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can be described in terms of a probabilistic model, which accounts for both the deterministic 
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Chapter 1

Introduction

1.1 Overview

This thesis addresses the problem of modeling and estimating noisy discrete-time signals, or time-

series. Numerous applications - ranging from speech enhancement, to economic forecasting, to

adaptive control - require either the estimation, prediction, or modeling of a noisy time-series.

In estimation, all data up to the current time is used to approximate the current value of the

underlying clean time-series. Prediction is concerned with using all available data to approximate

a future value of the clean series. Modeling (sometimes referred to as identification) is the process

of approximating the underlying dynamics that generated the clean time-series.

These tasks are strongly interdependent. For example, an accurate model of the system that

generated the time-series can be used for estimation of the signal. Conversely, if the clean signal is

available, it can be used to build an accurate model of the dynamics. Furthermore, if an accurate

model and good signal estimates are available, good predictions can be generated by using the

estimates as inputs to the model.

Figure 1.1: The dual estimation problem. Signal and model estimation are interdependent tasks;
prediction requires solving both.

However, when neither the model nor the clean signal are known, the situation is much more

challenging (see Figure 1.1). The problem of estimating (from noisy data) both the underlying

signal and the model that produced it is the central topic of this thesis, and will be referred to

herein as the d'll,alestimation problem.

1



The next section presents a set of basic assumptions about how the noisy data were generated, 

and introduces much of the notation used throughout the thesis. The remainder of this introductory 

chapter contains a brief motivational description of the dual estimation problem, followed by a 

review of work done by other researchers to date, and a preview of the contributions made in this 

thesis. 

Chapter 2 uses a probabilistic approach to generate several cost functions that quantify (in 

different ways) what is meant in the preceding text by "good" or "accurate" estimates and models. 

Chapter 3 describes an algorithmic framework for minimizing these cost functions, which includes 

the expectation-maximization (EM), recursive prediction error (RPE), and some new algorithms 

as specific examples. Although particular attention is paid to linear and neural network models, 

the algorithms described are applicable to a broader class of models that are differentiable in their 

inputs and parameters. Finally, Chapter 4 gives an experimental comparison of the cost functions, 

and Chapter 5 denionstrates the practical application of the algorithms using several real-world 

examples. 

1.2 Assumptions and Notation 

1.2.1 Model Structure 

Assume the noisy time-series of interest is generated by a nonlinear autoregressive function with 

additive observation noise: 

where x k  corresponds to the true underlying time-series driven by process noise vk, and f (-) is 

a nonlinear function ( e . g . ,  a neural network) of the past M values of xk parameterized by w. 

The only available observation is yk, which contains additive noise nk. The time-series is one- 

dimensional; i.e., the noisy observation yk € 8 is a scalar. The situation is depicted in Figure 1.2. 

The notation {?/I;}: is used herein to represent the sequence of data, {yl, yz, ys, . . . , yt). 

This model structure is fairly general. Loosely speaking, Takens' theorem [82] states that the 

dynamics of a discrete-time systenl with state-space dimension d can be reconstructed in a 2d + 1 
T dimensional space constructed from a vector of observations on the system [XI;-1,. . . , xk-(2d+l)] . 

In other words, the first part of Equation 1.1 can accurately model the dynamics of any unknown 

d-dimensional system with observed variable 2 6 ,  as long as M 2 2d + 1 (see also [73, 31]), and as 

long as the parameterized class of models f (.) is broad enough. 



3

process
noise vk

~,IWVI\litl~~

signal

~;k

measurement noise

+
nk

Yk

noisy data

Figure 1.2: The data are assumed to be generated by an unknown nonlinear autoregressive model, and
corrupted by additive measurement noise.

Although this thesis is concerned exclusively with time-series modeling and estimation, the

concepts it explores can be readily generalized to other system identification applications. For

example, including a user-determined input to the function fe) would produce a nonlinear ARX

(autoregressive, exogenous input) model. Similar extensions to ARMA (autoregressive moving

average) and ARMAX models are also possible, as are extensions to multi-dimensional data sets

(dim(Yk) > 1).

A more general formulation might also include nonlinear channel effects of the form Yk =
g(Xh,. .. , .'Ek-M+l, nk). The framework developed in this thesis can be easily adjusted to include

such a nonlinear measurement equation, as long as the channel function g(.) is known and differ-

entiablel. In Equation 1.1, this function takes the special form g(Xk,'" ,Xk-MH, nk) = Xk + nk,

representing corruption by additive noise.

A Gaussian assumption on the noise terms will facilitate the derivation of cost functions from

a probabilistic perspective in Chapter 2. However, much of the analysis is valid for non-Gaussian

noise as well. Also, the algorithms discussed in this thesis often remain useful when the Gaussian

assumption ceases to hold, as is demonstrated experimentally by the example applications in

Chapter 4.

1.2.2 System Identification Loop

The methods described in this thesis must inevitably be used within a system-identification loop

[46] of repeatedly: (1) selecting a model set, (2) choosing a cost function and algorithm to search

for and select a model from that set, and then (3) validating the model (see Figure 1.3). The

1Corruption by unknown channel effects represents a blind deconvolution problem, and is considerably more
difficult unless additional constraints or assumptions are used.
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methods presented herein address only the second of the three steps, under the assumption that

mechanisms are in place for performing model set selection and model validation.

Figure 1.3: The system identification loop. The elements enclosed by the dashed line are addressed in
this thesis. Figure adapted from [46].

Although the model set is partially defined by the noisy AR process of Equation 1.1, it remains

overly broad because the form of the function f (.) is not specified. Before the optimization methods

described in this thesis can be applied, the model set must be more narrowly defined in terms of

the order M and particular functional form of f (.). For example, f (.) might be defined as a 2-

layer feedforward neural network with 10 inputs (!VI= 10), 5 hidden units, and one output, or as

fifth-order (M = 5) linear model. The methods of this thesis apply for any fe) differentiable in

Xk and w.

A parameterization of the model set in terms of w, 0";',and O",~can then be defined to allow for

a search over the model set. This parameterization is known as a model str'Uct'U,re2[46].This thesis

discusses the selection of a suitable cost function and algorithm for searching within a pre-specified

model structure. As mentioned in the Overview, estimating the signal {xdf" is an integral and

necessary part of this model estimation step. A detailed discussion of this fact follows in the next

section.

2More formally, a model structure is a differentiable mapping from a connected, open subset of 3id (the d-
dimensional parameter space) to a model set [46J.
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1.3 The Dual Estimation Problem

What follows is a qualitative description of the dual estimation problem. We consider the problem

from three different motivational perspectives: modeling, estimation, and prediction.

1.3.1 Modeling

Suppose we are interested in modeling the dynamics j (.) of the underlying clean time-series Xk. 3

A simplistic approach is to ignore the effect of the additive noise nk, and build an autoregressive

model j y (.) from a vector Yk = [yk, . .. , Yk-lvI+l f of past values to predict the next value Yk+1, as

shown below. Such a model could be trained directly on the noisy data by minimizing the squared

Noisy Data

c--- -- -,, ,
: error

III (+1

-t
III

Figure 1.4: Building a predictor on noisy data.

prediction error, or some other cost. Unfortunately, the resulting model jy(.) will be biased with

respect to j (-) in Equation 1.1. This is because the former is a function of Yk, while the latter is a

function of Xk. The effect is most easily seen by considering the least squares predictor for a linear

model:

Wy ~ (E~[])-l . E[Y:Y;-H], (1.2)

where E[.] denotes the sample average. The expectation can be shown to be the optimal Wiener

solution for a finite causal linear model on the data:

E[wy] = (E[Yky[])-l . E[YkYk+l]
6 *
=Wy' (1.3)

The signal and noise are mutually independent, so:

E[wy] = (E[XkX[] + E[UkU[])-l . (E[XkXk+l] + E[uknk+l])

::::} E[wy] I- (E[XkX[])-l . E[XkXk+l] ~ W,

... E[wy] I- w.

(1.4)

3This task is also referred to as dynamic reconstruction [31].



The optimal Wiener predictor for {yk)F (given by wc) is no t  the same as the Wiener predictor 

w for {xk)?. Hence, a least-squares model for {yk)r (which has the expected value w;) will be 

biased with respect to w. 

However, an unbiased linear model can be generated using a simple adjustment to  the least- 

squares solution, provided that the statistics of the noise are known: 

Unfortunately, the additive noise in the data {yk)4 will induce a higher variance in the sample cor- 

relations, E[ykyT] and E [ Y ~ ~ ~ + ~ ] .  This contributes to higher variance in the parameter estimates, 

w;. Even though it is unbiased, tlle variance in the model estimate means that any particular w: 

is unlikely to be accurate. 

A related deterministic approach, known as total least squares (TLS), performs principal com- 

ponents analysis on the noisy data to produce an unbiased estimate [25]. However, TLS solutions 

are subject to the same variance problems as the above unbiased least squares estimate. 

Another alternative is to build a model from signal estimates x k  that have lower variance than 

yk, such that the Wiener solution: 

is unbiased. The least squares approximation to this solution (replacing expectations with E[.]) is 

therefore unbiased and has lower variance. The signal estimates ik will have this property provided 

that: (1) they are optimal in the sense that xk is uncorrelated with the error 5ik = (xk - xk); (2) 

they are causal, so that k1 is independent of the noise term nk+l and vk+l a t  the next time step. 

Using the above definition of x k ,  and yk+~  = wTxk + vk+1 + ?tk.+l: 

Applying the optirnality condition to tlle first term and the causality condition to the second term, 

this reduces to: 



so the optimal solution is attained, and the corresponding least squares solution is unbiased. 

However, the requisite estimates f k  can be generated by an optimal (i.e., Kalman) filter only if 

the model is known. The dual estimatiorl problem can be viewed as the need to generate these 

estimates in order to estimate an unknown model. 

1.3.2 Estimation 

Sometimes, one is primarily interested in the estimation of a noisy signal; i . e . ,  estimating {xk); 

from the noisy data {yk)i .  A common approach to this problem is to use information about the 

noise statistics to subtract the noise in the magnitude spectral domain [4]. Nonlinear variations 

on this spectral subtraction approach perforni the subtraction in other domains. These approaches 

typically suffer from distortion of the signal due to  an overestimation of the noise spectrum. They 

also require a block-wise form of processing (to compute the transform) which precludes their use 

in applications that require on-line estimation. 

Another general approach is to find a mapping from a window of the noisy data, to  the 

corresponding wiridow of the clean signal. The ~riapping (which could also operate in a transform 

domain) can be found by using a training set of rioisy input data and clean target data. Aside 

from being a non-causal, or block-wise approach, this method suffers from being limited to the data 

represented in the training set. The learned mapping will not generalize to  signals with statistics 

that are different from the training set. 

The focus of this thesis is on sequential, on-line estimation approaches that operate in the 

time-domain and which do not require a separate set of training data. In the case of linear models 

and Gaussian statistics when the model parameters w and variances are known, the celebrated 

Kalman filter ([36],1961) produces opti~nal estimates (dk = E [ ~ ~ l { ~ ~ ) f ,  w]) of the signal given all 

the past measurements. The extenrled I<alman filter (EKF) is an approximate method in the case 

of non1znea.r models, and approxinlittes the nonlinear model as time-varying linear model during 

certain steps in the estimation process. Lewis ([43],1986) provides a comprehensive review. 

However, an i~n~nutable characteristic of Kalman filtering approaches is their requirement that 

the model of the systern dynamics be known. This is not the case i11 the present context; another 

view of the dual estimation problem is the need to estimate the model in order to  estimate the 

signal. 



1.3.3 Prediction 

The task of prediction is interesting because it shows how the problems of estimation and modeling 

are related. Suppose a prediction is recjuired for the next value y t + ~  of a noisy time-series {yk):, 

known to  be generated according to Equation 1.1. A simple solution is to  build the autoregressive 

model fy(.) described in Section 1.3.1, arid generate predictions as = fy(yt ,  wy). While it was 

noted that the model fy(.) is biased with respect to f (.), the predictions produced by this model 

would, in fact, be unbiased. 

On the other hand, any particular f,(.) will not necessarily give accurate predictions because of 

the previously described variance of the modeling process. Furthermore, the predictions obtained 

from a given fy( . )  will themselves have high variance due to the additive noise on the inputs to 

the predictor. 

The above approach does not take advalaaitage of the special relationship of a particular input 

to  other inputs in the window, or to inputs in other windows. In fact, fitting f,(.) to  the noisy data 

is equivalent to treating the problem like a standard regression task, where there is no particular 

relationship between each of the inputs. It is important to note that the variance of the predictions 

can be reduced by exploiting the knowledge that the data are from a time-series generated according 

to  Equation 1.1. 

Because the data are from a noisy AR process, all of the past data {yk)i can, in theory, be 

used to improve the prediction of yt+l. However, using a growing window of all past data as the 

input to a predictor is not practical because the number of parameters would increase as well. In 

the linear case, a Kalman filter uses knowledge of the AR model to  summarize the past data {yk)i 
with a finite vector it such that E[yt+l jxb] = E[yt+ll{yk):]. I11 fact, xt represents the conditional 

expectation of the lagged values of the signal given all the past data, and the model. 

Because x t  will have lower variance than yt, it results in lower variance predictions. Also, 

as noted previously, a predictor trained using xk as inputs will be unbiased with respect to  the 

autoregressive fii~iction f (.). The problem, of course, is finding the estimates xk when the model 

is unavailable (the Icalrnan filter requires a known model). Once again, this is the dual estimation 

problem. 

1.3.4 Additional Comments 

Note that even when the model is linear, ( i .e . ,  f (.) = wTxk-1, where xli-1 = [xk-I, xk-2,. . . , xk-MI) 

the inner product of the parameter vector w with the vector xk-1 indicates a bilinear relationship 

between these unknown quantities. Hence, even in the simplest case, linear estimation methods 



such as least squares are not applicable for the dual estimation problem, and numerical optimiza- 

tion techniques are required. 

This thesis focuses primarily on approaches that make use of statistical information about the 

data; this information ultimately involves the statistics of the noise terms vk and n k .  However, 

in many practical applications, the statistics of either one (perhaps both) of these noise processes 

will be unknown. The dual problem of estimating the weights w and signal xk will in such cases 

also involve the estimation of this additional statistical information. 

Most of the previous work on dual estimation has been restricted to  the linear model case. 

Many of these methods are reviewed in the next section, along with the limited number of methods 

for nonlinear models. This thesis unifies many of these linear and nonlinear approaches in the 

context of neural network models. This and other contributions are described in Section 1.5. 

1.4 Related Work 

1.4.1 Iterative vs. Sequential Methods 

A variety of methods have been proposed for dual estimation. Some involve an iterative scheme 

of repeatedly estimating the time-series using the current model and all available data, and then 

estimating the model using the estimates and all the data (see Figure 1.5(a)). Some of these 

iterative methods work in the frequency-domain (or some other transform-domain), and some 

work directly 011 the data in the time-domain. Iterative schemes are necessarily restricted to off- 

line applications, where a batch of data has been previously collected for processing. However, 

note that both the signal and weight estimation steps of an iterative scheme can be performed 

using either batch-rnotle or pcittevn-mode forrrls of processing 4.  

Other dual estimation methods involve sequential estimation of both the model and the time- 

series simultaneously from the data (see Figure 1.5(b)). Sequential algorithms are recursive in 

nature, and can be used to process data on-line, a,s it becomes available (they are necessarily time- 

domain algorithms). Alternatively, they can also be used for efficient off-line processing, where 

the sequential algorithm makes several passes over the same block of data. Some discussion of the 

advantages of this approach is given by Ljung arid Soderstrom [47]. 

This thesis is primarily concerned with sequential algorithms. However, a strong relationship 

exists between rriarly time-domain iterative  neth hods and sequential methods. For this reason, 

several of these iterative methods are described in this section. 

4Batch-mode processing refers to updati~ig the estimates only once, after all the data have been observed. 
Pattern-mode processing refers to updating t,he estimates each time a training pattern is observed [30]. 
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Figure 1.5: Two approaches to the dual estimation problem. Iterative approaches use large blocks of
data repeatedly. Sequential approaches are designed to pass over the data one point at a time.

The vast majority of work on dual estimation has been for linear models where the noise

terms Vk and nk are uncorrelated zero-mean white Gaussian processes with variances o-~and 0-;,

respectively. An overview of these "linear" methods is provided first, followed by the work done

for nonlinear models. Additional details about the algorithms will be provided in the contexts of

Chapters 2 and 3.

1.4.2 Linear Models

Adaptive Estimation

As mentioned in Section 1.3.2, when the model parameters wand variances are known for the

class of linear systems just described, the Kalman filter ([36],1961) produces maximum-likelihood

estimates of the signal given all the past measurements5. Although originally developed in the

context of automatic control systems, the Kalman filter has proven useful in a broad range of

fields. For example, Paliwal and Basu ([63], 1987) investigate the use of Kalman filtering for speech

enhancement. Additional refinements to the method, including extensions for colored measurement

noise nk [37, 24] have been developed elsewhere.

When the dynamics and statistics of the time-series are not known in advance, however, the

Kalman filter cannot be applied. Hence, much of the early work on the dual estimation problem is

concerned with Kalman filtering when the model parameters (or noise variances) are not completely

known; this area of research is called adaptive estimation [2].

In early work, Kopp and Orford ([38],1963) and Cox ([12],1964) propose including both the

lagged signal vector Xk-l and unknown parameters w in a combined state vector to form a joint

5Rauch, Thng, and Striebel ([68],1965) proposed a variant (often referred to as the Kalman smoother) that
combines forward and backward filtering to allow for recursive estimation of the estimates of the signal given all
the available data, past and future.



nonlinear state-space representation. The extended Kalman filter is then applied to the resulting 

nonlinear estimation problem. 1% will refer to this approach as the joint extended Kalman filter 

(joint EKF). Ljung (1451,1979) provides an extensive convergence analysis of the method, and 

discusses the importance of computirig t,lie sensitivity of the Kalman gain to the parameters. 

Niediwiecki and Cisowski ([62],1996) make further practical enharicements to  the algorithm for 

detecting and handling outliers. 

Motivated by some convergence problems exhibited by the joint EKF, Nelson ([61],1976) pro- 

poses using two separate Kalnlan filters t,o provide an alternative solution to  the dual estimation 

problem. In this duo1 Kalm,an approach, one filter produces estimates of the signal assuming the 

model is known, and the other filter produces parameter estimates assuming the signal is known. 

Ljung and Soderstriini ([47],1983) put the dual Kal111a.n niethod into a general family of recursive 

identification algorithms, and include the use of recursive "sensitivity equations" for computing 

the derivatives of the recursive structure. 

Maximum-Likelihood Approaches 

Akaike ([1],1973) approaches dual est,irria,tion froni within a maximum-likelihood context. Gupta 

and Mehra ([26],1974) tliscuss the potential pitfalls of maximum-likelihood parameter estimation, 

and the use of Kalman filtering ant1 nonlinea,r programming approaches. In the iterative approach 

of 1261, the Kalman filter is used to evaliiate the conditional means a,nd error covariances required 

for evaluating the likeliliood function; nicaximum-likelihood parameter estimates are found by a 

variety of batch optimization techniques. 

Another well-known iterative approach within the maximum-likelihood framework was pre- 

sented by Lim and Oppenliei~n ([44],1978) for the problem of speech enhancement. A recursive 

least squares algorithrri was used to estimate the model parameters, while a frequency-domain 

Wiener filtering approach was used for signal estimation. This paper was largely responsible for 

introducing the speech enhancement community to dual estimation with AR models. 

EM Approaches 

A somewhat different iterative approach to maximum-likelihood dual estimation is given by the 

expectation-maximization (EM) algoritli~xi, first developed by Dempster et al. ([16],1977), and 

subsequently applied to time-series s~noot~hing by Musicus and Lim ([58],1979) and Shumway and 

Stoffer ([76],1982). In each iteration, the conditional expectation of the signal is computed, given 

the data and the current estimate of the model (E-step). Then the model is found which maximizes 

a function of this ~ondit~iorial mean (M-step). Additional details are given on pages 36,85, and in 



Appendix F.  The approach has the advantage of some theoretical guarantees of convergence in 

the linear case. A batch form of the algorithm for pole-zero models is derived in [58]. In [76], the 

E-step is computed with a Kalman srnootlier, and the kI-step is computed in closed form. The 

algorithm has been implemented and extended by several other researchers. 

Weinstein et al. ([93],1994) extend the EM algorithm of [76] for two-microphone speech en- 

hancement, and suggest a Kalman filter E-step, and gradient based M-step to  allow for a sequential 

version of the algorithm. Other e~t~ensions for speech enhancement appear in [41,42,21]. Krishna- 

murthy et al. ([39],1998) propose using I(a1man smoothers for both the E and M steps, and apply 

the algorithm to estimation of a broad class of bilinear systems. A sequential variation based on 

two Kalman filters is also suggested (1111t not impleniented). Gliahramani ([22],1998) shows how 

the Eh4 algorithm can be put in the coritcxt of learning dynamic Bayesian networks, while Blake 

et al. ([3],1999) combine a type of hlorite Carlo sampling with the EM algorithm for learning 

multi-class linear dynamics for visual object trackers. 

1.4.3 Nonlinear Models 

By and large, the niet,hods discussed above are for dynamic system models that are linear in the 

parameters and in the signal. The field of artificial neural networks has generated many papers 

on the topic of identifying r~onlirlear dynamic systems. Wliile the majority of these papers assume 

that the training data (i.e., the tirne-series) are clean, several of the approaches in these papers 

are strongly related to the dual estimation task. 

Neural Network Training Methods 

Although a pretrained neural network model ca.n be used for the task of signal estimation, the 

Kalman filter cannot be applied directly to such nonlinear system models. Instead, the model 

must be linearized at every time step to allow for approximate propagation of the covariance of 

the estimated state. Tliis algorit,lim is the ezterlded Kalrrlart filter (EKF)[43]. Assuming the model 

parameters w are known, and the noise terms vk and n k  are Gaussian with known variances, the 

EKF produces upproxirnote maxi~~iurri-lilielihood estimates of the signal. 

As proposed by Singhal arid l i t 1  ([77],1989) and described by Plumer ([65],1995), the EKF 

can also be used a.s a means of training (i.e., est,imat,ing the parameters of) a neural network. 

When used as a parameter esti~nat,iori method, the EI<F can be viewed as an efficient second-order 

nonlinear programmi~ig approach similar to the Gauss-Newton update rule [48]. Puskorius and 

Feldkamp ([66],1994) extend the approach to recurrent neural networks and nonlinear dynamic 



systems, and present a decoupled version which exchanges some performance for computational 

efficiency. 

In the context of training recurrent, neural networlis, Nlatthews ([51],1990) estimates both the 

hidden neuron outputs and networli weights concurreritly by combining them in a single state 

vector, and applying the EKF. This algorithm is quite similar to the joint EKF mentioned above 

for the linear case. However, while [38. 12, 45, 621 are concerned with estimating signals from noisy 

data, Matthews [51] uses the approach for trainilig with clean data. Here, the state-estimation 

helps provide targets for the hidden layers of the recurrent network a t  the same time that the 

weights are being updated. Willinrns ([96],1992) describes the relationship between the joint EKF 

and real-time recurrent learning (RTRL) algorithms, and gives an analysis of the computational 

requirements. More recently, Slim et al. ([81],1998) a.ugment the joint EKF training algorithm 

with a probabilistic pruning method. 

Matthews ([52],1994) also proposes using two separate EKFs for estimating the hidden outputs 

and weights of recurrent neural networks. This algorithm is essentially a nonlinear extension of 

the dual KF ~netliod [GI], in the forrri outlined by Ljung and Soderstrom [47]. Again, however, 

state estimation is used to supply targets tlo the hidden units of a network trained on clean data, 

rather than for estimating a noisy signal. 

The EM algorithm has been applied by numerous authors to nonlinear system identification. 

Jordan and Jacobs ([34],1994) devcIop both batch and on-line algorithms for estimating the param- 

eters of a hierarchical mixture of experts model. An EM algorithm for training neural networks on 

clean data is prese~it~ed by de Freitas, Nirarijan, and Gee ([14],1998). Here, the weights are given 

a dynamic system representation of their own (to potentially allow for modeling non-stationary 

systems). The weight,~ are estiniat,ed vici a Kalman smoother (E-step), and the dynamics of the 

weights are estimated during the M-step. 

While the Kalman-based approaclies inherently assume Gaussian densities on the data and 

states, there has been renewed interest recently in Monte Carlo methods for non-Gaussian state 

estimation. In the contest of neural network training, de Freitas et al. [15] investigate a training 

algorithm based on sequential h~lonte Carlo techniques. 

Dual Estimation Met hods 

All of the neural ri~twoik tlaiiiirig methods described above are for parameter estimation using 

clean data; only a few papers appear in the literature that are explicitly concerned with dual 

estimation for neural networlis models. 

Connor et al. ([10],1994) plopose an Iterative approach to training recurrent neural networks 



for robust time-series prediction tasks. Tlie algorithm alternates between applying a robust form 

of the EKF to estimate time-series, and using these estimates to train the neural network via 

gradient descent (using back-propagation [72, 951). The work is an extension of robust estimation 

methods for linear ARMA models described by Martin ([50], 1982). 

Weigend and Zimr~ierman's ([92],1995) Clearnirig algorithm is a heuristic method for training 

a neural network with noise on the input arid target data, and can be applied to  dual estimation 

for noisy time-series. The cost function can be shown to  be a simplified approximation to the 

errors-in-variables cost function discussed on this page. While it allows for sequential estimation, 

the simplification can lead to severely biased results [87]. 

An approach developed by Stubberud arid Owen ([80],1996) uses an adaptive EKF as a state- 

observer in a model reference adaptive co~itrol framework. Here, the system dynamics are partially 

known, and the EKF estimates the unmocleled component of the dynamics along with the state. 

Because the state is only observed through additive noise, this essentially constitutes a dual esti- 

mation problem (althougli it is not a time-series problem per se ) .  The algorithm is similar to the 

joint EKF approaches described in Section 1.4.2. 

Ghahramarii and Roweis ([23],1999) sliow an EM approach to the dual estimation problem, 

using radial basis function (RBF) rietworl<s. An extended Kalman smoother is used for the E-step, 

and a closed-form solution to the R.BF weights for the M-step. Briegel and Tresp [5] propose some 

variants on the EM algorithm by offering three alternative E-steps for signal estimation, all based 

on a Monte Carlo saniplirig a,pproach. For weight est,imation, a generalized M-step is performed 

by gradient descent. More recently, \?ran et al. ([90],2000) demonstra.te how an algorithm called 

the unscented filter car1 produce a more accurate nonlinear E-step without the use of Monte Carlo 

sampling. 

The general idea behind the hlont,e Carlo (or particle filter) approaches is to  either improve 

the Gaussian approximatiori to certain crucial densities, or to avoid the Gaussian assumptions 

altogether. While offering the potential of better performance than Kalman filtering methods, 

these methods generally incur higher computational expense. While some of the theory developed 

in Chapter 2 is relevant for the more general non-Gaussian case, the cost functions and algorithms 

in this thesis will focus on the Gaussian case, wherein Kalman filtering methods are appropriate. 

Errors in Variables Models 

Errors-in-variables (EIV) models appear in the nonlinear statistical regression literature (Seber 

and Wild, [75] 1989), aiid are used for regressing on variables related by a nonlinear function, but 

measured with some error. EIV rnetliocls involve iteratively maximizing a joint likelihood function 



for the input and output data of the regression. 

The form of the EIV cost function for t,ime-series data is derived in Appendix G. In Chapter 2, 

this same joint cost is derived from a rnaxirnurri (I posterior. (M4P) perspective, and relationship 

between this cost and t,he maximurn-lilrelihood approaches is also discussed. However, errors-in- 

variables is an iterative approach involving batch computation; it tends not to  be practical for 

time-series data because the computational requirements increase in proportion to N 2 ,  where N 

is the length of the data. 

1.5 Contributions of the Thesis 

Dual estimation methods for nonlinear time-series nlodels are relatively few, especially when com- 

pared with methods for linear models. This is to be expected, seeing that the fields of linear 

estimation, signal processing, and control are considerably more developed than their nonlinear 

counterparts. Tlle existing rriethotls offcr a variety of approaches (i.e., adaptive Kalman, maximum- 

likelihood, and EM) which share sorrle common traits, but whose similarities and differences have 

not been sufficiently explicated in the literature. The first goal of this thesis is to  provide a theo- 

retical foundation for relating these niet,liods; t,he second goal is to use this foundation to generate 

a family of sequential dual estimation metllods for ~ionliriear time-series models. 

1.5.1 Theoretical Framework 

Any approach to dual estimation rnust be based on some explicit or implicit definition of opti- 

mality. A cost filrtctior~ provides a quantitative measure of the quality of the model and signal 

estimates, and generally forrns the basis for designing a suitable algorithm. The methods in the 

preceding section correspontl to ;I v:~rinty of c:ost, f~~nctions; comparing these methods without an 

understanding of how their respect,ive cost functions relate is not terribly illuminating. 

This thesis provides a probabilistic t>reat~nent of the dual estimation problem, and suggests the 

feasibility of two main approaches to i t .  The relationship between these approaches, which holds 

in the general non-Gaussian case, arises from the probabilistic framework. Employing a Gaussian 

assumption on the noise produces several different cost functions, each corresponding to  a different 

approximation. Some of these cost fi~rlctions are identical to those investigated previously for the 

linear case; others are novel. However, the t,heoretical foundation of these cost functions enables 

the explication of their relations hi^) t,o one anot,her. 



1.5.2 Sequential Methods 

Many applications dernand online, or sequential processing of data, as  measurements become 

available. Sequential processing has the atlditional benefit of reduced memory requirements, and 

the flexibility to be applied in either on-line or off-line settings. The focus of this thesis is therefore 

on developing sequential rriet,llods for dual estimation within the theoretical framework described 

above. In soIne instances, only off-line rr~etl~orls have been previously investigated in the literature. 

1.5.3 Algorithmic Framework 

The Gaussian assumption or1 the noise largely justifies the use of Kalman-filter-based approaches 

t o  dual estimation. An algorithmic frameu~ork called dual extended K a l m a n  filtering (dual EKF) is 

developed for rriinirriizing tlle various cost functio~is. The framework includes maximum-likelihood, 

recursive prediction error, EM, and sonie novel algorithms as special cases, and is applicable t o  both 

linear and neural network niodel structures. The relationship of these contributions to  existing 

methods is clarified in Table 1.1; the cost furictioris are explained in Chapter 2. 

Table 1.1: Algorithmic contributions of this thesis to the problem of dual estimation. For each cost 
function listed, references are given for algorithms categorized as iterative or sequential approaches, 
using either linear or nonlinear models. Symbols indicate:(*) developed in this thesis or in a previous 
publication by the author; (+) applied to a problem other than dual estimation; (4) EIV algorithm;(h) 
a significant approximation is made to the cost function. 

Cost 

Although   no st of the cost funct,ioris explored i11 this thesis have been previously considered 

(at least in the context of linear nlodels). rriarly of these costs have been applied primarily in an 

off-line, iterative setting. Meanwliilo, Illitny applications require that the dual estimation problem 

be solved on-line, as d:it,il bcconic. i~vailable; tjlie dual EKF algoritli~iis minimize the dual estimation 

costs sequentially,  thereby offering t,liis needed capability. 

Promising results have been published for a prediction error form of the dual EKF (Wan and 

Nelson [87],1997). The algoritlirii was successfully applied to single-microphone speech enhance- 

ment 159, 87, 891 proble~ns; and is essentially a nonlinear counterpart t o  the linear RPE  algorithm 
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[61, 471 described in the last sectio~i'. This thesis develops this arid other members of the dual 

EKF family. 

1.5.4 Variance Estimation 

As stated in Section 1.3, the statistics of tile measurement and process noises are generally useful 

(if not crucial) for dual estimation. Under a zero-mean Gaussian assumption, this information 

amounts to  the variances of these noise processes. However, the few nonlinear-model dual estima- 

tion approaches that appea,r in the literature employ (id lioc methods of choosing these variances. 

An important part of this thesis is its irivestigat,ion of theoretically justified variance estimation 

techniques in the context of dual esti~riation for nonlinear models. 

1.5.5 Experimental Comparisons 

The various cost furictions car1 all be justified theoretically give11 different sets of approximations. 

Determining which of these approximations are better or worse on theoretical grounds is extremely 

difficult, if not impossible. Experinierit,~ arc t~llerefore performed on a variety of different data sets 

in order to  facilitate useful conclusions about the pros arid cons of the different approaches. For 

example, the dual EKF is fount1 t,o perfor111 t,he best with tjhe maximum-likelihood and joint cost 

function listed in Table 1.1. Note t,llat these co~iclusions are made much more meaningful through 

the use of a common algorith~nic framework, which minimizes the spurious differences between the 

methods. 

1.5.6 Applications 

The practical use of the dual EKF rtlgoritlirris is shown in several application domains. Special 

considerations must be nia,tle for clifkrent classes of signals. Specifically, in the domain of speech 

enhancement, the nonstatioriarity of tlie spt?edi signal niust be taken into account, and perceptually 

relevant evaluation of tlie signal est,irr~ate slioulti be considered. For economic time-series, data 

scarcity is a critical issue. Generally, for any specific application domain the questions of model 

set selection and model validation ca.n be rriore readily addressed. 

1.5.7 Summary of Contributions 

The contributions of this thesis are as follows: 

6Although it was tlevelopetl i~~clepr~lcle~~t, ly,  t h e  predictio~l error form of the dual EKF also bears similarity to 
the method proposed by hlatt,liews [52] 1'01. t,rail~illp ~.c!currel~t 1ic:tworks wit,h clean data.  



1. Unified tl~eoreticnl framework. Tlie relationship between several different cost functions and 

algorithms are shown within a pro11:~bilistic framework under a Gaussian assumption. New 

cost functions are developed that have not been previously explored in the literature. 

2. Nonlinear methods. New algorithms are proposed that are applicable for both linear and 

nonlinear model st,ruct,ures. These algorithms extend the range of existing linear methods to 

include new cost functions, arid expand the application domain to include nonlinear time- 

series models. 

3. Sequential methods. The new algorithms provide estimates of the signal and model sequen- 

tially. This gives them t,he flexibility of being applicable in both on-line and off-line settings. 

4. Unified alyorithrrtic frc~rneuiork. ,4 variety of approaches to the dual estimation problem can 

be unified algorithmically by sliowi~ig how they are implemented as specific members of a 

dual EKF family of algorithnis. 

5. Noise variance estimation. Novel methods of estimating the process and measurement noise 

variances are investigated in the context of the dual estimation algorithms. 

6. Experimental conq)arlsons. Experi~nents on several different classes of data are included in 

order to compare the advantages and disadvantages of the various approaches. Linear models 

are also compared with iio~ili~iear ~nodels (exemplified by feedforward neural networks). 

7. Applications. Example applications of the dual EKF algorithms are provided to demonstrate 

their use on rcal-world data, ant1 to address some of the practical considerations that arise 

for different classes of data. 

As stated previously, this author lias written several papers on the dual EKF with Dr. Eric 

Wan. This thesis extends that work by dcepening the theoretical foundations of the approach, and 

broadening the algorithm to encoinpass a number of heretofore disparate methods. Experimental 

work is also extended to include data from tlie domains of speech, econometrics, and geophysics. 



Chapter 2 

Cost Functions: A Probabilistic 

Perspective 

2.1 Overview 

This chapter considers the dual estimation problem from a probabilistic perspective. This per- 

spective is used to show the relat,ionship between many of the algorithms mentioned in Chapter 1, 

and to  generate several new cost functions. 

Section 2.2 motivates the ~naxi~nii~ri  a posteriori (MAP) approach to  dual estimation, the 

central component of which is the joirit conditional density of the signal and weights. Section 2.3 

uses this density as the theoretical foli~ldation for developing several different cost functions. In 

Section 2.4, the expansion of this joint density into a marginal form is considered. The relationship 

between the joint and niarginal forlris is used to provide an understanding of the relationship 

between a variety of cost functions, sorne of which are exemplified by existing algorithms, and 

some of which have not bee11 explored in the current literature. 

