from the perinatal WSD group that displayed the component 

behaviors of ASD were retained. A greater number of subjects would likely have been 

needed to pursue this analysis. Future studies could test for behaviors common to SOR in 

this cohort to assess whether there is an association between perinatal WSD exposure, 

SOR behavior, and differences in the functional connectivity of sensory processing areas 

at 4 months of age. 

Similarly, the SOR score in humans may have been a poor outcome measure since 

it was a single item that relied on parental reporting of a subjective behavior. A more 

detailed series of questions or tests for SOR may have improved classification. While 

such a sample was obtained for this study—the functional connectivity strengths of 

children from the Autism Brain Imaging Data Exchange (ABIDE) who had received a 

valid diagnosis of ASD were acquired (ABIDE, 2017)—too few subjects had imaging 

data that passed the motion quality control standards set for this study, so the larger 

cohort from the ABCD study was selected instead. Future directions for this line of 

research could ensure larger samples of subjects with detailed behavioral data are 

acquired to reduce variability in imaging outcomes. 

Another future direction for this study includes collecting imaging data in 

children across development. Since strong differences were found at the 4 month old age 

point in macaques, it is possible that distinct differences would be found in human 

infants, as well. This could be true for many neurodevelopmental disorders and brain 
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connections. Characterizing functional connectivity profiles at these early time points 

may lead to the development of a diagnostic tool that helps clinicians identify, validate, 

or predict neurodevelopmental outcomes. Early detection and intervention could allow 

caregivers to better support and accommodate these individuals. Additionally, a cross-

species comparison of functional connectivity in 1 year old humans with SOR symptoms, 

or who later develop SOR symptoms, to the 4 month old macaques in this study could 

test for a relationship between perinatal WSD exposure and SOR, increasing what is 

known about perinatal risk factors for SPD. 

 

2.5.6. Conclusions 

Perinatal WSD exposure was associated with altered connectivity in sensory and 

emotional processing areas at 4 months of age but not at 6, 11, 21, or 36 months of age in 

macaques. These impacts are characterized primarily by decreased connectivity within 

the somatomotor network, within the visual network, and between the somatomotor and 

auditory networks; increased connectivity between the auditory and visual networks; and 

mixed effects between the somatomotor and visual networks. Connections to the 

amygdala were only weakly impacted. These results suggest that a prenatal risk factor for 

ASD, which is a disorder that is highly comorbid with SPD, may disrupt sensory 

connectivity during infancy, supporting the theory that altered sensory processing may 

serve as an origin for the symptoms of SPD. Interestingly, the continuation of postnatal 

WSD consumption was not sufficient to generate strong connectivity differences at 6 

months of age, suggesting that the period of rapid synaptogenesis during the third 

trimester and first few months of life may be more susceptible to the impacts of WSD 
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exposure. The functional connectivity patterns of these same ROIs in preadolescent 

children with SOR were also unable to train an FRF model, as was the case in the 

developmentally comparable 36 month old macaques, demonstrating a consistency in 

null results across species. Taken together, these results suggest that the functional 

connectivity of sensory networks and the amygdala are largely robust against the 

influences of perinatal WSD exposure with age. However, the nature of the FRF analysis 

and the limitations of small sample sizes in the macaque cohort mean that nuanced 

differences in these or other sensory connections across the brain at later ages cannot be 

ruled out. Follow-up analyses could probe for focal differences in specific connections to 

ascertain whether any sensory-specific impacts remain at the later time points. Further 

research is needed to understand the remodeling mechanisms that alter brain circuitry by 

4 months of age and the processes that mitigate differences at later ages. Lastly, 

additional cross-species comparisons are encouraged to better determine whether 

perinatal WSD exposure is a prenatal risk factor for SPD.  
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2.6. Supplementary Materials 

2.6.1. Methods and Materials 

2.6.1.1 Macaque Adiposity Measurements and Statistical Analysis 

The imaging results from the 36-month age group were additionally used to 

predict the pre-pregnancy adiposity of each subject’s mother. Adiposity could not be 

predicted at the other ages due to missing adiposity data. Adiposity was measured with 

dual-energy X-ray absorptiometry scans as previously described (Dunn et al., 2022). The 

percent body fat of each dam prior to the pregnancy with the subject was used as the 

predicted value for the regression analysis. This measure was divided into two categories 

to additionally create a binary classification measure. Dams with a percent body fat less 

than or equal to 19.6% were classified as “low adiposity,” and those with greater than 

19.6% body fat were classified as “high adiposity.” This cut-off was chosen as it roughly 

corresponds to a body mass index (BMI) of 30 in humans, where values above 30 are 

considered “obese.” Maternal pre-pregnancy percent body fat (mean + SEM) was 19.25 + 

2.25% for the perinatal CTR group and 21.37 + 2.25% for the perinatal WSD group in 

the present study. The number of subjects classified as being exposed to low and high 

maternal adiposity across the other demographic groups is represented in Table 2.6. 

A regression FRF model was run on the 36-month old subjects using the 378 

functional connections to predict percent body fat. A separate classification FRF model 

was run on the same subjects and connections to predict maternal adiposity group. Both 

models implemented 5-fold cross-validation with 6 repetitions, 1000 trees, and 90% of 

the data reserved for the training set, consistent with the parameters of the models used 

for the longitudinal analysis of perinatal WSD exposure.  
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Table 2.6. Demographic composition of macaque subjects at the 36 month time 

point that were exposed to maternal low or high adiposity. 

Subjects in 36-month Group Classified by Maternal Adiposity Exposure (Low, High Adiposity) 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 2, 0 2, 1 5, 0 1, 0 0, 1 0, 0 0, 4 0, 0 
Female 2, 0 2, 0 1, 4 4, 0 0, 4 0, 0 0, 2 0, 0 
Total 35 

 

2.6.1.2 Macaque Amygdala Marker of Neuroinflammation and Statistical Analysis 

The imaging results from the 36-month age group were additionally used to 

predict the number of microglia and macrophages in the amygdala of each subject. This 

neuroinflammatory measure was collected for only a subset of subjects at 36 months of 

age following neuroimaging, so the analysis could not be conducted at other time points. 

As only 10 subjects had functional connectivity and amygdala staining data, results 

should be considered preliminary. 

Following imaging, the number of microglia and macrophages, identified by 

immunofluorescent staining of ionized calcium-binding adaptor protein-1 (Iba1), was 

quantified as previously described (Dunn et al., 2022). Images were collected across 7 

subregions of the amygdala. The average number of Iba1-stained cells per standard-sized 

image was calculated across all images collected at each subregion for each subject. 

Every subject had images from at least five of the seven amygdala subregions. This 

yielded between five and seven average counts per subject. The average of these average 

counts was calculated. This final value was considered the average number of Iba1-

stained cells across the entire amygdala for that subject. All amygdala staining and cell 
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counting procedures were conducted by members of the Sullivan lab; Iba1-stained cell 

counts averaged across the amygdala for each subject were shared for use in the current 

analysis. 

The demographic composition of the subjects included in this analysis is 

represented in Table 2.7. Offspring that were exposed to a perinatal WSD had a slightly 

greater number of Iba1-stained cells across the amygdala (Figure 2.6), with a group 

average of 23.6 cells compared to 21.3 cells for controls (not statistically significant). 

 

Table 2.7. Demographic composition of macaque subjects at the 36 month time 

point that were included in the amygdala staining analysis.  

Subjects in 36-month Group with the Amygdala Neuroinflammatory Measure 

Scan 
Protocol 

#1 #2 

Perinatal 
Diet 

CTR WSD CTR WSD 

Post-
weaning Diet 

CTR WSD CTR WSD CTR WSD CTR WSD 

Male 1 0 1 0 1 0 1 0 
Female 2 0 1 0 1 0 2 0 
Total 10 
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Figure 2.6. Iba1-stained cell count in the amygdala at 36 months. 

The distribution of the number of Iba1-stained microglia and macrophages per image 

averaged across the amygdala trended slightly higher for offspring exposed to a perinatal 

WSD (n = 5) compared to controls exposed to a perinatal CTR diet (n = 5) at 36 months 

of age (p > 0.05, Wilcoxon rank sum test). Wide bars refer to the 25th/75th percentiles; 

thinner bars refer to the 2.5th/97.5th percentiles. Abbreviations: NS, non-significant. 

 

All connections strictly between the amygdala and the sensory networks, totaling 

53 connections including the connection between both hemispheres of the amygdala, 

were selected as training features for an FRF regression model. The model implemented 

6-fold cross-validation with 5 repetitions, 3000 trees, and 90% of the data reserved for the 

training set. These parameters differed from those used in the longitudinal analysis of 
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perinatal WSD exposure with the goal of mitigating the high variance from the smaller 

sample size. 

Additionally, all connections between and within the sensory areas and the 

amygdala, totaling 378 connections, were used to predict the average Iba1-stained cell 

count across the amygdala using a PLSR. 

 

2.6.2. Results 

2.6.2.1 Connections between sensory networks and the amygdala do not predict 

maternal adiposity at 36 months of age 

Maternal adiposity, represented as percent body fat in a regression model and as 

binary categories in a classification model, was not predicted by the 378 connections 

between sensory networks and the amygdala at 36 months of age. Performance metrics 

for the FRF regression model, including the R, ICC, and MAE, were not significantly 

different between the observed and null (permuted data) models (p > 0.05 for each 

metric). Figure 2.7 demonstrates the weak, negative correlation between observed and 

predicted maternal body fat percentages for each subject, indicating the inability of the 

model to accurately predict maternal adiposity. Performance metrics for the FRF 

classification model were similarly poor, with the average overall accuracy, specificity, 

and sensitivity of the model lower for the observed model than for the null model (data 

not shown). As neither model demonstrated significant predictive capabilities, these 

models are not valid for predicting a subject’s exposure to maternal adiposity from the 

functional connectivity within and between their sensory networks and the amygdala. 
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Figure 2.7. Adiposity predictions from the 36 month regression model. 

A weak, negative correlation is demonstrated between the observed and predicted 

maternal pre-pregnancy adiposity values for each subject at 36 months of age. Adiposity 

is represented as percent body fat. Performance metrics for the FRF regression model, 

including the R, ICC, and MAE, were not significantly different between the observed 

and null (permuted data) models (p > 0.05 for each metric). Abbreviations: ICC, 

intraclass-correlation coefficient; MAE, mean absolute error; R, Pearson’s correlation 

coefficient. 
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2.6.2.2 Amygdala connectivity does not predict amygdala neuroinflammation at 36 

months of age 

Measures of amygdala connectivity and neuroinflammation were collected in 

juvenile macaques at 36 months of age (N = 10) to explore a potential relationship 

between neuroinflammation and altered neural circuitry in a region implicated in SPD. 

The connectivity strengths of the 53 connections between the amygdala and all ROIs 

within the sensory networks (Bezgin et al., 2012) were used to train FRF model 

prediction. The predicted outcome variable was the average number of Iba1-stained 

microglia and macrophages across the amygdala of each subject. A strong, positive 

correlation between observed and predicted Iba1-stained cell counts would have 

demonstrated model accuracy, but this was not achieved by the model (Figure 2.8). 

Performance metrics for the FRF regression model, including the R, ICC, and MAE, 

were not significantly different between the observed and null (permuted data) models (p 

> 0.05 for each metric). Thus, the model was unable to use amygdala connectivity to 

predict a measure of neuroinflammation in the amygdala of offspring. 
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Figure 2.8. Amygdala Iba1-stained cell count predictions from the 36 month 

regression model. 

The predicted number of Iba1-stained microglia and macrophages across the 

amygdala is compared to the observed number for each subject at 36 months of age (N = 

10). The weak, negative correlation between observed and predicted Iba1-stained cell 

count demonstrates the inability of the model to accurately predict a marker of amygdala 

neuroinflammation from amygdala connectivity strengths. Performance metrics for the 

FRF regression model, including the R, ICC, and MAE, were not significantly different 

between the observed and null (permuted data) models (p > 0.05 for each metric). 

Abbreviations: ICC, intraclass-correlation coefficient; MAE, mean absolute error; R, 

Pearson’s correlation coefficient. 
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Additionally, a PLSR was used to determine whether network groupings within 

the broader set of 378 connections between and within the sensory areas and the 

amygdala could predict average amygdala Iba1-stained cell count. As only 10 subjects 

were available for this analysis, a within-sample approach was used to maximize the 

available data. This approach revealed that several network groupings were able to 

predict cell count, as determined by a strong correlation between observed and predicted 

cell count. The network groupings with an r of 1.0 included somatomotor-auditory 

connections (8 components, p < 0.01), somatomotor-somatomotor connections (5 

components, p < 0.01), amygdala-somatomotor connections (6 components, p < 0.01), 

and somatomotor-visual connections (5 components, p < 0.01), indicating that these 

connections were the most predictive of cell count. The connectivity within the visual-

visual and visual-auditory network groupings similarly generated models that strongly 

predicted cell count with r values of 0.88 and 0.86 respectively (2 components and p < 

0.01 for each). The auditory-auditory, amygdala-visual, and amygdala-auditory network 

groupings, however, were less predictive of cell count (r = 0.62, 0.61, and 0.59, 

respectively, for 2, 1, and 1 component, respectively, with p < 0.05 for all), indicating 

that there was more noise leading to weaker associations within the samples. 

The PLSR was repeated using an out-of-sample approach to determine whether 

these findings were generalizable. Of the 10 subjects, 9 were used to train a model, and 

the amygdala cell count of the 10th subject was predicted using its functional 

connectivity. This prediction was repeated once for each subject, yielding 10 model runs 

per network grouping. The distribution of the mean absolute error of these predictions 

was compared to that of 1,000 null models wherein the data were randomly permuted. 
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Using this approach, no network grouping achieved a significant or strong r value above 

0.07 for any number of components. Additionally, the effect size (Cohen’s d) between the 

two distributions of mean absolute error was small for each network grouping, indicating 

that the ability of the network connections to predict cell count in a novel sample is not 

meaningfully better than chance. This approach was similarly repeated with the cell count 

data normalized by a Box-Cox transformation rather than by z-scores, and was repeated 

while leaving 3 subjects out instead of 1, with similar non-significant findings. Thus, 

although the connectivity of certain network groupings was able to predict cell count in a 

data set that had been used to train the model, no network grouping was able to 

adequately predict cell count in a novel sample, demonstrating that the observed 

relationship between connectivity and cell count was not generalizable. The number of 

microglia in the amygdala likely does not have any strong bearing on the connectivity of 

sensory areas and the amygdala, though a larger sample size would be useful in 

confirming this finding. 
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CHAPTER 3.  PERINATAL WESTERN-STYLE DIET EXPOSURE 

ASSOCIATED WITH DECREASED MICROGLIAL COUNTS 

THROUGHOUT THE ARCUATE NUCLEUS OF THE 

HYPOTHALAMUS IN JAPANESE MACAQUES 

3.1 Abstract  

Perinatal exposure to a high-fat, high-sugar, Western-style diet (WSD) is 

associated with multiple neurodevelopmental disorders, including autism spectrum 

disorders and attention-deficit hyperactivity disorder. This association may have an 

underlying inflammatory component, as consumption of a WSD during pregnancy can 

lead to an elevated inflammatory environment. Indeed, our group has previously shown 

that prenatal WSD exposure is associated with increased markers of inflammation in the 

placenta and fetal hypothalamus in non-human primates. In this follow-up study, we 

sought to determine whether this heightened inflammatory state persisted into the 

postnatal period, as prenatal exposure to inflammation has been shown to reprogram 

offspring immune function, and long-term neuroinflammation would present a potential 

means for prolonged disruptions to neurodevelopment. Neuroinflammation was assessed 

in one-year-old offspring by counting microglia and macrophages in the region of the 

hypothalamus examined in the fetal study, the arcuate nucleus (ARC). The ARC was 

chosen as it is sensitive to circulating immune factors due to its highly permeable blood-

brain barrier. Resident microglia and peripherally-derived macrophages were 

immunofluorescently stained with their shared marker, ionized calcium-binding adaptor 
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protein-1 (Iba1), and quantified in eleven regions along the rostral-caudal axis of the 

ARC. A mixed effects model revealed main effects of perinatal diet (p = 0.011) and 

spatial location (p = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was 

associated with a slight decrease in the number of Iba1-stained cells, and cells were more 

densely located in the center of the ARC. These findings suggest that the heightened 

inflammatory state experienced in utero does not persist postnatally. This inflammatory 

response trajectory could have important implications for understanding how 

neurodevelopmental disorders progress. 

