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Abstract

Nonlinear Estimation and Modeling
of Noisy Time-Series by
Dual Kalman Filtering Methods

Alex Tremain Nelson

Ph.D., Oregon Graduate Institute of Science and Technology
September 2000

Thesis Advisor: Eric A. Wan

Numerous applications require either the estimation or prediction of a noisy time-series. Examples
include speech enhancement, economic forecasting, and geophysical modeling. A noisy time-series
can be described in terms of a probabilistic model, which accounts for both the deterministic
and stochastic components of the dynamics. Such a model can be used with a Kalman filter (or
extended Kalman filter) to estimate and predict the time-series from noisy measurements. When
the model is unknown, it must be estimated as well; dual estimation refers to the problem of
estimating both the time-series, and its underlying probabilistic model, from noisy data. The
majority of dual estimation techniques in the literature are for signals described by linear models,
and many are restricted to off-line application domains. Using a probabilistic approach to dual
estimation, this work unifies many of the approaches in the literature within a common theoretical
and algorithmic framework, and extends their capabilities to include sequential dual estimation of
both linear and nonlinear signals. The dual Kalman filtering method is developed as a method
for minimizing a variety of dual estimation cost functions, and is shown to be an effective general
method for estimating the signal, model parameters, and noise variances in both on-line and off-line

environments.

xvi



Chapter 1

Introduction

1.1 Overview

This thesis addresses the problem of modeling and estimating noisy discrete-time signals, or time-
series. Numerous applications — vanging trom speech enhancement, o economic forecasting, to
adaptive control — require either the estimation, prediction, or mnodeling of a noisy time-series.
In estumotion, all data up to the current time is used to approximate the current value of the
underlying clean time-sevies. Prediction is coucewnted with using all avajlable data to approximate
a future value of the clean serles. Modelng (sometimes referved to as wdentification) is the process
of approximating the underlying dynauics that generated the clean time-series

These tasks are stiongly interdependent. For examnple, an acow ate model of the systein that
generated the time-series can be used for estiination of the signal. Conversely, if the clean signal is
available, it can be used to build an acenrate model of the dynamics. Furthermore, if an accurate
model and good sigual estimates are available, good predictions can be generated by using the

estimates as inpuls to the model.

Prediction
A N
// 2 ~
Fana S

Signal ' Model
Estimation Estimation
-

Figure 1.1: The dual estimation problem. Signal and model estimation are interdependent tasks;
prediction requires solving both.

However, when neither the model nor the clean signal ave known, the situation is much more
challenging (see Figure 1.1). The problem of cstimating (from noisy data) both the underiying
sipna} and the mwodel that produced i is the central topic of this thesis, and will be referred to

herein as the duol estimation problem.



The next section presents a set of basic assumptions about how the noisy data were generated,
and introduces much of the notation used throughout the thesis. The remainder of this introductory
chapter contains a brief motivational description of the dual estimation problem, followed by a
review of work done by other researchers to date, and a preview of the contributions made in this
thesis.

Chapter 2 uses a probabilistic approach to generate several cost functions that quantify (in
different ways) what is meant in the preceding text by “good” or “accurate” estimates and models.
Chapter 3 describes an algorithmic framework for minimizing these cost functions, which includes
the expectation-maximization (EM), recursive prediction error (RPE), and some new algorithms
as specific examples. Although particular attention is paid to linear and neural network models,
the algorithms described are applicable to a broader class of models that are differentiable in their
inputs and parameters. Finally, Chapter 4 gives an experimental comparison of the cost functions,
and Chapter 5 demonstrates the practical application of the algorithms using several real-world

examples.

1.2 Assumptions and Notation

1.2.1 Model Structure

Assume the noisy time-series of interest is generated by a nonlinear autoregressive function with

additive observation noise:

Tk = f(Zhots o Thom, W) + 0g
(1.1)

Yk = T + Nk, Vke {1...N}
where zp corresponds to the true underlying time-series driven by process noise vy, and f(-) is
a nonlinear function (e.g., a neural network) of the past M values of z; parameterized by w.
The only available observation is y;, which contains additive noise ny. The time-series is one-
dimensional; i.e., the noisy observation y; € R is a scalar. The situation is depicted in Figure 1.2.
The notation {y;}} is used herein to represent the sequence of data, {y1,¥2,Y3,... , ¥t}

This model structure is fairly general. Loosely speaking, Takens’ theorem [82] states that the
dynamics of a discrete-time system with state-space dimension d can be reconstructed in a 2d + 1
dimensional space constructed from a vector of observations on the system [zg_1, ... ,mk_(2d+1)]T.
In other words, the first part of Equation 1.1 can accurately model the dynamics of any unknown

d-dimensional system with observed variable zj, as long as M > 2d + 1 (see also [73, 31]), and as

long as the parameterized class of models f(-) is broad enough.
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Figure 1.2: The data are assumed to be generated by an unknown nonlinear autoregressive model, and
corrupted by additive measurement noise.

Although this tiesis is conceined exclusively with hime-serics modeling and estimiation, the
concepts it explores can be readily geueralized to orher system identification applications. Yor
example, including o user-determined inpur to the function fi-) would produce a noonlinear ARX
(autoregressive, ¢xogenons input) model. Similar extensions to ARMA (autoregressive moving
average) and ARMAX models are also possible, as are extensions fo multi-dimensional data sets
(dim{ye) > 1).

A more general formudation might also nclude nonlinear channel effects of the torm y, =
glr, v pppr, ). The amework developed in this thesis can be easily adjusted to include
such a nonlinewr mmcasnrement equation, as long as the channel function ¢{-) is known and differ-
entiable!. In Bquation 1.1, this funciion takes the special form g(ay, ... S IRy TW) = Ep Ny,
representing corrnption by additive noise.

A Gaussian assumption on the noise terms will facilitate the derivation of cost functions from
a probabilistic perspective in Chapter 2. However, much of the analysis is valid for non-Gaussian
noise as well. Also, the alporithims discussed in this thesis often remain vseful when the Gaussian
assumption ceases to hold, as is demonstrated experiinentally by the example applications

Chapter 4.

1.2.2 System Identification Loop

The methods described in thix thesis minst inevitably be used withw a system-identification loop
[40] of repeatedly: (1) selecting a niodel set. (2) chiwosing a cost function and algorithm to search

for and select. a model from that set, and then (3) validating e model (see Figure 1.3). The

LCorruption by unknown diannel effects repesenss o Wlind deconmotution problem, aud is cousjderably more
difficult unless additional constrainls o assumplions we used.
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inethods presented hercin address only the secoud of the thyee steps, under the assumption that

mechanisms are in place for performing model set selection and model validation.
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Figure 1.3: The system identification loop. The elements enclosed by the dashed hine are addressed in
this thesis. Figure adapted from [46].

Although the model set is partially defined by the noisy AR process of Equation 1.1, it remains
overly hroad because the founi of the function f{-) is not specificd. Before the opthnization methods
described in this thesis can be applied, the model et must be more narvowly defined in terms of
the order A and particntar tunctional foun of f(-). For example, f(-) might be defined as a 2-
layer {eedforward seural network with 16 inputs (M = 10), b ludden units, and one ouiput, o1 as
fitth-ovder (M = 3) linear model. The nicshods of this thesis apply for any f(+) differentiable in

T and w.

A parameterization of the model set in tevins of w, a2, and 52 can then be defined to allow tor
a search over the model set. This parametetization is known as a model structure’(46). This thesis
discusses the selection of a suitable cost function and algonthm for seavching within a pre-specified
model structuve. As meutioned in the Overview, estimaling the signal {2} s an integral and
necessary part of this model estimation step. A detailed discussion of this fact follows i the next

section.

More formally, a model structure is a differentiable mapping Jrom a comnected, open subset of 3 (the d-
dimenxional parameter space) to a model set [40]



1.3 The Dual Estimation Problem

What follows is a qualitative desciiption of the dual estimation problem. We counsider the problem

trom three diffcrent motivational perspectives: modeling, estimation, and prediction.

1.3.1 Modeling

Suppose we arc interested in modeling the dynamics f(+) of the underlying clean time-seiies zy.°

A simplistic approach is to ignowe the effect of the additive noise ny, and build an autorcgressive
model f,(-) from a vector yu = [yk, ..., yr—araa ]’ of past values Lo predict the next value g« , as

shown below. Such a model could be trained divectly on the noisy data by minimizing the squated

.......... WA Y ' erfoc
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Fignre 1.4: Building a predictor on noisy data
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prediction error, or come othey cost. Unfortunately, the resulting model f,(-) will be biased with
respect to f(+) in Bquation 1.1. Tinx is becaunse the former is a function of 1, while the latter is a
function of 24. The effect is most easilv seen by considering the least squares predictor for a linear

model
W, & (ElyyI) ™ Elyiml, (1.2)

where B[] denotes the sample average. The expectation can be shown to be the optimal Wiencer

solution for a finite causal linear model on the data.
Elw,] = (Elyiyi D™ - Elyamn) £ w0 (1:3)
The signal and noise are mutuallv independent; so:
Elw,| = (£ [XA‘( ]+ E[nknf] L. (E[xpTr] + Bl ])
= BW,] # (Elaxi V7 Elxcee] 2w, (L.4)

Elw,] # w.

3Ths task is also referred to as dvnamic reconstruction [31],




The optimal Wiener predictor for {y;}& (given by w}) is not the same as the Wiener predictor
w for {z:}{’. Hence, a least-squares model for {y}{ (which has the expected value w}) will be
biased with respect to w.

However, an unbiased linear model can be generated using a simple adjustment to the least-

squares solution, provided that the statistics of the noise are known:

Wy 2 (Elyey]) - Elnenf)™ - (Blyayes] - Blngnesa])
= Elwy] = (Blxixi]) ™" Elxxzps] (1.5)
=w.
Unfortunately, the additive noise in the data {yx}¢ will induce a higher variance in the sample cor-
relations, EW] and E [;y\;ﬂ_ 1]. This contributes to higher variance in the parameter estimates,
w3 . Even though it is unbiased, the variance in the model estimate means that any particular Wy
is unlikely to be accurate.

A related deterministic approach, known as total least squares (TLS), performs principal com-
ponents analysis on the noisy data to produce an unbiased estimate [25]. However, TLS solutions
are subject to the same variance problems as the above unbiased least squares estimate.

Another alternative is to build a model from signal estimates X, that have lower variance than

Y&, such that the Wiener solution:
Wi 2 (B&x{]) ™" - E[&nyati] (1.6)

is unbiased. The least squares approximation to this solution (replacing expectations with Eﬁ) is
therefore unbiased and has lower variance. The signal estimates X; will have this property provided
that: (1) they are optimal in the sense that Xy is uncorrelated with the error X = (x4 — Xz); (2)
they are causal, so that X, is independent of the noise term ngy; and v, at the next time step.

Using the above definition of Xz, and yr41 = WIxy, + veg1 + nhg1:
We = (E[xp(xz + %)) - E[Rp(xFw + vpgr + npp1)]- (1.7)

Applying the optimality condition to the first term: and the causality condition to the second term,

this reduces to:

wi = (ExxT +%,xI])7! - ExxT + x,xF]w (1.8)
= (E[xx” + %, xI]) 7! - B[xxT + %, x¥|w (1.9)

= w, (1.10)



so the optimal solution is attained, and the corresponding least squares solution is unbiased.
However, the requisite estimates X; can be generated by an optimal (i.e., Kalman) filter only if
the model is known. The dual estimation problem can be viewed as the need to generate these

estimates in order to estimate an unknown model.

1.3.2 Estimation

Sometimes, one is primarily interested in the estimation of a noisy signal; i.e., estimating {z;}}
from the noisy data {yx}%. A common approach to this problem is to use information about the
noise statistics to subtract the noise in the magnitude spectral domain [4]. Nonlinear variations
on this spectral subtraction approach perform the subtraction in other domains. These approaches
typically suffer from distortion of the signal due to an overestimation of the noise spectrum. They
also require a block-wise form of processing (to compute the transform) which precludes their use

in applications that require on-line estimation.

Another general approach is to find a mapping from a window of the noisy data, to the
corresponding window of the clean signal. The mapping (which could also operate in a transform
domain) can be found by using a training set of noisy input data and clean target data. Aside
from being a non-causal, or block-wise approach, this method suffers from being limited to the data
represented in the training set. The learned mapping will not generalize to signals with statistics

that are different from the training set.

The focus of this thesis is on sequential, on-line estimation approaches that operate in the
time-domain and which do not require a separate set of training data. In the case of linear models
and Gaussian statistics when the model parameters w and variances are known, the celebrated
Kalman filter ([36],1961) produces optimal estimates (2, = E[z«|{y¢}¥, w]) of the signal given all
the past measurements. The extended Kalman filter (EKF) is an approximate method in the case
of nonlinear models, and approximates the nonlinear model as time-varying linear model during

certain steps in the estimation process. Lewis ([43],1986) provides a comprehensive review.

However, an immutable characteristic of Kalman filtering approaches is their requirement that
the model of the system dynamics be known. This is not the case in the present context; another
view of the dual estimation problem is the need to estimate the model in order to estimate the

signal.



1.3.3 Prediction

The task of prediction is interesting because it shows how the problems of estimation and modeling
are related. Suppose a prediction is required for the next value y;4; of a noisy time-series {yx}!,
known to be generated according to Equation 1.1. A simple solution is to build the autoregressive
model f, () described in Section 1.3.1, and generate predictions as §41 = fy(¥t, Wy). While it was
noted that the model f,(-) is biased with respect to f(-), the predictions produced by this model
would, in fact, be unbiased.

On the other hand, any particular f,(-) will not necessarily give accurate predictions because of
the previously described variance of the modeling process. Furthermore, the predictions obtained
from a given f,(-) will themselves have high variance due to the additive noise on the inputs to
the predictor.

The above approach does not take advantage of the special relationship of a particular input
to other inputs in the window, or to inputs in other windows. In fact, fitting f,(-) to the noisy data
is equivalent to treating the problem like a standard regression task, where there is no particular
relationship between each of the inputs. It is important to note that the variance of the predictions
can be reduced by exploiting the knowledge that the data are from a time-series generated according
to Equation 1.1.

Because the data are from a noisy AR process, all of the past data {yx}} can, in theory, be
used to improve the prediction of y:4.,. However, using a growing window of all past data as the
input to a predictor is not practical because the number of parameters would increase as well. In
the linear case, a Kalman filter uses knowledge of the AR model to summarize the past data {yx}}
with a finite vector X; such that E[y;1,|%;] = Elye+1|{yx}}]- In fact, %; represents the conditional
expectation of the lagged values of the signal given all the past data, and the model.

Because %X; will have lower variance than y;, it results in lower variance predictions. Also,
as noted previously, a predictor trained using X; as inputs will be unbiased with respect to the
autoregressive function f(-). The problem, of course, is finding the estimates X; when the model
is unavailable (the Kalman filter requires a known model). Once again, this is the dual estimation

problem.

1.3.4 Additional Comments

Note that even when the model is linear, (i.e., f(-) = w¥xx_,, where Xg_y = [Th—1,Th—2,--. , Tr—n])
the inner product of the parameter vector w with the vector x;_1 indicates a bilinear relationship

between these unknown quantities. Hence, even in the simplest case, linear estimation methods



such as least squares are not applicable for the dual estimation problem, and numerical optimiza-
tion techniques are required.

This thesis focuses primarily on approaches that make use of statistical information about the
data; this information ultimately involves the statistics of the noise terms vy and ny. However,
in many practical applications, the statistics of either one (perhaps both) of these noise processes
will be unknown. The dual problem of estimating the weights w and signal x; will in such cases
also involve the estimation of this additional statistical information.

Most of the previous work on dual estimation has been restricted to the linear model case.
Many of these methods are reviewed in the next section, along with the limited number of methods
for nonlinear models. This thesis unifies many of these linear and nonlinear approaches in the

context of neural network models. This and other contributions are described in Section 1.5.

1.4 Related Work

1.4.1 Iterative vs. Sequential Methods

A variety of methods have been proposed for dual estimation. Some involve an iterative scheme
of repeatedly estimating the time-series using the current model and all available data, and then
estimating the model using the estimates and all the data (see Figure 1.5(a)). Some of these
iterative methods work in the frequency-domain (or some other transform-domain), and some
work directly on the data in the time-domain. Iterative schemes are necessarily restricted to off-
line applications, where a batch of data has been previously collected for processing. However,
note that both the signal and weight estimation steps of an iterative scheme can be performed
using either batch-mode or pattern-mode forms of processing 4.

Other dual estimation methods involve sequential estimation of both the model and the time-
series simultaneously from the data (see Figure 1.5(b)). Sequential algorithms are recursive in
nature, and can be used to process data on-line, as it becomes available (they are necessarily time-
domain algorithms). Alternatively, they can also be used for efficient off-line processing, where
the sequential algorithm makes several passes over the same block of data. Some discussion of the
advantages of this approach is given by Ljung and Séderstrom [47].

This thesis is primarily concerned with sequential algorithms. However, a strong relationship
exists between many time-domain iterative methods and sequential methods. For this reason,

several of these iterative methods are described in this section.

4Batch-mode processing refers to updating the estimates only once, after all the data have been observed.
Pattern-mode processing refers to updating the estimates each time a training pattern is observed [30].
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Figure 1.5: Two approaches to the dual estimation problem. lterative approaches use large blocks of
data repeatedly. Sequential approaches are designed to pass over the data one point at a time.

The vast wmajority of work ou dual esthination has been for linear models where the noise

. -\ . - . ] D

terms vy awd vz ave uncorrelated zero-inean white Gaussian processes with variances o7 and o,
respectively. An overview of these “lincar” methods is provided first, followed by the work done
for nonlinear models. Additional details about the algorithms will be provided in the contexts of

Chapters 2 aud 3.

1.4.2 Linear Models

Adaptive Estimation

As mentioned v Scetion 1.3.2, when the model paramecters wand variances are known for the
class of linear systems just described, the Kalman filter ([36],1961) produces maximum-likelihood
estimates of the signal given all the past measurements®.  Although originally developed in the
context of antomatic control svatews, the Kabman filter has proven useful in a broad range of
fields. For example. Paliwal and Basu ([63]. 1987) investigate the use of Kalman filtering for speech
enhancement. Additional refinements to the method, including extensions for colored measurement
nowse ng (37, 24] have been developed clsewhere.

When the dvnamics and statistics of the time-series are not known in advance, however, the
Kalman filter canuot be applied. Henee, mnch of the early work on the dual estimation problem is
concerned with Kahman filvering when the model parameters (or noise variances) are not completely
known; this area of research is called adaptive estumation [2].

In early work, Kopp and Orford ([38].1963) and Cox ([12],1964) propose including both the

lagged signal vector x; 7 and nuknown parameters w in a combined state vector to forin a joint

SRauch, Ting, and Striebel ([68],1965) proposed a variant (olten referred 1o as the Kalman smoother) that

combines forward and backward Altering ro allow for recursive estimation of the estimates of the signal given all

the available data, past and future.
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nonlinear state-space representation. The extended Kalman filter is then applied to the resulting
nonlinear estimation problem. We will refer to this approach as the joint extended Kalman filter
(joint EKF). Ljung ([45],1979) provides an extensive convergence analysis of the method, and
discusses the importance of computing the sensitivity of the Kalman gain to the parameters.
Niedzwiecki and Cisowski ([62],1996) make further practical enhancements to the algorithm for
detecting and handling outliers.

Motivated by some convergence problems exhibited by the joint EKF, Nelson ([61],1976) pro-
poses using two separate Kalman filters to provide an alternative solution to the dual estimation
problem. In this dual Kalman approach, one filter produces estimates of the signal assuming the
model is known, and the other filter produces parameter estimates assuming the signal is known.
Ljung and Soderstrom ([47],1983) put the dual Kalman method into a general family of recursive
identification algorithms, and include the use of recursive “sensitivity equations” for computing

the derivatives of the recursive structure.

Maximum-Likelihood Approaches

Akaike ([1],1973) approaches dual estimation from within a maximum-likelihood context. Gupta
and Mehra ([26],1974) discuss the potential pitfalls of maximum-likelihood parameter estimation,
and the use of Kalman filtering and nonlinear programming approaches. In the iterative approach
of [26], the Kalman filter is used to evaluate the conditional means and error covariances required
for evaluating the likelihood function; maximum-likelihood parameter estimates are found by a
variety of batch optimization techniques.

Another well-known iterative approach within the maximum-likelihood framework was pre-
sented by Lim and Oppenheim ([44],1978) for the problem of speech enhancement. A recursive
least squares algorithm was used to estimate the model parameters, while a frequency-domain
Wiener filtering approach was used for signal estimation. This paper was largely responsible for

introducing the speech enhancement community to dual estimation with AR models.

EM Approaches

A somewhat different iterative approach to maximum-likelihood dual estimation is given by the
expectation-maximization (EM) algorithm, first developed by Dempster et al. ([16],1977), and
subsequently applied to time-series smoothing by Musicus and Lim ([58],1979) and Shumway and
Stoffer ([76],1982). In each iteration, the conditional expectation of the signal is computed, given
the data and the current estimate of the model (E-step). Then the model is found which maximizes

a function of this conditional mean (M-step). Additional details are given on pages 36,83, and in
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Appendix F. The approach has the advantage of some theoretical guarantees of convergence in
the linear case. A batch form of the algorithm for pole-zero models is derived in [58]. In [76], the
E-step is computed with a Kalman smoother, and the M-step is computed in closed form. The
algorithm has been implemented and extended by several other researchers.

Weinstein et al. ([93],1994) extend the EM algorithm of [76] for two-microphone speech en-
hancement, and suggest a Kalman filter E-step, 'and gradient based M-step to allow for a sequential
version of the algorithm. Other extensions for speech enhancement appear in [41, 42, 21]. Krishna-
murthy et al. ([39],1998) propose using Kalman smoothers for both the E and M steps, and apply
the algorithm to estimation of a broad class of bilinear systems. A sequential variation based on
two Kalman filters is also suggested (but not implemented). Ghahramani ([22],1998) shows how
the EM algorithm can be put in the context of learning dynamic Bayesian networks, while Blake
et al. ([3],1999) combine a type of Monte Carlo sampling with the EM algorithm for learning

multi-class linear dynamics for visual object trackers.

1.4.3 Nonlinear Models

By and large, the methods discussed above are for dynamic system models that are linear in the
parameters and in the signal. The field of artificial neural networks has generated many papers
on the topic of identifying nonlinear dynamic systems. While the majority of these papers assume
that the training data (i.e., the time-series) are clean, several of the approaches in these papers

are strongly related to the dual estimation task.

Neural Network Training Methods

Although a pretrained neural network model can be used for the task of signal estimation, the
Kalman filter cannot be applied directly to such nonlinear system models. Instead, the model
must be linearized at every time step to allow for approximate propagation of the covariance of
the estimated state. This algorithm is the extended Kalman filter (EKF)[43]. Assuming the model
parameters w are known, and the noise terms vy and n; are Gaussian with known variances, the
EKF produces approzimate maximum-likelihood estimates of the signal.

As proposed by Singhal and Wu ([77],1989) and described by Plumer ([65],1995), the EKF
can also be used as a means of training (i.e., estimating the parameters of) a neural network.
When used as a parameter estimation method, the EKF can be viewed as an efficient second-order
nonlinear programming approach similar to the Gauss-Newton update rule [48]. Puskorius and

Feldkamp ([66],1994) extend the approach to recurrent neural networks and nonlinear dynamic
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systems, and present a decoupled version which exchanges some performance for computational
efficiency.

In the context of training recurrent neural networks, Matthews ([51],1990) estimates both the
hidden neuron outputs and network weights concurrently by combining them in a single state
vector, and applying the EKF. This algorithm is quite similar to the joint EKF mentioned above
for the linear case. However, while [38, 12, 45, 62] are concerned with estimating signals from noisy
data, Matthews [51] uses the approach for training with clean data. Here, the state-estimation
helps provide targets for the hidden layers of the recurrent network at the same time that the
weights are being updated. Williamns ([96],1992) describes the relationship between the joint EKF
and real-time recurrent learning (RTRL) algorithms, and gives an analysis of the computational
requirements. More recently, Sum et al. ([81],1998) augment the joint EKF training algorithm
with a probabilistic pruning method.

Matthews ([52],1994) also proposes using two separate EKF's for estimating the hidden outputs
and weights of recurrent neural networks. This algorithm is essentially a nonlinear extension of
the dual KF method [61], in the form outlined by Ljung and Séderstrém [47]. Again, however,
state estimation is used to supply targets to the hidden units of a network trained on clean data,
rather than for estimating a noisy signal.

The EM algorithm has been applied by numerous authors to nonlinear system identification.
Jordan and Jacobs ([34],1994) develop both batch and on-line algorithms for estimating the param-
eters of a hierarchical mixture of experts model. An EM algorithm for training neural networks on
clean data is presented by de Freitas, Niranjan, and Gee ([14],1998). Here, the weights are given
a dynamic system representation of their own (to potentially allow for modeling non-stationary
systems). The weights are estimated vie a Kalman smoother (E-step), and the dynamics of the
weights are estimated during the M-step.

While the Kalman-based approaches inherently assume Gaussian densities on the data and
states, there has been renewed interest recently in Monte Carlo methods for non-Gaussian state
estimation. In the context of neural network training, de Freitas et al. [15] investigate a training

algorithm based on sequential Monte Carlo techniques.

Dual Estimation Methods

All of the neural network training methods described above are for parameter estimation using
clean data; only a few papers appear in the literature that are explicitly concerned with dual
estimation for neural networks models.

Connor et al. ([10],1994) propose an tterative approach to training recurrent neural networks
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for robust time-series prediction tasks. The algorithm alternates between applying a robust form
of the EKF to estimate time-series, and using these estimates to train the neural network via
gradient descent (using back-propagation [72, 95]). The work is an extension of robust estimation
methods for linear ARMA models described by Martin ([50], 1982).

Weigend and Zimmerman'’s ([92],1995) Clearning algorithm is a heuristic method for training
a neural network with noise on the input and target data, and can be applied to dual estimation
for noisy time-series. The cost function can be shown to be a simplified approximation to the
errors-in-variables cost function discussed on this page. While it allows for sequential estimation,
the simplification can lead to severely biased results [87].

An approach developed by Stubberud and Owen ([80],1996) uses an adaptive EKF as a state-
observer in a model reference adaptive control framnework. Here, the system dynamics are partially
known, and the EKF estimates the unmodeled component of the dynamics along with the state.
Because the state is only observed through additive noise, this essentially constitutes a dual esti-
mation problem (although it is not a time-series problem per se). The algorithm is similar to the
joint EKF approaches described in Section 1.4.2.

Ghahramani and Roweis ([23],1999) show an EM approach to the dual estimation problem,
using radial basis function (RBF) networks. An extended Kalman smoother is used for the E-step,
and a closed-form solution to the RBF weights for the M-step. Briegel and Tresp [5] propose some
variants on the EM algorithm by offering three alternative E-steps for signal estimation, all based
on a Monte Carlo sampling approach. For weight estimation, a generalized M-step is performed
by gradient descent. More recently, Wan et al. ([90],2000) demonstrate how an algorithm called
the unscented filter can produce a more accurate nonlinear E-step without the use of Monte Carlo
sampling.

The general idea behind the Monte Carlo (or particle filter) approaches is to either improve
the Gaussian approximation to certain crucial densities, or to avoid the Gaussian assumptions
altogether. While offering the potential of better performance than Kalman filtering methods,
these methods generally incur higher computational expense. While some of the theory developed
in Chapter 2 is relevant for the more general non-Gaussian case, the cost functions and algorithms

in this thesis will focus on the Gaussian case, wherein Kalman filtering methods are appropriate.

Errors in Variables Models

Errors-in-variables (EIV) models appear in the nonlinear statistical regression literature (Seber
and Wild, [75] 1989), and are used for regressing on variables related by a nonlinear function, but

measured with some error. EIV methods involve iteratively maximizing a joint likelihood function
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for the input and output data of the regression.

The form of the EIV cost function for time-series data is derived in Appendix G. In Chapter 2,
this same joint cost is derived from a maximum « posterior (MAP) perspective, and relationship
between this cost and the maximume-likelihood approaches is also discussed. However, errors-in-
variables is an iterative approach involving batch computation; it tends not to be practical for
time-series data because the computational requirements increase in proportion to N2, where N

is the length of the data.

1.5 Contributions of the Thesis

Dual estimation methods for nonlinear time-series models are relatively few, especially when com-
pared with methods for linear models. This is to be expected, seeing that the fields of linear
estimation, signal processing, and control are considerably more developed than their nonlinear
counterparts. The existing methods offer a variety of approaches (i.e., adaptive Kalman, maximum-
likelihood, and EM) which share some common traits, but whose similarities and differences have
not been sufficiently explicated in the literature. The first goal of this thesis is to provide a theo-
retical foundation for relating these methods; the second goal is to use this foundation to generate

a family of sequential dual estimation methods for nonlinear time-series models.

1.5.1 Theoretical Framework

Any approach to dual estimation must be based on some explicit or implicit definition of opti-
mality. A cost function provides a quantitative measure of the quality of the model and signal
estimates, and generally forms the basis for designing a suitable algorithm. The methods in the
preceding section correspond to a varicty of cost functions; comparing these methods without an

understanding of how their respective cost functions relate is not terribly illuminating.

This thesis provides a probabilistic treatment of the dual estimation problem, and suggests the
feasibility of two main approaches to it. The relationship between these approaches, which holds
in the general non-Gaussian case, arises from the probabilistic framework. Employing a Gaussian
assumption on the noise produces several different cost functions, each corresponding to a different
approximation. Some of these cost functions are identical to those investigated previously for the
linear case; others are novel. However, the theoretical foundation of these cost functions enables

the explication of their relationship to one another.
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1.5.2 Sequential Methods

Many applications demand online, or sequential processing of data, as measurements become
available. Sequential processing has the additional benefit of reduced memory requirements, and
the flexibility to be applied in either on-line or off-line settings. The focus of this thesis is therefore
on developing sequential methods for dual estimation within the theoretical framework described

above. In some instances, only off-line methods have been previously investigated in the literature.

1.5.3 Algorithmic Framework

The Gaussian assumption on the noise largely justifies the use of Kalman-filter-based approaches
to dual estimation. An algorithmic framework called dual extended Kalman filtering (dual EKF) is
developed for minimizing the various cost functions. The framework includes maximum-likelihood,
recursive prediction error, EM, and some novel algorithms as special cases, and is applicable to both
linear and neural network model structures. The relationship of these contributions to existing

methods is clarified in Table 1.1; the cost functions are explained in Chapter 2.

Table 1.1: Algorithmic contributions of this thesis to the problem of dual estimation. For each cost
function listed, references are given for algorithms categorized as iterative or sequential approaches,
using either linear or nonlinear models. Symbols indicate:(J) developed in this thesis or in a previous
publication by the author; () applied to a problem other than dual estimation; (&) EIV algorithm;(#)
a significant approximation is made to the cost function.

Iterative Sequential
Cost | Linear Nonlin. Linear Nonlin.
prediction error [50] [10] [47] [87]%, [52]*
maximum-likelihood [26] * *
expectation-maximization (EM) | [58, 76] | [23, 5, 34] * ¥*, [34]*
joint (MAP) | [75]* [75]% [38, 12, 45] | [60]*, [80, 51]*,[92]*
error coupled * *

Although most of the cost functions explored in this thesis have been previously considered
(at least in the context of linear models), many of these costs have been applied primarily in an
off-line, iterative setting. Meanwhile, many applications require that the dual estimation problem
be solved on-line, as data become available; the dual EKF algorithms minimize the dual estimation
costs sequentially, thereby offering this needed capability.

Promising results have been published for a prediction error form of the dual EKF (Wan and
Nelson [87],1997). The algorithm was successtully applied to single-microphone speech enhance-

ment [59, 87, 89] problems, and is essentially a nonlinear counterpart to the linear RPE algorithm
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[61, 47] described in the last section®. This thesis develops this and other members of the dual

EKF family.

1.5.4 Variance Estimation

As stated in Section 1.3, the statistics of the measurement and process noises are generally useful
(if not crucial) for dual estimation. Under a zero-mean Gaussian assumption, this information
amounts to the variances of these noise processes. However, the few nonlinear-model dual estima-
tion approaches that appear in the literature employ ad hoc methods of choosing these variances.
An important part of this thesis is its investigation of theoretically justified variance estimation

techniques in the context of dual estimation for nonlinear models.

1.5.5 Experimental Comparisons

The various cost functions can all be justified theoretically given different sets of approximations.
Determining which of these approximations are better or worse on theoretical grounds is extremely
difficult, if not impossible. Experiments are therefore performed on a variety of different data sets
in order to facilitate useful conclusions about the pros and cons of the different approaches. For
example, the dual EKF is found to perforin the best with the maximum-likelihood and joint cost
function listed in Table 1.1. Note that these conclusions are made much more meaningful through
the use of a common algorithmic framework, which minimizes the spurious differences between the

methods.

1.5.6 Applications

The practical use of the dual EKF algorithms is shown in several application domains. Special
considerations must be made for different classes of signals. Specifically, in the domain of speech
enhancement, the nonstationarity of the speech signal must be taken into account, and perceptually
relevant evaluation of the signal estimate should be considered. For economic time-series, data
scarcity is a critical issue. Generally, for any specific application domain the questions of model

set selection and model validation can be more readily addressed.

1.5.7 Summary of Contributions

The contributions of this thesis are as follows:

6 Although it was developed independently, the prediction error form of the dual EKF also bears similarity to
the method proposed by Matthews [52] lor trainiug recurrent networks with clean data.
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1. Unified theoretical framework. The relationship between several different cost functions and
algorithms are shown within a probabilistic framework under a Gaussian assumption. New

cost functions are developed that have not been previously explored in the literature.

2. Nonlinear methods. New algorithms are proposed that are applicable for both linear and
nonlinear model structures. These algorithms extend the range of existing linear methods to
include new cost functions, and expand the application domain to include nonlinear time-

series models.

3. Sequential methods. The new algorithms provide estimates of the signal and model sequen-

tially. This gives them the flexibility of being applicable in both on-line and off-line settings.

4. Unified algorithmic framework. A variety of approaches to the dual estimation problem can
be unified algorithmically by showing how they are implemented as specific members of a

dual EKF family of algorithmns.

5. Noise variance estimation. Novel methods of estimating the process and measurement noise

variances are investigated in the context of the dual estimation algorithms.

6. Ezperimental comparisons. Experiments on several different classes of data are included in
order to compare the advantages and disadvantages of the various approaches. Linear models

are also compared with nonlinear models (exemplified by feedforward neural networks).

7. Applications. Example applications of the dual EKF algorithms are provided to demonstrate
their use on real-world data, and to address some of the practical considerations that arise

for different classes of data.

As stated previously, this author has written several papers on the dual EKF with Dr. Eric
Wan. This thesis extends that work by deepening the theoretical foundations of the approach, and
broadening the algorithm to encompass a number of heretofore disparate methods. Experimental

work is also extended to include data from the domains of speech, econometrics, and geophysics.



Chapter 2

Cost Functions: A Probabilistic

Perspective

2.1 Overview

This chapter considers the dual estimation problem from a probabilistic perspective. This per-
spective is used to show the relationship between many of the algorithms mentioned in Chapter 1,
and to generate several new cost functions.

Section 2.2 motivates the maximum a posteriori (MAP) approach to dual estimation, the
central component of which is the joint conditional density of the signal and weights. Section 2.3
uses this density as the theoretical foundation for developing several different cost functions. In
Section 2.4, the expansion of this joint density into a marginal form is considered. The relationship
between the joint and marginal forms is used to provide an understanding of the relationship
between a variety of cost functions, some of which are exemplified by existing algorithms, and
some of which have not been explored in the current literature.

For the sake of conceptual simplicity, the derivations in this chapter are based on the off-line
problem of estimating the signal and model from a set of N noisy observations, {y;}. This
allows the cost functions to be written in the familiar form as a sum of quadratic (and other)
terms. While the algorithms in Chapter 3 will be based directly on these cost functions, they are
recursive methods using on-line interpretations of the costs.

This chapter makes explicit use of the Gaussian assumption placed on the noise processes in
Section 1.2. The Gaussian noise assumption greatly facilitates the derivation of the necessary cost
functions. However, while the cost functions derived in this chapter rely on this assumption for
their theoretical justification, the corresponding algorithms in the next chapter are not so limited
in their scope. This will be demonstrated by the examples provided at the end of this thesis, some

of which involve obviously non-Gaussian data.

19
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Furthermore, the basic relationship between two main classes of algorithms shown in the next
section does not rely on a Gaussian assumption. Only when the relevant probabilistic quantities

are translated into cost functions and algorithms is a Gaussian assumption employed.

2.2 Bayesian Estimation for Noisy Time-Series

2.2.1 Characterizing the Data

The data are assumed to be generated according to Equation 1.1:
Ty = f(rl:;,‘_l, ...:ck_M,w) + v
Yp = Tp + Nk, Vke{l...N}.

With only {y:})V available, the dual estimation problem is to find estimates {%}1 and W of
the signal and weights that are in some sense optimal. All of the statistical information contained
in the data {y;.}I¥ about the signal and parameters is embodied by the joint conditional probability
density of the signal {z;}¥ and weights w, given the noisy data {yx}¥. For notational convenience,
define the column vectors x¥¥ and y?¥, with elements from {z;}Y and {yx}, respectively. The

joint conditional density function is written as:
N N
pxtrwlyy (X =1, W =w|Y =y{'), (2.1)

where X, Y, and W are the vectors of random variables associated with xf' , yf’ , and w, respec-
tively. This joint density is abbreviated as p, vy~ .

An alternative view of generating data according to Equation 1.1 is sampling from the distri-
bution given by Pxl wyN - One sample includes the specific data {yx}Y, as well as the unobserved
signal {z;}{ and the unknown parameters w. Because {y;}) is the only observable part of the
sample, the values of {r;} and w can only be estimated by using the knowledge embodied by
Pxy wlyl -

Given the data {yx}Y, a dual estimation procedure will produce estimates {3} and W.
Because {y).}I¥ were drawn according to the random vector Y, it follows that {#;}{ and W are
effectively drawn from the distributions on the random vectors X and W, where these random

vectors are functions of the randowm vector Y. The nature of these functions are determined by

the estimation procedure.

2.2.2 Expected Loss

A particular sample of data and a particular choice of estimator will produce the errors {#;, — x4}V

and w — w. A good estimator should generate small errors. To quantify this idea, a loss function
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combines these error vectors to compute a scalar measure of quality. Examples of loss functions
include inner products, or various norms with different weightings between the signal error and
weight errors; or between different elements of these errors.

The loss function describes the quality of the estimates produced for a given sample of data
drawn according to pynwyn. However, the fact that {zx}} and w are unobserved prevents di-

rect computation of the loss. Instead, the density P wiyl is used to compute the conditional

wly

expectation of this loss given the data:
EXWIY[L({:“‘ - i.k}{v’ w = W)l{yk}{v]) (2'2)

where L(-) is a loss function of the errors in the signal and weight estimates.

Furthermore, one is generally interested in an estimator that generalizes to new data. That
is, if new samples {yx}{', {4} and w are drawn from pyy.y, the same estimation procedure
should produce {Z;}Y and W with a low loss function value. In other words, whatever the choice
of loss function, one is interested in minimizing the expected loss, where the expectation is taken
over possible values of w, {r;}, and {y}? according to the density Px¥wyn . This expected loss

can be written as:
By [Bxwy [L({zx = &, w = %) )] (2.3)

This expression is often called the Bayes risk, and the values of {z;}{' and w for which it is
minimized are the Bayes estimates. Clearly, what these estimates are will depend on the specific
loss function L(-) that is chosen.

If a quadratic loss is chosen, the expected cost is minimized by the minimum mean squared
error (MMSE) solution, given by the conditional mean E[x w|y¥¥]. An absolute value loss function

~, called the

produces an estimate equal to the median value of the joint conditional density Px wly?

minimazx! solution. A loss that is one everywhere and zero in a small region around the true values
of {z1}YV and w corresponds to the mazimum a posteriori (MAP) solution, which maximizes the

posterior {or conditional) density P . For derivations and additional discussion on this topic

wiy
see page 4 of [43]. ‘

When P w is unimodal and symmetric about its mean, the Bayes estimate is the same for
a broad class of loss functions (for details, see [32]). In particular, when Pxlw 18 Gaussian, the
MAP, MMSE, and minimax estimates are all the same; this equivalence will hold when the noise

processes are Gaussian and the system function f(-) is linear.

I'The minimax estimate is so called because it minimizes the maximum value of the error.
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2.2.3 MAP Approach to Dual Estimation

The MAP estimate is also sometimes used in applications where the choice of a suitable loss
function is not clear [17]. Furthermore, the relationship between the various approaches in the
literature is most apparent when viewed from a MAP perspective. In the dual estimation context,

the MAP estimation approach cousists of the following optimization problem:
SNy
(%i, W) = arg TAX Pty (2.4)
This formulation of the problem is the focus of this thesis.
By and large, the literature can be divided into two basic classes of algorithms. The first,

referred to herein as joint estimation methods, attempt to maximize PxNwly directly. This ap-

wly
proach will be described in Section 2.3. The second class of methods, which will be referred to as

marginal estimation methods, operate by expanding the joint density as:

PxDwiyN = px‘?’|wy{" : pw|yf’ (25)

and maximizing the two terms separately. The marginal estimation approach will be described in

Section 2.4.

2.3 Joint Estimation of Signal and Weights

The MAP approach to the dual estimation problem is to maximize the joint conditional probability
density pyyyy of the signal {21}V and weights w, given the noisy data {y;}{'. Again, estimation
schemes that deal with this quantity are referred to as joint estimation methods.
Using Bayes rule, the joint conditional density can be expressed as:
PyN|xNw  PxNw
Py = AT LT (2.6)
Pyl

Although {y}{' is statistically dependent on {z}}{’ and w, the prior p,n is nonetheless func-
tionally independent of {z;}} and w. Therefore, PxNwlyN can be maximized by maximizing the
terms in the numerator alone. The first term py~ |, ~,, represents the joint likelihood function of

the signal and weights, while the second term PxNw Tepresents the prior information about the

relationship between the signal and the weights. The numerator can be expanded further as:
PyNixNw  PxNw = PyN|xNw " PxV|w ' Pw- (2.7)

If no prior information is available on the weights, pw can be dropped, leaving the maximization

of

PydxNw = PyNixNw " PxlN|w (2.8)
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Let a and b represent two jointly distributed Gaussian random variables. Then:
1 — Ela|b])?
Ela)
\ /27”72|b 20a|b

where Elalb] is the conditional mean of a given b = b, and 03| , is the conditional variance.

papla=alb =1b) =

Formula 2.1: The general form of a Gaussian conditional density pa;n

with respect to {z; }&¥ and w.

2.3.1 White Noise Case

If v, and n; are both zero-mean white Gaussian noise processes, then the two terms of Equation 2.8

can be evaluated (as shown in Appendix A) to give:

1 (yx ~— z&)
Pyl xMw :W < Z 202 )
1 (2 — 7))’
W exp (-— ; —#) (2.9)
where  ap £ Elag|{z}}!, w]

= f(xk:-—l yos Lhk—M, W)
Here we have used the structure given in Equation 1.1 to compute the prediction z; using the
model f(-,w) and only the past M values of the series.
After taking the logarithm, the corresponding cost function can be seen to be:

a (yk - z3)°
J = ’; log({ 27mn —0?—— +

2 (2.10)
log(2ma?) + (——I—k)) .

oy
This cost function can be minimized with respect to any of the unknown quantities. However, if
the noise variances are known, then only {2} and w need to be estimated. Because the log
terms in the above cost are independent of the signal and weights, they can be dropped, providing

a more specialized cost function:

N ) .
PN w) = Z((yk “‘Ilik) i (z ~ T )2)_ (2.11)

2 2
Je=1 On O

The first term is a soft constraint keeping {z;}Y close to the observations {y;}?. The smaller the

measurement noise variance, o2, the stronger this constraint will be. The second term keeps the

I
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signal estimates and model estimates mutually consistent with the AR structure. This constraint
will be strong when the signal is highly deterministic (i.e., o2 is small). Although the first term
is a function of {z;}% alone, the second term represents a strong coupling between {z;}!¥ and w,
through z;, = f(xr—1...Tx—pm, W).

J7 (xV, w) should be minimized with respect to both {z}}}" and w to find the estimates which
maximize the joint density pyn~yn,,. This is a difficult optimization problem because of the high
degree of coupling between the unknown quantities {zx}{ and w. As shown in Appendix G, the
EIV approach tries to minimize this same cost in an iterative framework. The joint EKF algorithm
mentioned in Section 1.4 attempts to sequentially estimate the signal and weights by combining
them into a single (joint) state vector (see Chapter 3). However, the resulting system of state-space
equations is highly nonlinear, even for linear models. Several authors have reported convergence

problems with this approach [45, 61].

Decoupling with Direct Substitution

An alternative way of dealing with this sort of multivariate optimization problem is by optimizing
one variable at a time while the other variable is fixed, and alternating. This approach, which
effectively decouples the optimization problem, is exemplified by the (iterative) errors-in-variables

algorithm, and by the (sequential) dual EKF family of algorithms.

Signal Estimation

To minimize J?(x{, w) with respect to the signal, the cost is evaluated using the current estimate
W of the weights to generate the predictions. The simplest approach is to substitute the predictions

&, 4 flxg_1,-.. ,x1-pr, W) directly into Equation 2.11:

N - U
Ty, W) = Z((yk ORI e )2>- (2.12)

> B}
gz ag
k=1 v

7n

This cost function is then minimized with respect to {z;}¥.

Weight Estimation
To minimize the joint cost function with respect to the weights, J7(x}¥, w) is evaluated using the
current signal estimate {3} and the associated (redefined) predictions Z; £ f(Zx—1, .-, Tk— 1, W)-

Again, this results in a straightforward substitution in Equation 2.11:

N Y ~ —:i_ B
J (&, w) = Z(“’k — &) ;B V). (2.13)

2 2
k=1 On gy
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If the current signal estimate £, is taken to be a recursive function of the weights, then both terms
in the above cost are minimized with respect to w.
Otherwise, however, the first term is independent of the weights w, and only the second term

is minimized. Here, only Z, is a function of the weights:

(Ze = zk (2.14)

Mz

This is essentially a type of prediction error cost, where the model is trained to predict the estimated
time-series. Effectively, the method maximizes py vy, evaluated at x) = xIV. A potential problem
with this approach is that it is not directly constrained by the actual data {y;}#¥. An inaccurate

(yet self-consistent) pair of estimates (X{¥, W) could conceivably be obtained as a solution.

Variance Estimation

When the variances are unknown, they must be estimated as well. To minimize the joint cost
function with respect to the noise variances, the full cost J7 is evaluated using the current
signal estimate {#;}l, weight estimates W, and the associated (redefined) predictions Z; =

f(&g-1,...,Zx—nrr, W). This results in a straightforward substitution in Equation 2.10:

N

VICOEDY (1og(2m;i) k- ;fk)z
k=t " (2.15)

(&r — :Ek )2
+log(2mo2) + )
This cost function can be minimized with respect to either 02 or o2 by using the current estimates

of the signal and weights.

Notice that the log terms are necessary for keeping the variance estimates small, because the
quadratic terms go to zero as the variances go to infinity. Also, the estimates £ and predictions
Z, are themselves functions of the variances, so the numerators in the quadratic terms are also

minimized with respect to o2 and o2.

In the decoupled approach to joint estimation, by separately minimizing each cost with respect
to its argument, the values are found that maximize (at least locally) the joint conditional density
function. Sequential minimization of the costs in Equations 2.12 - 2.15 is performed by a two-
observation form of the dual EKF algorithm (Nelson 1998 [60]); the errors-in-variables method

performs a batch-style minimization. Details on these algorithms are provided in Chapter 3.
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Error Coupling

While clearly justified, the above direct substitution approach fails to take advantage of the infor-

mation which is available about the errors in the estimates at each step of the optimization.

Signal Estimation

From the standpoint of signal estimation alone, minimizing J7(x}, W) in Equation 2.12 is not the
best approach because the error associated with w has not been taken into account. To see this,

consider rewriting Equation 1.1 in terms of w:

2k = f(Trot, - Thont, W) + fr + vk
Y = Tk + 1, ke {1...N} (2.16)
where fr £ f(zp—1, Tr-rr, W) — f(Thmty - -Thopr, W),

Note that this representation is exactly equivalent to Equation 1.1, except that the time-series is
now written as a function of W instead of w. The error due to W is accounted for by introducing
fe- This reformulation allows for the evaluation of py~ .~y instead of pyn,n|,. Because W is
available (and not w), maximizing PyNxN|w should produce better signal estimates; this in turn,
should produce better weight estimates and allow for faster overall convergence. Furthermore,
as the weights estimates converge, Pyl xN|w will converge to PyNxN|w, giving the desired signal
estimates.

The utility of this reformulation is realized by assuming that the dynamics error, fk, is a zero-
mean Gaussian process. When f(-) is a linear function, the dynamics error is a linear function of
the error in the weight estimates: i.c., fy = x]_| - W, where W £ w — w. If W is distributed as a
zero-mean Gaussian, then so is fi,. If f(-) is nonlinear, this represents an approximation.

Assuming W is zero-mean is equivalent to assuming w is an unbiased (E[w] = 0) estimate. In
order for pyn,n |y tO cOnverge to pyn, vy, it is also necessary that w be a consistent (Cov[W] — 0)
estimator.

The cost associated with py~, v is derived using pyny vy = Pyn Ny - Pl | (¢f. Equa-
tion 2.8) in conjunction with Equation 2.16. The cost is:

N : L\ 2
Je(x) = Z<(yk )’ @) log(2m(o% , + ﬁ))), (2.17)

2
ar = g
k=1 " ok oy

where af; , 18 the variance of the error, fi, in the prediction due to w. Predictions are given by

2; = f(@r—1,---Tk—nr, W), and the prediction error Z; = z; — £, includes the usual process noise
2

Pt o2. The error in the weights is thus accounted

vy as well as the error fi, giving it a variance o
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for by an adjustment in the prediction error variance. Note that because fj is independent of the
current signal value z,, this log term is neglected by algorithms that operate sequentially on the
data, such as the Kalman filter.

In any case, all of the dual estimation algorithms in the literature that have a distinct signal
estimation step {(e.g., EIV, EM, RPE) have until now minimized the cost in Equation 2.12. Some
authors have suggested increasing the process noise variance o2 to account for model errors [78].
However, the more rigorous approach to incorporating the model error statistics — represented by

Equation 2.17 — has not been investigated elsewhere.

Weight Estimation

For weight estimation, the cost functions in Equations 2.13 and 2.14 implicitly assume that the
signal estimates {2;})V are exact. As in the above discussion on signal estimation, faster conver-
gence might be obtained if the error associated with {3}V is accounted for by maximizing the
density Py s w- Again, Py N jw will converge to PyN xN|w a3 the signal estimates converge.

In order to evaluate Pyl 5N |ws Equation 1.1 is again rewritten: this time as

~

Ex = f(Zr-1, ol p, W) + fr — &k + v

yr = Ep + Tp + g, Vke{l...N} (2.18)
.1
where f, £ f(m.~1,...zk_M,w) — f(:f:k_l,...ik_M,w),
and Ey, = o .’f:k.

Here, fi and 2} are assumed to be approximately Gaussian, and zero-mean under the assumption
that Z; is unbiased. Convergence of PyNsN|w 1O pyn Ny IS provided by assuming that I is
consistent. Using the above representation and the expansion pynyn|y, = PyN|xNw - Pl |w Tesults
in the following cost function:

_ &)2
Je(w Z(log oro? ) + We 2

2
k=1 e (2.19)

s a2
+log(2mgy) + M) ,
9k

where o2 is the variance of e, = (yp — &), which contains both n; and the signal estimate error
Z;. Hence, afk = ;’ + 02. Predictions are given by I = f(x;\_l, J:k_M,w), and the variance

of the prediction error & = (&x — &) is denoted by g;. The variances ofk and gi replace o2 and
2
v

respectively, in Equation 2.13. Also, note that the log terms have not been dropped from this

cost, because both ¢2, and g; are functions of w.
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If the estimates {7}V are taken to be independent of the weights, then the first two terms
can be dropped, and the cost reduces to:

N

Jpeto) = 3 (1og(2m0n) + M) 2:20)

k=1 Gk

where only Z; is a function of w. As in the cost of Equation 2.14, this cost is not directly
dependent on the data {y;}), and when used in the dual estimation setting, runs the risk of
producing results that are consistent with {#;}{, but not with the data. However, while the
cost J7(%,w) in Equation 2.14 effectively treats the estimates & as if they are the clean signal,

Equation 2.20 avoids this pitfall by accounting for the error in #; through g;.

Variance Estimation

The errors in the signal and weight estimates can also be accounted for during estimation of the

noise variances. Here, the idea is to maximize PN |y N under the assumption that it will converge

Wwlyq
to the density Px¥wiyN as the signal and weight estimates converge. The autoregression is written

as in Equation 2.18, except that the dynamics error is defined differently, as
fk é f(.’E/\._l, R o S ¥ o W) e f (i'k—l ) ...ii‘k_M, W) (221)

The resulting cost function:

= 4 e )
JEC Z ( lOg(Qﬂ'U 4+ —_

2
k=1 Tex (2.22)

2

+log(27ge) + (1"_—”))
gk

is identical to that in Equation 2.19 except that predictions here are given by &, = f (:Ek_l, T VS viz)

and g; is adjusted accordingly. The argument o? is used to indicate that the cost is minimized

with respect to either o2 or o2.

Whether for signal estimation or weight estimation, the above “error coupling” cost functions
have the potential of offering faster convergence to a maximum of Pxl wyN - However, they require
the approximation of f; as a zero-mean Gaussian random variable whose variance goes to zero
asymptotically. The etfect of this approximation will depend on the specific data being considered;
however, in Chapter 4, the error-coupled cost is shown not to perform as well, in general, as the
other dual EKF costs. Algorithms for minimizing the costs in Equations 2.17, 2.19, and 2.20 are
provided in Chapter 3.
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The following section addresses the dual estimation problem when the measurement noise is
not white. Noise with correlation between samples is usually referred to as colored noise. The
development for the colored noise case mostly parallels the white noise case, although the resulting

cost functions are somewhat different.

