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ABSTRACT

Molecular dynamics (MD) simulations are a crucial tool for understanding biomolecular systems,

offering a unique dynamical picture of atomic motions. However, several key challenges limit their

practical applicability to understanding complex systems.

A persistent challenge in methods development is choosing a validation system which is complex

enough to stress-test an analysis method, but where exact reference values for measurable quantities

are known. We propose synthetic dynamics (SynD), a tool for efficiently generating approximate

simulation data with similar complexity to true MD. Using SynD, we produce meaningful trajectories

at substantially reduced computational cost, enabling rapid methods validation. We apply this to the

methods described in the other sections.

A main goal of MD simulations is accurate estimation of biophysical properties such as rate con-

stants. Although Markov state models (MSMs) are a widespread and useful tool for analyzing

MD simulation data, typical MSM analysis methodologies include biases which taint estimates of

physical observables. To address this, we present a set of novel estimators for equilibrium populations,

mean first-passage times, and committors. We also develop an iterative extension of a previously

proposed reweighting scheme, which reduces the amount of data necessary for unbiased estimates of

observables.

Many biologically relevant processes remain beyond the timescales accessible to conventional MD.

Enhanced sampling strategies such as weighted ensemble (WE) aim to bridge this gap by improving

the computational efficiency of MD. We present the 2.0 software release of Weighted Ensemble

Toolkit with Parallelization and Analysis (WESTPA), the leading WE software implementation,

including new features for improved software extensibility and flexibility, as well as new built-in

tools which take advantage of recent methodological advances to improve simulations.

Although the WE methodology is powerful for path sampling, the relaxation timescales of complex

systems means obtaining accurate rate constant estimates from WE simulations may still require im-

practical amounts of data. We present results of an iterative approach to accelerating WE convergence

using history-augmented Markov state models (haMSMs), which are able to make unbiased esti-

mates of steady-state from transient, unconverged WE data. This procedure periodically constructs

haMSMs from unconverged WE simulations and estimates steady-state using an haMSM. New

simulations are initiated from the steady-state estimate, which is closer to convergence. We show

success accelerating convergence in synthetic systems, and examine challenges in scaling to realistic

systems.
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Preface

Reweighting haMSMs, a task so grand,

To test their quality, a synthetic hand.

With synthetic dynamics, we can create,

A model that’s true, no need to debate.

With synthetic models, we can see,

How well the reweighting works, truly.

A tool that’s efficient, quick, and fair,

To test our haMSMs, with utmost care.

For restarting weighted ensemble,

A reliable haMSM, we must pre-hence,

Synthetic dynamics, a helping guide,

To ensure our haMSMs, are truly tried.

With synthetic models, we’ll pave the way,

For accurate haMSMs, come what may.

A tool that’s vital, for research so dear,

Synthetic dynamics, forever here.

So let us use synthetic dynamics,

To test the quality of haMSMs,

A step towards accurate predictions,

And progress in biomolecular simulations.

- ChatGPT
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1 Introduction

Chapter 2: Rapidly generating data with SynD Chapter 3: Correcting bias for a clearer picture

Chapter 4: Focusing on interesting scenes Chapter 5: Fast-forwarding to the action

MD

WE

MD

SynD

Figure 1: Graphical outline of thesis chapters.

When filming a movie, capturing the essence of a story goes beyond still shots of key scenes. Imagine trying to

understand the plot of a movie by only looking at a single frame of the opening scene and another of the closing scene.

To appreciate the story, you need the whole film reel, complete with scenes, dialogue, and the actions that bring the

story to life.

Molecular dynamics simulations are like "movies" of biomolecular systems, allowing scientists to watch complex

dynamics with atomic-level detail. In this work, we address the unique challenges that creating and analyzing these

movies presents.

Chapter 2 introduces synthetic dynamics, a method for running fast, approximate simulations — like practicing with

home videos before filming a cinematic masterpiece.

Practice helps refine technique, but imperfect equipment can still produce a movie with distorted colors. Chapter 3

explores reweighting strategies to correct flawed simulation data and enhance the quality of analyses.
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Starting with a better dataset will naturally improve the quality of downstream analysis. In Chapter 4 we discuss

weighted ensemble, a technique for capturing only the interesting scenes in a biological movie — like how a film crew

focuses on the actors’ performances, not the crew’s lunch breaks.

Yet, even a high definition movie with an exciting climax can have a slow beginning. Chapter 5 presents a restarting

methodology that lets us fast-forward to the action-packed parts of the simulation.

Together, these methodologies enable us to create and analyze high-quality "movies" of biomolecular systems,

revealing the intricate dynamics and mechanisms which drive biological processes.

1.1 Molecular dynamics

Like understanding a film, in structural biology, understanding a biomolecule goes beyond studying a static structure.

As Richard Feynman apocryphally said, "everything that living things do can be understood in terms of the jigglings

and wigglings of atoms." To accurately characterize the behavior of a biomolecule, we need the film reel of its

dynamical motion.

Modern structural biology has enabled capturing static structures of biologically important molecules at nanometer

resolution. X-ray crystallography can determine three-dimensional structures of biomolecules, by analyzing diffraction

patterns from X-rays passing through crystallized samples.1 The 2002 Nobel Prize in Chemistry was given for

contributions to the development of nuclear magnetic resonance (NMR) spectroscopy, a tool for measuring both

structure and dynamics of biomolecules, including rate constants.2 In 2017, the Nobel Prize in Chemistry was awarded

for development of cryo-electron (cryo-EM) microscopy, a recent method which can resolve biological structures at a

nearly atomic level of detail.3,4 Another popular imaging method, fluorescence resonance energy transfer (FRET),

provides information about dynamics by measuring energy transfer between fluorophores, which depends on their

distance and orientation.5–7

Experimental methods that attempt to characterize biomolecular motion, however, are limited by physical constraints

and generally must choose between high spatial or high temporal resolution – they can capture either still portraits of

the actors, or the story of their interactions, but not both. X-ray crystallography requires forming crystals, which can be

practically challenging and yields static structures without dynamics. NMR spectroscopy can reveal both structure and

function, but is limited to studying smaller proteins and is relatively insensitive.2 Cryo-EM primarily provides static

structural information, and does not capture the dynamical nature of biomolecules.3 Cryo-EM also requires preparation

of samples under cryogenic conditions, which can perturb the biomolecules being studied. FRET provides dynamical

information, but at the cost of detailed structural information and high spatial resolution.5–7 Additionally, depending on

experimental setup, the time resolution of FRET may preclude measurements of fast dynamical processes.

In contrast, molecular dynamics (MD) simulations provide an avenue for observing the dynamics of structures

resolved at angstrom scales, with picosecond time resolution. (Note: throughout this document, key terms will be

bolded when defined in each section.) MD simulations track every atom in the system, producing detailed spatial
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information about each atom’s position in time. MD simulations have sufficient temporal resolution to measure fast

conformational changes and binding processes that cannot be directly observed experimentally. Furthermore, MD

simulations can provide both of these without biasing or perturbing the system. This makes simulation a critical tool for

expanding understanding the behavior of biomolecules beyond what is possible in experiment.

For example, consider the SARS-CoV-2 virus. A prominent feature of SARS-CoV-2 is the "spike protein", a large

transmembrane protein on the surface of the virus that plays a critical role in infecting cells.8 To bind to a cell, the spike

protein undergoes a conformational transition, exposing the receptor-binding domain. Experimental methods such as

Cryo-EM elucidated structures of the open and closed conformation states.8,9 However, simulations using our

Weighted Ensemble Toolkit with Parallelization and Analysis (WESTPA) software revealed the full pathway of

the conformational change from the closed to open states, capturing the protein’s motion at an atomic level.10,11

Analysis of these simulations elucidated the critical roles of specific residues in facilitating the opening process.11

1.1.1 Background

An MD simulation consists of two main components:12–14 a structural model, defining the initial positions of every

atom in a biomolecule; and a force-field, which models and scales the strength of interactions between different pairs of

atom types.15–19 Motion of each atom is computed over a fixed interval of simulated time by integrating the forces

acting on it, and updating its position and velocity. Through this, at each timestep an MD simulation produces a set of

coordinates storing the position of each atom. In this way, MD simulations are able to combine high-resolution

structural information from experiments, used as initial molecular structures, and experimental measurements of

dynamics, used to validate the simulation.

The process of obtaining structural models and accurate force fields highlights the close connection between

computation and experiment. Structural models are often derived directly from experimental measurements of the

target system. Computing accurate force fields is a much more difficult, less precise task, however.

Because the force field determines the strengths of atomic interactions, measuring correct physical dynamics depends

critically on an accurate force field. Therefore, validation of the force field used is extremely important. Different force

fields have been optimized for different types of systems.16,19–23 For example, the OpenFF force field has been

optimized for drug-like molecules.20 OpenFF 2.0.0 force field improved on earlier releases by tuning parameters such

as improving the quality of the model for atomic charges, in order to more closely reproduce experimental

measurements of small molecule properties like solvation free energies.

Once a force field has undergone rigorous validation, it can be used to simulate new systems as long as they remain in

the scope of the original force field. Fundamentally, the laws governing interactions between atoms and molecules are

universal, so a well-validated force-field should reliably predict correct behavior in systems with similar chemistries. In

other words, OpenFF may be validated using a particular set of small molecules, but could then be used for new small

molecules. However, because it is known that it provides poor results for niche chemistries (such as bonds between
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sulfur and amide in OpenFF), it would not be appropriate for systems where those are important, and a new force field

should be chosen.20

MD was first developed as a computational methodology in the 1950s, but the first MD simulation of a protein was not

until 1976.13,24 Limitations of computational resources at the time restricted MD to picosecond-scale studies of very

small proteins, without explicit representation of solvent atoms.

As the power and availability of computational resources has increased, so has the reach of modern MD. Compared to

early picosecond-scale studies, more recent MD studies have progressed to the microsecond timescale, producing

trajectories demonstrating multiple folding and unfolding events in small protein systems.25

MD can be used in even larger systems to reveal specific important interactions between residues.26,27 For example,

ATP-activated potassium (KATP) channels are important for regulating many physiological processes.28 Cryo-EM

studies characterized structures of these KATP channel, in the presence and absence of two important inhibitory

molecules.29 Our MD simulations complemented this analysis by resolving specific interactions between these

inhibitory molecules and residues in the KATP channel.26,27 This revealed specific atomic interactions that were not

experimentally accessible.

1.1.2 Timescales limit MD

Despite the successes of MD, its combined high spatial and temporal resolution means it often requires extraordinary

computational resources. The limiting factor of an MD simulation is typically the amount of wall-clock time needed to

run the simulation.

Many protein motions of interest happen on relatively long timescales, ranging from microseconds to seconds and

above, as shown in Fig. 2. For example, in order to become infectious, the spike protein of SARS-CoV-2 undergoes a

seconds-scale conformational transition to expose a receptor binding domain. Separately, activation of G-protein

coupled receptors (GPCRs) is an important part of cell signal transduction. Activation of the GPCR rhodopsin occurs

on a timescale of microseconds to milliseconds.30,31

Even for small proteins like NTL9 (39 amino acids) or Protein G (56 amino acids), simulations that can access the

millisecond timescale like those done by the Shaw group25 are record-setting, and generally out of reach for groups

without expansive computing resources. Larger simulations like atomistic simulation of the SARS-CoV-2 virus’s spike

protein (1273 amino acids), even reaching the microsecond timescale with atomistic simulations required full use of

256 supercomputer nodes for almost a full month.33

Because of this limitation, many biological processes of interest happen on timescales that are well out of the reach of

conventional MD,32 even on advanced, special-purpose MD supercomputing hardware like Anton.34
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Figure 2: An overview of some biological processes and their associated ranges of timescales. Times shown are
for a typical desktop, though simulations are typically run on supercomputing clusters. Even on supercomputing
resources, however, conventional molecular dynamics simulations are typically restricted to the microsecond timescale
and below. Many biologically relevant processes happen on timescales of milliseconds and beyond, and are therefore
out of reach of conventional MD. Reprinted with permission from [32].

1.1.3 Accelerating MD

A number of methods exist for improving the performance of MD simulations to address the limitation of timescales. A

common approach to improving simulation performance is by reducing the number of simulated atoms. These

approaches often focus on avoiding explicit representation of all solvent atoms, or on representing biomolecules with

fewer "coarse-grained" atoms.

In an MD simulation, it is common for solvent atoms to be a large fraction of the total number of simulated atoms. For

example, the simulations of NTL9 mentioned before used 3800 solvent atoms compared to ≈ 600 protein atoms;

similarly, the Protein G simulations required 5100 solvent atoms compared to ≈ 900 protein atoms.25 As system size

increases, the ratio of water to protein atoms further increases. Therefore, one strategy for improving speed of an MD

simulation is reducing the number of degrees of freedom by replacing explicitly simulated solvent atoms with an

"implicit" solvent model. Implicit solvent models approximate the effect of a bulk solvent, without explicitly simulating

each atom.35 However, solvent interactions may be important to the behavior of the simulated system, and the implicit

solvent approximation of these effects may yield inaccurate simulation results.

In coarse-graining, similar atoms are grouped into coarse-grained "beads".36 As with implicit solvent models, reducing

the number of atoms being simulated reduces the computational complexity of the simulation. Coarse-graining is an

active field of research, though, without consensus on the optimal methodology.36 The popular MARTINI

coarse-graining model21,37–39 uses a mapping of 4 heavy atoms and their associated hydrogens to a single bead. The

UNRES coarse-grained model40 instead represents each amino acid by two beads: one representing the side chain, and

one representing the peptide group. SIRAH23 uses a complex mapping where the number of beads depends on the type

of molecule. Another strategy simply uses a single coarse-grained bead per amino acid.41 Each of these reproduce some
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aspects of atomistic simulations well, with shortcomings in others; for example, MARTINI accurately reproduces

experimental area per lipid measurements in membranes, lipid phase behavior, and dimerization free energies of

transmembrane proteins, but can produce rate constants that are too fast, and is limited in applicability for measuring

conformational transitions because it does not capture secondary structure.42

These two approaches can also be combined, as in the Dry Martini coarse-grained implicit solvent force-field.22 This

compounds the speedups, but also the limitations, of both methods.

1.1.4 Enhanced Sampling

The critical limitation of timescales in MD simulations motivates a broad class of enhanced sampling strategies which

aim to reduce the computational effort needed to observe slow or infrequent processes.43–51

Broadly speaking, enhanced sampling strategies can be classed into exploratory and free-energy estimation methods for

estimating equilibrium, and path-sampling and interface-based methods for characterizing kinetics.52

Many enhanced sampling strategies for equilibrium accelerate relaxation timescales of simulated processes by

artificially biasing the system’s energy landscape, in order to lower energetic barriers. These methods include

metadynamics,47,51 Gaussian-accelerated MD,53 and replica exchange.46,51

While these may substantially reduce the amount of simulation needed to sample the system, they also directly modify

the system’s energy landscape, potentially making the observed behavior unphysical. These methods rely on being able

to correct for the introduced bias in postanalysis to obtain accurate estimates of statistical ensembles. Therefore,

although useful for obtaining statistical information about equilibrium, these methods are typically not suitable for

kinetic estimates.

Other strategies instead indirectly connect states by sampling between defined interfaces and monitoring transitions

between interfaces. Milestoning48,54–58 and transition interface sampling59–61 are similar methods which divide a

reaction coordinate into a series of interfaces, and calculate transition probabilities and mean first-passage times

(MFPTs) across interfaces using sets of short trajectories. Transitions from the initial state to the target state and

constructed by chaining together multiple interfaces between them. Nonequilibrium umbrella sampling62–64 drives

trajectories between different regions of the reaction coordinate using a biasing potential.

Another class of enhanced sampling strategies focus on sampling continuous paths along the reaction coordinate. These

include transition path sampling,65–68 flux forward sampling,69,70 or weighted ensemble (WE),43–45 which obtain

estimates of kinetics by simulating particular reaction pathways.71,72 These produce continuous molecular trajectories

along the reaction pathway which directly connect the initial state to the target state.
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1.2 Weighted ensemble (WE)

The WE enhanced sampling strategy is a method to address the timescale limitations mentioned in the previous section.

Shown in Fig. 3, the WE algorithm improves simulation efficiency in a statistically exact way without biasing the

dynamics.43–45 Many simulations, or "walkers", are run simultaneously, with a statistical weight assigned to each.

These are periodically paused and assigned to bins based on progress coordinate, a user-selected collective variable

which can be computed for each walker. A target number of walkers is set for each bin. If the number of walkers

assigned to a bin exceeds the target, some walkers are "merged", meaning they are no longer simulated and their

statistical weight is added to another walker. Conversely, if there are too few walkers in a bin, then a walker is chosen to

be "split", where a copy of it is produced and the original walker’s statistical weight is split between it and its copy. By

rigorously tracking the statistical weights associated with each walker, the WE algorithm produces probability flux

estimates in and out of each state. Sec. 1.3.4 describes how rates are estimated from these probability fluxes.

Although WE is unbiased and statistically exact for any choice of bin boundaries and target walkers per bin, in practice

its efficiency is highly sensitive to these. Currently, these hyperparameters are generally determined through physical

intuition, though ongoing work by the Zuckerman Lab and collaborators aims to provide a streamlined hyperparameter

selection procedure.73

Figure 3: An overview of the weighted ensemble algorithm. The system’s phase space is binned along a chosen
progress coordinate, with bins shown here as vertical dashed lines. This example uses 3 WE bins, with a target of
2 walkers per bin. The WE is initialized with a single walker in Bin 1. To meet the target, a copy of this walker is
made, and the original weight is split between the original and copy. Dynamics are run independently for each walker,
after which one has reached Bin 2. Both walkers are again split to maintain the target. After the next dynamics step, a
walker has returned from Bin 2 to Bin 1. To maintain the target, a walker in Bin 1 is pruned, and its weight merged
into another walker in Bin 1. These repeated alternating steps of selection and dynamics are the WE algorithm. By
rigorously tracking weights, the ensemble of trajectories and their associated weights is statistically exact at all times.
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Figure 4: Comparison of protein folding simulation progress with standard molecular dynamics and with
weighted ensemble. A 7 µs "brute-force" MD simulation of the fast-folding protein NTL9 only observes the initial
unfolded state and does not capture the infrequent transition to the folded structure. In contrast, a WE simulation
using a similar amount of data is able to quickly fold the protein. Adapted with permission from [74]. Copyright 2023
American Chemical Society.

1.2.1 Applications

An example of the efficiency of WE compared to MD is shown in Fig. 4 in the context of folding simulations for the

NTL9 protein. Using 7 µs of standard MD simulation, the folding transition is not captured. However, using the WE

methodology, the protein is folded using a similar amount of aggregate computational time. The power of the WE

algorithm for sampling reaction paths has also been demonstrated in a number of other biologically relevant systems.

Studying small molecule binding to proteins is important for many tasks including drug design. A popular model

system is the T4 lysozyme.75 Although a relatively small and fast system, binding to the T4 lysozyme remains difficult

to sample with conventional MD. Using WE, however, Nunes-Alves and coworkers directly observed all four

unbinding pathways, which had not all been previously resolved by a single study.75,76

Before binding to a protein, however, small molecules must first pass the cell membrane. Therefore, membrane

permeability is a critical characteristic of drug-like compounds. Due to the complexity and scale of membrane systems,

obtaining good sampling of permeation pathways is challenging. However, using weighted ensemble, Zhang and

coworkers were able to obtain permeation rate estimates in good agreement with experimental values.76 These

estimates, which would have required years to hundreds of years with conventional MD, were obtained in under 11 days.

Finally, WE has also been successfully used to study conformational transitions in slow protein systems. The receptor

binding domain of the SARS-CoV-2 virus spike protein must undergo a conformational transition before it is able to

bind to and infect human cells. Although conventional MD would require over 1000 years on average to produce a

single observation of this conformational transition, WE produced 310 pathways in under two months.11 Later

simulation of the delta variant using similar methodology revealed a much wider open conformation in comparison to

the original wild-type variant, which is a possible explanation for the delta variant’s increased infectiousness.10
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1.2.2 Relaxation timescales limit WE convergence

WE has been remarkably successful for path sampling where the splitting and merging procedure allows computational

resources to be focused on walkers moving along the reaction coordinate. However, measuring rate constants using WE

proves to be a more challenging task. As an analogy, consider pouring water down an incline, and measuring the rate at

which it flows, as shown in Fig. 5. When pouring starts, there’s an initial surge of water down the incline. But if the

pouring continues at a constant rate and water is able to drain at the bottom, there will eventually be a constant flow of

water down the incline.

If the incline is smooth, as on the left of Fig. 5, the flowing water will quickly reach a constant, steady state flow. But,

if barriers are added along the way the water must first pool up behind each barrier before it is able to flow over it. Thus,

adding barriers extends the relaxation time to steady-state.

The behavior of probability flowing across a WE system is very similar, where the statistical weights associated to each

walker are like the water, and the system’s energy landscape is like the incline. A typical WE setup for rate-constant

estimation involves constructing a steady-state simulation with source-sink boundary conditions, where there is a

constant flow of probability from the source to the target. Measuring the rate constant by tracking probability flux into

the WE target is like measuring the rate at which water flows down the incline, by measuring the flow of water off the

bottom edge. If the flow has not yet reached steady-state, the rate constant measurement will produce an estimate that is

too slow.

A simulation usually cannot be initialized directly in steady-state, because if steady-state were known, the rates would

already be known. A WE simulation is therefore generally initialized in a out-of-steady-state initial configuration.

When the WE simulation begins, there is an initial transient relaxation period where weight begins to redistribute and

approach the true steady-state, just as the flow of water in the prior example must relax to the steady, constant flow.

The energy landscapes of complex biological systems are often extremely rugged, with many barriers in the

intermediate between the source and target states. Just as described in the water analogy, these barriers results in long

relaxation timescales to steady-state. Although these relaxation timescales are shorter than the first-passage time, they

are not known a priori, and can be very long. Therefore, running simulations longer than these relaxation timescales is

often not computationally tractable.

This presents a critical limitation of the WE methodology. Although standard WE can be used to obtain reaction

pathways, it may not provide unbiased low-variance estimates of rate-constants without extensive sampling to relax the

simulation to steady-state. The work in Chapter 5 addresses this limitation.

1.2.3 Weighted Ensemble Toolkit with Parallel Analysis (WESTPA)

WESTPA45 is the leading implementation of the WE path sampling algorithm. It has been in production use for over 6

years, and is currently used by over 70 groups worldwide. WESTPA has been used to estimate binding rates accurately
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Figure 5: Cartoon illustrating relaxation to steady state of water flowing down an incline. Panel A shows water
flowing down an incline in the absence and presence of barriers. Panel B shows the measured flow of water at the
bottom of the incline, which relaxes to the long-time steady state behavior (dashed line) after an initial transient period.
When no barriers are present, the moving water can quickly relax to a steady, constant flow after pouring begins. When
barriers are present, relaxation to the constant flow takes longer, because water must pool up behind barriers before
crossing them. In the same way, probability flux across a WE system must relax to steady-state before the rate constant
can be accurately measured, and the rugged energy landscapes of complex biological systems often introduce many
large intermediate barriers. In the context of simulation, these longer relaxation times necessitate longer simulations.

and efficiently for protein-peptide binding,77 to inexpensively estimate ms-scale folding times,74 and to sample

conformational transition pathways for very large systems such as the SARS-CoV-2 virus.10,11

Fundamentally, it is designed to interface with any MD engine, such as GROMACS, Amber, or OpenMM, making it

interoperable with a wide range of existing simulated systems without requiring re-engineering of the MD.45 Because at

its core the WE algorithm relies on running many independent MD simulations, it is inherently inclined to scale well to

large computational resources. WESTPA has been heavily optimized to take advantage of this and has scaled to

thousands of CPUs and GPUs. It has also been commercially deployed using Amazon Web Services, which enables

dynamic computational resource scaling as resource utilization increases.78 For example, recent SARS-CoV-2

simulations using WESTPA have scaled to ≈ 200 GPUs on Texas Advanced Computing Center’s Longhorn

supercomputer, and demonstrated near-linear scaling.10

The development of WESTPA has taken several cues from software engineering best practices in order to ensure

consistent, robust, and modular functionality. Towards this goal, a large focus of the WESTPA 2.0 release was refining

the current software architecture, both to make WESTPA itself more reliable, and to enhance its extensibility by other

developers.

As of the 2.0 release, all core functionality of WESTPA is exposed through a Python API. Using this, developers can

easily extend behavior of WESTPA with targeted changes for tasks like programmatically managing launching and
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running simulations, customizing the built-in analysis routines, or most importantly, modifying or extending core

functionality like bin mapping and splitting/merging. Prior to this, programmatically interacting with WESTPA (for

example, to script launching a simulation using Python code) required direct modification of the WESTPA source code.

This Python API facilitated development of a large set of robust unit and integration tests, along with a continuous

integration pipeline, to ensure that any modifications to the WESTPA code are automatically validated for correct

functionality. This modern software development practice helps avoid introducing new bugs in development.

Additionally, WESTPA 2.0 includes a suite of plugins which can be used to introduce complex new functionality into

WESTPA simulations. For example, a recent plugin included in the Markov State Models from Weighted Ensemble

(msm_we) software package79 enables dynamic optimization of WESTPA bins as a simulation runs by first using

WESTPA simulation data to build a model, estimating new bins from the model, and updating the WESTPA simulation

manager with the new bins. These are described more in Chapter 4, along with a more thorough treatment of new

WESTPA 2.0 functionality.

To facilitate accessibility and to guide users in using the complex functionality of WESTPA, the WESTPA developers

publish and maintain a comprehensive set of tutorials.80,81 These cover topics from basic usage with examples of

running WESTPA with different popular MD engines, to advanced topics such as the restarting pipeline discussed in

Sec. 4.4.2 and Chapter 5.

Many developers have contributed to WESTPA, but as of May 2023 the codebase is managed by a team of three core

maintainers comprised of myself; L.T. Chong, a PI of the WESTPA collaboration PI; and M. Zwier, the original

developer of WESTPA.
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1.3 Markov state models (MSMs)

Consider the task of estimating a rate constant for the transition between two conformational states of a protein with

simulation, such as in folding. This system may have an energy landscape such as shown in Fig. 6, with the two

conformational separated by a high energetic barrier.

Figure 6: A sample energy landscape showing a large energetic barrier between two conformational states of a
protein. The unfolded state is on the left, and the folded state is on the right. A tall barrier means transitions between
the conformations will be slow.

A seemingly simple approach to this could be initiating an MD simulation from the folded state, and running it until it

is in the unfolded state. A rate constant for folding could be measured by tracking the time between entering the

unfolded state and entering the folded state. In practice, though, this is often too slow to directly observe.

To understand why, consider that the transition time between states is typically much shorter than the dwell time in

either state. A simulation like this will therefore produce trajectories which spend long amounts of time in the folded or

unfolded state and very little time transitioning between them, if a transition is observed at all. To characterize the rate

constant with good statistics however, it is critical to thoroughly sample the folding transition.

Given the large computational expense of running MD simulations, it’s rare for MD trajectories to include many direct

transitions between conformational states, and it is rarely feasible to generate trajectories which do. Therefore, the

"look-and-see" approach of direct observation and measurement of slow processes is typically not possible.82

An alternative to running a long trajectory which may only infrequently transition between states is running a number

of simulations which, together, overlap the full state space, but which do not individually sample both basins. This is

illustrated in Fig. 7. These trajectories can be analyzed together using a Markov state model (MSM), which models

the behavior of the system as stochastic transitions between discrete states.
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Figure 7: Comparison of two possible sets of trajectories. The black line labeled V(x) shows a simple energy
landscape. On the left is a single long trajectory which visits both energetic basins, which is rarely possible in practice.
On the right is a set of six shorter trajectories, which overlap to cover the same space.

1.3.1 Theory background

An MSM coarse-grains the configurational space of a system into discrete states and constructs a transition matrix T,

where each element Ti→j is the conditional probability of starting in a state i and, after a lag time τ , being in state j.

Physical quantities like relative equilibrium populations of states or MFPTs can then be estimated from T.83–87

By assuming the transition probability is completely determined by just the current state i, Markov state models assume

"memoryless", or Markovian, dynamics. This is a key assumption, with major potential pitfalls — consider the 2D

energy landscape shown in Fig. 8, and the discretization given on the right panel by the the 25 red boxes. Under the

Markov assumption, the energy landscape within each bin is uniform, but this is clearly untrue in the case of, for

example, bins 9 or 17. Addressing bias from the implicit coarse-graining in discretization is one goal of the work in

Chapter 3.

Because Markov models are built solely from independent transitions between points, they can be built from many

non-continuous but overlapping trajectories, as shown in the right panel of Fig. 7.88–91

1.3.2 Model-building

A typical pipeline for constructing an MSM from MD data consists of discretizing the trajectories and computing

transition probabilities between discrete states, shown in Fig. 9 and described in more detail below.

Featurization is the process of reducing the complexity of a dataset using physical intuition about the system. For

example, this could be a transformation from atomic coordinates to pairwise heavy atom distances, which significantly

reduces the dimensionality of the data while preserving information about relative positions.

Dimensionality reduction strategies further reduce the data, though often at the cost of physical interpretability of the

coordinates. This includes methods like PCA,92 TICA,93–96 or VAMP.97
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Figure 8: Discretization of a trajectory. The left panel shows 10 discrete time points sampled from a trajectory in a
continuous space. The axes, IC 0 and IC 1, are the two first components of a VAMP dimensionality reduction applied
to the data. On the right, the continuous space has been discretized into 25 discrete states, on a 5x5 grid. Under this
representation is the discrete representation of the trajectory as a sequence of 10 integer state indices. This energy
landscape is computed from the synthetic Trp-cage model discussed more in Chapter 3 and shown over the first two
VAMP dimensions.

Figure 9: Typical steps for constructing a Markov state model. Construction of a Markov state model from
molecular dynamics (MD) data involves featurizing the MD trajectory data, dimensionality reduction of featurized data,
and clustering to discretize it. The transition matrix is constructed by counting transitions between discrete states.

Because an MSM describes relationships between discrete states, this reduced data must be discretized. A number of

different algorithms exist for partitioning state spaces, such as k-means , which is commonly used in MSM building.

A transition matrix is a matrix where the elements Ti→j give the conditional probability of starting in a state i, and

then being found in a state j after lag time τ has elapsed.

A simple approach to computing a transition matrix with no a priori knowledge is by counting the number of observed

transitions. First, a count matrix C is computed with elements given by

Ci→j = # of transitions from i→ j. (1)
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Transitions are obtained by moving over the trajectory with a sliding window of width lag time, shown in Fig. 10. The

first and last points in the sliding window are i and j.

The transition matrix is then computed by row-normalizing the count matrix

Ti→j =
Ci→j∑
kCi→k

(2)

such that the normalization condition
∑

k

Ti→k = 1 (3)

holds.

Other approaches include methods such as Bayesian estimation of the transition matrix,98 which can incorporate prior

knowledge of the stationary distribution.

The lag time is a critically important parameter which determines the spacing used when selecting initial and final

transition points from the trajectory, illustrated in Fig. 10. Proper choice of lag time is essential to accurately capturing

dynamics. A lag time that is too short may capture correlated transitions that do not satisfy the Markov assumption, and

produce an inaccurate model. A lag time that is too long may obscure important dynamics, and produce a poor-quality,

low-resolution model. The importance of this is shown in Fig. 11.

Lag: 1

Lag: 2

Figure 10: Comparison of counting transitions in a 5-step trajectory at a lagtime of 1 and a lagtime of 2.
Transitions are counted by moving a sliding window over the trajectory frames, where the width of the sliding window
is set by the lag time. As the lag time increases, the validity of the Markov assumption may improve as a result of
reducing correlations; however, a longer lag time also sacrifices some resolution of the dynamical processes being
observed and may negatively impact statistics of transitions by reducing the total number of transitions.

1.3.3 Building MSMs from WE data

Weighted ensemble does not produce sets of independent trajectories; rather, it results in highly correlated, tree-like

trajectories, each of which has an associated statistical weight. This requires a modification to the standard

MSM-building techniques described above, which has been implemented as part of our msm_we software package.

As mentioned before, the statistical exactness of the weighted ensemble of trajectories depends critically on accurately

tracking the statistical weights associated with the WE walkers. For this reason, instead of simply counting transitions

between states as previously described, we must measure fluxes between states.
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Figure 11: Mean first-passage time (MFPT) of folding and unfolding for the Trp-cage miniprotein, calculated
at a range of lag times. The green shaded region shows a reference from long MD. The black and blue lines show
MSM and history-augmented Markov state model (haMSM) estimates, respectively. At short lag times, the MFPT
estimate is too fast for the MSM, but at long lag times, the estimate becomes too slow. Optimal lag times produce the
regime in between, where the MFPT estimate is flat and not sensitive to lag time. Adapted with permission from [99].
Copyright 2023 American Chemical Society.

When moving the sliding window over trajectories, instead of building a count matrix from the transitions, we build a

flux matrix F using the WE weights. Instead of each element Fi→j being the total number of times that a transition

i→ j was observed, the elements are the total observed WE flux from i→ j. The transition matrix is computed by

row-normalizing the flux matrix, as described in Eq. 2.

Best methods for avoiding correlations when computing transition matrices from WE data at lags longer than one WE

iteration are still under development.

1.3.4 Mean first-passage time estimation

Calculating a first-passage time (or equivalently, a rate constant) can in theory be done from the regular MD simulation

data, by counting the number of simulation steps elapsed; directly from a WE run, by measuring the probability flux as

illustrated in Fig. 5; or computed using the an haMSM transition matrix. Here, we discuss the differences between these

approaches.

As previously mentioned, although the MFPT can be measured directly from a long MD trajectory by simply tracking

the time from entering one state to entering another, the difficulty of sampling transitions well means this is often not

possible.

Rates can be directly measured from WE simulations by measuring the probability flux into the WE bin containing the

target state and using the Hill relation100,101

MFPT(A→ B) = 1/Flux(A→ B|SS) (4)
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which states that the MFPT for a process going from A to B is the inverse of the flux into B, in the A→ B steady-state.

This follows from the prior discussion of Fig. 5 in Sec, 1.2.2. To measure the flow of water down the incline, the Hill

relation states that it is sufficient to measure the amount of water pouring off the edge of the incline in steady state.

It is important to note that steady-state only exists when source-sink boundary conditions are applied. In other words, if

water isn’t put back in the bucket when it pours off the incline, then the bucket eventually empties, and there is no flow.

Similarly, source-sink boundary conditions in WE recycle probability when it reaches the target state by reassigning it

to new walkers in the source state, enabling flow of probability across the system to reach a steady state. Proper

treatment of boundary conditions is crucial throughout this work, and is discussed in more detail in Chapter 3.

Finally, rates may be computed from the transition matrix using multiple different methods. The Hill relation can be

used by solving for a nonequilibrium steady-state of the transition matrix, which requires incorporating recycling

boundary conditions. Incorporating these boundary conditions into the trajectories before building the transition matrix,

rather than modifying the transition matrix to include these boundary conditions, can produce unbiased rate estimates.

A transition matrix constructed from trajectories which have recycling boundary conditions is an haMSM.99,102

In fact, different boundary conditions are associated with estimation of different measurable physical quantities,

generically referred to as observables. This, and other transition matrix based methods and their limitations, are

discussed in more detail in the following section and in Chapter 3.

WE simulations of recycling processes produce trajectories with recycling boundary conditions, meaning they are

naturally suited for haMSM construction and, therefore, unbiased MFPT calculation.102,103

1.3.5 Reweighting

A key challenge in estimating observables using MSMs arises from analyzing MD trajectories that do not belong to the

correct ensemble. For example, estimation of equilibrium populations requires trajectories which are distributed

according to the equilibrium ensemble.

In practice, however, MD simulations with finite and limited amounts of data will generally not yield

equilibrium-distributed trajectories. For instance, simulations initiated from specific conformations may produce

trajectories that are biased towards certain regions of conformational space. This is illustrated in Fig. 13, which shows a

set of simulated trajectories which cover the protein’s conformational space. Analyzing the trajectories as described in

previous sections by counting transitions to compute a transition matrix implicitly assumes the trajectories are equally

weighted.

To understand this further, consider running a very large number of simulated trajectories. Many more trajectories

would sample the basins than the less energetically favorable barrier peak, and so, the number of transitions observed

near the barrier peak would be lower than the number of transitions in the basins. In other words, this very large set of

trajectories would be close to the correct equilibrium ensemble.
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Figure 12: Schematic of different measurable physical quantities and possible trajectory ensembles to calculate
them. The black curve V(x) represents the system’s energy landscape. Panel A illustrates calculation of the equilibrium
distribution (pink bars), which could be calculated through brute-force with a histogram of a trajectory (blue). Panel B
shows the MFPT, which could be calculated by launching a set of trajectories (red, green, and blue) in the leftmost
basin and timing their arrivals to the rightmost basin. Panel C demonstrates one possible calculation for the committor
or "splitting probability", which describes the probability of next reaching one basin before the other. In this, many
trajectories are launched from a single point, and the committor is computed as the fraction of trajectories that next visit
the leftmost basin before the rightmost basin. In practice, meaningful brute-force calculation is often not possible due
to limited sampling.
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Figure 13: Schematic illustration of reweighting trajectories to equilibrium. Line widths denote relative trajectory
weights. The initial trajectories cover the space, but because they are uniformly weighted, a histogram produces an
incorrect estimate of equilibrium populations (gray bars). Assigning trajectories weights based on their initial points
produces a correct equilibrium distribution.

Conversely, a small number of trajectories like those in Fig. 13 has a relatively similar number of transitions in every

part of the conformational space — these are not in the correct equilibrium ensemble. By assigning relative weights to

the trajectories, they can be reweighted into the correct equilibrium ensemble. Trajectories with higher weights

contribute proportionally more to the transition matrix. In this way, trajectories distributed according to the wrong

ensemble can be reweighting to produce a transition matrix consistent with trajectories in the correct ensemble.

As described above, other ensembles besides equilibrium are also relevant, such as nonequilibrium steady-state for

MFPT estimation. Similarly, reweighting can be applied to other ensembles of interest. This is examined in more depth

in the work presented in Chapter 3.

However, the process of reweighting introduces a new challenge. Accurate reweighting requires knowledge of the

correct weights to assign to each trajectory. Yet, how can these be known if the very goal of the trajectory analysis is

estimating relative populations? In Chapter 3, we address this through an iterative approach.

1.3.6 Software tools for MSM building and analysis

A number of popular software tools have been developed by the MSM community to facilitate construction and

analysis of MSMs. These tools cover various parts of the MSM construction pipeline including featurization,

dimensionality reduction, clustering, and transition matrix estimation. While not intended to be a comprehensive

survey, this section covers some of the popular tools used throughout this work.

MDAnalysis and mdtraj are two popular tools for analysis of MD simulation data. Both provide functionality for

computing quantities such as root-mean-squared distances or solvent-accessible surface area from MD simulation data.

Although still widely in use, mdtraj has been officially deprecated. Additionally, mdtraj requires software

dependencies which can be challenging to compile on some supercomputing architectures where prebuilt binaries are

not available. For these reasons, our analyses primarily use MDAnalysis except where legacy applications of mdtraj
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exist. In addition to providing a convenient programming interface for analysis, MDAnalysis also implements many

analyses using streaming data-processing, which makes it efficient and scalable to large datasets.

A widely used general tool for MSM construction is PyEmma.104 PyEmma provides tools for performing dimensionality

reduction on the featurized data (in our case, produced from MDAnalysis as described above). Supported

dimensionality reduction algorithms include standard principal component analysis (PCA), as well as variational

approach for Markov processes (VAMP) and time-structure independent component analysis (TICA). PyEmma

additionally provides a clustering module which implements standard k-means as well as mini-batch k-means105

clustering. Finally, PyEmma also includes modules for estimating standard MSMs, along with a hidden Markov model

estimator and a Bayesian MSM estimator.

deeptime is a more recent tool, released in 2021, which significantly extends the functionality provided by PyEmma.

Although deeptime also includes a wide array of other tools, we focus on its utility for MSM construction. deeptime

includes all the estimators for dimensionality reduction, clustering, and MSM construction which are available in

PyEmma, although many have been restructured to follow the (informally) standardized interfaces in widely used

packages like SciPy106 and scikit-learn107 packages. Our work primarily utilizes deeptime for dimensionality

reduction and MSM transition matrix estimation, to take advantage of the broad and more standardized toolset.

When standardized or "off-the-shelf" tools have not met the needs of our work, we have put substantial effort into

producing new tools which are similarly well-documented and easy-to-use. The reweighting work described in

Chapter 3 required significant extension to the MSM construction pipeline, which has been built into the Markov

Reweighting Toolkit (mr_toolkit)108 Python package. For example, mr_toolkit implements both the reweighting

and splicing logic described in Sec. 3.4.2. Additionally, stratified clustering (described in more detail in Sec. 2.2.2) is a

hierarchical extension of standard k-means clustering, developed for this work. We implement this using the

mr_toolkit.clustering.StratifiedClusters class, which follows the previously mentioned standards set by

SciPy and scikit-learn. Using standard interfaces means our tool is recognizable and easy to use for developers

with experience in the others. Like our other tools, mr_toolkit has robust documentation and interactive Jupyter

tutorials.

MSM construction from WE data also requires a specialized toolchain. Typical approaches to MSM construction count

transitions between states from discrete trajectories, as described above, possibly with additional layers of Bayesian or

maximum-likelihood estimation. However, this approach is not well-suited to WE data, which produces many

branching weighted segments rather than a set of independent continouous trajectories. For this reason, we developed

the msm_we tool,79 which streamlines haMSM construction from WE data, analysis of quantities like the MFPT and

committor from the haMSM, and also includes some automated checks on the quality of the estimated haMSM.

Analysis of the hundreds-of-terabytes-scale data produced by very large SARS-CoV-2 WE simulations10,11 provided a

strong stress test of the msm_we framework. Motivated by the need to scale haMSM analysis to large datasets, the

msm_we codebase was optimized to include streaming, parallel implementations of the dimensionality reduction and
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clustering calculations. msm_we haMSM calculations have also been implemented as an automated plugin for the

WESTPA software, which is included in the msm_we software package. Thorough documentation and tutorials are

available for msm_we to demonstrate usage and address common questions.
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1.4 Summary of Software Contributions

Computational methods development is a naturally multifaceted process that often involves development of specialized

software tools. While the main body of this work focuses on theoretical and methodological contributions, this section

provides an overview of software tools that I have developed or substantially contributed to in the course of this work.

These contributions reflect the practical aspects of computational research in not just developing new analysis

methodologies, but also packaging them in accessible tools to facilitate wider adoption.

1.4.1 MSM construction from WE data (msm_we)

Documentation: https://msm-we.readthedocs.io/en/latest/

Code: https://github.com/jdrusso/msm_we

In order to facilitate effective and efficient haMSM analysis of large WE datasets, significant software improvements

were made to the msm_we package.79

Although PCA dimensionality reduction was already implemented, methods like VAMP97 and TICA96 have grown in

popularity for dimensionality reduction of MD data prior to MSM construction. TICA and VAMP aim to capture the

slowest-changing components of the data, rather than structural variations as PCA does. Implementing these in msm_we

allows for more accurate representations of the underlying dynamics, improving the quality of the haMSMs.

WE datasets can easily grow to hundreds of gigabytes or larger, necessitating alternative analysis methods that do not

require loading the full dataset into memory. For clustering, the standard K-means implementation was augmented with

a mini-batch K-means clusterer,105 which can be incrementally fit on subsets of the full data. Similarly, streaming PCA

was implemented for efficient dimensionality reduction. This made processing very large datasets possible, and also

significantly reduced memory requirements for analysis of smaller datasets.

When constructing MSMs at a lag equal to one resampling interval as done in msm_we, transitions in each WE iteration

can be independently analyzed. Therefore, even though the amount of WE data may be very large, analysis is highly

parallelizable. To improve performance of the haMSM analysis, discretization using the fit K-means model and

construction of the flux matrix were parallelized using Ray.109 Using Ray enabled multinode cluster parallelization of

discretization and transition counting, significantly decreasing runtime.

Recent work by Aristoff and Zuckerman73 suggests a procedure for improving variance in weighted ensemble

simulations by making optimized choices of binning and allocation. These optimal choices can be computed from an

haMSM. Calculations for the optimized parameters were implemented in msm_we, facilitating ongoing research into the

effectiveness of this approach for enhancing WE simulation performance.

Fundamentally, msm_we is designed to construct haMSMs from WE data produced by the WESTPA45 software

package. This functionality was directly integrated into WESTPA through a set of plugins in msm_we, which can be

easily activated for an existing WESTPA simulation. Three plugins were developed:
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• A coordinate augmentation plugin, which stores user-selected features from each WE iteration to be used in

haMSM construction;

• An haMSM construction plugin, which automatically constructs an haMSM from WE data after a WE run has

completed; and

• A restarting plugin, which combines and extends their functionality to manage multiple WE runs, construct an

haMSM using data from all of them, estimate steady-state and automatically initiate new runs from the

steady-state estimate.

Practical application of the restarting plugin and analysis of its effectiveness are discussed in Chapter. 5.

OpenEye Scientific provides a platform, Orion, which facilitates use of AWS resources to run WESTPA simulations.

During an internship at OpenEye, haMSM analysis and restarting using msm_we was bundled into the functionality

provided by Orion.

To aid accessibility, thorough tutorials and documentation were developed for msm_we, demonstrating and explaining

all functionality. This provides an easy route for new users to familiarize themselves with the software and apply it to

their own datasets.

1.4.2 WESTPA

As a core maintainer, I made significant contributions to the WESTPA software package to enhance both functionality

and ease of use.

Automated software tests were developed and implemented to ensure reliably accurate and consistent behavior of the

WESTPA software, particularly during the development process. A proof of concept for the Python API was created,

laying a foundation for development of the API which now enables programmatic control of WESTPA functionality.

To facilitate development of other WESTPA tools and analysis methods, a WESTPA propagator for synthetic

dynamics (SynD) (described more in Chapter 2) was developed. This propagator generates data which looks just like

MD data, though with approximate dynamics, with massively reduced runtime. This significantly accelerates methods

development and validation by eliminating waiting for slow MD as a blocking step. The SynD propagator can

seamlessly replace a standard MD engine in WESTPA, with only a minor modification to the WESTPA configuration

file and no changes to other parts of the analysis workflow.

As a complex software package with numerous dependencies, installation and configuration of WESTPA was a major

barrier to users deploying WESTPA on the advanced supercomputing resources it was designed to efficiently scale on.

A proof of concept Docker build of WESTPA was developed, which enables launching and running simulations without

the need for additional configuration or installation steps. Similar Docker images were also developed for WESTPA

using the ZMQ work manager, which enables deployment through tools like Singularity and dynamic multinode

scaling. To further improve the performance of WESTPA on large supercomputing resources, ongoing work is being

23



conducted with other WESTPA developers and a team at the Texas Advanced Supercomputing Center to profile and

optimize performance bottlenecks.

The complexity of the WESTPA software can be a barrier to user adoption. To this end, we have prepared a

comprehensive suite of tutorials which cover topics ranging from standard WESTPA usage on simple systems, to

advanced application of plugins for improved simulation of complex systems and alternate resampling and binning

methods.81

1.4.3 Synthetic Dynamics (synd)

Documentation: https://synd.readthedocs.io/en/latest/

Code: https://github.com/jdrusso/SynD

The theory and motivation for SynD is described in Chapter 2. However, considerable effort was put into in creating a

user-friendly and accessible software implementation of SynD.110

In order to streamline adoption and usage of SynD, a Python package was developed and made publicly available on

the Python Package Index. A demonstration of SynD utilizing a discrete Markov model as the generative model has

been implemented, showcasing an example SynD model comprising a 10,500 state representation of Trp-cage.

Although the discrete Markov generator is provided as a demonstrative implementation, the software has been designed

with the intended generality of the approach in mind, allowing for integration of other generators as well. Consistent

with the other software projects, comprehensive documentation and examples have been provided to demonstrate the

construction and usage of SynD models.111

1.4.4 Markov Reweighting Toolkit (mr_toolkit)

Documentation: https://mr-toolkit.readthedocs.io/en/latest/

Code: https://github.com/jdrusso/mr_toolkit

The mr_toolkit Python package108 was developed to facilitate construction, analysis, and reweighting of Markov

models. Motivation for the novel techniques implemented in this package is described more in Chapter 3.

The package includes an implementation of stratified K-means clustering, which extends the standard scikit-learn

K-means clusterer. This enhanced hierarchical clustering strategy ensures balanced cluster sizes, which is useful for

unevenly distributed data.

Additionally, mr_toolkit provides functionality for modifying a set of trajectories to include recycling boundary

conditions. This is necessary for unbiased nonequilibrium steady-state (NESS) estimation.

MSMs built from limited datasets may suffer from poor connectivity of the transition matrix, leading to ill-conditioned

transition matrices that pose challenges when solving for stationary distributions. To address this issue, mr_toolkit

includes a tool for transition matrix cleaning, which iteratively removes disjoint states from the transition matrix until
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full connectivity is achieved. In contrast to simply clustering with fewer states to ensure connectivity, this enables

finer-resolution clustering by selectively pruning disconnected states.

Lastly, mr_toolkit provides an efficient implementation of iterative reweighting for MSMs. Instead of re-counting

transitions with the new weights in each iteration, this optimized approach precomputes count matrices for each

trajectory once, and then applies the weights in each subsequent iteration. This significantly improves the

computational efficiency of the reweighting process.
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1.5 Protein Dynamics

Dynamical motions of proteins drive processes like folding, conformational changes, and protein-protein interactions,

which are all integral to life. These dynamics describe how proteins behave in cells and interact with not only other

proteins, but also small molecules such as potential drug candidates. Understanding these processes reveals insights

about both the relationship between the protein’s structure and function, and how it interacts with other biological

systems.

1.5.1 Protein folding

Protein folding is a biophysical process that transforms a chain of peptides into a functional, biologically active

three-dimensional structure. Once in its folded structure, the protein is capable of carrying out its function. Folding is

driven by a complex combination of forces including electrostatic and hydrophobic interactions. Though some proteins

may spontaneously fold or unfold, many require an external stimulus such as a change in temperature or pH, or the

presence of another protein.

Most proteins are folded into their native functional conformation as they are being synthesized on the ribosome,

although some are first transported to another location such as the endoplasmic reticulum. As the polypeptide chain is

formed, parts of it fold to form intermediate structures. Different domains may fold sooner than others, independently

reaching local stable conformations while other domains may remain flexible until protein synthesis completes.