 

3.2 Introduction 

A Western-style diet (WSD), which is calorically dense and typically high in 

saturated fats and sugar, is a prenatal predictor of behaviors common to multiple 

neurodevelopmental disorders including autism spectrum disorders and attention-deficit 

hyperactivity disorder (Gawlińska et al., 2021; Fernandes et al., 2021; Howard et al., 

2011). Animal studies have similarly demonstrated an association between prenatal WSD 

exposure and increased anxiety-like behaviors (Sullivan et al., 2010; Peleg-Raibstein et 

al., 2012). This may have far-reaching impacts, as the consumption of a WSD is highly 

prevalent among individuals in the US (Hohos and Skaznik-Wikiel, 2017). 

A potential mediator for how prenatal diet might impact offspring 

neurodevelopment is through maternal inflammation. Circulating inflammatory signals 

resulting from WSD consumption can impact the developing fetus by crossing or acting 

on the placental barrier, leading to increased exposure to in utero inflammation (Bolton 

and Bilbo, 2014; Bordeleau et al., 2021; Denizli et al., 2022). 
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Using a non-human primate (NHP) model of WSD-induced obesity, our group 

has previously shown that a prenatal WSD is associated with increased levels of 

inflammatory cytokines in the placenta and fetal hypothalamus, as well as increased 

microglial staining in the fetal arcuate nucleus (ARC) of the hypothalamus (Grayson et 

al., 2010). These results are characteristic of a heightened inflammatory state. Prenatal 

inflammation has been shown to disrupt neuronal proliferation, migration, and other 

aspects of circuit formation that may contribute to the progression of neurodevelopmental 

disorders (Vasistha et al., 2020; Dong et al., 2020; Denizli et al., 2022). Postnatal 

inflammation, and especially microglial activation, may similarly impact 

neurodevelopment by altering synaptic pruning and other processes. Given that prenatal 

exposure to inflammation is associated with altered postnatal immune states in offspring 

(Denizli et al., 2022), we hypothesized that the WSD-induced microglial response found 

in the fetal offspring would persist postnatally and continue to disrupt 

neurodevelopmental processes. To explore this possibility, the present study assessed 

neuroinflammation in the ARC of one-year-old offspring who were exposed to a perinatal 

WSD. 

The hypothalamus is an ideal region to probe for neuroinflammation because it is 

located in a periventricular area of the brain where the blood-brain barrier (BBB) is 

generally more permeable to cytokines and other infiltrating inflammatory factors like 

macrophages (Rijnsburger et al., 2017; Haddad-Tóvolli et al., 2017). Exposure to these 

factors could induce microglial activation, which is associated with increased microglial 

proliferation (Sarlus and Heneka, 2017; Belhocine et al., 2022) and migration (Lively and 

Schlichter, 2013). It is therefore expected that individuals with inflammation that persists 
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from the perinatal exposure to WSD would have a greater number of microglia and 

macrophages present in the ARC. To assess this, microglia and macrophages in ARC 

tissue were stained with their shared protein marker, ionized calcium-binding protein-1 

(Iba1), imaged via fluorescent microscopy, and counted. Cell counts were quantified at 

eleven regions along the rostral-caudal axis of the ARC to further determine whether a 

perinatal WSD is associated with region-specific differences. Considering that 

functionally distinct neuronal populations are distributed unevenly throughout the ARC, 

spatially-dependent impacts to microglial density could have specific functional 

repercussions. However, the distribution of microglia within the ARC under control 

conditions has not been sufficiently characterized in NHPs. This study addressed that gap 

by assessing counts across the full length of the ARC. 

Our study revealed two main findings. First, perinatal WSD was associated with a 

slight but significant decrease in the number of Iba1-stained cells across the full ARC, 

which is opposite of the effect seen in fetal tissue. Consistent with other findings, this 

may elucidate a trajectory where prenatal WSD exposure induces a heightened 

neuroinflammatory response in utero that resolves when WSD is discontinued after 

weaning, distinguished by a potentially compensatory decrease in microglial proliferation 

and macrophage infiltration over time. Second, we found that Iba1-stained cells were 

more densely located in the center of the ARC compared to the rostral and caudal ends, 

independent of perinatal diet. Thus, periods of elevated inflammation and microglial 

activation may disproportionately impact centrally-located subpopulations of the ARC, 

such as those responsible for feeding. Taken together, these findings could inform 

previously demonstrated associations between WSD exposure, neuronal impacts in the 
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ARC, and decreased feeding behaviors in our NHP model. More broadly, these findings 

could have important implications for understanding how perinatal WSD exposure 

impacts neural circuit formation and leads to neurodevelopmental disorders. 

 

3.3 Materials and Methods 

3.3.1. Animal Model 

This study used the same animal model as in Study 1, though different sets of 

subjects were included in the sample. Information about the animal model is repeated 

here with updated demographic information specific to the samples used in the present 

study. 

All animal procedures were in accordance with National Institutes of Health 

guidelines on the ethical use of animals and were approved by the Oregon National 

Primate Research Center (ONPRC) Institutional Animal Care and Use Committee. 

 

3.3.1.1 Adult Female Animals 

Adult Japanese macaques (Macaca fuscata) were housed in indoor/outdoor pens 

containing 4–12 individuals each (male/female group ratio of 1-2/3-10). Animals were 

given ad libitum access to food and water. Breeding groups were assigned to either the 

experimental control (CTR) diet or Western-style diet (WSD) and were provided with 

fruits and vegetables for daily nutritional enrichment. Experimental diet compositions are 

described below. Females consumed their assigned experimental diet for at least fourteen 

months prior to offspring birth. Females were sedated two to three times during 

pregnancy for fetal dating and third trimester measures. Pregnant females gave birth 
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naturally in their social groups. Maternal age at offspring birth (mean + SEM) was 7.96 + 

0.53 years for the CTR group and 9.91 + 0.68 years for the WSD group in the present 

study. Maternal pre-pregnancy weight (mean + SEM) was 8.61 + 0.72 kg for the CTR 

group and 10.83 + 0.88 kg for the WSD group in the present study. 

 

3.3.1.2 Juvenile Offspring 

The juvenile subjects in the present study were born over the course of four 

consecutive years. While offspring began consuming the maternal diet at 4 months of 

age, it became their primary food source by 6 months. This continued exposure to the 

same diet from gestation through lactation is therefore considered to be a perinatal rather 

than a purely prenatal dietary exposure. At a mean age of 8.00 ± 0.22 months for the CTR 

group and 8.82 + 0.27 months for the WSD group (mean + SEM), the offspring were 

weaned and relocated to group-housing with 6-10 similarly aged juveniles and 1-2 

unrelated adult females. All juvenile subjects consumed the CTR diet after weaning. 

Necropsy occurred at a mean age of 12.80 + 0.20 months for the CTR group and 13.70 + 

0.25 months for the WSD group (mean + SEM). 

A total of 16 juvenile subjects were selected for this study with groups balanced 

evenly for perinatal diet and sex. However, two female subjects were not included in the 

final analysis due to poor tissue staining. Of the remaining 14 subjects included in the 

analysis (CTR n = 7), each diet group had 3 female offspring. No maternal siblings were 

included; paternal identification was unknown. 
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3.3.1.3 Dietary Information 

Regarding energy sources, the CTR diet (Monkey Diet no. 5000, Purina Mills) 

provided approximately 14.7% of calories from fat, 58.5% from carbohydrates, and 

26.8% from protein. The WSD (TAD Primate Diet no. 5L0P, Test Diet, Purina Mills) 

provided approximately 36.6% of calories from fat, 45.0% from carbohydrates, and 

18.4% from protein. Representative of a typical Western-style diet, the chemical 

composition of the experimental WSD contained a larger proportion of fats and sugars 

compared to the CTR diet. Saturated fat comprised approximately 0.9% of the CTR diet 

formulation and 5.4% of the WSD. Monounsaturated and polyunsaturated fats comprised 

4.4% of the CTR diet and 9.0% of the WSD. Sugars (primarily fructose and sucrose) 

comprised approximately 3.1% of the CTR diet and 18.9% of the WSD. The animals that 

were fed the WSD were also provided with calorically dense treats (35.7% of calories 

from fat, 56.2% from carbohydrates, and 8.1% from protein) once per day. Macronutrient 

composition was obtained from diet specification sheets and is previously described 

(Thompson et al., 2017). 

 

3.3.2. Tissue Collection 

Juvenile brain tissue was obtained from the Obese Resource tissue bank. The 

tissue was collected as previously described (Thompson et al., 2017; Sullivan et al., 2010; 

Grayson et al., 2006; Rivera et al., 2015). Euthanasia adhered to the AVMA Guidelines 

on Euthanasia in Animals and standard operating procedures set by ONPRC. ONPRC 

Necropsy staff sedated the animals with Ketamine (15-25 mg/kg i.m.) before 

transportation to the necropsy room. Animals were deeply anesthetized with sodium 



104 
 

pentobarbital (25-35 mg/kg i.v.). After confirming anesthetic depth via loss of palpebral, 

corneal, pain, and pharyngeal reflex, the abdomen was incised and terminal blood 

samples were collected from the aorta or caudal vena cava. Exsanguination was 

completed via aorta severance. Brains were perfused by flushing the carotid artery with 

0.9% heparinized saline (0.5-1 l) followed by 4% paraformaldehyde (PF, approximately 

1-2 l) buffered with sodium phosphate (NaPO4, pH 7.4) until fixed. Brains were 

partitioned into blocks and underwent the following applications: 24 hours at 4°C in 4% 

PF, 24 hours in 10% glycerol buffered with NaPO4, 72 hours in 20% glycerol solution, 

frozen in -50°C 2-methylbutane, and stored at -80°C until sectioning. Coronal sections of 

the hypothalamus were collected in 1:24 series at a thickness of 25 µm using a freezing 

microtome as previously described (Grayson et al., 2006). Sections were stored at -80°C 

in cryoprotectant until staining. 

 

3.3.3. Immunofluorescence for Iba1 

Ten coronal brain sections, representing as much of the full rostral-caudal length 

of the ARC as available, were selected per subject. These sections were then grouped into 

two replicate samples of five sections each, with each replicate representing a roughly 

matched representation of the ARC. Replicates underwent the staining protocol four 

weeks apart. Slides were imaged within two to three weeks of staining. Order of staining, 

slide mounting, and imaging were balanced for perinatal diet and offspring sex and 

randomized as much as possible. The person performing the procedures was blinded to 

animal group and demographics. 
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Tissue sections were washed in potassium phosphate buffered saline (KPBS) and 

then blocked in 5% non-sterile donkey serum (NDS; Lot #3112604 and #3140992; 

Catalog #S30-100ML; Sigma-Aldrich) in 0.4% Triton-X into KPBS for 60 minutes at 

room temperature. The primary antibodies consisted of rabbit anti-Iba1 (Lot #PTK1381 

and #PTG5394; Catalog #019-19741; 1:1,500; Wako Chemicals USA), for microglia and 

macrophage identification, and mouse anti-NeuN (Lot #GR3247200-1; Catalog 

#ab104224, 1:1000; Abcam) for identification of neuronal somas. The primary antibodies 

were diluted in 2% NDS into KPBS and applied to tissue sections for 60 minutes at room 

temperature followed by 22 hours at 4°C. Tissue sections were then washed in KPBS. 

The secondary antibodies for Iba1 (Donkey anti-Rabbit Alexa Fluor 488; Lot #2045215; 

Catalog #A21206; 1:1,000; Invitrogen) and NeuN (Donkey anti-Mouse Alexa Fluor 568; 

Lot #GR3238496; Catalog #ab175700-2; 1:500; Abcam) were diluted in 2% NDS into 

KPBS and were applied for 60 minutes at room temperature. Sections were washed again 

in KPBS and then counterstained using DAPI (Lot #2016420; Catalog #D3571; 

Molecular Probes) at a concentration of 3 μM in KPBS for 3 minutes at room 

temperature. After a final set of washes in KPBS, sections were mounted on gelatin 

subbed slides and coverslipped with ProLong Gold Antifade Mountant (Lot #2001971; 

Catalog #P36930; Invitrogen). Slides were stored at 4°C. 

 

3.3.4. Image Collection 

Images were captured using fluorescent microscopy on an Olympus VS110-S5 

virtual slide scanner (Olympus America Inc., Center Valley, PA, USA). The microscope 

employed a BrightLine Sedat filter set (Semrock, Inc., Rochester, NY, USA) which 
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offered filters for 405 nm, 488 nm, and 561 nm optimized for DAPI, Alexa Fluor 488, 

and Alexa Fluor 568 respectively. The imaging plane was determined by manually 

focusing on DAPI staining. The fluorescent excitation was applied sequentially with an 

exposure time of 100 ms, 250 ms, and 175 ms for the 405 nm, 488 nm, and 561 nm filters 

respectively. One large area encompassing the ARC and surrounding regions was imaged 

per hemisphere at 20x for a total of twenty hemisphere images per subject (Figure 

3.1C,D). Each hemisphere image was anatomically matched to one of eleven coronal 

locations containing the ARC as defined in the Paxinos Stereotaxic Atlas (Paxinos et al., 

2009). Atlas-matched locations ranged between an interaural position of 17.45 mm (most 

rostral position) and 12.90 mm (most caudal position) rostral to ear-bar zero (EBZ), 

which corresponds to Bregma -04.50 mm and -09.00 mm (Figure 3.1A). 

The size of the ARC varied across atlas-matched locations. To ensure cell counts 

were standardized for total ARC area across atlas-matched locations, the ARC was 

subdivided into standard-sized boxes. First, the perimeter of the ARC was determined 

based on structural landmarks. For example, in most sections located at an interaural 

position between 14.70 and 16.95 mm, the ventromedial hypothalamus was characterized 

by a high density of neurons stained brightly with NeuN, and the median eminence was 

characterized by a relative lack of NeuN-stained cells, allowing for the area of the ARC 

to exist between those two easily-identified structures. Then, square boxes of 1125 x 

1125 pixels in size (approximately 360 x 360 μm) were arranged in a configuration that 

maximized the number of boxes that could fit within the confines of the ARC (Figure 

3.1D). Each hemisphere image was then cropped in accordance with the placement of the 
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boxes. Each hemisphere image generated between one and seven cropped box images. A 

total of 837 cropped box images were collected from the 14 juvenile subjects. 

Cropped box images, henceforward referred to as “images,” were evaluated for 

focus quality. Images that were completely out-of-focus or were otherwise too blurry to 

be accurately counted, manually or automatically, were excluded from analysis. Poor 

quality images were found in generally equal proportions across all diet and sex groups. 

After excluding 130 images, a total of 707 images were included for the final analysis. 

 

 

Figure 3.1. Image collection protocol. 

After identifying the location of a slice within the ARC, immunofluorescent images were 

processed and cells were counted using ImageJ. (A) The ARC is located 17.45 mm 

(position A) to 12.90 mm (position B) rostral to ear bar zero (EBZ; position C). (B) Atlas 

reference for 15.15 mm rostral to EBZ. Section position was determined based on 

structural landmarks apparent in the fluorescent image including observation of the 

median eminence and shape of the ventromedial hypothalamus. (C) Brightfield overview 

image at 10x magnification of a coronal section 15.15 mm rostral to EBZ. ARC is located 
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at the base of the brain alongside the third ventricle. Box overlay denotes the area that 

was fluorescently imaged. (D) Immunofluorescent image from the box overlay area in 

(C). Immunofluorescent images were acquired on a slide scanner at 20x. Blue = DAPI, 

Green = Iba1, Red = NeuN. Standard-sized boxes (white) of 1125 x 1125 pixels 

(approximately 360 x 360 μm) were placed over the ARC to maximize coverage of the 

area without overlapping neighboring regions. These boxes were used to crop the 

immunofluorescent image into standard-sized ARC images that were processed and 

underwent cell counting. (E) One of the cropped ARC images from the source image in 

(D). ARC images were processed in ImageJ to display the DAPI channel in cyan and the 

Iba1 channel in yellow, allowing for the cell bodies of interest to appear teal in color. The 

automated color thresholding method, Maximum Entropy, was optimized to recognize 

the teal color ranging between 50 and 109 (hue display limits) and produce the binary 

image shown in (F). (F) Binary images derived from the overlap of DAPI and Iba1 

staining were used in the automated counting algorithm. (G) Red areas denote which cell 

objects from the binary image in (F) were counted by the automated counting algorithm 

optimized for objects larger than 110 square pixels in area. This image shows that all 

cells visible in (E) were successfully counted. Brain illustrations in (A) and (B) were 

adapted with significant changes from the Paxinos Stereotaxic Atlas (Paxinos et al., 

2009). Abbreviations from (B): ARC, arcuate nucleus; ME, median eminence; OPT, 

optic tract; LTu, lateral tuberal nucleus; VMH, ventromedial hypothalamic nucleus. 
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3.3.5. Automated Cell Counting 

ImageJ software (Fiji; Schindelin et al., 2012) was used to develop an automated 

procedure that would process the images and measure the number of Iba1-stained cells 

per image. Before these image processing and cell counting parameters were fully 

optimized, thresholding strategies were evaluated. First, the channel-specific images from 

the Iba1 and DAPI channels were pseudocolored yellow and cyan respectively and 

merged to form an image that displayed the overlap of Iba1 staining and cell nuclei 

(Figure 3.1E). This highlighted microglia and macrophage cell bodies in teal and 

distinguished them from any soma-shaped processes and artifacts in yellow. The resulting 

images were considered “raw” as their intensity values had not been manipulated. 

