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Dissertation Abstract 

Liquid biopsy provides a minimally-invasive alternative to solid tissue biopsy for 

assessing tumor-derived molecules such as circulating tumor DNA (ctDNA). Detection 

and characterization of ctDNA in the blood shows promise in early cancer screening and 

diagnosis, and has prognostic value for risk-stratification at all stages of disease. ctDNA 

can also be used for minimally-invasive tumor genotyping, treatment monitoring, and 

pre-clinical detection of minimal residual disease and recurrence. Although once 

predicted as a panacea for these applications, the clinical implementation of ctDNA 

assays has met with significant technical hurdles. Moreover, poorly-understood 

biological mechanisms and a lack of standardized methods contribute to measurement 

variability. The work that follows is intended to (1) highlight the need for a deeper 

understanding of the biological underpinnings of ctDNA release and kinetics, and (2) test 

the limits of patient-specific and patient-agnostic ctDNA detection technologies in the 

clinical setting. 

In Chapter II, “Blood, Toil, and Taxoteres: Biological Determinants of Treatment-

Induced ctDNA Dynamics for Interpreting Tumor Response,” I present my peer-reviewed 

work that explored our understanding of ctDNA origins and dynamics circa 2021. 

Because the factors that drive ctDNA abundance in some patients and not others were 

(and remain) unclear, I surveyed the available literature in which ctDNA dynamics were 

reported during therapy with the hope of revealing something, not just about treatment 

efficacy, but about the underlying biological mechanisms of ctDNA shedding. While 

interesting patterns exist in these data, without a better understanding of the complex 

biology of ctDNA, we will not realize the true potential of this information-rich biomarker.  



In Chapter III, “The Feasibility of Patient-Specific ctDNA Monitoring for 

Subclinical Disease in Esophageal and Rectal Cancer,” I present our peer-reviewed 

study published in 2021 wherein we tested the feasibility of patient-specific ctDNA 

monitoring for non-operative management of neoadjuvantly-treated esophageal and 

colorectal cancer patients. We found that ctDNA was detectable after treatment in 

patients who later recurred or had residual disease at the time of surgery. Conversely, 

patients without detectable ctDNA after treatment had a complete response at the time 

of surgery with no recurrence. These results suggested that patient-specific ctDNA 

assays could improve non-operative management of these devastating cancers.  

Finally, in Chapter IV, “Mixed ctDNA dynamics and decreased detection rates in 

early-stage lung cancer patients during radiation treatment,” I present a previously-

unpublished clinical study in early-stage lung cancer patients, where ctDNA abundance 

is particularly low and biopsies are often unobtainable. We tested the hypothesis that the 

radiation therapy routinely used to treat suspicious lung nodules would induce ctDNA 

shedding and thereby improve detection rates. I adapted our patient-specific assay from 

Chapter III and crafted a novel computational workflow to identify low-abundance ctDNA 

in a patient-agnostic manner. Remarkably, we found that ctDNA detection rates 

decreased significantly days after ablative radiation, but overall ctDNA abundance and 

dynamics varied between patients during treatment. Further studies with larger cohorts 

and more frequent sampling will help clarify the relationship between these dynamics 

and radiation treatment. 

Taken as a whole, this body of work adds novel and useful information to the 

field of ctDNA research and advances the clinical utility of liquid biopsy. 

 

 



 

 

Chapter I: Introduction to circulating tumor 
DNA in liquid biopsy 

1.1 Cell-free DNA and circulating tumor DNA 
(ctDNA) 

In the last decade there has been a revolution in personalized cancer care. 

Targeted therapy, molecular genotyping, and improved risk stratification at all stages of 

disease have reduced treatment toxicity, improved patient care, and reduced mortality in 

nearly every type of cancer. Perhaps the holy grail of this revolution is comprehensive 

disease detection, characterization, and monitoring by minimally-invasive liquid biopsy, 

yet it remains elusive. Tumor cells are not isolated from their host’s tissue or its 

physiology. They require nutrients, generate waste, and excrete a myriad of small 

molecules, as all living cells do, potentially providing a wealth of information about the 

tumor that is there for the taking. Therein lies the promise of liquid biopsy: minimally-

invasive access to tumor-derived analytes with negligible impact to the patient – we 

simply need to be clever enough to detect and decode them. The most generalizable of 

liquid biopsy analytes is tumor-derived cell-free DNA, called circulating tumor DNA 

(ctDNA). This introduction will discuss cell-free DNA generally as well as the utility, 

challenges, and limitations of ctDNA as a biomarker. More specific discussion of ctDNA 

origins and the mechanisms that drive its abundance will be described later in Chapter II.  
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Figure 1.1. The physiology of cell-free DNA and circulating tumor DNA (ctDNA) in 
the blood. 
Three major types of cell-free DNA shedding are shown (apoptosis, necrosis, and 
secretion). Blood components after fractionation by centrifugation are shown where cell-
free DNA is found the “plasma” fraction and white blood cell DNA from the buffy-coat 
fraction (labeled “leukocytes”). Adapted from 
https://en.wikipedia.org/wiki/Circulating_tumor_DNA with 
https://creativecommons.org/licenses/by-sa/4.0/deed.en 

 

Cell-free DNA is extracellular DNA found in nearly every bodily fluid and is 

thought to arise from multiple sources including normal cellular apoptosis (see Fig. 1.1). 

The work presented here is strictly concerned with cell-free DNA and ctDNA as it is 

found in the blood, which is primarily derived from hematopoietic cells [1] (see Fig. 1.2). 

First discovered in human plasma in 1948 by French researchers P. Mandel & P. Métais 

[2], cell-free DNA has long been thought to originate from the normal process of cell 

death and turnover in healthy tissue. It typically bears the ~160bp fragmentation pattern 

recognized as a hallmark of apoptosis resulting from cleavage of nuclear DNA around 

nucleosomes. A smaller fraction of high-molecular weight (>5k-10kb) species are also 

https://en.wikipedia.org/wiki/Circulating_tumor_DNA
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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sometimes observed and thought to be the product of other mechanisms, such as cell 

death via necrosis and pyroptosis, erythroid enucleation, or more exotic mechanisms like 

NETosis, cell-signaling, or micronuclei formation (see Aucamp et al. for a detailed 

review, [3]). So-called secretion or active release of cell-free DNA, which does not 

require cell death, has been theorized with some experimental support, but this term is 

misleading as it suggests energy-dependent mechanisms that have yet to be elucidated. 

Mounting evidence also suggests that apoptotic-like DNA fragmentation patterns can 

arise from necrosis-specific DNases and extracellular DNase activity in the blood [4-7]. 

This implies that cell-free DNA resulting from non-apoptotic mechanisms may appear 

fragmented in the same way as apoptotically-derived cell-free DNA, which upends many 

assumptions that still persist in the field to this day. For our purposes it is sufficient to 

summarize the origins of cell-free DNA, and therefore ctDNA – regardless of fragment 

size – into two categories: (a) the result of a cell’s death or (b) originating from a cell that 

is still capable of division and propagation. The various mechanisms that fall under these 

categories are relevant throughout this work and are discussed in greater detail in 

Chapter II specifically as they pertain to ctDNA. 
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Figure 1.2. The tissue origins of cell-free DNA in healthy blood. 
(a) Cellular sources of cell-free DNA in eight healthy individuals as predicted by 
methylation signature. (b) Distribution of data shown in a for each individual showing 
gender and age group (“young” 19-30 y/o, left four; “old” 67-93 y/o, right four). Adapted 
with permission from Moss et al. 2018 [1]. 

 

The rapid rate of clearance of cell-free DNA from circulation demands 

consideration in assay development, as it is anywhere from 15-120 minutes; similar 

rates have also been found for ctDNA [8]. This high turnover rate makes it ideal for real-

time sampling but also contributes to significant longitudinal variability. In healthy 

individuals, the concentration of cell-free DNA is typically between 5-10 ng [or about 

1,500 to 3,000 haploid genome equivalents (hGEs)] per ml plasma but can also vary 

over 10-fold in 24 hours [9]. One study found this variability to be as much as 1.4-fold in 

a 75-min period [10] and two other studies found a coefficient of variation (CV) of 30% 

over the course of three days in both cancer patients and healthy controls [11, 12]. The 

challenge then becomes understanding how the biology responsible for normal variation 

in cell-free DNA levels might impact variability in ctDNA and which end of the process is 

most determinant: production or clearance. One of those studies, by Hojbjerg and 

colleagues [12], looked at both total cell-free DNA and ctDNA levels over three 

consecutive days in stage IV lung cancer patients with stable disease and no concurrent 
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treatment. They found similar variability in total cell-free DNA and ctDNA, but 0.1- to 0.9-

fold change (8%-57% CV) over three days in the ctDNA fraction (i.e., mutant allele 

fraction, MAF, defined as ctDNA/total cell-free DNA). A study by Wagner and colleagues 

at OHSU [13] found no significant changes in diurnal abundance of cell-free DNA, but 

significant differences between individuals. Finally, there is also evidence that cell-free 

DNA abundance is linked to genetic and environmental similarities and also increases 

with age [14]. Again, it is unclear if these results are a consequence of production rates 

or clearance rates and they highlight one of the primary challenges in using ctDNA as a 

generalizable biomarker (see section 1.4 below and Chapter II). Consequently, 

understanding the sources of day-to-day and inter-patient variability is key to its 

widespread clinical utilization. 

 

 

Figure 1.3. Expected ctDNA abundance by tumor size.  
Literature-base estimation of ctDNA fraction in cell-free DNA (mutant allele frequency, 
MAF) as a function of tumor size. More advanced disease with greater tumor burden 
are generally associated with increased ctDNA abundance. Adapted with permission 
from Bronkhorst et al. 2019 [15].  
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1.2 Research and clinical applications of ctDNA 
detection and analysis 

Despite these challenges, the effort to utilize ctDNA analysis for various clinical 

purposes has marched on. As with so many such technological advances, we often 

figure out how to exploit something before we even begin to understand how it works. 

The clinical utility of ctDNA is often defined in four unique applications that are often in 

line with disease stage: (1) early-detection screening; (2) tumor-burden and minimal 

residual disease (MRD) detection; (3) tumor genotyping/genetic profiling; and (4) tumor 

evolution and mechanisms of resistance. Typically, ctDNA abundance increases with 

tumor burden (see Fig. 1.3), therefore as we progress through these applications and 

disease severity, assay utility and reliability usually also improve. These four applications 

are summarized in this section.   

Early-detection screening is intended to detect cancer in either general or high-

risk populations. These assays – called MCED (multi-cancer early-detection) when 

applicable to more than one cancer type – are not to be confused with genetic screening 

which can identify inherited mutations, such as mutant BRCA1/2, that might confer 

increased future risk of disease but don’t indicate the current presence of cancer. 

Instead, early-detection screening cell-free DNA tests look for tumor-specific features, 

like methylation status or somatic mutations (i.e., ctDNA), as an indication of an existing 

tumor. In high-risk populations such as life-long smokers, these assays could be 

imagined as a companion diagnostic used in combination with an annual low-dose CT 

screening for lung cancer. Unfortunately, early-stage tumors often do not shed enough 

ctDNA to be detectable by this method (more on this in Chapter IV). To try to improve 

sensitivity, a pan-cancer screening MCED assay ([16], https://grail.com/) is available to 

clinicians that uses machine learning to detect tumor-derived ctDNA from differential 

https://grail.com/
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methylation patterns in next-generation sequencing (NGS) data. Although this has 

greatly improved assay sensitivity, there are still significant challenges in certain cancers 

at early-stages (Fig. 1.4).  

 

Figure 1.4. ctDNA detection rates using a methylation-base assay in multiple 
cancer type. 
Results of a validation study for the methylation-based multi-cancer early detection 
(MCED) assay developed by GRAIL (https://grail.com/) showing assay sensitivity by 
stage in 12 cancer types. Assay sensitivity is assumed to be a direct result of ctDNA 
abundance. Many cancers have detection rates far below 50% in stage I disease (e.g. 
breast, kidney, lung, prostate, and uterus). Adapted with permission from Klein et al. 
2020 [16] under https://creativecommons.org/licenses/by-nc-nd/4.0/ 

https://grail.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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In the research setting, ctDNA abundance is associated with tumor burden but 

often with many exceptions, as will be discussed in section 1.4 and Chapter II (see Fig. 

1.5 for the association in lung cancer patients and also note the variability). Clinical 

ctDNA assays evaluating MRD status and tumor burden typically use a patient-

informed set of mutations (from sequencing of a tumor biopsy) to assess the presence 

and abundance of ctDNA, respectively. These tests are commercially available and use 

NGS-based approaches similar to those developed by our lab [17] to detect and quantify 

ctDNA. MRD testing is useful for measuring the efficacy and completeness of treatments 

such as chemotherapy and surgery, particularly in the neoadjuvant setting, or during 

surveillance for recurrence as shown in Chapter III. When serial testing is done, the 

resulting data can also be used to estimate the increase or decrease in tumor size or 

growth rate. With a priori knowledge of patient’s tumor genotype (i.e., mutations), these 

assays readily outperform imaging-based modalities with significant clinical lead time for 

detection. Several cases of improved clinical lead time using this method are also 

presented in Chapter III.  
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Figure 1.5. Association of ctDNA abundance and tumor volume in lung cancer.  
ctDNA abundance expressed as haploid genome equivalents (hGE), or mutant copies, 
per ml of plasma as a function of tumor volume in 176 non-small cell lung cancer 
patients from 3 studies. The authors used linear regression to predict 0.21 hGE per 
plasma ml for a tumor volume of 1 cm3. Note the high degree of variability, where large 
tumors may not shed much ctDNA and small tumors can shed more than expected. 
From Avanzini et al. 2020 [18]. Reprinted with permission from AAAS. 

 

Tumor genotyping by liquid biopsy is based on the idea that genetic profiling of 

the ctDNA provides a real time picture of a patient’s disease that is representative of the 

dominant tumor cell population (i.e., clones) and sometimes subpopulations or 

subclones – either from a single heterogeneous tumor, or multiple tumors in different 

locations. In principle, it is superior to a solid tissue biopsy, which may be subject to 

intra- and inter-tumor location or sampling bias, and is highly representative of the 

overall disease [19]. This application typically involves either whole exome sequencing 

(WES) or a disease-appropriate multi-gene panel and can provide a comprehensive 

picture of a patient’s disease as compared to sequencing solid tissue, particularly when 
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it is more advanced and there are multiple tumors, or when tumor location prevents safe 

biopsy. Moreover, serial sampling can be done in short intervals to provide repeat 

snapshots that are not possible with solid tissue biopsies. This approach is particularly 

attractive when monitoring for the emergence of actionable mutations for targeted 

therapies such as ALK fusions and EGFR mutations in lung cancer [20].   

The fourth category of applications uses serial sampling to track tumor 

evolution and detect mechanisms of resistance. This is done by longitudinal 

interrogation of patient-specific mutations alone or in-combination with WES or a smaller 

multigene panel. If multiple subclones with selective potential have been identified in a 

single tumor or multiple tumors, serial monitoring of the relative abundance of these 

subclones can provide a picture of the fitness and relative contribution of each 

subpopulation (Fig. 1.6). A broader panel can also be useful in detecting previously 

undetected mutations de novo that might arise by selective advantage. These assays 

may have particular value when done during targeted therapy to determine which 

populations thrive under that selective pressure and which do not. Not only does this 

provide valuable near-real-time information to clinicians that may lead to improved 

disease management, it has tremendous implications for our understanding of 

tumorigenesis and tumor evolution. Obtaining such data would not be feasible by solid 

tissue biopsy in human subjects or in animal models. 
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Figure 1.6. Subclonal inference using ctDNA dynamics during treatment.  
ctDNA abundance dynamics using whole-exome sequencing (for Bx1 and cfDNA1) and 
a patient-informed mutations panel (n≈50 SNVs, for times T1-T8) in a metastatic breast 
cancer patient during treatment (top). Read counts of ~50 individual mutations (not 
shown) at each time point were input into a clustering algorithm to identify potential 
subclonal patterns (bottom). The resulting trajectories of the 5 mutation clusters suggest 
that overall increases in ctDNA abundance (top) is the result of relative increased 
representation of subclones associated with cluster 1 and possible clonal outgrowth. 
(SMMART patient, data not previously published) 

 

1.3 Methods for evaluating ctDNA 

1.3.1   Distinguishing features of ctDNA 

Various methods of detecting and quantifying ctDNA have been developed, each 

with its own benefits and drawbacks. In theory, any feature of cell-free DNA that 

distinguishes it as tumor-derived can be used for this task. The majority of our focus thus 

far has been on tumor-specific (i.e., somatic) mutations such as single-nucleotide 
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variants (SNVs), small insertions or deletions (indels), or gene fusions. However, larger 

chromosomal abnormalities, focal or whole-chromosome amplifications or losses (copy 

number variations or CNVs), epigenetic methylation states, and even small variations 

fragment size have all been exploited for evaluating ctDNA. Most of these features can 

be detected using well-characterized next-generation sequencing (NGS) techniques, but 

other methods are more specialized for certain features and sensitivities. Due to the 

stochastic nature of sampling large numbers of individual molecules present in cell-free 

DNA in search of ctDNA, the likelihood of detection and the accuracy of quantification 

are heavily dependent on the number of reporters interrogated – particularly when 

sampling for rare events (see section 1.4.1 and Figs. 1.7B and 1.7C). The number of 

mutations we can interrogate is limited by the number of mutations present in the tumor 

as well as the method by which we go looking for them in cell-free DNA. Because of 

these constraints, the development of methods such as differential methylation profiling, 

which can interrogate 100,000s of potential tumor-specific markers in a single genome 

(i.e., methylation sites), may prove a more fruitful approach. Other methods that utilize 

copy number variations (CNVs) or fragment size require ctDNA fractional abundance of 

1%-3%, which usually limits their use to more advanced disease [21, 22].  

The detection of ctDNA using genetic mutations such as SNVs, indels, and CNVs 

is the most established and well documented approach. The original work presented in 

this dissertation is primarily focused on these methods and, henceforth, ctDNA detection 

will be discussed in the context of SNVs, indels, and CNVs, unless otherwise indicated.  
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Figure 1.7. The impact of stochastic effects on ctDNA detection in cell-free DNA.  
(A) Number of diploid genome equivalents (i.e., 2 x haploid GE) present in a given 
amount of cell-free DNA. (B) The relationship between the cumulative probability of 
detecting 10 ctDNA hGEs in a sampling of 1,500, 6,000, and 10,000 cell-free DNA 
hGEs as a function of percent MAF. The red lines indicate the minimum MAF that can 
be reliably (10 molecules at 100%) detected in a given amount of DNA (hGEs) 
interrogated. (C) Poisson distributions generated by simulated sampling of cell-free 
DNA populations of 6,000 hGEs with ctDNA present at a given MAF (0.01%, 0.1%, and 
0.5%). Pie charts show the probability of sampling “n” ctDNA fragments; where n = 0 or 
1, 2 or 3, 4 to 9, or ≥10 ctDNA hGEs at each MAF. Adapted with permission from 
Heitzer et al. 2019 [23]. 
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1.3.2   Patient-informed and patient-agnostic ctDNA 
assays 

All four general applications described in section 1.2 fall somewhere on a 

spectrum between patient-informed or patient-agnostic. The patient studies presented in 

Chapters II and III utilize both of these approaches for different purposes. Further 

explanation of the underlying principles and methods for each are provided here. 

Patient- or tumor-informed assays require prior knowledge of genetic 

information about the tumor(s) in the patient being tested, typically from one or more 

solid tissue biopsies or resected tumors. Genotyping of this tissue for somatic mutations 

or other genetic aberrations can inform patient-specific enrichment panels or indicate 

which mutations to monitor in a generalized panel. These panels are used as part of 

DNA sequencing library preparation to limit the library to only those that are of interest. 

The benefit of this target enrichment approach is that, unlike whole genome sequencing 

or whole exome sequencing, we restrict valuable sequencing reads to those regions of 

the genome that we expect to find a mutation. In this way, instead of sequencing 10 

hGEs of the entire coding region (i.e., 10X depth), which is ~50Mbases of sequencing 

each, we can sequence just the genomic positions with potential mutations, say a 5kb 

panel, to 100,000X with the same amount of sequencing. By reducing our search space 

by 10,000-fold, we increase our sensitivity in equal measure. This approach makes 

detecting one mutant hGE (i.e., ctDNA) mingling with 100,000 healthy hGEs of cell-free 

DNA much more feasible because we can sample more of them. Moreover, by 

interrogating more than one tumor-derived mutation, e.g. 10 which is easily covered in a 

5kb panel, we can improve the probability from 1 in 100k to 10 in 100k, or 1 in 10k. 

Patient- or tumor-informed ctDNA assays have been used extensively in research and 

are currently available for detecting MRD throughout treatment and surveillance in some 
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cancers (https://www.natera.com). Of course, these assays require a sample of solid 

tumor tissue from which to build the assay panel.  