Because protein function depends critically on structure, misfolded proteins can be extremely problematic. For

example, both Alzheimer’s and Parkinson’s diseases are associated with misfolded proteins.112,113 Prion diseases are

also caused and propagated by misfolded proteins.114 To mitigate misfolding during synthesis, ribosome-associated

chaperones guide folding for nearly all new proteins synthesized on the ribosome.115 However, chaperones do not

always prevent misfolds, and proteins may misfold or unfold even after synthesis.

Due to the importance of protein structure for function, and the adverse impacts of of misfolded proteins, understanding

the dynamics of protein folding is an important task. The unique ability of MD simulations to provide high-resolution

dynamical movies of protein motion makes it a powerful tool for studying these conformational dynamics.

Although folding may involve a wide array of different factors throughout the cell, this work focuses on developing

analysis methods using simpler model systems which can be efficiently simulated. We primarily use the small,

fast-folding proteins NTL9 and Trp-cage. These spontaneously fold and unfold in solvent, which makes them useful for

generating data of a folding process.25 Although this omits the full complexity of, for example, ribosomal interactions,

it enables us to generate large amounts of data which would not be possible for the full biological system. Because our

focus is on developing methods to efficiently analyze generic biomolecular simulation data, this tradeoff is favorable.

While recent developments of tools like AlphaFold are extremely powerful for predicting folded structures from

sequences, they only reveal the folded and unfolded states, not the dynamical process that takes one to the other.116 This

information is certainly very useful, but does not itself provide a complete understanding of the folding process. In
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other words, to understand how to get from your house to the store, you need more than just the two addresses – you

need to know the roads between.

1.5.2 Small molecule interactions

The dynamics of small molecule interactions are also important, for example in the field of drug discovery. An

understanding of the protein’s structure and dynamics may help design a drug that can efficiently bind to it. Knowledge

of its function, and how it might be affected by a certain small molecule can help optimize the drug’s effect.117–120

Simulations can uniquely provide both structure and dynamics, making it well-suited for this. As mentioned before, the

critical limitation in applying MD are timescales, and computational expense.117 Thus, MD is particularly effective for

this when combined with other methods. For example, MD simulations were used to generate conformations of HIV

integrase. Docking performed on these conformational snapshots led to the development of the first clinically approved

HIV integrase inhibitor.121

Although this dissertation focuses on demonstrating the effectiveness of our novel methods by analyzing simulations of

protein conformational changes, specifically folding, we emphasize that the methods we present are general to studying

different types of protein motion. We focus on folding simulations to take advantage of the large amount of validation

data available for those systems.
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1.6 Outline

Throughout the rest of this work, we describe new pipelines for improving simulation and analysis of biomolecular

systems, building on the methodologies described in this section. This dissertation is structured as follows:

In Ch. 2, we lay the groundwork for our methods development by developing a tool for rapid generation of approximate

MD-like trajectories using SynD. A major challenge in methods development is the ability to efficiently generate large

amounts of data for complex systems, while also being able to calculate reference values. SynD trajectories have

similar complexity to MD data, but can be generated orders of magnitude faster while also only requiring a modest

workstation instead of supercomputing resources, eliminating the slow bottleneck of generating test data. The SynD

workflow also enables calculation of exact references for quantities like equilibrium populations or MFPTs, which is

often not possible with conventional MD, allowing us to validate the quality of our analyses. We use this throughout the

rest of the work to rapidly develop and test our new methods.

In Ch. 3, we explore a scheme for reweighting MD data to mitigate bias in MSM construction. We develop a

mathematical prescription for improving MSM estimates of equilibrium populations. Additionally, we propose two

novel mathematical estimators which enable unbiased estimation of committors and MFPTs from MSMs, which is not

otherwise possible. We show that these methods significantly improve estimates of both equilibrium and kinetic

properties from MD data.

Ch. 4 discusses work done on the 2.0 version of the WESTPA software. WESTPA is a widely used enhanced sampling

framework, that can be used with a variety of MD simulation programs. The WESTPA 2.0 release significantly

improved accessibility to developers for extending the behavior of WESTPA with new functionality. It also included a

set of new tools integrated directly into WESTPA, which allow users to easily apply new sampling tools to improve

their simulations. Be complexity of running MD simulations, particularly coupled with improved sampling frameworks,

makes accessibility a critical concern when developing software tools, the WESTPA 2.0 release also focused on

providing thorough user tutorials. Finally, a focus on bringing WESTPA up to date with software development best

practices and implementing automated tests help streamline development of WESTPA features, and build confidence in

consistent performance over new releases.

Finally, in Ch. 5 we apply a new feature in WESTPA 2.0 to extend previous work on accelerating convergence in

WESTPA simulations. Although WESTPA can be fast to simulate paths, obtaining a rate-constant estimate with

WESTPA with tightly bounded uncertainties can be extremely slow. We demonstrate a pipeline for running WESTPA

simulations that can reduce the convergence time for rate-constant estimates, as well as reducing variance.

Together, these advances both facilitate more effective methods developments and enable more powerful analysis of

MD simulations.
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2 Simple synthetic molecular dynamics for efficient trajectory generation

ABSTRACT

Synthetic molecular dynamics (SynD) trajectories from learned generative models have been

proposed as a useful addition to the biomolecular simulation toolbox. The computational expense of

explicitly integrating the equations of motion in molecular dynamics currently is a severe limit on the

number and length of trajectories which can be generated for complex systems. Approximate, but

more computationally efficient, generative models can be used in place of explicit integration of the

equations of motion, and can produce meaningful trajectories at greatly reduced computational cost.

Here, we demonstrate a very simple SynD approach using a fine-grained Markov state model

(MSM) with states mapped to specific atomistic configurations, which provides an exactly solvable

reference. We anticipate this simple approach will enable rapid, effective testing of enhanced

sampling algorithms in highly non-trivial models for both equilibrium and non-equilibrium problems.

We demonstrate the use of a MSM to generate atomistic SynD trajectories for the fast-folding

miniprotein Trp-cage, at a rate of over 200 milliseconds per day on a standard workstation. We

employ a non-standard clustering for MSM generation that appears to better preserve kinetic

properties at shorter lag times than a conventional MSM. We also show a parallelizable workflow that

backmaps discrete SynD trajectories to full-coordinate representations at dynamic resolution for

efficient analysis.
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Figure 14: Comparison of different simulation methods. Molecular dynamics can simulate highly complex systems,
at the cost of great computational expense. Simpler toy potentials simulated under, for example, Langevin dynamics,
can be highly efficient but lack the complexity present in real systems.

2.1 Introduction

The overall goals of molecular dynamics (MD) simulation are to generate sufficiently well-sampled and accurate

trajectories, but these are hindered by notable challenges. On the one hand, inadequate sampling of complex systems

prevents complete characterization of force-field accuracy, impeding the improvement of force field models. On the

other, poor sampling also complicates the development of new sampling methods, because it is effectively impossible to

gauge the success of a new method without reference simulation data. Well-sampled simulation data (rather than

experimental data) on complex systems is required as a reference for methods development because even perfectly

sampled models are not expected to agree with experiments, again because of model inaccuracy.25

Synthetic dynamics (SynD), i.e., the generation of approximate but arbitrarily long trajectories of highly complex

models,122–128 can directly aid methods development for sampling and hence indirectly contribute to force field

development. In the long term, increasingly accurate SynD models may ultimately provide a partial replacement for

standard MD.

The limitations of conventional MD simulation for biomolecules are well known. Record millisecond-timescale

simulations are only achievable for relatively small and simple proteins, even with substantial computational

resources.25,34 In contrast, more complex processes of biological interest in larger systems span timescales up to to

seconds and beyond,10,11,32 which are inaccessible by conventional MD.14,32

MD limitations have motivated the development of numerous alternative strategies. Coarse-graining atoms using a

force field such as MARTINI,21 or representing the solvent with an implicit model35 are strategies for accelerating

simulation speed by reducing the number of atoms being simulated, as are statistical mechanics-based coarse-graining

strategies like force-matching.129–131 Enhanced equilibrium sampling methods such as replica exchange, metadynamics,
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or umbrella sampling with weighted histogram analysis employ modified energy landscapes, and are popular

alternatives to conventional MD for atomistic systems.46,47,51,64,132 Path-sampling methods, including weighted

ensemble and forward-flux sampling among others, aim to improve simulation efficiency by focusing computational

resources on regions of interest and can provide unbiased non-equilibrium observables.43,45,48,55,59,60,62,63,133,134 Finally,

Markov state models (MSMs) are a useful tool for connecting data from independent simulations which sample

different but overlapping regions of phase space.83,135

Despite this significant progress, a persistent challenge in methods development for biomolecular simulation – which

remains ongoing for essentially all of the strategies noted above – is the lack of validation data, i.e., extremely

well-sampled MD data for systems of interest. As illustrated in Fig. 14, well-sampled MD runs are typically slow for

complex systems. This makes them infeasible for use as a step in methods development pipelines because sufficiently

complex systems generally cannot be sampled well enough to provide reference values for comparison. Simpler and

faster systems such as low-dimensional potentials likely will not capture sufficient complexity to challenge the methods

being tested.

Here, we describe a simple synthetic MD workflow based on MSMs, in which a generative model is trained using a set

of initial, standard molecular dynamics data. MSMs,83,88,135,136 with states mapped to specific atomistic configurations,

are perhaps the simplest type of generative model. MSM variants such as history-augmented Markov state models

(haMSMs) and other MSM alternatives can also be used48,74,89,137–142 again by mapping discrete states to specific

configurations. A special class of coordinate-generative MSMs can also be used to probabilistically generate new,

out-of-sample structures.124 Our work is distinguished from notable previous SynD efforts122–128 by its simplicity and

the availability of exact solutions.

In this preliminary work, we build a detailed generative MSM from folding trajectories of the Trp-cage miniprotein.25

We employ a simple stratification strategy to augment the usual MSM clustering that appears to preserve kinetic

characteristics at smaller lag times than might otherwise be necessary for validation.99 We generate SynD trajectories at

a rate of ∼250 ms/day on a MacBook computer, compared to ∼100 µs/day on the Anton supercomputer for the original

trajectories. We confirm that the SynD trajectories reproduce observables of the MD training data consistent with

known capabilities and limitations of MSMs,99 and that the SynD trajectories replicate exactly calculable equilibrium

and kinetic properties of the MSM as expected. We also demonstrate dynamic resolution analysis of the SynD

trajectories, where full-coordinate structures are only backmapped within time intervals and at a time-resolution of

interest, rather than to each generated point, enabling more efficient analysis.

2.2 Methods

2.2.1 Workflows

We present two main workflows for producing synthetic MD trajectories. First, we describe a generic strategy for

efficiently generating trajectories with full atomic coordinates. Second, we outline a strategy to efficiently generate
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Figure 15: The synthetic MD workflow using discrete-state models. Initial MD simulation data is used to construct
a discrete generative model. Discrete state trajectories are efficiently generated from this model, and back-mapped to
full-coordinate structures. This last step is trivially parallelizable.
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Figure 16: Original 208 µs trajectory from MD simulations of the protein Trp-cage,25 extended with another
208 µs of synthetic MD. The synthetic MD trajectory was constructed according to Sec. 2.2.1 at 10 ns resolution,
initialized from the final point of the MD trajectory. The synthetic trajectory is projected here into the same tICA space
computed from the MD trajectory for consistency. Only the first tIC, which strongly contrasts the folded and unfolded
states, is shown.

extremely long atomistic trajectories at a coarse temporal resolution, followed by enhancement of the resolution in

post-processing for time intervals of interest.

In the standard synthetic MD workflow employing discrete states (Fig. 15), a generative model employing a

discretization of configuration space, such as an MSM, is first built from an initial set of traditional MD trajectories.25

A specific full-coordinate atomistic configuration is associated with each discrete state. The generative model is then

used to simulate trajectories, which will be time-ordered lists of discrete configurational states, stored as integers.

Discrete trajectory generation typically will be an extremely rapid process. These trajectories are then back-mapped to

the saved atomic coordinate structures. Because the discrete trajectories are generated before assigning full-coordinate
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Figure 17: Synthetic MD trajectory for the protein Trp-cage, shown at varying levels of temporal resolution
obtained in post-analysis. The full-coordinate trajectory may be initially back-mapped over only subsampled points
from the generated discrete trajectory (top). Intervals of interest can later be backmapped at higher resolution (middle
and bottom). The first tIC (time-independent component) is taken as a representative coordinate because it clearly
shows folding transitions. SynD trajectories include all atomistic coordinates, enabling arbitrary analysis.

structures, the back-mapping is highly parallelizable. Finally, the full-coordinate trajectory is written to disk in a

standard MD format, enabling processing by standard tools.

Synthetic MD also enables a dynamic resolution workflow (Fig. 17), where very long trajectories can be efficiently

generated, and enhanced temporal resolution added to regions of interest in post-processing. In this workflow, the

generative model is used to build a very long discrete trajectory. However, only a temporally subsampled set of points

from the discrete trajectory are back-mapped to full-coordinate atomistic configurations, rather than the full trajectory.

This enables “telescoping” detailed analysis of long trajectories that would be infeasible at full temporal resolution

because of the large number of snapshots generated in SynD.

2.2.2 Simple generative model: MSM of Trp-cage

To demonstrate the SynD approach, we employed a nearly standard MSM as a generative model, built with

pyEMMA.143 The clustering described below is slightly different than for typical MSMs. The original MD trajectory

from a 208 µs simulation of the protein Trp-cage25 was first featurized with residue-residue minimum RMSD,
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excluding nearest neighbors. Next, tICA dimensionality reduction was performed at a 10ns lag time with 10 tICs, using

commute maps for eigenvector scaling.

The dimensionality-reduced trajectories were clustered using a stratified k-means approach, which differs somewhat

from typical MSM workflows. A coordinate of interest is first stratified into bins, and then k-means clustering is

independently performed in each bin. Stratification guarantees an even distribution of states along coordinates of

interest. In this case, we stratified along tIC 0, which sharply distinguishes the folded and unfolded states, guaranteeing

reasonable coverage of transition regions in this coordinate. With 20 k-means centers for each stratified bin, there were

a total of 1020 clusters which form the discrete states of the generative model.

The discretized trajectories were used to build a MSM at a 10ns lag time, chosen to balance time resolution with

reasonable kinetic fidelity.99 The MSM was symmetrized to ensure satisfaction of detailed balance by adding the count

matrix to its transpose. For each discrete state, a single representative structure was randomly chosen from all structures

assigned to that state.

Some of the choices made in constructing this MSM may decrease model fidelity to the MD training data, but we

emphasize our initial goal is to construct a generative model with protein-like complexity to enable downstream

analysis and testing. Indeed, MSMs have fundamental limitations that have been discussed in detail.99

For reference, we note this MSM produced mean first-passage times (MFPTs) of 12.7µs for folding and 2.8µs for

unfolding as calculated from the transition matrix using pyEMMA.143

2.3 Results

Five 208 µs trajectories were produced at 10 ns resolution by propagating randomly chosen initial states using the

Trp-cage generative model. This took 5 minutes 41 seconds in total for all five trajectories using a MacBook Pro with a

single 2.8GHz Intel i7 processor. One such trajectory is shown in Fig. 16, along with the original MD trajectory.

Analysis of these trajectories’ equilibrium distributions is consistent with the original MD trajectory data, as well as the

underlying MSM, as shown in Fig. 18. Likewise, the MFPT values estimated from the SynD trajectories were 4.1± 1.5

µs for unfolding and 18.3± 9.6 µs for folding, consistent with the reference values of 2.8 µs and 12.7 µs computed

directly from the MSM transition matrix.

2.4 Discussion

We have explored a very simple approach to generating SynD trajectories based on Markov state models (MSMs), with

the motivation of rapidly generating trajectories in highly non-trivial systems that can be solved exactly, in turn

providing ideal test beds for methods development. Previous work has employed a range of deep-learning

techniques.122–128
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Figure 18: Comparison of SynD equilibrium distributions to the MD training data and the generating MSM.
Each point represents the fractional occupancy of a discrete state of the MSM, with MSM values computed from the
stationary distribution of the transition matrix. SynD values are averages over the five 208 µs SynD trajectories.

We show that MSM-based SynD trajectories are generated at multiple orders of magnitude speedup over conventional

MD, and confirm that the trajectories reproduce exactly-solvable equilibrium and kinetic properties of the generative

model. Our generative MSM was able to employ a shorter lag time – providing higher mechanistic resolution103 –

because of an apparently novel stratified approach to state clustering.

Rapid generation of SynD trajectories should be very useful in testing new methods because it provides arbitrary

amounts of data in highly complex, but exactly solvable models. Such a framework could be particularly valuable for

path sampling, enabling careful estimation of variance based on different choices of hyper-parameters. synD can also

advance methods development for trajectory analysis tools138,144 based on controlled amounts of SynD data, mimicking

the low-data regime typical for MD trajectory sets. Even MSM analysis protocols can be tested using SynD based on a

fine-grained MSM, so long as the MSM used for analysis is blinded to the fine-grained MSM used to generate

trajectories. synD may also be useful for generating an arbitrary number of stochastic mechanistic pathways encoded

by the generative model, which may be compared to experimental or higher-quality simulated data to further refine the

generative model.145

It is feasible to construct significantly improved generative models within the MSM framework. For example, much

finer-grained states can be employed, and established adaptive approaches for selecting key regions for further

simulation (of MD training data) are available.49,50,146,147 Training data from polarizable or hybrid quantum/classical

force fields could be used to refine a conventional MSM as needed. Numerous MSM-like discrete-state models have

been developed incorporating more dynamical information – i.e., trajectory history – than conventional

MSMs.48,74,89,137–142 For example, haMSMs are unbiased for kinetics at any lag time and were shown to significantly

outperform conventional MSMs in characterizing mechanistic details of protein folding.99,138 Deep generative MSMs

can be used to stochastically generate new out-of-sample structures.124

More modern machine learning strategies will undoubtedly continue to play a large role in SynD. Frameworks such as

variational autoencoders and recurrent neural networks including long short-term memory neural networks123,127,128

have led to models with an improved ability to generate MD-like discrete-state trajectories; note that current MSMs and

variants have not been optimized for this task, which is critical to SynD. Mixture density network autoencoders125 and
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latent space simulators126 generate trajectories in a lower-dimensional continuous space, and provide a mapping to

full-coordinate representations.
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3 Unbiased estimators and iterative reweighting for improved estimation of equilibrium

and kinetic properties in Markov state models

ABSTRACT

Molecular dynamics (MD) simulations are a powerful tool for studying the complex behavior of

biomolecular systems, but accurate and unbiased estimation of observables remains challenging.

Markov state models (MSMs) are widely used for analyzing MD simulation trajectories; however,

their construction involves discretization of phase space, which can introduce biases when trajectory

points are not distributed correctly within discretized states. In this work, we demonstrate novel

unbiased estimators for equilibrium and nonequilibrium steady-state populations, mean

first-passage times (MFPTs), and committors (splitting probabilities). While these estimators are

asymptotically unbiased only in the limit of infinite data, we demonstrate practical accelerated

relaxation to unbiased estimates in a toy model and in synthetic MD data by extending an iterative

reweighting scheme recently proposed by Voelz et al. We show that unbiased estimation of

observables through a coarse-grained MSM requires incorporating appropriate boundary conditions

into trajectories before calculating the transition matrix.
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3.1 Introduction

Despite modern capabilities to routinely generate multi-microsecond datasets of molecular dynamics (MD)

simulation trajectories, the analysis of such trajectories remains a notable challenge. A widespread approach, and the

focus of our study, is the Markov state model (MSM) framework which coarse-grains continuous molecular

configuration space into discrete states, followed by construction of an approximate transition (stochastic) matrix at a

finite lag time from which observables are then calculated.83–87,90 The MSM framework, with variations, has also

proved useful in analyzing data from rare-events sampling methods, such as the weighted ensemble approach.74,102,148

Even as the field has developed more sophisticated MSM analyses,57,87,91,98,149–152 recent work has highlighted the

approximate nature of MSM results, which results from intrinsic coarse-graining in space and time.83 One study

highlighted variations of MSM analysis which yielded divergent estimates for multiple observables.153 A second

report99 showed that MSMs yield accurate mean first-passage time (MFPT) estimates only for fairly long (∼ 100 ns)

lag times for protein folding systems, but also that MSMs are inaccurate for mechanistic characterization which

typically reflects shorter timescale behavior. On the other hand, the same analysis showed that including history

information – tracing back trajectories to macrostates of interest – enabled accurate MFPT and mechanism

characterization within a MSM-like formulation. In other words, a standard MSM built at an arbitrary lag is not

unbiased for kinetics, even with an infinite amount of data. These findings largely motivate the present report, where the

use of history information is essentially recast as appropriate use of boundary conditions. Our work is also related to

ideas integral to exact milestoning56,154 and non-equilibrium umbrella sampling.62,63

However, even estimators that are theoretically unbiased in the limit of infinite data may demonstrate bias in practice as

a result of limited sampling. Several reweighting approaches have been suggested to mitigate this sampling bias. One

approach144 computes reweighting factors by optimizing of a given functional which approximates an ideal reaction

coordinate. Although this method has the distinct advantage of being nonparametric, since the final converged result is

independent of feature selection, it can be numerically unstable for poorly sampled data. Another explores reweighting

ensembles of trajectories to maximize path entropy.155 A third approach which was derived from the weighted ensemble

methodology43 uses statistical resampling to reweight data for MSM construction, which can reduce initial state bias in

datasets with certain features, but lacks generality.156 Finally, another recently developed methodology reweights

trajectories using initial equilibrium estimates.153 In this work, the term "unbiased estimators" refers to estimators

which are unbiased in the asymptotic, infinite data limit, but which may demonstrate bias as a result of finite sampling.

Our theoretical analysis rests on multiple pillars, several of which appear to be novel.

• Most importantly, building on early MSM work,157 we compare ‘microscopic’ discrete-state models with

coarse-grained MSM models – of different kinds – which would be generated from trajectories of the

microscopic model. In contrast to earlier work, we address the issue of bias by first performing exact

computation of MSM-like estimates, before simulating trajectories and introducing the confounding issue of

finite sampling.
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• Motivated by recent history-augmented MSMs,74,99,102,137 we carefully account for boundary conditions

(BCs), assessing the difference between applying BCs before or after calculating MSM transition matrices.

Properly accounting for BCs is essential for unbiased estimation of the MFPT and committor.

• Our mathematical analysis accounts exactly for initial state bias – i.e., the effects of the expected deviation of

trajectories, especially their initial points, from the stationary distribution of interest. Initial state bias is

intrinsic to MSM calculations; if it were not, the required distribution would already be in hand.

• Our mathematical analysis also accounts exactly for sliding-window averaging occurring over finite-length

trajectories. This averaging is generally used to build MSMs at lag τ based on examining the pairs of points,

{(0, τ), (∆t,∆t+ τ), (2∆t, 2∆t+ τ), . . . }, where ∆t is the spacing between MD trajectory frames.

Sliding-window averaging critically underpins – and limits – relaxation to unbiased observable values.

• We extend a recent proposal to reweight trajectories based on initial estimates of equilibrium distributions,153

by iterating this process to self-consistent convergence and additionally applying it to non-equilibrium

stationary conditions, using appropriate boundary conditions. Our analysis shows that reweighting can

significantly reduce the relaxation time required to achieve unbiased estimates of observables.

In addition to the theoretical analysis of the exactly-solvable case, we apply these methods to estimate observables from

finite amounts of data, using a set of trajectories generated from a synthetic Trp-cage model. Where the exact

formulation allows us to study bias in the asymptotic limit of an infinite number of finite-length trajectories, our

analysis of the molecular system explores the practical application of these estimators and reweighting strategy.

3.2 Theoretical Framework

3.2.1 Notation

For clarity, we define the various symbols used throughout this work in Table 1.

3.2.2 Fine- and coarse-grained systems

The process of building a Markov model typically involves simulating continuous trajectories, discretizing them by

assigning points in the trajectories to states, and constructing the model on the space of states.83 Taking the continuous

Markovian phase space described by the system’s microscopic dynamics and grouping it into discrete states produces

states that cannot be perfectly Markovian.91,99,137

Examining the effects of coarse-graining on trajectories is complicated by the sampling issues present in any trajectory

analysis. We therefore employ a framework for exactly recapitulating the process of constructing a coarse-grained

model from trajectories, without using actual trajectories. This enables us to study the coarse-graining exactly, without

any sampling concerns.
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Table 1: Definitions of symbols used in this work.
Symbol Definition

i, j Microstates (single phase points)
P Microscopic transition matrix
m,n Coarse states (sets of microstates)
T Coarse-grained transition matrix
π Microscopic equilibrium distribution
Π Coarse-grained equilibrium distribution

Pα, Tα A→ B steady-state matrices
πα, Πα A→ B steady-state distributions
w Microstate weights
w̄ Sliding-window averaged microstate weights
S Trajectory length: number of steps
∆t Timestep of microscopic model
τ Physical lag time
λ Dimensionless lag time, τ/∆t
q Microscopic committor to state A
Q Coarse-grained committor to state A

For simplicity, we use a discrete representation for the underlying dynamics, although as we discuss, our results are

expected to apply for continuous dynamics as well. Let P be the underlying fine-grained, Markovian transition matrix

for a single time step ∆t. For simplicity we assume P is a finite matrix. Note that we use the term microstate in its

traditional statistical mechanics sense to connote a single phase-space point or discrete state; this contrasts with the

ambiguous usage of the term in the MSM community to describe a coarse-grained state.83,85 The matrix P will

implicitly account for boundary conditions (BCs) chosen according to the observable of interest. Here we refer to

boundary conditions applied between two macrostates A and B of interest – i.e., source-sink BCs, dual-absorbing BCs,

and the absence of sources or sinks. The issue of boundary conditions is central to our analysis and will be described in

further detail below.

The coarse-grained MSM transition matrix T is obtained by merging microstates of the fine-grained model. The

resulting transition probability from coarse state m to any other coarse state n will be a weighted average over

microscopic transition probabilities:

Tm→n(S) =
∑

i∈m

∑

j∈n
w̄i(S)Pi→j

/∑

i∈m
w̄i(S) . (5)

The microstate weights w̄i are computed to exactly mimic the process of counting transitions in S-step trajectories but

without sampling error, as described below. Also note that the coarse-grained MSM transition matrix T will “inherit”

the BCs of the matrix P as described below.
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3.2.3 Accounting for finite trajectory length in sliding window averaging

To compute the necessary averages for the MSM transition matrix T(S), we must account both for the initial

distribution of trajectories as well as the subsequent dynamics and relaxation that occurs. To do so, we let wi(t) be the

time-evolving weight of microstate i, which represents the fraction of trajectories in state i at time t. The set of weights

is assumed to be normalized over the full microscopic space, so that

∑

i

wi(t) = 1 . (6)

Once the set of wi(0) is defined, the time evolution of this distribution is fully determined by the underlying transition

matrix P according to

w(t+ ∆t) = w(t)P (7)

where w is the vector of weights wi. Importantly, we do not generate trajectories, and there are no sampling limitations

in our analysis. Instead our calculations yield the same results as if there were an infinite number of finite-length

trajectories.

Trajectories are taken to consist of S steps or S + 1 time points indexed by {0, 1, 2, ..., S}.

We can now replicate the sliding-window average used in MSM construction83 by averaging over the time evolving

distribution. The time-averaged weights for a single-step lag time are given by

w̄i(S) =
1

S

S−1∑

s=0

wi(s∆t), (8)

where w(s∆t) = w(0)Ps is the weight distribution as evolved according to the Markovian microscopic model P.

These time-averaged weights are normalized because the instantaneous weights sum to one.

Note that if the initial weights are not in the stationary distribution of interest – e.g., equilibrium or a non-equilibrium

steady-state (NESS) – then we expect the corresponding estimates for T in Eq. 5 to be biased, unless trajectories are

much longer than the associated relaxation process.

Generalization to arbitrary lag time The sliding window calculation can be generalized to arbitrary lag time

τ = τ/∆t > 1, where τ is the physical lag time. The window starts at the first point in the trajectory (s = 0), and ends

τ steps from the end of the trajectory. Less data is averaged because the final steps are omitted as start points of the

window, but more relaxation occurs compared to τ = 1. Eq. 8 becomes

w̄i(S, τ) =
1

S − τ + 1

S−τ∑

s=0

wi(s∆t) (9)

where the individual weights are again determined by (7). Note that the lag time, which is used only for analysis, does

not affect the underlying dynamics embodied in P and w(t). With this, we can write the arbitrary lag time
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coarse-grained transition matrix as

Tm→n(S, τ) =
∑

i∈m

∑

j∈n
w̄i(S, τ)Pτi→j

/∑

i∈m
w̄i(S, τ) . (10)

For clarity of presentation, the rest of this work uses τ = 1, though analogous results apply to any τ .

Also note that we can restrict averaging in (8) and (9) to later time points in the trajectories (i.e., start the sums at

s > 0), which will exclude earlier, less relaxed time points. This will be explored in subsequent work.

3.2.4 Accounting for boundary conditions

To our knowledge, the issue of boundary conditions (BCs) has not been addressed thoroughly in the MSM literature.

BCs are fundamental to MSM construction because the transition matrix is determined by the average intra-coarse state

distribution w̄ as seen in (5) and (10), which in turn depends on other coarse states because of the time evolution of the

distribution (7) – i.e., on transitions between coarse states which are constrained by the BCs. From this perspective, it is

not surprising that the (equilibrium-like) lack of BCs will lead to unbiased equilibrium populations and that source-sink

BCs will lead to unbiased MFPTs. The situation for committors is essentially a hybrid of the two as explained below.

As our data will show, failure to account for BCs correctly can lead to biased estimators. For example, computing a

first-passage time involves measuring the time from when trajectories enter (or are initiated in) some state A to when

they first enter another state B, including any returns to state A. Such trajectories are consistent with a sink at B and a

source at A, i.e., source-sink (“recycling”) boundary conditions, as required for computing the MFPT via the Hill

relation (20) given below. However, if trajectories were allowed to emerge from the sink state B and re-enter B without

first returning to A, such events would bias MFPT estimation using a MSM transition matrix. Asymptotically, the

intra-coarse state distributions w̄ would not match the NESS and hence the transition matrices would not be appropriate

for unbiased MFPT computation.

The committor describes a dually absorbing process at two states A and B. We let qi be the committor to A, the fraction

of trajectories absorbed to A starting from microstate i; the committor to B is 1− qi. If absorbing conditions at A and B

are not enforced in the microscopic model (the trajectories), we expect committor estimates to be biased, even for

coarse states which consist of collections of microstates. However, as will be seen, simply building a transition matrix

from dually absorbing trajectories is not a route to unbiased committors.

Equilibrium, on the other hand, requires detailed balance, so no sources or sinks can be present. Correspondingly,

equilibrium probabilities are computable without bias, asymptotically, from a standard MSM.

Below we will consider several types of coarse transition matrices (MSMs) built from different boundary conditions

embodied in the microscopic transition matrix. All MSMs are constructed from the same weight formulation, namely

(5) for single-step lag (τ = 1) or (10) for τ > 1, using the microscopic transition matrix P corresponding to different

boundary conditions as follows:
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• The standard MSM denoted T is derived from the full microscopic model P with no boundary conditions

applied.

• A source-sink ssMSM can be constructed for either the A→ B direction, denoted Tα, or the B→ A direction,

called Tβ . The matrix Tα is constructed from the modified microscopic model Pα which is obtained from P

by setting Pij = 0 for i ∈ B except when j ∈ A. For simplicity, here we assume states A and B each consist

of a single microstate, so that PBA = 1 for this ssMSM. The coarse matrix Tβ is constructed in analogous

fashion from Pβ .

• The dually absorbing abMSM denoted Tabs is obtained by setting Pij = 0 for i ∈ A or B. The abMSM,

although it seems natural for computing committors, will be seen to be biased.

3.2.5 Asymptotically unbiased asymptotic estimators

We now demonstrate that Markov-like models with the appropriate boundary conditions incorporated into the

trajectories during construction produce unbiased estimates of equilibrium probabilities for coarse-grained states, the

first-passage time, and the set of coarse-grained committors. Our argument relies on two simple parts. First, we note

that under boundary conditions allowing for stationarity, regardless of the initial weights, the average weights w̄i

asymptotically approach their stationary values. Second, we show that the stationary weights (reached asymptotically)

yield unbiased observables with appropriate estimators.

The asymptotic stationarity of the time-averaged weights w̄, defined by (8) or (9), follows from the fact that the weights

constitute an ordinary probability distribution in the microscopic space evolving under standard Markovian dynamics

(7). We will assume that P is irreducible, meaning all regions in the microscopic state space are connected by positive

probability paths,.158 With this assumption, recalling that P in (7) is assumed to embody any boundary conditions, we

see that under equilibrium or source-sink (α) conditions, the time-averaged weights will approach π or πα,

correspondingly,

w̄ → π or w̄ → πα, (11)

under equilibrium or α source-sink BCs as S →∞.

It will prove convenient to show a related result, namely, that coarse-grained stationary probabilities Π derived using

the stationary weights are exactly the sums of the corresponding microscopic stationary probabilities π. Starting from

the coarse stationarity condition, we use the asymptotic stationary weights (11) along with the coarse matrix (5) to find

Πn =
∑

m

ΠmTmn(S →∞) (12)

=
∑

m

Πm

∑

i∈m

∑

j∈n
πiPij

/∑

i∈m
πi . (13)

43



If we substitute Πm =
∑
i∈m πi into the right-hand side of this expression, we find

Πn =
∑

m

∑

i∈m

∑

j∈n
πiPij (14)

=
∑

j∈n

∑

i

πiPij (15)

=
∑

j∈n
πj , (16)

which demonstrates the consistency of the summed microscopic stationary probabilities with coarse-grained

stationarity. This completes the demonstration.

Note that the result (16) holds regardless of boundary conditions, so long as the stationary probabilities and transition

matrix are for the same BCs. In particular, it implies

Πα
n =

∑

j∈n
παj (17)

for the α (A to B) NESS.

We now consider the different observables in turn and show that asymptotically, when the average weights approach

stationary values, suitable coarse-grained estimators become unbiased. That is, we must show that estimators obtained

solely from calculations using coarse-grained T matrices asymptotically yield observables in exact agreement with

microscopic values.

3.2.5.1 Equilibrium Coarse-grained equilibrium probabilities Π can be estimated without bias as the stationary

solution to the standard MSM in the limit of infinite trajectory length:

ΠT(S →∞) = Π (18)

This follows from the asymptotic stationarity of the weights (11), which in turn causes the coarse-grained stationary

probabilities to match the sum of microscopic stationary probabilities as in (16). It is easy to check that the conditions

above on P ensure that T(S) has a unique stationary distribution for large enough S.

3.2.5.2 Mean first-passage time We employ a similar strategy for the MFPT, showing that macroscopic analog of

the microscopic solution recapitulates the microscopic value, so long as the correct source-sink boundary conditions

are employed. We make use of the Hill relation, which relates the source-sink steady-state flux into a target macrostate

B to the MFPT(A→ B) according to100

1/MFPT = Flux(A→ B) . (19)
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Recalling that the A→ B NESS is designated by α, we recast the flux using the microscopic model to yield the

reference dimensionless expression

∆t/MFPT =
∑

i/∈B

∑

j∈B
παi P

α
ij . (20)

We will explore coarse-grained estimates of the MFPT generically given by the analogous expression

∆t/MFPT =
∑

m/∈B

∑

n∈B
ΠmTmn(S) . (21)

We now show that using the flux computed from the asymptotic coarse ssMSM yields a MFPT identical to that from the

microscopic model. Using the α-specific asymptotic weights (11) in the coarse ssMSM Tα defined by (5), we obtain

∆t/MFPT =
∑

m/∈B

∑

n∈B
Πα
mTα

mn(S →∞) (22)

=
∑

m/∈B

∑

n∈B
Πα
m


∑

i∈m

∑

j∈n
παi P

α
ij

/∑

i∈m
παi


 (23)

=
∑

m/∈B

∑

n∈B

∑

i∈m

∑

j∈n
παi P

α
ij (24)

=
∑

i/∈B

∑

j∈B
παi P

α
ij , (25)

where we made use of (17). Hence the MFPT calculated from the ssMSM with asymptotic weights yields the correct

microscopic value (20).

We note that our formulation here, including for the microscopic model, retains a discretization error, expected to be

O(∆t/MFPT). This is because Pαij > 0 for j ∈ B will lead to non-zero occupancy of B, with expected probability in

B of
∑
i∈B π

α
i ∼ ∆t/MFPT from the definitions of the MFPT and NESS. Even this small error can be avoided with a

slightly more complex formulation, as we will show in future work.

3.2.5.3 Committors We now demonstrate a novel estimator for coarse-grained committors based on the ratio of the

steady-state to equilibrium probabilities. It has been shown previously that, microscopically, the committor to A, q, is

proportional to the ratio of the α NESS to equilibrium probabilities:159

παi = c qiπi , (26)

where c = παi /πi > 1 for i ∈ A. We propose to estimate coarse-grained committors Q according to

Qm = Πα
m/cΠm , (27)

where c = Πα
m/Πm for m ∈ A has the same value as in the microscopic case because of the relations (16) and (17).
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It is not immediately obvious what the “exact” coarse-grained Q values should be. Consider a thought-experiment of

computing committors from an extremely long ‘equilibrium’ trajectory which traces back and forth between states A

and B many times, visiting all microstates. We could estimate the committor for a coarse state m by considering all

time points of the trajectory in m and counting the fraction of downstream trajectory segments which reach A before B

for each such time point. The configurations in the coarse state will be equilibrium distributed due to the length of the

trajectory, and the fractional absorptions to A and B for segments visiting a given microstate i ∈ m will necessarily be

determined by the microscopic committor qi. This scenario motivates equilibrium weighting of microscopic

committors according to

Qm =
∑

i∈m
πiqi

/∑

i∈m
πi . (28)

Indeed, it would be difficult to motivate other choices, such as a uniform weighting or weighting according to a

particular directional NESS.

To validate the estimator (27) asymptotically as S →∞, we substitute the asymptotically exact microscopic

decompositions (16) and (17) for the coarse stationary probabilities. This yields

Qm =
∑

i∈m
παi

/
c
∑

i∈m
πi (29)

=
∑

i∈m
c qiπi

/
c
∑

i∈m
πi , (30)

where we have used (26) and recapitulate the desired result (28). Although the suitability of equilibrium weighting

among microscopic committors can be debated, the ratio estimator (27) yields this natural average.

3.2.6 First-step relation for committors

As we will see, the abMSM is biased for committor estimates, despite seeming like a natural and correct choice of

boundary conditions. For completeness, we review a procedure for calculating the committor from a transition matrix

using a ‘first-step’ relation.54,160

If the committor to A at a microstate i is given by qi, the average committor of trajectories initiated in that point and

propagated for one step is also equal to qi. The analogous formulation for a coarse model is therefore

Qm =
∑

n

TmnQn i /∈ A,B (31)

where Qn∈B = 0 and Qn∈A = 1. Although not unbiased for coarse states, this relation is used for reference in the

results shown below.
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3.2.7 Iterative reweighting

Although we have described estimators that are unbiased asymptotically, deviation in the initial weights w̄i from the

appropriate steady-state distribution introduces initial-state bias which can be very slow to relax away, as our results

will show. As a trajectory propagates, the relaxation time for the initial distribution to converge to a steady-state

distribution will depend on the initial distribution.

Recent work showed that computing steady-state twice, once from an MSM with uniform initial weights for each

trajectory, then recalculating the MSM using weighted trajectories (with weights from the first steady-state probability

estimate of the initial bin of each trajectory), substantially reduced the trajectory length necessary for converged

estimates.153

In fact, this process can be applied iteratively, using the estimate from the previous iteration as the weights for the next.

Algorithm 1 Iterative reweighting algorithm

1: Choose uniform initial weights wi

2: repeat

3: Compute w̄i from wi using (8)

4: Compute the interim stationary distribution Π̃ by solving Π̃T = Π̃

5: Update the microbin weights w(0) by evenly dividing the coarse probabilities over microbins according to

wi(0) = Π̃m

/∑
j∈m 1 for i ∈ m

6: until desired number of iterations

Results for iterative reweighting are presented in Sec. 3.3.2.

3.2.8 Connection to continuous trajectories

We expect that our discrete-state analysis will carry over directly to the case where microscopic dynamics are

continuous in space. First, one may consider the limit of arbitrarily small microstates, leading to quasi-continuous

dynamics. Second, the derivations presented in Sec. 3.2.5 rely almost exclusively on the relaxation of the initial weights

to steady-state values, a process that will also occur under continuous dynamics.

3.3 Analytical Results

Numerical results confirm our theoretical expectations. Equilibrium probabilities, mean first-passage times, and

committors of coarse-grained MSMs are unbiased in the asymptotic limit in general only when they are based upon the

relaxation of microscopic trajectories to the appropriate steady-state distributions, which can be achieved by sliding

window relaxation and applying the appropriate BCs at the microscopic trajectory level.

We demonstrate by estimating equilibrium probabilities, mean first-passage times, and committors on a sample system,

where the microscopic dynamics are exactly described by a 42 microstate transition matrix (exact transition
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Figure 19: Energy landscape of the 42-microstate fine-grained system. Microstate boundaries are denoted by dots.
The coarse-grained states or ‘bins’ are separated by vertical lines. Bins 1-4 are the four intermediate coarse states.
‘Macrostates’ A and B, are the leftmost and rightmost individual microstates, respectively, in both fine and coarse
descriptions.

probabilities given in Fig. A.1). The coarse-graining preserves the first and last states as the macrostates A and B, and

groups the intermediate 40 microstates into 4 coarse states. The energy landscape is shown in Fig. 19, along with lines

indicating the coarse states. The energy landscape of this system emulates two stable states separated by an energy

barrier.

This minimal system provides an unambiguous demonstration of how initial state bias affects key observables. In a

common procedure, a finite set of trajectories may be generated for MSM construction with initial points spanning the

space of interest. We emulate this procedure by introducing uniform initial weights into Eq. 8, emulating the

distribution of trajectory starting points in a finite sample. In this system with a central energy “barrier”, this constitutes

significant initial state bias. We examine the estimators as a function of trajectory length S, to determine both how the

initial bias relaxes out with longer trajectories, and what length trajectories are necessary for converged estimates. An

iterative approach to accelerate convergence is explored in Sec. 3.3.2. Lag time and trajectory length both contribute to

recovering unbiased estimations using trajectories whose initial points are not steady-state distributed.

3.3.1 Asymptotic estimators

The estimation of equilibrium probabilities is a very straightforward application of a MSM, and as expected a standard

MSM is unbiased both in the limits of long trajectories and long lag times. The reference equilibrium distribution is

obtained as the stationary solution of the microscopic transition matrix P. We show results for a standard MSM at lag

time of 1 and MFPT/10 = 500 steps in Fig. 20. Note that all results are plotted as a function of the trajectory length,
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which governs the amount of relaxation that occurs within a trajectory ensemble. At a lag of 1, the uniform initial

weights introduce some initial-state bias, shown in Fig. 20. However, this initial bias quickly relaxes out, and converged

first-passage time estimates are obtained within ∼ MFPT/5 steps.

The longer lag appears to produce estimates closer to the reference values. However, this is because the minimum

trajectory length is given by τ + 1, so the first estimate produced at the longer lag is at a long trajectory length. At this

length, the short-lag estimate was also relaxed to nearly the reference value.
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Figure 20: MSM equilibrium probability estimates are asymptotically unbiased. The equilibrium estimator,
shown at lag of 1 step (λ = 1, blue) and λ = 500 (orange). The black dashed line is the exact reference value, computed
from the microscopic matrix. Because the energy landscape is symmetric, only states (‘bins’) in the left half are shown.
We assumed a non-informative uniform initial distribution of weights wi(0) = 1/42.

Despite the apparent simplicity of this two-state system, first passage times can be significantly biased by the initial

state distribution. First-passage times to state B are computed using the Hill relation (20), referenced to the MFPT for a

lag time of one step (∆t, or τ = 1). Here, source-sink boundary conditions are applied to the standard MSM after

construction, while for the ssMSM they are applied at the microscopic trajectory level. When the source-sink BCs are

not applied at the trajectory level, the MFPT estimates are significantly biased at lag times of 1 step and

MFPT/10 ∼ 500∆t, and do not improve with the trajectory length, shown in Fig. 21. Note that standard MSMs can

recapitulate physical MFPTs at long enough lag times.99 When the BCs are applied (ssMSM), the MFPT estimate
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becomes unbiased for trajectories longer than the MFPT itself. However, combining the application of BCs at the

trajectory level (ssMSM), and increasing lag time to MFPT/10 ∼ 500∆t, leads to an unbiased first-passage time

estimate at a fraction of the MFPT.
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ssMSM | Lag = 1
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Figure 21: Unbiased MFPT estimation from ssMSMs. Employing the coarse-grained Hill relation (21), we
compare MFPT estimates from standard MSMs at short lag time (λ = 1 step, blue line) and long lag time (λ = 500 ∼
MFPT/10∆t, orange line), ssMSM at short lag time (λ = 1, green line) and long lag time λ = 500, red line), and
the exact reference value (black dashed line). We assumed a non-informative uniform initial distribution of weights
wi(0) = 1/42.

Like the MFPT, the committor stratifying the A to B transition (see Fig. 22) is sensitive to BC application at the

trajectory level, and moreover, asymptotically unbiased estimation requires a novel approach. First-step relations (31)

applied to the coarse-grained standard MSM estimates are biased at both short and long lag times. Surprisingly, even

when appropriate BCs are applied at the trajectory level before MSM construction (i.e., using the abMSM), committor

estimates based upon first-step relations are biased at both short and long lag times, even in the limit of long trajectories.

We find that asymptotically unbiased committor estimation requires calculation of the committor via the ratio (27) of

the equilibrium and NESS (ssMSM source/sink BCs) steady-state distributions . Since this “ratio method” estimator is

based upon steady-state distributions, the initial bias can relax and committor estimates converge asymptotically to the

reference value. For the longer lag time of MFPT/10 ∼ 500∆t steps, this relaxation is rapid within a fraction of the

MFPT.

3.3.2 Iterative reweighting

The sliding window relaxation time to a steady-state microscopic distribution is a priori unknown, and may be

computationally prohibitive. This motivates the exploration of an iterative approach which accelerates steady-state

convergence. By iteratively obtaining estimates of the steady-state and equilibrium distributions, and then using those
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Figure 22: Unbiased committor estimation from the steady-state “ratio method”. Committor estimation using
the first-step relation (31) with standard MSM (green lines) and abMSM (blue lines) at short lag time (λ = 1, left)
and long lag time λ = 500 ∼ MFPT/10∆t, right), as well as committor estimates from the ratio of equilibrium and
NESS (source/sink BCs) steady-states (red lines), compared to the reference value (dashed black line). We assumed a
non-informative uniform initial distribution of weights wi(0) = 1/42.

as the initial weights to compute the estimates again as described in Sec. 3.2.7, we can accelerate the relaxation of this

initial bias and reduce the trajectory length needed to obtain converged estimates.

For the equilibrium estimator shown in Fig. 23, the effect of reweighting is apparent but not qualitatively large. Iterative

reweighting improves the initial estimates but does not substantially accelerate the timescale of the convergence in our

model system.

Convergence of first-passage times (Fig. 24) and committors (Fig. 25), are substantially accelerated. Using the iterative

reweighting approach, the convergence timescale was reduced from multiple first-passage times, to roughly half a

first-passage time. This effect is more pronounced for the short-lag, where the initial state bias affects the estimates

more drastically as previously discussed.
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Figure 23: Iterative reweighting for equilibrium estimation. Initial equilibrium estimate (blue lines) and subsequent
iterative estimation (2 iterations, red lines), and reference value (black lines). Estimates use the MSM stationary
distribution based on T(S) for the trajectory lengths shown. We assumed a non-informative uniform initial distribution
of weights wi(0) = 1/42.

3.4 Practical Implementation

In the prior sections, we examine how the proposed estimators yield asymptotically unbiased estimates of observables

in the limit of an infinite number of finite-length trajectories. We now present a framework for applying these

estimators to real, finite sets of trajectories.

3.4.1 Trajectory splicing for NESS

To make unbiased estimates of nonequilibrium steady-state (NESS), it is necessary to incorporate source-sink

boundary conditions directly into the trajectories before estimating the transition matrix, as described in Sec. 3.2.5.2.

We implement this procedure by truncating trajectory points after entering the sink, and replacing them by "splicing" on

appropriate trajectory segments starting near the source, as shown in Fig. 26.

Trajectories can be spliced according to different protocols depending on the NESS of interest. The NESS is defined by

the source distribution and sink state. In our case, we wish to estimate the same mean first-passage time (MFPT) as

would be observed in a single very long trajectory with multiple FPT events. We therefore choose the "EqSurf" (or

"reactive entrance distribution"161) detailed in.101 In practice, the initial point of the spliced segment is randomly
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Figure 24: Iterative reweighting accelerates MFPT convergence. Initial MFPT estimates (dark blue line) and
subsequent iterations (dark purple to orange lines), and reference value (dashed black line). Estimates are based
on the coarse-grained Hill relation (21) using ssMSMs Tα(S) for the trajectory lengths indicated. We assumed a
non-informative uniform initial distribution of weights wi(0) = 1/42.

chosen according to the EqSurf distribution, and a segment starting from this point is randomly chosen from an initial

set of trajectories.

These spliced trajectories are then used to compute a transition matrix, with either the standard methodology or

reweighting, and NESS is estimated by computing the stationary distribution of the transition matrix. With this estimate

of NESS, and an equilibrium estimate obtained from the stationary distribution of the (reweighted or standard)

transition matrix, the ratio estimator can be used to estimate the committor as described previously in Sec. 3.2.5.3.

3.4.2 MSM reweighting

Our iterative reweighting procedure generalizes the prior suggestion by153 in two important ways:

1. We iteratively reweight until self-consistent weights are obtained.

2. We use transition matrices built from trajectories which have been spliced as needed to conform to the

appropriate BCs.

This is implemented as follows:
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Figure 25: Iterative reweighting accelerates committor convergence Initial committor estimates (dark blue lines)
and subsequent iterations (dark purple to orange lines), and reference value (dashed black line). Estimates employ the
ratio estimator (27) applied to stationary solutions of the ssMSM and MSM at the trajectory lengths indicated. We
assumed a non-informative uniform initial distribution of weights wi(0) = 1/42.

Algorithm 2 Implementation of iterative reweighting

1: Begin with a set of discretized trajectories

2: Assign uniform initial weights wi to each unique initial state, normalized by the number of fragment initial points

in that state

3: For each unique initial state m, compute a count matrix Cm using all trajectories initiated in that state.