Preliminary testing revealed that applying ImageJ’s color threshold to the merged images 

led to a substantially more accurate cell count than applying a grayscale intensity 

threshold to single-channel Iba1-only images. The color threshold was based on adjusting 

the display limits, or pixel values ranging from 0 to 255, of the hue component of the 

Hue, Saturation, and Brightness (HSB) settings. The merged images and promising hue 

display limit options were therefore chosen for use in the optimization analysis. To 

determine the full set of optimal parameter settings that would generate automated cell 

counts with the greatest accuracy, a train-then-test approach was utilized (Figure 3.2). 

Two independent sets of twenty images each were selected for the train-then-test 

approach. These image sets were matched across a range of image quality characteristics, 

such as acceptable variations in staining intensity and focus, and balanced for 

experimental diet group and sex. Six images from each set were derived from offspring 

that had been exposed to a perinatal WSD and post-weaning WSD; however, these 
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subjects and their images were not included in the final analysis due to their incongruent 

post-weaning diet. One image set was exposed to the full range of parameter settings to 

assess the accuracy of each combination (“Train Set”), and the other set was reserved for 

validating the combination that achieved the greatest accuracy (“Test Set”). The number 

of Iba1-stained cells per image were manually counted for each image in each set by two 

blinded, trained observers. The counts were similar enough that a single observer’s 

counts were recorded for every image rather than deriving an average count. 

The procedure for determining the optimal parameters settings that would lead to 

the most accurate automated count included the following steps. 1) The color-merged 

images underwent one of four processing methods to better distinguish cell bodies from 

the background. 2) The processed images underwent a color threshold which isolated the 

teal-colored cell bodies by adjusting the lower and upper hue display limits, and a 

thresholding method was applied to pixels in the narrowed color range. 3) The color-

thresholded, binary images underwent an object size threshold where the “Analyze 

Particles” function was used to generate a count of any object that covered an area greater 

than a set minimum size. 4) The automated count was compared to the manual count to 

assess the accuracy of each parameter combination. A more detailed explanation of these 

four steps can be found in the Supplementary Material. 

An ImageJ macro was created to automatically run the full Train Set of twenty 

images through the four steps, described above. This macro determined the accuracy of 

7500 combinations of processing, color thresholding, and object size thresholding 

parameter options. Combination 8 had the greatest accuracy score of 90.4% and consisted 

of the following parameter settings. Processing method: Raw. Color Threshold 
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Algorithm: Maximum Entropy. Color Threshold Hue Display Limits: 50-109. Minimum 

Object Size: 110 square pixels. 

The combination with the greatest accuracy in the Train Set, Combination 8, was 

validated on the Test Set. The parameter settings were applied to all twenty images of the 

Test Set, and the resulting final accuracy score was 85.3%, surpassing the minimum 

acceptable accuracy score of 80% (Xing and Yang, 2016; Lunde and Glover, 2020). 

A final step in validating the accuracy score was undertaken. It was important to 

ensure that the automated method was counting the same Iba1-stained cells identified by 

the trained observer, rather than simply counting the same number of non-cell objects and 

artifacts. To ensure the automated and manual methods counted the same target objects, 

an error rate was calculated for each combination. A more detailed explanation of the 

error rate can be found in the Supplementary Material, but briefly, the error rate is the 

sum of the automated method’s missed cells and false positives divided by the total 

number of manually counted cells. When applied to the Train Set, Combination 8 yielded 

an error rate of 0.286. Only 360 of the other 7499 parameter combinations yielded a 

better error rate, with the lowest error rate recorded as 0.216. When applied to the Test 

Set, Combination 8 yielded an error rate of 0.221. These error rates indicated that the 

reported accuracy of the automated counting method, Combination 8, was highly valid. 

Thus, Combination 8 was used with the full data set of 707 images. A separate ImageJ 

macro was used to apply the parameter settings of Combination 8 and automatically 

count the Iba1-stained cells for each image in the full data set. Cell counts were saved to 

a csv file.  
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Figure 3.2. Optimizing the parameter settings for the automated counting 

procedure. 

Two independent sets of twenty ARC images each were selected for the purpose of 

optimizing the procedure used to automatically count cells. One set was used for the 

parameter optimization (“Train Set”), and the other set was reserved for validating the 

optimized method (“Test Set”). Step 1: A total of 7500 parameter combinations 

(consisting of four processing options, five thresholding algorithms, five lower and three 

upper values for the hue display limits, and twenty-five minimum object sizes) were 

applied to each image in the Train Set. The example binary images in the Thresholding 

Algorithms column were derived from the Raw image thresholded within a color range of 
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50-109 (hue display limits). The object size circles are illustrative and are not actual size 

or shape. Step 2: The combination with the highest accuracy score was selected for 

validation. Step 3: The combination that achieved the highest accuracy score in the Train 

Set was confirmed if it achieved an accuracy score above 80% on the Test Set. 

Abbreviations: GMA, Gamma-Minimum-Average. 

 

3.3.6. Statistical Analysis 

This study used mixed effects modeling to investigate the impacts of perinatal diet 

and spatial location within the ARC on cell count. A mixed effects model was chosen for 

its ability to account for the variability introduced by the partially-crossed study design 

(Harrison et al., 2018; Brown, 2021). In addition to the fixed effects of diet and location, 

the model included random effects to account for the random variability in the number of 

images sampled from every subject and every location; this variation naturally arose from 

the differences in the number of standard-sized boxes (1125 x 1125 pixels in size, 

covering approximately 360 x 360 μm in area) that could fit within the area of the ARC 

for each hemisphere. The random effects of subject and location were partially crossed as 

not every subject was sampled at every atlas-matched location (Figure 3.3). For example, 

images from the first subject depicted in Figure 3.3 were only captured at four distinct 

locations: interaural positions 15.60, 14.70, 13.80, and 13.35 mm. Note that only 5 other 

subjects had images sampled from interaural position 13.35 mm, and each of those 

subjects had substantially fewer images at that location than did the first subject. Thus, 

the images and cell counts at 13.35 mm were heavily weighted towards the first subject. 

When trying to understand the impact of location on cell count at interaural position 
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13.35 mm, the average cell count at this location would be disproportionately impacted 

by a single subject and their specific background, including the likely salient impact of 

their perinatal diet group. Inclusion of the partially crossed random effect addressed the 

unequal representation of subjects and locations by controlling for the variation in the 

number of images derived from each. 

 

 

Figure 3.3. Partially-crossed sample. 

A variable number of images were collected from each subject at variable locations in the 

ARC. This partially-crossed effect was accounted for as a random effect in the mixed 

effects model. Interaural position is rostral to EBZ, with 17.45 mm as the most rostral 

atlas-matched location. 
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The model was run using the lmerTest package in R (Kuznetsova et al., 2017), 

which implemented Satterthwaite’s degrees of freedom method when calculating the type 

III analysis of variance (ANOVA) table for the model fits. The model formula that was 

ultimately selected for the final analysis was: 

 

Cell Count ~ Perinatal Diet + Spatial Location + (1 | Subject : Spatial Location) 

 

where Cell Count is the outcome variable, Perinatal Diet and Spatial Location are 

the fixed effects, and the remaining component constitutes the random effects. The fixed 

effect, Spatial Location, was represented by the syntax, poly(Spatial Location, 2) in R to 

denote the quadratic, second-order polynomial relationship between Spatial Location and 

Cell Count. The syntax, (1 | <effects>) indicates that the random effect is a random 

intercept where, holding the slope constant, the intercept is allowed to vary for each level 

of the random effects. The syntax, Subject : Spatial Location recognizes that the random 

effects are partially crossed and instructs the model to look for the interaction between 

subject and spatial location. Thus, the model expects the relationship between perinatal 

diet and cell count to remain constant (fixed slope) while recognizing that some locations 

may be predisposed to having higher cell counts than other locations (random intercept), 

and it allows for that variability. Similarly, the model expects the relationship between 

location and cell count to remain constant while recognizing that the subjects sampled at 

each location may be predisposed to having higher cell counts due to their perinatal diet 

group, and it allows for that variability as well. 
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Perinatal Diet and Subject were represented as categorical variables. The true 

spatial location of each image ranged along a continuous axis between interaural position 

17.45 and 12.90 mm rostral to EBZ, but images were assigned one of eleven positions 

based on best alignment to the atlas (Paxinos et al., 2009). Thus, Spatial Location was 

treated as a continuous variable in the fixed effect to represent the continuous nature of 

the factor, and it was treated as a categorical variable in the random effect to account for 

the grouping ability of the factor. 

A series of Chi-squared tests were used to determine that the formula above 

comprised the best fitting model (Table 3.1). An interaction effect between perinatal diet 

and spatial location was considered, but it was excluded from the model because it did 

not contribute significantly to the fit. Even when included, the interaction effect between 

location and perinatal diet was non-significant (p > 0.05), indicating that cell count varies 

along the rostral-caudal axis independently of the effects of the perinatal diet. 

Additionally, there was no main effect of offspring sex or interaction effect between sex 

and the other factors of interest, so sex was similarly excluded from the model. Spatial 

location was better fit by a quadratic term than a linear one, though there was still a main 

effect of spatial location on cell count with a linear fit (Figure 3.6). 

 

3.4 Results 

3.4.1. Perinatal WSD was associated with a decreased number of Iba1-

stained cells in the ARC 

When collapsing across all atlas-matched locations, the mixed effects model 

indicated a main effect of perinatal diet on Iba1-stained cell count (Figure 3.4). The cell 
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count was decreased in the perinatal WSD group compared to the perinatal CTR group (p 

= 0.022), with a median count of 26 cells in the WSD group compared to 29 cells in the 

CTR group. This result is distinct from prior effects seen in fetal tissue (Grayson et al., 

2010). 
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Figure 3.4. Iba1-stained cell count by perinatal diet exposure. 

Perinatal WSD associated with decreased Iba1-stained cell count. (A) Iba1-stained cell 

count was decreased in the perinatal WSD group compared to the perinatal CTR group (p 

= 0.011). (B) Representative image from the perinatal CTR group displaying 29 Iba1-

stained cells, the median for the group. (C) Representative image from the perinatal WSD 

group displaying 26 Iba1-stained cells, the median for the group. The images from (B) 

and (C) are derived from male animals and were collected from interaural position 14.25 

mm rostral to EBZ. The data presented in (A) represent all 707 images included in the 

analysis deriving from all spatial locations along the rostral-caudal axis of the ARC. 
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3.4.2. Distribution of Iba1-stained cells was increased near the midpoint 

of the ARC 

Iba1-stained cells were more densely located near the midpoint of the rostral-

caudal length of the ARC compared with the distal ends in a distribution that was best fit 

by a quadratic curve (Figure 3.5). Using all 707 images captured from 14 subjects across 

11 distinct atlas-matched locations in the ARC, the mixed effects model indicated a main 

effect of spatial location on cell count (p = 0. 029). The interaural position with the 

greatest Iba1-stained cell count was at 15.15 mm rostral to EBZ (n = 125 images), the 

midpoint of the eleven atlas-matched locations, with a median count of 30.0 cells. The 

distal rostral and caudal ends, at 17.45 mm (n = 4 images) and 12.90 mm (n = 8 images) 

respectively, had median cell counts of 26.5 and 27.5 cells, respectively. The location 

with the fewest number of Iba1-stained cells was at interaural position 13.35 mm (n = 27 

images), directly adjacent to the most caudal location, with a median count of 22.0 cells. 

This analysis was additionally repeated with spatial location treated as a linear fixed 

effect rather than a quadratic term. This change yielded a main effect of location, 

suggesting a slight linear increase in cell count towards the rostral end of the ARC 

(Figure 3.6). However, the quadratic model was a better fitting model than the linear 

model (see Supplementary Material), so the cell distribution was interpreted in 

accordance with the quadratic fit. 
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Figure 3.5. Distribution of Iba1-stained cells across the ARC. 

(A) The Iba1-stained cell count distribution, fit by a quadratic curve, revealed an 

increased cell count towards the midpoint of the ARC along the rostral-caudal axis 

compared to the distal ends (p = 0.003). Interaural position is rostral to EBZ, with 17.45 

mm as the most rostral atlas-matched location. (B) Representative image from interaural 

position 16.50 mm displaying 19 Iba1-stained cells. (C) Representative image from 

interaural position 14.70 mm displaying 43 Iba1-stained cells. The images in (B) and (C) 

are derived from the same animal, a one-year-old female exposed to a perinatal CTR diet. 

The data presented in (A) represent all 707 images included in the analysis deriving from 

all subjects across both diet groups. 
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3.5 Discussion 

This study followed up on the previously reported finding of increased Iba1 

immunoreactive area and staining density in the ARC of fetal macaques exposed to a 

WSD (Grayson et al., 2010). We assessed whether the increased neuroinflammation 

persisted in one-year-old offspring. A heightened inflammatory state can increase 

microglial proliferation (Sarlus and Heneka, 2017; Belhocine et al., 2022) and migration 

(Lively and Schlichter, 2013) and lead to a greater number of circulating macrophages 

that can infiltrate through the permeable BBB near the ARC. Thus, neuroinflammation 

was measured by counting the number of Iba1-stained cells, which include microglia and 

infiltrating macrophages, that were present throughout the ARC. 

Two novel findings resulted from this study. First, perinatal WSD was associated 

with marginally lower Iba1-stained cell counts across the ARC, indicating that the 

elevated inflammatory state demonstrated in utero might not persist one year later and 

may even reverse slightly. Second, independent of perinatal diet, there was a modest 

increase in the Iba1-stained cell count in the middle of the ARC compared with the 

rostral and caudal ends, best fit by a quadratic curve. These findings have important 

implications for offspring development and the functionality of the ARC. 

 

3.5.1. Arcuate nucleus impacts energy homeostasis and is particularly 

vulnerable to neuroinflammation 

Although the ARC was selected particularly for its susceptibility to the infiltration 

of macrophages, the region is also relevant to the model of a WSD. The ARC plays a 

prominent role in the regulation of hunger, energy homeostasis, and body weight. 
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Incoming satiety signals prompt the ARC to decrease feeding and increase energy 

expenditure through the release of α-melanocyte-stimulating hormone (αMSH), a 

melanocortin receptor ligand, by the pro-opiomelanocortin (POMC) neurons of the ARC. 

Conversely, when receiving hunger and energy deprivation signals, the ARC increases 

feeding by inhibiting the POMC neurons and releasing an inverse agonist to the 

melanocortin receptors, agouti-related peptide (AgRP), which opposes the binding of 

αMSH. This activity is accomplished by the neuropeptide Y and agouti-related peptide 

(NPY/AgRP) neurons of the ARC. The POMC and NPY/AgRP neurons of the ARC are 

therefore considered to be opposing branches of the melanocortin system. Mutations to 

the melanocortin system result in increased feeding, decreased energy expenditure, and 

increased likelihood of developing obesity (Joly-Amado et al., 2014; Grayson et al., 

2010). 