2.3.2 Colored Noise Case

The additive noise {n; }#' is generally assumed in this chapter to be Gaussian with an autocorrela-
tion function that is known within a scalar multiple. The simplest case, addressed in the previous
section, is when the noise is white with possibly unknown scalar variance, o2. When the noise is
colored, the knowledge of its autocorrclation can be encoded by writing the noise as a linear AR
process:
M
ng = waf) “Ng—i + Un,k, (2.23)
i=1
where the parameters wff ) are assumed to be known, and vy, ; is a white Gaussian process with
(possibly unknown) variance 2 . The noise nj can now be thought of as a second signal added
to the first, but with the distinction that it has been generated by a known system. If the system
(i.e., w,(f)) were not known, the signal estimation problem would be equivalent to single-sensor blind
signal separation. This remains a challenging area for future research, and will not be considered
here.
Because ny can be viewed as a second signal, it should be estimated on equal footing with
zy. Consider, therefore, maximizing p v, yjyv (where n?¥ is a vector comprised of elements in

{nx}{¥) instead of PxNwlyN- We can write this as:

PyNxNnN|w * Pw
PxValwlyN = —_]Tv (224)
i

and (in the absence of prior information about w) maximize PyNxNnl|y alone.
However, writing the expansion
Pytixyndw = Pyl lnlw " P nf [w) (2.25)

. as ; o function : i N _ N N
EXPOSES Py N |xNpNy aS an impulse function at the constraint y;' = x{' + n;'. Hence, PyNxNul |w
is singular, so maximizing it is equivalent to maximizing PxNnl |w subject to y&¥ = x¥ + n].

Furthermore, p,~ |y can be written as:

px{vn’l\' w = px{\'lw . pn{"]w: (226)
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because the signal and noise are assumed to be mutually independent. If the process noise terms

vy and v, g, are zero-mean Gaussian white noise, then:

B 1 Y (2 - 25 )?
Pxiniiv = T P\ 2

k=1

(),

(2m)N (a3, )Y

(2.27)

where n, = Zl 1 wi - ny_;. The corresponding cost is simply:

N

J! = Z (log(Qwaf) + o =5 ) -—@[)2
k= v (228)

where, as before, x, = f(zy—_1,... , Lr-p, W).
For estimation of {z,}{¥, {nt}¥, or w, the log terms can be dropped from the cost function,
leaving:
N

Hed W)=Y ((:Ek ;21:;)2 + (n - n;)2)’ (2.29)

2
k=1 v O-U"

minimized subject to x +n¥ = y¥. Comparing this cost function to that of Equation 2.11, note
that a term involving the colored measurement noise has been included, while the term involving
the error (yr — zx)? has been replaced by the hard constraint yx = =% + ng.

The above cost should be minimized with respect to {z\}Y', w, as well as {n;}{’ to solve the
dual estimation problem. Again, one approach to this highly coupled optimization task is offered
by the joint EKF algorithm, in which all of the unknowns are combined in a joint state vector.

The colored noise version of the joint EKF will be shown in Chapter 3.

Decoupling with Direct Substitution — Colored Noise

As in the white noise case, the joint estimation can be decoupled by minimizing one variable at
a time, while the other variables are fixed. Note, the colored noise case also requires the explicit

estimation of the measurement noise n{, in addition to x¥ and w.

Signal and Colored Noise Estimation

Because of the hard constraint y = x + n?, the signal and noise are tightly coupled. In fact,

each one can be viewed as a function of the other. Therefore, JI(x),nY,w) in Equation 2.29
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should be minimized with respect to the signal and noise simultaneously, by evaluating it at the

current weight estimate w. That is,

JieN N - (@e = 25)* | (i —ng)?®
']c (xl anl ,W) = Z 0_2 + 0_2 ; (230)
k=1 v Un
where £, = f(zr_1,... ,2x_m, W), as before, and the predictions n; = Zfi'i wg) ‘ni_; are made

according to the known noise model. This cost function is minimized subject to the constraint,

Yk = Ty + ng, to produce signal and noise estimates.

Weight Estimation — Colored Noise

Similarly, the weights can be estimated by minimizing JI(x},nl¥, w), evaluated using the current

estimates, {2} and {7}, of the signal and noise. The cost function is:

B =32 - ~—\2
jroN &N — (B — 3f) (e — Ry)
J( (xl 7n1 ,W) - Z( 0_2 + 0_2 3 (2.31)
k=1 v Un
where the predictions are defined as: & = f(Zx—(,...,Zr-m, W), and A}, = ZZM;l wsf) - g,

If the signal estimates, £, are recursive functions of the weights, then the noise estimates are as
well, by way of the constraint y; = Z; + nx. Note, however, that if the signal estimates are not
taken to depend on the weights, then the hard constraint becomes inconsequential, and only the

first term in the above cost is used. The cost reduces to Equation 2.14 on page 25.

Variance Estimation — Colored Noise

To minimize the joint cost function with respect to the noise variances, J! in Equation 2.28 on
the preceding page is evaluated using the current signal and noise estimates, weight estimates W,
and the associated (redefined) predictions £ f(&r—1, -, Tr—p, W). Again, this results in a
straightforward substitution:

. N
He) =3 (mg(?m‘i) N

k=1

(& — 2y )?
o2
v (2.32)

S aey2
+ log(?waf,") + £ﬁk—zn—k)) .

Un

This cost function can be minimized with respect to o2, o2 , or both.

All of the costs in Equations 2.30-2.32 can be minimized sequentially with the dual EKF

algorithm, developed in Chapter 3, beginning on page 89.
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Error Coupling — Colored Noise

As discussed in the white noise case, faster convergence to a minimum of J? may be possible by

using cost functions that take into account the errors in each of the estimates.

Signal and Colored Noise Estimation

The density PyN xNn |w provides an approach to estimating the signal and noise that takes into

account the errors associated with w. This density is expanded as:

PyNxNuM|w = PyN|xNaNw " PxN|\w " Pnl|w)> (233)

where the first term is singular at the constraint yI¥ = xI¥ + n¥. Therefore, PxN|w * Pl |w Can be
maximized subject to the same constraint as before. This is evaluated using the alternative form of
the AR model given in Equation 2.16 on page 26. Defining predictions 2, = f(zk—1,...Tk—p, W)

with error variance (a’;’F + ¢2) thus yields the cost function:

N Y —\2
ce (zp — 1) (nr, —ny) . .
JeexN 0y = Z( . ‘;,) + = £ +log(2m(0% +07) |, (2.34)

which is minimized with respect to x{¥ and ni¥ subject to y{¥ = xI¥ + n’. Note the similarity

between Equations 2.34 and 2.17 on page 26, where the term involving the observation y; has
been replaced by the hard constraint, and an additional term for noise estimation is included. The

statistics of the noise ny are not affected by the weight estimates, W.

Weight Estimation — Colored Noise

For weight estimation, accounting for the error in the signal and noise estimates requires looking

at the probability density function Py 3l jw which is expanded as:

/)yf’)'(f" aNlw = py‘{”)‘(‘?’i]f’w ' p)‘(iv|f1‘1~w ) pﬁf’|w' (235)
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If the signal and noise were estimated subject to y) = xN 4+ nl¥, then the first term above will be

singular at yI¥ = %) + Y. The remaining two terms are evaluated using the model:

B = f(Epmtyodiiont, W) + B+ fi + v (2.36)

Mﬂ ~
'flk = Z ((U(z) ”fk L) - ﬁk + fn,k + Un,k (237)

i=1
Yr = Tp + Ny, VkE{l...N} (2.38)
where fk é f(.’II,(,_l, M, W) - f(.’i’k_l, ...:f}k._M, W), (2.39)
g 2 — iy, and fop ) (wgp .ﬁk_i) . (2.40)
=1

Taking the negative log of pgy |5~y - pa1|w Produces the cost function:

N n PN n ~”—\2
By — &7 )2 g — N
JE(w) = Z (Iog(?wgk) + e — 8 ) + log(27wgn k) + (k——k)—), (2.41)
=1 Gk gn,k
where £; £ f(&x_1,..8x-ns, W), A} £ M" ( ﬁk_i), and gy and g, are the variances

of the errors &, = (& — &5 ) and = (A, — ny, ), respectively. Notice the similarity between
Equations 2.41 and 2.19 on page 27.
As before, if {4} is considered to be functionally independent of w, then the cost function

can be simplified. Here, the last two terms are dropped, yielding:

N B — 57
OEDY (log(Qﬂ'Qk) + (“g—k’“)z—) (2.42)

k=1
where only &, = f(#3-1,... ,Ek-ar, W) and g, are functions of the weights. As noted previously,
this cost has the potential drawback of relying on the data {yx}} only indirectly, through the

estimates {4 }%.

Variance Estimation — Colored Noise

Similarly, during estimation of the process noise variances o2 and av , the errors in the estimates
of all three quantities %", 0N, W can be taken into account by maximizing the conditional density
Pslalwlyy- The autoregression used for evaluating this density is written as in Equation 2.36-

2.40, except that the dynamics error is defined as:
i 2 floiey, o thmng, W) — f(Ep—1, - Brop, W). (2.43)
The expansion

(2.44)

PyNsNaN|w = PyNixNalw " PV |adw * Pal|ws
1 1M i
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produces the cost function:
N

A a2 A A2
JE(o?) = Z(log(zm) + i‘fiT‘“)— + log(2mgn ) + (—"’“g%)) (2.45)
k=1 R n,

minimized with respect to o2 and o.'ﬁ“, subject to yr = &y, + 7.

Algorithms for minimizing the error-coupled cost functions just described belong to the broad
class of joint estimation approaches, and are explored along with the other dual EKF methods in
Chapter 3. The next section presents cost functions for a second class of methods, referred to in

this thesis as marginal estimation approaches.

2.4 Marginal Estimation

As described in the previous section, joint estimation methods are concerned with maximizing
Pl wiy ¥ directly. A reasonable alternative to this approach can be found by separating the joint

density function into two terms?* as follows:
Pl wlyl = PxNiwyd * Pwiyd (2.46)

or, in the case of colored measurement noise:

PxNalwiyN = PxNaN|wyl " Pw|ylN- (2.47)

Often, %Y is found by maximizing the first term on the right, and W is found by maximizing the
second term, Pw|yl - This approach is referred to in this thesis as marginal estimation.

The second term, Pwiyl » is independent of x¥; only the first term (p, ~ in Equation 2.46)

Ylwy
1
is a function of the signal. Hence, maximizing the first term on the right with respect to x¥ is the

same as maximizing the joint density, Pxlwly, O1L the left. However, both terms are functionally

wly
dependent on the weights. so the same is not true of maximizing the second term, Pwlyl» with
respect to w. That is, because the first term depends on w, maximizing Pwlyl is not the same as
maximizing the joint density py~., |y~ with respect to w.

N are con-

Nonetheless, estimates W found by maximizing the marginal density function py

sistent and unbiased, if conditions of sufficient excitation are met [54]. The marginal estimation

approach is exemplified by the maximun-likelihood approaches [26, 44] and EM approaches [58, 76]

2 A second expansion PxN wiy N N DORN N is also possible, but does not yield practical algorithms.

= ﬂwlx{\yy
This is discussed in more detail in Appendix B.
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mentioned in the introduction. Prediction error algorithms (e.g., RPE [47]) represent an approxi-
mation to the marginal estimation approach.

While the present claim is that the relationship of these algorithms to the joint estimation
methods can be understood in terms of Equation 2.46 or 2.47, it is important to note that this
equation does not represent their primary motivation. Rather, the motivation for marginal esti-
mation methods comes from considering the marginal density Pw|yy tO be the relevant quantity
to maximize, rather than the joint density Px¥ wiy -

However, in order to maximize the marginal density, it is necessary to generate signal estimates.
Furthermore, these signal estimates are invariably produced by maximizing the first term Pxl |wyl¥
(Or Py uN | wy v ) Of Equation 2.46 (2.47) in some way. This last fact justifies the use of Equation 2.46
{and 2.47) for understanding the relationship between marginal estimation and joint estimation
approaches.

The pertinent cost functions for marginal estimation are laid out in the remainder of this

section, while the algorithms are described in Chapter 3.

2.4.1 DMarginal Weight Estimation

As just mentioned, marginal estimation methods find the weight estimates W by maximizing the
second term, PwlyN I Equation 2.46. Applying Bayes’ rule here produces:
PyN|w " Pw

2.48
™" (2.48)

Pwiyl =

If there is no prior information on w, maximizing this posterior density is equivalent to maxi-
mizing the likelihood function Pyl w- Assuming Gaussian statistics, the chain rule for conditional

probabilities can be used to express this as (see Appendix A):

_ (yk — yk|k—-1)2)

N
)
= — X -
PyViw E ot p( =)

where  Trpor 2 Elyl{ve )i, w]

(2.49)

is the conditional mean (and optimal prediction), a;’k is the prediction error variance.Note that the

assumption that py~,, is Gaussian is only true if the model f(+) is linear. For nonlinear models,
the above form is an approximation made in addition to the Gaussian assumption on the noise
terms, 1, and vy.

Taking the log of this likelihood function gives:

(yk — Tapo1)? ) (2.50)

2
Usk

N
1 .
108 py |y = -5 _S_ (log(?woik) +

k=1
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When the signal model is linear, 73— can be computed using an ordinary Kalman filter. For
nonlinear models, however, the expectation can ouly be approximated by an extended Kalman
filter (see Chapter 3).

Note that the log-likelihood function takes the same form whether the measurement noise is
colored or white. The following paragraphs describe how the log-likelihood is the foundation for a

few different marginal estimation methods.

Prediction Error Cost

Often the variance oZ, is assumed (incorrectly) to be independent of the weights w and the time
index k. Under this assumption, the log likelihood can be maximized by minimizing the squared

prediction error cost function:

N

TP (w) =D (e — Tage=1)’- (2.51)
k=1

Recursive prediction error algorithins [47, 87 wmninimize this simplified cost function with respect
to the weights w. While questionable from a theoretical perspective, these algorithms have been
shown in the literature to be quite useful. In addition, they benefit from reduced computational

cost, because the derivative of the variance a;fk with respect to w is not computed.

Maximum-Likelihood Cost

When the dependence of the prediction error variance on the weights and time index is taken into

account, the form of the cost function is:

N

J‘Inl(w) - Z (log(27{03k) +

k=1

. = —‘2
(Y Yk|k—1) ) (2.52)

2
UE s

Note, J™(w) is the maximum likelihood cost, while the prediction error cost JP¢(w) represents

an approximation.

EM Algorithm

Another approach to maximizing py|, v is offered by the Expectation-Maximization (EM) algo-

wly
rithm [16, 76, 71]. The EM algorithin can be derived by first expanding the log likelihood as:

lOg /)y‘l\"|w = lOg py{"xf' lw IOg pr"|wyf’ 3 (253)
Taking the conditional expectation of both sides using the conditional density Pxd lwy N gives

10g py~ jw = Exyw 108 py v jw 1¥1 s W] = Exjyw (108 oty jwyn [¥1, W], (2.54)
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where the expectation over X of the left hand side has no effect, because X does not appear in
log PyN|w-

Note that the expectation is conditional on a previous estimate of the weights, w. The second
term on the right is concave by Jensen’s inequality [11], so it will decrease for any solution w
moving away from the current estimmate W (and the negative will increase). Therefore, choosing
w to maximize the first term on the right alone will always increase the log likelihood on the left
hand side. In other words, in order to maximize pyn|,, the EM algorithm repeatedly maximizes
Ex|ywllog Py;fo’[w'Y{V , W] with respect to w, each time setting W to the new maximizing value.

For the white noise case, then, the EM cost function is:

N _ 2
JM = Exjyw [Z ( log(2mo2) + —(yk U;k)
k=1 " (2.55)
. xy — 3 )
+log(2mal) + (}”TL'”)——) ‘ y{v,v“v],
where 2 f(xx—1,...,Tr-p, W), as before. The evaluation of the expectation in J¢™ is discussed

in Appendix F.

Colored Noise EM

When the measurement noise is colored, PyNxN|w 15 DO longer easy to evaluate. Instead, the

following expansion is used:
log py{" lw = log pyf"x{vni\'lw - IOg pr’n{" [wy ¥ (256)
so that Exnjyw/log ﬂy{vxf’n{"pw|Y1Ns W] is the term to be maximized. Recall, however, that in:
IOg py{vxf’nf" lw = 10?) pyf’ [xNn¥¥w + IOg pr’nf"lw! (257)

the first term is singular at y¥ = x}¥ + n¥. Hence, one should instead maximize the expectation

of the second term subject to y¥ = x¥ + n{’. This gives the EM cost for colored noise as:

N —\2
em __ ) 2 (wk — T )
JC. = EXN{YW l:z (10g(271’0'v) + ——02,
P i (2.58)
_ 5 (ng — n,:)2 N -
+ log(2no, ) + ) | YV

Details of the EM algorithms are provided in the next chapter.

2.4.2 Marginal Variance Estimation

If the noise variances unknown, they can be estimated along with the weights by including them

in the log likelihood function. The resultant prediction error, maximum-likelihood, or EM cost
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function can be minimized.

Prediction Error Variance Estimation

The prediction error cost is the same as for weight estimation:

N
(@) =Y (v = Taem1) s (2.59)
k=1

except now the prediction ¥z is viewed as a recursive function of the unknown variance, a?.

The form of this function is explored in Chapter 3.

Maximum-Likelihood Variance Estimation

The maximum-likelihood cost function for variance estimation is:

N N
(yk — yk|k—1)2)

i) = Y (1og(eno, ) + LD

k=1 €k

(2.60)

This is identical to the maximume-likelihood weight cost function, except that the argument has
been changed to emphasize the estimation of the unknown variances. The specific ways in which

Uk[k—1 and a?k depend on the variance termns are shown in Chapter 3.

EM Variance Estimation

Alternatively, the variances can be estimated within the EM framework. If the variances are un-
known, then the expectation is conditioned on their estimated values during the E-step. For white

noise, this means the expectation Ex|yw/log ny'x{V|w‘Y{V ,W,02,02] is maximized with respect to

v

w, 07, and o7, during the M-step. For colored noise, Exnjyw([l0g pxyny 1, W, 02,02 | is max-
imized with respect to w, o2, and ¢ during the M-step. The forms of the cost functions are

developed fully in Chapter 3, and Appendix F.

2.4.3 Marginal Signal Estimation

As noted at the beginning of this section, marginal estimation methods are motivated by the
maximization of the marginal density py~,, alone. However, as shown above, in the maximum-
likelihood cost the term -1 must be computed, and Ex |y w [10g py v v jw] (08 Exnjyw (108 pyv o ])
is required for the EM algorithm.

As shown in the next chapter, computing either of these quantities requires the computation

of some form of signal estimate. [n the white noise case, these estimates are invariably generated
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by maximizing p, .y, which is the first term in Equation 2.46. Because Pxl jwyl is being max-
imized, the interpretation of the marginal estimation methods given in Equation 2.46 is justified.
The term can be written as:

= Dylixdliw (2.61)

/)x“|wy
1 1 0
y{v"“

and the signal can be estimated by maximizing the numerator PyN N |w with respect to {zx}{.
This is equivalent to minimizing the joint cost JY (x¥, W) defined in Section 2.3 by Equation 2.123.

Similarly, for the colored noise case, both signal and noise estimates are required, and are
generated by maximizing p.nnv jwy which is the first term in Equation 2.47. This can be shown

to be equivalent to minimizing the joint cost J#(x{, n{v , W) defined by Equation 2.30 on page 31.

2.5 Discussion

The dual estimation problem is to find signal and weight estimates which are in some sense opti-

mal. A sensible measure of optimality is given by the joint conditional density PxNwlyN and the

wiy]
corresponding cost function J7(xY¥,w). The joint cost J?(x}¥,w) is essentially a two-argument
function, with a fairly high degree of coupling between the arguments. Although J7(x w) can
be minimized with respect to both the signal and weights simultaneously (e.g., by the joint EKF,
as shown in Chapter 3), another approach is to minimize the function by alternately minimizing
with respect to one argument and then the other. This can be done either by substituting current
estimates for one of the arguments in the cost function, or by deriving new cost functions that
incorporate the statistics of these estimates. These alternative cost functions account for the errors
in the estimates of each argument while the other is being estimated.

Still other costs can be found by expanding the joint density, and minimizing the terms sep-
arately. While these marginal estitnation approaches fail to maximize the joint density, unbiased
estimates of the parameters are produced. These methods, exemplitied by maximum-likelihood,
prediction error, and EM algorithms, have been shown to be quite useful in practice.

The various cost functions derived in this chapter are summarized in Table 2.1. For brevity,
only the white noise forms of the costs and densities are shown; equation numbers for the colored
noise case are shown in parentheses. Furthermore, no explicit signal estimation cost is given for
the marginal estimation methods hecause signal estimation is only an implicit step of the marginal

approach. Marginal signal estimation is performed using the joint cost J7(x¥, w).

3The error-coupled cost J“(x{V,v"v) can also be used to generate the necessary signal estimates. However, this
approach is not explored in this thesis.
PP p
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Table 2.1: Summary of the cost functions derived in this Chapter. Some costs differ slightly for the
colored noise case; their equation numbers are enclosed in parentheses.

rSymbol Name of Cost ] Density | Equation | Argument
| Ji(x, w) joint | Pxwiyy | 2.11(2.29) {ze I}V, w
JI(x, W) joint signal Pxdwlyy | 2.12(2.30) {ze}V
JI(EN,w) joint weight PxNwiyd | 2.13(2.31) w
JI(&,w) | joint weight (indep.) Pxiiw | 2.14(2.31) w
= Ji(a?) joint variance Pxdwlyy | 2.15(2.32) 0Z,02(02)
S Jex) error-coupled signal Pxiwly | 2.17(2.34) {zi }Y
Jeo(w) error-coupled weight | pgnvypy | 2.19(2.41) w
JEC(w) e.-c. weight (indep.) PsNiw | 2.20(2.42) w
Je(a?) error-coupled variance | penvgpy | 2:22(2.45) | 02,02(02 )
JPe(w) prediction error ~ Pwlyd 2.51 w
Jr¢(a?) prediction error ~ Pwlyd 2.59 02,0%(c2 )
?é Jm (w) max. l?kelfhood Pwiy 2.52 ‘ w
' J™(0?) max. likelihood Pwiy¥ 2.60 oZ,02(c2 )
g Jem (w) EM n.a. 2.55(2.58) w
J (0?) EM n.a. 2.55(2.58) | 02,02(02 )

In other words, the signal estimation cost functions for joint and marginal estimation are the

same. The two approaches primarily differ. then, in the form of the cost functions used for weight
estimation. The following qualitative comments about the weight estimation part of the problem

might therefore shed some light on the tradeoffs between the approaches:

* By maximizing pyv|w, marginal estimation methods ensure an unbiased estimate of the
weights. However, the measurcment noise in the data {y;} will affect this estimate by

increasing its variance.

¢ For the joint estimation methods, lower variance weight estimates can be obtained by mini-
MIZING PyNxN |w OF Py |y, Using signal estimates. However, the resulting weight estimates
will only be unbiased if {Z; }{ has converged to {x;}3¥. In fact, the potential for lower vari-
ance, higher bias weight estimates is verified experimentally in Figure 4.25 and Figure 4.41

in Chapter 4.

o If the cost functions corresponding to p,v |, and pgr |y are used, the variance of W is further
reduced, but at the expense of even greater bias if {#;}{ has not converged to the true

signal.

These comments are rather too vague to be of any immediate use, because the relative values
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of “lower variance” and “unbiased” will ultimately depend on various properties of the actual data
(such as its length and SNR), aud the optimization procedure. Of much greater use would be a
quantitative theoretical analysis of the bias/variance tradeoffs of the different cost functions. This,
however, is a formidable task, and will not be attempted in this thesis.

Further complicating matters is the fact that different approximations are used to arrive at
the various joint and marginal cost functions. The relative severity of these approximations is
not inherently obvious, and will largely depend on the particular noisy time series at hand. The
purpose of this chapter, rather, is to show what the approximations and assumptions are, and how
they lead to different dual estimations methods.

However, experimental evaluations and comparisons of the variety of cost functions are pro-
vided in Chapter 4. In this context, the above comments will engender useful hypotheses for
interpreting the results. For example, the joint cost tends to show its best performance on signals
with lower effective noise levels, where the errors in £, will tend to be less severe. These signal
estimates are less likely to produce bias in the weights. For linear models - for which the weight
errors can be computed - the bias-variance tradeoff can be observed even more directly, as men-
tioned above. Another outcome of the experiments in Chapter 4 is the similarity of performance of
the prediction error and maximum-likelihood costs in various settings; this fact can be explained
by their common theoretical underpinnings. In general, understanding the relationship between
the various cost functions, and between joint and marginal estimation methods, provides a guiding
principle for selecting an algorithm given a particular application.

Chapter 3 describes a family of algorithms, called the dual extended Kalman filters, for mini-
mizing the variety of cost functions just derived. Algorithmic issues, such as variance initialization

and computational expense, are also discussed.



Chapter 3

Algorithms

3.1 Overview

In the preceding chapter, the dual estimation problem was considered from a probabilistic perspec-
tive in order to demonstrate the relationship between several different cost functions. These cost
functions approach the off-line problem of estimating the parameters w and time-series {z}{
from an entire sequence of noisy data {y,}, which is available all at once. This procedure is
necessarily noncausal because estimates of the signal at times £k = 1,2,... , N all depend on the
measurement, 4y, at final time & = N. Off-line processing typically entails an iterative proce-
dure of repeatedly minimizing the cost with respect to first the signal, and then the weights (see
Figure 1.5(a) on page 10).

Although iterative algorithms are mentioned in the following sections whenever they are rele-
vant, the focus of the current chapter is on the seguential estimation of the signal and parameters
as the noisy measurements y; become available, as shown in Figure 1.5(b). Iterative algorithms
are most useful when the length N of the noisy time-series is fized. Sequential algorithms are more
appropriate for on-line applications. wherein new data arrive during processing; the length of the
time-series continually increases with the time index, k.

While it is certainly possible to apply hatch-style estimation to the on-line problem by using
all the available data {y;}¥ at every time step, this approach requires recomputing estimates of the
entire trajectory {z;}% and w from {y:}} each time a new measurement y; arrives. The expense
of such an approach becomes prohibitive as & — oc.

Instead, sequential approaches have the property that their computational and memory re-
quirements are constant in time. Such algorithims are typically recursive in nature, so that the new
information in measurement y; is combined with the existing estimates of the signal and weights.
For weight estimation, the previous estimate of w (based on data {yt}’f_l) is updated upon arrival

of yi. During signal estimation, rather than update the entire trajectory of estimates {ait}'f, only

42
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an M-vector of lagged values x; £ [#4,... ,Zx—p+1]7 is estimated using the new measurement.
As mentioned in Chapter 1. sequential methods can easily be applied to off-line estimation; the
algorithm is repeatedly passed over the same set of data, with the weights from one iteration used

to initialize the next.

Even though they do not take advantage of data in the future, sequential algorithms should
still have the property that the current estimates are optimal with respect to the corresponding
batch cost function on the same data. For example, at time & = N, recursive least squares
(RLS) produces an estimate Wy that is equivalent to the batch least squares solution using { }{;
similarly, the Kalman filter produces an estimate Xy equal to that produced by the Kalman
smoother. However, the sequential estimates of the entire series will not generally be the same as
the non-causal estimates. The dual Kalman filter described later in this chapter is therefore not

equivalent to a batch-style algorithn.

Before introducing the dual Kalman filter, the next two sections review some standard sequen-
tial estimation algorithms. First, Section 3.2 develops the sequential signal estimation problem
assuming a known model, and provides a theoretical review of the Kalman filter (KF) and ex-
tended Kalman filter (EKF). Second, the application of Kalman filtering to weight estimation
using a clean signal is shown in Section 3.3; an alternate form of the weight filter — which is useful

for minimizing other cost functions - is also introduced in this section.

The remainder of the chapter considers the dual estimation problem. The joint EKF algorithm,
in which the signal and weights are estimated in a combined state vector, is described in Section
3.4. Separate state-space representations are used in Section 3.5 to develop the family of algorithms
called dual Kalman filters. Finally, additional issues relating to the practical implementation of

the dual EKF are addressed in Section 3.6.

3.2 Signal Estimation

This section develops the use of Kalmau filtering for MAP signal estimation when the model and
noise statistics are known. The discussion shows the need for a state-space representation of the

time-series. The unknown model problem is treated in Sections 3.4 and 3.5.
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3.2.1 Batch Estimation

As just stated, a batch algorithm uses all of the available data to estimate the entire signal {z;}*.

In the MAP context, this is stated formally as:
x¥ = arg INAX Pyk by s (3.1)
xllv 1 1

which gives the most probable estimate of the signal, given the noisy data up to the present time

k. Bayes rule can be used to rewrite this density as:

Pyklxbw * Pxbiw
prtiypne = ARE Pl 82)
pyi"\w

Because the denominator does not depend on the signal, x¥ can be estimated by minimizing the
negative log of the numerator. As showun on page 23, when the measurement noise is a white

Gaussian process, this gives the cost function:

k .32 gy — 1)
J(xf)=z((y’ ‘,,‘“) 4 Lo .t)z) (3.3)

The optimal estimate %4 can be found either by batch least-squares (as describe in the errors-in-
variables context in Appendix G), or recursively, using a Kalman smoothing algorithm [68]. Both

of these algorithms are necessarily off-line, and produce {3;}¥ as defined in Equation 3.1.

3.2.2 Kalman Filtering — White Noise Case

The preceding development made the assumption that the additive measurement noise is white.
This assumption is also made in the subsequent paragraphs; the colored noise case is considered
in Section 3.2.3 on page 51.

A sequential algorithm can be derived if only the MAP estimate of the current signal value .
is desired, rather than an estimate of the entire signal {z;}}. As shown in the following develop-
ment, this will require the introduction of a state-space representation of the system. Sequential
MAP estimation seeks the current estimate I that is most probable given the model and all the

measurements {1 }¥ up to and including the present time. This goal is formally expressed as:

Ty = ACGUIX Py )ty (3.4)

Note that the value 4, satisfying this equation is the seme as the estimate of x; found by minimizing
J(x¥) in Equation 3.3. In the sequential framework, however, estimates of all the past values of

the signal are not desired; only a limited number of values are needed, as shown in the next few

pages.
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Figure 3.1: The Kalman filter (dashed line) and Kalman smoother (solid line) estimates are equivalent
at the final time k = N = 40. The noisy data (dotted line) were generated by adding white noise to a
linear AR signal.

The joint density to be maximized can be rewritten as:

Pupyt|w _ /}:vkyuyf—lw 'pyf_l|w
- . (3.5)

pll'kiy.w
AT 0. & 0. k
)y'{IW y1|“

Because pyr-1 and pyiy, are functionally independent of z;, the MAP estimate can be obtained

|w

by maximizing Parnly* alone. This is expanded as:

lyy ™ w

(3.6)

) ko = { - -0 b —
Pupylys'w /yk\yi Leew /wklyf lw

Note that p

ly laew = Pyalen: If the process noise v and measurement noise n; are both

zero-mean white Gaussian processes, then Equation 3.6 evaluates as:

P 1, = ;e‘(]) (_ (yk —.'L‘k)2> . 1 exp (_ (IEk "‘-'E]:)Z)
Thyxlyy T W V20l 202 2rp; 2p;; ’

where £, = Elzi[{y:}{ "' w] and p; = El(w), — &;)*[{y¢}¥~*, w] are the prior mean and variance

of ), given the data {y}¥~!, but before the measurement y; has arrived. Taking the negative log
gives the cost function:

J(xy) = (s = 20)° + (2 — & )?

: —, (3.7)
0121 Py

which can be minimized with respect to xy to produce the desired sequential MAP estimate of the
signal. Note that both o} and p; are functionally independent of .

Minimizing J(xz) with respect to u is equivalent to minimizing the batch cost J(x¥) of
Equation 3.3 with respect to zj, as illustrated in Figure 3.1. In this sense, the sequential estimates
are optimal with respect to the batch cost function. However, minimizing the sequential cost J(zy)

first requires determining the value of the prior mean (or prediction) ;7 and its variance p, . As
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is shown in the following development, these prior statistics are a function of the statistics at the
previous time step; calculating them requires a recursive estimation procedure derived within a

state-space framework.

Linear Model

For the sake of simplicity, the calculation of priors is presented first for the linear-model case; the

nonlinear AR model of Equation 1.1 is replaced by the following linear one:

M
€Ly = Z Wil —; + Vi
=1 (38)
Yk = Zp + 1.
By defining xj.-; = [zg—1,... ,Zr—ar]?, the first equation can be rewritten as z, = wlxy_1 + vg.

Substituting this expression for z, in ;] = Elz|{y: Y51, w] gives:

2r = EwTxi1 + vl {ye 77w (3.9a)
= w1 [{y: 7 w] (3.9b)
= WT)A(k,._l, (39)

where %X;_; £ E[xi— [{y,,}f“l,w} is the conditional (or posterior!) mean of x)_1 given the data

{y:}¥7'. Similarly, p; = E[(zx — ;)2 {y:}¥™", w] can be rewritten as:

pp = El(w xio1 + o = w1 ) {m Y1 wl (3.10a)
=w! - E[(xi-1 ~ %r— 1) {5 W] - w + o2 (3.10b)
=wlPi_\w + 02, (3.10)

where Py_ | 2 E[(xx—1 — Xee1)(xp—1 — %x—1)"|{y: }¥7, w] is defined as the conditional (or poste-
rior) covariance of x;_; given the data {yt}f‘l.

In summary, generating posterior estimates of the signal £ requires computing the prior mean
£, and variance p, . However, computing the prior mean and variance requires computing the
posterior mean Xj..; and covariance Py_, at the previous time step. The situation is depicted
in Figure 3.2. At the next time step, to compute &4 when yr; arrives will ultimately require
the vector estimate Xi (not just @), as well as the error covariance Py. Therefore, sequential

estimation of the signal {z;}{" requires computing %; and Py recursively for all k € [1,..., N].

IThe use of the term posterior herein applies to the statistic of x; given data up to time ¢, whereas the term
prior applies to the statistic of x¢ given data up to time (¢ — 1).
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Figure 3.2: The dependence of signal estimate #; on state estimate Xx_1 and covariance Pj._;.

Note also that when the conditional density Purlyrw 18 Gaussian, then the MAP estimate

(which maximizes this density) is the same as the conditional mean E[zg|{yi}Y,w]. Hence, Zj

can be taken directly from the first element of the conditional mean %, = E[xx|{yx}, w].

State-Space Representation

The vector x; which must be estimated is usually referred to as a state vector. The current state

of the system is defined as the minimal amount of information such that all future behavior of

the system can be determined from the future inputs to the system and the current system state.

For a more formal and complete discussion of state and state-space representations of systems, see

6, 8].

The linear AR process of Equation 3.8 can be equivalently described by the following state-

space equations:

Xy
T

Lr—1

Lr—M+1

W Th_1 1
0 0 Tp_2 0
+ | .|k, (3.11)
0 :
1 0 Tr-M O
C “Xp + Nk (3.12)
O] CXyg N

The equivalence with Equation 3.8 is seen by looking at the top row of the matrix equation 3.11.

An infinite variety of state-space representations can be found for a linear AR model by projecting

X, onto an alternate basis (via a linear transformation). This transformation will of course change
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the form of the system matrices A, B, and C. The particular form shown here is called the control

canonical representation [19], as determined by the special structure of the A and B matrices.

Linear Kalman Filter

The desired conditional mean %; and covariance Py in Equations 3.9 and 3.10 are calculated by
the Kalman filter algorithm when the known model is linear with Gaussian statistics. Because the
mean and covariance completely specify a Gaussian density function, the Kalman filter effectively

estimates the entire conditional density p at each time step.

xilytw
The mean and mode of a Gaussian probability density function are identical, so calculating

the conditional mean X, is equivalent to calculating the MAP estimate; i.e.:
x; = Elxil{ye )t w) = AIEINAX Py, |y} w- (3.13)

The first element of this state estimate satisfies Equation 3.4. Also, note that the covariance Py,

of the state can equivalently be interpreted as the error covariance of the MAP estimate:
Py = Coulxi [ {ye} 1. w] = E[(Re — x1) (e — %) {ue}, Wl (3.14)

Hence, the Kalman filter equations can bhe derived from either a minimum mean squared error
(MMSE) approach (yielding the conditional mean) or from a MAP perspective. There are numer-
ous textbooks [43, 79] on the subject of Kalman filtering; most of these explain the topic from
the MMSE perspective. A derivation of the Kalman filter from MAP principles is provided in
Appendix C.1 of this thesis.

The Kalman filter equations are shown in Formula 3.1. For a linear model and Gaussian
noise statistics, the Kalman filter produces the optimal causal estimates Z; that minimize J(zy)
in Equation 3.7. These estimates are optimal in both the MMSE and MAP senses. Maximum
likelihood signal estimates are obtained by letting the initial covariance Py approach infinity, thus

causing the filter to ignore the value of the initial state Xo.

Nonlinear Models

When the autoregressive function f{zg-1,2r_9,...,2r-ar,w) in Equation 1.1 is nonlinear, then
the Kalman filter equations can no longer be applied directly. The nonlinearity disrupts the Gaus-
sianity of the statistics, making it impossible to obtain optimal estimates merely by propagating
the mean and covariance of the posterior deusity.

For general (i.e., non-Gaussian} deusities, an optimal MMSE or MAP estimate can only be

« at each time step: a computationally

obtained by calculating the entire density function p,, g«
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Initialize with:
%Xy = E[xo] (3.15)
Py = E[(x — %o0)(xo — %0)”] (3.16)
For k € {1,... ,00}, the time update equations of the Kalman filter are:
X, = AXp—y (3.17)

P, = AP;_;A” + Bo?BT (3.18)

and the measurement update equations:

K, =P CT(CP_CT +o2)7! (3.19)
X =% + Ky(yn — C%;) (3.20)
P, = (I- K,C)P;. (3.21)

Formula 3.1: The linear Kalman filter equations.

intractable task. Various approximations to the density can be calculated, however, with varying
degrees of computational expense.

One of the more costly (and more exact) approaches are the sequential Monte Carlo algorithms,
which sample many points from the posterior density function. The expense of these approaches
comes largely from the need to propagate “clouds” of samples through the nonlinear function. A
review is provided in [14].

Another approach to the nonlinear estimation problem is to approximate the conditional den-
sity with a Gaussian, and calculate only the covariance and mean, as before. While clearly inexact,
these methods have a greatly reduced computational cost in comparison to the Monte Carlo sam-
pling approach. Furthermore, the suboptimal solutions they generate are perfectly acceptable in
many situations, particularly when the density remains unimodal, or when the nonlinearity is not
severe.

The extended Kalman filter (EKF) is the most commonly used of these Gaussian-approximation
methods. Under the Gaussian assumption, the estimation criterion is the same as expressed in

Equation 3.7:

p) _

” R
—Lg)” Ly — I,

4 k) +( L) )
Tn y

. e
L = dlg I
Zh

As before, calculating Z; and p;, requires X4_; and P,_, from the previous time-step (the situation
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of Figure 3.2 also holds for the nonlinear case). However, generating these statistics is problematic
in the nonlinear case. The EKF produces approzimate conditional means Xg—;, X, and covariances

Pi_1, and P, by linearizing a set of nonlinear state-space equations2.

Nonlinear State-Space Representation

A state-space representation for the more general nonlinear AR process is given by:

Xp = F(x-,w) + By (3.22)

Iy f(l'k—ls-'- 1 Th—M;, W) [.1

Lh—t 1 0 0 0 Lp-1 + 0

= - U
0 .0

L M+1 L 0 0 1 0 LM J _OJ

Y = C - Xp + g (3.23)
=1 0 --- 0] cXp + Ny

where F(-) has been introduced as a vector-valued function whose first element given by f(-), and

whose remaining elements take on shifted values of the previous state.

Extended Kalman Filter

Under the Gaussian assumption, estimation of the posterior mean X, and covariance P;, from the
prior statistics X, and P, (i.e., the measurement equations of Formula 3.1) is the same as in the
linear case. However, generating prior mean X,  and covariance P, through the nonlinear function
requires an approximation, as shown in Appendix D.

Defining A, as:

afu,w) T
Ix
OF 1 0 00
A, & Exw = , (3.24)
dx X=X} It} . 0 N
6 0 1 0

the EKF is obtained mecrely by replacing the KF time-update equations (3.17 and 3.18) with

Formula 3.2. Note that this definition of Aj generalizes the definition of A in the linear case.

2 A recently published algorithm called the unscented filter (UF) [35] offers a higher-order approximation to the
mean and covariance. The UF is not discussed in this thesis.
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%7 = F(Xp_1, W) (3.25)

P, = A, P, AT | +B¢2BT (3.26)
k

Formula 3.2: The extended Kalman filter time-update equations.

3.2.3 Kalman Filter — Colored Noise Case

When the measurement noise, ny, is colored, the KF and EKF equations require some modification.
As discussed in Section 2.3.2, colored noise can be thought of as a second signal added to the
first. In fact, because the weights w arc assumed to be known in the present section, the only
real distinction between x; and ny is that the signal xp might be generated by nonlinear model,
whereas n; is assumed to be generated by a linear AR model.

Hence, the colored noise n; ought to be estimated on equal footing with the signal. In the

context of sequential MAP estimation, this means:
(Ik.: 7“-') = arg {I)},E}L}f p:rknk.|yi‘w> (327)

where the joint density can be expanded as:

c - k— - b
pyk]y:' Lepnaw p.’:r,..'nk|yl ‘w py'{ 1|w

(3.28)

p;u.n;,}yfw = .
pyl |w

However, due to the constraint y, = xj -+ ny, the density Pylyt = zpnuw 18 therefore a Dirac

delta function. Also, the densities Pyk=tlw and Pykiw are functionally independent of xy and ng.

Hence, maximizing p,, ,,, is equivalent to maximizing p subject to the constraint

|Y§'W wknk|y;"—1w

1. can be written as:

Yk = T + ny. Furthermore, Parnplyt='w
v d 1

- (3.29)

pa‘knﬂyf—lw = p:uk|y’1"_lw : pnk[yl w
under the assumption that the signal and noise are statistically independent. If the process noise

terms v and v, ; are zero-mean Gaussian white noise, then:

ey = X exp (- Low = 3" 1 exp =7
Paumelyi ™ S 2p; 2rp. 2h. /)
2mp; Ly n,

where 7ty = E[ng|{y:}¥™}, w] and p], = E[(n — 1y )?|{y:}¥7!, w]. Taking the negative log of

this expression, the corresponding cost is simply:
~A—\2 A—\2
£rp — &, N — T,
b = 2,)" (e =) (3.30)

.](.’I'k,‘lll\,) = -
Py Py

minimized subject to y, = x, + nur. As in the white noise case, in order to generate the desired

MAP estimates Z; and i, it is first necessary to compute the prior statistics Zx, py, oy and p, ;.
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Linear Model

Starting with the linear-model case, the signal is assumed to be generated by the AR process of
Equation 3.8, and the measurement noise is generated by a similar AR process (given in Equa-
tion 2.23). By defining vectors xz—y = [24—1,... ,Ts—n]T and ng_; = [Rg-1,... ,ne—n |7, the

prior means and variances can be computed as:
fe T - — w7
Iy =W Xy P =w Prw
L T- o — T
f, = W, 04| Pk =W P 1wa.

The derivation of these equations is directly analogous to that presented for the white noise case
in Equations 3.9- 3.10 on page 46.

Hence, in addition to estimating the signal state X, and covariance Py recursively, estimation
of the noise state 1, and covariance P, , is also required. This is achieved by formulating a

state-space representation of the system, and applying a Kalman filter.

State-Space Representation — Colored Noise

Note that the constraint yr = x4 + 7, has some peculiar effects. Namely, the estimates £ and 7
must also sum to gy, and the variance p; must be equal to the variance p, 4.
To enforce these constraints, both the signal and noise are incorporated into a combined state-

space representation:

E]\, = A(- . ék—l + BC  Vek (331)
X B A 0 Xk—1 + B 0 Vi
n; 0 An ny—y 0 Bn Un,k
= ©C. - Ek (332)
Xk
ye =[C Cul- ;
n;
where
wg) wf,?') . w,(,M")
1 0 0 0
1A-né . 3 Cn:Bg:[l 0--- 0]
0 0 :

0 U 1 0
The effective measurement noise is zero, and the process noise v, is white, as required, with

. a2 0
covariance V, = [ o o2 ]

vn
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Kalman Filter — Colored Noise

The Kalman filter equations for the colored measurement noise case are shown in Formula 3.3. A
potential problem with the algorithim is that the zero effective measurement noise can adversely
effect the stability of the Kalian filter under some circumstances. Hence, adding a small positive

value to the noise variance may be necessary in Equation 3.37.

Initialize with:

& = E[Eo] (3.33)
Po = E[(€, - £0)(€a ~ &0)"] (3.34)
For k € {1,..., 00}, the time update equations of the Kalman filter are:
£ = Ak, (3.35)
P, = AP, AT +B.V.BY (3.36)

and the measurement update equations:

Ky =P, Ccl(c.p;CT +0)7! (3.37)
&, =& +Ki(yr — Cc&y) (3.38)
P, = (I-KC.)P,. (3.39)

Formula 3.3: The linear Kalman filter equations for colored measurement noise.

An alternative approach suggested by Bryson and Henrikson [7] avoids this problem and also
maintains the dimension of the original signal-state vector. Although this can improve the com-
putational efficiency of the filter, the order of the noise model is restricted to be the same as
the dimension of the measurement. In the context of time-series, this means the noise can only
be modeled by an AR(1) process (recalling dim(y,) = 1), making this approach impractical for

colored noise with higher-order correlations.

Nonlinear Model

As in the white noise case, the statistics of the signal are no longer Gaussian when the signal model
is nonlinear, so an approximate solution is required. The EKF approach is essentially identical to
the white noise case, except that the combined state-space representation is used to include the

colored noise.
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Nonlinear State-Space Representation - Colored Noise

£ =F§_,,w,w,) +B, © Vek (3.40)
Xk F(XA._.],W) + B 0 Vg
ny A, np_, 0 B, Un,k

w= Co - & (341

Xk
n;

Extended Kalman Filter — Colored Nuise

Seeing that the noise is still assumed to be generated by a linear AR process, the nonlinearity
only affects the part of the state which contains the signal. For the signal component, the same
approximations are made as in the white noise case. Using A; as defined in Equation 3.24:

a OF(x,w)

Ay
DW X=Xy ’

the combined state-transition matrix:

A, 0
A et (3.42)
0 A,

is defined. The EKF can now be found for the combined state-space representation by replacing

the time-update equations in Formula 3.3 with Formula 3.4.

& =Fo(€pi,w,wy) (3.43)
P, = Aci-1Pio AL, + B.V.B] (3.44)

Formula 3.4: The extended Kalman filter time-update equations for colored measurement noise.

3.3 Weight Estimation

The estimation of model parameters from noisy data is a fairly difficult task, and is discussed later
in this chapter. However, just as the signal can be estimated when the weights are assumed to
be known, the weights can be easily estimated when the signal is known. This standard weight

estimation problem is useful for iutroducing the Kalman and extended Kalman weight filters, as
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well as several key concepts which a central to the development of the dual Kalman filter. In a
MAP estimation context, the weight estimate W is desired which is most probable given the signal

{z:}* up to and including the present time k. This is formally expressed as:

Wi, = Qg IaX Py k- (3.45)

3.3.1 Batch Estimation

Pk |w Pw - . . . - . .
Applying Bayes rule: Pwixt = —'p'k—, and assuming the prior p,, is uninformative, indicates that

1

maximizing Pw|x is equivalent to maximizing Pxck|w+ According to Appendix A, the density Ok |w

can be expanded as:

1 a (zt -z
Pxbiw = G (o) === €XP ( ; : 20; )’ ), (3.46)
where ; = f(x4-1,... ,o1-n, w). Taking the negative log gives the batch cost function:
J(w) = i(log(?waz) + M) (3.47)
v 2 )

t=1
where the log term can be dropped because o0 is assumed independent of w. This leaves the sum

of the squared prediction errors, normalized by the process noise variance o2:

koo
Jw)=Y" (“Uiff)z (3.48)
f=1 v

Minimizing this batch cost with respect to the weights produces such algorithms as least squares
[29] in the linear-model case. and batch back-propagation [72, 95] for neural network models.
However, these learning algorithins are not appropriate for use in on-line applications. Al-
though sequential approaches can be derived as variations of the batch algorithms (e.g., recursive
least squares (RLS) and “stochastic” hackpropagation), a more rigorous derivation of a sequential

algorithm within the MAP framework is provided next.

3.3.2 Sequential Weight Estimation

To develop a sequential MAP learning procedure, the density to be maximized is expanded as:

» he—1
w g wix)|

= Dnbd -,fvtle—l L, (3.49)
-

1

Pw(x¥

Because pyt is not a function of w, the MAP estimate can be obtained by maximizing the first

two terms in the numerator.
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If the process noise vy, is a white Gaussian zero-mean process (assume no measurement noise

in this section), then these terms evaluate to:

D S A €T z; )?
Pawlxi ™! = Tz P 202
1 1 . N— -
o (5 T @) W) ), (350)
V27197
where vy = Elzg|{z}f ™", w] and Wi £ E[w|{z.}}™"],
and where Q; 2 E[(w— W )}(w— W;)Tl{zt}f_ll-

Taking the negative log gives the following cost function:

(xp — 2, )?
o}

J(w) = +(w = W) T(Q) H(w ~ W), (3.51)

which can be minimized with respect to w to produce the desired MAP estimate. The first term
is the instantaneous squared prediction error. The second term in the cost keeps the new estimate
close to the prior estimate W, which is based on the previous data. The prior covariance Q,
determines the distance metric used to define “close”.

Note that the cost in Equation 3.51 is equivalent to the batch prediction error cost in Equa-
tion 3.48. However, by reformulating the cost in terms of the prior statistics W, and Q, , a
recursive procedure can be derived: the prior weight estimate W, and covariance Q, must be

determined from the posterior statistics at the previous time step.

Linear Model
Measurement Equation for Weights

The case of a linear model is considered first: z, = w,{xk_l + vg.

State-Space Representation for Weiglts

When developing a recursive weight estimation procedure, it is convenient to give the weights their

own state-space representation. This is done by modeling the weights as a stationary process:
Wi = Wi + U (3.52)
&y = W;{Xk_l + U (353)
Note that the state transition matrix is identity, and that a Gaussian process noise vector u; has

been added with covariance E[uzu}| = U, and cross-covariance E[uzu;] = 0 Vk # j. When

U = 0, the weight process is a coustant deterministic process; otherwise, it is a random walk.
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Even though the weights are not typically believed to undergo this sort of stochastic variation, the
process noise uy can be useful for increasing the tracking ability of the weight estimation filter.
Roughly speaking, the larger the covariance Uy. the more quickly older data is discarded; this

relationship is described more fully beginning on the current page.

Using this model for w; gives:

Wi = B[l wiey {1 (3.54a)
= Wi (3.54)
Qi = El(w — W) (w — W) Tz} 7). (3.55a)
= E[(we_y +ug — Wi ) (We—p + 1y — Wi )T |{z 5. (3.55b)
= Qp—1 + Uy, (3.55)

which gives the prior mean and covariance in terns of the posterior mean and covariance from the
previous time step. To complete the recursive procedure, Wy, and Qj must also be calculated from
W, Q. , and the new measurement .

The measurement equation (3.53) expresses the known signal z; as an observation on the
unknown weights wg. Note also that the known signal state x;_; can be interpreted here as
a time-varying parameter vector. Together. Equations 3.52 and 3.53 constitute a state-space

representation for the weights.

Kalman Weight Filter

Using this state-space representation, a Kalman weight filter can be derived from the MAP per-
spective to minimize the cost J(w) in Equation 3.51. The derivation is provided in Appendix C.2
and closely parallels that given in Appendix C.1 for signal estimation. The Kalman filter equations
for recursively generating prior and posterior estimates and error covariances for the weights are
compiled in Formula 3.5 on the following page. The algorithm can be viewed as a generalization

of the popular recursive least squares (RLS) algorithm for linear parameter estimation [29].

Recursive Least Squares

More precisely, RLS is a special case of the Kalman weight filter when the covariance, Uy, of the

process noise is constrained in a certain way. Specifically,

Ui = (A" =1)Qu-1, where X € (0,1], (3.63)
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Initialize with:

wy = E[w] (3.56)
Qu = E[(w — Wo)(w — Wo)"] (3.57)
For k € {1,... ,00}, the time update equations of the Kalman filter are:
Wi =W (3.58)
Q, = Qi1 + Uy (3.59)

and the measurement update equations:

KY = Qpxe-1 (3, Qp xk-1 +07) 7 (3.60)
Wy =Wy + Kz — x{_;W)) (3.61)
Q= (1-K!'x_)Q;. (3.62)

Formula 3.5: The linear Kalman weight filter equations.

causes Equation 3.59 to be replaced by

Qp =2'Qu-1, (3.64)

which prescribes that the prior covariance should be larger than the posterior covariance by a

certain percentage, rather than by an additive amount Uy. By defining:
1 . Ao -1
B 2 (=Q) = (_ng-H) ’ (3.65)
al a?

it is shown in Appendix C.2 that Equations 3.60-3.62 are equivalent to the RLS equations:

Tr = Ao + Xem1XE (3.66)
Bk = Aﬁl\t"l + Xr—-1LE (3-67)
Wi =X, '8, (3.68)

These equations imply £y = S M “'x, ;xT | and B, = Y% M~tx, ;z,. In RLS, X is
often called the forgetting fuctor becanse it controls the time constant of an exponential window
over the data (see Figure 3.3). When A = 1, all of the past data is weighted equally. The same
effect is produced by U, = U in the Kalman weight filter (no process noise for the weights). This
relationship motivates the use of process noise; non-zero u; conveys the idea that the data in the
distant past is no longer relevant for modeling the current dynamics. This enables the algorithm

to effectively “forget” data in the past, and increases the algorithm’s ability to track a changing
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Figure 3.3: The gain produced for the data at times t < k by various forgetting factors A. Values
displayed for k = 1000. The time constants can be computed as 7 = —1/log(}).

system. However, this will also increase the variance of the weight estimates, because less data is
being used.