4: repeat

5: Compute the weighted sum
∑
m wmCm of the count matrices using the respective initial state weights

6: Row-normalize the summed count matrix to obtain a transition matrix

7: Solve the transition matrix to obtain an estimate of the stationary distribution

8: Update the weights w from the estimated stationary distribution

9: until Stationary distribution estimates converge
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Figure 26: Incorporating source-sink boundary conditions into a trajectory. A trajectory can be modified to have
source-sink boundary conditions by truncating it at the point where it enters the sink state, and replacing all subsequent
points with a trajectory segment initiated on the surface of the source.

3.4.2.1 Fragments In instances where the initial data consists of a single trajectory reweighting cannot be applied

directly, as there are no other trajectories to reweight against. However, this single trajectory can be divided into

overlapping fragments, which can then be treated as independent trajectories and subsequently reweighted against one

another. This procedure is demonstrated in Fig. 27.

Even when multiple trajectories are available, dividing them into fragments may still be beneficial as a result of

increasing the number of trajectories available for reweighting.

Fragments can be used for reweighting as described in Alg. 2 simply by replacing the set of trajectories with a set of

fragments constructed from the initial set of trajectories.

3.4.3 Hyperparameter optimization

When constructing an MSM, implied timescales are typically used to identify an optimal lag time. However,

reweighted MSMs introduce an additional parameter, the fragment length, which may interact with the lag time. Since
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Figure 27: Splitting a single 5-step trajectory into 3 fragments of length 3. Splitting a single trajectory into
fragments allows reweighting to be applied to the fragments.

the optimal fragment length is not known a priori, we employ the hyperparameter optimization strategy described in

Algorithm 3 to simultaneously determine optimal values for both the fragment length and lag time.

Algorithm 3 Hyperparameter optimization strategy

1: Begin with a set of trajectories

2: Split the set of trajectories into 4 groups

3: loop

4: Choose a lag time and fragment length.

5: Construct and reweight an MSM from each trajectory group, using those parameters.

6: Estimate the equilibrium distribution for each set.

7: Compute the average set-set KL divergence between the equilibrium estimates.

8: end loop

9: Identify the optimal set of parameters, which yielded the lowest average set-set KL divergence.

Instead of optimizing for equilibrium, optimizing directly for self-consistency in the observable of interest could also be

a viable strategy. However, since the optimization involves attempting construction at different lagtimes, this requires

doing splicing in each round of optimization at the lagtime being tested, which adds computational cost. Preliminary

results did not indicate a substantial improvement in hyperparameter estimation, so we focus on optimizing for

equilibrium self-consistency.

To demonstrate a practical application of this approach, we analyze MD-like trajectories generated from a synthetic

model of the Trp-cage miniprotein using synthetic dynamics (SynD).110 Using SynD enables efficient generation of

test data that closely mirrors the complexity of MD simulation data, while providing the ability to calculate exact

reference values for observables.
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Figure 28: SynD Trp-cage energy landscape. The full SynD model has 10,000 states, which have been coarse-grained
to 100 states here for visualization. Example folded (purple) and unfolded (orange) structures are also shown.

3.4.4 Synthetic Trp-cage system details

The synthetic Trp-cage model was developed by constructing an MSM from 208 µs of MD simulation data generated

by the Shaw group,25 following prior work by Suarez and coworkers.99 This MD simulation data was featurized using

minimum residue-residue distances, excluding nearest neighbors. The featurized distances were dimensionality reduced

using VAMP97 at a 10ns lagtime. The dimensionality-reduced data was clustered and discretized using stratified

K-means clustering162 with 21 strata and 500 clusters per stratum resulting in a total of 10,500 clusters. A transition

matrix was computed from the discretized trajectories at a lagtime of 1ns. For each cluster, a representative structure

was selected at random from the trajectory frames associated with that cluster. The final SynD model is parameterized

by the transition matrix and representative structures, and its energy landscape is shown in Fig. 28.

We analyze a set of 10,000 250ns atomistic synthetic trajectories generated using this SynD model. The initial points of

the trajectories were deliberately chosen to be far from equilibrium in order to emphasize the effects of initial bias. The

fraction of points in the folded and unfolded states is shown in Fig. 30 for the initial point distribution, and for the

reference equilibrium distribution.

The synthetic trajectories were featurized and dimensionality reduced in the same manner as the original MD

trajectories. A coarser clustering was performed, using 3 strata and 10 clusters per stratum. The resulting set of 10,000

discretized trajectories was used for constructing the standard and reweighted MSMs examined in the subsequent

sections.
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3.4.5 MSM parameters

Standard MSMs were constructed at a range of times to assess the implied timescales, yielding Fig. 29. Based on this, a

lagtime of 100 was selected for the standard MSM.

For the reweighted MSM, hyperparameter optimization determined an optimal lagtime of 101 and an optimal fragment

length of 191. Given the close similarity of the optimal lagtimes identified through hyperparameter optimization and

from the implied timescales, the lagtime of 100 was also used for the reweighted MSM.
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Figure 29: Slowest two implied timescales for the standard MSM. A lagtime of 100, after the timescales plateau,
was chosen to obtain accurate estimates of the system’s kinetics.

We use the deeptime Python package163 to analyze our transition matrices, for determining implied timescales, and for

computing MFPTs.

3.5 Trajectory Analysis Results

We now examine the quality of the reweighted estimators for a finite set of data generated from the synthetic Trp-cage

system.

3.5.1 Reweighted equilibrium estimates

The standard MSM is an unbiased estimator for the equilibrium distribution only in the asymptotic, infinite-data limit.

By selecting initial points for the trajectories that deviate significantly from the true equilibrium distribution, we

amplify the effects of initial state bias in the MSM equilibrium estimates, as mentioned before.156
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The biased initial distribution in our data is compared to the true equilibrium distribution in Fig. 30. Additionally,

Fig. 30 demonstrates that the MSM estimates of the relative folded and unfolded populations partially compensate for

this initial state bias. However, applying the reweighting procedure further improves the equilibrium estimates.

The improvement in equilibrium population estimates is more pronounced in the folded state, where a larger number of

trajectories were initiated. The standard MSM estimate performs relatively worse than the reweighted estimate in the

folded state, possibly because a larger number of trajectories were initiated there, amplifying the initial bias.
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Figure 30: Comparison of equilibrium population estimates from standard and reweighted MSMs. Both MSMs
were built at a lag time of 100. The reweighted MSM used a fragment length of 191, selected via hyperparameter
optimization for maximal self-consistency of nonequilibrium steady-state as described in Sec. 3.4.3. Initial points of the
trajectories (gray) were chosen to be far from the true equilibrium (black) to emphasize the effect of initial state bias.

3.5.2 Reweighted MFPT estimates

Unbiased MFPT estimation requires applying the trajectory splicing method described in Sec. 3.4.1 before computing

the transition matrix. Consequently, we compare both the standard and reweighted MSMs with and without splicing, to

examine the effects of both the unbiased MFPT estimator and the reweighting procedure.

Fig. 31 demonstrates that the proper incorporation of boundary conditions improves MFPT estimates, particularly at

short lag times. Additionally, applying the reweighting procedure during MSM construction further refines the MFPT

estimates, with the impact being most pronounced at short lag times.

3.5.3 Reweighted committor estimates

Finally, we compare the standard first-step committor estimates derived from an MSM to the ratio-based estimates

obtained from the reweighted MSM. Since the unbiased estimator for committors necessitates solving the NESS, which
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Figure 31: Comparison of MFPT estimates from standard and reweighted MSMs, from trajectories with and
without NESS boundary conditions. Incorporating NESS boundary conditions into trajectories improves MFPT
estimates, and the reweighting procedure further enhances these estimates. Improvement is particularly pronounced at
short lags.

in turn requires trajectory splicing, we do not examine boundary conditions and reweighting separately as we did for

the MFPT in the previous section.

Although the ratio-based estimator is asymptotically unbiased, it exhibits substantial noise in practice. This increased

noise is likely attributable, at least in part, to the estimator being calculated as a ratio of two other estimated quantities.

3.6 Concluding Discussion

In this work, we examined the effects of asymptotically unbiased estimators for both equilibrium and kinetic

observables, and the ability of a self-consistent iterative reweighting approach to correct for finite-data bias.

Using exact discrete-state calculations enabled us to analytically compare estimators, sidestepping sampling concerns.

We also applied these estimators to sets of trajectories generated from a synthetic dynamics model, which allowed us to

assess their performance on data of similar complexity to MD data, but with exactly known reference quantities.

Although it has been known that standard MSMs in principle provide unbiased estimation of equilibrium

populations99,137 and also that history traceback could allow unbiased estimation of the MFPT,99,137 we believe that

unbiased estimators for the committor values of coarse-grained states were not previously available in an MSM

framework. These estimators highlight the critical importance of boundary conditions (applied before constructing the

transition matrix), which was not previously appreciated as far as we know. Furthermore, the relaxation properties of

the estimators were not previously assessed to our knowledge.
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Figure 32: Comparison of committor estimates from standard and reweighted MSMs. The standard MSM
exhibits systematic bias, reflecting the biased initial point distribution, while the reweighted MSM shows substantial
noise.

We emphasize that relaxation of estimated observables (as sliding-window averaging occurs) is not an abstract issue,

but directly impacts whether unbiased estimates can be obtained using feasible amounts of data and trajectory lengths.

We also showed that extending the reweighting idea proposed by Voelz and coworkers153 has the potential to make a

significant difference in practical unbiased estimation. Although our work relied on a discretized microscopic dynamics,

it is not difficult to see that almost identical considerations apply to continuous trajectories.

When applied to finite amounts of real trajectory data with substantial initial state bias, the reweighted estimator for

equilibrium was able to improve upon the standard MSM’s estimate. Using the correct estimator for the MFPT by

incorporating source-sink boundary conditions improved MFPT estimates at short lags for both the standard MSM and

the reweighted MSM, and reweighting significantly improved the standard MSM estimate. While the committor

estimator is theoretically asymptotically unbiased, in practice it produced noisy estimates.

The new estimators we present in this work enable unbiased estimation of kinetics from an MSM, which is not possible

with a standard MSM. Although committor estimates were noisy, the improvement in both equilibrium and MFPT

estimates suggests the reweighting approach is able to mitigate the impact of initial state bias. Combined, these

approaches provide an improved pipeline for observable estimation, which is more robust to short trajectories than a

standard MSM.

Developing strategies to mitigate noise in the committor estimator could improve its practical utility. Additionally,

applying this reweighting methodology to weighted ensemble data could substantially improve estimation of
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observables from the limited datasets typical of rare event sampling. Finally, a deeper examination and comparison of

different hyperparameter optimization heuristics could produce improve the quality and convergence of the

optimization procedure.
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4 WESTPA 2.0: High-performance upgrades for weighted ensemble simulations and

analysis of longer-timescale applications

ABSTRACT

The weighted ensemble (WE) family of methods is one of several statistical-mechanics based path

sampling strategies that can provide estimates of key observables (rate constants, pathways) using a

fraction of the time required by direct simulation methods such as molecular dynamics or

discrete-state stochastic algorithms. WE methods oversee numerous parallel trajectories using

intermittent overhead operations at fixed time intervals, enabling facile interoperability with any

dynamics engine. Here, we report on major upgrades to the WESTPA software package, an

open-source, high-performance framework that implements both basic and recently developed WE

methods. These upgrades offer substantial improvements over traditional WE. Key features of the

new WESTPA 2.0 software enhance efficiency and ease of use: an adaptive binning scheme for more

efficient surmounting of large free energy barriers, streamlined handling of large simulation datasets,

exponentially improved analysis of kinetics, and developer-friendly tools for creating new WE

methods, including a Python API and resampler module for implementing both binned and “binless”

WE strategies.

63



Note

The WESTPA 2.0 software release was the result of a substantial amount of work by many software developers from

many institutions. As one of three core maintainers, I contributed heavily to a number of components, which are

described in the following chapter. This work captures notable major contributions, although the scope of my

involvement with WESTPA has been broad.

This work was originally published in [45] and is reprinted here with permission. My contributions did not include the

work described in Sec. 4.3.3, Sec. 4.3.4, or Sec. 4.4.1.

4.1 Introduction

The field of molecular dynamics (MD) simulations of biomolecules arguably is following a trajectory that is typical of

mathematical modeling efforts: as scientific knowledge grows, models grow ever more complex and ambitious,

rendering them challenging for computation. While early MD simulations focused on single-domain small proteins,24

modern simulations have attacked ever larger complexes33,164 and even entire virus particles.165–168 This trend belies the

fact that record-setting small-protein simulations in terms of total simulation time remain limited to the ms scale on

special-purpose resources169 and to < 100 µs on typical university clusters. These limitations have motivated the
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development of numerous approaches to accelerate sampling, among which are rigorous path-sampling approaches

capable of providing unbiased kinetic and mechanistic observables.43,55,58,61,68,133,170–173

Our focus is the weighted ensemble (WE) path sampling approach,43,44 which has helped to transform what is feasible

for molecular simulations in the generation of pathways for long-timescale processes (> µs) with rigorous kinetics.

Among these simulations are notable applications, including atomically detailed simulations of protein folding,74

coupled protein folding and binding,77 protein-protein binding,174 protein-ligand unbinding,175 and the large-scale

opening of the SARS-CoV-2 spike protein.11 The latter is a significant milestone—both in system size (half a million

atoms) and timescale (seconds).11 Instrumental to the success of the above applications have been advances in not only

WE methods, but also software.11

Here, we present the next generation (version 2.0) of the most cited, open-source WE software called WESTPA

(Weighted Ensemble Simulation Toolkit with Parallelization and Analysis).176 WESTPA 2.0 is designed to further

enhance the efficiency of WE simulations with high-performance algorithms for: (i) further enhanced sampling via

restarting from reweighted trajectories, adaptive binning, and/or binless strategies, (ii) more efficient handling of large

simulation datasets, and (iii) analysis tools for estimation of first-passage-time distributions and for more efficient

estimation of rate constants. Like its predecessor, WESTPA 2.0 is a highly scalable, portable, and interoperable Python

package that embodies the full range of WE’s capabilities, including rigorous theory for any type of stochastic

dynamics (e.g., molecular dynamics and Monte Carlo simulations) that is agnostic to the model resolution.177 In

comparison to other open-source WE packages such as AWE-WQ178 and wepy,179 WESTPA is unique in its (i) high

scalability with nearly perfect scaling out to thousands of CPU cores11 and GPUs, and (ii) demonstrated ability to

interface with a variety of dynamics engines and model resolutions, including atomistic,174 coarse-grained,180

whole-cell,181 and non-spatial systems models.182,183

After a brief overview of the WE strategy (Section 4.2), we describe the organization of WESTPA 2.0 (Section 4.3) and

new analysis tools that further expand the capabilities of the software package (Section 4.4). Together, these features

greatly facilitate the execution and analysis of WE simulations of even larger systems and/or slower timescales.

4.2 Overview of the WE Path Sampling Strategy

The weighted ensemble (WE) strategy enhances the sampling of rare events (e.g., protein folding, binding, chemical

reactions) by orchestrating the periodic resampling of multiple, parallel trajectories at fixed time intervals τ

(Figure 33).43 The statistically rigorous resampling scheme maintains even coverage of configurational space by

replicating (“splitting”) trajectories that have made transitions to newly visited regions and potentially terminating

(“merging”) trajectories that have over-populated previously visited regions. The configurational space is typically

defined by a progress coordinate that is divided into bins where even coverage of this space is defined as a constant

number of trajectories occupying each bin; alternatively, trajectories may be grouped by a desired feature for “binless”

resampling schemes.184 Importantly, trajectories are assigned statistical weights that are rigorously tracked during
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Figure 33: Basic weighted ensemble protocol. As illustrated for the simulation of a protein-protein binding process,
a two-dimensional progress coordinate is divided into bins with the goal of occupying each bin with a target number of
four trajectories. Four equally weighted trajectories are initiated from the unbound state and subjected to a resampling
procedure at periodic time intervals τ : (i) to enrich for success, trajectories that make transitions to less-visited bins
are replicated to generate a target of four trajectories in those bins, splitting the weights evenly among the child
trajectories (green spheres), and (ii) to save computing time, the lowest-weight trajectories in bins that have exceeded
four trajectories are terminated, merging their weights with those of higher-weight trajectories in those bins (purple
spheres). Spheres are sized according to their statistical weights.

resampling; when trajectories are replicated in a given bin, the weights are split among child trajectories and when

trajectories are terminated in a probabilistic fashion, the weights are merged with a continued trajectory of that bin.

This rigorous tracking ensures that no bias is introduced into the ensemble dynamics, enabling direct estimates of rate

constants.177

WE simulations can be run under equilibrium or non-equilibrium steady state conditions. To maintain non-equilibrium

steady state conditions, trajectories that reach the target state are “recycled” back to the initial state, retaining the same

statistical weight.185 The advantage of equilibrium WE simulations over steady-state WE simulations is that the target

state need not be strictly defined in advance since no recycling of trajectories at the target state is applied.186 On the

other hand, steady-state WE simulations have been more efficient in yielding successful pathways and estimates of rate

constants. Equilibrium observables can be estimated from either equilibrium WE simulations or the combination of two

non-equilibrium steady-state WE simulations in opposite directions when history information is taken into account.186
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Figure 34: Reorganization of WESTPA 1.0 to WESTPA 2.0. In version 2.0, WESTPA is installed using Python and
relies on only a single environment variable such that commands can be called directly through Python. To reflect these
changes, we have updated our original suite of WESTPA tutorials for version 2.0 (https://github.com/westpa/
westpa_tutorials/tree/westpa-2.0-restruct).187,188

4.3 Organization of WESTPA 2.0

Below, we present the organization of WESTPA 2.0, beginning with code reorganization to facilitate software

development (Section 4.3.1) and then proceeding to a description of a Python API for setting up, running, and

analyzing WE simulations (Section 4.3.2); a minimal adaptive binning mapper (Section 4.3.3); a generalized resampler

module that enables the implementation of both binned and binless schemes (Section 4.3.4); and an HDF5 framework

for more efficient handling of large simulation datasets (Section 4.3.5).

4.3.1 Code reorganization to facilitate software development

The WESTPA 2.0 software is designed to facilitate the maintenance and further development of the software according

to established and emerging best practices for Python development and packaging. The code has been consolidated and

reorganized to better indicate the role of each module (Figure 34). The software can now be installed as a standard

Python package using pip or by running setup.py. The package will continue to be available through Conda via

conda-forge, which streamlines the installation process by enabling WESTPA and all software dependencies to be

installed at the same time. We have implemented automated GitHub Actions for continuous integration testing and code

quality checks using the Black Python code formatter as a pre-commit hook, alongside flake8 for non-style linting.

Templates are provided for GitHub issues and pull requests. Both user’s and developer’s guides are available on the

GitHub wiki along with Sphinx documentation of key functions with autogenerated docstrings. Further support will
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Figure 35: Comparison of workflows for setting up and running WE simulations using WESTPA 1.0 and 2.0, a
demonstration of using the Python API for WESTPA 2.0, and GPU performance of the updated API within a
cloud computing environment. (A) The Python API in WESTPA 2.0 enables a user to fully define, initialize, and
run a WESTPA simulation from within a single Python script (right panel), without needing to invoke command-line
utilities required in WESTPA 1.0 (left panel). For backwards compatibility, all original functionality provided in
version 1.0 for invoking WESTPA (e.g., w_init and w_run tools) via shell scripts remains available in WESTPA 2.0.
(B) Example of defining a custom simulation manager with the WESTPA 2.0 API (top panel), and using the newly
defined simulation manager and WESTPA 2.0 API to programmatically control and run a WE simulation (bottom
panel). Here, the WESTSimulationManager class sends work to the WESTSegmentRunner class that unpacks and
runs the scripts specified from the WESTPA config file (west.cfg). (C) Example workflow diagram from the Orion
user interface using the Python classes constructed from the internal WESTPA APIs presented in Figure 35B. Here, a
kernel (Initialize WESTPA Simulation) initializes both the WESTSimulationManager (Manage WESTPA Segments)
and the WESTSimulationRunner (Run WESTPA Segments) kernels from Figure 35, which are connected in a cycle to
manage splitting and merging. Finally, all data is exported through a Post Process and Dataset Writer kernel for final
data processing and storage. (D) Performance of the WESTPA 2.0 API using the WESTSimulationRunner class from
Figure 35 within an Amazon Web Services environment using a combination of numerous g4dn instances as a function
of wallclock time in Universal Coordinated Time (UTC) units. Here, the per-iteration scaling reaches thousands of
GPUs in just under a few hours for a test system of butanol crossing a neat POPC membrane bilayer using the WESTPA
2.0 API with the OpenMM 7.5 MD engine.189

continue to be provided through WESTPA users’ and developers’ email lists hosted on Google Groups (linked on

https://westpa.github.io).

4.3.2 Python API for setting up, running, and analysis of WE simulations

To simplify the process of setting up and running WE simulations, WESTPA 2.0 features a Python API that enables the

user to execute the relevant commands within a single Python script instead of invoking a series of command-line tools,

as previously done in WESTPA 1.0 (Figure 35a). This also provides tools for third-party developers to build and

develop WESTPA-based applications and plugins, for example, the integration of WESTPA into the cloud-based

computing platform, OpenEye Scientific’s Orion;78,190 or the history-augmented Markov state model (haMSM)
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restarting plugin (Section 4.4.2), which uses the results of a WESTPA simulation to perform analysis then restart the

simulation based on the results of that analysis.

Figure 35b provides an example of how to programmatically call the WESTPA 2.0 API from the Orion cloud platform,

which could in principle be any Python script within any supercomputing or personal computing environment. First, a

developer can write any custom simulation or work manager of their choice by subclassing or completely rewriting core

WESTPA components (top panel). Second, a workflow can be constructed by invoking a simple set of WESTPA 2.0

Python commands to perform any WE simulation (bottom panel). Typically, a user of the WESTPA 2.0 Python API

only needs a handful of API endpoints to perform a complicated simulation protocol. As an example of the power of

the simplicity of the Python API, we demonstrate how a workflow can be constructed from defined workflow kernels

(Figure 35c), and show GPU performance over wall-clock time (in Coordinated Universal Time; UTC) from a drug-like

molecule in a membrane permeability simulation (Figure 35d). Using the internal API, a user’s simulation can request

large amounts of compute resources per iteration. In this case, thousands of GPUs are requested per WE iteration for a

simulation of butanol crossing a natural membrane mimetic system

(https://github.com/westpa/westpa2_tutorials).191

To facilitate the development of custom analysis workflows in cases where more flexibility is required than the existing

w_ipa analysis tool,187 WESTPA 2.0 includes the new westpa.analysis Python API. This API provides a high-level

view of the data contained in the main WESTPA HDF5 file (“west.h5”), including the trajectory data, reducing the

overhead of writing custom analysis code in Python and doing quick, interactive analysis of trajectories (or walkers).

The westpa.analysis API is built on three core data types: Run, Iteration, and Walker. A Run is a sequence of

Iterations; an Iteration is a collection of Walkers. Key instance data can be accessed via attributes and methods.

For example, a Walker has attributes such as the statistical weight (weight), progress coordinate value (pcoords),

starting conformation (parent), and child trajectories after replication (children), and a method trace() to trace its history

(as a pure Python alternative to the w_trace tool). The API also provides facilities for retrieving and concatenating

trajectory segments. These include support for (i) type-aware concatenation of trajectory segments represented by

NumPy arrays or MDTraj trajectories, (ii) use of multiple threads to potentially increase performance when segment

retrieval is an I/O bound operation, and (iii) display of progress bars. Finally, the API provides a convenience function,

time_average(), for computing the time average of an observable over a sequence of Iterations (e.g., all or part of

a Run).

4.3.3 A minimal adaptive binning mapper

To automate the placement of bins along a chosen progress coordinate during WE simulation, we have implemented the

Minimal Adaptive Binning (MAB) scheme192 as an option in the westpa.core.binning module. The MAB scheme

positions a specified number of bins along a progress coordinate after each resampling interval τ by (1) tagging the

positions of the trailing and leading trajectories along the progress coordinate and evenly placing a specified number of

bins between these positions, and (2) tagging “bottleneck” trajectories positioned on the steepest probability gradients
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Figure 36: The minimal adaptive binning (MAB) scheme is more efficient in surmounting free energy barriers
than manual, fixed binning schemes. (A) Bin positions and trajectories after replication using the MAB scheme vs.
a manual binning scheme with the same positions of trajectories (blue circles, sized according to statistical weights)
along a chosen progress coordinate and a target of two trajectories per bin. The MAB scheme adaptively positions bins
along the progress coordinate by placing equally spaced bins (in this case, three bins, as indicated by solid vertical lines)
between the positions of the trailing and leading trajectories along with separate bins (boxes) for these trajectories and a
third trajectory in a bottleneck region (pink) along the free energy barrier. (B) Enlarged “bottle” diagrams highlighting
the bottleneck region (pink) along with relative positions and weights of trajectories for the MAB and manual binning
schemes in panel A). In contrast to the manual binning scheme where trajectories may stall in a bottleneck region, the
MAB scheme automatically detects trajectories in this region, replicating these trajectories to enrich for success in
surmounting the barrier. (C) MAB-scheme options in the westpa.core.binning module and corresponding user-defined
options in the west.cfg file. (D) Flux of a drug-like molecule (tacrine) permeating through a neat POPC membrane as
a function of molecular time using fixed binning (blue) or adaptive binning (MAB scheme) (red). Solid lines represent
mean fluxes and the shaded regions represent 95% confidence intervals. The molecular time is defined as Nτ , where N
is the number of WE iterations and τ is the fixed time interval (100 ps) of each WE iteration. Simulations were run
using WESTPA 2.0 and the OpenMM 7.5 MD engine.189 (E) Schematic of a simple recursive binning case in which
closely spaced inner bins are “nested” within a wider outer bin.
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and assigning these trajectories to their own bins (Figures 36A-B). Despite its simplicity, the MAB scheme requires less

computing time than manual, fixed binning schemes in surmounting large free energy barriers resulting in more

efficient conformational sampling and estimation of rate constants.192 To apply the MAB scheme, users specify the

MABBinMapper option along with accompanying parameters such as the number of bins in the west.cfg file

(Figure 36C).

Figure 36D illustrates the effectiveness of the MAB scheme in enhancing the efficiency of simulating the membrane

permeability of a drug-like molecule (tacrine). Relative to a fixed binning scheme, the MAB scheme results in earlier

flux of tacrine through a model cellular membrane bilayer ( 5 ns vs. 7 ns) and this flux increases more quickly,

achieving values that are two orders of magnitude higher for the duration of the test.

The MAB scheme provides a general framework for user creation of more complex adaptive binning schemes.192 Users

can now specify nested binning schemes in the west.cfg file (Figure 36E). To run WESTPA simulations under

non-equilibrium steady-state conditions (i.e. with “recycling” of trajectories that reach the target state) with the MAB

scheme, users can nest a MABBinMapper inside of a RecursiveBinMapper bin and specify a target state as the outer

bins. Multiple individual MABBinMappers can be created and placed at different locations of the outer bins using a

recursive scheme, offering further flexibility in the creation of advanced binning schemes.

4.3.4 Generalized resampler module that enables binless schemes

In the original (default) weighted-ensemble resampling scheme, trajectories are split and merged based on a predefined

set of bins.43 In WESTPA 2.0, we introduce a generalized resampler module that enables users to implement both

binned and “binless” resampling schemes, providing the flexibility to resample trajectories based on a property of

interest by defining a grouping function. While grouping on the state last visited (e.g., initial or target state) was

previously possible using the binning machinery in WESTPA 1.0193 our new resampler module provides a more general

framework for creating binless schemes by defining a group/reward function of interest, such schemes are also essential

for use with nonlinear progress coordinates that may be identified by machine learning techniques. Following others,194

the resampler module includes options for (i) specifying a minimum threshold for trajectory weights to avoid running

trajectories with inconsequentially low weights, and (ii) specifying a maximum threshold for trajectory weights to avoid

a single large-weight trajectory from dominating the sampling, increasing the number of uncorrelated successful events

that reach the target state.

As illustrated in Figure 37, the implementation of a binless scheme requires two modifications to the default WESTPA

simulation: (i) a user-provided group module containing the methods needed to process the resampling property of

interest for each trajectory walker, and (ii) updates to the west.cfg file specifying the resampling method in the

group_function keyword and the attribute in the group_arguments keyword.

We provide two examples of implementing binless schemes in the westpa-2.0-restruct branch of the

WESTPA_Tutorials GitHub repository
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Figure 37: Flowchart for implementing binless resampling schemes in WESTPA 2.0. The implementation involves
grouping trajectories by feature (using the group_function defined in the group module) before splitting and merging.
The functionality for positioning bins along a chosen progress coordinate remains available in WESTPA 2.0.

(https://github.com/westpa/westpa_tutorials/tree/westpa-2.0-restruct).188 The

basic_nacl_group_by_history example illustrates grouping of trajectory based on its “history”, i.e. a shared

parent N WE iterations back. The parameter N is specified in the keyword hist_length under the

group_arguments keyword in the west.cfg file. This WESTPA configuration file also specifies the name of the

grouping function method, group_walkers_by_history, in the group_function keyword. In the

basic_nacl_group_by_color example, trajectory walkers are tagged based on “color” according to the state last

visited. Only walkers that have the same color are merged, thereby increasing the sampling of pathways in both

directions. State definitions are declared within the group_arguments keyword in the west.cfg file.

4.3.5 HDF5 framework for more efficient handling of large simulation datasets

One major challenge of running WE simulations has been the management of the resulting large datasets, which can

amount to tens of terabytes over millions of trajectory files. To address this challenge, we have developed a framework

for storing trajectory data in a highly compressed and portable HDF5 file format. The format is derived from the

HDFReporter class implemented in the MDTraj analysis suite,195 and maintains compatibility with NGLView,196 an

iPython/Jupyter widget for interactive viewing of molecular structures and trajectories. A single HDF5 file is generated

per WE iteration, which includes a link to each trajectory file stored in the main WESTPA data file (west.h5). Thus,
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Figure 38: Demonstration of the usage of the HDF5 framework for two example systems. (A) Na+/Cl- association
simulation where Na+ (yellow sphere) and Cl- (green sphere) ions were solvated in explicit water (blue transparent
surface). The distance between the two ions serves as the progress coordinate. (B) Conformational sampling of a p53
peptide (residues 17-29) in generalized Born implicit solvent using a progress coordinate consisting of the heavy-atom
RMSD of the peptide from its MDM2-bound conformation.77 The molecular surface of the p53 peptide is rendered as a
transparent surface, with both the secondary (blue ribbon) and atomic structures overlaid. (C) Comparison of file sizes
of per-iteration HDF5 files for the Na+/Cl- association simulation as a function of the WE iteration using WESTPA 1.0
and 2.0 with the HDF5 framework. The result was obtained from three independent simulations where the solid curves
show the mean file sizes, while the light bands show the standard deviations. (D) Same comparison as panel C for a
single simulation of the p53 peptide, hence no error bars are shown. (E) Comparison of wall-clock runtimes normalized
by the number of trajectory segments per WE iteration using WESTPA 1.0 and 2.0 with the HDF5 framework option
turned on. (F) Time-evolution of the heavy-atom RMSD of the p53 peptide from its MDM2-bound conformation
by trajectories obtained using WESTPA’s analysis tools. Colors represent RMSDs obtained from different iterations.
WESTPA simulations of Na+/Cl- association and the p53 peptide were run using the OpenMM 7.5 MD engine.189
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the new HDF5 framework in WESTPA 2.0 enables users to restart a WE simulation from a single HDF5 file rather than

millions of trajectory files and simplifies data sharing as well as analysis. The dramatic reduction in the number of

trajectory files also eliminates potentially large overhead from the filesystem that results from the storage of numerous

small files. For example, a 53% overhead has been observed for a 7.5-GB dataset of 103,260 trajectory files generated

from NTL9 protein folding simulations (Figure 41), occupying 11.5 GB of actual disk storage on a Lustre filesystem.

To test the effectiveness of the HDF5 framework in reducing the amount of data storage required for WE simulations,

we applied the framework to a set of three independent WE simulations of Na+/Cl- association and one WE simulation

involving p53 peptide conformational sampling (Figures 38A-B). Our results revealed 27% and 85% average reduction

in the total size of trajectory files generated during the Na+/Cl- association and p53 peptide simulations, respectively,

relative to WESTPA 1.0. Given a fixed number of bins, the sizes of per-iteration HDF5 files were also shown to

converge as the simulation progresses (Figures 38C-D), suggesting that the storage of trajectory data by iteration not

only facilitates the management of the data but also yields files of roughly equal sizes. The difference in the reduction

efficiency that we observed between the Na+/Cl- and p53 peptide systems can be attributed to differences in the

simulation configurations including the format of the output trajectories, restart files and other factors such as the

verbosity of logging.

Our tests revealed that the additional steps introduced by the HDF5 framework for managing trajectory coordinate and

restart files did not have any significant impact on the WESTPA runtime (Figure 38E), which is normalized by the

number of trajectory segments per WE iteration given that the evolution of bin occupancies by trajectories can vary

among different runs due to the stochastic nature of the MD simulations (after 60 iterations, the WESTPA 1.0 run

occupied six more bins than the WESTPA 2.0/HDF5 run). This variation in the bin occupancy is unlikely to be affected

by the HDF5 framework since it simply manages the trajectory and restart files and does not alter how the system is

simulated. The differences in bin occupancies/total number of trajectories may also partially contribute to the large

reduction in per-iteration file sizes for the HDF5 run observed in Figure 38D of the p53 peptide. However, the majority

of this file-size reduction results from efficient HDF5 data compression of trajectory coordinates, restart, and log files.

Finally, trajectory data saved in the HDF5 files can be extracted and analyzed easily using MDTraj in combination with

our new analysis framework presented in Section 4.3.2 (Figure 38F).

4.4 Analysis Tools

WESTPA 2.0 features new analysis tools for estimating rate constants more efficiently using the distribution of “barrier

crossing” times (Section 4.4.1), accelerating convergence using a history-augmented Markov state model to reweight

trajectories (Section 4.4.2), and estimating the distribution of first passage times (Section 4.4.3).

4.4.1 The RED scheme for rate-constant estimation

To more efficiently estimate rate constants from WE simulations, we have implemented the Rates from Event Durations

(RED) scheme as an analysis tool called w_red in the WESTPA 2.0 software. The RED scheme exploits the transient
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Figure 39: The RED scheme for more efficient rate-constant estimation. (A) Schematic illustrating the RED
scheme, which incorporates the distribution of event durations as part of a correction factor for rate-constant estimates
that accounts for statistical bias toward the observation of events with short durations. (B) Application of the original
and RED schemes to estimate the associate rate constant of a protein-protein binding process involving the barnase and
barstar proteins as a function of molecular time in a WE simulation. The molecular time is defined as Nτ , where N is
the number of WE iterations and τ is the fixed time interval (20 ps) of each WE iteration. Simulations were previously
run using WESTPA 1.0 with the GROMACS 4.6.7 MD engine.197 (C) A schematic illustrating how users can generate a
dataset for calculating the RED-scheme correction factor from simulation data stored in the analysis HDF5 files and
apply the correction factor to the rate-constant estimate using the new w_red tool.

ramp-up portion of a WE simulation by incorporating the probability distribution of event durations (or “barrier

crossing” times) from a WE simulation as part of a correction factor (Figure 39A).198 The correction factor accounts for

the systematic error that results from statistical bias toward the observation of events with short durations and reweights

the event duration distribution accordingly. When applied to an atomistic WE simulation of a protein-protein binding

process, the RED scheme is >25% more efficient than the original WE scheme43 in estimating the association rate

constant (Figure 39B).198

The code for estimating rate constants using the RED scheme takes as input the assign.h5 files and direct.h5 files

generated by the w_ipa analysis tool. Users then specify in the analysis section of the west.cfg file which analysis

scheme w_red should analyze along with the initial/final states and the number of frames per iteration. Executing

w_red from the command line, will output the corrected flux estimates as a new dataset called red_flux_evolution to the

users’ existing direct.h5 file (Figure 39C). The RED rate-constant estimates can then be accessed through the Python

h5py module and plotted vs. time to assess the convergence of the estimates. To estimate uncertainties in observables

calculated from a small number of trials (i.e. number of independent WE simulations), we recommend using the

Bayesian Bootstrap approach.43,199 If it is not feasible to run multiple independent simulations with a certain system

due to either system size or the timescale of the process of interest, a user can apply a Monte Carlo bootstrapping

approach to a single simulation’s RED rate constant estimate.
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Figure 40: Workflow for constructing an haMSM from trajectories. First, the atomistic trajectories are featurized
and discretized. The flux matrix is then computed by computing fluxes between discrete states. The flux matrix is
row-normalized into a transition matrix. Estimates of steady-state populations and rate constants are obtained from
analysis of the transition matrix.200

Figure 41: Application of haMSM restarting plugin to the ms folding process of the NTL9 protein. (A) Diagram
of the haMSM restarting plugin’s functionality. (B) Example of restarting plugin functionality in accelerated convergence
of NTL9 folding rate constants from a WESTPA 2.0 simulation using the AMBER 16 MD engine.201 haMSM estimates
at restarting points are shown as dots, WE direct fluxes are shown as red lines, and a 95% credibility region from direct
WE is shown in gray. (C) Distribution of first passage times for NTL9 folding from the haMSM built at the final restart
of the simulation in Figure 41B. The weighted average of the blue FPT distribution is shown in black dashed, and the
MFPT estimate from the haMSM’s steady-state estimate is shown in green.200

4.4.2 A history-augmented Markov State Model (haMSM) restarting plugin

History-augmented Markov state models (haMSMs) provide a powerful tool for estimation of stationary distributions

and rate constants from transient, unconverged WE data.102 Thus, the approach has a similar motivation to the RED

scheme.198 In haMSM analysis instead of discretizing trajectories via the WE bins used by WESTPA, as in the

WESS/WEED reweighting plugins,185,186 a much finer and more numerous set of ’microbins’ is employed to calculate

steady-state properties with higher accuracy. These estimates, in turn, can be used to start new WE simulations from a
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steady-state estimate, accelerating convergence of the simulation.199 The new plugin provides a streamlined

implementation of the restarting protocol that runs automatically as part of a WESTPA simulation, a capability which

did not previously exist.

The Markov State Models from Weighted Ensemble (msm_we) package provides a set of analysis tools for using

typical WESTPA HDF5 output files, augmented with atomic coordinates, to construct an haMSM. A nearly typical

MSM model-building procedure83 is used (Figure 40): WE trajectories are discretized into clusters (microbins) and

transitions among microbins are analyzed. However, instead of reconstructing entire trajectories, the msm_we analysis

computes the flux matrix by taking each weighted parent/child segment pair, extracting and discretizing one frame from

each, and measuring flux between them - i.e. the weight transferred. The haMSM restarting plugin in WESTPA 2.0

makes use of the analysis tools provided by msm_we to incorporate this functionality directly into WESTPA. It manages

running a number of independent simulations, initialized from some starting configuration, and augments their output

HDF5 with the necessary atomic coordinates. Data from all independent runs are gathered and used to build a single

haMSM. Stationary probability distributions and rate constants are estimated from this haMSM. This plugin can be

used to start a set of new WE simulation runs, initialized closer to steady-state (Figure 41). The haMSM and the WE

trajectory data are used to build a library of structures and their associated steady-state weights. These are used to

initiate a new set of independent WE runs, which should start closer to steady-state and thus converge more quickly.

The process can be repeated iteratively, as shown in Figure 41A. The result of this restarting procedure is shown in

Figure 41B. For challenging systems, the quality of the haMSM will greatly affect the quality of the steady-state

estimate. A further report is forthcoming on strategies for building high-quality haMSMs.

To use this plugin, users must specify a function that ingests coordinate data and featurizes the data. Dimensionality

reduction may be performed on this featurized data. An effective choice of featurization provides a more granular

structural description of the system without including a large number of irrelevant coordinates that add noise without

adding useful information. For example, a limited subset of the full atoms such as only alpha-carbons, or even a strided

selection of the alpha carbons, may be sufficient to capture the important structural information. Choosing a

featurization based on rotation-invariant distances, such as pairwise atomic distances instead of atomic positions, can

also help capture structural fluctuations without sensitivity to large-scale motion of the entire system.

To validate convergence of the restarted simulations, a number of independent replicates of the restarting protocol

should be performed. These replicates should demonstrate both stability in flux estimates across restarts, and relatively

constant-in-time direct fluxes within the restarts. If limited to a single replicate, agreement between the haMSM flux

estimate and the direct flux should also be validated.

4.4.3 Estimating first-passage-time distributions

First passage times (FPTs) and their mean values (MFPT) are key kinetics quantities to characterize many stochastic

processes (from a macrostate to another) in chemistry and biophysics such as chemical reactions, ligand binding and

unbinding, protein folding, diffusion processes of small molecules within crowded environments. WE simulations, via
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the Hill relation, provide unbiased estimates of the mean first-passage time (MFPT) directly once steady is

reached185 or indirectly via non-Markovian haMSM analysis,186 but mathematically rigorous estimation of the FPT

distribution is not available and has been a challenge for WE simulation. Suárez and coworkers, however, have shown

that the FPT distributions estimated from haMSM models provide semi-quantitative agreement with unbiased reference

distributions in different systems.103 Details on building history-augmented MSMs are described above in Section 4.4.2

and more information can be found in the references.103,186

Here, we extend and strengthen earlier FPT distribution analysis from WE data. The original code for calculating FPT

distribution was published on a separate GitHub repository

(https://github.com/ZuckermanLab/NMpathAnalysis).202 Recently we reorganized and refactored the code in

class hierarchical structures: a base class (MatrixFPT) for calculating MFPTs and FPTs distribution using a general

transition matrix as an input parameter, and two derived classes (MarkovFPT and NonMarkovFPT) using transition

matrices from Markovian analysis and non-Markovian analysis such as haMSM in Section 4.4.2 respectively. The

updated code has been merged into the msm_we package described in Section 4.4.2 along with some updates on

building transition matrix from classic MD simulation trajectories.

The new code enables robust estimation of the FPT distribution. Figure 41C shows the non-Markovian estimation of

the FPT distribution of transitions between macrostate A and B from the WE simulation of NTL9 protein folding.

4.5 Summary

WESTPA is an open-source, high-scalable, interoperable software package for applying the weighted ensemble (WE)

strategy, which greatly increases the efficiency of simulating rare events (e.g., protein folding, protein binding) while

maintaining rigorous kinetics. The latest WESTPA release (version 2.0) is a substantial upgrade from the original

software with high-performance algorithms enabling the simulation of ever more complex systems and processes and

implementing new analysis tools. WESTPA 2.0 has also been reorganized into a more standard Python package to

facilitate code development of new WE algorithms, including binless strategies. With these features available in the

WESTPA toolbox, the WE community is well-poised to take advantage of the latest strategies for tackling major

challenges in rare-events sampling, including the identification of slow coordinates using machine learning

techniques,203,204 and the interfacing of the WE strategy with other software involving complementary rare-event

sampling strategies (e.g., OpenPathSampling,58,59 SAFFIRE,60 and ScMile61) and analysis tools (e.g., LOOS,205,206

MDAnalysis,207,208 and PyEmma104). WESTPA has also been interfaced with OpenEye Scientific’s Orion platform190

on the Amazon Web Services cloud computing facility. We hope that the above new features of WESTPA will greatly

facilitate efforts by the scientific community to tackle grand challenges in the simulation of rare events in a variety of

fields, including the molecular sciences and systems biology.
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5 Using restarting to accelerate convergence in WESTPA simulations of NTL9

ABSTRACT

Many biological processes of interest, such as protein conformational changes or ligand binding,

occur too infrequently to observe with conventional molecular dynamics. The weighted ensemble

(WE) algorithm is an efficient enhanced sampling framework that enables unbiased observation of

these rare events. Although WE has been highly successful in generating pathways for complex

systems, the slow relaxation timescales of complex biological systems demand long WE simulations

for accurate rate constant estimation. Prior work has shown that a Markov state model built from

trajectories with recycling boundary conditions, such as trajectories from steady-state WE, can

produce accurate estimates of steady-state even from transient data that has not yet relaxed. In this

work, we present an iterative pipeline for running WE, estimating steady-state, and initiating new

WE simulations from the estimated steady-state. We apply this restarting procedure to a small protein

NTL9 using both synthetic and true molecular dynamics, and show that this restarting procedure can

both accelerate relaxation to steady-state and reduce variance in rate estimates.
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5.1 Introduction

WE simulation is a powerful tool for enhancing sampling of rare events in molecular dynamics (MD) simulations and

path-sampling of biomolecular processes. While WE has shown remarkable success in efficient path sampling for

highly complex systems, obtaining accurate rate constant estimates remains challenging because of long, slow

relaxation times.

Prior work has shown that history-augmented Markov state models (haMSMs) (MSMs built from trajectories with

source-sink recycling boundary conditions) produce unbiased estimates of kinetic properties even from unconverged

WE data.74,99,102,137 Because steady-state recycling is typical in WE simulations for rate-constant estimation, haMSMs

are therefore a natural tool for analyzing slow-converging WE data.

Using an unbiased estimate of steady-state from haMSM analysis of a WE simulation, steady-state weights can be

assigned to each visited structure, and a new WE simulation can be initialized from the steady-state weighted structures.

With a sufficiently high quality haMSM, the restarted simulation will begin closer to convergence, and the overall

convergence timescale can be shortened.102 Prior work has demonstrated success in using single restarts in this way to

jump-start convergence in protein systems like NTL9 and Protein G.102

A new feature in the Weighted Ensemble Toolkit with Parallelization and Analysis (WESTPA) 2.0 software

release is a plugin for automated haMSM restarting, described in more detail in 4.4.2. Notably, this plugin enables

multiple successive restarts. If each restart brings the WE simulation closer to convergence, then multiple restarts may

compound this acceleration.

In this work, we examine the effect of this repeated restarting strategy to improve WE simulations of NTL9 folding. We

apply the repeated restarting pipeline using the WESTPA 2.0 restarting plugin, and simulate NTL9 under both

synthetic dynamics (SynD) and true MD.

5.2 Methods

We ran the restarting procedure on WE simulations of both a synthetic MD NTL9 system to assess performance, and

then on a "true" MD NTL9 system to validate the synthetic model result. Because the WE methodology is independent

of the MD propagator, we use an identical WE setup for both the synthetic and true MD systems, where the only

difference is the propagator.

5.2.1 Restarting details

In the restarting workflow, an initial set of WESTPA simulations are run consecutively. An haMSM is built from these

simulations, and calculates an estimate of the steady-state distribution. This is shown in Fig. 42. A new set of WESTPA

runs are launched, initialized using the set of all previously visited structures, weighted by their relative steady-state

weights. Although there are very many structures here, the WE algorithm immediately prunes a majority of them to

reach the target number of walkers in each bin. This process can be iteratively repeated, and is also shown in Fig. 41A.
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Figure 42: Diagram of haMSM restarting procedure. In this example, 3 runs are done within each restart. The
haMSM is constructed using the last-half data from all 3 runs, and 3 new runs are independently launched from the
haMSM steady-state estimate.

The WESTPA restarting plugin was configured to run 5 independent WE runs within each restart. Within 0.5 ns of any

of the 5 runs reaching the target state, all runs were stopped and the first restart was performed, after which restarts

were performed every 1 ns.

When building haMSMs for restarting, only data from the prior 2 restarts was used, to balance initial state bias with

using a consistent amount of data. Of this data, only the last 0.5 ns of each WE run was used. Therefore, each restart

utilized ≈ 1µs of aggregate simulation data. Analysis was done similarly to the Markov state model (MSM)

construction described above. Trajectories consisting of the first and last point of each segment in each iteration were

featurized on pairwise heavy-atom distances, excluding nearest neighbors. The featurized trajectories were

dimensionality reduced using VAMP, and only the first components which described 80% of the variance were

preserved. These were clustered using stratified clustering, with 100 clusters per WE bin. Fluxes from the WE data

were used to construct a transition matrix. The transition matrix was cleaned as described above.

When choosing initial states for the restarted WE simulation, each observed WE segment provides a structure. When

restarting, structures are weighted by dividing the steady-state probability of an MSM state amongst all the structures in

that state, proportional to the relative WE weights of the segments the structures were obtained from.

The WE setup was the same for the both the synthetic MD and true MD systems. For each, we performed 3 fully

independent replicates of this procedure.

5.2.2 Synthetic system details

We first study this procedure applied to a synthetic model of NTL9, using SynD for fast, MD-like dynamics.110,162
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Although NTL9 is a relatively simple protein, obtaining precise converged reference values for the target flux is very

difficult. SynD provides a framework for generating approximate but complex MD-like data, which can be exactly

solved to obtain references for observables. Additionally, because SynD produces data in a standard MD trajectory

format, we are able to seamlessly swap it with the true MD integrator in our pipeline, with no modifications to the

analysis or workflow other than a small change in the WESTPA configuration file.

SynD works by defining two components: a generative model, which can efficiently propagate trajectories in a

low-dimensional space; and a backmapping, which defines a transformation from the low-dimensional space to

full-coordinate MD structures. In this work, we use an MSM as the generative model, and a simple mapping of a single

representative structure for each discrete MSM state.

This synthetic model was an MSM, built from 2.5 µs of NTL9 MD simulation. The MSM was featurized on pairwise

heavy-atom distances, excluding the nearest neighbor. The featurized trajectories were dimensionality reduced using

VAMP, preserving the first 356 components which explained 85% of the variance. The dimensionality reduced

trajectories were clustered using stratified k-means, with 250 clusters per stratum (13250 total clusters), stratified across

the same RMSD bins as described in Sec. 5.2.4. This transition matrix was "cleaned" to ensure connectivity, a

procedure where sets of states that are disjoint from the largest active set are pruned and the data rediscretized. After

cleaning, 3150 states remained.

This MSM was constructed at a 10 ps lagtime, so that one step of propagation through the transition matrix is

equivalent to taking a 10 ps timestep.

Backmapping for SynD was peformed by randomly choosing a single representative structure for each haMSM state

from the simulation frames assigned to it.

This MSM is the generative model for SynD, and thus is the exact, fine-grained description of the microscopic

dynamics of our synthetic NTL9 system. The MSM built from the generated data attempts to capture the important

features of this, with coarser states and from finite data. Having an exactly-solvable description of our dynamics

enables calculation of exact reference quantities for observables.

5.2.3 MD system details

MD simulations of NTL9 were run with Amber209,210 using a 2fs timestep. Simulations were performed at 300K in

implicit solvent, with a friction coefficient set to γ = 80 ps−1. These parameters are consistent with prior MD

simulations of NTL9,102 described more in Sec. 5.2.5.

5.2.4 WE details

NTL9 restarting simulations were run using WESTPA 2.0.45 Weighted ensemble was run with a 10 ps resampling time.