Critically, the neuronal differentiation and gene expression of POMC and AgRP 

neurons are controlled through epigenetic mechanisms that are sensitive to the prenatal 

environment (Croizier and Bouret, 2022). In particular, perinatal exposure to a high-fat 

diet (HFD) in rats was associated with increased DNA CpG methylation of the Pomc 

promoter, indicating gene silencing of the neurons that typically decrease feeding, 

accompanied by increased body weight. The methylation was not reversed by post-

weaning consumption of the standard chow, demonstrating the long-term, epigenetic 

impact that perinatal HFD exposure can have on neuronal functioning (Marco et al., 

2014). Although the extent to which neuroinflammation synergistically advances 

epigenetic modifications to melanocortin circuitry is still unknown (Cesar and Pisani, 

2017), neuroinflammation may impact neuronal signaling through other pathways. 
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Microglia play an important role in the brain by clearing debris and generating 

necessary immune responses, but they also play a functionally relevant role by interacting 

with the neurons of the ARC. Microglia express receptors for the neuropeptides produced 

by POMC and NPY/AgRP cells, such as αMSH and NPY, indicating that their activity 

could be modulated by the activity of the neuron populations in the ARC (Barnea et al., 

1998; Forslin Aronsson et al., 2006; Lindberg et al., 2005). Furthermore, short-term 

exposure to a HFD acutely decreases AgRP mRNA expression and leptin sensitivity in 

NPY/AgRP neurons (Huang et al., 2003; Olofsson et al., 2013) and causes microglia in 

the ARC to undergo morphological and functional changes characteristic of a 

proinflammatory response (Thaler et al., 2012; Horvath et al., 2010), potentially 

implicating microglia in the dietary impacts to the melanocortin system (Jastroch et al., 

2014). 

The present finding fits well with this relationship. Our group previously 

demonstrated a reduction in AgRP mRNA expression in conjunction with an 

upregulation of inflammatory brain cytokines and increased microglial staining in the 

ARC of fetuses exposed to a prenatal WSD (Grayson et al., 2010). While not conclusive, 

this supports the premise that there may be an interaction between increased microglial 

activity and adverse effects on NPY/AgRP neurons during this period of heightened 

inflammation. However, in one-year-old offspring, perinatal WSD exposure was not 

associated with a significant difference in AgRP fiber density in the ARC, indicating that 

the effects from the prenatal exposure had waned. Instead, there was a significant 

reduction in AgRP fiber density in offspring exposed to a postnatal WSD, regardless of 

perinatal diet, further indicating that direct WSD exposure is needed to significantly 
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reduce NPY/AgRP neuron density (Sullivan et al., 2017). The follow-up study did not, 

however, investigate the role of microglia. The present study fills this gap by examining 

the number of microglia and macrophages in the ARC of one-year-old offspring. The 

findings of this study, that offspring with perinatal WSD exposure exhibited slightly 

fewer Iba1-stained cells than controls, was consistent with the absence of a significant 

reduction in AgRP fiber density previously reported in one-year-old offspring. 

Additionally, these findings are metabolically relevant. The reduction in AgRP 

mRNA expression during the fetal period would suggest decreased binding of AgRP to 

the melanocortin receptors, resulting in increased energy expenditure. As expected, the 

fetal WSD offspring demonstrated reduced body weight on gestational day 130 

(McCurdy et al., 2009). Once the AgRP fiber density was comparable to that of the 

control subjects in the one-year-old offspring, other metabolic measures similarly 

returned to baseline, including no difference in food intake, physical activity, energy 

expenditure, or total metabolic rate; body weight, however, was increased in the perinatal 

WSD offspring as early as 6 months after birth, demonstrating a potentially 

compensatory increase in growth after separation from the in utero environment while 

still prior to weaning (Sullivan et al., 2017). Importantly, the offspring that were exposed 

to the postnatal WSD, regardless of perinatal diet, exhibited reduced food intake and 

increased physical activity at one year of age, consistent with the demonstrated reduction 

in AgRP fiber density at that time point (Sullivan et al., 2017). 

Taken together, these results indicate that the melanocortin system may interact 

with microglia in the ARC and is likely more susceptible to disrupted functioning during 
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periods of heightened inflammation associated with direct WSD exposure or during fetal 

development. 

 

3.5.2. Microglia and neuroinflammation impact developmental 

processes such as synaptic pruning 

In addition to clearing debris and potentially communicating with the 

melanocortin system, microglia also play an important role in synaptic pruning. While it 

is unclear whether microglia are actively removing synapses or simply phagocytosing 

them after they have been targeted for clearance by other means, there is evidence to 

suggest that deficits in microglial phagocytic function reduce synaptic elimination and 

impact circuit connectivity (Cowan and Petri, 2018; Filipello et al., 2018; Kopec et al., 

2018; Kim et al., 2017). Crucially, maternal immune activation in mice has been shown 

to decrease expression of genes associated with phagocytosis in microglia, suggesting a 

relationship between maternal inflammation and decreased synaptic pruning (Kim et al., 

2017; Cowan and Petri, 2018). Additionally, in mice lacking the fractalkine receptor, the 

number of microglia present in the developing brain was transiently reduced and synaptic 

pruning was delayed, suggesting that synaptic refinement is dependent upon the number 

of microglia (Paolicelli et al., 2011). Microglia also regulate neurogenesis by 

phagocytosing neural precursor cells during prenatal and early postnatal development, 

with increased microglial activation or quantity leading to increased phagocytosis 

(Cunningham et al., 2013). Thus, the decreased Iba1-stained cell count exhibited by 

offspring with perinatal WSD exposure might affect neurodevelopment and long-term 
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behavioral outcomes through reduced synaptic pruning and neural precursor cell 

phagocytosis. 

 

3.5.3. Present finding of low inflammation associated with perinatal 

WSD is distinct from the fetal outcomes and informs a 

neurodevelopmental trajectory 

While the present finding of decreased Iba1-stained cell count in the perinatal 

WSD group seemingly contradicts the increased microglial staining found in fetal ARC 

tissue, this difference may instead elucidate a trajectory where the heightened 

neuroinflammatory response in utero resolves when WSD is discontinued after weaning. 

This drop in cell count may be compensatory in nature, or it may be part of a longer-term 

reprogramming. A follow-up study at a later time point would demonstrate whether the 

prevalence continues to decrease throughout adolescence, stabilizes to the same levels as 

in control subjects, or rebounds to an elevated level. Notably, this finding is consistent 

with prior work by our group which found an association between perinatal WSD and 

decreased microglial counts in the amygdala at the same one-year postnatal time point in 

this NHP model (Dunn et al., 2022). 

Maternal inflammation has been shown to program long-term increases in 

offspring inflammation (Bilbo and Schwarz, 2009; Romero et al., 2007), but diet-specific 

evidence suggests a trajectory where prenatal WSD may protect against offspring 

inflammation. In a porcine model of HFD-induced atherosclerosis, a chronic 

inflammatory and immune disease of artery walls, swine who had previously been 

exposed to a maternal HFD were at a lower risk of atherosclerosis compared to those who 
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were exposed to a standard maternal diet, suggesting that a maternal HFD may be 

protective against some types of future inflammatory risks (Norman and LeVeen, 2001). 

Additionally, microglia prevalence changes dynamically over the course of long-term 

WSD exposure. Mice showed an increase in Iba1-stained cell number in the 

hypothalamus after 3 and 14 days of HFD consumption but no difference from controls 

after 2 and 6 months (Thaler et al., 2012; Lemus et al., 2015), similar to the trajectory 

seen between our group’s fetal and one-year-old findings. Thus, our findings are 

supported by literature that demonstrates the protective effect of a maternal HFD and the 

transient nature of an increase in Iba1-stained cells in response to a HFD. 

The trajectory of microglial prevalence could impact the trajectory of energy 

homeostasis and neural circuit formation throughout development. Given that microglia 

may interact with the neuronal populations within the ARC, increased activity during the 

prenatal period may lead to greater disruptions to energy homeostasis, whereas fewer 

microglia in the postnatal period may lead to a decreased sensitivity to the system. 

Synaptic pruning is more likely to lead to lasting alterations to neural circuitry. Offspring 

exposed to a perinatal WSD may demonstrate reductions in synaptic pruning due to the 

potential decrease in phagocytosis-associated gene expression associated with maternal 

inflammation and loss of microglia availability demonstrated postnatally. As decreased 

synaptic pruning can lead to either hyperconnectivity or hypoconnectivity, a follow-up 

study would need to specifically investigate the effect of perinatal WSD on the functional 

connectivity of the melanocortin system (Kim et al., 2017; Cowan and Petri, 2018; 

Kleinhans et al., 2016; Huang et al., 2016; Ypma et al., 2016). Additionally, increased 

microglial activation during the prenatal period could lead to increased phagocytosis of 
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neural precursor cells, whereas reduced microglial prevalence during the postnatal period 

may slow phagocytosis, thereby establishing a trajectory of restrained followed by 

unrestrained cell proliferation. This impact may be evident in many brain regions, as 

reduced microglial prevalence was also found in the amygdala of one-year-old offspring 

(Dunn et al., 2022). These dynamic influences therefore have the potential to lead to 

significant changes in brain organization. 

Alternatively, the fetal and postnatal results may appear to contradict because the 

different methodologies between the studies might not correlate. In the fetal study, 

immunoreactive area and integrative optic density were measured to capture the number 

of pixels that were stained for Iba1 per image. While more staining might indicate more 

cells, microglia also vary their Iba1 expression levels and change shape based on their 

activation state, with resting microglia taking up a larger area than activated microglia. 

Thus, the number of pixels measured does not necessarily correlate to the number of cells 

(Hopperton et al., 2018). Given that other measures in the prior study indicated that 

prenatal WSD led to increased fetal inflammation, it is more likely that the microglia 

assumed a smaller, activated state than a larger resting state. This would suggest a 

significantly greater number of activated microglia in the WSD group compared to the 

fewer but larger resting microglia in the CTR group; however, the alternative possibility 

that both groups had an equivalent number of cells, with increased Iba1 expression in the 

WSD group, cannot be ruled out. This alternative possibility would not necessarily 

contradict the present finding of slightly fewer Iba1-stained cells in the one-year-old 

offspring. An additional follow-up study could investigate other measures to better 

characterize the inflammatory state at the one year postnatal time point. 
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3.5.4. Spatially-dependent microglial distribution evident in the arcuate 

and distinct across species 

This is the first study to characterize the regional distribution of Iba1-stained cells 

in the ARC of Japanese macaques. A few studies have explored this distribution in other 

species with differing findings. Thus, the distribution of microglia throughout the ARC 

may be distinct across species. For example, while this study found a density of Iba1-

stained cells near the middle of the rostral-caudal axis, a previous study in cynomolgus 

monkeys found an even distribution of microglia, as identified by staining for α-napthyl 

butyrate esterase (Abel et al., 1999). In addition to the potential for species-specific 

differences and differences between the non-specific microglial markers, another possible 

explanation for this discrepancy could be the age difference of the subjects: the present 

study examined one-year-old juveniles, while the cynomolgus monkeys were adults that 

were at least nine years old. Additionally, it is unclear how many locations within the 

ARC were sampled to determine the distribution reported in adult cynomolgus macaques. 

An increased count in the central regions, as seen in the present study, could have been 

missed if too few locations were sampled. 

While studies characterizing the distribution in other primate species were 

limited, a few studies reported the distribution in rodents. One study described a 

heterogeneous distribution of Iba1-stained microglia throughout the ARC in rats, as seen 

in the cynomolgus monkeys. However, the study was limited by a sample consisting of 

four male animals, and the report was not accompanied by a statistical analysis or figure 

to demonstrate effect size (Reis et al., 2015). A study in adult mice found a different 
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distribution: an increase in Iba1-stained cells weighted towards the caudal region of the 

ARC (Lemus et al., 2015). As this study used the same microglial marker as the present 

study, this discrepancy in microglial distribution is more likely due to a species-specific 

difference or an age difference.  

A spatially-dependent microglial distribution indicates neuronal populations near 

denser regions may be more strongly impacted by inflammation. Thus, differences in 

microglial distribution across species implies that the effects of inflammation or over-

nutrition on ARC-specific functions might differ across species based on where the 

microglia are more densely located. It is understood that the impacts of a maternal WSD 

vary based on the species (Williams et al., 2014), so it is possible that differences in 

microglial density across the ARC may mediate some of these differences. 

Our results indicate an increased level of Iba1-stained cells towards the midpoint 

of the ARC, suggesting that an elevated inflammatory state may have a pronounced effect 

on the neuronal populations in that central region. One such population includes neurons 

that express neuropeptide Y (NPY). NPY neurons commonly express AgRP and γ-

aminobutyric acid (GABA), though there are subsets of NPY neurons that do not express 

either neurotransmitter (Zhang et al., 2019b). In humans, NPY neurons were found 

primarily in the central region of the ARC and were largely absent from the rostral and 

caudal regions (Kalsbeek et al., 2020). Thus, increased inflammation and microglial 

activation would likely impact the centrally located NPY/AgRP neurons, which play a 

significant role in promoting feeding and reducing energy expenditure (Zhang et al., 

2019b). 
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Consistent with a previous study by our group that demonstrated reduced AgRP 

fiber density and decreased feeding with postnatal WSD exposure (Sullivan et al., 2017), 

studies in mice have similarly demonstrated reduced AgRP and NPY mRNA expression 

and decreased feeding after two months of HFD consumption (Dalvi et al., 2017; Wang 

et al., 2002), as well as increased proinflammatory gene expression across the 

hypothalamus (Dalvi et al., 2017). Additionally, a patch-clamp electrophysiology study in 

mice demonstrated that acute microglial activation via lipopolysaccharide (LPS) 

administration, while increasing the firing activity of some NPY neuronal populations, 

inhibited the firing of most AgRP/NPY neurons in the ARC (Reis et al., 2015). Thus, 

there is evidence to suggest that the centrally-located density of microglia in the ARC 

may interact with the centrally-located NPY/AgRP neuronal population to reduce feeding 

during periods of elevated inflammation. On the contrary, treating mouse AgRP/NPY 

hypothalamic cell lines with the saturated fatty acid, palmitate, or the inflammatory 

cytokine, tumor necrosis factor alpha (TNF-α), significantly upregulated the expression 

of NPY and inflammatory markers, suggesting a potential link between increased 

inflammation and feeding (Dalvi et al., 2017). Moreover, increased saturated fat 

consumption led to decreased feeding behavior in microglia-depleted mice compared to 

mice with unaltered microglial levels, suggesting that microglial activation plays a role in 

stimulating feeding behavior (Valdearcos et al., 2014). These findings indicate that 

microglia may have varied effects depending on the NPY neuronal subpopulation and 

type of inflammatory exposure: acute in vitro palmitate administration may not be 

directly comparable to the inflammatory environment associated with chronic exposure to 
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a HFD. Further studies are needed to elucidate the complex interactions that determine 

which sources of inflammation may lead to increased or decreased energy outcomes. 

 

3.5.5. Maternal obesity and inflammation may be additive or alternative 

factors to maternal diet regarding impacts to microglia count 

This study found an association between perinatal WSD and decreased Iba1-

stained cell count, but it is unclear as to what underlying factors led to this change. One 

hypothesis is that it is not the prenatal diet that creates the elevated maternal 

inflammatory state which impacts offspring, but maternal obesity or the combination of 

maternal diet and obesity. A WSD is often associated with increased adiposity, but there 

is metabolic variability within the human and macaque populations such that some 

individuals on a WSD remain lean and some individuals on a “control” diet develop 

obesity. We intended to use this macaque model to distinguish between the independent 

effects of diet and adiposity, as our group has previously demonstrated independent 

effects of the two factors on microglia count in the amygdala (Dunn et al., 2022). 

However, due to our limited sample size, perinatal WSD and maternal adiposity were 

highly associated, and we did not have the statistical power to distinguish between them. 

Other factors related to the maternal metabolic state, including insulin and leptin 

resistance, may additionally play a role in altering microglial activation and should be 

examined in future research, as well. 

Another underlying mechanism we sought to investigate was maternal 

inflammation as measured by levels of cytokines in the blood during the third trimester of 

pregnancy. Using a partial least squares regression (PLSR), we found that maternal 
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cytokines were predictive of Iba1-stained cell count in the ARC, indicating that maternal 

inflammation has a lasting impact on cell count (Figure 3.7). However, the cytokines had 

varied impacts on the cell count, so a coherent relationship could not be drawn. We 

additionally investigated whether peripheral cytokines collected from the one year old 

offspring could predict cell count, as contemporaneous exposure to immune markers may 

have a stronger influence on the presence of microglia and macrophages. A separate 

PLSR analysis revealed that offspring markers were similarly predictive of cell count 

(Figure 3.8). As was observed with the maternal markers, the offspring markers had 

varied impacts and did not settle into coherent groupings. For example, a chemokine with 

proinflammatory properties, Regulated on Activation, Normal T Cell Expressed and 

Secreted (RANTES; Hentschke et al., 2012) was the strongest offspring marker with a 

positive relationship to cell count, and a separate proinflammatory cytokine, interleukin-

12 (IL-12), was the strongest offspring marker with a negative relationship. As the set of 

proinflammatory cytokines did not have similar impacts or directionality for either the 

maternal or offspring set, it is difficult to conclude how a proinflammatory state in 

general would affect Iba1-stained cell count. The impacts of each marker appear to be 

distinct. 