Patient-agnostic approaches are intended to detect ctDNA without 

foreknowledge of patient-specific somatic mutations or with the hope of discovering 

previously undetected mutations. As discussed in section 1.2 above, cancer screening of 

general or high-risk populations requires this approach, but suitable assays have yet to 

be developed in all but a few limited settings. In the setting of non-small cell lung cancer 

(NSCLC), a patient-agnostic genomic target enrichment panel was developed by 

Newman and colleagues [24-26] with the intent of detecting ctDNA in high-risk 

individuals not already diagnosed with cancer. Although it has yet to be tested in a large 

clinical trial, they report disease stage-dependent detection rates ranging from 40%-

98%, stage I to IV, respectively [26]. Their approach sequences bulk cell-free DNA from 

each patient to sampling depths of ~5,000X at specific genomic positions defined by 

their custom enrichment panel. The panel targets regions of the genome found to have 

recurrent mutations in thousands of NSCLC patients, as independently reported in 

publicly available datasets (i.e., The Cancer Genome Atlas, 

https://www.cancer.gov/tcga). In Chapter IV, I combine this target enrichment panel with 

a sequencing method that colleagues and I previous developed [17] to improve ctDNA 

detection rates in early-stage NSCLC during treatment. The most challenging aspect of 

patient-agnostic applications using NGS, particularly in early-stage disease, is 

distinguishing true mutations from sequencing errors – as will be discussed in section 

1.4 below. Assuming a tumor is present, without the ground truth of tumor-specific 

mutations, very low-frequency ctDNA molecules harboring mutations are difficult to 

confidently distinguish from background error. Sequencing errors can result in potential 

false-positives in healthy individuals and mis-identification of tumor mutations in cancer 

patients.    

https://www.natera.com/
https://www.cancer.gov/tcga
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1.4   Challenges to ctDNA as a biomarker  

Unfortunately, the challenges of implementing cDNA detection, quantification, 

and characterization assays in research and clinical applications are not trivial. In the 

following sections I will discuss the various technical and biological dilemmas that have 

plagued widespread utilization of ctDNA analysis as well as some of the approaches that 

have been developed to overcome them – and more specifically, those used in the 

research presented in this work.  

1.4.1   Biological constraints and pitfalls 

The greatest biological constraint to ctDNA analysis is the relatively low amount 

of DNA material available in a given blood draw. ctDNA abundance is inherently limited 

by the number of tumor cells in the body. Using data from lung cancer patients, various 

studies have estimated the expected total amount of ctDNA in circulation and its 

fractional abundance in cell-free DNA given the size of a tumor [18, 27]. These studies 

calculated that a typical stage I tumor (~1 cm3 and ~1x109 cells) would contribute ≤1000 

fragmented haploid genomes (aka, haploid genome equivalents, or hGE) to circulation at 

any given sampling, resulting in a fractional abundance (MAF) ranging between 0.002% 

and 0.03%. We must then consider the probability that these molecules are captured in 

a 10-20 ml normal blood draw, which may only consist of 5,000 total hGE (see Fig. 

1.7A), with the average total volume of blood in circulation of 5,000 ml; Fig. 1.7C shows 

a probabilistic model for detecting ctDNA at three different MAFs (0.01%, 0.1%, and 

0.5%) using 20ng of input cell-free DNA (~6,000 hGE). Simulated sampling of this 

population reveals a Poisson distribution where the probability of detecting 10 or more 

ctDNA molecules drops from 99.5% with a MAF of 0.5% (Fig. 1.7C, right) to 0.0% with a 

MAF of 0.01% (Fig. 1.7C, left). Moreover, because no analyte preparation can be 100% 
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efficient, there is a practical limit of detection that is dictated by biology as we test for 

smaller and smaller tumors. This sets a hard limit on any ctDNA assay, regardless of 

how technically sensitive it is. Fig. 1.7B demonstrates the minimum MAFs that can be 

reliably detected for a given amount of cell-free DNA interrogated.    

Because cell-free DNA can theoretically be derived from any source in the body 

(including foreign sources such as microbes and viruses), extra care must be taken to 

mask their sequences from the data when present. Since sequencing data is mapped to 

a human reference genome, foreign DNA is typically not present in the resulting 

alignment file, however somatic mutations can also occur in non-cancerous tissue. This 

raises the larger question of when a mutated cell(s) is considered a cancer, but for our 

purposes we will limit ourselves to cell populations that are lethal cancer. Clonal 

hematopoiesis (CH) is the most significant contributor of somatic mutations to the cell-

free DNA milieu. As discussed in section 1.1 (see Fig. 1.2), blood cells are thought to be 

the primary source of cell-free DNA in circulation. As we age, the process of CH 

decreases the genetic diversity of blood cells by selective pressure and can eventually 

lead to hematopoietic malignancies. CH of indeterminate potential, or CHIP, is the term 

used to describe these populations after they reach a fractional abundance of 2% or 

more, but CH commonly persists at lower fractional abundances. These somatic 

mutations are readily detected in cell-free DNA and can be mistaken for ctDNA in the 

absence of proper experimental controls. The best way to mask these potential false-

positives from ctDNA analysis is to sequence the fraction of white blood cells (WBCs) 

isolated from the same blood sample as the cell-free DNA. As described in Chapter IV, 

by identifying the mutations with sequencing reads in both cell-free DNA and WBC 

tissue compartments, CH can typically be detected and omitted from analysis.  

Unfortunately, this has yet to become standard practice in the field, although more 

studies are including it in their analysis.     
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1.4.2   Technical hurdles and limitations 

The technical challenges described below are only compounded by the biological 

limitations outlined in section 1.4.1 above. However, the primary technical challenge of 

detecting low-MAF ctDNA using next-generation sequencing (NGS) may be false-

positives resulting from random polymerase errors. Enzymes such a Taq polymerase 

are used in the amplification steps of sequencing library preparation and during the 

sequencing-by-synthesis process used by NGS to generate sequencing reads. During 

DNA extension, even high-fidelity polymerases incorrectly incorporate new nucleotides 

at a rate of ~1.8x10−4 errors/base/doubling [28], or 1 error in every 5.5kb for each 

doubling. PCR amplification steps done during library preparation can involve 10-20 

cycles in multiple steps, which would translate to 10-20 doublings given 100% efficiency. 

The cumulative error rate of NGS (post-library preparation) varies between sequencing 

platforms. For our purposes, we will consider the Illumina NovaSeq 6000, which is the 

current standard for high-throughput short-read sequencing and has an independently-

reported median error rate of 0.109 (s.d. = 0.35), or 1 error in every 917 bases (s.d. = 

285) [29]. In my experience, the actual error rates of traditional NGS vary from 1 error in 

0.1kb-1kb, which limits detection of true mutation in cell-free DNA to 1% or 0.1% MAF. 

The use of molecular barcoding or unique molecular indexing (UMI) techniques has 

dramatically improved these error rates, up to 1000-fold in the case of duplex 

sequencing [30]. As illustrated in Fig. 1.8, by encoding a unique oligonucleotide barcode 

onto each input DNA molecule, prior to PCR amplification, the sequence of the original, 

biologically-unique cell-free DNA fragment can be reconstructed from raw sequencing 

data. As PCR amplification geometrically increases the relatively small number of input 

DNAs, these barcodes get propagated, as new errors do as well, such that the final 

library contains many copies of each original input molecule with its own UMI. Software 
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is then used to aggregate sequencing reads having same UMI and genomic mapping 

position to generate a consensus sequence where errors introduced during amplification 

steps are removed. Both studies presented in this work use a dual-UMI method 

previously developed in our lab, called “DIDA-Seq” (shown simplified in Fig. 1.8), for 

patient-informed ctDNA monitoring at sensitivities of one ctDNA molecule in 10k to 50k 

cell-free DNA molecules [17, 31-34].  
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Figure 1.8. Schematic depicting a dual unique molecular index (UMI)-based error-
correction sequencing method.  
Bar-coding of input cell-free DNA fragments (top) with unique UMIs (“UMI A” and “UMI 
B”) occurs by adaptor ligation (not shown) during library preparation.  In silico 
consensus-making from matching UMI families (purple, blue, and yellow) with 3 or more 
PCR duplicates (middle) produces 3 single-stranded consensus sequences (SSCSs; 
bottom) that reconstruct the unique DNA input molecule. Errors introduced during 
library preparation (red dots) are removed during consensus making and true positives 
are retained (green dots). Adapted with permission from 
https://www.idtdna.com/pages/support/faqs/how-do-i-use-umis-for-error-correction 

 

https://www.idtdna.com/pages/support/faqs/how-do-i-use-umis-for-error-correction
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Another technical challenge involves stereotypical errors that are introduced ex 

vivo in the form of mechanical or oxidative damage DNA damage that occurs prior to 

library amplification steps. These errors can be difficult to detect and remove by UMI-

based consensus-making. Previous studies have linked 8-oxguanine conversion and 

cytosine deamination, which result in the C>T and G>A nucleotide substitutions, to 

mechanical fragmentation (i.e., sonication) and the high incubation temperatures 

required for target enrichment by hybridization capture (discussed in section 1.3.2) [25, 

26]. These same studies presented computational methods for identification and 

removal of these errors, which are used and discussed in Chapter IV of this work. 

In Fig. 1.9, I summarize general workflows for ctDNA analysis and show the 

steps in which nucleotide substitutions and other errors can be introduced, creating the 

potential for false positives in the analysis. I also illustrate the major bottlenecks and 

efficiency losses which reduce sample complexity and thus analytical sensitivity.  
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Figure 1.9. The fate of cell-free DNA from its release to sequencing and analysis. 
Each step is annotated as appropriate with error introduction, including type, and 
efficiency losses. Amplicon-based sequencing and ddPCR are shown in dark grey for 
reference. Note that their use is limited by multiplexing complexity and only fixed 
genomic positions with usable priming sites can be used.     
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1.4.3   Unexplained sources of variability 

Finally, perhaps the most mysterious and intractable problem with ctDNA as a 

biomarker is its variability, not just by tumor location or type. Largely assumed to be 

biologically driven, ctDNA levels can vary dramatically and often inexplicably between 

patients with similar disease and stage (see Fig. 1.10) [35, 36], and even in the same 

patient on different days (as described in section 1.1 above). Even in patients with large 

tumors and high tumor burden from advanced disease or metastasis, ctDNA levels can 

be unexpectedly low or undetectable (see Fig. 1.5) [23, 37]. Various physiological factors 

and mechanisms have been proposed to explain this variability, although definitive data 

remain scant. Chapter II of the work that follows will outline these possibilities and 

the existing evidence to support or refute them. 

 

 

 

Figure 1.10. ctDNA measured in various cancer types.  
ctDNA detection rates (A) and abundance (B) in 15 cancer types. Adapted with 
permission from Bettegowda et al. 2014 [35].  
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Abstract 

Collection and analysis of circulating tumor DNA (ctDNA) is one of the few 

methods of liquid biopsy that measures generalizable and tumor specific molecules, and 

is one of the most promising approaches in assessing the effectiveness of cancer care. 

Clinical assays that utilize ctDNA are commercially available for the identification of 

actionable mutations prior to treatment and to assess minimal residual disease after 

treatment. There is currently no clinical ctDNA assay specifically intended to monitor 

disease response during treatment, partially due to the complex challenge of 

understanding the biological sources of ctDNA and the underlying principles that govern 

its release. Although studies have shown pre- and post-treatment ctDNA levels can be 

prognostic, there is evidence that early, on-treatment changes in ctDNA levels are more 

accurate in predicting response. Yet, these results also vary widely among cohorts, 

cancer type, and treatment, likely due to the driving biology of tumor cell proliferation, 

cell death, and ctDNA clearance kinetics. To realize the full potential of ctDNA 

monitoring in cancer care, we may need to reorient our thinking toward the fundamental 

biological underpinnings of ctDNA release and dissemination from merely seeking 

convenient clinical correlates. 

2.1 Background 

Circulating tumor DNA (ctDNA) is extracellular DNA in plasma that originates 

from tumor cells and has emerged as a useful biomarker in minimally-invasive liquid 

biopsy [39-41]. ctDNA abundance shows broad correlation with tumor burden and 

generally reflects the tumor DNA content such that clinical assays are commercially 

available for detection of molecular/minimal residual disease (MRD) and tumor 
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mutational profiling [27, 42, 43]. However, there are currently no ctDNA-based assays 

approved for serial monitoring during treatment to assess immediate tumor response 

and treatment efficacy.  

Serial ctDNA monitoring during treatment can provide insight into underlying 

biological factors that can potentially be used to predict response, treatment efficacy, 

and long-term outcomes [17, 31, 44-46]. In practice however, ctDNA levels can appear 

erratic across time points and are often inconsistent between patients with similar 

disease and treatment. This variability may be partially the result of disparate sampling 

frequency (often within the same study), extraction methods, and analytical approaches 

between studies. More likely, this variation is driven by factors that have yet to be 

elucidated and may vary between patients, such as individual host physiology, tumor 

location, tumor biology, and treatment modality. 

Evidence that ctDNA concentration is more dependent on tumor cell replication 

rates than simply on tumor volume also suggests that understanding tumor biology and 

patient physiology are necessary to guide proper interpretation of ctDNA dynamics [47, 

48]. In some studies, early spikes in ctDNA shortly after treatment may predict a 

favorable clinical response, in keeping with the hypothesis that shedding is directly 

associated with treatment-induced tumor cell death [49-51]. It is unclear however, how 

soon after treatment initiation this spike must occur in such cases, emphasizing the 

importance of collection timing. Nevertheless, early and rapid ctDNA clearance during 

treatment has consistently been shown to correlate with objective response and 

outcome [52-55]. Evidence supports the idea that ctDNA release is clearly a byproduct 

of tumor cell proliferation, though whether this is through increased cell turnover and 

higher death rates or active release during cellular expansion is still an open question.  

This review seeks to discuss the biological sources of variability in ctDNA 

abundance, with the hope that thoughtful analysis and a mechanistic understanding of 
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ctDNA release will allow improved approaches to ctDNA interpretation in clinical 

response and progression. 

2.1.1  A note on ctDNA detection and its implications for 
this review 

Typically, ctDNA is detected and characterized using methods such as droplet 

digital polymerase chain reaction (ddPCR) or next-generate sequencing (NGS) 

(reviewed by Heitzer et al. [40]) either targeting genomic positions based on a priori 

knowledge of tumor mutations or by calling mutations de novo at novel sites and 

recurrent hotspots. Although both a priori and de novo approaches to ctDNA detection 

assume that molecules harboring alternate alleles are tumor-derived, the later approach 

allows for ctDNA detection without a priori knowledge of tumor-specific mutations but is 

subject to much more uncertainty. The detection of tumor-derived copy-number 

aberrations in cell-free DNA is also possible and is dependent solely on read counts to 

detect gains or losses found in tumor cells [21]. De novo mutations can be called from 

whole-genome and whole-exome sequencing, or smaller panels targeting just a few 

sites or genes known to harbor recurrent mutations. Panels intended to detect mutations 

at these canonical sites are often less informative about passenger mutations, 

secondary drivers, and subclonal populations. The same may be true for tumor-informed 

and patient-specific panels depending on the breadth of the panel used and the 

sampling bias of the original tumor tissue used to design the panel, particularly in the 

case of high intratumoral heterogeneity. These various approaches further confound our 

ability to compare results across studies, patient populations, and cancers. This problem 

is particularly true for studies where ctDNA was characterized by the prevalence of a 

single mutation in a single gene, where subclonal populations driven by other genetic 
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aberrations may be under selective pressure during treatment. Of course, with a broader 

analytical space comes greater cost and complexity and additional challenges for 

implementation of accurate ctDNA assays in a clinical setting. For example, a simple 

ddPCR or amplicon-sequencing test to detect the presence of low-abundance EGFR 

mutations in the cell-free DNA of lung cancer patients is much cheaper and simpler to 

validate and execute in a diagnostic laboratory than a whole-exome or a multi-gene 

sequencing panel with similar accuracy and sensitivity. However, such an assay may not 

be representative of the entire tumor cell population, particularly if there are treatment-

resistant subclones that harbor distinct genotypes. Consequently, careful evaluation of 

single-target vs multi-target approaches is necessary. 

Although the data available to assess ctDNA abundance as it relates to clinical 

observations, treatment response, and outcome consist primarily of mutant-allele 

detection and prevalence estimates, evidence suggests approaches like methylation 

profiling by whole-genome or targeted bisulfite sequencing may be more sensitive and 

are not dependent on the presence of genetic aberrations [42]. A serial comparison of 

single-nucleotide variants (SNVs) and methylation profiles in EGFR T790M-positive 

advanced cancer patients found that methylation levels closely followed SNV mutant 

allele frequency and both were predictive of long-term treatment response [56]. Silva 

and colleagues [57] reported changes in cell-free DNA methylation over time that were 

associated with therapy response and progression in prostate cancer patients. Few 

studies, however, have assessed methylation dynamics in cell-free DNA with high-

frequency sample collection during early phases of treatment, and therefore the data 

presented here are biased toward somatic mutations as a means of ctDNA detection 

and characterization. It remains to be seen how broad the search space needs to be in 

order to effectively monitor tumor cell populations by ctDNA, and which reporter (i.e., 
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mutations, methylation, etc.) will be the most informative, but may vary by patient, tumor, 

and treatment.   

2.2  Biological factors that most affect ctDNA 
abundance 

In order to utilize ctDNA monitoring during treatment we must understand the 

various factors that impact ctDNA concentration over time. Multiple sources of ctDNA 

have been suggested including apoptosis, necrosis, and so called “active/passive 

release” (reviewed by Aucamp et al. 2018) [3]. Apoptosis, necrosis, and other forms of 

tumor cell death result in ctDNA release into interstitial space where it moves to the 

lymphatic system and blood circulation [45, 58]. It is also hypothesized that extracellular 

DNA can be released from living cells in various contexts that are both energy-

dependent and independent, and range in mechanism from shedding of mis-segregated 

DNA to intercellular signaling [59]. Once ctDNA enters circulation, it is subject to further 

degradation by DNases in the blood and is putatively removed by the liver, spleen, 

and/or kidneys within 30 to 120 minutes [60]. Changes in the balance of these processes 

due to treatment are assumed to be reflected in ctDNA dynamics, which, if correctly 

interpreted, may inform us about a patient’s disease state and response to therapy (Fig. 

2.1). Furthermore, disruption of biological homeostasis resulting from disease and 

treatment can increase overall levels of cell-free DNA, decreasing the relative 

abundance of ctDNA and thus impacting assay sensitivity. This can also make 

interpreting data from studies that simply report mutant allele frequency challenging 

without accounting for such changes in total cell-free DNA. The following sections 

address how the unique biology of a cancer and host physiology influences ctDNA 

abundance in the blood stream.  
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Figure 2.1. Biological and clinical insights from ctDNA dynamics during cancer 
treatment. 
The relationships between treatment, biological factors, clinical indicators and 
outcomes, and potential insights with regard to serial ctDNA monitoring during 
treatment. (MOA = mechanism of action; Tx = treatment) 

 

2.2.1  Cancer type and biology 

Even before our ability to distinguish ctDNA molecules amongst cell-free DNA, 

there appeared to be a clear relationship between cell-free DNA abundance and disease 

state. The more severe the patient’s cancer, the more cell-free DNA present in their 

blood (reviewed by de Miranda et al 2021 [61], Grabuschnig et al. 2020 [59], Aucamp et 

al. 2018 [3]), suggesting that disease burden impacts cell-free DNA homeostasis. Later 

work has shown that ctDNA levels, independent of non-tumor, cell-free DNA, vary 

dramatically across disease type, tumor location, and stage [12, 35, 62-64]. In vitro 

assays have helped isolate the mechanistic variables involved in cell-free DNA release, 
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particularly with regard to known apoptotic and necrotic processes. These experiments 

found that cell-free DNA release can vary significantly between cell-lines with different 

phenotypes and histologies [65-70].  

Observations in human cohorts also correlate ctDNA with tumor histology, grade, 

and stage. Various studies in neoadjuvantly-treated breast cancer patients found that 

ctDNA levels and mutations were significantly different between breast cancer subtypes 

[17, 46, 71, 72]. Expression levels of the proliferation-associated nuclear protein, Ki-67, 

have also been directly associated with ctDNA characteristics in breast and lung cancers 

[73-75]. Studies assessing ctDNA in non-small cell lung cancer (NSCLC) patients found 

that ctDNA concentration was correlated with tumor stage, histology, and degree of 

cytological atypia [26, 76, 77]. 

2.2.2  Tumor volume, growth rate, and metabolism 

Cell death has historically been considered the largest contributor to ctDNA and 

tumor volume the most reliable predictor of ctDNA abundance. More recently, various 

mechanisms and conditions have been proposed in which living tumor cells, particularly 

during mitosis, could shed DNA in both an energy-dependent and independent manner 

[59, 65]. Therefore, it is likely the complex interplay between tumor cell proliferation and 

death that determines ctDNA abundance. This relationship has significant implications 

for how we should think about ctDNA measurements in the context of tumor volume, 

growth rate, and metabolism. For example, one can easily imagine a scenario where 

proliferation and death rates both increase but are in balance resulting in increased 

ctDNA shedding but no net change in tumor volume [18]. Furthermore, although ctDNA 

may be hypothetically representative of the entire cancer cell population, it is likely 

subject to significant composition bias from differential cell turnover rates across 
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subclones [41]. Examining these variables in vitro and in vivo can shed light on which 

processes contribute more to ctDNA abundance. 

Tumor growth rate and metabolism are often inferred by measuring tumor 

glucose uptake. Studies in metastatic melanoma patients found a strong correlation 

between the tumor PET avidity (a measure of cellular glucose uptake) and ctDNA 

abundance, independent of tumor volume [78]. These results are supported by studies in 

resected NSCLC, where a correlation was found between increased mitotic rates and 

higher ctDNA levels measured 24 hours prior to surgery, as well as increased levels of 

the proliferation marker Ki-67 [73-75, 77]. Indeed, in vitro studies have consistently found 

that large amounts of cell-free DNA can accumulate in the media of actively proliferating 

cell populations independent of apoptosis or necrosis [65, 79-82]. DNA fragments 

resulting from mis-segregation events during mitosis were found to be released by 

actively proliferating cancer cells via the creation of micronuclei [83, 84], but their relative 

contribution to overall ctDNA abundance in vivo remains unclear. Similar to the DNA 

products of necrosis, it has been assumed that these fragments would appear distinct 

from apoptotic ctDNA given their larger size and that their contribution would therefore 

be obvious. However, evidence is emerging that cleavage of larger DNA fragments by 

extracellular DNases may also occur [80]. These DNA fragments might have an 

apoptotic fragmentation pattern, yet be generated by non-apoptotic mechanisms, such 

as release during proliferative states. 