For the sake of conceptual simplicity, the derivations in this chapter are based on the off-line 

problem of estimating the signal ant1 model froni a set of AT noisy observations, iyk)Y. This 

allows the cost functions to be written in t,he familiar form as a sum of quadratic (and other) 

terms. While the algorithms in Cliapt,er 3 will be based directly on these cost functions, they are 

recursive methods using on-line iriterpretations of the costs. 

This chapter makes explicit use of the Ga~issian assumption placed on the noise processes in 

Section 1.2. The Gaussian ~ioise ;tssuniption greatly facilitates the derivation of the necessary cost 

functions. However, while the cost functions derived in this chapter rely on this assumption for 

their theoretical ,just,ificat,ion, the corresporldirig algorithms in the next chapter are not so limited 

in their scope. This will be tlemoilst,rnt~d Ily the examples provided a t  the end of this thesis, some 

of which involve obviously non-Gaussian clata. 



Furthermore, the basic relatioriship between two main classes of algorithms shown in the next 

section does not rely on a Gaussian assumption. Only when the relevant probabilistic quantities 

are translated into cost functions arid algorithms is a Gaussian assumption employed. 

2.2 Bayesian Estimation for Noisy Time-Series 

2.2.1 Characterizing the Data 

The data are assumed to be generated accortling to Equation 1.1: 

2 k  = f ( ~ k - 1 ,  ... Xk-M, W) + Vk 

y ~ :  = Zk + 71k, Q k c  {l . . .  N } .  

With only {yk}r  available, the dual esti~rlation problem is to  find estimates (2k)F and w of 

the signal and weights that are i11 somc sense optimal. All of the statistical information contained 

in the data {yk)y about the sigrial ant1 pasarrieters is embodied by the joint conditional probability 

density of the signal {xk)i\' and weights w, given the noisy data {yk}r. For notational convenience, 

define the column vectors x y  and yr, with elenients froni { x k ) r  and {Yk)?, respectively. The 

joint conditional density furictiori is written as: 

where X, Y, and W are the vectors of random variables associated with x y ,  y r ,  and w, respec- 

tively. This joirit density is abbreviated as p x ~ w l u ; ~ .  

An alternative view of ge~lerati~ig data according to Equation 1.1 is sampling from the distri- 

bution given by p x ; y W y ~ .  Orie sarnple includes the specific data {yk}y, as well as the unobserved 

signal {xk)? and the unknown parameters w.  Because {yk)? is the only observable part of the 

sample, the values of { z k ) y  and w can only be estimated by using the knowledge embodied by 

P x y w l y p .  

Given the data {yk}r, a dual estilriation procedure will produce estimates (2k) r  and w. 
Because {yk}r were drawn according to the raridom vector Y, it follows that {?k)r and $v are 

effectively drawn from the ctistributions on the random vectors x and W, where these random 

vectors are functiorls of the rand0111 ~~o(.t,or Y. The ~iature of these functions are determined by 

the estimation procedure. 

2.2.2 Expected Loss 

A particular sample of data and a pi~rticl~lar choice of estimator will produce the errors {dk - xk)? 

and w - w. A good estimator slioultl generate small errors. To quantify this idea, a loss function 



combines these error vectors to compute a scalar nieasure of quality. Examples of loss functions 

include inner products, or various n o r m  with different weightings between the signal error and 

weight errors, or between different elernerits of these errors. 

The loss function describes the quality of the estimates produced for a given sample of data 

drawn according to px rwyr .  However, the fact that {zk}y and w are unobserved prevents di- 

rect computatiori of the loss. Instea.d, the density p,r,,,~ is used to  compute the conditional 

expectation of this loss given the data: 

where L(.) is a loss fu,nctio of the errors in t,lie signal and weight estimates. 

Furthermore, orie is generally intc?restetl in an estimator that generalizes to new data. That 

is, if new samples {zk)fi arid w are drawn from p,?,,~, the same estimation procedure 

should produce {iii.b)y and w with a low loss function value. In other words, whatever the choice 

of loss function, orie is interestetl ill rriiriirnizirlg the e2:pected loss, where the expectation is taken 

over possible values of w ,  { : x k ) F ,  ancl {yk)fl according to the density pxrwyy. This expected loss 

can be written as: 

This expression is often called the Bnyes ri.lsk, and the values of { x k ) r  and w for which it is 

minimized are the Bayes e.~timc~tes.  Clcarly, what these estimates are will depend on the specific 

loss function L(.) that is chosen. 

If a quadratic loss is chosen, t,lie expected cost is ~riinimized by the minamvm mean squared 

error (MMSE) solution, given by the conditional mean ~ [ x f l w l y y ] .  An absolute value loss function 

produces an e~t imat~e  equal to the 111edia.n wlue of the joint conditional density p,~, l ,~,  called the 

minima$ solution. A loss that is orie everywhere and zero in a small region around the true values 

of {xk )y  and w corresponds t,o the mazhnum a posteriori (MAP) solution, which maximizes the 

posterior (or condit,ional) derisity pX;ywlY;'. For derivations and additional discussion on this topic 

see page 4 of 1431. 
I 

When p ,~ ,  is unimodal and symmetric about it,s mean, the Bayes estimate is the same for 

a broad class of loss functions (for details, see [32]). I11 particular, when pxyw is Gaussian, the 

MAP, MMSE, and rnininlax estimates are all the same; this equivalence will hold when the noise 

processes are Gaussian ond the systeni function f (.) is linear. 

'The minimax estimate is so calletl hecause it minimizes the maximum value of the error. 



2.2.3 MAP Approach to Dual Estimation 

The MAP estimate is also sometimes used in applications where the choice of a suitabIe loss 

function is not clear [17]. Furthermore, the relationship between the various approaches in the 

literature is most apparent wheri viewed from a h/IAP perspective. In the dual estimation context, 

the MAP estimation approach colisists of the following ~pt~imization problem: 

(xy , w) = arg max p x p l y y  
x;. ,w 

(2.4) 

This formulation of the proble~n is the focus of this thesis. 

By and large, the literature can be divided into two basic classes of algorithms. The first, 

referred to  herein as joint esti~natiorz metliods, attempt to  maximize p x ~ , l y y  directly. This ap- 

proach will be described in Section 2.3. The second class of methods, which will be referred to  as 

marginal estimation rnethorls, operate by expanding the joint density as: 

I ~ x ~ w ~ , ~  = pxylwyy ' PwlYy (2.5) 

and maximizing the two terms separately. The niarginal estimation approach will be described in 

Section 2.4. 

2.3 Joint Estimation of Signal and Weights 

The MAP approach to the dual estimation problem is to maximize the joint conditional probability 

density p X y W I Y y  of the signal { z k } y  imd weights w, given the noisy data { y k ) r .  Again, estimation 

schemes that deal with this quantity are referred to  as joint estimation methods. 

Using Bayes rule, the joint conclitional density can be expressed as: 

Although { y k ) T  is statistically dependent on { z k } r  and w, the prior pyy is nonetheless func- 

tionally independent of {zr . )r  and w. Therefore, p X ~ W l y ~  can be maximized by maximizing the 

terms in the numerator alone. The first term p y r l X ~ W  represents the joint likelihood function of 

the signal and weights, while the sc:co~ltl t,errn p , . ~ ,  represents the prior information about the 

relationship l>etween t,he signal :tncl the weights. The numerator can be expanded further as: 

P,;.lxfjw ' pxyw = PYy1Xyw ' P x y ~ w  ' Pw. (2.7) 

If no prior information is available on the weights. pw can be dropped, leaving the maximization 

of 



I Let a and b represent two jointly distributed Gaussian random variables. Then: I 

where E[alb] is the conditional rnean of a given b = b, arid a2 is the conditional variance. 
4 4  

Forrnula 2.1: The general form of a Gaussian conditional density P A I B  

with respect to {xk) f l  and w. 

2.3.1 White Noise Case 

If vk and n k  are both zero-rnean white Gaussia~i noise processes, then the two terms of Equation 2.8 

can be evaluated (as shown in A1)pentlix A) to give: 

- A where z k  = E [ Z ~ ( { X ~ ) : - ' ,  W] 

= f ( x ~ - ~ ,  . . . , 2 h - M r  w). 

Here we have used the structure givt?ri in Equation 1.1 to compute the prediction x i  using the 

model f (., w) and only the past A d  values of the series. 

After taking the logarithm, the correspontling cost function can be seen to be: 

This cost function can be minimized wit,h respect to any of the unknown quantities. However, if 

the noise variances are li110w11, t,lieri olllv {re)fl and w need to be estimated. Because the log 

terms in the above cost are i~idepnntlelit of the signal and weights, they can be dropped, providing 

a more specialized cost f~~riction: 

The first term is a soft constraint, keeping {zs)fi close to the observations { y k ) F .  The smaller the 

measurement noise variance, oz, the stronger this cor~straint will be. The second term keeps the 



signal estimates and model estimat,es nlutually co~lsistent with the AR structure. This constraint 

will be strong when the signal is highly determi1:istic (i.e.,  a: is small). Although the first term 

is a function of {xl,)y alone, the secontl term represents a. strong coupling between {xk)? and w,  

through 21, = f (xk-1. . . Z ~ - M ,  w).  

J j ( x r ,  w )  should be minimized with respect to both {zk )y  and w to  find the estimates which 

maximize the joint density py~,;vlw. This is a difficult optimization problem because of the high 

degree of coupling between the urlltrlown quantities { x k ) r  and w.  As shown in Appendix G, the 

EIV approach tries to nlilliniize this same cost in an iterative framework. The joint EKF algorithm 

mentioned in Section 1.4 attempts to  seq~~entially estimate the signal and weights by combining 

them into a single (joint) state vector (see Chapter 3).  However, the resulting system of state-space 

equations is highly nonlinear, even for linear models. Several authors have reported convergence 

problems with this approach [45, GI]. 

Decoupling wi th  Direct  Subs t i tu t ion  

An alternative way of dealing with this sort of rnliltivariate optimization problem is by optimizing 

one variable a t  a time while the other variable is fixed, and alternating. This approach, which 

effectively decouples the optimizatioli problem. is exemplified by the (iterative) errors-in-variables 

algorithm, and by the (sequential) dual EI<F family of algorithms. 

Signal Estimation 

To minimize Jj (x? , w) with respect t,o the signal, the cost is evaluated using the current estimate 

w of the weights to  generate the predictions. The si~nplest approach is to substitute the predictions 
A -  A xk = f (xkWl,.  . . , zk-n,, w)  directly into Equation 2.11: 

(yt - xt)2 + (x* - 2;)' J'(x;",*) = " (  
0," k=l 

This cost function is then niinirnized with respect to { x k ) p  

Weight Estimation 

To minimize the joint cost fi~nction with rc?spect t,o the weights, J j ( x r ,  w)  is evaluated using the 

current signal estimate {i:k)Y allti the iissocia.ted (redefined) predictions 31, 4 f (Zk-1, ..., 5?i.n-M, w) .  

Again, this results in a straightfor.cvaiircl substitution in Equation 2.11: 



If the current signal estimate ik is t,al<eri t,o be a recursive function of the weights, then both terms 

in the above cost are minimized with respect to w. 

Otherwise, however, the first term is independent of the weights w, and only the second term 

is minimized. Here, only 2; is a fiinction of the weights: 

This is essentially a type of predictiori error cost,, where the model is trained to predict the estimated 

time-series. Effectively, the ~nethotl ~riasi~rlizes p,~,,, evaluated a t  xy = xr. A potential problem 

with this approach is that it is riot directly coustrained by the actual data iYk)P. An inaccurate 

(yet self-consistent) pair of estitrlates (xp, w) could co~iceivably be obtained as a solution. 

Variance Estimation 

When the variances are unknown, they must be estirnated as  well. To minimize the joint cost 

function with respect to the noise vnri;tnc.c:s, the full cost JJ is evaluated using the current 
A signal estimate {db)p ,  weight clstimates w, and the associated (redefined) predictions 2; = 

f (2k-1, . . . , ~ L - M ,  w). This results ill a straightforward substitution in Equation 2.10: 

This cost function can be lnirii~nized with respect to either CJ? or u: by using the current estimates 

of the signal and weights. 

Notice that the log terms are necessary for keeping the variance estimates small, because the 

quadratic terms go to zero as the varialices go to infinity. Also, the estimates fx: and predictions 
.. - x,, are themselves fi~nctions of the v;irinnces, so the numerators in the quadratic terms are also 

minimized with respect to 0: and a:. 

In the decoupled approach to joint estimation, by separately minimizing each cost with respect 

to  its argument, the values are found that lrlaximize (at least locally) the joint conditional density 

function. Sequential lnininlization of the costs in Equations 2.12 - 2.15 is performed by a two- 

observation form of the dual EICF ,~lgorithm (Kelson 1998 [60]); the errors-in-variables method 

performs a batch-style mininlizatio~i. Details on these algorithms are provided in Chapter 3. 



Error Coupling 

While clearly justified, the above tlirect substitution approach fails to take advantage of the infor- 

mation which is available about the e~.rars in the estinlates at each step of the optimization. 

Signal Estimation 

l+om the standpoirit of signal estimation alone, ~niriirnizing J J ( X ~ ,  w) in Equation 2.12 is not the 

best approach because the error assot-iatetl with w has not been taken into account. To see this, 

consider rewriting Equation 1.1 in t,errris of w: 

xk = f (xk-1, ..-xk-hl, W) f fk + vk 

yk = r ~ k  + rtk, 'dk € ( 1 . .  . N )  (2.16) 

- A 
where f k  = f ( x ~ - ~  ,... ~L. .M,w)  - f ( l ~ ~ - ~  ,... ~ ~ - ~ , w ) .  

Note that this representation is exactly equivalent to Equation 1.1, except that the time-series is 

now written as a functio~i of w inste;~tl of w. The error due to w is accounted for by introducing 

fk .  This reformulation allows for t , l ~  eu;rluat,io~i of p Y p X p l G  instead of p Y ~ , p j w .  Because w is 

available (and not w) ,  rriaximizirlg p,;l',;vl, sllould produce better signal estimates; this in turn, 

should produce better weight estiniatcs and allow for faster overall convergence. Furthermore, 

as the weights estimates converge, p y ; ~ , ~ ~ . ;  will converge to  p Y ~ , y l w ,  giving the desired signal 

estimates. 

The utility of this reformulat,ion is realized by assunling that the dynamics error, fk, is a zero- 

mean Gaussian process. When f (.) is n linear function, the dynamics error is a linear function of 

the error in the weight estimates: i .e . ,  fk = xr-flll . w, where w w - w. If w is distributed as a 

zero-mean Gaussian, then so is fA.. If f (.) is nonlinear, this represents an approximation. 

Assuming w is zero-mean is equi~c~lent to assuming w is an unbiased (E[w] = 0) estimate. In 

order for p Y y X p / +  to  converge to p,~,;vi, it is also necessary that w be a cons i s t en t  (Cov[w] -+ 0) 

estimator. 

The cost associated with p y y x ; v l G  is derived using p y p x ~ l +  = p y ~ l x ~ , +  . p x r l +  (cf. Equa- 

tion 2.8) in conjunction with Equat,ion 2.1G. The cost is: 

where U? is the variance of the error, fr;, in the prediction due to w. Predictions are given by 
f , k  ,. - xk = f ( x ~ - ~ ,  ... ~k-p,g, w) ,  arid the prcrdiction error 5; = z k  - 2; includes the usual process noise 

vk as well as the error fk,  giving it a variance U; + 0:. The error in the weights is thus accounted 
f 



for by an adjustment in the predict,io~i error variance. Note that because fk is independent of the 

current signal value xk, this log term is neglected by algorithms that operate sequentially on the 

data, such as the Kalrnan filter. 

In any case, all of the dual est,i~riation algorithms in the literature that have a distinct signal 

estimation step (e.y., EIV, EM, R.PE) 11ave until now minimized the cost in Equation 2.12. Some 

authors have suggested increasing the 1)rocess noise variance a: to account for model errors [78]. 

However, the more rigorous approach to inc.orporating t,lie model error statistics - represented by 

Equation 2.17 - has not been investigated elsewhere. 

Weight Estimation 

For weight estimation, the cost funct,ions i11 Equations 2.13 and 2.14 implicitly assume that the 

signal estimates { i k ) y  are exact,. As in the al~ove discussion on signal estimation, faster conver- 

gence might be obtained if the error associated with {ik)r is accounted for by maximizing the 

density p y y , ~ ~ w .  Again, will converge to p , ~ , ; ~ ~ ,  as the signal estimates converge. 

In order to  eva l~a t~e  p,yi;vlw, Equiition 1.1 is again rewritten: this time as 

Sx: = f (3k-1, ...$:k-nr, W) + - + vk 

vA; = $1, + $k + ilk, V ~ E  (1 . . .  N )  

- A where f~ = f ( ~ k - ~ ,  . . . z ~ - M ,  W) - f ( i k U l ,  . . . 5 k - ~ ,  W) , 
- A illid 21, = Z k  - i;k. 

Here, fk and 5 k  are assumed to be approximately Gaussian, and zero-mean under the assumption 

that 21, is unbiased. C o n ~ e r g ~ r ~ c e  o f  ~ ~ y , ; " , ~  t,o pY;y,;.rlw is provided by assuming that ik is 

consistent. Using the above representation arid the expansion p Y y q  1 ,  = py;"l )%yw . p2y lw results 

in the following cost function: 

where a:h is the variance of e k  = ( y k  - :ik), u~liicll co~itairis both n k  and the signal estimate error 

$a. Hence, a:, = a:k + a:. Pretlictio~ls tire given by 2;  = f ( $ k - l ,  . . . 2 k - ~ ,  w) ,  and the variance 

of the prediction error LÎ k = (i:k - 2; )  is tlenotecl 11y gk. The variances aZh and gk replace a; and 

a:, respectively, in Equittio~i 2.13. Also, note that the log ter~ns have not been dropped from this 

cost, because both azL, and ggk are fu~lctions of w. 



If the estimates { ik)y are t,alien to be independent of the weights, then the first two terms 

can be dropped, and the cost reduces to: 

where only is a function of w. As in the cost of Equation 2.14, this cost is not directly 

dependent on the data { Y k ) r ,  ant1 ~vlien used in the dual estimation setting, runs the risk of 

producing results that are consistent with {ik)r, but not with the data. However, while the 

cost JJ(jZ, W) in Equation 2.14 effectively treats the estimates ik as if they are the clean signal, 

Equation 2.20 avoids this pitfall by accouriting for the error in ik through g k .  

Variance Estimatior~ 

The errors in the signal and weight estimates can also be accounted for during estimation of the 

noise variances. Here, the idea is to m;isiniize pkr,lyr under the assumption that it will converge 

to  the density p X ~ W l y ~  as the signal and weight estimates converge. The autoregression is written 

as in Equation 2.18, except tliat the tlynamics error is defined differently, as 

The resulting cost function: 

is identical to  that in Equation 2.19 exc.cpt tliat predictions here are given by il, = f . . . ikPM,  w) 

and g k  is adjusted accordingly. Thc argurnent 0 5 s  used to indicate that the cost is minimized 

with respect to either a: or 0:. 

Whether for signal estimation or weight estimation, the above "error coupling" cost functions 

have the potential of off'ering faster convergence to a rriaximum of However, they require 

the approximatiori of jk as a zcro-~riearl Galissiari rarido~rl variable whose variance goes to zero 

asymptotically. The effect of this approxirriatior~ will depend on the specific data being considered; 

however, in Chapter 4, t,he error-coupled cost, is shown not to perform as well, in general, as the 

other dual EKF costs. Algorithms for rninirnizing the costs in Equations 2.17, 2.19, and 2.20 are 

provided in Chapter 3. 



The following section addresses the dual estiniatiori problem when the measurement noise is 

not white. Noise with correlat,io~i bctjweel~ saniples is usually referred to as colored noise. The 

development for the colored noise case 111ostly parallels the white noise case, although the resulting 

cost functions are somewhat different. 

2.3.2 Colored Noise Case 

The additive noise {nr )? is generally assunled in this chapter to be Gaussian with an autocorrela- 

tion function that is krlown within a scalar multiple. The simplest case, addressed in the previous 

section, is when the noise is white with possihly u~ik~iown scalar variance, 0:. When the noise is 

colored, the knowledge of its autocoi~clation can be enc.oded by writing the noise as a linear AR 

process: 

where the parameters mji) are assurrled to be linown, and v,,k is a white Gaussian process with 

(possibly unknown) variance o:,~. The noise n k  can now be thought of as a second signal added 

to the first, but with the distinction that it has been generated by a known system. If the system 

(i.e., w:)) were not known, the signal esti~riation problerri would be equivalent to  single-sensor blind 

signal separation. This rerr~ains a challenging a,rea for future research, and will not be considered 

here. 

Because n k  can be viewed as a second signal, it should be estimated on equal footing with 

xk. Consider, therefore, maximizing ~ , ; v , , ; v ~ ~ ~ ; v  (where niv is a vector comprised of elements in 

{ n k ) r )  instead of ~ , : , ~ , y .  We car1 write this as: 

and (in the absence of prior informat,ion about w) maximize pyyx'yl"nylw alone. 

However, writing tlie expansion 

exposes p y r l x r n ~ w  as an inlpulse ftu~ct,ion at the co~lst~rairlt yfJ = xfJ + ny . Hence, p y r x f r n y l w  

is singular, so maximizing it is eqnivalent to rriaxirnizing p X ~ , r ~ ,  subject to yy = xfJ + ny. 
Furthermore, p X l ~ n l ~  lW can be written as: 



because the signal and noise are i~ss~in~ed to be mutually independent. If the process noise terms 

vk and v,,k are zero-mean Gaussian wliit,o noise, t,lien: 

M, where nl, = Ci= ,  ruj:) . n k - , .  Thc corresponding cost is simply: 

where, as before, xl, = f (xk-1,. . . , z ~ - M ,  w). 

For estimation of {zk)?, {7zC)y, or W,  tlie log terms can be dropped from the cost function, 

leaving: 

minimized subject to xf + nf = y r .  Comparing this cost function to that of Equation 2.11, note 

that a term involving the colored measure~nent noise has been included, while the term involving 

the error (yk - xk)' has been replaced by the hard const,raint yk = z k  + n k .  

The above cost should be minimized with respect to {zk )y ,  w, as well as {nk)y  to solve the 

dual estimation problem. Again, one approach to this highly coupled optimization task is offered 

by the joint EKF algoritl~nl, in wliich all of the unknowns are combined in a joint state vector. 

The colored noise version of the joint EKF will be shown in Chapter 3. 

Decoupling wi th  Direct  Subst i tut ion - Colored Noise 

As in the white noise case, the joint estimation can be decoupled by minimizing one variable a t  

a time, while the other variables arc, fiscd. Note, the colored noise case also requires the explicit 

estimation of the measurement ~ i o i s ~  nf', in addition to x r  and w. 

Signal and Colored Noise Estirnatioil 

Because of the hart1 constraint y r  = xfj + ny, the signal and noise are tightly coupled. In fact, 

each one can be viewed as a function of tlie other. Thrrefore, J;(xy, nfi, w) in Equation 2.29 



should be minimized with respect to the signal and noise simultaneously, by evaluating it a t  the 

current weight estimate w. That is, 

where 2; = f (zk-l ,  . . . , ri -bf, C ) ,  as l,efore, and the predictions n; = ~2 ww(') . nk-, are made 

according to the known noise motlel. Tliis cost function is minimized subject to the constraint, 

yk = xk + nk, to produce signal arid noise estimates. 

Weight Estimation - Colored Noise 

Similarly, the weights can be estimated by niirlimizing J ; ( X ~ ,  n?, w), evaluated using the current 

estimates, {ili)? and {l iA)r, of the signal ant1 noise. The cost function is: 

Mn (i) . fik-i. where the predictions are defined as: 2;  = f (2kUl, . . . , 2k-M, w), and f i ;  = w n  

If the signal estimates, ik, are recursive functions of the weights, then the noise estimates are as 

well, by way of the coiistraint yk = :i.k + lil;. Note, however, that if the signal estimates are not 

taken to depend on the weights, t,hen the hard constraint becomes inconsequential, and only the 

first term in the above cost is used. Tlle cost reduces to Equation 2.14 on page 25. 

Variance Estimation - Colored Noise 

To minimize the joint cost function with respect to the noise variances, J: in Equation 2.28 on 

the preceding page is evaluat,ed usirig tlhe current signal and noise estimates, weight estimates w, 
A and the associated (redefined) pretlictiorls i: = f (.ti -1 ,  ..., i k - f i f ,  w). Again, this results in a 

straightforward substitrution: 

This cost function can be xllitlirnizetl with respect to a;, ut,, , or both. 

All of the costs in Equatiorls 2.30-2.32 call be ~riininlized sequentially with the dual EKF 

algorithm, developed in Chapter 3, beginning on page 89. 



Error Coupling - Colored Noise 

As discussed in the white noise case, faster convergence to a minimum of J,3 may be possible by 

using cost functions that take into account the errors in each of the estimates. 

Signal and Colored Noise Estimatiorl 

The density p Y ? X ~ n ~ l i y  provides an approach to estimating the signal and noise that takes into 

account the errors associated with w. This density is expanded as: 

where the first term is singular at the co~~strairlt yr = x r  + nr .  Therefore, pXpl, . pnrllir can be 

maximized subject to the same co~lstraix~t as before. This is evaluated using the alternative form of 

the AR model given in Equation 2.16 on page 26.  Defining predictions 5; = f ( x ~ - ~ ,  ... x k - M ,  w) 

with error variance (06 + a:) thus yicltls the cost function: 
f 

which is minimized with respect to xy and n r  subject to y r  = x r  + nr .  Note the similarity 

between Equations 2.34 and 2.17 011 page 26,  where the term involving the observation yk has 

been replaced by the hard constraint, ;~11d an additional term for noise estimation is included. The 

statistics of the noise 71k are not affkcted by the weight estimates, w. 

Weight Estimation - Colored Noise 

For weight estimation, accounti~lg for the error in the signal and noise estimates requires looking 

a t  the probability density functioll p,: ,;Y ilr l W ,  which is expanded as: 



If the signal and noise were estimated subject to yr = x r  + n r ,  then the first term above will be 

singular a t  yy = 12y + iir. The reniaining two terms are evaluated using the model: 

yk = ii; + fik, V k €  (1 . . .  N) (2.38) 

- A where fi; = f (:rl . . .-~.i;-fi,, W) - f (2k-l, . . . 2 k - ~ ,  W) , (2.39) 

Taking the negative log of pk;vjilyw . pilylw produces the cost function: 

where 2; f f (ik-1, . ..2i;-hf, W) , nk ( w  f i  , and gk and gn,k are the variances ) 
of the errors gk = (ii; - 2;) a r~d  7 % ~  = ( h ~ .  - fi;), respectively. Notice the similarity between 

Equations 2.41 and 2.19 on page 27. 

As before, if { i k ) r  is corlsitlered to be furictiorially independent of w,  then the cost function 

can be simplified. Here, the last two terms are dropped, yielding: 

where only il, = f (ik-1,. . . ,2i;-~1,  W) and g ~ .  are functions of the weights. As noted previously, 

this cost has the potential tlra~vback of relying on the dat,a {yi;)fJ only indirectly, through the 

estimates (2k)fJ .  

Variance Estimation - Colored Noist? 

Similarly, during estimation of thc process noise variances a: and aZn, the errors in the estimates 

of all three quantities i r ,  ny, w can 1)r take11 into account by maximizing the conditional density 

p,yfiyoly;. The autoregression used for a valuating this density is written as in Equation 2.36- 

2.40, except that the dynamics elror is tlcfined as: 

The expansion 



produces the cost function: 

minimized with respect to a: arid u;,, . sut~ject to g k  = ik + i ik .  

Algorithms for minimizing the error-coupled cost functions just described belong to  the broad 

class of joint estimation approaclics, arid are explored along with the other dual EKF methods in 

Chapter 3. The next sectiori presents cost furictioris for a second class of methods, referred to in 

this thesis as marginal estimat.io.ri approaches. 

2.4 Marginal Estimation 

As described in the previous section, joint estimation methods are concerned with maximizing 

p x p w l y ~  directly. A reasonable alternative to t,his approach can be found by separating the joint 

density function into two terms5rrs: follows: 

or, in the case of colored measurerrient noise: 

Often, i p  is found by maximizing tlie first term on the right, and w is found by maximizing the 

second term, p w l y ~ .  This approach is reft!rretl t,o i11 t,liis thesis as marginal estimation. 

The second term, pwlyy ,  is intlepe~~dent of xy; o~ily the first term (pxFlwyr in Equation 2.46) 

is a function of the signal. Hence, rnasimizi~lg: the first term on the right with respect to  xr is the 

same as maximizing the joirit density, p x f i w l y ~ ,  on the left. However, both terms are functionally 

dependent on the weights, so the sanie is riot true of maximizing the second term, p W l y ~ ,  with 

respect to  w. That is, because the first term depends on w,  maximizing pwlyy is not the same as 

maximizing the joint density pxrwlyr wit11 respect to w. 

Nonetheless, estimates w found t)y l~iaximizing the marginal density function pwly r  are con- 

sistent and unbiased, if contlitio~ls of sdficient excitation are met [54]. The marginal estimation 

approach is exemplified by the rriaxirnui~i-likelihootl approaches [26, 441 and EM approaches [58, 761 

'A second expansion p N , , ~ ?  = . P ~ ~ ~ ~ ~ v  LS also possible, but does not yield practical algorithms. 
'=I 

This is discussed in more detail ill Apprntlix 13. 



mentioned in the introduction. Prediction error algorithms (e.g., RPE [47]) represent an approxi- 

mation to  the marginal estimation approach. 

While the present claim is tliat the relationship of these algorithms to  the joint estimation 

methods can be urlderstood in terms of Equat,ion 2.46 01. 2.47, it is important to  note that this 

equation does not represent their primary nlotivation. R.ather, the motivation for marginal esti- 

mation methods comes from consitleririg t,lie marginal density pwlyp  to be the relevant quantity 

to  maximize, rather than the joint density 

However, in order to maximize the rriargi~ial density, it is necessary to generate signal estimates. 

Furthermore, these signal estimates are invariably produced by maximizing the first term p,? Iwyy 

(or p x ~ , ~ l W Y E T )  of Equation 2.46 (2.47) in some way. This last fact justifies the use of Equation 2.46 

(and 2.47) for understanding the relat,ionship between marginal estimation and joint estimation 

approaches. 

The pertinent cost functions for marginal estimation are laid out in the remainder of this 

section, while the algorithms are tlescribecl in Chapter 3. 

2.4.1 Marginal Weight Estimation 

As just mentioned, marginal estimation nirthotls find the weight estimates w by maximizing the 

second term, p,~,?, in Equation 2.46. Applying Bayes' rule here produces: 

If there is no prior infor~nat~ion on w, ~riaxirnizing this posterior density is equivalent to  maxi- 

mizing the likelihood function p,?I, Assurning Gtaussian statistics, the chain rule for conditional 

probabilities can be used to express tliis as (see Appendix A): 

is the conditional mean (and opt,inlal prc~iiction), rr;, is the prediction error variance.Note that the 

assumption that ,oyyiw isGaussian is orlly true if the rrlodel f (.) is linear. For nonlinear models, 

the above form is an approxi~nation lrlatle rtrl ( idd i t i07~ to the Gaussian assumption on the noise 

terms, n k  and 'UL 

Jives: Taking the log of this likeliliootl fiiiiction L' 



When the signal model is linear, - (:an be computed using an ordinary Kalman filter. For 

nonlinear models, however, the expectation can only be approximated by an extended Kalman 

filter (see Chapter 3). 

Note that the log-liltelihood fuiict,io~i t,akes t,lle same forrn whether the measurement noise is 

colored or white. The following paragraphs describe how t,he log-likelihood is the foundation for a 

few different marginal estimation rriethods. 

Prediction Error Cost 

Often the variance 02, is assu~ned (incorrectly) t,o be independent of the weights w and the time 

index k .  Under this assumption, the log likelihood can be maximized by minimizing the squared 

prediction error cost function: 

Recursive prediction error algoritlirris [47. 87) rriini~nize this simplified cost function with respect 

to the weights w.  While questionable from a theoretical perspective, these algorithms have been 

shown in the literature to be quitc usrfi~l. 111 addition, they benefit from reduced computational 

cost, because the derivative of the variance 0,2& with respect to w is not computed. 

Maximum-Likelihood Cost 

When the dependence of the prediction crror variance on the weights and time index is taken into 

account, the form of the cost function is: 

Note, Jrn"w) is the rriaxinlunl likelillootl cost, while the prediction error cost JPe(w) represents 

an approximation. 

EM Algorithm 

Another approach to rnaxinlizing pwlyy is offered by the Expectation-Maximization (EM) algo- 

rithm [16, 76, 711. The ER.1 algoritli~n can be derived by first expanding the log likelihood as: 

Taking the corlditiorlal expect;it,iol~ of t)oth sides using the conditional density P,~~,,~ gives 



where the expectation over X of the left liand side has no effect, because X does not appear in 

1% pyylw. 

Note that the expectation is conditiorial on a previous estimate of the weights, w. The second 

term on the right is concave by Je~isc~i 's  inequality [Ill, so it will decrease for any solution w 

moving away from the current est,irn:tte w (arid the negative will increase). Therefore, choosing 

w to maximize the first tern1 on tlie right alone will always increase the log likelihood on the left 

hand side. In other words, in order to rnnxi~ilize pyrlw, the EM algorithm repeatedly maximizes 

ExlYw[logpyrxE.lw Jyy, w] with respect to w, each time setting w to  the new maximizing value. 

For the white noise case, then, tlie EM cost function is: 

where x; 5 f (xkVl,.  . . , xk-nf, w), as before. Tlie evaluation of the expectation in Jem is discussed 

in Appendix F. 

Colored Noise EM 

When the measurement noise is colored, p y ~ X ~ ~ W  is no longer easy to  evaluate. Instead, the 

following expansion is used: 

'og~yr lw = l o g ~ y ~ x ~ n r ~ w  - l o g ~ x ~ ~ ~ ~ w y y ,  (2.56) 

so that ~ ~ ~ ~ ~ ~ [ l o ~ ~ , ~ ~ y , ~ ~ ~ ~ ~ ~ ~  w] is the term to be maximized. Recall, however, that in: 

the first term is singular at yF = xy + ny.  Hence, one should instead maximize the expectation 

of the second term subject to y y  = xy + n?. This gives tlie EM cost for colored noise as: 

Details of the EM algorithn~s are j)rovitled i11 the next chapter. 

2.4.2 Marginal Variance Estimation 

If the noise variances unknown, they can be estimated along with the weights by including them 

in the log likeliliootl functioli. Tlie rc?sultant prediction error, maximum-likelihood, or EM cost 



function can be minimized. 

Predic t ion  E r r o r  Variance Es t imat ion  

The prediction error cost is the sanle as for weight estimation: 

except now the prediction is vie~ved as a recursive function of the unknown variance, cr2. 

The form of this function is explored in Chapter 3. 

Maximum-Likelihood Variance Est imation 

The maximum-likelihood cost function for variance estimation is: 

This is identical to the maximunl-lilcelihootl weight cost function, except that the argument has 

been changed to  emphasize the est,irnation of the unknown variances. The specific ways in which 

yklk-1 and a:, depend on the variance t,er~rls are sllown in Chapter 3. 

E M  Variance Es t imat ion  

Alternatively, the variances car1 be estimated withill the EM framework. If the variances are un- 

known, then the expectation is condit,ioned on their estimated values during the E-step. For white 
A 

noise, this means the expectation  lo^ P y y x y  lyy, w, u:, a;] is maximized with respect to  
,. A 

w, 0,", and a,: during the RI-step. For colored noise, EXNIYW [log pxYny  IYF, w, cr;, a;"] is max- 

imized with respect to w, u:, and IT,, during the M-step. The forms of the cost functions are 

developed fully in Chapter 3, and Appendix F. 