Prior work in this model characterized the relationships between maternal and 

offspring immune factors using latent variables comprised of groups of markers (Dunn et 

al., 2022). Although perinatal WSD and maternal adiposity were not associated with 

differences in offspring cytokines or chemokines, maternal chemokines were positively 

associated with offspring cytokines and negatively associated with offspring chemokines, 

suggesting the potential for maternal immune factors to influence cell count in the ARC 
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through an indirect influence on offspring immune factors (Dunn et al., 2022). However, 

neither maternal proinflammatory cytokines nor maternal chemokines were associated 

with Iba1-stained count in the amygdala of one year old offspring; this could potentially 

be explained by the present finding where the set of proinflammatory cytokines had 

divergent impacts on cell count that would have cancelled out. Further research should 

examine the intricate relationships between perinatal WSD exposure, maternal 

inflammatory factors, and offspring inflammatory factors to better contextualize the cell 

count results of the present study. 

 

3.5.6. Limitations 

The present study elucidates a slight relationship between perinatal diet and Iba1-

stained cell count at the one year postnatal time point, but there are limitations to the 

conclusions that can be drawn from this observation. Critically, Iba1-stained cell count is 

only one measure of inflammation. A decrease in Iba1-stained cell count in the perinatal 

WSD group suggests that there was not enough inflammation to increase microglial 

proliferation or macrophage infiltration above control conditions, but other measures 

would be useful in confirming this inference. Assessing cell morphology would reveal 

more about the activation state of the microglia. Additionally, staining for inflammatory 

cytokines or other markers of microglial activation could elucidate the level of 

neuroinflammation experienced by each group. These measures would provide a more 

conclusive indication of neuroinflammation than Iba1-stained cell counts, but they were 

not pursued due to the challenges of assessing microglia morphology on single plane 

images and unsuccessful inflammatory marker staining. Future work in this NHP model 
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is underway to examine neuroinflammation across other areas of the brain with additional 

measures of neuroinflammation. 

Another limitation is that significantly fewer images were captured on either end 

of the ARC than in the medial regions. Limited data points on the tails of the spread 

could potentially lead to inaccurate representations of the cell count distribution. Thus, 

the mixed effects model was repeated on a more robust data set consisting solely of 

images from the five consecutive medial regions with the most observations. The results 

were consistent with those of the full data set, confirming a main effect of spatial location 

best fit by a quadratic curve (see Supplementary Material). Additionally, future studies 

could examine the distribution of Iba1-stained cells along other axes, such as the dorsal-

ventral and medial-lateral axes, to better characterize microglial prevalence throughout 

the ARC and uncover other neuronal populations that may be susceptible to 

neuroinflammatory impacts. 

 

3.5.7. Conclusions 

The neuroinflammation observed in utero with exposure to a perinatal WSD does 

not appear to persist at the one year postnatal time point. Perinatal WSD was associated 

with a slight decrease in Iba1-stained cells in the ARC, indicating that there may be less 

peripheral inflammation and fewer infiltrating macrophages than in controls. This 

finding, in conjunction with our prior study, suggests a response trajectory where 

heightened inflammation during prenatal WSD exposure drops after the WSD is 

discontinued at weaning, welcoming the possibility that perinatal WSD exposure could 

be neuroprotective at later time points. However, synaptic pruning and other microglial-
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dependent processes critical for neuronal circuit formation could be impacted by the 

dynamic trajectory of microglial activity across development. Greater numbers of Iba1-

stained cells were also found towards the midpoint of the ARC along the rostral-caudal 

axis independent of perinatal diet. Given the potential for interactions between microglia 

and ARC neurons, this could have implications for the NPY neuronal control of food 

intake and body weight. An important caveat to these findings is that microglial count is 

not infallible as a standalone measure of inflammation, so additional measures would be 

useful in confirming the inflammatory state of these offspring. Further research should 

explore the distinct effects of maternal adiposity from perinatal WSD. Additional 

measures of offspring inflammation and a detailed analysis of the impacts of maternal 

cytokines could further elucidate the underlying mechanisms that govern the relationship 

between maternal and postnatal inflammation and their effects on neurodevelopment. 
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3.6 Supplementary Materials  

3.6.1. Automated Cell Counting Procedure 

The procedure for determining the optimal parameters settings that would lead to 

the most accurate automated count included the following steps. 1) The color-merged 

images underwent one of four processing methods to better distinguish cell bodies from 

the background. 2) The processed images underwent a color threshold which isolated the 

teal-colored cell bodies by adjusting the lower and upper hue display limits, and a 

thresholding method was applied to pixels in the narrowed color range. 3) The color-

thresholded, binary images underwent an object size threshold where the “Analyze 

Particles” function was used to generate a count of any object that covered an area greater 

than a set minimum size. 4) The automated count was compared to the manual count to 

assess the accuracy of each parameter combination. These steps are described in more 

detail below. 

Step 1: Processing. Four processing methods were explored. The first was 

considered “Raw,” in which no processing techniques were applied. The second was 

named, “Gamma,” in which a gamma adjustment of 0.5 was applied. Gamma adjustment 

is a non-linear histogram adjustment which can be used to increase the range of 

intensities used by the pixels in an image. In dim images, the large majority of pixels 

which exist in the darker range can be made brighter and occupy a wider range of gray 

intensities without saturating the brightest objects, allowing for easier detection of the 

relatively-brighter cell bodies from the background. This function can be accessed in 

ImageJ via the Process/Math/Gamma command, set to 0.5. The third option, 

“Minimum,” applied a minimum filter of 5.0 pixels. The minimum filter replaces the 
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intensity value of each pixel in the image with the smallest value present in that pixel’s 

neighborhood. By setting the neighborhood to a 5.0 pixel radius, the overlapping centers 

of DAPI- and Iba1-stained cells remain bright, but their area is greatly reduced, as pixels 

towards the edge of the cell are replaced by the dimmer intensity of the background. This 

allows for sharper edge definitions and is useful for separating two nearby cells. The 

minimum filter function can be accessed in ImageJ via the Process/Filters/Minimum… 

command, set to 5.0 pixels. The fourth option, “Gamma-Minimum-Average” (GMA), 

first applied a gamma adjustment of 0.5, then a minimum filter of 5.0 pixels, and then 

averaged the resulting image with the original raw image. This technique combines the 

benefits of brightening the image with distinguishing the cell edges. Combining this with 

the raw image retains more of the original shape of the cells. To average the processed 

image with the raw image, both images must be open in ImageJ. Then, select the 

Process/Image Calculator command, set Image1 to one of the images and Image2 to the 

other, and select “Average” from the Operation menu. 

Step 2: Color Threshold. To isolate the parts of the image that represented the teal 

DAPI- and Iba1-stained cells, five lower and three upper hue display limits, along with 

five automatic thresholding algorithms, were explored. The color threshold function is 

accessed in ImageJ by selecting Image/Adjust/Color Threshold… and setting the color 

space to HSB. The Hue display shows the range of possible hue pigments, each 

represented by a number between 0 and 255, and a histogram of the pigments that are 

represented by pixels in the image. Most images in this analysis exhibited colors ranging 

from yellow to cyan, roughly corresponding to a hue display range of 40 to 130, with the 

teal somas of the DAPI- and Iba1-stained cells ranging roughly between 50 and 115. The 
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Dark Background option was selected; the Pass option was selected for each of the Hue, 

Saturation, and Brightness components; and the default display settings were unaltered 

for the Saturation and Brightness components. Thus, the three features of the color 

threshold function that were manipulated were the lower hue display limit, ranging from 

50 to 74 in increments of 6 to best determine the most-yellow pigment of dual-stained 

somas; the upper hue display limit, ranging from 109 to 113 in increments of 2 to best 

determine the most-cyan pigment of dual-stained somas; and the Thresholding method, 

which applied one of five automatic thresholding algorithms to the pixels in the image 

whose hue value resided within the range created by the lower and upper hue display 

limits. 

The five thresholding algorithms that were explored were Maximum Entropy, 

Intermodes, Moments, Otsu, and Triangle (ImageJ, 2019). These thresholds, as well as 

the display limit options, were selected from all available options based on visually 

inspecting the binary image outputs of sample images for adequate representation of the 

somas without significant background interference. The Maximum Entropy algorithm 

maximizes the inter-class entropy of the histogram (Kapur et al., 1985). The Intermodes 

algorithm assumes a bimodal histogram and thresholds the average of the two local 

maxima that result after iteratively smoothing the histogram (Prewitt and Mendelsohn, 

1966). The Moments algorithm is a moment-preserving threshold (Tsai, 1985). The Otsu 

algorithm minimizes the intra-class variance (Otsu, 1979). The Triangle algorithm 

assumes a skewed histogram, identifies the maximum peak, and searches for a threshold 

within the range between the peak and the farther end of the histogram (Zack et al., 

1977). Applying the thresholding algorithm to the pixels within the hue display limit 
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range creates a binary image where the pixels that passed the threshold are represented in 

black against a white background (Figure 3.1F). The binary image was generated by 

selecting “Select” from the color threshold GUI, then selecting Edit/Selection/Create 

Mask from the main ImageJ menu. 

Step 3: Object Size Threshold. ImageJ counts the number of distinct objects in the 

binary image that occupy an area, in square pixels, that is greater than a specified 

minimum area. Twenty-five minimum object sizes ranging between 40 and 280 square 

pixels, in increasing increments of 10 square pixels, were used for training. The “Analyze 

Particles” GUI was utilized and the “Size” was set to range between the desired minimum 

object size and “Infinity.” The default “Circularity” of 0.00-1.00 was retained to allow for 

any shape. Importantly, “Exclude on edges” was selected to avoid counting cells that 

touched an edge of the image. Optionally, a quick visualization that highlights which 

objects were counted can be generated by showing “Overlay Masks” (Figure 3.1G). After 

applying these settings, the total object count for each image was exported for 

comparison purposes. 

Step 4. Accuracy. A measure of accuracy—the average absolute difference in 

accuracy from 100%—was used to assess whether the parameter combinations 

adequately approximated the manual counting performed by a trained observer. First, the 

raw accuracy was calculated for each image in a combination by dividing the automated 

count by the manual count. This yielded twenty raw accuracy scores where images with a 

greater automated count had a score greater than 1, and images with a lower automated 

count had a score lower than 1. The absolute value of the difference between 1 and the 

accuracy score was calculated for each image. For example, an image that had a manual 
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count of 10 and an automated count of 11 would have a raw accuracy of 1.1 and an 

absolute difference score of 0.1. The absolute difference scores were averaged across the 

twenty images to generate a single average absolute difference in accuracy score for the 

parameter combination. The difference between 1 and the average absolute difference 

score yielded the final reported accuracy score for the parameter combination. For 

example, Combination 8 in Figure 3.3 had an average absolute difference in accuracy of 

0.096, so the combination was reported to be 90.4% accurate compared to the manual 

count. A final accuracy score above 80% was required to approve the automated method 

for use in the final data set, as 80% accuracy falls within the range of other reported 

accuracy and precision measures for automated cell detection (Xing and Yang, 2016; 

Lunde and Glover, 2020). 

 

3.6.2. Error Rate Calculation and Application 

A final step in validating the accuracy score was undertaken. It was important to 

ensure that the automated method was counting the same Iba1-stained cells identified by 

the trained observer, rather than simply counting the same number of non-cell objects and 

artifacts. To ensure the automated and manual methods counted the same target objects, 

an error rate was calculated for each combination. 

First, cells in the raw, color-merged images were manually located. Using 

ImageJ’s “Multi-point” tool, a marker was placed in the center of each cell that was 

counted by the observer. The set of markers was imported to the “ROI Manager” by 

selecting Edit/Selection/Add to Manager, and then More>>/Save… was selected in the 

Manager to save the set for later use. 
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In order to overlay the manually placed markers on the automatically counted 

objects, the aforementioned Object Size Threshold step had to be modified to allow the 

counted objects to be manipulated. Using the Analyze Particles GUI, “Show” was set to 

“Outlines” and the “Add to Manager” option was selected; this generated an image where 

each counted object appeared as an outline and was added as an ROI in the ROI 

Manager. Each ROI was selected, and the Edit/Selection/Enlarge… function was 

accessed from the main ImageJ menu. The ROIs were each enlarged by 8 pixel units to 

encompass an area slightly larger than the actual object; this was performed in case the 

corresponding marker from the manual count was off-center, running the risk of not 

overlapping the automatically counted object. These enlarged objects were filled with a 

medium gray color first by setting the foreground color to 124 for each of the red, green, 

and blue channels via Image/Color/Color Picker…, and then by selecting the ROI and 

applying More>>/Fill in the manager. 

Next, the saved markers from the manual count were opened on the current image 

of the gray, automatically counted objects. Using the ROI Manager, the last marker in the 

list was selected, and the Measure function was applied. This generated a table where the 

“Mean” of each marker represented the color of the pixel that was overlapped by the 

marker. A value of 255 indicated a white background, or an absence of an automatically 

counted object, and a value of 124 indicated a gray background, or that the marker 

overlapped an automatically counted object. 

Using this method, the ImageJ macro counted the number of markers that 

overlapped an object as “hits,” the number of markers that did not overlap an object as 

“misses,” and the number of objects that did not have an overlapping marker as “false 
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positives.” The sum of misses and false positives were counted as the total number of 

“errors.” The number of errors divided by the number of manually counted cells yielded 

an “error rate.” The error rates for all twenty images were averaged for each parameter 

combination to yield an average error rate. 

Error rate is not a complement to accuracy; an automated count of 10 could be 

100% accurate when compared to a manual count of 10, but if the automated method 

missed one cell and counted one artifact to arrive at the sum of 10, then two errors were 

included in the sum. This would yield an error rate of 0.2. However, if the automated 

method counted errors in a pattern that consistently yielded the same total cell count as 

the manual count, then ultimately the automated method would be an “accurate” 

substitution for manual counting and could generate a data set of cell counts that would 

be roughly equivalent to a set of manual counts. Thus, accuracy alone was chosen as the 

measure used to determine whether the automated method was effective for the purpose 

of cell counting, and the error rate was assessed to ensure the automated count was 

generally valid and not wholly coincidental. 

 

3.6.3. Determining the Best-Fitting Minimal Mixed Effects Model 

A mixed-effects model was used to investigate the impacts of perinatal diet and 

spatial location on cell count while accounting for the partially crossed nature of the 

study design. During preliminary testing, it was found that there was no main effect of 

offspring sex or interaction effect between sex and the other factors of interest, so sex 

was not included as a factor during comparison testing. To determine the minimal 

adequate model, a series of Chi-squared tests were run to compare between progressively 
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more complex iterations (Table 3.1). Tests were run in R using the anova method from 

the lmerTest package (Kuznetsova et al., 2017) following the syntax, anova(model1, 

model2) where model1 represents the mixed effects model fit to the data using the 

simpler formula, and model2 represents that of the more complex formula. All models 

that were compared included the random effect component and varied the fixed effects. 

When a significant difference was found between two progressive models, the model that 

produced the smaller Akaike information criterion (AIC) was determined to be the better-

fitting model. A more-positive log-likelihood value provided further evidence that it was 

the better-fitting model. 

First, we established that inclusion of the random effect was justified. We 

compared a baseline fixed effects model (Cell Count ~ 1) to a baseline random effects 

model (Cell Count ~ 1 + (1 | Subject : Spatial Location)). Using a model likelihood ratio 

test, we determined that the baseline random effects model was significantly different 

from the baseline fixed effects model (p < 0.001) and had a lower AIC (4497.918; 

baseline fixed effects model AIC = 4671.834), thereby justifying its inclusion in the 

mixed effects model. 

