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ABSTRACT 

A comparison of Eulerian-Lagrangian methods for the solution of the trans- 
port equation 

Anabela Pacheco de Oliveira 

Oregon Graduate Institute of Science & Technology, 1993 

Supervising Professor: Ant6nio M. Baptista 

We present an extensive formal and experimental comparison of the accuracy and 

stability of selected finite-element Eulerian-Lagrangian methods (FE-ELMS) for the solu- 

tion of the 1D transport equation. 

The comparison shows that recent FE-ELMS that use the perspective of integration 

(rather than the more conventional perspective of interpolation) to treat initial conditions 

at the feet of the characteristic lines have excellent accuracy properties. Although some 

"integration" FE-ELMS are only conditionally stable, the associated constraints are 

expected to be minor for most applications of interest. 

Motivation for the comparison was provided by the on-going development of a 

new generation of multi-dimensional Eulerian-Lagrangian water quality models, oriented 

towards surface water applications, and addressing tracers with increasingly complex 

chemical and biological pathways. 

While this motivation may appear remote for a theoretical study of numerical 

methods, the need for the information now generated is strong, and the practical contribu- 

tions are significant. Indeed, the need stems from the fear (partly rooted in accumulated 

experience) that complex water quality models may magnify remaining shortcomings in 

xii 



fundamental aspects of the solution of the transport equation, such as stability, mass con- 

servation, and ability to accurately transport sharp gradients of concentration. 

Practical contributions include: 

the recommendation to initiate the systematic replacement of "interpolation" FE- 

ELMS by "integration" FE-ELMS, as the reference strategy to solve for hydraulic 

transport in the family of ELA water quality models (ELA, ELAcol, ELAsed, 

ELAmet, etc.); 

the development of basic data and understanding necessary for the informed use 

of "integration" FE-ELMS; an example is the development of basic data neces- 

sary to drive the semi-automatic generation of finite element grids tailor-made 

for the simulation of transport processes by "integration" FE-ELMS. 

... 
Xlll  



CHAPTER 1 

Introduction 

Context 

Surface water bodies have always played an essential role in the development of 

human civilization. Under the pressure of multiple and conflicting demands, however, 

many such water bodies have shown stress signals for several decades. While awareness 

for the need of balanced management approaches has grown considerably, such 

approaches require an understanding of pathways of water, sediments and environmental 

tracers that only slowly is being acquired. 

Numerical modeling has quickly overcome analytical and scale modeling as a tool 

of choice for the analysis of environmental processes and their relationship with the use of 

surface waters. In spite of very significant progress, however, the modeling community 

has yet to develop complex water quality models whose reliability is broadly accepted. 

The problem is at least three fold: 

- some important environmental processes are not understood to the point where 

they can be correctly described by a set of mathematical equations; 

- sources and empirical parameters are often difficult to quantify for specific sites/ 

situations; 

- some fundamental questions related to the accuracy of numerical methods remain 

unresolved. 

It is somewhat surprising that the third of these aspects remains unquestionably a 

limiting factor of our modeling ability. In this context, difficulties that are associated with 



the solution of the transport equation are particularly surprising and frustrating. While we 

are moving towards a new generation of water quality models (where chemistry and biol- 

ogy are represented in ever increasing detail, and increasing spatial and temporal resolu- 

tion), it is prudent and relevant to re-examine some of the basic issues surrounding the 

numerical solution of the transport equation. The present thesis is a contribution to such a 

re-examination. 

Numerical methods for the solution of the transport equation 

The fate of environmental tracers is described by the transport equation, eventually 

coupled with appropriate transformation equations. In this thesis, we will concentrate on 

the one-dimensional hydraulic transport of conservative and passive scalars, for which the 

transport equation reduces to: 

where c is the concentration of the tracer, u is the flow velocity and D is the diffusion coef- 

ficient. Since this equation will be approximated by a numerical method, it will be dis- 

cretized in time with a time step At, and in space with a grid spacing Ax. 

The physics of each of the two transport processes represented in Equation (1. I), 

advection and diffusion, are rather distinct: 

- advection carries mass in the direction of the flow; 

- diffusion carries mass in the direction of the lower concentrations. 

Distinct physics maps into distinct mathematical properties: Equation (1.1) is pre- 

dominantly hyperbolic if advection is dominant, and predominantly parabolic if diffusion 

is dominant. Also, distinct mathematics maps into distinct numerics, with advection-dom- 

inated transport often being more challenging to solve numerically than diffusion-domi- 

nated transport. 



Early numerical methods did not explicitly recognize the contrasting physical, 

mathematical, and numerical nature of advection and diffusion. However, this recognition 

has triggered the development of a multitude of methods over the last couple of decades. 

Some of these methods deliberately targeted either advection-dominated or diffusion- 

dominated transport while others attempted to cover the full spectrum. 

Because of the large number of numerical methods now available to solve the 

transport equation, it is useful to group these methods into broad classes. We will consider 

in this discussion three classes: Eulerian, Lagrangian and Eulerian-Lagrangian methods1. 

Eulerian methods solve the Eulerian form of the transport equation at the nodes of 

a fixed grid, thus handling the hyperbolic and parabolic operators simultaneously. 

Although this procedure has shown to be accurate for diffusion-dominated problems, it 

leads to spurious spatial oscillations for Peclet numbers (Pe = uAxlD) larger than 2, when 

sharp gradients of concentration are present [Roache, 19821. These oscillations may be 

eliminated by adding artificial diffusion, either by specifically imposing an excessive dif- 

fusion coefficient or by letting the numerical method introduce numerical diffusion 

(upwind methods). However, artificially damping oscillations changes the physics of the 

problem being solved, which may not be acceptable for specific applications. 

Numerical oscillations can also be eliminated through the refinement of the com- 

putational grid, in order to reduce Pe. Doing so, however, increases the computational 

costs. In addition, the grid refinement limits the size of the time step, since Eulerian meth- 

ods are often limited to Courant numbers (P = uAt1Ax) smaller than one. For explicit meth- 

ods, this restriction is due to stability constrains (Courant-Lewy stability criterion). For 

implicit methods, it is necessary to keep P small, since the accuracy of these methods 

decreases rapidly with increasing Courant numbers. Recent higher-order upwind schemes 

were able to considerably reduce the excessive numerical diffusion without unreasonable 

1. A fourth relevant class not discussed here is constituted by particle methods. 



grid refinements [Westerink, et al, 19891, but they still suffer from Courant number lirnita- 

tions. 

Lagrangian methods solve the Lagrangian form of the transport equation in a grid 

that moves with the flow, thus avoiding the need to handle simultaneously the advective 

and diffusion operators. These methods are theoretically good approaches for advection- 

dominated problems, but they have seldom been implemented in application-oriented 

models due to practical difficulties such as the deformation of grids in the presence of 

complex flows. 

Eulerian-Lagrangian methods (ELMs) combine the advantages of the Lagrangian 

treatment of advection with the convenience of a fixed computational grid [Daubert, 1974, 

Holly and Preissmann, 1977, Glass and Rodi, 1982, Baptista, et al., 1984, Baptista, 1986 

and 1987, Celia, et al., 1990, Cheng, et af., 1984, Dimou, 1992, Hasbani, et al., 1983, 

Hauguel, 1985, Leith, 1965, Russell, 1985 and 1989, Varoglu and Finn, 1982, Wang, et al., 

1988, Wood and Baptista, 1993, Yeh, et al., 1992, Zisman, 19901. This is achieved through 

the effective decoupling of the advection and diffusion terms: advection is solved along 

trajectories that follow the flow (characteristic lines), while diffusion is solved in an Eule- 

rian grid, either by finite differences or finite elements. Through this approach, ELMs are 

able to solve transport problems ranging from advection-dominated to diffusion-dorni- 

nated. Since ELMs solve for advection in a Lagrangian form, they overcome the Courant 

number restriction, and large time steps can be used. 

ELM solutions typically comprise three basic steps (Figure 1.1): 

- definition of characteristic lines that follow the flow backwards from the present 

time step to the previous one; 

- determination of concentrations at the feet of the characteristic lines; and, 

- solution of the Lagrangian form of the diffusion equation, using concentrations at 

the feet of the characteristic lines as initial conditions. 



The decoupling of advection and diffusion also gives ELMs the ability to handle 

effectively processes with very distinct time scales. While tracking in advection is usually 

solved with a very small time step, diffusion can be solved with a much larger time step. In 

addition, chemical transformations can be mated either in the advection [Wood and Bap- 

tista, 19931 or the diffusion steps. 

When the ELMs are coupled with finite elements (FE-ELM), they become particu- 

larly well suited to the modeling of regions with very irregular domains, such as coasts 

and estuaries. The FE approach also provides the ability to refine the domain locally (for 

instance, near sources) in a simple and efficient way. FE-ELMS have been applied with 

success in the past, for the study of the transport of pollutants in estuarine and coastal sys- 

tems [Baptista, et al., 1984, Cheng, et a!., 1984, Hauguel, 1985, Wang, et al., 1988, 

Dimou, 1992, Wood and Baptista, 19931. 

Background and recent trends in Eulerian-Lagrangian 
methods 

Although ELMs constitute a very attractive approach to solve advection-dorni- 

nated problems, there is still room for improvement, in particular concerning mass conser- 

vation and the trade-off between accuracy and cost. 

Mass conservation is one of the critical issues in ELMs [Baptista, 1987, Dimou, 

19921. Indeed, these methods are not inherently conservative, and mass loss or gain has 

been detected in many applications, being particularly significant when long term simula- 

tions are involved. 

These mass imbalances are often traceable back to (a) the coupling of flow and 

transport models, (b) the tracking in the advective step, and (c) the treatment of boundary 

conditions. The coupling between flow and transport models can lead to mass imbalances 

when the flow field is not conservative. In order to have a Lagrangian treatment of advec- 



tion, ELMs solve for the non-conservative form of the transport equation, assuming that 

the continuity equation is exactly satisfied: 

non-conservative form of the dropped term in ELMS 

transport equation 

where H is the total water depth. Therefore, when flow is not conservative, the dropped 

term from the conservative transport equation will lead to mass errors in the transport sim- 

ulation. The tracking performed with a non-conservative flow field generates deviations in 

the location of the feet of the characteristic lines that lead to mass errors. 

In addition, the weak formulation of some flow models, can be another source of 

mass errors in the transport simulation, since the no-flow restriction at the land boundaries 

is imposed as a natural boundary condition. The velocity oscillations that results from the 

relaxing of the no-flow boundary condition, can lead to the leakage of the mass through 

closed boundaries. 

Mass errors in the advective step are primarily controlled by the accuracy of the 

particle backtracking [Baptista, 1987, Dimou, 19921. As with a non-conservative flow 

field, tracking errors lead to errors in the evaluation of the feet of the characteristic lines. 

Therefore, the mass errors in the transport simulation will be similar for both problems. 

Studies done in the past showed that very accurate tracking schemes are required, to keep 

the concentration field conservative [Baptista et al, 19841, especially in the presence of 

sharp velocity gradients. These studies have also presented tracking techniques that are 

accurate enough to preserve mass, although at significant computational costs. 

The implementation of boundary conditions in ELMs can also compromise the 

conservation of mass if the concentrations are significant near the boundaries. For 

instance, the ambiguity in imposing the boundary conditions associated with the tradi- 



tional ELM formulations can lead to mass errors if a considerable mass of the tracer is 

entering the domain. Recently proposed Eulerian Lagrangian Localized Adjoint Methods 

(ELLAMs) constitute a formally more satisfying way to treat boundary conditions [Celia, 

et al, 1990, Zisman, 19901. 

The advective step has been identified as a major source of numerical errors in 

ELMS [Baptista, 1987, Dimou, 19921. It can be responsible for the presence of both con- 

siderable numerical diffusion and numerical dispersion. Numerical dispersion affects the 

formulations with quadratic and higher order elements and it results mainly from phase 

errors that are associated with the different types of nodes in these elements [Baptista, 

1986 and 19871. In contrast, numerical diffusion plagues the results from all formulations, 

and it is strongly controlled both by the domain discretization and by the definition of the 

initial conditions for the diffusion equation. 