2.4.3 Marginal Signal Estimation 

As noted at the beginning of this srct,ion, rrlarginal estimation methods are motivated by the 

maximization of the margillal dc~isity p y ~ l w  aloue. However, as shown above, in the maximum- 

likelihood cost the tern1 - 1111lst \)(% C O I I I I ) I I ~ , F ~ :  illld EXl [log p y ; y x y i , ]  (or EXNIYW [log p x y n r ] )  

is required for the EM algorithnl. 

As shown in the next chapter, conipnt,ing either of these quantities requires the computation 

of some form of signal estirnat,e. 111 tllc wliit,e noise ca.se, these estimates are invariably generated 



by maximizing p x y i w y ~ ,  which is tlic: first t,erm in Equation 2.46. Because p x ~ I w y ~  is being max- 

imized, the interpretation of the marginal estimation methods given in Equation 2.46 is justified. 

The term can be written as: 

and the signal can be estimated by rliaxirrlizing the numerator p y y , ~ l w  with respect to  {xk)y .  

This is equivalent to  minimizing the joint tost J J  ( x r ,  w) defined in Section 2.3 by Equation 2 . 1 2 ~ .  

Similarly, for the colored noise case, both signal and noise estimates are required, and are 

generated by maximizing p,;.r,,i~lwy:r which is the f i~ s t  term in Equation 2.47. This can be shown 

to  be equivalent to ~rli~iimizirig the joint cost .J,J(xfi, nr,  w) defined by Equation 2.30 on page 31. 

2.5 Discussion 

The dual estimation problem is to find signit1 and weight estimates which are in some sense opti- 

mal. A sensible measure of opt,imalit,y is give11 by the joint conditional density p x y w l y ~ ,  and the 

corresponding cost function ~j (xjV, w).  The joint cost ~ j ( x p ,  w) is essentially a two-argument 

function, with a fairly high degree of coupling between tjhe arguments. Although J j ( x y ,  w) can 

be minimized with respect to both tlic signal u id  weights simultaneously (e.g., by the joint EKF, 

as shown in Chapter 3),  anot,her approach is to rriinirnize the function by alternately minimizing 

with respect to one argument and the11 the other. This can be done either by substituting current 

estimates for one of the arguments in the r:ost, function, or by deriving new cost functions that 

incorporate the statistics of these est,iiriates. These alt,eniative cost functions account for the errors 

in the estimates of each argu~nent wllile tile ot,her is being estimated. 

Still other costs can be found by expanding the joint density, and minimizing the terms sep- 

arately. While these marginul estirrlotion approaches fail to maximize the joint density, unbiased 

estimates of the parameters are produced. These nlethods, exemplified by maximum-likelihood, 

prediction error, arid EM algorit,llrns, have 1,ecn sliown t,o be quite useful in practice. 

The various cost functions derived in tliis cliapter are summarized in Table 2.1. For brevity, 

only the white noise forms of the costs i~nd tlcnsities are shown; equation numbers for the colored 

noise case are shown in parentheses. Flirt,lierrriore, no explicit signal estimation cost is given for 

the marginal estirriation met,liotls I)c~causo signal est,irnatiori is only an implicit step of the marginal 

approach. Marginal signal esti~r~at~ion is perfornied using the joint cost J j (x? ,  w). 

3The error-coupled cost J e c ( x p ,  w) can ;~lso be u s t ~ i  t.o gruerate the necessary signal estimates. However, this 
approach is not explored in this t l ~ e s ~ s .  



Table 2.1: Summary of the cost functions derived in this Chapter. Some costs differ slightly for the 
colored noise case; their equation numbers are enclosed in parentheses. 

Synibol 

Jj (x? , w) 

Jj (x? , w) 

G 
d 
.4 

In other words, the signal estimation cost functions for joint and marginal estimation are the 

d 
c . r z 

same. The two approaches primarily tliffer. tlicn. i11 the form of the cost functions used for weight 

J J ( x F ,  w) 

J,? (Pp  , w) 
Jj(a2) 

J" (x? ) 
JeC (w) 

Jfc(w) 

estimation. The following q ~ r c ~ l z ' t n t l ~ ~ e  c~orrilncrits about the weight estimation part of the problem 

Narnc: of Cost 

joint, 

joi~lt sig~ial 

J P e  (a2)  

JJ1"(w) 

~ m l ( ~ 2 )  

JerIL (a2)  

might therefore shed sonie light on the txadeoffs between the approaches: 

Density 

px.~,Iyiv 

O X F W I ~ ?  

Equation 

2.11(2.29) 

2.12(2.30) 

joint weight 

joint weight (indep.) 

joint variance 

error-coupled sigrial 

error-coupled weight 

e.-c. weight (intlcp.) 

By maximizing pyylw, rnnrginal rsti~rlation methods ensure an unbiased estimate of the 

Argument 

{xk)fJ, w 

{ x k ) F  

prediction error 

mix. likelilioocl 

max. likelihootf 

Ehl 
ELI 

weights. However, the meilsurclnlent rioisr in the data ( I J ~ ) ~  will affect this estimate by 

PxYwlyp 

pxy 1 

p x y w i Y ~  
pX;v*l 

p W y  

p k ~ l w  

increasing its variance. 

PWlY;V 

~ W I Y ; "  

Pwlyp 
7t.u. 

n.u. 

For the joint estimation ~net~liotls, lower variance weight estimates can be obtained by mini- 

2.13(2.31) 

2.14(2.31) 

2.15(2.32) 

2.17(2.34) 

2.19(2.41) 

2.20(2.42) 

mizing p y ~ x ~ I w  or p Y ~ k r l w ,  using signal estimates. However, the resulting weight estimates 

w 

w 

a:,a2(ain) 

{xk)fJ 
w 

w 

2.59 

2.52 

2.60 

2.55(2.58) 
2.55(2.58) 

will only be unbiasetl if (ii.n.Jp has converged to { ~ ~ . ) y .  In fact, the potential for lower vari- 

a:, ~ ; ( a : ~ )  
w 

a;, aZ(at,) 
w 

a:, a i ( a i  ) 

ance, higher bias weiglit estiniat,r.s is \,c~rified experimentally in Figure 4.25 and Figure 4.41 

in Chapter 4. 

If the cost functions corrrspontling to p,yIw end pk~r lW are used, the variance of w is further 

reduced, but, at the expense of even greater bias if i f k ) ?  has not converged to  the true 

signal. 

These comments are rathrr too vague to I)? of anv irnniediate use, because the relative values 



of "lower variance" and "unbiased" will ultimately depend on various properties of the actual data 

(such as its length and SNR), a ~ l d  the optiinizat,iori procedure. Of much greater use would be a 

quantitative theoretical analysis of tht: l)i:~s/vari:\nce t,radeoffs of the different cost functions. This, 

however, is a formidable task, and will not be attempted in this thesis. 

Further complicating matters is tlic fact that different approximations are used to  arrive a t  

the various joint arid marginal cost fur~ctions. The relative severity of these approximations is 

not inherently obvious, and will largely depend on the particular noisy time series at hand. The 

purpose of this chapter, rat,her, is t,o sliow what tlie approximations and assumptions are, and how 

they lead to different dual estimatio~~s rnethods. 

However, experimental eval~iat~ions ;111tl c:omparisons of the variety of cost functions are pro- 

vided in Chapter 4. In this col~t,ext,, ttllc. ithove c:ornrrlents will engender useful hypotheses for 

interpreting the results. For example, the j o i ~ ~ t  cost tends to show its best performance on signals 

with lower effective noise levels, where tlie errors in will tend to be less severe. These signal 

estimates are less likely to proc1uc.e hias in t11c ~,eight,s. For linear models - for which the weight 

errors can be computed - the bias-variance t,ratleoff car1 be observed even more directly, as men- 

tioned above. Another outconie of tlic! experiments in Chapter 4 is the similarity of performance of 

the prediction error and maxirnuin-likeliliood costs in various settings; this fact can be explained 

by their cornrnori theoretical untlerpinnings.. 111 general, understanding the relationship between 

the various cost functions, arid between joint itnd ~nargirlal estimation methods, provides a guiding 

principle for selecting an algorithm givc?n a r~articular application. 

Chapter 3 describes a farrlily of algorithtiis, called the dual extended Kalman filters, for mini- 

mizing the variety of cost functions just tlcrived. -Algorithmic issues, such as variance initialization 

and computational expense, are also discussed. 



Chapter 3 

Algorithms 

3.1 Overview 

In the preceding chapter, the dual estilr~atiori problem was considered from a probabilistic perspec- 

tive in order to dernonstrate the relationship between several different cost functions. These cost 

functions approa,ch the ofl-line probloii~ of c.st,inlat,ing the parameters w and time-series { x k ) y  

from an entire sequence of noisy data {yr - ) r ,  which is available all a t  once. This procedure is 

necessarily noncausal because estimates of the signal a t  times k = 1,2,. . . , N all depend on the 

measurement, y ~ ,  a t  final t ine  k = A'. Off-line processing typically entails an iterative proce- 

dure of repeatedly minin~izing t,hc cost witli rc!spect to first the signal, and then the weights (see 

Figure 1.5(a) on page 10). 

Although iterative algorithms ilre rnentioned in the following sections whenever they are rele- 

vant, the focus of the current chapter is on the) seyLentinl estimation of the signal and parameters 

as the noisy measurernent.~ :c/k bc.c:on~r ;~vailal,le, as shown in Figure 1.5(b). Iterative algorithms 

are most useful when the length N of t,lic r~oisy tirrie-series is fixed. Sequential algorithms are more 

appropriate for on-line applications, wllerclin new data arrive during processing; the length of the 

time-series continually increases with t l ~ e  tirne index, lc. 

While it is certainly possible tjo apply hitt,ch-style estimation to  the on-line problem by using 

all the available data {yt}f at, every tirnc step, this approach requires recomputing estimates of the 

entire trajectory { z l ) t  and w fro111 {:lit):' t>a(.11 tirne a new nleasurement yk arrives. The expense 

of such an approach becornes prohibitive iis k: -+ cm. 
Instead, sequentin1 appruacl~rs 11nvc t,he property that their computational and memory re- 

quirements are constant in tirne. Such ;ilgoritl~ms are t,ypically recursive in nature, so that the new 

information i11 ~neasurement yk is cor~lbinr?d with t~he existing estimates of the signal and weights. 

For weight estimation, the previous e~tirriat~e of w (t1aw:d on data {yt):-l) is updated upon arrival 

of yk.  During signal estimation, rat1lc.l. t11a11 uptlate the entire trajectory of estimates {3t)t, only 



an M-vector of lagged values xb [ J ~ ,  . . . , sa -h f+ l ] '  is estimated using the new measurement. 

As mentioned in Chapter 1, sequential ~nethotls can easily be applied to off-line estimation; the 

algorithm is repeatedly passed over tlic saine set of data, with the weights from one iteration used 

to  initialize the next. 

Even though they do riot take advantage of data, in the future, sequential algorithms should 

still have the property that the c7rr.r.errt estir~iates itre optirrial with respect to  the corresponding 

batch cost f~inction on tliv same tla.t'a. For example, a t  time k = N, recursive least squares 

(RLS) produces an estimate wN t,liat is equivalent t.o the batch least squares solution using {yk)r; 
similarly, the Kalrnan filter prot11it:c~s an est8iinat,e xN equal to that produced by the Kalman 

smoother. However, the seque~it~ial estinlntes of t8hc entire series will not generally be the same as 

the non-causal estirnates. The dual I<alrnan filter described later in this chapter is therefore not 

equivalent to a batdl-style algorith~n. 

Before introducing the dual Ka11ri;in filter, tlie next two sections review some standard sequen- 

tial estimation algorithms. First, Sec.t,ion 3.2 tlcvelops the sequential signal estimation problem 

assuming a know11 motlel, and provides a tl~eoretical review of the Kalman filter (KF) and ex- 

tended Kalrnari filter (EKF). Second, the application of Kalman filtering to weight estimation 

using a clean signal is slio\vn in Srtctiori 3.3; an alternate form of the weight filter - which is useful 

for minimizing other cost f~inct~ions is also introduced in this section. 

The remainder of the chapter consirlers t,lie dual estimation problem. The joint EKF algorithm, 

in which the signal and weights are esti~nat~ecl in a combined state vector, is described in Section 

3.4. Separate state-space r.epresent;ttio~ls are tised ill Section 3.5 to develop the family of algorithms 

called dual Kalnian filt,ers. Finally, iultlitioilal issues relating to  the practical implementation of 

the dual EKF are addressed in Sectioil 3.6. 

3.2 Signal Estimation 

This section develops the use of Iinlrnau filtc~ing for MAP signal estimation when the model and 

noise statistics are known. The tliscussion shows the need for a state-space representation of the 

time-series. The unknown nlodcl prol>lv~ri is treated in Sections 3.4 and 3.5. 



3.2.1 Batch Estimation 

As just stated, a batch algorithni uses all of the available data to estimate the entire signal {xt):. 

In the MAP context,, this is stated forlnally as: 

which gives the most probable estitiiat,e of t,he signal, given the noisy data up to  the present time 

I;. Bayes rule can be used to rewrite t,his tlerlsity as: 

Because the denominator does riot del)end on the signal, xf can be estimated by minimizing the 

negative log of the numerator. As  show^^ on page 23, when the measurement noise is a white 

Gaussian process, this gives the cost function: 

The optimal estimate if cz1.11 be found either by batch least-squares (as describe in the errors-in- 

variables context it1 Appendix G)?  or rocursiwtly, using a Kalman smoothing algorithm [68]. Both 

of these algorithtns are necessarily 08-lirte, aud produce {it): as defined in Equation 3.1. 

3.2.2 Kalman Filtering - White Noise Case 

The preceding development ~nacle t11c. ;~ssumption that the additive measurement noise is white. 

This assumption is also rrlade in the sll\)seque~it paragraphs; the colored noise case is considered 

in Section 3.2.3 on page 51. 

A sequential algorithm can be tlerivc?d if only the MAP estimate of the current signal value xk 

is desired, rather than an estiiriatc of t,he c:l~tirc. signal {x:~}!. As shown in the following develop- 

ment, this will require the introtl~~ction of a state-space representation of the system. Sequential 

MAP estimation seeks the current cstimatc! ik t,llat, is most probable given the model and all the 

measurements ( y t ) f  up to and inc.luding the present tirne. This goal is formally expressed as: 

:ck = arg 111a.x c ) : ~ ~  IY :.,. 
r A. (3.4) 

Note that the value .ik satisf'ying this ecluatior~ is the same as the estimate of xk found by minimizing 

J ( x f )  in Equation 3.3. In the sequential frarrlrwork, however, estimates of all the past values of 

the signal are not desired; only a lirriitrd ~luriiber of values are needed, as shown in the next few 

pages. 



Figure 3.1: The Kalman filter (dashed line) and Kalman smoother (solid line) estimates are equivalent 
at the final time k = N = 40. The noisy data (dotted line) were generated by adding white noise t o  a 
linear AR signal. 

The joint density to be maximized car1 bo rewritten as: 

Because py:-l lw and p,? lw are fii~~ct,ionall\: intlependerlt of x k ,  the MAP estimate can be obtained 

by maximizing pzk y k  lyt- I alone. This is expanded as: 

Note that p Y k l y ~ - l  :ck - - pYA, I : ~ ~ .  If t,he process noise v k  and measurement noise nk are both 
1 

zero-mean white Gaussian processes, tlleu Equation 3.6 evaluates as: 

where i: = ~ [ z k I { y ~ ) f - ' ,  w] and pl_ = E[(:cL - i;)"{yt)F-', w] are the prior mean and variance 

of x k  given the data {:l/t) i- ' . hut befo1.f~ the. rneasurernent y k  has arrived. Taking the negative log 

gives the cost function: 

which can be rnininiized wit11 res1)ec.t t,o :r:k t,o ~)l.otluce the desired sequential MAP estimate of the 

signal. Note that both 0% ant1 1); are fu~lt~tioiially independent of xb. 

Minimizing J(xk) wit11 r e sp t~ t  t,o .,:A is etlliivalent to minimizing the batch cost ~ ( x f )  of 

Equation 3.3 wit,h respect to : c k ,  as illtlstratecl i11 Figure 3.1. In this sense, the sequential estimates 

are optimal with respect t,o trhc 1~1tc:ll c.ost, fiuic.t,ion. However, ~ninimizing the sequential cost J(xk) 

first requires determining the value of the prior mean (or prediction) and its variance p; .  As 



is shown in the following devrlopnielit, these prior statistics are a function of the statistics a t  the 

previous time step; calculating them requires a recursive estimation procedure derived within a 

state-space framework. 

Linear Model 

For the sake of simplicity, the calculation of priors is presented first for the linear-model case; the 

nonlinear AR model of Eyuat,iori 1.1 is rtylaced by the following linear one: 

By defining xk-1 = [zk-l,  . . . , zk-nrlT, the first equation can be rewritten as xk = wTxk-l + vk. 
Substituting this expression for z k  in :?; = E[IC~ I {yt)f- l ,  W] gives: 

A where i k - 1  = E[xL-1 ({yt)f-l ,  w] is the c~onditional (or posterio$) mean of xk-1 given the data 

{yt)f-l. Similarly, pk = E[(zk - i:;)'ll{:yt):-l, W] can be rewritten as: 

where PI,-1 4 E[(xk-1 - k k - l ) ( ~ k -  I - kk- ) ' r~{Y1)~- l .  W] is defined as the conditional (or poste- 

rior) covariance of xk-1 give11 the data {yt};-'. 

In summary, generating posterior (?stirnates of the signal kk requires computing the prior mean 
,. - xk and variance p;. However, co~nputi~ig the prior mean and variance requires computing the 

posterior mean xk-l and covarialic:e Pk-,  iit t,ll(? ~)x.evio~is time step. The situation is depicted 

in Figure 3.2. At the nest time st,ep, t,o cornpnte 2k+l when yn+l arrives will ultimately require 

thk vector estimate jlk (not just li.k), as well as t,he error covariance Pn. Therefore, sequential 

estimation of the signal {zk}y requires co~rlpnti~ig xn. and Pk h:eccursively for all k E [ I , .  . . , N]. 

l T h e  use of the term pos te~ior  1lerei11 ;~l>plies to the statistic of xt given data  up  to  time t ,  whereas the  term 
prior applies to  the statistic of xt given tlati~ u p  to  time ( t  - I).  



Pk-1- P, - PA -PC+, - Pk+l 

posterior I posr~rior prior posterior 

Figure 3.2: The dependence of signal estimate ik on state estimate x k - 1  and covariance P k - 1 .  

Note also that when the corlditional density p,Llu:w is Gaussian, then the MAP estimate itk 

(which maximizes this density) is thtl sarnc iLS the contlitional mean E [ x ~ ~ { ~ ~ ) ~ J ,  w]. Hence, ik 

can be taken directly from the first elenlent of the corldit,ional mean kk = E [ x ~ I { ~ ~ ) ~ ,  w]. 

State-Space Representatiox~ , 

The vector xk which must be estirr~atctl is usually referred to as a state vector. The current state 

of the systerri is defined as the ~ninirnal :unot~rlt of iriforniation such that all future behavior of 

the system can be deteirnirled fro~n tlit. futurc~ inputs to the system and the current system state. 

For a more forrnal arid cornplete tlist~ussio~i of state and state-space representations of systems, see 

[6, 81. 

The linear .4R process of Equation 3.8 can he equivalently described by the following state- 

space equations: 

= 11 o . .  01 -xk  +nk.  

The equivalence with Equation 3.8 is src.11 1)y lool<irig at, the top row of the matrix equation 3.11. 

An infinite variety of state-space rc~~rt~se~it:l t io~ls can br found for a linear AR model by projecting 

x k  onto an alternate basis ( a i a  a lii~eal ti a~lsfornlation). This transformation will of course change 



the form of the system matrices A, B, and C .  The particular form shown here is called the control 

canonical rej~resentation [19], as deter~ni~lctl by the special structure of the A and B matrices. 

Linear I(al~nan Filter 

The desired conditional mean ik itnd covariance Pk in Equations 3.9 and 3.10 are calculated by 

the Kalman filter algoritlini when the ltriown niodel is linear with Gaussian statistics. Because the 

mean and covariance completely spt~cify a Gaussian density function, the Kalman filter effectively 

estimates the entire conditional tlrnsitp p,,,,:, a t  each time step. 

The mean and mode of a Gaussian probability density function are identical, so calculating 

the conditional mean ik is equivalent to c;il(.ulating the MAP estimate; i.e.: 

The first element of this state estimate satisfies Equation 3.4. Also, note that the covariance Pk 

of the state cari equivalently be intcrprcted ;LS the error covariance of the MAP estimate: 

Hence, the Kalman filter equatio~is can I)(? derived from either a minimum mean squared error 

(MMSE) approach (yielding t,he colirlitioilal rnean) or fro111 a MAP perspective. There are numer- 

ous textbooks [43, 791 on the subject of Kalnia~i filtering; most of these explain the topic from 

the MMSE perspective. A derivation of tlie Kalrnan filter from MAP principles is provided in 

Appendix C.1 of this thesis. 

The Kalman filter equations are shown in Forniula. 3.1. For a linear model and Gaussian 

noise statistics, the Kal~riarl filter prot1uc:es tllc optimal causal estimates 2k that minimize J(xk) 

in Equation 3.7. These cst,imatt~s artx ol)ti~rl;il in hot11 the WIMSE and MAP senses. Maximum 

likelihood signal estimates are obtained by let,t,irig the initial covariance Po approach infinity, thus 

causing the filter to  ignore tlie value of tlit. initial state x o .  

Nonlinear Models 

When the autoregressive function f (3:1.-I. :LL-.?, . . . , ~ k - i \ f ,  W) in Equation 1.1 is nonlinear, then 

the Kalma~i filter cquat,ions cari no 1ollgt:r l)e applied directly. The nonlinearity disrupts the Gaus- 

sianity of the statistics, ~nakillg it i11il)ossitjle t,o obtain optimal estimates merely by propagating 

the mean and covaria~lce of the post,rrior tlciisity. 

For general (i.e., non-Gaussian) tlelisit,ies, an optimal MMSE or MAP estimate can only be 

obtained by calculat,irig the entire? tlriisity fi~rictio~i / I , ~ , , ;  at each time step: a computationally 



Initialize with: 

Xo = E[xo] (3.15) 

Po = E[(xo - Xo) (xo - X O ) ~ ]  (3.16) 

I For k E ( 1 ,  . . , m), the time update equat,ions of the Kalman filter are: I 

and the measurement update equat,ions: 

I I 

Forniula 3.1: The linear Kalman filter equations. 

intractable task. Various approxini:itions to the density can be calculated, however, with varying 

degrees of corrlputatiorial expense. 

One of the more costly (and rriore exact) approaches are the sequential Monte Carlo algorithms, 

which sample many points from the 1)ostclior density function. The expense of these approaches 

comes largely from the need to propagate "clouds" of samples through the nonlinear function. A 

review is provided in [14]. 

Another approach to the nonlinear estimation problem is to approximate the conditional den- 

sity with a Gaussian, and ci~lculat,e only the covariance and mean, as before. While clearly inexact, 

these methods have a great,ly reduced computational cost in comparison to the Monte Carlo sam- 

pling approach. Furthermore, the sn boptirnal solut,ions they generate are perfectly acceptable in 

many situations, particularly wlicll the density reniains unimodal, or wher, the nonlinearity is not 

severe. 

The ext,ended Kalman filter (EKF) is the most conlnlonly used of these Gaussian-approximation 

methods. Under the Gaussian assurnpt,iun, the estimation criterion is the same as expressed in 

Equation 3.7: 

As before, calculating :ii and p; rccl~iiles xk-1 arid Pk-, from the previous time-step (the situation 



of Figure 3.2 also holds for the nolilinear cttse). However, generating these statistics is problematic 

in the nonlinear case. The EI<F prodlicrs upp~.ozz*mate conditional means k;, and covariances 

PkPlr and PI; by linearizing a set of ~lonlirieilr state-space equations". 

Nonlinear State-Space Representation 

A state-space representation for the niorc. general nonlinear AR process is given by: 

where F(.) has been introducet! :is a vector-valued function whose first element given by f (.), and 

whose remaining elerrierits t,alce 011 sflifteti values of the previous state. 

Extended Kalman Filter 

Under the Gaussian assumption, c~stilriation of t,he posterior mean 2k and covariance PI; from the 

prior statistics xi ant1 PL ( i . e . ,  the rrieasurmlent equations of Formula 3.1) is the same as in the 

linear case. However, generating priol lrieari 12; m d  covariance PL through the nonlinear function 

requires an approximation, as shown ill .Appendix D. 

Defining Ak as: 

the EKF is obtained rncrely hy rciplacing the I<F the-update equations (3.17 and 3.18) with 

Formula 3.2. Note that, this definit,ion of Ar gc~neralizes the definition of A  in the linear case. 

2A recently published algorithm calletl tire tlizscelrted filter (IJF) [35] offers a higher-order approximation to the 
mean and covariance. The UF  is not discussetl i n  t,his thesis. 



I I 
Forniula 3.2: The extended Kalman filter time-update equations. 

3.2.3 Kalman Filter - Colored Noise Case 

When the measurement noise, n k ,  is colorc<dl t,he I<F and EKF equations require some modification. 

As discussed in Section 2.3.2, colorcd noise can be thought of as a second signal added to the 

first. In fact, because the weights w ilrc itssurned to be known in the present section, the only 

real distinction between :ck and 71.k is tjhat t , h c h  signal :ck might be generated by nonlinear model, 

whereas n k  is assumed to be generated by it linear .4R model. 

Hence, the colored noise Y L ~  ouglit t,o l ~ e  c~stiniated on equal footing with the signal. In the 

context of sequential MAP estimation, this means: 

( i ~ ,  ? i ~ )  = arg rnax p ,,,,, ly!w, 
.Ek , l l ,  

( 3 . 2 7 )  

where the joint density can be expanded as: 

However, due to the constraint ?jk = :~:k + ~ i k ,  tile density pu, ly;-~zhnkw is therefore a Dirac 

delta function. Also, the densities p y ~ - t l w  '111d pyt lw are functionally independent of xk and n k .  
I 

Hence, maximizing p,, ,,, I,:, is equivalent to ~ilaxi~riizi~lg pzhnk k - l W  subject to  the constraint I Y ,  
yk  = x k  f n k .  Furtherxnore, pZk,,klY;-lW can 1~ written as: 

under the assumptiori that the signal and noise are statistically independent. If the process noise 

terms vk and v,,k are zero-mean Gaussian white noise. then: 

(.k - q2 1 ( n k  - - Pxo exp - Pzknk 1 y t - l ~  - ( 21); 

where fiI; = ~ [ n r , l { y ~ } f - ' , w ]  and = E[(lrn - . i l ~ ) " { y t ) ~ - l , w ] .  Taking the negative log of 

this expression, the corresponding cost is silnply: 

minimized subject to  , y ~  = rk + / L A .  As in the white noise case, in order to  generate the desired 

MAP estimates ik and 7 i k ,  it is fi:bt I I ( Y ( ~ S S H ~ Y  to (.o~npute the prior statistics ik, p;, fiI, and p i , , .  



Linear Model 

Starting with the linear-rriodel ca.se, the signal is assumed to be generated by the AR process of 

Equation 3.8, and the measurenlc~~it iioisr is gonerated by a similar AR process (given in Equa- 

tion 2.23). By defining vectors xk-l = [ x : & ~ ,  . . . , x ~ - M ] ~  and n k - 1  = [nk-l,. . . , n k - ~ ~ ] ~ ,  the 

prior means and variances call be coniput,ed as: 

The derivation of these equations is directly analogous to that presented for the white noise case 

in Equations 3.9- 3.10 on page 46. 

Hence, in addition to estirnat.ii~g tlicl sigi~iil st,ate ir arid covariance Pk recursively, estimation 

of the noise state nk and covariance P,,,k is also required. This is achieved by formulating a 

state-space representation of the s~~sterri, ii11d applying a Kalman filter. 

State-Space Representatiori - Color~ed Noise 

Note that the constraint yk = x k  + T L X .  has solne peculiar effects. Namely, the estimates ?k and fik 

must also sum to yk, and the variaiicc3  nus st be equal to the variance pn,k. 

TO enforce these constrai~its, both thc signal arid noise are incorporated into a combined state- 

space representation: 

where 

The effective measlirerrirrlt noise is ztAro, and the process noise vc,k is white, as required, with 

covariance V, = [$ .f,, ] 



KaJrnan Filter - Colored Noise 

The Kalman filter equat,ions for the coloretl measurement noise case are shown in Formula 3.3. A 

potential problem with the algorithm is that the zero effective measurement noise can adversely 

effect the stability of the I(a11nan filt,rr untler some circu~nstances. Hence, adding a small positive 

value to  the noise variance may be necessary in Equation 3.37. 

Initialize with: 

i, = EE,I (3.33) 

PO = E[K" - i,)(t, - (3.34) 

For k E (1,. . . , oo), the time upclate ccluatioiis of the Kal~nan filter are: 

and the measurement update equations: I 

1 I 

Formula 3.3: The linear Kalrnan filter equations for colored measurement noise. 

An alternative approach suggested by Bryson and Henrikson [7] avoids this problem and also 

maintains the dimension of tlie origi~litl signal-state vector. Although this can improve the com- 

putational efficiency of the filter, the ortler of the noise model is restricted to  be the same as 

the dimension of the measurc!inent,. I11 t,he context of ti~ne-series, this means the noise can only 

be modeled by an AR.(l) process (recalling tlinl(yk) = I), making this approach impractical for 

colored noise with higher-order correlations. 

Nonlinear Model 

As in the white noise case, t t ~ c  stiltisri(.:, of tllc- signal are no longer Gaussian when the signal model 

is nonlinear, so an apploxiirlatc solutioil is required. The EKF approach is essentially identical to 

the white noise case, except that thr' corlt1)ilictl state-space representation is used to  include the 

colored noise. 



Nonlinear State-Space Representatio~l -- Colored Noise 

Extended Kalman Filter - Colol.e(l hrvise 

Seeing that the noise is still assu~nctl to be generated by a linear AR process, the nonlinearity 

only affects the part of the state 1vliic.11 contains the signal. For the signal component, the same 

approximations are made as in the \vliite noise case. Using AA as defined in Equation 3.24: 

the combined state-transition mat,rix: 

is defined. The EKF can rlow bc found for the c5ombined state-space representation by replacing 

the time-update equatioils in Fonnul:~ 3.3 with Formula 3.4. 

I I 

Formula 3.4: The extended Kalman filter time-update equations for colored measurement noise. 

3.3 Weight Estimation 

The estimation of model parameters fro111 noisy data is a fairly difficult task, and is discussed later 

in this chapter. However, just ;is t,hc: signal can be estimated when the weights are assumed to 

be known, the weights can be easily esti1natr:tl ~vhen the signal is known. This standard weight 

estimation problem is usefil for ir~troducirig t,he Kalman and extended Kalman weight filters, as 



well as several key concept,s which a central to the development of the dual Kalman filter. In a 

MAP estimation cont,ext, t,he weigl~t, cst,irnate wk is desired which is most probable given the signal 

{xt)f up to and including the present t,irne k. This is formally expressed as: 

3.3.1 Batch Estimation 
P , h l w  I)w 

Applying Bayes rule: pWlx: = ' , ant1 assurrling the prior pw is uninformative, indicates that 
"; 

maximizing p,~,: is equivalent to maximizing p X k l w .  According to Appendix A, the density p,!~,  

can be expanded as: 

1 
k 

(xt - x; )~  

l w  = ,,I- (- 2 20: 

where x, = f ( x ~ - ~ , .  . . , z t - ~ ,  w). T;tliing the negative log gives the batch cost function: 

where the log term can be tlroppetl bccausc a$ is assumed independent of w. This leaves the sum 

of the squared prediction errors, normalizrtl by t,he process noise variance 0:: 

Minimizing this batch cost with respect to the weights produces such algorithms as least squares 

[29] in the linear-model case. and bat,cll back-prop;~g;ttion [72, 951 for neural network models. 

However, these learning algorithn~s are not, appropriate for use in on-line applications. Al- 

though sequential approaches can be derived as variations of the batch algorithms (e.g., recursive 

least squares (RLS) arid "stochast,ic" I)ac:liprol)agat,ion), a more rigorous derivation of a sequential 

algorithm within the MAP frarne\vorlc is provided next. 

3.3.2 Sequential Weight Estimation 

To develop a sequenti(~1 M.4P learning procc>tlure, the density to  be maximized is expanded as: 

' I d  L w l x ; - l  

Because p,! is not a fi~nctio~i of w, the M-4P estimate can be obtained by maximizing the first 

two terms in the numerator. 



If the process noise vk is a white Gaussian zero-mean process (assume no measurement noise 

in this section), then these terms e\r;~luat,e t,o: 

- 
where r6 = E [ Z ~  I{"c~):-', w] and wi 2 ~[w){xt}:-l], 

and where Q, 4 E[(w - *,)(w - ~l;)~l{z~>f-']. 

Taking the negative log gives tlic following cost function: 

which can be minimized with respect t,o w to produce the desired MAP estimate. The first term 

is the instantaneous squared predic:tion error. The second term in the cost keeps the new estimate 

close to  the prior esti~nate w;, w1;ic:l; is based on the previous data. The prior covariance Q i  

determines the distance rnetric used to define "close". 

Note that the cost in Equation 3.51 is equivalent to the batch prediction error cost in Equa- 

tion 3.48. However, by rc?fc)rrnlll;~tiiig t.lic? cost, iri terms of the prior statistics wl; and QL, a 

recursive procedure can be derivctd: tho  prior weight estimate wk and covariance Qi must be 

determined from the posterior stat,istic:s i1.t thtx previous time st,ep. 

Linear Model 

Measurement Equation for \,Veigtlts 

The case of a linear rnodel is co~lsitlerc~cl first,: 3:k = w ~ x k - l  + vk. 

State-Space Representation for \\'(lights 

When developing a recursive weight estimation procedure, it is convenient to give the weights their 

own state-space repres~lirat io~~.  This is tlor~c~ 115- irlotleling the weights as a stationary process: 

Note that the state transition niatlis is itlcntity, and that a Gaussian process noise vector uk has 

been added with covariance E[uru;] = UA ;ind cross-covariance E[uku3] = 0 Vk  # j .  When 

Uk = 0, the weight process is a c0115t;~nt (lc~t~~lninistic process; otherwise, it is a random walk. 



Even though the weight,s are llat t,ypic';llly brlievrd t>o undergo this sort of stochastic variation, the 

process noise uk can be useful for illcreasing the tracking ability of the weight estimation filter. 

Roughly speaking, the larger the covaria~ico Uk.  the more quickly older data is discarded; this 

relationship is described more fully b(!giri~ii~lg OII the current page. 

Using this model for wk gives: 

which gives the prior mean and cov:~riance in tcrlns of the posterior mean and covariance from the 

previous time step. To complete the recursive procedure, wk and Q k  must also be calculated from 

wl,, QI,, and the new measurerr~c~it .rk . 

The measurement equation (3.53) expresses the known signal x k  as an observation on the 

unknown weights wr. Note also that  the known signal state xk-1 can be interpreted here as 

a time-varying parameter vt.cto1 Togethc~r, Equations 3.52 and 3.53 constitute a state-space 

representation for the weights. 

Kalman Weight Filter 

Using this state-space representation, ;L I<;~llna~i weight filter can be derived from the MAP per- 

spective to minimize the cost J (w) in Ecluatlon 3.51. The derivation is provided in Appendix C.2 

and closely parallels that given in Ap~)t~rlctix C.1 for signal estimation. The Kalman filter equations 

for recursively generating piior. altl  postc~ior c~stirnates and error covariances for the weights are 

compiled in Formula 3.5 on the followirtg page. The algorithm can be viewed as a generalization 

of the popular recursive ler ts t  sqnures (RLS) algoiithm for linear parameter estimation (291. 