The first fixed effect that was added to the model was Spatial Location. To 

determine whether the relationship between Spatial Location and Cell Count was linear, 

quadratic, cubic, or a higher-order polynomial fit, we compared models that varied the 

order of the polynomial. The formula in R for the simplest, linear model was: 

 

Cell Count ~ poly(Spatial Location, 1) + (1 | Subject : Spatial Location) 
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where the 1 in poly(Spatial Location, 1) indicated that Spatial Location would be 

treated as a first-order (linear) polynomial. Changing this number to 2 created a quadratic 

model, and changing it to 3 created a cubic model. When comparing the linear model to 

the baseline random effects model, the linear model was significantly different and had a 

lower AIC, indicating that Spatial Location added enough information to the model to 

merit its inclusion as a fixed effect, χ2 (1) = 5.4186, p = 0.020. When comparing the 

linear model to the quadratic model, the quadratic model demonstrated a significant 

improvement, χ2 (1) = 5.6405, p = 0.018. However, the cubic model did not provide 

significant improvement over the quadratic model, χ2 (1) = 0.012, p = 0.913, so the 

quadratic polynomial was determined to be the best fit for the Spatial Location fixed 

effect. We confirmed that the quadratic model was still significantly better than the 

baseline random effects model, χ2 (2) = 11.059, p = 0.004, and we used the quadratic 

term for Spatial Location in the remaining comparisons.  
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Table 3.1. Chi-squared test of best model fit. 

The “Fixed Effects” column denotes which fixed effects were included with the random 

effect to complete the model formula for the comparison. The better-fitting model 

(bolded text in “Fixed Effects” column) was identified by a lower AIC (comparisons that 

reached significance) or by a simpler set of fixed effects (non-significant comparisons). 

Abbreviations: AIC, Akaike information criterion; Chisq, chi-squared test statistic; Df, 

degrees of freedom for the likelihood ratio test: the difference in number of model 

parameters; logLik, log-likelihood; npar, number of parameters; Pr(>Chisq), p-value. 

Comparison Fixed Effects AIC logLik npar Df Chisq Pr(>Chisq) 

Adding Linear 
Spatial 

Location 

None 4498.4 -2246.2 3 
1 5.4186 0.01992 Spatial Location 

(linear) 
4495.0 -2243.5 4 

Adding 
Quadratic 

Spatial 
Location  

None 4498.4 -2246.2 3 

2 11.059 0.003968 Spatial Location 

(quadratic) 
4491.4 -2240.7 5 

Linear vs. 
Quadratic 

Spatial 
Location 

Spatial Location 
(linear) 

4495.0 -2243.5 4 
1 5.6405 0.01755 

Spatial Location 

(quadratic) 
4491.4 -2240.7 5 

Quadratic vs. 
Cubic Spatial 

Location 

Spatial Location 

(quadratic) 
4491.4 -2240.7 5 

1 0.012 0.9127 
Spatial Location 

(cubic) 
4493.4 -2240.7 6 

Adding 
Perinatal Diet 

to Spatial 
Location 

(quadratic) 

Spatial Location  4491.4 -2240.7 5 

1 6.7819 0.009209 Perinatal Diet + 

Spatial Location 
4486.6 -2237.3 6 

Adding 
Spatial 

Location 
(quadratic) to 
Perinatal Diet 

Perinatal Diet 4494.5 -2243.2 4 

2 11.909 0.002594 Perinatal Diet + 

Spatial Location 
4486.6 -2237.3 6 

Adding 
Interaction 

Effect 

Perinatal Diet + 

Spatial Location 
4486.6 -2237.3 6 

2 0.492 0.7819 Perinatal Diet + 
Spatial Location + 

Interaction 
4490.1 -2237.1 8 
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The next comparisons determined that a model that included Perinatal Diet and 

Spatial Location as fixed effects was better than a model that included only one of the 

two (Perinatal Diet model: χ2 (2) = 11.909, p = 0.003; Spatial Location model: χ2 (1) = 

6.7819, p = 0.009). However, adding an interaction effect between Perinatal Diet and 

Spatial Location did not significantly improve the model, χ2 (2) = 0.492, p = 0.782), so 

the simpler model that contained only Perinatal Diet and Spatial Location as the fixed 

effects was determined to be the best fitting model. 

A limitation of this analysis is that significantly fewer images were captured on 

either end of the ARC than in the medial regions. For example, the regions at interaural 

positions 17.45 mm and 12.90 mm were represented by only 4 and 8 images, respectively 

(Figure 3.5, repeated in Figure 3.6A). Limited data points on the tails of the spread could 

potentially lead to inaccurate representations of the cell count distribution. To confirm 

that a relationship between spatial location and cell count truly existed, the best-fitting 

mixed effects model was repeated on a more conservative and robust data set consisting 

solely of images from the five consecutive medial regions with the most observations, 

each with a minimum of 88 images. These regions were 15.60, 15.15, 14.70, 14.25, and 

13.80 mm rostral to EBZ. This analysis, which used 587 images captured from 14 

subjects across 5 consecutive atlas-matched locations, resulted in a main effect of spatial 

location on cell count (p = 0.008), confirming the relationship seen across the full data 

set. 

The reported analysis used the mixed effects model that included Spatial Location 

as a quadratic term, but it is worth noting that when the analysis was repeated with 

Spatial Location included as a linear term, the same outcomes were generated: there was 
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a main effect of perinatal diet and spatial location with no interaction effect. Plotting the 

linear relationship between spatial location and cell count would reveal a slight increase 

in cell count towards the rostral end of the ARC (Figure 3.6B). However, several metrics 

indicated that the quadratic, second-order polynomial was a better fit. In addition to 

emerging as the better-fitting model in the Chi-squared test (Table 3.1), the quadratic 

model (with Spatial Location as the only main effect) also had a better marginal R-

squared value (R2 = 0.0451) than the corresponding linear term model (R2 = 0.0244), 

indicating that a quadratic fit of Spatial Location could explain about 2% more of the 

variance in Cell Count than could a linear fit. Additionally, the full model with the 

quadratic fit is significantly better than that with a linear fit even when using only the five 

medial locations with the most observations: interaural positions 15.60, 15.15, 14.70, 

14.25, and 13.80 mm χ2 (1) = 4.311, p = 0.038. Thus, we have concluded that the 

distribution of Iba1-stained cells displays an increased density in the middle of the ARC 

compared with the rostral and caudal ends. 
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Figure 3.6. Comparison of quadratic and linear fits to the distribution of Iba1-

stained cells across the ARC. 

(A) Fitting the Iba1-stained cell count distribution with a quadratic curve, as seen in 

Figure 3.5, indicated an increased cell count towards the midpoint of the ARC (p = 

0.003). (B) When using a mixed effects model that included spatial location as a linear 

fixed effect rather than a quadratic term, Iba1-stained cell count increased linearly 

towards the rostral end of the ARC (p = 0.029). Interaural position is rostral to EBZ, with 

17.45 mm as the most rostral atlas-matched location. 

 

3.6.4. Maternal inflammation may impact microglia count 

Given that consuming a WSD can lead to an elevated inflammatory state, 

maternal inflammation may potentially mediate the relationship between perinatal WSD 

and decreased Iba1-stained cell count observed in this study. We therefore explored 

whether markers of maternal inflammation would similarly correlate with a decreased 

Iba1-stained cell count. 
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Maternal inflammation was assessed by measuring the levels of inflammatory 

markers in the blood during the third trimester of pregnancy. Plasma concentrations were 

determined using an IL-6 ELISA and Monkey Magnetic 29-Plex cytokine panel 

(ThermoFisher Scientific, Waltham, MA, USA), and a data cleaning procedure was 

conducted to process the raw concentrations into usable measures, as previously 

described (Dunn et al., 2022). The 14 markers selected for the analysis included four 

proinflammatory cytokines, three pleiotropic cytokines, six chemokines, and one growth 

factor. 

A total of 17 dam-offspring dyads were selected for this analysis. Of the 

offspring, six were exposed to a perinatal CTR and post-weaning CTR diet, five were 

exposed to a perinatal WSD and post-weaning CTR diet, and six were exposed to a 

perinatal WSD and post-weaning WSD. As previously stated, this latter group was 

excluded from the main analyses that tested the effects of perinatal diet and spatial 

location on cell count due to the incongruent post-weaning diet exposure, but it is worth 

noting that this exclusion was done for the sake of simplicity: there was no main effect of 

post-weaning diet when included as a factor in the mixed effects model, but reporting the 

equivalent results when excluding the incongruent post-weaning diet group made for a 

simpler, more coherent interpretation than the alternative of introducing a covariate in the 

model in order to include the subjects. As post-weaning diet had no effect on cell count, 

including the post-weaning WSD group in this analysis increased the sample size without 

introducing a confounding variable. A larger sample size was useful, as there was only 

one observation per juvenile subject: the median cell count of all images collected across 

the entire span of the ARC. 
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A partial least squares regression with three components strongly predicted 

offspring median cell count from the group of 14 maternal inflammatory markers. The 

relationship between observed and predicted median cell counts was strong and positive 

(r = 0.83; Figure 3.7A), and results were significant as determined by the difference in 

the distributions of the out-of-sample prediction errors (d = 0.60, mean absolute error; 

Figure 3.7B) using leave-3-out cross-validation (680 unique combinations when leaving 

3 subjects out of a sample of 17 subjects) compared to errors obtained by repeating the 

same approach but shuffling the data in the training partition 4,000 times (null model). 

The same out-of-sample validation schema was used to determine the optimal number of 

components. Peak performance was found with three components, but results were 

similar with two and four components. This out-of-sample validation schema reduces the 

risk of overfitting and maximizes the likelihood that the estimates are generalizable 

(Rudolph et al., 2017; Silva-Batista et al., 2020). 

This result indicates that a strong relationship exists between maternal 

inflammation and offspring microglia and macrophage count at the one year postnatal 

time point. However, when examining the individual contributions of each of the 14 

inflammatory markers towards the relationship, a pattern did not readily emerge (Figure 

3.7C). For example, the four proinflammatory cytokines spanned the range of beta-

weight magnitudes, with MIF standing as the marker that contributed most strongly to a 

positive relationship between maternal inflammation and offspring cell count, and IL-1b 

standing as the marker with the second strongest negative contribution to such a 

relationship. If all four had instead demonstrated strong, negative beta-weights near a 

value of -1, this would have suggested that a high concentration of maternal 
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proinflammatory cytokines is associated with a decrease in median cell count. However, 

coherent patterns such as this could not be drawn from the more nuanced results. More 

research is needed to explore the myriad ways that maternal inflammation may affect 

offspring neurodevelopment.  
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Figure 3.7. Maternal cytokines predict offspring Iba1-stained cell count in the ARC. 

A partial least squares regression with three components strongly predicted offspring 

median cell count from the group of 14 maternal inflammatory markers. (A) Observed 

offspring median cell count was strongly and positively correlated with the count 

predicted by maternal markers (r = 0.83). (B) The distribution of the mean absolute error 

arising from the use of maternal markers to predict cell count (light gray) was moderately 

shifted to the left of that of the null model (dark gray; d = 0.60), indicating a reduction in 

error. (C) The beta-weight magnitudes demonstrate the relative contributions of the 

individual maternal inflammatory markers to a positive relationship between an increase 

in the plasma concentration of the set of markers and the offspring median cell count. 

Abbreviations from (C): EGF, epidermal growth factor; IFNg, interferon gamma; IL-1b, 

interleukin 1 beta; IL-1RA, interleukin 1 receptor antagonist; IL-6, interleukin 6; IL-12, 

interleukin 12; I-TAC, interferon-inducible T-cell alpha chemoattractant; MCP-1, 

monocyte chemoattractant protein-1; MDC, macrophage-derived chemokine; MIF, 

macrophage migration inhibitory factor; MIP-1b, macrophage inflammatory protein-1 

beta; RANTES, regulated upon activation, normal T cell expressed and secreted; TNF a, 

tumor necrosis factor alpha.  
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3.6.5. Offspring inflammation may impact microglia count 

We investigated whether markers of offspring inflammation would correlate with 

Iba1-stained cell count, as contemporaneous exposure to immune markers may have a 

stronger influence on the presence of microglia and macrophages distinct from the 

impacts of maternal markers. 

Offspring inflammation was assessed by measuring the levels of inflammatory 

markers in the blood in one-year-old offspring. Plasma concentrations were determined 

using a Monkey Magnetic 29-Plex cytokine panel (ThermoFisher Scientific, Waltham, 

MA, USA), and a data cleaning procedure was conducted to process the raw 

concentrations into usable measures, as previously described (Dunn et al., 2022). The 14 

markers selected for the analysis included three proinflammatory cytokines, two 

pleiotropic cytokines, six chemokines, and three growth factors. 

A total of 16 offspring subjects were selected for this analysis: four were exposed 

to a perinatal CTR and post-weaning CTR diet, seven were exposed to a perinatal WSD 

and post-weaning CTR diet, and five were exposed to a perinatal WSD and post-weaning 

WSD. As previously stated, this latter group was excluded from the main analyses that 

tested the effects of perinatal diet and spatial location on cell count due to the incongruent 

post-weaning diet exposure for the sake of simplicity. As post-weaning diet had no effect 

on cell count, including the post-weaning WSD group in this analysis increased the 

sample size without introducing a confounding variable. A larger sample size was useful, 

as there was only one observation per juvenile subject: the median cell count of all 

images collected across the entire span of the ARC. 
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A partial least squares regression with five components strongly predicted 

offspring median cell count from the group of 14 offspring inflammatory markers. The 

relationship between observed and predicted median cell counts was strong and positive 

(r = 0.94; Figure 3.8A), and results were significant as determined by the difference in 

the distributions of the out-of-sample prediction errors (d = 0.83, mean absolute error; 

Figure 3.8B) using leave-3-out cross-validation (560 unique combinations when leaving 

3 subjects out of a sample of 16 subjects) compared to errors obtained by repeating the 

same approach but shuffling the data in the training partition 4,000 times (null model). 

The same out-of-sample validation schema was used to determine the optimal number of 

components. Peak performance was found with five components, but results were similar 

with four and six components. This out-of-sample validation schema reduces the risk of 

overfitting and maximizes the likelihood that the estimates are generalizable (Rudolph et 

al., 2017; Silva-Batista et al., 2020). 

This result indicates that a strong relationship exists between offspring 

inflammation and offspring microglia and macrophage count at the one year postnatal 

time point. However, when examining the individual contributions of each of the 14 

inflammatory markers towards the relationship, a pattern did not readily emerge (Figure 

3.8C). For example, the three proinflammatory cytokines spanned the range of beta-

weight magnitudes, with IL-1b standing as a marker with a weak contribution to a 

positive relationship between offspring inflammation and cell count, and IL-12 standing 

as the marker with the strongest negative contribution to such a relationship. If all three 

had instead demonstrated strong, negative beta-weights near a value of -2, this would 

have suggested that a high concentration of offspring proinflammatory cytokines is 
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associated with a decrease in median cell count. However, coherent patterns such as this 

could not be drawn from the more nuanced results. 

Interestingly, RANTES is a chemokine with proinflammatory functionality, and it 

was the strongest offspring marker with a positive relationship to cell count and the 

strongest maternal marker with a negative contribution to increased cell count. This 

suggests that an elevated level of maternal RANTES has an opposite effect on Iba1-

stained cell count in the ARC from an elevated level of RANTES within the juvenile 

subject when collected at the same time point as the cell count. This could indicate that 

increased maternal RANTES, like maternal WSD and similar proinflammatory 

exposures, may program for reduced inflammation in one year old offspring, whereas 

elevated levels of inflammation within the juvenile subject recruit or are produced by the 

inflammatory cells likely to engage in inflammatory responses, microglia and 

macrophages. More research is needed to explore the myriad ways that offspring 

inflammatory markers may impact microglia and macrophage presence in the ARC. 
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Figure 3.8. Offspring cytokines predict offspring Iba1-stained cell count in the ARC. 

A partial least squares regression with five components strongly predicted offspring 

median cell count from the group of 14 offspring inflammatory markers. (A) Observed 

offspring median cell count was strongly and positively correlated with the count 

predicted by offspring markers (r = 0.94). (B) The distribution of the mean absolute error 

arising from the use of offspring markers to predict cell count (light gray) was moderately 

shifted to the left of that of the null model (dark gray; d = 0.83), indicating a reduction in 

error. (C) The beta-weight magnitudes demonstrate the relative contributions of the 

individual offspring inflammatory markers to a positive relationship between an increase 

in the plasma concentration of the set of markers and the offspring median cell count. 