In the past, the definition of the initial conditions for the diffusion equation was 

identified as an interpolation problem, and several interpolators were proposed and for- 

mally analyzed [Leith, 1965, Holly and Preissmann, 1977, Baptista, et al., 1984, Baptista, 

1986, Baptista, 19871. They have been classified in two broad groups: compact methods, 

in which the concentration at the feet of the characteristic lines is interpolated from the 

concentrations at the nodes of the element that contains the foot of the relevant character- 

istic line (core element); and non-compact methods, where the interpolation functions 

include the contribution of nodes outside the core element [Baptista, 19871. 

In a search for increasingly more accurate algorithms, both compact and non-com- 

pact high order interpolators were proposed and analyzed [Baptista, 19871. Several non- 

compact interpolators presented very attractive properties in ID, but their extension to 

multiple dimensions poses unattractive practical problems, ranging from ambiguity to 

high computational costs. The compact cubic or higher order interpolators were found to 

be unstable. 



The quadratic compact interpolator was considered to be one of the best options 

and it has been implemented in several ELM transport models for surface waters [Wood 

andBaptista, 1993, Baptista, et al, 1984, Dimou, 19921. However, in the presence of sharp 

gradients, the necessary grid refinement for acceptable accuracy can lead to very high 

computational costs. 

In an attempt to develop a more efficient and accurate technique, several ELMs 

proposed over the last decade [Yeh, eta!., 1992, Hasbani, et al., 1983, Russell, 19851 share 

a new approach: they deal with the definition of the initial conditions for the diffusion 

equation as an integration rather than an interpolation problem. By doing so, these meth- 

ods take explicit advantage of FE concepts, and become fundamentally different from cor- 

responding k i t e  difference ELMs. 

If the Courant number is not an integer, the concentration between the feet of con- 

secutive characteristic lines is a piecewise function (Figure 1.2). Interpolation ELMs eval- 

uate the concentrations at the feet of the characteristic lines, either by a compact or non- 

compact approach, and define the concentration between these points by polynomial shape 

functions. These polynomial functions provide the basis for the evaluation of the integrals 

in the diffusion step. The errors associated with this integration depend on the interpola- 

tion technique and on the order of the shape functions. Integration ELMs identify the inte- 

gration as the key operation to be performed. In order to reduce the errors in the advective 

step, they propose more accurate approaches to the definition of initial conditions for the 

diffusion equation. One approach (piecewise ELMs) seeks an exact evaluation of the inte- 

grals, taking into account the piecewise shape of the concentration at the feet of the char- 

acteristic lines; another approach (quadrature ELMs) uses a numerical integration. 

One possible implementation of the piecewise integration concept [Yeh, et al., 

19921 is to evaluate integrals at the feet of the characteristic lines exactly, either numeri- 

cally or analytically, by sub-dividing the domain in regions where the integrands are Cm 

functions (Figure 1.3). Sub-regions are defined both by the nodes and by other "notable" 



points, leading to a final concentration defined by a piecewise function inside each ele- 

ment. The notable points, which generally correspond to discontinuities in the first deriva- 

tive of concentration, are forward tracked at each time step along with the nodes found 

between two consecutive feet of characteristic lines (Figure 1.3). Numerical tests per- 

formed with this method showed excellent accuracy [Yeh, et al, 19921. However, the asso- 

ciated costs may become unsustainable for practical applications since the number of 

notable points required to reproduce the concentration in each element increases rapidly 

with time. 

Yeh's implementation of the piecewise integration concept is theoretically very 

attractive, but the increase of the number of notable points in time may compromise the 

feasibility of this method in multiple dimensions. In an attempt to overcome this problem, 

we propose a simpler implementation of the same concept, which eliminates the accumu- 

lation of notable points (Figure 1.4). In each time step, the concentration after the advec- 

tive step is defined by the concentration at the feet of the characteristic lines and the 

concentration at the nodes found between two consecutive feet of characteristic lines. The 

piecewise shape is used for the evaluation of the integrals, but is eliminated during the dif- 

fusion step. The final concentration is thus defined by the shape functions only, leading to 

a controlled, time-step independent cost. The initial conditions for the diffusion equation 

will only be exact in a per-time-step basis, but the method will be shown to have quite 

good accuracy. 

Quadrature ELMs handle the definition of the initial conditions for the diffusion 

equation from a numerical integration perspective: quadrature points, defined at the time 

level in which the equation is being solved, are backtracked instead of the nodes. The 

quadrature points are then used in the numerical integration at the feet of the characteristic 

lines, providing a straightforward evaluation of the integrals (Figure 1.5). Previous studies 

showed that quadrature ELMs can be very accurate [Hasbani, et a!., 19831, but are only 

conditionally stable [Morton, et al, 19881. One of the most attractive features of these 

methods is their simple implementation in multiple dimensions. 



Another class of ELMs, denoted Eulerian-Lagrangian Localized Adjoint Methods 

(ELLAMs), has been proposed in recent years [Celia, et al., 1990, Russell, 1989, Zisman, 

19901. Borrowing some concepts from older methods [Varoglu and Finn, 1982, Hauguel, 

19851, ELLAMs provide a systematic treatment of boundary conditions. 

This flexible approach to the implementation of boundary conditions gives rise to a 

conservative numerical scheme, in a constant coefficients context [Celia, et al., 1990, Rus- 

sell, 19891. For variable coefficients, both tracking errors and non-conservative flow fields 

lead to mass imbalances that are not addressed by ELLAMs [Russell, 19891. ELLAMs 

also provide an useful framework to the ELM concept, in which context both interpolation 

and integration methods can be interpreted. 

Integration (piecewise and quadrature) methods constitute a potentially attractive 

alternative to interpolation ELMs. However, as in many fast-evolving areas, little effort 

has been dedicated to the systematic analysis of the characteristics of these methods or to 

the comparison of their properties with well-established methods. This analysis becomes 

especially important nowadays, when the development of efficient and accurate 3D mod- 

els is necessary in many areas. 

Objectives, methodology and structure 

We seek to consolidate selected aspects of the current knowledge of FE-ELMS for 

the transport equation. Primary objectives are: 

- To understand the numerical properties of integration FE-ELMS 

Rationale: Integration FE-ELMS provide a conceptually very attractive 

approach to the definition of the initial conditions for the diffusion equation. 

However, previous analysis of integration FE-ELMS were mostly based on 

isolated tests, which limits the current understanding of their properties. Our 



goal is to analyze the formal properties of the methods (accuracy and stability) 

in a systematic way, explicitly analyzing dependencies on controlling dimen- 

sionless numbers. 

- To compare integration and interpolation FE-ELMS 

Rationale: Little effort has been devoted to compare integration ELMs with 

more conventional interpolation ELMs, except through episodic numerical 

experimentation. A systematic comparative analysis is important to help mod- 

elers select a technique for implementation in multiple-dimension models. 

Detailed studies done in the past for interpolation methods [Baptista, 19871 

provide the theoretical support for the choice of currently used techniques. In 

this work, we seek to address part of the controlling parameters for the selec- 

tion of new techniques, through a combination of formal analysis and numeri- 

cal experimentation. 

To achieve the stated goals, selected integration ELMs and two interpolation 

ELMs will be subject to systematic formal analysis of propagation and truncation errors, 

and to extensive numerical experimentation. The formal analysis provides insight on the 

accuracy and stability of each method, as a function of controlling dimensionless numbers 

(Courant number, Diffusion number and Dimensionless wavelength). The numerical 

experimentation tests the performance of the methods in well-established test cases, and 

examines the ability of each method to preserve mass in simple test cases. 

For simplicity, this study is conducted in one dimension and for constant velocity 

and diffusion coefficient. Because of this simplicity, we are able to characterize the meth- 

ods in a systematic and general way, which is essential for an unbiased comparison. How- 

ever, we will be unable to address some relevant issues that are associated with a non- 

constant velocity field, such as the computational cost and the mass conservation. 

This thesis is divided into three chapters, including this Introduction. Chapter 2 

constitutes the core of the thesis. Written as a stand-alone contribution, intended for sub- 



mission to International Journal for Numerical Methods in Fluids, it describes and sys- 

tematically compares the methods selected for analysis. Chapter 3 places our findings in 

the context of the evolution of ELMS and explores directions for future research. 
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Figure 1.1 Basic steps of Eulerian Lagrangian methods: (a) definition of the characteristic 
lines; (b) interpolation of the concentration at the feet of the characteristic lines; 
(c) solution of the Lagrangian form of the diffusion equation. 



Figure 1.2 Concentration between two consecutive feet of the characteristic lines, for non- 
zero fractional part of the Courant number 
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Figure 1.3 Original piecewise ELM procedure for two consecutive time steps: initial 
conditions for the diffusion equation supported by nodes and notable points. 
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Figure 1.4 Proposed piecewise ELM: initial conditions for the diffusion equation defined 
only by the nodes. 



Figure 1.5 Quadrature ELMS: initial conditions for the diffusion equation defined by a 
polynomial function specified by the number and type of quadrature points (e.g. n Gauss 
quadrature points => polynomial of order 2n-2). 



CHAPTER 2 

A comparison of Eulerian-Lagrangian 
methods for the solution of the transport 

equation 

Abstract 
- 

Selected "interpolation" and "integration" finite element Eulerian-Lagrangian 

methods are systematically compared, through a combination of formal analysis (propaga- 

tion and truncation errors) and numerical experimentation. While no method emerges as 

optimal, we show that methods that approach conditions at the feet of the characteristic 

lines with the perspective of "integration" rather than "interpolation" tend to have superior 

accuracy. Among integration methods, however, those based on the notion of tracking 

quadrature points, are mildly affected by conditional stability. 

Introduction 

Eulerian bgrangian Methods (ELMs) have evolved much over the last three - 
decades, to become one of the most attractive techniques for the solution of advection- 

dominated transport. The basic concept of ELMs is simple: the transport equation is 

solved in Lagrangian form "along" characteristic lines, effectively decoupling the advec- 

tion and diffusion terms but retaining the convenience of fixed computational grids. There 

are many different ways to implement this concept, and several ELMs have been proposed 

over the years [Daubert, 1974, Holly and Preissmann, 1977, Glass and Rodi, 1982, Bap- 

tista, et al., 1984, Baptista, 1986 and 1987, Celia, et al., 1990, Cheng, et al., 1984, Dimou, 

1992, Hasbani, et al., 1983, Hauguel, 1985, ki th ,  1965, Russell, 1985 and 1989, Varoglu 



and Finn, 1982, Wang, et al., 1988, Wood and Baptista, 1993, Yeh, et al., 1992, Zisman, 

1990, Neuman, 1981 and 19841. 

As frequently happens in fast-evolving areas, much more attention has been paid 

to the development of new ELMs than to the systematic comparison of existing ones. This 

paper updates, by including representative new methods, earlier research [Baptista, 1986 

and 19871 on the comparison and understanding of ELMs. The comparison concentrates 

on finite-element based ELMs (FE-ELMS), and is restricted to the case of constant-coeffi- 

cient, one-dimensional transport on uniform grids. 

The paper is divided into five main sections, besides this Introduction. Back- 

ground presents a brief history of the evolution of ELMs, and introduces the three classes 

of methods selected for analysis. Out of necessity, some new nomenclature is introduced. 

While this nomenclature may be transitory, it creates a guiding taxonomy that helps the 

reader throughout the paper, and addresses a growing need for systematics in numerical 

analysis. 

Selected Methods provides the rationale for the choice of the specific methods 

adopted, and describes their formulation. All formulations are presented for the case of 

constant coefficients and one-dimensional uniform grids, but all methods can and several 

have been applied in much less restrictive settings. Additional nomenclature is introduced, 

completing the taxonomy adopted in the paper. 

Formal Analysis examines the accuracy and stability of the selected methods, 

based on formal analysis of truncation and propagation errors. Error formulae are com- 

piled in tables, and errors are mapped in ways that foster the analysis of the accuracy and 

stability of individual methods, and prompt comparisons among methods or classes of 

methods. An integrating discussion of truncation and propagation errors is presented, pri- 

marily aimed at anticipating and explaining trends of behavior. 