Recursive Least Squares 

More precisely, RLS is a spcri;~l case of' the lialrnar~ weight filter when the covariance, U k ,  of the 

process noise is constrair~ed i11 a c'crt,aili way. Sl)ccifically, 

Uk = (X-.' - l)Qk--1, where X E (0, I], (3.63) 



I Initialize with: 

wo = E[w]  
T 

Qo = E[(w - W o ) ( w  - w o )  ] 

For k E ( 1 , .  . . , m}, the tinie uprlatc c?quatrions of the Kalman filter are: 

and the measurement update equations: 

Formula 3.5: The linear Kalman weight filter equations. 

causes Equation 3.59 to be replaced by 

which prescribes that the prior covariance should be larger than the posterior covariance by a 

certain percentage, rather than by it11 iitltlitivc. amount Uk. By defining: 

it is shown in Appendix C.2 tl1a.t Equatio~ls 3 .0-3 .62  are equivalent to the RLS equations: 

T These equations imply C k  = c:=, XLtxl . _ I  x,-, and PI,  =; ~ f = ,  Xk-t~t-lst. In RLS, X is 

often called the forgettiny f(~cto7. 1)c?c::111sr~ i t  i:ol~trols the time constant of an exponential window 

over the data (see Figure 3.3).  ?5'lien X = 1, i d 1  of' t,he past data is weighted equally. The same 

effect is produced by Uk = U i11 the Iial~nan wc-ight filter (no process noise for the weights). This 

relationship motivates the use of process noise; 11011-zero uk conveys the idea that the data in the 

distant past is no longer rcleva.r~t for rriotlelitig the current dynamics. This enables the algorithm 

to  effectively "forget" data in the past, and illcreases the algorithm's ability to track a changing 



Figure 3.3: The gain produced for the data at times t 5 k by various forgetting factors A. Values 
displayed for k = 1000. The time constants can be computed as T = -11 log(X). 

system. However, this wiIl also i11crn:tsc t.lir variance of the weight estimates, because less data is 

being used. 

The RLS algorithm is only equiv;~lr:nt to LS as k + oo, because RLS must be initialized with 

a positive-definite matrix Co = u:Q;'. Thc determinant of Co must be large enough t o  produce 

a well-conditioned inversioll in Ecluatiu~~ 3.G8. but s~nall enough so as not to bias the result. From 

Equation 3.65, these com~nents also shed light on the role of 0; and Q;' in the Kalman weight 

filter: their product should 1)e cllost?n to give stiit)le weight updates during the first few time-steps, 

without unduly biasing thc est,i~nat,es wk. This issue is explored experimentally in the context of 

dual estimation in Chapter 4. 

In the genera1 context of parameter estinlation, using X < I is appropriate whenever the data 

exhibits some aniount of nonstationarit,~. I11 this situation, either the weights, w, or variances 

are drifting with time in sonle u~~specific>tl rrlanrier, so that older data do not accurately reflect 

the current model parameters. This p;rra~ncitcr movement is appropriately modeled by a process 

noise term in the state-space ecluatio~~s for the parameters. However, too small a value of X limits 

the amount of data being used to cistirnirt,e tlic: parameters. This increases the variance of the 

parameter estimates, maltirlg tllerri less t~ccurate. 

In the context of linear para~r~c~tc~i. c~stinliltion on clean data, an analytic expression can be 

derived for the optimal value of A: givr?n ilifor~r~atiori ; h u t  the degree of norlstationarity [29]. This 

expression trades off error due to ~:.lrit~nc:e in thr parameter estimates (called noise misadjustment) 

and error due t,o insufficient traclting (callcd l n y  rnisndjustment). However, it requires knowledge 

of the rate a t  which the systerri is cllal~ging. 

Alternatively, rules for adapting X c:;u~ be derived. Other approaches in the literature are to  



define Uk as a constant diagonal n ~ a t ~ i s  [G7], t o  c'stimate it from a moving average of the prediction 

errors [81], or to change it, accortlirig to ax1 annealing schedule [18]. However, these alternatives are 

not considered in the context of this thesis. 

Nonlinear Model 

Nonlinear State-Space Represel~tation for TVeights 

For nonlinear models of the data. tlie state-space equations for w become: 

where the measure~rient equation is cxl)rclsscd in terms of a nonlinear observation on wk, parame- 

terized by the signal-state xn -1. 

Extended Kalrnan Weight Filter 

The weights of the nonlinear ~iiotlel ca11 Ile estimated by applying an EKF to  the nonlinear state 

equations (3.69-3.70). This rcqui1c.s lillc~,tlizing the model with respect to the weights: 

in order to  calculate the I<allnal~ gain dud t~pditte the covariance. The measurement update 

equations in Formula 3.5 alc replaced by Forniula 3.6. The EKF for training neural networks was 

initially proposed by Singhal arid 'Gh ([77],1959), and has been successfully applied and enhanced 

by numerous authors. 

K," = Q;H~~.'(H~ QLH; + at)-' 
~k = W, + K~(:cI .  - f (w: ,x~-~)) 

QA = (1 - K,"Hk )Q,. 

I I 

Formula 3.6: The extended Kalman weight filter measurement-update equations. 

Modified-Newton Methoti 

The weight EKF can be interpretfled as a iilotlificltl-Newton optimization method [48], which per- 

forms an approximate second-order sc;lrch over the surface of the squared-prediction-error cost 



function. To see this, note that the weiglit update 

can be rewritten (using Ecluation C.49 i r ~  Apl~e~idix C.2) as: 

Also, an alternative form for thc. covwriancc rt.c.ursion is derived in Appendix (2.2, as: 

In a modified-Newton algoritlinl, the wc:igl~t update takes the form: 

wl; = w; - s k % J ( w ~ ) ~  (3.78) 

where J  is the gradient of tlie cost J with respect to w,  and S k  is a symmetric matrix that 

typically approximates the inrrerse Ht?ssinn of t,lie cost,. Both the gradient and Hessian are of course 

evaluated a t  the previous value of tht. weight ctstirnate, wl;. 

If J  is the batch form of the squarcd-1)1.etlictioii-error cost in Equation 3.48 on page 55: 

then the gradient and Hessian are given as: 

I, 

= -2 H:o;"(zi - f ( W , X ~ - ~ ) ) ,  
t=1 

1. 

and J = 2 HT~;'H, + 0(2), 
t = l  

where o(2) represents terms i~ivolving tlir second derivative of the cost with respect to  w. For a 

linear model and the predict,ion-error cost,, o(2) = O 

Equation 3.77 can be re\vritjt,cm i ~ i  closed form as: 

to express ~ l ; '  as a first-order al~proxi~natiori t,o (oiic>-half) the Hessian. Furthermore, the expres- 

sion H;g;"(zx: - f (w;, xk-, )) in Equiitio11 3.7% is an iristantaneous (or stochastic) approximation 



to (one-half) the negative gradient; equivalently, it is the negative gradient of the instantaneous 

C O S ~ :  Jk = ;ffl2(xk - ~ ( W , X ~ - ~ ) ) ' .  

The EKF weight-updat,e expressed in Eqliatior~ 3.76 can therefore be interpreted as an on-line 

form of the modified-Xewton optirr~iz;ition sclielne for minimizing the batch prediction error cost. 

The scale factors of canc~~ l  out ill the weight update. Note that whereas the vectors Ht used 

to  build up the inverse covnriancc~ i i ~  Equation 3.82 are evaluated using a different value of w, a t  

each time step, Qk  is therefore only ;~11 oppru:r:zr~~ut.ion to the inverse of the first-order Hessian. All 

of the values of Ht in tlic true Hessiaii exprttssed in Equation 3.81 should be calculated using the 

same value of w,. 

Typically, the weight covariallc.~ is initialized as Qo = 9.1, where q is a positive scalar reflecting 

the expected numerical range takrn by the pitra~i~eters, and I is the identity matrix. If the time- 

series data has been normalized to unit variance, then it is usually reasonable to assume unit 

variance on the parameter values ((1 = 1). However. the value of a: can influence the choice of q. 

The prediction error vilriallce (7: scalrs b o t l ~  tlie approximate gradient and approximate Hessian 

terms, so it effectively cancels out of thtt ~veigl~t update. However, because it acts as a scaling term, 

CT:  ill determine the relat,ivr influe~ice of the initial covariance Qo on later covariances Q k ,  for 

k > 0. When X = 1, Equation 3.77 citii bc written equivalently as ~ E Q I , '  = U:(Q~-~)- '  +HTHk, 

so that when ~2 is small, (Qo)-' s h o ~ ~ l d  be large to keep CT;(Q~)-' invertible. The situation is 

similar to the RLS initializatiort in the lillear case, where the condition number of U : (Q~) -~  is also 

crucial. A small value of (I will cause Q,' to h;tve large diagonal values and produce more stable 

(lower variance) behavior, but this will bias the estimates wk for small times k. Ultimately, then, 

the choice of q will depentl on the vi~ri:ince of the process noise ui ,  and the variance of data. 

The preceding paragraphs tlemonstrat,e that t,hr weight EKF provides a modified-Newton opti- 

mization algorithm for the sc1u;ncd-l)retlictio~i-emor cost function given in Equation 3.79. This 

result can be readily ger~eralizetl t o  ~l~.Otlrl('c rec:ursive algorithms for minimizing other batch cost 

functions, by simply rewritirig tilth ot)sc~r\~at,ioii eqiia.tioii for the weights. The basic idea is presented 

by Puskorius and Feldkarnp [G7] for 111inirnizin.g an eritropic cost function. 

From the sta~idpoint of the ~notlified-Newton update, the exact choice of state-space represen- 

tation for the weights is irrt~levwnt, so long as good approximations to  the Hessian and gradient 



are generated. Therefore, co~lsider reformulating the state-space representation for the weights as: 

where rk is a measurement noise t,erni with variance CT: = i, and the target "observation" is fixed 

a t  zero. The measurement finictiort - t r  is c:liosen according to the cost function to  be minimized, 

such that eTek = J k .  Holvevcr, this aloiic does not uniquely specify ek, which can be vector-valued. 

Applying the alternative for111 of the I<alrnan weight filter update (in Equations 3.76-3.77) to 

the observed-error state-space rcpresclnt,at,iori: gives: 

The error e k  is chosen such that H;:,O,'C~ and Qo.k produce the negative gradient and inverse 

Hessian of the desired batch cost'. 

In [67], Puskorius and Feldlanip propose using this observed-error filter to  minimize an entropic 

cost function4. The in~tarit~ai~eolis cost is: 

where ijk represents the output of tlicl iiiotlc~l at tirne k. The observed-error and its negative 

derivative are defined as e~ = a, ikl l t i  

t o  perform minimization of the c>ntrol)i(: cost. 

Returning to the pretlictiori-rrror cost of Equation 3.48, let ek = a = (xk - f ( x ~ - ~ ,  wk))/av,  

so that 

and 4,: approxirnatc's 2 E E ~  HTq;'H,. He~ice, Q,,k = 2 Q k ,  giving the same approximation 

to the inverse Hessian as befox(,, a~irl H:,A gp2c1 = ~ H : C T ; ~ ( ( ~ ~  - f ( x ~ - ~ ,  wk))  is the negative of 

3While - H Z ~ O , \ ~ ~  gives thc exact gratlirnt of JA., Q;,; is a recursive approximation to the first-order part of 
the Hessian. 

41n [67], the outputs are co~~st.r;~it~c~cl to hcl f 1 ,  al~tl the cost allows for models with multiple outputs, but this is 
not important here. 



the instantaneous gradient. The 01)servc:tl-error formulation for the prediction-error cost function 

therefore gives the same update as tilt: st,antlard Kalir~an weight filter in Formulae 3.5 and 3.6. 

Moreover, by using the observed-clrror representation of the weights, a sequential weight esti- 

mation procedure can be desigrirtl for anv cost J  that can be written as a sum of instantaneous 

costs J k .  The only changes t,o the standard weight EI<F are a redefinition of the error as ek such 

that eren = J k ,  a corresponding use of the output error derivative, Ho,k, and the replacement 

of a,' with a," = a. This litst ~ubstitut~ion niearis the initial weight covariance Qo can now be 
w 

chosen independently of a:. However, t,llc? priinary advantage of the observed-error form is that 

any cost Jk can be minimized, so long as it. is differentiable and nonnegative. As will be shown in 

Section 3.5, the dual Ka1riia.n filter rrlita or1 this form of the weight filter for minimizing many of 

the cost functions derived in Chapt,er 2 .  

3.4 Joint Estimation 

Section 3.2 considered the problern of cst,irnating t,he signal from noisy data when the model 

is known, and Section 3.3 coiisideretl tlit: proljlen~ of estimating the model when the signal is 

known. The present section addresses the inore complex problem of estimating both the signal 

and the model from noisy data, whc~n iipitSher one is known. Here, the two unknown quantities 

are estimated by combining tlierri in a joint stat,e-space representation; the dual Kalman filtering 

approach, which treats them separately, is described in Section 3.5. 

3.4.1 Joint Kalman Filtering - White Noise Case 

Recall the joint cost funr:t,ion tion1 Equation 2.11 on page 23. derived in Section 2.3: 

which can be niininlized to ~ ) l o t l u t ~  tliv nlost probable estimates of the signal { x k ) r  and weights 

w given the noisy data { y k } p .  

However, in a sequeritial MAP c.sti11iation contest, only the current estimates ik and w are 

desired, rather than an ?stirnate of tl1c rritiie signal. This goal is formally written as: 

The sequential estimates i v and w , ~  tlcfineti in this way will also be optimal with respect to  the 

above batch cost function, as dcsiietl. 



The previous two sect,ions slloiv\'c!rl tl1;i.t sequential estimation procedures can be produced in- 

dependently for xk and w by first crc?atirig a state-space representation for each. To generate MAP 

estimates of xk and w s.i7nultaneousl?/, i t  is ~isrlful to define a new joint state-space representation. 

Defining: 

it is clear that maximizing the tle11sit-y p Z k i y ~  is equivalent to maximizing pXk,~,:.  Hence, the 

MAP-optimal estimate of zh will contain t,lie values of zk and wk that minimize the batch cost 

~ ( x t ,  w). Furthermore, the result,ing st,atc:-space representation for zk enables the development of 

a sequential estimation procedure. 

Linear Model 

To develop the joint state-space representation, first assume a linear model of the data: 

where, as before, the weights are ~riotlc~letl as a stationary stochastic process: 

Joint State-Space Represen tation 

The state-space equatiorls for t,he joint st,at,e are: 

where, as before: Ax, 4 I . \I:liil(~ the above system looks linear in form, the multiplication I "' 1 
L J 

Ak-l . XI;-1 represents a nonlitlc~a~ (01 rrlore precisely, bzlzr~eur) function of the joint state, zk-1.  



This precludes the use of the I<alinar~ filtcr f o ~  state estimation, even though the form of the model 

was assumed linear. Howevc~r, ;ui EICF (.all be applied to generate approximate MAP estimates of 

the signal and weights. This approach scriris t,o have been developed first in [38, 121. 

Joint Extended Kalman Fitter 

To apply the EKF, F(zk)  rnust 1,' li~ic~ariecd with respect to the joint state zk, evaluated at the 

estimate ik. Using the definition 

and introducing the joint noise covariance: 

the derivation of the joint EKF is ex;ic.tly analogous to that of the standard Kalman filter given 

in Appendix C. The eyust,ioris are givcn in Forniula. 3.7. 

Initialize with: 

20 = E[zo] (3.100) 

Po = E[(zo - io)(zo - (3.101) 

For k E (1, . . . , co), the timcl upclatt. c.cluatioris of t,he I<alman filter are: 

and the measurement update equations: 

- --T - ---T 
K A  = P,, C (CPk C + a:)-' 

ir = i, + - CZ,) 
- - 

PI, = ( I  - KA C)Pn. 

I I 

Forrnula 3.7: The joint extended Kalman filter equations. 



Nonlinear Model 

When the time-series is generateti hy a 11oilli11ear .4R process, the only change in the joint EKF 

comes from redefining F ( Z ~ - ~ )  in Equation 3.96 as: 

- a F ( x L - ~ , w ~ - I )  
F(zk-l) = [ 1 ] 

and consequently letting: 

Each of these definitions is consistent n'it,l~ tlic: linear-model case; using them therefore allows the 

joint EKF algorithm in For~nula 3.7 to be usod for both linear and nonlinear models. 

Note that because the gradic~it o f  f (z )  with respect to w is taken with the other elements 

(namely, PI,) fixed, it will not  involve rccursivc! derivatives of gk with respect t o w  (see Section 3.6.1 

on page 102). This fact is cited ill [45, 471 its a potential source of convergence problems for the 

joint EKF. Additional results ant1 ~ i t i ~ t i o l ~ ~  in [61] corroborate the difficulties of the approach, 

although the cause of divergence is li~iketl therein to the linearization of the coupled system, rather 

than the lack of recurrent tlc?rivat,ives. .4ltliougl1 the use of recurrent derivatives is suggested in 

[45, 471, there is no justificatioi~ for this fro111 t,he stlandpoint of minimizing the joint cost function. 

Furthermore, no divergencr proi)len~s were c~ncountered by this author during preparation of the 

experimental results in Chapter 4 when using rion-recursive derivatives. 

3.4.2 Joint Kalman Filtering - Colored Noise Case 

As discussed in Section 3.2, when the ~r~castire~nent noise is colored, it must be estimated as though 

it were a second signal. Tlic joint c.osr, function for colored noise was given in Equation 2.29 on 

page 30 as: 

which when minimized subject t>o t,llc c:oristrairit {yk)r  = { z k ) r  + { n k ) r ,  produces the most 

probable estimates of the sigrlal, ~loise, ;iritl wt?iglit.s given the data. However, the goal of sequential 

estimation is to find current. cstiiiiates :ic. ?lk. ancl wk  such that: 



These estimates are optimal with respect to the batch cost function J ( x f ,  n f ,  w) used with data 

up t o  time k. 

As in the white noise case, a state-space representation facilitates the development of a se- 

quential algorithm. This titne, define the j o i ~ ~ t  state vector as: 

Maximizing the density pCL ,,: with icspcct to will produce the desired f k ,  iik, and w k  that 

minimize J(xF, nt , w) . 

Linear Model 

Starting with the linear-model (.as(>, tlie siglial is assumed to be generated by the AR process of 

Equation 3.8, arid the measurerrie~lt rloisc is gerieiated by a similar AR process (given in Equa- 

tion 2.23). 

Joint State-Space Represelltation C'olo~ed Noise 

The estimation of C k  can be do11(> roc~irsively wit,h an extended Kalman filter by writing the 

state-space equations for the joint state: 

where, as before: Ac,k [? :,,I, where Ak is give11 in Equation 3.24 on page 50. Hence, as 

in the white noise case, the rriult,il~lic:at~iot~ Ak-,  . xk-1 represents a bilinear function of the state, 

Ck-l. The state eyuatioiis are tlicrefore rionlixiear, and an ext,ended Kalman filter is needed for 

estimation of the signal, noise, and weights. 



Joint Extended Iialrnar~ Filter - -  Color,cd Noise 

To apply the EKF, F,(Ck) must bcb liliearizetl with respect to the joint-state c,, evaluated at  the 

estimate tk.  Using the definit,ion: 

and introducing the joint noise cc~v;uiillicc: 

allows the derivation of the coloretl noise joirit EKF shown in Formula 3.8. 

Initialize with: 

For k E (1, . . . , co), the tiinc? updi~tr. c:quat,ions of the Kalman filter are: I 

and the measurement update equations: 

- --T' - 
Kk = P,  C,. (c,P;c: + 0)-I 

- A -  < - <- 
k - k f Ek(?/k - CcCk ) 

- - 
Pk = (I - KkCc)P; 

Formula 3.8: The joint extended Kalman filter equations for colored measurement noise. 

N o n l i n e a r  M o d e l  - C o l o r e d  N o i s e  

When the time-series is generatc~d by a nonlii~ear AR process, the only change in the joint EKF 

comes from redefining F,.(<, -, ) ill Equation 3.96 as: 



and consequently letting: 

Both of these definitions are co~isisterlt wit11 the linear-model case. 

3.5 Dual Kalman Filtering 

In the previous section, the joint EKF algorith~n was described as a method for sequentially esti- 

mating both the signal arid tlle niotlcl fro111 11oisy data. Because the joint cost function is a highly 

coupled functiori of its arguments, the joint EICF estimates the signal and weights simultaneously 

by combining thern in a joint sti~tc-s1)a.c.e representation. In this section, an alternative algorithm 

called the dual extended Kolrrlorl filter is tlcveloped by decomposing the problem into separate 

signal-estimation and weight-est,irnatim co~nponents. 

One powerful advantage of t,hcs th~al EKF is that it can be applied to a variety of estimation 

cost functions. That is, the varions c~s t , s  tlc!rivetl in Chapter 2 can all be minimized sequentially 

by dual EKF algorithms. Alt,hough some costs do not require it: this is acconiplished most gen- 

erally through the observed-enor for111 of thc? weight, filter, described in Section 3.3.2. The joint 

EKF presented in the previous sectioii l ~ c k s  this flexibility, and can only minimize the joint cost 

J j ( x k ,  w).  The various cost f~~rictioiis ;LII(I t,licir observed-error variable definitions are presented 

throughout this section; Table 3.1 provides a sunlrrlary. The form of the algorithms differ slightly 

for white noise arid colored lioisc cases, so t,liey are treated separately, in Sections 3.5.1 and 3.5.2, 

respectively. 

3.5.1 White Noise Case 

Section 2.3 derived the joint cost funct,ion for estimating { x k ) r  and w in the presence of white 

Gaussian nieasurement noise as (froln Eclunt,ioii 2.11) : 

where x; = ~ [ x ~ l { x ~ ) f - ' ,  w] is tli(1 optillla1 pr~diction, and is a function of both the signal and 

weights: xl; = f ( z ~ - ~ ,  . . . , ~ k - n , ,  w). 



Table 3.1: Summary of the observed-error formulae for the various weight and variance cost functions 
minimized by the dual Kalman filter. When equations differ for the colored noise case, formula numbers 
are enclosed in parentheses. 

;j . - 

- 
." 

Decoupling with  Direct  Subst i tut ion 

'U 

As discussed in Chapter 2, n coltl~non approach to minimizing a multivariate cost function is to  

optimize one argument ;it a ti~nc. while t,11o other argurrient is fixed. This can be done in an iterative 

framework (see Figure 1.5(a) on page 10) by first niinimizing ~ j ( x y , w )  with respect to  w to 

produce w, arid then rniriirriizing J J ( x ? ,  w)  wit11 respect to x r  to produce xfJ, and repeating until 

the algorithm converges to a final st:t of estinlates. Denoting the iteration index as i, the iterative 

approach can be viewed as a ~ninirnizat,iol~ of two sequences of cost functions, { J j ( 2 ~ , ~ ) ) ~ ~  

and {Jj(xfV, w ) ) z l ,  e;ich of which c.onvc!rges to the cost J j ( x r ,  w )  as the estimates fr and w 

converge to  their true valucs. T11e crrors-in-variables (EIV) framework in the statistics literature 

[75, 871 is an exaniple of this it,crat,imt ;\l)p~~oacli, aiid is described briefly in appendix G. 

prediction error 
max. likelihoocl 

In sequential dual est,irnation, 011 the otllrr liantl, a different ccst function is effectively used a t  

each time-step k. For a setlue11tia.l apln.oac:h, only the current state xk is optimized with respect 

to  the current cost J j ( x f ,  wk); tlic sclcl~icnce of costs {Jj(xf', w k ) } z l  is used to  generate the 

sequence of signal-state est,in~a.tc.s { x ~ } ~ ? ~ .  I\lcanwliile, these signal estimates are used to generate 

a sequence of weight estimates {wk)iTz, fro111 the sequence of costs {Jj(xf, wk))&. 

Narne of Cost 

joint weigl~t, 
joint \rariancc: 

max. likelihood 

EM weight 

Hence, the estirnates of t,llt: signal-st;~te ant1 weights are generated simultaneously, with the 

estimation of each quantity depencling on tile estimate of the other, as shown in Figure 3.4. As 

discussed in the following pk~ragraphs. I<i\l~llilll filt,ers can be used for both the signal estimation and 

weight estimatioil components, resulting in the ~ , I L ( L ~  eztertded Kalrnan filter family of algorithms. 

Formula 

3.9(3.22) 
3.11(3.23) 
3.14(3.24) 

Syinbol 

~ j ( x r ,  w)  
.JJ(02) 

JI" (02) 
.J"" (w) 

Page 

73(91) 
76(92) 
81(94) error-couplet1 weight I .J"C(w) 

J ' j L 1 ( Q 2 )  

. J e " L ( ~ )  

n.a. 

3.17 

84(98) 

84 

3.18 
3.19(3.28) 

85 
88(100) 
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Yk

Xk

Wk

Figure 3.4: In sequential dual estimation, the signal and weights estimates are produced concurrently,
with the estimation of each quantity depending on the other.

Signal Estimation

To estimate Xk, the cost Jj (x~:,w) is evaluated using the weight estimates {wi}}. This is similar

to the batch cost in Equation 2.12 on page 24, except that a sequence of weight estimates is used,

rather than a single w:

k

Jj(x~,w~)="'
. ((Yt-Xt)2 (Xt-Xi)2 )" 6 .) +a~ 2'

(=l '/1, av

where the prediction is: xi = f(Xt-l, w~). This is also identical to the signal-estimation cost

J(xt) given on page 44, except that the known, fixed weight vector w has been replaced here by

the time-varying sequence of weight estimates: {wi}}. Section 3.2 showed that a Kalman filter

produces sequential estimates Sq that minimize J (x}). Hence, given weight estimates {wi}}, a

Kalman filter (or EKF) will produce the state-estimate Xk that is optimal with respect to the

above cost.

Weight Estimation

The weights ware estimated by minimizing the joint cost Jj (x~, w), evaluated using the signal

estimates {xd}. This is given by Equation 2.13 on page 24, restated here for data up to the

current time k:

k

Jj(x},w) = "' ((Yt-/:t)2 + (Xt-Xi)2 )6 a 2 .),
t=l n a~

where xi = f (Xt-l, w). There is 110immediate restriction here on how the signal estimates are

found; however, this cost will generally only be useful for weight estimation if {xd} are chosen to

be a function of w. If the estimates :7:k are not considered to be a function of w, then the cost

function reduces to the second term alone, and is essentially a prediction-error cost on the signal

estimates. This simplified joint cost. is expressed as .II (xi, w) in Equation 2.14 on page 25, and

is also identical to the weight-estimation cost .I(w) given in Equation 3.48, except that the clean



signal xk has been replaced 1 ) ~ '  estimates. Tlie Kallrian weight filter of Formulae 3.5 and 3.6 can be 

directly applied using {:it)!. However, this procedure is somewhat risky, as there is no guarantee 

that PI, is a t  all related to t,he data. 

On the other hand, if 3k a.11cl ?; arc1 produced by a linear or extended Kalman filter, as 

described on the previous page, tlien l)otli t,ernis in the cost function are used. In this case, both 

Zk and are recursi~ue fuiictiolis of tlle weights. To minimize the full cost function Jj(i:, w), a 

special two-obseruation forin of tlic. mt:ight filtter is used. An equivalent version of this filter appears 

in [60]; however, the obsc?rvctl-error fhrrr~ is slio~vn liere for consistency with dual EKF variations 

throughout this section. 

The observed-error for111 of t,lic-> Iialman wcbight filter - described on page 62 - can be used by 

defining the instantaneous cost ;is: 

N where en f (yk - il ) arid 4 (PA - .?;). Herit e, C I .Ik = JJ  (kr, w). The gradient and Hessian 

are shown in Appeudix E. arid (nil be ap1)roxirnated as described in Section 3.3 by defining a 

vector form of the observed-err o1. Tliis 1s shown along with its negative derivative in Formula 3.9. 

This gives e r e b  = JL,  as ~cqllilcd. Letting 01 = $ . I , the negative gradient is produced by 

Formula 3.9: Joint cost function observed-error terms for dual EKF weight filter. 

Hzka;2ees = --I&, Jk, as show11 ill A1q)c~ridix E. and a first-order approximation to the instantaneous 

Hessian V: J k  is given by: H::~O,~H, , ,~ . .  Although alternative formulations of the observed-error 

(such as ek = a) will protl11c.c r l i ~  correct graclient, they will riot produce a good approximation 

to the Hessian. The derivatives contained in Ho,k evaluate as: 

and so must be computetl recursi~.(~ly; t,he tleri~at~ives of ik and 2 ,  are computed through the 

recurrent Kalnian filter struct,urc. Bcc:ause t.lic!se computations are the same for any of the dual 

Kalman filter variations, this proc:i:tlllrc! is tlcsc~ribed in Section 3.6.1 on page 102. 

Combining the signal c!stilriat,iurl filt,er and weight estimation filter produces the dual Kalman 

filter, presented in Forniula 3.10. Thc~ algoritliril is sllown schetnatically in Figure 3.5. As described 

in the rest of this chapt,er, tlic! ~ilgorit,lini call l)e applied to other cost functions by redefining J k ,  

e k ,  and H,,k as needed. 
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Xk.j
------------.-

Xk

(measurement)
\'.k

Wk-/
--------------

-
Wk

Figure 3.5: The dual extended Kalman filter. The algorithm consists of two EKFs run concurrently.
The top EKF generates signal estimates. and requires Wk-l for the time-update. The bottom EKF
generates weight estimates. and requires :)(1,-1 for the measurement update.

Variance Estimation

When the variance terms ()~ and ()~ are not known, they can be estimated by minimizing the cost

function given in Equation 2.15 on page 25, repeated below:

I,

Jj ((}2) =::L (10g(21W;,)+ (Yt - Xt)2
1=1

+10g(21f(}2 ) + (Xt - it)2 )v ')'
(}Z,

If the dependence of the signal estimates it and predictions Xt on the noise variances is

ignored, then either of the variances ((}2 =:: (); or (}2 =::()~) can be found by minimizing only the

terms in which it appears. In either case, 0-2is the average of the quadratic term in the appropriate

numerator. This ad hoc approach to estimating the noise variances from the average of squared

error terms has been reported elsewhere [62, 81], but is not regarded in the literature as a reliable

method for variance estimation.

In reality, both the signal estimates and predictions will be functions of the noise variances,

so the cost function cannot be minimized so easily. As with the weight filter, a modified-Newton

algorithm can be found for each variance by tlsing an observed-error form of the Kalman filter and

modeling the variances as:

") ')

(Tk+J =:: (}k + 'Uk,

0 =:: Ck + Tk

(3.137)

(3.138)



Initialize with: 

w o = E [ w ] ,  Q ~ = E [ ( w - w o ) ( w - w o ) ~ ]  

kU = E[x,J], Po = E[(xo - ko)(xo - ; i ~ ) ~ ]  

For k E (1,.  . . , oo), the tinie uptlate equations for the weight filter are: 

and for the signal filter arch: 

A - 
xA = F ' ( x ~ - ~ , w ~ )  

Pi = A ~ - - ~ P A - ~ A L ,  + B U : B ~  

The measurement update ecluations for the‘ sigri;il filter are: 

and for the weight filter ale: 

Formula 3.10: The dual extended Kalrnan filter equations. The definitions of e k  and Ho,k will depend 
>n the particular form of the weight filter being used. See the text for details. 

which gives a one-dimensional st>ate-space roprt~sent,at,ion. Introducing the notation C, = log(27~u;) 

and !, = log(27ro:), the colic-lit,iol~ ri c r .  = J I ,  is satisfied by defining the observed-error as in 

Formula 3.115. The deri~rtives i ~ l d  emhiate to either 0 or 1, depending on whether 

a2 = a:, or g2 = (T?. The other tlorivatives: 

---- 
5Note that some elerner~ts of Ci, w.iH gerleral1.y take or~ cornplex values because the log terms that appear in the 

square root can be less ttl;~n Z ( ~ I . O .  ilowtrver. the gt.i~rliri~t arrd approximate Hessian will be real. 



Formula 3.11: Joint cost function observed-error terms for dual EKF variance filter. 

must be computed recursi~c!ly, as dt?scribed in Section 3.6.1. If these recursive derivatives are 

ignored (set to zero), the algoritliiii niiiiinlizes the ad hoc cost described above, instead of the full 

cost of Equation 2.15. 

AS shown in Apperirlis E, ~,, . l ;a;>ik = -3 produces the exact negative of the derivative. 

The second derivative is alq)roxiniatc!t1 by ~'!:~a,;%~,li; this gives nearly the exact first-order part 
- 2 

of the Hessian as long as k,, = ~r; / (3c :  - 2~ : )  a r~d  C,,, = u:/(3ik - 2 4 ) .  These values can be 

substituted directly in the expression for cl; and Ho,k in Formula 3.11; while this seems to contradict 

the earlier definitions of P , ,  and t , , .  tjlie situat,ion is not so bleak. Consider for a moment adding an 

offset log(ak) + log(yk) to the cost Jl;; tliis will have no effect on the optimization process. Such 

a constant might be atlded by c~llallging thr base of the log functions, or equivalently, by making 

the following redefinitioris: 

(,, log(trA . 27ro:) P,, !? lag(yk . 2.rra:), (3.140) 

In principle, an and y~ can be chasc~li aibit~arily at each time k, so values can be selected such that 

the required conditions arc1 met. Fortunatelv, actual values for an and yk need not be computed. 

Instead, the tequi~ed valurs ran 1 ) ~  di~ct  tlv substituted f o ~  i',, and e,, in the expressions for ek and 

H0.k .  

Figure 3.6: Effect of scaling parameter tu on the log function. The solid curve shows log(27rc~"), while 
the dotted curve shows log(( t . 2?;n2), when tr x 0.6. When 2 ~ 0 '  = 1, the log is effectively moved 
from a value of 0 to -4, with no change in the slope. 



Initialize with: 

6; = E[u2], = ~[(a' - 6:)(g" 

The variance estimatio~i filter is shown in Formula 3.12. For k E (1,.  . . ,GO), the time update 
equations for the variance filter ale: 

- 
= 6i-l (3.141) 

/ and  the measurement eqaations ;a1: I 

Formula 3.12: The variance update equations. The definitions of ik and H , , ~  will depend on the 
particular form of the weight filter being used. See the text for details. 

Note that the dime~~siori of tllr state-space is 1 in the case of variance estimation, while the 

observation ik  is generally n ~ u l t i d i i ~ ~ c ~ i i s i o ~ i ~ ~ l .  For this reason, the covariance form of the K F  is more 

efficient than the forms sliowr~ carlicr for signal or weight estimation, which employ the matrix 

inversion lemma and use a I<il1111an giti~l t ( x ~ ~ l i .  

A peculiar difficulty in the c~stiriiat~ioii of variances is that these quantities must be positive 

valued. Because this constrai~lt is not 1)uilt explicitly into the cost functions, or into the filter in 

Formula 3.12, it is concoival,le that negative values can be obtained. One solution t o  this problem 

(inspired by (741) is to estimate P log(u2) iristeacl. Negative values of C map to small positive 

values of 0" and C = -cm lilirps to rr' = O.  Tlic-1 log is a rnorlotonic function, so a one-to-one 

mapping exists between t,he optinla1 v:rllic of L and the optimal value of u? An additional benefit 

of the log function is that it esl)aiitls t11r tlpllarnic range near a" 0, where the solution is more 

likely t o  reside; this can iii11)rovc tlie nuirit~rical properties of the optimization. 

Of course, this new for~nulation requires computing the gradients and Hessians of the cost J 

with respect to C, rathc?r t l~ ;~ r l  n2.  Fort~iriwtely, the change is fairly straightforward. If the cost 

is a differentiable funct,ioil of a2, t,lier~ it is equivalently a differentiable function of ee .  The first 



derivative of the cost wit11 respect, to I' is: 

and the second derivative is: 

a a ~  a(a.1) OJ dcr2 
---.(,2+-.- - 
I ?  i)a23t au2 ae 

These expressions are si~llple fur~ctioiis of the derivatives with respect to  u2, which are approx- 

imated by 8Z,-&ii and H::,$H,.~~. Haa.r. a.11 alt,ernative variance estimation filter is obtained 

by replacing the nleasurelrlcrlt update ill Forrriula 3.12 with the alternative update in Formula 3.13. 