Abbreviations from (C): EGF, epidermal growth factor; HGF, hepatocyte growth factor; 

IFNg, interferon gamma; IL-1b, interleukin 1 beta; IL-1RA, interleukin 1 receptor 

antagonist; IL-12, interleukin 12; IP-10, interferon gamma-induced protein 10; I-TAC, 

interferon-inducible T-cell alpha chemoattractant; MCP-1, monocyte chemoattractant 

protein-1; MDC, macrophage-derived chemokine; MIF, macrophage migration inhibitory 

factor; RANTES, regulated upon activation, normal T cell expressed and secreted; 

VEGF, vascular endothelial growth factor.  
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CHAPTER 4.  DISCUSSION 

4.1 Summary of Findings 

The goal of this dissertation was to characterize the impacts of prenatal WSD 

exposure, which is a potential risk factor for SPD, on offspring neurodevelopment. Two 

aspects of neurodevelopment were explored across two main studies. First, the functional 

connectivity of areas involved in sensory and emotional processing were examined for 

differences associated with perinatal WSD exposure throughout development. Second, a 

potential mediator of altered circuit formation, neuroinflammation, was assessed at an 

early developmental time point. Together, these findings explore the role of a perinatal 

environmental exposure in the context of SPD. 

 

4.1.1. Overview of Findings from Study 1 

A machine learning model was able to train on differences in the connectivity of 

378 connections within and between the sensory networks and the amygdala to classify 

offspring by perinatal diet exposure only when offspring were 4 months of age. The 

model was unable to detect connectivity differences at 6, 11, 21, and 36 months of age, 

suggesting that perinatal WSD exposure does not lead to long-lasting alterations in the 

functional connectivity of sensory and emotional processing areas. The features that were 

the most important to improving accurate predictions in the 4 month old model consisted 

of decreased connectivity within the somatomotor network, within the visual network, 

and between the somatomotor and auditory networks; increased connectivity between the 

auditory and visual networks; and mixed effects between the somatomotor and visual 
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networks. Although amygdala connectivity was expected to be implicated given the 

negative emotional component of SOR and integration of the amygdala in non-classical 

sensory processing pathways, amygdala connectivity was only weakly impacted at 4 

months of age, with connections to the somatomotor network contributing more to model 

performance than connections from other networks to the amygdala. The same set of 

connections were assessed in children who reported a measure of SOR at roughly the 

equivalent developmental stage of the 36 month old macaques. Consistent with the 

macaque finding, the FRF model was also unable to predict the SOR score from the 

functional connectivity of the children. Taken together, these results suggest that a 

prenatal risk factor for ASD, which is a disorder that is highly comorbid with SPD, 

disrupts sensory connectivity during infancy, but these connections are largely robust 

against long-term impacts over time, similar to what is seen in children that still report 

SOR during preadolescence. These findings support the theory that SPD may stem from 

impaired sensory processing, especially at very early ages. 

 

4.1.2. Overview of Findings from Study 2 

Although prenatal WSD exposure was associated with increased microglial 

staining in the fetal ARC (Grayson et al., 2010), perinatal WSD exposure was not 

associated with an increased number of microglia and infiltrating macrophages in the 

ARC one year after birth. Instead, the perinatal WSD offspring displayed a slightly 

decreased number of microglia and macrophages. This finding illustrates a response 

trajectory where inflammation is elevated during perinatal WSD exposure but resolves 

after the WSD is discontinued at weaning. The slight decrease in cell count suggests a 
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potentially compensatory or neuroprotective effect at this time point. A slight decrease in 

microglia could impact neural circuitry by reducing synaptic pruning and neural 

precursor cell phagocytosis. Reduced microglial prevalence was also found in the 

amygdala of one-year-old WSD offspring (Dunn et al., 2022), further indicating that 

impacts to circuitry could occur in regions outside of the ARC. 

This study also found a greater density of microglia and macrophages in the 

middle of the ARC compared with the rostral and caudal ends. This distribution, best fit 

by a quadratic curve, was independent of perinatal diet exposure. Centrally located 

neuronal populations may be more vulnerable to microglia-neuron interactions during 

periods of elevated inflammation, including during the prenatal period of WSD exposure. 

One such neuronal population consists of NPY neurons, indicating that inflammatory 

conditions could disrupt the control of food intake and body weight. The findings from 

this study have important implications for the trajectory of offspring neurodevelopment 

and brain organization. 

 

4.2 Trajectory of Perinatal WSD Exposure on Functional 

Connectivity and Neuroinflammation 

The two studies of this dissertation found a consistent trajectory regarding the 

impacts of perinatal WSD exposure on brain connectivity and neuroinflammation. Study 

1 explored functional connectivity from as early as 4 months of age through 36 months of 

age in Japanese macaques. Study 2 reported on neuroinflammation from the prenatal 

period and followed up on microglial outcomes one year after birth in the same macaque 

model. In both studies, perinatal WSD exposure was found to have a larger impact on 
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offspring outcomes during the period of exposure, and outcomes resolved quickly 

thereafter. 

Specifically, this entailed widespread differences in the functional connectivity of 

sensory systems at 4 months of age which diminished even during perinatal exposure at 6 

months of age, and it encompassed increased markers of neuroinflammation during the 

prenatal period but decreased markers one year after birth. This consistency supports the 

view that the brain is resilient against long-term impacts from perinatal WSD exposure. 

In fact, indistinguishable patterns of functional connectivity during perinatal WSD 

exposure and a slight decrease in postnatal neuroinflammation can be interpreted as 

positive indicators; the former speaks to the robustness of neural circuitry formation in 

the face of direct and continued WSD exposure, and the latter proposes a potentially 

neuroprotective outcome where prenatal inflammation primes for less postnatal 

inflammation. These conclusions are, however, limited by the scope of the studies; 

further research could uncover differences in functional connectivity that were too small 

or too varied to be detected in the small sample size at 6 months, and additional measures 

of neuroinflammation could lead to a more comprehensive, and potentially opposite, 

understanding of the neuroinflammatory state at the one year time point. 

Additionally, while a preliminary analysis in Study 1 found no difference in the 

number of microglia and macrophages in the amygdala at 36 months of age (Figure 2.6), 

there was a slight trend towards an increased prevalence in the perinatal WSD group. If 

the trend reaches significance in a more robust study, this would reveal a trajectory where 

neuroinflammation in perinatal WSD offspring is heightened in utero, as evidenced in the 

fetal ARC (Grayson et al., 2010), reduced in early childhood, as suggested by fewer Iba1-
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stained cells in the ARC (Study 2) and amygdala (Dunn et al., 2022), and resurfaces 

during preadolescence, as suggested by the trend in the amygdala (Study 1). This 

particular trajectory would identify preadolescence as another period that may be 

subjected to disruptions in neural circuit formation and functioning. 

Furthermore, it is important to consider that while the perinatal WSD exposure 

does not appear to have major detrimental impacts in older offspring, it is not without its 

effects. Although decreased neuroinflammation is often regarded as a sign of health, a 

reduction in the number of microglia, even if slight, could have noticeable impacts on 

synaptic pruning and other microglial processes implicated in circuit formation. 

Similarly, while no major differences in functional connectivity were found in 36 month 

old macaques, humans with SOR at the same developmental age demonstrated 

differences in a small set of sensory connections in a study by Schwarzlose and 

colleagues (2023) despite poor FRF model performance in the current study, suggesting 

that small effects might be found in the WSD offspring by a more sensitive analytical 

approach. Thus, it is possible that perinatal WSD exposure continues to impact offspring 

in subtle ways. Further research is recommended to better uncover the extent of these 

impacts. 

Overall, the two studies elucidate a distinct trajectory that highlights the prenatal 

and early postnatal periods as being more susceptible to neuroinflammatory and neural 

circuitry impacts associated with WSD exposure. While most studies in children with 

SPD tend to observe the early childhood and preadolescent periods, the present studies 

suggest that greater challenges with sensory processing and related behaviors may be 

present during infancy. Future efforts should focus on the first year of life to identify 
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early markers of SPD and develop therapeutic treatments or interventions. Further 

research is required to understand how impacts initiated during this period may lead to 

the behaviors characteristic of neurodevelopmental disorders like SPD that continue in 

later childhood. 

 

4.3 Neuroinflammation as a Mediator for Altered Neural 

Circuitry 

Another area for further research is in regards to the relationship between 

neuroinflammation and functional connectivity. The two studies of this dissertation 

identified a consistent response trajectory across connectivity and neuroinflammation, 

indicating that a relationship could exist between the two domains. It is well known that 

microglia do, in fact, shape functional connectivity by controlling neurogenesis and 

synapse elimination, and it would be interesting to explore direct links between perinatal 

WSD exposure, microglial activity, and the connectivity of regions implicated in the 4 

month old offspring. Given that the FRF model was only able to differentiate between 

diet groups based on the connectivity at 4 months of age, it would seem that the 

microglial process of neural precursor cell phagocytosis may be more impacted and 

responsible for the altered circuitry than synaptic pruning, as the former is prominent 

during the third trimester, and the latter does not peak until later ages (Cunningham et al., 

2013; Eltokhi et al., 2020). A follow-up study could explore whether microglial 

phagocytosis is amplified in the regions that demonstrated decreased connectivity at 4 

months of age. Increased neuroinflammation and microglial prevalence are associated 

with increased phagocytosis of neural precursor cells (Cunningham et al., 2013), so it is 
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possible that the inflammatory effects of the prenatal WSD exposure (Grayson et al., 

2010) reduced the total number of neurons that reached maturation in these areas, leading 

to decreased connectivity such as was seen in the intra-somatosensory network at 4 

months of age. 

Studying the detailed dynamics of microglial phagocytosis at every region that 

displayed altered connectivity might be a burdensome endeavor, especially if some of 

those regions turned out to be poor candidates for microglial involvement due to being 

spared from a strong neuroinflammatory response. A comprehensive precursor 

experiment could identify candidates by assessing neuroinflammation across the brain 

using MRI. The use of MRI would enable cross-mapping between domains: the areas that 

are implicated in altered functional connectivity could be rapidly compared to a brain-

wide map of neuroinflammation. This comparison would uncover associated regions that 

should be targeted for more extensive investigation. The brain-wide map of 

neuroinflammation would be generated by acquiring structural MRI scans under 

ferumoxytol contrast. Ferumoxytol is an ultrasmall superparagmagnetic iron oxide 

(USPIO) nanoparticle that is Food and Drug Administration (FDA)-approved for the 

treatment of iron deficiency in adult chronic kidney disease patients. Due to its 

superparamagnetic quality, it is also used as an imaging contrast agent. Ferumoxytol has 

an intravascular half-life of 10-14 hours (Hasan et al., 2012), so it is cleared relatively 

quickly. However, during neuroinflammation, ferumoxytol is trafficked into tissue at 

sites of reactive lesions and altered BBB permeability (McConnell et al., 2016) where it 

is phagocytosed by inflammatory cells like macrophages (Hubert et al., 2019; Hasan et 

al., 2012). Clearance through phagocytosis takes longer than intravascular clearance. 



165 
 

Imaging 24 hours after administration therefore leads to peak contrast enhancement 

intensity in areas that are sites of neuroinflammation (Hasan et al., 2012). Using this 

approach, sites of neuroinflammation could be mapped to the functional connectome to 

identify regions of overlap, potentially implicating neuroinflammation in the altered 

connectivity. This experiment was considered for the present study, but there was 

insufficient time to optimize scan settings before the juvenile macaques had aged out of 

the study. 

Similarly, a future direction for the current study would be to relate the functional 

connectivity findings to neuroinflammatory outcomes using the FRF. Instead of 

predicting perinatal WSD exposure, measures like microglial density or the concentration 

of an inflammatory cytokine in offspring could be predicted by the set of functional 

connections. Some of this data currently exists for a subset of offspring who underwent 

imaging at 36 months of age. Following imaging, the number of microglia and 

macrophages, identified by Iba1 staining, was quantified as previously described (Dunn 

et al., 2022). Thus, amygdala connectivity could be used to predict Iba1-stained cell 

counts in the amygdala at roughly the same time point. A pilot analysis using data from 

these two domains was conducted for this dissertation and was reported in the 

Supplementary Material of Study 1. In summary, all connections between the amygdala 

and the sensory networks, totaling 53 connections including the connection between both 

hemispheres of the amygdala, were selected as training features. The FRF regression 

model implemented 6-fold cross-validation with 5 repetitions, 3000 trees, and 90% of the 

data reserved for the training set. Unfortunately, the model did not achieve significant 

performance metrics, likely due to the small sample size (N = 10). Although the FRF 
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model was unable to use the connectivity of the 53 amygdala connections to predict the 

average number of microglia and macrophages across the amygdala, other analyses could 

examine the relationship between Iba1-stained cell count and each individual connection 

or network grouping to find focal areas of impact. Further work should also seek to 

increase the sample size to increase power and enable more robust investigation. If an 

analysis revealed a relationship between the two measures, then this would provide 

further evidence for a relationship between microglial activity and impaired neural 

circuitry. Synaptic pruning might be a more likely mediator for alterations in circuitry in 

this age group as the microglial process would still be taking place, whereas controlling 

neurogenesis through phagocytosis is predominant at earlier time points (Eltokhi et al., 

2020; Cunningham et al., 2013). Increased synaptic pruning can lead to increased or 

decreased connectivity depending on the context (Kim et al., 2017; Cowan and Petri, 

2018; Kleinhans et al., 2016; Huang et al., 2016; Ypma et al., 2016), so the results of the 

analysis would be useful in understanding the impacts of synaptic pruning within the 

amygdala as microglial count rises. Additional studies could further identify the 

mechanisms by which neuroinflammation, potentially from WSD exposure, transiently 

reconstructs neural circuitry during early development. 

 

4.4 Alternatives to Perinatal WSD: Maternal Adiposity and 

Inflammation may be Distinct Drivers of SPD Outcomes 

While prenatal WSD is associated with an increased incidence of 

neurodevelopmental disorders like ASD, it is important to remember that there may be an 

underlying mediator between the diet and the increased incidence. Two potential 
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mediators are adiposity and inflammation, as both are increased with WSD consumption, 

and both are similarly associated with an increased incidence of neurodevelopmental 

disorders following prenatal exposure (DeCapo et al., 2019; Careaga et al., 2017; Parker-

Athill and Tan, 2010; Guma et al., 2019). It is possible that these three factors have 

distinct effects that have been conflated in the literature. For example, it is possible that 

maternal adiposity has more predictive power than maternal WSD due to the direct 

influences of adiposity, yet WSD continues to be implicated due to its association with an 

increased likelihood of increasing adiposity. In this scenario, it is not necessarily the 

WSD exposure that determines the neurodevelopmental outcome, but rather how the 

body of the pregnant person responds to the diet, especially in terms of whether adiposity 

is increased or an inflammatory response is launched. 

There is evidence in the literature that suggests this conflation may be occurring. 

In human studies that involve prenatal exposures, accounts of WSD are typically based 

on self-reporting rather than experimentally controlled dietary interventions (Bastías-

Pérez et al., 2020). Self-reporting errors can make it difficult to accurately ascertain the 

diet composition that would be associated with the neurodevelopmental outcome. Instead, 

more objective measures that are generally correlated with adiposity, like body mass 

index (BMI) and weight, are more commonly used to explore associations with 

neurodevelopmental disorders in offspring. These measures are often associated with an 

increased incidence of ASD in humans (Moss and Chugani, 2014; Reynolds et al., 2014; 

Krakowiak et al., 2012; Li et al., 2016; Mina et al., 2017). In order to further study the 

effects of these metabolic measures on prenatal development in animal models, a method 

must be implemented to increase adiposity in the dams. While certain genetic factors are 
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associated with increased adiposity, a major environmental contributor is diet, as diets 

with more than 30% of the daily energy intake deriving from fats can easily induce 

obesity in humans (Bastías-Pérez et al., 2020). This environmental factor is pertinent, as 

WSD consumption is highly prevalent among the US population (Hohos and Skaznik-

Wikiel, 2017; Hintze et al., 2018). High-fat diets are therefore regularly selected as a 

convenient, relevant means for inducing the implicated adiposity measures in animal 

models. 

As mentioned previously, adverse dietary manipulations are generally not 

acceptable in human studies of prenatal development, thereby leading to the reliance on 

self-reporting. As such, most studies that can examine the precise impacts of prenatal 

WSD on neurodevelopment require the use of animal models (Bastías-Pérez et al., 2020). 