Numerical Experimentation provides a complementary examination of the accu- 

racy and stability of the selected methods. Tests and error measures are extracted from or 

influenced by the Convection-Diffusion forum [Baptista, et al., 1986, Adams, et al., 19931. 

The analysis of the numerical results is guided by and compared against the results of the 

formal analysis in the previous section. 

Final Considerations provides an overview of the results presented in the paper, 

and examines how these results may impact future research on ELMS and the develop- 

ment of a new generation of Eulerian-Lagrangian models for environmental application in 

surface waters. 

The basic concept, if not the terminology and full usefulness, of Eulerian-Lagran- 

gian methods was introduced in the mid-sixties [Leith, 19651. In an attempt to avoid the 

wiggles that plague finite-difference (FD) centered solutions of the advection-dominated 

transport equation, Leith proposed to solve 

using the discrete algorithm: 

where c is the concentration, u is the velocity, D is the diffusion coefficient and 5 denotes 

the feet of characteristic lines that follow the flow backwards (Figure 2.l(a)). The location 

of the foot of each characteristic line is obtained by integration (trivial, for uniform veloc- 

ities): 

1. Consistently with the scope of the paper, this section concentrates on the fundamentals of existing meth- 
ods, as applied to 1D constant coefficient transport. We will also assume that u is positive. 



and the associated concentrations are obtained by interpolation or extrapolation: 

Leith's method effectively decouples advection from diffusion. The decoupling 

process is physically-based, in the sense that it results naturally from the introduction of 

backward characteristic lines that follow the flow. Three distinct steps are involved in the 

overall solution: 

- step 1: definition of the characteristic lines, and determination of the location of 
their "feet" ($); 

- ste 2: determination of the concentrations at the feet of the characteristic lines e (c 1; and 
- step 3: solution of the Lagrangian form of the diffusion equation, using the con- 

centrations at the feet of the characteristic lines as initial conditions. 

Both the decoupling strategy and the three generic solution steps identified above 

are identifying characteristics of Eulerian-Lagrangian methods. However, Leith's pro- 

posed method had a major limitation. Indeed, examination of Equation (2.4) shows that 

the concentration at the foot of the characteristic lines is determined from the concentra- 

tions at nodes j and j-1; hence, for Courant numbers larger than one, this determination 

involves an extrapolation and the algorithm becomes unstable. Furthermore, the replace- 

ment of Equation (2.4) into Equation (2.2) leads to: 

which shows that the advection term is effectively approximated by a conventional 

upwind scheme: hence, Leith's method can be easily interpreted as essentially an Eulerian 

upwind method. 



It took over a decade for Leith's pioneering concept to lead to the truly distinctive 

group of methods now known as ELMs. Daubert [I9741 may have been the first to recog- 

nize that Courant number restrictions could be avoided by interpolating between the nodes 

bounding the foot of each characteristic line (Figure 2.l(b)), rather than by extrapolating 

from the vicinity of the head of the characteristic line (Figure 2.l(a)). In its conceptual 

simplicity, this recognition may qualify as the single most important development in ELM 

history. 

Daubert also recognized that interpolating linearly to find concentrations at the feet 

of the characteristic lines is a major source of errors, and allowed for higher order (qua- 

dratic) interpolations. Following these early steps, the optimization of the strategy for 

interpolation at the foot of the characteristic lines became a focus for ELM research during 

the 80's. As a result, a large number of interpolators were developed, none of which can be 

recognized as "optimal" as shown by two systematic reviews [Baptista, 1986 and 19871. 

Coincidentally with the search for optimal interpolators, the notion of using ELMs 

in a finite element (FE) context became progressively more popular. Early FE-ELMS 

[Holly and Preissmann, 1977, Neuman, 198 1, Baptista, et a!., 1984, Hauguel, 19851 dif- 

fered "mechanically" but not in any fundamental conceptual way from the corresponding 

FD-ELMS. In particular, only recently [Russell, 1985, Yeh, et al., 19921 have ELMs started 

to take advantage of the fact that, in a finite element context, the problem of "interpola- 

tion" at the feet of the characteristic lines can effectively be expressed as an "integration" 

problem. 

To illustrate this point, consider the evaluation of the contribution of element k to 

the weak weighted residual statement: 

DC aQmac Q -dx = - D - -dx+ boundary terms I 
a, 

J ax ax 
a, 

where I$, are the weighting functions. 



The evaluation of the integrals poses no problem at time n+ 1, where the deriva- 

tives of the elemental shape functions are continuous. However, integrals at time n (Figure 

2.2) involve shape functions from more than one element; hence concentration derivatives 

are discontinuous over the region of integration. The form in which these discontinuities at 

time n are addressed provides an important distinguishing criterion among FE-ELMS. 

"Interpolation FE-ELMS" [Baptista, et al., 1984, Holly and Preissmann, 1977, 

Leith, 1965, Baptista, 19871 simply "ignore" the discontinuity of Vc. The concentrations 

and concentration derivatives are evaluated at the feet of the characteristic lines and 

assigned to a polynomial interpolation function. This interpolation function provides the 
- 

basis for the integration (Figure 2.2(a)), which may be analytical or numerical. Systematic 

comparisons of alternative interpolation functions [Baptista, 1986 and 19871 show that 

unsatisfactory compromises between cost/feasibility and accuracy become necessary and 

limit the implementation of the most accurate interpolation ELMs in multi-dimensions. 

The implication is that while interpolation ELMs have proved satisfactory for many prac- 

tical applications, there is significant room for improvement. 

"Quadrature FE-ELMS" [Hasbani, et al., 1983, Russell, 19851 explicitly recognize 

that the operation that one has ultimately to deal with is an integration, and take a concep- 

tually very distinct approach: rather than tracking nodes backwards from n+l to n, these 

methods track quadrature points (Figure 2.2(c)), which are then used as a basis of a neces- 

sarily numerical integration (typically Gauss or Lobatto quadrature). Quadrature ELMs 

are generally less damping than interpolation ELMs, but, as shown in latter sections, they 

often have only conditional stability. A very positive characteristic of quadrature ELMs is 

their straightforward implementation in multiple dimensions. 

"Piecewise integration FE-ELMS" also recognize the key role of integration. 

These methods track nodes and/or other "notable points" both from n+l to n and from n to 

n+l; hence, the domain of integration is effectively divided into sub-domains, in each of 

which integrals can be evaluated exactly or very accurately, either numerically or analyti- 



cally. Notable points tracked from n to n+l may (Figure 2.2(b)) or may not correspond to 

discontinuities in first derivatives of concentration. These methods were introduced by 

Yeh, et al. [1992], borrowing some concepts from Neuman [1984]; a simpler implementa- 

tion is proposed and analyzed in this paper. 

The three classes of methods identified above cover most FE-ELMS currently 

available. A fourth and important class, however, is constituted by the "Eulerian-Lagran- 

gian -Localized Adjoint methods" (ELLAMs). The term ELLAM has evolved from the 

research of Russel, Herrera, Celia, and co-workers [Russell, 1989, Celia, et al., 1990, 

Zisman, 19901, although methods with similar characteristics were introduced earlier 

[Varoglu and Finn, 1982, Hauguel, 19851. Loosely speaking, ELLAMs are FE-ELMS 

where the weighting functions are defined in the space-time domain, and are formally cho- 

sen to represent or approximate a solution of the homogeneous adjoint equation. 

ELLAMs provide a nicely formal approach to the treatment of boundary condi- 

tions, and enforce global mass conservation for constant coefficients [Celia, et a1.,1990, 

Russell, 19891. Maybe more importantly, ELLAMs provide a general framework from 

which to interpret other classes of FE-ELMS. In particular, we will show later that, for 

constant coefficients, ELLAMs revert in the interior of the domain to specific forms of 

either quadrature ELMs or piecewise ELMs, depending upon whether numerical or exact 

integration is chosen. 

Selected methods 

In this section, we fist  present two alternative generic ELM formulations: Galer- 

kin ELMs and ELLAMs. We then show how one or both generic formulations can be cus- 

tomized to obtain the five specific ELMs chosen for detailed comparison in this paper. 

These five ELMs cover the range of interpolation and (piecewise or quadrature) integra- 

tion methods introduced in the previous section. 



Generic formulations 

Galerkin formulation 

The Lagrangian form of the transport equation is discretized in time as (Figure 

2.1 (b)): 

where a is the time discretization weight. 

Standard application of a weak ~ g e r k i n  weighted residual finite element formula- 

tion leads to: 

with: 

or, in local coordinates: 

where $,are weighting functions that coincide, on an elemental basis, with the shape func- 

tions. The boundary terms (BT) are: 

where r represents the inflow and outflow boundaries. 



At this stage, choices need to be made regarding (a) the location of the heads of the 

characteristic lines, (b) the strategy for interpolation of concentrations and concentration 

derivatives at 6,  and (c) the strategy for evaluation of integrals at time n. Most choices will 

lead to finite-difference analogs of the generic form: 

where Lj and Hi are the coefficients associated with the concentration at time n+l and 

node i+j, and the concentration at time n and node i-K+j, respectively. K is defined in 

Table 2.1. for all methods. The pointers 11, 12, r l  and r2 specify the nodes involved in the 

contribution of element i to the weighted residual statement. 

Localized Adjoint formulation 

By contrast with the previous formulation, ELLAMs start with the Eulerian form 

of the transport equation: 

A time-space finite element technique is used, the weighted residual statement 

being defined as: 

( n  + 1 

I IwL (c) dxdt = 0 

tn  a 

The weighting function w is defined by setting the adjoint operator associated with 
L to zero in each element, i.e.: 

The adjoint operator L~ associated with the operator L is formally defined as: 



IL (c) wdx = I L ~  (w) cdx +Boundary terms 

which follows from the basic rule of integration by parts in ID. 

Equation (2.15) has several solutions. By choosing to set the problem as: 

the concept of characteristic lines becomes linked to the definition of the weighting func- 
tion (Figure 2.3(a)). - 

The weak form of Equation (2.14) leads to: 

with: 

r awj awj 
c (- + u- ) dxdt 

' k j =  I I  a t  ax 
f n  Qk 

and 

where r represents the inflow and outflow boundaries. 



The integral in Equation (2.21) vanishes due to Equation (2.17) (note: this condi- 

tion may not be strictly true if there are errors in the tracking of the characteristic lines). If 

the chain rule is applied again to Equation (2.20) and an a-method is selected to approxi- 

mate the time integration [Russell, 198912, then Equation (2.18) can be re-written as: 

with: 

The comparison of Equations (2.8) and (2.23) shows that, except for the boundary 

elements, the two generic formulations - ELLAMs and Galerkin ELMs - differ only on the 

definition of the weighting functions @ and w. Since w is constant in time along the charac- 

teristic lines, it is enough to select the same weighting function in space for the methods to 

coincide (for constant coefficients only). For instance, the chapeau function can be used 

for Galerkin ELMs, and the "chapeau function along the characteristics'' [Celia, et al., 

19901 for ELLAMs (Figure 2.3). 

Specific formulations 

Interpolation methods 

In this class of ELMs the nodes at time n+l are tracked backwards, and the con- 

centration and its first derivative at the feet of the characteristic lines are obtained by inter- 

polation with polynomial functions. The interpolated values are then assigned to shape 

functions that define the initial conditions for the diffusion equation. 

2. For an alternative approach to the time integration, see Celia, et al. [I9901 



Two interpolation methods were selected from those analyzed by Baptista, 1987. 

The first method (2P-LI2 in the notation of Baptista [1987]) uses information only from 

the nodes of the element that contains the foot of the characteristic line (compact interpo- 

lator). The second method (4P-LR2 in the notation of Baptista [1987]) also uses the 2 

adjacent nodes (non-compact interpolator). Both methods enforce inter-element continuity 

but not first derivative continuity (class 0, and use linear core elements (element that 

contains the foot of the relevant characteristic line). The 2P-L12 was selected due to its 

simplicity and potential low cost, although it presents considerable numerical diffusion. 