Strictly speaking, this no longer takes tIic: fi)rrn of' a I<alman filter; it should instead be interpreted 

Forrnula 3.13: Alternative variance update using the log of the variance. 

as a modified Newton learning This form of the variance filter is used in the experiments in 

Chapter 4, with ik ancl H , , ~  dctiiletl i~ccoltlillg to the cost-function that is chosen. 

Error Coupling 

Although it is a reasonable approach, tltv direct siibstitution (in each filter) of estimated values 

for true ones fails t,o account for t,ho cr1.ors ill those estimates. As discussed in Section 2.3, these 

errors can be take11 into consicleratior~ 1)y 111altirig acljustments to the cost functions. 

These changes arrloulit t.o rc1)lacirlg tlle sequellcr of cost functions described on page 71 with 

the alternative sequences: { J e r ( x : ' ) } , ~  iulcl { . J r C ( w ~ ) ] ~ .  These sequences will also converge to 



JJ(x:, W) as the signal ant1 weigl~t t>stinlates converge to their true values. However, as described 

in Section 2.3, the alternative costs liilv~ t,lte ~ ~ o t e ~ i t i a l  to promote faster convergence in some cases. 

Signal Estimation 

The error in the weights is accountetl for by rnodeling the resultant error in the dynamics, fk as a 

white Gaussian noise process. T l ~ e  b;~tc,li fo~ni  of the cost function was given in Equation 2.17 on 

page 26 as: 

The variance 02- of the dy11arnic:s error (:;in Ije cornputed by approximating the dynamics to  first f,k: 
order as f (xk-1, w)  x Hl.w, where HA. 2 G~I' f (xh.-i, w), so that: 

Note that 02 is i~idepentleiit of the currcilt state, xh. Hence, in sequential estimation (wherein 
f , k  

only the current state is estiiilatc1d) the log tcr~ri can be ignored. The error in the weight estimates 

can then be accounted fur by s i ~ i ~ ~ ~ l y  replacing the process noise variance, g,", with (ci + a ?  ) in 
f , k  

the signal filter portioli of F O I I ~ ~ I I ~ ~ L  3.10. 

In the sequential estimation case, tlie derivative, H k ,  of f (.) with respect to  w ,  is evaluated 

a t  the previous estimate, x k V l .  Bcca~ise i k - ,  is itself a recursive function of w, this suggests that 

Hx: should be computed iis iL rcLc1lrl.ent derivative, iB shown in Section 3.6.1. 

Weight Estimation 

For weight estimation, talriiig t l l t ~  callor in the. signill esti~riates into account is somewhat more 

complicated. Here, the I (.levant cost fililr.tion ( E q i ~ ~ ~ t i o n  2.19 on page 27) is: 



where the variance terms are calculated as: 

respectively6. Seeing that botll Pb.  rid Py :~ro furictions of w, so are ~2~ and g k .  The gradients 

of the variances are: 

&oZn = Y L P ~ ~ ' ~ ) ,  (3.158) 

and = ~ K ~ " T ~ K ~ " ( u ~  + C P L C ~ )  + (K!))~&(P;)("'), (3.159) 

where the gradients of the e l e ~ n c ~ ~ ~ t s  of KI, i~rld P k  must be computed recursively, using the equa- 

tions of the Kalman signal filter (st:e Srction 3.6.1). 

Sequential minimizatio~l of J N ( w )  is ~)iovidrcl by an observed-error weight filter. Here the 

instantaneous error is: 

with the gradient arid Hessiiui sliown ill .4ppe11dis E. The gradient and Hessian of Jk are approx- 

imated by defining the observed-error t,cBrrli a11tl its negative derivative as in Formula 3.14. where 
A 

e e , k  = 1 0 ~ ( 2 ~ a : ~ )  and P,,L log(2Tgk). Tllis satisfies eTek = J k ,  and ~ , , ~ u ; ~ e ~  = -%Jk gives 

the negative gradient, as show11 ill Xl)polltlis E. The Hessian is approximated by Hzko;2H,,k; 

this gives nearly the exact first,-order part of the Hessian when l,,k = ~ ~ : ~ / ( 3 e i  - 202,) and 
- 2 

eg,k = gkl(35, - 29k). 

6 ~ o t e  that yk should always be at It~itsL i iS 1;lrgc ;IS IT$ 



I 
Formula 3.14: Error-coupled cost function observed-error terms for dual EKF weight filter. 

Variance Estimation 

The variance terms u: and cr: c;ln also t)e wtimated with information about the errors in both i y  
and w. This is accomplishecl by ~rl ini~uizi~~g the cost function given in Equation 2.22: 

I I 
Formula 3.15: Error-coupled cost function observed-error terms for dual EKF variance filter. 

which is identical to the cost given for weight estimation, except that the predictions here are 

given by 2; = f (ikWl, ...ik-A4, +) . The error-variance terms are uzk = a: + C P k c T  and gk  = 

CKk(u,2, + cp ;CT)~ :CT,  as showrl in Equation 3.156 and 3.157 on the preceding page. The 

redefinition of 2; is reflected in PC, since this is produced by the error-coupled signal filter (which 

makes use of the statistics of w).  

The instantaneous cost,: .Ik, is tile cluantity inside the above summation. The variance terms 

are estimated by defining the o11st:rverl-crror terrr~s as in Forrnula 3.15. From Equations 3.156 and 

3.157, the derivatives are 

I 

891; d ~ " '  du: ~ ( P L ) ( ' ~ ' )  
and - = 2K, " ' L ( m %  + CP;C~)  + (K, ) (p + 8u2 ), 

Du2 
(3.162) au2 

I 



ap(,l.l) OK('' 
where both +- and & are (.or~~l)utecl recu~siv~ly, as shown in Section 3.6.1. 

With these quantities in liaiitl, tlic. \raiia~lces can br estimated as described before, with a 

Kalman or extended Kalrnnl~ filtoi. Tlic variance estimation equations are given in Formulae 3.12 

on page 77 arid 3.13 on page 78. 

Marginal Estimation 

Section 2.4 describes a different appro;rrl~ to dual estimation, wherein the joint density function 

p X ~ W I Y ~  is expanded into two factors: /I,? I Y ~  , and p w l y r .  Marginal estimation methods maximize 

the first factor with respect to the signal, and the serond factor with respect to the weights. 

As in the decoupled joint rsti1n;ltion niethods, the current weight estimates are used during 

signal estimation, and uzce versa. =\g,iiri, this can either be done in an iterative or sequential 

framework. Examples of iterative ap1)roaches include Lim and Oppenheim's well-known approach 

to speech enhancement [44], which alter nates between noncausal Wiener filtering of the signal, and 

a least-squares solution of the weight?: allti the batch EM algorithm [76], which is described in 

more detail beginriirlg on page 85. 

Sequential Sigi~al Es tirrlatioil 

For sequential estimation, maximizirig p v l  N ,  with respect to the signal is done using a Kalman 
X~ Y I  

signal filte~ by substituting thr currcwt ~vcigllt estinidtes w;, for w. See Formula 3.1 on page 49, 

and Formula 3.2 for the EI<F. .4:: 1vit11 tht~ tlecoupled joint estimation approaches, the hope is that 

as the weight estirriates convelgr to  w ,  tlic higl~~ll estlrnates will tend toward their true values. 

Sequential IVeigAt Estimatiom 

Maximizing pwiyr  with respect to tlic ~'('iglits ran be done by minimizing the negative log: 

The conditional mean is tht' plrtlic ti011 m-7, with error-variance a;. The mean is calculated as: 



and variance is given by: 

so that both are computeti by the I<alrrla~~ signal filter, and thus are recursive functions of the 

weights w. Their gradients are 

which must be computed recursively, as shu\vu in Section 3.6.1. 

Sequential Variance Esti~natior~ 

If the noise variances ~eprese~it  atl(litio11 m~lcnown parameters, they can also be estimated by 

minimizing the cost in Equation 3.1G3. Tlie rnean and variance are computed the same as in 

Equations 3.164 and 3.163, pxcept that tho unknown variance 0"s now an additional conditioning 

argument in the expectations. Hence, tlic tler ivatives are: 

Prediction Error Tlieig-ht Est irr~at io~~ 

If a:, is assumed to be independent of w ,  tlicn the log term can be dropped from the cost function, 

leaving the squared prediction error cost: 

.JJ" (w)  = E : .  

A where = (yk - i,). This cost corrcsl)ollds t,o tlie simplest forrn of the dual EKF, developed in 

1871, which is equivalent to  the r ~ c , c ~ ~ ~ s ~ i ~ c e  p,re[liction er ro r  ( R P E )  method in 14'7, 521. In [47, 52, 871, 

the weight filter is designed using ttlr, st,~l~tlard observation equation: 

which creates a filter of the sarric for111 i ~ h  for the knou-n-signal case in Formulm 3.5 and 3.6 in 

Section 3.3, except the cltha11 targclt .rk i \  rc2piacc~rl 1)y yr ,  and the noise variance u: is replaced by 



Equivalently, the observed-t~or folt11 of wc.iglit filter is found by defining the instantaneous 

cost as J ,  = (y, - 2,)'' = E:, ant1 letting the observed error be as in Formula 3.16, so that 

I 

I I 

Formula 3.16: Prediction-error cost function observed-error terms for dual EKF weight filter. 

the negative gradient is given bv H,, la,-'cr = -~(KE,(.)E,(., and the Hessian is approximated to 

first-order by H,J a ; L ~ E I  = ~ ( G E ~  ) ( K E ~ ) *  Note the similarity between these definitions of 

the observed-error weiglit filter ant1 those prc.sented for the known-signal case in Section 3.3. 

Prediction Error Variance Estirriation 

The noise variances, a$ and a:, can also bc estimated by minimizing the prediction error cost of 

Equation 3.170. Tlie observed error ik is simply EL,  as before, and H , , ~  is given by -3 = 3. 
Hence, prediction error varia11c:e est,imatioii is elit,irely dependent on computing the derivatives of 
A - x, recurrently. 

Maxim um Likelihood Ilkligh t Estix~iiitiox~ 

Taking the dependence of on w into account requires the minimization of everything in Equa- 

tion 3.163. This rrlearis ~liiiiinlizi~ig tlic full maximum-likelihood cost function given in Equa- 

tion 2.52 on page 36, restmated hcxe as: 

A Here, the instantaneous cost .Jk is the quantity in the summation. Defining l,,, = log(2xak .a,",), 

the appropriate weight filter is fount1 h 7 1  lcltiing the observed-error and its negative derivative be 

as in Formula 3.17. arid lettirig a: = $1. These terms are used in the dual EKF equations in 

6 1 (es.k)-i * 2 -- ., 22 [ - 1  ] ( and H",* = 2 % (a€& 
Or, E k  [-kvirEk + 2 ( m 2  r: (312) % T 2 1 

I I 

Formula 3.17: Maximum-likelihood cost fur~ction observed-error terms for dual EKF weight filter. 

Formula 3.10. As shown in Appentlix E, r l l  sliould be chosen such that e,,k = u,2,,/(3~: - 20,2,,) 

(as described OII page 76). Tlie  i~~gativcl gl,~tlient alld Hessian are then approximated by H o , k ~ , ~ % ,  

and Ho,,a;"zk . 



Maximum LikeIi11ood Varia~~oe Estj~na ti011 

The maximum-likelihood cost f u n r t i o ~ ~  rilw offers a mechanism for estimating the variance terms, 

a: and a:, when they are not kriowrl a 1mor.r. The instantaneous cost and observed-error terms are 

identical to those just give11 for weight rst,i~liat,ion. Tlle derivative of -ik is given in Formula 3.18, 

I I 
Formula 3.18: Maximum-likelihood cost function observed-error terms for dual EKF variance filter. 

ZXTT where a2 represents either 5; or o;,  ;ind where 3 = - --&. The desired variance is estimated 

according to  the equatious in Forlnulae 3.12 arltl 3.13 on page 78. 

Expecta t ion  Maximizat ion 

Although the EM algorithm is a nlsrgiri;il r!st,ir~~ation method (see page 36), its general character is 

different enough from the nla?ti~r~u~~~-likclihootl ant1 prediction-error methods to  warrant separate 

treatment. 

The EM algorithm has rt:ceivetl a fair amount of attention recently in the context of estimating 

nonlinear dynan~ic systenis [3, 5, 231. Typically, the algorithm is used in an iterative framework, 

wherein the entire signal {xk); is estilrlatetl using the current weight estimates during the E-step, 

and the weights are estimatetl tlul.il~g thcl M-step using the entire trajectory of signal estimates 

{?k)p-. 

As stated in Equation 2.55 ou page 37, the EM cost is: 

(zk - x;)2 + log(2n0;) + 
a," 

which is minimized with respect to w (luring the M-step. As before, xl; = f ( ~ ~ - ~ , w ) .  An 

important distinctiorl exists I ) ~ ~ ~ I \ - ~ Y ~ I I  this v;illte of w being estimated, and the previous estimate 

of the weights, w, used in thc] c~outlitional c'sprctation. As shown in Appendix F, the expectation 

evaluates to: 



where iklN and p k ~ , ~  are defined as the c:oi~tlitional rriean and variance of xk given w and all the 

data, { Y k ) F .  The terms ti.,i,,,, and p i N  are t11~ conditional mean and variance of x ,  = f ( x ~ - ~ ,  w) 

given all the data. The additional tcri~r PL,,v repn?sents the cross-variance of z k  and z,, conditioned 

on all the data. 

These conditional expectatious iIr(! conlputed during the E-step, typically with a Kalman 

smoother algorithm [43, 681. A I<alnlaii slr~oot,her conibines the results of both a forward and a 

backward pass over the data to ~)rotluc:e t l ~ r  srnoothed estimates7. When the system is nonlinear, 

the classical approach is to use ;HI e:ctcn(lerl I<alir1;~11 srnootlier (e.y., in [23]), or use Gibbs sampling 

I831. 
- t As discussed iri Appendix F: only :i:,l,,, , I J ~ , ~ , ~ ,  and pklN are functions of w. Hence, the portion 

of the cost relevant to weight esti~nation is: 

Likewise, the portion of the cost in Equatiol~ 2.55 that depends on ot is: 

while the portion relevant to estirr~ating oyl is: 

Note that in these last two expressions, t,lle r~unierators inside the sums are dependent on the 

previous variance estimates, 6: tt.l~d r i : ,  but riot or1 the value (at or c:) being estimated. In 

Equation 3.173, 2GN , P: ,N,  a11d p i ,  iircl recursive functions of ai, but not of w. Hence, it 

happens that no recurrent derivative c:olnl)utat,ioris are required for the EM algorithm. 

For the M-strep, closed-fonn solutions ;t,r.e possible with linear rnodels (and radial basis func- 

tions, as in [23]) using either a lcast-sclui~res or RLS procedure. Expressions are provided in 

Appendix F. Typically, nonIinear ~riodels will require a generalized M-step, in which the cost 

function is decreased (but not nrc:essarily ~r~inirnized) at each iteration. This generalized M-step is 

often done with a gradient-tlrscc?nt mc~tliotl st1c.h as backpropagation, which can either be used in 

batch or pattern mode. 

Regardless of the At-step, howc?\.cll., t,llcl IiaI~narl s~noothing for the E-step must be done off-line, 

as it makes noncausal use of the data. Tlie En3 ~ l g o r i t ~ h ~ n  is necessarily an iterative approach (see 

page 10) to  dual estimation. 

7The cross-covariance PL,n, is ,lot c.;tlculatetl 1by ttlw standard Kalman smoother, but can be included in the 

algorithm at small additio~~al cost [7(jj. 



Sequential EM Cost 

However, a fully seque~itial Ell1 algoritli~n ciin be found by computing the expectations in the E-step 

with a Kalman filter rather than a I<alnl;ul slnootlier (e.y., in [93]) .  This is equivalent to replacing 

the off-line means and covariancc<s in Ecluat,ioiis 3.172-3.175 with their on-line equivalents: iklk, 

t pg.lk, 2 i k ,  p i l k ,  and p k j x .  The first two quantities are the usual estimate ik = Cik  and variance 

C p k C T  computed by the I<itlrnan sigllal filter. The remaining terms require special consideration. 

The noncausal prctliction iin is tlcfi~lrtl as Elf ( x  , w)/{~~) : ' ,  w], which is difficult to  com- 

pute in general because of its tlepeiltl(~~rc.cb oli future data. As in the EKF, this expectation can 

be approximated by taking the funct,io~~ of the expected value: f (E[xkel I ( y t ) f ,  w],w), or equiva- 

lently, f ( x ~ - ~ ~ ~ ,  w).  Unfortunatoly, xi 1s not colilputed by the standard Kalman signal filter 

described in Sectiori 3.2.  Howevc.1, a sliglit ~notlification allows the KF to  compute this quantity, 

t in addition to the desired v;iriallct> telli~s. a11d p A i A .  

Specifically, the stat,e-vector is ;iugmc~ntrcl by one additional lagged value of the signal : 

so that the estimate x: produced I)y a I \ ; i~ l~~l ; t l~  filter will contain xk-llk in its last M elements. 

Furthermore, the covariance P: of xl produced by the K F  allows for approximate calculation of 

the variances p i k  and P : , k .  Followi~ig tlu! (lerivat,ions in Appendix F: 

- 
pkj r  = CAk-,]/, (PA- , , A  )A:-, I A  cT and ~ 1 , ~ ~  = C ( P ~ ) A : - , ~ ~ C ~ ,  (3.177) 

where the covariance Pk-llr is providecl as the lower right block of the augmented covariance P:, 

and ~ f l -  is the upper right block of P:. The usual error covariance Pk is provided in the upper 

left block of P;. Furthermore, Al- l ln  is found by linearizing f (.) a t  xk-l lk.  

The Kalman filter reyui~es olily a couple of lrlodifications to estimate x;: 

1. A final zero element is includetl in t,he ~ec t~o r s  B and C .  

2. The matrix Ak 4 [::I] is i f i  11) increasing the dimension of I and adding a final 

column of zeros. 

Note, the function f (xA , wr ) ignoi~s  t h r  atltlitional lagged element x k - ~ .  The overall dimension 

of the state-space representatioil is 11ic l c ~ t ~ h c ~ l  fro111 M to 1 + M .  

EM via the Dual EIW 

With a sequential E-step proviti~tl 1)y the‘ I<alrr~a~i signal filter on the augmented state x l ,  a 

sequential (generalized) M-step is ~lertl(stl f o ~  estirriating the weights. 



The observed-error weight filter can be easily applied for this purpose by defining the instan- 

taneous error as: 

The appropriate observed-error rc:c.tor iulrl its negative Jacobian matrix are given in Formula 3.19 

where gklb = (ik - .til.). Letking nf = ;I, the negative gradient and Hessian of Jim are approxi- 

I I 

Formula 3.19: E M  cost function observed-error terms for dual EKF weight filter. 

mated by H,,ka;%k and H,,~U;'H::~: respectively, as shown in Appendix E. Note that the error 

variances pGk and Ptlk cancel out of t l i ~  gradient expression; as shown in the Appendix, to  obtain 

a good Hessian approxinlat,ion, they ii1.e rr1)l;lcetl by very large values in the expression for HOlk. 

Because 2k is not a functioll of w (it tlepends on w), the gradient KTzklk is simply the negative 

of c~,~z; k ,  where 

which is evaluated a t  ant1 w. Following Equation 3.177. the i th  element of the gradient 

vector &pi l i  is constructed fro111 tflcb c~sprc~ssion: 

t and each of the elements of tlle gratlic~rlt T(pL , k  is 

EM Variance Estimatiori 

The variances u: and/or a: can idso l)e cstirrlated as part of the sequential M-step. As seen in 

Equations 3.174- 3.175 oil I)ag(~! 86,  rit.licbr of the variances can be estimated by minimizing an 

instantaneous cost of tlic forn~: 

'numk 
.J;.;"'~o~) = log(2n2)  + - n2 9 



where numk is one of the riumcrat,or terrns in E~quations 3.174-3.175, and u2 represents either 

a: or (T:. Recall that the numm-at,or t,ernl is independent of a? As shown in Appendix E, the 

best approximation to the first anci soc~olltl derivatives of Jk with respect to a q s  obtained by 

defining the terms for the variancc~ filter as in Formula 3.20, and letting a: = ;I. This is a slight 

Formula 3.20: E M  cost function observed-error terms for dual EKF variance filter. 

adjustment from the conventiorlitl definitions used elsewhere in this thesis, in that H , , ~  is not 

exactly the negative derivatlvc of 111 this c.ase. In particular, both quantities have been scaled. 

See the appendix for details. 

3.5.2 Colored Noise Case 

When the measurement noise n k  is coloretl ( i .  e., temporally correlated), the dual EKF algorithms 

must be adjusted somewhat. The cost f~n~( . t io l~s  for the colored noise case are shown in Sec- 

tions 2.3.2 and 2.4. The dual EICF al#orit,lnns for colored noise parallel those developed on the 

preceding pages for white noise, with sorile ~notlification. 

Decoupling wi th  Direct  Subs t i tu t ion  - Colored Noise 

The joint cost function for the casrb of coloretl rr1e:tsurement noise is given in Equation 2.29 on 

page 30 as: 

where n; = xZl zuj,") . r l k _ ;  is t l l c k  prcltlict,ctl viilrle of t,he colored noise, and is the variance of 

the process noise that drives the c:olorcd noise model. 

As explained in Cllaptcr 2,  tilca c.ost 11iust be i~ii~iimized subject to the constraint yy = xf+ny. 

The joint EKF algorithm for scque~ltially rnirli~riizing this cost was developed in Section 3.4.2 on 

page 67 by concatenating the signill. noist?, i~lld weights into a joint state-vector. 

The joint cost can be ~nini~nizc?d witli rospcct to  the signal and noise while fixing the weights 

a t  the current estimate wk. ancl ~t~iiiiniizetl witli respect to the weights while fixing the signal 

and noise arguments at their c:ur.rcllt, c:stinlat,es. As in the white noise case, this can be done 



nitialize with: 

wo=E[w] ,  Q o = E [ ( w - w o ) ( w - ~ o ) T ]  

io = E[<,I, PO = EM, - i o ) ( t o  - 

Tor k E ( 1 , .  . . , m), the tirrle update cqu:ttioris for the weight filter are: 

and for the signal filter are: 

I'he measurement update equat io~~s for t,llc signal filter are: 

and for the weight filter are: 

KT = Q;H~:~(H~,~Q;H; ,  + (~;)- l  

wk = W; + K y . e k  

Q,! = (I - K;;YHo,k)Q~ 

brmula 3.21: The dual extended Kalman filter equations for colored measurement noise. The defi- 
litions of e k  and H,,k will depend on the cost function used for weight estimation. See the text for 
letails. 

n batch mode with ari errors-irl-varii~i)l(?s algorithm, as shown in Appendix G. However, on-line 

applications will require a secluci~rial algorithm such as the dual EKF approach. 

Signal and Noise Estirriatioir Colo~rtl iVolbc. 

As described in Section 2.3.2, tllc sigrial and rrieasuremerlt noise are estimated simuItaneous1y by 

minimizing J,J (xf , n: . w),  r\rnlu,it c ~ l  ' ~ t  t l lcl  c uirent wright estimate w. The batch cost is shown in 

Equation 2.30 on page 31, ~estatctl 1 1 ( ~ ( 8  foi sc~quential estimation as: 



minimized subject to the c o n ~ t i ~ ~ i l i t  !j, = .rt + n,.  This constraint can be satisfied by estimating 

the signal and noise within a c~olrlbitirvl st;~te-space representation, as explained in Section 3.2, 

and applying the Ka111lar1 hltci c~lui~tloli\ ~ : V C I I  111 Foirnula 3.3 on page 53 and Formula 3.4 on 

page 54, except with w,, used in,stc*'t(l of w. Tliis foirns the signal estimation portion of the dual 

EKF equations given in Formula 3.21 oli tlic~ picvious page. 

Weight Estimation - Coloretl Noise 

Minimizing the joint cost with rcs1)ect to w ~~roduces estimates of the weights. The cost is evaluated 

using the estimates of the signal i~nd noise (see Equation 2.31 on page 31): 

where 2; = f ( lZtPl ,  w) and = wj:' . l i t-, . As in the white noise case, the signal estimates 

{&)f are not necessarily a f11nc:t;ion of tlie ~veiglits w; the same is true for the noise estimates 

{ f i t ) ! .  In this case, the first tc!r.111 illo~ic will I,(+ lrliiiimized to geiierate w, as described on page 79. 

However, both {ik}? and {?jk)Y will typically be generated by a Kalman filter as described 

above; the KF signal esti~riates will c.1ciarly 1)e a fiiriction of w. In addition, however, because of 

the constraint y4  = xf + nf ,  the, uoisc> c>st:irrlattts will also be a function of w, as any change in 

ik will result in an equal hut op1)ositc (.lii~lific ill i ik.  Furtherrriore, if a K F  (or EKF) is used to 

generate the signal and iioise estilliatt~s. tiirt~l 2k, 2:)  f i k ,  and jii will all be recursive functions of 

the weights. 

To estimate the weights wit11 ;in ol)scrved-error weight filter, the instantaneous cost is defined 

as 

- A where ik = ( i L  - 2 , )  and ?ir ( i l l ,  - f i r ) .  The gradient and Hessian of Jk are approximated as 

described on page 62 by tl~fiiiillg ii V ( Y . ~ O I  for111 of the observed-error as in Formula 3.22, so that 

I I 

I I 

Formula 3.22: Colored noise joint cost function. Observed-error terms for dual E K F  weight filter. 

eTek = J k ,  as required. Lettirig rr: = $1. t,ilc: i~egat~ive gradient is produced by H T ~ c ~ ; ~ ~ ? ~  = - K J k ,  

as shown in Appendix E: nntf i~ first,-or.ctc:r approxi~rlation to the instantaneous Hessian K2Jk is 



given by: Hence, tlic wc~iglit estimate portion of the dual EKF shown in Formula 3.21 

represents a modified-Newton i~pdiite f o ~  nii~iimiziiig the joint cost function. 

The derivatives contai~ied in H,,,x above evaluate as: 

, +  = ( I ,  -- T i ) ,  and %Ak = (Gfik - ~ f i ; ) ,  (3.196) 

and are computed using the 1"' ailtl ( l + h ~ ) ' ~  rows of %ik and ~ i i .  The derivatives of ik and 

ii must be computed recursivrly. follotvil~~ the franlework given in Section 3.6.1 on page 102 for 

the derivatives of xk . 

Variance Estimation - Colored Noise 

When the variance terrris of and IT:, ; l icL 110t kiiown, they can be estimated by minimizing the cost 

function given in Equation 2.32. 

Kalman filter estimates of tilts signal aiid noise will produce errors in and Ak which are functions 

of a: and u:n respectively. Also, if .i.k aiid ,ilk are constrained to sum to yk, then g k  will be a function 

of u:n by way of its depe11rlenc.c: oli 61,. -4 i~~otlifird-Newton algorithm is found for each variance 

by putting it in an observed-orror stat,c-sp;~ce representation as on page 74. The observed-error is 

defined as in Formula 3.23 to gi\:tt tlie dt:sired estirnatiori algorithm. Similar to the discussion on 

- 

1 ( fun  1- + au2 -- 
2 a:,, 3 3  

I I 

Formula 3.23: Colored noise joint cost function. Observed-error terms for dual EKF variance filter. 

page 76 for the white noise cast., tlir ;y~prosirnat~ion to the second derivative is improved by using 

the redefinitions: 

of* 0: k , ) , , ~ =  - 2  and l,,,k = -2  

3 4  - 202,, 32, - 2 4  

for all time k.  With these atlj~ist~iirlits ill place. tlie variance filter equations are the same as for 

the white noise case, shown in Foi l~lt~lil 3.13 (MI page 78. 



an2 
The derivatives -&!p and ew1u;ite to eit,ller 0 or 1, depending on whether a' = or 

a2 = a:. The other derivatives: 

a€ - are found by using the 1" 1a1ld ( l+~l)" '  e1crr1c~nt.s of 3 and &, which are themselves computed 

recursively. 

E r r o r  Coupling - Colored Noise 

As described on page 78 for t,lie wliitr noise case, information about the errors in the current 

estimates can be used to lnotlifv tllo t~olort~tl noise cost functions minimized by the dual EKF. 

Signal and Colored Noise Estimatiorl 

When estimating the signal ant1 noise. the erroi in the weights is accounted for by modeling the 

resultant error jk in the dyn2trnic.s ;ts a n?hit,e Gsussiarl noise process. The cost function is given 

in Equation 2.34 on page 32 as: 

minimized subject to y~ = rl; + r l , ,  . X i  sliowl~ in Equation 3.155 on page 79, uz x H~QLH:. In 
f t k  

sequential estimation, this cost will bc rnil~imizetl with respect to only the current signal and noise 

values: x k  arid n k .  The log terltl is tl~cicfoie tllopped, because ~2- and u: are both functionally 
f J  

independent of xk. The remaining two tezrlis of J,eC(xY, n?) constitute the cost minimized by the 

signal filter portion of the dual EICF gi~'rw in For~nula 3.21 on page 90, except that a: is replaced 

by (u2- + a;) in the definition of V, . 
f 

Weight Estimation - Colored Noise 

For weight estimation, the crlors 111 t l iv  sigl~al arid noise estimates are accounted for by using the 

cost given in Equation 2.41 on I);L~O 33: 



where gk and g,,,k are the variantcs of En and i l k .  If the signal and noise estimates are from the 

colored noise Kalman filter desclil)ed 'lbovt~, and g,,,~ are calculated as: 

y,, = E[(ik - i ~ ) ~ ]  (3.199a) 

= E [LC 01(i, - i&i, - i;)T[~ oiT] (3.199b) 

- - 2  T = E [[c O]Kr(?ji - Ccek ) K k  [C OIT] (3.199~) 

- - 2  ( 1 )  
= E[K: ' ) (C~~,  - c C t k )  K, I (3.199d) 

= K~"(c,P;c~)KI;'), (3.199) 

and similarly g , , , ~  = E[(Gh - F L ~ ) ~ ]  (3.200a) 

= E [[o c , , l ( i ,  - i ;)(i ,  - e r ) T [ ~  c n l T ]  (3.2oob) 

= E [[o C , , ]Kk(g~  - c,~;)~K:[o cnlT] (3.200~) 

'4') (C 6 - C i - ) 2 K y M ) ]  = E[K, c k  c k  (3.200d) 

T K(1+M) = K ~ ~ ' ' * ' ( c , . P ~ c ~  ) , , (3.200) 

where [C 01 and [0 C,] are (A1 + ~21,,)-t1irrlcnsion;~l row vectors containing all zeros except for the 

(W) lSt and ( I + M ) ~ ~  elements, ~rspcctivelg. Ht~rlce [C O]Kk = K:) and [0 C,]Kk = K k  . 

The gradients with Iesprct t o  tllc \freights arr easily calculated from these expressions as: 

%gk = ~ K : ) ~ K ~ ' ) ( C ,  PXC:) + (K~))~%(C,P,CT) ,  and (3.201) 

%g,,k = (c,P, cT) + ( K ~ ~ ) ) ~ ( C ~ P ; C ~ ) .  (3.202) 

The instantaneous cost JL is t l i ~  tcrln ir~sitle the summation in Equation 2.41. The gradient 

and Hessian of J k  are approxirnart~l 1~ tlcfir~ii~g tile observed-error term as in Formula 3.24. Using 
- 2 - 2 

the values l , ,~  = gk/(3iL - 2 4 ~ )  clll(l lo , ,  = g l i , r / ( 3 F ~ k  - 2gn,n), the negative gradient of Jk is 

L I 
Formula 3.24: Colored noise error-coupled cost function. Observed-error terms for dual EKF weight 
filter. 



given by Ho,ka;%ea = -R JA , i \ ~ l t L  t,lica H c > ~ ~ i i ~ n  of J,. is approximated by H ~ ~ C T ~ ~ H ~ , ~ ,  as shown 

in Appendix E. 

Variance Estimation - Colored Moisc. 

Estimation of the variance te1rn5 nf ~111c1 cd ( . < I I ~  be done in a way that takes the errors in the 

signal, noise, and weight estin~atc~s illto count. The cost function is given in Equation 2.45 as: 

which is identical to the cost givctil for n,c!ight estimation except that predictions here are given 

(1) by 2; = f (2k-l, . . . 2 k - ~ ,  6). Tllc el.rul.-v;~riai~ce terms are yr, = K, (c,P,cT)K~) and g,,k = 

K ~ ~ ) ( c , P I ; c ~ ) K ~ ~ ~ ~ ) ,  as slion-II ill Eql,at,io~l 3.199 and 3.200 on the preceding page. The 

redefinition of ii is reflected in PI_ sill(.(' this is 1)roduced by the error-coupled signal filter, which 

makes use of the statistics of w. 

The instantaneous cost J, i.; t l i c ~  cluailtity inside the above summation. The variance terms 

are estimated by defining the obsorv~tl-r11o1 nleasurement ik the same as e k  in Formula 3.24 on 

the previous page; the negati~cl of tllcl ~011(~51301ic~illg derivative is given in Formula 3.25, where the 

I I 

Formula 3.25: Colored noise error-coupled cost function. Observed-error terms for dual EKF variance 
filter. 

derivatives 3 and ag"k are: 

agk a ~ ( l )  Wcp; c:) --- = ~K~'---J--(c.  PLC:) + (K, ) , and aa2 OnL aa2 
l)K( L+A') 

agn k - (1+1%1) 1. 
- ILK, ( W M )  2 a(CcP,CT) 

8u2 L b 2  (c.P;CT) + (Kk ) aa, . 

With these quantities in llarld, tllc' v;~ria~ic.rs car1 bc esti~nated as described before, with the algo- 

rithm in Formula 3.13 on page 78. 



Marginal Estimation - Colored Noise 

As described in Section 2.4 on page 34, a lnargi~lal estimation approach for colored measurement 

noise is found by expanding tlic joirit density function p , p , ~ w l y r  into two factors: p,y,frl,rw 

and p w l y r .  Marginal estirilatior~ ii~etliotls rrlasi~l~ize the first factor with respect to the signal, and 

the second factor with respect to t lie weiglit,~. 

Signal and Noise Estimatio~l 

The signal and noise estimates that rrlaxiii~ize p , ~ , ~ l y ; . r w  are found by substituting the current 

weight estimates w; for w in tilt' c.olored-noise I(alma11 filter of Formula 3.3 on page 53, and 

Formula 3.4. This produces srquc~nt,ial estimates 12p and ny. 

Weight Estimation 

Meanwhile, p w l y ~  is maxiniizcd with rrspcct t o  the weights by maximizing the log: 

A where ~k = (gk  - G). This oxl)ressi011 is identical to that given for the white noise case except 

that,  for colored measuremelit noise, tlie rrieaIl is calculated as: 

and the variance is given by: 

Both terms are comput,ed bv tllcs c.oloi(ltl-lloisr I(a11ilan signal filter, and thus are recursive functions 

of the weights w. Their g~adic~rlts ale‘ 

and must be computed recursivcsly, as sliown i11 Section 3.6.1. 



Variance Estimation 

Unknown noise variances can also I ) ?  c~stirliattd by minimizing the negative log in Equation 3.205 

on the previous page. Ron1 Equatio~is 3.20G ;tnd 3.207, the required derivatives are: 

a€- B P , , ~  Section 3.6.1 shows the recursive c.olnput,at,ion of & and 

Prediction Error Weight Esti~natiorl - Colorc:tl Noise 

If is assumed to be indepe~ld(wt of w. t,l1(~11 the log term can be dropped from the cost function, 

leaving the squared predictio~~ error cost: 

,Ire (w) = 1 E:, 

where EI, e (yk - (2; + i i i ) ) .  Tliis cost corresponds to the recursive prediction-error form of the 

colored-noise dual EKF developed in [SS]. 