Most animal studies that examine the impacts of WSD, or WSD-induced obesity, 

implement rodent models (Even et al., 2017; Urbonaite et al., 2022). The potential issue 

is that not all rodent strains replicate the full metabolic spectrum of humans (Bastías-

Pérez et al., 2020; Buettner et al., 2007; Even et al., 2017). For example, inbred mouse 

strains like C57BL/6J are highly susceptible to obesity when fed a high-fat diet 

(Rossmeisl et al., 2003; Fernandes et al., 2021). Sprague-Dawley rats tend to display 

more variation in weight gain, but some studies still report almost complete overlap 

between the HFD-fed and obese subsets (Lauterio et al., 1994; Bilbo and Tsang, 2010). 

Thus, animal models that claim to expose an association between prenatal WSD exposure 

and a neurodevelopmental outcome may instead be demonstrating an association between 

exposure to increased maternal adiposity and the neurodevelopmental outcome. 
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Furthermore, many rodent studies utilize high-fat diets that derive 60% of the kcal 

from fat to induce obesity rapidly and save on costs, whereas a more physiologically 

relevant diet for comparison to human obesity would contain 45% fat content (Bastías-

Pérez et al., 2020; Mitchell et al., 2022a; Hintze et al., 2018). A study in mice that 

compared diets with 45% and 60% fat content revealed differences in the sets of 

metabolites that were altered compared to metabolites in mice that were fed a low-fat 

diet, demonstrating that diet composition affects the metabolic response (Showalter et al., 

2018). Data from studies that use diets with 60% fat content might therefore be irrelevant 

to human outcomes. Thus, outcomes that have been attributed to prenatal WSD exposure 

may more appropriately be attributed to extreme metabolic perturbations not commonly 

experienced in the human population. 

Studies that carefully match the metabolic variation of the animal species and 

strain, the fat content of the diet, and the types of fat in the diet to the corresponding 

features typical for humans may provide more accurate insight into the true impacts of 

prenatal WSD exposure on offspring neurodevelopment. These studies should seek to 

control for maternal adiposity in order to distinguish any independent effects of the two 

highly conflated factors. Perhaps the most physiologically relevant study regarding this 

subject matter was conducted by Lyall and colleagues (2013) in humans. The researchers 

found no significant difference in offspring ASD risk with certain types of fat intake 

(saturated fat, monounsaturated fat, and trans-fat) when adjusting for the BMI of the 

pregnant individual, even though there was an association between increased BMI and 

total fat intake. On the contrary, increased polyunsaturated fatty acid intake was 

associated with a decreased risk of ASD (Lyall et al., 2013). Measures of fat intake do 
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not fully replicate the WSD, which also includes high sugar content, but this evidence 

suggests that the fats in the diet alone may not account for the increased incidence of 

ASD phenotypes typically seen in animal studies. The authors additionally acknowledge 

several limitations, including sources of error in the reporting of dietary consumption and 

a limited sample size of 317 pregnant individuals who reported a child with ASD 

compared to 17,728 controls. Nevertheless, a review of studies that examined prenatal 

factors associated with ASD identified this study by Lyall and colleagues (2013) as being 

the only one to examine maternal fat and fatty acid intake on ASD incidence at the time 

of publication (Lyall et al., 2014). Given the shortage of WSD studies in humans, a 

comprehensive review of carefully controlled and physiologically relevant animal studies 

in this field may better determine the extent to which prenatal WSD exposure and 

maternal adiposity independently contribute to neurodevelopmental outcomes. 

The NHP model used in this study is exceptionally suited to address the issue of 

conflated factors. The NHP subjects match the metabolic responses that are characteristic 

of humans, including a variation in the weight gain, BMI, and adiposity measures among 

subjects from both diet groups (Harris et al., 2016). The composition of the WSD is 

additionally controlled to be more representative of the WSD typically consumed by 

humans. Thus, while results from this NHP model may conflict with the largely rodent-

based literature in some areas, this may be due to the greater match between NHP and 

human outcomes. Moreover, prior studies in this model have avoided conflating 

environmental factors by distinguishing between the independent and interrelated effects 

of maternal diet, adiposity, and inflammation on offspring neurodevelopment (Thompson 

et al., 2018). 
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An exploration of maternal factors on offspring inflammation found unique 

effects of maternal adiposity and WSD exposure. Maternal WSD was associated with 

increased maternal pre-pregnancy adiposity, yet the former and latter were associated 

with decreased and increased Iba1-stained cell counts in the offspring amygdala one year 

after birth, respectively (Dunn et al., 2022). Additionally, while maternal cytokine and 

chemokine levels from the third trimester were not associated with Iba1-stained cell 

counts in the amygdala of offspring, there was an impact on offspring inflammatory 

markers one year after birth. Maternal adiposity was associated with decreased maternal 

chemokines, which were in turn associated with decreased offspring cytokines and 

increased offspring chemokines. This comprehensive analysis elucidates the complexity 

of interactions that lead to offspring outcomes. The findings from Study 2 are consistent 

with the prior analysis, as both revealed decreased Iba1-stained cell counts associated 

with perinatal WSD exposure one year after birth. The findings would suggest that, had a 

greater sample size allowed for the independent analysis of maternal adiposity, an 

increased Iba1-stained cell count in the ARC may have been associated with maternal 

adiposity in Study 2, as well. Admittedly, given the high overlap of offspring exposed to 

either perinatal WSD or maternal adiposity, it is possible, though less likely in the context 

of the amygdala findings, that the ARC findings could be attributed to maternal adiposity 

rather than perinatal WSD exposure. Interestingly, while the prior study did not find an 

association between maternal cytokine and chemokine levels and Iba1-stained cell counts 

in the amygdala, a PLSR analysis reported in the Supplementary Material of Study 2 

demonstrated an association between maternal cytokine and chemokines levels and Iba1-

stained cell counts in the ARC. A coherent understanding of the impacts could not be 
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drawn, however, suggesting that individual cytokines may have opposing impacts on the 

number of microglia and macrophages present in the ARC of offspring one year after 

birth. This could explain why the prior study, which looked for impacts from 

predetermined combinations of cytokines and chemokines rather than components 

automatically detected from the PLSR, did not find a strong association. The PLSR 

analysis supports the idea that alternative factors like maternal inflammatory markers 

may have complex impacts on offspring outcomes that are inconsistent with the impacts 

of perinatal WSD exposure. 

Maternal adiposity and perinatal WSD exposure also have opposing effects on 

idiosyncratic behavior, as well as opposing effects on maternal IL-12 levels which are 

then negatively associated with offspring social engagement behaviors, at 6.6 months of 

age (Mitchell et al., 2022b). Perinatal WSD exposure was additionally associated with 

increased anxiety and stereotypy, while maternal adiposity was associated with increased 

impulsive and disruptive behaviors, at 11 months of age (Thompson et al., 2018). These 

findings further demonstrate the disparate effects of prenatal WSD and adiposity 

exposures on offspring neurodevelopment. Further research should examine the 

independent impacts of these two prenatal factors on behaviors common to SPD. 

Analysis of offspring cortical thickness growth over time has also revealed 

independent impacts from perinatal WSD exposure and third trimester maternal IL-6 

levels (Ramirez et al., 2021). Among other distinct effects in different regions, perinatal 

WSD exposure was associated with decreased bilateral cortical thickness in the pole of 

the temporal cortex at 4 months of age, whereas increased maternal IL-6 was associated 

with increased thickness. Additionally, perinatal WSD exposure and maternal IL-6 
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exposure had largely overlapping effects on cortical surface area, with a much greater 

number of additional functional networks impacted by diet than by IL-6. This study 

demonstrates that perinatal WSD exposure may have a separate impact on cortical 

volume from maternal inflammation. The findings from Study 1 partially align to the 

results of the prior analysis. Study 1 found decreased intra-somatomotor network 

connectivity as the most informative difference associated with perinatal WSD exposure 

at 4 months of age. This could potentially be explained by the decreased cortical surface 

area of the somatomotor network found in WSD offspring at the same time point, as a 

smaller area could signal fewer neurons and weaker connections. The only other 

difference found at this time point among the networks assessed in Study 1, for either 

perinatal exposure, was decreased cortical surface area in the limbic network associated 

with perinatal WSD exposure. A hypothesis of this dissertation was that perinatal WSD 

exposure would be associated with increased amygdala connectivity, so decreased 

cortical surface area does not align well to that hypothesis, though it does support the 

expectation that the amygdala would be impacted. The findings from Study 1 

demonstrated small differences in amygdala connectivity at 4 months of age that were not 

ranked highly for model importance, with mixed directionality of impacts. However, 

these findings do not necessarily conflict, as the amygdala is just one region within the 

limbic network; it is possible that other regions within the network could have 

demonstrated decreased connectivity, aligning with decreased surface area, had they been 

included in the FRF model. For example, while maternal IL-6 was not associated with a 

change in limbic network cortical surface area, it was associated with smaller left 
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amygdala volume at 4 months of age, demonstrating that amygdala changes can be 

insufficient to drive network-wide changes (Ramirez et al., 2020). 

Given the differences in impacts on brain structure between perinatal WSD and 

maternal IL-6 exposure, it would be interesting to follow up on Study 1 and determine 

whether controlling for maternal IL-6 or adiposity would yield different results. Of the 69 

offspring included in Study 1, 50 had measures of maternal pre-pregnancy adiposity. Of 

these, 60% of the offspring exposed to a perinatal CTR diet were from dams with a 

percent body fat greater than 19.6%, defined as high adiposity for this study, whereas 

only 53.3% of the WSD offspring were exposed to high maternal adiposity. However, 

dams with more than 29.05% body fat were considered to have very high adiposity. Only 

15% of all perinatal CTR offspring were exposed to the influences of very high adiposity, 

whereas this exposure was prevalent in 40% of perinatal WSD offspring. This 

stratification in adiposity levels across diet groups enables future analyses to explore the 

independent impacts of perinatal WSD and maternal adiposity exposures on functional 

connectivity measures. In fact, one analysis that attempted to explore the independent 

impact of maternal adiposity was included in the Supplementary Material of Study 1. As 

none of the subjects in the 36 month age group had missing maternal adiposity data, it 

was possible to use their functional connectivity strengths to predict maternal adiposity in 

the same manner as perinatal WSD group was predicted. However, neither a regression 

model predicting percent body fat nor a classification model predicting binary adiposity 

categories yielded significant performance metrics. Thus, maternal adiposity, like 

perinatal WSD exposure, did not lead to strong or widespread differences in connectivity 

at 36 months of age. However, this does not rule out the possibility that maternal 



175 
 

adiposity could have a different impact on functional connectivity from perinatal WSD 

exposure during periods of heightened vulnerability, such as during the 4 month old time 

point. Prior studies in this animal model suggest that this may be the case, though further 

research is needed to confirm this hypothesis. 

Considering the above, it is clear that perinatal WSD exposure may have distinct 

impacts from maternal adiposity, and some of the literature may inadvertently conflate 

the two factors. Similarly, diet- and adiposity-mediated impacts to maternal inflammatory 

markers may also lead to distinct outcomes. Thus, it is important to consider all three 

factors, in addition to other measures, when evaluating impacts to offspring 

neurodevelopment. The current field of SPD research has yet to establish prenatal WSD 

exposure as a risk factor, perhaps due to the difficulties in acquiring accurate dietary 

reporting in human models, but this dissertation reveals findings that merit further 

investigation into the compounding or contrasting impacts of diet and other factors on the 

development of SPD in offspring. 

 

4.5 Appropriate Animal Model Applications 

When designing future studies, it is important to consider whether a NHP or 

rodent model would be better suited to address the research question. For example, NHP 

models replicate the full range of metabolic variation seen in humans, so studies that seek 

to provide clinically relevant metabolic insights or distinguish between the independent 

effects of diet and adiposity might consider preferentially adopting a NHP model or, if 

needed, a rodent model that has been carefully chosen for its metabolic similarities to 

humans (Even et al., 2017). In general, NHP models will offer greater similarities to 
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humans than will rodent models given the genetic relationships between the species, but 

not every research question will need to maximize physiological or behavioral relevance. 

Preliminary lines of study that benefit from surveying a multitude of cytokines, 

metabolic factors, or brain regions could be initiated in rodents, and promising 

interactions could be repeated and expanded upon in NHP models. This strategy could be 

useful when following up on the supplemental result in Study 2 that demonstrated that 

maternal cytokines predicted offspring Iba1-stained cell count in differential ways. Many 

inflammatory mechanisms are conserved across species (Godec et al., 2016; Estes et al., 

2018), so a rodent model could be sufficient for a preliminary exploration of how 

prenatal inflammatory dynamics shape neural circuitry. 

Similarly, experiments that require large sample sizes or longitudinal approaches 

could leverage the cost-effectiveness and shorter developmental timelines of rodents 

before moving to a NHP model. This could be useful when following up on the 

functional connectivity findings from Study 1. A major limitation to brain-wide 

association studies that aim to relate variability in functional connectivity to 

psychopathology is that large sample sizes consisting of thousands of subjects are needed 

for reproducible, reliable results (Marek et al., 2022). Smaller sample sizes are sufficient 

in conjunction with repeated sampling, such as in longitudinal designs, or with induced 

effects, like a lesion, but these study modifications require substantial time and cost when 

conducted in NHP models. Critically, mice have demonstrated the same large-scale 

functional network properties identified in NHPs, so rs-fcMRI can be used to translate 

findings between mice and humans through NHP alignment (Stafford et al., 2014). Thus, 

rodent models can be leveraged to relate invasive or longitudinal physiological and 
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behavioral findings to brain-wide functional connectivity, potentially across large sample 

sizes when research groups conducting similar studies share their data in open-source 

repositories, to provide a baseline understanding of clinically relevant targets for future 

validation in NHP models. 

Notably, any question that benefits from genetic manipulations, such as a 

knockout of microglial phagocytosis genes to examine the specific impacts to 

neurogenesis, synaptic pruning, and resulting functional connectivity, would be better 

applied in rodent models, as transgenic NHP methods are limited and labor-intensive 

(Liang et al., 2022). Relating genetic findings to human psychopathology through 

functional connectivity could therefore be a unique capability of rodent models. 

While rodent studies benefit from low costs, short life spans, high reproduction 

rates, and precise genetic control to offer insights into detailed physiological dynamics, 

NHP models provide clinical relevance through highly conserved attributes including 

metabolic and immune functioning, gestational and neurodevelopmental timelines, 

placental structure and function, brain organization, and complex behavior (Sullivan and 

Kievit, 2016; Estes et al., 2018; Carter, 2007; Miranda-Dominguez et al., 2014). NHP 

models are therefore exceptionally positioned to validate findings from the vast body of 

rodent literature related to the impacts of prenatal WSD on offspring neurodevelopment, 

as was conducted for this dissertation. Future studies should continue to recruit NHP 

models as appropriate to affirm rodent findings and guide promising paths for further 

investigation. 
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4.6 Conclusions 

The findings from this dissertation characterize the longitudinal outcomes of 

perinatal WSD exposure on functional connectivity and neuroinflammation in the context 

of SPD. The shared trajectory of strong impacts during the prenatal and early postnatal 

periods followed by rapid attenuation illustrates the transient impact of perinatal WSD 

exposure on long-term outcomes. These early periods are likely more susceptible to 

disruptions from WSD exposure due to the dynamic neural structuring occurring at those 

time points. 

While these studies are limited by small sample sizes and an inability to fully test 

for the independent impacts of maternal adiposity and inflammation, they provide 

insights that are consistent with other findings in this NHP model and across the 

literature, and they contribute critical advancements on multiple fronts. These findings 

expand the developmental range that is typically explored in human SPD studies by 

characterizing functional connectivity from infancy through preadolescence; in doing so, 

this work has identified early infancy as a period when challenges in sensory processing 

may be particularly pronounced. Future work should investigate this period for sensory 

difficulties, markers for early detection of SPD, and therapeutic interventions. 

Furthermore, the differences found in the connectivity of sensory and emotional 

processing areas at 4 months of age support the theory that SPD arises from impairments 

in sensory processing, contributing to a growing body of research that promotes this 

perspective in the field. Additionally, these findings have uncovered a trajectory of 

neuroinflammation that aligns with the connectivity results, informing how this potential 

mediator of altered circuitry may impact sensory processing across development. 
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Importantly, this work combines the unique advantages of exploring dietary impacts in a 

metabolically relevant animal model with the application of a cross-species functional 

connectivity approach. Analyzing the same brain regions between species has allowed the 

WSD findings to be more appropriately compared to clinically relevant human outcomes. 

Ultimately, these studies advance what is known about the development of SPD and pave 

the way for future translational discoveries and therapies.  
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