The 4P-LR2 was selected for its accuracy, which bears some overall similarities to the 

accuracy of a widely used method, the compact interpolator of class with quadratic ele- 

ments - 3P-L13 [Baptista, eta!., 19841. The direct use of the 3P-L13 in this paper would 

have been inconvenient, because its propagation errors are different for the comer and the 

middle nodes, which results in time-dependent errors; the use of linear core elements in 

the 4P-LR2 guarantees time-independent propagation errors. 

The concentration at the feet of characteristic line is defined by a different set of 

interpolation functions for each interpolation method. The interpolation functions for the 

2P-L12 are linear Lagrangian polynomials, defined by the concentration of the nodes of 

the core element. Cubic polynomials, defined by concentrations both at the nodes of the 

core element and the 2 adjacent nodes, are the interpolation functions for the 4P-LR2. 

The concentration after the interpolation step for both methods, for a generic posi- 

tion over the element, is defined by linear Lagrangian polynomials: 

5 where ci is the concentration at the feet of characteristic line of node i and qi are the shape 

functions: 



The interpolation methods can be applied either in a Galerkin-ELM or an ELLAM 

framework. In the first case, the initial conditions for the diffusion step (Equation (2.25)) 

are defined over the element at time n+ 1. For the ELLAM approach, the concentration 

after advection does not need to be transported along the characteristic lines since the 

weighting functions are defined at time n (Figure 2.3). For constant coefficients, the inter- 

polation Galerkin-ELMS coincide with the interpolation ELLAMs. 

The finite difference analogs for the 2P-L12 and the 4P-LR2 are presented in 

Table 2.1.. 

Piecewise Integration methods 

These methods are based on the exact evaluation of the integrals at the feet of the 

characteristic lines. In a Galerkin-ELM framework, this is accomplished through the back- 

ward tracking of the nodes, followed by the forward tracking of the nodes and other nota- 

ble points found between two consecutive feet of characteristic lines [Yeh, et al., 19921. As 

a consequence, the initial conditions for the diffusion equation have discontinuous first 

derivative in each element. In order to evaluate the integrals exactly, either numerically or 

analytically, elements are split in pieces where the first derivative is continuous. 

In the original piecewise integration method, proposed by Yeh, et a[., 1992, the 

concentration at the forward-tracked points is corrected by adding a compensation factor, 

after the solution of the diffusion equation. This compensation factor is a function of the 

difference between the concentrations before and after the diffusion step, at the nodes of 

the element that contains the notable point. This way, the final concentration in an element 

becomes a piecewise function, defined by the nodes and by the forward-tracked points 

(notable points). This technique is theoretically very attractive, but may lead to very high 



computational costs for practical applications. The number of notable points necessary to 

define the concentration inside one element will increase rapidly with time, and so will the 

computational cost. 

We propose a simpler implementation of the piecewise integration concept (pi- 

ELM), which provides a time-step independent cost. The concept of notable points is 

eliminated and the initial conditions for the diffusion equation are solely defined by the 

concentration at the backward and forward nodes (Figure 2.2(c)). For a constant velocity 

problem, since only one node is found between two consecutive feet of characteristic 

lines, the concentration after advection is defined as (in local coordinates): 

where cl and c2 are the concentrations at the feet of characteristic lines of the back-tracked 

nodes and tin, and rin, are, respectively, the concentration and location at time n+l of the 

forward-tracked node. 

The concentration corrections after the diffusion equation are also eliminated, the 

final concentration in an element being solely defined by polynomial shape functions sup- 

ported by the concentrations at the nodes. 

In an ELLAM framework, the piecewise integration method does not require the 

forward tracking of the nodes found between two consecutive feet of characteristic lines, 

since the weight function is defined at time n. Therefore, fewer characteristic lines need to 

be tracked, and an ELLAM implementation of the piecewise integration may be less 

expensive than its Galerkin ELM counterpart. For constant coefficients, the piecewise 

integration concept applied to each framework - Galerkin ELM or ELLAM - leads to the 

same finite difference analog (Table 2.1.). 



Quadrature methodr 

The quadrature methods (qu-ELMS) propose the evaluation of the integrals at the 

feet of characteristic lines through numerical integration [Russell, 1985, Hasbani, et al., 

19831. 

In a Galerkin ELM framework, quadrature points, rather than nodes, are back- 

tracked from n+l to n. Once the concentration and its first derivative at the feet of the 

characteristic lines of the quadrature points are interpolated, the evaluation of the integrals 

at time n becomes trivial: 

where c: and are the concentration and its first derivative at the feet of the charac- 

teristic line for quadrature point i, ri and wi are the location (at time n+l) and weight of 

point i, $j(ri) is the value of the weight function at quadrature point i and nqp is the num- 

ber of quadrature points. 

In this paper, we selected two quadrature integration methods - Gauss and Lobatto 

quadrature [Hasbani, et al., 1983, Russell, 19851. For n quadrature points, the Gauss 

approach leads to the highest order of integration: indeed, the Lobatto quadrature inte- 

grates exactly polynomials of order up to 2n-3, while Gauss quadrature can integrate 

exactly polynomials of order 2n- 1. The Lobatto method minimizes the number of tracking 

operations. The finite difference analog for a generic quadrature method is presented 

in Table 2.1 .. 

As opposed to the previous methods, the "numerical integration" concept pre- 

sented for Galerkin ELMS cannot be implemented in an ELLAM framework, since the 

element at time n is defined by the characteristic lines of the nodes. However, a numerical 



integration can be used to evaluate the integrals, through the definition of quadrature 

points between the feet of the characteristic lines of the nodes (element at time n). The 

concentration at these quadrature points is interpolated, rather than the concentration at the 

feet of the characteristic lines of the nodes. The evaluation of the integrals is still straight- 

forward, and the computational cost of the method can be smaller than for the quadrature 

Galerkin-ELM, since the number of characteristic lines to be tracked can be smaller. 

For constant coefficients, the quadrature Galerkin-ELMS coincide with ELLAMs 

with numerical integration. 

Formal analysis 

The accuracy and stability of the methods are characterized through the analysis of 

propagation and truncation errors. Fourier analysis is used to study the influence of both 

the Courant number and the dimensionless wavelength on these numerical properties, for 

specific diffusion numbers. A truncation error analysis completes the previous study, by 

examining the influence of the diffusion number and the Courant number. 

Fourier analysis 

Methodology 

The exact solution of the advection-diffusion equation can be written as a sumrna- 

tion of Fourier components: 

with: 

27c 
cm ( x ,  t )  = A",xp { I -  ( x  - ut)  ) 

L m  



where I = f i, A: are problem-related coefficients and Lm is the wavelength of the rn" 

Fourier component. 

In an uniform space-time grid, cm becomes: 

c ,  (i, n )  = Azexp ( I h ,  ( i  - n$)  ) (2.3 1) 

where h, is the dimensionless wavenumber and P is the Courant number: 

and: 

The error introduced by a numerical solution (G,J can be defined as: 

2, (i, n +  1) 
G, = 

c ,  (i, n )  
exP ( Ph,l) 

where 2, (i, n + 1) is the concentration given by the numerical algorithm. 

The numerical concentration associated with the generic finite difference analogs 

(Equation (2.12)) can be described as: 

with P defined as: 

At 
where D is the diffusion number (D = D -). 

Ax2 



By substituting Equations (2.3 1) and (2.35) into Equation (2.34), amplification 

factors and phase errors are defined as: 

arg (G,) = arctg (?::z) ) 
with: 

Imag (G,) = P x H,sin ( (P - K + j) Lm) 
j = r ,  

and the physical diffusion of the exact solution (p) defined as [Baptista, 19861: 

The stability condition is: 

which reduces, for pure advection, to the more familiar form: 

IGmlC l (2.42) 

Since all methods have linear core elements, the propagation error is time-indepen- 

dent [Baptista, 19871. Therefore, it is enough to compare the errors after a single time 

step. 



Analysis of propagation errors 

In this section we study the accuracy and stability of the methods through the anal- 

ysis of the amplification factors and phase errors per time step as functions of the Courant 

number, diffusion number and dimensionless wavelength &/Ax). 

We selected two cases with diffusion numbers (D) of 0 and 0.01 respectively. For 

both cases, propagation errors were analyzed for a range of Courant numbers (P) from 0 to 

1, and dimensionless wavelength from 2 to 34. The values of P were limited to 1 because 

the errors per time steg in ELMS with linear core elements are only dependent on the frac- 

tional part of p (Figure 2.4). The amplification factors are presented in Figs. 2.5-2.11 (D = 

0) and in Figs. 2.12-2.14 (D = 0.01). Phase errors for D = 0 are plotted in Figs. 2.15-2.19. 

Our discussion of propagation errors will focus first on stability, and then on accu- 

racy. While the analysis of stability is based on the amplification factors only, both ampli- 

fication factors and phase errors are necessary to characterize accuracy. 

Amplification factors for pure advection show that the pi-ELM, the 2P-LI2 and the 

4P-LR2 are unconditionally stable (Figs. 2.5,2.10 and 2.11); however, the qu-ELM with 3 

and 6 points is unstable for some ranges of P, for both Gauss and Lobatto quadratures 

(Figs. 2.6-2.9). Figs. 2.6-2.9 suggest that the number of instability regions is related to the 

number of quadrature points. To further investigate this hypothesis, the amplification fac- 

tor was plotted against the Courant number for a wider range of quadrature points and, for 

both types of quadrature, for a specific dimensionless wavelength (Figure 2.20). Figs. 

2.20(a) and 2.20(b) indicate that the number of quadrature points generally corresponds to 

the number of maxima. For the Gauss quadrature, it also corresponds to the number of 

instability zones. We will formally quantify the relationship between the number and loca- 

tion of the quadrature points and the number and location of the instability zones later in 

the context of the truncation errors analysis. 

The instability of the qu-ELM can be eliminated by introducing a small amount of 

diffusion, which depends both on the type and number of quadrature points used. Since the 



maxima and minima of the amplification factors decrease as the number of quadrature 

points increases (Figs. 2.6-2.9,'Figure 2.20), so does the amount of diffusion necessary to 

guarantee stability. This is illustrated in Figs. 2.12 and 2.13, where a diffusion number of 

0.01 is enough to stabilize the qu-ELM with 4 Gauss points, but not the qu-ELM with 3 

Gauss points. The use of a specific type of quadrature also determines the D required for 

stability, as shown in Figs. 2.12 and 2.14. For the same number of quadrature points, the 

stability of the qu-ELM requires a larger value of D for the Lobatto than for the Gauss 

quadrature. The diffusion number necessary to stabilize the qu-ELM for both Gauss and 

Lobatto points, for a wide range of quadrature points, will be evaluated in the truncation 

error section. 

The accuracy analysis of a method usually requires the study of both amplification 

and phase errors. However, earlier work [Baptista, 19871 showed that the amplification 

factors are dominant over the phase errors for ELMs with linear core element and centered 

interpolators (i.e., when the core element is centered within the region that defines the 

interpolator). Figs. 2.15-2.19 confirm that phase errors are very small for all methods. 

In order to illustrate the relative importance of amplification and phase errors, a 

Gauss hill problem is simulated (Figure 2.21). The frequency, amplitude and phase of each 

Fourier component that defines the initial conditions for the Gauss hill were evaluated 

through Fourier decomposition. Each of these components was then propagated, and the 

concentration field after 100 time steps was evaluated through harmonic synthesis of the 

concentrations of each component. Amplification factors and/or phase errors were applied 

to each of these Fourier components, thus defining solutions with amplification and/or 

phase errors. The dominance of amplification factors over phase errors for the integration 

ELMs is shown in Figure 2.21: the numerical solution without amplification factors 

almost coincides with the exact solution, while the numerical solution without phase 

errors is indistinguishable from the complete solution. Therefore, our comparative analy- 

sis of the accuracy of the methods can be done on the basis of amplification factors alone. 



In order to make the comparison between methods easier, we plotted the arnplifi- 

cation factor against p, for all methods, for M A X  = 15 and D = 0 (Figure 2.22). The pi- 

ELM shows a very small error for the entire range of p. For all other methods, the arnplifi- 

cation factor depends strongly on P, although in distinct ways. For the 2P-L12 and 4P- 

LR2, this error has a single minimum at P = 0.5; for the qu-ELM, the dependence of the 

error on p is related to the number and type (Gauss, Lobatto) of quadrature points. For 

instance, a small number of points (3) can lead to errors as large as the 4P-LR2's, or as 

small as the pi-ELM'S (Figure 2.22(a)). 