The RMSD to the folded state was used as the progress coordinate. WE bin boundaries were spaced to provide good

resolution in the transition region with 52 active bins An initial bin boundary at and RMSD of 1.0 nm delimited the
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target state, then bin boundaries were uniformly spaced at 0.1 nm increments between 1.1 nm and 4.5 nm, 0.2 nm

increments between 4.6 nm and 6.4 nm, and 0.3 nm increments between 6.6 nm and the basis state boundary at 9.6 nm.

We used a target of 4 walkers/bin.

5.2.5 Best-estimate "reference" WE data

As mentioned above, obtaining precise reference values of rate constants even for simple proteins like NTL9 is

extremely challenging. Previously, 30 WE simulations of this system were carried out74 for a total of 252 µs of

aggregate simulation time. We take this data as our "best estimate" reference, although it is still relatively noisy.

Additionally, we bootstrap sets of trajectories from this dataset to match the amount of aggregate simulation time used

in the haMSM restarting pipeline to provide a direct comparison of the performance between standard WE and the

restarting procedure. Both are shown in Fig. 44.

5.2.6 MSM estimation from WE data

To estimate an MSM from WE data, we determine transitions from each WE walker’s initial and final points. In

contrast to the typical MSM approach of building a count matrix which enumerates the number of observed transitions

between each pair of states, we instead construct a flux matrix F.102,103 The entries of the flux matrix Fi→j encode the

total weight of WE walkers which transitioned from state i to j after one WE iteration. This flux matrix is normalized

to obtain a transition matrix T. Because our WE is run with steady-state recycling boundary conditions, an MSM built

from this trajectory ensemble in fact produces an haMSM.74,99,137

Using the transition matrix T, we estimate the steady-state distribution Π by solving the stationarity condition

ΠT = Π. (32)

These steady-state weights are used to assign weights to structures, as described above.

5.3 Synthetic system results

Because the dynamics of the synthetic system are exactly solvable, we can obtain an exact reference for not only the

steady-state target flux value, but also an exact reference for the convergence of the flux to steady-state as the WE

simulation runs.

In this system, the restarting procedure substantially accelerates convergence to steady-state compared to the reference

values for standard WE, as shown in Fig. 43. The correct converged steady-state is quickly obtained by all three

replicates within 15 ns of WE simulation time, compared to standard WE requiring over 60 ns of simulation time to

converge.
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Figure 43: Flux convergence from WE simulation of the synthetic NTL9 system, with haMSM restarting. Exact
relaxation is shown as the black curve, the steady-state flux as the black horizontal line, and the three replicates as
the colorful lines. The exactly solved relaxation is a slow process, as described previously in Fig. 5. The restarting
procedure significantly accelerates convergence of the target flux to steady-state compared to standard WE, and correctly
recapitulates the reference flux.

5.4 Preliminary MD results

When applied to the true MD system shown in Fig. 44, the restarting protocol appears to overestimate the actual

converged target flux. Although there are potential methods for correcting this overestimation, simulations

implementing them are not yet complete. We comment on this issue further in Sec. 5.5.

Despite this overestimation, however, all three replicates produce flux estimates in remarkably consistent agreement

with each other. The three replicates of the restarting procedure are fully independent, yet produce nearly identical

converged flux estimates. This is in stark contrast to the confidence interval shown for flux estimates from independent

WE simulations using the same amount of data, which span many orders of magnitude. This suggests that if the

overestimation can be addressed, this strategy may provide major variance reduction over standard WE in addition to

improved convergence.

5.5 Concluding Discussion

In this work, we extended prior work on accelerating convergence of WE simulations through restarting from haMSM

estimates of steady-state, produced from unconverged data. We demonstrated a significant improvement in convergence

in a complex, MD-like synthetic representation of NTL9. When applied to a true MD simulation of NTL9, we observed

a substantial variance reduction, but also an overestimation in the final converged flux estimates. Although the synthetic
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Figure 44: Flux convergence from WE simulation of the NTL9 MD system, with haMSM restarting. Shown are
a 95% CI from 252 µs of aggregate simulation time over 30 long WE runs as the purple shaded region; a 95% CI
computed by bootstrapping the same amount of data as was used in the restarting runs from the 30 long runs, shown as
the purple region; and the median flux of the 30 long runs, shown as the black dashed line. The colorful dots indicate
the target flux estimates from the haMSM at each restart. Each estimate is labeled with the amount of aggregate MD
simulation data used. Although the restarted simulations quickly converge to extremely similar values, they appear to
overestimate the target flux.

system showed the possibility for improvement in WE, the question remains of the practicality of attaining this with

limited amounts of data typical of the complex systems where accelerated convergence would be most impactful.

To diagnose the cause of overestimation, we reproduced it in the synthetic system by using a very coarse discretization

for the restart haMSM construction which produces a poor quality haMSM. A poor quality haMSM produces a poor

quality steady-state estimate for the restarted distribution. Restarting from a bad steady-state estimate introduces some

additional relaxation to the true steady-state.

We were also able to reproduce the overestimation in the synthetic model by restarting very frequently. If the haMSM

does not yet have sufficient data to produce a reasonable steady-state estimate, then frequent restarting interrupts the

relaxation to the true steady-state, and effectively periodically drives the system out of steady-state. Further simulations

using longer restart intervals are currently in progress.

Together with the synthetic result, this suggests that the overestimation in the true MD system is likely a result of

deficiencies in the haMSM estimation from our data, and that the procedure requires a sufficient quality haMSM to

practically improve convergence without introducing bias.

A major technical limitation of our current methodology is that Markov State Models from Weighted Ensemble

(msm_we) software currently only supports haMSM construction from WE data at a lagtime equal to a single WE
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resampling interval. Another possible avenue for improving practical estimates of steady-state could be incorporating

the reweighting discussed in Sec. 3 into the haMSM construction pipeline.
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6 Conclusion

Molecular dynamics (MD) simulations are a powerful tool for studying biomolecular systems through detailed,

high-resolution "movies" of their dynamics. While the level of detail MD provides makes it a unique tool, efficiently

generating and accurately analyzing MD data remains challenging. The research presented in this dissertation has

explored solutions to these challenges, through a range of approaches.

6.1 Synthetic Dynamics

A key challenge in developing new analysis methods is validation on systems with well-known references for

measurable physical quantities. To trust that a methodology is sound, it must be able to reproduce known results. In

practice though, test systems where references are precisely known and test systems with complexity similar to

atomistic MD systems are often exclusive. Thus, if an analysis can precisely reproduce reference observables for a

simple toy model, questions remain about scalability to realistic levels of complexity; but if an analysis can process

large datasets from complex systems, assessing the quality of its estimates may be difficult.

We have already seen major benefits of a synthetic approach in our own workflows, where using synthetic dynamics

(SynD) has shortened development timelines for some pipelines from weeks to under a day. Given the generality of

SynD as an approach and the successes we have already experienced, we are excited by the myriad potential

applications for it. In Chapter 2 we present the SynD workflow and a software implementation which provide extremely

fast generation of approximate, but MD-like trajectory data, with exactly solvable reference quantities. Although

methods for efficiently approximating dynamics have been previously developed, SynD is novel in both flexibility and

ease of use. We demonstrate efficiently generating microsecond-timescale datasets exhibiting complex dynamics in

seconds on a conventional laptop, which would take weeks on a supercomputer with standard MD. This new workflow

enables a researcher working on a new method to rapidly test a range of parameters and validate it on a SynD model,

before investing significant time and resources in scaling to a true MD system.

While we present SynD as a method for propagating trajectories using Markovian dynamics, the methodology is

broadly applicable to other generative models. The software implementation of SynD is built for flexibility in this

respect, and can be easily extended to use other generative models. More complex generative models could improve the

quality of the dynamics, and more closely mirror true MD.

SynD also suggests some other interesting use cases. Our SynD workflow generates discrete trajectories, and converts

them to atomistic trajectories by mapping discrete states to molecular structures. The backmapping we describe in our

work assigns a single molecular structure to each discrete state of the SynD’s generative model. A limitation of this

approach is that generated output data can only ever contain structures that were used to build the SynD model.

However, different approaches to backmapping could extend SynD to generate out-of-sample structures. For example,

perturbations could be applied to output structures to modify atomic positions, while maintaining physical constraints.
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Under our backmapping framework, the unmapped discrete trajectory and the mapping together provide a compressed

representation of the atomistic trajectory. Practically, this allows a reduction in filesize that scales with the number of

atoms — for a 148-atom representation of the Trp-cage miniprotein, we observed a reduction in filesize for a 208 µs

trajectory from ≈ 750MB to ≈ 400KB, a nearly 2,000x reduction in filesize. The ability to use SynD as a highly

efficient lossy compression algorithm suggests other possible use cases. For example, many tutorials for MD analysis

toolkits currently must choose between distributing small datasets from simple systems, which may not be interesting

case studies; or distributing datasets with very large filesizes for more complex systems, which may be more interesting

but difficult to store and transfer. Instead, a very small SynD compressed trajectory could be distributed, with similar

complexity to MD data from a large realistic system, but with orders of magnitude smaller filesizes.

Another major benefit of SynD is the ability to package the entire generative SynD model and backmapping as a small,

easily distributable file. With integration of SynD propagators into tools like Weighted Ensemble Toolkit with

Parallelization and Analysis (WESTPA), this makes it very easy to switch between different underlying systems. A

major milestone for wider SynD adoption could be the development of a central, public database, where researchers can

upload their prebuilt SynD models. Other researchers could then easily validate against a large set of diverse models,

with much less work than constructing a new MD simulation.

6.2 Reweighting

The difficulty of performing MD simulations which thoroughly sample the complex behavior of biomolecular systems

makes accurate estimation of observables challenging. In practice, estimation of a quantity like equilibrium populations

or the first-passage time is often biased by limited data.

However, we have shown that a relatively simple change to the underlying data along with iterative refinement of the

model can provide high-quality, mathematically correct estimates of observables, which could not be otherwise

obtained. In Chapter 3, we describe our approach for reducing bias in observables estimated from MD data. While

conventional Markov state models (MSMs) are a popular tool for analyzing MD simulation data, fundamental

limitations in their construction prevent unbiased estimation of kinetics. We show that proper treatment of boundary

conditions is critical for unbiased estimates, and derive novel estimators for the mean first-passage time (MFPT) and

committor. These provide a powerful extension to the capabilities of MSMs, and only require modification of the input

trajectories to include proper boundary conditions. It is worth emphasizing again that this simple modification to the

dataset, before model-building, provides a significant improvement in estimating observables.

Although these estimators are only generally unbiased in the asymptotic limit of infinite data, we show that applying an

iterative reweighting procedure substantially reduces the amount of data necessary to produce unbiased estimates. With

these, we show that high quality unbiased estimates can be obtained using realistically attainable amounts of data. This

has potential to significantly improve the quality of MSM estimates that are possible with typical datasets, without

requiring vast computational resources.
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While this approach already demonstrates promising results, several steps of the workflow are still ripe for

improvement. Because we focus our efforts on improvements elsewhere in the workflow, our MSM construction builds

transition matrices using normalized count matrices from the trajectories. Applying maximum-likelihood or Bayesian

estimation of the transition matrices could improve estimates.

Additionally, hyperparameter selection for our reweighting approach remains challenging. Our MSM construction

pipeline introduces the use of fragments, short overlapping segments which can be analyzed and reweighted as

independent trajectories. However, the fragment length is a new hyperparameter which is not yet well-understood,

particularly in combination with the MSM lag time. Our present approach identifies an optimal choice by splitting up

the initial dataset into groups, doing a hyperparameter sweep over a range of lag times and fragment lengths, and

choosing the values that produce most self-consistent estimates of an observables across the groups. Future work could

better explain the role of the fragment length parameter. Additionally, new hyperparameter optimization approaches

could compare optimization for self-consistency of different observables to examine whether, for example, optimizing

for self-consistency in equilibrium versus nonequilibrium steady-state (NESS) produces better results.

6.3 Weighted Ensemble and Restarting

MD simulations have a critical limitation in their ability to access long timescales at which many interesting biological

processes take place. We have shown that a pipeline combining weighted ensemble (WE) enhanced sampling with

history-augmented Markov state model (haMSM) estimation can address this limitation and drastically reduce the

amount of simulation needed for accurate rate estimation.

Enhanced sampling methods like WE, described in Chapter. 4, address this shortcoming by more efficiently focusing

computational resources. We extend this in Chapter. 5 by implementing a procedure for accelerating relaxation of initial

transients, to enable accurate rate-constant estimation from shorter WE simulations. Our iterative pipeline for restarting

WE simulations using estimates of steady-state from the transient shows both an improvement in variance and in

relaxation times.

Using SynD, we have validated the foundation of this approach, and showed that it provides substantially faster

relaxation than standard WE. This allows accurate rate constant measurements from a fraction of the data standard WE

would require. Additionally, we have shown that in a true MD system, rate constant estimates from restarting provides a

massive reduction in variance over estimates from independent simulations.

Challenges remain in moving beyond SynD to apply this method to true MD simulation data. In practice, we observe

overestimation of the steady-state from the haMSMs. We were able to replicate this overestimation using SynD systems

in two separate ways. First, we were able to introduce overestimation into SynD restarting by reducing the quality of

the haMSMs used to estimate steady-state. Next, we reproduced it by shortening the restarting interval. Because

steady-state estimates from haMSMs built with finite data are imperfect, there is some relaxation after the restart, which

grows longer for worse steady-state estimates. Restarting too quickly prevents this relaxation, introducing a bias.
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Therefore, rather than showing a fundamental issue with the restarting procedure, this highlights the difficulty of

constructing high-quality haMSMs from realistic datasets.

Fortunately, our prior work on reweighting in Chapter. 3 addresses a similar limitation. Applying the iterative

reweighting procedure to the haMSMs used for restarting could substantially improve their quality, and eliminate this

overestimation.

Our pipeline for constructing haMSMs from WE data also faces a significant limitation, as it does not support using lag

times longer than one WE resampling period. Extending the Markov State Models from Weighted Ensemble

(msm_we) software to support construction of flux matrices from WE data at different lagtimes is likely to substantially

improve the quality of steady-state estimates, and should also mitigate this overestimation. Additionally, a longer

interval between restarts should also mitigate this bias, as it gives more time for relaxation of transients immediately

after a restart.

6.4 Closing Remarks on the Role of Software in Research

The advancement of science is a collaborative endeavor that brings together theory, computation, and experiment. In

this work, we have explored the critical role of theoretical and computational methods in improving our ability to study

biomolecular systems. We have showed results which demonstrate significant improvements in practical analysis of

realistic datasets.

Effective computational research, however, must reach beyond derivation of new methodologies and algorithms.

Embracing the collaborative nature of science means facilitating adoption and usage of new methodologies.

Democratization of computational tools, and accessibility to researchers outside of domain experts can lead to

transformative, novel applications. The recent advances in AI tools, for example, led to the development of AlphaFold,

a groundbreaking tool for protein structure prediction. In this spirit, it is not enough to design methods; we must also

facilitate application and adoption.

In this work, we have not only developed innovative techniques, but we have maintained all throughout a focus on

building robust, accessible tools around these methods. We have ensured that our contributions can be easily integrated

into workflows of other researchers throughout the field, working on different problems. All the work developed in this

dissertation is accompanied by a user-friendly software library, thorough documentation, and practical examples. It is

our hope that our emphasis on documentation, tutorials, and open-source distribution of our software reflects our

commitment to a collaborative scientific community.

We sincerely hope that the methods and tools presented in this dissertation will be valuable resources for advancing our

understanding of biology. Contributing to the progress of this exciting and dynamic field has been an immense

privilege, and we look forward with anticipation to seeing the continued broader impact of this work.
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I. Kenney, and O. Beckstein, “MDAnalysis: A python package for the rapid analysis of molecular dynamics

simulations,” in Proceedings of the Python in Science Conference, SciPy, 2016. DOI:

10.25080/majora-629e541a-00e. [Online]. Available:

https://doi.org/10.25080%2Fmajora-629e541a-00e.

[209] D. A. Case, H. M. Aktulga, K. Belfon, I. Y. Ben-Shalom, J. T. Berryman, S. R. Brozell, D. S. Cerutti,

I. Cheatham T. E., G. A. Cisneros, V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, G. Giambasu, M. K. Gilson,

H. Gohlke, A. W. Goetz, R. Harris, S. Izadi, S. A. Izmailov, K. Kasavajhala, M. C. Kaymak, E. King,

A. Kovalenko, T. Kurtzman, T. S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, M. Machado,

V. Man, M. Manathunga, K. M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, K. A. O’Hearn,

A. Onufriev, F. Pan, S. Pantano, R. Qi, A. Rahnamoun, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo,

A. Shajan, J. Shen, C. L. Simmerling, N. R. Skrynnikov, J. Smith, J. Swails, R. C. Walker, J. Wang, J. Wang,

H. Wei, R. M. Wolf, X. Wu, Y. Xiong, Y. Xue, D. M. York, S. Zhao, and P. A. Kollman, Amber 2022, San

Francisco, 2022.

[210] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang,

and R. J. Woods, “The Amber biomolecular simulation programs,” Journal of Computational Chemistry,

vol. 26, no. 16, pp. 1668–1688, 2005, ISSN: 0192-8651. DOI: 10.1002/jcc.20290.

112

https://doi.org/10.25080/majora-629e541a-00e
https://doi.org/10.25080%2Fmajora-629e541a-00e
https://doi.org/10.1002/jcc.20290


Appendices

113



A Microscopic transition matrix
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Figure A.1: Heatmap of the microscopic transition matrix P. Microstates at the left and right boundary (i.e.
microstates 1 and 42) have a 0.75 self-transition probability, and 0.25 transition probability to the neighbor. Microstates
2 and 41 have a 0.5 self-transition probability, and 0.25 transition probability to each neighbor. A barrier is introduced
by giving all other microstates a 0.5 self-transition probability, a 0.24 transition probability to the adjacent microstate
closer to the middle of the system, and 0.26 transition probability to the adjacent microstate away from the middle.
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We present two algorithms by which a set of short, unbiased trajectories can be iteratively
reweighted to obtain various observables. The first algorithm estimates the stationary (steady state)
distribution of a system by iteratively reweighting the trajectories based on the average probability
in each state. The algorithm applies to equilibrium or non-equilibrium steady states, exploiting the
‘left’ stationarity of the distribution under dynamics – i.e., in a discrete setting, when the column
vector of probabilities is multiplied by the transition matrix expressed as a left stochastic matrix.
The second procedure relies on the ‘right’ stationarity of the committor (splitting probability) ex-
pressed as a row vector. The algorithms are unbiased, do not rely on computing transition matrices,
and make no Markov assumption about discretized states. Here, we apply the procedures to a
one-dimensional double-well potential, and to a 208µs atomistic Trp-cage folding trajectory from
D.E. Shaw Research.

I. INTRODUCTION

The inability of molecular dynamics (MD) simulation
to reach timescales pertinent to complex phenomena in
biology and other fields [1–5] has motivated the devel-
opment of numerous methods to enhance sampling in
both equilibrium [6–8] and non-equilibrium [9–13] con-
texts. Markov state models (MSMs) effectively “stitch
together” shorter trajectories dispersed in configuration
space [14, 15] from which both equilibrium and non-
equilibrium observables can be computed – e.g., state
populations or kinetic properties. MSMs can be applied
to transition phenomena even when no full, continuous
trajectory of a particular transition is present in the orig-
inal set of trajectories.

This article presents a simple, alternative method
for reweighting MSM-like trajectory sets that provides
both equilibrium and non-equilibrium information with-
out bias. The essence of the strategy is to exploit the
stationarity of a distribution or property to enable the
calculation of that observable in a self-consistent way via
iteration. The key ingredient is the use of continuous
trajectories as the sole basis for analysis, intrinsically
accounting for all properties of the underlying dynam-
ics. Iteration is employed to reach a fully self-consistent
stationary solution. Trajectory reweighting has previ-
ously been applied to biased trajectories (e.g., [16]) as
well as to unbiased trajectories in MSM construction, al-
beit without self-consistent iteration and under a Markov
assumption [17].

Observables that can be computed through the it-
erative approach, without any Markov assumption or
lag-time limitation, include the equilibrium distribu-
tion, the distribution in a non-equilibrium steady state

∗ copperma@ohsu.edu
† zuckermd@ohsu.edu

(NESS), the committor or splitting probability and the
mean first-passage time (MFPT) associated with arbi-
trary macrostates. The only error in the procedures de-
scribed below, besides statistical noise, arises from the
discretization of phase space into bins. We emphasize
that no Markov assumption is made.

The approach can be understood in the context of es-
timating the equilibrium distribution based on a set of
unbiased trajectories initiated from an arbitrary set of
initial configurations, presumably out of equilibrium. For
example, the trajectories may be initiated from an ap-
proximately uniform distribution in the space of some
coordinate of interest. We assume that a classification
of the space has already been performed into bins whose
populations are a proxy for the distribution. Given that
the equilibrium distribution does not change in time, if
we can assign suitable weights (probabilities) to each of
a set of trajectories – such that the weighted distribu-
tion is in equilibrium based on only the initial points of
each trajectory – that distribution must remain in equi-
librium thereafter. Although the weights are unknown in
advance, they can be set to arbitrary initial values and
refined by iteration.

Continuing the equilibrium example, imagine that each
trajectory is initially assigned an equal weight, with all
weights summing to one. Now each bin can be moni-
tored over time, and the average weight in each bin is
recorded. This average weight is the first non-trivial es-
timate of the equilibrium probability in the bin. Physi-
cally, bins that attract more trajectories will be assigned
larger weights as expected. In each iteration, the time-
averaged probability from the prior iteration is divided
among the trajectories which start in that bin. Time-
averaged bin probabilities are recomputed and trajectory
weights reassigned at each iteration until convergence to
steady values. This procedure is described in Algorithm
1.

The same procedure can be applied for non-equilibrium

ar
X

iv
:2

00
6.

09
45

1v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
6 

Ju
n 

20
20



2

reweighting. To obtain the NESS distribution, external
and/or boundary conditions must be properly accounted
for in preparing trajectories for analysis (Algorithm 0),
but this is not a significant complication. With the NESS
distribution, the MFPT can be obtained from the Hill
relation [18, 19].

The committor, also known as the splitting probability
[18, 20–22], exhibits a different type of stationarity [23]
and is estimated by a different but equally simple type
of iterative procedure that averages over trajectories in-
stead of bins (Algorithm 2). Defined as the probability to
proceed from a designated initial phase point to a “tar-
get” macrostate prior to reaching a different “off-target”
macrostate, the committor can be naively estimated by
the fraction of trajectories from the initial point that first
reach the target. In an iterative approach operating in
the space of bins, we can exploit the committor’s sta-
tionarity: at any fixed time, the average committor of
all downstream trajectories emanating from a given bin
must match that bin’s committor value. Procedurally,
each bin not in the target state is assigned a trivial ini-
tial committor estimate of, say, zero. A bin’s estimate is
updated at each iteration as the average over every time
step of every trajectory after visiting the bin, with the
“boundary conditions” that all time points after enter-
ing the target macrostate are evaluated as one or, after
entering the off-target state, as zero.

We emphasize that these trajectory averaging and
reweighting processes make no Markov assumption and
are unbiased at the shortest available time discretization.
As with any method, however, the approach is limited by
the amount of data which in turn will dictate the sizes of
bins which can be used. More data enables smaller bins
and higher phase-space resolution. Because the dynam-
ics of individual trajectories continually update observ-
able estimates, the discretization error may be less would
naively be expected from spatial discretization.

II. ALGORITHMS

A. Trajectory preparation

In order to demonstrate our algorithms, we extracted
a set of trajectory fragments from one or more long tra-
jectories according to Algorithm 0. Trajectory fragments
may be of fixed length, or variable length if strict absorb-
ing boundary conditions are used. Source-sink boundary
conditions will use spliced fixed-length trajectories.

The analyses performed below are most easily under-
stood based on trajectory fragments sorted by the start-
ing configuration (phase-space point) of each fragment.
These fragments are “copied” from the original long tra-
jectory and hence may have overlapping sequences. For
example, fragment 1 may consist of time steps 2 - 101 of
the original trajectory, and fragment 2 might be steps 7
- 106. Correlations are thus introduced, but we estimate
statistical uncertainty using fully independent datasets.

Algorithm 0 Trajectory fragment selection

1: Begin with one or more trajectories, discretized according
to a set of bins i (or “microstates” in MSM terminology).
For simplicity, we will assume a single long trajectory is
used with t denoting the discrete time index.

2: For each bin i, generate a list of possible start points
ts which are the time indices of every configuration or
phase point within that bin. The set of trajectory starts
in bin i – denoted {ts}i – is not indexed to avoid complex
notation. That is, each of Ki start points indexed by
k = 1 · · ·Ki in bin i is fully denoted as ts(i, k)

3: if no absorbing (‘open’) boundaries then
4: The fragments associated with each bin i consist of

time points ts, ts + 1, . . . , ts +M − 1 for each start point
in the set {ts}i. These fixed-length fragments each have
M steps.

5: else if strict absorbing boundary conditions then
6: Two macrostates consisting of sets of bins should be

defined, such that no bin is in more than one macrostate
and some bins are “intermediate” – i.e., not in either
macrostate.

7: The fragments will start only from intermediate bins
and consist of time points ts, ts + 1, ts + 2, . . . for each
start point ts. Each fragment is terminated upon reaching
either macrostate or at the end of the original trajectory,
whichever comes first.

8: else if source-sink boundary conditions then
9: Two macrostates consisting of sets of bins should be

defined, such that no bin is in more than one macrostate
and some bins are “intermediate” – i.e., not in either
macrostate. One macrostate will be the sink (a.k.a. tar-
get) and the other is the source state.

10: Define a time-independent source distribution γ over
source bins such that

∑
j γj = 1 with γj ≥ 0.

11: The fragments initially consist of time points ts, ts +
1, ts +2, . . . ts +M−1 for each start point ts. If the target
is reached prior to the final point, let tt be the time the
target is first reached.

12: Fragments reaching the target are spliced to fragments
starting at the source. That is, to make a full segment of
M steps, the initial list ts, ts+1, ts+2, . . . tt−1 is concate-
nated with a trajectory segment from a source starting
point ts(j, k) with j ∈ source; this segment is re-indexed
to start at tt. The particular segment is chosen uniformly
among the ts for bin j after j is selected according to γ.

13: end if

B. Equilibrium distribution

Trajectories can be reweighted into the equilibrium
distribution. Our procedure can be seen as a non-
Markovian, fully self-consistent extension of the single-
iteration trajectory reweighting recently proposed in a
Markov context [17]. Reweighting is an old idea [24]
which is limited by the well-known overlap problem [4].
Overlap remains a concern in any reweighting, but the
present strategy uses additional information ignored in
many other methods, namely, the dynamical informa-
tion intrinsic to trajectories. Algorithm 1 infers a con-
formational distribution consistent with the underlying
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continuous dynamics without any Markov assumption.
Discretization necessarily introduces some error but be-
cause continuous trajectories evolve irrespective of bin
boundaries, this error may be reduced. That is, trajec-
tory dynamics automatically account for intra-bin land-
scape features.

Algorithm 1 uses stationarity of the equilibrium distri-
bution to re-assign weights of trajectory fragments in a
self-consistent manner. In every iteration, the weight of
the fragments starting in a given bin is replaced by the
time-averaged weight in the bin. Stationarity is enforced
in a self-consistent way because the initial bin probability
must match the time average.

Algorithm 1 Stationary distribution calculation

1: Prepare a set of fixed-length trajectory fragments with
open boundary conditions (for equilibrium) or with
source-sink conditions (for NESS) following Algorithm 0.
Bins not visited by any fragment will be assigned zero
probability. Note that sink/target bins have zero proba-
bility by definition.

2: Assign each trajectory fragment an initial weight. Initial
weights are arbitrary, so long as total weight (probability)
sums to 1, a condition which is preserved at every time
step in every iteration. Here we assign initial weights so
that each bin has equal total initial weight, which is evenly
divided among fragments starting in the bin.

3: repeat
4: for all bins do
5: Sum the weights of all fragments in the bin at each

time
6: The averaged-over-time bin weight is divided

equally among trajectory fragments starting in that bin
for the next iteration.

7: end for
8: until A user-defined convergence threshold is met
9: The entire iterative procedure can be repeated for tra-

jectory sets generated by progressively trimming the first
time-point from each trajectory (to decrease initial state
bias), creating a basis for a final estimate averaged over
trimmed trajectory sets. This protocol was not used to
generate the data shown.

10: For NESS, the entire iterative procedure can be repeated
for trajectory sets generated by progressively trimming
the first time-point from each trajectory (to decrease ini-
tial state bias), creating a basis for a final estimate av-
eraged over trimmed trajectory sets. Additionally the
source-sink splicing of Algorithm

C. Non-equilibrium steady-state

The probability distribution of a non-equilibrium
steady state (NESS) in the same way (Algorithm 1)
except that suitable boundary conditions must be en-
forced. We focus here on a source-sink NESS because
that is most pertinent to rate-constant estimation. Such
a NESS requires defining (i) the absorbing source and
sink macrostates, which shall consist strictly of non-
overlapping sets of bins and (ii) the source, or feedback,

distribution γ which describes how probability reaching
the sink macrostate is redistributed at the source [25].
In a discrete picture, we let γi be the fractional prob-
ability to be initiated (or fed back) to bin i, such that∑

i γi = 1. No bin with γi > 0 can be part of the sink.
See Algorithm 0.

As a technical aside, we note that, somewhat confus-
ingly, bins with positive γ values do not in themselves
necessarily define the source macrostate. For example,
in the important special case of the source-sink NESS
which maintains an equilibrium distribution within the
source macrostate (only), bins not on the surface of the
macrostate strictly require γ = 0 [26]. In any case, our
approach applies to arbitrary choices of the source dis-
tribution γ.

D. Committor calculation

The committor is not a probability distribution per
se and exhibits a different kind of stationarity that has
been noted previously [20–23]. The committor Π(x) for a
phase-space point x is defined to be the probability of tra-
jectories initiated from x reaching a ‘target’ macrostate
before reaching a different ‘initial’ macrostate, both of
which can be arbitrarily defined if non-overlapping. We
assume dynamics are stochastic and Markovian in the
continuous phase space. Discrete bins used for calcu-
lation in the algorithm are not assumed to behave as
Markov states.

The iterative algorithm can be understood by first con-
sidering ‘brute force’ committor estimation by initiating
a large number, N , of trajectories from x and comput-
ing the fraction which reach the target first. However,
instead of waiting for all such trajectories to be absorbed
at one state or the other, we can imagine examining the
distribution of phase points p(xt) at finite time t which
evolved from x – that is, from trajectories initiated at
t = 0 from x with absorbing boundary conditions at ini-
tial and target states. If t is sufficiently short, such that
no trajectories have yet been absorbed by either state,
the expected fraction that eventually will be absorbed to
the target by definition is given by the average committor
of current phase points xt [23]. That is, with trajectories
indexed by i, the committor can be estimated by

Π(x)
.
= (1/N)

∑

i

Π(xt
i) . (1)

This same expression can be used at longer t when some
trajectories have been absorbed, if we introduce the ‘over-
loaded’ definitions Π(xt

i) ≡ 1 if trajectory i was absorbed
to the target and zero if absorbed to the initial state.
With this adjustment, the estimator (1) is applicable at
any time t.

Algorithm 2 implements the preceding formulation us-
ing an iterative process for self-consistency. Because the
committor average is stationary, we can use (1) at any
time or by averaging over all times. Here, committor
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values are updated based on following trajectories pass-
ing through a given phase point, approximated as a dis-
crete bin, and calculating time averages of all the visited
‘downstream’ bins. By contrast, distribution estimation
in Algorithm 1 averages over time for each bin separately,
and do not follow trajectories. For convenience, trajecto-
ries which reach a macrostate are ‘padded’ with commit-
tor values of zero or one depending on the macrostate.

Once again, we expect a slight discretization error but
using trajectories leverages the maximum possible infor-
mation about intra-bin dynamics. Bins are not assumed
to exhibit Markovian behavior.

Algorithm 2 Committor calculation

1: Begin with a set of absorbing boundary condition trajec-
tory fragments, as described in Algorithm 0

2: Assign each bin within the target macrostate a committor
of 1. All other bins are initialized to 0, including in the
initial macrostate.

3: for all trajectory fragments do
4: if fragment reaches target or initial macrostate then
5: Pad the trajectory: Assign fixed committor values

of 1 or 0, respectively, to all time points starting from the
absorbing event and ending at the chosen fixed length M .

6: end if
7: end for
8: repeat
9: for all bins do

10: if bin is within a macrostate then
11: Do not change committor - it remains 0 or 1
12: else
13: The next estimated committor value is the av-

erage committor over all bins subsequently visited by all
trajectories starting in this bin

14: end if
15: end for
16: until Change between iterations is below user-defined

convergence threshold

III. SYSTEMS AND RESULTS

A. Systems

The iterative equilibrium distribution estimation tech-
nique is first applied to a set of simulated trajectories in a
one-dimensional (1D) double-well potential with a 5 kBT
barrier, shown in Fig. 1 and simulated using overdamped
Langevin dynamics.

Motion under overdamped Langevin dynamics obeys

xi+1 = xi + − ∆t

mγ

dV

dx

∣∣∣∣
xi

+ ∆xrand (2)

where γ = 0.01s−1 is the friction coefficient, m is set to 1,
∆xrand is a stochastic displacement with its magnitude
drawn from a Gaussian distribution centered at 0 with
σ =

√
2kBT∆t/mγ where kBT is set to 1 and ∆t =

5×10−4s is the timestep. The double-well potential used
is given by

V (x) = kBT

[(
0.1

x

x0

)10

−
(

0.7
x

x0

)2
]
. (3)

where x0 is an arbitrary reference length.
The full dataset consisted of 32 trajectories, each run

for 2 × 106 steps. We used 130 equal-width states, of
which 80 were in the intermediate region and 25 were in
each of states A and B, shown in Fig. 1.

The other system analyzed is a 208 µs atomistic molec-
ular dynamics simulation of Trp-cage folding saved with
200 ps resolution [27]. This trajectory is notable for being
very long and well-sampled.

B. Equilibrium distribution

Fig. 2 illustrates the convergence of the iteratively esti-
mated equilibrium distribution and Fig. 3 demonstrates
the final result of the iterative calculation in the 1D
double-well system. In general, the final converged it-
eration reproduces the Boltzmann distribution precisely
and without bias.

Applying the iterative equilibrium distribution estima-
tor to the Trp-cage folding trajectory (Fig. 4) fragments
similarly shows reasonable agreement with simple counts.
The right-most bin is a notable exception and warrants
further investigation.
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FIG. 1. Double-well potential used for overdamped Langevin
dynamics simulations. Macrostate A is comprised of states at
x/x0 < −10, and B of states at x/x0 > 10.
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FIG. 2. Plot of the iterative equilibrium distribution esti-
mator’s convergence. Some intermediate iterations have been
omitted for clarity. Warmer colors show later iterations, and
the black line is the initial weight in each bin.
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FIG. 3. Equilibrium distributions for the double-well poten-
tial system. Since the exact form of the potential is known,
the Boltzmann distribution (red) provides reference equilib-
rium probabilities. Shown are the distribution after one it-
eration (green) and the distribution after the convergence
criterion was met (blue). Error bars indicate one standard
deviation across 5 independent trials.
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FIG. 4. Equilibrium distributions for the Trp-cage folding tra-
jectory fragments, shown on a log and a linear scale. Shown
are the distribution after one iteration (green), the distri-
bution after the convergence criterion was met (blue), and
counts in each bin from the original full trajectory (red), av-
eraged across independent trials based on sub-dividing the full
Shaw trajectory into five segments. Bins have been coarse-
grained from 1000 initial bins for visualization. Error bars
represent minima and maxima among five independent trials.
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FIG. 5. Validation of iterative committor estimation in a
one-dimensional model. Committor estimates are shown for
the brute-force/naive calculation (green line) as well as the
iterative approach (blue line) vs brute-force result, for the
one-dimensional model of the potential in Eq. (3). Error bars
indicate one standard deviation across 5 independent trials.

C. Committor calculation

As before, we first apply the committor estimator to
the 1D double-well potential. With this simple 1D system
we are able to directly compute the committor through a
“brute-force” technique, where a number of trajectories
are initialized from each point, and stopped when they
reach a macrostate. Although the computational cost of
this would be prohibitive for a more complex system, this
is an unbiased reference.

Fig. 5 shows the result of the iterative committor es-
timator along with the brute-force reference for the 1D
system. The committor profile follows the expected sig-
moid shape between the two wells, with a value of 0.5 at
the peak of the barrier. The iterative approach is thus
validated as unbiased, by comparison to brute-force com-
putation.

We also applied the iterative scheme to estimating the
committor in for the Trp-cage system. Once again, brute-
force reference committor values were obtained by fol-
lowing trajectory fragments originating in each bin un-
til they reached a macrostate; the fraction that reach-
ing state B before state A determined the commit-
tor. As seen in Fig. 6, the iterative committor estima-
tion algorithm yields results for the Trp-cage data that
track these brute-force estimates well, especially near the

macrostates.
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FIG. 6. Scatter plot of brute force committor values vs it-
erative committor values for Trp-cage. A line of slope 1 is
shown in blue. Error bars represent a single standard devia-
tion among independent trials based on sub-dividing the full
Shaw trajectory into five segments.

IV. CONCLUSIONS

We have introduced algorithms that employ two well-
known principles, iteration and stationarity, to estimate
key observables from a trajectory or set of trajectories.
In principle, the input trajectories need not follow any
prescribed distribution. The procedures described do not
rely on a Markov assumption. Although discrete bins are
used for “accounting,” the continuous trajectories em-
body all details of the landscape and dynamics which, in
turn, are included implicitly in the analyses.

Subsequent work will show that the procedures de-
scribed here are formally equivalent to ’power method’
[28] evaluation of the stationary distribution of a non-
standard transition matrix that accounts for trajectory
dynamics over all available timescales, as pointed out to
us by David Aristoff and Gideon Simpson.

ACKNOWLEDGMENTS

We appreciate helpful discussions with David Aristoff
and Gideon Simpson. We thank DE Shaw Research for
sharing the protein folding trajectory with us and the
NIH for support through Grant GM115805.

[1] S. A. Hollingsworth and R. O. Dror, Molecular dynamics
simulation for all, Neuron 99, 1129 (2018).

[2] A. Grossfield and D. M. Zuckerman, Quantifying uncer-
tainty and sampling quality in biomolecular simulations,

Annual reports in computational chemistry 5, 23 (2009).
[3] A. Grossfield, P. N. Patrone, D. R. Roe, A. J. Schultz,

D. W. Siderius, and D. M. Zuckerman, Best practices
for quantification of uncertainty and sampling quality in



7

molecular simulations [article v1. 0], Living journal of
computational molecular science 1 (2018).

[4] D. M. Zuckerman, Equilibrium sampling in biomolecular
simulations, Annual review of biophysics 40, 41 (2011).

[5] L. Weng, S. L. Stott, and M. Toner, Exploring dynamics
and structure of biomolecules, cryoprotectants, and wa-
ter using molecular dynamics simulations: implications
for biostabilization and biopreservation, Annual review
of biomedical engineering 21, 1 (2019).

[6] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen,
and P. A. Kollman, THE weighted histogram analysis
method for free-energy calculations on biomolecules. I.
The method, Journal of Computational Chemistry 13,
1011 (1992).
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Vascular tone is dependent on smooth muscle KATP channels com-
prising pore-forming Kir6.1 and regulatory SUR2B subunits, in
which mutations cause Cant�u syndrome. Unique among KATP iso-
forms, they lack spontaneous activity and require Mg-nucleotides
for activation. Structural mechanisms underlying these properties
are unknown. Here, we determined cryogenic electron microscopy
structures of vascular KATP channels bound to inhibitory ATP and
glibenclamide, which differ informatively from similarly deter-
mined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1,
SUR2B subunits adopt distinct rotational “propeller” and
“quatrefoil” geometries surrounding their Kir6.1 core. The
glutamate/aspartate-rich linker connecting the two halves of the
SUR-ABC core is observed in a quatrefoil-like conformation. Molec-
ular dynamics simulations reveal MgADP-dependent dynamic tri-
partite interactions between this linker, SUR2B, and Kir6.1. The
structures captured implicate a progression of intermediate states
between MgADP-free inactivated, and MgADP-bound activated
conformations wherein the glutamate/aspartate-rich linker partici-
pates as mobile autoinhibitory domain, suggesting a conforma-
tional pathway toward KATP channel activation.

ATP-sensitive potassium channel j sulfonylurea receptor 2B j Kir6.1 j
Cant �u syndrome j ABC transporter

Dynamic regulation of K+ channel gating is a primary point
of control for processes governed by electrical excitability.

ATP-sensitive potassium (KATP) channels, regulated by intracel-
lular ATP to ADP ratios, transduce metabolic changes into
electrical signals to govern many physiological processes (1).
They are uniquely evolved hetero-octameric complexes com-
prising four pore-forming inwardly rectifying potassium channel
subunits, Kir6.x, and four regulatory sulfonylurea receptors,
SURx, nontransporting members of the ABCC subfamily of
ABC transporters (2). Various Kir6.x/SURx combinations gen-
erate channel isoforms with distinct tissue distribution and
function (3, 4). Kir6.2/SUR1 channels are expressed in pancre-
atic β cells and control glucose-stimulated insulin secretion.
Kir6.2/SUR2A channels are the predominant isoform in myo-
cardium, while Kir6.1/SUR2B channels are the major isoform
found in vascular smooth muscle. SUR2A and 2B are two
splice variants of ABCC9 that differ in their C-terminal 42
amino acids (aa). In vascular smooth muscle, KATP activation
leads to membrane hyperpolarization and vasodilation (5),
while inhibition or deletion causes membrane depolarization,
vasoconstriction, and hypertension (5–8). Mutations in the vas-
cular KATP channel genes (KCNJ8 and ABCC9) cause Cant�u
syndrome (9–11), a severe pleiotropic systemic hypotension
disorder including hypertrichosis, osteochondrodysplasia, and
cardiomegaly (12).

KATP channel gating by intracellular ATP and ADP involves
allosteric sites on both subunits. ATP binding to Kir6.x inhibits the
channel. SURx, through induced dimerization of the paired nucle-
otide binding domains (NBDs), requiring MgADP bound to
NBD2 and MgATP bound to noncatalytic NBD1, activates the
channel (1, 4, 13). Like all Kir channels, opening further requires

PIP2 bound to Kir6.x (14–16). Despite these commonalities, vascu-
lar Kir6.1/SUR2B KATP channels have distinct biophysical proper-
ties, nucleotide sensitivities, and pharmacology that differentiate
them from other isoforms (17–19). First, vascular KATP channel
unitary conductance is half that of Kir6.2-containing channels. Sec-
ond, vascular channels lack spontaneous activity, only opening in
the presence of NBD-dimerizing Mg-dinucleotides/trinucleotides;
in contrast, pancreatic or cardiac channels containing Kir6.2 open
spontaneously in the absence of ATP. Third, once activated, vascu-
lar KATP channels are relatively insensitive to ATP inhibition,
requiring mM concentrations to observe an effect, while their pan-
creatic or cardiac counterparts are blocked by ATP at μM concen-
trations. Lastly, the antidiabetic sulfonylurea drug glibenclamide
(Glib), which inhibits SUR1-containing pancreatic channels with
high affinity, is ∼10-fold less potent toward the vascular and car-
diac channels containing SUR2. Glib has been shown to reverse
defects from gain-of-function Cant�u mutations in mice (20). How-
ever, clinical application in Cant�u patients is hindered by hypogly-
cemia from inhibition of pancreatic channels (21). Structural
mechanisms underlying unique biophysical, physiological, and
pharmacological properties among KATP channels are unknown.

Here, we report cryogenic electron microscopy (cryoEM) struc-
tures for the vascular KATP channel, Kir6.1/SUR2B, in the pres-
ence of ATP and Glib. The structures show conformations not
previously seen in pancreatic KATP channels prepared under the

Significance

Vascular KATP channels formed by the potassium channel
Kir6.1 and its regulatory protein SUR2B maintain blood pres-
sure in the physiological range. Overactivity of the channel
due to genetic mutations in either Kir6.1 or SUR2B causes
severe cardiovascular pathologies known as Cant�u syn-
drome. The cryogenic electron microscopy structures of the
vascular KATP channel reported here show multiple, dynami-
cally related conformations of the regulatory subunit SUR2B.
Molecular dynamics simulations reveal the negatively
charged ED-domain in SUR2B, a stretch of 15 glutamate (E)
and aspartate (D) residues not previously resolved, play a
key MgADP-dependent role in mediating interactions at the
interface between the SUR2B and Kir6.1 subunits. Our find-
ings provide a mechanistic understanding of how channel
activity is regulated by intracellular MgADP.
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same condition (22–24). First, unlike in Kir6.2, Kir6.1 cytoplasmic
domains (CDs) were displaced from the membrane too far to
interact with PIP2 for channel opening. Second, unlike pancreatic
channels, which have a predominant propeller-shaped conforma-
tion when bound to ATP and Glib (22, 24), vascular KATP chan-
nels held four distinct conformations, two resembling propellers
and two quatrefoils, marked by varying degrees of rotation of
SUR2B toward the core Kir6.1 tetramer. Importantly, a long seg-
ment of SUR not previously resolved in any KATP structures, link-
ing NBD1 and transmembrane domain 2 (TMD2), was revealed
within vascular KATP structures to mediate the cytosolic interface
between SUR2B and Kir6.1. In particular, the linker’s unique
15 glutamate/aspartate residues termed the ED-domain (25)
established a nexus of interactions engaging SUR2B-NBD2 with
Kir6.1 C-terminal domain (CTD). Molecular dynamics (MD)
simulations showed MgADP binding to NBD2 was accompanied
by substantial reconfiguration at this nexus, revealing the ED-
domain provides a mobile autoinhibitory interaction that guards
the transition of SUR2B from MgADP-free inactivated state to
MgADP-bound activated state. Together, our findings point to a
structural pathway through which SUR regulates Kir6 channel
gating.

Results and Discussion
Structure Determination of Kir6.1/SUR2B KATP Channels with ATP
and Glib. Vascular KATP channels were purified from COSm6 cells
coexpressing rat Kir6.1 and SUR2B (97.6 and 97.2% sequence
identity to human Kir6.1 and SUR2B, respectively). COSm6 cells

lack endogenous KATP channels and have been used extensively
as a heterologous expression system for KATP channel
structure–function studies (16, 26). Channels were solubilized in
digitonin, purified via an SUR2B epitope tag, and imaged in the
presence of 1 mM ATP (no Mg2+) and 10 μM Glib on graphene
oxide–coated grids, as described in Materials and Methods.

In vascular KATP channel structures as in pancreatic chan-
nels, we found SUR2B anchored to Kir6.1 via interactions
mediated by transmembrane helix 1 (TM1) of SUR2B-TMD0
and Kir6.1-TM1 (Fig. 1). However, conformational deviations
from fourfold symmetry of the SUR2B were noted in two-
dimensional class averages (SI Appendix, Fig. S1). To obtain
clear SUR2B maps, we implemented symmetry expansion and
extensive focused three-dimensional (3D) classification of
Kir6.1 tetramer with individual SUR2B (Materials and
Methods) (SI Appendix, Fig. S2), which isolated four 3D classes
having identical Kir6.1 tetramer structures but different
SUR2B orientations (Fig. 1 and SI Appendix, Fig. S2). When
symmetrized, two of the 3D classes, designated P1 and P2,
resembled the pancreatic channel propeller conformations pre-
viously reported (22, 24). The other two, designated Q1 and
Q2, resembled the “quatrefoil conformation” reported for
human pancreatic KATP in which the SUR1 NBDs are dimer-
ized (27). Further refinement yielded cryoEM maps with over-
all resolutions of 3.4, 4.2, 4.0, and 4.2 Å for the P1, P2, Q1, and
Q2 conformations, respectively (SI Appendix, Fig. S3). The
maps were sufficient to build a full atomic model for all of
Kir6.1 minus the disordered C terminus (365 to 424) for all

Fig. 1. Structures of the vascular KATP channel in the presence of ATP and Glib. (A) Schematics of SUR2B and Kir6.1 domain organization. (B) CryoEM
density map of (Kir6.1)4SUR2B P1, side view. (C) Structural model of (Kir6.1)4SUR2B P1, side view. (D) Fourfold symmetrized structure model of P1 viewed
from the top (i.e., extracellular side). (E) CryoEM density map of (Kir6.1)4SUR2B Q1, side view. (F) Structural model of (Kir6.1)4SUR2B Q1, side view. (G)
Fourfold symmetrized structure model of Q1 viewed from the top.
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conformations, with clear sidechain densities for most residues
(SI Appendix, Fig. S3d) and also models for most of SUR2B
(see Materials and Methods for details). Densities for ATP, Glib,
and some lipids were well resolved (SI Appendix, Fig. S3d). Sig-
nificantly, the Q1 conformation included definitive densities in
SUR2B for L0, which is the linker connecting TMD0 and the
ABC core, and also the N1-T2 linker, which connects NBD1 to
TMD2; neither is resolved in the human pancreatic KATP

quatrefoil structure previously determined (27). The P- and
Q-like conformations differ by a major rotation of the SUR2B-
ABC core toward the Kir6.1 tetramer, clockwise when viewed
from the extracellular side (Fig. 1 D and G). P1 and Q1 were
the dominant particle populations within the P- and Q-like
forms, respectively, differing from P2 and Q2 by degree of
rotation and specific features. We first focus on structural
differences between P1 and Q1, which provided the highest
resolutions.

Structural Correlates of Kir6.1 Functional Divergence. Although
the Kir6.1 tetramer was similarly configured in all P and Q con-
formations for SUR2B, it included several features distinct
from Kir6.2 in our published pancreatic channel structure
determined under similar conditions with ATP and Glib (Pro-
tein Data Bank [PDB]: 6BAA). The Kir6.1 channel CD was
extended intracellularly away from the membrane by ∼5.8 Å,
and simultaneously counterclockwise rotated (viewed from the
extracellular face) by 12.4˚ (Fig. 2A). The Kir6.x CD is thus

corkscrewed away from the membrane in Kir6.1/SUR2B, com-
pared to Kir6.2/SUR1. Constrictions in the two cytoplasmic
gates, namely the helix bundle crossing (F178) and the G-loop
(G304, I305), indicate a closed Kir6.1 channel pore, similar to
Kir6.2 under the same condition (SI Appendix, Fig. S4). How-
ever, the distance between the helix bundle crossing gate and
the G-loop gate is significantly larger in Kir6.1 due to the
untethered CD.