The RLS algorithm is only equivalent to LS as k — co, because RLS must be initialized with
a positive-definite matrix Xy = ¢2Qy ! The determinant of Xy must be large enough to produce
a well-conditioned inversion in Equation 3.G8. but small enough so as not to bias the result. From
Equation 3.65, these comments also shed light on the role of 62 and Qg !in the Kalman weight
filter: their product should be chosen to give stable weight updates during the first few time-steps,
without unduly biasing the estimates w;. This issue is explored experimentally in the context of

dual estimation in Chapter 4.

In the general context of parameter estimation, using A < 1 is appropriate whenever the data,
exhibits some amount of nonstationarity. In this situation, either the weights, w, or variances
are drifting with time in some unspecificd manner, so that older data do not accurately reflect
the current model parameters. This parameter movement is appropriately modeled by a process
noise term in the state-space equations for the parameters. However, too small a value of A limits
the amount of data being used to estimate the parameters. This increases the variance of the
parameter estimates, making them less accurate.

In the context of linear parameter estimation on clean data, an analytic expression can be
derived for the optimal value of A, given information about the degree of nonstationarity [29]. This
expression trades off error due to variance in the parameter estimates (called noise misadjustment)
and error due to insufficient tracking (called lag misadjustment). However, it requires knowledge
of the rate at which the system is changing.

Alternatively, rules for adapting A can be derived. Other approaches in the literature are to
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define Uy, as a constant diagonal matrix [67], to cstimate it from a moving average of the prediction
errors [81], or to change it according to an annealing schedule [18]. However, these alternatives are

not considered in the context of this thesis.

Nonlinear Model
Nonlinear State-Space Representation for Weights

For nonlinear models of the data, the state-space equations for w become:

Wi o= Wy +uy (3.69)

2 = f(Xpo1, Wi) + Uk (3.70)

where the measurement equation is expressed in terms of a nonlinear observation on wy, parame-

terized by the signal-state x,_,.

Extended Kalman Weight Filter

The weights of the nonlinear model can be estimated by applying an EKF to the nonlinear state

equations (3.69-3.70). This requires lincarizing the model with respect to the weights:

, T
H, & Of (xi-1, W) (3.71)

ow w=wl

in order to calculate the Kalman gain and update the covariance. The measurement update
equations in Formula 3.5 are replaced by Formula 3.6. The EKF for training neural networks was
initially proposed by Singhal and Wu ([77],1989), and has been successfully applied and enhanced

by numerous authors.

Ky = Q Hj (H;Q Hf +0%)™! (3.72)
Wi =W, + KY (zy — F(W, ,Xp—1)) (3.73)
Qi = (I-K['Hy)Q; . (3.74)

Formula 3.6: The extended Kalman weight filter measurement-update equations.

Modified-Newton Method

The weight EKF can be interpreted as a modified-Newton optimization method [48], which per-

forms an approximate second-order search over the surface of the squared-prediction-error cost
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function. To see this, note that the weight update
Wi = W+ K (2 — f(W,Xp-1)) (3.75)
can be rewritten (using Equation C.49 in Appendix C.2) as

Wi =W+ QuH 07 (o — (Wi, %5-1))- (3.76)
Also, an alternative form for the covariance recursion is derived in Appendix C.2, as:

= ((Q7)! Foy Hy) (3.77a)
= (A'Qp-1)"t + HY 0,2 Hy. (3.77)

In a modified-Newton algoritlun, the weight update takes the form:
Wi = wi — S J (W) (3.78)

where ¥, J is the gradient of the cost J with respect to w, and Sy is a symmetric matrix that
typically approximates the inverse Hessian of the cost. Both the gradient and Hessian are of course
evaluated at the previous value of the weight estimate, W .

If J is the batch form of the squared-prediction-error cost in Equation 3.48 on page 55:

k
Z -Lt_f(xt 1, W )) (3.79)

f=1I

then the gradient and Hessian are given as:

k
N = =23 Hfo7?(z; - f(W,%1-1)), (3.80)
t=1}
k
and I =2 Z H7072H, + 0(2), (3.81)
t=1

where o(2) represents terms involving the second derivative of the cost with respect to w. For a
linear model and the prediction-error cost, 0o(2) = 0.

Equation 3.77 can be rewritten in closed form as:
k
Q' =2Qit +2) MHT 0 ?H,, (3.82)
t=1

to express Q,:l as a first-order approxiination to (one-half) the Hessian. Furthermore, the expres-

sion HY 072(x, — f(W; ,%4—1)) in Equation 3.76 is an instantaneous (or stochastic) approximation
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to (one-half) the negative gradient; equivalently, it is the negative gradient of the instantaneous

cost: Jp = %0;‘2(-’13:; - f(W,XA»—l))z-

The EKF weight-update expressed in Equation 3.76 can therefore be interpreted as an on-line
form of the modified-Newton optimization scheme for minimizing the batch prediction error cost.
The scale factors of % cancel out in the weight update. Note that whereas the vectors H; used
to build up the inverse covariance in Equation 3.82 are evaluated using a different value of W; at
each time step, Qy is therefore ouly an epproximation to the inverse of the first-order Hessian. All
of the values of Hy in the true Hessian expressed in Equation 3.81 should be calculated using the

same value of W .

Typically, the weight covariance is initialized as Qo = ¢-I, where ¢ is a positive scalar reflecting
the expected numerical range taken by the parameters, and I is the identity matrix. If the time-
series data has been normalized to unit variance, then it is usually reasonable to assume unit

variance on the parameter values (¢ = 1). However, the value of o2 can influence the choice of q.

The prediction error variance o? scales both the approximate gradient and approximate Hessian
terms, so it effectively cancels out of the weight update. However, because it acts as a scaling term,
o2 will determine the relative influence of the initial covariance Qo on later covariances Q;, for
k> 0. When A = 1, Equation 3.77 can be written equivalently as 02Q; " = 02(Qs—;)~! + HT Hy,
so that when o2 is small, (Qo)™! should be large to keep ¢2(Q;)™! invertible. The situation is
similar to the RLS initialization in the linear case, where the condition number of 62(Qq) ! is also
crucial. A small value of ¢ will cause Q;* to have large diagonal values and produce more stable
(lower variance) behavior, but this will bias the estimates Wy for small times k. Ultimately, then,

the choice of ¢ will depend on the variance of the process noise 2, and the variance of data.

Observed-Error Form

The preceding paragraphs demonstrate that the weight EKF provides a modified-Newton opti-
mization algorithm for the squared-prediction-error cost function given in Equation 3.79. This
result can be readily generalized to produce recursive algorithms for minimizing other batch cost
functions, by simply rewriting the observation equation for the weights. The basic idea is presented

by Puskorius and Feldkamp [67] for minimizing an entropic cost function.

From the standpoint of the modified-Newton update, the exact choice of state-space represen-

tation for the weights is irrelevant, so long as good approximations to the Hessian and gradient
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are generated. Therefore, consider reformulating the state-space representation for the weights as:

Wi = Wiy + Uy (383)

0

N

—€f + Tk (3.84)

where 7}, is a measurement noise term with variance o2 = %, and the target “observation” is fixed
at zero. The measurement function —¢; is chosen according to the cost function to be minimized,
such that ele;, = Ji. However, this alone does not uniquely specify ex, which can be vector-valued.

Applying the alternative form of the Kalman weight filter update (in Equations 3.76-3.77) to

the observed-error state-space representation, gives:

Wi = Wi + Qo HE L0720 + e), (3.85)
Y

where H,; 2 2(_5_‘;"_) s (3.86)

and Q7 = A\ 'Qop—1) " + HE 1o Ho . (3.87)

The error ¢ is chosen such that Hf) O 2o, and Qo produce the negative gradient and inverse
Hessian of the desired batch cost®.
In [67], Puskorius and Feldkamp propose using this observed-error filter to minimize an entropic

cost function?. The instantaneous cost is:

Ji = 2log (3.88)

L+ yid’
where ¢ represents the output of the model at time k. The observed-error and its negative

derivative are defined as e; = /.J;.. and

H()J\‘ = 1 Yk : %gk (389)

JEL 4 yrie)
to perform minimization of the entropic cost.
Returning to the prediction-crror cost of Equation 3.48, let e, = v/ Jx = (zx ~ f(Xk—1,Wi)) /0w,
so that
LG = S ke ) = -, (3.90)
2 Tk Ty Ty

and Q;i approximates ZZfV: L H7o7?H,. Hence, Qo1 = 2Q, giving the same approximation

Ho,k -

to the inverse Hessian as before, and HZ:A,U,TZC;, = 2HY 0 %(zx — f(xk—1,wWy)) is the negative of

3While —szafzck gives the exact gradient of Jg, Q;i is a recursive approximation to the first-order part of
the Hessian.

4In [67], the outputs are constrained to be +1, and the cost allows for models with multiple outputs, but this is
not important here.
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the instantaneous gradient. The observed-error formulation for the prediction-error cost function
therefore gives the same update as the standard Kalman weight filter in Formulae 3.5 and 3.6.
Moreover, by using the observed-error representation of the weights, a sequential weight esti-
mation procedure can be designed for any cost J that can be written as a sum of instantaneous
costs J;. The only changes to the standard weight EKF are a redefinition of the error as e; such
that e,{ek = Ji, a corresponding use of the output error derivative, H, &, and the replacement
of o2 with 62 = }. This last substitution means the initial weight covariance Qo can now be
chosen independentfy of o2. However, the primary advantage of the observed-error form is that
any cost J; can be minimized, so long as it is differentiable and nonnegative. As will be shown in
Section 3.5, the dual Kalman filter relies on this form of the weight filter for minimizing many of

the cost functions derived in Chapter 2.

3.4 Joint Estimation

Section 3.2 considered the problem of estimating the signal from noisy data when the model
is known, and Section 3.3 considered the problem of estimating the model when the signal is
known. The present section addresses the more complex problem of estimating both the signal
and the model from noisy data, when neither one is known. Here, the two unknown quantities
are estimated by combining them in a joint state-space representation; the dual Kalman filtering

approach, which treats them separately, is described in Section 3.5.

3.4.1 Joint Kalman Filtering — White Noise Case

Recall the joint cost function from Equation 2.11 on page 23. derived in Section 2.3:

N 3 p —:i— b
J(xN, w) = Z((yk —‘.’Lk)z N (zr — & )z)’

2
Jo= n U‘U

which can be minimized to produce the most probable estimates of the signal {z;}) and weights
w given the noisy data {ys}].
However, in a sequential MAP estimmation context, only the current estimates #, and W are

desired, rather than an estimate of the entire signal. This goal is formally written as:
(g, Wi) = arg DIAX Py k- (3.91)

The sequential estimates Zn and Wy defined in this way will also be optimal with respect to the

above batch cost function, as desired.
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The previous two sections showed that sequential estimation procedures can be produced in-
dependently for z; and w by first creating a state-space representation for each. To generate MAP
estimates of x;, and w simultaneously, it is useful to define a new joint state-space representation.

Defining:

X
Z, = » , (392)
Wi

it is clear that maximizing the density p, ,» is equivalent to maximizing Py - Hence, the
MAP-optimal estimate of z, will contain the values of z; and wy that minimize the batch cost
J(x¥,w). Furthermore, the resulting state-space representation for z;, enables the development of

a sequential estimation procedure.

Linear Model

To develop the joint state-space representation, first assume a linear model of the data:

€ = w{xk_l + vg (3.93)

Y = Tg + N, (3.94)
where, as before, the weights are modeled as a stationary stochastic process:
Wi = W1 + Ug. (395)

Joint State-Space Representation

The state-space equations for the joint state are:

zp = Flzp-y) + B(vk,up) (3.96)
Xk _ .A,k_j B- Vi
Wi 0
Y = C - Zg + Ny (3.97)
Xk
Y = [C 0o - O] - + N

Wk

Wi
where, as before: A; 2 [I U} . While the above system looks linear in form, the multiplication

Aj_1 - xp_y represents a nonlincar (or more precisely, bilinear) function of the joint state, z_;.
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This precludes the use of the Kaliman filter for state estimation, even though the form of the model
was assumed linear. However, an EKF can be applied to generate approximate MAP estimates of

the signal and weights. This approach seems to have been developed first in [38, 12].

Joint Extended Kalman Filter

To apply the EKF, F(z;) must be lincarized with respect to the joint state zy, evaluated at the

estimate Z;. Using the definition:

_ E W] [
— a OF(z k
A2 a() = 0 0f|=][T 0 0o o]l (3.98)
z =7,
0 I 0 I
and introducing the joint noise covariance:
— & By Ba2BT 0
V= Cov = (3.99)
. 0 U

the derivation of the joint EKF is exactly analogous to that of the standard Kalman filter given

in Appendix C. The equations are given in Formula 3.7.

Initialize with:

i(] = E[ZU] (3100)
P[) = E[(Zo - i())(Z() - io)T] (3101)
For k € {1,... ,00}, the time update equations of the Kalman filter are:
2, = F(z4-1) (3.102)
Py = A Pr A, +V, (3.103)

and the measurement update equations:

K, =P;C (CP;C' +02)™! (3.104)
2, =2, + Ki(yy — C2)) (3.105)
P, = (I-K,C)Py. (3.106)

Formula 3.7: The joint extended Kalman filter equations.
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Nonlinear Model

When the time-series is generated by a nonlinear AR process, the only change in the joint EKF

comes from redefining F(z;_;) in Equation 3.96 as:

F(xp_1,Wg-1)

Fzi_,) & (3.107)
Iwp)
and consequently letting:
Of (X, W T X} , W T
_— A H, Uf(gil ) Bf(a‘:ev, )
— z k
A2 — = 0l|= 10 00 : (3.108)
Z Z=2Z},
0 1 0 I

Each of these definitions is consistent with thie linear-model case; using them therefore allows the
joint EKF algorithm in Formula 3.7 to be used for both linear and nonlinear models.

Note that because the gradient of f(z) with respect to w is taken with the other elements
(namely, %) fixed, it will not involve recursive derivatives of X, with respect to w (see Section 3.6.1
on page 102). This fact is cited in [45, 47] as a potential source of convergence problems for the
joint EKF. Additional results and citations in [61] corroborate the difficulties of the approach,
although the cause of divergence is linked therein to the linearization of the coupled system, rather
than the lack of recurrent derivatives. Although the use of recurrent derivatives is suggested in
[45, 47, there is no justification for this from the standpoint of minimizing the joint cost function.
Furthermore, no divergence problems were encountered by this author during preparation of the

experimental results in Chapter 4 when using non-recursive derivatives.

3.4.2 Joint Kalman Filtering — Colored Noise Case

As discussed in Section 3.2, when the measurement noise is colored, it must be estimated as though
it were a second signal. The joint cost function for colored noise was given in Equation 2.29 on

page 30 as:

N (k- 27 ) ng —ng )
J(xl“',n{*’,w):z((””‘ o k)l), (3.109)

2 2
k=1 0" UUn

which when minimized subject to the constraint {yx}V = {24}V + {nx}}’, produces the most
probable estimates of the signal, noise, and weights given the data. However, the goal of sequential

estimation is to find current estimates .7, and wy such that:

(&4, g, W) = arg (JNAX Dy wlyh- (3.110)



68

k¥ w) used with data

These estimates are optimal with respect to the batch cost function J(x¥,n
up to time £.
As in the white noise case, a state-space representation facilitates the development of a se-

quential algorithm. This time, define the joiut state vector as:

Xy €
G2 | = (3.111)
Wi
Wy,

Maximizing the density Py with respect to ; will produce the desired Zj, fix, and Wy that

minimize J(x¥, n¥, w).

Linear Model

Starting with the linear-model case, the signal is assumed to be generated by the AR process of
Equation 3.8, and the measurement noise is generated by a similar AR process (given in Equa-

tion 2.23).

Joint State-Space Representation - Colored Noise

The estimation of {, can be done recursively with an extended Kalman filter by writing the

state-space equations for the joint state:

Cl; = —F—(‘(Cl\'—l) + —B_C('Ukavn,kvuk) (3'112)
Ek _ A(‘,I.‘-—l 0 . ek—l + Bc *Vek
Wy 0 I Wko1 uy
Y = C. -Gy (3.113)
£,
mw=[c c, oo
Wy
where, as before: A & [A¢ Aou ], where A, is given in Equation 3.24 on page 50. Hence, as

in the white noise case, the multiplication A, _; - x;_, represents a bilinear function of the state,
€r—1- The state equations are therefore nonlinear, and an extended Kalman filter is needed for

estimation of the signal, noise, and weights.
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To apply the EKF, F.(¢,) must be lincarized with respect to the joint-state ¢, evaluated at the

estimate é’ ;- Using the definition:

f(T
— A k
- JF (C) c,k
Pay IS
= —2 = 3.114
o aC ¢=¢s 00 ( )
0 I
and introducing the joint noise covariance:
B BolBT 0 0
— Vek
Ver £ Couv ‘=1 0 B.2BT o0 (3.115)
uy, "
0 0 U
allows the derivation of the colored noise joint EKF shown in Formula 3.8.
Initialize with:
o = E[¢,] (3.116)
Py = E[(¢o ~ ¢o)(¢o — Co)T] (3.117)
For k € {1,...,00}, the time update equations of the Kalman filter are:
Ce =Fe(Chy) (3.118)
— el —T —_—
Pk = AC.I.:-IPA:——lAC’k-q + chk (3.119)
and the measurement update equations:
= P S, -1
K, =P, C.(C.P,C, +0) (3.120)
¢ =G + Kilyw — Cely) (3.121)
P, = (I1-K,C.)P; (3.122)

Formula 3.8: The joint extended Kalman filter equations for colored measurement noise.

Nonlinear Model — Colored Noise

When the time-series is generated by a nonlinear AR process, the only change in the joint EKF

comes from redefining F.(¢, ) in Equation 3.96 as:

_ Fo (X1, Wi
F.(Co )2 [ Ok, Wk 1)}

I wiy

(3.123)
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and consequently letting:

- T
_ A H;, A, 0 %g{;’—wl
- 3FC(C) ek
A= , = o |l=1l0 Anx 00 . 3.124)
T o=z, ik (
0 I 0 I

Both of these definitions are consistent with the linear-model case.

3.5 Dual Kalman Filtering

In the previous section, the joint EKF algorithm was described as a method for sequentially esti-
mating both the signal and the model from noisy data. Because the joint cost function is a highly
coupled function of its arguments, the joint EKF estimates the signal and weights simultaneously
by combining them in a joint state-space representation. In this section, an alternative algorithm
called the dual extended Kalman filter is developed by decomposing the problem into separate
signal-estimation and weight-estimation coniponents.

One powerful advantage of the dual EKF is that it can be applied to a variety of estimation
cost functions. That is, the various costs derived in Chapter 2 can all be minimized sequentially
by dual EKF algorithms. Although some costs do not require it, this is accomplished most gen-
erally through the observed-error form of the weight filter, described in Section 3.3.2. The joint
EKF presented in the previous section lacks this flexibility, and can only minimize the joint cost
J¥ (%, w). The various cost functions and their observed-error variable definitions are presented
throughout this section; Table 3.1 provides a sumimary. The form of the algorithms differ slightly
for white noise and colored noise cases, so they are treated separately, in Sections 3.5.1 and 3.5.2,

respectively.

3.5.1 White Noise Case

Section 2.3 derived the joint cost function for estimating {z;}) and w in the presence of white

Gaussian measurement noise as (fromn Equation 2.11):

AY

P wy = 3 (sl o m)y

2 2
k=1 T Ty

where z; = E[xi|{z,}¥", w] is the optial prediction, and is a function of both the signal and

weights: o = f(zp—1,... ,Tk—n, W).
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Table 3.1: Summary of the observed-error formulae for the various weight and variance cost functions
minimized by the dual Kalman filter. When equations differ for the colored noise case, formula numbers
are enclosed in parentheses.

Name of Cost Symbol Formula Page
joint, weight JIEN,w) | 3.9(3.22) | 73(91)
£ | joint variauce Ji{(o?) 3.11(3.23) | 76(92)
2 | error-coupled weight Je(w) 3.14(3.24) | 81(94)
error-coupled variance | J¢¢(g?) 3.15(3.25) | 81(95)
prediction error JPe(w) 3.16(3.27) | 84(98)
'S | prediction error Jre(a?) n.a. 84(98)
% | max. likelihood J (w) 3.17 84
§ max. likelihood J (%) 3.18 85
EM weight J(w) | 3.19(3.28) | 88(100)
EM variance J(a?) | 3.20(n.a.) | 89(100)

Decoupling with Direct Substitution

As discussed in Chapter 2, a common approach to minimizing a multivariate cost function is to
optimize one argument at a time while the other argument is fixed. This can be done in an iterative
framework (see Figure 1.5(a) on page 10) by first minimizing J7 (%), w) with respect to w to
produce W, and then minimizing J/(x¥, W) with respect to xI¥ to produce %¥¥, and repeating until
the algorithin converges to a final set of estimates. Denoting the iteration index as i, the iterative
approach can be viewed as a minimization of two sequences of cost functions, {JJ (%}, w)}®,
and {J9(xN, W)}, each of which converges to the cost JI(x,w) as the estimates ) and W
converge to their true values. The crrors-in-variables (EIV) framework in the statistics literature

[75, 87] is an example of this iterative approach, and is described briefly in Appendix G.

In sequential dual estimation, on the other hand, a different cost function is effectively used at
each time-step k. For a sequential approach, only the current state Xj is optimized with respect
to the current cost JJ(x¥,Ww;); the sequence of costs {J9(x¥,Wy)}22, is used to generate the
sequence of signal-state estimates {X;}722,. Meanwhile, these signal estimates are used to generate

a sequence of weight estimates {W; }3°, from the sequence of costs {J7(XF, wi)} 2.

Hence, the estimates of the signal-state and weights are generated simultaneously, with the
estimation of each quantity depending on the estimate of the other, as shown in Figure 3.4. As
discussed in the following paragraphs. Kalman filters can be used for both the signal estimation and

weight estimation components, resulting in the dual extended Kalman filter family of algorithms.
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Figure 3.4: In sequential dual estimation, the signal and weights estimates are produced concurrently,
with the estimation of each quantity depending on the other.

Signal Estimation
To estimate x, the cost J/(x, w) is evalnated using the weight esiinates {w; }4. This is similar

to the batch cost iy Equatton 2,12 on page 244, excepr thai a sequence of weight esthinates is used,

rather than a single w:

s / 12 . P 44
g i =\ \_Jj.:_ - Iy (,Fr - ,J,, )
S (xl\\\k)~_2(~---—()_,_j + s :
{=i 7 v
where the prediction is: &7 = f(x,.,.w, ). This is also 1dentical to the signal-estimation cost

.l(xi‘) given on page 44, except that the known, fixed weight vector w has been replaced here by
the time-varying sequence of weight cstnnates. {w; }‘l Section 3.2 showed that a Kahnan filter
produces sequential estimates X, that muniwize J(x4). Hence, given weight estimates {w,; }¥, a
Kalinan filter (or EKEF) wall pradnce thie stare-cstinate g that 1s optimal with respect to the

ahove cost.

Weight Estimation
The weights w are estimated v wiinnzing the joiue cost JY (x4, w), evalnated using the signal
estinates {f,}j This is given by Egnarion 2.3 on page 24, 1estated here for data up to the

currvent time k:

L N - wm N D
(y, — )% T, — ;)
SN wy = 2 (“/ > +( ! .)l) )
- N T T
where £, = f(X;—,.w). Thee is no nmucdiate restricsion here on how the signal estimates are

found; however, this cost wili generally only be nsetul for weipht estimation if {ll}f are chosen to
be a function ol w. 1f e estinates 7 are not considered to be a function of w, then the cost
function reduces to the second term alone. and is essentially a prediction-error cost on the signal
estimates. This shmplificd joint cost is expressed as J7 (XY w) in Equation 2.14 on page 25, and

1s also identical to the wetght-csthuation coxt J(w) given in Equaiion 3.48. except that the clean



73

signal x; has been replaced by estimates. The Kalman weight filter of Formulae 3.5 and 3.6 can be
directly applied using {%,}}. However, this procedure is somewhat risky, as there is no guarantee
that £ is at all related to the data.

On the other hand, if Z; and & are produced by a linear or extended Kalman filter, as
described on the previous page, then both terms in the cost function are used. In this case, both
Ix and & are recursive functions of the weights. To minimize the full cost function Ji(xk,w), a
special two-observation form of the weight filter is used. An equivalent version of this filter appears
in [60]; however, the observed-error form is shown here for consistency with dual EKF variations
throughout this section.

The observed-error form of the Kalman weight filter — described on page 62 — can be used by

defining the instantaneous cost as:

22
2 - 52 2 :
Y — &Ly €Ty — . [ T
Ji = (i - ‘) + (2 — ) ,or Jp = —% + —g, (3.125)
7. gz In Oy

where ey, £ (y, — &) and &4 £ (&), — £} ). Hence, Zfl Ji = JI(%Y  w). The gradient and Hessian
are shown in Appeundix E, and can be approximated as described in Section 3.3 by defining a

vector form of the observed-error. This is shown along with its negative derivative in Formula 3.9.

L
2

This gives efek = Ji, as required. Letting 02 = L .1, the negative gradient is produced by

a |0, € . . .
= [ "z ] ,  with negative Jacoblan H,; = — [

a1 ey ]

o, 1T 2]

Formula 3.9: Joint cost function observed-error terms for dual EKF weight filter.

HOT Or 2¢, = =N Ji, as shown in Appendix E, and a first-order approximation to the instantaneous
Hessian 2 Jy is given by: HY 07?H, ;. Although alternative formulations of the observed-error
(such as e, = /J;) will produce the correct gradient, they will not produce a good approximation

to the Hessian. The derivatives contained in H, ; evaluate as:
wer = Nk, and Wiy = (Mede — Wiy), (3.126)

and so must be computed recursively; the derivatives of Z; and Z, are computed through the
recurrent Kalman filter structure. Because these computations are the same for any of the dual
Kalman filter variations, this procedure is described in Section 3.6.1 on page 102.

Combining the signal estimation filter and weight estimation filter produces the dual Kalman
filter, presented in Formula 3.10. The algorithm is shown schematically in Figure 3.5. As described
in the rest of this chapter, the algorithmm can be applied to other cost functions by redefining Ji,

ex, and H, ; as needed.
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Figure 3.5: The dual extended Kalman tilter. The algorithm consists of two EKFs run concurrently,
The top EKF generates signal estimates, and requires w; _; for the time-update The bottom EKF
generates weight estimates, and requires x,_.| for the measurement vpdate.

Variance Estimmation

When the variauce tetws ;) and o2 wre not kuow, they can be estimated by nmiinimizing the cost
function given in Equation 2,15 on pape 2301 epeated below:

2
L E4
’ Oﬂ,

L/ 0 — )2
JH{o?) = Y‘(lumgmi) L (o =307

If the dependence ol the sigual estimates 2y and predictions ;7 on the noise varjances is
ignored, then either of the vatlunees (0% = 73 or 0% = 05) can be found by minimizing only the
terms in which it appears. Tu either case, 87 s the average of the quadiatic term in the appropriate
numerator. This ad hoc approach o cstiuatbiy the noise varlances from the average of squared

1]
i

error terrs has Leen reported elsewhere §62. 81, but s not regarded in the literature as a reliable
method for variance estimation.

Io realivy, doth the sipnad estimates and predictions will be functions of the noise variances,
so the cost function cannot be minimized so casily. As with the weight filter, a modified-Newton

agorithin can be found for cach variiuee by usine an observed-ervor form of the Kalman filter and

modelng the valiances as.

rr-f_: | = Jlf_ + U (3-137)

U=y + g (3138)
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Initialize with:
Wy = Elw], Qo= E[(w — Wo)(w — Wwo)T]
)A{U = E[Xu], P() = E[(Xo - )A(o)(XO bt )A{())T]

For k € {1,... ,00}, the time update equations for the weight filter are:

W, = Wi (3.127)

Q; =Qi- + Uy =A71Qu-y (3.128)
and for the signal filter are:

X, =F(Xp-, W) (3.129)

P; = A, Po A, +BolBT (3.130)

The measurement update equations for the signal filter are:

K = P;CT(CP;CT +o2)~! (3.131)
%, = %7 + Ky (yp ~ Cx7) (3.132)
P, = (I - K, C)P; (3.133)
and for the weight filter are:
K = Q/H] ,(Ho QH], + 7)™ (3.134)
Wi =wp + K)o (3.135)
Q= (I-K{'H,.)Qy . (3.136)

Formula 3.10: The dual extended Kalman filter equations. The definitions of e; and H, ; will depend
on the particular form of the weight filter being used. See the text for details.

which gives a one-dimensional state-space representation. Introducing the notation ¢,, = log(2702)
and £, = log(2mo?), the condition ¢}&, = J; is satisfied by defining the observed-error as in

gl 952
Formula 3.115. The derivatives 32 and g‘;—.& evaluate to either O or 1, depending on whether

o2 =02, or 02 = g2, The other derivatives:

Oek (').fl, O%k
=== and — =(

Oy 8&;
da? Jda?’ da?

1] (3.139)

5Note that some elements of ¢, will generally take on complex values because the log terms that appear in the
square root can be less than zero. [lowever, the gradient and approximate Hessian will be real.
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—~L
o

[

er = 1|, with uegative derivative H, ) = A0

(6,)"2 8o

2 ol 60% 2

Z i do
3 T

* 37 5ot

1
2
dey
,,Er‘% (o2
_1
p)
I
~ 50040

v

Formula 3.11: Joint cost function observed-error terms for dual EKF variance filter.

must be computed recursively, as described in Section 3.6.1. If these recursive derivatives are
ignored (set to zero), the algorithm minimizes the ad hoc cost described above, instead of the full
cost of Equation 2.15.

. o > —2e  _ady
As shown in Appendix E, H, ;0,778 = —534

produces the exact negative of the derivative.
The second derivative is approximated by ﬁi ka.,f'ZI:L,,k; this gives nearly the exact first-order part
of the Hessian as long as {,, = d2/(3¢} — 202%) and €, = o2/ (3;2‘2 — 202). These values can be
substituted directly in the expression for ¢, and H, 1 in Formula 3.11; while this seems to contradict
the earlier definitions of ¢, and #,,, the situation is not so bleak. Consider for a moment adding an
offset log(a) + log() to the cost Ji; this will have no effect on the optimization process. Such

a constant might be added by changing the base of the log functions, or equivalently, by making

the following redefinitions:
(o & log(ay, - 2n07) € = log (7 - ZWU;Z,), (3.140)

In principle, ay and ;. can be chosen arbitrarily at each time &, so values can be selected such that
the required conditions are met. Fortunately, actual values for a4 and -y, need not be computed.
Instead, the required values can be directly substituted for £, and ¢, in the expressions for ¢; and

H, ;.

905[[/ e |
!

+ - p
:
{

Q. U'B ; 1‘2 14 ‘TG 'TE 2
2n0
Figure 3.6: Effect of scaling parameter «v on the log function. The solid curve shows log(2ma?), while
the dotted curve shows log(c - 2ra?), when « = 0.6. When 270? = 1, the log is effectively moved
from a value of 0 to —.—12-, with no change in the slope.
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Initialize with:

62 = Elo®, a0 = El(0® — 53)(c* - 63)"]

The variance estimation filter is shown in Formula 3.12. For & € {1,...,00}, the time update
equations for the variance filter are:

02, =67, (3.141)

- . , /1
G = qi-1+ 0%,  op= (— - 1)Qk-1 (3.142)
and the measurement equations are:
=1, 7T 273 -t
g = ((¢7) + AT o7 Hk) (3.143)

6t = 0% +q B 07%, (3.144)

Formula 3.12: The variance update equations. The definitions of ¢; and I:Ia,k will depend on the
particular form of the weight filter being used. See the text for details.

Note that the dimension of the state-space is 1 in the case of variance estimation, while the
observation ¢, is generally muitidimensional. For this reason, the covariance form of the KF is more
efficient than the forms shown earlier for signal or weight estimation, which employ the matrix

inversion lemma and use a Kalinan gain term.

A peculiar difficulty in the estimation of variances is that these quantities must be positive
valued. Because this constraint is not built explicitly into the cost functions, or into the filter in
Formula 3.12, it is conceivable that negative values can be obtained. One solution to this problem
(inspired by [74]) is to estinate ¢ £ log(a?) instead. Negative values of £ map to small positive
values of ¢2, and £ = ~co waps to o° = 0. The log is a monotonic function, so a one-to-one
mapping exists between the optimal value of ¢ and the optimal value of o2?. An additional benefit
of the log function is that it expands the dynamic range near o* = 0, where the solution is more

likely to reside; this can improve the numerical properties of the optimization.

Of course, this new formulation requires computing the gradients and Hessians of the cost J
with respect to ¢, rather than o?. Fortunately, the change is fairly straightforward. If the cost

is a differentiable function of o2, then it is equivalently a differentiable function of ef. The first
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derivative of the cost with respect to ¢ is:

%{1 _ % . %’[_ (3.145)
= _ggj et (3.146)
= 5)(;]2 a2, (3.147)
and the second derivative is:
= (5;]) : %%i co? + 562;17 : %—e; (3.149)
= (5){;])2 (02)2 + %]5 o2, (3.150)

These expressions arc simple functions of the derivatives with respect to 0%, which are approx-
imated by ﬁ;k;lg\ék and I:Ig k;lrﬁm-- Hence. an alternative variance estimation filter is obtained
by replacing the measurement update in Formula 3.12 with the alternative update in Formula 3.13.

Strictly speaking, this no longer takes the form of a Kalman filter; it should instead be interpreted

-1

av = (7)™ + B, 07 Hos - (02 + HE o7 % - 02, ) (3.151)
o7 =log(o?,) (3.152)
be =07 +q - HY 072, - a2, (3.153)
52 = b (3.154)

Formula 3.13: Alternative variance update using the log of the variance.

as a modified Newton learning rule. This form of the variance filter is used in the experiments in

Chapter 4, with ¢, and I:L,,k defined according to the cost-function that is chosen.

Error Coupling

Although it is a reasonable approach, the direct substitution (in each filter) of estimated values
for true ones fails to account for the crrors in those estimates. As discussed in Section 2.3, these
errors can be taken into consideration by making adjustments to the cost functions.

These changes amount to replacing the sequence of cost functions described on page 71 with

the alternative sequences: {J¢(x})}{ and {J*“(wy)}{°. These sequences will also converge to
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Ji(xk, w) as the signal and weight estimates converge to their true values. However, as described

in Section 2.3, the alternative costs have the potential to promote faster convergence in some cases.

Signal Estimation

The error in the weights is accounted for by modeling the resultant error in the dynamics, fi as a
white Gaussian noise process. The batch form of the cost function was given in Equation 2.17 on

page 26 as:

Fody = S (W B o
xﬂ——Z g +— ) + log( “(Uf‘,k""’v)) .

A=1 n o’f‘lk v

The variance af; ., of the dynamics error can be computed by approximating the dynamics to first

order as f(Xx_1,w) = Hyw, where Hy £ VL f(x4—1, W), so that:

0% ¢ = El(f (i1, w) = f(ximr, W) e )10 W] (3.1552)
~ E[Hi(w — W) (w — % ) TH{ {1 Wy (3.155b)
= HyE[(w — Wi )(w — W) TTHY (3.155¢)
= H,Q, H{. (3.155)

Note that 02;',1; is independent of the current state, x;. Hence, in sequential estimation (wherein
only the current state is estimated) the log term can be ignored. The error in the weight estimates
can then be accounted for by simply replacing the process noise variance, o2, with (o2 + a}yk) in
the signal filter portion of Formula 3.10.

In the sequential estimation case, the derivative, Hy, of f(-) with respect to w, is evaluated
at the previous estimate, X,_,. Because X,_ is itself a recursive function of w, this suggests that

H;. should be computed as a recurrent derivative, as shown in Section 3.6.1.

Weight Estimation

For weight estimation, taking the error in the signal estimates into account is somewhat more

complicated. Here, the relevant cost function (Equation 2.19 on page 27) is:

N

J(w) = Z(log(%m'jk) + M

2
k=1 o

A a2
+log(2mgr) + _(m"_i)-)
Gk

bl
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where the variance terms are calculated as:

i, = Ellye — &x)?] (3.156a)

= E[(ng + oy, — 24)%] (3.156b)

=0’ + CP,C7, (3.156)

and g = El(@ — 27)?] (3.157a)
= E[C(%x — %} ) (% — %X )TCT] (8.157b)

= E[CK,(yx — Cx; )*KICT) (3.157c)

= E[CK(ng + 7 — Cx; )’KT CT] (3.157d)

= CK (o} + CP, CTK]CT, (3.157)

respectively®. Seeing that both P, and P, arc functions of w, so are 62 and g;. The gradients

of the variances are:

Yol = %P, (3.158)
and Wor = 2K K (02 + CPLCT) + (K2 w, (P1) D, (3.159)

where the gradients of the elements of K, and P must be computed recursively, using the equa-
tions of the Kalman signal filter (see Section 3.6.1).

Sequential minimization of J¢“(w) is provided by an observed-error weight filter. Here the
instantaneous error is:
€ (d)?

= +log(2mgr) + P (3.160)

€

Ji = log(2me? ) +

with the gradient and Hessian shown iu Appendix E. The gradient and Hessian of Jy, are approx-
imated by defining the observed-error term and its negative derivative as in Formula 3.14. where
Loy £ log(2mo? ) and €, 2 log(2mg,). This satisfies ef ¢, = J, and H, yo72%ex = — N Ji, gives
the negative gradient, as shown in Appendix E. The Hessian is approximated by HT .07 2H, x;
this gives nearly the exact first-order part of the Hessian when £, = o? /(3ef ~ 202,) and

=2
bk = gi/ (3%} — 2gk).

SNote that g4 should always be at least as large as o2,
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1 ) Yoy 2 7
(£ k)% -2 akfk Viv (O’e;e
I, ek “oik Wer+ 2(a‘3e'j(3_/2) % (92,)
e = (¢ )% , and H,, = . _%k
RS —1lan) 2T (g,
T A &
g Lk P i
* —‘(—“y‘ll/z) N+ —(‘7-729:3 7% (gk)

Formula 3.14: Error-coupled cost function observed-error terms for dual EKF weight filter.

Variance Estimation

The variance terms o2 and o2 can also be estimated with information about the errors in both %V
and w. This is accomplished by minimizing the cost function given in Equation 2.22:

N

Je¢(o?) = Z(log(Zﬂaﬁk) + (yr ;fk)z

h=1 €k
(Tx — ff?[,f)
3

9k

+ log(2mgr) +

which is identical to the cost given for weight estimation, except that the predictions here are
given by £ = f(&—1,...8x—ar, W). The error-variance terms are 62 = o2 + CP;CT and g =
CKj (o2 + CP; CT)KFC”, as shown in Equation 3.156 and 3.157 on the preceding page. The
redefinition of Z;; is reflected in P, since this is produced by the error-coupled signal filter (which
makes use of the statistics of Ww).

The instantaneous cost, .Jy, is the quantity inside the above summation. The variance terms

are estimated by defining the observed-errvor terms as in Formula 3.15. From Equations 3.156 and

(F )l -‘2 aék 3;"5
ek )? 2
’ do
-1, 1 62§ ey "
P Te, Ck & — a., do + 2(a2 )37 Go
¢ = 1 and H,; = k e
4 5 * 0y . _£
(lyr)? L 1{f)"7 Bgs
(—=1/2)% 2 9k do
gk Lk 1 3-5. 3 ng
T 073 fg + (3.;55 o

Formula 3.15: Error-coupled cost function observed-error terms for dual EKF variance filter.

3.157, the derivatives are

o2, _ 9o:  opiY

90 ~ 902 T 007 (3.161)
dgx _ ooy OK} — T ()2, 008 A@F)HY
and o= = 2K, (o] + CPLCY) + (K,7) (B?J’T)’ (3.162)
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piY oK . . .
where both a_aéT and — %~ are computed recursively, as shown in Section 3.6.1.

With these quantities in hand, the variances can be estimated as described before, with a
Kalman or extended Kalman filter. The variance estimation equations are given in Formulae 3.12

on page 77 and 3.13 on page 78.

Marginal Estimation

Section 2.4 describes a different approach to dual estimation, wherein the joint density function
PxNwlyn is expanded into two factors: p,v iy vy and p,, |, ~. Marginal estimation methods maximize
the first factor with respect to the signal, and the second factor with respect to the weights.

As in the decoupled joint estimation methods, the current weight estimates are used during
signal estimation, and wice versa. Again, this can either be done in an iterative or sequential
framework. Examples of iterative approaches include Lim and Oppenheim’s well-known approach
to speech enhancement [44], which alternates between noncausal Wiener filtering of the signal, and
a least-squares solution of the weights; and the batch EM algorithm [76], which is described in

more detail beginning on page 85.

Sequential Signal Estimation

For sequential estimation, maximizing Pl |yNw with respect to the signal is done using a Kalman
signal filter by substituting the current weight estimates W, for w. See Formula 3.1 on page 49,
and Formula 3.2 for the EKF. As with the decoupled joint estimation approaches, the hope is that

as the weight estimates converge to w, the signal estimates will tend toward their true values.

Sequential Weight Estimation

Maximizing p,,,~ with respect to the weights can be done by minimizing the negative log:

W) (3.163)

2
oz,

N
1 & )
~log pyvjw = 5 Z (log(?wai) +

k=1

The conditional mean is the prediction 7,777, with error-variance agk. The mean is calculated as:
S k=1

Urr—1 = Elucl{ye )i, w] (3.164a)

= Eleg + nel{ye )i w =z, +0 (3.164b)

=C- %], (3.164)
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and variance is given by:

o?, = Elwe — Ty i~ w) (3.1653)
= E[(ny + 21 - 27)* {u )51, w] (3.165h)
=0, + CP;C", (3.165)

so that both are computed by the Kalman signal filter, and thus are recursive functions of the
weights w. Their gradients are

S Wkgi—1) = C - Nxy (3.166)

Wiol) = %P ") (3.167)

which must be computed recursively, as shown in Section 3.6.1.

Sequential Variance Estimation

If the noise variances represent addition unknown parameters, they can also be estimated by
minimizing the cost in Equation 3.163. The mean and variance are computed the same as in
Equations 3.164 and 3.165, except that the unknown variance o2 is now an additional conditioning

argument in the expectations. Hence, the derivatives are:

OYee—1 _ Ody

R (3.168)
doi  da? op, Y
Dot =90t t o (3.169)

Prediction Error Weight Estimation

If cr;fk is assumed to be independent of w, then the log term can be dropped from the cost function,

leaving the squared prediction error cost:
N
T w) =) el (3.170)
h=1

where e £ (yp — &, ). This cost corresponds to the simplest form of the dual EKF, developed in
[87], which is equivalent to the recursive prediction error (RPE) method in [47, 52]. In [47, 52, 87],

the weight filter is designed using the standard observation equation:

Xy
/—-A——\
Yo = f(Xp1, Wi ) + o+, (3.171)

which creates a filter of the same form as for the known-signal case in Formulae 3.5 and 3.6 in

Section 3.3, except the clean target & is repiaced by ¢, and the noise variance o2
) ! Y Yk, v

is replaced by

(02 +07).
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Equivalently, the observed-error forin of weight filter is found by defining the instantaneous

cost as Jp = (yp — &;)* = ¢}, and letting the observed error be as in Formula 3.16, so that

e 2 e, and H, ;= —Noer = Vv(yk;k—l)

Formula 3.16: Prediction-error cost function observed-error terms for dual EKF weight filter.

the negative gradient is given by H, 40, %c; = —2(Yek)er, and the Hessian is approximated to
first-order by H, ro ZH;{L, = 2(Wer)(Ser)T. Note the similarity between these definitions of

the observed-error weight filter and those presented for the known-signal case in Section 3.3.

Prediction Error Variance Estimation

The noise variances, o2 and o2, can also be estimated by minimizing the prediction error cost of

no
. C < 8ty

Equation 3.170. The observed error ¢, is siinply €, as before, and H, ; is given by —-g—j% = B—jg_.

Hence, prediction error variance estimation is entirely dependent on computing the derivatives of

Z, recurrently.

Maximum Likelihood Weight Estimation

Taking the dependence of a;’k on w into account requires the minimization of everything in Equa-
tion 3.163. This means minimizing the full maximum-likelihood cost function given in Equa-

tion 2.52 on page 36, restated here as:
N

T w) = Z(log,moﬂ 4 W) k;fk) )

b=t &k
Here, the instantaneous cost J is the quantity in the summation. Defining £ £ log(2may a2 ),
the appropriate weight filter is found by letting the observed-error and its negative derivative be

as in Formula 3.17. and letting o2 = %I. These terms are used in the dual EKF equations in

7 ¢, k) % T
e 2 [aff;"'J , and H,p= S (v \
vw Ex + Wﬂ% (02,)

Ep Sk

UEL

Formula 3.17: Maximum-likelihaod cost function observed-error terms for dual EKF weight filter.

Formula 3.10. As shown in Appendix E, ay should be chosen such that £, x = o2, /(367 — 202 ,)
(as described on page 76). The negative gradient and Hessian are then approximated by H, yo 2y,

and H, vo;2H]
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Maximum Likelihood Variance Estimatiou
The maximum-likelihood cost function also offers a mechanism for estimating the variance terms,
o2 and o2, when they are not known a priori. The instantaneous cost and observed-error terms are

identical to those just given for weight estiimation. The derivative of —&; is given in Formula 3.18,

é _L(fe k)—% B”zk
o A ~ 2 02 02
& = [a”lsék] , and H, . = Lo i 5a?
g, <k 1 osr £ &
: 5oy 000 T 3T YD Bt

Formula 3.18: Maximume-likelihood cost function observed-error terms for dual EKF variance filter.

where a2 represents either o2 or o2, and where Z)O'?T = —%‘ig—‘. The desired variance is estimated

(2

according to the equations in Forinulae 3.12 and 3.13 on page 78.

Expectation Maximization

Although the EM algorithm is a marginal estimation method (see page 36), its general character is
different enough from the maximum-likelihood and prediction-error methods to warrant separate
treatment.

The EM algorithm has received a fair amount of attention recently in the context of estimating
nonlinear dynamic systems [3, 5, 23]. Typically, the algorithm is used in an iterative framework,
wherein the entire signal {x;}%¥ is estiinated using the current weight estimates during the E-step,

and the weights are estimated during the M-step using the entire trajectory of signal estimates

{Z6 3.
As stated in Equation 2.55 on page 37, the EM cost is:
N 2
: - Yi — Ti)
J = Exjyw [Z(log(Qwai) + {on = u)” p
k=1 n
. xp — T )? .
+log(zaod) + 5 |t w)
v
which is minimized with respect to w during the M-step. As before, z; = f(xx-1,w). An

important distinction exists between this value of w being estimated, and the previous estimate
of the weights, W, used in the conditional expectation. As shown in Appendix F, the expectation

evaluates to:

1) S (5= )+
Je = N 10;{(47"20'%(771) + Z( l(’J’2 l
. k=1 i " (3172)
+ (N = gn)” +PeN — W +p;lN)
i
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where 2y and py v are defined as the conditional mean and variance of z given w and all the
data, {yr}. The terms &y and pp . are the conditional mean and variance of z; = f(xg_1, W)
given all the data. The additional term ’)Z'XN represents the cross-variance of x4 and z,;, conditioned
on all the data.

These conditional expectations are computed during the E-step, typically with a Kalman
smoother algorithm [43, 68]. A Kalman smoother combines the results of both a forward and a
backward pass over the data to produce the smoothed estimates’. When the system is nonlinear,
the classical approach is to use an extended Kalman smoother (e.g., in [23]), or use Gibbs sampling
[83].

As discussed in Appendix F, only @y Prne and PL ~ are functions of w. Hence, the portion

N
of the cost relevant to weight estimation is:

N i s )2 t -
! (v — Tya)” — 2000 + D1
Jmw) =S ( fuiy = Eyn)” = 2w p"'”). (3.173)

2
k=1

o3

Likewise, the portion of the cost in Equation 2.55 that depends on o? is:

N - s )2 ¥ —
. . (En = & )" + PR — 2Py + P

Je™(02) = Nlog(2na?) + Z( M - AN kN ) (3.174)

o

k=1 v

while the portion relevant to estimating o2 is:
N A 2
,, P - 9 e — +
Jom(o) = Nlog(zao) + 3 (2 Bun) + ), (3.175)
011

k=1
Note that in these last two expressions, the numerators inside the sums are dependent on the

previous variance estimates, ¢2 and 62, but not on the value (62 or ¢2) being estimated. In
Equation 3.173, f';l N ‘PZ.\ N and Pyyn Aare recursive functions of w, but not of w. Hence, it
happens that no recurrent derivative comnputations are required for the EM algorithm.

For the M-step, closed-form solutions are possible with linear models (and radial basis func-
tions, as in [23]) using either a least-squares or RLS procedure. Expressions are provided in
Appendix F. Typically, nounlinear models will require a generalized M-step, in which the cost
function is decreased (but not nccessarily minimized) at each iteration. This generalized M-step is
often done with a gradient-descent method such as backpropagation, which can either be used in
batch or pattern mode.

Regardless of the M-step, however, ¢he Kalinan smoothing for the E-step must be done off-line,
as it makes noncausal use of the data. The EM algorithm is necessarily an iterative approach (see

page 10) to dual estimation.

7The cross-covariance p}:m is not caleulated by the standard Kalman smoother, but can be included in the
algorithm at small additional cosu [76].
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Sequential EM Cost

However, a fully sequential EM algorithin can be found by computing the expectations in the E-step
with a Kalman filter rather than a Kalman smoother (e.g., in [93]). This is equivalent to replacing
the off-line means and covariances in Equations 3.172-3.175 with their on-line equivalents: Zy,
Dhlks j1:| K Prjk> and pLI o The first two quantities are the usual estimate £, = CX; and variance
CPCT computed by the Kalman sigual filter. The remaining terms require special consideration.

The noncausal prediction &,), is defined as £[f(xy- 1, W){y: }¥, W], which is difficult to com-
pute in general because of its dependence on future data. As in the EKF, this expectation can
be approximated by taking the function of the expected value: f(E[xx—1|{y:}¥, W], w), or equiva-
lently, f(Xg-1jx,w). Unfortunately, X, _,j, 1s not computed by the standard Kalman signal filter
described in Section 3.2. However, a slight modification allows the KF to compute this quantity,
in addition to the desired variance terms, j)l:i .- and p}ii e

Specifically, the state-vector is augmented by one additional lagged value of the signal :

X Tk
X = = , (3.176)
Th-M Xg—1
so that the estimate xf produced by a Kahnan filter will contain X;_x in its last M elements.
Furthermore, the covariance P} of x;” produced by the KF allows for approximate calculation of

the variances p;' , and p{,‘ . Following the derivations in Appendix F:
Pipe = CAs(Preip) AL €7 and ply, = C(PHAT_, . CT, (3.177)

where the covariance Py, is provided as the lower right block of the augmented covariance Pk+,
and P‘,‘C is the upper right block of Pj. The usual error covariance Py is provided in the upper

left block of Pz. Furthermore, A _); is found by linearizing f(-) at Xp_y -

The Kalman filter requires only a couple of modifications to estimate x::

1. A final zero element is included in the vectors B and C.
LA

2. The matrix Ay £ I 0

is modified by increasing the dimension of I and adding a final

column of zeros.

Note, the function f(xx,wy) ignores the additional lagged element z_pr. The overall dimension

of the state-space representation is increased from M to 1+M.

EM via the Dual EKF

With a sequential E-step provided by the Kalman gignal filter on the augmented state x:, a

sequential (generalized) M-siep is needed for estimating the weights.
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The observed-error weight filter can be easily applied for this purpose by defining the instan-

taneous error as:

(Zx — d&p,)? 2pk|k+pk|k
2

Jt /n( ) (3178)

a,

The appropriate observed-error vector and its negative Jacobian matrix are given in Formula 3.19

where ::ck,k = (& — Ly .). Letting o7 = ,_l,I, the negative gradient and Hessian of J{™ are approxi-

o 1H VZvﬂ:iklk
oy . _ _@L T
e = (V=207 (‘"AIA} and H, = 20, o Pyjx
Ty 1(1)/, \L) ﬂg‘Q—WTpMk
Oy

Formula 3.19: EM cost function observed-error terms for dual EKF weight filter.

mated by H, zo; %¢; and H, 407 -H" &> tespectively, as shown in Appendix E. Note that the error

variances Pk and pkl . cancel out of the gradient expression; as shown in the Appendix, to obtain

a good Hessian approximation, they are replaced by very large values in the expression for H, x.
Because Z; is not a function of w (it depends on W), the gradient VVTJ::H & 1s simply the negative

of YZ,,Ti,:l x> Where
Vwi;“ = ‘zvf(s(k—llk)w)v (3179)

which is evaluated at X;_; and w. Following Equation 3.177, the i‘* element of the gradient

vector vakfl & 1s constructed from the expression:

Wi OA_ 1k T aAZ—l]k T
5o = ( T (_P/\—HI\')A,‘,_H;\;+Ak—1|l.-(Pk:-1|k)"———aw(i) )C , (3.180)
and each of the elements of the gradicnt \?Npl,l L 18
01’/.“ A OA gk ST\ AT
= ( S (P) )c . (3.181)

EM Variance Estimation
The variances o2 and/or o2 can also he estimated as part of the sequential M-step. As seen in

Equations 3.174- 3.175 on page 86, either of the variances can be estimated by minimizing an

instantaneous cost of the form:

eing 2 (€ y numy
I (o?) = log(2ra?) + —5 (3.182)
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where numy, is one of the numerator terms in Equations 3.174-3.175, and o? represents either
o2 or o2. Recall that the numerator term is independent of o, As shown in Appendix E, the
best approximation to the first and sccond derivatives of J, with respect to o2 is obtained by

defining the terms for the variance filter as in Formula 3.20, and letting 02 = %I. This is a slight

L e)—%

amf 0] : .
& =St o — and Hyp = -2 t’u :
2 lo7 " nung *%@%

Formula 3.20: EM cost function observed-error terms for dual EKF variance filter.

adjustment from the conventional definitions used elsewhere in this thesis, in that I:I(,,,c is not
exactly the negative derivative of ¢, in this case. In particular, both quantities have been scaled.

See the appendix for details.