The comparison between the accuracy of qu-ELMS with different types of quadra- 

ture points can be based on several criteria. Two criteria were selected: identical number 

of points and identical number of tracked points per element. Note that, since the extreme 

Lobatto points coincide with the nodes, only m-1 points are back-tracked, for a m quadra- 

ture points run. For the first criterion (Figs. 2.20 and 2.22), the use of Gauss points leads to 

more accurate results than the qu-ELM with Lobatto points. The second criterion is incon- 

clusive: while the 3 Gauss points method is less diffusive than the 4 Lobatto points, the 4 

Gauss points has larger amplification factor than the 5 Lobatto points (Figure 2.22(b)). 

In order to compare the methods in a P-independent perspective, we averaged the 

amplification factors over the entire range of the Courant number. The mean amplification 

factors and the mean plus and minus the standard deviation of the amplification factors are 

presented in Figure 2.23. It is important to include the standard deviation, since a large 

standard deviation may lead to a wiggly behavior [Baptists 19871. If the amplification fac- 

tor depends strongly on P, consecutive nodes may have very different errors. This can lead 

to the generation of spurious oscillations that would give rise to both accuracy and stabil- 

ity problems. 

Figure 2,23(a) shows that the mean amplification factors are similar and close to 1, 

for both the qu-ELM with 6 Gauss points and the pi-ELM. The qu-ELM with 3 quadrature 

points is unstable for most values of L,,,/Ax: while amplification factors for 3 Lobatto 



points are well above 1, the use of 3 Gauss points leads only to a very mild instability, with 

amplification factors very close to 1. 

Figs. 2.23(b) and 2.23(c) show that the qu-ELM has a considerably larger standard 

deviation than the pi-ELM'S. The standard deviation increases as the number of quadra- 

ture points decreases and it is larger for Lobatto than for Gauss points. Therefore, unless a 

large number of quadrature points is used, the accuracy of the qu-ELM is more sensitive to 

non-constant flow fields. On the other hand, as all upper limiting curves (mean plus stan- 

dard deviation) for the qu-ELM are above 1, for M A X  larger than 4, the method will 

probably be unstable even under a non-constant velocity field (where the effect of unstable 

Courant numbers can be compensated). Thus, the performance of the pi-ELM in a real 

case is expected to be better than the qu-ELM'S, for the same conditions. 

Both interpolation methods present mean amplification factors indicating larger 

numerical damping than the integration methods (Figure 2.23(a)). The standard deviation 

for the 4P-LR2 is very small, but it is considerably large for the 2P-L12 (Figure 2.23(c)). 

However this large standard deviation will not lead to the problems stated above, because 

the 2P-L12 is extremely dissipative (Figure 2.23(a)). 

The Fourier analysis showed that the pi-ELM is the only integration method that 

provides both unconditional stability and a considerable accuracy improvement over the 

interpolation methods. The qu-ELM can be also more accurate than the interpolation 

methods (for a large number of points), but is only conditionally stable. This analysis 

showed that the qu-ELM'S instability can be eliminated by a small amount of diffusion. 

Truncation error analysis 

Methodology 

If each term of its finite differences analog is expanded in Taylor series, a generic 

numerical approximation of the 1D transport equation becomes: 



ac ac 
%+ (u+'1)- - -  

a 2c 
ax (D + 2) -- + higher order terms = 0 

ax 
where q and z represent the phase error and numerical diffusion associated with the lowest 

order derivatives. 

In order to analyze the influence of the dimensionless numbers on the accuracy and 

stability of the methods, it is convenient to define the &ective diffmion number 0, asso- 

ciated with the second derivative of concentration: 

where D is the diffusion number. A method will be stable for positive values of Y, and 

unstable otherwise. The expressions for T, for each method, are presented in Table 2.2. 

In the following section, we will compare the effective diffusion number, for the 

pi-ELM, qu-ELM and 2P-L12. As the truncation error for the 4P-LR2 is independent of 

the second derivative of concentration, this method will not be analyzed. 

Comparative analysis of eflective diffmion 

The effective diffusion number was plotted for a range of P from 0 to 1 and D from 

0 to 0.1 (Figs. 2.24-2.29). In order to study the importance of both the number and type of 

quadrature points in further detail, T was plotted against P, for D = 0, for 3 and 6 quadra- 

ture points, using both Gauss and Lobatto quadratures (Figure 2.30). 

Figs. 2.24-2.29 confirm both the unconditional stability of the pi-ELM and 2P-LI2, 

and the conditional stability of the qu-ELM. As suggested by the Fourier analysis, the 

number of quadrature points is related to the number of instability zones. Figure 2.30 

shows that the number of local minima in T is equal to the number of quadrature points. It 

also shows that the first derivative of T is continuous everywhere, except at the local rnin- 

ima. Since an instability region must include a minimum of Y, the definition of a first 



derivative discontinuity will identify a potentially unstable region. By examining the Y 

expression for the qu-ELM (Table 2.2), one easily recognizes that these discontinuities are 

generated by the sub-function of T that identifies the element which contains the foot of 

the characteristic line of each quadrature point: 

where ri is the location of the quadrature point i. Thus, the first derivative of Y has a dis- 

continuity when K is increased by one. The correspondent Courant number is given by: 

Equation (2.46) shows that a minimum in T will occur when the foot of the charac- 

teristic line of any quadrature point coincides with a node (Figure 2.31). 

Each type of quadrature will lead to a different relationship between the number of 

unstable zones and the number of minima (and quadrature points). The extreme Lobatto 

points that coincide with the grid nodes identify the integer Courant numbers only as min- 

ima, not as unstable zones (Figure 2.30). Since ELMS are exact for integer Courant num- 

bers [Baptista, 19871, the Lobatto quadrature will have m-2 unstable zones, for m 

quadrature points. As the location of all Gauss points falls in the interior of each element, 

the number of unstable zones coincides with the number of minima and with the number 

of quadrature points (Figure 2.30). 

Figs. 2.25-2.28 show that the conditional stability of the qu-ELMS can be elimi- 

nated by a very small amount of diffusion. The minimum diffusion number that leads to a 

positive effective diffusion is plotted against the number of quadrature points, for both 

types of quadrature, in Figure 2.32. This figure shows that D decreases as the number of 

quadrature points increases for both types of quadrature points. For the same number of 

points, the minimum D is smaller for Gauss than for Lobatto quadrature points. The iden- 

tical number of tracked points per element criterion does not provide any conclusion, since 



the type of quadrature that requires smaller minimum D depends on the number of points 

selected. 

Regardless of the type and number of quadrature points, the amount of diffusion to 

stabilize the qu-ELM is considerably smaller than the dispersion coefficients currently 

used in numerical simulations. To illustrate this point, consider a spatial discretization of 

100 m, a At of 1800 s and a diffusion number of 0.02, which is enough to stabilize the qu- 

ELM with 3 or more Gauss points and 4 or more Lobatto points. This will lead to a diffu- 

sion coefficient of 0.11 m2/s, which is well below the dispersion coefficients used in most 

simulations. 
- 

The truncation error analysis confirmed the conditional stability of the qu-ELM 

and established the relationship between the number and location of the quadrature points 

and the number and location of unstable zones. It also showed that the conditional stability 

of the qu-ELM can be eliminated with a very small amount of diffusion, that usually exists 

in real systems. 

Numerical Tests 

This section provides a complementary analysis of the properties of the integration 

methods. It is divided in two main parts. In the first part, the performance of the integra- 

tion methods is analyzed for a set of tests extracted from the Convection-Diffusion (CD) 

forum [Baptista, et al., 1986, Adams, et al., 19931. Tests from this benchmark were 

selected for two reasons. First, the CD forum problems were specially designed to charac- 

terize the properties of numerical techniques for the solution of the transport equation; 

therefore they provide a good testing to the integration methods. Secondly, as the CD 

forum tests are part of a reference framework in which many numerical techniques were 

studied, they provide grounds for comparison with other methods that were not included 

in this paper. 



In the second part, we extend the previous experimentation, by examining the 

influence of three parameters - Courant number, diffusion coefficient and dimensionless 

source length - on the performance of the integration methods. Two error measures were 

selected among those presented by Baptista, et al., 1984: the Integral Measure of Global 

Mass conservation and the Discrete L2-norm, normalized by the total mass Fable 2.3). 

We are aware that the study of mass conservation proposed here is rather incom- 

plete, since the major sources of mass imbalances - tracking errors and flow mass imbal- 

ances - cannot be included in our constant coefficients study. Nevertheless, these simple 

test. allow for a first characterization of the mass properties of the integration methods, 

which had not been done. 

As in the formal analysis, the compact and the non-compact interpolators will be 

used as references, throughout this numerical experimentation. 

The initial conditions for all tests are defined on a nodal basis, i.e., the initial con- 

centration is defined as a piecewise linear function. 

Convection-Diffusion forum 

Two 1D problems were proposed in the CD forum: the first problem concerns the 

transport of a Gauss hill subject to advection and diffusion, under an uniform flow. In the 

second problem, the concentration field is imposed by a constant mass flux, specified 

through the upstream concentration (advancing front). 

We selected some representative cases from both problems. The parameters for 

these cases are presented in Table 2.4, and the boundary and initial conditions are specified 

in Table 2.5. The plots of concentration for the Gauss hill, at time 9600 s, are presented in 

Figs. 2.33-2.35. For the advancing front, the concentration plots are shown in Figs. 2.36- 

2.39. 



Several important features arise from the concentration plots for the Gauss hill 

problem. Figs. 2.33-2.35 show that pi-ELM provides very accurate solutions, with the 

peaks being much better preserved than in the reference solutions. The increase of the 

fractional part of p, from 0.24 (Figure 2.33) to 0.48 (Figure 2.35) does not bring major dif- 

ferences in this method's performance, as the above formal analysis had already shown. In 

contrast, the qu-ELM'S performance changes dramatically with P: the 3-Gauss points pre- 

sents either a stable and reasonably accurate solution (Figure 2.33) or an unstable behavior 

(Figure 2.35). Both runs confirm the P-dependent behavior of the qu-ELM, discussed in 

the previous sections. 

- 

The increase of diffusion (Figure 2.34) leads to a considerable increase of accuracy 

for all methods, although the 2P-LI2 still presents a large damping. This increase of accu- 

racy is achieved through an increase of peak preservation for all methods, and an elirnina- 

tion of the regions of negative concentrations for the pi-ELM, the qu-ELM and the 4P- 

LR2. 

The advancing front problem tests the ability of the methods to handle poorly dis- 

cretized concentration gradients. As in the previous problem, the pi-ELM and the qu-ELM 

provide accurate solutions (Figs. 2.36-2.39). However, they show some sensitivity to the 

sharp slopes (Figure 2.36), by presenting artificial oscillations that are not present in the 

reference solutions. These oscillations have larger amplitude for the pi-ELM than for the 

qu-ELMS, but they lead to the qu-ELM'S instability when the fractional part of P reaches 

one of the unstable zones previously defined in the formal analysis (Figure 2.39). 

The small amount of diffusion introduced in test 3B allows for the reduction of the 

artificial oscillations of the integration methods, and it improves considerably the perfor- 

mance of all methods (Figure 2.37). Figure 2.38 shows that the performance of all meth- 

ods is further improved by a much larger value of D, in the range of low Peclet numbers 

(Pe=2). 



In order to illustrate the differences between the pi-ELM and the original algorithm 

proposed by Yeh, we present the concentrations for Problem 3A for Yeh's method, 

extracted from Yeh, et al., 1992 (Figure 2.40). The comparison between Figure 2.40 and 

Figure 2.36 shows that Yeh's method does not present any artificial oscillations, being 

more accurate than the pi-ELM. However, this increase of accuracy is achieved through 

the introduction of a large number of notable points. 

The Convection-Diffusion test cases demonstrated the excellent performance of 

the pi-ELM as well as the conditional stability of the qu-ELM. 