The observed-error form of weight filt,er is found by defining the instantaneous cost as Jk = 

(yk - 2; - = E : ,  a.11d letting the observed error terms be defined as in Formula 3.26, so that 

e k  4 ~k arid H o . k  = --C~EI. = Xvm = ( Q 2 ;  + %fi]i) 

I I 

Formula 3.26: Colored noise prediction-error cost function. Observed-error terms for dual EKF weight 
filter. 

the negative gradient of Jk is give11 by H,,ka;"ek = -~(&EI,)EI;,  and the Hessian is approximated 

to  first-order by H,,~D;%::~ = ~ ( X ~ E A . ) ( ~ E ~ ) ~ .  

Alternatively, the prediction c1.1.01. cost car1 be defined using EI, (yt - (i; + &)), which 

replaces the noise predictiorc. wit.11 its e.st.irrlete. Altllough this is a further departure from the 

original probabilistic approach. it has ;i sirrlple heurist,ic justification. Namely, using yk - f i k  as the 

prediction target is the uext best. t,hir~g t,o prctlict,ing xt = ~JI ,  - n k ,  and will produce lower variance 

weight estimates than using yk as t,hc. t,arget,. Furthermore, t,he weights should be adjusted to  make 
.. - xk a better prediction, without regard to f i / ;  or. fib 

This last comment suggests that oiily t h e  signal prediction 2; should be considered in the 

derivatives. This "alternat,ive" al)~)roacli. sho\vn in Formula 3.27, shows superior performance to 



that provided by using ~ l i  (yk - (2;  + r i k ) ) :  and is therefore used in the next chapter to represent 

the colored-noise prediction error nletltotl. 

L 
Formula 3.27: Alternative colored noise prediction-error cost function. Observed-error terms for dual 
EKF weight filter. 

Prediction Error Variance Estirna tion - Colul etl Noise 

Either of the noise variances. o i  ailtl a:,, , c,~ti I)c estimated using the above "alternative" prediction 
a* - 

error cost by defining t k  ([yL - ilk] - 2 ; )  its before, and H ~ , J  = -a. This differs from the 

white noise case only in the ir~clusiori of F L ~  i r i  i ~ ,  

Maxim um Likelihood Weight Es tilr~atjon -- Colored Noise 

Taking the dependence of 02, 011 w illto account requires the minimization of the full maximum- 

likelihood cost function give11 in Equat io~~ 2.52 oil page 36, restated here as: 

The appropriate weight filter is four~cl I)y defining the observed-error and its negative derivative 

just as they appear in Forrnula 3.17 on page 84. The only difference is in the definition EI, 2 

(yk - ( i i  + iii)), arid its wrial1c.c cr2i . 

Maximum Likelihood Irariarice Estir~i;~ tic111 - Colored Noise 

Similarly, the variance terms CT: iuld cr:,, (.all be estimated by minimizing the same cost. Here, ik 

and H ~ , J  are defined the sanle as in Forrriula 3.18 on page 85. The desired variance is estimated 

according to the equations ill Formula 3.13 OII page 78. 



Expecta t ion  Maximizat ion - Colored Noise 

Just as in the white noise case, an alteriic~tivc way of maximizing the marginal likelihood is supplied 

by the EM algorithm. As giver1 ill E ~ l u ~ ~ t i o n  2.58 or1 page 37, the colored-noise EM cost is: 

As shown in Appendix F, the c?xpect;rtio~ civ:iluates to: 

where fiklN, pn,klN are defined ;IS the c.onditiona1 mean and variance of nk given w and the 

data {yk}Y. The terms f~;,,, ;I,IK~ l ~ ; , ~ ~ ~  ill.(? the conditional mean and variance, respectively, 

of n, = W: - nk-1. Tlre atltlitiolid te1.111 , I : , ~ ~ ,  represents the cross-variance of nk and n;, 

conditioned on all the data. Tllc c:orrc!sl~oliding terms for the signal xk are defined on page 86, 

following Equation 3.173. 

An iterative-batch EM algoritlirri for the case of colored measurement noise is suggested (with- 

out equations) by Gan~lot et al. in [21]. A stiqn~ntial EM algorithm is produced by computing 

the expectations in the E-step with a c:olored-noise I{alman filter. This is equivalent to  replacing 

the off-line means and coval.iances ill Equat,io~i 3.213 with their on-line equivalents. As in the 

white-noise case, these on-line stnt,istic:s arc found by augmenting the combined state-vector with 

one additional lagged value for i)ot,l~ tlirs signill anrl noise. Specifically: 

- 
XI. 

-cr - A I  

11 1, 

'11. - AI,' - 
-+ 

so that the estimate tk producr~l by ;L I<allllan filter will contain kk-1112 in elements 2 through 

1+M, and iik-l(k in its last Aff,,, e1c1nr:rlts. 

Furthermore, the co\rariar~c:e P:,,: of <: 1,rotluc:ed by the I<F allows for approximate calculation 

t - 
of the variances m, pikI*'  l , , . ,~ ,  p ,,,* ii nncl p~,I . l I . .  Denote the first (1+M) x ( l+M)  block 

diagonal of P:, as P:,,. Tllcil let P,.,k-I 1,; be the lower right block of P:,,, and P!,, be the 



A A upper right block of P:,. Defining P;,,, = Ai -~ l i (P , c , r - l l r )A~-~ lk  and p t , k k  = p t , k ~ E ~ ~ k  

gives: 

+ (1,l)  - I = , J = , ) 1 1  and Pf ,k  = ( ~ f , ~ , ~  ) ( l J ) ,  

as shown in Appendix F. Sin~ilar c.al(.ulations car1 be made for the noise statistics using the last 

(Mn+l) x (M,,+l) block diagonal of P:~. tlc~lot~ed ~ 2 , ~ .  Specifically: 

where letting P,,,k-llr; be the lower right t>lock of P:,,, and pivL be the upper right block of P:,, 
T produces the required quantities: A, . (P l , , ~ -1~~ )A , ,  and pLkk P:,~A:. 

EM via the Dual EKF - Colorctl Yoiso 

As discussed in Appendix F) the only terlris in the cost of Equation 3.213 that depend on the 

weights w are the predictio~ls, i;. iind tlleir associated variances, p;Jk and Pi,k.  The other terms 

are functions either of the previous c?stimates, w, . -~ ,  or the noise coefficients w,. Therefore, the 

observed-error weight filter can be usctl to protluce a generalized M-step by dropping the irrelevant 

terms, and defining the insta.ntar~c?ous error ;LS: 

The terms of J:,? are corriputed sequentially with colored-noise Kalman signal filter as just de- 

scribed. The sequential hZ-step ih con~putcd b\- n Icctlrnan weight filter. The appropriate observed- 

error vector and its negative Jacol~ian 1nat1ix are given in Formula 3.28. Letting a; = $1, the 

Formula 3.28: Colored noise EM cost function. Observed-error terms for dual EKF weight filter. 

negative gradient and Hessian of .Jet y' 'rlc approximated by H,,ku,%k and Ho,ku;2~zkl  as shown 

in Appendix E. 

The gradient ~ $ 5 ~ ~ ~  is silnply -vir.i$, wliere 



and the gradient % p i k  is constructed element-wise from the expression: 

Finally, the gradient Q ~ : ~ ,  is ~~ns t~ructer l  from terms: 

EM Variance Estimation - Colorc~d Nois(* 

The colored noise EM cost can also be minimized with respect to o: and/or a:" to produce 

estimates of the noise variances. Just as in the white noise case, the instantaneous cost for either 

variance takes the form: 

numk 
.I:,? (CT" = log(2n02) + - (3.221) 

where numk is one of the releva~~t numerator term in Equation 3.213, and $represents  either a: 

or 0:. As before, each numerator terin is indtlpendent of n2;  the variance filter can be found using 

the same definitions of E k  and H ~ , . A  as ill  Forrnula 3.20 on page 89, but with new definitions given 

to numk. 

3.5.3 Dual EKF Summary 

This has been by far the longest sc?ct,iori of the chapter, but rightfully so. The dual EKF incor- 

porates algorithms for signal estimation, weight estimation, and estimation of the unknown noise 

variances. Signal estimates are ol)traiilc~cl t~sing a standard Kalman filter or EKF, or by using an 

"error-coupled'' variation. It was shown liow weight estimation and variance estimation can be 

performed using any of the cost functions derived in Chapter 2 by changing only the definition of 
" 

a few terms in the algorithm, namely: c k ,  Ho,k, ik, and H,,k. 

3.6 Other Issues 

In the preceding sections, the joint EI<F arid dual EKF algorithms were derived for minimizing the 

cost functions in Chapter 2. How(:vc>r, a tiw practical considerations warrant further discussion: 

1. Most of the dual EI(F cost filrrctions require compt~tirig the derivatives of a recursive Kalman 

filter. These computatior~s, solllc!tinlc.s called sensitivity filtering, are described in this section. 

2. The initial values for the signal autl weight state estimates and for the variance estimates are 

discussed. 



3. Application of the dual EKF (or joirlt EKF) in off-line settings is considered. 

4. A criterion for stopping iterative traini~ig (in the off-line setting) is described. 

5 .  It is beneficial in some c:orlt,exts to selectively emphasize and de-emphasize the data used 

during estimation. Both thr  "forgett,ing factor" described earlier, and data-windowing for 

nonstationary signals are discussetl in this context. 

6. The conlputatiorial coml,lesity of the joint EKF and various forms of the dual EKF are 

discussed and compared. 

3.6.1 Computing Derivatives 

With Respect  t o  t h e  Weights 

In the weight-estimation portion of the dual EKF, computing the negative derivative H,,k of the 

observed-error vector ek generally rc>cll~ires taking the Jacobiarl of various quantities in the signal 

filter. Because the signal filt,er is ii recursive structure, the gradients of quantities such as the 

state estimate x k ,  gain K k ,  arid t:rror covariarice PI, must all be computed recurrently. Taking the 

derivative of the sig~ial filter equat,ions in Formula 3.10 on page 75 results in the following system 

of recursive equations: 

ax,, --  ax, aKk 
aw - ( I -KL.c)=+ -(yk aw -ck ; ) ,  

aF(^ ̂ )  aF(x w) where and are t1valuatetl at wk and contain static linearizations of the neural 

network. The derivatives in thcse equatiolis are all derivatives of vectors with respect to vectors, or 

Jacobian matrices. The last terrri in Ecluatiorl3.223 may be dropped if we assume that the Kalman 

gain Kk is independent of w. Altllougli this greatly simplifies the algorithm, accurate computation 

of the recursive derivatives requires c:alculati~lg as follows. Denoting the derivative of KI, with 

respect to the i t '~ lemer i t  of w by & (the it'' column of w) gives: 

where 

aPk-I  - dKI,-1 - - -- ap;- 1 
CP,, + (I - Kk-lC)- ~G(Z) 31b(') dlii(2) 



Note that Ak-l depends not only on trhe weights w, but also on the point of linearization, kk-1. 

Therefore, 

where the first term is the static rlerivative of = & with fixed, and the second 

term includes the recurrent dt?ririit,iv(: of The term & actually represents a three 

dimensional tensor (rather than ;I ~natr is) .  However, because Ak-l takes the special structure 

shown in Equation 3.24 on page 50, its derivative with respect to x contains mostly zeros, and is 

in fact entirely zero for linear rnotlrls. 

The largest computatio~ial expcnsc: is incurred by the calculation of which requires that 

3 be computed for all i E { I . .  . dirii(w)J. Whether this expense is worth the improvement in 

performance is clearly a design issue, :uitl is investigated in Chapter 4; the recursive derivatives 

appear to be Inore critical when the signal is highly nonlinear, or is corrupted by a high level of 

noise. Various sirnplificatioris t.o tlle rcr:ursive derivatives are possible: 

1. Ignore the dependence of PF i~ritl Kk on w. This would result in the largest savings, and 

would eflectively drop the srbcond term in Equation 3.223 on the preceding page. 

2. Ignore the dependence of xA on w. This drops Equation 3.223 on the previous page al- 

together, and leaves only tlic socclncl term in Equation 3.222 on the preceding page. This 

results in a purely static. li~lcarizatior~ of the model, and is the simplification made in [61, 871 

and investigated in Cllapter 4 of t,his t,hesis. 

With Respect to the Variances 

In the variance-estimation filter, thc tl~rivat~ive H,,, of the observed-error vector ik requires taking 

recursive derivatives sirriilal to tilose just clescribed for the weight filter. Taking the derivative of 

the Kalman filter equations with rc.spec.t to either variance term (represented by a" results in the 

following system of recursive equatio~ls: 

where is evaluated at G k .  n~id i.rpr(:s:nts a static linearization of the neural network. Note 

that . $$ does riot appr!ar i n  E.clu;rt,ion 3.228, under the assumption that $$ = 0. The 

derivatives in the above equat,ions arc: all derivatives of vectors with respect to a scalar. The last 



term in Equation 3.229 may be tlruppccl if we assume that the Kalman gain K is independent 

of a2 .  However, for accurate conlput;ltion of the recursive derivatives, 9 may be calculated as 

follows: 

where 

Because Ak-l depends on tlie liiic~a~iz;~t,iuri point, ~ k - ~ ,  its derivative is: 

where again the derivative is ;rssuriietl to be zero. 

3.6.2 Initialization 

The dual EKF and joint EI<F algoritllrns require initial wlues xo and wo for the signal and weight 

estimates, and initial values c ? : , ~  and iTf l ,o  for the variances, if they are to be estimated as well. 

The additive noise is a.ssuined to 1l;~ve zero mean, and the noisy time-series is generally nor- 

malized prior to  processing; lleilce, tlic signal can also typically be assumed to  be zero mean. In 

the absence of any other information, this assumption is represented by letting xo = 0. 

Reasonable initial values fbr tllc wriglit,s can be found be training a predictor on some noisy 

data, as described in Sect,iori 1.3.1. Of course, this will result in biased estimates, but a few 

iterations of training in tliis way should provide a wo that is in the right general area of weight 

space. Initializing the weights in this way can be very beneficial to the training process. 

Finding reasonable initial vttlues for the variances is somewhat more complicated. Although 

in some cases short segrne~its of tlie ~loise and/or clean signal rnight be available for this purpose, 

such data is riot always itvailablt:. Tlierc!fore, some of tlie heuristic approaches in the literature 

may be suitable. 

Measurement Noise Variance 

As mentioned in Section 2.3.2 on page 29, this thesis assumes that the autocorrelation structure 

of the noise is lcnown within a sc.i~lal ~liultiple. Either the noise is white, with a possibly unknown 

variance a:, or it is colored, wit,li kriowrl AR coefficients w,, and a possibly unknown process noise 

variance a:*. 



Seeing that the noise rriodcl w,, is assumed known in the case of colored noise, it is likely 

that a reasonable initial estirnate of B:,, will also be available. For example, if w, is known a 

priorz, then something might also kc known about the range of values taken by a:_; alternatively, 

if w, is estimated from sorllr avai1al)lc rioise data, then an initial estimate of uin can be obtained 

simultaneously. 

The white noise assu~r~pt,ion corresporlds to the specific case when the autocorrelation is an 

impulse function (i.e.,  the spectrurn 1s flat,); the arguments given in the previous paragraph can 

therefore also be made in this citse. However, because of the analytic simplicity of the white noise 

case, some heuristic nietliods for findirig arl initial estimate of a: can also be considered. 

.4n approach developed 1)y \V:in a i ~ d  Sclson [87] for nonstationary white noise sources, esti- 

mates a: as follows. First, considor t,ho ~ioiicausal linear estimator of the signal xk as a function 

of 2M + 1 noisy data points: 

Note that the optimal weights car1 be expressed as 

where R,, is the sample autocorrclation of' yf+E,  eyy is the cross-correlation between ykfE and 

yk, and en = [0 . . . 0 1 0 - .  . O]. Tho v;ilue of a;L that gives the minimum variance estimate of xk 

(minimizes ~ a r ( w * ~  yk)) is: 

Appendix H shows that this exprrssioll provides an upper bound on a:. Starting a t  this upper 

bound, 6; is iteratively tlecreasetl until ti)(") > dZ) Vi # 0; this forces the current observation to 

have the greatest influence 011 thc csti~riator output, relative to other observations. 

Process Noise Variance 

To estimate a: (assuming an  all-pole rrlotlel for the signal), Lim and Oppenheim [44] used an 

expression for the inverse Fourit!r tr;uisforrn of the signal power (which is a function of a:). An 

alternative approach is tie\lelol)crct ill [87] by noting that the process noise variance a: can be 

estimated as the n~inimu~ri rrieaii scluared error of a linear AR predictor on the clean data xk. 

Specifically, 

' 2 T  of = crCp - pZz~i2pL.Z, 



where p,, is the cross-correlation I,etwc~cli tile lagged input vector xk-1 and the current xk, and 

R,, is the autocorrelation of tlw il~~)uts'. Because only the noisy signal gk with prediction residual 

cr; + 0: - p & ~ ~ p y ,  is available, of is t>sti~nated using: 

in place of the true values in Equatioii 3.237, giving: 

Note that when n k  is white, the t e r m  in (3.238) simplify because p,, = 0 and R,, = 6:1, where 

the additive noise variance is cstiniat,etl as a1)ove. Of course, it is possible to obtain negative values 

for &; using the above approacl~. The cstirr~ates should therefore be thresholded from below at 

some small positive value (e.g., lo-"). 

These "ad-hoc" methods alone do not always provide the accuracy required for effective dual 

estimation. However, they are sufficic?rit for initializing the on-line variance estimation methods 

described in this thesis. 

3.6.3 Iterative Applications 

In many contexts, available processil~g powcr allows enough time between the arrival of each 

measurement yr, for the repeatctl filt,er.i~~g of the previously collected data, in order to better model 

its dynamics. This might be tlolle \\lit11 21. fixed number N W i ,  of data points; a t  each time step, 

k, the algorithm is run repeat+etlly ctvctr the window of data: { y t ) k - N w i n  . The model is assumed 

stationary over the window, so the e~t~ilnates of the parameters (wn,  &:,k, and 6:,k) and their 

error covariances (Qk, g , , , k  arid qlr,k) at the end of each pass (or epoch) are used to initialize their 

values for the next epoch. The signal statre, li-k, can of course not be used in this way to  initialize 

kk-N,i, in the next epoch. 

By completing several passes over a fixed window, multiple copies of the data in the window 

are effectively concateriated to crc;ltcL lorlger sequence. This better accommodates the conver- 

gence time of the algorithin,  id rt!dl~(:c>s t,he variance in estimation errors; however, the posterior 

distribution p,?,~,; is conseclue~~tlq' t)iast?d Itlore heavily towards the observed data in the window, 

and away from whatever the prior (list,ril>utio~i is. The procedure has two desirable effects: first, 

the algorithm converges farther \\.itall lcss clat,a: second, in nonstationary environments the tracking 

performance increases due to t,htr ;uldit2ional emphasis placed on the most recent data. However, 

8This is exact, assuming th r  sign'il is g(weri~tr<I by a linear autoregression. 



this can have negative consequerices as well, because the chosen cost function may continue to 

decrease with each epoch, while the perfor~riance on future data is being unknowingly degraded, 

due to  the bias on the empirical tlistribution. This is referred to  as over-training on the data. 

The tendency of the algoritlirn t,o over-train will be irifluenced by three factors: the length of 

the window, NWi,,; the nu~nber of epochs; ax~d the cost function minimized during training. The 

more data and fewer epvclis used, the less likely over-training will be to  occur, because the bias 

in the posterior distribution will l)e less severe. However, NTUi,, must also be chosen in accordance 

with real-time processil~g constrail~t,~, as well as the time-constants of any nonstationarity in the 

data. The window length will be a t  least 1, arid constrained from above by either a function of the 

processor speed, or the number of tlati~ poir~ts k already collected. The maximum allowable choice 

of Nwi,  is quantified in Forrriilla 3.29, wlic~rciri N,,, denotes the maximum number of data points 

N I L  = i n (  k ,  ( A ,  - 1 ,  N )  epochs = I N ; ,  '1 (3.240) 

I I 

Formula 3.29: The length of the iteration window, and the number of training epochs. 

that can be processed between ob~er\~i~t,io11~; this number depends on the sampling rate of the data, 

and the processing speed of the l~;irtl\i~are implementation. Furthermore, if any nonstationarity 

is present in the signal, N,,, defines t,lic inaxinium number of data points over which the signal 

dynamics are approxirriately stationary; AT,,, is highly subjective, and depends on the flexibility of 

the model structure as well as zsvhat, is lriealit be "approximately" stationary. For stationary data, 

N,, = m. 

The window length is ;~lways less t,l~ari NCPu by a t  least one, because time must be allowed 

for processing the newly arrivecl dat,a poilit before passing over the old data. Hence, when a large 

amount of data has been collected (or tl~rt processor is slow relative to the sampling rate), then 

Nwi, = N,,,, - 1 ,  arid only 1 epoch is used. Of course, when there is time for only one data point 

to  be processed, then N,,,i,, = 1, iuld the algorithm is run in its "on-line" mode. Conversely, when 

the processor speed allows all of tlie data to be used, then N,,i, = k, and the number of epochs is 

limited by the processor. 

Nonstationary Data 

Things are somewhat more co~nplicatc~l w11c.n tlie signal is nonstationary. As mentioned above, 

the window length is linlitetl fro111 a1,ovc' by N,,,. However, it is quite possible that N,,, < N,, 

because of processor lin~itations. A single training epoch will typically not be enough to  track 



the dynamics of the signal. Instc>ati, il slitli~ig window approach can be used, as described in the 

next section. Sometimes, even wl1e11 a sliding window is used, real-time processing is still not a 

possibility. In this case, the algorith~n nlust be iterated over the window off-line, until it converges 

on a solution. 

Early-S topping 

In cases where the algorithm is itcbiated illally times over a segment of data - such as in the use 

of short windows on nonstationary slgnals the issue arises of when to stop the iteration. If one 

is concerned with how well the rnodc1l mill generalize its performance with new data, then it is 

important to  avoid over-training. Tlie process of halting iteration before over-training occurs is 

called early-stoppiny [30], and ustt;illy invo1vc:s evaluating the performance of the algorithm on a 

set of data not used for training (called t,l~ct onlidation set). The mean squared error (MSE) on the 

validation set can be used t,o tlct,(?r~nino nrhcn over-training begins to occur, and from which epoch 

the final estimate should be clloser~; it is important that this data be different from the test set, 

which is only used after tr;~ining is cornplot,c. Tlie use of a validation set for tasks such as model 

selection, determining hyperparamc?tc:r v:ilues. arid early-stopping, is referred to  in the statistics 

and machine learning communitie~s as c.7.os.s-ri(~1irlntion [30]. 

Note that over-training is a problein ever1 in dual estimation applications such as speech- 

enhancement,, wherein generalization to filt,ure data is not a concern. Because the true signal is 

not available, dual estimatior~ is osscritially an unsupervised learning problem; it is possible that 

the estimation error between ;ik i111d tlie true signal will begin to increase after several epochs, 

even as the cost function conti~lucs to decrease. 

Using a validatior~ set in tirr~e-scrics applications is not always straight-forward. For example, 

if the signal is highly nonstat~ion;nv t l~en  it must be windowed, and the training window will be 

quite short to begin with. Her~ce, rescrvirlg n block of data from the end of this window is likely 

to hurt performance both because the itlilount of training data is reduced, and because the model 

is no longer trained on t.he data that is rrlost relevant to the next portion of the signal. 

One approach is to first train on a representative window while using a validation set, to  

determine a reasonable uumb(?r of trail~i~lg epochs. The algorithm is subsequently run without a 

validation set, but is stopped after tzliis 1)redetermined number of epochs. This method of early 

stopping is used successfully in tl~c? sprcc.11 c?nhancement experiments described in Chapter 5. 

Another alternative is to rantloinly sa1111)le the validation set from within the training window; 

this reduces the amount of triiiniilg cl;lt,;i. bllt avoids the difficulty of removing data only from 

the end of the training set. For the duill EI<F, withholding randomly chosen measurements from 



the training set is very rnuch like tlealiilg with missing observations; something at which Kalman 

filters are quite adept. Essentially, tluririg t,irne-steps when the data yk is missing or withheld, no 

measurement update occurs irl eit2llc.r the signal filter or weight filter. Instead, the predictions (x i  

and w;) and their covariarices are subst,it.uted for the estimates (xk and wk) and their covariances. 

Similar substitutions are rnade for the rctcui~relit derivative computations. For the purposes of cross- 

validation, the prediction error ( y k  - .?,) is computed for the withheld points, and the validation 

MSE is tracked from one cq)ocli to tlic next. The parameter and signal estimates for the epoch 

with the lowest validation MSE are s;nwl as the final solution. 

l'kajectory Learning 

Choosing validation points froin witl~in the training set has an additional effect on the dual es- 

timation process that can improve pt~rforniarlce in some situations. Withholding an observation 

causes the signal predict,io~~ xr to 1 ) ~  ilsotl as the input to the model a t  the next time step (to 

generate output thus, thr rno(le1 is effectively being trained as an iterated, or multistep 

predzctor. When the next ol)serv;~tion ;trr.im:s, the recurrent derivatives allow adjustment of the 

model to reduce the error in the itrrntPtl prc?diction; t,his puts additional constraints on the model, 

and has been shown to improve the prcdict,i\~e power of neural network time-series models. The 

approach has been referred to in tlie literature as trajectory learning 1311, and is also related to 

the compromise method [94]. 

The trajectory learning tecliniq~ic~ (:;in br applied independently of cross-validation, although 

in the dual Kal~rian filter tlie same ill(:(:liiilii~~~i (of handling missing observations) is used for either 

trajectory learning or cross-~~~ilitla.t~ion. The only difference is that for early-stopping, the same 

hold-out set must be used across all epochs, whereas for trajectory learning a different set of 

points can be withheld duririg each pttss through the data. 

3.6.4 Data Weighting 

In some contexts, the dual esti111;ltion process can benefit from rescaling data in various ways. In 

this section, the importance of tlio forgetting factor, data windowing, and data normalization are 

described. 

Forgetting Factor 

As described on page 71. tllc sequcilcr of s~gnal-state estimates {xk)El is generated using the 

sequence of costs {J(xf, iirr CC~'uly, the s~gnal estimates x, will improve as the weight esti- 

mates wk used to germ ate tllrir~ irnpr ovc. The sequence of weight estimates {$irk)'&, meanwhile, 



is based on the sequence of signal esti~nat,cs. 

Hence, because the signal (:stirnnt,cts at early times are less accurate than the later ones, it 

stands to reason that their influellc:~ oil tlic weight estimation process should be scaled down. As 

described in Section 3.3, the: il1Ilollllt c ~ f  past data used to estimate the weights can be controlled 

through the use of a forgetting fact,or X < 1, or equivalently, by appropriate use of a process noise 

term uk in the state-space represent,ation for the weights. 

Specifically, defining the process noise covariance Uk  as in Equation 3.63 effectively places an 

exponentially decaying window (see Figure 3.3 on page 59) on the data used for weight estimation, 

so that wk  depends more heavily 01; rt:r.c.~~t signal estimates than older ones. The appropriate time 

constant of this exponential wiritlow tli~pencts or1 the complexity of the model: enough data should 

be left inside the window to accurnt.elv ~stirniite the weights. 

The forgetting factor introduces a cc?rt,aiii amount of flexibility into the parameter estimation 

filters, making them more rcsponsi~~c t'o new data, and improved signal estimates. Note, however, 

that although the forgetting fact,or is iinp1r:rnented in the Kalman weight filter through a process 

noise covariance, Uk, this does not inlply that the underlying system is actually time-varying. 

For off-line applications invol~ing a finite amount of data, the time-constant might be chosen 

to  be somewhat larger t11a11 N,  to c:rlsurc? t,l~at all of the available data is used. In these applications 

the algorithm is usually run over the tlnt,a repeatedly, so that X < 1 causes the earlier iterations 

to be "forgotten." 

The effect of X on dual I<alrn;ui filter c:onvergence is shown experimentally in Chapter 4. As 

mentioned previously, other sr:i~elrles for tlefiiling Uk - such as letting it be a constant diagonal 

matrix, or annealing it over tinit: - t:;~n also be considered, but are not investigated in this thesis. 

Windowing 

For nonstationary signals, such ;IS s~)oc+clr, the optirrlal weight vector w is time-varying. As de- 

scribed in the previous section, the c:llange in the dynamics generally cannot be assumed to be 

slower than the tracking ti~nc?-coiist:tnt of the learning algorithm, so special measures are required. 

When the computational tlt!ln;~rlrls are too great to process a window { y t ) k - N , ,  at every time-step 

Ic ,  an alternative is to divide the data illto approximately stationary, overlapping windows. 

These data-windows arc filt,cbrc+tl sr:p;irat,cly to  produce signal estimates {ik)?, and then are 

recombined to produce the co~nplcte c111ra.nccd signal. Because the windows are typically short, 

the dual estimation algorit.hm (ctit.llel. ,joint EKF or dual EKF) should be run repeatedly over 

the window until convergenc:e is ac:liicvc~tl. H(!rlce, winctowing usually entails an off-line mode of 

processing. 



If the windows are not overlal)p(~(l. then discontinuities, or "edge-effects" will be evident a t  the 

window boundaries. Typically, thtl windows sliould be overlapped, and shaped after processing so 

that they can be recombi~led by si~rlljlc iitltlition. This can be accomplished, for example, with a 

normalized Hamming window of the‘ form: 

1 
q, = -(o. 54 - 0.46. cos - (3.241) 

{ ] ~ l i , / ~  

where Nwi, is the length of eat11 wintlow, and g a i ~ e  is the sum of all overlapping window values at 

a particular data point. Division 1)). this gain term scales the windows so that they sum to 1, as 

shown in Figure 3.7. Note that tilt. noisy data are not shaped before filtering; this would disrupt 

Figure 3.7: Normalized Hamming windows can be used to scale the filtered data in each window so 
that the windows can be added together without affecting the overall gain. Special shapes are used for 
the first and last windows to avoid attenuation near the endpoints. Here, the window length is 256, 
with a shift of 64 points between windows. 

the dynamics of the underlying signal. Rather, the Hamming window is applied to  the filtered 

signal xrwin . 

For the Hamming window', tlic? col~t,riljut,ion of each window to the overall signal estimate is 

focused a t  the center of the windo\\r. Tllc~~~c?fore, the estimation of the data near the center of each 

window is more critical than t,lic estinittt,ion of the data towards the periphery. To reflect this 

preference in the model estiliiatioil procetlllre, the weights can be estimated in such a way as to 

emphasize the data accordi~~p, t o  t,lic, stlitpillg window. In the dual EKF, this requires adjusting 

the weight filter equations slight.ly; the I<allnan gains in Formulae 3.10 and 3.21 are replaced by: 

An analogous change is also 111atlc t o  thcl v,~r.iaiice est,i~nation filter of Formula 3.13 on page 78 by 

replacing 0;' with C~(T;'. 111 tile liiiear ~riotlel case, the above cliange effectively implements a re- 

cursive wezghted least S ~ I L ( L ~ ~ S  alp,0iit11111 [GI, where the weighting matrix has the window coefficients 



ck along its diagonal, and zeros elsewhere. 

Normalization 

A related issue is that of pre-scaling tlic data so that it falls in a reasonable range for numerical 

accuracy on a finite-precision con~pnter. >'lost rr~achines do poorly a t  representing either extremely 

large, or extremely small numbers, so it is important that the signal and weights take on values 

that give reasonable precision. 

Furthermore, normalizing the tlata facilitates the use of default initialization values across 

different data sets. Fox. exarnple, initial covariances Po and Qo must be set for both the signal and 

weight estimates, and these ~riatri~:es sl~oultl llltimately depend on the expected scale of the data. 

Hence, normalizing the data retluces this data-dependence. 

Normalization requires both subtracting the mean from the data, and scaling by a normal- 

ization factor, which can be eitller the staiitlard deviation or the maximum absolute value of the 

noisy time-series. For on-line applications, the data can be normalized as it arrives using a preset 

estimate of the mean and normalization f;tct,or. In off-line contexts, these values can be determined 

from the entire data set. 

A possible complication arises U ' I I ~ I I  either of the variances a:, 0: (or a:=) is known a priori. 

In this case, its value niust he scalatl 1)y t,llr square of the normalizing factor. While this scaling is 

correct for the Ineasurenieiit noise stitt,ist,ic:s, it is only correct for the process noise variance 0: in 

the case of a linear model f (.); ot.llerwise, it represents an approximation. 

3.6.5 Computational Expense 

In the following, the numbei of floatir~g 1)oillt operations required a t  each time step by the dual EKF 

and joint EKF are roughly calculatetl to show how the algorithms compare from the perspective of 

cornputatiorial expense. Although the r;llculatio~is are made for the white noise case, the expense 

for colored noise can be api)toxin~atcly found by substituting (M + M,) for M. 

Dual EKF 

As suggested in Section 3.6.1, cuiill~utat,iori of H,,k - which involves the recursive derivatives of 

the signal estimates arid covaria~~ces wit11 1x:spect to t,he weights - accounts for a large part of 

the corriputatioriill cost of the tlu;ll EliF iilgoritl~~ll. Table 3.2 lists the approximate number of 

floating point operatioris for cac.11 part of t l ~ e  algorithm. This is often referred to as the order of 

the coniputational expense, ailtl is tleilot,etl I,y ( I ( . ) .  The sparse structure of matrices (such as Ak 
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Table 3.2: The order of computational expense for various equations in the dual EKF. 
Explanation 

signal filter 

weight filter 
17 

3.222 

3.223 

3.224 

3.225 

3.226 

and C k )  is tale11 into accoul~t as ~iiucll as possible, so tlie riurribers in the table represent a fairly 

efficient implementation. 

Order of Expense 

6M" 33M + 2Mw 

12.1; 

4h4$AdO + 4 M i  Mw + M z  

Equation 

3.129-3.133 

3.127-3.128 

3.134 

3.227 

Combini~ig the costs of E C ~ ~ I ~ L ~ ~ O I L S  3.222-3.227, computation of the recursive derivatives re- 

quired by the dual EKF is 0(15A12 RIw + 10A1;2lw +GAlw + 5 M 2 ) ,  while use of the static derivatives 

alone is only 0 ( 5 M w ) .  Mrnnwhilc, tllr Ii;il111~11 signal filter of Formula 3.10 on page 75 requires 

0(6M2 + 3Al+ 2111,) computations, rl~id the weight filter is O(h f2  + 4MwM," + Mw + 2MwM0 + 
6M$M,  + 2M;), where Mo is tlir dilllc~nsio~i of tlie observation vector, e k .  

Tc!rm 

x i ,  PL, Kk, xk? Pk 

wL,Qi 

K T  

5 
i i  w 

Ll& 
iJ w 

f i b  
tlP - 
--L \J% 
i ) l i ; c l~  

a P k - ,  
t)&d') - b'i 

Joint EKF 

B A L -  1 
a(i,cc, vi 

The joint EKF does not use tl~r: I-c.r.ilrsivt~ tlrrivatives required by the dual EKF, so its expense is 

limited to that of an EI<F usetl to Iilt,er tlic joint state-space equations. Iricluding all derivative 

computations, this filter requires O(GhIi + 31\fz + 2iU: + 7114w) computations, where M, is the 

dimension of the joint state. 111 t,llc. whitt! ~loise case Ad, = M + M w ,  so the joint EKF is 0 ( 8 M $  + 
12MMw + 1ODlw + 6M" 3 M )  

4Mw 

Mw 

( 2 M 2  + M ) M w  

3A4A4w + M" 

2 M W W  + Mblw  

8b1"w + 4 M 2  

A l W W  

o ( w )  

O ( W )  

O(matrix mult.) 

O(matrix mult.) 