The relationship between tumor cell proliferation and death is not independent. In 

healthy tissues, cell density homeostasis is achieved by compensating for cell death with 

an appropriate rate of cell proliferation. This process is known as “apoptosis-induced 

proliferation” (reviewed by Heitzer et al. 2020 [40] and Ryoo et al. 2012 [85]), but it is 

unclear how significant a role it plays in tumors. The consequences for ctDNA shedding 

could be straightforward, where increased cell death leads to increase cell birth and so 
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on, and both processes result in increased ctDNA levels. However, positive feedback 

mechanisms like this may be tissue-dependent and could be dysregulated in cancer, 

complicating interpretation of ctDNA dynamics.   

2.2.3  Tumor vasculature, blood vessel proximity, and 
hypoxia 

Tumor vascularization and proximity to major blood vessels are also features of 

tumor physiology that might be expected to significantly impact ctDNA levels. Blood flow 

to a tumor is the direct means by which ctDNA enters circulation and it affects the 

metabolic activity of a tumor by providing oxygen and nutrients [86]. As a tumor grows its 

vasculature becomes more irregular and dysfunctional leading to reduced oxygen levels, 

hypoxia and necrosis. Necrosis, reduced nutrient levels, and limited accesses to wider 

blood circulation all potentially effect ctDNA abundance in unique ways. Vasculature can 

also impact drug delivery and efficacy, which may also affect ctDNA shedding. It is 

unclear how much ctDNA abundance is dependent on direct access to blood vessels. 

Interstitial ctDNA is assumed to passively enter circulation through nearby blood vessels, 

but other processes like macrophage clearance of dead and dying cells (see “Immune 

Response” and “Immunotherapy” sections below) may also play a role in transporting 

ctDNA from areas with poor vasculature to the bloodstream [45, 58, 60]. 

Results from studies directly comparing tumor vascularization, angiogenesis, and 

ctDNA abundance, are inconsistent between studies. Post-excision pathology by 

Abbosh et al. [27] found lymphovascular invasion to be predictive of ctDNA detection in 

early-stage lung cancer. Two other studies in lung cancer found vascular invasion to be 

marginally [77], or not at all [76] correlated with ctDNA detection. Interestingly, when only 

looking at patients with EGFR mutations, ctDNA was significantly correlated with 
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vascular invasion in the former study by Cho and colleagues [77]. In liver cancer, 

microvascular invasion was correlated with preoperative ctDNA levels [87]. In recent 

preliminary data collected from a large cohort of colorectal cancer (CRC) patients, 

ctDNA was found to be strongly associated with lymphovascular invasion [88]. In 

neurological malignancies, which typically have less detectable ctDNA, Nabavizadeh 

and colleagues [89] found that tumor vessel size was correlated with detectable ctDNA. 

Notably, previous work by the same group and others found that the amount of 

microvascular proliferation was not significantly correlated to ctDNA in glioblastoma 

(GBM) specifically [90, 91]. The nature of such studies makes it challenging to discern if 

these correlations are independent of tumor stage and volume. Proving a causal link 

may only be possible with further evaluation of preclinical models, tumor pathology, and 

imaging.  

Hypoxia is in many ways a measure of tumor cell access to functional 

vasculature [92]. As a tumor grows, cells become more isolated from functional 

vasculature, despite upregulated angiogenesis that is characteristic of many cancers. 

This process selects for cells that are more tolerant of low-oxygen conditions while the 

remaining population become necrotic [93]. There is a clear link between hypoxia and 

necrosis and some studies have suggested that ctDNA is primarily derived from necrotic 

processes [39, 66, 94, 95]. This suggests that as a tumor grows and vasculature 

becomes more distant and dysfunctional, wider ctDNA abundance could either increase 

due to further necrosis, or decrease due to reduced access to that vasculature. Since 

both forces are not equal in all tumors, the overall effect on ctDNA levels from this 

process may not be neutral. In vitro experiments with CRC cells have found that hypoxic 

conditions induced cell-free DNA production during the first 24 hours but decreased 

dramatically over the following 48-72 hours [68]. These results are also consistent with 

previous findings in both tumor-injected and tumor-free mice where hypoxia induced cell-



58 

 

free DNA release [96]. Deprivation of the metabolite, folate, has been found to induced 

double-strand DNA breaks and mis-segregation events, which may also lead to ctDNA 

shedding in nutrient-starved tumors as well [97]. 

2.2.4  Organ encapsulation 

The free movement of cell-free DNA between tissue and blood may be restricted 

in some organs. Blood-tissue barriers have been identified throughout the body, such as 

the thymus, testes, retina, and intestines, but it is unclear what role they might play in 

cell-free DNA exchange [98]. The blood-brain barrier (BBB) is often cited as the primary 

reason that neurological malignancies, particularly gliomas, produce less detectable 

ctDNA than other cancer types [35]. In a 2018 review on ctDNA kinetics, Khier and 

Lohan speculate that physiological barriers, like the BBB, restrict the movement of cell-

free DNA throughout the body while also acknowledging the exception of placental cell-

free DNA, which has been shown to move quite freely throughout the mother [45, 99]. 

Notably, disruption of the BBB that results in increased permeability and risk of 

metastasis also resulted in increased levels of ctDNA in patients with GBM [89]. Several 

studies have shown that disrupting the BBB in animal models using focused ultrasound 

techniques leads to increase blood levels of ctDNA and other biomarkers [100, 101]. 

Therefore, it is possible that changes in tissue-blood barrier permeability, particularly 

during treatment, might significantly affect ctDNA dynamics.  

2.2.5  Immune response 

Although there may be a significant role for inflammation and infection (e.g., 

sepsis) in cell-free DNA release, this review is primarily interested in the extent to which 

they directly impact ctDNA release from cancer cells. Early studies exploring the origins 

of cell-free DNA found that macrophages may play a significant role in cell-free DNA 
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release though phagocytosis of dead and dying cells [102]. Phagocytes have been 

shown to digest apoptotic cells and release the resulting cell debris and fragmented DNA 

[3, 102, 103]. In the GBM study mentioned earlier, ctDNA levels were strongly 

associated with the density of macrophages around the tumor [89]. In healthy individuals 

cell turnover is a tightly regulated process where apoptotic cells are quickly removed by 

phagocytes, however, this process appears to be dysfunctional in tumors resulting in 

excess cell debris (including DNA) that accumulates locally and in circulation [60, 95]. 

The extent to which ctDNA levels might be directly affected by tumor cell targeting 

and/or clearance by immune cells is still an open question. Evidence for this 

phenomenon however, might be found in studies where ctDNA levels spike within 2 

weeks of immune-therapy initiation in metastatic melanoma patients, if and only if, the 

tumors were responsive [104].   

2.2.6  Cell-free DNA clearance 

Cell-free DNA digestion and clearance, whether achieved locally via 

phagocytosis or in circulation via the liver, spleen, and kidneys, is influenced by a 

number of factors [45, 60, 105, 106]. As described above, cell-free DNA clearance in situ 

is potentially dependent on interstitial diffusion and the presence of phagocytic cells, 

however, once it is in circulation its half-life is determined by extracellular DNase activity 

and organ function [45]. ctDNA half-life in the blood ranges from 30 to 120 minutes [60] 

making blood collection timing critical. The decreased levels of DNase activity observed 

in the blood of cancer patients potentially explains the accompanying increase in cell-

free DNA levels from disruption of homeostasis [107, 108]. Studies have also suggested 

that cell-free DNA clearance and half-life is dependent on proper liver and kidney 

function suggesting that treatment toxicity in cancer patients could affect ctDNA 

clearance rates and abundance [109, 110]. The role of renal function in ctDNA clearance 
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is not well understood, however, based on experiments assessing cell-free DNA levels in 

urine [60]. The presence of cell-free DNA in urine implies involvement of the kidneys in 

clearance from circulation, however, patients with chronic renal failure were found not to 

have increased levels of cell-free DNA in their plasma [111]. Methylation profiling has 

suggested that cell-free DNA present in urine is derived from white blood cells, kidney 

cells and urinary tract cells, but data from stem cell transplant patients found that the 

majority of this DNA was from the renal system itself and not plasma [112, 113]. 

2.3 The effect of treatment on ctDNA abundance 

The effect of treatment on tumor cell proliferation and death, and thus ctDNA 

dynamics, is dependent on its mechanism of action, efficacy, and tumor biology. 

Considering the factors described above that influence ctDNA abundance, it is not 

surprising that there are many discernable differences between the ctDNA dynamics of 

responders and non-responders during treatment. Predicting their timing and trajectories 

is not so simple, particularly when considering the short half-life of ctDNA. We might at 

least expect that ctDNA dynamics should reflect treatment response depending on the 

mechanism of action of a given treatment, but the timing of those effects is still unclear 

(Fig. 2.2). The correlation between in vitro and in vivo models of treatment-induced cell 

death remains largely unclear, and is likely dependent on a variety of factors including 

the treatment and tissue of interest. Despite the paucity of data, it is possible that tumor 

cell death can occur within hours of treatment and therefore ctDNA levels may rapidly 

increase as well [67, 114-116]. Serial ctDNA monitoring has been done with collection 

times ranging from minutes, hours or days after administration of treatment, to weeks 

and months. Some guidance may be gleaned from these studies, but the optimal time 

for sampling may be unique to cancer type and therapy and may need to be determined 
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empirically. The following sections outline the expected effects of cancer treatment 

modalities on ctDNA dynamics, and what existing evidence, if any, tells about these 

hypotheses.   

 

 

Figure 2.2. Hypothetical ctDNA dynamics from blood sampled frequently before, 
during, and after treatment.  
Characteristic ctDNA dynamics are depicted as observed in various studies throughout 
the text or otherwise hypothesized. The possible driving tumor biology and outcomes 
are described for each plot. Response patterns defined by Xi et al. [49] for metastatic 
melanoma patients undergoing tumor infiltrating lymphocyte (TIL) immunotherapy are 
indicated when relevant. (Tx = treatment; TKI = tyrosine kinase inhibitors; ICI = immune 
checkpoint inhibitors; MRD = molecular/minimal residual disease; ChemoRT = 
chemoradiation therapy)    

 

2.3.1  Chemotherapy and radiation 

Cytotoxic chemotherapies and radiation therapy (RT) are often used 

independently or in combination as first-line treatment in many cancers. Chemotherapy 
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agents function by disrupting mitosis or causing DNA damage leading to cell-cycle 

arrest, mitotic catastrophe, and apoptosis. Radiation therapy kills cells by DNA damage 

as well, but it also elicits an immune response and vascular damage, which can result in 

subsequent rounds of tumor cell death. Mitotic arrests and DNA damage are thought to 

cause tumor cell death within 6 to 72 hours of administration in vivo, so detecting ctDNA 

shedding in response to effective treatment may require immediate sampling [116]. 

Unfortunately, very few studies sample ctDNA within the first 72 hours of chemotherapy. 

It has also been suggested that treatment-induced mitotic catastrophe can cause delays 

in cell death from chemotherapy and RT for up to a week [67, 91, 117]. These various 

mechanisms of action may result in multiple shedding events, where one may be more 

informative about treatment response over another. 

Limited studies assessing ctDNA levels immediately after treatment are 

conflicting. In castration-resistant prostate cancer patients receiving docetaxel-based 

therapy, early ctDNA levels were found to increase rapidly within 1 hour of administration 

with a corresponding decrease in total cell-free DNA [118]. This observation is consistent 

with increased tumor cell sensitivity to cytotoxic agents compared to healthy tissue. 

Contrary to these findings, however, CRC patients receiving FOLFOX did not exhibit a 

spike in ctDNA at any point within the first 48 hours of treatment, despite high-resolution 

sampling at 3, 9, 18, 23, 26, 42, and 47 hours [119]. Another study involving metastatic 

CRC patients receiving FOLFIRI looked at ctDNA levels before and 7 days after each of 

the first two treatment cycles and again at progression [120]. Interestingly, this study 

found that temporary increases in ctDNA while on treatment were predictive of 

progressive disease and worse survival rates, and suggested ctDNA monitoring within 

the first week of treatment to evaluate treatment efficacy. While ctDNA levels were 

decreased at the time of radiological assessment compared to baseline for all patient, 

patients with temporary spikes in ctDNA appeared to have more sustained ctDNA 
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burden than those with favorable response (see Fig. 2.2. “Early spike + no clearance”). 

Clonal composition was also found to vary during treatment suggesting a differential 

response to treatment among tumor cell subpopulations. Increases in cell-free DNA 

methylation levels of the tumor suppressor genes, APC and RASSF1A, 24 hours after 

receiving cisplatin-based chemotherapy were correlated with improved tumor response 

and overall outcome in advanced lung cancer patients [121]. The same study showed 

that methylation levels of those genes in lung cancer cells also peaked 24 hours after 

cisplatin exposure, however, it is unclear if the hypermethylated DNA was tumor-derived 

in patients. Notably, this study also found that elevated methylation of APC and/or 

RASSF1A in tumor-bearing mice were associated with tumor cell death as determined 

by biopsy shortly after treatment and blood collection. This finding might suggest that the 

methylated cell-free DNA originated from these dying tumor cells. In pancreatic cancer 

patients sampled for 4 weeks following treatment with gemcitabine, decreases in ctDNA 

were correlated with tumor response [122]. In our work and others’, decreases in or 

complete clearance of ctDNA levels during low-resolution sampling (i.e., weeks to 

months) of neoadjuvantly-treated breast cancer patients were associated with 

pathological complete response at the time of surgery [17, 31, 46].  

In patient cohorts receiving combination chemoradiation therapy (CRT), 

decrease and clearance of ctDNA after 3 to 4 weeks was associated with tumor 

response in oropharyngeal and lung cancer [123, 124]. Studies employing high-

frequency sampling at time points within hours of treatment are sparse, however, recent 

data from Breadner et al. [125] found that ctDNA abundance increased in 77% of stage 

III/IV non-small cell lung cancer patients shortly after receiving CRT with peak 

abundance observed 7 hours after chemotherapy initiation and 2 days after the first 

fraction of radiation. Early spikes in ctDNA were seen in some patients receiving CRT for 

treatment of locally advanced head and neck cancer, but were not correlated with 
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response [51]. Rather, overall decreases in ctDNA at later time points, which were not 

unique to patients who had early peaks, were more predictive of outcome. 

Some of the earliest observations of cell-free DNA by Leon and colleagues [126] 

occurred in patients receiving RT alone, finding that general cell-free DNA levels 

decreased after treatment. Aucamp et al. [3] speculate that the reason for this may have 

been the coincident destruction of phagocytes needed to generate cell-free DNA. 

Another consideration that may confound ctDNA measurement from irradiated tumors is 

that, although mitotic arrest and catastrophe are the primary means by which RT is 

thought to kill cancer cells, they have also been found to result in mis-segregation events 

[127, 128]. As discussed above, this process can result in releasing of DNA from living 

cells, providing another potential source of ctDNA that does not coincide with cell death. 

A recent study found that irradiation of head and neck cancer and NSCLC cell lines 

induced cell-free DNA shedding after 6 to 24 hours in culture [67]. The same study found 

that ctDNA levels increased within 24 hours and peaked 96 to 144 hours after 20Gy of 

irradiation in xenograft mouse models. Interestingly, the authors found that treatment-

induced senescence that was overcome with the senolytic drug, Navitoclax, lead to 

apoptosis and increased ctDNA release. In human subjects, investigation of RT alone in 

NSCLC has shown mixed results. Walls and colleagues [129] found that 3 of 5 patients 

had decreased ctDNA levels 3-days after their first RT fraction, while the remaining 2 

had increased levels of some tumor-derived variants, but not others. Preliminary data 

from our lab [34] and another study from Chen et al. [130] found that ctDNA levels were 

elevated 24-48 hours after the first dose of stereotactic ablative radiotherapy. These 

three studies in NSCLC patients used varying doses of radiation per fraction (2.75Gy, 

12Gy, and ~12.5Gy, respectively), which along with sampling time differences, may 

account for the discrepancy. Chaudhuri and colleagues [131] also reported that mid-RT 

ctDNA levels in 13 NSCLC patients were correlated with outcomes at 2 years. A recently 
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published study by our lab found that a metastatic breast cancer patient had increased 

ctDNA levels while receiving palliative radiation therapy. Deep sequencing using a 53-

mutation panel representative of both clonal and subclonal mutations, which were 

previously identified from WES of multiple tumors, revealed differential response in 

ctDNA levels for various subclones with sample collection every 48-hours during RT 

[32]. Differential response in subclonal ctDNA abundance is suggestive of varying 

sensitivity in irradiated tumor cell subpopulations and/or an abscopal response. First 

observed by Dr. R.H. Mole in 1953, the abscopal effect is the shrinkage of a distant, 

untreated tumor in response to RT of another tumor. It is thought that the destruction of 

cells in the irradiated tumor elicits an immune response that affects the non-radiated 

tumors elsewhere in the body [132]. In our case, radiation of a single lesion may have 

induced immune-mediated responses and ctDNA shedding from distant metastatic sites 

that harbored subclonal tumor cell populations. It is also worth noting that CTCs may 

also be sources of ctDNA and CTC release timing may also be similar to tumor ctDNA 

shedding [133]. In preliminary data in head and neck cancer patients treated with RT, 3 

of 11 patients had increased circulating tumor cell (CTC) counts after the first fraction of 

RT, and 5 of 6 patients had increases CTCs after 2 weeks into therapy [134].  

2.3.2  Immunotherapy 

ctDNA monitoring during treatment with immune checkpoint inhibitors (ICIs) has 

shown promise in multiple cancer types. A pan-cancer analysis done by Zhang and 

colleagues [52] found that changes in ctDNA levels during ICI treatment may be 

predictive of benefit. Patients in this study with increases in ctDNA levels during 

treatment had worse outcomes as compared to those that did not. Furthermore, patients 

with ctDNA clearance after detectable pre-treatment levels had the best progression-free 

and overall survival. A recent study by Herbretreau and colleagues [104] in patients with 
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metastatic melanoma found that significant increases in ctDNA levels during the first 2 to 

4 weeks of anti-PD1 (with or without anti-CTLA4) allowed early and highly-specific 

identification of treatment-resistant patients. Furthermore, ctDNA levels that rapidly 

decreased after starting PD-1 inhibitors were highly predictive of responses consistent 

with pseudoprogression [135, 136]. When compared to changes in ctDNA levels later in 

treatment, regardless of early changes, increases beyond 12 weeks were not 

necessarily predictive of non-response, further suggesting that early sampling is more 

informative [137]. In NSCLC patients treated with ICI, decreases in ctDNA 2 weeks after 

treatment initiation were strongly correlated with radiographic response and progression-

free survival [138]. A study investigating early response to tumor infiltrating lymphocyte 

(TIL) immunotherapy in metastatic melanoma patients identified three patterns of ctDNA 

dynamics that could be used to stratify patients by overall survival [49]. Patients with an 

early spike in ctDNA within 5-10 days of treatment followed by clearance showed a 

statistically significant survival outcome over patients who had early peaks but latent 

ctDNA burden, or no peaks with or without clearing (see Fig. 2.2). The study’s authors 

speculate that early spike it ctDNA was in part due to the newly-transferred lymphocytes 

“identifying their targets and are effective in killing [them].” 

2.3.3  Targeted therapy  

Given the clinical implications of tumor heterogeneity, one of the most significant 

unanswered questions in ctDNA analysis is whether ctDNA observed during therapy is 

more representative of resistant or responsive tumor cell populations. In a study of lung 

cancer patients undergoing EGFR tyrosine kinase inhibitor (TKI) therapy, ctDNA 

sampled 2 weeks after treatment initiation revealed activating mutations not previously 

detected in the tumor biopsies [139]. Another study of lung cancer patients on TKIs 

found that clearing of ctDNA within days of treatment was associated with response, 
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whereas sudden increases in ctDNA load later in treatment correlated with rapid tumor 

progression and poor outcome [140]. In lung cancer patients receiving either anti-EGFR 

or HER2 therapies, increases in ctDNA abundance were observed within 4-12 hours 

after initiation of treatment while total cell-free DNA was relatively constant [115]. Phallen 

and coauthors point out that this timeframe is consistent with other studies in which 

apoptosis is observed in vitro within 6 to 48 hours of treatment with EGFR TKIs. Patients 

in this study with an initial radiographic response all had ctDNA abundance eventually 

decrease by more than 95% within the first 19 days of treatment. Interestingly, baseline 

levels in a study of ALK-fusion positive lung cancer patients, pre-treatment ctDNA levels 

were not correlated with treatment response, yet changes in ctDNA during treatment 

with ALK TKIs were associated with progression [141].  

Increases in ctDNA abundance of therapy-sensitive clones corresponds with 

response, however, increases in ctDNA abundance of therapy-resistant clones can also 

portend clinical progression [40]. Outgrowth of subclonal tumor cell populations that are 

resistant to targeted therapy can be directly observed in allele-specific ctDNA dynamics. 

For example, genomic changes conferring resistance to targeted therapy in prostate 

cancer patients were detected by increasing fractions of the resistance-associated allele 

in several studies [142, 143]. 