Analysis of the influence of selectedparameters 

Courant number 

In this section, we examine the stability and overall accuracy of the integration FE- 

ELMS as a function of the Courant number. 

Since the formal analysis showed that the accuracy of the methods per time step is 

independent of the integer part of P, our tests concentrate on the influence of the fractional 

part of p only. The advancing front case from the CD forum, was selected for these tests 

because it was the most stringent in the previous analysis. The integer part of P was set to 

2 and several fractional parts were obtained by varying the velocity. All other parameters 

were extracted from the CD forum problem 3A (Table 2.4). Figure 2.41 shows the L2- 

norm and the mass ratio against the Courant number. 

The accuracy and stability patterns defined in the previous formal analysis are 

clearly shown in Figure 2.41. Figure 2.41 (a) confirms both the excellent performance of 

the pi-ELM and the large damping of the 2P-L12, for all values of P. This is in sharp con- 

trast with the qu-ELM'S performance, which is strongly dependent on P. It can either be as 

accurate as the pi-ELM (Figure 2.41(b)) or be unstable (Figure 2.41(a)). The unstable 

runs, that can be identified by the extremely large values of the L2-norm, occur in the 

ranges of p predicted by the Fourier analysis: Courant numbers of 2.11,2.5 1 and 2.91 fall 



in the instability zones of the 3 Gauss points, as a P of 2.51 falls in the 3 Lobatto points's 

instability zone (Figure 2.20). 

The above results show that the comparative study of the methods could hardly 

have been supported by numerical'experirnentation alone. The numerical experimentation 

can only simulate specific cases; therefore the global behavior of the methods with a 

strong dependance on one parameter cannot be well understood. Since the study of a 

method is traditionally based on a few tests only, an incorrect evaluation of the perfor- 

mance of the qu-ELM could result from an analysis based only on numerical experimenta- 

tion. 

The formal analysis is a very useful tool to fully understand the behavior of the 

methods and to compare them in an unbiased form. It identified the dependency of the for- 

mal properties of the integration methods on P in a complete way, allowing us to select 

representative cases for the numerical experimentation. 

In contrast with the L2-norm results, the ability to preserve mass is similar for all 

methods and presents a strong dependency on the fractional part of P (Figure 2.41(c)). The 

relative mass errors after the 100 time steps vary for all methods from a minimum of 

0.01%, up to a common maximum of 0.3 to 0.5%. 

Although these mass errors are not excessive, they are still higher than would be 

expected for very simple tests. They may be the result of under-discretized high frequen- 

cies, which are generated by the steep gradients of the advancing front problem. The 

energy associated with these Fourier components is then folded to the zero-frequency 

[Baptists, 19871. We were not able to identify these errors in the Fourier analysis, since 

the amplification factors for the zero-frequency component are very close to one. 

Even though these results suggest that all methods preserve mass relatively well, it 

must be noted that there are major sources of mass conservation failure that are not present 

in the simple tests performed here. In a non-constant velocity field, both the failure to pre- 



serve mass in the flow model and the errors in the evaluation of the characteristic lines 

may lead to considerable mass conservation errors. 

We have shown that a comparative performance of the methods cannot be made 

for a specific P, due to the qu-ELM'S strong dependence on this parameter. Therefore, the 

following sections must be regarded, not in a comparative sense, but as an evaluation of 

each method's characteristics. 

Diffusion coeficient 

Diffusion smooths gradients of concentration, and, therefore, should improve the 

accuracy of the methods. However, it also introduces additional errors that are associated 

with time and space discretization of the diffusion equation [Baptista, 19871. The influ- 

ence of the time step is especially important, since the errors associated with the advective 

step decrease when the time step decreases while the errors due to diffusion increase with 

the time step. 

Earlier studies of interpolation ELMs [Baptista, 19871 showed that these two dif- 

ferent types of errors lead to an optimal time step that depends on several parameters. The 

integration methods present a similar behavior, which is illustrated in Figure 2.42. The L2- 

norm is presented against the time step, for a Peclet number of 1, for both integration and 

interpolation methods. This figure shows the integration methods lead to smaller optimal 

time steps, and to an increase of the accuracy. 

In this section, we study the influence of the diffusion in the properties of the inte- 

gration ELMs for a range of Peclet numbers from infinite to 2, and for a constant time step 

of 96 s. 

The analysis is done for a Gauss hill problem, borrowing the parameters from CD 

forum test 1A (Table 2.4), and for an advancing front, starting with the parameters from 



test 3A (Table 2.4). Several diffusion coefficients were selected in a range from 0 to 50 
2 m IS. 

Since we want to study the effect of diffusion, the choice of the time discretization 

weight (a) may condition the performance of the methods. A sensitivity analysis of a was 

performed for the pi-ELM and the qu-ELM (3 Gauss points). The amplification factor was 

plotted against the Courant number (Figure 2.43), for a = 0.0,0.5 and 1.0, for D = 0.5 and 

LdAx = 15. Figure 2.43 shows that a = 0.5 leads to the most accurate results for both the 

pi-ELM and the qu-ELM. 

The error measures versus the diffusion coefficient are presented in Figure 2.44 for 

the Gauss hill, and in Figure 2.45 for the advancing front. The increase of the diffusion 

coefficient leads to a decrease of the L2-norm, for all methods, for the Gauss hill and the 

advancing front. The rate of decrease of the L2-norm with D is similar for all methods, 

being slightly higher for the 4P-LR2 and the pi-ELM. For the Gauss hill, the pi-ELM and 

the qu-ELM with 6 quadrature points present the smaller values of L2-norm. The presence 

of oscillations in the advancing front problem decreases the accuracy of the integration 

methods, the best performance being achieved by the non-compact method. 

The mass ratio results are rather distinct for the Gauss hill and for the advancing 

front tests. The mass is almost perfectly preserved in the Gauss hill test, for all methods, 

and the diffusion coefficient has little influence on it (Figure 2.44(b)). For the advancing 

front (Figure 2.45(b)), the integration methods present a notable gain of mass as the diffu- 

sion coefficient increases. The interpolation methods present a similar but more pro- 

nounced behavior for small diffusion coefficients, but with a much larger rate of increase. 

For large diffusion coefficients, the interpolation methods present an opposite pattern, the 

mass ratio decreasing as D increases. 

The order of magnitude of the mass ratio is another important distinction between 

the two problems: while the mass ratio for the Gauss hill is very close to 1 for all methods, 



the mass gainflost in the advancing front can be as large as 2% of the exact mass, after 100 

time steps. 

Dimensionless source length 

In this section, we investigate the importance of the dimensionless source length 

(o/Ax) for a Gauss hill, on the performance of the integration methods. 

A set of runs was defined, starting from the parameters of the CD forum test 1A. 

Several standard deviations (o) were selected, from 200 to 400. The error measures versus 

o/Ax are presented in Figure 2.46. - 

The L2-norm decreases as o/Ax increases, for all methods, since the plume 

becomes better discretized. The accuracy patterns defined in the formal analysis are shown 

in Figure 2.46(a): the pi-ELM presents a considerable improvement over the reference 

methods and the qu-ELM'S performance is highly dependent on the number and type of 

quadrature points. 

As in the diffusion analysis, the mass conservation analysis shows that all methods 

tend to conserve global mass very well for a Gauss hill perturbation. The increase of the 

discretization ratio does not lead to any significative differences in the mass ratio (Figure 

2.46(b)). 

Conclusions 

The main goal of this paper was to clarify and consolidate current knowledge on 

ELMs. This was achieved by: 

describing the historical evolution of the ELMs, 

introducing a classification of FE-ELMS that accounts for differences in the defi- 

nition of the initial conditions for the Lagrangian form of the diffusion equation. 

Two distinct classes were identified: the inlegration methods, that take advantage 

of the finite element formulation, and recognize the evaluation of the integrals at 



the feet of the characteristic lines as the operation that has ultimately to be dealt 

with; the interpolation methods, which "ignore" the piecewise shape of the con- 

centration between the feet of the characteristic lines, and specify the initial con- 

ditions for diffusion as polynomial functions supported only by the concentration 

at the feet of the characteristic lines. 

showing that the above classification can be applied either in a Galerkin ELM 

framework or in the more recent general ELM formulation proposed by Celia 

and co-workers - the ELLAMs. In particular, it was shown that, for constant 

coefficients and inside the domain, both generic frameworks - Galerkin ELMs 

and ELLAMs - coincide, 

studying in detail the formal properties (accuracy and stability) of two integration 

ELMs, in a ID, constant coefficient context: the quadrature ELMs [Hasbani, et 

al., 1983, Russell, 19851, based on a numerical integration at the feet of the char- 

acteristic lines, and apiecewise ELM, which evaluate the integrals exactly. The 

piecewise ELM proposed here, is a simplified, yet accurate, implementation of 

the original piecewise integration method [Yeh, et al., 19921, 

systematically comparing both piecewise and quadrature integration methods 

with two representative, well studied, interpolation ELMs. This comparison was 

done through a combination of formal analysis of propagation and truncation 

errors, and numerical experimentation. 

While none of the methods could be recognized as optimal, several important pat- 

terns are revealed. The pi-ELM proved to be unconditionally stable. The conditional sta- 

bility of the qu-ELMS was confirmed and the stability criteria were defined as functions of 

the Courant number, diffusion number as well as type and number of quadrature points. In 

particular, the truncation error analysis allowed us to quantify the amount of diffusion nec- 

essary to stabilize the quadrature methods. 



The integration ELMs can provide a considerable improvement of the accuracy, 

over the reference interpolation methods. The piecewise ELM is much more accurate than 

the reference methods, on an equal number of nodes basis, except when the presence of 

very strong gradients of concentration leads to a weakly wiggly behavior. The accuracy of 

the qu-ELM is strongly dependent on the Courant number and on the type and number of 

quadrature points. 

This study showed that the integration methods constitute a new direction in the 

search for more accurate ELMs. Also, in sharp contrast with other very accurate ELMs 

proposed in the past (e.g. non-compact interpolation methods), the integration methods 

pose no conceptual difficulties for implementation in multiple dimensions, even for 

unstructured grids. Therefore, they constitute a potential alternative to the ELMs currently 

used in application oriented models. 

The extension of our results to more complex cases and to multiple dimensions has 

to be handled with care. Although the implementation of the integration ELMs in multiple 

dimensions does not pose a major challenge, the risk of unattractive costs is possible. 

Computational cost is a major issue and it should be carefully estimated before extending 

these sophisticated methods to higher dimensions. For instance, both the use of a very 

large number of quadrature points or an exact integration in 2 or 3D problems, can lead to 

very high computational costs. 

While a new direction for better accuracy was established, mass conservation 

remains a major issue in ELMs: it may compromise long term simulations and the precise 

results needed to handle complex transformations. Thus, new ideas are needed to address 

this problem. 
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Table 2.1. Finite difference analogs. 

- - -- 

4P-LR2 

- -- 
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6 J 1+1 1 - 1  ~ + 1  

1 - u  
[ ( - L ) E ] c ; - i n l B - 3 +  360 2  

( 1 - a ) D ) -  ( I  ~ " ) ] c ; - ; n 1 8 - l  + 

l + u  29 
2  180 

[ ( : + 2 ( 1 - a ) D ) - +  (-- 

l + u  [(g - ( 1  - a )  D )  - + (--I 
2  

u - distance between node j and the feet of the characteristic lines in local coordinates 
(see Figure 2.2(a)). 



Table 2.2 Truncation error - Effective Diffusion number 

Table 2.3 Error measures [Baptista, et al., 19841 

qu-ELM 

pi-ELM 

2P-L12 

kl 

k2 

k3 

k4 

Ki 

Discrete 1 1R 
L2 ( I )  = 

L2-norm ( c y *  (x, 0 - cex* (x9 t )  ) ]  I 
m* ( I )  

Measure of 1 
Mass ( f )  = - ~ c " " "  (x, t )  dx 

Global Mass m (0 Q 

i =  1 

int2$ 1 
-+ - [ i n t$ (2k l -  (k2+k3+k4)2)+3k,+k3-k4) + D +  

2 48 

3 5 1 1  2) 
k l+k2( - -v+ - )  + ( - - - u ) k  

2 2 2 2  3 

- 1 (- 6int2p - 6intp + 68 + 12pintp) - - P2 + D 
12 2 

.--------------------,--------------------------------------------------------.--------------. 