O(matrix mult.) 

O(matrix mult.) 

O(matrix mult .) 

a~rn~,., + M, 

2MMw 

2h f2  Mw + M Mw 

0~ ,.":Liz, ) 
aZF 1 

0( (aik-l)s 
O(mu1t. & add) 



Table 3.3: Coefficients for the order of computational expense of one time-step for the joint EKF and 
dual EKF, when written as polynomials in the signal state dimension M ,  and the number of weights, 

Comparison 

Mw. Static derivative forms of the dual EKF are indicated by a prime (I). 

To facilitate comparison of thv two algorithnls, Table 3.3 shows the coefficients of terms involving 

M and Mw for the joint EKF, as ~ ( 1 1 1  ah t l ~ c  five tliffere~it cost functions of the dual EKF. Each 

Algorithm 

joint EI<F 
dual EKF J P t  ( w )  
dual EKF JU"(w) 
dual EKF JJ (w) 

dual EKF J"" ( w )  
dual EKF J" ( w )  
dual EKF' .JIx(w) 
dual EKF' JU1'(w) 
dual EKF' J J  ( w )  
dual EKF' JW(w)  

cost has a different nu~nbel of observations. Af3, which gives them different overall costs. 

The order of expense for Af = 10, at wriuus values of 111, is shown in Figure 3.8. Clearly, the 

joint EKF conveys a sig11ific:ant compllt;itio~~al advantage, due to  its lack of recursive derivative 

computation. The tlual EIiF wit11 tllo E l i  cost tlocs not require recurrent derivatives, and so 

its expense is less than that of otl~er tlunl EKF algorithms. If static derivatives are used in the 

other dual EKF costs, thcii expense is letluced considerably, and the cost of the prediction-error 

algorithm is less than that of the joir~t EICF. 

M~ 

1 0 6 3 1  
1 5 9 5 1  
2 9 9 5 8  
2 9 9 5 8  

4  
9 

1 0 4 5 1  
2 4 4 5 8  

11; 
8 

8 
14 
14 
'20 

26 
8 
14 

However, it sl~ould bc iiotetl that tllo i~bove cost,s involve only floating point multiplies and 

adds, and assume that the algoritlinis t~ re  cotled witlh an eye for efficiency. For the MATLAB code 

used to generate the experir~~erit;~l results i11 the next chapter, the joint EKF and dual EKF are 

114 hil, 

12 
10 
10 
10 
0  
10 
0 
0  

~ 1 " h f ~  

0 
15 
15 
15 
0 

15 
0  
0 

14 
26 

quite comparable in ternis of overall t:sccut,ion time. 

hfW 

46 
81 

M 

5 
5 

0  

1 

27 
64 



Figure 3.8: Floating point operations required by the joint EKF and dual EKF algorithms, as a function 
of the dimension of w ,  with A 1  fixed at 10. The solid curves represent dual EKF algorithms with 
recurrent derivatives. Note that the expense of .JJ(w) is the same as Jn'.'(w). The joint EKF expense 
is shown with a dashed line. Nonrecurrent approximations are represented by dotted lines without 
labels: Jpe(w) (lower), JmL"w) and J J  ( w )  (middle), and JeC(w) (upper). 
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Chapter 4 

Comparative Experiments 

4.1 Overview 

The previous chapters of this thesis describe several different dual estimation algorithms and cost 

functions. The current chapter has several goals: to  determine appropriate settings for various 

algorithmic parameters; to  compare the utility of the different cost functions within the dual EKF 

framework; and to compare the performance of the dual EKF algorithm with that of the joint EKF 

and other algorithms. These goals are approached through a series of controlled experiments, in 

which the clean signal, true model structure, and true model parameters are all known beforehand. 

This information is necessary for computing objective performance criteria, such as the mean 

squared error (MSE) 

For example, consider the tinie-series dat,a depicted in the top part of Figure 4.1. The solid 

curve was generated by a neural network function f (.), driven by white Gaussian process noise 

with variance a: = .36. Colored noise was then generated by a known linear autoregressive model 

and added to the signal to p r o d ~ ~ c e  the noisy measurements shown by the small dots. For clarity, 

only the last 200 points of the 20,000 point time-series are shown. The bottom part of the figure 

shows the same signal, but with the dual EKF estimates superimposed as small dots. If the clean 

signal was not known, we could not see that the dual EKF estimates are closer to the signal 

than the noisy measurements, nor compute the normalized MSE before (.5016) and after (.1263) 

processing. Performance measures such as MSE play a crucial role in comparing the performance 

of the various cost functions, and deciding how to initialize the algorithm or choose a forgetting 

factor. 

The comparative experiments in tliis chapter are aimed a t  resolving the question of which cost 

function or algorithm to  use when confronted with a particular noisy signal. In addition to  deciding 

on a cost function, other design issues must also be determined. In particular, the initial values of 

the covariance nlatrices for the signal, weight, arid variance filters must be chosen, as must a value 



Neural Network Signal & Noisy Measurements 

Neural Network Signal & Dual EKF Estimates 

Figure 4.1: Estimation of a nonlinear time-series by the dual EKF. The true signal is shown by the solid 
curve. Noisy inputs to the dual E K F  are shown by the dots in the top plot, and the signal estimates 
are shown with dots in the bottom plot. 

of the forgetting factor, A. Because the best set of choices may depend on the particular type of 

signal and noise (e.g., linear or. nonlinear, white or colored noise), and the given signal-to-noise 

ratio (SNR), an effort is made to isolate these factors. 

The situation is further complicated by the amount of a prior2 knowledge assumed to  be 

available. That is, the results niight depend on whether or not the noise variances are known, 

and to  what degree of certainty the requircd cornplexity of the model structure is known. A lack 

of knowledge about the true noisc statistics or ~riodel structure represents a potential source of 

additional error, to which some cost functions arc likely to exhibit better robustness than others. 

Each of the above design paranicters or variables represents a dimension in what is clearly a 

very large search space. Unfortunately, searchiiig this space exhaustively for the best set of design 

choices is prohibitively expensive. However, sorrie design choices can be expected to  be less tightly 

coupled with other choices. For c>sa~nple, the effect of the initial covariance matrices Po and Qo 

on performance should be somewhat independent of the cost function being used. By optimizing 

these values first and holding them coiistn~it~, the dimensionality of the search space is reduced. 

Hence, a sequence of experirrieiits is perfornied. In the first experiment, reasonable choices 

for Po and Qo are found, assuinirig the noise variances D; and u: are known. A few different 



cost functions are used to confir~n the assuriipt,iori of independence. Second, in an experiment 

using known weights, w, the different variance estimation cost furictions are explored, along with 

values of the initial error variances, q,,.o and q,,,o. A few different noise types are employed, 

and the experiment is repeated for tlie various cases wherein one or both of the variances are 

unknown. The third experiment looks at the effect of the forgetting factor, A, in the presence of 

both stationary and nonstationary noise. Fourth, the relative performance of the various dual EKF 

weight estimation costs are detern~ined using the values of Po, Qo, qv,o, and qn,o, and X determined 

in the earlier experiments. The use of stat,ic derivatives instead of recursive ones is evaluated in 

the fifth experiment, and in the sixth ex~)cr.iment, the dual EKF and joint EKF algorithms are 

compared. Some final experiments arc used to evaluate the robustness of the algorithms to incorrect 

choices of model structure, and tlic! us(: of t,he algorithms in iterative estimation settings. 

4.2 Experimental Framework 

Before presenting the results, however, the experimental framework must be described. The fol- 

lowing pages provide an outline of the performance criteria, method of analysis, and various data 

sets used in the experiments. 

4.2.1 Performance Criteria 

Comparing different estimatiori methods requires a means of evaluating the performance of the 

dual EKF and other algorithms. This choice of a performance criterion ultimately corresponds to 

a particular definition of the loss fi~nction L( . ) ,  which may be a function of the signal estimation 

error, and errors in the parameter estiniates (recall the discussion of Bayes Risk in Section 2.2.2 

on page 20). 

A particularly useful class of functions are the sun1 of squared errors (SSE), where the sum 

might be weighted differently over different components of the weight and signal errors, and over 

different times, k .  Although c:lloosing iin appropriate loss-function is typically a problem-specific 

task, some degree of generality is affordetl by t,he fact that a broad class of loss functions all 

correspond to the same Bayes rst,iri~atrs, so long as P,;Y,,~? is unimodal and symmetric. In fact, 

under these cnnditions, t,he Baycs (1stirn;lte for the SSE loss function is also the desired MAP 

solution described in Chapter 2. 

For certain applications (c.!~.;  speec:h eriharice~nent), a SSE loss function is not the most appro- 

priate choice. In the case of sptwh. tliis is l)c!canse the signal's phase information is not a strong 

cue in human speech perception, ant1 bc?ca.use the human auditory system is differently sensitive to  



different frequencies of sound. Tllese and other factors are ignored by a simple SSE loss function. 

On the other hand, a satisfactory objective measure of speech quality has yet to  be developed. 

Although, the speech enhancement results reported later in this section are presented in terms 

of weighted spectral slope, segniental SNR, and several other perceptual metrics, none of these 

measures is an accurate indicator of human perception of speech quality. Because the emphasis of 

this thesis is on the theoretical relationship between various cost functions in the MAP context, 

and not on a specific signal type or application, the SSE loss function is a reasonable choice for 

evaluating the performance of rnost signals. 

Normalized Mean Squared Errors 

To compute the SSE, the squared errors in the signal and weights are summed over a finite period 

of time. This value can then be divided by the length of time (number of data points) to  produce 

the time-averaged, or mean, squared error (MSE). Furthermore, the MSE can be normalized by 

the variance of the clean signal (or t,riie weights) to produce numbers close to  the range [0, 11. The 

formula for the normalized mean squared error (NMSE) is: 

ks -1 Lz 

NMSE = ( true;) (true* - e ~ t i r n a t e ~ ) ~ ,  (4.1) 

where the number of data points (ka - k1 + 1) cancels out of the expression. NMSE values are 

typically less than 1, which would correspond to an estimate of all zeros for k E [ k l ,  k2]. However, 

values larger than one are possible for exceedingly poor results. 

To keep the analysis as general as possible, the estimation error and parameter errors are 

considered separately. The estimation error at t i~ne  k is simply 2 k  = (x* - f k ) ,  where Sk is 
- 

the estimate produced by the algorithm in question. The variance-parameter errors are o ~ , , ~  = 

(0; - 6:,k) and >l,,,, = (rri - iif . k ) .  IVlien the rriodel is linear, one can also consider the weight- 

parameter error Wk = Ci(di) - ,tit!!)); however, the weight error is not a meaningful quantity for 

neural network models because of the non-uniqueness of solutions. The prediction error can also 

be considered, defined as Z i  = (:ck - 2 ; ) ,  and can be viewed as a function of the estimation error 

and parameter errors1. 

If the algorithms are evaluat,ed on a t,irne-series of length N, summing the instantaneous 

squared errors over k E [l, N] produces a number that represents the overall quality of the esti- 

mation procedure. This can be tloiie separately for estimation, prediction, and parameter errors. 

lAn alternative definition of prediction error, (y~, - gi.;), differs from t h e  above definition by inclusion of the 
measurement noise nk . 



Computing the overall NMSE facilitates the comparison of algorithms by providing a scalar mea- 

sure of quality. 

However, we are typically interested not only in the overall sum of these squared errors, but 

also in their values as functions in time. Sorrie information about the time-dependence of the errors 

can be obtained by summing over shorter segments of the result. For example, summing over the 

first 100 time steps gives a picture of ail algorithm's performance a t  small times, whereas summing 

over the last 1000 time steps C~III  show the performance of the algorithm near convergence. 

Error Traces 

Ultimately, however, a time-traject,ory of squared errors conveys the most information about the 

convergence properties of t,lle algorithm. For example, the squared error in the estimate 8iPk 

of the measurement noise variance will ideally appear as a monotonically decreasing curve when 

plotted against time. Information about t,hr convergence rate and asymptotic value can be readily 

discerned from a plot of the ensemble statistics of these curves. 

However, a similar plot of the signal estirrlation error will not be so easy to evaluate; the squared 

error will generally appear quite noisy ant1 will vary grea,tly with the instantaneous dynamics of 

the underlying signal. Even wheu the model parameters, w, DZ,  and 0; are known exactly, a plot 

of the estimation error from an ext,entled I<alinan signal appears highly noisy. The situation is 

improved somewhat by plotting the short-term MSEs, corrlputed every 50 points over a 500 point 

window (as shown in the middle plot of Figure 4.2). These smoothed plots, referred to  in this 

thesis as MSE profiles, are easier to interpret. than the raw MSEs, but the convergence properties 

are still not readily discernible. To aitl in t,he interpretation of estimation error plots, it can be 

useful to  compare the MSE profile of the dual estimation algorithm (unknown model) with the 

profile of the ideal signal estimation result (known model). The difference in these MSE profiles 

more closely resembles a monotoiiically decreasing curve, as in the bottom plot of Figure 4.2. 

4.2.2 Statistical Analysis 

When comparing two methods, one rriust determine whether the perceived difference in their 

performance is st,atistically significa~~t. This can be done by repeating the experiment several 

times, and looking a t  the ense~nl)lt.  statistic:^ of the loss function taken over different realizations of 

the data. If the difference bet\vec.ri tlit? means of two methods is much greater than the variation 

seen for an individual method, t,hcn the difference is significant. 



EKF squared signal errors 

MSE profile 

Dual EKF 

0.15' 1 
Differenced MSE profile 

0.2 1 

Figure 4.2: The ensemble average (10 repetitions) of the squared signal error (xk -9k)2 is too noisy to 
interpret (top plot). Computing the MSEs over a sliding 500-point window produces an "MSE profile" 
(middle plot). The convergence behavior of a dual estimation algorithm can be viewed by subtracting 
its profile from that of the EKF, to produced a "differenced MSE profile" (bottom). The ensemble 
mean and standard deviation are shown by solid and dotted lines, respectively. 

Sampl ing  Dis t r ibu t ion  

For a particular algorithmic treatment, the value of the loss function L(.) generally depends on the 

underlying signal {xc)?, weights w, and data {Yk)y. -4s described on page 20, these quantities 

can be viewed as random samples clrawn according to pxywyy. The loss L(.) is therefore a ran- 

dom variable whose probability distribution depends on this joint density function. A particular 

algorithm can be evaluated by esti~riating both the mean of L(.) (i.e.,  the Bayes risk): 

and the variance of L(.) empirically, using samples drawn from pxywyr. 

For example, w might be sa~ripled according to a multivariate Gaussian distribution around a 

particular mean. Next, XF C ~ I I  be drawn from pxrlw . px,, by generating the initial condition xo 

and process noise as Gaussian randorri variables. Finally, the noisy data yfV can be produced by 

sampling from, for example, p , ~ , , ~ ,  = h r ( x P ,  oEI), in the white noise case. By repeating this 

sampling procedure, the statistics of L(.)  for a particular algorithm will emerge. 

However, varying the weights in this manner can produce widely varying signal dynamics, 

which would dominate the resultant variation in the loss function. The variance of L(.) for a 



particular algorithm would then bc: quite large, t,hereby obscuring the difference between the Bayes 

risk of two algorithms. Ultimately, statistical techniques can be applied to mitigate the problem, 

but a large number of samples are required for this, resulting in great computational expense. 

Furthermore, the average error trajectories would be much less meaningful. 

A better use of computation time can be made by taking a different approach. Consider the 

idea that the various algorithms are likely t,o behave in the same way relative to one another at 

different points in the weight space. In other words, for a given parameterization of the underlying 

system, f (., w), the ranking of the algorithms will not depend on the true underlying weights, w. 

This means that the conclusions made about t,he relative performance of algorithms for one system 

can be generalized to other systems of similar complexity. This assumption can be tested, but it is 

clearly a highly desirable situation; if it is not true, there is little value in running the comparative 

experiments in the first place. 

Under the above assumption, tllc evltluations can be performed using a fixed weight vector 

w. In other words, p, is tanker] to singular, producing a fixed value. The experiment can be 

performed for a few different values of w t,o validate the assumption, but this is not as troublesome 

as sampling across the space of all possible weight values. 

With the weights fixed, sampling across t,he signal space (varying { x k ) r )  amounts to  varying 

the initial conditions xo, and the particular realization of the process noise { u k ) F .  However, if 

the signal is ergodic, the statistics of the signal space computed across time will tend toward 

the ensemble statistics at l uge  values of tirrle k .  In other words, taking the ensemble average 

of the error across different realizations of the signal x y  should be equivalent to  computing the 

time-average. 

Thus, a more efficient use of computational resources is to sarnple only from p,ylxrw (drawing 

different realizations of the measurenient noise ny) while keeping w and x? fixed. This can be 

viewed as estimating the out,er expectation in Equation 4.2 alone, while computing the inner 

expectation with a singular density function p,;y,, located a t  the known values {xk)? and w. 

T Test 

With p , ~ , , ~  in place, and assuming the loss fi~nction L(.) is chosen, the task remains to  eval- 

uate the various algorit,limic design clloices ill a set. -4. If the loss under a particular algorithmic 

treatment, a E 4, is denoted by the ralldorn variable L,(X?, w, yy ) ,  then the ultimate goal is to  

determine if Ey[L,] < Ey[L,,] for all pairs ( a  # b) E -4. 

This can be accomplislled with a pnirarl sample t test, as explained in Appendix I. This 

test looks at the difference betwc.cn two treat,ments, and produces a statistic, called the pvalue, 



that reflects how likely the difference is to be zero-mean. When the pvalue is close to  zero, the 

difference between the treatrrients is significaut. If the yvalue is large, then the data do not support 

a difference between the treatments. 

Boxplots 

One weakness of the t test conies fioin its assurript,ion of Gaussianity. Suppose that treatment b is 

significantly worse on average thau trc?atnlent a ,  and moreover, is prone to occasional divergence. 

The problem occurs when b diverges on the r."' repetition, causing a difference, d z  (La - L,), 

much larger than the average difference, D,.i = E, d!:i, across R repetitions; this inflates the 

sample variance of the difkrenc:cs, s t , .  Thr! t,,,l, statistic makes no distinction between values of 

d t i  larger than the mean and virliies sxrrnller than the mean, so even though no differences close 

to zero are observed, t,,b is decreased, ant1 the yvalue becomes large. This shortcoming can be 

compensated for by viewing a. bosplot (e.y., see Figure 4.10 on page 133). This plot shows the 

median, and the upper and lower cluxrtiles of t,he data wit,h horizontal lines. Vertical "whiskers" 

show the range of data within a lengtll of 1.5 times the interquartile range, both above and below 

the inner quartiles. Outliers are points outside of the whiskers, and are plotted separately with a 

"+" symbol. When all the data arc: in-range (no outliers), this is indicated by a small dot a t  the 

bottom of the lower whisker. 

Typically, then, the experirrierital rcsult,~ in tallis sectiori are interpreted by making boxplots of 

the various treatments to show the ra11ge of r ~ s ~ i l t s  obtained. Next, the algorithmic treatment a 

with the smallest sample average of L,, is fountl, and the p-values for the differences between a and 

each of the other treatnlents are eomput,ctl bv a pa,ired sample t test to determine whether these 

differences are significant. 

4.2.3 Signals 

Several different clean tinie-series are used in the conlparative experiments? The first two are 

generated from a lrnown autorc~gressive fu~~ction j(.) according to: 

xk = f ( ~ : k - ~  , . . . .~:k- ,bf .  W) + 'uk V ~ E  {1 . . .  N}, (4.3) 

where v k  is a zero-1nea11 white Gaushi :~~~ process. Initial conditions are obtained by starting a t  

random values of z, and running tllr ~rcursion until the transients disappeared. These transients 

are then omitted by removing the first several hund~ed points of the signal. As described below, 

2Additional, applicatiou-specific t,itrre-scr.ic:s \ \ r i l l  I,(, tlescribetl i n  later sections 



the first signal uses a linear function for f (.), arid the second two use neural networks. The fourth 

and fifth signals are generated by knon~n cli;~otic rnaps. 

Linear  AR-10 Signal 

One of the signals used in the espcriinents is generated by a linear function xk = w ~ x ~ - ~  with 

10 taps (M = 10). This lesults in a 1int):u IIR (all-pole) model driven by white process noise, 

commonly referred to  as an autorc~gressive (AR)  system [46]. The weight vector and process noise 

variance used to generate the data ale: 

T 
w = [.9 .3 -.4 2 -.I 1 -.3 .2 .01 -.05] , and o: = .09. (4.4) 

A portion of signal is shown in Figurc1 4.3. The lriaiii utility of this time-series is that it satisfies all 

of the assuinptions of Gaussiariity rnatlr irl the theoretical development of this thesis. The linear 

AR data therefore allow testing of the ;~lgo~itlilns under "ideal" conditions. 

Figure 4.3: Data generated by 10th order linear AR model. 

Nonlinear  Neura l  Network Signals 

To generate a nonlinear tirw-series. a fcrc!tifol.ward neural network with 10 inputs, 5 hidden units, 

and 1 output is used a,s thr nonlinear a~~torc?gr.essive function f (.) in Equation 4.3. Two different 

networks ( i . e . ,  with differelit wt:igllt,s w)  w.re used to generate time-series with different dynamical 

properties; this is useful for t,esting the l~ypot,hesis t,hat the relative performance of different costs 

should be similar a t  different points ill the xeipht space. 

The first network is drivcn with white Gaussian process noise with variance a; = 0.04. The 

resulting signal is shown ill Figure 4.4(a), along with a phase diagram of the undriven dynamics 

(no process noise) in Figure 4.4(b). As shown, a limit cycle is produced: a fairly simple form of 

nonlinear dynamics. 



(a) Portion of first neural network signal (b) Phase diagram of undriven dynamics 

Figure 4.4: Data generated by limit cycle neural network. 

(a) Portion of second neural network signal (b) Phase diagram of undriven dynamics 

Figure 4.5: Data generated by chaotic neural network. 

The second network is driwri wit11 white Gaussian process noise with variance n; = 0.36. The 

resulting signal is shown in Figlil(a 4 . 5 ( i ~ ) ,  along with a phase diagram of the undriven dynamics 

(no process noise) in Figure 4.5(11). Tlie dynamics of this network are considerably more complex 

than the first, and appear chaotic in nature. 



Ikeda Chaotic Series 

The Ikeda chaotic map [27] is defined by tlie discrete-time, complex valued function: 

where zo is chosen randomly, a = 1, R = 0.9, 4 = 0.4, p = 6. A one-dimensional time-series 

was produced by taking the real part of the data; i.e., xk = R(zk). Furthermore, the data are 

normalized to have zero mean and fall approximately in the range [-I, 11. The time-series is shown 

in part, along with its phase diagram, in Figure 4.6. 

(a) Portion of signal (b) Phase diagram of signal 

Figure 4.6: Chaotic lkeda data. 

The linear and neural network models have the advantage that the exact model structure is 

known in advance, thereby removing ally effects which might arise from using a model which is 

either too flexible or too rigid during the dual estimation process. In contrast, if a neural network 

is used to  model the noisy Ilteda data, the architecture is not known a prion', nor are the optimal 

set of weights w and variance crt. 

As these parameters aIe not required for dual estimation, this does not pose any problem 

for the use of the algorithms. On tlie other hand, it makes establishing a benchmark result for 

the known-model case difficult oil the Il<eda data. One solution is to train a neural network as 

a predictor on the clean data, ;uld to interpret this as the true model. However, the chaotic 

properties of the Ikeda data set ~n;~l t r  this a difficult rnorleling problem in its own right, and even 

when a reasonably accurate model is found, it proves ineffective when used for signal estimation 

in the Kalman filtering context. The reason for this is probably related to the severity of the 



nonlinearities in the system, which disrupt the Gaussianity of the statistics, so that this "true" 

model is no longer optimal for estimating noisy data. 

Mackey-Glass Series 

A continuous-time chaotic map, first described by Mackey and Glass ([49], 1977) for modeling the 

dynamics of white blood cell production in the human body, is given by the differential equation: 

Here, T is delay parameter which results in either fixed point, limit cycle, or chaotic behavior. The 

system has been used frequently ill tlle literature for testing nonlinear predictive models (e.g., in 

[40], [85], [31]). The experinierits later in this chapter use a delay of T = 30, which produces a 

strange attractor with a fractal dimension near 3.5. Following the convention in the literature, 

the continuous time signal is sampleil every 6 seconds to produce the discrete-time series shown in 

Figure 4.7. 
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Figure 4.7: Data generated by Mackey-Glass equation with T = 30 and a sampling period of 6. 

Normalization 

Because the above data sets are generated so as to fall in a reasonable numerical range, normaliza- 

tion is not a critical issue. Nevert,heless, to provide consistency, arid to allow the use of a common 

set of initial error covariances P o ,  Qo, qu,o,  and qn,o, the noisy time-series are normalized to be 

zero-mean, and to fall in the range [-I, 11 so that maxlykl sz 1. Of course, the unnormalized 

time-series is used whenever the true rr~odel is employed for signal or variance estimation: the data 

must match the model in this case. 



4.2.4 Measurement Noise 

Several different classes of noise are investigated, ranging from stationary white Gaussian noise, 

to  nonstationary colored noise, to pinlc noise. As explained in Section 4.2.2, several realizations of 

the noise are required for each noise type. These data are scaled appropriately before adding them 

to the clean signals, to  produce time-series at the desired SNR. 

White Stationary Noise 

White noise refers to a signal whose value at time k is statistically independent of its value a t  time 

k - 1. Typically, the pseudorando~n nurribers generated by a computer can be considered to form 

a white noise sequence in this sense. As an alternative, the Signal Processing Information Base 

(SPIB) at  Rice University [69] malces t~vailable 235 seconds of white noise, which was sampled from 

an analog noise generator with 16 bit precision at a rate of 19.98 kHz. The original data are in 

integer format. 

To produce the noise samples { n k ) Y  used in these experiments, the SPIB data set was nor- 

malized to fall in the [-I,  11 range, and was divided into nonoverlapping segments to produce the 

required repetitions. 

White Nonstationary Noise 

Nonstationary white noise data are produced by modulating each of the above stationary noise 

realizations with a sine wave. The D.C. offset of the sine wave is 1, and the amplitude is 0.2. 

The period is about 15,000 points, thereby producing a white noise signal with a slowly chang- 
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Figure 4.8: White nonstationary noise. 

ing variance o : , ~  (see Figure 4.8). Stiictly speaking, the resulting noise is not truly white, but 

the time-scale of the amplitude ~nodulatio~i is slow enough that the noise remains approximately 

uncorrelated (white) on smallex time-sc dlos. 



Autoregressive Colored Noise 

To generate noise with temporal correlations between data points, a linear sth-order AR model is 

used. To ensure that reasonable noise-like dynamics are obtained, the model is itself trained to 

predict sampled analog pink noise. The noise model parameters are: 

T 
wn = [0.6297 0.0515 0.1061 -0.0024 0.08931 , and 0:,, = .09. (4.7) 

Generating a noise signal from this AR-5 model ensures that everything about the noise is known. 

Note that colored noise of a given power is "less random" than white noise at the same power, 

because the colored noise has a certain component that is predictable, or deterministic. Hence, 

the signal estimation NMSEs for a signal corrupted by colored noise are typically less than they 

are for white noise at  the same SNR. 

Autoregressive Nonstationary Noise 

The above noise model can also be used with a time-varying process noise variance, u ;~ , , ,  to 

produce a nonstationary colored noise series. Note that the nonstationarity in this case is highly 

restricted, as the parameters w, remain constant. The standard deviation of the process noise is 

modulated as: 

where gaink  = 1 + 0.2 sin - ( 2,OO 1 
producing a nonstationarity with a period of about 12,500 points. 

Pink Noise 

While white noise has a flat frequency spectrum, showing equal energy at all frequencies, the 

power spectral density of pink noise decreases as the inverse of the frequency. Alternatively, it can 

be described as having an equal amount of energy in each 1/3 octave band. The noise is called 

"pink" because, if the spectrum were interpreted in the electromagnetic domain as visible light 

frequencies, the signal would appear as pink light due to its emphasis of longer (red) wavelengths. 

The SPIB [69] resource contains pink noise sampled with 16 bit precision at a rate of 19.98 kHz 

from an analog noise generator. This integer-valued noise is downsampled to 8 kHz and normalized 

to the range [- 1,1], then segmented into 30,000 point sections. The power spectral density of one 

such segment is shown in Figure 4.9(b). Unlike the stationary AR-5 noise described above, the 

true model order of this pink noise is uncertain (as is the weight vector w and variance u : ~ ) .  AS 

with the Ikeda series, the purpose of this data set is to test the algorithms in conditions wherein 

the correct model structure is not known exactly. 
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Figure 4.9: Pink noise.

4.3 Synopsis of Results

Numerous experimental results are reported in the subsequent sections ofthis Chapter, in the form

of boxplot figures, summarizing tables, and discussion. Because the results are fairly detailed, this

section provides an overview of the major findings in each experiment.

1. Initial Error-Covariances: Appropriate values for the initial covariances, Po and Qo, are

investigated in the context of both linear and neural network signals, using normalized data.

The main conclusion from these results is that too large a value of the initial weight covari-

ance, Qo, can sometimes prevent the dual EKF from converging. The results - reported in

terms of overall signal NMSE - are generally not very sensitive to the signal covariance, Po.

For most cost functions and data sets, Po = I and Qo = .11 produce good results; however,

a later experiment shows that the Jml(w) and Jec(w) costs are prone to stability problems,

and require a smaller value of Qo (.011) in many circumstances.

2. Variance Estimation: The cost functions for estimating the noise variances are compared

(beginning on page 134) using an EKF with known weights, w. When estimating CT~,the

joint cost gives the best long-term result on white noise, although it shows slightly slower

convergence speed than the maximum-likelihood cost. On colored noise data, the joint cost

appears prone to under-estimation of the variance, leaving Jml(CT~) as the best choice in

this case. For estimating the measurement noise variance (CT; or CT~n)with CT~known, the

maximum-likelihood cost was consistently better than any other cost.
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The results are less satisfying when both variances are unknown, with the P (CT;;)replaced

as the top choice on white noise by j"C(CT;;)and JPe(CT;;),and the maximum-likelihood mea-

surement noise variance cost replaced by Jem (CT;,Jand JPe (CT;;J in some cases. Contributing

to the variation in results might be the inaccuracies of the EKF signal estimator itself. For-

tunately, the results are much more consistent when the weights are estimated as well ~ with

a dual Kalman filter - in the fourth experiment.

3. Forgetting Factor: The results reported in this section pertain to the scalar A, used in the

weight and variance filters to determine how quickly old data are "forgotten" by an expo-

nential window. For stationary data, a value around Aw = 0.9999 produces good results,

although this number will probably depend on the complexity of the model. Variance esti-

mation involves only a single unknown parameter for each variance filter; less data should

therefore be required. A value of \,-2 = 0.9993 appears the best for either of the variance

filters. Meanwhile, the best choices of forgetting factor on nonstationary data - such as

sinusoidally modulated white noise - is dominated by the rate of nonstationarity itself. The

value of A should be as large as possible while still allowing tracking of the noise variance.

4. Dual Kalman Weight Costs: The various dual EKF weight costs are compared in Section 4.7

on page 148. With both variances known, the JPe(w) and Jml(w) costs excel on white noise,

while Jj(w) and Jml(w) do the best with colored noise. However, the maximum-likelihood

cost is prone to unstable behavior (an ill-conditioned Hessian); it and the error-coupled joint

cost both require a smaller value of Qo = .01 to prevent this, and can go unstable even so.

When the process noise variance, CT;;,is estimated along with the weights, the rankings of

weight estimation costs are much the same. Meanwhile, the variance estimation cost Jml (CT;;)

is the best across all data sets and SNRs. Estimation of both variances (measurement noise

and process noise) shows the maximum-likelihood cost to be the most effective, generally, for

estimating CT;(or CT;;n)'as well.

Overall, the dual EKF algorithm works very well, and shows good robustness to uncertainty

in the noise variances. Comparing the dual EKF results (both with known and unknown

variances) with those of an EKF shows that the dual EKF can actually compensate for the

inaccuracies of the EKF in some circumstances, and produce better results than when the

weights and noise variances are known (see Figure 4.46 on page 179)!

5. Static Derivatives in the Dual EKF: The next experiment explores the effect of using static

derivatives in place of the dual EKF's recursive derivatives of Xk and P k with respect to w.
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As expected, the performance is degraded by this approximation; although the difference is

less significant on white noise data, recursive derivatives are play an important role for data

in colored noise (see Figure 4.48 on page 182).

6. Joint EKF Performance: In Section 4.9 on page 183, the best dual EKF cost functions are

compared with the joint EKF algorithm. There is little difference in performance when both

variances are known, except that the dual EKF performs significantly better on the Ikeda

data, for which the model structure is unknown. When o-~ is estimated, the joint EKF does

significantly better on linear data in white noise, and when tracking nonstationary noise at

higher SNRs. However, letting 0-; (or o-~J be unknown as well makes the dual EKF the

better performer on white noise. The dual EKF is better on the Ikeda data in all cases. In

contrast to reports elsewhere in the literature [45, 47, 61] the joint EKF exhibited no stability

or convergence problems during these experiments.

7. Model Mismatch Effects: The effect of uncertainty in the model structure is investigated

formally in this experiment, and shows that the dual EKF is considerably more robust than

the joint EKF to a model structure that is either underparameterized, or overparameter-

ized, with respect to the underlying signal. This form of robustness is important for most

applications where the model structure is not known a priori.

8. Over- Training: The experimental results in Section 4.11 on page 192 demonstrate the sus-

ceptibility of dual estimation algorithms to over-training whenever a finite data set is used

in an iterative fashion. This underscores the importance of an early-stopping technique to

maintain good generalization in the test set. The results are otherwise consistent with those

for the on-line (infinite data) case.

The above experiments are described in more detail in the following sections.

4.4 Experiment 1: Initial Error-Covariances

The dual EKF algorithm requires initial values for the signal-state covariance, Pk, and the weight

covariance, Qk, at time k = O. If the signal has been normalized to be approximately unit

variance, then Po = I is a reasonable choice. A reasonable value for Qo is less clear, and involves

several factors discussed in Section 3.3.2 on page 62. In addition to finding good initial values, the

sensitivity of the dual EKF to these values should be determined.

To obtain this information, the dual EKF is run using three of the five cost functions derived

in Chapter 2: the prediction error cost jPe(w), the joint cost Jj(w), and the EM cost pm(w).
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Both the process noise variance u~ and measurement noise statistics (u; in the white noise case,

u~n and Wn in the colored noise case) are known. The forgetting factor, A, is 1.

Two different noisy data sets are used:

. the AR-lO series with white stationary noise added at 0 dB.

. the chaotic neural network series (NN) with autoregressive stationary noise added at 3 dB.

Each of the two series {xdf contains N = 10,000 points, and is corrupted with 10 different

realizations of the corresponding noise series, for a total of 20 different noisy series {ydf.
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The covariances Po and Qo are tested at values Po . I and Qo . I, respectively, where Po and

Qo are scalars chosen from { .01, .1, 1 }. Thus, there are a total of 9 different test configurations,

tested at 6 different algorithm-data combinations, and with 10 repetitions each.

The most informative performance criterion in this case is the overall estimation error. The
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prediction error is strongly correlated with the estimation error, but exhibits lower resolving power 

because of the inclusion of process noise. The short-term (first 100 point) errors are consistently 

biased towards small values of both Po and Qo, which produce lower-variance estimates (at the 

expense of high bias) before the algorithms have seen enough data to provide reliable results. On 

the other hand, the final 1000-point NMSE has little dependence on initial parameter values. The 

error trajectories are fairly consistent across algorithms, and are informative mostly in showing 

that convergence occurs before the end of the data. 

The results are summarized graphically in Figure 4.10. The clearest conclusion is that Qo 

should not be as large as I .  In all cases, the minimum mean NMSE appears for Qo = .1I, although 

the difference between Qo = . l I  and Qo = .01I is significant only on the linear data. 