2.4  Discussion 

Host physiology and tumor biology affect ctDNA abundance while changes in 

ctDNA levels during treatment may indicate disease response. Cancer type and stage 

appear to have the most dramatic impact on ctDNA abundance, and significant 

decreases in, or clearance of ctDNA early in treatment seems to be predictive of 

response and improved outcomes. The association of treatment response and overall 
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decreases in ctDNA levels during treatment is consistent with the hypothesis that tumor 

burden and tumor growth rate are reflected in ctDNA dynamics. Very early changes (1 to 

3 hours) in ctDNA levels have been hypothesized to reflect treatment response as well, 

but this appears to be less generalizable. For example, we might expect effective 

chemotherapy to induce ctDNA shedding immediately, and early, high-frequency 

sampling to detect it, yet observations between NSCLC, CRC and prostate cancer 

patients sampled within 1-3 hours of chemotherapy were inconsistent [118, 119, 144]. 

Unfortunately, there are a lack of studies sampling within this timeframe. Immunotherapy 

may be less fast-acting than chemotherapy given the time required for the body to 

prepare a successful immune response. PET/CT imaging has shown tumor responses 

with 4-6 weeks of treatment with ICIs in melanoma patients [145]. Sample collection at 2 

weeks following treatment found changes in ctDNA that correlated with outcome in ICI 

therapy of melanoma patients, but earlier time points were not collected [104]. It possible 

that changes in ctDNA in response to treatment existed sooner, again, earlier, high-

frequency sampling is needed to test such hypotheses. TKI-induced cell death appears 

to occur within 6 to 48 hours of exposure in vitro [114]; a similar timeframe as cell death 

from cytotoxic agents. Evidence presented in this review suggests that ctDNA dynamics 

might reflect TKI-induced cell death in this timeframe in NSCLC patients more 

consistently than during chemotherapy. 

One potential use of ctDNA monitoring during treatment that has been explored 

by our lab and others [34, 125], is to induce ctDNA shedding from either inaccessible 

tumors or suspicious lesions for evaluation. Radiation treatment seems particularly 

suited for this task, however any method of perturbation that elicits ctDNA shedding 

could be used. For example, such approaches could improve the detection rates of 

ctDNA assays like CAPP-Seq and Lung-CLiP [26] in lung cancer patients or where low-

dose CT is already in use for screening high-risk populations. Compression of breast 
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tissue during mammography has been shown to temporarily increase ctDNA abundance, 

which could be leveraged for minimally-invasive biopsy or early detection [75]. Other 

work has explored the use of ultrasound to elicit better movement of blood biomarkers 

across the BBB in preclinical brain tumor models [100, 101]. Again, a clear 

understanding of early ctDNA dynamics in response to tumor perturbations is crucial 

before such approaches can be implemented in the clinic.  

Variability in ctDNA measurements between patients and studies has been a 

challenge for serial monitoring. Efforts have been made to assess the biological 

variability of both cell-free DNA and ctDNA between measurements taken over short 

intervals [12, 13]. Several groups have attempted to standardize criteria for evaluating 

differences between pre-treatment and on-treatment ctDNA levels. O’Leary and 

colleagues [146] created a “circulating tumor DNA ratio” or CDR, defined simply as the 

ratio of on-treatment to pre-treatment levels, to evaluate treatment response in 

metastatic breast cancer. Herbreteau, Kruger and colleagues [104, 122] defined a 

“quantitative biological response and progression criteria” where patients were stratified 

by increases or decreases in ctDNA during treatment as compared to baseline. This 

approach also recognized the variability in accuracy at each time point when evaluating 

significance between measurements at different time points. Out of similar concern, our 

lab has also developed a Bayesian approach for testing statistical significance between 

ctDNA mutations in NGS data from serial collections [31]. Given the variability in 

coverage of NGS data, which determines the limit of detection, the allele-specific 

background error rate, and the stochastic nature of mutant read detection by NGS, 

sophisticated methods may be required to account for these uncertainties in ctDNA 

evaluation.  

Finally, attempts to model ctDNA shedding have shown promise in predicting 

ctDNA abundance based on tumor size and growth rate. Avanzini and colleagues [18] 
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presented a stochastic mathematical framework based on observations in lung cancer 

patients which could extrapolate ctDNA copy counts using tumor cell proliferation rate, 

death rate, shedding probability, clearance rate, and starting tumor volume. Such 

modeling can reveal unexpected behavior that may be informative of real-world 

scenarios. For example, in simulations the authors unexpectedly found that a slow 

growing cancer generated more ctDNA molecules than a faster-growing cancer of the 

same size when the faster growth was achieved by proportional increases and 

decreases in birth and death rates, respectively. However, if a faster growth rate is 

achieved by increased birth rate and a stable death rate, the difference in ctDNA release 

was negligible. By integrating these variables over time, similar models might be useful 

in predicting changes in ctDNA abundance from changes in birth and death rates 

resulting from treatment.  

2.5 Conclusion 

The utilization of ctDNA in assessing treatment response will require a better 

understanding of the biological factors involved. We believe that ctDNA monitoring has 

the potential to truly revolutionize personal medicine in cancer care but there remain 

significant challenges that must first be overcome.   
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Abstract 

 

As non-operative management (NOM) of esophageal and rectal cancer is 

becoming more prevalent, blood-biomarkers such as circulating tumor DNA (ctDNA) 

may provide clinical information in addition to endoscopy and imaging to aid in treatment 

decisions following chemotherapy and radiation therapy. In this feasibility study, we 

prospectively collected plasma samples from locally advanced esophageal (n = 3) and 

rectal cancer (n = 2) patients undergoing multimodal neoadjuvant therapy to assess the 

feasibility of serial ctDNA monitoring throughout neoadjuvant therapy. Using the Dual-

Index Degenerate Adaptor-Sequencing (DIDA-Seq) error-correction method, we serially 

interrogated plasma cell-free DNA at 28–41 tumor-specific genomic loci throughout 

therapy and in surveillance with an average limit of detection of 0.016% mutant allele 

frequency. In both rectal cancer patients, ctDNA levels were persistently elevated 

following total neoadjuvant therapy with eventual detection of clinical recurrence prior to 

salvage surgery. Among the esophageal cancer patients, ctDNA levels closely 

correlated with tumor burden throughout and following neoadjuvant therapy, which was 

associated with a pathologic complete response in one patient. In this feasibility study, 

patient- and tumor-specific ctDNA levels correlated with clinical outcomes throughout 

multimodality therapy suggesting that serial monitoring of patient ctDNA has the 

potential to serve as a highly sensitive and specific biomarker to risk-stratify esophageal 

and rectal cancer patients eligible for NOM. Further prospective investigation is 

warranted. 
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3.1 Introduction 

As non-operative management (NOM) of locally-advanced esophageal and rectal 

cancer following chemotherapy and radiation therapy is more widely adopted [147, 148], 

a sensitive and specific biomarker of sub-clinical tumor burden has the potential of 

further assisting in the assessment of patients best suited for an upfront non-operative 

approach or for detecting early sub-clinical recurrences in patients in need of salvage 

surgery in the surveillance period [149].  Circulating tumor DNA (ctDNA) has been 

extensively investigated for its diagnostic and prognostic utility as such a biomarker [41, 

150-153]; however, the longitudinal application of ctDNA monitoring throughout multi-

modality therapy (systemic therapy, radiotherapy, and/or surgery) has been less 

extensively studied [150]. Undetectable ctDNA following definitive treatment has been 

shown to be associated with pathologic complete response (pCR) and improved 

outcomes, particularly in the neoadjuvant setting for breast cancer [154, 155]; however, 

the feasibility of serial ctDNA measurements in the neoadjuvant setting for rectal and 

esophageal cancer has not been previously reported.   

Our ctDNA monitoring technique, called DIDA-Seq (dual-indexed, degenerate 

adaptor-sequencing), combines unique-molecular indexing (UMI)-based error correction 

with custom hybridization capture at many genomic loci of somatic variants previously 

identified by whole-exome sequencing of the patient’s tumor tissue. This method allows 

the detection of ctDNA in the blood with very high accuracy (1 error in 10k-50k 

observations) and sensitivity (0.005%-0.02% minimum variant allele frequency [17]). 

This study aims to test the feasibility of using patient and tumor-specific ctDNA 

monitoring to assess residual disease in five esophageal and rectal cancer patients 

during and after multimodal neoadjuvant therapy (Fig. 3.1). 
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Figure 3.1. Patient treatment and sample collection schema for blood draws and 
solid tissue biopsies.  
Solid tissue biopsies were collected after initial diagnosis of esophageal or rectal cancer 
(ER/RC) and prior to treatment for whole-exome sequencing (WES). Blood was 
collected prior to treatment and then at ~1-month intervals during treatment and 
surgery, and ~3-month intervals during follow-up monitoring. Mutations were called 
between solid tissue biopsy WES and matched buffy coat WES and used to construct 
patient-specific sequencing library enrichment panels. Cell-free DNA (cfDNA) isolated 
from blood draws was sequenced using Dual-Index Degenerate Adaptor-Sequencing 
(DIDA-Seq) at sites identified in each patient’s tumor biopsy to retrospectively 
determine circulating-tumor DNA (ctDNA) prevalence. *Patient 3 had a solid tissue 
biopsy of a metastasis which was also analyzed by WES and variants were included in 
their patient-specific panel. 

3.2  Materials and Methods 

3.2.1  Patient Enrollment, Tissue Processing, and DNA 
Extraction 

In this feasibility study, human specimens and data (including blood, tumor 

tissue, and clinical information) were prospectively acquired from participants with 
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locally-advanced esophageal (n = 3) or rectal cancer (n = 2) undergoing definitive 

multimodal therapy after their informed written consent (Oregon Health & Science 

University, IRB# 10163). Plasma samples were collected at baseline, throughout therapy 

and surveillance. Biopsy tissue was collected at diagnosis and recurrence (Fig. 3.1). 

Blood draws were serially collected and fractionated for cfDNA isolation using the 

“double spin” method (≤40 mL, a range of 6–40 mL, in 5 × 6 mL or 4 × 10 mL, purple-

capped EDTA tubes) [17, 41]. DNA was extracted from FFPE, plasma, and buffy coat 

using commercially available kits (see below). Within 6 h of collection, blood plasma was 

isolated by first spinning whole blood at 1000 g for 10 min, separating the top plasma 

layer into 1-mL aliquots, then spinning those aliquots at 15,000 xg for 10 min, 

transferring the supernatant to cryovials, and storing at −80 °C. Fixed formalin paraffin-

embedded biopsies and tumor-tissue were collected, and DNA extraction was carried 

out using QIAgen FFPE DNA extraction kit (QIAGEN). DNA was extracted from plasma 

and buffy coat using Macherey-Nagel NucleoSnap and QIAgen Blood and Tissue kits, 

respectively. All DNA extractions were quantified using the Qubit 3 fluorometric 

quantification system (ThermoFisher Scientific) and size distribution was checked with a 

BioAnalyzer 2100 (Agilent Technologies). DNA isolated from FFPE samples and buffy 

coat were fragmented by sonication to 150bp using a Covaris E220 prior to library 

preparation (cfDNA was not fragmented prior to ligation). 

3.2.2  Whole-Exome Sequencing Library Preparation 

Whole-exome sequencing (WES) libraries were prepared from tissue biopsies 

using 100–500 ng of sonicated FFPE of buffy coat DNA and the KAPA Hyper-Prep Kit 

(KAPA Biosystems) with the Agilent SureSelect XT Target Enrichment System and 

Human All Exon V5 capture baits (Agilent Technologies). Next generation sequencing 

was carried out using the Illumina NextSeq 500 platform by our institution’s Massively 
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Parallel Sequencing Shared Resource to an average, de-duplicated depth of 329X and 

121X for tumor and buffycoat matched-normal libraries, respectively (Appendix A Table 

5.1). 

3.2.3  Somatic Mutation Calling and Design of Tumor-
Specific Capture Panels 

FastQ data files were aligned and processed using BWA MEM (0.7.12, GATK, 

Broad Institute). Somatic variants were called using aligned BAM files and MuTect 

(1.1.4, GATK, Broad Institute, MA) between tumor and the patient’s matched normal 

from blood buffy coat [156]. All WES BAM files can be found in the Sequence Read 

Archive (www.ncbi.nlm.nih.gov/sra) under the BioProject accession number 

PRJNA637431 [157]. Single nucleotide variant (SNV) calls were filtered out if they were 

present in the dbSNP database (www.ncbi.nlm.nih.gov/projects/SNP). SNVs were 

filtered by frequency (requiring >1% mutant allele frequency and >3 supporting reads in 

the tumor, and <2% mutant allele frequency in the matched normal) and depth (requiring 

≥30X coverage in the tumor and ≥14X coverage in the matched normal) and were 

further assessed and hand-curated using Oncotator [158] and IGV [159] software. For 

tumor-specific capture targets, approximately 50 SNVs were chosen for each patient 

based on inferred clonality, sequence context, and potential functional impact. To 

address concerns over properly representing cell subpopulations, intronic mutations 

were included in each panel. Tumor-specific hybrid capture panels were constructed by 

querying the human reference genome (GRCh37/hg19) for the 120bp surrounding the 

target loci of interest. The resulting nucleotide sequences were submitted to IDT DNA to 

generate biotinylated bait oligos using the NGS Discovery Pools tool 
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(https://www.idtdna.com/). Mutation sites and bait oligo sequences are described in 

Boniface et al. (2021) Supplementary Table S1 [31]. 

3.2.4  DIDA-Seq Library Preparation and Sequencing 

DIDA-Seq error-correction libraries were prepared similarly to what is previously 

described and sequenced on Illumina platforms. Briefly, 30–100 ng of cell-free DNA was 

input into the Kapa Biosystems Hyper Prep kit with custom DIDA-Seq adaptors followed 

by hybridization capture using the IDT xGen Hybridization and Wash Kit using a single, 

18 h capture incubation step instead of the double-incubation steps previously described 

[17, 41]. Libraries were sequenced on either the Illumina HiSeq 2500, paired-end 100 

bp, with dual 14-bp indexing cycles or the Illumina NextSeq 500, paired-end 70 bp with 

dual 14-bp indexing cycles. All DIDA-Seq BAM files can be found in the Sequence Read 

Archive (www.ncbi.nlm.nih.gov/sra) under the BioProject accession number 

PRJNA637431 [157]. 

3.2.5  Evaluation of Tumor-Specific Capture Panel 
Performance and ctDNA Prevalence 

The error-correction pipeline for analyzing DIDA-Seq data was based on the 

duplex sequencing pipeline with substantial modification to be compatible with our data 

[30]. The DIDA-Seq computational pipeline was implemented as previously described 

[17] and the mutant allele frequency (MAF) was determined for each mutation at each 

time point by dividing the number of mutant error-corrected (i.e., consensus) reads by 

the total number of consensus reads at that site and multiplying by 100 (note that all 

MAFs are reported as percentages in Appendix A Tables). The aggregate MAFs for 

each time point were calculated by summing the mutant consensus reads at all sites 

https://www.mdpi.com/2075-4418/11/1/73/s1
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interrogated, dividing that by the total number of consensus reads across all sites and 

multiplying by 100. Each hybrid capture panel was evaluated using unrelated patient 

cfDNA samples as negative controls. We sequenced each patient time-point library to a 

mean, consensus read depth of 5.2kX (range = 159X to 23.4kX) per site-of-interest. We 

sequenced each negative control library to an average per-site consensus read depth of 

43.6kX coverage (range = 3.9kX–127kX) with an average per-site error rate of 0.0067% 

or 1 error in 15k site-of-interest observations (range = 1 error in 2.7k to 125k site-of-

interest observations) providing an average limit of detection of 0.016% MAF (i.e., the 

mean of the lowest statistically significant MAF from Patients 2–5, see Appendix A Table 

5.3). When we aggregated negative control site-of-interest consensus read counts for 

each panel, we calculated an average per-panel error rate of 0.0057%, or 1 error in 

17.7k observations (bases) with a range of 1 in 12.5k to 22.9k based on the assumption 

that mutant consensus reads found in the negative control were caused by PCR or 

sequencer error (see Appendix A Table 5.2 for panel-specific error rates). We compared 

the mutation-specific MAF in the patient’s plasma at each time-point to the MAF of the 

same site in the set of pooled negative controls using the Weitzman overlapping 

coefficient [160] (see Section 3.2.6 below). A p-value was generated for each site, as 

well as all sites aggregated by tumor-specific panel, using the overlap coefficient 

between the beta distributions of the sample and the negative control read counts as 

described below. Any individual site with greater than 0.05% MAF in the negative 

controls was omitted from evaluation of ctDNA levels in the respective target patient. 

Data points having a p-value of 0.05 or less were considered significantly different from 

the negative controls, effectively determining our lower limit of detection given the total 

sequencing depth at each time point. To correct for differences in cell-free DNA 

concentration between blood draws, the aggregate MAF was converted into haploid 

genome equivalents per mL (hGE/mL) of plasma by the following equation:  
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3.2.6  Significance Tests for ctDNA Measurements 

The significance of ctDNA measurements (i.e., mutant consensus reads) at each 

time point, as compared to the panel’s negative control, was determined prior to 

conversion to haploid genome equivalents per ml (hGE/mL) plasma and is dependent on 

the sequencing depth at each site at that time point. A Bayesian approach was used to 

test the null-hypothesis that the sample MAF and negative control MAF were generated 

from the same distribution. This statistical approach was used because we assumed that 

a higher sample size (i.e., deeper sequencing) confers a more accurate parameter 

estimate (i.e., 100 mutant reads in 100,000 is more accurate than 1 in 100). Therefore, a 

Beta distribution was created for the sample and for the negative control (Eqs. (A1) and 

(A2)), setting the "a" and "b" parameter values to the number of variant reads and 

number of reference reads, respectively. Next, the Weitzman overlapping coefficient 

[160] (Eq. (A3)) was used to measure the similarity between the sample and negative 

control distributions to create a significance value. In cases where the number of mutant 

consensus reads was greater than zero but the estimated p-value was also greater than 

0.05, we determined the minimum number of mutant consensus reads (given the 

number of total consensus reads), for which the cumulative binomial distribution is 

greater than or equal to the error rate of the given sites as determined by the negative 

control (error-rate = mutant consensus reads in negative control/total consensus reads in 

the negative control). If the observed number of mutant consensus reads exceeded this 
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value, we considered it to be marginally significant and therefore above the limit of 

detection (see Appendix A Table 5.3 for p-values and binomial test results for each 

panel at each time point). Note that the overlapping coefficient method can result in low 

p-values (<<0.05) if the sample MAF ≈ negative control MAF and the depth of the 

negative control is much greater (>100-fold) than the depth of the sample. In such cases, 

the ctDNA measurement was considered below the limit of detection if the MAF of the 

sample was equal to or less than that of the negative control (e.g., Appendix A Table 

5.3, Patient 2, month “0.0”). 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� (A1) 

𝑋𝑋𝑛𝑛𝑠𝑠𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝐵𝐵𝑛𝑛𝑠𝑠𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑛𝑛𝑠𝑠𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� (A2) 

∫min� 𝑓𝑓𝑛𝑛𝑠𝑠𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥), 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)�𝑑𝑑𝑥𝑥 (A3) 

3.3  Results 

3.3.1  Elevated ctDNA Levels are Associated with 
Recurrence in Rectal Adenocarcinoma with Clinically-
Useful Lead Time 

Patient 1 is a 33-year-old female who presented with cT3N1M0 distal rectal 

adenocarcinoma and enrolled on an unrelated phase II trial evaluating the efficacy of 

total neoadjuvant therapy (eight cycles of FOLFOX chemotherapy and long-course 

chemoradiation) followed by non-operative management for clinical complete 

responders based on MRI and endoscopy (NCT02008656) [157]. Whole exome 

sequencing (WES) of a pretreatment tissue biopsy revealed 81 non-synonymous single 

nucleotide variants (SNVs, Boniface et al. (2021) Supplementary Table S1 [31].).  

https://www.mdpi.com/2075-4418/11/1/73/s1
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DIDA-Seq of 28 loci was used to monitor ctDNA levels throughout the patient’s 

treatment course. ctDNA levels decreased fivefold during four months of total 

neoadjuvant therapy (Fig. 3.2A). She was without clinically detectable disease for six 

months following total neoadjuvant therapy and proceeded with NOM per the trial; 

however, ctDNA levels remained elevated. Eleven months following total neoadjuvant 

therapy, endoscopic surveillance revealed a biopsy-confirmed recurrence and the 

patient underwent salvage total mesorectal excision (TME). 
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Figure 3.2. Rectal cancer patients with detectable post-treatment ctDNA 
eventually had local recurrence.  
Serial ctDNA levels were retrospectively analyzed using DIDA-Seq and using patient-
specific capture panels. Aggregate mutant allele frequency (MAF) was converted to 
haploid genome equivalents per ml (hGE/mL) of plasma and plotted over treatment 
course. (A) A 28-site capture panel was used for Patient 1 and (B) a 35-site capture 
panel was used for Patient 2. Statistical significance, as compared to a negative control, 
was determined at each time point. ctDNA values not significantly different from 
negative controls are indicated (triangle) and aggregate mutant reads/total reads are 
reported. Statistical significance was determined prior to converting aggregate MAF to 
hGE/mL plasma. 
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Patient 2 is a 59-year-old male who presented with cT2N1M0 mid-rectal 

adenocarcinoma and enrolled on the aforementioned phase II study. WES of this 

patient’s tumor biopsy found 106 total non-synonymous SNVs and 35 sites were used to 

assess ctDNA levels in blood draws. At baseline and following total neoadjuvant therapy, 

ctDNA levels were not considered significantly above negative control, however mutant 

reads were present (Fig. 3.2B). Similarly, this patient also proceeded with NOM given 

clinical complete response seen on endoscopy and imaging. However, ctDNA levels 

were detectable eight months following the completion of total neoadjuvant therapy, 

further increased one month prior to biopsy-proven local recurrence and continued to 

rise until the time of salvage TME. Following TME, ctDNA levels again returned to below 

the limits of detection in spite of later oligometastatic progression. Unfortunately, the 

performance of this patient’s capture panel in the negative control was the lowest of all 

five panels which resulted in decreased overall sensitivity at the time of oligometastatic 

progression (see Appendix A Table 5.2, “Aggregate error rate (%)”).  