Auxiliary constants 

1 1 
(2r;, + 6r:nl + 6rinl + 2)  + - (- 2r:,,, + 6rin1 - 4)  

'in, + I 'in, - I 

1 2 (- 2r;,,,- 6r:,,, - 6ri,, - 2)  + 3rinr + 6rin, + 3 
'in,+ ' 

1 1 
(2r!,,, - 6rin1 - 4)  + - (2r;, - 6rinl + 4) - 6r;,,, + 18 

'in,+ ' - 1 

1 
(- 2rL1 + 6r:nl - 6rin, + 2)  + 3r;,,, - 6rin, + 3 

' in,- 1 

' i  1 ' i  1 
i n t ( $ - - - - )  + I  if p - - - - > O  

2 2 2 2 
0 otherwise 

* cnUm - numerical solution, ceX - exact solution, m - total mass 



Table 2.4 Parameters for selected tests from problem 1 and 3 of the Convection-Diffusion 
forum 

r 

Case u(rn/s) D(m2Is) Type * o(m) At(s) #time steps 

1 -A 0.5 0 GH 264 96 100 

1-C 0.5 50 GH 264 96 100 

1 -K 0.5 0 GH 264 192 50 

3-A 0.5 0 AF - 96 100 

3-B 0.5 2 AF - 96 100 

3-C 0.5 50 AF - 96 100 

3-F 0.5 0 AF - 48 200 

* GH - Gauss hill, AF - advancing front 

Table 2.5 Initial and boundary conditions 

* xg - center of mass of the initial conditions, og - standard deviation of the initial concen- 
tration field 

Problem 

1 

3 

Upstream B.C. 

C = o  

C = l  

Initial conditions 

co ( x )  = e ~ p  ( -- "~~~ ') * 

c = 0 

Downstream B.C. 

= Cadvccrion 

= Cadvrcfion 



............... .................. .:.:.:.:.:.:.:.:.: ......... :;::;:;:;:;:;:;:; [Zl .:.:.:.:.:.:.:.:.: 
Concentration between two feet of ch. lines 

Extrapolated concentration - Characteristic lines 
I - Concentration field 

= Extrapolation from concentration at element j 

Nodes 
4 



Figure 2.l(b) Interpolation of the concentration at the feet of the characteristic Lines. 



Figure 23(a) Evaluation of the integrals at the feet of the characteristic lines: interpolation 
ELM. 



Figure 2.2(b) Evaluation of the integrals at the feet of the characteristic lines: piecewise 
ELM. 



Figure 22(c )  Evaluation of the integrals at the feet of the characteristic lines: quadrature 
ELM. 



Figure 2.3 Comparison of weight functions: (a) ELLAMs; (b) ELMS. 



Figure 2.4 Amplification factor for the qu-ELM with 3 Gauss points (pure advection). 



Figure 2.5 Amplification factor for the pi-ELM (pure advection). 
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Figure 2.8 Amplification factor for the qu-ELM with 3 Lobatto points (pure advection). 



Figure 2.9 Amplification factor for the qu-ELM with 6 Lobatto points (pure advection). 



Figure 2.10 Amplification factor for the 4P-LR2 (pure advection). 



Figure 2.11 Amplification factor for the 2P-L12 (pure advection). 



Figure 2.12 Amplification factor for the qu-ELM with 4 Gauss points (D = 0.01). 
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Figure 2.15 Phase error for the pi-ELM @ure advection). 



Figure 2.16 Phase error for the qu-ELM with 3 Gauss points (pure advection). 



Figure 2.17 Phase error for the qu-ELM with 6 Gauss points (pure advection). 



Figure 2.18 Phase error for the 4P-LR2 (pure advection). 



Figure 2.19 Phase error for the 2P-L12 (pure advection). 



Courant Number 



Figure 2.20(b) Comparison of amplification factors for the qu-ELM, with Lm/Ax = 15: 
Lobatto quadrature points. 



Figure 2.21 Comparison of the relative importance of amplification factors and phase 
errors, for the qu-ELM with 3 Gauss points. 
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Figure 2.22(a) Comparison of amplification factors for Lm/LZX = 15: pi-ELM, qu-ELM with 
3 Gauss Points, qu-ELM with 3 Lobatto Points, 4P-LR2 and 2P-L12. 



Figure 2.22(b) Comparison of amplification factors for L,,,/Ax = 15: qu-ELM with 3 and 4 
Gauss Points,qu-ELM with 4 and 5 Lobatto Points. 
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Figure 2.23(c) Comparison of amplification factors statistics for all methods: range limited 
by mean+standard deviation and mean-standard deviation, for the pi-ELM, qu-ELM(6 
Lobatto points), 4P-LR2 and 2P-LI2. 



Figure 2.24 Truncation error - effective diffusion number for the pi-ELM. 



Figure 2.25 Truncation error - effective diffusion number for the qu-ELM with 3 Gauss 
Points. 



Figure 2.26 Truncation error - effective diffusion number for the qu-ELM with 6 Gauss 
Points. 



Figure 2.27 Truncation error - effective diffusion number for the qu-ELM with 3 Lobatto 
Points. 



Figure 2.28 Truncation error - effective diffusion number for the qu-ELM with 6 Lobatto 
Points. 



Figure 2.29 Truncation error - effective diffusion number for the 2P-L12. 
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Figure 2.31 Instability of the qu-ELMS: a maximum of negative ef'fective diffusion 
number occurs when the foot of the characteristic line of a quadrature point coincides with 
a node. 
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Figure 2.32 Comparison of the Diffusion numbers required to stabilize the qu-ELM with 
Gauss and Lobatto points, for several numbers of quadrature points. 



Figure 2.33 Convection-Diffusion forum - case 1A. 
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Figure 2.36 Convection-Diffusion forum - case 3A. 



Figure 2.37 Convection-Diffusion forum - case 3B. 



Figure 2.38 Convection-Diffusion forum - case 3C. 



Figure 2.39 Convection-Diffusion forum - case 3F. 
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Figure 2.40 Yeh's method (EPCOF): Case 3A from the CD forum (extracted from Yeh, et 
al., 1992) 



Figure 2.41(a) Influence of the fractional part of p, for an advancing front, with D = 0: L2- 
norm: pi-ELM, qu-ELM (3 Gauss points), qu-ELM (3 Lobatto points) and 2P-L12. 



Figure 2.41(b) Influence of the fractional part of p, for an advancing front, with D = 0: L2- 
norm: pi-ELM, qu-ELM (6 Gauss points), qu-ELM (6 Lobatto points) and 4P-L12. 
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Figure 2.42 Dependence of LZnorm on the time step, for a Peclet number of 1 
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Figure 2.44(a) Influence of dift'usion for a Gauss hill problem, with p = 0.24: L2-norm. 
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Figure 2.45(a) lnfluence of diffusion for an advancing front, with = 0.24: L2-norm. 
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CHAPTER 3 

Final considerations 

Synthesis and conclusions 

We have systematically compared representative interpolation and integration 

FE-ELMS for the solution of the 1D transport equation with constant coefficients, using 

both formal analysis (propagation and truncation errors analysis), and numerical experi- 

mentation. 

While no method emerges as optimal, the comparison reveals marked differences 

between integration and interpolation methods that are worth accounting for when devel- 

oping FE-ELM transport models. Integration methods tend to be more accurate than inter- 

polation methods, for the same number of nodes and elemental shape functions. However, 

comparisons on a "per-node basis" may be somewhat unfair, as they do not account for the 

computational costs. 

The piecewise integration method proposed here (pi-ELM), is unconditionally sta- 

ble and among the most accurate of the methods examined in this study. However, this 

method cannot avoid some spatial oscillations, when very sharp gradients of concentration 

are present (e.g., as in pure advection or highly advection-dominated advancing front 

problems). 

The performance of the quadrature integration methods (qu-ELMS) is highly 

dependent on the type and number of quadrature points used. We examined both Gauss 

and Lobatto quadratures, with 3 to 6 quadrature points. While the results for 3 points are 

only about as accurate as for the interpolation ELMS, for both types of quadrature, the for- 



mulations with the larger number of points are often able to achieve the much better per- 

formance of the piecewise integration scheme. However, quadrature integration methods 

are only conditionally stable for pure-advective transport. While a small diffusion coeffi- 

cient (smaller than the dispersion coefficients currently used in numerical simulations) is 

enough to stabilize the simulations, this conditional stability must be recognized when 

using quadrature FE-ELMS. 

In the very limited context of a constant-coefficient analysis, mass is well pre- 

served by both interpolation and integration methods. However, as discussed later in this 

chapter, the broad issue of mass conservation of ELMs in multi-dimensional applications 

with complex flows remains unresolved. 

Contributions 

The main contributions of this thesis are: 

(1) to consolidate the current understanding of FE-ELMS; in particular: 

we explained the definition of the initial conditions for the diffusion equation 

as an "integration" rather than an "interpolation" problem, and placed it in 

the context of the evolution of ELMs. The notion of integration at the feet of 

the characteristic lines is conceptually appropriated for FE-ELMS and pro- 

vides new opportunities in the search for more accurate algorithms; 

we explored the concept of integration ELMs by systematically analyzing 

the formal properties (accuracy and stability) of methods performing either a 

piecewise integration or a quadrature integration; these properties were stud- 

ied as functions of the controlling dimensionless numbers (Courant number, 

diffusion number and dimensionless wavelength), providing a broad charac- 

terization of the methods that can be used for unbiased comparison; 



we related the stability and accuracy of the quadrature FE-ELMS with the 

number and type of quadrature points, extending work by Morton, et al. 

[1988]; we also evaluated the amount of diffusion that is necessary to guar- 

antee stability for different choices of number and type of quadrature points. 

we showed that the characteristic loss of accuracy in the advective step for 

interpolation methods can be greatly reduced by integration methods; we 

compared the formal properties of the two integration-ELMS and two well- 

established interpolation ELMs, on an equal number of nodes basis. 

(2) to propose a-simplified piecewise integration method, which provides a con- 

trolled computational cost (time-step independent) as opposed to the original for- 

mulation [Yeh, et al., 19921. This simplified method is unconditionally stable and 

much more accurate than the reference methods, on a equal number of nodes 

comparison. 

Implications 

Integration ELMs emerge from our analysis as very attractive techniques. How- 

ever, the analysis was done in ID, for constant coefficients, so it is also necessary to con- 

sider the practical aspects that are relevant for real world simulations. 

Practical implementation problems can compromise the development of a method 

in multiple dimensions. Indeed, due to these practical considerations, most application- 

oriented models with ELMs still use the compact quadratic interpolator or a similar 

approach [Baptista, et al., 1984, Cheng, et al., 1984, Dimou, 1992, Wood and Baptista, 

19931; more accurate methods (e.g., non-compact 8 node method) have been proposed, 

but not widely applied in practice. 

The methods studied in this thesis constitute a class of methods that combines 

accuracy with simplicity of implementation. Unlike other conceptually attractive classes 



of methods (e.g., non-compact methods), integration ELMs can be efficiently used with 

both structured and unstructured grids, and do not pose special difficulties near bound- 

aries. Some difficulties may arise, for instance, from the evaluation of the integrals for the 

piecewise integration, but they are relatively minor, and can be avoided with straightfor- 

ward simplifications. Therefore, integration FE-ELMS constitute a very attractive poten- 

tial alternative to the interpolation ELMs in application-oriented models. In particular, we 

recommend that integration FE-ELMS be incorporated into the growing family of ELA 

water quality models [Baptista, et al., 1984, Barros and Baptista, 1990, Wood and Bap- 

tista, 19931. 

Our theoretical analysis can also be used to some practical purposes, if the integra- 

tion ELMs are implemented in an application-oriented model. In particular, the formal 

analysis can provide a good criterion to the generation of finite element grids for transport 

simulations. 