In K+ channels, variations in the turret region surrounding
the pore entryway have been shown to affect selectivity filter
stability and ion conduction (28). Compared to Kir6.2, the turret
of Kir6.1 contains an extra 11 aa (102YAYMEKGITEK112). We
found this sequence formed a helix and loop structure that
extends the turret further out into the extracellular space (Fig.
2 B and C). Functional studies using Kir6.1–Kir6.2 chimeras
previously identified residues in Kir6.1 thought to impart its
smaller unitary conductance, specifically M148 and N123-V124-
R125 (29). M148 in Kir6.1 (replacing Kir6.2-V138) was pro-
posed to reduce pore entrance diameter, while N123 in Kir6.1
(replacing Kir6.2-S113) was hypothesized to impact an intersu-
bunit salt bridge between R146 and E150, which in other Kir
channels is formed by corresponding residues and critical for
channel conduction (29, 30). However, our structure found
M148 facing the pore helix (Fig. 2C) rather than the entrance
and that no significant difference exists in the adjacent pore
diameters between Kir6.1 and Kir6.2, nor in their intersubunit
salt bridges. Interestingly, N123-V124-R125 of Kir6.1 is located

Fig. 2. Structural comparison between Kir6.1 and Kir6.2. (A) Comparison of Kir6.1 and Kir6.2 showing translational and rotational differences in the CD.
(B) Major structural differences in the turret (gray box), SH (red box), and C-linker (cyan box) between Kir6.1 and Kir6.2. (C) Close-up view of the turret
showing insertion of an additional 11 aa (magenta) in Kir6.1, which appears to be in position to interact with TMD0 of SUR2B (residues labeled in red).
The density corresponding to glycosylation of N9 is fitted with two N-acetylglucosamines. (D) Close-up view of the Kir6.1 ATP binding site in comparison
to Kir6.2 ATP binding site. (E) Close-up view of the PIP2 binding site in Kir6.1 in comparison to that in Kir6.2. R70 (P69 in Kir6.2), which could interact
with negatively charged phospholipid, is highlighted in red label.
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between the turret extension and the pore loop and interacts
with Y104 in the turret extension (Fig. 2C). Future mutagenesis
studies will determine the contributions of these interactions to
Kir6.1 channel conductance.

We next assessed structural differences between Kir6.1 and
Kir6.2 in two elements intimately associated with activity at
ATP and PIP2 binding sites: the N-terminal amphipathic helix
known as the slide helix (SH), and the connecting strand
between TM2 and the CTD called the C-linker (Fig. 2 B, D,
and E). In our Kir6.2 structure (22), SH is bent halfway at the
D58 position resembling a 310 helix (31). In contrast, SH in
Kir6.1 formed a continuous helix extending toward the neigh-
boring Kir6.1, thus compressing the PIP2 binding pocket. In
Kir6.2, the C-linker forms a helix that tethers the CTD close to
the membrane, which positions critical PIP2-binding residues
such as R176 for PIP2 interaction. Rather different, the
C-linker in Kir6.1 unwound into an unstructured loop stretch-
ing toward the cytoplasm, which deflected R186 (corresponding
to Kir6.2-R176) away from the PIP2 binding site (Fig. 2 B and
E). A previous study by Quinne et al. has shown that Kir6.1
binds and is modulated by PIP2 (32). In our structure, we
observed a strong nonprotein cryoEM density in the PIP2

binding pocket. However, this density is better fitted with a phos-
phatidylserine (PS) than a PIP2 (Fig. 2E). Recent MD simula-
tions of Kir2.2 in membranes containing mixed phospholipids
showed that PS can also occupy the PIP2 pocket (33). Because
no exogenous PIP2 was added to our protein sample, the simplest
interpretation of the structural data is that the more abundant PS
resides in the Kir6.1 PIP2 binding pocket. However, a possibility
remains that the density includes endogenous PIP2 or other
phospholipids copurified with the channel. CryoEM densities
matching ATP were clearly resolved in Kir6.1 tetramers, at sites
located between the N-terminal domains and CTDs of adjacent
Kir6.1 subunits, matching sites in Kir6.2/SUR1 channels. How-
ever, unlike for Kir6.2, ATP had fewer close residue interactions
in Kir6.1 due to displacement of the Kir6.1-CD. In particular in
pancreatic channels, SUR1-K205 (in L0) directly participates in
binding ATP at its inhibitory site (23, 27, 34), while the corre-
sponding vascular channel residue SUR2B-K203 was displaced
from potential ATP binding (Fig. 2D). Thus, the constellation of
ATP interactions was sparser and hence likely weaker when
Kir6.1-CD was displaced from the membrane.

Taken together, the translocation of the Kir6.1-CD away
from the membrane compromised binding of both ATP and
PIP2. This correlates well with the basal inactivity and reduced
ATP sensitivity of the vascular KATP channel compared to
Kir6.2 channels (35, 36). Rotation and downward movement of
the Kir6.2-CD have been detected in minor subclasses of ATP-
and Glib-bound pancreatic Kir6.2/SUR1 structures (23, 24),
indicating similar dynamics occur but less stably persist. More-
over, translation and/or rotation of the CD is observed in Kir2,
Kir3, and bacterial Kir channels (37–40), and recent cryoEM
studies of Kir3 channels found that increased PIP2 concentra-
tions shift particle distributions toward those having CD teth-
ered close to the PIP2 membrane sites (41). Thus, a common
model of KATP channel activity involves channel opening
dependent on PIP2 binding, which in turn depends on engage-
ment by the Kir6.x-CD modulated by its vertical translocation/
rotation. Accordingly, in vascular Kir6.1 channels, a greater
energy barrier is involved in rotating the CD upward to interact
with PIP2 than in pancreatic channels whose Kir6.2-CD is more
stably tethered to the membrane. This explains why Kir6.2-
containing pancreatic channels are spontaneously active, while
Kir6.1-containing vascular channels are not. By extension, vas-
cular channel activation by Mg-nucleotides likely involves
SUR2B-controlled upward movement of the Kir6.1-CD. It
has been shown that Kir6.1 binds PIP2 with higher affinity
than Kir6.2 in biochemical assays and that once activated by

Mg-nucleotides, vascular KATP channels are highly stable and
more resistant to PIP2 depletion by polylysine than pancreatic
channels (32). In our Kir6.1 structure, the Kir6.1-R70 sidechain
is directed toward the lipid density in the PIP2 binding pocket
(Fig. 2E). Interestingly, in Kir6.2 the corresponding residue is a
proline (P69). It is possible that this sequence variation may
contribute to the higher PIP2 affinity and stability of open vas-
cular channels, but future studies are necessary to investigate
this. Higher-PIP2 affinity also accounts for long-standing results
showing activated vascular KATP channels are much less sensi-
tive to ATP inhibition, as increased PIP2 interaction reduces
ATP inhibition in KATP channels (16).

SUR2B Dynamics. Focused 3D classification resolved four distinct
conformations, P1, P2, Q1, and Q2, showing variable SUR2B
orientations (SI Appendix, Fig. S5 and Movie S1). P conforma-
tions differed from Q conformations by a large rotation of the
ABC core of SUR2B relative to the Kir6.1 tetramer (∼41˚
between P1 and Q1, about the axis defined by N447 in TMD1
and N69 in TMD0, respectively, compared to 63˚ rotational dif-
ference between the propeller and quatrefoil conformations in
human pancreatic NBD-dimerized channels measured from the
equivalent residues). Within P and Q, P1 and Q1 particles pre-
dominated over P2 and Q2. Transitions from P1 to P2 and Q1
to Q2 involved alternative rotation stops: P1’s ABC core was
10˚ further away from Kir6.1 than P2’s, while Q1’s ABC core
was 8˚ closer to Kir6.1 than in Q2. In short, Q1 was the tightest
quatrefoil and P1 the most extended propeller. 3D variability
analysis in CryoSPARC (SI Appendix, Fig. S6a) indicated
SUR2B subunits moved independently between P- and Q-like
positions (Movie S2). Further multibody refinement in
RELION3 revealed greater heterogeneity within Q1 conforma-
tions than in P1, indicating wider dynamic range (SI Appendix,
Fig. S6b and Movie S3).

Accompanying rotation, the SUR2B-ABC core also tilts
away from Kir6.1. Tilting elevated the ABC core TMD in the Q
conformations relative to P conformations (by 2.6 Å from P1 to
Q1, measured at SUR2B-Y370; SI Appendix, Fig. S5b).
Between the pancreatic KATP propeller and quatrefoil forms
(NBDs dimerized), the entire ABC-TMDs elevate ∼3 Å with-
out tilting (27). Tilt in our Q conformations may represent a
partial transposition to be completed upon NBD dimerization.
In the NBDs-dimerized pancreatic KATP, quatrefoil is the domi-
nant class. Here, Q conformations were less common than P
conformations among vascular KATP channel structures in
which the NBDs remain separated (SI Appendix, Fig. S2 and
Table S1). Probabilities of SUR adopting P- or Q-like confor-
mations therefore correlate with NBD dimerization state,
although both occur regardless.

Rotation of SUR2B between P to Q conformations incorpo-
rated significant local structural changes. Extracellular contacts
between transmembrane bundle 1 (TMB1) and TMD0 restruc-
tured both protein–protein and protein–lipid interactions (SI
Appendix, Fig. S7). Hydrophobic and electrostatic interactions in
P1 are lost in Q1, including T338, L339, and F344 in the TM6-
TM7 loop of TMB1, with L165 and R166 in TM5 of TMD0.
Moreover, a phosphatidylethanolamine molecule moved from
between TM2 and TM7 in P1 to between TM3 and TM16 in
Q1, likely stabilizing TMD0 and TMB1 interactions. Also note-
worthy, in the pancreatic channel structure, SUR1 has an addi-
tional hydrophobic sequence (340FLGVYFV346), which anchors
the TM6-TM7 loop to TMD0 (SI Appendix, Fig. S7d (23, 34).
Absence of this sequence in SUR2B may impart flexibility that
enables SUR2B to swing into Q conformations not observed in
SUR1 when ATP and Glib are bound.

The SUR2B-L0 Linker and the Glib Binding Pocket. Transition between
P and Q conformations remodeled cytoplasmic structural elements
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including L0, the N1-T2 linker, and Kir6.1 N-terminus
(Kir6.1Nt), unexpectedly affecting interactions between
SUR2B and Kir6.1. In SURx, L0 connects TMD0 to the ABC
core and is crucial to KATP gating (42–45). In SUR2B, we
obtained two distinct L0 conformations, corresponding to P
and Q conformers. In SUR2B-P1, we observed continuous
cryoEM density of L0 (Fig. 3A). The well-defined N-terminal
portion lacked secondary structure. The central portion
formed an amphipathic helix, inserted between TMD0 and
TMB1. A C-terminal helix then extended along the periphery
of TMB1, paralleling the membrane. In contrast, L0 of
SUR2B-Q1 comprised a destabilized N-terminal portion in
which aa 197 to 213 were unresolved; a central amphipathic
helix shifted into the cytoplasm, and a C-terminal helix pulled
away from the Kir6.1 core (Fig. 3 and Movie S4). In addition,
lipids around the amphipathic L0 helix in P1 conformation
were replaced by the descended amphipathic helix in Q1 (Fig.
3A). Together, restructuring resulted in a marked decrease in
contact area between SUR2B’s TMD0 (M1-R256, including
lipids) and the adjacent ABC core (A257-V1541 in P1; A257-
A1543 in Q1), from 2,106.2 Å2 in P1 to 1,208.0 Å2 in Q1,

which lowered the estimated free energy of formation at this
interface from �43.0 kcal/mol in P1 to �18.4 kcal/mol in Q1 [cal-
culated using Protein Data Bank in Europe (Proteins, Interfaces,
Structures and Assemblies), abbreviated as PDBePISA (46)]. As
noted, the P1 conformer predominates among the ATP- and
Glib-bound vascular KATP particles we observed. The simplest
interpretation is that this interface is a principal determinant in
maintaining SUR2B in P1 to a greater extent than Q1. The Q
conformers would thus represent a divergent state in which a
principal interface stabilizing a closed channel is compromised. It
is worth noting that L0 in SUR1 (aa 192 to 262) is unresolved in
the quatrefoil structure for the human pancreatic KATP channel,
in which NBDs are dimerized (PDB: 6C3O) (27). Therefore, the
Q-like structures presented here may represent intermediary
states that offer a glimpse into the conformational transitions of
L0 that anticipate NBDs dimerization. The striking rearrange-
ment of L0 likely results from the torque generated by rotation of
the ABC core and further permits the channel to undergo the
conformational changes for gating.

Vascular KATP channels are inhibited by Glib but are ∼10- to
50-fold less sensitive than pancreatic KATP channels (17, 47).
Glib cryoEM density was well resolved in both P1 and Q1 con-
formations of the vascular KATP structure, where it bound
within the same pocket of SUR2B (Fig. 4) as in SUR1 (24, 26).
Also similar to pancreatic Kir6.2/SUR1 channels, cryoEM den-
sity of the distal KNt of Kir6.1 lay within the cleft between the
two halves of the ABC core and immediately adjacent the Glib
binding pocket (26). The structure model of the Glib binding
site in P1 shows key interactions are largely conserved between
SUR1 and SUR2B (Fig. 4C). However, the binding pose of
Glib in the Q1 conformation is compressed compared to that in
P1, with the Y1205 sidechain moved upward, which requires
the 1-chloro-4-methoxy-benzene group to also move to avoid
W423 in a neighboring helix (Fig. 4C). Also, an electrostatic
interaction between chloride in Glib and nitrogen of R304 is
eliminated in Q1. Worth noting, the SUR2B-Y1205 equivalent
residue in SUR1 is S1238, and substitution of serine by tyrosine
at this position has been shown to partly underlie Glib’s lower-
affinity inhibition of SUR2 channels (48). Of particular interest,
substitution of S1238 to Y in SUR1 converts the Glib inhibition
of pancreatic Kir6.2/SUR1 channels from nearly irreversible to
readily reversible similar to SUR2-containing channels (49, 50),
suggesting the S1238Y mutation may affect Glib off rate. This
may arise through steric hindrance from the flexible tyrosine
sidechain, as observed in the Q1 conformation.

The P1 to Q1 translocation was accompanied by more sub-
stantial change to the opposite side of the Glib binding pocket
at F215, T227, and Y228 of the L0 linker (Fig. 4C). Previous
studies of L0 of SUR1 have shown that Glib binding indirectly
involves Y230 and W232 (Y228 and W230 in SUR2B), which
stabilize the TM helices lining the Glib binding pocket (22);
mutation of these residues to alanine reduces sensitivity to Glib
(49, 50). In SUR2B P1 conformation, we found the hydrophobic
Y228 and W230 sidechains, as well as F215 in the lower part of
L0, similarly stabilized the TM helices along the Glib binding
pocket (Fig. 4C), as occurs in SUR1. Specifically, F215 lay bur-
ied in a hydrophobic cavity formed by W230 from L0 and Y371,
F1207, and L1206 from TMB1. However, in Q1, L0 was signifi-
cantly remodeled at the interface with TMB1. In particular, a
loop segment including P218-Y228 seen in P1 is raised and
transformed into a helix in Q1. This helical element newly filled
the hydrophobic cavity between TMD0 and TMB1, otherwise
occupied by lipids in P1 (Fig. 3A). As further consequence in
Q1, Y228 and F215 in L0 are displaced from the cavity, and
Y371 and T227 occupy the space vacated by the sidechain of
Y228. The movement of Y228 out of the cavity eliminates
hydrophobic packing between L0 and the TM helices lining the
Glib binding pocket, thus disrupting the integrity of the pocket

Fig. 3. SUR2B-L0 undergoes structural remodeling from P1 to Q1 confor-
mations. (A) Comparison of the L0 cryoEM density (hot pink) in P1 and Q1
conformations. Lipid density seen in P1 but absent in Q1 is shown in cyan.
(B) Structure of (Kir6.1)4SUR2B in P1 conformation showing L0 (red)
viewed from the side (Left) and from the cytoplasmic side near the mem-
brane (Right). The N1-T2 linker visible in these views is shown in green. (C)
Structure of (Kir6.1)4SUR2B in Q1 conformation viewed from the side and
the cytoplasm. (D) Structure of (Kir6.2)4SUR1 (PDB: 6BAA) bound to Glib
and ATP for comparison.
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in similar fashion to the Y230A mutational effect in SUR1 (51).
Lastly, the density of Kir6.1Nt in the ABC core central cleft also
differed between P1 and Q1 (Fig. 4D). In P1, a strong continuous
density of KNt was present, braced by R804 and N1090 of SUR2B,
a pair of residues guarding entry to the cleft. The KNt density in Q1
was considerably weaker and discontinuous, indicating a more-labile
conformation that may contribute to weak Glib binding at its adja-
cent pocket (26, 52). In summary, as the SUR2B-ABC core changes
from P conformation to Q, L0 and Kir6.1Nt undergo remodeling
that affects the Glib binding pocket.

The N1-T2 Linker. In all published pancreatic KATP channel struc-
tures, the critical N1-T2 linker of SUR1 has remained unre-
solved (22–24, 26, 27, 34, 53), suggesting dynamic instability. In
the density map of our vascular Kir6.1/SUR2B channel from the
P1 particle set, the C-terminal end of the N1-T2 linker was suffi-
ciently resolved (Fig. 5A), and we were able to build a polyala-
nine helical structure into the density map (residues 961 to 976).
Density for the rest of N1-T2 (residues 911 to 960) remained
largely unresolved in P1. However, the density for the entire
linker was apparent in the map for our vascular KATP channel
Q1 structure (Fig. 5B), although resolution of residues 911 to
960 was insufficient for modeling. Specifically, the linker
extended from NBD1 through the space between the two NBDs,
then continued through the gap between the outer surface of
NBD2 and the adjacent CTD of Kir6.1, before connecting to
TMD2 (Fig. 5B and SI Appendix, Fig. S8). The location of the
SUR2B N1-T2 linker contrasts sharply with locations of corre-
sponding linkers in other ABCC proteins, including the Cl�

channel CFTR and the yeast cadmium transporter Ycf1p. In
CFTR, the N1-T2 linker equivalent is known as the R domain,

which is phosphorylated by PKA to allow CFTR gating by
Mg-nucleotides. In the unphosphorylated CFTR structure, the R
domain is wedged in the cleft between the two halves of the ABC
core, preventing NBD dimerization (54). In the phosphorylated
CFTR structure, the R domain relocates to the outer surface of
NBD1 (SI Appendix, Fig. S8), which allows NBD dimerization,
hence CFTR gating by Mg-nucleotides (55, 56). In the Ycf1p
structure, the N1-T2 linker is found at the outer surface of NBD1
similar to phosphorylated CFTR (57) even though the NBDs are
separate. The peculiar location of the SUR2B N1-T2 linker sug-
gests the linker has adopted a separate role in regulating func-
tional coupling between SUR2B and Kir6.1.

In SUR2, the N1-T2 linker includes at its C-terminal end a
stretch of 15 aa consisting exclusively of negative-charged gluta-
mate and aspartate designated the ED-domain (947 to 961) (SI
Appendix, Fig. S8), which is unique among all ABCC proteins.
Previous mutational studies have implicated the ED-domain in
transducing MgADP binding in SUR2A to opening of Kir6.2
(25). Disruption of the ED-domain prevented the normal activa-
tion response to MgADP and to pinacidil, a potassium channel
opener. In the Q1 structure, the density corresponding to the
ED-domain is sandwiched between NBD2 and Kir6.1-CTD (Fig.
5) and surrounded by positively charged residues from Kir6.1Nt,
Kir6.1-CTD, and NBD2 of SUR2B (Fig. 5B), an array of part-
ners for electrostatic interactions. To understand the potential
molecular interactions and their functional relevance, we
employed MD simulations of the (Kir6.1)4SUR2B Q1 structure.

MD Simulations Reveal MgADP-Dependent Dynamic Interactions
between the ED-Domain, NBD2, and Kir6.1-CTD. To assess confor-
mational dynamics of the ED-domain and its interacting

Fig. 4. Comparison of the SUR2B Glib binding pocket in P1 and Q1 conformations. (A and B) Overview from the side and the top, respectively. (C) Close-
up view of the Glib binding site in P1 and Q1 conformations. Note the slightly different pose of Glib. Two key residues different in SUR2B and SUR1 are
highlighted in red (R304 and Y1205). CryoEM density with the Glib structure model fitted into it is shown to the right of the binding site figure. Bottom:
a different view of the Glib binding site highlighting the changes in L0 residues that impact the Glib binding site. (D) CryoEM density of the KNt in P1
and Q1 conformations. The KNt cryoEM density is stronger in P1 and allows modeling with a polyalanine chain. Note two residues in the NBD1 (R804)
and TMD2 (N1090) sandwich the KNt to stabilize it in the central cavity between the two TMBs of SUR2B.
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partners and how they may be dependent on the nucleotide
binding status at the two NBDs, we performed simulations
under two conditions. In one, ATP is bound to Kir6.1 and
NBD1 of SUR2B, as present in our cryoEM structure. In the
second condition, Mg2+ is included with ATP bound at NBD1,
and MgADP is docked into NBD2 (Fig. 6A). In both condi-
tions, Glib was omitted from the structure to allow the SUR2B
TMDs to be free of constraint during simulations. To assess
reliability, three independent 1-μs simulations for each condi-
tion were carried out (SI Appendix, Fig. S9a). As with many
biomolecular simulations, ours do not exhibit true equilibrium-
like repeated fluctuations about mean values (58), although the
combined 6 μs permitted structural inferences (Fig. 6 C and E).
The root-mean-square fluctuation (RMSF) analyses showed
high degrees of fluctuations of NBD1, the N1-T2 linker, and
NBD2 (SI Appendix, Fig. S9b), consistent with overall lower
resolutions of these domains in cryoEM maps (SI Appendix,
Fig. S3b). However, particular interactions between the ED-
domain and NBD2 depended on whether NBD2 was occupied
by MgADP, and in turn those ED-domain–NBD2 interactions
controlled direct interaction of NBD2 with Kir6.1-CTD.

During simulations, the ED-domain exchanged interactions
between surrounding positively charged residues from Kir6.1Nt,

Kir6.1-CTD, and NBD2 (Fig. 5B and Movies S5 and S6). When
MgADP was absent at NBD2, the first one-half of the ED-
domain (947 to 953) was most frequently in contact with SUR2B-
NBD2 Walker A K1348; this was infrequent with MgADP bound
at NBD2. To quantify MgADP dependence of the ED-
domain–Walker A interaction, we measured the minimum distan-
ces between the ED-domain residues 947 to 953 and K1348
throughout simulations, comparing results with and without
MgADP at NBD2 (Fig. 6 B and C). In the absence of MgADP,
sidechain oxygens from ED residues were frequently within 4 Å
of the sidechain nitrogen of K1348, supporting a salt bridge or
strong electrostatic interaction (59). In contrast, in the presence of
MgADP, ED residues remained too distant from K1348 for direct
bonding. Moreover, in one MgADP simulation run in which
MgADP dissociated (Fig. 6C red trace, ∼300 ns), the ED-domain
subsequently moved to within 4 Å of K1348, the distance fre-
quently observed in simulations lacking MgADP (Fig. 6C). The
difference in ED–K1348 interactions between simulations is simi-
larly evidenced by tracking the center of mass for C-α of ED resi-
dues 947 to 953 and the C-α of K1348 (Fig. 6D).

NBD2 also frequently formed close contacts with Kir6.1-
CTD in the absence of MgADP but not when NBD2 included
MgADP (Movies S5 and S6). With no MgADP, a loop

Fig. 5. Comparison of cryoEM densities of Kir6.1 N terminus and SUR2B N1-T2 linker in P1 and Q1 conformations. (A) Overall cryoEM density of (Kir6.1)4-
SUR2B in gray with density of one Kir6.1 and its N terminus (KNt) highlighted in blue and density of the SUR2B N1-T2 linker highlighted in green. (B)
Close-up view of the N1-T2 linker density in (Kir6.1)4SUR2B structure. Blue spheres are positively charged residues near the ED-domain. G1345 in the
NBD2 Walker A motif and E1318 in the A-loop of NBD2 (1315VRYEN1319) are shown as reference points.
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upstream of the Walker A motif in NBD2 (1315VRYEN1319,
named A-loop for aromatic residue interacting with the ade-
nine ring of ATP) (60) frequently extended across the inter-
subunit gap to interact with a cluster of positively charged
residues in Kir6.1-CTD, including R323, K341, R347, and R352
(Movie S5). In direct contrast, when MgADP was bound to
SUR2B-NBD2, the A-loop instead consistently interacted with
MgADP at NBD2, far from the Kir6.1-CTD. The A-loop in
SUR2B includes Y1317, which interacts with the adenine ring
of bound MgADP at NBD2. Simultaneously, the dissociation of
the ED-domain from Walker A K1348 that occurred with
MgADP binding at NBD2 freed the ED-domain to move in

between NBD2 and Kir6.1-CTD. There, the ED-domain inter-
acted with positive-charged residues in Kir6.1-CTD that in the
absence of MgADP interacted with NBD2 A-loop E1328
(Movies S5 and S6). Effectively, the Kir6.1-CTD exchanged the
A-loop for the ED-domain and stabilized each conformation.
Quantitatively, minimum distances measured between E1318 in
A-loop and the four positive residues in Kir6.1-CTD docu-
mented the closer relation of A-loop and Kir6.1-CTD through-
out the simulations in the absence of MgADP than when
MgADP was bound (Fig. 6E). Minimum distance below 4 Å
sufficient for E1318 salt bridge formation was seen in all three
runs lacking MgADP but only transiently (3.6 ns) in a single of

Fig. 6. MD simulations of the ED-domain dynamics in relation to SUR2B-NBD2 and Kir6.1-CTD. (A) MD simulation starting model (Q1) and conditions. In
(�)MgADP condition, only ATP is present in NBD1. In (+)MgADP condition, MgADP is bound in NBD2 and MgATP is bound in NBD1. (B) Structural model
marking residues of interest for distance analysis during MD simulations. These include the ED-domain residues (magenta sticks in red oval) and the
Walker A K1348 (cyan sphere) in SUR2B NBD2 and R323, K341, R347, and R369 (cyan spheres in blue oval) in Kir6.1 CTD and E1318 in SUR2B NBD2. The
A-loop containing Y1317, which coordinates adenine ring binding of MgADP is also labeled. (C) Measurement of minimum distance between the side-
chain oxygen of any of the ED-domain 947 to 953 glutamate/aspartate residues and the sidechain nitrogen of K1348 in the three individual runs under
both conditions. Note in one of the (+)MgADP runs (red), MgADP unbinds from NBD2 (marked by the red downward arrow). The gray bar marks the
area where the distance is ≤4 Å. The total dwell time in distance ≤4 Å for each run is shown on the Right. Note the plot was window averaged with
10-ns scale, and the dwell time was calculated with raw data which has 100-ps scale (the same applies to E). (D) Movement of the center of mass of the
C-α of the ED-domain residues 947 to 953 during simulation (red trace) relative to that of K1348 (blue trace). (E) Same as C, except the distance measured
is between sidechain nitrogen of Kir6.1-CTD residues R323, K341, R347, R352, and the sidechain oxygen of E1318. (F) Same as D, except the blue trace rep-
resents the center of mass of the C-α of Kir6.1 CTD residues R323, K341, R347, R352, and the red trace is the C-α of E1318.
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the three runs with MgADP (Fig. 6E). The nucleotide-
dependent dynamics between the NBD2 A-loop and Kir6.1-
CTD was also shown by tracking distance between the C-α of
E1318 and center of the mass of the C-α for the Kir6.1-
CTD–positive residues (an example run for each condition
shown in Fig. 6F).

The dynamic, tripartite interactions between the ED-
domain, NBD2, and Kir6.1-CTD, and the dependence of these
interactions on MgADP found in MD simulations significantly
advances our understanding of the mechanism of SUR-
mediated channel stimulation by Mg-nucleotides. In the
absence of MgADP, the ED-domain has preferred interactions
with NBD2 Walker A K1348, while the A-loop E1318 is
engaged with Kir6.1-CTD. This hinders NBD2 from undergo-
ing further conformational transition toward that of the NBDs-
dimerized human pancreatic channel quatrefoil structure (27),
which shows SUR1-NBD2 further rotated toward NBD1 and
also away from the positively charged residues in Kir6-CTD
(PDB: 6C3O) (27). Upon MgADP binding to NBD2, the ED-
domain is dissociated from K1348, while the NBD2 A-loop
becomes stabilized by the bound MgADP, unable to extend
toward Kir6.1-CTD. As a sequence of results, the ED-domain

is free to move toward other surrounding positively charged
residues including those in Kir6.1-CTD, which further prevents
the interactions between NBD2 and Kir6.1-CTD, thus allowing
NBD2 to undergo further rotation toward dimerization with
NBD1. Supporting this understanding, an ion pair formed by
R347 in the Kir6.1-CTD, with E1318 in the A-loop of SUR2B-
NBD2, has previously been reported to play a role in channel
activation by MgADP and the potassium channel opener pina-
cidil (61). Disruption of this ion pair by charge neutralization
enhances MgADP/pinacidil gating, while charge swap restored
wild-type–like sensitivity to MgADP/pinacidil (61). Our findings
support the hypothesis that in order for NBDs to dimerize,
interactions between SUR-NBD2 and Kir6-CTD must dissolve.
Accordingly, disruption of the Kir6.1 R347-SUR2B E1318 salt
bridge facilitates MgADP/pinacidil stimulation, as breaking the
salt bridge promotes nucleotide binding at NBD2 and allows
the further NBD2 movement needed for NBD dimerization
and channel activation. The ED-domain in particular, by
interacting with Walker A K1348, acts essentially as a mobile
autoinhibitory motif, akin to autoinhibition mechanisms in
many kinases (62), that occludes NBDs dimerization in the
absence of MgADP and is deflected to permit dimerization

Fig. 7. Residues mutated in Cant�u patients mapped onto the Kir6.1/SUR2B channel structure. (A) Residues mutated are shown as blue (Kir6.1) or
magenta (SUR2B) in P1 conformation as spheres (Left) or in stick model (Right). Rat SUR2B numbering is used. Corresponding human mutations with rat
residue in parentheses are as follows: H60Y (H60), D207E (D207), G294E (G294), G380C (G377), P432L (P429), A478V (A475), D793V (D789), G815A (G811),
Y985S (Y981), G989E (G985), H1005L (H1001), W1018G (W1014), T1019E/K (T1015), S1020P (S1016), F1039S (F1035), S1054Y (S1050), C1043Y (C1039),
C1050F (C1046), M1060I (M1056), R1116H/C/G (R1112), R1154G/Q/W (R1150), T1202M (T1198), N1206K (N1202), S1235F (S1231), V1266M (V1262), R1347C
(R1343), A1462G (A1458), V1490E (V1489), and A1494T (A1490). (B–D) Close-up side or top views of boxed regions labeled in the overall structure in A
(Right). In D, the N1-T2 linker is colored green and labeled together with the second elbow helix leading to TM12 of TMD2 in SUR2B. Red numbers mark
the TM helices shown.
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when MgADP has bound to NBD2. In this way, the ED-
domain functions as a gatekeeper to prevent unregulated chan-
nel activation in the absence of MgADP.

Implications for Cant�u Mutations. Taken together, our structures
and MD simulations capture conformations that appear inter-
mediate between the NBD-separated inactive and NBD-
dimerized active states. The structural knowledge sheds light
on how Cant�u mutations (Fig. 7A) may cause gain of function
in vascular KATP channels. In Kir6.1, V65M in the SH and
C176S in the pore-lining helix likely enhance function by
increasing channel Po, which has been demonstrated in equiva-
lent mutations in Kir6.2 (63). Most Cant�u mutations identified
to date are in ABCC9. Significantly, many of them affect resi-
dues in TM12, including Y981 and G985 in the second elbow
helix, and W1014, T1015, and S1016 at the top (Fig. 7). TM12
is connected to the N1-T2 linker (Fig. 7D). Many other Cant�u
mutations are in domains interacting with TM12, including a
series throughout TM13 (F1035, C1039, C1046, S1050, and
M1056), as well as H1001 in TM12 and R1112 in TM14, which
interface TM13 (Fig. 7C). One most frequently mutated resi-
due R1150 of TM15 is adjacent to the structured helix portion
of the N1-T2 linker, C-terminal to the ED-domain (Fig. 7D).
The interconnectivity of these residues and their association
with the N1-T2 linker suggest they may in common govern a
critical conformational change during channel gating by Mg-
nucleotides at the NBDs. Consistent with this notion, Y981S,
G985E, and M1056I have been shown to enhance channel
response to MgADP stimulation (42). Of note, C1039Y in
TM13, has been shown to increase channel Po similar to D207E
in L0, rather than enhance MgADP response (42). It is possible
that C1039Y alters interactions of SUR-TMDs with Kir6.1Nt
and/or Kir6.1-TMs to affect channel Po. Finally, two other
mutations that also enhance MgADP response but are not
directly connected to the N1-T2 linker are P429L in TM8 and
A475V in TM9 of TMD1 (42). TM8 and TM9 are part of the
TM bundles above NBD1 and NBD2 respectively, and P429L

and A475V may affect the dynamics of the NBDs to alter
MgADP response. Future studies correlating the effects of
Cant�u mutations on channel conformations and gating will fur-
ther illuminate the structural basis of channel gating and in
turn mechanisms of disease mutations.

Summary. Insights into how a particular complex operates is
often gained by comparing related complexes, anticipating
that similarities and differences in structure and function will
correlate. In this study, we sought to determine the cryoEM
structure of vascular KATP channels, composed of Kir6.1 and
SUR2B, in the presence of ATP and Glib, for comparison to
pancreatic KATP channel (Kir6.2/SUR1) structures deter-
mined with the same conditions. The structures we obtained
reveal multiple elements showing distinct configurations that
may account for channel-specific conductance, ATP inhibition,
and drug sensitivities. In contrast, the serendipitous appear-
ance of quatrefoil-like conformations, and SURx linkers
which have been missing in previous KATP structures and are
now seen at critical domain interfaces, affords insights into
the long-sought structural dynamics shared by KATP channels
in regulating their activity. The Q conformations adopted by
SUR2B are most simply interpreted as transitional states
between the inactive NBD-separated and the active NBD-
dimerized SUR conformations.

The several conformations isolated from the cryoEM data-
set, together with the dynamics revealed by 3D variability
analyses and captured by MD simulations, suggest a model
hypothesis for how Mg-nucleotide interactions with SUR2B
activates Kir6.1 (Fig. 8). In this model, individual SUR2B sub-
units transition between P and Q conformations. In the Q
conformations and without Mg-nucleotides at NBD2, the ED-
domain in the N1-T2 linker acts as an autoinhibitory motif
that prevents unregulated activation. Specifically, ED-domain
interaction with Walker A K1348 at NBD2 promotes electro-
static interaction between NBD2 A-loop and Kir6.1-CTD,
which further corrupts the Mg-nucleotide binding site and

Fig. 8. Proposed model of vascular KATP channel conformational dynamics. Cartoon representation of channel side view (A) and top/down view (B) in inac-
tive P conformation, Q-like intermediate conformation (only one SUR2B is colored to highlight structural interactions), and active, NBD-dimerized quatrefoil
conformation. In the presence of Glib and ATP, the P conformation dominates. Addition of MgATP/ADP promotes NBD dimerization, which is postulated to
cause Kir6.1-CTD to move close to the membrane to interact with PIP2 for channel opening. In B, individual SUR subunits undergo P-Q conformation transi-
tions independently. In the absence of MgADP at NBD2, the ED-domain interacts with NBD2-Walker A lysine (1348). The A-loop E1318 in NBD2 forms salt
bridges with positively charged residues in Kir6.1-CTD, preventing further rotation of NBD2 needed for NBDs dimerization, thus arresting SUR in an autoin-
hibited intermediate conformation. Increasing MgATP/ADP concentrations increases the probability of MgATP/ADP binding to all SUR2B subunits to release
autoinhibition and promotes conformational change to the NBD-dimerized quatrefoil state for channel activation.
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also withholds NBD2 from dimerization with NBD1. Addition
of Mg-nucleotides relieves autoinhibition imposed by the ED-
domain, coupling organization of the Mg-nucleotide binding
site to liberation of NBD2 to rotate toward NBD1 for dimer-
ization. Yet-to-be-determined mechanisms are required to
explain how dimerization of NBDs in SUR2B leads Kir6.1-
CTD to move up to the membrane to interact with PIP2 for
channel opening. The model would predict that inhibitory
ligands such as Glib or stimulatory ligands such as Mg-nucleo-
tides or the potassium channel opener pinacidil, are able to
shift the equilibrium of SUR2B toward P or Q conformations
to drive channel closure or opening, respectively. It is impor-
tant to note that dimerization of the NBDs was not observed
during the 1-μs simulation in the presence of MgADP/
MgATP; moreover, only one SUR2B is present in the simula-
tions, which prevents consideration of potential structural
impact of neighboring SUR2B subunits. Future structures
with NBDs dimerized and MD simulations of the full channel
are required to confirm and extend our understanding of
KATP channel activation. This notwithstanding, we speculate
the general scheme of the model applies to other KATP chan-
nels with variations to explain isoform-specific sensitivities for
Mg-nucleotides and drugs. The structures presented here
serve as a framework for understanding channel regulation
and dysregulation and will aid development of isoform-
specific pharmacological modulators to correct channel
defects in Cant�u and other diseases involving vascular KATP

dysfunction.

Materials and Methods
Expression and purification of Kir6.1/SUR2B channels, cryoEM imaging, data
processing, and modeling were performed using published protocols (22, 23,
26, 64) and are described in detail in SI Appendix. Briefly, recombinant

adenoviruses containing the coding sequences of Kir6.1 and FLAG-tagged
SUR2B were used to infect COSm6 cells and expressed channels purified via
the FLAG tag. Purified channel complexes were spotted on grids coated with
graphene-oxide, vitrified, and imaged on a Titan Krios 300 kV cryoelectron
microscope. Image processing and analysis were carried out in RELION-3.0 and
CryoSPARC. Models were built by fitting previously published Kir6.2/SUR1
structures and in SWISS-MODEL and refined in Coot and Phenix.

MD simulations were performed at all-atom resolution using AMBER 16
(65) with graphics processing unit (GPU) acceleration. The starting structure
was developed from the Q1 model (four Kir6.1 and one SUR2B) with flexible
linkers built in SWISS-MODEL. Glib was removed to allow the TMDs to relax
during simulations. The structures were protonated at pH 7 and inserted in a
bilayer membrane composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine lip-
ids and surrounded by an aqueous solution of 0.15 M KCl. Pairwise distances
were analyzed from the simulated trajectories using the gmx pairdist tool in
Gromacs 2019.4 (66). Detailed methods for MD simulations and data analysis
are provided in SI Appendix.

Data Availability. CryoEM density maps have been deposited to the Electron
Microscopy Data Bank (P1: EMD-23864, P2: EMD-23881, Q1: EMD-23880, and
Q2: EMD-23882). Coordinates for (Kir6.1)4SUR2B atomic models have been
deposited to the Protein Data Bank (P1: 7MIT, P2: 7MJP, Q1: 7MJO, and Q2:
7MJQ). MD simulation data have been deposited to the open-access reposi-
tory Zenodo (5546127). All other study data are included in the article and/or
supporting information.
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Abstract

Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and
SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and
absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as
pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-
EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent
to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel
conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane
domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm.
This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP
and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2
and SUR10s ABC module involving residues implicated in channel function and showed a SUR1 residue,
K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and
R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and
PIP2.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).

Introduction

Pancreatic ATP-sensitive potassium (KATP)
channels functionally couple glucose metabolism
to insulin release and are crucial for glucose
homeostasis.4,51 Structurally, the pancreatic KATP

channel is an octameric complex composed of two
distinct integral membrane proteins.15,31,38,41,48,66

A tetrameric core of Kir6.2 subunits form the central
transmembrane pore of the channel. A coronal
array of four sulfonylurea receptor 1 (SUR1) sub-
units surrounds the channel core, each SUR1 com-
panioned with one Kir6.2 subunit. Genetic
mutations of these subunits that dysregulate KATP

channel activity are causes of neonatal diabetes
(gain of function) and congenital hyperinsulinism

Research Article

0022-2836/� 2022 The Author(s). Published by Elsevier Ltd.This is an open accessarticle under theCCBY license (http://creativecommons.org/licenses/
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(loss of function).4 KATP channels harbor multiple
distinct and antagonistic binding sites for their pri-
mary physiological regulators, intracellular ATP
and ADP, which close the ion channel through a
binding site in Kir6.2, but open the channel through
Mg-dependent binding on SUR1.52,62 In addition,
channel activity is operationally governed by bind-
ing sites for specific membrane phospholipids, par-
ticularly PIP2, which directly promote opening as
well as antagonize the ATP inhibition at the Kir6.2
binding sites.52 Finally, the pancreatic KATP channel
is the drug binding target for sulfonylurea and glin-
ide anti-diabetic medications, which inhibit channel
activity and thus stimulate insulin secretion.26 The
long held principal objective of KATP channel
research has been to understand the protein
dynamics by which these several ligand interac-
tions, separately and in concert, ultimately deter-
mine levels of KATP channel activity, and hence
control insulin release.
CryoEM structures of KATP channels have

provided direct insights into the structural
mechanisms of ligand recognition and gating
regulation. In a previous study, we reported
comparative cryoEM structures for pancreatic
KATP channels in the absence of ligands (apo); in
the presence of ATP; and in the combined
presence of ATP with alternative pharmacological
inhibitors: glibenclamide, repaglinide, or
carbamazepine.47 The study found all pharmaco-
logical inhibitors occupy a common binding pocket
located within SUR1 and that this binding pocket
lies adjacent to the deep binding site for the
Kir6.2 N-terminal tail, which courses through the
prominent cleft between the two halves of the
ABC (ATP Binding Cassette) module of SUR1.
The findings offered mechanistic insight into how
distinct pharmacological inhibitors inhibit channel
activity and also facilitate channel assembly by sta-
bilizing the interaction between Kir6.2 N-terminus
and SUR1. However, it was noted during image
analysis that each dataset in the study possessed
considerable conformational heterogeneity, sug-
gesting classification analyses within datasets
may further illuminate channel structural dynamics
relevant to ligand binding and gating.
Here, we show results from reprocessing of

cyroEM datasets previously reported, focusing on
conformational analysis and augmented by
molecular dynamics (MD) simulations. Most
notably, we found that the cytoplasmic domain
(CTD) of Kir6.2 adopted two distinct
conformations. In one, the CTD is tethered close
to the membrane (Kir6.2-CTD-up). In the other,
the CTD is counterclockwise corkscrewed away
from the membrane, towards the cytoplasm
(Kir6.2-CTD-down). Across structure datasets, the
ratio of CTD-up versus CTD-down conformations
strongly correlated with the occupation of
inhibitory ligand binding sites. Importantly, drug
binding and CTD conformation were associated

with significant structural reorganization at the
ATP and PIP2 binding sites, and at domain
interfaces within and between subunits,
suggesting ligands act as molecular glues to
stabilize the channel in the Kir6.2-CTD-up
conformation. Of further importance, improved
cryoEM maps and functional analysis revealed
that binding of the activating ligand PIP2 involves
a direct interaction with SUR1 lysine-134 in TMD0,
implicating a mechanism by which SUR1
enhances Kir6.2 PIP2 sensitivity. Moreover, MD
simulations uncovered Kir6.2 residues that
participate in both ATP and PIP2 binding,
providing an explanation for how ATP and PIP2

compete to control KATP channel gating. Together,
our findings provide a framework for
understanding how ligands shift channel
conformation to regulate channel activity and how
mutations, now observed to affect key protein–
protein and protein–ligand interfaces, disrupt
channel function and cause disease.

Results

KATP channel conformation analysis

Focused 3D classification of the Kir6.2 tetramer
core plus one SUR1 subunit (denoted K4S
hereinafter) following symmetry expansion and
signal subtraction65 was performed on our previ-
ously published five datasets: apo, ATP only, carba-
mazepine and ATP (CBZ/ATP), glibenclamide and
ATP (GBC/ATP), repaglinide and ATP (RPG/
ATP)47 (see Methods). This strategy was employed
to circumvent alignment difficulty due to flexible
SUR1 (Figure S1, S2). The analysis revealed two
major K4S conformations: Kir6.2-CTD-up and
Kir6.2-CTD-down, wherein the Kir6.2-CTD was
alternatively located closer to, or further from, the
Kir6.2 membrane spanning channel domains,
respectively. Particularly, translation of the CTD
between up and down conformations further
involved a rotation, together comprising a cork-
screw movement wherein the CTD (from an extra-
cellular point of view) was rotated clockwise in
Kir6.2-CTD-up conformation relative to Kir6.2-
CTD-down (Figure 1). The CTD-up and CTD-
down conformations appear qualitatively similar to
the T(tense)-state and R(relaxed)-state previously
reported by others using a fusion SUR1-Kir6.2 pro-
tein under three different ligand conditions,
GBC + ATPcS, ATPcS, or MgADP, wherein the T-
state exhibits 10.6–12.5� CW rotation viewed from
the extracellular side and 3–4.2 �A translation
towards the membrane relative to the R-state.78

Within both the CTD-up and CTD-down conforma-
tions, rocking and rotation of the Kir6.2-CTD was
discernable using Relion 3 multibody refinement
principal component analysis.50 The heterogeneity
was greater in the CTD-down than the CTD-up pop-
ulation of particles (Figure S3), consistent with an
increase in CTD mobility when detached from the
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membrane. Similar Kir6.2-CTD dynamics were
observed using cryoSPARC 3D variability
analysis.63

Both the Kir6.2-CTD-up and Kir6.2-CTD-down
conformations were observed in the GBC/ATP,
RPG/ATP, CBZ/ATP and ATP-only datasets;
however, relative abundance of the two
conformations varied in the different liganded
states (Figure 1(B), Table S1). The GBC/ATP and
RPG/ATP datasets had the highest percentages of
particles in the CTD-up conformation, with 92.5%
and 71.2%, respectively. The CBZ/ATP dataset,

which only had CBZ density in SUR1 but no clear
ATP density in Kir6.2 likely due to lower
concentrations of ATP used during sample
preparation (see Methods) had a significantly lower
percentage (22%) of particles in the CTD-up
conformation, comparable to the ATP only dataset
of 17.8%. In the absence of added ligands, i.e. the
apo state, only Kir6.2-CTD-down conformation was
observed. These findings show Kir6.2-CTD exists
largely in two discrete conformations. That the
distribution of the two states correlated with the
binding of inhibitory ligands implicates the

Figure 1. Two distinct conformations of the Kir6.2-CTD in RPG/ATP bound KATP channels. (A) CryoEM maps
for the Kir6.2 tetramer core plus one SUR1 subunit are shown (semi-transparent grey, 1.0 r contour), with the Kir6.2
subunit including KNtp in the Kir6.2-CTD-up (blue, 0.7 r contour) and the Kir6.2-CTD-down (magenta, 0.7 r contour)
conformations. Compared to the CTD-up conformation, the Kir6.2-CTD in the CTD-down conformation is translocated
from near the lipid bilayer towards the cytoplasm by �4�A (distance measured from the center of mass of G295- Ca in
the G-loop gate of all four Kir6.2 subunits to the center of mass of F168-Ca in the helix bundle crossing gate of all four
Kir6.2 subunits), and rotated counterclockwise by 12� (viewed from the extracellular side), measured by aligning
structures onto the TM domain (residues 55–175) of the RPG CTD-up reference model, and calculating dihedral
angles between K338-Ca of Chain A of Kir6.2 and the centers of mass of G245-Ca. (B) Fraction of particles in Kir6.2-
CTD-up (blue) and Kir6.2-CTD-down (magenta) in KATP channels bound to different ligands or in apo state. (C)
Variations in the extent of CTD translation and rotation observed for Kir6.2-CTD-up (blue dots) and Kir6.2-CTD-down
(magenta dots) are shown for all datasets using RPG/ATP-Kir6.2-CTD-up as reference (circled blue dot). CTD
translation away from the membrane is shown in negative value. There is a linear correlation between Kir6.2-CTD
translation and Kir6.2-CTD-rotation (R2 = 0.9682, y = -0.3031x � 0.1755). Translation and rotation of the CTD from a
human open KATP structure,81 PDB: 7S5T) relative to the RPG/ATP Kir6.2-CTD-up reference structure is included for
comparison (green dot).
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switching between these conformations as a crucial
mechanistic event controlling channel opening and
closing. The RPG/ATP dataset gave the highest
resolution maps for both the Kir6.2-CTD-up and
CTD-down conformations (3.4 �A and 3.6 �A,
respectively; Figure S1, S2, Table S1). The
improved map quality compared to our previously
publishedstructure47allowedus to reevaluate ligand
and protein densities that were previously ambigu-
ous. We have therefore focused on the RPG/ATP
dataset for structural analyses hereinafter.
In the RPG/ATP state, the predominant SUR1

conformation is arranged like a propeller when
symmetrized, as described in our previous
study.47 In addition, we identified a minor conforma-
tion (�27% of all particles; Figure S1, Table S1)
showing a large clockwise rotation of SUR1 towards
the Kir6.2 tetramer (viewed from the extracellular
side). This conformation is qualitatively similar to
the quatrefoil conformation previously reported in
the MgATP/MgADP-bound, NBDs-dimerized
Kir6.2-SUR1 fusion channel structure,38 and like-
wise our recently reported quatrefoil-like Kir6.1-
SUR2B vascular KATP channel structure bound to
GBC and ATP with separate NBDs.69 The overall
map resolution of this minor class is �7 �A (Fig-
ure S1), which precluded detailed structural analy-
sis. Nonetheless, it reveals that even in the
presence of RPG and ATP, a large rotation of
SUR1 resembling that seen in NBDs dimerized
SUR1 quatrefoil conformation occurs, albeit much
less frequently. Heterogeneity of SUR1 within the
dominant propeller conformation with more subtle
rotations of SUR10s ABC core around the Kir6.2 tet-
ramer was also observed regardless of whether the
Kir6.2-CTD is up or down. We explored the details
of SUR1 dynamics using the Kir6.2-CTD-up class
of particles, classifying the dynamic motion as dis-
crete eignevectors using Relion 3 multibody refine-
ment (see Methods). Particles with amplitudes
between 5 and 20, and between�5 and�20, along
eigenvector 1 were refined separately to generate
two maps, referred to as SUR1-in and SUR1-out
conformations at 3.9 �A and 3.8 �A (Figure S4),
respectively, for model building (Table S2) and
structural analysis.