3.3.2  ctDNA Levels are Associated with Tumor Burden 
and Progression in Oligometastatic Esophageal Cancer 

Patient 3 is a 72-year-old male with oligometastatic esophageal cancer who 

presented with metastatic disease 2 years prior and had received extensive therapy 

under an immunotherapy trial. Given oligoprogression at the primary site only (distal 

esophagus), tumor board recommendations were for the patient to undergo neoadjuvant 

therapy prior to esophagectomy, at which time he was enrolled on our feasibility study. 

WES revealed significant intertumoral heterogeneity with only 45% of mutations shared 

and panel sites were selected to represent both shared and private mutations. Using 

DIDA-Seq, we assessed 17 mutations found only in the primary tissue biopsy and 14 
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mutations shared between that tumor and a subsequent metastasis (Fig. 3.3). Increasing 

ctDNA levels throughout neoadjuvant therapy were consistent with clinical non-

response. ctDNA levels became undetectable post-esophagectomy but were again 

elevated seven months following surgery, concordant with clinical progression. 

 

 

Figure 3.3. Oligometastatic esophageal adenocarcinoma cancer patient with 
primary-only oligoprogression.  
Patient 3 had elevated ctDNA levels associated with systemic disease progression. 
Whole-exome sequencing of both the primary tissue biopsy and a subsequent 
metastatic dermal lesion revealed a high mutation burden and 45% overlap in mutation 
profiles. Serial ctDNA levels were retrospectively analyzed using DIDA-Seq and using 
patient-specific capture panels. Aggregate mutant allele frequency (MAF) was 
converted to haploid genome equivalents per ml (hGE/mL) of plasma and plotted in 
log10-scale over treatment course. Plot shows ctDNA monitoring using mutations either 
private to the primary tissue biopsy (n = 17, solid black line) or shared between the 
primary tissue biopsy and the biopsy of the metastatic dermal lesion (n = 14, dashed 
red line). Statistical significance, as compared to a negative control, was determined at 
each time point. ctDNA values not significantly different from negative controls are 
indicated (triangle) and aggregate mutant reads/total reads are reported. Statistical 
significance was determined prior to converting aggregate MAF to hGE/mL plasma. 
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3.3.3  Undetectable ctDNA is Associated with Pathologic 
Complete Response (pCR) Following Tri-Modality 
Therapy for Esophageal Adenocarcinoma 

Patient 4 is a 61-year-old male with a history of cT2N0M0 distal esophageal 

adenocarcinoma who underwent neoadjuvant chemoradiation and esophagectomy. 

WES revealed 585 non-synonymous mutations and 39 sites were interrogated in blood 

draws by our capture panel. ctDNA levels declined during neoadjuvant therapy, 

associated with reduced tumor size and avidity on PET-CT, and were near the limit of 

detection (i.e., indeterminate as compared negative control values, see Methods) with 5 

mutant reads in 114k total reads immediately prior to surgery, and 29 mutant reads in 

137k total reads immediately following surgery (Fig. 3.4A). Surgical pathology confirmed 

a pCR and ctDNA levels remained undetectable as compared to the negative control at 

final follow-up 6 weeks following his esophagectomy. 
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(continued from figure on previous page) 

Figure 3.4. Esophageal adenocarcinoma cancer patients had significant declines 
in ctDNA during and following neoadjuvant chemoradiation.  
Patient 4 (A) had surgical confirmation of pathologic complete response (pCR) and 
Patient 5 (B) had near complete response (CR). Serial ctDNA levels were 
retrospectively analyzed using DIDA-Seq and using patient-specific capture panels. 
Aggregate mutant allele frequency (MAF) was converted to haploid genome equivalents 
per ml (hGE/mL) of plasma and plotted over treatment course. A 39-site capture panel 
was used for Patient 4 and a 41-site capture panel was used for Patient 5. 18F-FDG-
PET/CT showed reduced tumor size and avidity (red arrows) corresponding to near 
complete response in Patient 5 (B, inset). Statistical significance, as compared to a 
negative control, was determined at each time point. ctDNA values not significantly 
different from negative controls are indicated (triangle) and aggregate mutant 
reads/total reads are reported. Statistical significance was determined prior to 
converting aggregate MAF to hGE/mL plasma. 

 

Patient 5 is a 69-year-old male with cT3N0M0 distal esophageal adenocarcinoma 

who received neoadjuvant chemoradiation prior to esophagectomy with surgical 

pathology confirming a near-complete response. WES found 135 non-synonymous 

mutations and 41 genomic sites were included in the ctDNA panel. As with Patient 4, 

ctDNA levels in this patient were elevated prior to treatment, but quickly fell below the 

limit of detection during chemoradiation with concurrent reduced tumor size and avidity 

on PET-CT. ctDNA levels remained statistically insignificant at final follow-up 10 weeks 

following esophagectomy with no clinical evidence of disease at that time (Fig. 3.4B). 

Eight months later, the patient was found to have a malignant pleural effusion; however, 

plasma was unable to be collected to evaluate the recurrence of ctDNA. 
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3.4  Discussion 

Here, we have demonstrated the feasibility of using patient- and tumor-specific 

ctDNA monitoring throughout neoadjuvant therapy and surveillance, identifying that such 

an assay may have the potential to detect sub-clinical disease and more precisely select 

candidates for organ preservation or those who may benefit from early salvage 

resection. Given the morbidity and mortality of large oncologic surgeries, notably 

esophagectomy, non-operative management for complete responders to neoadjuvant 

therapy is intriguing and is an active area of investigation [147, 161]. Current standard of 

care for locally-advanced esophageal or rectal cancer consists of neoadjuvant therapy 

followed by planned surgical resection irrespective of response or biomarker readout. Up 

to 50% of esophageal squamous cell carcinoma patients exhibit a pCR following 

neoadjuvant chemoradiation. This has been consistently shown to predict for better 

disease-free survival and overall survival [162-167] with a meta-analysis identifying a 

33–36% overall survival benefit when a pCR is achieved [168]. Given the morbidity and 

mortality associated with esophagectomy [169-171], avoidance of resection is desirable 

in those who are at low risk for having residual disease. Furthermore, there is growing 

evidence in the rectal cancer literature that regimented clinical assessment of patients 

following neoadjuvant chemoradiation can potentially identify those who are clinical 

complete responders, allowing avoidance of immediate surgery [172-174]. A multicenter 

U.S. trial recently presented preliminary findings testing this hypothesis and found that a 

watch and wait strategy in a large proportion of patients achieving pCR after 

neoadjuvant therapy resulted in organ preservation without compromising survival [161]. 

Many providers are reluctant to adopt this approach broadly given the poor 

sensitivity and specificity of clinical response assessments. Current post-neoadjuvant 

clinical assessment for both esophageal and rectal cancers consists only of direct 
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endoscopic visualization and anatomic/functional imaging (CT, PET/CT, and MRI). 

These tests have difficulty differentiating small regions of treatment-related inflammation 

or fibrosis from persistent tumor and vice-versa. Multiple studies have examined the 

concordance rates between these tests and pathology specimens, none of which have 

exhibited sufficient sensitivity or specificity to accurately identify true complete 

responders. In rectal cancer, functional MRI has shown great promise with a substantial 

improvement in sensitivity and specificity (~85% for both) [175]. However, in esophageal 

cancer assessment of complete response is considerably poor where a combination of 

endoscopic ultrasound and PET/CT yields only a specificity of 30% [176]. Moreover, as 

lymph node metastases are still identified in up to 8% of patients with pCR of the primary 

tumor [177], a more robust and unambiguous biomarker for assessment of complete 

clinical response is needed and will drastically impact treatment decision making. 

There are limited published data on ctDNA quantification during and after 

neoadjuvant therapy and its correlation with treatment response and suitability for 

surgery [150]. ctDNA has been shown useful in the detection of minimal residual disease 

following breast conservation therapy for women with early-stage breast cancer, with 

detection of ctDNA in plasma after completion of curative therapy predicting metastatic 

relapse with high accuracy [178]. In a similar study for Stage II and III rectal cancer 

patients receiving tri-modality therapy with planned surgery, the presence of tumor-

specific ctDNA during post-neoadjuvant chemoradiation was highly predictive for 

disease recurrence despite adjustment for stage, CEA levels, and use of adjuvant 

therapy [179]. Additionally, in a heterogeneous cohort of esophageal cancer patients 

receiving chemoradiation either in the neoadjuvant or definitive setting, post-

chemoradiation panel-based mutation detection of ctDNA was associated with tumor 

progression, metastasis, and shorter survival [180]. The results and feasibility of our 
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patient- and tumor-specific ctDNA assay in this cohort of patients adds to this body of 

literature and the impact of ctDNA as a useful response assessment biomarker. 

There are some limitations to our ctDNA methodology, however. The DIDA-Seq 

method we have utilized achieves high sensitivity by sequencing select sites to great 

depth with UMI-based error correction. Consequently, three limiting factors must be 

considered: 1) hypermutated source tissue, 2) tumor heterogeneity, and 3) variability in 

performance between selected loci. In Patient 3, mutations shared between the primary 

and subsequent metastasis were 20-fold more prevalent than those private to the 

primary and therefore easier to detect. However, a clinical application of our assay for 

monitoring ctDNA would typically be limited to the mutations found only in the initial 

tissue biopsy. This highlights the importance of designing patient panels that are 

representative of both treatment-responsive and treatment-resistant cancer cell 

populations. Furthermore, poor site selection may contribute to high, panel-specific 

error-rates as seen in Patient 2, which had the worst performing panel of all five patients 

(Appendix A Table 5.3). For example, it is possible that mutant reads found in this 

patient at time points prior to surgery, which were determined to be below the panel’s 

limit of detection, were indeed true positives and thus would have provided additional 

clinical lead time. As sequencing costs decrease, it may be feasible to routinely monitor 

cfDNA for every mutation identified by exome- or whole-genome sequencing of tumor 

biopsies, potentially mitigating such issues. 

3.5  Conclusion 

In this feasibility study, patient- and tumor-specific ctDNA analysis throughout 

multi-modality therapy for esophageal and rectal cancer patients was shown to be 

feasible and potentially useful in the assessment of treatment response which would 
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have particular utility in watch and wait and organ preservation strategies. Further 

investigation with a larger and more homogenous cohort is warranted. 
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(www.ncbi.nlm.nih.gov/sra) under the BioProject accession number PRJNA637431 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA637431). 

3.9  Patient Consent 

In this feasibility study, human specimens and data (including blood, tumor 

tissue, and clinical information) were prospectively acquired from participants with 

locally-advanced esophageal (n = 3) or rectal cancer (n = 2) undergoing definitive 

multimodal therapy after their informed written consent (Oregon Health & Science 

University, IRB# 10163). 
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Abstract 

Quantification and detection of circulating tumor DNA (ctDNA) has been used to 

identify the presence of cancers. Ablative radiation therapy kills tumor cells to reduce 

tumor burden and it follows that these dying tumor cells could lead to increased ctDNA 

abundance. We carried out deep, error-corrected sequencing of cell-free DNA collected 

serially from 12 stage I, and 2 stage II/III non-small cell lung cancer (NSCLC) patients 

undergoing external-beam radiation treatment (EBRT) after initial diagnosis. We found 

that ctDNA detection rates (i.e., the number of mutations passing filters) decreased at 

the first on-treatment blood draw as compared to baseline (43% to 7%). Total ctDNA 

abundance decreased in 6 patients and increased in 5 patients between those same 

blood draws, with one patient showing evidence of tumoral heterogeneity. Both patients 

with stage II/III disease had the largest increases in ctDNA abundance from baseline. 

Multiple blood draws improved ctDNA detection from 43% to 50% with a second blood 

draw and to 71% with 4 blood draws. Additionally, EGFR mutations were detectable in 6 

patients during EBRT that were not detected prior to treatment. Taken together, these 

results provide a counterpoint to previous work that showed improved ctDNA detection 

after radiation therapy in more advanced disease. 

4.1  Introduction 

Non-small cell lung cancer (NSCLC) constitutes 20% of new cancer cases and 

nearly one quarter of all cancer deaths in the US [181]. Early detection and intervention 

significantly improve patient outcome and long-term survival, yet over 75% of patients 

have regional or metastatic disease at the time of diagnosis. Recent efforts to expand 

access to low-dose CT screening for at-risk populations has been shown to improve 
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survival rates by detecting cancer at earlier stages, but this comes with significant risk of 

increases in over-diagnosis and over-treatment [182, 183].  

Tumor mutation profiling in NSCLC is also becoming more valuable as new 

treatments are approved for genetic alterations in genes such as EGFR. So-called 

‘actionable’ mutations can confer resistance to first line treatment and become dominant 

in the primary tumor and metastases at later stages [27, 184, 185]. Although the clinical 

use of liquid biopsy is expanding, molecular-based treatment guidance has traditionally 

relied on solid-tissue biopsies for tumor profiling. Yet, solid-tissue biopsy is invasive, 

risky, and often insufficient or impossible in early-stage NSCLC patients. Consequently, 

many patients suspected of early-stage NSCLC are treated based on imaging diagnosis 

alone, without biopsy conformation of suspicious lung nodules. Liquid biopsy is therefore 

uniquely suited as a companion diagnostic to CT screening and in cases where biopsy 

confirmation of an imaging-based diagnosis is not available. It is also useful for tumor 

mutation profiling in leu of a solid-tissue biopsy. However, such an assay remains 

challenging to implement due to the low fractional abundance of tumor-derived 

biomarkers, such as circulating tumor DNA (ctDNA), in early-stage NSCLC.  

ctDNA detection rates in stage I NSCLC patients range between 25-60% using 

next-generation sequencing (NGS) of commonly mutated genes [24, 26, 186]. Early-

stage tumors (~1 cm3) are estimated to contribute as little as 1-2 haploid genome 

equivalents per 15 ml plasma or <0.1% of total cell-free DNA, which is below the error-

rate of traditional NGS [18, 74]. Molecular barcoding and computational strategies have 

been developed to discriminate between tumor-derived mutations and background-error 

in NGS [25, 30]. However, identifying tumor-derived ctDNA at mutant allele fractions 

(MAFs) below 0.1%-1% without prior genotyping of the tumor continues to be unreliable 

and presents unique challenges. Furthermore, as cell-free DNA is thought to be primarily 
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derived from white blood cells (WBCs), somatic mutations derived from clonal 

hematopoiesis (CH) can confound ctDNA detection [1]. 

Our lab and others have observed increased ctDNA abundance after exposure to 

ionizing radiation in animal models and in cancer patients [32, 34, 67, 125, 129, 130]. 

We hypothesized that ablative doses of radiation, such as those used in 

hypofractionated external-beam radiation treatment (EBRT), would lead to increased 

ctDNA shedding due to cytotoxicity and could therefore improve the detection rates of 

ctDNA-based assays in early-stage NSCLC. Furthermore, this increase in ctDNA 

shedding could improve liquid biopsy-based tumor genotyping. The routine radiation 

treatment of patients presenting suspicious lung nodules at our institution presented an 

opportunity to test this hypothesis. We sought to leverage the possible ctDNA 

enrichment effects of EBRT with computation-based error reduction workflows to 

improve ctDNA detection and characterization. 

4.2  Methods 

4.2.1  NSCLC patient and healthy control study consent, 
treatment, and sample acquisition 

Human specimens and data (including whole blood and clinical information) were 

prospectively acquired from participants undergoing first-line external-beam radiation 

after diagnosis of NSCLC by imaging (n = 14, 12 x stage I, 1 x stage II, and 1 x stage III) 

after their informed written consent (Oregon Health & Science University Institutional 

Review Board Study #10163, first approved 19 October 2017, see Table 4.1). All 

patients were treated with 48-60 Gy external-beam radiation in 4-8 fractions over 10-12 

days (Fig. 4.1). Blood samples were collected in EDTA tubes prior to treatment 
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(baseline, BL), within 21-192 (median = 47) hours following at least 1 treatment, and at 

various time during EBRT. Three patients had draws following the completion of 

treatment at 48- to 96-hour intervals (patients tb184, tb187, and tb196). Blood was 

collected from 10 healthy individuals between 25-55 years of age after their informed 

written consent under the same IRB. 

 

 

Table 4.1: Patient demographics and clinical details. 
* 8th Edition [21]; **RECIST 1.1 criteria (https://project.eortc.org/recist/wp-
content/uploads/sites/4/2015/03/RECISTGuidelines.pdf); *** data unavailable; † not 
measure (NM) due to pneumonitis; PY = pack-year; ND = no data; Tx = radiation 
treatment; PR = partial response; CR = complete response; NA = not applicable; frac. = 
treatment fractions          

Patient Age/Sex
Smoking 
Hx (PY)

NSCLC 
Stage* TNM* EBRT Regime PreTx 

PostTx     
(~3 mo) Delta 

Follow-up    
(~3 mo)**

Months to 
progression

tb169 79/M 60 IA2 cT1bN0M0 7.5 Gy x 8 frac. 18 *** ND *** NA
tb174 66/M 50 IA2 cT1bN0M0 12 Gy x 5 frac. 16 16 0 Stable 19
tb179 72/M 50 IA2 cT1bN0M0 12 Gy x 5 frac. 12 9 3 Stable NA
tb181 71/M 65 IA1 cT1aN0M0 11 Gy x 5 frac. 12 6 6 PR NA
tb182 68/M 50 IA3 cT1cN0M0 11 Gy x 5 frac. 27 23 4 Stable NA
tb184 68/M 40 IA1 cT1aN0M0 11 Gy x 5 frac. 20 11 9 PR 7
tb187 58/M 45 IA2 cT1bN0M0 11 Gy x 5 frac. 16 NM ND CR NA
tb188 71/M 60 IA2 cT1bN0M0 11 Gy x 5 frac. 14 12 2 Stable NA
tb190 79/M 42 IA2 cT1bN0M0 11 Gy x 5 frac. 15 14 1 Stable NA
tb191 66/M 147 IA2 cT1bN0M0 11 Gy x 5 frac. 12 12 0 Stable NA
tb194 61/M 25 IIB cT3N0M0 11 Gy x 5 frac. 10 13 -3 Stable NA
tb196 70/M 56 IIIA cT4N0M0 4 Gy x 15 frac. 53 19 34 PR 6
tb197 77/M 8 IA1 cT1aN0M0 12 Gy x 4 frac. 29 NM† ND NM† NA
tb199 64/M 25 IA1 cT1aN0M0 11 Gy x 5 frac. 23 NM† ND NM† NA

      

   
   

  

Tumor Size (longest axis, mm)

                                                
      

https://project.eortc.org/recist/wp-content/uploads/sites/4/2015/03/RECISTGuidelines.pdf
https://project.eortc.org/recist/wp-content/uploads/sites/4/2015/03/RECISTGuidelines.pdf
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Figure 4.1. Idealized sample collection and data analysis schematic with actual 
cohort treatment and blood draw time lines.  
An idealized time line for patient blood sample collection during external beam radiation 
treatment (EBRT) is shown (A) as well as the general workflow for library preparation, 
sequencing, and analysis (B). Note that EBRT and blood collection timing and number 
of draws varied between patients in our study. Post-treatment blood collection occurred 
in 3 patients and follow-up imaging varied from 6 to 8 weeks following the final EBRT 
fraction. [DIDA-Seq, dual-indexed degenerate adaptor sequencing [17]; CAPP-Seq, 
cancer personalized profiling by deep sequencing [24]); NSCLC, non-small cell lung 
cancer; NGS, next-generation sequencing; MAF, mutant allele fraction; SNV, single 
nucleotide variant; Indel, insertion or deletion]. 
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4.2.2  Clinical measurements 

We collected the following clinical data on NSCLC patients in this study which 

can be found in Table 4.1: smoking history (pack-years), NSCLC and TNM stage at 

diagnosis (8th Edition [187]), treatment regime, tumor size (longest axis) at diagnosis and 

at ~3 month follow-up imaging, RECIST tumor status at follow-up imaging (RECIST 1.1 

criteria), and number of months from diagnosis to progression for up to 2-years of 

surveillance (until study completion). 

4.2.3  Sample processing and DNA isolation 

Blood draws (20-30 ml) were fractionated within 1 hour of collection for cfDNA 

isolation using a double spin method [41]. Briefly, blood plasma was isolated by first 

spinning whole blood at 1,000 x g for 10 min at 4°C, separating the top plasma layer into 

~1-ml aliquots, spinning those aliquots at 15,000 x g for 10 min. at 4°C, and transferring 

the supernatant to cryovials for storage at -80°C. The buffy coat fraction was aliquoted 

(200 μl) after the initial spin and stored at -80°C. Cell-free DNA was isolated from 5-10ml 

of plasma using Macherey-Nagel NucleoSnap (Macherey-Nagel GmbH & Co., Duren, 

Germany) and white blood cell (WBC)-derived DNA was extracted using QIAgen Blood 

and Tissue kits (QIAGEN, Redwood City, CA, USA). All DNA extractions were quantified 

using the Qubit 3 (Thermo Fisher Scientific, Waltham, MA, USA) and size distribution 

was confirmed using the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, 

USA). Prior to library preparation DNA isolated from WBCs was fragmented by 

sonication to ~150 bp using a Covaris E220 (Covaris Inc., Woburn, MA, USA). Cell-free 

DNA was not sonicated prior to library preparation. 
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4.2.4  DIDA-Seq NGS library preparation, hybridization 
capture enrichment, and sequencing 

Dual-index degenerate adaptor sequencing (DIDA-Seq) libraries were prepared 

as previously described [31] using a hybrid capture target enrichment panel adapted 

from the lung cancer-specific CAPP-Seq panel developed by Newman and colleagues 

(2014) [24]. Briefly, cell-free DNA or sonicated WBC DNA was end-repaired and A-tailed 

prior to a 15-minute ligation at 20°C to Illumina-compatible sequencing adaptor oligos 

containing multiplexing and UMI sequences (IDT USA, Coralville, IA, USA) using KAPA 

HyperPrep Reagents (KAPA Biosystems, Capetown, South Africa). Ligated DNA was 

PCR amplified using Illumina library amplification primers for 8-10 cycles and enriched 

by 18-hour hybridization capture using the xGen Hybridization and Wash kit (IDT USA, 

Coralville, IA, USA) with biotinylated oligos targeting regions described by Newman and 

colleagues [24]. Post-capture sequencing libraries were further PCR amplified for 8-10 

cycles. Next-generation sequencing was carried out on the Illumina NovaSeq S4 

platform using paired-end, 150 bp reads.  