3.5.2 Colored Noise Case

When the measurement noise n, is colored (i.e., temporally correlated), the dual EKF algorithms
must be adjusted somewhat. The cost functions for the colored noise case are shown in Sec-
tions 2.3.2 and 2.4. The dual EKF algorithmns for colored noise parallel those developed on the

preceding pages for white noise, with some modification.

Decoupling with Direct Substitution — Colored Noise

The joint cost function for the case of colored measurement noise is given in Equation 2.29 on

page 30 as:
N —\7 —\2
. ; (:L"‘,—.‘L")‘ N —n
J({(xf,n'lv,w)=z 2"’ +( 5 ) ,
k=1 U.v 0’”"
where n, = Efi’; w.,(: ) “mg..; 18 the predicted value of the colored noise, and 03" is the variance of

the process noise that drives the colored noise model.

As explained in Chapter 2, the cost must be minimized subject to the constraint y¥ = xY +nf.
The joint EKF algorithun for sequentially minimizing this cost was developed in Section 3.4.2 on
page 67 by concatenating the signal. noise, and weights into a joint state-vector.

The joint cost can be minimized with respect to the signal and noise while fixing the weights
at the current estimate Wy, and wminimized with respect to the weights while fixing the signal

and noise arguments at their current estimates. As in the white noise case, this can be done
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Initialize with:
Wo = E[w], Qo= E[(w— Wo)(w — Wo)7]
éu = E[&]. Py = E[(&, — éo)(go - éo)T]

For k € {1,...,00}, the time update equations for the weight filter are:

W= Wi (3.183)
Qr = Q-1 + Uy (3.184)
and for the signal filter are:
€ =F(&,w}) (3.185)
Pl = Ao Po Al + BV .B] (3.186)

The measurement update equations for the signal filter are:

K, =P_,C'(C.P_ . CH)! (3.187)
& =& +Kilyx - Cey) (3.188)
P = (I-K,.C)P], (3.189)
and for the weight filter are:
Y= QU H (Ho v QHY , +07)7! (3-190)
W =Wy +KP e (3.191)
Q. = (I-KFH,,)Q;. (3.192)

Formula 3.21: The dual extended Kalman filter equations for colored measurement noise. The defi-
nitions of ¢; and H, ;. will depend on the cost function used for weight estimation. See the text for
details.

in batch mode with an errors-in-variables algorithm, as shown in Appendix G. However, on-line

applications will require a sequential algorithm such as the dual EKF approach.

Signal and Noise Estimation - Colored Noise
As described in Section 2.3.2, the signal and measurement noise are estimated simultaneously by
minimizing JI (x¥,n}, w), evaluated at the current weight estimate w. The batch cost is shown in

Equation 2.30 on page 31, restated herce for sequential estimation as:

k e o— A2 2
Rstnfow = 3 (S Eely (umne) ) (3.193)
t=1 v Un
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minimized subject to the constraint y, = .y + n;. This constraint can be satisfied by estimating
the signal and noise within a combined state-space representation, as explained in Section 3.2,
and applying the Kalman filter cquations given in Formula 3.3 on page 53 and Formula 3.4 on
page 54, except with W, used instead of w. This forms the signal estimation portion of the dual

EKXF equations given in Formula 3.21 on the previous page.

Weight Estimation — Colored Noise

Minimizing the joint cost with respect to w produces estimates of the weights. The cost is evaluated

using the estimates of the signal and noise (see Equation 2.31 on page 31):

I A ~~— ~ N E

Jbak wy = (B G Ay 194

. xl,nl,w)—z p= + — ) (3.194)
t=1 v Un

where £, = f(X¢—1,w) and 7, = Zfi’] w -iy_;. As in the white noise case, the signal estimates
{#:}¥ are not necessarily a function of the weights w; the same is true for the noise estimates
{A:}%. In this case, the first term alone will Le minimized to generate W, as described on page 79.

However, both {#;}% and {#,}¥ will typically be generated by a Kalman filter as described
above; the KF signal estimates will clearly he a function of w. In addition, however, because of
the constraint y¥ = x{ + n¥, the noise estimates will also be a function of w, as any change in
Z), will result in an equal but opposite change in 7. Furthermore, if a KF (or EKF) is used to
generate the signal and noise estimates, then 2y, 2, , 2, and 2, will all be recursive functions of

the weights.

To estimate the weights with an observed-error weight filter, the instantaneous cost is defined

as
. 2 =2 %2
T — 1 e — 7 T n
I M.J) “2L) or Jy =2k 4k (3.195)
[ Un ] O

= fa ~ A x A . . .
where £ = (2 — 2, ) and 7 = (7, — 1), The gradient and Hessian of J; are approximated as

described on page 62 by defining a vector form of the observed-error as in Formula 3.22, so that

s -1 T=
Ty . . . g T
e = | V5T, with negative Jacobian H,p = — ”_I‘Z’T ;k]
o gt 198 T Ny g

Uy

Formula 3.22: Colored noise joint cost function. Observed-error terms for dual EKF weight filter.

e{ek = J, asrequired. Letting a? = %1. the negative gradient is produced by sza;2ek = -V Jk,

as shown in Appendix E, and a first-order approximation to the instantaneous Hessian 2Jj is
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given by: HZ 20 2H, . Hence, the weight estimate portion of the dual EKF shown in Formula 3.21
represents a modified-Newton update for minimizing the joint cost function.

The derivatives contained in H, ; above evaluate as:
Wiy = (Ndy - S, ), and Vne = (Seity, — Nty )s (3.196)

and are computed using the 1° and (1+3)™* rows of W€, and W& . The derivatives of £, and
ék_ must be computed recursively. following the framework given in Section 3.6.1 on page 102 for

the derivatives of Xy.

Variance Estimation — Colored Noise

When the variance terms o2 and a;’ are not known, they can be estimated by minimizing the cost

function given in Equation 2.32.

A

JIo?) = Z (Iog(‘Zwog) +

t=1

(& — &;)*

2
Oy

. 2
+log(2no;, ) + =

Kalman filter estimates of the signal and noise will produce errors & and fix which are functions
of 03 and oﬁn respectively. Also, if 7 and i, are constrained to sum to yi, then :?:k will be a function
of a%ﬂ by way of its dependence on 71,. A modified-Newton algorithm is found for each variance
by putting it in an observed-error state-space representation as on page 74. The observed-error is

defined as in Formula 3.23 to give the desired estimation algorithm. Similar to the discussion on

(¢,)2 N )
s _..1_5_;5_ + &g da
. a |ogtag - oy 9o Z(JE)L(_T3/2 Do
e = (¢ )_L ., and Hyp = L )_% 902
o )2 1t v
_l_'l": 27 o2 503
oty ; . P

Formula 3.23: Colored noise joint cost function. Observed-error terms for dual EKF variance fiiter.

page 76 for the white noise case, the approximation to the second derivative is improved by using

the redefinitions:

R ‘
o? o2

é‘u",k - :2—”'— and Kv,k - __Z'u— (3197)

3y — 202 3%, — 202
for all time k. With these adjustments in place, the variance filter equations are the same as for

the white noise case, shown in Formula 3.13 ou page 78.
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PRpNL
do

5o+ evaluate to either 0 or 1, depending on whether 0® = g2 or

. . aaf
The derivatives -3 and
0% = o2. The other derivatives:

O%x 0% 0y Oy _ Oy Ony

), and 8—0“7 = (6—03 - o2 ), (3198)

do? ( da?  Oo?

are found by using the 1°¢ and (14+A1)'" clements of %f;‘r and %f;%—, which are themselves computed

recursively.

Error Coupling — Colored Noise

As described on page 78 for the white noise case, information about the errors in the current

estimates can be used to modify the colored noise cost functions minimized by the dual EKF.

Signal and Colored Noise Estimation

When estimating the signal and noise, the error in the weights is accounted for by modeling the
resultant error fk in the dynamics as a white Gaussian noise process. The cost function is given

in Equation 2.34 on page 32 as:

N - .
(a2 — &) (ng —ny)

Je(xY nlY) = Z( e 0*2) + k/_ 4 log(27r(a§-]k +02) ],
h=1 I v KUA

minimized subject to y; = x4, + 4. As shown in Equation 3.155 on page 79, 012; Q& H; Q,:HkT In

sequential estimation, this cost will be minimized with respect to only the current signal and noise

2
Ik
independent of zx. The remaining two terms of JE(xY, nlV) constitute the cost minimized by the

values: «, and ng. The log term is therefore dropped, because 0%, and o2 are both functionally
signal filter portion of the dual EKF given in Formula 3.21 on page 90, except that o2 is replaced

by (or;- + 02} in the definition of V...

Weight Estimation — Colored Noise

For weight estimation, the errors in the signal and noise estimates are accounted for by using the

cost given in Equation 2.41 on page 33:
N 2
) = 3 (1on2ane) + + log(2ngu ) +

k=1

(Zp — ) (f, — g )?
g )’

9n.k
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where g and g, ;, are the variances of Z; and 7. If the signal and noise estimates are from the

colored noise Kalman filter described above, g, and g, 4 are calculated as:

gk = Bl — £7)7] (3.1992)
=EB[[COj&, - &) - &)TIC 0 (3.199b)
=E [[C 0K (yx — Ceby )PKL[C O]T] (3.199¢)
= E[K{"(C.&, — C; )’ K] (3.199d)
= K (C.P CDK}, (3.199)

and similarly Gk = Bl = i )’] (3.200a)
= £ [0 Cul(s - &) ~ £)710 Cal”] (3.200b)
=E [[0 CulKx(yx — Ccéi )?’KF[0 Cn]T] (3.200¢)
= B[K{"™(C.&, — Ccy K™ (3.200d)
= K" (c.pycDK™, (3.200)

where [C 0] and [0 C,,] are (M + ,,)-dimensional row vectors containing all zeros except for the
1%t and (1+M)*" elements, respectively. Hence [C 0]Ky = Ki” and [0 C,]Ky = KiHM).

The gradients with respect to the weights are easily calculated from these expressions as:
Yo = 2KV K (P CT) + (K1) %, (C.P;CT), and (3.201)
Wgni = 2K K (€ ppCT) + (K{P) Y, (CP; CT). (3.202)
The instantaneous cost J; is the term inside the summation in Equation 2.41. The gradient

and Hessian of Jy, are approximated by defining the observed-error term as in Formula 3.24. Using

z2 =2 . . .
the values €, = gx/(32, — 2¢;). and €, = ga,. /(3% — 29n,1), the negative gradient of J is

L
-4
’%(_’;):—Q%T(gk)

(‘ey)% 2 )
-, s )

ep = |“F U, and H,, = * -1 .

s . ¢
L) =3 W (o)
TP A i

In.k k —g(—ll/-?TVv”k + ig—g?i)'qu(gn,k)

ok n.k

Formula 3.24: Colored noise error-coupled cost function. Observed-error terms for dual EKF weight
filter.
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given by H, 10, %¢e;, = —NuJi, and the Hessian of Ji is approximated by HTka 2H, \, as shown
in Appendix E.

Variance Estimation — Colored Noise

Estimation of the variance terms o aund o7 can be done in a way that takes the errors in the

signal, noise, and weight estimates into account. The cost function is given in Equation 2.45 as:

N

JE(0?) Z(log 2wy ) +

k=1

Y
+log(2mgn k) + M),

In.k

(& — &y )
Yk

which is identical to the cost given for weight estimation except that predictions here are given
by Z, = f(ﬁk_l,. Bp_m, W ) The error-variance terms are gy = Kg)(CCP;CCT)KS) and g, =
Kiw)(CCP;CZ)KiHNI , as shown in Equation 3.199 and 3.200 on the preceding page. The
redefinition of Z; is reflected in P} since this is produced by the error-coupled signal filter, which

makes use of the statistics of w.
The instantaneous cost Jy is the quantity inside the above summation. The variance terms
are estimated by defining the observed-crror measurement ¢, the same as ¢; in Formula 3.24 on

the previous page; the negative of the correspouding derivative is given in Formula 3.25, where the

o e = 1/2) 2
¢ = 9 1|, and Hgi = I L
€y, )2 |

Formula 3.25: Colored noise error-coupled cost function. Observed-error terms for dual EKF variance
filter.

. Bgm 1
derivatives gg—’fy and 524 are:

) (1) 5 - T
gggzzxk 19K cprel + (K“’)”Lapg—cc—), and (3.203)
Ogn i 0K, ,8(C.P;CT
% = QKEH‘W)()};’& —(CP;CT) + (KIM)? —(Tl. (3.204)

With these quantities in hand, the variances can be estimmated as described before, with the algo-

rithm in Formula 3.13 on page 78.
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Marginal Estimation — Colored Noise

As described in Section 2.4 on page 34, a marginal estimation approach for colored measurement
noise is found by expanding the joint density function peyany v into two factors: pywvuv|yvw
and pyyn . Marginal estimation methods maximize the first factor with respect to the signal, and

the second factor with respect to the weights.

Signal and Noise Estimation

The signal and noise estimates that maximize PxlinlN |y Nw are found by substituting the current
weight estimates W, for w in the colored-noise Kalman filter of Formula 3.3 on page 53, and

Formula 3.4. This produces sequential estimates X and A .

Weight Estimation

Meanwhile, p,, |y~ is maximized with respect to the weights by maximizing the log:

1

log pyiw = —3 Z (log 27raEk

M—I_V) (3.205)

2
az,

I\D

where g, £ (yx — Yrjh—1). This expression is identical to that given for the white noise case except

that, for colored measurement noise, the mean is calculated as:

Yklk—1 = E[ykl{yt}f'l,w] (3.206a)
= Elwg + nel{y:}571, W] =1 +7y (3.206b)
=C. €& (3.206)

and the variance is given by:

of, = Ellys ~ Taw—0)*Hye ™", w] (3.207a)
= El(zx — 2] +np — 052 {ye}5 1, w] (3.207b)
=C.P;,C/. (3.207)

Both terms are computed by the colored-noise I{alman signal filter, and thus are recursive functions

of the weights w. Their gradieuts are

W (Tiict) = Ce - Wby (3.208)
W(o?,) = WW(C.P;,CT) (3.209)

and must be computed recursively, as shown in Section 3.6.1.
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Variance Estimation

Unknown noise variances can also be estimated by minimizing the negative log in Equation 3.205

on the previous page. From Equations 3.206 and 3.207, the required derivatives are:

Oeg. a1, On, &,
da?z ~ 801'\2 - (‘)Ul'\-’ ) =-Ce da? (3:210)
Bagk BP'“ 1) ()P—(l JHM ) 6PC—J(CHM,1+M) Pk CT 1ol
do? 802 2 802 + do? =Ce 02 ' (3.211)
Section 3.6.1 shows the recursive computation ot and 8P° k

Prediction Error Weight Estimation - Colored Noise

If 02 is assumed to be independent of w. then the log term can be dropped from the cost function,

leaving the squared prediction error cost:
Tr (w Zek, (3.212)

where e £ (yx — (27 + 7). This cost corresponds to the recursive prediction-error form of the
colored-noise dual EKF developed in [8§].
The observed-error form of weight filter is found by defining the instantaneous cost as J =

(yx — &5 — Ny )? = €%, and letting the observed error terms be defined as in Formula 3.26, so that

er 2 e, and H, i = -Noer =N = (W + %ny)

Formula 3.26: Colored noise prediction-error cost function. Observed-error terms for dual EKF weight
filter.

the negative gradient of Jy is given by H, 4o, 2ex = —2(Nv&x)ex, and the Hessian is approximated
to first-order by H, xo; 2H0 p = 2(Ner) (Moer) T

Alternatively, the prediction error cost can be defined using e 2 (yx — (£ + fx)), which
replaces the noise prediction with its estimate. Although this is a further departure from the
original probabilistic approach. it has a simple heuristic justification. Namely, using yx — fix as the
prediction target is the next best thing to predicting zx = yi — ng, and will produce lower variance
weight estimates than using y;. as the target. Furthermore, the weights should be adjusted to make
I, a better prediction, without regard to 72, or 7.

This last comment suggests that only the signal prediction Z,  should be considered in the

derivatives. This “alternative” approach, shown in Formula 3.27, shows superior performance to
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that provided by using e, £ (yx — (£} +7)), and is therefore used in the next chapter to represent

the colored-noise prediction error method.

o 2 (lyx — 0] — ) and Hop = Ny

Formula 3.27: Alternative colored noise prediction-error cost function. Observed-error terms for dual
EKF weight filter.

Prediction Error Variance Estimation - Colored Noise

Either of the noise variances. % awd o? |, can be estimated using the above “alternative” prediction
v U
. ¢ A - - 2 8% . .
error cost by defining ¢, = ([yx — ] — £},) as before, and H, x = —52%. This differs from the
white noise case only in the inclusion of 7y, in €.

Maximum Likelihood Weight Estimation - Colored Noise

Taking the dependence of afk on w into account requires the minimization of the full maximum-

likelihood cost function given in Equation 2.52 ou page 36, restated here as:

N

5 —f)2
T (w) = Z (108;(2#0;) + B = % $:2 7y ) )
=1 €k

The appropriate weight filter is found by defining the observed-error and its negative derivative
just as they appear in Formula 3.17 on page 84. The only difference is in the definition e, £

(yr — (&5 + 0y ), and its variance g2

5

Maximum Likelihood Variance Estimation - Colored Noise

2

Similarly, the variance terms o2 aud o2 can be estimated by minimizing the same cost. Here, &
and H, ; are defined the same as in Formula 3.18 on page 85. The desired variance is estimated

according to the equations in Formula 3.13 on page 78.
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Expectation Maximization ~ Colored Noise

Just as in the white noise case, an alternative way of maximizing the marginal likelihood is supplied
by the EM algorithm. As given in Equation 2.58 on page 37, the colored-noise EM cost is:
N

Z ( log(2mo?) + Mlz—

em __ ,
I = Expuivra| -
k=1 v

)2
+ log(27mfi") + M) ‘ {yk}{v,‘i’] ;

2
O-'Un

As shown in Appendix F, the expectation evaluates to:

JE™ = Nlog(4r2a2o?

v Uy

N /(N ~ By )? + e — 28k + PR
AN N kIN &N

)+ 3 ( =
k=1 (3.213)

N (g = g n)® + PN — 2PL,k|N +P;,k|1v>
o
where 7ign, pnin are defined as the conditional mean and variance of n; given w and the
data {yx}. The terms ﬁ;‘ N and p;,/q n are the conditional mean and variance, respectively,
of nj, = wl . ng_ ;. The additional term ;)L’M ~ represents the cross-variance of ny and n;,
conditioned on all the data. The corresponding terms for the signal z, are defined on page 86,
following Equation 3.173.

An iterative-batch EM algorithm for the case of colored measurement noise is suggested (with-
out equations) by Gannot et al. in [21]. A sequential EM algorithm is produced by computing
the expectations in the E-step with a colored-noise Kalman filter. This is equivalent to replacing
the off-line means and covariances in Equation 3.213 with their on-line equivalents. As in the
white-noise case, these on-line statistics are found by augmenting the combined state-vector with

one additional lagged value for both the signal and noise. Specifically:

Xk L
Lh—M Xp—-1
Y= = : (3.214)
ng ng
Tp— M, ng—

so that the estimate ér produced by a Kalman filter will contain X;_,); in elements 2 through
1+ M, and fig_,; in its last M), clements.

Furthermore, the covariance Pi . of & produced by the KF allows for approximate calculation
of the variances py, p;,k, pI,,k., Puks Py ik and pflvk“‘,. Denote the first (1+M) x (1+M) block

diagonal of P+, as Pt,. Then let P, ,_,;; be the lower right block of P*,, and P* , be the
g .k .k K1 z,k z.k
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upper right block of P:k. Defining P:_klk 2 Ak——llk(Pw,k—llk)AZ—”k and Pl,k]k = Pi,kA{_llk

gives:
Prlk = (P:,k)(l’“: Pijp = (P:,k!k)(l’l)v and pLIk = (Pl,klk)(l'l)’ (3.215)

as shown in Appendix F. Similar calculations can be made for the noise statistics using the last

(Mn+1) x (M, +1) block diagonal of P¥,, denoted P} . Specifically:

Pagir = (P 1Y, P = (P;.Mk)“'”» and pjm:lk = (P:z,kuc)(l’l)» (3.216)

where letting P,, ;) be the lower right block of P}, and Pfl, » be the upper right block of P\,

produces the required quantitics: Pk £ A, (Poj1k)AT and P;,klk = Pg‘,kAf.

EM via the Dual EKF - Colored Noise

As discussed in Appendix F, the only terms in the cost of Equation 3.213 that depend on the
weights w are the predictions, Z . and their associated variances, p,:, 5 and le .- The other terms
are functions either of the previous estimates, Wy, or the noise coefficients w,,. Therefore, the
observed-error weight filter can be used to produce a generalized M-step by dropping the irrelevant
terms, and defining the instantaneous error as:

4 2= )2 1 -
(@ — &p)° - 2Pkt Prp

2
bt

Jiw) =

(3.217)

a.

The terms of JJ}' are computed sequentially with a colored-noise Kalman signal filter as just de-
scribed. The sequential M-step is computed by a Kalman weight filter. The appropriate observed-

error vector and its negative Jacobian matrix are given in Formula 3.28. Letting 02 = 11, the

{7.—1.’};& _t}_v‘z"T'%k
Ciot g V=2l Oy
= |V Ot | snd b = | gy
- PN S - =
a’vul(pﬂk)z _(Pk k) % T, —
20, Y

Formula 3.28: Colored noise EM cost function. Observed-error terms for dual EKF weight filter,

negative gradient and Hessian of J¢7' are approximated by H, ;07 %¢; and H, xo,72HZ, | as shown
in Appendix E.

H Tz feoal . Tn— .
The gradient \J' £y, is simply —\{; & e where

V’V:i:k_'lk = V4'»/.):(5\(16—1[/»‘7VV)? (3218)




101

and the gradient va;l , is constructed element-wise from the expression:
C (%(Pw,kqujf‘x{_uk + Ap 1k (Prp—1e) %) c’. (3.219)
Finally, the gradient V..,p}:i . is constructed from terms:
C (Pg‘f)gg—(‘il)"“) CT. (3.220)
EM Variance Estimation ~ Colored Noisc

The colored noise EM cost can also be minimized with respect to o2 and/or o2 to produce

estimates of the noise variances. Just as in the white noise case, the instantaneous cost for either
variance takes the form:

Jf”,’c‘(oz) = log(27a®) + il

, (3.221)

2
where numy, is one of the relevant numerator term in Equation 3.213, and o? represents either g2
or 02. As before, each numerator term is independent of ¢%; the variance filter can be found using
the same definitions of ¢, and H, as in Formula 3.20 on page 89, but with new definitions given

to numy,.

3.5.3 Dual EKF Summary

This has been by far the longest section of the chapter, but rightfully so. The dual EKF incor-
porates algorithms for signal estimation, weight estimation, and estimation of the unknown noise
variances. Signal estimates are obtained using a standard Kalman filter or EKF, or by using an
“error-coupled” variation. It was shown how weight estimation and variance estimation can be
performed using any of the cost functions derived in Chapter 2 by changing only the definition of

a few terms in the algorithm, namely: ey, Ho 1, ¢, and Hy .

3.6 Other Issues

In the preceding sections, the joint EKF and dual EKF algorithms were derived for minimizing the

cost functions in Chapter 2. However. a tew practical considerations warrant further discussion:

1. Most of the dual EKF cost functions require computing the derivatives of a recursive Kalman

filter. These computations, sometimes called sensitivity filtering, are described in this section.

2. The initial values for the signal and weight state estimates and for the variance estimates are

discussed.
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3. Application of the dual EKF (or joint EKF) in off-line settings is considered.
4. A criterion for stopping iterative training (in the off-line setting) is described.

5. It is beneficial in some contexts to selectively emphasize and de-emphasize the data used
during estimation. Both the “forgetting factor” described earlier, and data-windowing for

nonstationary signals are discussed in this context.

6. The computational complexity of the joint EKF and various forms of the dual EKF are

discussed and compared.

3.6.1 Computing Derivatives

With Respect to the Weights

In the weight-estimation portion of the dual EKF, computing the negative derivative H, 1 of the
observed-error vector ¢, generally requires taking the Jacobian of various quantities in the signal
filter. Because the signal filter is a recursive structure, the gradients of guantities such as the
state estimate Xy, gain K;, and error covariance Py must all be computed recurrently. Taking the
derivative of the signal filter equations in Formula 3.10 on page 75 results in the following system

of recursive equations:

0%y, _ OF(,W) 0%y | OF(%,W)

aw | 0k ow | Owg (3-222)
o3 03 aK )
0"} (I - K,C) a"f + S (e - C%7), (3.223)

F(x,% %, % . . _— .
where Ma:;w) and ang’kw) are evaluated at Wi and contain static linearizations of the neural
network. The derivatives in these equations are all derivatives of vectors with respect to vectors, or
Jacobian matrices. The last term in Equation 3.223 may be dropped if we assume that the Kalman

gain Ky is independent of w. Although this greatly simplifies the algorithm, accurate computation

of the recursive derivatives requires (alcularmg as follows. Denoting the derivative of K; with
respect to the i*" element of W by - “K‘ (the i** column of C’K‘) gives:
JK,, (I - K,xC) _oP; T
— = C 224
Jut)  CP,CT + o2 o (3.224)
where
oP, 3A1. 1 OPy_1 OAL
—6—&)(_11) = O PA—IA/_.L +Apy G o) A'{ AL Py aw() (3.225)
OP,._ K- 0P, _
& ST L € S (Y o) puint et (3.226)

Hwld At oSl
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Note that Ax_; depends not only on the weights W, but also on the point of linearization, Xx_j.

Therefore,

OA L) O’F PF 0%y
— = - —, 3.227
Ot O%1 09 + (O%p_1)? S ( )

oF

7w, With %41 fixed, and the second

where the first term is the static derivative of Ay_; =
term includes the recurrent derivative of Xz_;. The term ?WBS_FI? actually represents a three
dimensional tensor (rather than a matrix). However, because Ay takes the special structure
shown in Equation 3.24 on page 50, its derivative with respect to x contains mostly zeros, and is
in fact entirely zero for linear models.

The largest computational expense is incurred by the calculation of %—%, which requires that
%@T be computed for all ¢ € {1...dim(¥)}. Whether this expense is worth the improvement in
performance is clearly a design issue, and is investigated in Chapter 4; the recursive derivatives
appear to be more critical when the signal is highly nonlinear, or is corrupted by a high level of

noise. Various simplifications to the recursive derivatives are possible:

1. Ignore the dependence of P, and K; on w. This would result in the largest savings, and

would effectively drop the second term in Equation 3.223 on the preceding page.

2. Ignore the dependence of x; on w. This drops Equation 3.223 on the previous page al-
together, and leaves only the second term in Equation 3.222 on the preceding page. This
results in a purely static linearization of the model, and is the simplification made in [61, 87]

and investigated in Chapter 4 of this thesis.

With Respect to the Variances

In the variance-estimation filter, the derivative ro,k of the observed-error vector ¢ requires taking
recursive derivatives similar to those just described for the weight filter. Taking the derivative of
the Kalman filter equations with respect to either variance term (represented by o) results in the

following system of recursive equations:

0%y _ OF(X, W) 0%

90 0% 002 (3.228)
O% . %, OKy o
Jo7 = (I - K;C) 60’5 + W(yk —- C%; ), (3.229)

where M%%Z is evaluated at Wy, and represents a static linearization of the neural network. Note
that %v%l . 5)—0"—"5 does not appear in Equation 3.228, under the assumption that g—:"g = (. The

derivatives in the above equations are all derivatives of vectors with respect to a scalar. The last
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term in Equation 3.229 may be dropped if we assume that the Kalman gain K is independent

of a2. However, for accurate computation of the recursive derivatives, %I;(f may be calculated as

follows:
Ky, (I-K:C) 0Py r
— . ct, 3.230
do?  CP;CT +o2 Jo* ( )
where
oP, OA,_ - OPy_1 , 7 JAr_,
5(;’;— = 507 1 Pl\'*lAli—l + A.k_] —B—UTA’IIC_l + Ak—lpk—l 952 (3231)
aPk_l 6Kk_1 - aPI:—l
o3 = — 507 CP_, +(I-K;—:C) 502 (3.232)
Because Aj_; depends on the lincarization point, Xi|, its derivative is:
OAp—y  OAp_y 0%t (3.233)

Jo? O%p_1 Oo?
Iw

where again the derivative 575 is assumed to be zero.

3.6.2 Initialization

The dual EKF and joint EKF algorithms require initial values X9 and wgq for the signal and weight
estimates, and initial values 62 ; and 63, for the variances, if they are to be estimated as well.

The additive noise is assumed to have zero mean, and the noisy time-series is generally nor-
malized prior to processing; lience, the signal can also typically be assumed to be zero mean. In
the absence of any other information, this assumption is represented by letting %o = 0.

Reasonable initial values for the weights can be found be training a predictor on some noisy
data, as described in Section 1.3.1. Of course, this will result in biased estimates, but a few
iterations of training in this way should provide a Wy that is in the right general area of weight
space. Initializing the weights in this way can be very beneficial to the training process.

Finding reasonable initial values for the variances is somewhat more complicated. Although
in some cases short segments of the noise and/or clean signal might be available for this purpose,
such data is not always available. Therefore, some of the heuristic approaches in the literature

may be suitable.

Measurement Noise Variance

As mentioned in Section 2.3.2 on page 29, this thesis assumes that the autocorrelation structure
of the noise is known within a scalar multiple. Either the noise is white, with a possibly unknown

variance 2, or it is colored, with known AR coefficients w,, and a possibly unknown process noise

T’

variance o? .
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Seeing that the noise model w,, is assumed known in the case of colored noise, it is likely
that a reasonable initial estimate of o will also be available. For example, if w, is known a
priori, then something might also be known about the range of values taken by aﬁn; alternatively,
if w,, is estimated from some available noise data, then an initial estimate of Jﬁn can be obtained
simultaneously.

The white noise assumption corresponds to the specific case when the autocorrelation is an
impulse function (i.e., the spectrum is flat); the arguments given in the previous paragraph can
therefore also be made in this case. However, because of the analytic simplicity of the white noise
case, some heuristic methods for finding an initial estimate of o2 can also be considered.

An approach developed by Wan and Nelson [87] for nonstationary white noise sources, esti-
mates o2 as follows. First, consider the noncausal linear estimator of the signal zx as a function

of 2M + 1 noisy data points:

M
I, = Z ’(v(”yk_i = wTy’,if%. (3.234)
=M

Note that the optimal weights can be expressed as
W =Ry,
= Ry_yl(f‘yy — oleo), ' (3.235)

where R, is the sample autocorrclation of yff%, Ty is the cross-correlation between yfi’% and

Yk, and eg = [0---0 1 0---0]. The value of o2 that gives the minimum variance estimate of
(minimizes var(w*Ty})) is:

1
(Ryy)(00)

~72
On =

(3.236)

Appendix H shows that this expression provides an upper bound on o2. Starting at this upper
bound, &2 is iteratively decreased until % > (¥ Vi # 0; this forces the current observation to

have the greatest influence on the estimator output, relative to other observations.

Process Noise Variance

To estimate o2 (assuming an all-pole model for the signal), Lim and Oppenheim [44] used an
expression for the inverse Fourier transformn of the signal power (which is a function of ¢2). An
alternative approach is developed in [87] by noting that the process noise variance o2 can be
estimated as the minimum mean squared error of a linear AR predictor on the clean data xj.

Specifically,

ol =02 — Pr R Paa (3.237)
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where p., is the cross-correlation between the lagged input vector xx—; and the current zy, and
R, is the autocorrelation of the inputs®. Because only the noisy signal y; with prediction residual
ol + a2 — pl Ry pyy is available, o2 is estimated using:

5'2 =g~ az 13:1:1: = Pyy — f)mn R, = Ryy -~ Ran (3238)

in place of the true values in Equation 3.237, giving:

2

2= (62 - 62) - PRI} P (3.239)

a

Note that when ny is white, the terms in (3.238) simplify because p,, = 0 and R, = 621, where
the additive noise variance is estimated as above. Of course, it is possible to obtain negative values
for 62 using the above approach. The estimates should therefore be thresholded from below at
some small positive value (e.g., 107%).

These “ad-hoc” methods alone do not always provide the accuracy required for effective dual
estimation. However, they are sufficient for initializing the on-line variance estimation methods

described in this thesis.

3.6.3 Iterative Applications

In many contexts, available processing power allows enough time between the arrival of each
measurement y;. for the repeated filtering of the previously collected data, in order to better model
its dynamics. This might be done with a fixed number Ny;, of data points; at each time step,
k, the algorithm is run repeatedly over the window of data: {y; ’;_ Nuin- The model is assumed
stationary over the window, so the estimates of the parameters (Wy, ‘ﬁ,lw and &i,k) and their
error covariances (Qg, guk and ¢, ;) at the end of each pass (or epoch) are used to initialize their
values for the next epoch. The signal state, X, can of course not be used in this way to initialize
XN, in the next epoch,

By completing several passes over a fixed window, multiple copies of the data in the window
are effectively concatenated to create a longer sequence. This better accommodates the conver-
gence time of the algorithm, and reduces the variance in estimation errors; however, the posterior
distribution p.k |y« is consequently biased more heavily towards the observed data in the window,
and away from whatever the prior distribution is. The procedure has two desirable effects: first,
the algorithm converges farther with less data: second, in nonstationary environments the tracking

performance increases due to the additional emphasis placed on the most recent data. However,

8This is exact, assuming the signal is generated by a linear autoregression.
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this can have negative consequences as well, because the chosen cost function may continue to
decrease with each epoch, while the performance on future data is being unknowingly degraded,
due to the bias on the empirical distribution. This is referred to as over-training on the data.
The tendency of the algorithm to over-train will be influenced by three factors: the length of
the window, Nin; the number of epochs; and the cost function minimized during training. The
more data and fewer epochs used, the less likely over-training will be to occur, because the bias
in the posterior distribution will be less severe. However, Ny, must also be chosen in accordance
with real-time processing constraints, as well as the time-constants of any nonstationarity in the
data. The window length will be at least 1, and constrained from above by either a function of the
processor speed, or the number of data points & already collected. The maximum allowable choice

of Nyin is quantified in Formula 3.29, wherein N, denotes the maximum number of data points

Nuyin = min(1,k, (Nepu — 1), Nny)  epochs = [NL""—IJ (3.240)
Nwin

Formula 3.29: The length of the iteration window, and the number of training epochs.

that can be processed between observations; this number depends on the sampling rate of the data,
and the processing speed of the hardware implementation. Furthermore, if any nonstationarity
is present in the signal, NNV, defines the maximum number of data points over which the signal
dynamics are approximately stationary; N, is highly subjective, and depends on the flexibility of
the model structure as well as what is meant be “approximately” stationary. For stationary data,
Ny = 0.

The window length is always less than N.,, by at least one, because time must be allowed
for processing the newly arrived data point before passing over the old data. Hence, when a large
amount of data has been collected (or the processor is slow relative to the sampling rate), then
Nuwin = Nep — 1, and only 1 epoch is used. Of course, when there is time for only one data point
to be processed, then N, = 1, and the algorithm is run in its “on-line” mode. Conversely, when
the processor speed allows all of the data to be used, then Ny, = k, and the number of epochs is

limited by the processor.

Nonstationary Data

Things are somewhat more complicated when the signal is nonstationary. As mentioned above,
the window length is limited from above by N,,s. However, it is quite possible that Ny, < Ny,

because of processor limitations. A single training epoch will typically not be enough to track
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the dynamics of the signal. Instead, a sliding window approach can be used, as described in the
next section. Sometimes, even when a sliding window is used, real-time processing is still not a
possibility. In this case, the algorithm must be iterated over the window off-line, until it converges

on a solution.

Early-Stopping

In cases where the algorithm is iterated many times over a segment of data ~ such as in the use
of short windows on nonstationary signals - the issue arises of when to stop the iteration. If one
is concerned with how well the model will generalize its performance with new data, then it is
important to avoid over-training. The process of halting iteration before over-training occurs is
called early-stopping [30], and usually involves evaluating the performance of the algorithm on a
set of data not used for training (called the validation set). The mean squared error (MSE) on the
validation set can be used to determine when over-training begins to occur, and from which epoch
the final estimate should be chosen; it is inportant that this data be different from the test set,
which is only used after training is complete. The use of a validation set for tasks such as model
selection, determining hyperparameter values. and early-stopping, is referred to in the statistics
and machine learning communities as cross-validation [30].

Note that over-training is a problem even in dual estimation applications such as speech-
enhancement, wherein generalization to future data is not a concern. Because the true signal is
not available, dual estimation is essentially an unsupervised learning problem; it is possible that
the estimation error between & and the true signal will begin to increase after several epochs,
even as the cost function continues to decrease.

Using a validation set in time-series applications is not always straight-forward. For example,
if the signal is highly nonstationary then it must be windowed, and the training window will be
quite short to begin with. Heunce, reserving a block of data from the end of this window is likely
to hurt performance both because the amount of training data is reduced, and because the model
is no longer trained on the data that is most relevant to the next portion of the signal.

One approach is to first train on a representative window while using a validation set, to
determine a reasonable number of training epochs. The algorithm is subsequently run without a
validation set, but is stopped after this predetermined number of epochs. This method of early
stopping is used successfully in the speech enhancement experiments described in Chapter 5.

Another alternative is to randonly sample the validation set from within the training window;
this reduces the amount of training data. but avoids the difficulty of removing data only from

the end of the training set. For the dual EKF, withholding randomly chosen measurements from
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the training set is very much like dealing with missing observations; something at which Kalman
filters are quite adept. Essentially, during time-steps when the data y; is missing or withheld, no
measurement update occurs in either the signal filter or weight filter. Instead, the predictions (X
and W) and their covariances are substituted for the estimates (X, and W) and their covariances.
Similar substitutions are made for the recurrent derivative computations. For the purposes of cross-
validation, the prediction error (y; — I, ) is computed for the withheld points, and the validation
MSE is tracked from one epoch to the next. The parameter and signal estimates for the epoch

with the lowest validation MSE are saved as the final solution.

Trajectory Learning

Choosing validation points from within the training set has an additional effect on the dual es-
timation process that can improve performance in some situations. Withholding an observation
causes the signal prediction X7 to be used as the input to the model at the next time step (to
generate output X, ,); thus, the model is effectively being trained as an iterated, or multistep
predictor. When the next observation arrives, the recurrent derivatives allow adjustment of the
model] to reduce the error in the iterated prediction; this puts additional constraints on the model,
and has been shown to improve the predictive power of neural network time-series models. The
approach has been referred to in the literature as trajectory learning [31], and is also related to
the compromise method [94].

The trajectory learning technique can be applied independently of cross-validation, although
in the dual Kalman filter the same mechanism (of handling missing observations) is used for either
trajectory learning or cross-validation. The only difference is that for early-stopping, the same
hold-out set must be used across all epochs, whereas for trajectory learning a different set of

points can be withheld during each pass through the data.

3.6.4 Data Weighting

In some contexts, the dual estimation process can benefit from rescaling data in various ways. In
this section, the importance of the forgetting factor, data windowing, and data normalization are

described.

Forgetting Factor

As described on page 71, the sequence of signal-state estimates {X}52, is generated using the
sequence of costs {J(x¥, W)} . Clearly, the signal estimates X will improve as the weight esti-

mates Wy, used to generate them improve. The sequence of weight estimates {W}72,, meanwhile,
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is based on the sequence of signal estimates.

Hence, because the signal estimnates at early times are less accurate than the later ones, it
stands to reason that their influence on the weight estimation process should be scaled down. As
described in Section 3.3, the amount of past data used to estimate the weights can be controlled
through the use of a forgetting factor A < 1, or equivalently, by appropriate use of a process noise
term uy in the state-space representation for the weights.

Specifically, defining the process noise covariance Uy, as in Equation 3.63 effectively places an
exponentially decaying window (sce Figure 3.3 on page 59) on the data used for weight estimation,
so that Wy depends more heavily o1 recent signal estimates than older ones. The appropriate time
constant of this exponential window depends ou the complexity of the model: enough data should
be left inside the window to accurately estimate the weights.

The forgetting factor introduces a certain amount of flexibility into the parameter estimation
filters, making them more responsive 1o new data, and improved signal estimates. Note, however,
that although the forgetting factor is implemented in the Kalman weight filter through a process
noise covariance, Uy, this does not imply that the underlying system is actually time-varying.

For off-line applications involving a finite amount of data, the time-constant might be chosen
to be somewhat larger than N, to cusure that all of the available data is used. In these applications
the algorithm is usually run over the data repeatedly, so that A < 1 causes the earlier iterations
to be “forgotten.”

The effect of A on dual Kalman filter convergence is shown experimentally in Chapter 4. As
mentioned previously, other schemes for defining U - such as letting it be a constant diagonal

matrix, or annealing it over time - can also be considered, but are not investigated in this thesis.

Windowing

For nonstationary signals, such as speech, the optimal weight vector w is time-varying. As de-
scribed in the previous section, the change in the dynamics generally cannot be assumed to be
slower than the tracking time-constant of the learning algorithm, so special measures are required.
When the computational demands are too great to process a window {y;}¥_ N, at every time-step
k, an alternative is to divide the data into approximately stationary, overlapping windows.

These data-windows are filtered separately to produce signal estimates {#;}4", and then are
recombined to produce the complete enhanced signal. Because the windows are typically short,
the dual estimation algorithm (cither joint EKF or dual EKF) should be run repeatedly over
the window until convergence is achieved. Hence, windowing usually entails an off-line mode of

processing.
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If the windows are not overlapped, then discontinuities, or “edge-effects” will be evident at the
window boundaries. Typically, the windows should be overlapped, and shaped after processing so
that they can be recombined by simple addition. This can be accomplished, for example, with a
normalized Hamming window of the form:

= — (0.54 ~0.46- co

gain,

. 27T’“J) (3.241)

win
where N, is the length of cach window, and gain is the sum of all overlapping window values at
a particular data point. Division by this gain term scales the windows so that they sum to 1, as

shown in Figure 3.7. Note that the noisy data are not shaped before filtering; this would disrupt
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Figure 3.7: Normalized Hamming windows can be used to scale the filtered data in each window so
that the windows can be added together without affecting the overall gain. Special shapes are used for
the first and last windows to avoid attenuation near the endpoints. Here, the window length is 256,
with a shift of 64 points between windows.

the dynamics of the underlying signal. Rather, the Hamming window is applied to the filtered
signal %V«

For the Hamming window, the contribution of each window to the overall signal estimate is
focused at the center of the window. Therefore, the estimation of the data near the center of each
window is more critical than the estimation of the data towards the periphery. To reflect this
preference in the model estimation procedure. the weights can be estimated in such a way as to
emphasize the data according to the shaping window. In the dual EKF, this requires adjusting

the weight filter equations slightly; the Kahnan gains in Formulae 3.10 and 3.21 are replaced by:
Ky = Q/H! (H,xQrHY, +clol)™". (3.242)

An analogous change is also made to the variance estimation filter of Formula 3.13 on page 78 by
replacing 0,2 with c,o72. In the linear model case, the above change effectively implements a re-

cursive weighted least squares algorithi [6], where the weighting matrix has the window coefficients
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¢ along its diagonal, and zeros elsewhere.

Normalization

A related issue is that of pre-scaling the data so that it falls in a reasonable range for numerical
accuracy on a finite-precision computer. Most machines do poorly at representing either extremely
large, or extremely small numbers, so it is important that the signal and weights take on values
that give reasonable precision.

Furthermore, normalizing the data facilitates the use of default initialization values across
different data sets. For example, initial covariances Pg and Qg must be set for both the signal and
weight estimates, and these matrices should ultimately depend on the expected scale of the data.
Hence, normalizing the data reduces this data-dependence.

Normalization requires both subtracting the mean from the data, and scaling by a normal-
ization factor, which can be cither the standard deviation or the maximum absolute value of the
noisy time-series. For on-line applications, the data can be normalized as it arrives using a preset
estimate of the mean and normalization factor. In off-line contexts, these values can be determined
from the entire data set.

A possible complication arises when either of the variances o2, 62 (or o2 ) is known a priori.
In this case, its value must be scaled by the square of the normalizing factor. While this scaling is

2

correct for the measurement noise statistics, it is only correct for the process noise variance o2 in

the case of a linear model f(-); otherwise, it represents an approximation.

3.6.5 Computational Expense

In the following, the number of floating point operations required at each time step by the dual EKF
and joint EKF are roughly calculated to show how the algorithms compare from the perspective of
computational expense. Although the calculations are made for the white noise case, the expense

for colored noise can be approximately found by substituting (M + M,) for M.

Dual EKF

As suggested in Section 3.6.1, computation of H, ; — which involves the recursive derivatives of
the signal estimates and covariances with respect to the weights - accounts for a large part of
the computational cost of the dual EKF algorithm. Table 3.2 lists the approximate number of
floating point operations for cach part of the algorithm. This is often referred to as the order of

the computational expense, and is denoted by O(-). The sparse structure of matrices (such as Ay



Table 3.2: The order of computational expense for various equations in the dual EKF.
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Equation Term Order of Expense Explanation
3.129-3.133 | %, P;, K, %4, Py 6M2 + 3M + 2M,, signal filter
<
= | 3.127-3.128 Wi, Qp M2 weight filter
é 3.134 KY AM2 M, + 4M2M,, + M3 "
S 3135 Wy, My + 2M, M,y ”
3.136 Qs 2M2ZM, + M, ”
4My, O(ZEH)
3.222 Fen M (25
8 (2M? + M)My, O(matrix mult.)
5 3223 Ok, 3M My, + M? O(matrix mult.)
g 322 Ik Vi M2 My + MMy O(matrix mult.)
2 3225 e Vi 8M> My, + 4M? O(matrix mult.)
- ,
g 3.226 Skl i MM, O(matrix mult.)
’ a’F
OA . 2
3.227 Sk Vi 2M M., O(72E5)
2M?2M, + MMy, O(mult. & add)

and Cy;) is taken into account as much as possible, so the numbers in the table represent a fairly

efficient implementation.

Combining the costs of Equations 3.222-3.227, computation of the recursive derivatives re-
quired by the dual EKF is O(15M? ALy, +10M M, +6 M,y +5M?), while use of the static derivatives
alone is only O(5M,). Meanwhile, the Kalman signal filter of Formula 3.10 on page 75 requires
O(6M? + 3M + 2M,,) computations, and the weight filter is O(M2 + My M2 + My + 2My M, +

6M2ZM, +2M2), where M, is the dimension of the observation vector, ey.

Joint EKF

The joint EKF does not use the recursive derivatives required by the dual EKF, so its expense is
limited to that of an EKF used to filter the joint state-space equations. Including all derivative
computations, this filter requires O(6M2 + 3M, + 2M2 + TM,,) computations, where M, is the
dimension of the joint state. In the white noise case M, = M + My, so the joint EKF is O(8MZ +
12M My + 10My, + 6M? + 3M)
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Table 3.3: Coefficients for the order of computational expense of one time-step for the joint EKF and
dual EKF, when written as polynomials in the signal state dimension M, and the number of weights,
M,,. Static derivative forms of the dual EKF are indicated by a prime ().

Algorithm M2 MMy | MMy, | My | M?2 | M| 1
joint EKF 8 0 12 10 6 3|1
dual EKF JP“(w) 8 15 10 15 9 5 |1
dual EKF J"Y(w) 14 15 10 29 9 51 8
dual EKF JJ{w) 14 15 10 29 9 5| 8
dual EKF J"(w) | 20 0 0 46 4 5 |27
dual EKF J¢“(w) 26 15 10 81 9 5 | 64
dual EKF’ J¥¢(w) 8 0 0 10 4 51
dual EKF? J"(w) | 14 0 0 24 4 5| 8
dual EKF’ J/(w) 14 0 0 24 4 5| 8
dual EKF’ J*“(w) 26 0 0 76 4 5 | 64
Comparison

To facilitate comparison of the two algorithms, Table 3.3 shows the coeflicients of terms involving
M and M,, for the joint EKF, as well as the five different cost functions of the dual EKF. Each
cost has a different number of obscrvations, M,, which gives them different overall costs.

The order of expense for A = 10, at various values of My, is shown in Figure 3.8. Clearly, the
joint EKF conveys a significant computational advantage, due to its lack of recursive derivative
computation. The dual EKF with the EM cost does not require recurrent derivatives, and so
its expense is less than that of other dual EKF algorithms. If static derivatives are used in the
other dual EKF costs, their expense is reduced considerably, and the cost of the prediction-error
algorithm is less than that of the joint EKF.

However, it should be noted that the above costs involve only floating point multiplies and
adds, and assume that the algorithms are coded with an eye for efficiency. For the MATLAB code
used to generate the experimental vesults in the next chapter, the joint EKF and dual EKF are

quite comparable in terms of overall execution time.
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Figure 3.8: Floating point operations required by the joint EKF and dual EKF algorithms, as a function
of the dimension of w, with A fixed at 10. The solid curves represent dual EKF algorithms with
recurrent derivatives. Note that the expense of .J?(w) is the same as J"™(w). The joint EKF expense
is shown with a dashed line. Nonrecurrent approximations are represented by dotted lines without
labels: JP¢(w) (lower), J™(w) and J’(w) (middle), and J(w) (upper).



Chapter 4

Comparative Experiments

4.1 Overview

The previous chapters of this thesis describe several different dual estimation algorithms and cost
functions. The current chapter has several goals: to determine appropriate settings for various
algorithmic parameters; to compare the utility of the different cost functions within the dual EKF
framework; and to compare the performance of the dual EKF algorithm with that of the joint EKF
and other algorithms. These goals are approached through a series of controlled experiments, in
which the clean signal, true model structure, and true model parameters are all known beforehand.
This information is necessary for computing objective performance criteria, such as the mean
squared error (MSE)

For example, consider the time-series data depicted in the top part of Figure 4.1. The solid
curve was generated by a neural network function f(-), driven by white Gaussian process noise
with variance o2 = .36. Colored noise was then generated by a known linear autoregressive model
and added to the signal to produce the noisy measurements shown by the small dots. For clarity,
only the last 200 points of the 20,000 point time-series are shown. The bottom part of the figure
shows the same signal, but with the dual EKF estimates superimposed as small dots. If the clean
signal was not known, we could not see that the dual EKF estimates are closer to the signal
than the noisy measurements, nor compute the normalized MSE before (.5016) and after (.1263)
processing. Performance measures such as MSE play a crucial role in comparing the performance
of the various cost functions, and deciding how to initialize the algorithm or choose a forgetting
factor.

The comparative experiments in this chapter are aimed at resolving the question of which cost
function or algorithm to use when confronted with a particular noisy signal. In addition to deciding
on a cost function, other design issues must also be determined. In particular, the initial values of

the covariance matrices for the signal, weight, and variance filters must be chosen, as must a value

116
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Figure 4.1: Estimation of a nonlinear time-series by the dual EKF. The true signal is shown by the solid
curve. Noisy inputs to the dual EKF are shown by the dots in the top plot, and the signal estimates
are shown with dots in the bottom plot.

of the forgetting factor, A\. Because the best set of choices may depend on the particular type of
signal and noise (e.g., linear or nonlinear, white or colored noise), and the given signal-to-noise

ratio (SNR), an effort is made to isolate these factors.

The situation is further complicated by the amount of a priori knowledge assumed to be
available. That is, the results might depend on whether or not the noise variances are known,
and to what degree of certainty the required complexity of the model structure is known. A lack
of knowledge about the true noise statistics or model structure represents a potential source of

additional error, to which some cost functions are likely to exhibit better robustness than others.

Each of the above design parameters or variables represents a dimension in what is clearly a
very large search space. Unfortunately, searching this space exhaustively for the best set of design
choices is prohibitively expensive. However, some design choices can be expected to be less tightly
coupled with other choices. For example, the effect of the initial covariance matrices Py and Qg
on performance should be somewhat independent of the cost function being used. By optimizing

these values first and holding them constant, the dimensionality of the search space is reduced.

Hence, a sequence of experiments is performed. In the first experiment, reasonable choices

for Py and Qg are found, assuming the noise variances o2 and o2 are known. A few different
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cost functions are used to confirm the assumption of independence. Second, in an experiment
using known weights, w, the different variance estimation cost functions are explored, along with
values of the initial error variances, ¢, 0 and g,0. A few different noise types are employed,
and the experiment is repeated for the various cases wherein one or both of the variances are
unknown. The third experiment looks at the effect of the forgetting factor, A, in the presence of
both stationary and nonstationary noise. Fourth, the relative performance of the various dual EKF
weight estimation costs are determined using the values of Py, Qg, ¢y,0, and g, 0, and A determined
in the earlier experiments. The use of static derivatives instead of recursive ones is evaluated in
the fifth experiment, and in the sixth experiment, the dual EKF and joint EKF algorithms are
compared. Some final experiments are used to evaluate the robustness of the algorithms to incorrect

choices of model structure, and the use of the algorithms in iterative estimation settings.

4.2 Experimental Framework

Before presenting the results, however, the experimental framework must be described. The fol-
lowing pages provide an outline of the performance criteria, method of analysis, and various data

sets used in the experiments.

4.2.1 Performance Criteria

Comparing different estimation methods requires a means of evaluating the performance of the
dual EKF and other algorithms. This choice of a performance criterion ultimately corresponds to
a particular definition of the loss function L(-), which may be a function of the signal estimation
error, and errors in the parameter estimates (recall the discussion of Bayes Risk in Section 2.2.2
on page 20).

A particularly useful class of functions are the sum of squared errors (SSE), where the sum
might be weighted differently over different components of the weight and signal errors, and over
different times, k. Although choosing an appropriate loss-function is typically a problem-specific
task, some degree of generality is afforded by the fact that a broad class of loss functions all
correspond to the same Bayes estimates, so long as pywv |y~ is unimodal and symmetric. In fact,
under these conditions, the Bayes estimate for the SSE loss function is also the desired MAP
solution described in Chapter 2.

For certain applications (e.q., speech enhancement), a SSE loss function is not the most appro-
priate choice. In the case of speech, this is because the signal’s phase information is not a strong

cue in human speech perception, and because the human auditory system is differently sensitive to
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different frequencies of sound. These and other factors are ignored by a simple SSE loss function.
On the other hand, a satisfactory objective measure of speech quality has yet to be developed.
Although, the speech enhancement results reported later in this section are presented in terms
of weighted spectral slope, segmental SNR, and several other perceptual metrics, none of these
measures is an accurate indicator of human perception of speech quality. Because the emphasis of
this thesis is on the theoretical relationship hetween various cost functions in the MAP context,
and not on a specific signal type or application, the SSE loss function is a reasonable choice for

evaluating the performance of most signals.