Comparison of different KATP conformations

The changes in conformation of Kir6.2-CTD and
SUR1 were accompanied by remodeling of
subunit and domain interfaces as well as protein–
ligand interactions pertinent to gating. Comparing
CTD-down to the CTD-up conformation, the
Kir6.2-CTD is translated down into the cytoplasm
by �4 �A along an axis perpendicular to the
embedding membrane, and simultaneously
counterclockwise (CCW) rotated by 12� about that
axis viewed from the extracellular side (Figure 1,
movie 1). The descended location of Kir6.2-CTD
reconfigured the interfacial (IF) helix (also called
the slide helix, herein taken to include G53-D65)

in the Kir6.2 N-terminus, and also the C-linker
(herein taken to include H175-L181) by which
inner helix M2 interacts with the CTD (Figure 2).
Specifically, in the CTD-up conformation, the IF
helix adopted a 310 helix characteristic75 wherein a
directional kink at D58 demarcated the helix into
N-terminal and C-terminal halves, with the N-
terminal half pivoted towards SUR1 instead of along
the adjacent Kir6.2 subunit. In contrast, the IF helix
in the CTD-down conformation formed a continuous
helix that extended towards the neighboring Kir6.2
subunit. Respecting the C-linker, in the CTD-up
conformation, the C-linker formed a helical structure
that participated in membrane PIP2 binding; while in
the CTD-down conformation, the C-linker was fully
unraveled into a loop, in which a key PIP2 interact-
ing residue R1768,68 was distant from the mem-
brane and incapable of direct PIP2 interaction. In
comparisons between the SUR1 propeller in and
out structures (Figure S1, S4), the ABC module in
the SUR1-in structure is rotated clockwise closer
to a neighboring Kir6.2 (viewed from the extracellu-
lar side). In this rotated position, the SUR1-L0 loop
was pulled away from its interaction with SUR10s
direct Kir6.2 subunit partner. Specific molecular
changes at the subunit and domain interfaces and
ligand binding sites in different conformations and
their relevance to gating are described below.
Intra-Kir6.2 and inter Kir6.2-Kir6.2 interactions--

Inspection of the Kir6.2 CTD-up and CTD-down
structures revealed changes in intra- and inter-
Kir6.2 interactions involving structural elements
which occupy the transitional space between the
membrane spanning and cytoplasmic domains of
Kir6.2. These include the IF helix, the C-linker, the
DE loop (the loop that connects bD and bE), the
G-loop (the lower cytoplasmic gate) as well as the
N-terminus and ATP. Specifically, in the CTD-up
conformation, D204 at the start of the DE loop
forms an intrasubunit salt bridge with R177 in the
C-linker, which connects to Kir6.2 TM helix 2; and
R206, also in the DE loop forms a salt bridge with
D58 in the IF helix of the adjacent Kir6.2 subunit
(Figure 2(C)). Two hydrogen bonds: one between
D65 in the IF helix and T293 in the G-loop from
adjacent subunits, and one between K39 at the N-
terminus and ATP at a neighboring Kir6.2 subunit
were also observed (Figure 2(C)). The salt bridges
and hydrogen bonds bind the different structural
elements together and hold the CTD in the up
conformation. In contrast, the aforementioned salt
bridges and hydrogen bonds were eliminated in
the CTD-down structures (Figure 2(D)). In
particular, separation of D204 from R177 in CTD-
down was accompanied by uncoiling and
extension at the end of the C-linker helix including
R177, while separation of R206 from D58 was
accompanied by a significant straightening of the
kink in the IF helix and reorientation of the
continuing chain, which connects to the base of
the KNtp (Figure 2).
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Consistent with the notion that these labile salt
bridges have critical roles in channel gating,
previously published functional studies have
implicated the participating Kir6.2 residues in
channel regulation. D58 was previously suggested
to be involved in anchoring Kir6.2 CTD to the TM
domain through results of targeted mutagenesis.40

Our findings resolve the salt bridge partnership with
R206 in the neighboring Kir6.2 polypeptide, and fur-
ther reveal such tethering is dynamically incorpo-
rated into the conformational changes of ion
channel activation. Consolidating this view, R206
has been separately implicated in channel activa-
tion by PIP2, through scanning mutagenesis inves-
tigations of positive residues involved in effecting
bound PIP2, wherein mutation R206A was found
to abolish PIP2 response and thus diminish channel
activity.40,42,67 Similar to R206A, mutation R177A
also abolishes or greatly attenuates channel activity
by diminishing PIP2 response.

40,67 Thus, in corrob-

orating earlier functional studies, our structural find-
ings here elucidate key molecular interactions that
place the Kir6.2-CTD close to the membrane in
position to interact with membrane-bound phospho-
lipids for channel opening. These insights are
directly relevant to human health. Mutations of each
of the four residues in the above salt bridges have
been identified in congenital hyperinsulinism, a dis-
ease caused by loss of function of KATP channels.
These include D58V,18 R177W,3 D204E,59 and
R206H.9 Our structures here provide a mechanistic
illustration of how perturbation of residues involved
in conformational dynamics cause loss of channel
function and hyperinsulinism.
Kir6.2 and SUR1 interactions-- Our previous

study of pancreatic KATP channel structure
suggested that a key regulatory interface through
which SUR1 controls Kir6.2 channel activity is
formed by the extended N-terminus of Kir6.2
(residues 1–30; referred to as KNtp) that is

Figure 2. Structural comparison between RPG/ATP CTD-up and CTD-down conformations. (A) Superpo-
sition of the Kir6.2-CTD-up (blue) and CTD-down (magenta) structures. The red boxed region shows significant
secondary structural difference at the IF helix and the C-linker. (B) Close-up view with structural differences
highlighted (green boxes) at the IF helix and the C-linker in the two conformations. (C) Close-up view of the inter-
subunit H-bond interactions between D65 and T293, and an inter-subunit salt-bridge between D58 and R206, as well
as an intra-subunit salt-bridge between R177 and D204, and an inter-subunit ATP-binding interaction from K39 in the
Kir6.2-CTD-up conformation. (D) Same close-up view as in (C) but of the Kir6.2-CTD-down conformation showing
disruption of those interactions seen in (C). Structural elements and residues from chain a or chain b are labeled with
a or b at the end.
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inserted within its SUR1 subunit partner, wherein
the KNtp is located within the SUR1 ABC
transporter module.47 We showed in particular that
the KNtp is located between the two transmem-
brane helix bundles (TMBs) of SUR1 ABC module,
and adjacent to the drug binding pocket of GBC,
RPG, and CBZ. More detailed structural analysis
was hindered by insufficient resolution for the den-
sity of KNtp in those published cryoEM maps. The
additional analysis methods applied in our current
study yielded clearer, contiguous densities and pro-
duced significantly improved maps revealing speci-
fic interactions between residues in KNtp and SUR1
(Figure 3). In the distal part of KNtp, which lies deep
in the SUR1 ABC core cavity, Kir6.2-R4 is in bond-
ing position with SUR1-T1139 and N1301. In the
middle section of KNtp, which is near the entrance
to the SUR1 ABC core cavity, Kir6.2-L17 interacts
with R826 of NBD1 and G1119 and N1123 of
TMB2. In the proximal end of KNtp, cryoEM density

corresponding to residues P24, Y26 and R27
comes into close contact with cryoEM density corre-
ponding to SUR10s NBD1-TMD2 linker around resi-
due S988. In the Kir6.2-CTD down structure,
interactions at the distal and middle segments of
KNtp with SUR1 remain largely unchanged; how-
ever, the proximal section of KNtp is significantly
further away from the NBD1-TMD2 of SUR1 (Fig-
ure 3(D)). In a recent Kir6.1-SUR2B cryoEM struc-
ture we showed that the NBD1-TMD2 linker has a
role in regulating MgADP-dependent interactions
between SUR2B-NBD2 and Kir6.1-CTD69. Our
structures presented here reveal an additional con-
tact between NBD1-TMD2 linker and KNtp.
Whether this contact and changes at this interface
in different conformations have functional signifi-
cance warrants future investigation. As reported
previously,47 the cryoEM density of KNtp is the
strongest in the GBC/ATP, RPG/ATP, and CBZ/
ATP datasets, followed by ATP only, and is the

Figure 3. KNtp and SUR1 interface. (A) KNtp (Kir6.2 aa 1–30) cryoEM density (purple mesh, 1.0 r contour) in
RPG-Kir6.2-CTD-up structure, with key residues that interact with SUR1 shown as orange spheres within red circles.
The distal portion of KNtp is located deep in the cavity of the SUR1-ABC core module. The middle section of KNtp lies
near the entrance of the cavity. The proximal part (i.e. C-terminal part) of KNtp including P24, Y26 and R27 contacts
the SUR1 N1-T2 linker density (shown as green mesh; 1.0 r contour) near S988. (B) Left: Close view of distal KNtp
cryoEM density (purple mesh, 1.0 r contour) showing interaction of R4 with SUR1 T1139 and N1301 in TMD2 and
proximity to bound RPG. Right: Close-up view of middle KNtp in cryoEM density (purple mesh, 1.0 r contour) showing
interaction of L17 with SUR1 R826, G1119 and N1123. (C) KNtp viewed without SUR1, showing its interconnectivity
with two ATP binding sites and the LM-loop in the CTD of a neighboring Kir6.2. (D) Superposition of Kir6.2-CTD-up
(blue) and CTD-down (pink) structures viewed from the extracellular side showing divergent positions of proximal
KNtp.
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weakest in the apo state, indicating inhibitory
ligands stabilize the KNtp-SUR1 interface. Deletion
of KNtp is known to increase channel open probabil-
ity,6,36,64 while immobilizing KNtp in the SUR1 ABC
core cavity via engineered crosslinking between
Kir6.2-L2C and SUR1-C1142 inhibits channel activ-
ity.47 Worth noting, mutations L2P,2 R4C/H, L17P,
R24C, R27C/H in Kir6.218 as well as R826W19

and N1123D70 of SUR1 have all been reported in
neonatal diabetes or congenital hyperinsulinism,
which underscores the importance of the KNtp-
SUR1 interface in channel gating.
In addition to KNtp forming interactions with the

SUR1-ABC module, regions C-terminal to KNtp in
the Kir6.2-N terminal domain were also observed
to be intimately involved in protein–protein and
protein–ligand interactions. First, in the CTD-up
structure, Kir6.2 R31-R34 is close to the short
loop that connects bL and bM (LM loop)48 of the
neighboring subunit (Figure 3(C)). A mutation
D323K in the LM loop has been shown to disrupt
ATP inhibition.11 Second, further downstream K39
has its sidechain oriented towards ATP bound to
the neighboring Kir6.2 on the other side. Thus, we
found the Kir6.2 N-terminus is connected simulta-
neously to two ATP binding pockets. Dynamic
movement of the KNtp between the CTD-up and
CTD-down conformations may therefore impact
the interactions of downstream Kir6.2-N terminal
domain with neighboring subunits on both sides
and with ATP. Finally, the refined structures
showed that a loop (K47-Q52) N-terminal to the IF
helix of Kir6.2 has close interaction with SUR10s
TMD0-intracellular loop 1 (ICL1), ICL2 and ICL3
(i.e. L0). Here, a compact network of interactions
stabilizes the Kir6.2-CTD close to the membrane
and also reinforces ATP binding. In the CTD-down
conformation, the Kir6.2 pre-IF helix loop becomes
more distant from the SUR1-ICLs such that the
Kir6.2-CTD is no longer tethered close to the mem-
brane, which also impacts the ATP binding pocket
(see below).
ATP binding pocket--Rapid and reversible closure

upon non-hydrolytic binding of ATP at Kir6.2 is a
cardinal feature of KATP channels.52 The improved
map quality in the current study allowed us to refine
interpretation of the ATP cryoEM density and the
interaction network that coordinates ATP binding
and follow how the ATP binding pocket becomes
reconfigured in different conformations.
In our improved maps, the ATP density could be

modeled with ATP in two alternative poses. In the
first, the c-phosphate is oriented upward towards
R50 of Kir6.2, which is consistent with functional
studies indicating that R50 interacts with the c-
phosphate of ATP71. This pose was used to model
ATP density in our previously published structure
bound to GBC and ATP (PDB: 6BAA)46 and also
to model ATPcS bound to a rodent SUR1-39aa-
Kir6.2 fusion KATP channel78. In the second pose,
the ATP’s c-phosphate is oriented downward facing

N335. This alternative orientation is also supported
by functional data showing that N335Q decreases
ATP sensitivity22 and used to model ATP density
bound to Kir6.2 in cryoEM structures of a human
SUR1-6aa-Kir6.2 fusion KATP channel (PDB:
6C3O and 6C3P).38 Of note, we also observed an
unassigned protruding density in ATP in our initial
GBC/ATP map (EMD-7073), which we speculated
may be contaminating Mg2+46 but which can be well
modeled by the alternative pose of the c-phosphate.
The simplest interpretation is that the cryoEM den-
sity of ATP we observed is likely an ensemble of
the two possible c-phosphate poses.
The improved map also showed clear cryoEM

density for the side chain of K205 in the L0 of
SUR1. We have previously proposed that K205
participates in ATP binding48 based on an early find-
ing that K205E reduces ATP inhibition.61 However,
our previously published cryoEM map (EMD-7073)
does not resolve the side chain density of K205 suf-
ficiently to permit definitive conclusion. In our cur-
rent map, K205 side chain was clearly oriented to
the bound ATP (Figure 4(B)), stabilizing interactions
with the b- and c-phosphates of ATP. Similar obser-
vations have been reported by Ding et al.21. The
role of K205 in ATP binding is further substantiated
by Usher et al.74 in which binding affinity between a
fluorescent ATP analogue and the channel was
assessed by FRET measurements between the
ATP analogue and a fluorescent unnatural amino
acid ANAP (3-(6-acetylnaphthalen-2-ylamino) � 2-
aminopropanoic acid) engineered at Kir6.2 amino
acid position 311. The study found that SUR1-
K205A and K205E mutations reduce ATP binding
affinity by �5 and 10-fold.
The conformational dynamics we observed in

Kir6.2-CTD and SUR1 had significant impact on
the structure of the ATP binding site. In the Kir6.2-
CTD-up conformation, the Kir6.2-CTD was packed
tightly against SUR10s ICL1, ICL2, and the initial
segment of L0 (Figure 4(A); contact surface area
�144 �A2, calculated using PDBePISA). In this
conformation, ATP was fitted snugly into the
pocket formed by the N- and C-terminal domains
of adjacent Kir6.2 subunits and L0 of SUR1, and
had an ATP interface area �430 �A2. In the CTD-
down conformation, the Kir6.2-CTD became
disengaged from the SUR1-ICLs (Figure 4(A);
contact surface area �9 �A2), which disrupted
several interactions that had stabilized ATP
binding, and reduced the ATP interface area to
�380 �A2. Specifically, R54, which was oriented
towards the ATP in the CTD-up state became
distant from the ATP binding pocket in the CTD-
down structure. K39 in the N-terminus of
neighboring Kir6.2, which also coordinated ATP
binding in the CTD-up structure, was reoriented
away from the ATP in the CTD-down structure
(Figure 2(C), (D)). Moreover, the distance
between K205 in the L0 of SUR1 and ATP
increased in the CTD-down conformation. These
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changes together weakened the ATP binding
pocket and exposed ATP to solvent. In addition to
impacting Kir6.2-CTD dynamics, SUR1 rotation
also affected ATP binding. When SUR1-ABC
module rotated toward the Kir6.2 tetramer core
(SUR1-in), L0 pulled away from the ATP binding
pocket. As a result, SUR1-K205 lost interaction
with ATP, destabilizing binding (Figure 4(B)).
PIP2 binding site--At the binding pocket where

PIP2 is predicted to bind based on homology with
Kir2 and Kir3 channels for which PIP2 bound
structures are available,27,39,54 a lipid cryoEM den-

sity is seen in both Kir6.2-CTD-up and CTD-down
conformations. Interestingly, the lipid density in the
CTD-up conformation is significantly larger than
that in the CTD-down conformation (Figure 5(A)).
This was consistent for all datasets that include both
conformations. We were able to fit, and tentatively
model, the lipid density in the CTD-up structure with
two phosphatidylserine (PS) molecules and that in
the CTD-down structure with one PSmolecule (Fig-
ure S5). Since no PIP2 was added to our samples
prior to imaging, we reasoned that the more abun-
dant PS may have entered the binding pocket. In

Figure 4. Comparison of ATP binding pocket and SUR1-TMD0/Kir6.2-CTD interface between Kir6.2-CTD-up
and CTD-down conformations. (A) Surface representations of the SUR1-TMD0/Kir6.2-CTD interface and the ATP
binding pocket in Kir6.2-CTD-up (left) and the CTD-down (right) conformations. SUR1 is shown in deep blue or pink
hues, Kir6.2-CTD in pale blue or pink hues, and ATP as stick model. The arrows point to contacts between SUR1 and
Kir6.2 in CTD-up panel which are lost (dashed arrows) in the CTD-down panel. Loss of the tight interaction between
the SUR1-TMD0 and Kir6.2-CTD domains renders the ATP binding pocket less compact. (B) Detailed views of
residues surrounding ATP in the Kir6.2 CTD-up conformation (blue, left) which become more distant from ATP and/or
interacting partners in the CTD-down conformation (pink, right), including K205 of SUR1, Q52, R54 and K39 of Kir6.2.
ATP cryoEM density (3.3 r contour) is represented by a mesh.
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a recent study by Zhao and MacKinnon,81 it was
shown that PIP2 is not required for KATP channel
activity, suggesting other phospholipids that occupy
the PIP2 binding site could potentially support chan-
nel activity.Whether the density in our structure rep-
resents PS, co-purified endogenous PIP2, or other
phospholipids requires further investigation.

In the Kir6.2-CTD-up structure, in addition to the
set of Kir6.2 residues K67 and W68 in the outer
helix, and R176 in the C-linker previously
implicated in PIP2 binding,12,16,68 we found K134
in TMD0 of SUR1 was in close contact with the den-
sity corresponding to lipid headgroups (Figure 5
(A)). To test whether SUR1-K134 has a role in the

Figure 5. Comparison of the PIP2 binding pocket in Kir6.2-CTD-up and CTD-down conformations. (A, B)
PIP2 binding pocket of Kir6.2-CTD up (A, blue) and Kir6.2-CTD down (B, pink) conformations viewed from the side.
Lipid densities are shown as a mesh (1.0 r contour). In (A), in addition to Kir6.2 residues previously implicated in
phospholipid binding, SUR1-K134 side chain is pointed directly at the lipid density. SUR1 is shown in deep blue or
pink, Kir6.2 in pale hues. (C, D) Same as (A, B) viewed from the extracellular side with the helical bundle crossing
shown (F168). Note the PIP2 binding pocket is more compressed in Kir6.2-CTD-down than CTD-up conformation due
to secondary structural change at the IF helix that brings Q57 to interact closely with F60 and W68 (red dashed circle).
(E, F) Inside-out patch-clamp recording (examples in E) show greater fold current increase in response to PIP2 of the
SUR1-K134A mutant channel than WT channel (left), with statistically significant difference (*p < 0.05, student’s t-
test).
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PIP2 sensitivity of KATP channel opening, we func-
tionally characterized a mutant KATP channel in
which this residue is mutated to alanine (SUR1-
K134A), using inside-out patch-clamp recording
(see Methods). Compared to WT channels, the
SUR1-K134A mutants exhibited substantially smal-
ler initial currents in ATP-free solution. Upon PIP2

addition, however, the mutant channel currents
increased by 5.93 ± 2.17-fold, which is significantly
higher than the 1.27 ± 0.23-fold current increase
seen in WT channels (Figure 5(E), (F)), indicating
the SUR1-K134A mutation reduced intrinsic Po

and PIP2 interactions. It is well documented that
channel Po, determined by channel interaction with
PIP2, is primarily conferred by SUR1 association
with Kir6.2. The Kir6.2 channel itself has low Po,
but co-expression with SUR1 or just the TMD0
domain of SUR1 increases channel Po by more
than 10-fold.5,14,24,60 Our results show SUR1-
TMD0 participates in PIP2 interaction, at least in
part through K134, which strengthens PIP2 interac-
tions with Kir6.2.
In the CTD-down structure, the IF helix was closer

to W68 near the cytoplasmic end of the outer helix
of the neighboring Kir6.2 than in the CTD-up
structure, causing compression of the PIP2

binding pocket (Figure 5(A)-(D)). This provides an
explanation for why the lipid cryoEM density in the
CTD-down structure was significantly weaker than
that in the CTD-up structure and could be
tentatively fit by only one PS molecule
(Figure S5). Moreover, the simultaneous
unwinding of the C-linker in the CTD-down
structure withdrew the key PIP2-interacting
residue R176 to a position too distant for
interaction. In this conformation, Kir6.2 is
expected to be inactive.

Elucidating the relationship between ATP and
PIP2 binding by MD simulations

ATP and PIP2 compete with each other to close
and open the channel, respectively.8,68 However,
the structural mechanism underlying this functional
competition has remained unresolved. Previous
mutation-function correlation studies led to a pro-
posal that ATP and PIP2 have overlapping but
non-identical binding residues.16,67,72 To test this
hypothesis, we conducted MD simulation studies
using as a starting point the Kir6.2 (32–352) plus
SUR1-TMD0 (1–193) tetramer part the RPG/ATP
Kir6.2-CTD-up structure. Previous studies have
shown that Kir6.2 and TMD0 of SUR1 form “mini
KATP channels”,5,14 which like WT channels exhibit
functional antagonism between ATP and PIP2.

5,60

The mini KATP channel system is therefore suitable
for simulating residues which may participate in
binding of both ligands. Three independent 1 ls
simulations were carried out for each of two ligand
conditions, either without ATP or PIP2 (apo), or with

both ATP and PIP2 in their respective binding pock-
ets (ATP + PIP2 (Figure S6(A), (B); for details see
Methods).
Comparing the two different conditions, there was

an overall increase in dynamics of the Kir6.2-CTD in
the apo simulations versus the ATP + PIP2

simulations (Figure 6, Figure S6, movie 2–5).
First, significant secondary structural changes at
the IF helix and the C-linker were observed in the
apo simulations, resembling the changes from the
CTD-up to the CTD-down conformation we
observed in cryoEM structures. Second, the entire
CTD relaxed towards the cytoplasm in the apo
simulations. This was quantified by measuring the
distance between the helix bundle crossing (HBC)
gate at F168 and the G-loop gate at G295
(Figure 6(A)). In apo simulations, this distance
increased over time in all three runs, whereas it
remained relatively unchanged for the ATP + PIP2

simulations (Figure 6(B)), except in run 2 during
which the distance increased when ATP became
partially dissociated at around 500 ns (Figure 6
(B)). These findings show that in the absence of
ligands, the Kir6.2-CTD has a tendency to relax
toward the CTD-down conformation.
Analysis of the minimum distance between each

of the ligands and their surrounding residues
within 4 �A over the entire simulation revealed that
K39 and R54 of Kir6.2 engaged in both ATP and
PIP2 binding. Figure 6(D) shows the fraction of
time over the entire simulation each residue in
each subunit and each run came into contact with
ATP or PIP2. R54 and K39 each showed partial
ATP and PIP2 occupancy (Figure 6(C), (D),
Figure S6(C), (D), movie 4, 5), which was in
contrast to well established ATP binding residues,
including R50 and K185, and PIP2 binding
residues K67 and R176, which showed nearly
100% ATP or PIP2 occupancy. Of the two dual
occupancy residues, R54 showed greater
interactions compared to K39 with both ATP and
especially with PIP2. K39, while showing
interaction with ATP in all three runs, only showed
significant interaction with PIP2 in one of the three
runs (Figure S6(D)). The analysis also identified
residues that had specific, although less stable,
interactions with either ATP or PIP2 as defined by
distance between residue and ligand < 4 �A. In
particular, Kir6.2-Q52 specifically interacted with
ATP, and SUR1-K134 with PIP2, contrasting with
the dual ligand binding mode of R54 and K39. A
previous mutagenesis study has shown that
mutation of either K39 or R54 to alanine reduces
channel open probability as well as sensitivity to
ATP inhibition,16 which early implicated a role for
these residues in channel gating by PIP2 and
ATP. Confirming a role in physiological regulation,
mutations R54C and R54H are linked to congenital
hyperinsulinism18 and mutation K39R to transient
neonatal diabetes.80 OurMD simulation results sug-
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gest both residues participate directly in ATP and
PIP2 binding, providing mechanistic insight into
how mutation of these residues affect PIP2 and
ATP sensitivities and cause disease.

Discussion

Cryo-preserved purified protein samples may
contain multiple protein structures that represent

Figure 6. MD simulations of Apo versus ATP + PIP2 state. (A) Positioning of the helix bundle crossing (HBC)
and G-loop gate in a representative apo-simulation and ATP-PIP2-simulation. The time-varying position of the
geometric center (plotted in red) of G295 (G-loop gate) Ca carbons of all four chains is overlaid on beginning and end
snapshots of G295 Ca carbons, after aligning trajectories to the Kir6.2 TM domain. (B) Plots of the distance between
the geometric centers of all four Ca atoms of F168 and of G295 for the entire simulations. Greater distances between
the two gates in the apo state compared to the ATP + PIP2 state indicate relaxation of the CTD in the absence of
ligands. In one apo simulation (light blue), ATP became partially dissociated at around 500 ns (red arrow). (C)
Snapshots of simulations in the presence of ATP and PIP2 showing interactions of R54 and K39 with either ATP or
PIP2. Kir6.2-K185 and SUR1-K134 which only interact with ATP or PIP2 respectively are also shown. (D) Heatmaps
showing fraction of time residues spend at increasing distances from ATP (horizontal axis) or PIP2 (vertical axis). A
representative trajectory corresponding to chain 1 in run 1 and colored to show time evolution is shown for each
residue. K39 and R54 (top row) exhibit switching behavior and occasional simultaneous contact, while essentially
exclusive ATP binding residues are shown in the middle row, and PIP2 binding residues in the bottom row.
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distinct functional or transitional states and can
provide mechanistic insight.55 In this study, analysis
of five KATP channel cyroEM datasets collected in
different ligand conditions revealed conformational
heterogeneity of the Kir6.2-CTD and SUR1 ABC
module. We observed the Kir6.2-CTD in either an
“up” position tethered close to the plasma mem-
brane, or a “down” position corkscrewed away from
the membrane towards the cytoplasm. The ratio of
the two conformations correlated with occupancy
of inhibitory ligands at the SUR1 and Kir6.2 binding
sites (Figure 1), suggesting inhibitory ligands help
stabilize the Kir6.2-CTD close to the membrane.
Furthermore, in both Kir6.2-CTD conformations
the SUR1 ABC module was observed oriented with
a range of rotation around the Kir6.2 tetramer cen-
tral axis (Figure S4). We observed a restructuring
of protein–protein and protein–ligand interfaces in
different conformations that sheds light on how
ligands shift channel conformational dynamics to
regulate gating.

Correlation between Kir6.2-CTD conformation
and channel function

The structures analyzed in this study all represent
closed channels. Recently, an open human KATP

channel structure containing Kir6.2 C166S and
G334D mutations was reported,81 which showed a
Kir6.2-CTD that is further CW rotated (extracellular
view) and slightly upward translated compared to
our Kir6.2-CTD-up conformation (Figure 1(C)).
Rearrangement of the molecular interactions
between the IF helix, the C-linker, and TM residues
as well as increased distance between the pre-IF
helix loop and SUR1 L0 compared to the ATP-
bound closed WT channel structure (equivalent to
our Kir6.2-CTD-up structure) were observed (Fig-
ure 7). The restructuring widens the ATP-binding
pocket, explaining the absence of ATP cryoEMden-
sity despite high concentrations of ATP in the sam-
ple, and stabilizes HBC gate opening via side chain
interactions between F60 in the IF helix and the
HBC gate residue F168. Another pre-open KATP

channel structure using a rat SUR1-39aa-Kir6.2
H175K fusion construct published while this manu-
script was under review76 showed similar structural
characteristics as the open channel structure.
Taken together, a picture emerges wherein rota-
tional and translational position of the Kir6.2-CTD
determines the functional state of the channel.
When the CTD is in the down position, the phospho-
lipid binding pocket is compressed due to a change

Figure 7. Comparison of an inhibitor-bound CTD-up closed structure and a mutant open structure. (A)
Overlay of RPG + ATP CTD-up structure (blue) with a Kir6.2 double mutant (C166S, G334D) structure (PDB:7S61;
yellow). Only two Kir6.2 subunits are colored. A small upward translation of the mutant open structure relative to the
inhibitor-bound closed structure is indicated by the small red arrow next to the red box, which is shown in a 90⁰ rotated
enlarged view in B. (B) Overlay of the Kir6.2 tetramer with part of the SUR1-L0 viewed from the extracellular side. A
CW rotation (5⁰) of the CTD from the inhibitor-bound closed structure to the mutant open structure is noted. Structural
elements and residues from chain b are labeled with b at the end to distinguish from those from chain a. Residues
which show significant differences in the two structures are labeled in red. (C) Same as B but with the two structures
shown separately and residues in the C-linker.b visible. The red dashed circles illustrate the enlargement of the
potassium ion path at the helix bundle crossing (F168) in the open structure.
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in secondary structures of the IF helix (Figure 5) and
the C-linker is unwound by the increased separation
of the CTD from the membrane domain. We pro-
pose this conformation corresponds to an “inacti-
vated” state in which the CTD is unable to engage
with membrane phospholipids and thus open the
channel. When the CTD is in the clockwise up-
screwed position with ATP and/or drug bound, the
channel is primed for opening but is arrested in an
inhibited state due to an interaction network
between SUR1-L0 and the Kir6.2-N terminal
domain, an interaction stabilized by ATP that pre-
vents further rotation of the CTD needed to open
the HBC gate. Upon ATP dissociation, the CTD is
released for further CW rotation, enabling the gate
to widen and open the channel.
To explain our structural data and a wealth of

electrophysiological data we propose the Kir6.2-
CTD undergoes transitions between four principal
conformation states in dynamic equilibrium: CTD-
down inactivated, CTD-up unliganded and closed,
CTD-up bound to inhibitory ligands, and CTD-up
open, with the probability to occupy a given

conformation driven by ligands (Figure 8), similar
to the model previously proposed by Borschel
et al..10 In the absence of ligands the CTD-down
conformation dominates, as seen in our apo state
dataset, and the channel is inactivated. While not
observed in our structural studies here, inactivated
channels can transition into a short-lived unliganded
CTD-up conformation at low probability. Binding of
physiological inhibitor ATP at Kir6.2, and/or a phar-
macological inhibitor at SUR1, shifts Kir6.2 towards
a stable CTD-up but closed conformation. Binding
of phospholipids such as PIP2, when coupled with
unbinding of inhibitory ligands, shifts the equilibrium
towards the Kir6.2-CTD-up open position. Under
physiological conditions with high intracellular ATP
concentrations and ambient phospholipids, we
expect the Kir6.2-CTD to be mostly in an ATP inhib-
ited CTD-up conformation, with a small fraction in a
CTD-up state having the phospholipids bound and a
further-rotated-open conformation, and rarely in an
unliganded CTD-up conformation; the CTD-down
inactivated conformation would also be rare. How-
ever, in pathological conditions the CTD-down inac-

Figure 8. Correlating Kir6.2-CTD structures with functional states of pancreatic KATP channels. Cartoon
representation of the structural and functional states of KATP channels. In the presence of high concentrations of
intracellular ATP and ambient PIP2, channels are mostly in ATP-bound closed state in which the Kir6.2-CTD is in the
up-conformation and docked near the membrane and rotated CW from an extracellular perspective. Removal of ATP
results in a transient unliganded closed state with the CTD in the up position conducive to binding PIP2. Binding of
PIP2 opens the channel in which the Kir6.2-CTD is further CW rotated and moved up towards the membrane.
Inactivation occurs when the CTD in the unliganded state transitions into the down conformation, a process that is
enhanced by inactivation mutations including those known to cause hyperinsulinism. ATP facilitates channel recovery
from inactivation by shifting the equilibrium towards the ATP-bound closed state in which the Kir6.2-CTD is in the up-
conformation to allow the channel to transition to the unliganded CTD-up closed state upon subsequent removal of
ATP, primed for PIP2 binding and channel opening. Addition of PIP2 also counters inactivation by shifting the
equilibrium via the unliganded CTD-up closed state towards PIP2 bound open state. Note the unliganded, CTD-up
closed state shown to account for functional and kinetic modeling data in the literature is likely short-lived and its
structure is yet to be captured by cryoEM.
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tivated state could be prevalent. We and others
have previously reported several mutations includ-
ing congenital hyperinsulinism-causing mutations
at the Kir6.2 subunit-subunit interface (such as
R192A, E229A, R314A, R301A/C/H) that promote
channel inactivation.10,43–44,67 Channels containing
such mutations briefly open upon patch excision
into ATP-free solution but then quickly inactivate.
Interestingly, inactivation can be overcome by tran-
siently exposing channels to high concentrations of
ATP, followed by washout of ATP. We propose that
these mutations increase an energy barrier for
Kir6.2-CTD to transition from the CTD-down confor-
mation to CTD-up conformation, thus trapping the
CTD in the down inactivated state. ATP thus effec-
tively acts as a molecular glue at its Kir6.2 domain
interfaces. Exposure to ATP shifts the Kir6.2-CTD
back to the CTD-up position such that channels
can open again when ATP is washed out. The
model similarly explains the ability of PIP2 to pre-
vent and reverse inactivation mutants from inactiva-
tion10,43–44,67 by stabilizing Kir6.2-CTD in the up and
further rotated open position.
The Kir6.2-CTD-up and CTD-down

conformations observed in our structures are
similar to the T and R states observed in a SUR1-
39aa-Kir6.2 fusion channel alternatively bound to
GBC + ATPcS, ATPcS alone, or MgADP by Wu
et al..78 However, the percentage of particles in
the T-state (corresponding to our Kir6.2-CTD-up
state) in their ATPcS + GBC or ATPcS datasets is
�40% and 43% respectively, which differ signifi-
cantly from the �93% and 22% in our GBC + ATP
and ATP alone datasets. Compared to our CTD-
up state in the ATP condition, the higher percentage
of T-state particles in the fusion channel’s ATPcS
condition could potentially derive from the 10-fold
higher concentrations of ATPcS used to generate
the Wu et al. structure. An explanation for the mark-
edly higher percentage of Kir6.2-CTD-up state par-
ticles in our GBC + ATP condition, over T-state
particles in their GBC + ATPcS condition is not obvi-
ous. In principle, however, the extra 39aa linker
between SUR1 C-terminus and Kir6.2 N-terminus
in the fusion construct could uncouple drug binding
from Kir6.2-CTD conformation. Consistent with this,
GBC was shown to be ineffective in inhibiting the
fusion channel in contrast to theWT channel formed
by separate SUR1 and Kir6.2 proteins.78

Previous KATP channel cryoEM studies have
provided evidence that KNtp interacts with the
central cavity of the SUR ABC core.21,47,69,78 The
structures presented here refines our view of the
molecular interactions between the KNtp and differ-
ent parts of SUR1. We have previously shown that
engineered crosslinking between Kir6.2-L2C and
SUR1-C1142 reduces channel activity.47 A likely
scenario is that stapling KNtp along SUR1 via the
contact sites we observe stabilizes the inhibited
Kir6.2-CTD-up conformation and prevents further
rotation of the CTD needed to open the channel.

This interpretation can explain why deletion of KNtp
increases channel open probability,6,36,64 while
drugs such as GBC, RPG and CBZ, which stabilize
KNtp in the transmembrane cavity of the SUR1
ABC module, mimic the physiological inhibitor
ATP and block channel activity.20

Comparison to other Kir channels

Differential proximity of the CTD to themembrane
has also been reported in Kir227,39,79 and Kir3,53

suggesting there may be a common theme in Kir
channel conformation and gating transitions. Sup-
porting this, mutations which disrupt cytoplasmic
domain subunit interface in Kir2.1 also reduce chan-
nel activity, akin to the inactivation mutations
reported in Kir6.2.10 Distinctively however, unlike
Kir2 and Kir3 channels, KATP channels have an
additional ATP-bound Kir6.2-CTD-up conformation
stop between the CTD-down inactivated and CTD-
up open conformations, which allows for a rapid
and reversible inhibition of the channel in response
to metabolic signals.
Another unique feature of Kir6.2 channels is the

requirement of SUR1 co-assembly to achieve the
high ATP sensitivity and open probability of native
KATP channels.30,73 Several studies have now pro-
vided functional, biochemical and structural evi-
dence that SUR1 directly participates in ATP
binding via K205 in the L0 linker.21,61,74 SUR1
increases the open probability of Kir6.2 by more
than 10-fold, an effect that is largely mediated by
TMD0.5,14 We show in our structure that K134 in
SUR1-ICL2 is oriented towards the lipid headgroup
density in the PIP2 binding pocket, suggesting
SUR1-TMD0 increases channel open probability
by directly contributing to binding of PIP2 or other
phospholipids. Supporting this, MD simulations
show K134-PIP2 interactions (Figure 6(D), Fig-
ure S6(D)) and functional experiments show that
mutation of SUR1 K134 to alanine reduces channel
Po (Figure 5(E), (F)).

Structural basis of ATP and PIP2 antagonism

ATP and PIP2 functionally compete to inhibit and
activate KATP channels, respectively.8,68 Molecular
dynamics (MD) simulations reveal that two Kir6.2
residues, K39 and R54, interact with both ATP
and PIP2, providing evidence that competition for
binding residues between the two ligands underlies,
at least in part, functional competition between ATP
and PIP2. Interestingly, in one of the ATP + PIP2

simulation runs, ATP dissociates from its binding
pocket (Figure 6(B)). This dissociation event is likely
captured because SUR1-L0, which contains the
ATP stabilizing residue K205 is not included in the
simulation structure. It offers a view of how ATP
may dissociate such that binding residues shared
between ATP and PIP2 have greater freedom to
interact with PIP2, favoring channel opening. The
rotational movement of SUR1 towards the Kir6.2-
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tetramer observed in our multibody refinement anal-
ysis (Figure S4) increases the distance between
SUR1-K205 and bound ATP, which may initiate
ATP dissociation by weakening ATP binding and
thus provide a pathway for channel transition from
ATP bound inhibited state to PIP2 bound open
state.
In summary, the structural analysis, MD

simulations, and functional studies presented here
together with the recent open KATP channel
structure reported by others81 offer insight into sev-
eral longstanding questions on KATP channel gating
mechanisms. A principal unresolved question
regards the full extent of the conformational dynam-
ics of the SUR1 subunit and how it may relate to
channel function. The large rotation of the SUR
ABC module that leads to a quatrefoil channel con-
formation has previously been reported in a human
SUR1-6aa-Kir6.2 fusion protein channel in which
the NBDs are bound to MgATP/MgADP and dimer-
ized.38 Recently, a similar large rotation is reported
in a SUR2B/Kir6.1 vascular KATP channel bound to
GBC and ATP.69 However, the quatrefoil conforma-
tion is not observed in themost recent human SUR1
NBDs dimerized-Kir6.2 mutant open channel.81

Whether the variable findings stem from protein
preparation methods or involve differences in data
processing will be important to resolve in order to
fully understand KATP channel structure and func-
tion relationship.

Methods

Image processing and particle classification

CryoEM images of pancreatic KATP channels (co-
assembled from hamster SUR1 and rat Kir6.2)
collected in different liganded conditions in our
previous publication47 were reprocessed from the
initial 2D classification step that we described previ-
ously using RELION-3.1.82 Classes displaying fully
and partially assembled complexes with high signal/
noise were selected. The particles were re-
extracted at 1.045 �A/pix for RPG/ATP, 1.399 �A/pix
for GBC/ATP, 1.72 �A/pix for CBZ/ATP and ATP
only, and 1.826 �A/pix for apo state datasets, and
then used as input for 3D classification in
RELION-3.1. Figure S1 shows the data processing
workflow for the RPG/ATP dataset. Channel parti-
cles refined in the final C4 reconstruction (150,707
total particles) were subjected to C4 symmetry
expansion and yielded 4-fold more copies. Further
refinement was performed without symmetry
restraints or masking such that possible heteroge-
neous particles can be aligned without any
restraints. 2D class averages from all data sets
showed significant heterogeneity of the SUR1-
ABC module, indicating dynamic SUR1 motions
were captured during vitrification of the cryoEM
samples. To probe potential novel conformations
due to dynamics of SUR1-ABC module relative to
the Kir6.2 tetramer, or for novel conformations that

arise due to dynamic motions of other domains of
the KATP channel, a soft mask that includes the
Kir6.2 tetramer and one SUR1 in a propeller form
was created in Chimera using our previously pub-
lished model (PDB:6BAA),46 and extensive focused
3D classification was performed without particle
alignment. This revealed two major classes with dif-
ferent Kir6.2-CTD conformations that are either
anchored up towards the plasma membrane
(CTD-up) or extended down further towards the
cytoplasm (CTD-down).
Focused refinement of SUR1 was carried out

after partial signal subtraction that removed
signals outside the masked region, followed by
further 3D classification without alignment at
higher regularization T values (ranged from 6 to
20) and local refinement of signal subtracted
particles.65 Extensive 3D classification sorted out
remaining minor groups of particles that did not
align well with the propeller conformation but no
other conformations emerged. The dominant class
then underwent three iterations of CTF refinement
and 3D refinement. To test whether some of the
SUR1 particles adopt quatrefoil-like conformation
reported previously, a mask that includes the
Kir6.2 tetramer and one SUR1 was also created
using a quatrefoil-like model of our previously pub-
lished Kir6.1/SUR2B structure (PDB:7MJO),69

which was used for classification following the same
scheme described for the propeller form mask. A
minor quatrefoil form at 7.1 �A overall resolution
was identified from the RPG/ATP dataset (Fig-
ure S1). Final maps were subjected to Map-
modification implemented in Phenix with two inde-
pendent half maps and corresponding mask and
model as input. They were then sharpened with
model-based auto sharpening with the correspond-
ing model using Phenix, a step that was iterated
during model building.
The sameworkflowwas used to process the other

four datasets, GBC/ATP, CBZ/ATP, ATP only and
apo states. With the exception of the apo dataset
which yielded only the CTD-down conformation, all
other datasets showed both Kir6.2-CTD classes
similar to those identified in the RPG/ATP dataset
but with varying ratios of the two conformations.
Particle distributions and final map resolutions for
all datasets are summarized in Table S1. Upon
carrying out this further analysis, we noted the
CBZ/ATP dataset previously reported to be
collected in the presence of 10 lM CBZ and 1 mM
ATP did not yield a map with clear ATP density at
the Kir6.2 ATP binding site. Upon inspection of the
ATP used it was discovered that the concentration
had been mistakenly reported as 1 mM rather than
0.1 mM, which likely explained the lack of clear
ATP cryoEM density.

Multibody refinement

For Kir6.2 tetramer multibody refinement,
particles pooled from both the RPG/ATP CTD-up
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and CTD-down classes and also each class
separately were used.50 To interrogate the Kir6.2
CTD movements relative to its TM domain, we
masked out the SUR1 density and assigned the
Kir6.2 TM domain (58–173) and CTD (174–352)
as two separate rigid bodies (Figure S3(A)). Princi-
pal component analysis showed that a dominant
eigenvector accounted for 25.3% of the overall vari-
ance (Figure S3(B)). Histograms of the amplitudes
along this eigenvector shows a bimodal distribution
with two peaks, indicating two conformationally dis-
tinct populations differing in the distance between
the CTD and the TM domain and rotation of the
CTD as expected. Rotation and rocking motions of
the CTD were also observed within the Kir6.2-
CTD-up and Kir6.2-CTD-down class particles.
Although similar in degrees of motion, greater
heterogeneity was seen in the CTD-down popula-
tion of particles than in the CTD-up (Figure S3(C),
(D)), consistent with increased mobility of the CTD
when extended away from the membrane.
For (Kir6.2)4-SUR1 multibody refinement, the

map was divided into three bodies: body 1, Kir6.2-
tetramer (E30-D352); body 2, ABC-core (Q211-
V1578) of SUR1 plus KNtp (M1-E19) of Kir6.2;
and body 3, TMD0 (M1-L210) of SUR1 (Figure S4
(A)). Multibody refinement was repeated with
varying standard deviations for the degrees of
rotation, and pixels of translation, to rule out
artifacts. Principal component analysis in the
relion_flex_analyse program revealed that
approximately 17.5% of the variance is explained
by the dominant eigenvector 1 (Figure S4(B), (C))
corresponding to horizontal swinging motion of
SUR1.50 We then used the program to generate
two separate STAR files, each containing
�35,000 particles with amplitudes less than �5 or
greater than +5 along eigenvector 1 (Figure S4
(D)). These two sets of particles were further refined
using a soft mask, yielding two maps which we refer
to as SUR1-out and SUR1-in with an overall resolu-
tion of 3.8 and 3.9 �A, respectively.

Model building and refinement

The RPG/ATP dataset yielded the highest
resolution maps and were used for modeling
(Table S2). Initial models for the Kir6.24-SUR1
channel were obtained by docking Kir6.2-TMD
(32–171) and Kir6.2-CTD (172–352) from our
previously published model (PDB:6BAA),48 and
TMD0/L0 (1–284), TMD1 (285–614), NBD1 (615–
928), NBD1-TMD2-linker (992–999), TMD2
(1000–1319) and NBD2 (1320–1582) of SUR1
(PDB:6PZA),47 into either the RPG-CTD-up or the
RPG-CTD-down cryoEM density map by rigid-
body fitting using Chimera’s ‘Fit in’ tool.58 Then dif-
ferent domains were combined using Chimera to
form a composite model for further refinement.
We used Coot to manually build and edit residues
32–78 and residues 79–361 at the interface of two
Kir6.2 subunits23, we then copied those changes

to each of the other four Kir6.2 subunits. Further
edits and refinements were done independently to
each chain without strict NCS restraints. The mod-
els were then iteratively built and refined in Coot23

and Phenix,1 with Ramachandran restraints, sec-
ondary structure restraints, and side-chain rotamer
restraints. The N-terminus of Kir6.2 (residues 1–
31, KNtp) had sufficient continuous density and
the density was sufficiently clear to allow modeling
of several key interactions with SUR1, although
accurate modeling of side chains was not possible
for the entire KNtp. Similarly, the NBDs of SUR1
and particularly NBD2 had weaker density than
most of the reconstructed map, imposing reliance
on restraints and prior models. In addition to model-
ing the protein, ATP was modeled at the inhibitory
ATP-binding site on each of the four Kir6.2 subunits,
and at the nucleotide binding site in NBD1 of SUR1
which had sufficient cryoEM density. Phos-
phatidylserine, phosphatidylcholine, and phos-
phatidylethanolamine were modeled liberally into
plausible lipid density; 17 lipids were modeled for
the RPG-CTD-up model and 13 lipids modeled for
the RPG-CTD-down model.

MD simulations and analysis

All MD simulations were performed at all-atom
resolution using AMBER 1613 with GPU accelera-
tion. Initial coordinates were developed from the
RPG/ATP-CTD-up model including four Kir6.2
(32–352) and four SUR1-TMD0 (1–193) without
the SUR1-ABC core. ATP in the cryoEM structure
was removed for simulations in the apo condition.
For simulations in the presence of ATP and PIP2,
the ATP from the cryoEM structure was kept, and
a PIP2 molecule (DMPI24, di-myristoyl-inositol-(4,
5)-bisphosphate) was docked in the PIP2 binding
pocket using Kir3.2-PIP2 structure (PDB ID:
6 M84) as a template.
The simulation starting structures were

protonated by the H++ webserver (https://
biophysics.cs.vt.edu/H++) at pH 7 and inserted in
a bilayer membrane composed of 1-palmitoyl-2-ol
eoyl-phosphatidylcholine (POPC) lipids and
surrounded by an aqueous solution of 0.15 M KCl.
The optimal protein orientations in the membrane
were obtained from the OPM database.45 All sys-
tems contain 650–680 POPC lipids and �87,000
water molecules, resulting in a total of �385,000
atoms. They were assembled using the
CHARMM-GUI webserver,33,37,77 which also gener-
ated all simulation input files.
The CHARMM36m protein29 and CHARMM36

lipid35,57 force field parameters were used with the
TIP3P water model.34 Langevin dynamics56 were
applied to control the temperature at 300 K with a
damping coefficient of 1/ps. Van der Waals (vdW)
interactions were truncated via a force-based
switching function with a switching distance of
10 �A and a cutoff distance of 12 �A. Short-range
Coulomb interactions were cut off at 12 �A, long-
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range electrostatic interactions were calculated by
the Particle-Mesh Ewald summation17,25. Bonds to
hydrogen atoms were constrained using the
SHAKE algorithm.32

The atomic coordinates were first minimized for
5000 steps using the steepest-descent and
conjugate gradient algorithms, followed by a
�2 ns equilibration simulation phase, during which
dihedral restraints on lipid and protein heavy
atoms were gradually removed from 250 to
0 kcal/mol/�A2, the simulation time step was
increased from 1 fs to 2 fs, and the simulation
ensemble was switched from NVT to NPT. To
keep the pressure at 1 bar, a semi-isotropic
pressure coupling was applied that allows the z-
axis to expand and contract independently from
the x-y plane.49 The simulations were then run for
over 1 ls with a time step of 4 fs enabled by hydro-
gen mass repartitioning.7,28

Analysis of ATP/PIP2 occupancy

ATP and PIP2 residue occupancies (Figure 6(D))
were computed using the histogram of minimum
hydrogen bond lengths between each residue and
PIP2/ATP, to show the amount of time spent at
different distances. Summarized residue
occupancies (Figure S6(D)) were calculated as
the fraction of time each residue spent in contact
with ATP/PIP2, where contact is defined as a
minimum hydrogen bond length of below 4 �A. For
both ligands, minimum bond lengths were used
regardless of which pairs formed the bond. A
10 ns window average was used to smooth the
minimum bond length time series data.

Functional studies

Point mutation SUR1-K134A was introduced into
hamster SUR1 cDNA in pECE using the
QuikChange site-directed mutagenesis kit
(Stratagene). Mutation was confirmed by DNA
sequencing. For electrophysiology, wild-type or
mutant SUR1 cDNA and rat Kir6.2 in pcDNA1
along with cDNA for green fluorescent protein
GFP (to facilitate identification of transfected cells)
were co-transfected into COS cells using
FuGENE�6, and plated onto glass coverslips 24
hours after transfection for recording, as described
previously.47 Recording pipettes were pulled from
non-heparinized Kimble glass (Fisher Scientific)
on a horizontal puller (Sutter Instrument, Co.,
Novato, CA, USA). Electrode resistance was typi-
cally 1–2 MX when filled with K-INT solution con-
taining 140 mM KCl, 10 mM K-HEPES, 1 mM K-
EGTA, pH 7.3. ATP was added as the potassium
salt. PI4,5P2 (Avanti Polar Lipids) was reconstituted
in K-INT solution at 5 lM and bath sonicated in ice
water for 20 min before use. Inside-out patches of
cells bathed in K-INT were voltage-clamped with
an Axopatch 1D amplifier (Axon Inc., Foster City,
CA). Exposure of membrane patches to ATP- or

PIP2-containing K-INT bath solution was as speci-
fied in Figure 5 legend. All currents were measured
at room temperature at a membrane potential of
�50 mV (pipette voltage = +50 mV) and inward cur-
rents shown as upward deflections. Data were ana-
lyzed using pCLAMP10 software (Axon
Instrument). Off-line analysis was performed using
Microsoft Excel programs. Data were presented
as mean ± standard error of the mean (S.E.M)
and statistical analysis was performed using two-
tailed student’s t-test, with p < 0.05 considered sta-
tistically significant.