4.2.5  DIDA-Seq alignment, consensus-making, tag-swap 
filtering, and read processing 

The mutation calling workflow was optimized to identify single nucleotide 

variations (SNVs) and insertion-deletions (indels) as depicted in Fig. 4.2 and Appendix C 

Fig. 7.1. Raw fastq files were demultiplexed to unmapped bam files (ubam) using the 

Demux demultiplexing tool (Fulcrum Genomics, http://www.fulcrumgenomics.com) with 

no index mismatches allowed. Alignment and processing for ubam files was based on 

the GATK4 Best Practices Small-Variant Discovery Workflow (GATK, Broad Institute, 

Cambridge, MA, USA) with adaptations for consensus-making steps. These steps were 

http://www.fulcrumgenomics.com/
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carried out using available tools and custom scripts [BWA-MEM v0.7.12 using hg38 

[188], SAMtools v1.3 [189], and Picard tools v2.25.1 [190]]. The FGbio tool 

CallMolecularConsensusReads was used to identify PCR duplicates based on read-pair 

UMIs and mapping positions (UMI families). A detailed description of this algorithm is 

described in the FGbio tools documentation 

(http://fulcrumgenomics.github.io/FGbio/tools/latest/). Briefly, the tool first converts the 

base-quality scores (the MAPQ sam field) to error probabilities. Consensus reads then 

are called within UMI families using the individual base error probabilities to resolve 

inter-family base-call mismatches. Finally, a posterior error rate is assigned to each 

consensus base call as a consensus base quality score. The FGbio 

FilterConsensusReads tool was used to filter consensus sequences with the following 

settings: --min-reads 3, --max-read-error-rate 0.0005, --max-read-error-rate 0.01, --max-

no-call-fraction 0.2, --min-base-quality 40. Output consensus bam files were filtered for 

tag-swapping events (defined as two or more consensus sequences aligning to the 

same start and stop coordinates and possessing the same p5 or p7 UMI sequence but 

not both). A custom script was used to identify these events and output the consensus 

read with the lowest read error rate (the cE sam field) and the most PCR duplicates per 

pseudo-family (with random tie-breaks). The resulting consensus reads were written to a 

final bam file for error rate analysis, background polishing, and mutation calling. Base 

calls were extracted from bams at every genomic position of the target enrichment panel 

using the bam-readcount utility (https://github.com/genome/bam-readcount) unless 

otherwise specified (i.e., iDES background polishing).  

 

 

 

 

http://fulcrumgenomics.github.io/FGbio/tools/latest/
https://github.com/genome/bam-readcount
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Figure 4.2. Condensed schematic of low-MAF de novo mutation calling pipeline.   
A final mutation call set is generated for each input library (demultiplexed fastqs) after 
fastq alignment (i), consensus making (ii), background polishing (iii), and filtering steps 
(3rd party tools used as indicated, see Appendix C Fig. 7.1 for details). Red boxes 
indicate key points of pipeline optimization. 

4.2.6 Background polishing of single-nucleotide variants 
(SNVs) 

For SNVs, background polishing was carried out on read count files generated 

for each library using the integrated digital-error suppression (iDES) tools developed by 

Newman and colleagues [25] with default settings. We generated the iDES background 

error database used for subsequent background polishing with pre-consensus bams 

from the WBC DNA libraries, as they had the greatest impact on error reduction. 

Resulting read counts were later used to generate library-specific error rates for each 

substitution-type during call filtering (see section Methods: 4.2.9). To generate a list of 

putative SNV calls, read count files were filtered to include only alternate base calls 

supported by at least 2 reads and 50X total coverage.     
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4.2.7  Selection of putative insertions and deletions 
(indels) 

Background error polishing was not carried out for detection of indels and we 

assumed that most recurrent artifacts causing indels (such as poorly mapped reads) 

would be present in multiple patient samples and therefore flagged during exclusion list 

generation and annotation steps later in our workflow. Instead, pre-polished read count 

files were filtered to exclude SNVs, and remaining indels were required to have ≥2 

supporting reads and >50X coverage. 

4.2.8  Generation of exclusion lists and calculation of 
alternative allele background frequencies  

We catalogued alternate alleles with the potential to give rise to false positives 

using the criteria described below (“hotspots” as defined by Newman et al [24] were 

ignored). We combined read count files with putative SNVs and indels from plasma and 

WBC samples of NSCLC and healthy subjects, and then filtered them to exclude 

alternate alleles with <5 supporting reads. We catalogued likely SNPs (≥40% MAF) 

found in any library and all alternative alleles found in healthy cell-free DNA. Positions 

with alternate alleles present in multiple patients and with multiple alternative alleles 

found in a single patient were catalogued. All catalogued positions (i.e., exclusion lists) 

were later used during annotation and filtering of putative mutation calls. 

Alternate allele background frequencies were calculated for the “Overlap Method” 

test described below (Methods 4.2.9) from all healthy cell-free DNA read count files. For 

each position in the target enrichment capture space, we recorded the number of 

supporting reads for all alleles (reference and alternate) and calculated the alternate 

allele fractions if present. 
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4.2.9  Annotation of putative SNVs and indels 

Read count files of putative SNVs and indels were annotated with amino-acid 

changes using the Annovar utility [191] (version 2019Oct24, 

https://annovar.openbioinformatics.org). Putative calls were also annotated with hotspot 

status and exclusion list flags catalogued above. We defined a hotspot as a mutation 

described in previous work by Newman and Colleagues [24] or reported as “Pathogenic” 

in the ClinVar [192] database (version 2023-01-21, 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz). 

4.2.10 Evaluation and filtering of putative SNVs and 
indels   

We considered all non-synonymous putative SNVs and indels and removed all 

non-hotspot calls flagged as a SNP, present in healthy cfDNA, present in multiple 

patients, or with multiple alleles during annotation. To account for the variability in depth 

at each position in the target capture space, we used a Bayesian approach with the 

previously described Overlap Method [31, 160] when evaluating putative calls. Briefly, 

for each putative mutation, beta distributions were generated to test the null hypothesis 

that the putative MAF and the MAF of the same allele (if present) in healthy background 

frequency database arose from the same distribution. We omitted putative mutations if 

the calculated p-value exceeded 0.05 or 0.1, for non-hotspots and hotspots, 

respectively, in order to favor sensitivity over specificity for known or previous 

documented mutations. If the number of alternate read counts and total depth at the 

given position in the aggregate healthy controls was 0 and >50,000X, respectively, then 

the candidate mutation was retained. To mitigate contributions to cell-free DNA from 

clonal hematopoiesis, mutations having >1 supporting read in their matched WBC library 

https://annovar.openbioinformatics.org/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz
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were omitted from further consideration (this filter was not used for calls analyzed for 

clonal hematopoiesis, Results 4.3.3). 

4.2.11 Final call evaluation by error probability as a 
function of number of supporting reads 

To account for variability in the error rate of each base substitution type in each 

library, we evaluated putative mutations based on the number of supporting reads. We 

assumed that as the number of supporting reads for an alternate allele increases, the 

likelihood of error decreases. We modeled this behavior independently for each base 

substitution type in each library by exponential regression considering only positions 

having >1,000X depth and with alternate alleles supported by <6 reads (see Fig. 4.3). 

Putative SNVs having alternate read counts that were less than the minimum number 

required, as calculated from a given error rate threshold, were omitted from further 

consideration. For indels, we used the median value of all 3 substitution types matching 

the reference allele of the indel. Note that we evaluated hotspots using less stringent 

error rate thresholds (~10-fold less) in order to give more statistical weight and flexibility 

in optimizing filtering.   
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Figure 4.3. Example data and exponential regression showing the relationship 
between the error rate and the number of supporting reads for C>T substitutions. 
For each library, the number of supporting single-stranded consensus sequences 
(SSCSs) for a given base substitution type (A>C, A>G, …T>C, 24 total types) was 
counted across the entire library and plotted against the cumulative error rate, defined 
as the total alternate bases/total bases sequenced for each reference type, A, C, G, 
and T. We modeled this relationship by exponential regression and use this model to 
estimate the minimum number of supporting reads required to achieve a predefined 
error rate threshold, which was determined by either a probabilistic approach or 
empirically using depth-matched healthy controls. The intersection of the model [i.e., x 
= [ln(y) – a]/b, where y=error rate and x=number of supporting reads] with the desired 
error rate threshold (solve for x) gives the minimum number of SSCSs needed to 
achieve that error rate. Colored dash lines reflect error rate thresholds of 1E-6 (blue), 
1E-7 (yellow), and 1E-8 (red), which if specified, would require >5, >8, and >11 
supporting SSCSs, respectively, for any C>T mutation called in this library. An example 
is shown using the sequencing library from Tx1 blood draw of patient tb174. 
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4.2.12 Calculation of the minimum error rate threshold 
for filtering mutation calls and subsampling of bam files 
to normalize ctDNA detection rates at BL and Tx1 

We used error rate thresholds determined by either (a) fitting an exponential 

regression to the arrays Y, X, where Y=1/[total reference base positionsA,C,T,G x mean 

depth] and X = mean depth = 1,2,3,...,13000, and solving for y (i.e., error rate threshold) 

given X (i.e., mean depth of the call library) (see Fig. 4.4) or (b) empirically, where we 

calculated the error rate threshold for which the false-positive rate (FPR) was 0 (i.e., no 

calls passing filters) in the healthy, cell-free DNA libraries subsampled to match the 

depth of the library being analyzed. The former approach was used for ctDNA 

characterization and dynamics (see Results 4.3.3) and resulted in an FPR=0.1, and the 

latter approach was used for more stringent ctDNA detection rate analysis (see Results 

4.3.4) as described in Methods 4.2.12-13 below. 
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Figure 4.4. Relationship between error rate and on-target mean depth.  
The maximum error rate for “no errors” was determined as 1/(the total number of 
reference bases sequenced + 1) (y) to achieve a given mean depth (x) for each base 
type (A, C, G, and T) in the CAPP-Seq [24] target capture space. To calculate error rate 
thresholds used in ctDNA dynamics analysis (defined as the maximum error rate 
tolerable) we input the mean library depth (x) and solved for y. For example, at a library 
mean depth of 5000X, we expect ~124M adenines to be sequenced in the capture 
space, therefore, using the fit equation y=2x10-5x-1, where x=5000, we calculate that an 
error rate threshold of 1/124M or ~ 8.05E-9 is needed to achieve less than 1 A>N errors 
in 124M adenines. This probabilistic approach was used to filter putative mutation 
calls in full-sized sequencing libraries (i.e., not subsampled) and achieved a false 
positive rate of 10% when used to calculated error rate thresholds for filtering 
calls in healthy controls (n=10). 

 

For comparison of ctDNA detection rates across time points from the same 

patient, final bam files were subsampled using the samtools subsample tool (Samtools 

v1.13) with a random seed and read output fraction. To assess the effect of EBRT on 

ctDNA detection rates, we limited our analysis to the BL and the first on-treatment draw, 

called “Tx1” (see Results 4.3.4). For each patient, we subsampled the bam file with the 
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greater mean-depth, such that the final mean-depth was within 10X of the lesser mean-

depth library for that patient (see Appendix C Fig. 7.1). Parity depth between bams was 

readily achieved for each patient by matching the total paired-end read count of the 

subsampled library to that of the target depth library. Healthy control libraries were each 

subsampled to match the parity mean depth of the patient being assessed. The resulting 

set of subsampled healthy controls was used to empirically determine an error rate 

threshold that achieved a false positive rate (FPR) of zero. Putative call filtering was then 

carried out using the respective threshold for each patient as appropriate.  

4.2.13 Characterization of mutations and ctDNA 
dynamics at BL and throughout treatment 

For mutation characterization (see Results 4.3.3) and ctDNA dynamics (see 

Results 4.3.5), we included blood draws collected after Tx1 and bams were not 

subsampled prior to mutation calling and filtering. For each library, we used the error 

rate threshold predicted by an exponential regression model of error rate as a function of 

mean depth (see Methods: 4.2.11 and Fig. 4.4). Mutation calls that were unique to draws 

other than baseline and Tx1 are indicated in Fig. 4.7 and Fig. 4.11 and were not included 

in the evaluation of ctDNA detection rates. All subsampled and full-sized bam files were 

subject to mutation calling and filtering using identical workflows as outlined above (see 

Appendix A Fig. 7.1). 

4.2.14 Sequencing error rate calculations 

To measure the error reduction achieved by UMI-base consensus making and 

background polishing steps (see Results 4.3.2), we generated base call counts (pileups) 

at every position targeted by the capture enrichment panel with depth >1,000X and MAF 
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<20% for all libraries sequenced at three stages of our workflow: post-alignment, post-

consensus making, and post-background polishing. We summed the base calls for every 

position and allele in each library and calculated the cumulative error rate for each base 

substitution type as the number of non-reference bases divided by the total number of 

reference and non-reference bases. 

4.2.15 ctDNA abundance calculation 

To account for variability in the amount of cell-free DNA in circulation at any 

given draw when measuring ctDNA abundance, we converted MAFs to haploid mutant 

genome equivalents per ml of plasma (hGE/ml plasma) as in our previous work [31]. 

MAFs were calculated using read counts acquired from full-sized bam files. Total ctDNA 

abundance at BL and Tx1 (see Results 4.3.3) was calculated using summed alternate 

read counts and position depth for all mutations called at those time points. 

4.2.16 Detection of gene fusions 

We assessed full-sized and subsampled libraries for the presence of gene 

fusions within the target enrichment capture space using two software packages, 

GeneFuse and FACTERA [193, 194] using default settings. 

4.2.17 Statistical methods, coding, and figure generation  

For each putative mutation, the allele fractions and depths were compared 

between negative control and NSCLC libraries using the Overlap Method as described 

above (Methods 4.2.9) and in previous work [31]. The resulting Weitzman Coefficient 

was used as the p-value in each comparison. We carried out all regression analyses 

using the SciPy Stats python package [195]. For ctDNA detection, the number of 



111 

 

mutation calls passing filters was evaluated between BL and Tx1 draws using a paired, 

two-tailed Student’s t-test. The same method was used to compare ctDNA abundance 

between BL and Tx1 (see Results 4.3.5). We used a two-tailed proportions z-score test 

(significance = 0.05) to compare the rate of detection between BL and Tx1 draws (see 

Results 4.3.4).  

For evaluation of clinical parameters and ctDNA measurements we carried out 

linear regression analysis on multiple predictors and outcomes using regression analysis 

to generate a Pearson correlation coefficient and found no significant linear correlation 

between each series. We were not powered to make statistical evaluations for 

categorical variables, such as tumor response (RECIST 1.1 Criteria) at 3-month follow-

up, and progression status at study completion.    

All custom scripts and executables were written in Python 3.10.6 

(https://www.python.org/). All data figures were generated using Python matplotlib 

(v3.6.3, https://matplotlib.org/) and seaborn packages (v0.11.2, 

https://seaborn.pydata.org/); and R (v4.1.1, https://cran.r-project.org/) using the GenVisR 

package (v1.30.0, http://bioconductor.org/packages/release/bioc/html/GenVisR.html, 

[196]).  

4.3  Results 

4.3.1  Study design, cohort details and sample collection 

Newly-diagnosed NSCLC patients were consented for this study (n=12, n=1, and 

n=1, stage I, II, and III, respectively) and samples were collected during fractionated 

EBRT (Fig. 4.1 and Table 4.1). Each blood draw coinciding with an EBRT fraction was 

acquired 30-60 minutes prior to receiving radiation on the day of treatment. We were 

https://www.python.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://cran.r-project.org/
http://bioconductor.org/packages/release/bioc/html/GenVisR.html
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unable to sample patients at matching intervals, consequently the first on-treatment 

blood sample (Tx1) was collected after a single fraction of EBRT in 8 patients, after two 

fractions in 4 patients, and after 3 or 4 fractions in the remaining 2 patients. All but 2 

patients (tb174 and tb194) had at least one additional collection during treatment. Three 

patients also had blood collected at multi-day intervals for ~2 weeks after receiving the 

final EBRT fraction (tb184, tb187, and tb196) to survey post-treatment ctDNA dynamics.  

4.3.2  Development and optimization of low-MAF de 
novo mutation calling pipeline 

Fractional abundance of ctDNA (i.e., MAF) in early-stage NSCLC is typically at or 

below the background error rate of traditional NGS and the sensitivity of conventional 

mutation calling pipelines [26, 27, 131, 197]. In order to detect ingle nucleotide variants 

(SNVs) and short insertion/deletion evens (indels) below 1% MAF without foreknowledge 

of tumor genotype, we combined our previously published DIDA-Seq UMI-based 

workflow [17, 31, 32] with the CAPP-Seq NSCLC selector panel and in-silico background 

error-suppression methods, previously published by Newman and colleagues [24, 25]. 

We developed a hybrid computational workflow and expanded our mutation call filtering 

approach to minimize false positives (Fig. 4.2 and Appendix C Fig. 7.1).  

First, to more accurately construct consensus reads and better leverage base 

quality score data for downstream call filtering, we replaced our majority-rules 

consensus maker with several FGbio tools (Fulcrum Genomics, 

http://www.fulcrumgenomics.com), which generate and filter consensus reads in an 

individual base quality score-aware manner. To optimize our computational workflow 

and call filtering algorithm, we sequenced an average of 79.9 ng (range 40ng-70ng, s.d. 

39.5ng) of cell-free DNA and ~500ng of white blood cell (WBC) DNA isolated from 10-20 

http://www.fulcrumgenomics.com/
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mL of blood collected from healthy adults (n=10) to a median on-target, single-stranded 

consensus sequence (SSCS) depth of 7535X (IQR: 6817X-8853X). To reduce the 

incidence of stereotypical errors introduced during library preparation, such as 8-

oxogaunine conversion (G>T and C>A), we next employed the background polishing 

method for SNVs developed by Newman and colleagues [24]. In combination, these 

steps reduced the error rates of our sequencing data by 50- to 1000-fold (Fig. 4.5A). 

Notably, WBC libraries had slightly higher pre-consensus error rates for G>T/C>A 

substitutions, likely due to DNA sonication during library preparation, however, cell-free 

DNA libraries saw a greater reduction in these error rates from both mitigation methods.   
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Figure 4.5. Error rate distributions for cell-free DNA and WBC DNA at key stages 
of error reduction.   
Cumulative error rates (total alternate bases/total bases sequenced for each reference 
type, A, C, G, and T) are shown (A) with means and s.d. for each base substitution type 
for all cell-free DNA libraries and all WBC DNA libraries at three stages (i-iii) of the 
error reduction pipeline shown in Fig. 4.2 and Appendix C Fig. 7.1. The distribution of 
cumulative error rates among libraries for each base substitution type is plotted (B) for 
three stages (i-iii) of the pipeline. In cases where there were no base substitutions of a 
given type in a library, a dash is plotted (in leu of a point) to indicate the total number of 
reference bases sequenced in a library [y = 1 / (total reference bases sequenced +1)]. 
This notation provides an estimate of the sampling limit when no errors were detected 
and is not intended to imply a lower limit of detection. 
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The remaining non-synonymous SNVs or indels where annotated and filtered to 

suppress false positives using catalogued positions (i.e., exclusion lists). We omitted 

mutation calls if there were ≥2 supporting consensus sequences in the patient-matched 

WBCs to avoid calls resulting from clonal hematopoiesis.  We assessed the position-

specific background error of each call position using a Bayesian approach with the 

healthy control libraries as our prior. We found significant variability in the error rates 

across individual libraries (Fig. 4.5B) and assumed that this would confound a 

generalized approach for putative call assessment. Therefore, we developed an 

algorithm that modeled the likelihood of error as a function of the number of supporting 

reads. For each mutation the model predicts the minimum number of supporting SSCSs 

needed to exceed a predetermined background error rate given the base substitution 

type. Using the healthy control libraries, we determined these thresholds empirically as 

the error rates for which the number of mutations passing filter (i.e., false-positive rate, 

FPR) was zero (see Appendix B Table 6.2) or probabilistically from the on-target mean 

depth of the given library (see Methods 4.2.11). We subjected all cell-free DNA and 

WBC DNA to our optimized mutation calling workflow. Final bam files (i.e., post-

consensus making, etc.) had significant variability in on-target coverage as shown in Fig. 