Normalized Mean Squared Errors

To compute the SSE, the squared errors in the signal and weights are summed over a finite period
of time. This value can then be divided by the length of time (number of data points) to produce
the time-averaged, or mean, squared error (MSE). Furthermore, the MSE can be normalized by
the variance of the clean signal (or true weights) to produce numbers close to the range [0,1]. The

formula for the normalized mean squared error (NMSE) is:

(3 ) -1 ko )
NMSE = (Z true,i) Z (truey — estimatey)?, (4.1)
k:kl k“—'kl

where the number of data points (ks — k; + 1) cancels out of the expression. NMSE values are
typically less than 1, which would correspond to an estimate of all zeros for k € [k, k2]. However,
values larger than one are possible for exceedingly poor results.

To keep the analysis as general as possible, the estimation error and parameter errors are
considered separately. The estimation error at time k is simply &, = (xx — £x), where I is
the estimate produced by the algorithm in question. The variance-parameter errors are a~2v,k =

2

>~0624) and 02, ;= (05 — 6, ;). When the model is linear, one can also consider the weight-

(o?
parameter error Wy = 3, (w(¥) — '“:'ﬁ-i))? however, the weight error is not a meaningful quantity for
neural network models because of the non-uniqueness of solutions. The prediction error can also
be considered, defined as &, = (x, — 4} ), and can be viewed as a function of the estimation error
and parameter errors’.

If the algorithms are evaluated on a time-series of length N, summing the instantaneous
squared errors over k € [1, N] produces a number that represents the overall quality of the esti-

mation procedure. This can be done separately for estimation, prediction, and parameter errors.

LAn alternative definition of prediction error, (yz — i;), differs from the above definition by inclusion of the
measurement noise ng.
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Computing the overall NMSE facilitates the comparison of algorithms by providing a scalar mea-
sure of quality.

However, we are typically interested not only in the overall sum of these squared errors, but
also in their values as functions in time. Some information about the time-dependence of the errors
can be obtained by summing over shorter segments of the result. For example, summing over the
first 100 time steps gives a picture of an algorithm’s performance at small times, whereas summing

over the last 1000 time steps can show the performance of the algorithm near convergence.

Error Traces

Ultimately, however, a time-trajectory of squared errors conveys the most information about the
convergence properties of the algorithm. For example, the squared error in the estimate &ﬁ‘k
of the measurement noise variance will ideally appear as a monotonically decreasing curve when
plotted against time. Information about the convergence rate and asymptotic value can be readily

discerned from a plot of the ensemble statistics of these curves.

However, a similar plot of the signal estimation error will not be so easy to evaluate; the squared
error will generally appear quite noisy and will vary greatly with the instantaneous dynamics of
the underlying signal. Even when the model parameters, w, 0%, and o2 are known exactly, a plot
of the estimation error from an extended Kalman signal appears highly noisy. The situation is
improved somewhat by plotting the short-term MSEs, computed every 50 points over a 500 point
window (as shown in the middle plot of Figure 4.2). These smoothed plots, referred to in this
thesis as MSE profiles, are easier to interpret than the raw MSEs, but the convergence properties
are still not readily discernible. To aid in the interpretation of estimation error plots, it can be
useful to compare the MSE profile of the dual estimation algorithm (unknown model) with the
profile of the ideal signal estimation result (known model). The difference in these MSE profiles

more closely resembles a monotonically decreasing curve, as in the bottom plot of Figure 4.2.

4.2.2 Statistical Analysis

When comparing two methods, one must determine whether the perceived difference in their
performance is statistically significant. This can be done by repeating the experiment several
times, and looking at the ensemble statistics of the loss function taken over different realizations of
the data. If the difference between the means of two methods is much greater than the variation

seen for an individual method, then the difference is significant.
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Figure 4.2: The ensemble average (10 repetitions) of the squared signal error (z; — %)? is too noisy to
interpret (top plot). Computing the MSEs over a sliding 500-point window produces an “MSE profile”
(middle plot). The convergence behavior of a dual estimation algorithm can be viewed by subtracting
its profile from that of the EKF, to produced a “differenced MSE profile” (bottom). The ensemble
mean and standard deviation are shown by solid and dotted lines, respectively.

Sampling Distribution

For a particular algorithmic treatment, the value of the loss function L{-) generally depends on the
underlying signal {z;}{V, weights w, and data {yx}Y. As described on page 20, these quantities
can be viewed as random samples drawn according to PxNwyl - The loss L(-) is therefore a ran-
dom variable whose probability distribution depends on this joint density function. A particular

algorithm can be evaluated by estimating both the mean of L(-) (i.e., the Bayes risk):

By [Bxwyy [L({ox — 4}, w — %) {ne )], (4.2)

and the variance of L(-) empirically, using samples drawn from P wyl¥ -

For example, w might be sampled according to a multivariate Gaussian distribution around a
particular mean. Next, x¥ can be drawn from Pxl¥w * Pxo> by generating the initial condition xg
and process noise as Gaussian random variables. Finally, the noisy data y® can be produced by
sampling from, for example, pyn |~y = N (x{,02%1), in the white noise case. By repeating this
sampling procedure, the statistics of L(-) for a particular algorithm will emerge.

However, varying the weights in this manner can produce widely varying signal dynamics,

which would dominate the resultant variation in the loss function. The variance of L{-) for a



122

particular algorithm would then be quite large, thereby obscuring the difference between the Bayes
risk of two algorithms. Ultimately, statistical techniques can be applied to mitigate the problem,
but a large number of samples are required for this, resulting in great computational expense.
Furthermore, the average error trajectories would be much less meaningful.

A better use of computation time can be made by taking a different approach. Consider the
idea that the various algorithins are likely to behave in the same way relative to one another at
different points in the weight space. In other words, for a given parameterization of the underlying
system, f{-, w), the ranking of the algorithms will not depend on the true underlying weights, w.
This means that the conclusions made about the relative performance of algorithms for one system
can be generalized to other systems of similar complexity. This assumption can be tested, but it is
clearly a highly desirable situation; if it is not true, there is little value in running the comparative
experiments in the first place.

Under the above assumption, the evaluations can be performed using a fixed weight vector
w. In other words, pw is taken to be singular, producing a fixed value. The experiment can be
performed for a few different values of w to validate the assumption, but this is not as troublesome
as sampling across the space of all possible weight values.

With the weights fixed, sampling across the signal space (varying {z}}{¥) amounts to varying
the initial conditions xg, and the particular realization of the process noise {vk}f’ . However, if
the signal is ergodic, the statistics of the signal space computed across time will tend toward
the ensemble statistics at large values of time k. In other words, taking the ensemble average
of the error across different realizations of the signal x¥ should be equivalent to computing the
time-average.

Thus, a more efficient use of computational resources is to sample only from PyN|xVw {drawing
different realizations of the measurement noise n{) while keeping w and x{¥ fixed. This can be
viewed as estimating the outer expectation in Equation 4.2 alone, while computing the inner

expectation with a singular density function Px¥ ws located at the known values {z}Y and w.

T Test

With p.wvwyn in place, and assuming the loss function L(-) is chosen, the task remains to eval-
uate the various algorithmic design choices in a set A. If the loss under a particular algorithmic
treatment, a € A, is denoted by the random variable Lo (x, w,y!), then the ultimate goal is to
determine if Ey[L,| < Ey[L;] for all pairs (a # b) € A.

This can be accomplished with a paired sample t test, as explained in Appendix I. This

test looks at the difference between two treatments, and produces a statistic, called the p-value,
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that reflects how likely the difference is to be zero-mean. When the p-value is close to zero, the
difference between the treatments is significanc. If the p-value is large, then the data do not support

a difference between the treatments.

Boxplots

One weakness of the t test comes from its assumption of Gaussianity. Suppose that treatment b is

significantly worse on average than treatment a, and moreover, is prone to occasional divergence.

th repetition, causing a difference, dE:]b 2 (L, — L),

[r]

a,b?

The problem occurs when b diverges on the
much larger than the average difference, D, = 71?— 2.4, across R repetitions; this inflates the
sample variance of the differences, s4,. The t,, statistic makes no distinction between values of
d[:]b larger than the mean and values smaller than the mean, so even though no differences close
to zero are observed, t,; is decreased, and the p-value becomes large. This shortcoming can be
compensated for by viewing a boxplot (e.g., see Figure 4.10 on page 133). This plot shows the
median, and the upper and lower quartiles of the data with horizontal lines. Vertical “whiskers”
show the range of data within a length of 1.5 times the interquartile range, both above and below
the inner quartiles. Outliers are points outside of the whiskers, and are plotted separately with a
“+” symbol. When all the data are in-range (no outliers), this is indicated by a small dot at the
bottom of the lower whisker.

Typically, then, the experimental results in this section are interpreted by making boxplots of
the various treatments to show the range of results obtained. Next, the algorithmic treatment a
with the smallest sample average of L, is found, and the p-values for the differences between a and
each of the other treatments are computed by a paired sample ¢ test to determine whether these

differences are significant.

4.2.3 Signals

Several different clean time-series are used in the comparative experiments?. The first two are

generated from a known autoregressive function f(-) according to:

T = f(The1y Tk pr, W) + 0k Vke {1...N}, (4.3)

where vy is a zero-mean white Gaussiau process. Initial conditions are obtained by starting at
random values of z, and running the recursion until the transients disappeared. These transients

are then omitted by removing the first several hundred points of the signal. As described below,

2 Additional, application-specific titne-series will be described in later sections.
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the first signal uses a linear function for f(-), and the second two use neural networks. The fourth

and fifth signals are generated by known chaotic maps.

Linear AR-10 Signal

Txk_ 1 with

One of the signals used in the experiments is generated by a linear function z, = w
10 taps (M = 10). This results in a linear IIR (all-pole) model driven by white process noise,
commonly referred to as an autoregressive (AR) system [46]. The weight vector and process noise

variance used to generate the data arve:
T <
w=[9 3 -4 2 -1 1 -3 2 01 -0, and o2=09. (44

A portion of signal is shown in Figure 4.3. The main utility of this time-series is that it satisfies all
of the assumptions of Gaussianity made in the theoretical development of this thesis. The linear

AR data therefore allow testing of the algorithins under “ideal” conditions.
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Figure 4.3: Data generated by 10th order linear AR model.

Nonlinear Neural Network Signals

To generate a nonlinear time-series, a feedforward neural network with 10 inputs, 5 hidden units,
and 1 output is used as the nonlinear autoregressive function f{-) in Equation 4.3. Two different
networks (i.e., with different weights w) are used to generate time-series with different dynamical
properties; this is useful for testing the hypothesis that the relative performance of different costs
should be similar at different points iu the weight space.

The first network is driven with white Gaussian process noise with variance g2 = 0.04. The
resulting signal is shown in Figure 4.4(a), along with a phase diagram of the undriven dynamics
{(no process noise) in Figure 4.4(b). As shown, a limit cycle is produced: a fairly simple form of

nonlinear dynamics.
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(a) Portion of first neural network signal (b) Phase diagram of undriven dynamics

Figure 4.4: Data generated by limit cycle neural network.

.l Thetol

(a) Portion of second neural network signal (b) Phase diagram of undriven dynamics

Figure 4.5: Data generated by chaotic neural network.

The second network is driven witli white Gaussian process noise with variance o2 = 0.36. The
resulting signal is shown in Figure 4.5(a), along with a phase diagram of the undriven dynamics
(no process noise) in Figure 4.5(b). The dynamics of this network are considerably more complex

than the first, and appear chaotic in nature.
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Ikeda Chaotic Series

The Tkeda chaotic map [27] is defined by the discrete-time, complex valued function:

(-t )

spr=a+Roz€ VEk € [1,00), (4.5)

where zp is chosen randomly, ¢ = 1, R = 0.9, ¢ = 0.4, p = 6. A one-dimensional time-series
was produced by taking the real part of the data; i.e., z, = R(z;). Furthermore, the data are
normalized to have zero mean and fall approximately in the range [—1,1]. The time-series is shown

in part, along with its phase diagram, in Figure 4.6.

Tk o

] J\' \

il

(a) Portion of signal (b) Phase diagram of signal
Figure 4.6: Chaotic lkeda data.

The linear and neural network models have the advantage that the exact model structure is
known in advance, thereby removing any effects which might arise from using a model which is
either too flexible or too rigid during the dual estimation process. In contrast, if a neural network
is used to model the noisy Tkeda data, the architecture is not known a priori, nor are the optimal
set of weights w and variance o2.

As these parameters are not required for dual estimation, this does not pose any problem
for the use of the algorithms. On the other hand, it makes establishing a benchmark result for
the known-model case difficult on the Ikeda data. One solution is to train a neural network as
a predictor on the clean data, and to interpret this as the true model. However, the chaotic
properties of the Tkeda data set make this a difficult modeling problem in its own right, and even
when a reasonably accurate model is found, it proves ineffective when used for signal estimation

in the Kalman filtering context. The reason for this is probably related to the severity of the
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nonlinearities in the system, which disrupt the Gaussianity of the statistics, so that this “true”

model is no longer optimal for estimating noisy data.

Mackey-Glass Series

A continuous-time chaotic map, first described by Mackey and Glass ([49], 1977) for modeling the

dynamics of white blood cell production in the human body, is given by the differential equation:

de(t)  2z(t—71)
dt ~ 1+z0t-1) Az(b)- (4.6)

Here, 7 is delay parameter which results in either fixed point, limit cycle, or chaotic behavior. The
system has been used frequently in the literature for testing nonlinear predictive models (e.g., in
[40], [85], [31]). The experiments later in this chapter use a delay of 7 = 30, which produces a
strange attractor with a fractal dimension near 3.5. Following the convention in the literature,
the continuous time signal is sampled every 6 seconds to produce the discrete-time series shown in

Figure 4.7.
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Figure 4.7: Data generated by Mackey-Glass equation with 7 = 30 and a sampling period of 6.

Normalization

Because the above data sets are generated so as to fall in a reasonable numerical range, normaliza-
tion is not a critical issue. Nevertheless, to provide consistency, and to allow the use of a common
set of initial error covariances Pg, Qq, ¢v.6, and ¢, 0, the noisy time-series are normalized to be
zero-mean, and to fall in the range [—1,1] so that max|yr| = 1. Of course, the unnormalized
time-series is used whenever the true model is employed for signal or variance estimation: the data

must match the model in this case.
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4.2.4 Measurement Noise

Several different classes of noise are investigated, ranging from stationary white Gaussian noise,
to nonstationary colored noise, to pink noise. As explained in Section 4.2.2, several realizations of
the noise are required for each noise type. These data are scaled appropriately before adding them

to the clean signals, to produce time-series at the desired SNR.

White Stationary Noise

White noise refers to a signal whose value at time k is statistically independent of its value at time
k — 1. Typically, the pseudorandom numbers generated by a computer can be considered to form
a white noise sequence in this sense. As an alternative, the Signal Processing Information Base
(SPIB) at Rice University [69] makes available 235 seconds of white noise, which was sampled from
an analog noise generator with 16 bit precision at a rate of 19.98‘kHz. The original data are in
integer format.

To produce the noise samples {n,}? used in these experiments, the SPIB data set was nor-

malized to fall in the [—1, 1] range, and was divided into nonoverlapping segments to produce the

required repetitions.

White Nonstationary Noise

Nonstationary white noise data are produced by modulating each of the above stationary noise
realizations with a sine wave. The D.C. offset of the sine wave is 1, and the amplitude is 0.2.

The period is about 15,000 points, thereby producing a white noise signal with a slowly chang-

1 T T

0.8

Figure 4.8: White nonstationary noise.

ing variance 037 . (see Figure 4.8). Strictly speaking, the resulting noise is not truly white, but

the time-scale of the amplitude modulation is slow enough that the noise remains approximately

uncorrelated {(white) on smaller time-scales.
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Autoregressive Colored Noise

To generate noise with temporal correlations between data points, a linear 5t*-order AR model is
used. To ensure that reasonable noise-like dynamics are obtained, the model is itself trained to

predict sampled analog pink noise. The noise model parameters are:

T
wn:[0.6297 0.0515 0.1061 —0.0024 0.0893| , and o2 =.09. (4.7)

Generating a noise signal from this AR-5 model ensures that everything about the noise is known.

Note that colored noise of a given power is “less random” than white noise at the same power,
because the colored noise has a certain component that is predictable, or deterministic. Hence,
the signal estimation NMSEs for a signal corrupted by colored noise are typically less than they

are for white noise at the same SNR.

Autoregressive Nonstationary Noise

The above noise model can also be used with a time-varying process noise variance, O‘gﬂ e 1O
produce a nonstationary colored noise series. Note that the nonstationarity in this case is highly
restricted, as the parameters w,, remain constant. The standard deviation of the process noise is

modulated as:

O,k = 0.3gaing where gaing =1+ 0.2 sin( (4.8)

2000 )

producing a nonstationarity with a period of about 12,500 points.

Pink Noise

While white noise has a flat frequency spectrum, showing equal energy at all frequencies, the
power spectral density of pink noise decreases as the inverse of the frequency. Alternatively, it can
be described as having an equal amount of energy in each 1/3 octave band. The noise is called
“pink” because, if the spectrum were interpreted in the electromagnetic domain as visible light
frequencies, the signal would appear as pink light due to its emphasis of longer (red) wavelengths.

The SPIB [69] resource contains pink noise sampled with 16 bit precision at a rate of 19.98 kHz
from an analog noise generator. This integer-valued noise is downsampled to 8 kHz and normalized
to the range [~1, 1], then segmented into 30,000 point sections. The power spectral density of one
such segment is shown in Figure 4.9(b). Unlike the stationary AR-5 noise described above, the
true model order of this pink noise is uncertain (as is the weight vector w and variance o2 ). As
with the Ikeda series, the purpose of this data set is to test the algorithms in conditions wherein

the correct model structure is not known exactly.
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Figure 4.9: Pink noise

4.3 Synopsis of Results

Numerous experimental results are reported in the subsequent sections of this Chapter, in the form
of boxplot figures, summarizing tables, and discussion. Because the results are fairly detailed, this

section provides an overview of the major fiudings in each experiment.

1. Initial Error-Covariances: Appropriate values for the initial covariances, Py and Qg, are
investigated in the context of both linear and neural network signals, using normalized data.
The main conclusion from these results is that oo large a value of the initial weight covari-
ance, Qq, can sowmetimes prevent the dual EXF from converging. The results - veported in
terins of overall signal NMSE -- are generally not, very sensitive to the signal covariance, Po.
For maost cost functions and data sets, Py = I and Qg = .11 produce good results; however,
a later experiment shows that the J™ (w) and J®(w) costs are prone Lo stability problems,

and require a smaller value of Qg (.011) in many circumstances.

2. Vemance Estimation: The cost functions for estimating the noise variances are compared
(beginning on page 134) using an EKF with known weights, w. When estimating 2, the
joint cost gives the best long-term result on white noise, although it shows slightly slower
convergence speed than the maximum-likelihood cost. On colored noise data, the joint cost
appears prone to under-estimation of the variance, leaving J™(c2) as the best choice in

2

this case. For estimating the measurement noise variance (o7 ov of ) with o3 known. the

maximum-likelihood cost was consistently better than any other cost.
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The results are less salisfying when both vanances are unknown, with the J/ (Uﬁ) teplaced
as the top choice on white noise by J¢¢(62) and JP¢(52), and the maximum-likelthood mea-
surement noise vaiiance cost replaced by J¢"(02) and J*(o? ) in some cases. Contribuumg
to the variation in results might be the inaccuracies of the EIXF signal estimator itsclf. For-
tunately, the results are much more consjstent when the weights are estimated as well — with

a dual Kalman filter - in the fourth experiment.

Forgetting Factor: The results reported in this section pertain to the scalar A, used in the
weight and variance filters to determine how quickly old data are “forgotten” by an expo-
nential window. For stationary data, a value around Ay = 0.9999 produces good resulis,
although this number will probably depend on the complexity of the model. Variance esti-
mation involves ouly a single unknown parameter for each variance filter; less data should
therefore be required. A value of A,: = 0.9993 appears the best for either of the variance
filters. Meanwhile, the best choices of forgetting factor on nonstationary data — such as
sinusoidally modulated white noise — is dominated by the rate of nonstationarity itself The

value of A should be as large as possible while still allowing tracking of the noise variauce.

Dual Kelmun Weight Costs: The various dual EKEF weight costs are compared in Section 4 7
on page 148. With both vartances known, the J?¢(w) and J™ (w) costs excel on white noise,
while J?{w) and J"(w) do the best with colored noise. However, the maximum-likelihood
cost is prone to unstable behavior (an ill-conditioned Hessian); it and the error-coupled joing

cost both require a smaller value of ()g = .01 to prevent this, and can go unstable even so.

When the process noise variance, o2, ig estimated along with the weights. the rankings of
weight estimnation costs are much the same. Meanwhile, the variance estimation cost J(¢2)
is the best across all data sets and SNRs. Estimation of both variances (measurement noise
and process noise) shows the maximum-likelihood cost to be the most effective, generally, for

estimating o2 (or o;_), as well.

Overall, the dual EKF algorithm works very well, and shows good robustness to uncertainty
in the noise variances. Comparing the dual EKF results (both with kuown and unknown
variances) with those of an EKF shows that the dual EI(F can actually compensate for the
inaccuracies of the EKF in some circumstances. and produce better results than when the

weights and noise variances aie known (see Figure 4.46 on page 179)!

Static Derivalives v the Dual EXF- The next expeniment. explores Lhe effect of nsing static

dexivatives in place of the dual EKE's recursive derivatives of x, and Py with respect to w.
) I



As expected, the performance is degraded by this approximation; although the difference is
less significant on white noise data, recursive derivatives are play an important role for data

in colored noise (see Figare 4.48 on page 182).

6. Jount EKF Performance: In Section 4.9 on page 183, the best dual EIKI cost functions are
compared with the joint EKTF algorithm. There is little difference in perfoymance when boih
variances are known, except that the dual EXF perfonns significantly better on the [keda
data, for which the model structure is unknown, When o2 is estimated, the joint EKF does
significantly better on linear data in white noise. and when tracking nonstationary noise at
higher SNRs. However, letting o} (or of ) be unknown as well makes the dual EKF the
Letter performer on white noise. The dual EKI is better on the Ikeda data in all cases. In
contcast 1o reports elsewhere in the literature [45, 47, 61] the joint EKF exhibited no stability

or convergence problems during these experiments.

7. Model Mismatch Effects: The effect of uncertainty in the model structure is investigated
formally in this experiment, and shows that the dual EIKIF is considerably more robust than
the joint EKF (o a model structure that is either underparameterized, or overparameter-
1zed, with respect to the underlying signal. This formn of robustness is important for most

applications where the model stiucture is not known a priori.

8. Qver-Training: The experimental results in Section 4.11 on page 192 demonsirate the sus-
ceptibility of duval estimation algoiithms to over-training whenever a finite data set is used
in an iterative fashion. This underscores the impoitance of an early-stopping technique to
maintain good generalization in the test set. The 1esults are otherwise consistent with those

for the on-line (infinite data) case.

The above experimenis are described in more detail 1n the following sections.

4.4 Experiment 1: Initial Error-Covariances

The dual EKF algotithm requires initial values for the signal-state covariance. P, and the weight
covariance, Q,, at time k = Q. If the signal has been normalized to be approximately unit
variance, then Py = 1 is a reasonable choice. A rveaxonable value for Qg 15 less clear, aud involves
several factors discussed in Section 3.3.2 on page 62. In addition Lo finding good iuitial velues, the
sensitivity of the dual EKF to these valies should be determined.

To obtain this information, the dual EKF is run using three of the five cost functions derived

in Chapter 2: the prediction ervor cost. J7¢(w), the joint cost .J/(w), and the EM cost .J*" (w).
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Both the process noise variance o2 and measurement noise statistics (o2 in the white noise case,

2
Vi

Two different noisy data sets are used.

o and w, in the colored noise case) are known. The forgetting factor. A, is }.

o ihe AR-10 series with white stationary noise added at 0 dB.

o the chaotic neuwral network sertes (NN) with autoregressive stationary noise added at 3 dB.

Each of the two series {z5}] contains N = 10,000 points, and is corrupted with 10 different

realizations of the corresponding noise series, for a total of 20 different noisy series {ye}{'.
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Figure 4.10: Overall estimation NMSE statistics. For each of the six different test conditions, boxplots
.1, 1} from left to right within each panel, and Q)¢ increasing
between panels as indicated Horizontal lines indicate the median, and upper and lower quartile values.
and range of the overall NMSE. The mean values within each (Qq are hnked by thin lines, and the choice
of Py and Qq with the lowest mean NMSE is indicated by a superimposed circle The p-value for the
difference between this choice and each of the cthers is shown along the top of each plot

are shown for Fy increasing as {.01,

The covariances Py and Qg are tested at values Py - I and Qo - I, respectively, where Py and

Qo are scalars chosen from { .0), .1, 1 }. Thus, there are a total of 9 diffevent test configurations,

tested at 6 different algorithm-dati combinations, and with 10 repetitions each.

The most mformative perforinance ciiterion i this case is the overall estintation c¢ryor. Lhe
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prediction error is strongly correlated with the estimation error, but exhibits lower resolving power
because of the inclusion of process noise. The short-term (first 100 point) errors are consistently
biased towards small values of both Py and Qg, which produce lower-variance estimates (at the
expense of high bias) before the algorithms have seen enough data to provide reliable results. On
the other hand, the final 1000-point NMSE has little dependence on initial parameter values. The
error trajectories are fairly consistent across algorithms, and are informative mostly in showing
that convergence occurs before the end of the data.

The results are summarized graphically in Figure 4.10. The clearest conclusion is that Qg
should not be as large as I. In all cases, the minimum mean NMSE appears for Qo = .11, although
the difference between Qg = .1I and Qg = .01I is significant only on the linear data.

Choosing Pg is even more difficult. Setting Py = I can be justified on the grounds that it
has the lowest mean NMSE in most cases, and never differs from the optimal choice with p-value
lower than 15%. However, using Py = .11 is also reasonable because it never differs with p-value
lower than 14%, although this choice never attains the lowest mean. While Py = .001I gives the
minimum in two cases, the advantage is completely insignificant in one of these (AR-10 data, joint
cost). Furthermore, it is significantly worse than Py = I in two other cases, with a p-value of less
than 10%.

In any case, the choices Qg = .1I and Py = I seem to convey a slight advantage, and are
used in the remainder of the experiments presented, unless indicated otherwise. Actually, the
lack of sensitivity indicated by the paired-sample ¢ tests is somewhat encouraging, because the
initial values of the covariances should, ideally, not have a strong effect on the results. The most

important condition is that Qg be small enough to prevent instability.

4.5 Experiment 2: Variance Estimation

If the noise variances o2 and o2 (or agn) are unknown, they must be estimated using, for example,

the Kalman variance estimation algorithm given in Formula 3.13. In this case, the error variances
of the filters must be initialized, just as is required by the signal and weight filters. However,
because the state is one-dimensional in this case, these initial error variances, g, and gn 0, are
scalar-valued. In addition to choosing g, and g, ¢, variance estimation requires choosing a cost
function. To simplify the search, the weights w are assumed known, so that only the variances
and signal need to be estimated.

An example result for neural network signal in 3dB colored noise is shown in Figure 4.11, in

which the estimates 62 and 2 are plotted as functions of time. The true values, o2 and o2 are
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Figure 4.11: Example variance estimation trajectories, using the maximum-likelihood cost function and
known weights. True values of the variances are shown by the horizontal lines.

shown by horizontal lines, for comparison. In this example, the maximum-likelihood cost is used
to estimate both variances, and initial error variances are g, 0 = .1 and g, o = .01. In the following
experiments, a variety of cost functions and initial covariance values are tested.

The cost functions and initial variances are evaluated with 15,000 points of chaotic neural
network data, corrupted by either white stationary (WS) noise or autoregressive (AR-5) stationary
(AS) noise. Both noise types are added to the clean signal at 3 different SNRs: 0 dB, 3 dB, and 7
dB; each of the six noisy signal combinations is replicated 10 times. Boxplots and paired-sample ¢
tests are used to select both go values and the best cost function for variance estimation.

All five of the cost functions are tested: prediction error, maximumd-likelihood, joint, joint
error-coupled, and EM. The initial variances are tested at go € {.001, .01, .1}. Other parameter
values are P = I and A = 1. Matters are complicated somewhat by the fact that sometimes only one
of the noise variances might need to be estimated, and sometimes both might. All three possible

situations are considered, each tested with 10 repetitions of the 6 different noisy time-series.

4.5.1 Estimating the Process Noise Variance

First, consider the case of known measurement noise statistics. If not known a priori, these statis-
tics can sometimes be estimated from portions of the data wherein no signal is present. Because
the current experiment also uses a known signal model f(-), only the process noise variance o2 and
signal are estimated concurrently. The signal is estimated with a standard EKF (Formulae 3.1-3.2),
while o2 is estimated with the alternative variance filter shown in Formulae 3.12- 3.13 on page 78.

The focus of the experiment is on variance estimation, so the variance MSE is a reasonable
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Figure 4.12: The average squared-error trajectories of the estimates G, 1, are plotted for the three best
combinations of ¢, o and cost function.

criterion for comparing treatments. Although the signal estimation error is also informative, it
tends to be highly correlated with the variance estimation error, and so does not provide any new
information.

The algorithms are ranked by time-averaging the squared error of the variance estimates over
the final 1000 data points, which provides an evaluation of each algorithm near convergence. For the
best three treatments ranked in this way, the squared-error trajectories of the variance estimates,
averaged over the ensemble of 10 repetitions, are displayed in Figure 4.12. Separate plots are shown
for the three levels each of white and AR-5 noise. The significance of the rankings are indicated
by the boxplots in Figure 4.13.

One disadvantage of the squared-error trajectories is that information about the actual values
of the estimates is obscured. For example, on the 0dB WS data, the J*(02) method shows a
minimum in the average squared-error trajectory at around k = 2000, followed by an increase in

the error. A similar effect is seen in the 3dB AS trajectories near k = 7000.

The fact that this is caused by the under-estimation of o2 on average by J¢°(s?) is evident

from the average time trajectories of the variance in Figure 4.14. Although not shown in the
figures, 02 is under-estimated by J%°(o2) with g, 0 = .001 in all cases except for 7dB AS noise, on

v

which it converges at too large a value. For ¢,,0 = .1, the algorithm can be unstable, generating
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Figure 4.13: Variance MSEs computed over the final 1000 points. For each of the six different test
conditions, boxplots are shown for g, ¢ increasing as {.001, .01, .1} from left to right within each
panel; each panel represents a different cost function, as indicated. See the caption of Figure 4.10 for
additional information.

either very large values, or values close to zero (¢ ~ —o0).

The joint cost J7(o2) with g, o = .01 is arguably the best choice for white noise. However, on
the AS noise, the performance of J7(02) is less consistent: at 0dB it under-estimates the variance,
while at 7dB it over-estimates the variance (not shown). Slower convergence speed appears to
be a general drawback of the J7(o?) approach; even on white noise, where its final performance
is superior, it exhibits slower convergence than the maximum-likelihood or prediction-error cost
functions. In fact, for the AS 0dB case, the apparent advantage of the J7(02) g, o = .001 treatment
is largely a spurious effect of its slow convergence for that value of ¢, (the algorithm has not
converged yet). Although not shown in the plots, the J7(¢2) method converges much faster at
gv,0 = .01 and ¢, ¢ = .1, and for those values under-estimates the variance by a larger amount than

the other algorithms over-estimate it.

The maximum-likelihood cost J™ (o2) exhibits fast convergence to good solutions. The method
is ranked in the top three on all six data sets, and is arguably the best choice for colored noise.

As mentioned above, the second place ranking of J™(02) on 0dB AS noise is probably due largely
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Figure 4.14: The average trajectories of the variance estimates &3,k are plotted for the three best
combinations of g, o and cost function.

to the fact that J7(02) has not yet converged at N = 15,000. Furthermore on 3dB AS noise, the
J™(02) and J7(02) methods are not significantly different, showing a p-value of 89%. At 7dB, the
J™(02) go = .1 method conveys a significant advantage. The main deficits of the approach are
its high volatility at early times, and its slight tendency towards over-estimation at later times.
However, as discussed in Appendix D, an inflated estimate of o2 can ameliorate the negative effects

of the EKF approximation by accounting for the inaccurate mean propagation.

The EM cost over-estimates o2 in all cases, but by decreasing amounts for higher SNRs. On
7dB AS noise, the method actually places in the top three. However, it is clear that the cost
function is not amenable to on-line estimation of ¢2. This could be due to approximations made

in the E-step, or because the cost function surface is difficult to navigate for some reason.

The prediction error cost, JP¢(02), does moderately well on the higher SNR. cases, but never
outperforms the J™ (02) method. The MSE trajectories generally show higher volatility, slower
convergence, and higher final MSE than their J™ (02} counterparts. On WS noise at 7dB, the
method comes in second place behind the J7(o2) cost, but with only a slightly lower average MSE,
and significantly higher variance than the J™(c2) cost. This high variance is primarily responsible

for the p-value of 19% in this case.
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In conclusion, the joint cost is the best choice for estimating o2 in white noise, while the
maximum-likelihood cost is somewhat preferable in the presence of colored noise. Unlike the
weight and signal estimation filters, the variance estimation filter is clearly sensitive (as shown
in Figure 4.13) to the value of the initial error variance, ¢, . As discussed previously, this value
affects how fast the algorithm can converge, and too large a value can cause instability. Moreover,
the best choice of ¢, o depends on the cost function; for J™(a2), the best value is g, 0 = .1, while
g0 = .01 is better for J7(o2). Values of ¢, 0 = 1 were found to cause too much instability, and so

were not evaluated formally. The conclusions of this experiment are summarized in Table 4.1.

Table 4.1: Best choices of cost function and initial variance g, o when estimating o2 with an EKF using
known weights w and measurement noise statistics.

White Stat. AR-5 Stat.
SNR | Cost | gy Cost Qv,0
0dB | Ji(o2) | 01 || J™(o2) | 1
3dB | Ji(o2) | .01 | J™(a2) | .
7dB | Ji(g2) | .01 || J™(e2) | .1

4.5.2 Estimating the Measurement Noise Variance

In some applications, a great deal is known in advance about the statistics of the signal, but little is
known about its SNR. That is, while the process noise variance o2 is known, the variance o2 of the
measurement noise must be estimated. When the noise is colored, only its power (or equivalently,
its process noise variance aﬁn) is assumed unknown. This situation might arise if the structure
(i.e., the spectral shape) of the noise has been estimated beforehand, and is expected to remain
stationary, but the level of the noise is uncertain.

For the colored noise experiments, the exact model w,, of the AR-5 noise is used; this ensures
that the true value of 012," can be taken as the optimal value against which to compare &31“,“. For
each repetition of the data, initial estimates Erf,ﬂ o are obtained from a 500-point segment of the
noise. In the white noise case, 62 ,, is estimated via the ad hoc procedure described in Section 3.6.2.

The final 1000-point MSE of the variance estimate is used as the ranking criterion. The
error trajectories for the three best treatments, averaged over the ensemble of 10 repetitions,
are displayed in Figure 4.15. The significance of the rankings are indicated by the boxplots in
Figure 4.16.

The maximum-likelihood method is the best choice on all data sets, and conveys a significant
advantage in nearly all cases. The only exception is on the 7dB AS noise, on which the JP¢(o2 )

and EM treatments are not significantly worse, but this sort of equalization among treatments is
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Figure 4.15: The average squared-error trajectories of the estimates &i,k are plotted for the three best
combinations of ¢, and cost function. Averages are computed over 10 repetitions of the data and
initial conditions.

to be expected at high SNRs. While the J™(¢2) and JP¢(62) costs are nearly always in the top
three, they typically converge to significantly higher MSEs than does the J™ (o2) cost.

For the maximum-likelihood method, the choice of ¢, ¢ = .1 is generally the best on white
noise, while a slight but insignificant advantage is conveyed by ¢, 0 = .01 on colored noise. Al-
though ¢,0 = .1 actually has a slightly lower final MSE for 7dB AS noise, this small advantage is

outweighed by its higher volatility at earlier times.

Table 4.2: Best choices of cost function and initial variance gy, o when estimating o2 (or 62 ) with an
EKF using known weights w and process noise statistics.

White Stat. AR-5 Stat.
SNR Cost, dn,0 Cost, dn,0
0dB | J™(a2) Jm™ (o2 ) | .01
3dB | J™(d?2) | . J™ (a2 .01
7dB | J™(62) | 1 | J™(e2) | 01
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Figure 4.16: MSEs of 62 , on white noise (left) and 62, on colored noise (right), computed over the
final 1000 points. For each of the six different test conditions, boxplots are shown for ¢y, ¢ increasing
as {.001, .01, .1} from left to right within each panel; each panel represents a different cost function,
as indicated. See the caption of Figure 4.10 for additional information.

4.5.3 Estimating Both Noise Variances

When neither the process noise variance o2, nor the measurement noise variance o2 are known, they
must be estimated simultaneously from the data. Because there is a strong interaction between
the estimation of the two variances, it is not necessarily true that combining the best individual
estimation methods for ¢2 and o2 will produce the best result in the present case.

The problem is that some treatments for estimating one of the parameters might be sensitive
to errors in the other parameter, and will produce poor results if that parameter is not known
exactly. However, rather than exhaustively search the entire space of cost functions and values of
o, it is reasonable to consider combinations of only the best 3 treatments for each of the variances.
This means a search space of nine possibilities, where the possibilities will be different for each of
the data sets, because the previously chosen best three treatments depend on the noise type and
SNR.

Just as when estimating the measurement noise variance alone, the exact model w,, of the

AR-5 noise is used, and initial estimates &3n o are obtained from a 500-point segment of the noise.
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Figure 4.17: Boxplots of the &12),k MSEs computed over the final 1000 points are shown for the

combinations of the top 3 cost-go treatments for estimating o2 and 2. The o2 estimation methods

vary within each panel each panel, and o2 costs vary across panels, as indicated.

In the white noise case, 62, is estimated via the ad hoc procedure described in Section 3.6.2
on page 104. Using these initial estimates of the measurement noise variance, the process noise

variance, o2

<, 1s also initialized by the ad hoc procedure. However, when the measurement noise

is colored, the estimates of the autocorrelation R,, and cross-correlation p,, are generally too
noisy to produce reliable initial estimates of o2, which causes 62, to be truncated near zero in
some instances. Therefore, the white noise versions of these quantities are used in all cases, with
Rpn = 62 ;I and ppp = 0.

The previous pages argued that it is sensible to rank the o2 estimation methods using the final
1000-point MSE in o2, and to rank the o2 estimation methods using the final 1000-point MSE in
o2. However, it is less clear how to rank algorithms for estimating both o2 and ¢2. While signal
estimation MSE is a possible criterion, it does not produce the required amount of resolving power
for comparing methods. A reasonable solution is to choose the 02 and 02 methods separately using

their respective error criteria as before, but then discard choices which result in a bad interaction.

Although this approach may sound somewhat vague, it is clarified in the discussion of the results,
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below.

For these experiments, the data length is increased to N = 20,000 points, to allow additional
time for convergence. The 1000-point MSEs of the o2 estimates are presented in Figure 4.17.
Each plot is divided into three panels that correspond to the best three o2 estimation treatments,
ordered in decreasing performance from left to right, as determined when 02 was known. Within
each panel, the 02 estimation methods are shown in order of decreasing performance from left to

right, as determined when o2 is known.

On all of the data sets, the first panel shows the worst performance, indicating that the ranking
determined with known o2 no longer holds. On the 0dB WS noise, the J*¢(02) cost (third panel)
appears to be the best, although it is not significantly better than using J™ (o2) with Je™(o2).
On the 3dB WS noise, the middle panel contains the best treatment, but there is no significant
difference between J™ (02) with J*™(¢2) in the middle panel and J?¢(02) with J™(02) in the

third panel. The boxplots and displayed p-values are important for reconciling this performance

2

criterion with that based on error in ;.
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Figure 4.18: Boxplots of the %, MSEs computed over the final 1000 points are shown for the

combinations of the top 3 cost-gy treatments for estimating 02 and o2. The o2 estimation methods
vary within each panel each panel, and o2 costs vary across panels, as indicated.
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Figure 4.18 shows box plots for the 1000-point MSEs of the o2 (or 02 ) estimates. The plots
are organized the same way as in Figure 4.17; the o2 methods are listed in order of decreasing
performance within each panel. A significant deviation from the original ranking is again evident.
For example, for 0dB WS noise, the J¢™(02) go = .1 treatment performs better than the top-ranked
J™(o2) treatment in all three panels.

To reconcile this result with that in Figure 4.17, notice that the J®°(02)-J*™(02) treatment
is not significantly worse than the first choice J¢¢(g2)-J™ (02) treatment in that figure. It is
therefore reasonable to select J°¢(a2)-J¢™(a2) as the best treatment, although J™ (02)-J¢™(02)
and Je¢(a2)-J™(02) are also a good choices.

On the 3dB SNR white noise, J™ (02) with go = .1 retains its top ranking (although not in
the first panel). Here, too, the results for the two criterion must be reconciled. This time, the
JPe(02)-J™(02) is indicated in Figure 4.18, while J™ (02)-J¢™(02) is indicated in Figure 4.17.
Again the p-values can be used to justify choosing JP¢(02)-J™ (a2).

Fortunately, on the remainder of the plots, the optimal choices according to o2 error and o2

error coincide. The best treatments for each of the 6 noise cases are shown in Table 4.3.

Table 4.3: Best choices of cost functions and initial variances go when estimating both 02 and o2 with
EKFs, using known weights w.

White Stat. AR-5 Stat.

SNR Costs Quo | Ino Costs Quo | Qu. 0
0dB | J*(a2) J*™(02) | .001 | .1 J™(eZ) J™ (62 ) | 1 .01
3dB | JPe(a2) J™(a2) | .1 1 J™e2) J™M (62 ) | 1 01
7dB | JPe(02) J™(02) | .1 1 J™(02) JPe(oZ ) | .1 .01

4.6 Experiment 3: Forgetting Factor

Section 3.3.2 on page 57 introduced a scalar term, A, which is used during weight and variance
estimation to control the length of an exponentially decaying window over the data. The term is
called a “forgetting factor” because, for values less than 1, it prevents data in the more distant
past from being used to estimate the parameters: they are “forgotten.”

In the dual estimation context, a forgetting factor is useful even when the underlying system
and noise terms are entirely stationary. The justification is mostly heuristic: the signal estimates
I at small times k are inaccurate, so they should not influence the parameter estimation as much
as recent, more accurate signal estimates.

When A = 1, the filter will eventually converge to its final solution as k& approaches infinity.
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However, this convergence will generally be slower than necessary because of the inertia of the
initial signal estimates. Conversely, while using A < 1 can increase the converge rate, the advantage
disappears at large values of k, and may eventually turn into a disadvantage because of a higher

variance in the parameter estimates.

4.6.1 Stationary AR-5 Noise

The results described below are obtained by running the dual EKF algorithm on the neural network
signal, corrupted by stationary AR-5 noise at 3dB SNR. Initial error covariances are Pg = I and
Qo = .11I. The joint cost J?(w) is used for weight estimation, and the maximum-likelihood cost
J™ is used to estimate both of the variances, using ¢, 0 = .1 and g,, o = .01 . Figure 4.19 contains
boxplots for the signal estimation MSE, computed over all the data, as well as over the first 100

and last 1000 points.
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Figure 4.19: Boxplots of the &, NMSEs computed over 3 different ranges of data are shown for 5
values of A.

At very small times, few data are available, and there is no significant difference between
different values of A. As more data become available, evidence emerges of the tradeoff between too
much and too little flexibility. In terms of the overall MSE, the value of A = 0.9993 is apparently
too small, whereas using A = 1 is also disadvantageous. At larger times, the disadvantage of A = 1
is reduced, because enough data has been observed to dilute the effects of the early estimates.
Values of 0.9998 and 0.9999 appear to give the best results, as shown by the MSEs computed over
the last 1000 points in the third panel of the figure.

The situation is clarified somewhat by Figure 4.20, which makes use of the time-averaged
MSE profiles described on page 120. The left plot shows the average difference between the MSE
profile for the known-model EKF result, and the MSE profile for each of three different forgetting
factors. This plot readily shows the convergence behavior as a function of time, but discerning
the difference between values of A is difficult. In the right plot the difference is instead computed

between each of the MSE profiles, and the MSE profile using A = 1. The problem with using
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Figure 4.20: MSE profiles of signal estimation error. At 50-point intervals MSEs are computed over
the next 500 points to create the profiles. The left graph shows the difference between each profile
and the EKF profile. The right graph shows the difference between the A = 1 profile and each of the
others.

too small a value of A is clearly shown by the highly volatile plot for A = 0.9993. The advantage
of using A = 0.9999 instead of 1 is also evident; the line labelled “mixed” will be explained in
subsequent paragraphs.
Figure 4.21 shows the effect of A on estimation of the noise variances. Because these are scalar
values, much less data are required to produce reliable estimates, as reflected in the preference for
= .9993 shown in the boxplots of the final 1000-point MSEs of both 47 , and 62 ,. The effect

of A on the trajectories of these estimates is seen in the bottom two plots of the ensemble-averages
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Figure 4.21: Boxplots show the final 1000-point MSEs for 62 , (left) and 62, (right). Also shown are
the ensemble-averaged trajectories of the variance estimates; heavy horizontal lines indicate the true
variance values.



147

62, and 62_,. The true value of each variance is indicated for reference by a horizontal line.
The clear difference in the optimal values for A used in weight estimation and variance estima-
tion, respectively, justifies using a separate value for each. To test this approach, A,, = 0.9999 is
used in the weight filter, and A,z = 0.9993 is used in each of the variance filters. The resulting MSE
profile is shown in Figure 4.20 and labelled as “mixed”; the overall MSE is significantly improved

over the pure A = .9999 treatment.

4.6.2 Nonstationary White Noise

Dual estimation can also be applied to nonstationary data. By corrupting the neural network
signal with the sinusoidally modulated white noise described on page 128, the relative effects of
lag misadjustment and noise misadjustment can be observed. The dual EKF was used with costs
JPe(w), JP¢(o2), and J™(02), and initial error covariances Qo = .11, gy 0 = .1, and gn o = .1, to
produce the results in Figure 4.22.

The signal is stationary, but the noise has a continuously changing variance. Hence, the
forgetting factor Ay is fixed at 0.9999 for estimation of the weights, while A,z is varied across
five values. The bottom right plot (showing average trajectories of 62) shows that a value of

As2 = 1 produces a damping effect, with &ﬁ‘k tending towards a flat line at the DC level of the
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Figure 4.22: Boxplots show the overall MSEs for 67 (left) and &3n,k (right). At bottom are the
ensemble-averaged trajectories of the variance estimates, shown along with the true variances for ref-
erence (heavy lines). For weight estimation, A = 0.9999 in all cases.
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sinusoid, as k — oco. Values less than 1 show a better ability to track o2, with smaller values
of A,z exhibiting less phase lag. Unfortunately, these same A,: values suffer from higher noise
misadjustment because they are based on fewer data points.

The choice of A,z for use on nonstationary noise is clearly data-dependent, as it depends largely
on the rate of nonstationarity. This experiment merely highlights the tradeoffs that must be con-
sidered between lag misadjustment and noise misadjustment. It also indicates that the sinusoidally
varying noise level used here changes too rapidly for the tracking speed of the algorithm.

As a rule of thumb for choosing A, the time-constant 7 = —1/log(A) of the forgetting window
should be approximately the same as N, s, the length of an approximately stationary section of
the data (see Section 3.6.3). However, if N, is too short, then the algorithm will not be able to

track the changing system, and some sort of iterative, windowed processing must be employed.

4.7 Experiment 4: Dual Kalman Weight Costs

With reasonable values for the initial covariances and forgetting factor in place, the cost functions
for weight estimation can be compared within the dual Kalman framework. A forgetting factor of
Aw = .9999 is used for weight estimation, and initial error covariances of Py = I, and Qg = .11 are
used in most cases (a smaller value of () is sometimes required for convergence). Results are first
generated with the noise variances known, and then with one or both of these variances estimated
on-line, at the same time as the signal and weights.

Various combinations of the signal and noise types described in Sections 4.2.3 and 4.2.4 are
used in the experiments. Ten repetitions of the noise are used to generate boxplots and p-values.
Appropriate model structures are chosen for each data set: for the linear and neural network
signals, the exact model structures used to generate the data are used by the dual EKF. In the
case of the Tkeda signal, a feedforward network with 10 inputs, 8 hidden units, and one output

(10-8-1) is used; a linear AR model with M,, = 10 is used for the pink noise.

4.7.1 Known Variances

In this set of experiments, the true process noise variance o2 is assumed known, as are the mea-
surement noise statistics (either o2, or w, and o2 ). As an example, Figure 4.23 shows the dual
EKF estimation of the chaotic neural network signal in 3dB AS noise, using the J7(w) cost. The
estimates are indicated by the heavy curve, the noisy data are shown by ‘+’ signs, and the clean

signal appears as a thin curve.
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Dual EKF Estimate with Known Variances
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Figure 4.23: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the
joint cost function and known variances. Qnly the last 150 points are shown.

In the following experiments, the weight costs are tested on six combinations of signal and

noise, each at four different SNRs.
1. Linear AR-10 data corrupted by white stationary (WS) noise.
2. Limit cycle neural network data corrupted by WS noise.
3. Limit cycle neural network data corrupted by stationary AR-5 (AS) noise.
4. Chaotic neural network data corrupted by AS noise.
5. Chaotic neural network data corrupted by nonstationary AR-5 (AN) noise.
6. Normalized Ikeda data corrupted by stationary pink (PS) noise.

The boxplots in Figure 4.24 show the relative performances of the different cost functions on
the linear AR-10 data in stationary white measurement noise. The performances of the J™(w) and
JP¢(w) costs are very similar, although the former shows some advantage in terms of final 1000-
point signal NMSE. Because the model is linear, trajectories of the MSE in the weight estimates
can be plotted. Figure 4.25 shows that at low SNRs, JP¢(w) provides faster convergence; although
not shown, this results in a lower overall signal MSE than J™(w). Furthermore, JP¢(w) is
somewhat more robust at 0dB SNR. In terms of signal NMSE, the J7(w) and J*¢(w) costs perform
significantly worse at all noise levels®. On the other hand, J?(w) produces results with much less
spread in the weight MSE than the other methods; the bias in these weight estimates, however,

translates to larger signal estimation NMSEs. Note that this result confirms the qualitative analysis

31In the context of the dual Kalman filter, we will use J7(w) as shorthand for the direct substitution joint cost,
J? (fc’f,w); the use of signal estimates is implied.
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AR-10 Signal in WS Noise, Known Variances
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Figure 4.24: AR-10 data corrupted by white stationary noise at four different SNRs. On the left,
boxplots show the final 1000-point NMSEs for the signal estimates. On the right, the average differenced
MSE profiles are shown.
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AR-10 Signal in WS Noise, Known Variances
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Figure 4.25: Weight estimate MSE trajectories for AR-10 data corrupted by white stationary noise at
four different SNRs.
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of the joint cost at the end of Chapter 2. The poor performance of the error-coupled joint cost can
be interpreted in a similar way, but with an even larger bias than the J7(w) cost. Meanwhile the
EM cost exhibits less volatility in the weight MSE trajectory, at the expense of slower convergence
speed.

Similar results are obtained when the stationary white noise is used to corrupt the limit cycle
neural network data, as shown in Figure 4.26 on the following page. As an aside, note that
the NMSE levels for the limit cycle data are a factor of between 2 and 7 smaller than for the
linear AR-10 data. This outcome is surprising because the nonlinear model should involve more
approximations. However, it can be explained by the fact that the limit cycle data are more
deterministic because its process noise variance, o2, is smaller than that of the AR-10 series (.04
.vs .09); the increased predictability of the series makes it inherently easier to estimate. A side-
effect of a smaller value of o2 is that some of the algorithms encounter stability problems when
using Qo = .1. Hence, (Jo = .01 is used on this series instead. Recall from the discussion on page 62
that for small 6%, Q needs to be smaller to keep (Q;)~" (and subsequent updates) invertible. The
cost functions most prone to instability with Qg = .1 are J™ (w) and J°(w); coincidentally, these
are the only costs that were not evaluated in Experiment 1 when determining the best choice of
Qo! However, the EM cost also shows a slight improvement in performance with Qg = .01, as well.

Figure 4.26 shows that at the lower two SNRs, JP¢(w) and J™(w) are not significantly
different, while J™(w) shows a small (but significant) advantage at higher SNRs. While the joint
cost J3(w) performs better than in the linear model case, it is nonetheless significantly worse than
JPe(w) at any SNR. Meanwhile, J*™(w) performs very poorly at low SNRs, and is adequate only
at the 10dB level. This implies the EM cost might be more sensitive to the EKF approximation
required for nonlinear models (see Appendix D).

Figure 4.27 on page 154 shows the results on the limit cycle data in stationary AR-5 noise.
Again, Qo = .01 is used to ensure stability; this drastically improves the performance of J™ (w) and
Je¢(w), but has little effect on the other costs. At 0dB and 3dB SNR, the maximum-likelihood cost
shows the best performance, although J7(w) is not significantly different at higher SNRs. Mean-
while, JP¢(w) and J*™(w) are completely unacceptable, and J*°(w) has unstable performance on
at least one data repetition at 3dB.

Instability in a modified-Newton algorithm generally can occur when the approximate Hessian
(represented by Q;l in the dual EKF) becomes ill-conditioned, resulting in numerical problems
during its inversion. This situation can arise when () is too large, as described above, or when
the cost function surface changes much more rapidly in some parameter directions than in others.