DATA AVAILABILITY

Coordinates and cryoEM density maps for KATP channel
models of the Kir6.2 tetramer core plus one SUR1
subunit have been deposited to the Protein Data Bank
and the Electron Microscopy Data Bank with accession
numbers as follows: RPG/ATP Kir6.2-CTD-up (PDB
code 7TYS, EMDB code EMD-26193); RPG/ATP
Kir6.2-CTD-down (PDB code 7TYT, EMDB code EMD-
26194); RPG/ATP Kir6.2-CTD-up SUR1-in (PDB code
7U1Q, EMDB code EMD-26303); RPG/ATP Kir6.2-
CTD-up SUR1-out (PDB code 7U1S, EMDB code
EMD-26304); GBC/ATP Kir6.2-CTD-up (PDB code
7U24, EMDB code EMD-26307); GBC/ATP Kir6.2-
CTD-down (PDB code 7U6Y, EMDB code EMD-
26308); CBZ/ATP Kir6.2-CTD-up (PDB code 7U7M,
EMDB code EMD-26309); CBZ/ATP Kir6.2-CTD-down
(PDB code 7U2X, EMDB code EMD-26321); ATP-only
Kir6.2-CTD-up (PDB code 7UAA, EMDB EMD-26312);
ATP-only Kir6.2-CTD-down (PDB 7U1E, EMDB code
EMD-26299); Apo Kir6.2-CTD-down (PDB code 7UQR,
EMDB code EMD-26320). Molecular dynamics
trajectories are available at Zenodo, https://zenodo.org/
record/7017342 with DOI 10.5281/zenodo.7017342. All
other study data are included in the article and
supplementary data.
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Justification

We develop a novel HPC-enabled multiscale research
framework to study aerosolized viruses and the full com-
plexity of species that comprise them. We present tech-
nological and methodological advances that bridge time and
length scales from electronic structure through whole
aerosol particle morphology and dynamics.

Performance attributes

Performance attribute Our submission

Category of achievement Scalability, Time-to-solution
Type of method used Explicit, Deep Learning
Results reported on the basis of Whole application including I/O
Precision reported Mixed Precision
System scale Measured on full system
Measurement mechanism Hardware performance

counters
Application timers
Performance Modeling

Overview of the problem. Respiratory pathogens, such as
SARS-CoV-2 and influenza, are the cause of significant
morbidity and mortality worldwide. These respiratory
pathogens are spread by virus-laden aerosols and droplets
that are produced in an infected person, exhaled, and
transported through the environment (Wang et al., 2021)
(Figure 1). Medical dogma has long focused on droplets as
the main transmission route for respiratory viruses, where
either a person has contact with an infected surface (fomites)
or direct droplet transmission by close contact with an
infected individual. However, as we continue to observe
with SARS-CoV-2, airborne transmission also plays a
significant role in spreading disease. We know this from
various super spreader events, for example, during a choir
rehearsal (Miller et al., 2021). Intervention and mitigation
decisions, such as the relative importance of surface
cleaning or whether and when to wear a mask, have un-
fortunately hinged on a weak understanding of aerosol
transmission, to the detriment of public health.

A central challenge to understanding airborne trans-
mission has been the inability of experimental science to
reliably probe the structure and dynamics of viruses once
they are inside respiratory aerosol particles. Single particle
experimental methods have poor resolution for smaller
particles (<1 micron) and are prone to sample destruction

during collection. Airborne viruses are present in low
concentrations in the air and are similarly prone to viral
inactivation during sampling. In addition, studies of the
initial infection event, for example, in the deep lung, are
limited in their ability to provide a detailed understanding of
the myriad of molecular interactions and dynamics taking
place in situ. Altogether, these knowledge gaps hamper our
collective ability to understand mechanisms of infection and
develop novel effective antivirals, as well as prevent us from
developing concrete, science-driven mitigation measures
(e.g., masking and ventilation protocols).

Here, we aim to reconceptualize current models of air-
borne transmission of respiratory viruses by providing
never-before-seen views of viruses within aerosols. Our
approach relies on the use of all-atom molecular dynamics
(MD) simulations as a multiscale “computational micro-
scope.” MD simulations can synthesize multiple types of
biological data (e.g., multiresolution structural datasets,
glycomics, lipidomics, etc.) into cohesive, biologically
“accurate” structural models. Once created, we then ap-
proximate the model down to its many atoms, creating
trajectories of its time dependent dynamics under cell-like
(or in this case, aerosol-like) conditions. Critically, MD
simulations are more than just “pretty movies.” MD
equations are solved in a theoretically rigorous manner,
allowing us to compute experimentally testable macro-
scopic observables from time-averaged microscopic prop-
erties. What this means is that we can directly connect MD
simulations with experiments, each validating and pro-
viding testable hypotheses to the other, which is the real
power of the approach. An ongoing challenge to the suc-
cessful application of such methods, however, is the need
for technological and methodological advances that make it
possible to access length scales relevant to the study of
large, biologically complex systems (spanning nanometers
to ∼one micron in size) and, correspondingly, longer
timescales (microseconds to seconds).

Such challenges and opportunities manifest in the study
of aerosolized viruses. Aerosols are generally defined as
being less than 5 microns in diameter, able to float in the air
for hours, travel significant distances (i.e., can fill a room,
like cigarette smoke), and be inhaled. Fine aerosols < 1
micron in size can stay in the air for over 12 h and are
enriched with viral particles (Fennelly 2020; Coleman et al.,
2021). Our work focuses on these finer aerosols that travel
deeper into the respiratory tract. Several studies provide the
molecular recipes necessary to reconstitute respiratory
aerosols according to their actual biologically relevant
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composition (Vejerano and Marr 2018; Walker et al., 2021).
These aerosols can contain lipids, cholesterol, albumin
(protein), various mono- and di-valent salts, mucins, other
surfactants, and water (Figure 1). Simulations of aerosolized
viruses embody a novel framework for the study of aerosols:
they will allow us and others to tune different species,
relative humidity, ion concentrations, etc. to match exper-
iments that can directly and indirectly connect to and inform
our simulations, as well as test hypotheses. Some of the
species under study here, for example, mucins, have not yet
been structurally characterized or explored with simulations
and thus the models we generate are expected to have
impact beyond their roles in aerosols.

In addition to varying aerosol composition and size, the
viruses themselves can be modified to reflect new variants
of concern, where such mutations may affect interactions
with particular species in the aerosol that might affect its
structural dynamics and/or viability. The virion developed
here is the Delta variant (B.1.617.2 lineage) of SARS-CoV-
2 (Figure 2), which presents a careful integration of multiple
biological datasets: (1) a complete viral envelope with re-
alistic membrane composition, (2) fully glycosylated full-
length spike proteins integrating 3D structural coordinates
from multiple cryoelectron microscopy (cryoEM) studies
(McCallum et al., 2021; Wrapp et al., 2020; Walls et al.,
2020; Bangaru et al., 2020) (3) all biologically known

features (post-translational modifications, palmitoylation,
etc.), (4) any other known membrane proteins (e.g. the
envelope (E) and membrane (M) proteins), and (5) virion
size and patterning taken directly from cryoelectron to-
mography (cryoET). Each of the individual components of
the virus are built up before being integrated into the
composite virion, and thus represent useful molecular-scale
scientific contributions in their own right (Casalino et al.,
2020; Sztain et al., 2021).

Altogether in this work, we dramatically extend the
capabilities of data-driven, multiscale computational mi-
croscopy to provide a new way of exploring the compo-
sition, structure, and dynamics of respiratory aerosols.
While a seemingly limitless number of putative hypotheses
could result from these investigations, the first set of
questions we expect to answer are: How does the virus exist
within a droplet of the same order of magnitude in size,
without being affected by the air-water interface, which is
known to destroy molecular structure (D’Imprima et al.
2019)? How does the biochemical composition of the
droplet, including pH, affect the structural dynamics of the
virus? Are there species within the aerosols that “buffer”
the viral structure from damage, and are there particular
conditions under which the impact of those species
changes? Our simulations can also provide specific pa-
rameters that can be included in physical models of aerosols,

Figure 1. Overall schematic depicting the construction and multiscale simulations of Delta SARS-CoV-2 in a respiratory aerosol. (N.B.:
The size of di-valent cations has been increased for visibility.)
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which still assume a simple water or water-salt composition
even though it is well known that such models, for example,
using kappa-Kohler theory, break down significantly as the
molecular species diversify (Petters and Kreidenweis 2007).

Current state of the art

Current experimental methods are unable to directly in-
terrogate the atomic-level structure and dynamics of viruses
and other molecules within aerosols. Here we showcase
computational microscopy as a powerful tool capable to
overcome these significant experimental limitations. We
present the major elements of our multiscale computational
microscope and how they come together in an integrated
manner to enable the study of aerosols across multiple
scales of resolution. We demonstrate the impact such
methods can bring to bear on scientific challenges that until
now have been intractable, and present a series of new
scientific discoveries for SARS-CoV-2.

Parallel molecular dynamics

All-atom molecular dynamics simulation has emerged as an
increasingly powerful tool for understanding the molecular
mechanisms underlying biophysical behaviors in complex
systems. Leading simulation engines, NAMD (Phillips
et al., 2020), AMBER (Case et al. [n. d.]), and GRO-
MACS (Páll et al., 2020), are broadly useful, with each
providing unique strengths in terms of specific methods or

capabilities as required to address a particular biological
question, and in terms of their support for particular HPC
hardware platforms. Within the multiscale computational
microscopy platform developed here, we show how each
of these different codes contributes different elements to
the overall framework, oftentimes utilizing different
computing modalities/architectures, while simultaneously
extending on state-of-the-art for each. Structure building,
simulation preparation, visualization, and post hoc tra-
jectory analysis are performed using VMD on both local
workstations and remote HPC resources, enabling mod-
eling of the molecular systems studied herein (Humphrey
et al., 1996; Stone et al., 2013a,b, 2016b; Sener et al.,
2021). We show how further development of each of these
codes, considered together within the larger-scale collec-
tive framework, enables the study of SARS-CoV-2 in a
wholly novel manner, with extension to numerous other
complex systems and diseases.

AI-enhanced WE simulations

Because the virulence of the Delta variant of SARS-CoV-2
may be partly attributable to spike protein (S) opening, it is
of pressing interest to characterize the mechanism and ki-
netics of the process. Although S-opening in principle can
be studied via conventional MD simulations, in practice the
system complexity and timescales make this wholly in-
tractable. Splitting strategies that periodically replicate
promising MD trajectories, among them the weighted

Figure 2. Individual protein components of the SARS-CoV-2 Delta virion. The spike is shown with the surface in cyan and with Delta’s
mutated residues and deletion sites highlighted in pink and yellow, respectively. Glycans attached to the spike are shown in blue. The E
protein is shown in yellow and the M-protein is shown in silver and white. Visualized with VMD.
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ensemble (WE) method (Huber and Kim 1996; Zuckerman
and Chong 2017), have enabled simulations of the spike
opening of WT SARS-CoV-2 (Sztain et al., 2021;
Zimmerman et al., 2021). WE simulations can be orders of
magnitude more efficient than conventional MD in gener-
ating pathways and rate constants for rare events (e.g.
protein folding (Adhikari et al., 2019) and binding (Saglam
and Chong 2019)). The WESTPA software for running WE
(Zwier et al., 2015) is well-suited for high-performance
computing with nearly perfect CPU/GPU scaling. The
software is interoperable with any dynamics engine, in-
cluding the GPU-accelerated AMBER dynamics engine
(Salomon-Ferrer et al., 2013) that is used here. As shown
below, major upgrades to WESTPA (v. 2.0) have enabled a
dramatic demonstration of spike opening in the Delta
variant (Figures 5 and 6) and exponentially improved
analysis of spike-opening kinetics (Russo et al., 2022).

The integration of AI techniques with WE can further
enhance the efficiency of sampling rare events (Noe 2020;
Brace et al., 2021b; Casalino et al., 2021). One frontier area
couples unsupervised linear and non-linear dimensionality
reduction methods to identify collective variables/progress
coordinates in high-dimensional molecular systems
(Bhowmik et al., 2018; Clyde et al., 2021). Such methods
may be well suited for analyzing the aerosolized virus.
Integrating these approaches with WE simulations is ad-
vantageous in sampling the closed→ open transitions in the
Delta S landscape (Figure 5) as these unsupervised AI
approaches automatically stratify progress coordinates
(Figure 5(D)).

Dynamical non-equilibrium MD

Aerosols rapidly acidify during flight via reactive uptake of
atmospheric gases, which is likely to impact the opening/
closing of the S protein (Vejerano and Marr 2018;
Warwicker 2021). Here, we describe the extension of dy-
namical non-equilibrium MD (D-NEMD) (Ciccotti and
Ferrario 2016) to investigate pH effects on the Delta S.
D-NEMD simulations (Ciccotti and Ferrario 2016) are
emerging as a useful technique for identifying allosteric
effects and communication pathways in proteins (Galdadas
et al., 2021; Oliveira et al., 2019), including recently
identifying effects of linoleic acid in the WT spike (Oliveira
et al., 2021b). This approach complements equilibrium MD
simulations, which provide a distribution of configurations
as starting points for an ensemble of short non-equilibrium
trajectories under the effect of the external perturbation. The
response of the protein to the perturbation introduced can
then be determined using the Kubo-Onsager relation
(Oliveira et al., 2021a; Ciccotti and Ferrario 2016) by di-
rectly tracking the change in atomic positions between the
equilibrium and non-equilibrium simulations at equivalent
points in time (Oliveira et al., 2021a).

OrbNet

Ca2+ ions are known to play a key role in mucin aggregation
in epithelial tissues (Hughes et al., 2019). Our RAV sim-
ulations would be an ideal case-study to probe such com-
plex interactions between Ca2+, mucins, and the SARS-
CoV-2 virion in aerosols. However, Ca2+ binding energies
can be difficult to capture accurately due to electronic
dispersion and polarization, terms which are not typically
modeled in classical mechanical force fields. Quantum
mechanical (QM) methods are uniquely suited to capture
these subtle interactions. Thus, we set out to estimate the
correlation in Ca2+ binding energies between
CHARMM36m and quantum mechanical estimates enabled
via AI with OrbNet. Calculation of energies with sufficient
accuracy in biological systems can, in many cases, be ad-
equately described with density functional theory (DFT).
However, its high cost limits the applicability of DFT in
comparison to fixed charge force fields. To capture quantum
quality energetics at a fraction of the computational ex-
pense, we employ a novel approach (OrbNet) based on the
featurization of molecules in terms of symmetry-adapted
atomic orbitals and the use of graph neural network methods
for deep learning quantum-mechanical properties (Qiao
et al., 2020). Our method outperforms existing methods
in terms of its training efficiency and transferable accuracy
across diverse molecular systems, opening a new pathway
for replacing DFT in large-scale scientific applications such
as those explored here. (Christensen et al., 2021).

Innovations realized

Construction and simulation of SARS-CoV-2 in a respiratory
aerosol. Our approach to simulating the entire aerosol
follows a composite framework wherein each of the indi-
vidual molecular pieces is refined and simulated on its own
before it is incorporated into the composite model. Simu-
lations of each of the components are useful in their own
right, and often serve as the basis for biochemical and
biophysical validation and experiments (Casalino et al.,
2020).

Throughout, we refer to the original circulating SARS-
CoV-2 strain as “WT,” whereas all SARS-CoV-2 proteins
constructed in this work represent the Delta variant
(Figure 2). All simulated membranes reflect mammalian
ER-Golgi intermediate compartment (ERGIC) mimetic
lipid compositions. VMD (Humphrey et al., 1996; Stone
et al., 2016a), psfgen (Phillips et al., 2005), and CHARMM-
GUI (Park et al., 2019) were used for construction and
parameterization. Topologies and parameters for simula-
tions were taken from CHARMM36m all-atom additive
force fields (Guvench et al., 2009; Huang and Mackerell
2013; Huang et al., 2017; Klauda et al., 2010; Beglov and
Roux 1994; Han et al., 2018; Venable et al., 2013). NAMD
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was used to perform MD simulations (Phillips et al., 2020),
adopting similar settings and protocols as in (Casalino et al.,
2020). All systems underwent solvation, charge neutrali-
zation, minimization, heating, and equilibration prior to
production runs. Refer to Table 1 for Abbreviations, PBC
dimensions, total number of atoms, and total equilibration
times for each system of interest.

Simulating the SARS-CoV-2 structural proteins. Fully glyco-
sylated Delta spike (S) structures in open and closed con-
formations were built based on WT constructs from
Casalino et al. (Casalino et al., 2020) with the following
mutations: T19R, T95I, G142D, E156G, Δ157–158,
L452R, T478K, D614G, P681R, and D950N (McCallum
et al., 2021; Kannan et al., 2021). Higher resolved regions
were grafted from PDB 7JJI (Bangaru et al., 2020). Ad-
ditionally, coordinates of residues 128–167—accounting
for a drastic conformational change seen in the Delta variant
S—graciously made available to us by the Veesler Lab,
were similarly grafted onto our constructs (McCallum et al.,
2021). Finally, the S proteins were glycosylated following
work by Casalino et al. (Casalino et al., 2020). By incor-
porating the Veesler Lab’s bleeding-edge structure
(McCallum et al., 2021) and highly resolved regions from
7JJI (Bangaru et al., 2020), our models represent the most
complete and accurate structures of the Delta S to date. The
S proteins were inserted into membrane patches and
equilibrated for 3 × 110 ns. For non-equilibrium and
weighted ensemble simulations, a closed S head (SH,
residues 13–1140) was constructed by removing the stalk
from the full-length closed S structure, then resolvated,

neutralized, minimized, and subsequently passed toWE and
D-NEMD teams. The M-protein was built from a structure
graciously provided by the Feig Lab (paper in prep). The
model was inserted into a membrane patch and equilibrated
for 700 ns. RMSD-based clustering was used to select a
stable starting M-protein conformation. From the equili-
brated and clustered M structure, VMD’s Mutator plugin
(Humphrey et al., 1996) was used to incorporate the I82T
mutation onto eachMmonomer to arrive at the Delta variant
M. To construct the most complete E protein model to-date,
the structure was patched together by resolving incomplete
PDBs 5X29 (Surya et al., 2018), 7K3G (Mandala et al.,
2020) and 7M4R (Chai et al., 2021). To do so, the trans-
membrane domain (residues 8–38) from 7K3G were
aligned to the N-terminal domain (residues 1–7) and resi-
dues 39 to 68 of 5X29 and residues 69 to 75 of 7M4R by
their Cα atoms. E was then inserted into a membrane patch
and equilibrated for 40 ns.

Constructing the SARS-CoV-2 Delta virion. The SARS-CoV-2
Delta virion (V) model was constructed following Casalino
et al. (Casalino et al., 2021) using CHARMM-GUI (Lee
et al., 2016), LipidWrapper (Durrant and Amaro 2014), and
Blender (Blender Online Community 2020), using a 350 Å
lipid bilayer with an equilibrium area per lipid of 63 Å2 and
a 100 nm diameter Blender icospherical surface mesh
(Turonova et al., 2020). The resulting lipid membrane was
solvated in a 1100 Å3 waterbox and subjected to four rounds
of equilibration and patching (Casalino et al., 2021). 360 M

dimers and 4 E pentamers were then tiled onto the surface,
followed by random placement of 29 full-length S proteins

Table 1. Summary of all systems constructed in this work. See Figure 3 for illustration of aerosol construction.

asystems bAbb c(Å × Å × Å) dNa
e (ns)

fM dimers M 125 × 125 × 124 164,741 700
fE pentamers E 123 × 125 × 102 136,775 41
Spikes
f (Open) S 206 × 200 × 410 1,692,444 330
f (Closed) S 204 × 202 × 400 1,658,224 330
g (Closed, head) SH 172 × 184 × 206 615,593 73μs
Mucins
fshort mucin 1 m1 123 × 104 × 72 87,076 25
fshort mucin 2 m2 120 × 101 × 72 82,155 25
flong mucin 1 m3 810 × 104 × 115 931,778 23
flong mucin 2 m4 904 × 106 × 109 997,029 15
flong mucin 3 m5 860 × 111 × 113 1,040,215 18
fS+m1/m2+ALB SMA 227 × 229 × 433 2,156,689 840
fVirion V 1460 × 1460 × 1460 305,326,834 41
fResp.Aero.+Vir RAV 2834 × 2820 × 2828 1,016,813,441 2.42
Total FLOPS 2.4 ZFLOPS

aM, E, S, SH, and Vmodels represent SARS-CoV-2 Delta strain. bAbbreviations used throughout document. cPeriodic boundary dimensions. dTotal number
of atoms. eTotal aggregate simulation time, including heating and equilibration runs. fSimulated with NAMD. gSimulated with NAMD, AMBER, and
GROMACS.
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(9 open, 20 closed) according to experimentally observed S
protein density (Ke et al., 2020). M and E proteins were
oriented with intravirion C-termini. After solvation in a
1460 Å waterbox, the complete V model tallied >305
million atoms (Table 1). V was equilibrated for 41 ns prior
to placement in the respiratory aerosol (RA) model. The
equilibrated membrane was 90 nm in diameter and remains
in close structural agreement with the experimental studies
(Ke et al., 2020).

Building and simulating the respiratory aerosol. Respiratory
aerosols contain a complex mixture of chemical and bio-
logical species. We constructed a respiratory aerosol (RA)
fluid based on a composition from artificial saliva and
surrogate deep lung fluid recipes (Walker et al., 2021). This
recipe includes 0.7 mM DPPG, 6.5 mM DPPC, 0.3 mM

cholesterol, 1.4 mM Ca2+, 0.8 mM Mg2+, and 142 mM Na+

(Vejerano and Marr 2018; Walker et al., 2021), human
serum albumin (ALB) protein, and a composition of mucins
(Figure 3). Mucins are long polymer-like structures that are
decorated by dense, heterogeneous, and complex regions of
O-glycans. This work represents the first of its kind as, due
to their complexity, the O-glycosylated regions of mucins
have never before been constructed for molecular simula-
tions. Two short (m1, m2,∼5 nm) and three long (m3, m4, m5

∼55 nm) mucin models were constructed following known
experimental compositions of protein and glycosylation
sequences (Symmes et al., 2018; Hughes et al., 2019;
Markovetz et al., 2019; Thomsson et al., 2005; Mariethoz
et al., 2018) with ROSETTA (Raveh et al., 2010) and
CHARMM-GUI Glycan Modeller (Jo et al., 2011). Mucin

models (short and long) were solvated, neutralized by
charge matching with Ca2+ ions, minimized, and equili-
brated for 15–25 ns each (Table 1). Human serum albumin
(ALB), which is also found in respiratory aerosols, was
constructed from PDB 1AO6 (Sugio et al., 1999). ALB was
solvated, neutralized, minimized, and equilibrated for 7ns.
Equilibrated structures of ALB and the three long mucins
were used in construction of the RAV with m3+m4+m5
added at 6 g/mol and ALB at 4.4 g/mol.

Constructing the respiratory aerosolized virion model

A 100 nm cubic box with the RA fluid recipe specified
above was built with PACKMOL (Martı́nez et al., 2009),
minimized, equilibrated briefly on TACC Frontera, then
replicated to form a 300 nm cube. The RA box was then
carved into a 270 nm diameter sphere. To make space for the
placement of V within the RA, a spherical selection with
volume corresponding to that of the V membrane + S crown
(radius 734 Å) was deleted from the center of the RA. The
final equilibrated V model, including surrounding equili-
brated waters and ions (733 Å radius), was translated into
the RA. Atom clashes were resolved using a 1.2 Å cutoff.
Hydrogen mass repartitioning (Hopkins et al., 2015) was
applied to the structure to improve performance. The
simulation box was increased to 2800 Å per side to provide
a 100 Å vacuum atmospheric buffer. The RAV simulation
was conducted in an NVT ensemble with a 4 fs timestep.
After minimizing, the RAV was heated to 298 K with
0.1 kcal/mol Å2 restraints on the viral lipid headgroups, then
equilibrated for 1.5 ns. Finally, a cross-section of the RAV
model—including and open S, m1/m2, and ALB (called the
SMA system)—was constructed with PACKMOL to
closely observe atomic scale interactions within the RAV
model (Figure 4).

Parameter evaluation with OrbNet

Comparison to quantum methods reveals significant po-
larization effects, and shows that there is opportunity to
improve the accuracy of fixed charge force fields. For the
large system sizes associated with solvated Ca2+-protein
interaction motifs (over 1000 atoms, even in aggressively
truncated systems), conventional quantum mechanics
methods like density functional theory (DFT) are imprac-
tical for analyzing a statistically significant ensemble of
distinct configurations (see discussion in Performance
Results). In contrast, OrbNet allows for DFT accuracy with
over 1000-fold speedup, providing a useful method for
benchmarking and refining the force field simulation pa-
rameters with quantum accuracy (Christensen et al., 2021).
To confirm the accuracy of OrbNet versus DFT (ωB97X-D/
def2-TZVP), the inset of Figure 4(E) correlates the two
methods for the Ca2+-binding energy in a benchmark dataset

Figure 3. Image of RAV with relative mass ratios of RA molecular
components represented in the colorbar. Water content is
dependent on the relative humidity of the environment and is thus
omitted from the molecular ratios.
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of small Ca2+-peptide complexes (Hu et al., 2021). The
excellent correlation of OrbNet and DFT for the present use
case is clear from the inset figure; six datapoints were re-
moved from this plot on the basis of a diagnostic applied to
the semi-empirical GFN-xTB solution used for feature
generation of OrbNet (Christensen et al., 2021).

Figure 4 presents a comparison of the validated OrbNet
method with the CHARMM36m force field for 1800
snapshots taken from the SMA MD simulations. At each
snapshot, a subsystem containing a solvated Ca2+-protein
complex was extracted (Figure 4(E)), with protein bonds
capped by hydrogens. For both OrbNet and the force field,
the Ca2+-binding energy was computed and shown in the
correlation plot. Lack of correlation between OrbNet and
the force field identifies important polarization effects,
absent in a fixed charge description. Similarly, the steep
slope of the best-fit line in Figure 4(E) reflects the fact that
some of the configurations sampled using MD with the
CHARMM36m force field are relatively high in energy
according to the more accurate OrbNet potential. This
approach allows us to test and quantify limitations of
empirical force fields, such as lack of electronic
polarization.

The practicality of OrbNet for these simulation snapshots
with 1000+ atoms offers a straightforward multiscale
strategy for refining the accuracy of the CHARMM36m

force field. By optimizing the partial charges and other force
field parameters, improved correlation with OrbNet for the
subtle Ca2+-protein interactions could be achieved, leading
to near-quantum accuracy simulations with improved
configurational sampling. The calculations presented here
present a proof-of-concept of this iterative strategy.

AI-WE simulations of delta spike opening

While our previous WE simulations of the WT SARS-CoV-
2 S-opening (Sztain et al., 2021) were notable in generating
pathways for a seconds-timescale process of a massive
system, we have made two critical technological ad-
vancements in the WESTPA software that greatly enhance
the efficiency and analysis of WE simulations. These ad-
vances enabled striking observations of Delta variant S
opening (Figures 5 and 6). First, in contrast to prior manual
bins for controlling trajectory replication, we have devel-
oped automated and adaptive binning that enables more
efficient surmounting of large barriers via early identifi-
cation of “bottleneck” regions (Torrillo et al., 2021). Sec-
ond, we have parallelized, memory-optimized, and
implemented data streaming for the history-augmented
Markov state model (haMSM) analysis scheme
(Copperman and Zuckerman 2020) to enable application to
the TB-scale S-opening datasets. The haMSM approach

Figure 4. SMA system captured with multiscale modeling from classical MD to AI-enabled quantum mechanics. For all panels: S protein
shown in cyan, S glycans in blue, m1/m2 shown in red, ALB in orange, Ca2+ in yellow spheres, viral membrane in purple. A) Interactions
between mucins and S facilitated by glycans and Ca2+. B) Snapshot from SMA simulations. C) Example Ca2+ binding site from SMA
simulations (1800 sites, each 1000+ atoms) used for AI-enabled quantum mechanical estimates from OrbNet Sky. D) Quantification of
contacts between S and mucin from SMA simulations. E) OrbNet Sky energies versus CHARMM36m energies for each sub-selected
system, colored by total number of atoms. Performance of OrbNet Sky versus DFT in subplot (ωB97x-D3/def-TZVP, R2=0.99, for 17
systems of peptides chelating Ca2+ (Hu et al., 2021)). Visualized with VMD.
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estimates rate constants from simulations that have not yet
reached a steady state (Suarez et al., 2014).

Our WE simulations generated >800 atomically detailed,
Delta variant S-opening pathways (Figures 5(B) and 6) of
the receptor binding domain (RBD) switching from a
glycan-shielded “down” to an exposed “up” state using 72
μs of total simulation time within 14 days using 192
NVIDIA V100 GPUs at a time on TACC’s Longhorn su-
percomputer. Among these pathways, 83 reach an “open”
state that aligns with the structure of the human ACE2-
bound WT S protein (Benton et al., 2020) and 18 reach a
dramatically open state (Figure 6). Our haMSM analysis of
WT WE simulations successfully provided long-timescale
(steady state) rate constants for S-opening based on highly
transient information (Figure 5(C)).

We also leveraged a simple, yet powerful unsupervised
deep learning method called Anharmonic Conformational
Analysis enabled Autoencoders (ANCA-AE) Clyde et al.
(2021) to extract conformational states from our long-
timescale WE simulations of Delta spike opening
(Figures 5(A) and (D)). ANCA-AE first minimizes the
fourth order correlations in atomistic fluctuations from MD
simulation datasets and projects the data onto a low di-
mensional space where one can visualize the anharmonic
conformational fluctuations. These projections are then
input to an autoencoder that further minimizes non-linear

correlations in the atomistic fluctuations to learn an em-
bedding where conformations are automatically clustered
based on their structural and energetic similarity. A visu-
alization of the first three dimensions from the latent space
articulates the RBD opening motion from its closed state
(Figure 5(D)). It is notable that while other deep learning
techniques need special purpose hardware (such as GPUs),
the ANCA-AE approach can be run with relatively modest
CPU resources and can therefore scale to much larger
systems (e.g., the virion within aerosol) when optimized.

D-NEMD explores pH effects on delta spike

We performed D-NEMD simulations of the SH system with
GROMACS (Abraham et al., 2015) using a ΔpH=2.0 (from
7.0 to 5.0) as the external perturbation. We ran 3200-ns
equilibrium MD simulations of SH to generate 87 config-
urations (29 configurations per replicate) that were used as
the starting points for multiple short (10 ns) D-NEMD
trajectories under the effect of the external perturbation
(ΔpH=2.0). The effect of a ΔpH was modeled by changing
the protonation state of histidines 66, 69, 146, 245, 625,
655, 1064, 1083, 1088, and 1101 (we note that other res-
idues may also become protonated (Lobo and Warwicker
2021); the D-NEMD approach can also be applied to ex-
amine those). The structural response of the S to the pH

Figure 5. Delta variant spike opening from WE simulations, and AI/haMSM analysis. A) The integrated workflow. B) Snapshots of the
“down,” “up,” and “open” states for Delta S-opening from a representative pathway generated byWE simulation, which represents ∼
105 speedup compared to conventional MD. C) Rate constant estimation with haMSM analysis of WE data (purple lines) significantly
improves direct WE computation (red), by comparison to experimental measurement (black dashed). Varying haMSM estimates result
from different featurizations which will be individually cross-validated. D) The first three dimensions of the ANCA-AE embeddings
depict a clear separation between the closed (darker purple) and open (yellow) conformations of the Delta spike. A sub-sampled
landscape is shown here where each sphere represents a conformation from the WE simulations and colored with the root-mean
squared deviations (Å) with respect to the closed state. Visualized with VMD.
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decrease was investigated by measuring the difference in the
position for each Cα atom between the equilibrium and
corresponding D-NEMD simulation at equivalent points in
time (Oliveira et al., 2021a), namely after 0, 0.1, 1, 5, and 10
ns of simulation. The D-NEMD simulations reveal that pH
changes, of the type expected in aerosols, affect the dy-
namics of functionally important regions of the spike, with
potential implications for viral behavior (Figure 7). As this
approach involves multiple short independent non-
equilibrium trajectories, it is well suited for cloud com-
puting. All D-NEMD simulations were performed using
Oracle Cloud.

How performance was measured

WESTPA. For the WE simulations of spike opening using
WESTPA, we defined the time-to-solution as the total
simulation time required to generate the first spike opening
event. Spike opening is essentially impossible to observe
via conventional MD. WESTPA simulations were run
using the AMBER20 dynamics engine and 192 NVIDIA
V100 GPUs at a time on TACC’s Longhorn
supercomputer.

NAMD. NAMD performance metrics were collected using
hardware performance counters for FLOPs/step measure-
ments, and application-internal timers for overall simulation
rates achieved by production runs including all I/O for
simulation trajectory and checkpoint output. NAMD
FLOPs/step measurements were conducted on TACC
Frontera, by querying hardware performance counters with
the rdmsr utility from Intel msr-tools1 and the “TACC stats”
system programs.2 For each simulation, FLOP counts were
measured for NAMD simulation runs of two different step
counts. The results of the two simulation lengths were
subtracted to eliminate NAMD startup operations, yielding
an accurate estimate of the marginal FLOPs per step for a
continuing simulation (Phillips et al., 2002). Using the
FLOPs/step values computed for each simulation, overall
FLOP rates were computed by dividing the FLOPs/step
value by seconds/step performance data reported by NAMD
internal application timers during production runs.

GROMACS. GROMACS 2020.4 benchmarking was per-
formed on Oracle Cloud Infrastructure (OCI)3 compute
shape BM.GPU4.8 consisting of 8×NVIDIA A100 tensor
core GPUs, and 64 AMD Rome CPU cores. The simulation

Figure 6. WE simulations reveal a dramatic opening of the Delta S (cyan), compared to WT S (white). While further investigation is
needed, this super open state seen in the Delta S may indicate increased capacity for binding to human host-cell receptors.
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used for benchmarking contained 615,563 atoms and was
run for 500,000 steps with 2 fs time steps. The simulations
were run on increasing numbers of GPUs, from 1 to 8, using
eight CPU cores per GPU, running for both the production
(Nose-Hoover) and GPU-accelerated (velocity rescaling)
thermostats. Particle–mesh Ewald (PME) calculations were
pinned to a single GPU, with additional GPUs for multi-
GPU jobs used for particle–particle calculations. Perfor-
mance data (ns/day and average single-precision TFLOPS,
calculated as total number of TFLOPs divided by total job
walltime) were reported by GROMACS itself. Each

simulation was repeated four times and average perfor-
mance figures reported.

Performance results

Table 2.

NAMD performance. NAMD was used to perform all of the
simulations listed in Table 1, except for the closed spike
“SH” simulations described further below. With the ex-
ception of the aerosol and virion simulation, the other

Figure 7. D-NEMD simulations reveal changes in key functional regions of the S protein, including the receptor binding domain, as the
result of a pH decrease. Color scale and ribbon thickness indicate the degree of deviation of Cα atoms from their equilibrium position.
Red spheres indicate the location of positively charged histidines.

Table 2. MD simulation floating point ops per timestep.

MD Simulation Code Atoms aFLOPs/step

Spike, head AMBER, GROMACS 0.6 M 62.14 GFLOPs/step
Spike NAMD 1.7 M 43.05 GFLOPs/step
S+m1/m2+ALB NAMD 2.1 M 54.86 GFLOPs/step
Resp. Aero.+Vir NAMD 1B 25.81 TFLOPs/step

aFLOPs/step data were computed by direct FLOP measurements from hardware performance counters for NAMD simulations, or by using the
application-reported FLOP rates and ns/day simulation performance in the case of GROMACS.
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NAMD simulations used conventional protocols and have
performance and parallel scaling characteristics that closely
match the results reported in our previous SARS-CoV-2
research Casalino et al. (2021). NAMD 2.14 scaling per-
formance for the one billion-atom respiratory aerosol and
virion simulation run on ORNL Summit is summarized in
Tables 3 and 4. A significant performance challenge as-
sociated with the aerosol virion simulation relates to the
roughly 50% reduction in particle density as compared with
a more conventional simulation with a fully populated
periodic cell. The reduced particle density results in large
regions of empty space that nevertheless incur additional
overheads associated with both force calculations and in-
tegration, and creates problems for the standard NAMD
load balancing scheme that estimates the work associated
with the cubic “patches” used for parallel domain decom-
position. The PME electrostatics algorithm and associated
3-D FFT and transpose operations encompass the entire
simulation unit cell and associated patches, requiring in-
volvement in communication and reduction operations
despite the inclusion of empty space. Enabling NAMD
diagnostic output on a 512-node 1B-atom aerosol and virion
simulation revealed that ranks assigned empty regions of the
periodic cell had 66 times the number of fixed-size patches
as ranks assigned dense regions. The initial load estimate for
an empty patch was changed from a fixed 10 atoms to a
runtime parameter with a default of 40 atoms, which re-
duced the patch ratio from 66 to 19 and doubled perfor-
mance on 512 nodes.

WESTPA performance. Our time to solution for WE simu-
lations of spike opening (to the “up” state) (Figure 5) using
the WESTPA software and AMBER20 was 14 μs of total
simulation time, which was completed in 4 days using 192
NVIDIA V100 GPUs at a time on TACC’s Longhorn

supercomputer. For reference, conventional MD would
require an expected ∼5 orders of magnitude more com-
puting. The WESTPA software is highly scalable, with
nearly perfect scaling out to >1000 NVIDIA V100 GPUs
and this scaling is expected to continue until the filesystem
is saturated. Thus, WESTPA makes optimal use of large
supercomputers and is limited by filesystem I/O due to the
periodic restarting of trajectories after short time intervals.

AI-enhanced WE simulations. DeepDriveMD is a framework
to coordinate the concurrent execution of ensemble simu-
lations and drive them using AI models Brace et al. (2021a);
Lee et al. (2019). DeepDriveMD has been shown to im-
prove the scientific performance of diverse problems:
from-protein folding to conformation of protein-ligand
complexes. We coupled WESTPA to DeepDriveMD,
which is responsible for resource dynamism and concurrent
heterogeneous task execution (ML and AMBER). The
coupled workflow was executed on 1024 nodes on Summit
(OLCF), and, in spite of the spatio-temporal heterogeneity
of tasks involved, the resource utilization was in the high
90%. Consistent with earlier studies, the coupling of
WESTPA to DeepDriveMD results in a 100x improvement
in the exploration of phase space.

GROMACS performance. Figure 8 shows GROMACS par-
allelizes well across the eight NVIDIA A100 GPUs
available on each BM.GPU4.8 instance used in the Cluster
in the Cloud4 running on OCI. There is a performance drop
for two GPUs due to inefficient division of the PME and
particle–particle tasks. Methods to address this exist for the
two GPU case Páll et al. (2020), but were not adopted as we
were targeting maximum raw performance across all eight

Table 3. NAMD performance: Respiratory Aerosol + Virion, 1B
atoms, 4 fs timestep w/HMR, and PME every three steps.

Nodes Summit Speedup Efficiency
CPU + GPU

256 4.18 ns/day ∼ 1:0 × ∼100%
512 7.68 ns/day 1.84× 92%
1024 13.64 ns/day 3.27× 81%
2048 23.10 ns/day 5.53× 69%
4096 34.21 ns/day 8.19× 51%

Table 4. Peak NAMD FLOP rates, ORNL Summit.

NAMD
Simulation Atoms, B Nodes Sim rate Performance

Resp. Aero.+Vir 1 4096 34.21 ns/day 2.55 PFLOPS

Figure 8. GROMACS performance across 1–8 A100 GPUs in ns/
day (thicker, blue lines) and the fraction of maximum theoretical
TFLOPS (thinner, green lines); production setup shown with solid
line, and runs with the GPU-accelerated thermostat in dashed.
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GPUs. Production simulations achieved 27% of the peak
TFLOPS available from the GPUs. Multiple simulations
were run across 10 such compute nodes, enabling the en-
semble to run at an average combined speed of 425
TFLOPS and sampling up to 1μs/day. We note that the
calculations will be able to run 20%–40% faster once the
Nose-Hoover thermostat that is required for the simulation
is ported to run on the GPU. Benchmarking using a velocity
rescaling thermostat that has been ported to GPU shows that
this would enable the simulation to extract 34% of the peak
TFLOPS from the cards, enabling each node to achieve an
average speed of 53.4 TFLOPS, and 125 ns/day. A cluster of
10 nodes would enable GROMACS to run at an average
combined speed of over 0.5 PFLOPs, simulating over
1.2 μs/day.

A significant innovation is that this power is available on
demand: Cluster in the Cloud with GPU-optimized GRO-
MACS was provisioned and benchmarked within 1 day of
inception of the project. This was handed to the researcher,
who submitted the simulations. Automatically, up to 10
BM.GPU4.8 compute nodes were provisioned on-demand
based on requests from the Slurm scheduler. These simu-
lations were performed on OCI, using Cluster in the Cloud
Williams (2021) to manage automatic scaling.

Cluster in the Cloud was configured to dynamically
provision and terminate computing nodes based on the
workload. Simulations were conducted using GROMACS
2020.4 compiled with CUDA support. Multiple simulta-
neous simulations were conducted, with each simulation
utilizing a single BM.GPU4.8 node without multinode
parallelism.

This allowed all production simulations to be completed
within 2 days. The actual compute cost of the project was
less than $6125 USD (on-demand OCI list price). The huge
reduction in “time to science” that low-cost cloud enables
changes the way that researchers can access and use HPC
facilities. In our opinion, such a setup enables “exclusive
on-demand” HPC capabilities for the scientific community
for rapid advancement in science.

OrbNet performance. Prior benchmarking reveals that
OrbNet provides over 1000-fold speedup compared to DFT
(Christensen et al., 2021). For the calculations presented
here, the cost of corresponding high quality range-separated
DFTcalculations (ωB97X-D/def2-TZVP) can be estimated.
In Figure 4(E), we consider system sizes which would
require 14,000–47,000 atomic orbitals for ωB97X-D/def2-
TZVP, exceeding the range of typical DFT evaluations.
Estimation of the DFT computational cost of the 1811
configurations studied in Figure 4(E) suggests a total of
115M core-hours on NERSC Cori Haswell nodes; in
contrast, the OrbNet calculations for the current study re-
quire only 100k core-hours on the same nodes. DFT cost
estimates were based on extrapolation from a dataset of over

1M ChEMBL molecules ranging in size from 40 to 107
atom systems considering only the cubic cost component of
DFT (Christensen et al., 2021).

Implications

Our major scientific achievements are

1. We showcase an extensible AI-enabled multiscale
computational framework that bridges time and
length scales from electronic structure through
whole aerosol particle morphology and dynamics.

2. We develop all-atom simulations of respiratory
mucins, and use these to understand the structural
basis of interaction with the SARS-CoV-2 spike
protein. This has implications for viral binding in
the deep lung, which is coated with mucins. We
expect the impact of our mucin simulations to be far
reaching, as malfunctions in mucin secretion and
folding have been implicated in progression of
severe diseases such as cancer and cystic fibrosis.

3. We present a significantly enhanced all-atom model
and simulation of the SARS-CoV-2 Delta virion,
which includes the hundreds of tiled M-protein
dimers and the E-protein ion channels. This
model can be used as a basis to understand why the
Delta virus is so much more infectious than the WT
or alpha variants.

4. We develop an ultra-large (1 billion+) all-atom
simulation capturing massive chemical and bio-
logical complexity within a respiratory aerosol.
This simulation provides the first atomic-level
views of virus-laden aerosols and is already serv-
ing as a basis to develop an untold number of
experimentally testable hypotheses. An immediate
example suggests a mechanism through which
mucins and other species, for example, lipids, which
are present in the aerosol, arrange to protect the
molecular structure of the virus, which otherwise
would be exposed to the air-water interface. This
work also opens the door for developing simulations
of other aerosols, for example, sea spray aerosols,
that are involved in regulating climate.

5. We evidence how changes in pH, which are ex-
pected in the aerosol environment, may alter dy-
namics and allosteric communication pathways in
key functional regions of the Delta spike protein.

6. We characterize atomically detailed pathways for
the spike-opening process of the Delta variant using
WE simulations, revealing a dramatically open
state that may facilitate binding to human host cells.

7. We demonstrate how parallelized haMSM analysis
of WE data can provide physical rate estimates of
spike opening, improving prior estimates by many
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orders of magnitude. The pipeline can readily be
applied to the any variant spike protein or other
complex systems of interest.

8. We show howHPC and cloud resources can be used
to significantly drive down time-to-solution for
major scientific efforts as well as connect re-
searchers and greatly enable complex collaborative
interactions.

9. We demonstrate howAI coupled to HPC at multiple
levels can result in significantly improved effective
performance, for example, with AI-driven
WESTPA, and extend the reach and domain of
applicability of tools ordinarily restricted to smaller,
less complex systems, for example, with OrbNet.

10. While our work provides a successful use case, it also
exposesweaknesses in theHPC ecosystem in terms of
support for key steps in large/complex computational
science campaigns. We find lack of widespread
support for high performance remote visualization
and interactive graphical sessions for system prepa-
ration, debugging, and analysis with diverse science
tools to be a limiting factor in such efforts.
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Despite the importance of non-equilibrium statistical mechanics in modern physics and related

fields, the topic is often omitted from undergraduate and core-graduate curricula. Key aspects of

non-equilibrium physics, however, can be understood with a minimum of formalism based on a

rigorous trajectory picture. The fundamental object is the ensemble of trajectories, a set of

independent time-evolving systems, which easily can be visualized or simulated (e.g., for protein

folding) and which can be analyzed rigorously in analogy to an ensemble of static system

configurations. The trajectory picture provides a straightforward basis for understanding first-

passage times, “mechanisms” in complex systems, and fundamental constraints on the apparent

reversibility of complex processes. Trajectories make concrete the physics underlying the diffusion

and Fokker–Planck partial differential equations. Last but not least, trajectory ensembles underpin

some of the most important algorithms that have provided significant advances in biomolecular

studies of protein conformational and binding processes. # 2021 Published under an exclusive license by

American Association of Physics Teachers.
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I. INTRODUCTION

Most of the phenomena we encounter in daily life, from
weather to cooking to biology, are fundamentally out of
equilibrium and require physics typically not touched on in
the undergraduate or even graduate physics curricula. Many
physics students are alarmed at the complexity and abstrac-
tion of thermodynamics and “sadistical mechanics,” and
understandably would not seek out instruction in non-
equilibrium statistical physics. Yet there is a surprising range
of fundamental non-equilibrium material that can be made
accessible in a straightforward way using trajectories, which
are essentially movies of systems executing their natural
dynamics. The trajectory picture first and foremost is funda-
mental;1–3 for example, dynamics generate equilibrium, but
not the other way around.4 It can also lead, with a minimum
of mathematics, to understanding key non-equilibrium phe-
nomena (relaxation and steady states) and similarly to
extremely powerful cutting-edge simulation methods (path
sampling). Students deserve a taste of this material.

Why are trajectories fundamental? A trajectory is simply
the sequence of phase-space points through which a system
passes, recorded perhaps as a “movie” listing all atomic posi-
tions and velocities at evenly spaced time points—the
“frames” of the movie. Such movies are fundamental
because, as we learned from Newton, nature creates forces
that lead to dynamics,5 i.e., to trajectories. We may attempt
to describe the dynamics in various average ways—e.g.,
using equilibrium ideas—but the trajectories are the basis of

everything. Theories, such as equilibrium statistical mechan-
ics, generally build in assumptions, if not approximations. In
fact, the most fundamental definition of equilibrium itself
derives from dynamics, via detailed balance,1,4,6 whereby
there must be an equal-and-opposite balance of flows
between any two microstates.

Dynamical descriptions generally have more information
in them than average or equilibrium theories.4,7,8 As a simple
example, perhaps you know that someone sleeps eight hours
a day. However, that average hides the time at which sleep
occurs as well as whether it includes an afternoon nap. In the
case of diffusion, we know that particles observed in a local-
ized region will tend to spread out over time. However, if we
only observe the spatial density, we do not know which par-
ticles went where. Trajectories, which track particles over
time, inherently capture this information.

A trajectory ensemble description, as described below,
provides the key observables for transition processes: rate
and mechanism. In a biomolecular context, these are essen-
tially everything we want to know. Consider protein folding.
We want to know how fast proteins fold and how folding
rates change under specific mutations.9,10 We also want to
know the mechanism of folding: the conformations that are
visited during the process which in turn can illuminate
chemical-structure causes of rate changes due to muta-
tion.10,11 Other conformational processes in biomolecules
arguably are of even greater interest, such as binding12 and
allostery,10,13 due to their implications for drug design; here
again, rate and mechanism are of utmost importance.14,15
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This article will explain the theory of trajectory ensem-
bles, starting with simple diffusion and moving to systems
with complex energy landscapes. We will explore essential
aspects of non-equilibrium statistical mechanics, focusing on
timescale quantification via the mean first-passage time. The
understanding of non-equilibrium trajectory ensembles leads
directly to the “super parallel” weighted ensemble simulation
methodology, widely used in computational biology,16

which is explored in a one-dimensional pedagogical exam-
ple. A number of exercises are given along with clearly
demarcated more advanced material.

The statistical mechanics of trajectories has been addressed
pedagogically, in different ways, in prior work. Clear, basic-
level descriptions can be found in some textbooks3,4 and path-
sampling papers in the molecular-oriented literature.17–19

Astumian and co-workers highlighted the importance of trajec-
tories and their probabilistic description in multiple contexts20,21

and provided important semi-microscopic, discrete-state descrip-
tions of molecular motors,22,23 building on the seminal work of
Hill.24,25 Ghosh and co-workers employed trajectory concepts in
presenting Jaynes’s maximum-caliber approach to inferring
kinetics;26 note the related work by Press�e co-workers27 and
Ghosh co-workers.28 Swendsen’s discussion of irreversibility is
also of interest,29 as is the classic treatment by Chandrasekhar.30

The present discussion attempts to provide a more elementary
discussion of trajectory physics, with a focus on computational
applications not found in most prior work. Perhaps unexpect-
edly, the path sampling algorithms derivable from the present
description are very much at the leading edge of molecular
computation.31

II. BASICS: DYNAMICS AND TRAJECTORIES

In this section, we introduce the building blocks of our
analysis, starting from one-dimensional Newtonian motion.
We add fundamental stochastic elements and then develop
the trajectory picture with an associated numerical recipe.