4.6. This was due to varying DNA amounts available for library construction, adaptor 

ligation efficiency, which all contribute to library complexity, as well as varying 

sequencing depth, and on-target efficiency during hybridization capture enrichment. 
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Figure 4.6. On-target depth distributions of sequencing libraries used in this 
study.  
For each library, read counts at genomic positions covered in the CAPP-Seq [24] target 
enrichment hybridization capture panel (~100kb) were used to plot total coverage 
across the panel (depth). Read counts were derived from final full-sized bams 
comprised of single-stranded consensus sequences (SSCSs) aligning to positions in 
the CAPP-Seq panel and represent unique input DNA molecules. Mean depths are 
shown as gold stars and median values are shown with orange dashes and annotated 
in blue (top).   

4.3.3 ctDNA-derived mutations detected in NSCLC 
patients and the impact of clonal hematopoiesis (CH) 

The limit of detection of ctDNA using NGS is determined by the number of unique 

molecules sequenced at a given genomic position. Putative non-synonymous mutations 

from all NSCLC patient cell-free DNA libraries were filtered as described (Methods 4.2.9-

10) and are shown in Fig. 4.7 and Appendix B Table 6.3 We detected 34 non-

synonymous SNVs and indels in 19 genes across the enrichment capture space, with 

the majority in the NSCLC-associated EGFR and TP53 genes.  
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Figure 4.7. Non-synonymous mutations detected in cell-free DNA libraries 
collected at baseline and during radiation treatment of NSCLC patients.  
A waterfall plot showing single nucleotide variants (SNVs) and insertion/deletion events 
detected in cell-free DNA collected at baseline (BL) or on-treatment (Tx) as shown in 
Fig. 4.1B. The first draw in which the mutation was called is indicated. Mutation burden 
was calculated for the target enrichment capture space defined in the text. Smoking 
history is shown as pack-years (PY). Mutations appearing in this plot were called from 
full-sized bams and filtered as described in the text using probabilistic error rate 
thresholds calculated from library mean depth. 

 

To assess the contribution of clonal hematopoiesis (CH)-derived variants to cell-

free DNA, we compared the MAFs of WBC calls to the MAFs of ctDNA calls from all cell-

free DNA libraries Fig. 4.8. We reasoned that CH-derived cell-free DNA would be 

present in plasma at similar fractions to WBC DNA, however, tumor-derived ctDNA 
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would not be detectable in the WBC compartment. We found 97 mutation calls from cell-

free DNA and WBC DNA (43 and 38, respectively) passing filters. Only 9 calls had 

supporting reads in both compartments and 3 of those were called in both 

compartments. Mutations with supporting reads in both compartments had similar MAFs 

suggesting that they were derived from CH (slope=0.8, R2=0.41). The majority of calls 

did not have supporting reads in their corresponding tissue compartment. Shared 

mutations occurred in TP53 (n=4) and in genes not typically associated with CH 

(CSMD1, ERBB4, OR6F1, and NF1, n=4, see Appendix B Table 6.6). This suggests that 

filtering ctDNA call sets by simply omitting mutations found in genes commonly 

associated with CH may not be sufficient to remove false positives arising from CH. 

These results highlight the value of sequencing patient-matched WBC DNA when calling 

low-MAF ctDNA mutations. 
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Figure 4.8. Prevalence of mutant reads in cell-free DNA and white blood cell 
(WBC)-derived DNA.  
Mutant allele fractions (MAF) are shown for mutation calls passing filters (without 
filtering for matched normal) in all cell-free DNA (lilac) and matched WBC DNA (blue) 
libraries. Mutations in TP53 are marked (▼). Mutations called in both tissue 
compartments are in dark blue (n=3, TP53, ERBB4, and NF1). Inset Venn diagram 
shows the distributions of read support in each tissue compartment for all mutations 
called (n=73 total, n=9 with reads in both tissue compartments). 

 

4.3.4 Detection rates of ctDNA decreased after EBRT 

To test our hypothesis that sampling cell-free DNA during EBRT improves ctDNA 

detection rates, we considered the number of mutation calls passing filters at baseline 

(BL) and at the first on-treatment blood draw (Tx1). We accounted for the variability in 

depth between BL and Tx1 libraries in each patient by randomly subsampling either 
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library to a mean depth equal to the lower of the two (Fig. 4.9, Table 4.2).  We 

subsampled the healthy control libraries to these same depths and determined the 

parameters such that FPR=0 in those libraries (see Appendix B Table 6.2). We found 

that the number of total calls passing filters across all patients decrease from BL in the 

Tx1 blood draw (p = 0.048; Fig. 4.10A). The proportion of patients with detectable ctDNA 

(>0 calls passing filters) also decreased significantly from 43% at BL to 7% at Tx1 

(p=0.023).  

 

 

Figure 4.9. Post-parity subsampling depth distributions for BL and Tx1 libraries 
pairs. 
For each patient, the depth distributions for the parity subsampled bams from baseline 
(BL) and first on-treatment (Tx1) blood draws are shown. Of the BL/Tx1 pairs, the 
library that was subsampled to achieve parity mean depth is indicated with a red 
asterisk (see Appendix B Tables 6.1 and 6.2) for full-sized and subsampled mean 
depths for all libraries).  

 

When considering the cumulative ctDNA detection rate after multiple blood 

draws, despite decreased ctDNA detection rates overall, we found that the percentage of 
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ctDNA positive patients increased from 43% (6 out of 14) at BL, to 71% (10 out of 14) 

when including all draws from BL to Tx3. These results underscore the value of multiple 

serial collections when assessing patients with very low ctDNA levels. Interestingly, we 

found that EGFR mutations were detectable in patients during EBRT but not at baseline 

(tb169, tb184, tb190, tb196, tb197, and tb199, see Fig. 4.7). Without multiple draws for 

each healthy control, it is unclear if these results are simply due to multiple sampling and 

unrelated to EBRT. We did not detect gene fusions in any patient at any time point using 

multiple software tools nor was the number of calls passing filters associated with mean 

library depth (see Appendix B Table 6.5). 

 

 

Table 4.2: Number of mutation calls passing filters for each blood drawa 
a BL or Tx1 libraries subsampled to achieve parity mean depth and using empirical error 
threshold such that the FPR of subsampled healthy controls was 0; b Libraries 
analyzed at full depth using probabilistic error threshold (resulting FPR of full-depth 
healthy controls of 10%); FPR = false positive rate; BL = baseline; Tx = on- or post-
treatment. 

          

 

Patient ID NSCLC Stage BLa Tx1a Tx2a Tx3a Tx4b Tx5b Tx6b Tx7b

tb169 IA2 2 0 12 3 - - - -
tb174 IA2 0 0 - - - - - -
tb179 IA2 0 0 1 - - - - -
tb181 IA1 0 0 0 - - - - -
tb182 IA3 1 0 0 - - - - -
tb184 IA1 0 0 0 1 0 0 0 -
tb187 IA2 1 0 0 0 1 1 0 0
tb188 IA2 0 0 0 - - - - -
tb190 IA2 1 0 1 - - - - -
tb191 IA2 2 0 0 - - - - -
tb194 IIB 1 0 0 - - - - -
tb196 IIIA 0 1 0 0 0 - - -
tb197 IA1 0 0 0 1 - - - -
tb199 IA1 0 0 0 - - - - -

ctDNA Detection Rate 43% 7% 23% 60%
Cumulative Detection Rate 43% 50% 57% 71%
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Figure 4.10. Comparison of final mutation call counts and detectable ctDNA 
between baseline (BL) and first on-treatment (Tx1) blood draws.  
The number of ctDNA calls passing filters in BL and Tx1 draws, as reported in Table 
4.2, was compared using a paired, two-tailed Student’s t-test (significance = 0.05) (A). 
The proportion of patients in Table 4.2 found to be ctDNA-positive between BL and Tx1 
was compared using a two-tailed proportions z-score test (significance = 0.05) (B). 

 

4.3.5  ctDNA dynamics during EBRT were mixed among 
NSCLC patients 

To assess ctDNA dynamics during EBRT, for each patient we estimated the total 

number of mutant genomes per mL of plasma at every time point for all calls made at 

any time point using non-subsampled bam files. We set the error rate threshold for 

mutation call filtering to the value predicted by our probabilistic model using a given 

library’s mean depth. Notably, this approach yielded one false positive in our healthy 

controls (FPR = 10%) and a slightly lower BL detection rate (36%, 5/14), which 

increased to 93% after 3 draws were considered (see Appendix B Table 6.4). We found 

that 5 patients had increased total ctDNA abundance at Tx1, while 6 patients had 

decreased levels. Eight patients had at least one post-BL draw with increased ctDNA 
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levels (Fig. 4.11). Notably, 2 of the patients with samples collected following EBRT had 

peak ctDNA abundance between 300-600 hours (tb184 and tb187, Fig. 4.11B). When 

we considered only BL and Tx1 draws for all patients, we saw no significant difference in 

mean mutant hGE/ml plasma (p=0.65; Fig. 4.11C and Table 4.3). However, both 

patients with stage II and III disease were among those with increased ctDNA at Tx1 vs 

BL, which is consistent with previous work in more advanced NSCLC and metastatic 

breast cancer [32, 125].  
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Figure 4.11. ctDNA dynamics during fractionated external-beam radiation 
treatment (EBRT) and comparison of total ctDNA between baseline (BL) and the 
first on-treatment blood draw (Tx1).  
(caption continued on next page)  
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(continued from Fig. 4.11 on previous page)  

ctDNA abundance is shown for each patient during EBRT as mutant haploid genome 
equivalents per ml of plasma (hGE/ml plasma) for individual mutation calls passing 
filters at any time point in full-sized bam files. Red triangles and dashed lines indicate 
radiation treatment (see Table 4.1 and Fig 4.1B). Red asterisks indicate mutations in 
EGFR which were observed in patients tb169, tb184, and tb196. All blood draws that 
occurred on the same day as EBRT were taken ~30-60 minutes prior to treatment. Nine 
patients had blood collected at BL (0 hours) and throughout treatment (A) and 3 
patients also had draws collected after treatment completion (B). For each patient, read 
counts were summed for all mutation calls passing filters at BL and Tx1 (see Table 4.3) 
and used to calculate total hGE/ml plasma (C) for statistical comparison between those 
time points (paired, two-tailed Student’s t-test). 

 

 

 

Table 4.3. Aggregate mutant and reference read counts for each patient at 
baseline (BL) and first on-treatment (Tx1) blood collections. 
* BL vs. Tx1 hGE/ml plasma, p = 0.51 (paired, two-tailed Student's t-test, sig. = 0.05); † 
stage II and III disease (all other patients were stage I, see Table 4.1); see Fig. 4.11C 
for associated plots. 

 

Patient Mut Rd Count Ref Rd Count hGE/ml plas* Mut Rd Count Ref Rd Count hGE/ml plas*
tb169 96 18696 15.4 2 71226 0.2 -15.2
tb179 6 15525 1.8 11 11376 4.0 2.2
tb182 0 6061 0.0 8 1292 12.1 12.1
tb184 0 5082 0.0 0 6235 0.0 0.0
tb187 14 2269 43.3 1 1742 3.2 -40.1
tb188 0 1300 0.0 13 4778 16.5 16.5
tb190 22 14774 1.9 0 10515 0.0 -1.9
tb191 36 10708 7.4 16 15610 3.6 -3.7
tb194† 0 1074 0.0 6 12195 2.0 2.0
tb196† 1 2095 1.0 32 803 50.5 49.5
tb197 6 18332 1.9 1 16470 0.8 -1.1
tb199 0 6439 0.0 2 8548 1.5 1.5

Baseline Draw (BL)* 1st On-Treatment Draw (Tx1)*
Delta 

hGE/ml plas
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4.3.6  ctDNA detection and abundance were not 
significantly associated with clinical observations 

We analyzed multiple clinical parameters against ctDNA measurements at 

baseline and the first time point including: smoking history, NSCLC stage at diagnosis, 

longest tumor dimension at diagnosis and at 3-month follow-up, treatment response 

(RECIST 1.1 criteria at follow-up), and outcome at study completion (progression vs. 

non-progression at any point within ~2 years). We found no significant differences 

among our comparisons.  

4.4  Discussion 

Disease stage at diagnosis is a critical factor in overall patient outcome and 

survival in NSCLC. However, as early-stage NSCLC is typically discovered, diagnosed, 

and treated from imaging alone, the incidence of overdiagnosis and treatment of non-

cancerous nodules and other masses is likely underestimated [183, 198, 199]. Although 

liquid biopsy seems ideally suited as a companion diagnostic, low ctDNA detection rates 

and highly-variable ctDNA levels in early-stage NSCLC still pose a significant technical 

challenge.  

There is evidence that radiation treatment of solid tumors can potentiate ctDNA 

abundance in human subjects and animal models, but not without significant variability 

among subjects, and it is typically more pronounced with more advanced disease [32, 

67, 125, 129]. Yet, it is unclear what factors, both biological and physiological, might 

drive this variability. In this study, we explored how ctDNA detection and characterization 

in early-stage NSCLC might improve during radiation treatment by expanding on this 

previous work to characterize ctDNA before, during, and after radiation treatment. 
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Contrary to previous findings, ctDNA detection rates in our largely stage I NSCLC cohort 

decreased between baseline and on-treatment draws. However, ctDNA abundance 

varied between patients during treatment. Some of this variability was likely due to 

stochastic mechanisms considering the low number of mutant reads detected in many of 

the libraries, but we cannot rule out potential biological sources either. Our probabilistic 

error thresholding approach yield 93% ctDNA detection rates after 4 draws in NSCLC 

patients, but multiple draws from the same healthy control were not available. Further 

studies using multiple serial sampling of healthy individuals would help clarify this result.  

This study was also hindered by asynchronous blood collection timing between 

patients, particularly for the first on-treatment draw. Asynchronous EBRT fractions might 

also impact ctDNA dynamics depending on the influence of cumulative radiation dosage 

on ctDNA shedding. Based on previous work, we believe earlier and more frequent 

sample collection, at 3-, 6-, or 12-hour intervals, would be more informative of the effects 

of EBRT on ctDNA abundance. In locally advanced NSCLC patients, Breadner and 

colleagues [125] showed increased ctDNA abundance over BL with peaks at 3 or 24 

hours in patients receiving chemotherapy after ICI (no RT) or chemoRT, respectively. 

They also observed increased abundance in patients undergoing palliative fractionated 

RT alone at 36 and 60 hours after the initial fraction. Their cohorts received fractional 

doses ranging from 2 to 9 Gy per fraction whereas our cohort received less fractions at 

higher doses (mean = 11.3 Gy per fraction, range = 4-12 Gy), which may have impacted 

our findings given our first post-baseline sampling was at a median of 47 hours. It may 

be that at higher fractional doses, cell death is more acute and ctDNA shedding more 

immediate. However, it is possible that chemotherapy is a more effective means to 

induce ctDNA shedding than RT or that early-stage patients do not consistently shed 

ctDNA in the same way as locally advanced patients do; that ctDNA detection in patients 

with smaller tumors depends on much more than assay sensitivity. It has also been 
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observed that changes in ctDNA abundance during therapy may be predictive of 

treatment efficacy, where temporary increases in ctDNA during treatment followed by 

ctDNA clearance is associated with improved patient outcomes (see our review, [38]). 

Additional studies should be done to clarify these questions. 

Our study was also unable to validate our mutation calls with matched tumor 

biopsies due to availability. This would help reduce uncertainty around mutation calling 

and filtering. Future studies in which solid tumor genotyping is done in conjunction with 

on-treatment ctDNA analysis could establish the ground truth of ctDNA shedding and 

dynamics during therapy. Moreover, any such studies in early-stage NSCLC patients 

should include larger, more gender diverse cohorts to improve statistical analysis. Doing 

more studies that utilize deeper sequencing, more patients, and earlier blood collection, 

might yet reveal some utility in sample collection during treatment as a companion 

diagnostic. As sequencing cost continuing to plummet, multiple draws over the course of 

a patient’s care will become more feasible and routine, thereby improving the diagnostic 

confidence of liquid biopsy for guiding treatment.  

4.5  Funding source 

This project was supported by funding (FULL5080319) from the Cancer Early 

Detection Advanced Research Center at Oregon Health & Science University, Knight 

Cancer Institute. 
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Conclusion 

The work presented in this dissertation explores the biological factors that 

influence ctDNA abundance, particularly during treatment. It assesses the utility 

of patient-specific ctDNA assays to detect subclinical disease and radiation 

treatment to improve ctDNA detection rates of patient-agnostic assays in lung 

cancer patients. Although there are many clinical and biological correlates to 

ctDNA abundance, it remains unclear why ctDNA levels are high in some 

patients and not others, even within the same disease and stage. Despite this 

state of affairs, our data and the vast majority of existing studies that use patient-

specific ctDNA assays suggest that this approach is largely robust in detecting 

minimal residual disease and recurrence with clinically-significant lead time. 

Unfortunately, our attempt to leverage radiation treatment for patient-agnostic 

detection and characterization of ctDNA in lung cancer patients was less 

promising.  

In order to better understand the biological determinants of ctDNA 

detection and dynamics, it is clear that a significant effort must be made toward 

deconvoluting the myriad of variables that seem to be implicated. In Chapter II I 

outlined a range of these determinants, from the overt, such as tumor burden and 

aggressiveness, to the nuanced, such as macrophage presence and abscopal 

effects. Carefully designed experiments and studies will need to be done to 

determine the degree that each factor influences the variability of ctDNA 

abundance among patients and cancer types. New models may need to be 
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developed as we reach the limits to which our current models are able to isolate 

and control for these variables. 

Regardless of what efforts are made to improve our understanding of the 

factors contributing to ctDNA abundance, the implementation of ctDNA assays in 

all stages of cancer care will march on. Fortunately, we will continue to reap the 

benefits of such assays regardless of whether or not the underlying mechanisms 

of analyte generation and dynamics are truly understood. This fact is particularly 

true for tumor types and stages with higher levels of ctDNA, such as colorectal 

cancer and metastatic disease.  

Finally, although the methods utilized in my work relied on the detection of 

tumor-derived mutations, such as SNVs and indels, it is likely that multiomic 

approaches will be necessary to achieve the sensitivity and specificity required 

for cancer screening, early-detection, and monitoring for subclinical disease. 

Base-substitutions and indels are possibly the simplest way to distinguish ctDNA 

from healthy cell-free DNA in sequencing data. The use of more novel features 

for ctDNA enrichment and detection, such as methylation patterns, fragment 

lengths, and fragment boundary locations, illustrates the breadth of information 

available in these molecules; we are only just beginning to understand these 

features and how they relate to the tissue of origin and host biology. As our ability 

to collect and analyze large amounts of data improves, we may also discover 

new modalities of distinction. Furthermore, integrating over all of these features, 

as well as the large number of other analytes available in liquid biopsy, in 
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combination with machine learning approaches, will dramatically improve the 

sensitivity and specificity of ctDNA assays. 

As we continue to push the boundaries of assay sensitivity and detection 

of early or pre-cancerous lesions and micro-metastasis, we will be faced with 

more abstract questions about what constitutes cancerous disease. It is likely 

that the stochastic genetic drift found in hematopoietic stem cells, for example, 

also occurs in other tissues and will eventually be readily detectable via liquid 

biopsy. The challenge will then be to identify those occasions and individuals for 

which intervention is appropriate and necessary. Once again, in the effort to 

effectively detect and treat disease, we may again redefine what it means to be 

healthy. 

 

 

 





 

 

Appendix A: Additional Tables from Chapter 
III 

 

Appendix A Table 5.1: Chapter III WES metrics and mutation counts 
 

 

 
 

Appendix A Table 5.2: Chapter III Patient-specific hybrid capture panel 
evaluation in negative controls. 

 

 

WES Sequencing 
Library Mean Depth

On-target 
Capture Effiency

Total Calls 
Passing Filters

Total Coding 
Calls

Pt1 Buffy Coat 120 0.75 - -
Pt1 Primary Bx 364 0.75 256 81
Pt2 Buffy Coat 122 0.75 - -
Pt2 Primary Bx 342 0.73 358 106
Pt3 Buffy Coat 119 0.73 - -
Pt3 Primary Bx 302 0.74 1351 456

Pt3 Metastasis Bx 304 0.74 1735 604
Pt4 Buffy Coat 119 0.75 - -
Pt4 Primary Bx 346 0.74 402 135
Pt5 Buffy Coat 124 0.75 - -
Pt5 Primary Bx 313 0.73 5922 585

Patient
Mutation Call 

Source
Number of 

sites

total neg 
cntl wt rd 

count

total neg 
cntl mut rd 

count
Total neg 
ctrl depth

Min error 
rate (%)

Max error 
rate (%)

Aggregate 
error rate 

(%)
1 error in 
N reads

1 Primary Biopsy 28 825316 53 825369 0.0020 0.0375 0.0064 15573
2 Primary Biopsy 35 1147864 92 1147956 0.0025 0.0368 0.0080 12478
3 Primary Private 17 412565 18 412583 0.0032 0.0071 0.0044 22921
3 Primary & Met Shared 14 292340 14 292354 0.0017 0.0091 0.0048 20882
3 (Patient 3 combined) 31 704905 32 704937 0.0017 0.0091 0.0045 22029
4 Primary Biopsy 39 3521623 235 3521858 0.0008 0.0301 0.0067 14987
5 Primary Biopsy 40 1342296 64 1342360 0.0014 0.0258 0.0048 20974
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Appendix A Table 5.3: Chapter III DIDA-Seq cfDNA read counts and 
statistical data. 
* Used to calculate average limit of detection which did not include Patient 1 as all time-
points had significant VAFs 
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Appendix B: Additional Tables from Chapter 
IV 

 
 

Appendix B Table 6.1: Chapter IV On-target mean consensus sequence 
depth of sequencing libraries. 
On-target mean consensus sequence depth of full-sized (not subsampled) bams and 
subsampled pairs (BL/Tx1), final parity depth, and read count (paired end). 