Hessian singularity problems in the context of maximum-likelihood estimation are discussed in [26].
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Limit Cycle Neural Network Signal in WS Noise, Known Variances

Final 1000—point signal NMSE Avg. Differenced MSE profile
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Figure 4.26: Limit cycle neural network signal, corrupted by white stationary noise at four different
SNRs. On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right,
the average differenced MSE profiles are shown.
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Limit Cycle Neural Network Signal in AS Noise, Known Variances
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Figure 4.27: Limit cycle neural network data corrupted by stationary AR-5 noise at four different
SNRs. On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right,
the average differenced MSE profiles are shown.
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The instability of J™ (w) at high SNRs and on colored noise is most likely due to the denominator

2

. to

term, o2 , in the cost function becoming small, which causes the Hessian terms involving G,o

£x?
grow much larger than the V& terms (see Equation E.38 on page 264). An ill-conditioned Hessian
will result if %a?k is much smaller in some parameter directions than in others. Interestingly
enough, the only other cost to exhibit stability problems is J¢¢(w), which has similar terms -
involving Wygr — in its Hessian (see Equation E.22). Instability of the maximum-likelihood cost

is more likely to occur on colored noise, and in particular when the noise variances are small (see

Equations 3.165 and 3.207).

However, stability can be usually be restored for the J™(w) and Jé(w) costs by selecting
a smaller value of Qq, as was done for the limit cycle data. The effect of QJp on the stability of

the J™(w) and J¢°(w) costs is investigated in Figure 4.28 using the chaotic neural network data
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Figure 4.28: Effect of Qo on stability of dual EKF for the J™ (w) and J¢¢(w) costs. Boxplots show
the overall signal NMSE when estimating the chaotic neural network signal in (a) AS noise and (b) AN
noise.
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in AS and AN noise. The figure shows boxplots of the overall signal NMSEs, and indicates that
while both costs show instability using Qg = .1, both are stable with Q¢ = .01. The algorithms are
generally unstable on only a few repetitions of the data, as evinced by the large slope on the line
connecting the average NMSE values, or (with J™(w)) the presence of “not-a-number” (NaN)
results. These NaN results prevent the calculation of an average NMSE, so no line is drawn. Note
that for the repetitions which do not go unstable, the larger value of (o = .1 can often produce
better results because it provides faster convergence of the algorithm. Nonetheless, stability is
of paramount importance; a value of (}g = .01 should clearly be used for these two costs on the
chaotic neural network data.

In the remaining experiments, then, the weight covariance is initialized with Qo = .01 for
J™(w) and J¢¢(w), and with Qo = .1 for other cost functions. The results on chaotic neural
network data corrupted by stationary AR-5 noise are shown in the boxplots in Figure 4.29. The
joint cost J7(w) and maximum-likelihood cost J™ (w) performs significantly better than the other
costs at most SNRs. The two costs are generally equivalent in performance, although J™ (w) shows
a significant advantage at 0dB SNR.

For the results on the chaotic neural network data corrupted by nonstationary AR-5 noise,
the NMSE is calculated over all time k£ € [1, N] in order to evaluate both convergence and tracking
performance of the cost functions. As indicated by the boxplots in Figure 4.30 on page 158, the
maximum-likelihood cost J™ (w) is the best choice at all SNRs, although J7(w) shows a p-value
of 15 at the 0dB level. At 10dB, an outlier contributes to the p-value of 14.

On the Ikeda data, the “known” value of o2 is found by training a neural network of the
chosen architecture on the clean data. This is an attempt to find a value of ¢2 that accounts for
the limited modeling capability of the network architecture. Because the true system is purely
deterministic, the actual value of o2 is zero; however, this value is clearly inappropriate for the
neural network model, and would in any case lead to instabilities in the Kalman filters. The chaotic
Ikeda time-series is very difficult to model, and even more difficult when corrupted by noise. The
NMSE values shown in the boxplots of Figure 4.31 on page 159 are therefore significantly greater
than on the neural network data. Furthermore, the average MSE profiles are shown instead of
their difference against the EKF result; this is because the “known” model result is actually worse
than the dual EKF result in most cases. At low SNRs, the maximum-likelihood cost shows the
best performance, while the JP¢(w) and J*(w) costs perform well at high SNRs. The J™(w),
Je™(w) and J¢°(w) costs all show instability at 7dB SNR. On these data, the use of Qp = .01 with
J™(w) and J¢(w) was not helpful: the costs showed as much instability (although at different
SNRs) as with Qo = .1. This underscores the inherent stability problems of these two costs. On
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Chaotic Neural Network Signal in AS Noise, Known Variances
Avg. Differenced MSE profile
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Figure 4.29: Chaotic neural network data corrupted by stationary AR-5 noise at four different SNRs.
On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right, the
average differenced MSE profiles are shown.
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Chaotic Neural Network Signal in AN Noise, Known Variances

Overall signal NMSE Avg. Differenced MSE profile
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Figure 4.30: Chaotic neural network data corrupted by nonstationary AR-5 noise at four different
SNRs. On the left, boxplots show the overall NMSEs for the signal estimates. On the right, the
average differenced MSE profiles are shown.
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Ikeda Signal in PS Noise, Known Variances

Final 1000—point signal NMSE Avg. MSE profile
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Figure 4.31: Normalized lkeda data corrupted by stationary pink noise at four different SNRs. Boxplots

show the initial, overall, and final NMSEs for the signal estimates.
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the other hand, the behavior of J7(w) is consistently suboptimal, but never unstable. The EM
cost generally shows poor performance.

It was hypothesized at the end of Chapter 2 that in comparison to the marginal estimation
approaches, the joint cost functions offer the potential for reduced variance in the weight estimates,
at the expense of higher bias. However, at that juncture the conditions under which one cost is
favored over another could not be predicted. Table 4.4 provides a partial answer to this question

by summarizing the best cost functions for the known variance case.

Table 4.4: Best dual estimation cost functions for estimating w when both noise variances are known.
Column headings are abbreviations for the four data sets listed on page 149.

SNR | AR-10(WS) | NNIc(WS) | NNIc(AS) | NNch(AS) | NNch(AN) | Ikeda(PS)
0dB | J7(w) TPe(w) | T (W) | T w) | T (w) | T (w)
3 dB JPe(w) J™ (w) J™(w) JI(w) J™ (w) J™ (w)
7dB | Jm(w) | Jmi(w) | Jmi(w) | Ji(w) T (w) | Jre(w)
10 dB J™ (w) J™H(w) JI(w) J™(w) J™ (w) Je(w)

A few general trends are apparent from the results reported thus far:
1. J™(w) generally provides the best performance on both white and colored noise.

2. J™(w) and J¢(w) are much more sensitive to ¢ and @, than the other costs, and are more

prone to stability problems.

3. JP¢(w) can perform better than J™ (w) on low SNR white noise, or when J™ (w) is unstable.

Otherwise, it does not perform as well.

4. J*™(w) typically shows mediocre or poor performance, although it sometimes is adequate

on high SNR data.

5. J7(w) can perform as well as J™(w) on higher SNR colored noise, and is not as prone to

instability. However, J™(w) does significantly better at low SNR and on white noise.

6. Je°(w), like J™ (w), exhibits stability problems. It generally performs worse than J7(w),
with the exception of the 10dB Ikeda series, on which it performs the best.

The degraded performance of the prediction-error cost relative to J™ (w) is somewhat expected
because JP¢(w) can be viewed as an approximation to J™ (w). Apparently, however, this approx-
imation is less severe at lower SNRs, or when signal estimation is more difficult. Furthermore, the

quadratic form of the prediction error cost conveys better stability properties.
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Regarding the EM cost, although the use of purely static derivatives is justified from a theoret-
ical perspective, this may be partially responsible for the cost’s relatively unfavorable performance.
In a sequential approach, such as the dual EKF, the information contained in the recurrent deriva-
tives of the state estimate sequence with respect to the weights is fairly crucial. The importance
of computing recurrent derivatives is investigated in Section 4.8 on page 180. Otherwise, the poor
performance of J¢™(w) might be due to the approximations made in evaluating the EM cost
sequentially.

On white noise and low SNRs, the potential benefits (lower variance) of J7(w) are outweighed
by its short-comings (increased bias). At high SNR, the primary advantage of the joint cost over
the maximum-likelihood approach is its superior stability and lower sensitivity to o2 and @Qqo. At
low SNRs, the signal estimates, X, may simply be too inaccurate, thereby increasing the bias of
the joint cost. Hence, the marginal estimation costs JP¢(w) and J™ (w) are favored because they
are less sensitive to inaccurate signal estimates. Furthermore, this low SNR effect may also be
responsible for the ranking on the Ikeda series, on which the signal NMSE values are especially
high. In contrast, one reason for its relative success on colored noise may be that (with w,, known)
for a given SNR, colored noise is effectively less random than white noise because it is partly
deterministic. Thus, the bias problem may be less problematic, in general, for colored noise.

The error-coupled joint cost Jé°(w) seems to suffer from conflicting requirements. On one
hand, the algorithm requires reasonably good signal estimates, so that (as a joint method) its bias
does not cause it to perform worse than the marginal approaches. On the other hand, however,
the cost is designed to take estimation errors into account, so it will only outperform J7(w) when
the estimation errors are fairly large. Furthermore, it relies somewhat on an assumption that the
estimation errors are Gaussian: the approximation will be less severe for small errors than large

ones. These factors may account for some of the unpredictability of the results.

4.7.2 Unknown Process Noise Variance

2

2 is unknown; it is estimated

In the following set of experiments, the process noise variance ¢
concurrently with the signal and weights using the modified variance filter shown in Formulae 3.12
and 3.13 on page 78. The measurement noise statistics (either o2, or w,, and o2 ) are again
assumed known. The forgetting factor A,z = .9993 is used for variance estimation, and Ay, = .9999,
as before. Initial covariances of Py = I and Qg = .1I are used, with the exception of J™ (w) and
Je¢(w), for which: Qp = .011.

An example of the simultaneous estimation of the signal, weights, and process noise variance

is shown in Figure 4.32, wherein dual EKF estimation of the chaotic neural network signal in 3dB
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Dual EKF Estimate with Unknown 2

Process Noise Variance Estimate
1 T T T T T T T T T

k x 10°

Figure 4.32: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the
Ji(w) and J™(0?) cost functions. Only the last 150 points are shown. In the bottom plot, the &2
trajectory is compared with o2 (horizontal line).

AS noise is performed with the J7(w) and J™(02) costs. The estimates are indicated by the heavy
curve, the noisy data are shown by ‘+’ signs, and the clean signal appears as a thin curve.

Each weight estimation cost is tested in conjunction with the three best costs for estimating

2

Ty

as determined previously in the known model case of Section 4.5. These are: JP¢(o2) with
quo = .1, J™(02) with g, 0 = .1, and J?(02) with ¢, o = .01. Because the limit cycle results in the
previous section were shown to be consistent with other results using the same noise type, these
data are omitted from the current set of experiments. Only the linear, chaotic neural network, and
Tkeda series are considered here. '

The boxplots in Figure 4.33 show the relative performance of the different cost function on
the linear AR-10 data in stationary white measurement noise. For variance estimation, the success
of the J™(o2) cost is ubiquitous. For weight estimation, the performances of the J™(w) and
JP¢(w) costs are very similar, although the prediction error cost has a significant advantage in all
cases except the highest SNR. Because the model is linear, trajectories of the MSE in the weight
estimates can be plotted along with the squared errors in &3,,6 in Figure 4.34. The advantage of
the JP¢(w) cost can be attributed to an interaction that produces faster convergence of both the

weights and the variance estimate 62 ;.

Results for the chaotic neural network signal corrupted by stationary AR-5 noise are shown
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AR-10 Signal in WS Noise, Known o2
Final 1000—point signal NMSE
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Figure 4.33: AR-10 data corrupted by white stationary noise at four different SNRs. Boxplots show
the initial, overall, and final NMSEs for the signal estimates. As indicated, J(o2) is varied within each
panel, and J(w) is varied across panels.
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AR-10 Signal in WS Noise, Known o2
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Figure 4.34: Weight estimate MSE trajectories, and o2 estimate squared error trajectories, for AR-10
data corrupted by white stationary noise at four different SNRs.



165

in the boxplots in Figure 4.35. Again, the variance estimation cost J™(o?2) is usually the best
performer. For weight estimation, the maximum-likelihood cost J™ (w) gives the smallest average

1000-point NMSE at higher SNRs, while at 0dB J7(w) performs the best. Note that at most

Chaotic NN Signal in AS Noise, Known o2,
Final 1000-point signal NMSE
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Figure 4.35: Chaotic neural network data corrupted by stationary AR-5 noise at four different SNRs.
Boxplots show the initial, overall, and final NMSEs for the signal estimates. As indicated, J(o2) is
varied within each panel, and J(w) is varied across panels.



166

SNRs, the joint cost J7(w) does not differ significantly from the best choice, making it a good

general-purpose cost. The average differences between the dual estimation MSE profiles and the

EKF profiles are shown in Figure 4.36, along with the average variance error trajectories.
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Figure 4.36: Ensemble averaged, differenced signal estimate MSE profiles, and variance estimate error
trajectories, for chaotic neural network data corrupted by stationary AR-5 noise.
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On nonstationary AR-5 noise added to neural network data, the results are very similar to

those for stationary noise. As for the known variance case, the overall NMSE is used to rank the

cost functions, rather than the final 1000-point NMSE. As indicated by the boxplots in Figure 4.37,

Chaotic NN Signal in AN Noise, Known o
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Figure 4.37: Chaotic neural network data corrupted by nonstationary AR-5 noise at four different SNRs.
Boxplots show the initial, overall, and final NMSEs for the signal estimates. As indicated, J(o2) is
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the joint cost J7(w) is the best choice at 0dB and 3dB SNR, and J™!(w) is better at the higher
SNRs.
The NMSE values for the Ikeda data are shown in the boxplots of Figure 4.38. It is inter-

29

esting to note that the performance here is actually better than in the “known o

case, where a
value obtained from training a predictor on clean data was used. Again, the maximum-likelihood
weight cost J™(w) is superior at 0dB SNR, whereas J°(w) is better at higher SNRs. However,
the advantage of the error-coupled weight cost over J™(w) at the higher two SNRs is not very
significant; although the J¢°(w) is listed in Table 4.5, this choice is fairly arbitrary.

Table 4.5 summarizes the best cost functions when o2 is unknown. Because J™(0?) is the
best cost for estimating o2 in nearly all cases, it is not listed explicitly. Notice that the instability
problem of the maximum-likelihood cost does not affect variance estimation, as the second deriva-
tive (%;];); is a scalar, and therefore cannot be “ill-conditioned.” The weight cost choices largely

mirror those given in Table 4.4, with only a few changes. Comparing the various boxplots with

Table 4.5: Best dual estimation cost functions for estimating w and o2 when the measurement noise
statistics are known. Column headings are abbreviations for the data sets listed on page 162. In ali
cases, J™(o2) is the best variance estimation cost.

SNR [ AR-10(WS) | NNch(AS) | NNch(AN) | Ikeda(PS)
0 dB JPe(w) Ji(w) Ji(w) J™(w)
3dB | Jre(w) T3 (w) Ji(w) T (w)
7 dB JPE(w) J™ (w) J™ (w) Je(w)
10 dB JPe(w) J™ (w) J™(w) Jee(w)

the known o2 case shows the weight costs are generally robust to initial inaccuracies in 2, and
that the variance estimation filter is highly effective. In most cases, the final 1000-point NMSEs
are not significantly different from when o2 is known. One exception is the improvement in the
Ikeda results, discussed above. Another notable exception is that J7(w) actually improves its
performance at lower SNRs when o2 is being estimated; this may be a result of a larger value
of &f,,k accounting for errors in the model, much in the way the J**(w) cost was designed (but
generally fails) to work. This effect seems to be responsible for the top ranking of J7(w) on the

chaotic neural network in 0dB AN noise.

4.7.3 Both Variances Unknown

Recall that the signal is characterized by both the model weights, w, and the variance of the

process noise, 2. The process noise often represents the stochastic component of the dynamics

not represented by the model; hence, the process noise variance depends on specification of the
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model. Therefore, a scenario in which the process noise variance o2 is known, but the weights and
measurement noise variance are not, is relatively unlikely. This case is therefore not investigated
experimentally.

Rather, in this set of experiments both the process noise variance, 02, and measurement noise

2

o (o2

variance, (o2 for colored noise), are assumed unknown. Each is estimated along with the
signal and weights using a modified variance filter shown in Formulae 3.12 and 3.13 on page 78.
For colored measurement noise, the model w,, is assumed known. The forgetting factors used for
variance estimation are: A,z =.9993 and A,z = .9993.

An example of dual EKF estimation with unknown variance is shown in Figure 4.39. In the
top plot, the estimates are indicated by the heavy curve, the noisy data are shown by ‘+’ signs,

and the clean signal appears as a thin curve.

Dual EKF Estimate with Unknown Variances

19851 19900 k 19950 20000
Process Noise Variance Estimate
1 T T T T L T T 1 T
0.8 B
N°>
06} E
0.4}
1 1 1 1 1 L 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Measurement Noise Variance Estimate x 10°
0.5 T T T T T T T T T
04+ E
M M
0.3 o ACN, A PR A, Na IS . W
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Figure 4.39: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the
Ji(w) J™(o2) and J™ (g2 ) cost functions. Only the last 150 points are shown. In the bottom two

plots, the 62 and 62 trajectories are compared against their true values (horizontal lines)
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The following results provide a comparison the various dual EKF cost functions. As in the
previous group of experiments, four data sets are used: AR-10 in WS noise, chaotic neural network
in AS and in AN noise, and the Ikeda series in pink noise. Because the stability problems of J™ (w)
and J(w) do not arise on the AR-10 and Tkeda signals, the smaller initial weight covariance
Qo = .011 is used for these costs only on the neural network data; Qg = .11 is used everywhere
else. The signal covariance is initialized by: Py = L

On each of the four data sets, the three or four most promising weight estimation costs are
tested in conjunction with the three best costs for estimating the measurement noise variance, as
determined in Section 4.5. These are: JP¢(c2), J™(02), and J*™(02), with initial error variance
Gn,0 = .1 used for white noise, and ¢, o = .01 used when the noise is colored. In light of the previous
group of experimental results, the cost for estimating o2 is fixed at J™(02) with g, 0 = .1.

On the linear AR-10 signal corrupted by stationary white measurement noise, the weight costs
JPe(w), J™(w), Jo™(w), and JI(w) are tested. The boxplots in Figure 4.40 show the final
1000-point signal estimation NMSEs of the different combinations of cost functions.  For weight
estimation, the J™(w) and JP¢(w) costs perform similarly, although the maximum-likelihood cost
shows a slight advantage at higher SNRs. Unfortunately, while the variance estimation costs show
more distinct differences in performance, there is little consistency between noise levels: at 0dB,
JP¢(c2) has the best performance, although it shows the widest range in its weight MSEs; at 3dB
SNR, JP¢(02) and J*™(02) are not significantly different, but J?¢(¢2) shows an advantage in terms
of weight error; at 7dB, J™ (02) and J*™(02) appear equivalent, but J¢(o2) shows convergence to
significantly lower weight MSE in Figure 4.41 on page 173; finally, at 10dB, J™(a2) is significantly
better than the other costs. Ideally, then, JP¢(02) should be used at lower SNRs, J*™(02) at
medium SNRs, and J™(02) should be used at higher SNRs. This is clearly an undesirable situation
because the SNR, will generally not be known in advance (we are, after all, estimating o2 ). However,
the penalty for selecting a suboptimal cost is not terribly high in this case; any of the top three
costs will yield good performance.

The results for the neural network data in stationary AR-5 noise are considerably more con-
sistent. As shown in Figure 4.42 on page 174, the final 1000-point NMSE is almost always lowest

v

is better at high SNRs.

for the J™ (o2 ) variance cost. The J7(w) weight cost does the best at low SNRs, while J™ (w)

In nonstationary colored noise, the results are ranked according to the overall signal NMSE.
Figure 4.43 is largely consistent with the stationary noise results, with J7{w)J™ (g2 ) the best
choice at low SNRs, and J™ (w)J™ (o2 ) better at 10dB. At 10dB, the joint cost actually appears

to suffer from some stability problems, and gives its best performance in combination with the
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Figure 4.40: AR-10 data corrupted by white stationary noise at four different SNRs. Boxplots show
the final 1000-point NMSEs for the signal estimates.
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AR-10 Signal in WS Noise, Unknown Variances
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Figure 4.41: AR-10 data corrupted by white stationary noise at four different SNRs. Boxplots show
the final 1000-point weight MSEs.
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Chaotic NN Signal in AS Noise, Unknown Variances
Avg. Differenced MSE profile
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Figure 4.42: Chaotic neural network data corrupted by stationary colored (AR-5) noise at four different
SNRs. Boxplots show the final 1000-point NMSEs for the signal estimates.
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Chaotic NN Signal in AN Noise, Unknown Variances
Overall signal NMSE Avg. Differenced MSE profile
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Figure 4.43: Chaotic neural network data corrupted by nonstationary colored (AR-5) noise at four
different SNRs. Boxplots show the final 1000-point NMSEs for the signal estimates.
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Chaotic NN Signal in AN Noise, Unknown Variances
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Figure 4.45: Normalized lkeda map data corrupted by stationary pink noise at four different SNRs.
Boxplots show the final 1000-point NMSEs for the signal estimates.
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Je™ (o2 ) variance cost, which is otherwise a suboptimal choice. As with J™(w), better results
might be obtainable by using ()9 = .01 for the joint weight cost at 10dB.

Figure 4.44 on page 176 shows the overall agn NMSEs, along with the average trajectories
of 62 - The best performance is generally provided by J™ (g2 ). Although the J*(02 ) cost
does a better job of tracking the nonstationarity, its higher volatility hurts its overall performance.
Note that at 10dB the J™ (a;‘jﬂ) cost displays a very slow time constant, resulting in significant
lag misadjustment.

Figure 4.45 shows the results on the Ikeda series with additive pink noise. At 0dB and 3dB,
J™(w) is the best weight cost in terms of final 1000-point signal NMSE; at 7dB and 10dB SNR,
it is not distinguishable from J*°(w). However, both the maximum-likelihood and error-couple
costs shows signs of instability at the 3dB and 7dB noise levels, making comparison difficult.
Although better performance can be achieved by using Qy = .01 for the initial weight covariance
of these costs, this figure helps underscore their susceptibility to unstable behavior. For variance
estimation, J™ (62 ) and JP*(02 ) show statistically equivalent performance at all SNRs (when
paired with J™ (w)). The EM variance cost is significantly worse at all but the highest SNR.

An examination of the boxplots shows again that the dual EKF costs are highly robust to
inaccuracies in the noise variances, and that the variance estimation filters generally provide good
performance. The best cost functions when both variances are unknown are summarized in Ta-

ble 4.6.

Table 4.6: Best dual estimation cost functions when estimating w, 02, and o2 (or o2 ). The process
noise is estimated using the cost J™(02), as determined previously. Each row mdlcates the SNR of
the noisy data. Column headings are abbreviations for the data sets listed on page 171.

SNR [ AR-10(WS) NNch(AS) NNch(AN) Tkeda(PS)
0dB | J™(w) JPe(a) | JI(w) J™(al) | JH(w) J™ () | J™H(w) T (o2,
3dB | J™(w) JP(o) | JI(w) J™(0l) | JH(w) J™(e3) | T (w) J"”(Ug
7dB | J™(w) J™ (o) | J™(w) J™ (62 ) | JTH(w) (02 ) | J™H(w) J™ (02
) ) ;

10 dB | J™(w) J™(02) | Jm(w) J™(02) | J™(w) T2 ) | T (w) Jm(o

n

n

)
)
a )
a )

I

4.7.4 Effect of Prior Knowledge

It is interesting at this point to stop and compare the best signal estimation results when estimating
the signal, weights, and both variances using a dual Kalman filter or dual EKF, with results that
can be obtained when the variances are known, or when applying a Kalman filter or EKF using the
known model and noise variances. Figure 4.46 provides such a comparison in the form of boxplots

of the final 1000-point signal NMSE, when estimating the AR-10 signal in white noise and the
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Figure 4.46: Final 1000-point signal NMSEs when the signal, model, and noise variances are all
estimated (by a dual Kalman filter), when only the variances are known (signal and model estimated by
dual Kalman filter), and when everything is exactly known (signal estimated by Kalman filter or EKF).
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chaotic network signal in stationary colored noise, with N = 20,000 points of data at 4 different
SNRs each. On the linear data, J™(w) is used for weight estimation, and J7(w) is used on the
neural network data; Qg = .1 is used in both cases.

The results on the linear data are as expected: prior knowledge of the true model and noise
statistics gives a significant performance advantage (although the difference is too small to see from
a plot of the signal estimates). This advantage diminishes slowly as the SNR increases and the
signal estimation problem becomes less difficult. Interestingly, knowledge of the noise variances
has at least as big an impact on performance as does knowledge of the weights; at 10 dB SNR, the
known variance results and Kalman filter results are indistinguishable.

However, on the nonlinear data, something interesting occurs: at low SNRs, the dual EKF
with unknown variances actually performs better than the EKF. Why is this so? The most plau-
sible explanation is that the Taylor series approximations inherent in the EKF algorithm make it
a suboptimal estimator. However, the inaccuracies in the filter are partially compensated for by
adjusting the values of the noise variances, and to a lesser extent, adjusting the model itself. Fur-
thermore, the approximations made by the EKF are more severe when the signal error covariances
P, are on the same scale as the curvature of the nonlinearities. This is more likely to happen with
noisier data, or with strongly nonlinear signals. Note that the effect is absent at higher SNRs, and
on the linear data.

Hence, it is evident from Figure 4.46 that the dual Kalman filter converges to solutions which
are both reasonably close to the KF results on linear data, and which are potentially better than

estimates produced by the EKF on noisy nonlinear data.

4.8 Experiment 5: Static Derivatives in the Dual EKF

Section 3.6.1 showed recursive equations for the dertvatives of the prediction X4 and estimate

2. In some situations, the expense associated

X with respect to the weights w and variances &
with these computations is too high, and a cheaper alternative must be considered. One such
alternative simply ignores the dependence of the state estimate X; on the weights. This allows the
derivative of the prediction to be computed as the partial derivative of the model with respect to
the weights alone, and greatly reduces the computational cost. However, ignoring the derivative of
the estimate, X, also has a rather significant effect on the form of the joint cost functions .J7 (w)
and J°(w), both of which include the signal estimate Z; in one of their terms.

Figure 4.47 shows the effect of using static derivatives when estimating the chaotic neural

network time-series in 3dB colored noise. The difference between the static and full derivative



181

estimates is slight enough that it is difficult to see on the scale of the estimates; the bottom plot

shows the difference at 10 times the scale of the top plot.

Dual EKF Estimate with Known Variances
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Figure 4.47: The effect of static derivatives on dual EKF estimation of the chaotic neural network time-
series in 3dB colored noise, using the J7(w) cost and known noise variances. The bottom plot shows
the difference between estimates using the static derivatives (‘x' in top plot), and the full derivatives
(heavy curve in top plot).

The general effect of the simplification on algorithm performance is shown in Figure 4.48,
using the AR-10 and limit cycle data sets in white noise, the chaotic neural network data in both
stationary and nonstationary AR-5 noise, and the Ikeda series in pink noise. In all cases, both

variances are assumed known.

On each data set, the signal NMSE for one choice of cost function is shown, followed by the
performance when that cost is used with static derivatives. The initial covariance is Q¢ = .11 in all
cases. On the two data sets with white noise, the effect is negligible, although the average NMSE
is slightly higher with static derivatives in seven of the eight examples. However, the performance
difference is much more noticeable on the three colored noise data sets, and is significant in nine

of the twelve cases.
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Figure 4.48: The effect of using static derivatives of f(-) in the dual EKF, rather than full recurrent

derivatives. The static derivative plots are labeled with a prime (') in the superscript. Boxplots show the

final 1000-point signal NMSEs on all data sets, except on the chaotic NN (AN) data (fourth column),
in which the overall signal NMSE is used.
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4.9 Experiment 6: Joint EKF Performance

In this section, the performance of the joint EKF (JEKF) algorithm is compared with that of
the dual EKF (DEKF). The three cases: noise variances known; o2 unknown; and both noise
variances unknown, are all considered using the same data and settings of parameters A, Py, etc.,
as in Section 4.7. In each case, the joint EKF performance is compared against the performance
of the best dual EKF cost function for that particular data set and SNR.

Following comments made in [45, 47, 61] regarding convergence problems of the joint EKF,
and our own analysis (see Section 3.4.1) of the difficulties of this approach, the joint EKF might
be expected to generally perform somewhat worse than the dual EKF. However, these experiments
show that the joint EKF can, in fact, give the same or better performance as the dual EKF in

many cases.

4.9.1 JEKF: Known Variances

Figure 4.49 shows the results when both noise variances are known. In the white noise experiments,
shown in the left two columns, there is generally no significant difference in performance between
the dual EKF and joint EKF. Nonetheless, the joint EKF is favored on the linear data by its
slightly lower average NMSE in all cases (the advantage is significant at 3dB). The results are
considerably more mixed on the limit cycle data. A similar story is told by the stationary and
nonstationary AR-5 noise results, shown in the third and fourth columns. Here, the joint EKF
shows a slight advantage at 0dB, and the dual EKF does somewhat better at 10dB. Note that the
performance on the AN noise is measured in terms of overall NMSE, and so contains information
about the tracking behavior of the algorithms.

The results are much more striking on the Ikeda series; here, the dual EKF shows a distinct
advantage at every SNR. There are a couple of possible causes for this outcome. First, the non-
linearity of the Ikeda map may actually be severe enough so that the additional nonlinearity of

the joint state space hurts the JEKF’s performance. Second, recall that the process noise variance

2

- is not accurately known for the Ikeda series; it is possible that the JEKF is more sensitive to

o
this inaccuracy than the DEKF, and its performance suffers as a result. This hypothesis is in

agreement with an observation in [45] about the JEKF’s sensitivity to the noise variances.

4.9.2 JEKF: Unknown Process Noise Variance

The case of o2 unknown is considered in Figure 4.50. The results are very similar to the known

variance case, except that the significance of the JEKF’s advantage is generally increased in the
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Figure 4.49: The performance of the joint EKF compared with the best dual EKF cost functions, when
both noise variances are known. Boxplots show the final 1000-point signal NMSEs on all data sets,
except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE is used.
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Figure 4.50: The performance of the joint EKF compared with the best dual EKF cost functions, when
only the measurement noise statistics are known. Boxplots show the final 1000-point signal NMSEs on
all data sets, except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE

is used.
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Joint EKF Comparison: Known o2,
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Figure 4.51: Averages of the differenced signal MSE profiles on NNch(AN) data (left), and the signal
MSE profiles on the |keda(PS) data (right). Only the measurement noise statistics are known. In each
plot, the joint EKF is compared against the best dual EKF cost, as listed in Figure 4.50.
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first three columns (the limit cycle data were not tested). On the WS noise examples, the p-value
is less than 2% for SNRs of 3dB and higher; the DEKF and JEKF results remain statistically
equivalent at 0dB. On the chaotic neural network data (second and third columns), the relative
performance of the JEKF improves noticeably from the known variance case.

On the Ikeda data, the DEKF retains its significant advantage, although the JEKF appears to
perform more consistently than before, and at a smaller deficit in its average NMSE than when the
variance is (incorrectly) known. This last observation agrees with the conjecture that the JEKF is
not robust to inaccuracies in o2. Nonetheless, as shown by the average MSE profiles in the right
side of Figure 4.51, the JEKF is less robust on the Tkeda data than the DEKF; at 0dB and 7dB
SNR, noticeable spikes appear in the JEKF profiles near k£ = 18,000. Meanwhile, the left side of
the figure shows the JEKF’s superior convergence properties on the chaotic neural network data

in nonstationary noise (at most SNRs).

4.9.3 JEKF: Both Variances Unknown

Finally, the joint EKF and dual EKF are compared when both noise variances are estimated online.
Figure 4.52 shows that on the white noise data (left column), the JEKF is significantly less robust
to inaccuracies in o2 than the dual EKF algorithm: the dual EKF with J™(w) shows a definite
advantage at all SNRs. On the autoregressive noise (AS and AN, middle columns), as well as on

the Ikeda series in pink noise (right column) the relationship between the two algorithms shows
2

little change from when o is known: the joint EKF maintains its advantage on the neural network

series, while the dual EKF does significantly better on the Ikeda data.

Figure 4.53 shows the ensemble averages of the differenced MSE profiles for the JEKF and dual
EKF on the AR-10 (WS) data and neural network (AS) data. Note that the relative performance
of the joint EKF appears to improve with increasing SNR.

The experimental results in this section can be summarized by the following observations:

1. The performances of the two algorithms are similar when both the model structure and
measurement noise variance are known exactly, although the joint EKF shows a slight (usually

insignificant) advantage.

2. On the Ikeda data, the dual EKF algorithm provides significantly better performance. Here,
the nonlinearities are more severe, and the appropriate model structure for the neural network

is uncertain.
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Figure 4.52: The performance of the joint EKF compared with the best dual EKF cost functions, when
estimating both noise variances. Boxplots show the final 1000-point signal NMSEs on all data sets,

except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE is used.
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Figure 4.53: Averages of the differenced signal MSE profiles on AR-10(WS) data (left), and neural
network (AS) data (right). In each plot, the joint EKF is compared against the best dual EKF cost, as

listed in Figure 4.52.
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3. When the process noise variance is unknown, the joint EKF gains a significant advantage for
white noise at medium to high SNRs. Although the stationary colored noise results do not
favor either algorithm, the results in nonstationary noise indicate the joint EKF possesses
superior tracking performance when o2 is unknown. The dual EKF maintains its advantage

on the Ikeda data.

4. When both variances are unknown, the advantage of the joint EKF on WS noise is completely
reversed. However, the algorithms remain indistinguishable on AS noise, and the joint EKF

exhibits better robustness on AN noise. The ranking of the Ikeda results is mostly unchanged.

Overall then, the joint EKF appears more sensitive than the dual EKF to factors that increase
estimation error, such as: low SNR, incorrect noise variances, uncertain model structure, and
highly nonlinear dynamics. In fact, all of these effects can be interpreted in terms of the additional
source of nonlinearity — and hence, linearization error — inherent to the joint EKFs concatenated
state-space realization. The larger the state covariance Py (relative to the scale of the underlying
nonlinearities), the more severe the approximation imposed by the linearization of the EKF. Of
course the dual EKF also requires linearization; the point is that the additional nonlinearity of the
joint state-space model makes this effect more pronounced for the joint EKF.

Nevertheless, the performance of the joint EKF is quite good in many cases. Furthermore,
its lack of recurrent derivative computations can mean computational savings, although these are

potentially offset by the larger dimension of the joint state vector (see Section 3.6.5 on page 112).

4.10 Experiment 7: Model Mismatch Effects

In most applications, the most appropriate model structure for the data is not known beforehand.
The experimental results in this section address the robustness of the algorithms and cost functions
in the face of model structure uncertainty.

Experiments are run on the chaotic neural network series corrupted by stationary AR-5 noise,
at 3dB SNR. As just shown, the performances of the dual EKF (using J™(w) and J7(w)) and
joint EKF can be compared using the known 10-5-1 architecture that generated the signal, and the
known noise parameters: w,, M, = 5. Here, the performances are evaluated using two additional

(incorrect) model structures:
1. A 5-2-1 neural network architecture, and M,, = 3 order noise model.

2. A 10-8-1 neural network architecture, and M,, = 10 order noise model.
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Figure 4.54: The effect of incorrect model structure on the relative performances of the joint EKF and
two dual EKF cost functions, when estimating both noise variances. Boxplots show the final 1000-point
signal NMSEs on the chaotic neural network series in 3dB AS noise. The middle plot represents the
model structure actually used to generate the data.

The first structure is too rigid for the data; the second structure is overly flexible. As an additional
source of error, the noise model w, is estimated in both cases from a fairly short section (500 point)
of the noise data. Both of the variances: o2 and o2 _, are estimated on-line using J™ (0?), as before.

The lefthand plot of Figure 4.54 shows the final 1000-point signal NMSE of the three algorithms
on model structure (1); results for the “correct” structure appear in the middle plot; the righthand
plot shows the performance with structure (2). As expected, the performance of all algorithms is
noticeably degraded by using the inappropriate model size. However, it is also clear that the joint
EKF is considerably less robust to these changes than the dual EKF (J7(w)), as indicated by the
long top whisker of the joint EKF boxplots. Furthermore, notice that the maximum-likelihood
cost function exhibits stability problems for both the underparameterized and overparameterized
structures.

The averaged, differenced MSE profiles of J?(w) and the joint EKF are shown for the two
incorrect model structures in Figure 4.55; these profiles can be compared with the corresponding

plot in Figure 4.53 on page 189.
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Figure 4.55: Averages of the differenced signal MSE profiles of the dual EKF (J7(w)) and joint EKF
for the two incorrect model structures.
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4.11 Experiment 8: Over-Training

All of the experiments unto this point are performed in a purely “online” setting, in which each
data point is used only once, as soon as it made available. As described in Section 3.6.3, it is
sometimes possible to make more than one pass over the data.

In situations where processor speed is high relative to the rate at which observations become
available, a large number of training epochs can be performed before the next measurement arrives.
In such contexts, over-training is a concern because the empirical distribution of the repeated data

becomes increasingly biased, relative to the true distribution.

The present set of experiments is designed to investigate several algorithms — including the
dual EKF, joint EKF| and a couple of iterative algorithms — with regard to their potential for over-
training. As such, the algorithms are evaluated in terms of both training-set NMSE, calculated
over the portion of the series used during training, and test-set NMSE, calculated over data not
used during training. The algorithms can be compared by plotting their training and test set
NMSEs as functions of the training epoch. Both estimation NMSEs (zx — %) and prediction

NMSEs (yi — &) provide useful information.

The experiments are performed on the Mackey-Glass chaotic series (described on page 127)
corrupted by stationary white Gaussian noise at 3dB SNR.. A 5-18-1 neural network architecture (5
inputs, 18 hidden units, and one output} is used to model the dynamics, based loosely on findings
in [40]. Both noise variances are initialized with the ad-hoc procedure of Section 3.6.2, and are
estimated along with the signal and weights using the J™(g2) cost function. Initial covariances:
Po=1 Qo = .11, g0 = gno = .1, and forgetting factors: Aw = .9999, A,z = .9993 are used by
the dual EKF and joint EKF.

The dual EKF and joint EKF algorithms are compared against an iterative algorithm similar to
that in [10] which alternates between EKF signal estimation and backpropagation model estimation
(BP-EKF). The BP-EKF algorithm performs EKF signal estimation followed by 100 epochs of
a gradient descent algorithm minimizing the prediction error (&r — £;)?. The variances were
estimated using the sequential variance filters also used by the dual EKF and joint EKF. Although
an iterative generalized EM algorithm was also implemented, it produced relatively poor results,
and so is not included in the figures.

A known-model performance benchmark is obtained by training a neural network predictor
on 4000-points of the clean series using gradient descent, and stopping when the prediction error
on the remaining 1000 points begins to increase (25,300 training epochs are used). The resultant

innovations variance for the trained model is 4.8 x 107% which can be used as the value of o2.
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The sample variance of the noise is used to obtain ¢2. Using these “known” values of the weights
and variances, an EKF is applied to the noisy series to produce benchmark NMSE values against

which to compare the various dual estimation algorithms.

Because over-training is affected by the length of the training window, Nyin, two different
situations are considered. In the first, Ny, = 2000 with a test set of the subsequent 3000 points.
in the second, Ny, = 500, with 1500 points of test data; in both cases, it is assumed that enough
processing power is available to make numerous passes over the data before the next data point

arrives.
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Figure 4.56: The average estimation and prediction NMSE trajectories on noisy Mackey-Glass data,
using a 2000-point training-set, and 3000 points of test data. The average EKF result is indicated by
a small square.

The average NMSE trajectories for the longer training set are shown in Figure 4.56. The
superior training-set performance of the joint EKF and dual EKF with J™(w) and J?¢(w) costs
is consistent with the on-line results shown previously for white measurement noise. Nearly all the
algorithms exhibit over-training to some extent, as exhibited by the increase in the test-set NMSE
after some number of epochs. Unique to the task of dual estimation is the possibility of such an
increase appearing on the training set NMSE as well (as exhibited by the joint EKF in this case).
This is because of the unsupervised nature of the task; the clean data are not available even during
training, so the neural network can begin to model the noise in the training data to some extent.

In some circumstances, a block of data can be used during the training process to monitor
out-of-sample prediction NMSE, and control over-training. These data are usually referred to as a

validation set to distinguish it from a true test-set, which should not be used even for this purpose.
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Figure 4.57: Boxplots of estimation and prediction NMSEs, obtained from 2000 points of Mackey-Glass
data while using the 3000 point test-set for early-stopping validation.

When available, the validation NMSE can be used to select the training epoch with the lowest
error, and thereby avoid over-training. Seeing that the clean signal is not available to compute an
estimation NMSE, the prediction NMSE can be used, where the prediction error is defined relative
to the noisy data, as: (yx —#; ). In Figure 4.56, the joint EKF and dual EKF with the J™(w) and
JPe(w) costs represent the best methods if the 1500 point “test data” are used for validation in
this way. The boxplots in Figure 4.57 show the relative performance of the algorithms under this
assumption. Note that the EKF with the known model is significantly outperformed by several
of the dual estimation algorithms. As discussed in the on-line case, this is most likely due to the

suboptimality of the EKF on nonlinear data.

However, it is not always possible to provide a validation set. In particular, when the amount
of data is limited, there will not be enough to train on and still provide a reliable estimate of
performance on unseen data. One scenario in which this situation arises is in the use of short
windows to process speech, or other time-varying signals. As shown in Figure 4.58, the problem

of over-training is exacerbated by a shorter training window of 500 points.

Hence, it is precisely when a validation set is most needed (i.e., with scarce data) that one
is least likely to be available. In these situations, one might consider using the dual EKF with
J7(w) because it appears to be less susceptible to over-training. However, the joint cost clearly
produces suboptimal performance on these data (white noise). A better result can sometimes be
obtained by using the maximum-likelihood cost or the joint EKF algorithm, and stopping early at

some previously-chosen epoch.
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Figure 4.58: The average estimation and prediction NMSE trajectories on noisy Mackey-Glass data,
using a 500-point training-set, and 1500 points of test data. The BP-EKF results are not shown.
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Figure 4.59: Boxplots of estimation and prediction NMSEs, obtained from 500 points of Mackey-Glass
data while using the 1500 point test-set for early-stopping validation.

Note that even if the particular application does not require generalization to new data, the
issue of over-training is still significant; the dual-estimation algorithm can begin to incorporate
the noise into its signal estimates, so that performance begins to degrade after some number of
epochs. Although the J™ (w) cost continues to minimize the training set NMSE in the preceding
examples, this will not generally occur. In most applications over-training is of real concern, and

should be guarded against if possible.

A suitable choice of forgetting factor can be used to help prevent over-training. As described
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previously, a choice of A < 1 effectively controls the amount of data used for parameter estimation.
The forgetting factor A used in this set of experiments corresponds to a time-constant of around
10,000 points for the data window (see Figure 3.3 on page 59). A time-constant of around 2,500
points might have prevented some of the over-training seen in Figure 4.58. However, early-stopping

is a more direct approach to the problem.

4.12 Discussion

The experiments in this chapter, while fairly extensive, are necessary for making some important

observations about the dual EKF and joint EKF.

¢ Estimation of the noise variances can generally be done very successfully by the dual EKF,

and is best performed by minimizing the maximum-likelihood variance cost functions.

e For weight estimation, J™ (w) can produce the best results in many situations, but it is un-

fortunately prone to numerical problems related to the inversion of the approximate Hessian.

o For white noise data, the prediction-error cost JP¢(w) produces very good estimates (often

not significantly worse than J™(w)), without stability problems.

¢ In colored noise, the joint cost J7(w) gives good, stable solutions, sometimes better than the

less stable J™ (w) cost.

e The J*™(w) and J*“(w) methods do not work well in general. This may be due to the
approximations made by the dual EKF, as described in Chapter 3, or in development of
the costs themselves. For example, the error-coupled cost is developed using a Gaussian
assumption on the dynamics error fi, and the EM cost is usually computed noncausally

using a smoother, rather than in the sequential manner of the dual EKF.

e The joint EKF is not seen to suffer from the convergence problems reported in the litera-
ture. However, its higher sensitivity to inaccuracies in noise variances and model structure
information makes it a less robust alternative to the dual EKF in real-world dual estimation

applications.

¢ Iterating the dual EKF over the same data set is likely to cause over-training. Early-stopping
is a must, and can be implemented with either a cross-validation approach, or using a prede-

termined number of iterations (e.g., 5 epochs). This issue is explored further in Chapter 5.
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In the next chapter, the above observations are put into practice when approaching several

time-geries estimation and prediction problems.



Chapter 5

Applications

The controlled experiments in the previous chapter provide an empirical comparison of cost func-
tions and algorithms on several of different types of time-series data. In this chapter, many of the
experiments described are performed on real-world data, for which the clean signal is not available.
A range of application domains are considered, including estimation of river flow, enhancement of

speech, and prediction of economic time-series.

The purpose of these experiments is to illustrate the use of the dual EKF in some realistic signal
processing settings, and to demonstrate the potential advantage of the dual estimation approach.
Some of the applications considered here have been studied extensively in the literature, with
researchers incrementally improving their results over the years using a variety of model structures
and training methods. The purpose of this chapter is not necessarily to supersede these published
results; in some cases this is unlikely, as the experiments herein are limited to the autoregressive
model structure discussed in Chapter 1 of this thesis. However, by showing the advantage of the
dual EKF used with AR models, the results in this chapter underscore the potential of the dual
EKF to improve upon previously published results when used with the alternative model structures

described in the literature.

Because the clean signal and true model are generally not available in these experiments,
the only objective criterion is prediction error; in applications for which estimation error is of
primary concern, only a subjective evaluation of the results is possible. An exception is the speech
enhancement section, in which several controlled experiments are included (with the clean speech
available) in addition to actual recordings of noisy speech. Results of another controlled experiment

— on a known discrete-time chaotic map — are presented in the next section.
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5.1 Chaotic Hénon Map

The study of chaos has far reaching applications in the study and analysis of real-world systems. A
chaotic system can be characterized by the dimensionality and appearance of its attractor. A model
of a chaotic system can therefore be evaluated in terms of its ability to reproduce the attractor
of the original system [84]. This first experiment considers a well-known, but artificial, chaotic
system, and demonstrates the benefit of a dual estimation perspective of modeling the dynamics
in the presence of noise.

In 1976, Michele Hénon proposed the following system of equations for modeling chaos in two

dimensions:

a1 =1—14-af + b (5.1)

brs1 = 0.3 - by. (5.2)

The map takes points (a,b) through three successive transformations: a bending; a compression
in the a-direction; and a reflection through the diagonal, @ = b. To obtain a one dimensional
time-series for the following experiment, the signal is defined as z; = a,

The phase plot of zx41 versus zj (in the upper left part of Figure 5.1) shows the chaotic
attractor. A neural network can be trained as a predictor on this signal, using an EKF training
algorithm. The network is then iterated — feeding back the predictions of the network as future
inputs — to produce the attractor shown in the upper right plot. The individual data points are of
course not the same as the original data, but it is clear that the dynamics have been captured by
the (5 input, 7 hidden unit) neural network.

However, if the signal is corrupted by white noise at 10dB SNR, and a neural network with
the same architecture is trained on these noisy data, the dynamics are not adequately captured.
The iterated predictions of the neural network trained on noisy data are shown in the bottom left
part of the figure. While the general outline of the original attractor is apparent, the dynamics
exhibit limit cycle behavior with far less complexity.

In contrast, using the dual EKF to train the neural network on the noisy data captures
significantly more of the chaotic dynamics, as shown in the bottom right plot of Figure 5.1. Here,
JP¢(w) is used for weight estimation, and the maximum-likelihood cost is used for estimating 2.
The measurement noise variance is assumed to be known. Parameter covariances are initialized at
.1, and the initial signal covariance is Py = I. Forgetting factors are: Ay, = .9999, and A,z = .9993.
As with both of the EKF-trained networks, a separate validation set is used for early-stopping.

Although the attractor is not reproduced with total fidelity, its general structure has been extracted
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Figure 5.1: Phase plots of: zj; versus z; for the original Hénon series (top left); the series generated
by a neural network trained on z; (top right); the series generated by a neural network trained on y;
(bottom left); the series generated by a neural network trained on yj, using the dual EKF {(bottom
right).

from the noisy data.

5.2 Willamette River Flow

The data in this experiment were first published by Percival and Walden ([64], 1993), and are
available in digital form at the Carnegie Mellon University StatLib web site [9]. The data consist
of the log of the monthly average flow in the Willamette River, as measured daily near Salem,
Oregon for about 33 years. The series, shown at the top of Figure 5.2, contains only 395 points,
so the dual EKF must be iterated over the data to obtain a solution.

The problem is made more difficult by the limited amount of data, and the lack of prior
information about its collection, such as the reliability of the sensors, or an estimate of the noise
which might have been gleaned from the original daily measurements. Nonetheless, the data are

useful for demonstrating the dual estimation approach.
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Figure 5.2: The log of the monthly average Willamette River flow, as measured daily near Salem,
Oregon (top). The dual EKF estimate of the series (middle) captures its annual periodicity, and agrees
well with the result published in [64] using a harmonic analysis approach (bottom).

The first challenge is to select a suitable model structure for the data (see Figure 1.3 on page 4).
With so few data available, a proper model validation set is not a possibility. However, a small
validation set (e.g., the last 95 points) can be used as a sort of guide during the model selection
process. A model can be selected by trying several structures, and picking one that seems to
extract as much of the structure in the signal as possible, and provide reasonable generalization
in the validation set. This trial and error process should ideally be replaced with a more rigorous

approach, but it produces good results, nevertheless.

In particular, the middle plot of Figure 5.2 is obtained with the dual EKF using a 20 input, 5
hidden unit, single output neural network, the maximum-likelihood costs for weight and variance
estimation. Forgetting factors: A = .9997 and A,z = .9993 are used to control over-training. 10%
of the data are chosen randomly for cross-validation, to determine that iteration should be stopped
after 5 epochs. The algorithm is subsequently trained with the full data set to obtain a prediction
NMSE of 0.3258 and an estimation residual (yx — &) with variance 0.1801 (unnormalized). The

estimate of the measurement noise variance is around 62 = 0.184.
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Results published in [64] using statistical harmonic analysis provide an additional, external
form of validation. As shown by the bottom plot of Figure 5.2, the dual EKF results agree quite
well with those in [64]. Both approaches uncover the seasonal regularity of the data; moreover,
the dual EKF estimate contains some additional structure and variation among the annual cycles.
Note that the estimation residual is comprised of both actual measurement noise, and unmodeled
global climatic and weather fluctuations. These additional factors are considered to be noise only

in the sense that the data set is insufficient to model their dynamics.
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Figure 5.3: Autocorrelation of the river flow data (solid line, top plot), estimates (dashed line, top) and
residuals (bottom plot) over two annual cycles. The dual EKF is able to extract the periodic structure
of the data, and produces a residual with little temporal correlation (nearly white).

The autocorrelations of the original data, the dual EKF estimates, and the estimation residuals
are provided in Figure 5.3. The strong periodicity of the data is indicated by the autocorrelation of
the time-series and signal estimates in the top plot. The bottom plot shows that the autocorrelation
of (&4, —ys) is strongly peaked at the 0** tap, suggesting that there is very little temporal structure

left in this residual.

5.3 Sunspot Prediction

Since the year 1700, the number of sunspots visible from the Earth have been counted and recorded
on an annual basis. A method devised by Rudolph Wolf incorporates the number of sunspots and
the number of sunspot groups, and continues to be used today (see Figure 5.4). Daily numbers are
computed as a weighted average of observations at locations around the globe, and can be summed

to produce the annual series. Because the number of sunspots is a good indicator of solar activity,
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Figure 5.4: The annual sunspot series, from 1700 to 1994 (295 points). Data up to 1920 are typically
used for training, and the remaining data are divided into three test sets: 1921-55, 1956-79, and 1980-
1994. The bottom plot shows estimates (solid line) and predictions {dashed line) generated by a dual
KF, using a linear model and the JP¢(w) cost.

the series has been the focus of much study over the years (e.g., see [97, 91, 86]). Of course, more

accurate indicators of solar activity are in use today, but none with as lengthy an historical record.

However, even with three centuries of annual sunspot numbers, there is not enough data to
build good models of the series. Furthermore, there are good reasons to believe that significant
measurement noise exists in the data: the sunspot numbers derive from a crude integer count of
an underlying process which is continuously valued; counts are highly subjective and depend on
the atmospheric conditions between the sun and the observer; the series does not differentiate
between larger and smaller diameter sunspots; other relevant information, such as the duration
of the sunspots, is not considered. These errors make the data somewhat stochastic, and a good

candidate for a dual estimation approach.

Recent approaches to sunspot prediction in the literature include linear AR models, as well
as neural network predictors [91], and committee machines [86]. Typically, the 221 points from
1700 through 1920 are used for training the predictor, and the remaining data are used for testing
purposes. The test data is often subdivided into three parts: 1921-35, 1956-79, and 1980-94, with
prediction MSEs reported on each of these periods separately, as well as on the entire test set. To

facilitate comparison with previously published results, the MSEs are all divided by the constant
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Figure 5.53: The boxplot on the left shows the performance of the dual KF over ten runs, compared
with that of a standard AR-12 predictor (squares). “Testl", “Test2”, and “Test3", correspond to the
three test subsets listed in the text. In the right plot, the optimal errors and early-stopping epochs (¥*)
are shown, connected with lines to the corresponding errors and epochs returned by the cross-validation
approach.

1535, instead of a traditional NMSE measure.

For the dual Kalman filter approach, a linear AR-12 model is chosen. Although nonlinear model
structures have been used successfully in the literature, they tend to incorporate nonstandard
architectural features which make them difficult to reproduce here. The linear AR-12 model

produces reasonably good predictions, is sufficient for demonstrating the dual Kalman approach.

The prediction-error cost function is used for weight estimation, and the maximume-likelihood
cost is used for estimating both variances. Parameter covariances are initialized at .1, and the
initial signal covariance is Po = I. Forgetting factors of Aw = .9993 A,z = .999, A,z = .999
are selected to control over-training on the extremely short data set. The series is scaled to fall

between 0 and 1, but is not otherwise normalized.