A. Stochastic dynamics

The starting point for our quantitative trajectory descrip-
tion is the simplest form of stochastic dynamics, often called
Brownian dynamics, which we will justify starting from
Newton’s second law. Brownian dynamics are also known
by more intimidating terminology, as overdamped Langevin
dynamics, but their essence is simple to understand. As a
familiar reference, we first write the one-dimensional (1D)
law of classical motion,

m
dx2

dt2
¼ f ; (1)

where m is mass, x is position, and f ¼ �dU=dx is the force,
with U(x) the potential energy. Advancing one step in com-
plexity, the 1D Langevin equation models motion in a vis-
cous (frictional) medium by adding a damping force that
always opposes the direction of motion (velocity), as well as
a random force frand from collisions,4,6 yielding

m
d2x

dt2
¼ f � c m

dx

dt
þ frand; (2)

where c > 0 is the friction constant, effectively a collision
frequency, as can be seen by dimensional analysis. Details of

the random force will be given later. Both forces are needed;
otherwise, damping would eliminate all motion.

In the overdamped limit, inertia is ignored. This is akin to
motion in a beaker filled with thick oil: there is minimal ten-
dency for an object to continue in any given direction in the
absence of force; with a force such as gravity, terminal (con-
stant) velocity is reached quickly; i.e., no further acceleration
occurs despite the force. At microscopic scales, however,
there continues to be random thermal motion due to molecu-
lar collisions. Setting the inertial term m d2x=dt2 to zero in
Eq. (2) and re-arranging terms, the overdamped Langevin
equation is4,6

dx

dt
¼ 1

mc
f þ frandð Þ: (3)

This simplified equation of motion may look unusual to
those unfamiliar with it, but studying its application in a
numerical context will make its physical basis and relation to
diffusion more clear.

B. Time-discretized overdamped dynamics

and computation

We will make most use of a discrete-time picture (fixed
time steps) which not only greatly simplifies the mathematics
but also translates directly into simple computer implementa-
tion. If we discretize the dynamics of Eq. (3) by writing the
velocity as Dx=Dt and multiplying through by Dt, we arrive
at a very useful equation,

Dx ¼ Dt

mc
f þ frandð Þ ¼ Dxdet þ Dxrand; (4)

where Dxdet ¼ fDt=mc is the deterministic component of the
spatial step due to an external force (e.g., molecular, gravita-
tional, or electrostatic) and Dxrand is the random part due to
thermal molecular collisions. At finite temperature, micro-
scopic motion must not cease; hence, in the Langevin pic-
ture, thermal fluctuations must balance “dissipation” due to
damping of the c term.6,32 To accomplish this, Dxrand is typi-
cally assumed to follow a zero-mean Gaussian distribution
which must have its variance given by4

r2 ¼ 2kBTDt=mc: (5)

The Gaussian assumption is justified on the basis of the central
limit theorem4 because a molecule in aqueous solution can
experience upwards of 1013 collisions per second,6,30 and
hence, a large number of collisions occur in any Dt > 1 ns.
The high collision frequency also justifies the implicit assump-
tion here that sequential Dxrand values are independent, i.e., not
time-correlated.

With the distribution of Dxrand specified, the discrete over-
damped dynamics Eq. (4) is simultaneously a prescription
for computer simulation of trajectories and directly implies a
probabilistic description of trajectories. Let us start with
computer simulation, which is simpler by far. Defining
xj ¼ xðt ¼ jDtÞ, Eq. (4) is essentially a recipe for calculating
the next position xjþ1 � xj þ Dx in a time-sequence, given xj.
For a sufficiently small time step Dt, the force f will be
approximately constant over the whole time interval, so we
take
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Dxdet ¼ f ðxjÞDt=mc; (6)

and Dxrand is chosen from a Gaussian (normal) distribution
of variance r2 from Eq. (5). Looping over this process yields
a discrete-time trajectory,

traj ¼ x0; x1; x2;…f g; (7)

which is just a list of positions at intervals of Dt. We can eas-
ily recast trajectory elements in terms of spatial increments,

x0 ¼ x0 arbitraryð Þ;
x1 ¼ x0 þ Dx1;

x2 ¼ x0 þ Dx1 þ Dx2 ¼ x1 þ Dx2;

…; (8)

which is useful for understanding simulation algorithms such
as Eq. (4).

Trajectories of simple diffusion can be generated from Eq.
(4) by setting f¼ 0 (hence Dxdet ¼ 0). The recipe given
above simplifies to choosing a Gaussian random step at each
time point, i.e.,

Dx ¼ Dxrand ðsimple diffusionÞ; (9)

as we would expect. Schematic examples of these simplest
stochastic trajectories are shown in Fig. 1. There is no direc-
tionality in simple diffusion, but only a statistical tendency
to diffuse away from the starting point, as will be quantified
below.

III. SIMPLE DIFFUSION IN THE TRAJECTORY

PICTURE

The basics of diffusion, such as Fick’s law and the diffu-
sion equation, are well known, so diffusion theory is a per-
fect context for introducing the trajectory formulation.
Students may find that following the behavior of individual
particles is a more concrete exercise than visualizing proba-
bility distributions. In this section, we show that the trajec-
tory approach yields the familiar average description of

simple diffusion in a force-free (constant-energy) landscape.
In the bigger picture, we get an explicit sense of physical
details of trajectories which are averaged (integrated) out to
yield the distribution picture.

A. Probabilistic picture for trajectories

We start by analyzing diffusive trajectories based on ran-
dom steps where the force f has been set to zero. The proce-
dure (Eq. (9)) of repeatedly choosing a Gaussian step with
variance from Eq. (5) implicitly but precisely defines a prob-
ability distribution for an entire trajectory (Eq. (7)), which
will prove of fundamental importance. First, by construction,
the probability of a single step Dx is given by

p1ðDxÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�Dx2=2r2

: (10)

This is the meaning of choosing a Gaussian step. Note that
Eq. (10) depends only on the magnitude and not on the start-
ing point of the specific step, which is a characteristic of sim-
ple diffusion because no forces are present.

For the full trajectory, we use the simple rule that the
probability of a sequence of independent steps is simply the
product of the individual step probabilities: think of a
sequence of fair coin flips characterized by 1/2 to the appro-
priate power. Hence, for an N-step trajectory defined by Eq.
(8) starting from x0, we have

p trajð Þ ¼ p1 Dx1ð Þ � p1 Dx2ð Þ; � � � ; p1 DxNð Þ (11)

¼ 1

r
ffiffiffiffiffiffi
2p
p

� �N YN
j¼1

e�Dx2
j =2r2

: (12)

A multi-dimensional distribution such as Eq. (12) may not
be trivial to understand for those not used to thinking in high
dimensions. First, why is it a multi-dimensional distribution?
Well, it describes the distribution of a set of points, the tra-
jectory x0; x1; x2;…; xNf g. Note that we immediately obtain
the Dx values needed for Eq. (12) from the x values using
Eq. (8): Dx1 ¼ x1 � x0 and so on. So if you are given a set of
(trajectory) x values, you can convert them into Dx values
and plug them into Eq. (12) to get the probability of that tra-
jectory. You can do this for any set of x values, even ridicu-
lously unphysical values with gigantic jumps, but of course
the probability will be tiny for unphysical trajectories. For
completeness, strictly speaking, Eq. (12) is a probability den-
sity4 and absolute probabilities are only obtained by integrat-
ing over a finite region.

The distribution of trajectories encodes all the information
we could possibly want about diffusive behavior, although
some math is needed to get it. Alternatively, as a proxy for
the distribution, multiple trajectories could be simulated to
quantify their average behavior. In the case of simple diffu-
sion, however, the math of the trajectory distribution is both
tractable and illuminating.

As a fascinating technical aside, note that the product of
exponentials in Eq. (12) can be re-written as the exponential of
a sum (�PjDx2

j =2r2), which makes the probability look some-
what like a Boltzmann factor. Indeed, consulting the definition
of r2 in Eq. (5), we find it is proportional to kBT. Of course, the
argument of our exponential is not a true energy, but can be
considered an effective path energy, known as the “action.”4,33

Fig. 1. Simple diffusion, two ways. At left are schematic time-discretized

trajectories illustrating one-dimensional diffusion started from the initial

point x0 ¼ 0. Averaging over the positions of many trajectories at specific

time points t1 and t2 yields the distributions shown at right, with

pðx; tiÞ ¼ pðxijx0Þ. Averaging can aid interpretation but it also removes

information, namely, the connectivity among the trajectories’ sequences of

points.
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(In the non-diffusive case, Dxdet 6¼ 0 leads to an additional term
in the exponent and the action; see below.) The action formula-
tion, and the consideration of all possible paths, is the heart of
the path-integral formulation of quantum mechanics.34 The
path-probability formulation is truly fundamental to physics.

B. Deriving the spatial distribution from trajectories

A key observable of interest is the distribution of x values
at a fixed but arbitrary time point (Fig. 1). To build up to
this, we will carefully derive the equation for the conditional
probability distribution pðx2jx0Þ of x2 ¼ xð2DtÞ values, i.e.,
the distribution for a fixed starting point x0. The critical idea
is that we can obtain the probability of any given x2 value by
summing (i.e., integrating) over all possible two-step trajec-
tories that reach the particular value starting from x0.
Because both forward and backward motion are possible for
the intermediate step, we must consider all possible x1 val-
ues. Mathematically, this amounts to

p x2jx0ð Þ¼
ð1
�1

dx1 p1 Dx1ð Þ p1 Dx2ð Þ;

¼
ð1
�1

dDx1 p1 Dx1ð Þ �p1 x2� x0þDx1ð Þð Þ; (13)

where we have used Eq. (11) to start and then Eq. (8) to sub-
stitute for Dx2.

We can evaluate the integral in Eq. (13) exactly. Plugging
in the expression for p1 from Eq. (10) and setting y ¼ Dx1,
we have

p x2jx0ð Þ ¼ 1

2pr2

ð1
�1

dy e�y2=2r2

e� x2�x0�yð Þ2=2r2

;

¼ 1

2pr2
e� x2�x0ð Þ2=4r2

ð1
�1

dy e�½y� x2�x0ð Þ=2�2=r2

;

¼ 1ffiffiffiffiffiffi
2p
p ffiffiffi

2
p

r
� � e� x2�x0ð Þ2=2�2r2

; (14)

where the second line is derived by completing the square in
the exponent and the third line is derived by performing the
Gaussian integral shown.

The result Eq. (14) for the distribution of positions after
2Dt is very informative, especially by comparison to the
single-step distribution Eq. (10). The distribution of possi-
ble outcomes is still a Gaussian of mean x0, but the vari-
ance is doubled; equivalently, the standard deviation has
increased by a factor of

ffiffiffi
2
p

. See Fig. 1. It is important that
we derived this distribution by averaging (integrating)
over the ensemble of two-step trajectories. As promised,
the information was indeed encoded in the original trajec-
tory distribution Eq. (12).

From here, it is not hard to generalize to an arbitrary num-
ber of steps by repeating the integration process. The result
is that the distribution of xn ¼ nDt values is also a Gaussian
with mean x0, but with variance nr2,

p xnjx0ð Þ ¼ 1ffiffiffiffiffiffiffiffi
2np
p

r
e� xn�x0Þ2=2nr2:ð (15)

Equation (15) embodies the usual description of diffusion, as
we will see in two ways, but it also contains less information
than our initial trajectory description.

C. Confirming the probabilistic description of diffusion

Have we really recapitulated the usual description of dif-
fusion? As a first check, we immediately recover the
expected linear time dependence of the mean-squared dis-
placement4 based on Eq. (15). This is because the variance is
the mean-squared displacement or deviation (MSD), and the
number of steps n ¼ t=Dt is simply proportional to time. By
the definition of a Gaussian distribution, the variance
implicit in Eq. (15) is nr2, and we therefore have

MSD � xn � x0ð Þ2 ¼
ð1
�1

dxn xn � x0ð Þ2p xnjx0ð Þ;

¼ nr2 ¼ t=Dtð Þr2: (16)

If we define the diffusion constant via MSD ¼ 2D t (in one
dimension), then from Eqs. (5) and (16), we derive
D ¼ kBT=mc, which is a well-known result.4

Second, by renaming the variable xn ! x ¼ xðtÞ in Eq.
(15) and noting that time t ¼ nDt, we can see that Eq. (15)
describes the time-evolving probability distribution of posi-
tions p(x, t), which is the well-known solution to the 1D dif-
fusion equation,

@p

@t
¼ D

@2p

@x2
: (17)

This can be verified by direct differentiation, but see Sec.
VIII for a hint. The agreement with the continuous-time dif-
fusion equation implies that time discretization is irrelevant,
but be warned that this is not always the case, as discussed in
Sec. VIII.

D. What is missing from the standard description
of diffusion?

Because the distribution of positions (Eq. (15)) is known
for any time and provides the exact solution to the diffusion
equation, it may seem there is nothing more to know.
However, the key observables—the timescale (or rate) and
mechanism of any particular process—either are not avail-
able at all from the positional distribution or not easily
available.35,36

These shortcomings stem from the information missing
from the spatial distribution. Even if we know the spatial dis-
tribution at two times, we still do not know how any given
diffusing particle went from one place to another. That is,
although we know the fraction of particles that will be
located between any x and x þ dx, we do not know which
came from left or right and exactly from where. This infor-
mation is encoded in the dynamics and recorded in the distri-
bution of trajectories Eq. (11), which is essentially a
distribution of paths taken through position space. It is fair to
say, therefore, that the trajectory distribution is the mecha-
nism, assuming that all trajectories considered conform to
criteria of interest (e.g., starting at x¼ 0 and perhaps reach-
ing a value x> a after n steps.)

E. Beyond simple diffusion in one dimension

Before we move beyond a single dimension, a useful ref-
erence for developing intuition is the generalization of the
single-step distribution Eq. (10) when a force is present. Re-
framing the procedure Eq. (4) probabilistically, the
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distribution for overdamped dynamics of a 1D particle in the
presence of a spatially varying potential U(x) is a different
Gaussian,

p1ðDxÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
e� Dx�Dxdetð Þ2=2r2

: (18)

In contrast to the simple-diffusion case Eq. (10), the distribu-
tion of possibilities is centered on the deterministic (force-
driven or “drift”) step Dxdet defined by Eq. (6). That is, the
particle tends to move in the direction of the force, albeit
stochastically.

Equation (18) should guide your intuition for single-step
motion of a stochastic system: there is a distribution of possi-
bilities centered on the deterministic step. The deterministic
component generally could depend on inertia and/or force
although in the overdamped case there is no inertia. Note
that Dxdet in Eq. (18) implicitly depends on the starting posi-
tion for the step: see Eq. (6). Below, we will make the posi-
tion dependence more explicit.

IV. THE NON-EQUILIBRIUM STEADY STATE

(NESS) AND THE HILL RELATION FOR RATES

Probably the most important observable in a dynamical
process, at least in biomolecular studies, is the rate for a pro-
cess. As we will see, the rate is closely related to a specific
non-equilibrium steady state, which is essential to under-
stand but also quite accessible.

Physicists often quantify a rate via the mean first-passage
time (MFPT).32,35–37 The first-passage time is simply the
time required for a process from start to finish, e.g., the time
required for a protein to fold, starting from when it is initial-
ized in an unfolded state. In Fig. 2, this is the time from initi-
ation in “source” state A to absorption in “sink” state B. (We
are thus employing source-sink boundary conditions.)
Chemists and biochemists quantify kinetics via the “rate con-
stant” for a conformational process like protein folding,
which has units of s�1 and can be defined as the reciprocal
MFPT, although chemists prefer a definition based on
directly measurable “relaxation times.”4,38,39 Our discussion
will focus solely on the MFPT for simplicity.

The MFPT can be directly obtained from a steady-state
trajectory ensemble, so we will start by defining a source-
sink non-equilibrium steady state (NESS) as sketched in

Fig. 2. Independent trajectories are initiated in the source
macrostate A (e.g., the set of unfolded protein configura-
tions) according to a specified distribution p0 (e.g., a single
configuration or the equilibrium distribution over A). A sec-
ond, non-overlapping sink macrostate B is an absorbing state
in that trajectories reaching B are terminated, although in our
source-sink setup they are immediately restarted in A
selected according to the p0 distribution. If this process is
allowed to run for long enough so that each trajectory has
reached B and been recycled back to A many times, the sys-
tem will reach a non-equilibrium steady state. Without a sink
state or recycling, the system will relax to equilibrium, which
is also a steady state. (See Sec. VIII to explore the difference
between equilibrium and other steady states.)

The MPFT is derivable from a NESS trajectory ensemble
in a direct way, which will seem obvious once we are aware
of it. The derivation is simple, but requires some thought.
Imagine we have a large number M� 1 of independent sys-
tems that together make up the source-sink NESS (Fig. 2).
By construction, the NESS is characterized by a constant
flow of trajectories into B. We can simply count the number
of trajectories arriving during some time interval s and call
this count m. Thus, a fraction m/M of the total probability
arrives in time s.

To continue our derivation, we can estimate this same
fraction of trajectories arriving based solely on the meaning
of the MFPT. By definition, the average amount of time a
trajectory requires to traverse from A to B is the MFPT, so
the (average) probability for any given trajectory to arrive
during an interval s is precisely s=MFPT, which in turn is
the same as the fraction expected to arrive in s. In other
words, m=M ¼ s=MFPT, and we have derived the Hill
relation,4,25

1

MFPT
¼ m=M

s
¼ FluxðA! B jNESSÞ; (19)

where the flux is the probability arriving to B per unit time in
the NESS. Equation (19) is an exact relation with no hidden
assumptions, although not surprisingly the MFPT is particu-
lar to the initiating distribution p0 of the particular NESS in
which the flux is measured. That is, the MFPT depends on
where in state A trajectories are initiated.

The Hill relation hints at a remarkable possibility: estimation
of a long timescale (the MFPT) based on an arbitrary short
period of observation (s). If this could be done routinely, it
would represent a major accomplishment in computational
physics.31 In Sec. VI, we describe a simple algorithm that can
leverage the Hill relation for practical computations in many
systems. We also explain the challenges involved.

V. MORE ADVANCED DISCUSSION OF

ENSEMBLES AND THERMODYNAMIC STATES

This section describes additional fundamental concepts in
non-equilibrium physics, but the discussion necessarily becomes
more technical. Readers can skip this section without compro-
mising their ability to understand subsequent material.

A. Notation and nomenclature for multi-dimensional
systems

We will frame our discussion a bit more generally in the
context of multi-dimensional systems. Fortunately, this

Fig. 2. Source-sink non-equilibrium steady state. Trajectories (red curves,

color online) are initiated in state A and terminated upon reaching state B,

with states bounded by dashed contours. Importantly, trajectories that reach

B are then re-initiated from A. Such a system will reach a non-equilibrium

steady state after a transient “relaxation” period. Gray solid lines show iso-

energy contours of a schematic landscape.

1052 Am. J. Phys., Vol. 89, No. 11, November 2021 D. M. Zuckerman and J. D. Russo 1052



extension adds only incremental conceptual and mathemati-
cal complexity. To keep notation as simple as possible, we
will use ~x to represent all microscopic coordinates—the
phase-space vector consisting of all positions and velocities
of all atoms in our classical representation. In some cases,
such as overdamped dynamics (Eq. (3)), velocities may be
excluded from the description, but the ~x notation remains
valid. A macrostate is defined to be a set of ~x points. These
macrostates are not to be confused with thermodynamic
states such as equilibrium at some constant temperature or a
non-equilibrium steady state.

As with our discussion of simple diffusion above, we will
strictly use discrete time: t ¼ 0; Dt; 2Dt; :::. Discrete time
greatly simplifies our description of trajectory probabilities
without sacrificing any physical insights. In a trivial exten-
sion of Eq. (7), we therefore write a trajectory as

traj ¼ ~x0; ~x1; ~x2;…f g; (20)

where~xj is the phase point at time t ¼ jDt.

B. The initialized trajectory ensemble in multiple

dimensions

The probabilistic description of a multi-dimensional tra-
jectory follows logic almost identical to the 1D diffusion for-
mulation of Eq. (11), except for two details. First, we now
include the possibility that the initial system phase point ~x0

itself is chosen from some distribution p0. Second, in con-
trast to simple diffusion, where the distribution Eq. (10) of
outcomes p1 for any single step depends only on the magni-
tude of Dx, more generally the outcome depends on the start-
ing point of the step because the force may vary in space.
We therefore adopt a notation which makes this explicit:
p1ð~xj�1 !~xjÞ ¼ p1ð~xjj~xj�1Þ is the (conditional) probability
distribution for ~xj values, given the prior position ~xj�1. The
probability of a full trajectory is then the product of the ini-
tial distribution and the sequence of stepwise distributions,

pðtrajÞ ¼ p0ð~x0Þ � p1ð~x0 !~x1Þ
� p1ð~x1 !~x2Þ � � � p1ð~xN�1 !~xNÞ: (21)

The mathematical form of p1 must now account for multi-
dimensional aspects of the system, as well as any forces or
inertia if present: see Eq. (18) and the discussion following
it. Although specifying p1 in generality is beyond the scope
of our discussion, we should note that the form of Eq. (21)
indicates we have assumed Markovian behavior: the distribu-
tion of outcomes p1 at any time depends only on the immedi-
ately preceding time point.

We must be careful to specify our system without ambigu-
ity. A given physical system, such as a particular protein
molecule in a specified solvent at known temperature and
pressure, can be considered in a variety of thermodynamic
states, such as equilibrium or a non-equilibrium state. The
system and the thermodynamic conditions both must be
specified. Conveniently, the two aspects are described by dif-
ferent parts of the trajectory distribution equation Eq. (21):
the intrinsic physical properties such as forces and dynamics
are encoded in the single-step p1 factors, while the thermody-
namic state or ensemble is determined by the initial distribu-
tion p0 along with boundary conditions. Some boundary
conditions will be discussed below.

The distribution Eq. (21) describes the initialized trajectory
ensemble, the set of trajectories originating from a specified
phase-point distribution p0 at time t¼ 0. For instance, p0

could represent a single unfolded protein configuration (mak-
ing p0 a Dirac delta function), a set of unfolded configura-
tions, a solid in a metastable state, or the set of initial
positions of multiple dye molecules in a solvent. Figure 1
illustrates the one-dimensional trajectory ensemble initialized
from p0ðxÞ ¼ dðxÞ.

As with simple diffusion, we can revert to the simpler, aver-
aged description of a spatial distribution that evolves in time
due to the dynamics. That is, in principle, we can calculate the
distribution of phase points at time t ¼ NDt starting from p0,
denoted pð~xNj p0Þ. When forces are present, the diffusion (par-
tial differential) equation Eq. (17) must be generalized to
account for the tendency of a particle to move a certain direc-
tion, leading to the Fokker–Planck/Smoluchowski picture.32,35,36

Appendix A describes the corresponding Smoluchowski equa-
tion that governs overdamped motion with forces. However, as
with simple diffusion, the spatial distribution represents an aver-
age over the information-richer trajectories.

C. Connection to relaxation, state populations,

and thermodynamics

It is important to note that, in general, an initialized system
will “relax” away from its initial distribution p0. For systems
of interest here, the system’s phase-point distribution
pð~xNj p0Þ will tend to relax toward a steady state dependent
only on the boundary conditions. In a constant-temperature
system with no particle exchange, for example, the distribu-
tion will approach equilibrium as embodied in the Boltzmann
factor: limN!1 pð~xNj p0Þ / exp ð�Hð~xÞ=kBTÞ, where Hð~xÞ
is the total energy of point~x, kB is Boltzmann’s constant, and
T is the absolute temperature. In general, whether equilibrium
or not, the steady state that is reached typically will be inde-
pendent of p0 after sufficient time for a “well-behaved” sys-
tem. In Sec. IV, we explored non-equilibrium steady states
critical to understanding conformational transitions.

Whether the system is in the relaxation or steady regime,
the phase-point distribution pð~xÞ, obtainable from the trajec-
tory picture, directly connects to observable and thermody-
namic properties. Most simply, the time-dependent
macrostate population can be obtained as the integral of pð~xÞ
over a region of phase space: this is the fraction of probabil-
ity in the state which evolves in time with p. At a system-
wide level, both the entropy and average energy can be
obtained from well-known integrals over p.4,7 These also
evolve with time, directly leading to the entropy production
picture. Further detail on these topics is beyond the scope of
the present discussion, and interested readers should consult
suitable Refs. 7 and 27.

D. The ensemble of trajectories and the meaning

of equilibrium

When we speak of an “ensemble” of trajectories, the word
has the same meaning as in ordinary statistical mechanics,4,6

namely, a set of fully independent trajectories generated
under the conditions of interest (see below). That is, each
member of the ensemble is a replica of the same physical
system but is initiated from a phase point that typically will
differ from others in the ensemble.
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An ensemble in principle can be generated according
to any process and under any conditions we care to spec-
ify. The dynamics of these trajectories could be governed
by simple constant-temperature diffusion or there could
be a temperature gradient, forces, or both. Trajectories
could additionally be subject to certain boundary condi-
tions: for example, they might be assumed to reflect off
some boundary in phase space or be absorbed on reaching
a certain “target” region as we considered in Sec. IV. The
full set of rules governing a set of trajectories defines the
ensemble by determining the weights of each trajectory
as in Eq. (21), and we are often interested in ensemble or
average behavior because this is what is usually observed
experimentally although single-molecule studies are by
now a well-established and important field of
study.21,40,41

It is critical to appreciate that an individual trajectory
generally cannot be considered to be of equilibrium or
non-equilibrium character in an intrinsic sense. (A possi-
ble exception is an extremely long trajectory which itself
fully embodies all defining criteria of the ensemble.4)
Generally, it is the distribution of trajectories that deter-
mines whether a system is in equilibrium and, if not, what
ensemble it represents. Two finite-length trajectories that
have the same weight in the equilibrium ensemble might
have different weights in a non-equilibrium ensemble. The
trajectory distribution will be determined by the initial
phase-point distribution p0 in conjunction with the
imposed boundary and thermodynamic conditions such as
temperature.

Let us consider equilibrium in the trajectory ensemble pic-
ture. For simplicity, we will assume that our initial phase
point distribution is already Boltzmann-distributed:
p0ð~x0Þ / exp ð�Hð~x0Þ=kBTÞ. As trajectories evolve in time
from their initial points, the system will remain in equilib-
rium if the thermodynamic and boundary conditions remain
the same. Thus, dynamics underlie equilibrium. We can say
dynamics define equilibrium through detailed balance: if we
count transitions occurring between small volumes around
phase points ~xi and ~xj over any interval of time, the counts
i! j and j! i will be identical within noise; the same is
true for any size volumes in equilibrium.1,4 This detailed bal-
ance property not only keeps the distribution stationary in
time, but it means there are no net flows anywhere in phase
space. Detailed balance further implies there is no net flow
along any trajectory-like path—i.e., the forward and exactly
time-reversed trajectories will occur an equal number of
times.23,42

Note that our discussion here applies to thermal (constant-
temperature) equilibrium for systems whose full configura-
tions or phase points may include real-space coordinates
and/or chemical degrees of freedom. That is, the trajectory
picture of equilibrium applies for conformational processes
in molecules, such as isomerization or folding; for simple
diffusion or diffusion with possibly space-varying “drift”
forces; for molecular binding, which may include both trans-
lational and conformational processes; for chemical pro-
cesses involving electronic degrees of freedom such as bond
formation and breakage; and for any combination of these
whether modeled in full detail or approximately, so long as
there is no implicit addition or removal of energy or par-
ticles. The trajectory picture does not apply for mechanical
equilibrium, the balance of forces.

VI. POWERFUL SIMULATION METHODOLOGY

BASED ON TRAJECTORY ENSEMBLES

A. Goals and challenges of computation

To consider computational strategies, we should first
understand the goals of computation. As we do so, keep in
mind a concrete process like protein folding or another spon-
taneous transition from a metastable state to a more stable
one, such as a conformational change in a protein, a change
in crystal lattice form, or a re-arrangement of a molecular
cluster. For any of these transitions, we might be interested
in the following:

(i) The “kinetics”—the MFPT or some other measure of
rate for the transition.

(ii) The “mechanism” or pathways of the process—the
sequence(s) of states exhibited during the transition.

(iii) The “relaxation” process—the timescales and mecha-
nisms of describing the transient way the system
“settles in” to a steady state.

We will first consider a simple, though typically impracti-
cal, way to calculate any or all of the above. As sketched in
Fig. 3, the naive “brute force” implementation would simply
be to initiate a large number of trajectories using an initial
distribution of interest p0 and wait until all trajectories have
made the transition of interest. From this set of trajectories,
we could (i) average their durations to obtain the MFPT or
(ii) analyze the states occurring during transitions to quantify
the mechanism.43 For (iii) relaxation, we could wait still lon-
ger until the spatial/configurational distribution becomes sta-
tionary (using “recycling” if studying a constant-temperature
NESS) and quantify the relaxation time as well as the mech-
anism, perhaps via probability shifts that occur. However,
the strategy of waiting for multiple spontaneous transitions
will only work for the simplest systems, such as low-
dimensional toy models. (See Sec. VIII.)

In general, the brute force approach will not be practical
for complex systems, and if a system is complicated and
directly pertinent to real-world problems, it is likely to be
too expensive to permit thorough brute-force simulation. We
can quantify the challenges with a back-of-the-envelope cal-
culation. For the system of interest, say you can afford a total
of M simulations of duration tmax. This means, roughly, that

Fig. 3. The challenge of rare-event sampling in computation. Trajectories

are initiated in state A, but in challenging systems most will remain in state

A (solid trajectory). Transitions (dotted line) may be extremely unlikely or

effectively unobservable in realistic, high-complexity systems such as pro-

tein conformational changes. Hence, typical “brute force” simulations can

be both wasteful and expensive.
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you can determine the distribution of phase points at any
time t < tmax, denoted pð~x; tÞ, to a precision of 1=M; typi-
cally, you will not have knowledge of behavior beyond tmax.
As a point of reference in biomolecules, current hardware
limits tmax to 1–10 ls in most systems (and to ms for small
systems with extraordinary resources9), whereas most bio-
logical phenomena occur on a timescale of at least 100 ls
and more typically on ms–s scales.

B. Efficient simulation via the weighted ensemble

approach

Fortunately, there are now methods31,44–47 that can side-
step the 1=M limitation just described, and we will focus on
the most straightforward of these, known as the weighted
ensemble (WE) strategy.16,48,49 WE is a multi-trajectory
“splitting method” based on a proposal credited to von
Neumann50 that can provide information on relaxation and
steady-state behavior. WE can provide this information using
less overall computing than naive simulation, i.e., the prod-
uct Mtmax is smaller. It achieves this by re-allocating com-
puting effort (trajectories) away from easy-to-sample regions
of phase space toward rarer regions. WE is also an unbiased
method: on average, it exactly recapitulates trajectory
ensemble behavior and hence the time-evolution of the spa-
tial distribution pð~x; tÞ;49 the latter property reflects consis-
tency with the Fokker–Planck equation,35,36 which is briefly
described in Appendix A.

WE simulation follows a fairly simple procedure, schema-
tized in Fig. 4, which promotes the presence of trajectories in
relatively rare regions of an energy landscape. In a basic
implementation,48 phase space is divided into non-
overlapping bins of the user’s construction, and a target num-
ber of trajectories per bin is set—say, 2, for concreteness.

The bins should finely subdivide difficult-to-sample regions
such as energy barriers to enable “statistical ratcheting” up
hills if trajectories are examined frequently enough. That is,
because short trajectories always have some probability to
move uphill in energy, brief unbiased fluctuations can be
“captured” for ratcheting and effectively concatenated to
study otherwise rare events, sidestepping the 1=M limitation.
Trajectories are started at the user’s discretion; let us assume
two trajectories are started in a bin of state A, with the goal
of sampling transitions to B.

Trajectories in WE are run in parallel for brief intervals of
time s (with MFPT� s� Dt, where Dt is the simulation
time step), then stopped and restarted according to simple
probabilistic rules. In our example, each of the two trajecto-
ries is initially given a weight 1/2 at t¼ 0 and the essential
idea is to ensure probability moves in an unbiased way, thus
preserving the trajectory ensemble behavior and pð~x; tÞ. If a
trajectory is found to occupy an otherwise empty bin after
one of the s intervals, two “child” trajectories are initiated
from the final phase point of the “parent” trajectory, and
each child inherits 1/2 of the parent’s weight—a process
called splitting. The two child trajectories in the previously
unvisited bin create the ratcheting effect: there is twice the
likelihood to explore that region, and to continue to still rarer
regions, than if we did not replicate trajectories. Stochastic
dynamics must be used; otherwise, child trajectories will
evolve identically.

If more than two WE trajectories are found in a bin, prun-
ing (or merging) is performed in a pairwise fashion: a ran-
dom number is generated to select one of an arbitrary pair
for continuation with probabilities proportional to their
weights, and the selected trajectory absorbs the weight of the
other trajectory, which is discontinued. In this fashion,
energy minima do not collect large numbers of trajectories

Fig. 4. Efficient simulation via the weighted ensemble (WE) method (Ref. 51). Phase space is divided into bins, and trajectories are started according to an ini-

tial distribution of interest (far left). Dynamics are run briefly, allowing trajectories to visit other bins, after which the WE steps of “splitting” (replication) and

“merging” (pruning) are performed. Weights of parent trajectories are shared among children from splitting events, permitting the estimation of very low-

probability events. In this example, a target of two trajectories per bin has been set. Reproduced with permission from Donovan et al, PLoS Comput. Biol.

12(2), e1004611 (2016). Copyright 2016 Authors, licensed under a Creative Commons Attribution (CC BY) license.
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which would add cost to the simulation but provide minimal
statistical value. The processes described, in fact, constitute
unbiased statistical resampling.49 (See Sec. VIII.) In WE, the
total trajectory cost is limited to the number of bins multi-
plied by the number of trajectories per bin and the trajectory
length. This amounts to M tmax in our case, given M=2 bins.

Although the total simulation cost is bounded by M tmax

(plus overhead for splitting/merging), events much rarer than
1=M can be seen because of the splitting procedure. Indeed,
exponentially rare processes are elicited as WE produces an
unbiased estimate of the trajectory ensemble and pð~x; tÞ. A
dramatic example is shown in Fig. 5 for diffusion and binding
in a 3D box, where the distribution of possible binding out-
comes extends tens of orders of magnitude below what stan-
dard simulation provides. For monitoring the transient time
evolution of a system, WE is almost like a “magic bullet.”

Obtaining the MFPT from WE simulation is more chal-
lenging than characterizing pð~x; tÞ in many cases. To use the
Hill relation Eq. (19), the system must relax to steady state
and this relaxation is not accelerated by WE for the very rea-
son it is so successful in characterizing pð~x; tÞ; i.e., because
it is unbiased. To see this more concretely, let tSS be the
average time required for a given system to relax to steady
state. Then, because WE runs M copies of the system, the
total cost for observing a WE simulation relax to steady state
is �M tSS, which will be prohibitive in some though not all
systems.52 Even when M tSS is a prohibitive cost, the MFPT
can be obtained from transient data (t < tSS) available in WE

simulation: although the details are beyond the scope of this
discussion, the idea is to use much finer-grained and faster-
relaxing bins (than were used to run the WE simulation) in a
quasi-Markov approximation.53 Below, we apply WE
directly for MFPT calculation in a simple system.

Like any advanced computational method, WE has its subtle-
ties and limitations. Most important are correlations. Although
WE trajectories are independent (non-interacting), exactly as
assumed in the trajectory-ensemble definitions, correlations arise
in the overall WE protocol due to the splitting and merging
steps. After all, when a trajectory is “split,” by construction the
child trajectories are identical until the split point. Therefore,
assessing statistical uncertainty in WE estimates requires great
care, even though the method is unbiased.54

C. Applying the weighted ensemble to a simple model

To illustrate the power and validity of the weighted
ensemble method, we employ it to estimate the transition
rate over a high energy barrier in a simple system. We use
the WESTPA implementation55 of WE and apply it to a sim-
ple 1D double-well potential under overdamped Langevin
dynamics (Eq. (3)) with parameters chosen to approximate
the behavior of a small molecule in water. We assume a
mass of 100 u, temperature T¼ 300 K, a barrier height of
10kBT, and a friction coefficient c ¼ 24:94 ps�1 which is rea-
sonable for water and corresponds to a diffusion constant of
10�6 cm2=s. The simulation is run with a timestep of 3 ps,
and all simulation code is available on Github.56

The WE simulation is set up with walkers beginning in the
rightmost basin, and with the two basin macrostates defined
as x>20 nm and x < �20 nm, as shown in Fig. 6. Twenty
uniform bins of width 2 nm uniformly span from x ¼ �20.0
to 20.0 nm, with two additional bins on either end reaching
to 61. The WE simulation is run with a resampling time of
s ¼ 60 ps and a target count of ten trajectories per bin, so
roughly 200 trajectories will run during each s. Walkers that
reach the left basin are “recycled” and restarted from
x¼ 20 nm to generate a non-equilibrium steady state and
exploit the Hill relation Eq. (19).

To quantify the effectiveness of WE simulation for this
case, we can compare the cost for computing the rate con-
stant (i.e., flux or reciprocal MFPT) from WE simulation to
brute-force simulation of overdamped Langevin dynamics.
Note from Fig. 6 that WE simulations reach steady values
after �3000 iterations, which corresponds to �12 � 106

steps of total simulation (for a single WE run, accounting for
all �200 trajectories) or a total of 36 ls of simulated time.
Also from Fig. 6 and Eq. (19), the MFPT is �1000 ls. Thus,
we see that WE simulation has generated the average first-
passage time using an overall amount of computing that is
only a small fraction (�0:04) of the time needed to yield a
single transition event via direct simulation, let alone to gen-
erate a reliable MFPT estimate from multiple events.

VII. CONCLUDING DISCUSSION

The trajectory arguably is the most fundamental object in
classical statistical mechanics, particularly for non-
equilibrium phenomena, and this article has attempted to
connect trajectory physics with more familiar topics in the
traditional physics curriculum. By focusing in depth on the
simplest possible example—diffusion—we have been able to
formalize and visualize the probabilistic/ensemble picture

Fig. 5. Weighted ensemble simulation of extremely rare diffusion and bind-

ing events (Ref. 51). Particles are initiated at the top of a three-dimensional

box (upper right inset) and allowed to diffuse without bias. Any particles

that reach the bottom surface of the box can bind to receptors located there.

The graph shows the probability distribution of bound receptors after a short

time interval—i.e., the likelihood of different outcomes that would result

from a single brute-force diffusion simulation. WE enables sampling deep

into the tails of the distribution because more trajectories are allotted to rarer

outcomes, whereas an equivalent amount of “brute force” sampling cannot

detect events rarer than the reciprocal of the number of trajectories, as

shown by solid horizontal lines. WE simulations used simulation time equiv-

alent to 611 brute force trajectories, as indicated in the left inset. The grey

dots represent independent WE runs (of which green (online) is a representa-

tive) and solid vertical bars give the confidence interval based on the grey

data—which appears to be skewed upward because of the logarithmic scale.

Reproduced with permission from Donovan et al., PLoS Comput. Biol.

12(2), e1004611 (2016). Copyright 2016 Authors, licensed under a Creative

Commons Attribution (CC BY) license.
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and connect it with simpler spatial distributions. We have
further been able to connect these ensembles with observable
populations, kinetics, and thermodynamic states, as well as
understand a modern, practical path-sampling approach.

A key lesson is that theoretical physics can view a given
process at different levels of “magnification,” from most
microscopic to most averaged (Fig. 7). Trajectories are the
most detailed and encompass all system coordinates at all
times—which is usually too much to grasp. Trajectories can
be averaged spatially at fixed times to yield more familiar
probability distributions. Trajectory flows across surfaces of
interest can also be averaged to yield probability fluxes: in
equilibrium, all such fluxes are zero, whereas in transient
regimes or non-equilibrium steady states (NESS’s), such
flows provide key information. Notably, the Hill relation
(Eq. (19)) yields the mean first-passage time (MFPT) from
the flux in an appropriate NESS, and furthermore, conditions
on reversibility can be derived from flux arguments
(Appendix B). Finally, averaging—i.e., integrating—over
spatial distributions can yield observable thermodynamic
information on state populations;6,16 see also entropy pro-
duction and fluctuation relations.7,42,57,58

This report has only given a taste of the value of the trajec-
tory picture, which goes much further. Trajectory ideas, for

example, are used to develop the Jarzynski relation.58–60

They provide a direct connection with the path-integral for-
mulation of quantum mechanics.34 Trajectories offer a
unique window into the often misunderstood issue of
“reversibility.”61 (See Appendix B.) Not surprisingly, trajec-
tories and their applications are still an area of active
research.7,52,62–65

VIII. EXERCISES

(1) Confirm by differentiation that Eq. (15) is the exact
solution to the diffusion equation Eq. (17), after setting
xn¼ x and n ¼ t=Dt. Note that t occurs both in the pre-
factor and the exponent, so differentiation requires the
product rule.

(2) Time-discretization generally introduces an error into
dynamics computed via Eqs. (4) and (6). Explain why
there is an error and how it might be mitigated in com-
puter simulation. For what special case is there no error
even if f 6¼ 0?

(3) Implement overdamped dynamics simulation Eq. (4) of
the double-well system specified in Sec. VI C.
Calculate the MFPT of the system for a range of barrier

Fig. 6. Weighted ensemble estimation of the rate of a rare event: high-barrier crossing. (a) potential energy function used for double-well simulation with 10

kBT barrier and state boundaries indicated by the vertical black lines. (b) average flux into the left basin state for simulations started from the right basin, as

computed from three independent weighted ensemble simulations (colored lines). The average flux estimates the inverse MFPT by Eq. (19), yielding �1 ms.

For reference, an independent estimate of the flux is computed using a very long “brute force” simulation (horizontal line). The brute force confidence interval

(C.I.) is shown as a blue shaded region, which is 6 twice the standard error of the mean based on 11 transitions.

Fig. 7. From the fundamental ensemble of trajectories to more averaged observables. Because trajectories embody the dynamics that fully specifies a system,

they are the most fundamental. Averaging or analysis can be performed at fixed time points, including the t!1 stationary point. Quantities that can be calcu-

lated include the phase-space distribution p(x, t), the mean first-passage time (MFPT), diffusion constant (D), average coordinates or properties (e.g., hxi; hUi),
or system-wide thermodynamic properties, in or out of equilibrium. Although simple diffusive trajectories are pictured, the same principles apply in the case

of non-zero forces.
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heights, starting with a low barrier, by simple averaging
of �10 observed first-passage times. Compare these
values to the expected Arrhenius behavior.4

(4) Using the ODLD module of the WESTPA implementa-
tion of weighted ensemble, implement a triple well sys-
tem. Consider the left-most basin to be the initial state
(A) and the right-most basin the target (B). Examine
the relaxation of the probability into the target state as a
function of time. For cleanest data, average over multi-
ple WE runs. Vary the depth of the middle well and
explain the observed behavior.

(5) Write down the trajectory probability, the analog of Eq.
(12), for a system with constant force, sometimes called
simple drift. Explain in words the meaning of the distri-
bution. If you can, integrate out intermediate time
points to show that the behavior remains Gaussian with
constant drift.

(6) For a simple diffusive system described by Eq. (12),
obtain the distribution for x3 by a suitable integration of
Eq. (14).

(7) Write down the equations that define (i) a steady state
and (ii) equilibrium for a discrete-state system in terms
of steady probabilities pi and state-to-state transition
probabilities Ti!j for some fixed time interval. Note
that equilibrium is defined by detailed balance. Show
that detailed balance implies steady state but not the
reverse. A counter-example suffices to disprove a
hypothesis.

(8) By studying the theory underlying weighted ensem-
ble,49 explain in statistical terms why the “resampling”
procedure for “merging” trajectories does not bias the
time-evolving probability distribution pð~x; tÞ.

(9) Write pseudocode for a weighted ensemble simulation
of an arbitrary system with pre-defined bins. If you are
ambitious, implement your pseudocode for 1D over-
damped dynamics in the double-well system in
Exercise 3.

(10) Understand the continuity equation Eq. (A1) by inte-
grating it over an interval in x from a to b. Integrating
the probability density over this region gives the total
probability in it. How does this probability change in
time, based on the current, and why does the result
make sense? Remember the one-dimensional current is
defined to be positive in the right-ward direction.

(11) Show that stationary distribution of the Smoluchowski
equation Eq. (A3), i.e., when @p=@t ¼ 0, is the
expected equilibrium distribution based on the
Boltzmann factor.
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APPENDIX A: THE FOKKER–PLANCK PICTURE

AND SMOLUCHOWSKI EQUATION IN ONE

DIMENSION

The Fokker–Planck and related equations35,36 are essential
for understanding non-equilibrium statistical mechanics.

These equations generalize the diffusion equation (17), but
they perform essentially the same role: they quantify the way
a spatial and/or configurational distribution changes over
time based on a given energy landscape. The key point is
that this is a very general concept that applies not only to
center-of-mass diffusive motion but also to configurational
motions internal to a molecule or system. For example, if a
protein is started in a certain configuration, where is it likely
to be later? The distribution pð~x; tÞ quantifies the distribution
of configurations~x at any time t.

Here, we focus on the Smoluchowski equation, which is
the Fokker–Planck equation specific for the overdamped,
non-inertial dynamics Eq. (3) studied above. The
Smoluchowski equation is easiest to grasp starting from the
continuity equation, given by

@p

@t
¼ � @J

@x
; (A1)

in one dimension, where p ¼ pðx; tÞ is the probability density
at time t and J ¼ Jðx; tÞ is the probability current, i.e., the
(average) probability per unit time moving in the þx direc-
tion. Note that this is the average over trajectories moving in
both directions, so it is the net current. The continuity equa-
tion simply ensures that the change of probability in any
region is the difference between incoming and outgoing
probability. For students who are new to the continuity equa-
tion, Exercise 10 will clarify its meaning.

To complete the Smoluchowski equation, we need the cur-
rent corresponding to overdamped dynamics (Eq. (3)). As
noted above, overdamped dynamics includes both (simple)
diffusion and “drift” (motion due to force). From Eq. (17),
we can already infer that the diffusive current is �D @p=@x,
which is Fick’s law indicating that particles/probability will
diffuse down their gradients in a linear fashion on average.
When a force is present, Eq. (3) indicates that there is also
motion linearly proportional to the force, leading to a total
current

Jðx; tÞ ¼ �D
@p

@x
þ D

kBT
f ðxÞ pðx; tÞ; (A2)

where we have assumed D ¼ kBT=mc is constant in space.
We obtain the full Smoluchowski equation in one-

dimension for fixed D by substituting the current Eq. (A2)
into the continuity equation Eq. (A1), yielding

@p

@t
¼ D

@2p

@x2
� D

kBT

@

@x
f p: (A3)

The diffusion equation has been augmented by a term depen-
dent on the force. Equation (A3) can be solved to find the
steady-state behavior of p both out of or in equilibrium (see
Sec. VIII) or to follow the time-dependent behavior as the
distribution p relaxes toward its limiting steady profile.

APPENDIX B: ADVANCED TOPIC: MACROSCOPIC

REVERSIBILITY BY DECOMPOSING THE

EQUILIBRIUM TRAJECTORY ENSEMBLE

Many of us are aware of the intrinsic time reversibility of
Newtonian mechanics, whereby any constant-energy trajec-
tory ~xðtÞ can be “played backwards” to yield another
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physically valid trajectory. There is an analogous condition
on a stochastic trajectory, which can be derived from
detailed balance.60 However, the conditions for reversibility
under more realistic circumstances involving a distribution
of initial and final configurations require the trajectory
ensemble picture.61

We start by considering an equilibrium ensemble of trajecto-
ries: see Fig. 8(a). The equilibrium trajectory ensemble is
defined by a set of completely independent systems/trajectories
for times t > t0, given that at t0, the set of phase-space points
~xðt0Þ is equilibrium-distributed, i.e., according to the
Boltzmann factor. (We don’t need to worry about how equilib-
rium was produced.) If the phase points are equilibrium-
distributed at time t0, they will remain equilibrium-distributed
thereafter. This is because the Markovian stochastic dynamics
that generates equilibrium also maintains it, which is why we
call it equilibrium in the first place.4

As sketched in Fig. 8, the equilibrium ensemble at any
time t can be exactly decomposed into two parts based on a
history-labeling process.46,61 Specifically, based on two arbi-
trary non-overlapping macrostates A and B, each trajectory
can be assigned to the A-to-B set—a.k.a “last-in-A” set—if
it currently occupies state A or was more recently in A than
B, with the remaining trajectories in the B-to-A direction.
This construction requires “omniscience,” in the sense of
knowing the full history of each trajectory, so it is something
of a thought experiment. Note that each of these directional
trajectory subsets is automatically maintained as a non-equi-
librium steady state: when an A-to-B trajectory enters B, its
label switches to B-to-A, but the overall equilibrium condi-
tion ensures that equal numbers of trajectories will switch
labels per unit time.61

We are now in a position to understand reversibility,
building on the defining process of equilibrium: detailed bal-
ance.4 As a reminder, detailed balance implies there is zero
net flow between any pair of “microstates,” i.e., small phase-
space volumes. In the context of the two uni-directional
steady states (A-to-B and B-to-A), detailed balance gives us
a tool to consider two non-overlapping mechanistic
“pathways”—arbitrary tubes of phase points connecting A
and B—e.g., upper and lower pathways in Fig. 8. If we place
a (hyper-)surface transecting each tube, then there is a cer-
tain probability flowing per second through each surface in,
say, the A-to-B steady state; call these r1 and r2. By detailed

balance, there is no net flow through either surface in equi-
librium, and so the flows in the B-to-A state must be equal
and opposite. Mechanistically, the ratio r1=r2 is the same in
both directions: the fraction of events taking each pathway
must be the same in both directions. This is mechanistic
reversibility. Fuller details and illustrations can be found in
earlier work.61

A key point is that the preceding discussion is strictly
based on the detailed-balance property of equilibrium. Thus,
systems out of equilibrium should not be expected to exhibit
mechanistic reversibility. This is true experimentally and
theoretically. Examples of systems not obeying reversibility
would be if A and B states were prepared under different
conditions (e.g., temperature, pH,…) or, even under the
same conditions, if the initial distribution in A or B did not
mimic the process for constructing the directional steady
states derived from equilibrium. Specifically, in the A-to-B
direction, trajectories should be initiated on the surface of A
according to the distribution with which they would arrive
from B in equilibrium, which is known as the “EqSurf” con-
struction.61 To put this informally, state A needs to be
“tricked” into behaving as it would in equilibrium, so trajec-
tories are started at the boundary of A as if they had arrived
from B (i.e., were last in B) in equilibrium.
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