 
 
 
 
 
 
 
 
 
 
 
 

Patient Cohort BL Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Final_BL Final_Tx1 subsampled_draw subsampled_readcount
tb169 NSCLC 1090 4483 1163 1795 - - - - 1090 1090 Tx1b 2467021
tb174 NSCLC 4495 4638 - - - - - - 4495 4495 Tx1 10599660
tb179 NSCLC 6695 4986 6438 - - - - - 4983 4986 BL 11926402
tb181 NSCLC 7360 6583 7805 - - - - - 6579 6583 BL 15326037
tb182 NSCLC 5128 2400 1176 - - - - - 2399 2400 BL 5588961
tb184 NSCLC 4932 5895 4531 7591 8092 5888 3304 - 4932 4932 Tx1 11466119
tb187 NSCLC 3706 3465 1758 4917 4240 5411 4706 4810 3464 3465 BL 8030188
tb188 NSCLC 689 2849 2772 - - - - - 689 684 Tx1b 1419106
tb190 NSCLC 2174 1945 2695 - - - - - 1944 1945 BL 4075216
tb191 NSCLC 3106 6080 7656 - - - - - 3106 3096 Tx1 6893247
tb194 NSCLC 943 9273 2416 - - - - - 943 942 Tx2 2143537
tb196 NSCLC 618 250 477 459 439 - - - 250 250 BL 530272
tb197 NSCLC 8259 7376 8108 7268 - - - - 7376 7376 BL 16824183
tb199 NSCLC 5669 7379 417 - - - - - 5669 5668 Tx1 13206473

tb2 Healthy 7976 - - - - - - -
tb3 Healthy 4607 - - - - - - -
tb4 Healthy 7159 - - - - - - -
tb5 Healthy 8054 - - - - - - -
tb6 Healthy 10458 - - - - - - -

tb11 Healthy 5795 - - - - - - -
tb12 Healthy 6379 - - - - - - -
tb67 Healthy 10175 - - - - - - -
tb68 Healthy 6873 - - - - - - -
tb71 Healthy 9703 - - - - - - -

See Appendix B Table 6.1 for mean depths of subsampled 
healthy controls
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Appendix B Table 6.2: Chapter IV Library depth and calculated error rate 
thresholds and filtering parameters. 
Mean depth targets for healthy controls to achieve parity depth of patient’s BL/Tx1 pair. 
Empirically determined error rate thresholds are also shown for each patient target 
depth (these parameters were provided to filtering algorithm in Fig. 7.1, bottom). 
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Appendix B Table 6.3: Chapter IV Final mutation calls passing filter from 
all time points. 
* Hotspots previously defined by Newman et al 2014 [24] 

 

  

patient
t
a chr

position 
(hg38)

ref 
base

alt 
base alt cnt DP MAF

healthy 
plasma 
bg dp

healthy 
plasma bg 

maf CalledIn hotspots*
min sscs 

req
BC alt 

cnt
BC ref 

cnt aa ch
mut 
type gene

tb169 6 chr5 177095368 G C 20 3088 0.00648 199902 3.00E-05 BL None 8 0 13325 E480Q SNV FGFR4
tb169 27chr6 117326279 A T 23 449 0.05122 131862 0 BL None 10 0 12861 N1834K SNV ROS1
tb169 2 chr7 55191821 C G 4 1715 0.00233 171030 0 Tx2 ['C>A','C>G','C>T'] 6 0 12625 L591V SNV EGFR
tb169 8 chr10 43112867 T +A 11 3022 0.00364 218052 0 Tx2 None 10 0 17363 F301fs Ins RET
tb169 1chr14 104780190 G C 9 1642 0.00548 189162 0 Tx2 None 8 0 12576 R25G SNV AKT1
tb169 7 chr5 177095372 T G 21 2872 0.00731 202342 0 Tx2 None 10 0 13285 M481R SNV FGFR4
tb169 6 chr5 177095368 G C 28 2818 0.00994 199902 3.00E-05 Tx2 None 8 0 13325 E480Q SNV FGFR4
tb169 79chr3 89450279 A C 12 913 0.01314 171910 0 Tx2 None 8 0 15363 N867H SNV EPHA3
tb169 89chr6 117319892 A T 12 895 0.01341 159556 0 Tx2 None 9 0 15019 S1972R SNV ROS1
tb169 1chr11 108329141 T -T 12 843 0.01424 182330 0 Tx2 None 10 0 14018 Y2404fs del ATM
tb169 0 chr2 211725102 A G 11 744 0.01478 148576 0 Tx2 None 9 0 12886 S239P SNV ERBB4
tb169 27chr6 117326279 A T 18 725 0.02483 131862 0 Tx2 None 9 0 12861 N1834K SNV ROS1
tb169 85chr10 87957859 A T 17 644 0.02640 172972 0 Tx2 None 9 0 13067 Q214L SNV PTEN
tb169 0 chr2 211722503 C G 19 459 0.04139 131900 0 Tx2 None 8 0 13404 C258S SNV ERBB4
tb169 2 chr7 55191821 C G 2 3537 0.00057 171030 0 Tx3 ['C>A','C>G','C>T'] 5 0 12625 L591V SNV EGFR
tb169 47chr4 55110472 A C 8 1069 0.00748 185358 0 Tx3 None 7 0 15720 Y396D SNV KDR
tb169 86chr4 65367386 T G 17 997 0.01705 153606 0 Tx3 None 8 0 11340 E611A SNV EPHA5
tb179 8 chr8 35748598 C T 10 5891 0.00170 168038 0 Tx1 None 7 0 6790 T608I SNV UNC5D
tb179 23chr7 55191823 G -G 2 7189 0.00028 170218 1.17E-05 Tx2 None 12 0 5344 L591fs del EGFR
tb182 9 chr5 112837901 A C 8 1300 0.00615 178128 0 Tx1 None 6 0 5773 L751F SNV APC

tb184 7 chr7 55174773 G A 4 8008 0.00050 164632 0 Tx3
['GAATTAAGAGAAGCA>G', 

'GAATTAAGA>G'] 2 0 1155 E479K SNV EGFR
tb187 9chr13 48303986 C G 14 2283 0.00613 107798 0 BL None 2 0 648 P25R SNV RB1
tb187 9chr13 48303986 C G 8 2262 0.00354 107798 0 Tx4 None 2 0 648 P25R SNV RB1
tb187 9chr13 48303986 C G 12 2697 0.00445 107798 0 Tx5 None 4 0 648 P25R SNV RB1
tb188 8chr17 7675088 C -C 13 4922 0.00264 206494 0 Tx1b ['C>T','C>A'] 10 0 8740 R43fs del TP53
tb190 87chr19 1220687 A G 10 8352 0.00120 166730 0 BL None 8 0 4984 K235R SNV STK11
tb190 18chr3 89210218 T G 12 1473 0.00815 161170 0 BL None 11 0 5787 V171G SNV EPHA3
tb190 2 chr7 55181321 A +C 14 5410 0.00259 218204 6.42E-05 Tx2 None 13 0 6035 N504fs Ins EGFR
tb191 7chr17 7674872 T C 12 4612 0.00260 175640 0 BL ['T>C'] 9 0 4883 Y88C SNV TP53
tb191 2chr17 7675224 G A 24 6132 0.00391 190264 0 BL None 20 0 5504 L91F SNV TP53
tb194 0chr15 87880401 G A 11 212 0.05189 184104 0 Tx1 None 10 0 9167 R713C SNV NTRK3
tb194 20chr2 211387120 C +A 15 244 0.06148 152652 1.31E-05 Tx1 None 7 0 9734 A1056fs Ins ERBB4
tb194 2chr19 10499829 C A 11 165 0.06667 176078 0 Tx1 None 4 0 8790 E69X stopgain KEAP1
tb194 0chr19 10489800 C A 15 156 0.09615 185662 0 Tx1 None 4 0 8728 R460M SNV KEAP1
tb194 3 chr2 50236893 G A 14 131 0.10687 167310 0 Tx1 None 10 0 11413 R113X stopgain NRXN1
tb194 2 chr5 112840275 A G 8 74 0.10811 183282 0 Tx1 None 7 0 11234 K1543E SNV APC
tb194 8chr17 7675189 G C 6 12201 0.00049 201622 0 Tx2 None 2 0 10675 C9W SNV TP53
tb196 7 chr7 55181378 C T 32 835 0.03832 208326 0 Tx1 ['C>T'] 7 0 4481 T523M SNV EGFR
tb197 23chr7 55191823 G -G 2 9311 0.00022 170218 1.17E-05 BL None 18 0 4982 L591fs del EGFR
tb197 9chr17 7674890 T C 4 9047 0.00044 171764 0 BL ['T>C'] 3 0 3797 H82R SNV TP53
tb197 23chr7 55191823 G -G 3 8368 0.00036 170218 1.17E-05 Tx3 None 26 0 4982 L591fs del EGFR
tb199 23chr7 55191823 G -G 2 8578 0.00023 170218 1.17E-05 Tx1 None 12 0 7408 L591fs del EGFR
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Appendix B Table 6.4: Chapter IV Number of mutation calls passing filters 
for each blood draw 
a All libraries were assessed at full-depth using error rate thresholds determined using 
our probabilistic approach and the library's mean depth 

 

patient cohort BL Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7
tb169 NSCLC 2 0 12 3 - - - -
tb174 NSCLC 0 0 - - - - - -
tb179 NSCLC 0 1 1 - - - - -
tb181 NSCLC 0 0 0 - - - - -
tb182 NSCLC 0 1 0 - - - - -
tb184 NSCLC 0 0 0 1 0 0 0 -
tb187 NSCLC 1 0 0 0 1 1 0 0
tb188 NSCLC 0 1 0 - - - - -
tb190 NSCLC 2 0 1 - - - - -
tb191 NSCLC 2 0 0 - - - - -
tb194 NSCLC 0 6 1 - - - - -
tb196 NSCLC 0 1 0 0 0 - - -
tb197 NSCLC 2 0 0 1 - - - -
tb199 NSCLC 0 1 0 - - - - -

(n) 14 14 13 5 3 2 2 1
ctDNA+ 5 6 4 3 1 1 0 0

Rate 0.36 0.43 0.31 0.60 0.33 0.50 0.00 0.00
Cumul. ctDNA+ 5 11 11 13 13 13 13 13

Cumul. Rate 0.36 0.79 0.79 0.93 0.93 0.93 0.93 0.93
tb2 Healthy 0 - - - - - - -
tb3 Healthy 0 - - - - - - -
tb4 Healthy 0 - - - - - - -
tb5 Healthy 0 - - - - - - -
tb6 Healthy 7 - - - - - - -

tb11 Healthy 0 - - - - - - -
tb12 Healthy 0 - - - - - - -
tb67 Healthy 0 - - - - - - -
tb68 Healthy 0 - - - - - - -
tb71 Healthy 0 - - - - - - -

(n) 10 - - - - - - -
ctDNA+ 1 - - - - - - -

Rate 0.10 - - - - - - -

Blood Draw Librarya
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Appendix B Table 6.5: Chapter IV Library mean consensus sequencing 
read depth (SSCS) and mutation calls passing filters 
a All libraries were assessed at full-depth using error rate thresholds determined using 
our probabilistic approach and the library's mean depth  
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patient mutation
blood draw(s) 

called in* hotspot? type gene
amino acid 

change
supporting 

reads total reads MAF
supporting 

reads total reads MAF
tb169 chr10:43112867:T>+A Tx2 FALSE insertion RET F301fs 11 3022 0.0036 0 17363 0
tb169 chr10:87957859:A>T Tx2 FALSE SNV PTEN Q214L 17 644 0.0264 0 13067 0
tb169 chr11:108329141:T>-T Tx2 FALSE deletion ATM Y2404fs 12 843 0.0142 0 14018 0
tb169 chr14:104780190:G>C Tx2 FALSE SNV AKT1 R25G 9 1642 0.0055 0 12576 0
tb169 chr2:211722503:C>G Tx2 FALSE SNV ERBB4 C258S 19 459 0.0414 0 13404 0
tb169 chr2:211725102:A>G Tx2 FALSE SNV ERBB4 S239P 11 744 0.0148 0 12886 0
tb169 chr3:89450279:A>C Tx2 FALSE SNV EPHA3 N867H 12 913 0.0131 0 15363 0
tb169 chr4:55110472:A>C Tx3 FALSE SNV KDR Y396D 8 1069 0.0075 0 15720 0
tb169 chr4:65367386:T>G Tx3 FALSE SNV EPHA5 E611A 17 997 0.0171 0 11340 0
tb169 chr5:177095368:G>C BL, Tx2 FALSE SNV FGFR4 E480Q 20 3088 0.0065 0 13325 0
tb169 chr5:177095372:T>G Tx2 FALSE SNV FGFR4 M481R 21 2872 0.0073 0 13285 0
tb169 chr6:117319892:A>T Tx2 FALSE SNV ROS1 S1972R 12 895 0.0134 0 15019 0
tb169 chr6:117326279:A>T BL, Tx2 FALSE SNV ROS1 N1834K 23 449 0.0512 0 12861 0
tb169 chr7:55191821:C>G Tx2, Tx3 TRUE SNV EGFR L591V 4 1715 0.0023 0 12625 0
tb174 chr3:89341914:G>A WBC FALSE SNV EPHA3 S377N 0 5268 0 8 7818 0.0010
tb174 chr4:65324122:G>A WBC FALSE SNV EPHA5 P1015S 0 4259 0 7 7386 0.0009
tb179 chr1:247712671:T>+AG Tx1, WBC FALSE insertion OR6F1 M29fs 13 6197 0.0021 4 6297 0.0006
tb179 chr1:247712724:T>A Tx2, WBC FALSE SNV OR6F1 D11V 19 4007 0.0047 13 2930 0.0044
tb179 chr8:35748598:C>T Tx1 FALSE SNV UNC5D T608I 10 5891 0.0017 0 6790 0
tb181 chrX:111952329:G>C WBC FALSE SNV TRPC5 A31G 0 4277 0 40 2778 0.0144
tb182 chr5:112837901:A>C Tx1 FALSE SNV APC L751F 8 1300 0.0062 0 5773 0
tb184 chr17:31229289:A>G Tx4, WBC FALSE SNV NF1 S892G 13 10163 0.0013 3 1442 0.0021
tb184 chr17:31325889:T>A WBC FALSE stopgain NF1 Y1614X 0 5822 0 7 790 0.0089
tb184 chr17:31336771:A>G WBC FALSE SNV NF1 D2074G 0 6294 0 10 1255 0.0080
tb184 chr17:7674229:C>T BL, Tx1, 

Tx2, Tx3, 
Tx4, Tx5, 
Tx6, WBC

TRUE SNV TP53 G113D 37 3140 0.0118 12 2040 0.006

tb184 chr4:55092634:A>T WBC FALSE SNV KDR F1018I 0 5737 0 13 938 0.0139
tb184 chr7:41690315:G>C WBC FALSE SNV INHBA L206V 0 6957 0 11 2753 0.0040
tb184 chr7:55174773:G>A Tx3 TRUE SNV EGFR E479K 4 8008 0.0005 0 1155 0
tb184 chr9:8460418:A>G WBC FALSE SNV PTPRD Y869H 0 5528 0 10 826 0.0121
tb187 chr11:108304817:C>T WBC FALSE SNV ATM T1880M 0 3367 0 67 722 0.0928
tb187 chr13:48303986:C>G BL, Tx4, Tx5 FALSE SNV RB1 P25R 14 2283 0.0061 0 648 0

tb187 chr14:104780146:C>A WBC FALSE SNV AKT1 K39N 0 4199 0 70 1062 0.0659
tb187 chr15:87877088:C>A WBC FALSE SNV NTRK3 L767F 0 4300 0 49 789 0.0621
tb187 chr15:88135320:G>T WBC FALSE SNV NTRK3 P329T 0 5154 0 90 1527 0.0589
tb187 chr17:31327781:C>A WBC FALSE SNV NF1 P1830T 0 4162 0 40 799 0.0501
tb187 chr17:7675167:A>-AATC BL, Tx1, 

Tx2, Tx3, 
Tx4, Tx5, 
Tx6, WBC

FALSE deletion TP53 D16fs 32 3823 0.0084 3 1480 0.002

tb187 chr2:212124847:G>A WBC FALSE stopgain ERBB4 R47X 0 3945 0 12 1062 0.0113
tb187 chr4:65490541:C>A WBC FALSE SNV EPHA5 R413M 0 3989 0 76 1303 0.0583
tb187 chr7:41700080:C>T WBC FALSE SNV INHBA G99R 0 2493 0 14 1140 0.0123
tb187 chr9:136496739:G>T WBC FALSE SNV NOTCH1 P2334T 0 4848 0 49 889 0.0551
tb188 chr17:7674872:T>C WBC TRUE SNV TP53 Y88C 11 7498 0.0015 1 897 0.0011
tb188 chr17:7675088:C>-C Tx1b TRUE deletion TP53 R43fs 13 4922 0.0026 0 8740 0
tb190 chr19:1220687:A>G BL FALSE SNV STK11 K235R 10 8352 0.0012 0 4984 0
tb190 chr2:211679135:C>G BL, WBC FALSE SNV ERBB4 W513C 20 2079 0.0096 25 3791 0.0066
tb190 chr3:89210218:T>G BL FALSE SNV EPHA3 V171G 12 1473 0.0081 0 5787 0
tb190 chr7:55181321:A>+C Tx2 FALSE insertion EGFR N504fs 14 5410 0.0026 0 6035 0
tb191 chr17:7674872:T>C BL TRUE SNV TP53 Y88C 12 4612 0.0026 0 4883 0
tb191 chr17:7675224:G>A BL FALSE SNV TP53 L91F 24 6132 0.0039 0 5504 0
tb194 chr15:87880401:G>A Tx1 FALSE SNV NTRK3 R713C 11 212 0.0519 0 9167 0
tb194 chr17:7675157:G>-G WBC TRUE deletion TP53 P20fs 0 999 0 13 10112 0.0013
tb194 chr17:7675189:G>C Tx2 FALSE SNV TP53 C9W 6 12201 0.0005 0 10675 0
tb194 chr19:10489800:C>A Tx1 FALSE SNV KEAP1 R460M 15 156 0.0962 0 8728 0
tb194 chr19:10499829:C>A Tx1 FALSE stopgain KEAP1 E69X 11 165 0.0667 0 8790 0
tb194 chr2:211387120:C>+A Tx1 FALSE insertion ERBB4 A1056fs 15 244 0.0615 0 9734 0
tb194 chr2:50236893:G>A Tx1 FALSE stopgain NRXN1 R113X 14 131 0.1069 0 11413 0
tb194 chr5:112840275:A>G Tx1 FALSE SNV APC K1543E 8 74 0.1081 0 11234 0
tb194 chr8:3307815:C>T Tx2, Tx3, 

WBC
FALSE SNV CSMD1 C1277Y 56 9414 0.0059 32 10480 0.0031

tb194 chr9:136496759:C>T WBC FALSE SNV NOTCH1 R2327Q 0 968 0 13 9681 0.0013
tb194 chrX:79363078:C>T WBC FALSE SNV ITM2A R58H 0 449 0 16 5208 0.0031
tb196 chr17:7675217:T>C Tx1, WBC TRUE SNV TP53 K93R 5 608 0.0082 9 2847 0.0032
tb196 chr5:112840518:T>G WBC FALSE SNV APC Y1624D 0 581 0 12 2182 0.0055
tb196 chr7:55181378:C>T Tx1 TRUE SNV EGFR T523M 32 835 0.0383 0 4481 0
tb196 chr9:136497164:T>C WBC FALSE SNV NOTCH1 D2192G 0 2295 0 10 2617 0.0038
tb196 chr9:136502441:C>A WBC FALSE SNV NOTCH1 V1739L 0 3247 0 25 4393 0.0057
tb199 chr15:87929380:C>A WBC FALSE SNV NTRK3 K550N 0 7258 0 252 5028 0.0501
tb199 chr15:88136563:C>A WBC FALSE SNV NTRK3 E223D 0 6299 0 325 6215 0.0523
tb199 chr17:31229154:C>A WBC FALSE SNV NF1 L847I 0 3687 0 139 2549 0.0545
tb199 chr4:55106747:C>A WBC FALSE SNV KDR Q492H 0 5385 0 265 5082 0.0521
tb199 chr5:177093285:C>A WBC FALSE SNV FGFR4 P402Q 0 2564 0 149 2062 0.0723
tb199 chr7:55191823:G>-G Tx1, Tx2, 

WBC
FALSE deletion EGFR L591fs 2 8578 0.0002 0 7408 0

tb199 chr9:136496137:C>A WBC FALSE SNV NOTCH1 E2534D 0 7119 0 510 6459 0.0790
tb199 chr9:136497526:C>A WBC FALSE SNV NOTCH1 E2071D 0 4368 0 196 3886 0.0504

(continued on next page)

cell-free DNA** WBC DNA***
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(continued from page 136) 

Appendix B Table 6.6: Chapter IV Mutation call passing filters from full-
sized cell-free DNA and WBC DNA libraries 
Note: cell-free DNA calls were note filtered for WBC presence (as done for detection 
and dynamics analysis) 

* Cell-free DNA library with maximum mutant allele frequency (MAF) is bolded               
** If mutation was called in multiple blood draws, read counts are shown for the cell-free 
DNA library with the maximum MAF                                                                                
*** WBC DNA from baseline (BL) blood draw was used to construct sequencing 
libraries 
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Appendix C: Computational workflow 
schematic for low-MAF mutation detection 

and characterization from Chapter IV 
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Appendix C Figure 7.1. Complete schematic of low-MAF de novo mutation calling 
computational workflow.  
The schematic shown is an expanded version of that shown in Fig. 4.2. Note that color 
coding is not applicable in alignment workflow on previous page.  
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