The dual KF is iterated over the training set, with early-stopping implemented by the cross-
validation approach described in Section 3.6.3 on page 108: 10% of the training set is held out.
Because the validation set is selected at random, results vary from one run to the next. Therefore,
the experiment is repeated 10 times, and the resultant prediction MSEs (normalized by 1535) are
shown graphically in Figure 5.5. Also shown are the MSE values for a standard AR-12 model,
trained on the noisy data using a forward-backward least-squares approach; these MSEs are indi-
cated by superimposed squares in the boxplot. Although the dual KF results are generally better
than for the least-squares AR-12 model, the variance is fairly high, and the performance is ac-
tually worse on some individual runs. A large part of the problem is indicated in the right plot

of Figure 5.5; this shows the optimal test set MSE/1535 of each of the ten runs, positioned at
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the appropriate epoch. A line is drawn from this point to the epoch and MSE actually returned
for that run using the cross-validation scheme. The length and steep slope of several of these
lines indicate that the attempt at early-stopping is not very effective. In some cases training was
stopped more than 100 epochs too early, while in other cases training was stopped too late.

As an alternative, the cross-validation approach is abandoned, and the dual KF is stopped after
5 epochs, based on the results of the iterative Mackey Glass experiment in the previous chapter.
Again, this has the advantage of allowing all the training data to be used for model adaptation. As
always, the model is initialized using a least-squares fit to the noisy data, so there is no variation
between runs in this case. The results are shown in Table 5.1, along with those for the standard

least-squares predictor, and the average of the cross-validation results over 10 repetitions.

Table 5.1: Sunspot prediction MSE/1535. Standard AR-12 predictor results are compared with the
dual KF using a 10% cross-validation set (CV), and using 5 epochs of training.
Train Testl | Test2 | Test3 Test,
AR-12 | 0.1319 || 0.1295 | 0.3485 | 0.2951 | 0.2341
Dual KF (CV) | 0.1614 || 0.1295 | 0.3437 | 0.2578 | 0.2250
Dual KF (5 ep) | 0.1374 | 0.1257 | 0.3518 | 0.2431 | 0.2228

As with the river flow data, the autocorrelation of the estimation residual (yx — ;) can be used
to determine the amount of left-over structure not contained in the signal estimates. Similarly, the
autocorrelation of the prediction error (y; — 4 ) shows the degree to which the predictions can be

improved. As presented in Figure 5.6, these autocorrelations show that the dual KF has captured
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Figure 5.6: Autocorrelation functions of the sunspot estimation residual (top) and prediction error
(bottom) over two 11 year cycles show little temporal structure in the terms: (y; — £4) and (yx — 2, J,
respectively.
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most of the structure in the data, leaving nearly white estimation and prediction residuals.

This experiment underscores the difficulty associated with building predictive models from
short data sets. The dual Kalman filter has the potential to produce more accurate predictions,
but it requires that attention be given to the problem of over-training. These issues are reinforced

in the next experiment on a macroeconomic time-series.

5.4 Index of Industrial Production

The level of economic activity in the country is of great interest to policy makers and companies, as
it influences many aspects of our lives, such as the unemployment rate, the stock market, demand
for goods and real estate, inflationary pressures, and the general mood of the populace.

The two primary measures of economic activity in the U.S. are the gross domestic product and
the index of industrial production (IP). As with most macroeconomic series, the IP is a composite
index of many different economic indicators, each of which is generally measured by a survey of
some kind. Moody ([55], 1995) cites several reasons for the difficulty in forecasting such series.
Among them are: the lack of prior (analytical) models for the data; high levels of noise due to
unmodeled disturbances and inexact survey technigues; nonstationarity due to changes in the
world economy and changes in the definition of the series itself; and the possible nonlinearity of
the dynamics, which makes simpler linear modeling techniques inadequate.

Nonetheless, many economists have used linear regression techniques to build empirical models
that predict the IP using several other economic series as inputs. An important baseline approach
is to predict the IP from its past values, using a standard autoregressive model; e.g., results with

an AR-14 model are reported by Moody et al. ([56], 1993). This linear AR model is well suited
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Figure 5.7: Index of Industrial Production in the U.S., from January 1940 through March 2000. Data
available from Federal Reserve [20].
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for investigating the benefit of dual estimation to this problem, and it is tested in the following
experiments along with a neural network model. The high level of noise, and the presence of
nonlinear dynamics make the IP an excellent candidate for testing the dual EKF.

The monthly IP data is shown in Figure 5.7. To remove the trend, the differences between the
log, values for adjacent months are computed. This is called the IP monthly rate of return, and
is shown at the top of Figure 5.8 for January 1950 to January 1990.

Both a linear AR-14 model and neural network (14 input, 4 hidden unit) model are tested.
Consistent with experiments reported in [56], data from January 1950 to December 1979 are used
for a training set, and the remainder of the data is reserved for testing. The dual KF (or dual
EKF) is iterated over the training set for several epochs, and the resultant model — consisting of
W, 62, and 62 - is used with a standard KF (or EKF) to produce causal predictions on the test
set.

To obtain the predictions shown in Figure 5.8, the weights are estimated with the joint cost
J7(w); the costs JP¢(w), J™(w) are also tested. Both the noise variances are estimated using the

maximum-likelihood cost: J™(¢?). All initial parameter covariances are set to .1, and the initial
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Figure 5.8: Monthly rate of return of the Index of Industrial Production in the U.S., 1950-1990 (top).
The dual KF prediction for a typical run (middle), is shown along with the signal estimates (dotted
line). The prediction residual is also shown (bottom).
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1.1.P. Autocorrelation Functions
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Figure 5.9: Autocorrelation functions of the Index of Industrial Production time-series (solid} and signal
estimate (dashed) over two years (top plot). The autocorrelation of the prediction error is also shown
(bottom plot).

signal covariance is Pg = I. As in the previous examples, the autocorrelation functions (shown in

Figure 5.9) show very little structure in the prediction error (yx — % ).

As expected from Section 4.11, over-training is a serious concern because the algorithm is being
run repeatedly over a very short training set (only 360 points). The scarcity and nonstationarity
of the data makes the use of a validation set highly problematic. Based on experience with other

types of data, and the results in Experiment 8, only 5 training epochs are used.

Nonetheless, the effect of over-training is shown in Figure 5.10, for the neural network model
with the maximum-likelihood and prediction-error costs, in particular. The experiment is repeated
10 times with different initial weights, wq, to produce the boxplots in the left part of the figure. The
result of training an AR-~14 model with least-squares (LS) is included as a benchmark, and clearly
indicates the advantage of dual estimation. Results for a neural network predictor trained with an
EKF weight filter on the noisy data indicate that there is little advantage to using a nonlinear model
on the original series. However, the dual EKF with J?(w) cost produces significantly better results
with the neural network, although the potential for over-training actually hurts the performance

of the JP*(w) and J™(w) costs.

Although better results are reported on this problem [56] using models with external inputs
from other series, the dual EKF results are quite competitive. While the dual EKF can in principle
be applied to models that incorporate exogenous inputs, the investigation of these possibilities is

beyond the scope of this thesis.
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Figure 5.10: Boxplots of the prediction NMSE on the test set (1980-1990) are shown in the left plot.
The middle and right plots show average convergence behavior of linear and neural network model
structures, respectively.

5.5 Speech Enhancement

This section considers the removal of noise from speech signals. Speech enhancement has many
applications, ranging from front-ends for automatic speech recognition systems, to telecommu-
nications in aviation, military, teleconferencing, and cellular environments. While there exist a
broad array of traditional enhancement techniques, (e.g., spectral subtraction, signal-subspace
embedding, time-domain iterative approaches, etc. [33]) such methods frequently result in audible
distortion of the signal, and are somewhat unsatisfactory in real-world noisy environments.
Recent neural network based filtering methods utilize data sets where the clean speech is
available as a target signal for training. These methods are often effective within the training set,
but tend to generalize poorly for actual sources with varying signal and noise levels (a review of
neural based approaches can be found in [89]). Furthermore, the network models in these methods

do not fully take into account the nonstationary nature of speech.

5.5.1 Dual Estimation Approach

The dual estimation algorithms developed in this thesis have the advantage of generating estimates
using only the noisy signal itself. To address its nonstationarity, the noisy speech is windowed
into shorter, approximately stationary sections, as described in Section 3.6.4 on page 110. The
dual estimation algorithms are then iterated over each window to generated the signal estimate.
Effectively, a sequence of time-series models is trained on the specific noisy speech signal of interest,
resulting in a nonstationary model which can be used to remove noise from the given signal. For
linear models, f(-), this basically reduces to the classic linear predictive coding (LPC) model of

speech.
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This approach to speech enhancement poses some problems for dual estimation algorithms.
First, it is clear that the appropriate model structure will vary (with the complexity of the signal
dynamics) from one window to the next, depending on whether the current window comprises, for
example, a fricative, vowel, or silent interval (noise-only). However, the nature of the application
generally precludes (or at least makes undesirable) the use of a system identification loop (see
Figure 1.3 on page 4) to determine the model structure. Ideally, a Bayesian approach to model
selection might be used as an integral part of the dual estimation process, but this is beyond the
scope of this thesis. Hence, in this section, a model structure is chosen which in some way is a

compromise between the various levels of dynamic complexity encountered in the signal.

A second difficulty inherent to speech signals is that they contain long segments of silence,
for which the process noise variance is effectively zero. However, a Kalman filter will diverge if
02 = 0, because the data get completely ignored, and numerical inaccuracies accumulate. This
problem is usually overcome by setting o2 to some small positive value. In the present context,
o? is estimated online, so the difficulty is overcome by putting a lower limit (e.g., 107%) on &;2}, .

within the variance estimation filter.

A third problem is the need for large amounts of data to achieve low model variance and avoid
over-training on one hand, and the need for short windows to address the nonstationarity of the
signal on the other hand. The problem of data scarcity can be ameliorated somewhat by using
the parameters learned in one window to initialize the next window; the overlap between windows
makes this especially appropriate. The problem of within-window nonstationarity can be partially
addressed by using model structures of higher complexity (e.g., a neural network instead of an LPC
model). Of course, higher complexity models also require more data, so this is a partial solution

at best.

Fourth, proper normalization of the speech signal is difficult, because of the large variation in
signal levels. This makes the appropriate choice of parameters such as Py and Qo problematic.
While each window could be normalized individually to have zero mean and unit variance, this
introduces radical changes in the dynamics from one window to the next. Thus, the speech
signals are normalized in their entirety (amplitude variation notwithstanding), as was done for

the stationary signals considered earlier in this chapter.

Finally, the dual estimation approach per se does not address the large body of knowledge
about human perception of speech that has been developed in the literature of speech processing
and psychology. For example, a great deal is known about the effects of masking, phase distor-

tion, critical bands, etc., on speech perception [57]. However, the flexibility of the dual estimation
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approach offers the potential for incorporating much of this knowledge: e.g., by use of percep-
tually constrained cost functions, or by independent processing of different critical bands. These
possibilities remain as promising areas of future research.

Before proceeding with the experimental results, it is worth mentioning that the windowing
approach to processing speech is only one of several possibilities. Although using overlapping
windows is fairly straightforward, the approach introduces an inherent delay in the enhancement
process, making it unsuitable for real-time applications (computational requirements notwithstand-
ing). An alternative approach, mentioned in Section 3.6.3, involves sliding the window by only
one point each time, so that an estimate of the current value of the signal is always available.
However, this increases the computational expense considerably, and is not likely to improve the
quality of the overall speech estimate. As a topic of future research, the windowing scheme might
be avoided altogether by finding a way to track the changing dynamics of the signal, perhaps by
using a parameterized model of the state-transition function for w, instead of the identity map.

This approach is discussed further in Chapter 6.

5.5.2 Evaluation of Speech

Because a human listener is often the end-user of a speech enhancement system, proper evaluation
of performance is very difficult to perform. This is because objective measures, such as SNR,
are poor indicators of speech quality or intelligibility, as perceived by humans. Although sev-
eral “perceptual” objective quality measures have been developed (e.g., Itakura-Saito distortion,
weighted-spectral slope, log area ratio, log-likelihood ratio, etc. [28]), they are not adequate for
making a definitive evaluation of speech enhancement algorithms. To date, the only effective means
of comparison is subjective testing with human listeners (e.g., calculating mean opinion scores).
However, such tests are time consuming and expensive to perform, so they are not frequently used.

The algorithms developed in this thesis are designed to minimize mean squared error, or
increase SNR. Hence, although they are evaluated in terms of the objective measures listed above,
SNR is the primary criterion used for selecting an algorithm. Rather than compute the SNR of the
entire signal at once, however, a more perceptually relevant measure is used, known as segmental
SNR. This is computed as the average of the SNRs computed within 240-point windows, or frames
of speech:

1

Here, SNR; is the SNR of the i** frame (weighted by a Hanning window), which is thresholded

from below at -10 dB. The thresholding reduces the contribution of portions of the series where no



212

speech is present (i.e., where the SNR is strongly negative) [28], and is expected to improve the

measure’s perceptual relevance.

5.5.3 Controlled Comparisons

In addition to their limited perceptual relevance, a major drawback of segmental SNR and the
other objective measures is that they require the clean speech signal as a reference. Therefore, the
algorithms are compared by testing them with a controlled experiment similar to those presented
in the previous chapter. To reduce the processing requirements of multiple repetitions, a short
section of speech is used, corresponding to a single word (“tool”) spoken by a woman with a
British accent. The speech is sampled at 8 kHz. Ten repetitions of white Gaussian noise are added
at 3 dB SNR to produce the noisy speech. The measurement noise variance, 62, is estimated from
the first N,,;, points of the signal, whereas the process noise variance o2 is estimated on-line using
the maximum-likelihood cost function. Although o2 could be estimated on-line as well, this is
typically unnecessary in a stationary noise environment.

Of course, more extensive testing on longer signals with various speakers should ideally be
performed; as mentioned above, perceptual testing by human subjects is also required for an
adequate ranking of algorithms. However, the purpose of these experiments is more limited in
scope: we wish to determine how the results in early sections for more generic signals translate
into the speech domain.

In some initial experiments, over-training was found to be a serious problem, with the maxi-
mum value of SN R; occurring after around 5 epochs, and decreasing thereafter (even as the weight
cost continues to improve). The effect is fairly independent of window length and model structure;
hence, the number of epochs is fixed at 5. The parameter covariances are initialized at .1, except
Qo = .01I for J™(w); the initial signal covariance is Py = I. Forgetting factors are A,, = .9997
Agz = .9993.

Apart from choosing an appropriate cost function for speech enhancement, an appropriate
value for the window length, Ny;,, must be determined, as must a model structure for f(-). Two
model structures are tested: a tenth order linear AR model; and a neural network with 10 inputs,
4 hidden units in a single layer, and one output. Furthermore, two different windowing schemes

are tried:
1. Windows of length 512, shifted by 64 points.

2. Windows of length 128, shifted by 32 points.
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For each of the four cases, both the dual EKF algorithm (with weight costs: JP¢(w), J™(w), and
J7(w)), and the joint EKF algorithm are tested. In addition, the batch EM algorithm is tested
with the linear architecture (the nonlinear batch GEM algorithm is not effective). Finally, the
traditional method of spectral subtraction is tested, using code developed by Levent Arslan at
Duke University!. This is intended for benchmarking purposes only; more sophisticated forms of
spectral subtraction have been developed, and would most likely produce more competitive results.
Measures for the original noisy speech are also computed to indicate relative improvement of the
enhancement algorithms.

For each algorithm or cost function, the perceptual measures are averaged across all frames
and compiled in the boxplots of Figure 5.11. The top plot shows the segmental SNR, which is the
only measure for which larger numbers indicate better performance. For most quality measures,
the result using N,;, = 512 compares favorably with the corresponding result using the shorter
window, with the exception of the Itakura-Saito measure. The advantage of the longer window is
related to the amount of noisy data required to estimate the parameters. It is possible that shorter
windows would be sufficient for processing speech that is less noisy.

The Itakura-Saito and weighted spectral slope measures are immediately suspect, because the
distance for unprocessed speech (labeled “y”), is in many cases lower than that of the processed
speech. The degradation in the Itakura-Saito measure is localized to several silent (non-speech)
frames, but these values greatly inflate the average distance, nonetheless. These two measures are
disregarded in the rest of the discussion.

On the longer window, the neural network model shows a higher segmental SNR than the
linear model; this advantage is less pronounced on shorter windows, which is probably due to the
larger number of parameters used in the neural network. The outcome is less conclusive for the
other measures.

In terms of the segmental SNR, the best results are obtained by the dual EKF with J™(w)
cost, using a neural network and longer window. The advantage of the maximum-likelihood cost
over J7(w) is expected in the white noise case, based on experiments in the previous chapter. The
weaker performance of the joint EKF is very likely a result of the model structure errors inherent
to the speech enhancement problem, and inaccuracies in the noise variance estimates. Another
factor might be lack of data reweighting for weight training (see page 110) in the joint EKF.

As expected, the spectral subtraction shows very poor segmental SNR performance; however,

the algorithm is an average performer in terms of the log area ratio and log likelihood measures.

I The default settings of Ny;, = 128 Hanning windows, shifted by 64 points are used.
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Figure 5.11: Boxplots of various perceptual metrics, obtained using several different speech enhance-
ment algorithms on a single word in 10 repetitions of 3 dB white noise. The left three panels show the
results using a 128 point window, while the results using a 512 point window are shown in the right
two panels. Results are further divided into linear and neural network models, as indicated. Values for
the noisy speech and spectral subtraction result are shown on the left.

It is interesting to note the excellent performance of the linear batch EM algorithm, especially
as rated by the log area ratio and log likelihood measures. Recall that the EM algorithm uses a
Kalman smoother to improve the signal estimates; it shows significantly higher segmental SNR

than the other linear algorithms. For the shorter window the result has a p-value of 23% relative
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to the top-performing dual EKF algorithm.

This highlights the potential advantage of using noncausal processing in off-line applications;
one possible approach is a dual forward-backward Kalman filter investigated in [87], but this has
not been fully developed. A simpler form of noncausal estimation could be performed by taking
the signal estimates Zx41 from the last element of the state vector Xg4 s, thereby using a limited
amount of future data to estimate the signal. This type of processing is sometimes referred to as

“fixed-lag” smoothing.

5.5.4 Digit Recognition

Apart from increasing the perceptual quality and intelligibility of speech for human listeners, an
important application of speech enhancement technology is as a front-end to automatic speech
recognition (ASR) systems. Often ASR systems are trained to recognize relatively clean speech,
but must deal with noisy environments when put into use. Such noise might originate from a
factory setting, an automobile, or even computer fan noise.

One way of increasing the robustness of an ASR system to noisy speech is by preprocessing the
speech with an enhancement algorithm. The effectiveness of the dual EKF in this application is
demonstrated using speech corpus and ASR system? developed at the Oregon Graduate Institute’s
Center for Spoken Language Understanding (CSLU). The speech corpus consists of zip-codes,
addresses, and other digits read over the telephone by various people; the ASR system is a speaker-
independent digit recognizer, trained exclusively to recognize numbers from zero to nine when read
over the phone.

A subset of 599 sentences was used in this experiment. As seen in Table 5.2, the recognition
rates on the clean telephone speech are quite good. However, adding white Gaussian noise to
the speech at 6dB significantly reduces the performance. As a benchmark, the standard spectral
subtraction routine described in the previous section was used to enhance the noisy speech, re-
sulting in a significant improvement in recognition. In addition, an enhancement algorithm built
into the speech codec TIA /EIA /1S-718 for digital cellular phones (published by the Telecommuni-
cations Industry Association) was used, with the compression features of the algorithm disabled.
Although the perceptual quality of the IS-718 enhancement is considerably better than the spectral
subtraction result, the recognition rates are significantly worse.

The dual EKF algorithm is applied with maximum-likelihood costs for estimating the weights

and process noise variance, and with static derivatives to reduce the computational expense. The

2The author wishes to thank Edward Kaiser for his invaluable assistance in this experiment



216

Table 5.2: Automatic speech recognition rates for clean recordings of telephone speech (spoken digits),
as compared with the same speech corrupted by white noise, and subsequently processed by spectral
subtraction (SSUB), a cellular phone enhancement standard (1S-718), and the dual EKF.

Correct Words | Correct Sentences

Clean 96.37% 85.81% (514/599)
Noisy 59.21% 21.37% (128/599)
SSUB 77.45% 38.06% (228/599)
1S-718 67.32% 29.22% (175/599)
Dual EKF 82.19% 52.92% (317/599)

measurement noise variance is estimated from the first window (512 points) of the noisy signal. The
neural network architecture and other parameters are chosen as in the previous experiment. As
shown by Table 5.2, the dual EKF outperforms both the IS-718 and spectral subtraction recognition
rates by a significant amount. The improvement in terms of correctly recognized sentences is even

more dramatic.

5.5.5 SpEAR Data

As mentioned earlier, computing perceptual quality measures of enhanced speech requires access to
clean speech waveforms. Often, then, enhancement is performed on artificially corrupted speech,
wherein a noise waveform is added in digital form to the clean speech waveform. While this
provides access to the clean speech, the results are somewhat questionable, because the noise was
not part of the same acoustic environment as the speech.

To increase the level of realism of the noisy speech, and yet still provide access to the clean
speech waveform, a database of acoustically corrupted speech is under development as part of
CSLU’s Speech Enhancement Assessment Resource (SpEAR [13]). Noisy speech files in this
database were created by simultaneously playing both noise and speech waveforms in the same
room, and recording the acoustic combination clock-synchronously to produce a noisy speech wave-
form. A reference to the clean speech is also created by playing the speech waveform in the room
(without noise) and re-recording it. This allows for segmental SNR to be computed for both the
noisy speech and the enhanced speech.

A portion of the SpEAR database was processed by the dual EKF in order to evaluate the
algorithm on a broader array of noise types. A variety of noise sources are acoustically combined
with two different sentences, spoken by an American male and an American female, respectively.
The clean speech files originate from the TIMIT database. Noise sources from the SPIB database
[69] are:
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e Noise recorded from the co-pilot’s seat in a two-seat F-16, traveling at a speed of 500 knots,
and an altitude between 300 and 600 feet. The sound level during the recording process was

103 dBA.
e Factory noise recorded in an automobile production hall.

e Noise recorded inside a Volvo 340 in 4th gear on an asphalt road, at 120 km/h in rainy

conditions.

In addition, pink noise, stationary white noise, and nonstationary (bursting) white noise are used.
Note that the spectra of all noise sources are altered by the acoustics of the SpEAR recording
environment, which was a carpeted room with painted plaster-board walls. For these experiments,
the 16kHz SpEAR data was downsampled to 8kHz before processing.

In most cases, the noise parameters w, and o2 (L, = 10) are estimated from a 512 point
window of noise at the beginning of each recording. For the Volvo noise the model (L, = 12) is
estimated using the entire noise file, available by subtracting the clean reference. The model of
the bursting white noise (L, = 10) is estimated using a long segment of stationary white noise,
and the value of 62 is estimated online using J™ (02 ). This requires that the algorithm track
the noise level from one window to the next; because there are portions of the waveform with no
measurement noise, the value of 62 was thresholded at a minimum value of 1074

In all cases, the dual EKF is used with J7(w) and J™(02) costs, the usual choices of initial
covariances, and with Aw = .9997 A2 = 9993, A,z = .9993. Table 5.3 presents the results in
terms of average segmental SNR. The segmental SNR is shown for the noisy speech, and for the
enhanced speech using both the standard and static derivative forms of the algorithm. In most
cases, the full recursive derivative produces somewhat better results; however, the static derivative

results are often quite close or better. In particular, the results on the low frequency Volvo noise

Table 5.3: Dual EKF enhancement results using a portion of the SpEAR database. All results are
in dB, and represent the segmental SNR averaged over the length of the waveform. Results labeled
“static” were obtained using the static approximation to the derivatives.
Male Voice (Seg. SNR) || Female Voice (Seg. SNR)
before | after | static || before | after static
F-16 | -2.27 | 2.65 1.69 0.16 4.51 3.46
Factory | -1.63 2.58 2.48 1.07 4.19 4.24
Volvo | 1.60 | 5.60 6.42 4.10 | 6.78 8.10
Pink | -2.59 1.44 1.06 -0.23 | 4.39 3.54
White | -1.35 | 2.87 2.68 1.05 | 4.96 5.05
Bursting | 1.60 | 5.05 4.24 7.82 | 9.36 9.61
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favor the static derivative results, for reasons that are unclear.

The application of the dual EKF to some “real-world” noisy speech signals is considered next.

5.5.6 Car Phone Speech

In this example, the dual EKF is used to process an actual recording of a woman talking on her
cellular telephone while driving on the highway. The signal contains a significant level of road
and engine noise, in addition to the distortion introduced by the telephone channel. The speech
is enhanced by the dual EKF with costs: J7(w), J™(0?), and parameters: Py = 1, Qo = .01,
Gv,0 = -1. The measurement noise is modeled with an AR-12 model using a separate portion of the
signal which does not contain speech. The process noise variance o2 is estimated on-line within
the dual EKF framework. Following the results in Section 5.5.3, the longer window length (512
points) is used, with a feedforward neural network architecture of 10-4-1.

The results appear in Figure 5.12, along with the noisy signal. Spectrograms of both the noisy
speech and estimated speech are included to aid in the comparison. To make the spectrograms
easier to view, the spectral tilt is removed, and their histograms are equalized according to the
range of intensities of the enhanced speech spectrograms?.

The noise reduction is most successful in non-speech portions of the signal, but is also apparent
in the visibility of formants of the estimated signal, which are obscured in the noisy signal. The
perceptual quality of the result is quite good, with an absence of the “musical noise” artifacts
often present in spectral subtraction results. The spectrogram suggests that better results might
be obtained by processing different frequency bands individually and combining the results. This

would potentially suppress the residual noise at high frequencies, and wherever no speech signal is

present in a particular band. However, this issue is left as a topic of future research.

5.5.7 Richard Nixon

On November 17, 1973, during the height of the Watergate scandal, President Richard Nixon
spoke to the American people in an attempt to reassure them of his innocence. A portion of the
speech, in which Nixon states, “... because people have gotta know whether or not their President’s
a crook; well, I’'m not a crook,” is represented by the waveform and spectrogram at the top of
Figure 5.13. In this example, the additive noise appears to be subject to quantization effects,

and clearly violates the assumption of Gaussianity. The noise level is much lower than in the car

3Thanks to J. A. du Preez at the University of Stellenbosch for MATLAB code used to compute these spectrograms.
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Figure 5.12: Enhancement of car phone speech. The noisy waveform appears in the top plot, followed
by its spectrogram. The third and fourth plots contain the spectrogram and waveform, respectively, of
the dual EKF result.



220

Noisy Nixon Speech
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Figure 5.13: Enhancement of Richard Nixon’s "I'm not a crook” speech. The noisy waveform appears
in the top plot, followed by its spectrogram. The third and fourth plots contain the spectrogram and
waveform, respectively, of the dual EKF result,
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phone example, but the reduction of noise is apparent in both the spectrogram and waveform of

the enhanced speech, shown in the bottom half of Figure 5.13.

5.5.8 Seminar Recording

A last example comes from a recording made during a lecture in the Portland Area Semiconductor
Seminar Series at the Oregon Graduate Institute. The seminars are routinely videotaped and
stored in an archive. However, during one particular lecture, the audio recording equipment was
configured improperly, resulting in a very loud buzzing noise throughout the entire recording. The
noise has a fundamental frequency of 60 Hz (indicating that improper grounding was the likely
culprit) but many other harmonics and frequencies are present as well. As suggested by Figure 5.14,

the SNR is extremely low, making for an unusually difficult audio enhancement problem.

5.6 Discussion of Results

While the speech enhancement results in the previous section are very promising for both ASR
and human-listener applications, much additional work remains to improve the application of the
dual EKF to speech processing. A voice activity detector could be used to re-estimate the noise
model from nonspeech segments of the waveform, thereby improving performance in the presence of
slowly varying measurement noise correlations. Perhaps the most promising area of future research
involves the use of perceptually motivated cost functions for the signal and weight estimation filters.
Additional gains can possibly be made by simply band-pass filtering the speech into critical bands,
and estimating the waveform in each band separately before recombining.

In any case, the results shown on economic, geophysical, and speech data demonstrate the
potential of the dual EKF approach, and its applicability to a wide variety of real-world signal
processing problems. The next chapter summarizes the general conclusions that can be drawn
from this research, and describes directions for further refinement of the dual Kalman filtering

approach.
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Chapter 6

Conclusions and Future Work

6.1 General Summary

This thesis approaches dual estimation from a maximum a posteriori perspective. By maximizing
the joint conditional density Pxl wiyN s the most probable values of the signal and parameters
are sought, given the noisy time-series. This probabilistic perspective elucidates the relationships
between various dual estimation methods proposed in the literature, and allows their categorization
in terms of methods that maximize the joint conditional density function directly, and those that
maximize a related marginal conditional density function.

This approach offers some insights about previously developed methods. For example, the
prediction-error cost is viewed as an approximation to the maximum-likelihood cost; moreover,
both are classified as marginal estimation cost functions. Thus, the recursive prediction error
method of [61, 47] is quite different from the joint EKF approach [38, 12], which minimizes a joint
estimation cost!. Furthermore, the joint EKF and errors-in-variables algorithms are shown to offer
two different ways of minimizing the same joint cost function: one is a sequential method, and the
other is iterative.

The relative utility of the various cost functions is evaluated through the development of
the dual extended Kalman filter. The dual EKF provides a common algorithmic platform for
implementing a broad variety of methods, and allows for the direct comparison of the different
cost functions used in the literature. Extensive empirical comparisons are performed, with the
outcomes provided in Chapter 4.

The dual EKF is an effective sequential dual estimation method, which is applicable to both
linear and nonlinear time-series models, and which can be used in the presence of white or colored

measurement noise. The algorithm is comprehensive in that it provides sequential estimation of

!This fact is overlooked in [47], which emphasizes the similarity of these two algorithms.
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noise variance parameters within the same theoretical framework used to estimate the mode! and
signal.

Furthermore, the generality of the dual EKF is demonstrated in a range of application domains,
including speech enhancement, economic forecasting, and analysis of geophysical data. These
results illustrate the potential of the dual EKF for processing many different types of signals. In
addition, the flexibility of the approach allows for the future development and use of application-
specific cost functions and pre-processing schemes; these and other possible directions for future

research are described in the next section.

6.2 DPossible Extensions

The dual EKF allows a relatively small amount of prior information - in the form of the model
structure of the dynamics and a model of the noise — to be used in solving the dual estimation
problem. Many of the research directions suggested below would allow for other types of prior
information to be included. Other ideas involve an attempt to reduce the amount of required prior
information even further: either by learning the noise model (as in monaural signal separation), or
by adapting the complexity of the model structure. Alternatives to the EKF, and the importance

of developing specific applications are also discussed.

Model Improvements. As mentioned in Chapter 1, the simple nonlinear autoregressive model
structure used in this thesis can be generalized to include exogenous control inputs to the
function f(-), and to allow for multiple observations (dim(y;) > 1). These adjustments would
be fairly straightforward in the state-space framework, and would greatly increase the range
of applications; the algorithm could be used for system identification in control settings, and

for predicting economic time-series using information contained in ofher series.

More general forms of distortion can also be considered by allowing for the observation to
be a nonlinear function of z; and ng, rather than a linear addition. Convolutional noise and

other forms of channel distortion can be addressed by such a model.

Nonlinear Noise Models. This thesis assumes a linear AR model for colored measurement
noise. In some cases, the dynamics of the noise would be better modeled with a nonlinear
autoregression, like the model used for the dynamics of signal. This modification would be

very straightforward, and would be useful when the noise and signal are of similar complexity.

Monaural Signal Separation. An additional step towards equal treatment of the signal and

noise is to regard the model parameters of the noise as unknown. Any distinction between
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signal and noise is thereby removed, and the problem is reframed as that of separating two
signals from a single (monaural) source. The problem, referred to as monaural blind signal
separation, is a very challenging area of research. However, some preliminary work in [88]

demonstrates the potential of the dual EKF in this setting.

Model Structure Selection and Regularization Besides the noise model, another key piece
of information used by the dual EKF is the complexity of the signal dynamics, f(-). This
thesis assumes a predetermined model structure for each signal, with a specific parameter-
ization. However, in some contexts a suitable model structure will not be known a priori.
In this case, an adjustment to the cost function to introduce regularization [30] could pro-
vide some control over the model complexity. Other approaches to model selection, such as

pruning [30], can be used to select to appropriate number of parameters in the model.

Filtering in Other Transform Domains. The definition of the state vector x;, in Equation 3.11
as the lagged values of the signal, zx, is only one of an infinite number of possibilities. Other
representations of the signal, including polynomial and wavelet transforms, can also be con-
sidered. These alternative state-space definitions might be chosen to allow prior information
about the signal to be included in the model, or to facilitate the use of application-specific

cost functions and constraints.

Nonstationary Signal Modeling. Windowing nonstationary signals into short overlapping seg-
ments, as is done in this thesis for speech data, introduces the additional difficulties of data
scarcity and over-training. A more desirable approach to filtering signals with time-varying
dynamics might be developed by using domain-switching models, or by estimating a contin-
uous model of the dynamics exhibited by wg. In other words, the changes in the dynamics of
the signal are themselves modeled by a fixed function, whose parameters must be estimated
along with z; and wy. This approach assumes that the dynamics of wj remain in a bounded
region of the parameter space, but would offer the advantage of making all the noisy data in

the past available for estimation of the signal.

Alternatives to the EKF. Appendix D provides an analysis of the approximations made by the
extended Kalman filter, and the inaccuracies that result when the model is highly nonlinear.
Alternative filters have been derived which offer the potential of better accuracy than the
EKF, and which could be substituted for the signal, weight, or variance filters of the dual
EKF algorithm. The use of unscented Kalman filters (UKF) [35] in this manner was inves-

tigated recently using the JP¢(w) cost, with promising results [90]. Whereas the UKF still
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adheres to a Gaussian assumption on the state, a sequential Monte Carlo approach known as
particle filtering [15] avoids the Gaussian assumption altogether, although at increased com-
putational expense. These alternative filtering methods could be used within a sequential
dual estimation approach similar to the dual EKF, but with improved convergence properties

for highly nonlinear signals.

Speech Enhancement. Some suggestions for improving the speech enhancement results of the
dual EKF are made at the end of the previous chapter. In addition, several of the ideas
mentioned above have particular relevance to the speech domain. First, the extension of the
model to handle channel distortion could improve results in the telecommunication domain,
where noise is not purely additive. Second, because background noise often includes other
speaking voices, the problem of monaural blind signal separation is important for developing
robust speech applications. Third, the development of perceptually-motivated cost func-
tions using our knowledge of the human auditory system could be facilitated by estimating
the speech in alternative transform domains. Finally, the ability to track dynamic regimes
within the speech waveform would obviate the need for windowing speech, thereby improving

performance and computation time.

Application Development. The results shown in the previous chapter are somewhat prelim-
inary in the sense that the dual EKF was applied to these data sets with little or no
application-specific modification. Numerous issues arise in the context of a particular ap-
plication; the adaptation or alteration of the algorithm to accommodate these issues would
certainly produce results superior to those shown here, and represents an important direction

for future research.

The power of the dual EKF approach comes from its theoretical foundation, and its ability
to be used with many different cost functions and application domains. This flexibility makes
the dual EKF an excellent starting point for a number of possible research directions. Although
certainly not exhaustive, the above list contains ideas regarded by the author as the most promising
in terms of their potential benefit to the research community. Some of these proposals are quite
straight-forward; others represent a considerable amount of work. All of them would increase the

impact of the dual EKF paradigm on a variety of fields.
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Appendix A

Gaussian Conditional Densities

In this appendix, the functional form for several of the conditional densities used in this thesis
are derived under a Gaussian assumption on the process and measurement noises. Namely, in

Section 2.3, expressions for the terms on the right hand side of Equation 2.8:

PyNxl|w = Pyl |xFw * Pxl |w (2.8)

were displayed without derivation. In Section 2.4, an expression for the marginal likelihood PyN w
was stated. Derivations for these expressions are provided below. For convenience, the AR model

of Equation 1.1 is rewritten here as:

T = f(xk—la .-.xk_M,W) +Uk (11)

Yr = Tk + N, Vke {1...N}.
A.1 Joint Likelihood pyyny,

This conditional density appears as the first term in Equation 2.8, and can be thought of as a joint
likelihood function for the signal and weights. By employing the definition of conditional densities,

we can write:

pyileivw = pyNny'“le’w ' pyf"_l|x{vw (A].)
= PynlyY xMw Py 1y Y il w Pyl kN w (A.2)
(A.3)
N
= Pylxlw L] Pyeiyt—txtiw (A.4)
k=2
which, because y; = x + ng, reduces to:
N
= 1 pusien- (A.5)
k=1
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If n is zero-mean white Gaussian noise, then py, |x, ~ N (zx, 02), and each term in the product is

exp (_ (ye — E[yk|wk])2)’

Punler = Joma? 207 (A.6)
1 ( (yk—wk)) '
= exp | - |,
v 2ma2 203
and
N
_ 1 (yx — zx)?
it = e (L ) 0

This is the first term on the right hand side of Equation 2.9 on page 23.

A.2  Conditional Density p,~y

This conditional density appears as the second term in Equation 2.8. It can be expanded as:

PxViw = Pyl Tw  PxV-|w (A.8)
=pzN|x ‘w Pepy_ 1%V 2w 'pr"2|w (Ag)
(A.10)
N
=11 Prpit=w (A.11)
k=1
which, because zx = f(zr_1,...,Zr_n, W) + vg, reduces to:
N
H Prait= (A.12)

If vy is zero-mean white Gaussian noise, then each term in the product is

o= — 1 exp (_M)
Th|Xp W \/m 202
where  z; £ Elz|{z:}F 2%, W] (A.13)
= f(@p_1,. "y Tt_p, W)
= f(Xk-1, W).

Hence,

(A.14)

v _ 1 exp ( iv: .’L‘k—a:k )2>
T Ve N )

This is the second term on the right hand side of Equation 2.9 on page 23.
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A.3 Marginal Likelihood pyny,

This conditional density appears as the first term in Equation 2.48 on page 35, and is a marginal

likelihood function for the weights. By employing the definition of conditional densities, we can

write:
py lw = py~|yf"1w ) py{v‘1|w (A15)
pleyN 1w’ pyN 1|yN 2w ° pyiv-ﬂlw (AIG)
(A.17)
N
=1 Pyuyt-rw- (A.18)
k=1

When the dynamics f(-) are linear, and both v, and nj are zero-mean white Gaussian processes,

then each term in the product is:

P e = —l—exp (_ (yr — yklk—1)2>
wrly; 'w V27aZ 202, ’ (A.19)
where  Tro1 = Elyl{ye}i ™, wl,
and
_—2
Pyliw = H \/m ( (%225—236_])) . (A.20)
This is the expression given in Equation 2.49 on page 35. If f(-) is nonlinear, the densities Pyly ' w

will lose their Gaussian form, and Equation 2.49 represents an approximation.



Appendix B

Second Marginal Expansion

This appendix investigates an alternative marginal cost function. Although no practical algorithm
results from this exercise, the development is nonetheless interesting. In Section 2.4, the joint

density is expanded into two terms as:

PxlwlyY = Pxl |yl w ™ Pwiyl’

where the first term is maximized with respect to the signal, and the second term with respect to
the weights.

An alternative to the above expansion is given by:

PxNwlyN = PwlyNxl = PxN|yl - (B.1)

This suggests an alternative estimation scheme, in which {#;}#' is found by maximizing the second
term, p,nyn, and W is found by maximizing the first term, Pwlyl <V«
Similar to the comment made in Section 2.4 about the first expanded form, note that w can be

estimated from the first term alone, but to maximize p, v, ~ Wwith respect to {zy }Y, both terms

wly
need to be maximized. While algorithms based on the first expanded form have appeared in the
literature, the same is not true of the second form. This is primarily because of the difficulty in

maximizing p,ny~, as is shown below.

B.1 Model-Free Signal Estimation

To begin, consider the estimation of {4} via the second term. Applying Bayes rule, we see that:
PyN|xN * PxN
PxNyN = B4 e NS W (B.2)
PyN
While the prior p,~ can be ignored (it is independent of {zx}Y), the same is not true of Py - In
this case, the prior p,~ is an important part of the density because it contains our knowledge that

{z}Y was generated by an autoregressive process.
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To see the importance of this prior, consider maximizing the likelihood Py | alone. The
corresponding cost function is:

N

- 2
iy (arw)a) = - (L), 8.3

k=1 n
which does not produce an interesting result. The maximum-likelihood estimates in this case would
be {25} = {ye}l-

The problem is that the time series {xk}{v has not been constrained to be generated by an
autoregressive process. To make this restriction more explicit in the prior, we can rewrite it as
Px¥ | M> where M represents the model structure of the autoregressive model, independent of a
specific choice of parameters w.

The prior can then be written as:

pr’wlM

PxN = PpxN . B.4

xN M = PxN|M Pt wind (B.4)

- PN w| M (B.5)
Pw|x¥ M

This expression can be simplified by making the model structure M implicit in the parameters w.

That is,

PxNw PxN\w * Pw
puyi = o2 = T T (B.6)
Pw|xN Pw|xN
The density p,~ |y~ can now be written as:
p NixN p N * Pw
privjyy =~ T (B.7)
pyiv pw|x{V
= Priilim P (B.8)
py{" 'pw|x{v

Where we have used the fact that PyNixN = Pyl ixNw- Because pw and pyy are independent of

{zx}, we can find {#;} by maximizing the function:

Pylx{|w (B.9)
Pw|xl
or, equivalently, its log:
log PyNxNiw — log Pw|x (B.10)
with respect to {zx}?. This produces a new cost function, given by:
Jovion (2, w) = JF(xY, w) = J e (2, W),
S P (B.11)

where  Jy v (@, W) = (W'~ v‘v({mk}{\’))TP‘;l (w —w({zx})).
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The second term represents a penalty for estimates {£x}} that agree too well with the assumed
value of w. This effectively removes any bias on the solution which might result from the specific
choice of w.

Making use of this additional term in the cost function can prove difficult, however. In partic-
ular, since W will typically be found by a nonlinear optimization procedure, there is no closed-form
expression for W as a function of {z4}Y. Without this expression, the derivative of the weights

with respect to the time-series cannot be computed, and the cost function cannot be minimized.

B.2 Signal-Based Weight Estimation

Assuming that a signal estimate {ik}f" is found, however, weight estimates W can now be found
by maximizing the first term in the expansion of the joint density in Equation B.1, Py NN - This

can be written as:
Pty = L P y{V;lelNa:{v oy (B.12)
Since pynyp is independent of w, the numerator alone can be maximized to estimate the weights.
Furthermore, the term py can be dropped if we assume that no prior information is available on
the distribution of the weights. This leaves py~yn|,, as the likelihood function for the weights. As
described in Section 2.3, this can be maximized by minimizing one of the cost functions given in
Equations 2.13, 2.14 on page 25, or for error coupling, Equations 2.19, 2.20 on page 28.
However, if {#}Y is actually obtained by maximizing Pxi|yn, then it will be independent of

w. In this case, the versions of the costs which reflect this independence (namely Equations 2.14

and 2.20) are the most appropriate.



Appendix C

Kalman Filtering

The Kalman filter [36] generates optimal state estimates for linear systems. In this appendix, the
Kalman filter is derived from the MAP perspective, both in the context of signal estimation, and

in the context of weight estimation.

C.1 Signal Estimation

Recall the linear state-space representation for a noisy time-series {yx }', given in Equations 3.11 and 3.12

on page 47:

Xr=A -x3_1+B-u

ye = C - xp + g

Section 3.2 showed how sequential estimation of the signal {z)}{ requires recursive estimation
of the state x;. This involves the two steps illustrated in Figure 3.2: (1) the generation of the
posterior statistics from the prior statistics, and (2) generation of the prior statistics from the

posterior statistics at the previous time step.

C.1.1 Posterior State Estimation

The posterior mean of the state is defined as:
XL = E[xk.|{yt}'f, w] (C.1)
which is equivalent to the MAP estimate:
X = arg A (C.2)

when the statistics are Gaussian. The solution to the MAP formulation of the problem is shown

below.
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The posterior density for the state can be expanded by as

_ Pyt ixew Pyt Tiw T Pyitlw (C.3)
Pxilytw = : :

py’f\w

Note that Pyily*xew = Pyslxe- Also, Pyk|w Can be dropped because it is functionally independent

k

of X; hence, the MAP state estimate is found as:

Xy = a,rgn’l(ix(pyklxk 'pxklyf“w)‘ (C.4)

Under the Gaussian assumption, the two terms can be written out explicitly as:

1 1
= . J— -C 2y~-1 _ T
Pites = sy o0 =5 (0 = Cx00D) ™ 0 = Cxe) )
1 1 o= —_ — A —
Prplys~'w = 'exP{—i(xk - %7 (@) (% ‘xk)},

(log 2m)M|P|

where x; £ E[xi|{y:}¥™,w] and P £ E[(x; — %;)?|{y:}¥ ™!, ] represent the prior mean and

covariance of the state. Therefore, taking the negative log of (pyux,c Pl y.l,_lw) yields
o + (- Cx) o (u - Ox)
1 (C.5)
+ 50 = %) T(PE) T e - %),
where « is a constant to account for the normalizing terms in the Gaussian density functions.
Hence, %x; can be found by minimizing the expression in Equation C.5. This is done by taking the
derivative with respect to the unknown x; and setting it to zero:

0 ln(px,c % ,w)
Bxk

= 0=(P;) '(xx —%;) — CTo%lyx — Clxx — %) — C;] (C.7)

= (Py) (xk — %) — CTo % (yx — Cxx) (C.6)

Collecting (xx — X, ) terms on the left hand side gives:
(P)(xx — %) + CTo2C(xy, — %) = CTo 2 [yx — Ck;] (C.8)
or (P7) ™ + CTo2C) (xk — %5) = CTo %[y — Cx; . (C.9)
and solving for x;, yields:
xp = %5 + ((Py) ™' + CTo;2C) 7' CTa; 2 [yx — Cx5). (C.10)
Letting %x take the value of the solution, this can be rewritten in the more familiar form as:
% = X + Ki(ux — Chx;), (C.11)

where Kj 2 ((Pp)™! +CTo;2C) ' CTo?
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(A" + BDC)™ = A— AB(CAB + D™")"'CA

Formula C.1: The matrix inversion lemma.

is commonly referred to as the Kalman gain.

Note that computing the gain K; involves inverting an M x M dimensional matrix, where M
is the length of the state vector x;. This can be a relatively expensive procedure for large state
vectors. Alternatively, the matriz inversion lemma (see Formula C.1) allows K to be written in
a form that involves inverting a matrix with the same dimension as the measurement, yx (in this
case a scalar).

Applying the matrix inversion lemma to:

K= ((P;)' +CT0;2C)7'CTo;®  gives (C.12)
K; = (P, - P, CT(CP;CT +¢2)7'CP;)CT0,2, (C.13)

which can be simplified by the following algebraic steps:

K, =P;CTo;? - P, CT(CP; CT +¢2)"1CP; CT0;? (C.14)
=P;CT[o,;? — (CP;CT +02)7'CP; CT 02 (C.15)
=P;CT(CP;CT +02)[(CP; CT +02)s,;2 — CP; CT0;? (C.16)
=P, CT(CP; CT + o2) '[(CP, CTo;2 +1) - CP, CTo 7] (C.17)

leaving the commonly-used form:

Ky =P;CT(CP;CT +42)7". (C.18)
For one-dimensional time-series data, C has dimension 1 x M, so the above equation involves
inverting only a scalar.
C.1.2 Posterior Covariance Estimation

Recall that to continue sequential estimation of the state, the posterior error covariance Py, is also

required. This can be found by using the definition:

Py = E[(xx — &) (xx — %¢)7], (C.19)
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and substituting the definition of %X in Equation C.11 to give:
o - . T
Pk = E[(Xk - X, — Kk(yk — Ckxk )) (Xk — X, — Kk(yk — Ckxk )) ] (C.?O)
Multiplying out the quadratic produces:
Py = Bl(xx — %; ) (xk — %¢ )]

—E[(xx~%5 ) (ye — Crxp)TIKE

[ K k) 1K (C.21)
K E[(yx — CeXy ) (xx — % )7]
+KLE[(ys — Cikp)(yr — Cu%y)TIKY

While the first term on the right hand side of Equation C.21 evaluates immediately to P},

evaluation of the second, third, and fourth terms in this last expression involves rewriting (yx —

Cr%; ) as:
(yx — Cx ) = (Cxg + ni) — CX
g ¢ (C.22)
= C(Xk - )A(;) + ng,
so that the second term in Equation C.21 contains
E[(xx — %) (yx — CX;)T] = El(xk — %) (xx — %) TCT] + El(xx ~ %5 )na]
=P, CT, (C.23)

where the cross-term vanished because the measurement noise mn, is assumed to be white, and
therefore uncorrelated with (xx — X, ). The third term in Equation C.21 is simply the transpose

of the second. The fourth term contains:
E[(yx — C%3 )k — Cx;)T] =CE[(xx — %3 )(x — x5 )TICT + CE[(xx — % )n]
+ Elng(xx ~ %;)TICT + Efngng]
where the cross-terms are again dropped to give:
=CP; C7 + 02, (C.24)
Substituting the terms C.23 and C.24 into Equation C.21 yields:
P, =P, - P;CTK! - K\CP; + K;(CP, CT +02)K] (C.25)
which, using K = P CT(CP; CT + 02)~1, gives:
Pi =P, - P, CTK] - K,CP; +P;CTK]
=P, - K;CP;,
= (I-KiC)P . (C.26)
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This provides the posterior error covariance Py as a linear function of the prior covariance P .

C.1.3 Prior Estimation

Now that equations have been obtained for X; and P, it remains to be shown how X, and
P, ., are generated for the next time step. Using the state-space equations makes this fairly

straightforward. The prior state estimate is:

K1 = Blxr1 [{e}, w]
= E[Ax;, + Bug_1|[{y:}5, w] (C.27)
= AE[xe|{ye}1, W] + BE[vk—1|{y:}}, W]
= AXxy,
where the conditional expectation of vg_; is zero under the assumption that the process noise is
white.
The prior covariance is obtained readily as:
Pi= El(x4+1 — )'(;+1)(xk+1 - ’A‘;H)T'{yt}fvw]
= E[(Ax) + Bug—1 — A%g)(Axy + Bug_1 — Axe) T |[{y:}5, w]
= E[(A(xx — %) + Bug—_1)(A(xx — %) + Bug_1)T[{ye}¥, w] (C.28)
= AE[(x — %) (xx — %) [{y:}}, WIAT + BE[(vg-1)*|{y}§, wBT
= AP AT + Bo2BT
These equations for generating the prior mean and covariance from the posteriors are often referred
to as the time-update equations of the Kalman filter. The equations for generating posteriors from
the priors are referred to as the measurement-update equations. Both sets of Kalman filter equations

are summarized in Formula 3.1.

C.2 Weight Estimation

The Kalman filter can also be used to produce optimal sequential estimates of the weights when
the clean signal z is known. The following development exactly parallels that just presented for
state estimation, with the addition of a description of recursive least squares at the end of the
section.

The linear state-space representation:
Wi = Wi + U (0‘29)

Ty = szk—l + Vg (C.30)
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is used to characterize the weights as a (stationary) random walk.

The MAP estimate of the weights is defined in Equation 3.45 on page 55 as:
Wi = arg max p., |k,

and the corresponding sequential MAP cost is derived as:

z) — T, )?
Ce= Bl | w s @) v - i),

Jr(w) =

where the signal prediction is written in the linear case as z;, = x;_, wx. The prior weight estimate

and error covariance are given in Equation 3.54 and 3.55 on page 57 as:

Wy = W1 where Wj_; = E[Wk—1|{$t}f_1], and
Q; = Qi1 + U,  where Qi1 2 E[(w — We—1)()T[{ze} 5.

Hence, the prior weight estimate W, and covariance Q, are directly dependent on the posterior
estimate w_; and covariance Q_; from the previous time step. These equations constitute
the time-update of the Kalman weight filter. The measurement-update involves computing the
posterior mean and covariance from the priors. Assuming Gaussian statistics, this can be done by

finding the MAP estimate.

C.2.1 Posterior Weight Estimation

The MAP estimate of the weights is found by taking the derivative of Ji(w) with respect to w,

and setting it to zero:

O1n(py, 1x*) L o 1
n gw Ixi/ _ Q) Hw — W) — 0'_3xk—1(zk - x{_lw) (C.31)
= 0= (Q;)“l(w—v“v;) —o’v_zxk_l[wk —Xf_l(w-—\if;) —x{_lﬁr;] (C.32)

Collecting (w — W} ) terms on the left hand side gives:
Qi)MW = W) + 0y P xp X (W = Wi ) = 07 2% [2r — X{_ W] (C.33)
or ((Q;)"1 + a;zxk_le_l)(w -Wy) = a;2xk_1[xk — x{_lxi/,:], (C.34)
and solving for w yields:
w=Wwg + ((Q7) " + xk_1072xT_ ) " xp_107 2 [z — xF_ Wi (C.35)
Letting Wy take the value of the solution, this can be rewritten in the more familiar form as:
Wi = Wy + KP (21 — xf_ Wy), (C.36)

where K} £ ((Qp)'+ xk_la;")‘x,{_l)-lxk_lav_z
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is the Kalman gain for weight estimation. Using the matrix inversion lemma as in Equations C.12-

C.18 allows K}’ to be written in the alternate form:

K} = Qpxp-1(xp_; Qp Xe—1 +02) 7" (C.37)

C.2.2 Posterior Covariance of Weights
The posterior covariance of the weights is
Qi = E[(w — wi)(w — W) T |[{z:}1]. (C.38)
Substituting the definition of W} in Equation C.36 gives:
Qi = El(w — Wy — K (zx — KL_, %)) (w — Wi — KY'(ze - 21, %;)) ] (C.39)
Multiplying out the quadratic produces:

Qi = E[(w — W) (w - %;)7]

~E[(w—wy ) (2 — %g_, Wy )] (KT (C.40)

—KY E[(z — %f_, Wi )(w — %)T]

+KV El(z — %, Wi ) zx — %, W) TI(KE)T
While the first term on the right hand side of Equation C.40 evaluates immediately to Qp,

evaluation of the second, third, and fourth terms in this last expression requires rewriting (zp —

T Wp) as:

AT oo =T I
(Th — X Wy ) = (Rpoy W+ vk) — Xy Wi

(C.41)
= iy (w - Wg) + v
Hence, the second term in Equation C.40 contains
E[(w — W) (zk — %;_1 W) 7] = E[(w — % ) (W = %) Rea] + E[(w — Wi Jug]
= Q;f(k—la (042)

where the cross-term vanished because the process noise vy is white, and is therefore uncorrelated
with (w — W, ). The third term in Equation C.40 is simply the transpose of the second. The fourth

term contains:
El(z — %5_, Wi )@k — %y W) T =%E_, E[(w — wi)(w — W) [Reos
+ %i_ E[(W — Wi Jux]

+ E[Uk (W - W;)T]ftk_l + E[’Ukvk]



247

where the cross-terms are again dropped to give:
=%7_ Qg %kg-1 + 02, (C.43)
Substituting the terms C.42 and C.43 into Equation C.40 yields:
Qe = Qi — Qi1 (KY)T — K&, Qp + K (X1 Qi %e1 + 03) (KF)” (C44)
which, using K} = Q %x—1(X}_, Q} %x~1 +02)71, gives:

Qi = Q — Qi xr—1(KP)T - K¥s{_,Q + Q &r—1(Kp)T
=Q; - Kyx{_,Q;
= (I-Kpyxi_,)Q;. (C.45)

This provides the posterior error covariance Qy as a linear function of the prior covariance Q.