Nowadays, the same grid is typically used for both flow and transport models, for 

simplicity. Unfortunately, flow grids are generated through criteria that do not take into 

account the velocity and concentration fields, but only wave characteristics like the celer- 

ity and the period of the wave. The most used criteria for flow grids are based on the Cou- 

rant number: 

- c ( h )  At 
Pflow - Ax < Pmox 

and on the dimensionless wavelength: 

where h is the water depth, c and T are, respectively, the celerity and the period of the 

wave. The second criterion is more used for the generation of flow grids than the first one, 

since it does not require a previously defined time step. Usually, the dimensionless wave- 



length criterion is used to generate the grid and then, the maximum time step is selected 

from the Courant number criterion. 

These criteria will generate grids that are more discretized in shallow areas and 

coarser in the deep areas, since the celerity is related to the water depth. However, for 

transport simulations, the larger refinement is necessary where the gradients of concentra- 

tion are larger, which is not considered in the above criteria. They are therefore far from 

optimal for transport simulations. 

A transport-oriented Courant number criterion can be used to generate transport 

grids, when the numerical technique chosen requires a limit on P, either for accuracy or 

stability purposes: 

However, this criterion only takes into account the flow field, being independent of 

the concentration field. Moreover, it cannot be applied to the generation of grids for 

ELMS, since this class of methods does not have limiting constraints on the Courant num- 

ber. 

The discretization of the pollutant's plume, or dimensionless wavelength for trans- 

port (LIAx) provides a more appropriated criterion for transport grids, since it places 

more refinement where the concentration gradients are higher. However, the practical 

implementation of this criterion can be difficult since M A X  is time dependent. 

One simple alternative is to generate a grid that is sufficiently relined for the entire 

period of the simulation, and use the same grid for the whole run. First, it is necessary to 

estimate the pathways of the tracer during the simulation. For instance, the flow grid can 

be used for a preliminary simulation. Then, the maximum gradients of concentration for 

each point in space can be used to generate the grid. Even though this static grid may not 

be optimal, it is certainly better than one optimized for flow simulations. 



A conceptually more attractive approach would be to incorporate an adaptive grid 

generation in the transport model, since it would take into account the time-dependent 

nature of the problem. An example of an iterative approach is to start with the above static 

grid, run the model for a period of time and then refine the grid for specific time steps and 

run the model again. However, adaptive approaches have some implementation problems. 

On the one hand, it is necessary to define an error measure to evaluate the accuracy of the 

simulation at each time step, that does not require the knowledge of the exact solution. 

This measure, essential to control the refinement of the grid, is yet to be identified; ele- 

mental finite element residuals may represent the only available choice, but have not been 

demonstrated to be a robust error measure. On the other hand, the iterative nature of this 

procedure may lead to very large computational costs, due, for instance, to the duplication 

of runs. 

Since Fourier analysis relates the amplification error associated with the numerical 

algorithm to the discretization of the concentration field, the analysis may provide an 

appropriate support for both adaptive and static generation of grids for transport simula- 

tion. If a maximum amplification error is selected by the modeler, the corresponding 

Dimensionless wavelength can be easily evaluated, as well as the minimum grid spacing 

that would guarantee the specified maximum amplification error in a constant coefficients 

context. 

For the application of a quadrature integration model, both Fourier and truncation 

error analysis can be of further help to modelers, when it is necessary to select a set of 

parameters. If a maximum amplification error is specified, the minimum number of 

quadrature points required can be estimated, for a specific quadrature. Once the number 

and type of quadrature points is defined, the truncation error can suggest the minimum 

amount of diffusion required to guarantee stability. 



Considerations for further research 

In order to select a "best" method for application-oriented models in multiple 

dimensions, further research is still necessary. The simplified context in which this analy- 

sis was done excluded several aspects that can be essential to the selection procedure. 

Among these, we will discuss, in a qualitative form, two potential problems associated 

with a non-constant flow field: mass conservation and computational costs. 

Mass conservation 

The inherently non-conservative formulation of ELMs is one of their major draw- 
- 

backs. Mass conservation problems have been detected in many applications, especially 

when complex flows are present, which may jeopardize the use of ELMs in applications 

involving tracers with complex chemical and biological transformations, and/or long-term 

simulations. 

As mentioned in Chapter 1, the failure to preserve mass in the flow field and the 

errors in the evaluation of the characteristic lines can lead to considerable mass errors in 

the transport simulation. Both problems generate deviations in the location of the feet of 

the characteristic lines, leading to a distortion of the concentration field and to mass imbal- 

ances. In order to illustrate this effect, several tests were done, introducing a perturbation 

in the flow field. The velocity perturbation was specified as a random variable in space. A 

normal distribution was chosen, with zero average and a varying standard deviation (0). 

Figure 3.1 shows that, as the standard deviation increases, the gauss shape is distorted, and 

severe phase and amplitude errors occur. The mass errors for the above standard devia- 

tions are presented in Figure 3.2, against the ratio of the standard deviation over the origi- 

nal velocity (olu). Significative mass errors occur (e.g., 17% of the mass was lost in 100 

time steps, for olu of 30%), as a consequence of the non-conservative flow field. 

While the mass errors due to the tracking are specific to ELMs, the mass problems 

related to non-conservative flow fields should be common to any model solving the non- 



conservative form of the transport equation. The effect of the flow field's local mass 

imbalances in the transport simulation can be reduced either by keeping the mass errors in 

the flow model small, or through the compensation of these errors in the transport equa- 

tion. The first alternative seems to be more effective, although it would require an innova- 

tive approach to the coupling of flow and transport models. 

The mass conservation in the flow field can be improved if a more discretized grid 

is used. However, this refinement may be constrained by two problems. On the one hand, 

the refinement of the grid increases the costs of the flow simulation. On the other hand, 

since the same grid is traditionally used for both flow and transport simulations, a more 

refined grid would also increase the computational costs for the transport simulation. In 

order to control the transport simulation costs, different grids can be used in each simula- 

tion, but the generation of a specific grid for transport also poses some difficulties (see pre- 

vious section). 

A simpler but probably not very effective alternative would be to consider the con- 

servative form of the transport equation that does not assume mass conservation in the 

flow field: 

where H is the total depth. It can be written as: 

where the left hand side is the non-conservative form of the transport equation which is 

traditionally solved by ELMS. The right hand side of Equation (3.5) represents the correc- 

tion for the failure of mass in flow and it can be either a source or a sink term. This 

approach will cause an arbitrary dismbution of mass over the domain, that may correct the 

global mass, but it will not address local mass imbalances. In addition, the flow field for 

the tracking would still be incorrect. 



Computational cost 

Our analysis concentrated on stability and accuracy. However, it is also necessary 

to study the practical aspects that are relevant for real world simulations. In particular, 

some key factors like cost-effectiveness and practical implementation problems were not 

considered in this analysis due to its simplified context, but may compromise the use of a 

method for application purposes. 

The computational cost in ELMs is mainly determined by the cost associated with 

the tracking, the evaluation of the integrals at the feet of the characteristic lines and the 

solution of the system of equations (for time-dependent matrices, the inversion may also 

be a time consuming task). The relative importance of each of these costs will depend on 

the specific ELM selected, and on the characteristics of the computer architecture. 

Computational costs, although difficult to quantify, are important to analyze 

because they can compromise the expansion of the integration methods to multiple dimen- 

sions. Since the computational cost of the advective step has been recognized as one of the 

most time consuming tasks in traditional implementations of ELMs [Baptista, et al., 1984, 

Zhang, 1990 as quoted by Dimou, 19921, we will qualitatively analyze it for each method. 

The computational cost of the advective step for the studied methods is mainly determined 

by two factors: the tracking of the characteristic lines and the evaluation of the integrals at 

the feet of the characteristic lines. Therefore, the cost of a method is directly related to the 

number of characteristic lines to be evaluated and to the efficiency of the integration algo- 

rithm. 

The compact quadratic method (3P-L13) is taken as reference, even though it was 

not studied here. It has been implemented in most application-oriented models, due to its 

reasonable balance between costs and accuracy [Baptista, et al., 1984, Baptista, 19871. 

Since we are looking for new methods for application purposes, it is important to compare 

the potential alternatives costs with the 3P-L13's. For this method, the number of charac- 

teristic lines to be evaluated is equal to the number of nodes. The evaluation of the inte- 



grals is straightforward, since the concentration is assumed to be a quadratic function 

defined by the interpolated concentration at the feet of the characteristic lines. 

The number of characteristic lines to be tracked for the simplified pi-ELM is twice 

the number of nodes, since all nodes are backward and forward tracked in one time step. 

The evaluation of the integrals for this method can pose some problems and become 

extremely expensive in a 2D or 3D model, since the concentration at the feet of the charac- 

teristic lines for a specific element is a piecewise function (Figure 3.3). To overcome this 

problem, some simplifications can be made, with varying degrees of accuracy. 

The evaluation of the integrals for the quactziture methods is straightforward, since 

quadrature points are used to define the concentration function. However, the tracking cost 

is necessarily higher than for the interpolation methods. For instance, using qu-ELMS, a 

minimum of 3 quadrature points is necessary to obtain a better performance than the 3P- 

L13. Therefore, three characteristic lines rather than one have to be determined per ele- 

ment. 

The qu-ELM with 2 Gauss points and quadratic elements can be another potential 

alternative that still keeps the tracking costs of the 3P-L13. Although the qu-ELMS with a 

small number of quadrature points and linear elements are not more accurate than the 

interpolation approaches, the quadratic formulation will probably improve the perfor- 

mance of this class of methods. It would also keep the simplicity of the ELM approach, as 

opposed to the formality of the ELLAMs, and the straightforward evaluation of the inte- 

grals. The formal properties of the qu-ELM with quadratic elements must be studied 

before it can be considered a realistic alternative. 

Although the above qualitative analysis covers only part of the cost controlling 

parameters, it has raised the question of cost-effectiveness of the integration approach. We 

cannot compare the total cost of the methods, but their accuracy can be compared in an 

'equal tracking costs' basis. We compared the performances of the pi-ELM for the Con- 

vection Diffusion Forum problem lA, and the 3P-L13 for the same test but with twice the 



number of nodes (Figure 3.4). Figure 3.4 shows that the differences between the accuracy 

of the two methods are rather small. Other tests performed for different Courant numbers 

confirmed these results. Since the cost of the integral evaluation is probably higher for the 

pi-ELM than for the 3P-L13, the effectiveness of the new methods could be questioned. 

However, the integration-approach to the advective step can be more attractive and proba- 

bly cost-effective, if it is implemented in an ELLAM framework. 

The ELLAM approach can provide a very accurate solution that still keeps the low 

tracking costs of the reference solution. The number of the characteristic lines to be 

tracked is only the number necessary to define the elements, i.e., it is equal to the number 

of nodes. Since the weight function is defined at the feet of the characteristic lines, the for- 

ward tracking of the interpolated concentration is not required for a piecewise integration 

scheme. Therefore, the ELLAM with a piecewise integration should be about as accurate 

as the pi-ELM, but with a smaller computational cost. If a numerical integration is 

selected, then the evaluation of the integrals is as efficient as in the qu-ELMS, but the 

tracking cost is much smaller, since the characteristic lines of the quadrature points are not 

evaluated. 

This qualitative analysis suggests that the ELLAMs with a numerical integration 

may provide a low cost solution, that is still very accurate. However, this analysis is par- 

tial, since it only considered some of the tasks to be done in an ELM. A global evaluation 

of the total computational cost, that also takes into account the advantages of specific com- 

puter characteristics, is necessary to select the most effective method to implement in a 

multiple dimension, application oriented model. 
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Figure 3.1 Impact of the error in velocity in a transport simulation: the percentages 
represent the ratios of the standard deviations of the error in the velocity over the original 
velocity. 



Figure 3.2 Impact of the error in velocity in the mass preservation of a transport 
simulation. 
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Figure 3.3 Evaluation of integrals in multiple dimensions for the pi-ELM: (a) slice of 
concentration field at time n; (b) definition of region for integral evaluation, over FE grid. 



Figure 3.4 Comparison of the pi-ELM (n/2 nodes) and the 3P-L13 (n nodes). 
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