The covariance can also be written another way by substituting the definition of K} to give:

Qi = (T — Q X—1 (X1 Qg &a—1 +02) 'R 1)Qy (C.46)
= Q; — Q#x—1 (X Qp Re—1 +02) 'R, Q; (C.47)
= Q) + im0y %), (C.48)

where the last step follows directly from the matrix inversion lemma. With this equation in place,

an alternative expression can now be obtained for the Kalman gain in Equation C.36:
sz = Qkik_la';z. (049)

This expression is not generally used in the Kalman weight filter, but it is useful for showing
the relationship between Kalman weight filtering and the modified Gauss-Newton optimization

technique.

C.2.3 Recursive Least Squares

As stated in Section 3.3, RLS can be viewed as a special case of the Kalman weight filter by

constraining the covariance of ug such that

Qi =A"1Qk-1. (C.50)
By defining;:
1o - A -
2 (5Q)7 = (50 (C.51)
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the weight measurement update Equations 3.60-3.62 from Formula 3.5:

K} = Qpxp-1(x{_1 Qy Xk—1 +07) ((3.60))
Wi =W, + KV (2 — xi_ W) ((3.61))
Qr = (I-Kyx{_)Q; ((362))
can be replaced by:
¥ ke (BT B ke + )T (C.52)
Wi = W1 + KV (z) — X5 Wi_y) (C.53)
DI N B 6 A i (C.54)

which is the RLS algorithm in its more efficient form. An equivalent form is obtained by substi-

tuting Equation C.52 into Equation C.54 to get:
B =T, - B ke (R B ke + ) TR 2) (C.55)

which, by the matrix inversion lemma (Formula C.1), is:

= A" NS FFe A% ) (C.56)

implying that
Bk = AMZpor + X1 AR ) (C.57)
=AZp g+ XX, (C.58)

This is the traditional form of the RLS update of the data covariance matrix. Rewriting Equa-
tion C.49 on the previous page as K}’ = 2;1)‘ck_1 allows the weight update in Equation C.53 to

be written as

Wi = (I - K¥&{_)We 1 + Ki'z; (C.59)
= (I - K% Wiy + Z7 %12k (C.60)
= ATNI - KRR ) S AD e We1 + B ez (C.61)

which, by Equation C.54 , is:

Wi = T AB ko1 Weo1 + Xp—1Zk) (C.62)

= B, (ABy_1 + Xk-12k), where [, £ Tpw,. (C.63)



However, it immediately follows that:

By =Zx 2 (AB g1 We—1 + Xk_12k)

Hence, the weights are given by:

and Equations 3.60-3.62 are equivalent to the RLS equations:

as promised.

=AY Wr—1 + Xp—1Tg

= ’\:Bk—l + Xg-1Tk-

. -1
Wi = Ek ﬂkﬂ

Y =AY + Xk_1X{__1

Br = ABi_1 + Xp—12k

Wi = Z; 6,
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(C.64)
(C.65)
(C.66)

(C.67)

(C.68)
(C.69)
(C.70)



Appendix D

The EKF Approximation

The preceding appendix shows derivations of the Kalman signal and weight filters under the as-
sumption of a linear state space system. In this appendix we consider the ramifications of ap-
plying Kalman filtering techniques to nonlinear systems. Because the nonlinearity of the signal
filters used in this thesis is limited to the time-update, the measurement-update of the EKF is
not addressed herein. The exact nature of the approximation made by the extended Kalman filter
(EKF) time-update is considered first; this is followed by an analysis of the potential severity of

this approximation.

D.1 Approximating the Expectation

Generating the prior mean X, ; and covariance P, | requires evaluating:

Xy = E[xk+1|{yt}'f,w] (D.1a)
= E[F(xx, W) + Bugy |{ne}f, w] (D.1b)
= E[F(xe, W) |[{z}1, w], (D.1)

where the conditional expectation of vy, is zero under the assumption that the process noise is
white. When the model is nonlinear, evaluation of this expectation is non-trivial. Recalling the

structure of the vector function F(-), gives:

E[f(xkyw)l{yt}llcaw]

. 1 0 00

Xpp1 = ) ] ) , (D.2)
0 . 0 :| Xk
0 0 1 0
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where % = E[x;|{y:}¥, w]. The EKF approximates the expectation of f(xz,w) using a Taylor

series expansion about Xg:

. Of e, w)” 1 8 f(k, .
o) = 5w + ZHE -0+ g0 - 50T S - o 09
and keeping only the first two terms:
Of e, w) T

f(xklw) ~ f(f(k,W) + (xk - ﬁk) (D4)

Ox

The conditional expectation of the second term is zero, so expectation of the truncated Taylor

series gives:
Kipq ~ F(&e, w). (D.5)

Approximate evaluation of P, requires writing the truncated Taylor series of the entire

vector function:

F(Xk) = F()A(k) + Ay - (Xk —_ JA(k) (D6)
where Ay is defined as:
af(xuw) T
Ix
F 1 0 00
Ay 2?2 S" W= (D.7)
X X=X} 0 0
0 0 1 0
The prior covariance Py, is defined as:
P;—}-l = E[(Xk+1 - )‘\(;_’_1)()(}04_1 - }AC;+1)T| {yt}llc,W] (DSa)
= E[(F(xx) + Buers — F(&e))(P(xx) + Bugy — F(&i)) [{me}5, w). (D.8)
Inserting the first order Taylor series approximation gives:
- . . . T
Pr, ~ E[(F(xk) + Ag(xk — %) — F(&x) + Brp ) (+) ‘{yt}f,w] (D.9a)
~ E[(Ak(xk — f{k) + B'Uk+1) (Ak(xk — ik) + B'Uk+1)T|{yt}lf, W] (ng)
~ Ay E[(xx — %x)(xe — %) |{y:}5, W] AT + BE[(ve+1)*[{y:}}, wIBT (D.9c)
~ APy AT + Bo2BT. (D.9)

Equations D.5 and D.9 form the time-update equations for the extended Kalman filter. The

measurement-update is the same as in the linear case, so the EKF is obtained merely by replacing
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the KF time-update equations (C.27 and C.28) with the following:

%7 = F(ke-1,W) (D.10)

P; = Ay Pi1AT | + Bo?BT, D.11
k k—1 v

as given in Formula 3.2 on page 51.

D.2 Severity of the EKF Approximation

This section investigates how close the EKF time-update approximations are to the true mean and
covariance. If, for a particular application, the errors in the approximations are on the same order
as the approximations themselves, then the EKF is of little practical use.

This concern can be addressed by considering the portion of the Taylor series that was disre-
garded during the truncation (i.e., the higher order terms). In particular, defining the remainder

term as!:

o 0] 81’ ~ .
rem = 2 %-—(—Jac%(xk —Xg)* (D.12)

allows the Taylor series can be rewritten as

af (%, w) T

f(xe, w) =f(Xe, W) + %

(xr — Xx) + rem. (D.13)

Hence, the error in the EKF estimate of the mean %, has magnitude E[rem|{y;}¥, w] (when
X;4 is a vector, the error is restricted to the first element). Ideally, this value could be determined

by seeing what the infinite series:

) ipra
E[rem|{y:}}, w] = Z %a(—g(g)f—)E[(xk — %) {ye} ¥, w] (D.14)

i=2
converges to. Of course, computing the central moments E[(x; — )”ck)i’{yt ¥, w| of x; requires
knowledge of the current conditional distribution, and is not generally tractable. However, assum-
ing that x; is a Gaussian random variable (so far, we are still treating the scalar case), the required
moments are easily computed. This Gaussianity assumption might only be valid for & = 0 (with

Gaussian prior, Xq), but is reasonable since the EKF propagates only the mean and covariance

of the distribution anyway. If we accept that the Gaussian assumption is central to the EKF,

i . . . . . .
1Of course (g—x% is a multidimension tensor in general, so this notation is incorrect unless x;, is a scalar (M = 1).

For the sake of simplicity, then, consider only the scalar case for the time being.
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the remaining question is: how well does EKF compute the mean and variance of a propagated
Gaussian random variable?
Unfortunately, the central moments of a Gaussian distribution increase without bound with
the order, . If o, is the (conditional) standard deviation of x;, then [32]:
: 0 alloddi> 1,
E[(xx — %&) [{y:}5. w] = . (D.15)
1-3-5--+(i—1)o,, alleveni>2
The rapid growth of the moments causes the sum in Equation D.14 to diverge, even for fairly
pedestrian choices of f(-). For example, consider the simple function f(z;) = tanh(z), which is a
reasonable choice since the neural networks considered in this thesis incorporate this nonlinearity.
The higher derivatives of tanh(z) also grow arbitrarily large, but when scaled by the inverse of

the factorial, give a convergent family of functions, as shown in Figure D.1. However, a plot of the

1 T 1 T T Ll T T
0.8 F B
os} ]
0.4 .
o2t S .
N LN B —
— e e —
-0.2f T -
-0.4F
-06F -
-08r
_1 1 i 1 1 1 1 1
-2 -15 ~1 -0.5 0 0.5 1 1.5 2
X
Figure D.1: The scaled derivatives of f(z) = tanh(z) appearing in the Taylor series: %((*T,‘il.

maximum value of each of these scaled derivatives as a function of the order 7 can be compared
with a plot of the Gaussian central moments (see Figure D.2) to see that the series will always
diverge after some value of i. Smaller values of o2, only increase the value of i after which the
terms in Equation D.12 begin increasing without bound.

The problem of diverging moments can be circumvented by writing what is called the “Taylor

series with a remainder term:”

8f (xi,w) T
ox

. 7O flax, + (1 — a)kg, w)

f(xp, W) = f(Xp, W) + (Xk~ik)+%(xk—xk) Ox)? (Xg — %),

(D.16)
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Figure D.2: The even Gaussian moments for 02, = .15 (circles), compared with the scaled derivatives
of tanh (*). For any value of g2, the moments will eventually grow faster than the scaled derivatives
shrink.

where « is unspecified. The infinite sum has been replaced by a finite sum by redefining the

remainder as:
rem = (xi — &) " G(xk, W) (xx — X&), (D.17)

where

_ 18 flaxk + (1 ~ o)k, W)

G(xk,w) =3 (8)()2 (D.18)

D.2.1 Error in the Mean

Note that we are now returning to the more general case where x; is a vector. Generally, the
expectation of the remainder cannot be computed in this form (and we have just seen the difficulties
encountered when using the standard Taylor series expansion). However, an upper bound can be
computed for E[rem], as follows. First, define d £ (% — %), and let d¥) and GU™ denote

individual elements of d and G, respectively. Then the remainder term is:

rem =Y _ GU™d0)dm) (D.19a)
jm

= Zremj,m, where rem,; ,, = GYU™d0 g0, (D.19)
im

Therefore (suppressing the conditioning arguments of the expectation from the notation):

Efrem] = ZE[remj,m] (D.20)



255

Taking each term separately,

E[rem; ] = B[GU™ W) d(™)] (D.21a)
= E[GY™)]. E[dDd™] +< - 06 - 04, (D.21b)

where ¢ is the correlation coefficient, and ¢g and ogq are the standard deviations of GU™) and

d9d(™) | respectively. Note that E[d7)d{™] = PU™) so:

E[rem; ] = E[GU™]. PG™ 4 ¢.gg. \/ E[(dmd(m - E[dmd(m)])?] (D.21c)
= E[GU™)].pUm) 4 ¢. g0 \/ E[(d)2(dm)2] - E[dW)dm)]? (D.21d)
— E[G(J”"‘)] PUM 4 ¢.og - \/E[(d(j))z(d(mw] ~ (Pm))2 (D.21)

Generally, the terms E[GU"™)] and o are not computable, and the correlation coefficient is un-

known. However, the bounds:
E[GU"™)] < max|GU™)|, oc < 2max|GY™|, and ¢<1 (D.22)

can be employed to bound the expected remainder as:

Efrem] <Y max |GG . (PU'm) + 2\/E [(d))2(dm))2] — (P(i»m))2). (D.23)

This gives an upper bound on the error in the EKF approximation to X, ,, in terms of the second
derivatives of f(-), and a combination of the second and fourth central moments of xj, assuming
Xy is Gaussian. The inequality is somewhat easier to interpret when x;, is a scalar with conditional
variance cr . In this case:
16% f(xx,
Elrem] < max 5 %—I : (agk +2+/304[z] — 0 [xk]) (D.24a)

Elrem] < —;—max‘a faxg;w)‘ (1+2v2)0? (D.24)

For the particular choice f(-) = tanh(-), the bound can be computed to be around 1.47- 02 . The

value of f(Xg) is between -1 and 1, so agk = .01 will produce an error of at least 1.5%.

D.2.2 Error in the Covariance

A bound on the error in the EKF estimate of the covariance P, can also be determined by
analysis of the Taylor series remainder. Because in the time-series case the nonlinearity appears

only in the first element of F(x;, w), the error is restricted to the top left corner of the covariance:
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(P;,1)®%. Substituting the Taylor series with remainder into Equation D.8 (instead of the

truncated series) gives:

Py, = E[(F(f{k) + Brem + Bugy1 + Ag(xx — %i) — F(%z) — BE[rem])( - )T] (D.25a)
= E[(B(rem — E[rem]) + Ax(xx — %) + Bog) (- )T] (D.25b)
= ApB[(xk — %i)(xk — %1)T]AT + BE[(rem — E[rem])?|BT (D.250)
+ BE[(vk+1)2]BT
= AP, AT + Bo2B7 + B(E[(rem)?] - E[rem]?)B7, (D.25)

where we continue to suppress the conditioning arguments of the expectations for more compact
notation. Hence, the error in the EKF covariance update is B(E[(rem)?] — (E[rem])?)BT. As
before, the expectations cannot be computed in general, so an upper bound on the error is sought.
The maximum of a difference between two positive numbers is greater than the difference of the
two maxima, so the desired bound on the error must be found as the maximum of the first term
alone.

Starting with the component-wise definition of rem given in Equation D.19, an expression for

rem? is obtained:

rem? = Z G M) Gn.o) gli) glm) g(r) glo) (D.26a)
i,m,n,0
= Z rem?,m,n,o, where remimyn’o = QU™ gl dim) glm glo) gimo) (D.26)
ij.m
Therefore:
E[rem?] = Z E[rem?,, . o] (D.27)
j,m,n,o

Following the approach used for the mean, an upper bound for the individual terms is found to

yield the overall bound on the error in the top left element of the covariance:

Ef[rem?] < Z max [(G(j’m))z]

Jym,n,0

( E[d9) dm™ g go)] + 2\/ E[(dWdmdmdle))?] — E[dw)d(m)d(n)d(o)]?),
(D.28)

which is a function of the second derivatives of f(-), and the fourth and eighth central moments of

xi. Like the bound on the error in the mean, this expression simplifies considerably in the scalar
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case:
1 02 f Xk, w)\ 2
2 z Z A\ T . 4 8 _ Qg8
E[rem?®] < 7 max [( @x)? ) ] (30;, +24/10508, — 958, ) (D.29a)
1 0% f (%, W) \? 4
g[S ) | raviet, (029
This gives a bound of around (3.35- 03 ) for f(-) = tanh(-). For 02, = .01 the bound on the error

is around 0.03%.

D.2.3 Conclusions

The EKF uses an approximate (and therefore suboptimal) method of calculating the mean and
covariance of a Gaussian random variable passed through a nonlinear map. The errors in the mean
and covariance are likely to accumulate to some degree over multiple time-steps, and the state will
become increasingly non-Gaussian. However, the measurement update of the EKF has the effect
of reducing the error in the mean, and shrinking the covariance, so the errors will not generally
increase indefinitely. By exploring the errors made at each time-step, this appendix provides a
first step towards the broader problem of understanding the effects of the EKF approximation as

a recursive function of time. The following general conclusions can be drawn:

1. The error in the mean will be large if the state covariance is on the same scale as the
nonlinearity. Hence, problems are more likely to arise when the state covariance is large; t.e.,

when the measurement noise and process noise have high variance.

2. The error in the covariance will also depend on the scale of the nonlinearity with respect to
the statistics of the state. However, Equation D.25 indicates that an adjustment to o2 can
potentially be used to compensate for this error. Therefore, estimating o2 along with the

state can sometimes produce better state estimates than when the true variance o2 is used.

The bounds in this appendix can help in determining when signal estimates might be sig-
nificantly improved with a more expensive algorithm, such as a higher-order Kalman filter (in-
corporating additional Taylor series terms) [53], unscented Kalman filter [35], or particle filter

[15].



Appendix E

Observed-Error Derivatives

The observed-error form of the weight filter, discussed in Section 3.3.2 on page 62, is based on
the idea of approximating the gradient and Hessian of a cost function by choosing an appropriate
form for the measurement equation in the state-space representation of the weights. This allows a
Kalman weight filter to be used as an efficient, sequential modified-Newton algorithm.

A variety of cost functions can be minimized by altering the form of the observed-error vector,
¢x; the appropriate form for the prediction error cost is shown on page 63. This appendix shows
how the choices for the observed-error and its first derivative (appearing in Section 3.5 on page 70)

approximate the gradient and Hessian of the other four costs discussed in this thesis.

E.1 Joint Cost (Direct Substitution)

Minimizing the joint cost function with the observed-error form of the dual EKF requires defining

the instantaneous cost as:

_ a2 f A2
Ji = log(2na?) + (yk—fi + log(2ra?) + (mk—:kl (E.1)
Jn O"U
e N
= log(2mo?) + ;’g +log(27a?) + 0—’; (E.2)
n v
where e £ (yx — &) and Fp 2 (Zr — &1 ).
E.1.1 Weight Estimation
The gradient of J; with respect to the weights is given by:
2e 2%k =
NoJi = —é’i%ek + 2k My Zk (E.3)
Gn UU
and the Hessian is:
2 2 T 2z =T
Nody = ;L,—Vvek%ek + ;%mk%xk + 0(2) (E4)
n v
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where 0(2) represents the terms with second-order derivatives with respect to w. Such terms will
necessarily be neglected by a first-order approximation to the Hessian. As suggested on page 73,

the gradient and Hessian can be approximated by defining the observed-error measurement as:

-1 19T
¢ . R . a (7

= " _ with negative gradient Hyp=— | K } (E.5)
o1z o7 N

so that ef'e; = Ji, as required. Furthermore, letting o2 = %I,

- o, 'e
szo:%k =-2 [0 V%er o, k] | " ~k (E.6)
Uv_l.'ik
=V J, (E.7)
gives the negative instantaneous gradient. A first-order approximation to the instantaneous Hessian
is given by:

~ 0';1 WTek
HY 07 Ho, =2 [0 Yer 0, Ny - e (E.8)

0, N k]

= =T

= 202N er el + 20,2 a VT (E.9)
~ k. (E.10)

E.1.2 Variance Estimation

The gradient of Ji with respect to the variance of either the measurement or process noise is given
by:
OJ _ 100, [Rexes et Oon)
do? o2 Qo? a2 do?  (02)? Bo?
1 802 [2:§k Oy fc: 80,2,]

+ _— —_— e — —_—
o2 fo? 02 90?2  (0%)? 9a?

(E.11)

and the second derivative is:

3%J, 1 (%)2 %(3&)2‘ dey, (Bek 60721)_’_(26% (802)2]

(852)2 ~  (02)? (02)2 \ 802 o2 02)3\ 952

o (LB) (2 (G - o (Gl B (A

~ (02)2\80? 802/ T (02)? \Bo?

+
Q

or, equivalently:

82J, z((2e§ 1)2)(%)2+%(3ﬂ)2~ 4ey (Bek aag)

(802)2 023 (02 (62)2 \ 852 o2

(2§i B 1 )(803)2+1(3_3§£)2 4% ((95:;c 303)_;_0(2).

(@3 (03)*/ \6o? do? do?

(E.12)
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The observed-error vector is defined as:

- - - 1

L 1 (£n)" 7 8o2 ]
(ln)7 T2 o2 Ba%
0’_16k 1 Be + e da’
o ~ ;) % 2 .23725 3 )
P , sothat H,,= | 7%  2e)®@ %] (E.13)
1] % ! 1 (&))" 2 do
( v) T2 o2 805
~1% 1 8dy R 9o
[T Tk 7o 00t T 3(o2) 37 Bt

Letting 02 = 31, the exact negative gradient is given by HZ,0:2¢;. However, the first-order

component of the second derivative is merely approximated by:

HTkaszz)é—)(g%) ;(%‘)—5—3(373%) 2_(0_)3(_3_3_)

et (603)2 z(a%k)z’_(zi(aékaog% %i (6‘03)2’

* 2022 \a02) T 2\802) T (027 \802 802/ T 2(02) \ B0
or, gathering like terms:

+(%51_+i)(g)2+z(a§:k)2_ﬁ(aikaag).

02)2 " 2(a2)3 02 \do? (62)2 \ 80?2 da?

Comparing this expression to the one in Equation E.12 shows that the third and sixth coefficients

(E.14)

are off by a factor of % Although this cannot be remedied, the second derivative is most closely

approximated by matching the first and fourth coefficients:

(2(420;311)2 + 2(;%21)3) = ((32%3 - (0;1)2) ‘ (E.15)
and (2(6531)2 + z(ig)s) - ((i?)cs - (Ué)z)- (E.16)

These equalities are satisfied so long as £, and £, are redefined as the time-varying quantities:
oy, = log(ay - 2m02) Oy i = log(yk - 2102), (E.17)

and oy and vy, are chosen to satisfied the conditions:
2 2
a
2 __ 9.2 v,k =2
de; — 202 3%, — 202

a

bnk (E.18)

for all time k. As described on page 76, this redefinition is equivalent to adding the offset log(ay) +
log (k) to the cost J.

E.1.83 Colored Noise

When the measurement noise ny is colored, the observed-error forms are the same as for the white
noise case, except with the noise error, Aiy = (fig — 7o, ), replacing ex, = (yx — &%), and colored noise

innovations variance, o2 , replacing o3.
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E.2 Joint Cost (Error Coupled)

Sequential minimization of J(w) requires yet another form of the observed-error weight filter.
Here the instantaneous error is:
2 (5 k)z

. e
Ji = log(2mol ) + U—Qk— + log(2mgs) + P (E.19)

€k

E.2.1 Weight Estimation

The gradient of J; with respect to the weights is:

1 e 2ex
Yol — —E-RQ,02 + =Vex
o, % (o2) T o,
-2 -
1 z 2F <
+ =Ygk = gk + N
Gk (gx) gk

Voodk =

(E.20)

and the Hessian is given by the unwieldy expression:

1 2e? 2e
27 _ _ 2 T .2 k 2 oT,.2 _ k 2 T
Wk =~ )2%"7% e, + (02 T W 0e, Mo O, 23z Vo0, N €k
€k Uek Uek
2€k 2
T 2 T
~ L) NwverNy o, + > YverMyey
€k €
2%, 2

o1 T, 2% 28 T
(9¢)? gk S 91 + (9x)? Yordh Ko 9 (gk)zmgk% o
2% . 2 _ . -
- ﬁwkwgk + g—kwkmf +0(2).

) (E.21)

Combining terms where possible gives:

27 _f “€ 1 2 oT 2
%Jk _((O'zk)B (O'g )Q)anek O'ek
2
- —ek——(mafk VNTek + Nvek Tafk) +

(02,)?

=2
2z 1
(G ~ ) "W e

2z . : 20z oz
G (oW o+ Ra W) + ~ BV +o(2)

26% 1
[

2
o

VverNwer

2
€k

(E.22)

As before 0(2) is used to represent the terms containing second derivatives with respect to w.

The gradient and Hessian of J are approximated by defining the observed-error term and its
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negative gradient as:

1 -
} - )%
(o)t [ pleTigri
3 €k
o= te _L%Tek_f_ eg %TOE
¢ = o Ii , and Ho,k = ek 3(§3k)(3/2) * 3 (E'23)
(€gx)% —1lar) 2 gT(g,)
(-1/2)% = 3
9k Tk —gwliy%%k + jebT)VVTgk
L gy o i

where £ = log(2nc? ) and £y x = log(27gy). This satisfies el e = Ji, and Hg’kar'zek = - Ji
gives the negative gradient as expressed in Equation E.20.

The Hessian is approximated by:

1
HTkU Hok m%gek%&ra’
2
ek T T €
7 (Qv o), Nwer + Nuer Uzk) + 0 £ E Yol Vo2,
e ) Ten (E.24)
+37 AL Vg gk + mG% x
- 2
z = =
- (gkk)2 (%gk%Txk + vak‘szgk) 2( )3 W".g'kqv Gk,
or by rearranging the terms:
-1
HT o; 2H ( e% + fe,k )Vv 2 T _2
& 0,k = 2(02 )3 202, )? Tes Yov Ty
€k
- (02 B (VVU e + Vel o? ) + —V.,ek%, e
i - Tes (E.25)
T
( k4 )vakqugk

(g )2 (vak% Ty + ankVNTgk) + Vnmk% Zr.

Comparing Equations E.22 and E.25 shows that HZ w0+ *H,  approximates the first-order part of
the Hessian best when the coefficients of the first and fourth terms are matched (the coefficients of
the second and fifth terms are unalterably off by a factor of %) This is accomplished by redefining

£, ) and £, as the time-varying quantities:

Lo 1 = log(og -27r03k) £y =log(ye - 2mge) (E.26)

where aj, and 7y are chosen for each k such that:

2
Oey g
ee k= =

= Ju =9 E.27
* T 3el - 202, 9.k 52 (E.27)

as required.
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E.2.2 Variance Estimation

The gradient of the error-coupled joint cost with respect to either of the noise variances is given

by:

aJ, 1 82, e 00l 2y Oey

W:E&;z T {02)2 802 ' o2 Bo?
) (e o (E.28)

100 _ B Oge 200k
0907 @007 g 007

and the Hessian is given by the unwieldy expression:

& 1 (aagk)2+ 2¢2 (303k)2_ e, (8azk§e_k)
(802)2 (0% )2\ do? (02.)%\ Bo? (02,)2\ 052 002
2(:‘k 6ek BoZk 2 at?k 2
- (agk)z(ﬁ 602)+03k (7)
2 o S o0 83 (E.29)
1 (09s\?, 28 (Oge\? _ 2B (Ogi Ok
o) G (6) ~ (or (a2
2551: 8.’i'k 8gk 2 8:§k 2
@7 Govaas) * 5 (Go8)  +o@:
Combining terms where possible gives:
82J, _( 2el 1 )(Bagky“ dey (503k£3_e_k)+_2_(%)2
(802)2 "~ \(02 )3  (02,)%/\ Bo? (02,)2\ 8o Oo? o2 \0o? (E30)

z2 3 3 z
(o~ o) G - G i)+ 2 G o0

As before, 0(2) is used to represent the terms containing second derivatives with respect to o.

These derivatives are provided by the Kalman variance filter by defining the observed-error ¢,

the same as ¢; in Equation E.23, and computing ITIO‘,c as:

de
1.8 8o
0, = | 7 pex + 2(g3£)f372'5 Bt (E.31)
o, - _ - .
__21_ (fg,;ck) 3ng

1 93 Ty g
7 568 t 5077 502
95 8 -

¢ %&. Similar to the weight estimation form, the

; 2 .1 i 17 52
Defining o7 = 3I as before gives H; ;0. %¢, = —

second derivative is approximated by:
.. . 2 T Bo2 \2 2ex (002 Be 2 s0ex\?
T -2 _ ek ek € _ k €k l L _f_

Ho ko7 "Hoy _(2(a§k)3 + 2(U§k)2) ( do? ) (02.)2 ( do? 602) + o2, (802)

%2 -1 P P x

T ¢ 89k \? 2%, ;Ogr OF 2 0%, \2

Be Lok \(Ogx\? _ 28k (Ogx Bdxy 2 (0dk

* (2(gk)3 + 2(gk)2) (302) (9%)? ((902 802) + gk (802) )

(E.32)
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Again, the coefficients of the second and fourth terms differ by a factor of % from the coefficients
in the expression for the true second derivative in Equation E.30. However, the first and fourth
coeflicients can be made to match by forcing the identities:

o? g
bep = s—2s  lgp=—7—— , (E.33)
T8 -202, T 33 gy

as before.

E.2.3 Colored Noise

As with J?w, the colored noise forms of the observed-error for J¢°w are very similar to the white

noise case. Again, fix = (ix — 71 ), replaces eg; the variance of ey is replaced by the variance of

Ag: Gnk-

E.3 Maximum-Likelihood Cost Function

The instantaneous cost for maximum-likelihood estimation is

_ a2
Ji = log(2mo2 ) + @k(ﬁ# (E.34)
€2 :
= log(2mo? ) + Ezi (E.35)
€k

where &, = (yx — 2} ).

E.3.1 Weight Estimation

The gradient of J; with respect to the weights is:

2
°k ek (E.36)
Uak

1 2 E%c 2
N dk = Vw0, — 73 7 W0, +

Ek ( 33

The Hessian is given by:

1 2¢2 2e
AVl —?Vva?k V,,Tafk +— A 3 Vua?k %Tafk - * 5 Vvafk ey,
Usk) (ng (UEk (E 37)
2e 2 )
- —kQVkaVNTU?k + 5 Y%wer Vel +0(2),
(ng) Uek
2} 1 2 oT 2
N Tk = ((02 B (o2 )2)%’(’@ Ter
2er. " 2 (E.38)
- : 3 (chr?k VWer + Vek Taszk) + TWekWEkT +0(2).
(CTE)c 05k
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These quantities are approximated by letting

)t ot o
N/ L) ST,
e & f"“ . giving Hox= | T2 7% t (E.39)
Tey Ek T W ekt 2(ggj)(3/_2) Ny 96,
and letting o2 = ;1. This gives ﬁg:ka; 2%, = —VJ as desired. Meanwhile,
HT o~2H. . = 1 2 oT, 2 2 T
ok0r ok = 5?—23%05,:% 0., + 5 %er iy €x
Eyk(gek) ask (E 40)
9 .
€k T 2 T 2 €% 2 T .2
") (Vy o;, Mwer + M ng) + 202 )3%0& ol
& k
or by rearranging the terms:
T -2 £ ée_,lc 2 oT, .2
HEwor ok = (3055 + g0 ye) ok Wt
L R ) (E.41)
€
- (0—2'“—)-2— (%oﬁk Ve + VyskaTogk) + p Yer Ve
€k Ek

Comparing Equations E.38 and E.41 shows that H'f +0. H,  approximates the first-order part of
the Hessian best when the coefficients of the first and third terms are matched (the coefficients of
the second term is unalterably off by a factor of %) This is accomplished by redefining £, ;, with

the time-varying quantity:
be. = log(ay - 2107, (E42)

where oy is chosen for each & such that:

a2

— €k
e = e (E.43)

E.3.2 Variance Estimation

The derivative of J; with respect to the noise variances is:

0Je _ 1 007, & Qo7  2ey ek (E.44)
do? o2 002 (02)% 802 o2 002 '
The Hessian is given by:
FPa 1 (aogk)2 2e3 (6a§k)2_ 2 (&ng %)
@077 = (02 )E\Bo2/ T (02)5\ B0/ ~ (02.)2\ Bo? Bo?
o* . . (E.45)
L e Do Don, | 2 (Oeky?
(02,)? 8o% Bo? 0% \Oo?
82 Jy 2 1 da? 2 dey, 1002, Oey 2 sO0ep\2
0027 = ((agk)s - (agk)2)( 50r) AR (Tor5es) * ET(W) (E.46)



266

These quantities are approximated by letting

1 (¢ W)~ % 802

f A
a2 [V 8 giving Hox = N (E4T)
05, €k ‘aik o7 2(agz)1372i 3ot
and letting 02 = 1I. This gives HY ,072¢; = —Z as desired. Meanwhile,
1 802 \2 2 /0ep\2 2¢, 002 Oey g2 do? 2
T -2 _ k
H; o, "Hok = 22(85;)+ 2(—2)" 2235‘;—2+ 23( Ezk>
2. (02) o 02 \do (02,)? O0* 0o 2(02,)*\ 0o
(E.48)
or by rearranging the terms:
2 Gk \(002\? 26 Bex 002 2 /0ex)?
T -2 €k £,k k Ek Oty O0g, k
H. .= - ek 2 (e E.49
Ho ko7 "Hoyk (2(0§k)3 + 2(0§k)2)(802) (62)2 002 Bo? ' o2, (302) (E-49)

Comparing Equations E.45 and E.49 shows that HZ:,CU; 2H, , approximates the first-order part of
the Hessian best when the coefficients of the first and third terms are matched (the coefficients of
the second and fifth terms are unalterably off by a factor of %) As with weight estimation, this is

accomplished with Equation E.43.

E.4 EM Cost Function

The sequential EM cost is derived in Appendix F to be:
N A \2
_ 2 2 2 2 (Yr — x)* + Prjr
J*™ = Nlog(2n“s7) + Nlog(2n“o;) + E ( P

i : k=1 (E.50)
+ (531: - "L'k|lc)2 + Prik — 2pk|k +p1:|k)

2
0y

where only the predictions :f:;l . and covariances pLI x and Py Can be considered functions of the

weights.

E.4.1 Weight Estimation

The gradient of the instantaneous cost Ji with respect to the weights is:

2241 M Erlk — 2% L, + SwPi
k =

— , (E.51)

and the Hessian is given by:

PAVACHTPA vA - 2V3PL.,C + prk_“c + 28 2T k(1
o2 '

N2Jy = (E.52)
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These quantities are approximated by letting

013, FIRAVAH
er = a,jﬂ/——?p}dk , giving Hg = — f,v%‘z"p;‘qk (E.53)
o;! \/ﬁ m%m—“@
Using 02 = 11 gives HT 072, = -\, J; as desired, and
HZ:kO';2Ho,k = % (QVVJZIICMVVT%WC - WPLM*V»/TPLM + vvp;|k_VVTp;|k).
by Prjk Dk

The first term is the first-order part of the Hessian in Equation E.52. The last two terms can be
dropped by simply letting Prx = p}cl % approach oo (use a very large number) in the definitions of
er and H, x above. The effect of this redefinition cancels out of the gradient computation, and

gives the desired approximation to the Hessian.

E.4.2 Variance Estimation

The derivative of J; with respect to either of the variances is:

oy 1 numy,

=5 = = — 55 E.
do2 ~ o2 (0?)2 (E.54)
and the second derivative is:
82Jk 1 2numk 9
= - + , E.
@77 = @ T @ (5:53)
where numy is the appropriate numerator term:
(yx — 1) + Prjk when 0% = o2,
numy, £ ! " (E.56)
(Zg —afc,:“c)2 + Drjk —21);‘0“c + Py, when 0% =gl
These quantities are approximated by letting
7 . 1
G 2 Vo , with derivative H,; = — z”jw;f; (E.57)
o1 rumy —5‘%.
Letting o2 = 11 gives ﬁg:kor‘zEk = —~%Ji as desired. Meanwhile,
9 . 1 num
T -2 k
H,, = E.
H; 0, "Hok 204 (02)2 + 2(02)3> (E.58)
Forcing £ = —2 gives the exact second derivative, scaled by a factor of {. This scaling factor is

easily fixed by using %Ek and 2H, i in the variance filter.
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E.4.3 Colored Noise
For colored measurement noise, the sequential EM cost is:

J™ = Nlog(2n02) + Nlog(27r20'3,.)

N (Zx — i"k—|k)2 + Pk — 2p;fc|k +pk_|k (P — ﬁak)z + Pnklk — 21):1‘16“@ +p7—1-,k|k
> : + ; :
k=1 Ty Ov"
(E.59)
However, the derivatives for the weight and variance filters are computed exactly as in the white

noise case, with the exception that the numerator term num; is now defined as

numsg 2 (ﬁk - ﬁ;:[k)z +pn,klk - ijz,klk +p’r-;,k(k (E60)

2 _ 2

when o o



Appendix F

EM Cost Function

The expectation-maximization (EM) algorithm is useful in many different settings. This appendix
derives the EM cost function in the context of the dual estimation problem. The off-line problem
is considered here, wherein all data up to time N is available. The development for the linear
white noise case closely follows that given by Shumway and Stoffer in [76], but is restricted to

one-dimensional measurements, y.

F.1 Batch EM

The expectation-maximization cost function is given in Equation 2.55 on page 37 as:

gem Ex|Yw[N10g(47T2 202 +Z(<y’°"”“)2 (“’m’“) ) ‘{yt}l, ]

n

From here forward the conditioning arguments in the expectation are implied, but not shown.

Moving the expectation inside the sum and expanding the quadratics gives:

b

2 i — 2zpzg + ()’
J™ = Nlog(4n2020? +ZE[y" ykz’“+m’“+x’° z’“’z’; (m’“)}

= Nlog(4r2c 2 2 +Z(yk kaE[xk]+E[ ]+E[a:i]—2E[$,;:1;;]+E[(z;)2]>. (F.1)

Furthermore, defining

&un 2 Elzel{y)}], W], (F.2)
&yn 2 Elzy Hye Y, Wl ~ f(Er-1INy - Tk-MIN, W), (F.3)
P = var(zy] = Blzi{ye ), W] - 25y (F.4)
Py = varlzy {y ), W] = E[(z7)*{ye )Y, W] = (@gn)” (F.5)
phyn & varfer, i {ye Y, W) = Blzery [{ye )Y, W] — dunigy (F.6)
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allows the cost to be rewritten as:

Yi — 2ypdg N + $k|N + Dr|N
0—2
n

J™ = Nlog(4n 0202)+Z(
(F.7

. $k|N + Pr|N — 2ERNT N 2PL|N + (53,:|N)2 +p,:|N)

2
0y

- - 2p! v +pp
25242) Yk fck|N +Pk|N (kv f’31c|1v) T PrIN ~ 4PN T PyN
= Nlog(dnoios) + E ( 3

n (25
(F.8)
Note that i'k|N = C)A(k“\/, and PN = CPk|NCT.
F.1.1 Linear Case
Furthermore, if the model is linear, then :f:;l N= WT)“ck_H N, and:

i = Ellax — &) (@ — 35){ye}7 W] (F.9a)
= E[(zx — &)W xp-1 — W Reo1)[{w1}7, W] (F.9b)
= CE[(xx — %¢)(xk-1 — %e1) T [{ye} Y, W] - w7 (F.9¢)
= C(P{iy)w, (F.9)

Pan = Ellzy — &) {u ', W] (F.10a)
= E[(WwTxp-1 — wT k1)’ Hue 3, %] (F.10b)
=w' - Bl(xk-1 — %x-1)"{ge}1, W] - w (F.10c)
= WT(Pk_llN)W- (F.10)

The quantities X n, Xp—1in, Prin, Pro1n, Pfl » can all be generated from the current weight
estimates w by a Kalman smoother [68], modified slightly as in [76] to produce P?ft ~+ These values
are no longer interpreted as functions of the unknown parameters w, o2, and ¢2. In fact, of all
the terms in the cost function, only z;l N Py and pk| n are functions of w. The weights can
therefore be estimated by minimizing

N (&g — B )2 = 204 + Dy
_ N kN T PeN
T (w) = ?—1:( - ) (F.11)

Similarly, all the terms in the numerator in Equation 2.55 are dependent on the previous
variance estimates, 2 and 62, rather than on the variance being estimated. Hence, o2 is estimated

using the partial cost:

~ ~— ‘t —
Tein — T n) TN — 204N D
(24| BN ! | N k(N)’ (F.12)

a;

N
J™(02) = N log(2no2) + Z(
k=1
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while the portion relevant to estimating o2 is

N
Jem(a,zl) = Nlog(27ra + Z ((yk — zklN) +pk|N). (F.13)
k=1

Closed form solutions for w, 2, and o2 are derived as in [76] by setting the gradients of the

costs to zero. For weight estimation, this gives:

X, ( ~2e-un @iy — W Rey) — 2(Pk )TCT + 2(Py_y )W
— |N IV
0= Z( = ) (F.14).
k=1 v
N N
B (ik‘”Ni’{‘”NW + (Pk—llN)w) -2 (*k—lfokIN + (Pk#lN)TCT) . (F.15)
k=1 k=1
Solving for w gives:
N -1 N
s {Z (ik‘l'Nig’”N " (P’“-”N)) } 2 (ik—llwiﬂw + (Py) )CT (F.16)
k=1 k=1

Similarly, the process noise variance can be estimated by taking the derivative of the cost

Je™(a2) with respect to o2, and setting it to zero:

N i (kN — 53,:|N)2 + PN — 2PZ|N + PN

0=—- F.17
% S (02)2 (F-17)
= 02 =~ Z( TgN — :cklN) + PrN — 2pk|N +pkN> (F.18)

The measurement noise variance can be estimated by setting the derivative of its cost with respect

to o2 to zero:

_N Y (yx ~ Exin)? + PN
V= ,;( ) (F.19)
0'2 = NZ( k_zkIN +pk|N) (FQO)

Equations F.16, F.18, and F.20 are known as the M-step of the algorithm. The new estimates of
the parameters are then used in the Kalman smoother (or E-step), which is followed by another

M-step, and so on.

F.1.2 Nonlinear Case

As mentioned in Chapter 3, nonlinear systems require a generalized M-step!, and the E-step is

often performed with an extended Kalman smoother (EKS). In this case, the prediction term

IThe variance estimation can still be performed in closed form.
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of Equation F.3 is approximated as a‘c;‘N = f(Xgn,w), and the variances PrN and p};lN are

approximated as

Prn = El(zi — ) {we 31, w] (F.21a)
= E[(f(xk-1, W) — f(&-1,W))*|{y:}7, W] (F.21b)
~ N f - El(xko1 — Re-1) e}, W] - NS (F.21c)
= CAxn(Pr-1n)A{NCT (F.21)

where the covariance P,y is itself approximated by the EKS. The transition matrix Agn is

found by linearizing f(-) at X;_,5. Similarly, the cross-variance p}cl ~ s approximated as:

Pin = Elex — 2)(z; — 20 {ue}t, w] (F.22a)
= El(zr — &) (f(Xk—1, W) — f(Re—1, W) {we }§, W] (F.22b)
~ CE[(xg — &) (xk—1 — %e—1) T [{we}}, W] - &S (F.22¢)
= C(P})A{NCT, (F.22)

where the covariance P,#f is approximated by a modified EKS.

F.2 Colored Noise EM Cost

As given in Equation 2.58 on page 37, the colored-noise EM cost is:

N

2
JEmw) = Exggiyp |3 logtarod) + IS

pot %
ng —n; )2 )
+log(zra ) + L) | .

Un
As before, the conditioning arguments are suppressed for brevity 'in the following development.

Moving the expectation inside the sum and expanding the quadratic terms gives:

2 Y
J™(w) = N log(4n%0%0? +ZE[‘”’° "’”k * (=)

(F.23)
ni — Qﬂknk + (nk_)z]
o2 '
N
Elz] — 2E]| E
= Nlog(4n?cio? ) + Z( [zi] m’::;k k]t El(z; )]
= (F.24)

E[nk] — 2E[ngn; | + E[(n, )2])

0-2
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Using the definitions:

kv £ Elnglw, wa, {y:}1]

Ay 2 Elng ¥, wa, (g ] = wiee
Pn,k|N £ var[ng|W, w,, {y:}Y] = E[ni|{y.}Y, W, wy] - ﬁilN
Ppin 2 varlng [W,wa, (] = BI7 )2 {uedd, %, wal — (g )?
pL,k|N £ varlngng W, wo, {y:}Y] = Elneng [{y: )Y, W, wn] — kN T

and the corresponding terms defined for the signal z, in Equations F.2-F.6, allows the cost to be

written as:

Jem(w,02,0% ) =N log(dn®a2a?,

+ i ((i'k[N - 93",:|N)2 + PriN — QPLW + Pyin
2 2
P o2 (F.25)

+ (ﬁ'k|N - ﬁ;|N)2 + PrkIN — 2p;rl’k|N +pr_1,k|N
o2 '
For linear models, the closed form solutions for w and ¢2 that minimize this cost are the same
as given in Equations F.16 and F.18; for nonlinear models, the generalized M-step for w is also
unchanged. Meanwhile, the variance of the process noise driving the colored measurement noise is
found as:
1 N
~2 ~ A 32 —
%% = N Z ((”klN - nk[N) + PnkIN — 2p;tz,k)N +pn,k)N>‘ (F.26)
k=1
The noise model is assumed linear, so ﬁl:l N = wfﬁk_u ~- Furthermore, note that p, yn =

CPn,k|NCT, where P, v = cou[x|{y:}¥, W, w,] and:

Phn = Ellne =) (g = 2 {ge 1, W, wal (F.27a)
= E[(ng — ag)(wingy = whae_ 1) [{y:}7, W, wy] (F.27b)
= CE[(ng — ) (mp—y — A1) T {ye Y, W, wa] - W) (F.27¢)
= C(P¥, N)Wn, (F.27)

P = Ellng — 20 Hye} %, wa (F.28a)
= E[(wing_1 — witie1)*{y }' s W, W] (F.28b)
=wl Bl(ng—1 — fg-1){m: }Y, W, wn] - wa (F.28c)

=WE(Ppk1|N)Wn. (F.28)
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The quantities fiz_1n, Prnsn, Pni—1)N; Pf kN Can all be generated from the current weight
estimates w and w,, by a Kalman smoother, modified to accomodate colored noise, and to produce

#
Pn,klN'



Appendix G

Errors-in-Variables

Errors-in-variables (EIV) models are sometimes used to handle regression problems wherein the
regressors are measured with error [75]. Because the autoregressive models used in this thesis for
time-series analysis are a special kind of regression problem, a strong relationship exists between
the EIV framework and the dual estimation methods developed in this thesis.

Consider the batch problem of estimating w and x} given the vector of noisy observations

yy.

deterministic and stochastic parts of the input-output relationship. In the context of noisy time-

The EIV model makes a distinction between input and output variables, and between the

series, the input and output data are the same thing. The “input data” are
Yk = Tk + N, (G.1)
and the “output data’ are:

Ye = f(Xk-1, W) + vk + n. (G.2)

Hence, the input data contain errors (yx — zx), with variance 02, and the output data contain
errors (yx — f(Xk~1,w)), with variance o2 + o2. Furthermore, the cross-covariance between the

two errors is 02. These errors can be concatenated in the column vector:

e N _ N
B2 %= R (G-3)

€ yr —(x7)
where (x7)V is a column vector with elements: z; = f(xx—1,w). The maximum likelihood

estimates of xI¥ and w are found by maximizing the log-likelihood of E, or minimizing the cost

function:
J(x},w) =E"E7'E, (G.4)
where X! is the covariance of E. The EIV method consists of iteratively:

275



276

1. minimizing J(x¥, w) with respect to x{¥, with w fixed at the current estimate: W.

2. minimizing J(x¥, w) with respect to w, with x}¥ fixed at the current estimate: xJ".

When the model is linear, these steps can be solved in closed form with a batch weighted least-
squares type of solution.

The relationship of the EIV cost to the joint cost explored in Chapter 2 can be seen by
expanding ¥ in Equation G.4 as:

e 021 021 e
J(X{V7w) = . : " . (GS)
£ o2l (o +02)I €
r17 1 1 L
e (_T + ;g')I _;TI e
= - on g CH I (G.6)
€] - %I %1 €

Letting the components of e and € be denoted by ex = (yx — zx) and &; = (yx — z ), respectively,

the cost can be written in component form as:

N 2 2 2
N _ e , e , (ex) —2erex
J(x] ,W)—Z;(;g+a—g+——gg =g (G.7)
N 2 2
e (ex — ex)

However, note that the term (e — ex) is identical to (zx —z; ), so the EIV cost is identical to the
joint cost given in Equation 2.11 on page 23:
N

JixN, w) = Z((yk ;sz)2 + (zx — x;)2)‘ (G.9)

2
t=1 n o




Appendix H

Measurement Noise Variance Upper
Bound

On page 105, a procedure is described for estimating o2 by starting at an upper bound, and

decrementing the estimate. In this appendix, the upper bound for the measurement noise variance
k+M

is derived. Recall the formulation of a noncausal mapping from 2M + 1 noisy data points y, " 5/
to an estimate of the zy:
iy = wlykt (H.1)
Consider weight estimates of the form:

W = Ry (ry, — 62e0), (H.2)

where W = W* is the optimal weight vector when 62 = ¢Z. Then the variance of the estimate can

be expressed in terms of 62:

var(iy) = E[WwTytr M . gk (H.3)
= wTR,,Ww (H.4)
= (ryy — &ieO)R;leny;yl (ryy — Gneo), (H.5)
= (ryy — 0pe0)Ryy (ryy — Gheo). (H.6)

To find 62 such that Zj is the minimum variance estimate, set the derivative of the variance

(with respect to 62) to zero:

dvar(E . _
50(2 ) _ 2(ryy — 65e0)Ry, (—€0) =0 (H.7)
n
= oheoRy e = 1y Ry eo (H.8)
= 0h(Ryy )"V = efeg (H.9)
1
~2 _
0 R (110
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To show that this is an upper bound on the true variance o2, consider the MSE of the optimal

estimator:
MSE = E[(zx — w*Tyft2)?) (H.11)
=02 = 2w Try, + WTR; W (H.12)
= ag — 2(ryy — aieo)TR;ylryz + (ryy — afleo)TR;yl (ryy — aieg) (H.13)
=02 —2rT Ry }rys + 20%el Ry 1ye + L Ry Iryy — 2r] Ry 1o2eo + (0%) el Ry eo,
(H.14)
where 1l R.! = ef gives:
=02 —2elr,, + QGZegR;; Iyz + €n Ty, — 2e4 ooeq + (ai)zegR;;eo (H.15)
=02 — 202 +202e{ R} (r,, — 0leo) + 02 — 200 + (orfl)z(R;yl)(D'D) (H.16)
=02 + 202 — 2(02)* (R, - 207 + (02)*(R,,) ) (O (H.17)
=02 — (02)*(Ry,) Y (H.18)
= o2(1—oZ(R,;,)®0). (H.19)
Now, of course the MSE must be non-negative, which means that:
2ROV <1 (H.20)
1
= a2 < (H.21)

"= R0

giving the desired upper bound on ¢2. When R is not known, it can be replaced by an estimate,

~

R.



Appendix I

T Test

Section 4.2.2 describes the problem of determining whether two algorithmic treatments, (a # b) €
A, produce losses L, (x¥,w,y) and Ly(x],w,y) which are significantly different. The ¢ test -
a common method for determining statistical significance [70] - is described in this Appendix for
that purpose.

Letting p, £ Evy [L,] be the expectation of the loss over all noise realizations, the treatment-
specific loss can be rewritten as L, = u, +£,, where £, represents a zero-mean random disturbance
due to the specific realization of the data.

Given R repetitions of the measurement noise, the loss of the a*”* treatment on the r** repetition
of the data is denoted by LI, where r € {1,2,...,R}. Each LI can be thought of as a sample
from the distribution on L,. The sample mean of L, can be computed as & }:f:l LLT], and used
to evaluate a. When comparing two treatments, however, the significance of the difference in their
sample means must be considered.

Note however, that because the same R repetitions of the data (yN)[") (and initial parameters
W, &3’0, &,21’0) are used across all methods, the samples for any two treatments are not independent.
In fact, taken for any two methods at a time, the results constitute paired samples [70], because
the conditions contributing to, for example, LEI] and LLT], differ only in the treatment used.

On the other hand, defining the difference d, s 2 (L, — L) creates a random variable that is
sampled independently, by dLr’]b 2 (L - LIy, Assuming a Gaussian distribution on the difference,
with mean g, = fte — pp and variance ag‘b, the significance can be tested by determining how
likely it is that the distribution of d, ; has zero mean. This can be done by way of a ¢ test [70].

Computing the sample average Doy = £ 3., dﬂ, and normalizing as:

. Da,b — Ha,b

= 1.1
Ta,b * R_% ( )

produces a random variable, m, with normal distribution. Furthermore, the sample variance,
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55 = gy S (dl} — Day)?, scaled as:

(R—-1)s%
3 s
a,b

(1.2)

produces a chi-squared random variable, v, with R — 1 degrees of freedom.
Given two independent random variables m ~ A(0,1) and v ~ x2, the random variable
t = m/vvn~! is distributed with the t distribution with n degrees of freedom [70]. Therefore, the

statistic

tap = 25_—0 (L3)
sp-R2
will have the ¢ distribution with R — 1 degrees of freedom if and only if p, 5 = 0. This condition is
referred to as the null hypothesis, Hy; it represents the case of no difference between algorithmic
treatments a and b.
Therefore, the probability that ., = 0 when |ty 4] > t1 for some positive value of t; , is given
by:
31
a2 Pr(“Hp is true” & [tos]| > t) =1 - /t Ptr_, - dT, (1.4)
—t
where p;,_, is the pdf of the ¢ distribution with R — 1 degrees of freedom. The smallest possible
value of a occurs when #; is chosen to equal |¢, |; this minimum value of « is known as the p-value
of ¢t4,5. When the p-value is close to zero, the probability of pa = 0 is low, indicating a significant

difference between treatments a and b. A large p-value, on the other hand, indicates that there is

not sufficient evidence for differentiating between a and b.
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