Choosing Po is even more difficult. Setting Po = I can be justified on the grounds that it 

has the lowest mean NMSE in most cases, and never differs from the optimal choice with pvalue 

lower than 15%. However, using Po = .lI is also reasonable because it never differs with pvalue 

lower than 14%, although this choice never attains the lowest mean. While Po = .001I gives the 

minimum in two cases, the advantage is completely insignificant in one of these (AR-10 data, joint 

cost). Furthermore, it is significantly worse than Po = I in two other cases, with a pvalue of less 

than 10%. 

In any case, the choices Qo = .1I and Po = I seem to  convey a slight advantage, and are 

used in the remainder of the experiments presented, unless indicated otherwise. Actually, the 

lack of sensitivity indicated by the paired-sample t tests is somewhat encouraging, because the 

initial values of the covariances should, ideally, not have a strong effect on the results. The most 

important condition is that Qo be small enough to prevent instability. 

4.5 Experiment 2: Variance Estimation 

If the noise variances a: and a: (or 0:") are unknown, they must be estimated using, for example, 

the Kalman variance estimation algorithm given in Formula 3.13. In this case, the error variances 

of the filters must be initialized, just as is required by the signal and weight filters. However, 

because the state is one-dimensional in this case, these initial error variances, qv,o and q , ,~ ,  are 

scalar-valued. In addition to choosing q,,o and q , ,~ ,  variance estimation requires choosing a cost 

function. To simplify the search, the weights w are assumed known, so that only the variances 

and signal need to be estimated. 

An example result for neural network signal in 3dB colored noise is shown in Figure 4.11, in 

which the estimates 6: and 6;" are plotted as functions of time. The true values, 0; and a:- are 
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Figure 4.11: Example variance estimation trajectories, using the maximum-likelihood cost function and 
known weights. True values of the variances are shown by the horizontal lines. 

shown by horizontal lines, for comparison. In this example, the maximum-likelihood cost is used 

to  estimate both variances, and initial error variances are q,,o = .1 and q,,o = .01. In the following 

experiments, a variety of cost functions and initial covariance values are tested. 

The cost functions and initial variances are evaluated with 15,000 points of chaotic neural 

network data, corrupted by either white stationary (WS) noise or autoregressive (AR-5) stationary 

(AS) noise. Both noise types are added to the clean signal at 3 different SNRs: 0 dB, 3 dB, and 7 

dB; each of the six noisy signal combinations is replicated 10 times. Boxplots and paired-sample t 

tests are used to  select both qo values and the best cost function for variance estimation. 

All five of the cost functions are tested: prediction error, maximum-likelihood, joint, joint 

error-coupled, and EM. The initial variances are tested a t  qo E i.001, .01, .I). Other parameter 

values are P = I and X = 1. Matters are complicated somewhat by the fact that sometimes only one 

of the noise variances might need to be estimated, and sometimes both might. All three possible 

situations are considered, each tested with 10 repetitions of the 6 different noisy time-series. 

4.5.1 Estimating the Process Noise Variance 

First, consider the case of known measurement noise statistics. If not known a pm'ori, these statis- 

tics can sometimes be estimated from portions of the data wherein no signal is present. Because 

the current experiment also uses a known signal model f (.), only the process noise variance a: and 

signal are estimated concurrently. The signal is estimated with a standard EKF (Formulae 3.1-3.2), 

while a: is estimated with the alternative variance filter shown in Formulae 3.12- 3.13 on page 78. 

The focus of the experiment is on variance estimation, so the variance MSE is a reasonable 
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Figure 4.12: The average squared-error trajectories of the estimates c?:,~ are plotted for the three best 
combinations of qv,o and cost function. 

criterion for comparing treatments. Although the signal estimation error is also informative, it 

tends to  be highly correlated with the variance estimation error, and so does not provide any new 

information. 

The algorithms are ranked by time-averaging the squared error of the variance estimates over 

the final 1000 data points, which provides an evaluation of each algorithm near convergence. For the 

best three treatments ranked in this way, the squared-error trajectories of the variance estimates, 

averaged over the ensemble of 10 repetitions, are displayed in Figure 4.12. Separate plots are shown 

for the three levels each of white and AR-5 noise. The significance of the rankings are indicated 

by the boxplots in Figure 4.13. 

One disadvantage of the squared-error trajectories is that information about the actual values 

of the estimates is obscured. For example, on the OdB WS data, the Jec(a:) method shows a 

minimum in the average squared-error trajectory at around k = 2000, followed by an increase in 

the error. A similar effect is seen in the 3dB AS trajectories near k = 7000. 

The fact that this is caused by the under-estimation of a: on average by J e C ( r r ? )  is evident 

from the average time trajectories of the variance in Figure 4.14. Although not shown in the 

figures, a: is under-estimated by Jec(o;) with q v , ~  = ,001 in all cases except for 7dB AS noise, on 

which it converges a t  too large a value. For qv,o = . l ,  the algorithm can be unstable, generating 
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The joint cost Jj (a:) with q,,o = .01 is arguably the best choice for white noise. However, on 

the AS noise, the performance of Jj(a:) is less consistent: a t  OdB it under-estimates the variance, 
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while at 7dB it over-estimates the variance (not shown). Slower convergence speed appears to  

be a general drawback of the Jj(a:) approach; even on white noise, where its final performance 

is superior, it exhibits slower convergence than the maximum-likelihood or prediction-error cost 

functions. In fact, for the AS OdB case, the apparent advantage of the JJ(u:) q v , ~  = .001 treatment 

is largely a spurious effect of its slow convergence for that value of qv,o (the algorithm has not 

converged yet). Although not shown in the plots, the Jj(a:) method converges much faster at 

qv,o = .O1 and q , , ~  = .l, and for those values under-estimates the variance by a larger amount than 

the other algorithms over-estimate it. 

The maximum-likelihood cost J ~ ~ U : )  exhibits fast convergence to  good solutions. The method 

is ranked in the top three on all six data sets, and is arguably the best choice for colored noise. 

As mentioned above, the second place ranking of Jml(a:) on OdB AS noise is probably due largely 
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Figure 4.14: The average trajectories of the variance estimates &:,k are plotted for the three best 
combinations of qv,o and cost function. 

to  the fact that J ~ ( u : )  has not yet converged a t  N = 15,000. Furthermore on 3dB AS noise, the 

Jrn1(o:) and J j (u : )  methods are not significantly different, showing a pvalue of 89%. At 7dB, the 

Jrn1(o:) qo = .1 method conveys a significant advantage. The main deficits of the approach are 

its high volatility at early times, and its slight tendency towards over-estimation a t  later times. 

However, as discussed in Appendix D, an inflated estimate of ut can ameliorate the negative effects 

of the EKF approximation by accounting for the inaccurate mean propagation. 

The EM cost over-estimates u: in all cases, but by decreasing amounts for higher SNRs. On 

7dB AS noise, the method actually places in the top three. However, it is clear that the cost 

function is not amenable to  on-line estimation of 0:. This could be due to  approximations made 

in the E-step, or because the cost function surface is difficult to navigate for some reason. 

The prediction error cost, Jpe(u:),  does moderately well on the higher SNR cases, but never 

outperforms the Jrn1(u;) method. The MSE trajectories generally show higher volatility, slower 

convergence, and higher final MSE than their Jrn"u;) counterparts. On WS noise at 7dB, the 

method comes in second place behind the J j (u : )  cost, but with only a slightly lower average MSE, 

and significantly higher variance than the J " ~ ( U ; )  cost. This high variance is primarily responsible 

for the pvalue of 19% in this case. 



In conclusion, the joint cost is the best choice for estimating u: in white noise, while the 

maximum-likelihood cost is somewhat preferable in the presence of colored noise. Unlike the 

weight and signal estimation filters, the variance estimation filter is clearly sensitive (as shown 

in Figure 4.13) to the value of the initial error variance, qv,o. As discussed previously, this value 

affects how fast the algorithm can converge, and too large a value can cause instability. Moreover, 

the best choice of qv,o depends on the cost function; for J m l ( u t ) ,  the best value is qv,o = . l ,  while 

q,,o = .O1 is better for J ~ ( c T : ) .  Values of qv,o = 1 were found to  cause too much instability, and so 

were not evaluated formally. The conclusions of this experiment are summarized in Table 4.1. 

Table 4.1: Best choices of cost function and initial variance qv,o when estimating 0: with an E K F  using 
known weights w and measurement noise statistics. 

AR-5 Stat. 
SNR 101 
0 dB Jj(u,2) Jrn1(..,2) 
3 dB J ~ ( o - % )  .01 J ~ ~ U : )  

7 dB J ~ ( o - : )  . O 1  ~ " ' ( 0 : )  .1 

4.5.2 Estimating the Measurement Noise Variance 

In some applications, a great deal is known in advance about the statistics of the signal, but little is 

known about its SNR. That is, while the process noise variance a: is known, the variance a: of the 

measurement noise must be estimated. When the noise is colored, only its power (or equivalently, 

its process noise variance a t n )  is assumed unknown. This situation might arise if the structure 

(i.e.,  the spectral shape) of the noise has been estimated beforehand, and is expected to remain 

stationary, but the level of the noise is uncertain. 

For the colored noise experiments, the exact mode1 w, of the AR-5 noise is used; this ensures 

that the true value of atn  can be taken as the optimal value against which to compare 6 i n , k .  For 

each repetition of the data, initial estimates 8,2,,, axe obtained from a 500-point segment of the 

noise. In the white noise case, is estimated v ia  the ad hoc procedure described in Section 3.6.2. 

The final 1000-point MSE of the variance estimate is used as the ranking criterion. The 

error trajectories for the three best treatments, averaged over the ensemble of 10 repetitions, 

are displayed in Figure 4.15. The significance of the rankings are indicated by the boxplots in 

Figure 4.16. 

The maximum-likelihood method is the best choice on all data sets, and conveys a significant 

advantage in nearly all cases. The only exception is on the 7dB AS noise, on which the JPe(u2=) 

and EM treatments are not significantly worse, but this sort of equalization among treatments is 
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Figure 4.15: The average squared-error trajectories of the estimates e;,, are plotted for the three best 
combinations of qn,o and cost function. Averages are computed over 10 repetitions of the data and 
initial conditions. 

to  be expected a t  high SNRs. While the J e m ( a i )  and JPe(a i )  costs are nearly always in the top 

three, they typically converge to significantly higher MSEs than does the JmL(u:)  cost. 

For the maximum-likelihood method, the choice of qn,o = .1 is generally the best on white 

noise, while a slight but insignificant advantage is conveyed by q,,o = .O1 on colored noise. Al- 

though qn,o = .1 actually has a slightly lower final MSE for 7dB AS noise, this small advantage is 

outweighed by its higher volatility at earlier times. 

Table 4.2: Best choices of cost function and initial variance qn,o when estimating 0; (or ot_) with an 
EKF using known weights w and process noise statistics. 

SNR, 101 
0 dB Jrn1(u:) Jrn"4, 
3 dB J m l ( O i )  JmL (0,"" ) 
7 dB Jrn"u;) J r n 1 ( u : )  .01 
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4.5.3 Estimating Both Noise Variances 

5" ( 0 ; )  J ' " ~ ( U ; ) J ~ ~  (0 : )  J ~ ( u : )  J~~ (02) JP' (u;, ) . I ~ ~ & I  (02" ) J~~ (~7;" ) ~j ( u : ~  ) J~~ ( u : ~  ) 

1 1  

1 1  

When neither the process noise variance u:, nor the measurement noise variance mi are known, they 

- m I 
1 

u 

must be estimated simultaneously from the data. Because there is a strong interaction between 

the estimation of the two variances, it is not necessarily true that combining the best individual 

estimation methods for a: and ffi will produce the best result in the present case. 

The problem is that some treatments for estimating one of the parameters might be sensitive 

to  errors in the other parameter, and will produce poor results if that parameter is not known 

exactly. However, rather than exhaustively search the entire space of cost functions and values of 

go, it is reasonable to consider combinations of only the best 3 treatments for each of the variances. 

This means a search space of nine possibilities, where the possibilities will be different for each of 

the data sets, because the previously chosen best three treatments depend on the noise type and 

SNR. 

Just as when estimating the measurement noise variance alone, the exact model w, of the 

AR-5 noise is used, and initial estimates 6:n,o are obtained from a 500-point segment of the noise. 
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In the white noise case, 6:,, is estimated via the ad hoc procedure described in Section 3.6.2 

on page 104. Using these initial estimates of the measurement noise variance, the process noise 

variance, a:, is also initialized by the ad hoc procedure. However, when the measurement noise 

is colored, the estimates of the autocorrelation Rnn and cross-correlation p,, are generally too 

noisy to  produce reliable initial estimates of a:, which causes I?:,, to be truncated near zero in 

some instances. Therefore, the white noise versions of these quantities are used in all cases, with 

Rnn = C?:,,I and pnn = 0. 

The previous pages argued that it is sensible to rank the a: estimation methods using the final 

1000-point MSE in a:, and to rank the a; estimation methods using the final 1000-point MSE in 

a:. However, it is less clear how to rank algorithms for estimating both 0: and 0:. While signal 

estimation MSE is a possible criterion, it does not produce the required amount of resolving power 

for comparing methods. A reasonable solution is to choose the a: and a: methods separately using 

their respective error criteria as before, but then discard choices which result in a bad interaction. 

Although this approach may sound somewhat vague, it is clarified in the discussion of the results, 
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For these experiments, the data length is increased to N = 20,000 points, to allow additional 

time for convergence. The 1000-point MSEs of the u: estimates are presented in Figure 4.17. 

Each plot is divided into three panels that correspond to the best three at estimation treatments, 

ordered in decreasing performance from left to right, as determined when o: was known. Within 

each panel, the a: estimation methods are shown in order of decreasing performance from left to 

right, as determined when a; is known. 

On all of the data sets, the first panel shows the worst performance, indicating that the ranking 

determined with known a: no longer holds. On the OdB WS noise, the Jec(u i )  cost (third panel) 

appears to be the best, although it is not significantly better than using Jrn1(o;) with ~ ~ ~ ( 0 : ) .  

On the 3dB WS noise, the middle panel contains the best treatment, but there is no significant 

difference between J~'(CT:) with Jem(u:) in the middle panel and JPe(ai)  with Jm"(a:) in the 

third panel. The boxplots and displayed pvalues are important for reconciling this performance 

criterion with that based on error in 3:. 
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Figure 4.18: Boxplots of the &:,, MSEs computed over the final 1000 points are shown for the 
combinations of the top 3 cost-go treatments for estimating u: and a:. The a: estimation methods 
vary within each panel each panel, and a: costs vary across panels, as indicated. 
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Figure 4.18 shows box plots for the 1000-point MSEs of the 02 (or u:") estimates. The plots 

are organized the same way as in Figure 4.17; the cri methods are listed in order of decreasing 

performance within each panel. A significant deviation from the original ranking is again evident. 

For example, for OdB WS noise, the Jem(a2)  qo = .I treatment performs better than the top-ranked 

Jm"u;) treatment in all three panels. 

To reconcile this result with that in Figure 4.17, notice that the JeC(u: ) -Jem(u i )  treatment 

is not significantly worse than the first choice JeC(a;)-Jmz(a:)  treatment in that figure. It is 

therefore reasonable to select J ~ ~ ( C ; ) -  J e m  (ui)  as the best treatment, although J m L  (a:)- Jem (u:) 

and JeC (a;)-  J m l ( u i )  are also a good choices. 

On the 3dB SNR white noise, J ~ ' ( U : )  with go = .1 retains its top ranking (although not in 

the first panel). Here, too, the results for the two criterion must be reconciled. This time, the 

J P ~ ( u : ) - J ~ " u ~ )  is indicated in Figure 4.18, while Jm' (u : ) -Jem(a i )  is indicated in Figure 4.17. 

Again the pvalues can be used to justify choosing Jpe (uE)- Jm'(a;).  

Fortunately, on the remainder of the plots, the optimal choices according to a; error and a; 

error coincide. The best treatments for each of the 6 noise cases are shown in Table 4.3. 

Table 4.3: Best choices of cost functions and initial variances go when estimating both a: and uz with 
EKFs, using known weights w. 

4.6 Experiment 3: Forgetting Factor 
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Section 3.3.2 on page 57 introduced a scalar term, A, which is used during weight and variance 

estimation to  control the length of an exponentially decaying window over the data. The term is 

called a "forgetting factor" because, for values less than 1, it prevents data in the more distant 

past from being used to  estimate the parameters: they are "forgotten." 

In the dual estimation context, a forgetting factor is useful even when the underlying system 

and noise terms are entirely stationary. The justification is mostly heuristic: the signal estimates 

Pk a t  small times k are inaccurate, so they should not influence the parameter estimation as much 

as recent, more accurate signal estimates. 
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However, this convergence will generally be slower than necessary because of the inertia of the 

initial signal estimates. Conversely, while using X < 1 can increase the converge rate, the advantage 

disappears a t  large values of k, and may eventually turn into a disadvantage because of a higher 

variance in the parameter estimates. 

4.6.1 Stationary AR-5 Noise 

The results described below are obtained by running the dual EKF algorithm on the neural network 

signal, corrupted by stationary AR-5 noise at 3dB SNR. Initial error covariances are Po = I and 

Qo = .1I. The joint cost Jj(w) is used for weight estimation, and the maximum-likelihood cost 

Jml is used to estimate both of the variances, using qv,o = .1 and q , , , , ~  = .01 . Figure 4.19 contains 

boxplots for the signal estimation MSE, computed over all the data, as well as over the first 100 

and last 1000 points. 

Figure 4.19: Boxplots o f  the j k  NMSEs computed over 3 different ranges of data are shown for 5 
values of A. 

At very small times, few data are available, and there is no significant difference between 

different values of A. As more data become available, evidence emerges of the tradeoff between too 

much and too little flexibility. In terms of the overall MSE, the value of X = 0.9993 is apparently 

too small, whereas using X = 1 is also disadvantageous. At larger times, the disadvantage of X = 1 

is reduced, because enough data has been observed to dilute the effects of the early estimates. 

Values of 0.9998 and 0.9999 appear to give the best results, as shown by the MSEs computed over 

the last 1000 points in the third panel of the figure. 

The situation is clarified somewhat by Figure 4.20, which makes use of the time-averaged 

MSE profiles described on page 120. The left plot shows the average difference between the MSE 

profile for the known-model EKF result, and the MSE profile for each of three different forgetting 

factors. This plot readily shows the convergence behavior as a function of time, but discerning 

the difference between values of X is difficult. In the right plot the difference is instead computed 

between each of the MSE profiles, and the MSE profile using X = 1. The problem with using 



Figure 4.20: MSE profiles of signal estimation error. At 50-point intervals MSEs are computed over 
the next 500 points to  create the profiles. The left graph shows the difference between each profile 
and the EKF profile. The right graph shows the difference between the X = 1 profile and each of the 
others. 
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too small a value of X is clearly shown by the highly volatile plot for X = 0.9993. The advantage 
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Figure 4.21 shows the effect of X on estimation of the noise variances. Because these are scalar 

values, much less data are required to produce reliable estimates, as reflected in the preference for 

X = .9993 shown in the boxplots of the final 1000-point MSEs of both b:,, and c ? : ~ , ~ .  The effect 

of X on the trajectories of these estimates is seen in the bottom two plots of the ensemble-averages 

Figure 4.21: Boxplots show the final 1000-point MSEs for b;,, (left) and 6En ,, (right). Also shown are 
the ensemble-averaged trajectories of the variance estimates; heavy horizontal lines indicate the true 
variance values. 



&:,I, and The true value of each variance is indicated for reference by a horizontal line. 

The clear difference in the optimal values for X used in weight estimation and variance estima- 

tion, respectively, justifies using a separate value for each. To test this approach, A, = 0.9999 is 

used in the weight filter, and X,2 = 0.9993 is used in each of the variance filters. The resulting h lSE  

profile is shown in Figure 4.20 and labelled as "mixed"; the overall MSE is significantly improved 

over the pure X = .9999 treatment. 

4.6.2 Nonstationary White Noise 

Dual estimation can also be applied to nonstationary data. By corrupting the neural network 

signal with the sinusoidally modulated white noise described on page 128, the relative effects of 

lag misadjustment and noise misadjustment can be observed. The dual EKF was used with costs 

Jpe(w), Jpe(u;), and Jm1(o;), and initial error covariances Qo = .1I, qv,o = . l ,  and q,,~ = .l, to 

produce the results in Figure 4.22. 

The signal is stationary, but the noise has a continuously changing variance. Hence, the 

forgetting factor A, is fixed a t  0.9999 for estimation of the weights, while X,z is varied across 

five values. The bottom right plot (showing average trajectories of 6:) shows that a value of 

Xn2 = 1 produces a damping effect, with 6:,k tending towards a flat line at the DC level of the 

Figure 4.22: Boxplots show the overall MSEs for 6:,, (left) and 6,2",, (right). At bottom are the 
ensemble-averaged trajectories of the variance estimates, shown along with the true variances for ref- 
erence (heavy lines). For weight estimation, X = 0.9999 in all cases. 



sinusoid, as lc -+ m. Values less than 1 show a better ability to  track a:, with smaller values 

of A,z exhibiting less phase lag. Unfortunately, these same X0z values suffer from higher noise 

misadjustment because they are based on fewer data points. 

The choice of A,z for use on nonstationary noise is clearly data-dependent, as it depends largely 

on the rate of nonstationarity. This experiment merely highlights the tradeoffs that must be con- 

sidered between lag misadjustment and noise misadjustment. It also indicates that the sinusoidally 

varying noise level used here changes too rapidly for the tracking speed of the algorithm. 

As a rule of thumb for choosing A, the time-constant r = -11 log(A) of the forgetting window 

should be approximately the same as N,,, the length of an approximately stationary section of 

the data (see Section 3.6.3). However, if N,, is too short, then the algorithm will not be able to 

track the changing system, and some sort of iterative, windowed processing must be employed. 

4.7 Experiment 4: Dual Kalman Weight Costs 

With reasonable values for the initial covariances and forgetting factor in place, the cost functions 

for weight estimation can be compared within the dual Kalman framework. A forgetting factor of 

A, = .9999 is used for weight estimation, and initial error covariances of Po = I, and Qo = .1I are 

used in most cases (a  smaller value of Qo is sometimes required for convergence). Results are first 

generated with the noise variances known, and then with one or both of these variances estimated 

on-line, a t  the same time as the signal and weights. 

Various combinations of the signal and noise types described in Sections 4.2.3 and 4.2.4 are 

used in the experiments. Ten repetitions of the noise are used to generate boxplots and pvalues. 

Appropriate model structures are chosen for each data set: for the linear and neural network 

signals, the exact model structures used to generate the data are used by the dual EKF. In the 

case of the Ikeda signal, a feedforward network with 10 inputs, 8 hidden units, and one output 

(10-8-1) is used; a linear AR model with Mn = 10 is used for the pink noise. 

4.7.1 Known Variances 

In this set of experiments, the true process noise variance (T: is assumed known, as are the mea- 

surement noise statistics (either u:, or wn and a:n). As an example, Figure 4.23 shows the dual 

EKF estimation of the chaotic neural network signal in 3dB AS noise, using the J J ( w )  cost. The 

estimates are indicated by the heavy curve, the noisy data are shown by '+' signs, and the clean 

signal appears as a thin curve. 



Dual EKF Estimate with Known Variances 

Figure 4.23: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the 
joint cost function and known variances. Only the last 150 points are shown. 

In the following experiments, the weight costs are tested on six combinations of signal and 

noise, each a t  four different SNRs. 

1. Linear AR-10 data corrupted by white stationary (WS) noise. 

2. Limit cycle neural network data corrupted by WS noise. 

3. Limit cycle neural network data corrupted by stationary AR-5 (AS) noise. 

4. Chaotic neural network data corrupted by AS noise. 

5. Chaotic neural network data corrupted by nonstationary AR-5 (AN) noise. 

6. Normalized Ikeda data corrupted by stationary pink (PS) noise. 

The boxplots in Figure 4.24 show the relative performances of the different cost functions on 

the linear AR-10 data in stationary white measurement noise. The performances of the ~ " ' ( w )  and 

JPe(w) costs are very similar, although the former shows some advantage in terms of final 1000- 

point signal NMSE. Because the model is linear, trajectories of the MSE in the weight estimates 

can be plotted. Figure 4.25 shows that at low SNRs, J P e  (w) provides faster convergence; although 

not shown, this results in a lower overall signal MSE than J ~ ~ W ) ) .  Furthermore, JPe(w) is 

somewhat more robust at OdB SNR. In terms of signal NMSE, the J J ( w )  and Jec(w)  costs perform 

significantly worse a t  all noise levels3. On the other hand, J J ( w )  produces results with much less 

spread in the weight MSE than the other methods; the bias in these weight estimates, however, 

translates to larger signal estimation NMSEs. Note that this result confirms the qualitative analysis 

31n the context of the dual Kalman filter, we will use J ~ ( w )  as shorthand for the direct substitution joint cost, 
~j (kt, w); the use of signal estimates is implied. 



AR-10 Signal i n  WS Noise, Known Variances 
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Figure 4.24: AR-10 data corrupted by white stationary noise at four different SNRs. On the left, 
boxplots show the final 1000-point NMSEs for the signal estimates. On the right, the average differenced 
MSE profiles are shown. 



AR- 10 Signal in WS Noise, Known Variances 
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Figure 4.25: Weight estimate MSE trajectories for AR-10 data corrupted by white stationary noise a t  
four different SNRs. 
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of the joint cost a t  the end of Chapter 2. The poor performance of the error-coupled joint cost can 

be interpreted in a similar way, but with an even larger bias than the J j ( w )  cost. Meanwhile the 

EM cost exhibits less volatility in the weight MSE trajectory, at the expense of slower convergence 

speed. 

Similar results are obtained when the stationary white noise is used to  corrupt the limit cycle 

neural network data, as shown in Figure 4.26 on the following page. As an aside, note that 

the NMSE levels for the limit cycle data are a factor of between 2 and 7 smaller than for the 

linear AR-10 data. This outcome is surprising because the nonlinear model should involve more 

approximations. However, it can be explained by the fact that the limit cycle data are more 

deterministic because its process noise variance, a:, is smaller than that of the AR-10 series (.04 

.vs .09); the increased predictability of the series makes it inherently easier to estimate. A side- 

effect of a smaller value of a: is that some of the algorithms encounter stability problems when 

using Qo = . l .  Hence, Qo = . O 1  is used on this series instead. Recall from the discussion on page 62 

that for small a:, Qo needs to be smaller to keep (Q1)-l (and subsequent updates) invertible. The 

cost functions most prone to instability with Qo = .1 are ~ ~ ' ( w )  and Jec(w);  coincidentally, these 

are the only costs that were not evaluated in Experiment 1 when determining the best choice of 

Qo! However, the EM cost also shows a slight improvement in performance with Qo = .01, as well. 

Figure 4.26 shows that at the lower two SNRs, JPe(w) and J ~ ' ( W )  are not significantly 

different, while J ~ ' ( W )  shows a small (but significant) advantage at higher SNRs. While the joint 

cost J j ( w )  performs better than in the linear model case, it is nonetheless significantly worse than 

JPe(w) a t  any SNR. Meanwhile, Jem(w)  performs very poorly at low SNRs, and is adequate only 

a t  the lOdB level. This implies the EM cost might be more sensitive to the EKF approximation 

required for nonlinear models (see Appendix D). 

Figure 4.27 on page 154 shows the results on the limit cycle data in stationary AR-5 noise. 

Again, Qo = . O 1  is used to  ensure stability; this drastically improves the performance of ~ ~ ' ( w )  and 

JeC(w) ,  but has little effect on the other costs. .4t OdB and 3dB SNR, the maximum-likelihood cost 

shows the best performance, although J j ( w )  is not significantly different a t  higher SNRs. Mean- 

while, JPe(w) and Jem(w)  are completely unacceptable, and Jec(w)  has unstable performance on 

a t  least one data repetition at 3dB. 

Instability in a modified-Newton algorithm generally can occur when the approximate Hessian 

(represented by Q;' in the dual EKF) becomes ill-conditioned, resulting in numerical problems 

during its inversion. This situation can arise when Qo is too large, as described above, or when 

the cost function surface changes much more rapidly in some parameter directions than in others. 

Hessian singularity problems in the context of maximum-likelihood estimation are discussed in [26]. 



Limit Cycle Neural Network Signal in WS Noise, Known Variances 

Final 1000-point signal NMSE 
I .2Q .01 .QO .QO 

Avg. Differenced MSE profile 
0.3 1 

0.2 : - - Jm' (w) 

0.055 - .27 0.15 r 

0.05 . 
0.1 : 

0.045 . I 

0.035 . 

0.03 . I 

JPe (w) J m l  (w) Jem (w) J j  (w) Jec (w) 0 0.5 1 1.5 2 

JPe (w) 

Figure 4.26: Limit cycle neural network signal, corrupted by white stationary noise a t  four different 
SNRs. On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right, 
the average differenced MSE profiles are shown. 



Limit Cycle Neural Network Signal i n  AS Noise, Known Variances 
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Figure 4.27: Limit cycle neural network data corrupted by stationary AR-5 noise at four different 
SNRs. On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right, 
the average differenced MSE profiles are shown. 
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The instability of J ~ ~ W )  at high SNRs and on colored noise is most likely due to  the denominator 

term, a & ,  in the cost function becoming small, which causes the Hessian terms involving &(rzk to 

grow much larger than the & E ~  terms (see Equation E.38 on page 264). An ill-conditioned Hessian 

will result if is much smaller in some parameter directions than in others. Interestingly 

enough, the only other cost to exhibit stability problems is JeC(w) ,  which has similar terms - 

involving Kgk - in its Hessian (see Equation E.22). Instability of the maximum-likelihood cost 

is more likely to occur on colored noise, and in particular when the noise variances are small (see 

Equations 3.165 and 3.207). 

However, stability can be usually be restored for the Jml(w)  and JeC(w) costs by selecting 

a smaller value of Qo, as was done for the limit cycle data. The effect of Qo on the stability of 

the Jm"w) and JeC(w) costs is investigated in Figure 4.28 using the chaotic neural network data 

(a) Stationary AR-5 noise (b) Nonstationary AR-5 noise 

Figure 4.28: Effect of Qo on stability of dual EKF for the Jm"w) and JeC(w) costs. Boxplots show 
the overall signal NMSE when estimating the chaotic neural network signal in  (a) AS noise and (b) AN 
noise. 



in AS and AN noise. The figure shows boxplots of the overall signal NMSEs, and indicates that 

while both costs show instability using Qo = . l ,  both are stable with Qo = .01. The algorithms are 

generally unstable on only a few repetitions of the data, as evinced by the large slope on the line 

connecting the average NMSE values, or (with Jml(w))  the presence of "not-a-number" (NaN) 

results. These NaN results prevent the calculation of an average NMSE, so no line is drawn. Note 

that for the repetitions which do not go unstable, the larger value of Qo = .1 can often produce 

better results because it provides faster convergence of the algorithm. Nonetheless, stability is 

of paramount importance; a value of Qo = .O1 should clearly be used for these two costs on the 

chaotic neural network data. 

In the remaining experiments, then, the weight covariance is initialized with Qo = .O1 for 

Jml (w)  and JeC(w),  and with Qo = .1 for other cost functions. The results on chaotic neural 

network data corrupted by stationary AR-5 noise are shown in the boxplots in Figure 4.29. The 

joint cost J j ( w )  and maximum-likelihood cost Jm"w) performs significantly better than the other 

costs a t  most SNRs. The two costs are generally equivalent in performance, although Jm' (w) shows 

a significant advantage a t  0dB SNR. 

For the results on the chaotic neural network data corrupted by nonstationary AR-5 noise, 

the NMSE is calculated over all time k E [I, N] in order to evaluate both convergence and tracking 

performance of the cost functions. As indicated by the boxplots in Figure 4.30 on page 158, the 

maximum-likelihood cost Jm'(w) is the best choice at all SNRs, although J j ( w )  shows a pvalue 

of 15 a t  the OdB level. At lOdB, an outlier contributes to the pvalue of 14. 

On the Ikeda data, the "known" value of a: is found by training a neural network of the 

chosen architecture on the clean data. This is an attempt to find a value of a: that accounts for 

the limited modeling capability of the network architecture. Because the true system is purely 

deterministic, the actual value of a: is zero; however, this value is clearly inappropriate for the 

neural network model, and would in any case lead to instabilities in the Kalman filters. The chaotic 

Ikeda time-series is very difficult to  model, and even more difficult when corrupted by noise. The 

NMSE values shown in the boxplots of Figure 4.31 on page 159 are therefore significantly greater 

than on the neural network data. Furthermore, the average MSE profiles are shown instead of 

their difference against the EKF result; this is because the "known" model result is actually worse 

than the dual EKF result in most cases. At low SNRs, the maximum-likelihood cost shows the 

best performance, while the Jpe(w) and JeC(w)  costs perform well a t  high SNRs. The Jml (w) ,  

Jem(w) and Jec(w)  costs all show instability at 7dB SNR. On these data, the use of Qo = .O1 with 

JmL(w) and Jec (w)  was not helpful: the costs showed as much instability (although at different 

SNRs) as with Qo = .l. This underscores the inherent stability problems of these two costs. On 



Chaotic Neural Network Signal i n  AS Noise, Known Variances 
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Figure 4.29: Chaotic neural network data corrupted by stationary AR-5 noise at four different SNRs. 
On the left, boxplots show the final 1000-point NMSEs for the signal estimates. On the right, the 
average differenced MSE profiles are shown. 



Chaotic Neural Network Signal in AN Noise, Known Variances 
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Figure 4.30: Chaotic neural network data corrupted by nonstationary AR-5 noise at four different 
SNRs. On the left, boxplots show the overall NMSEs for the signal estimates. On the right, the 
average differenced MSE profiles are shown. 
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Figure 4.31: Normalized lkeda data corrupted by stationary pink noise at four different SNRs. Boxplots 
show the initial, overall, and final NMSEs for the signal estimates. 
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the other hand, the behavior of J J ( w )  is consistently suboptimal, but never unstable. The E M  

cost generally shows poor performance. 

It  was hypothesized a t  the end of Chapter 2 that in comparison to the marginal estimation 

approaches, the joint cost functions offer the potential for reduced variance in the weight estimates, 

a t  the expense of higher bias. However, at that juncture the conditions under which. one cost is 

favored over another could not be predicted. Table 4.4 provides a partial answer to  this question 

by summarizing the best cost functions for the known variance case. 

A few general trends are apparent from the results reported thus far: 

Table 4.4: Best dual estimation cost functions for estimating w when both noise variances are known. 
Column headings are abbreviations for the four data sets listed on page 149. 

1. J m l ( w )  generally provides the best performance on both white and colored noise. 

2. J ~ ~ W )  and JeC(w)  are much more sensitive to a: and Qo than the other costs, and are more 

prone to stability problems. 

Ikeda(PS) 

JmL (w) 
J~~ (w) 

J P e  (w) 

JeC (w) 

3. J P e  (w) can perform better than Jml(w) on low SNR white noise, or when Jml (w)  is unstable. 

Otherwise, it does not perform as well. 

NNch(AN) 

J~~ (w) 

J ~ "  W) 

JmL (w) 

J"' (w) 

SNR 

0 dB 
3 dB 

7 dB 
10 dB 

4. J em(w)  typically shows mediocre or poor performance, although it sometimes is adequate 

on high SNR data. 

5 .  J j ( w )  can perform as well as ~ ~ ' ( w )  on higher SNR colored noise, and is not as prone to 

instability. However, ~ ~ ' ( w )  does significantly better at low SNR and on white noise. 

6. JeC(w), like Jm'(w),  exhibits stability problems. It generally performs worse than J j ( w ) ,  

with the exception of the lOdB Ikeda series, on which it performs the best. 

AR-lO(WS) 

J P e  (w) 
J P ~  (w) 

Jm'(w) 

J""w) 

The degraded performance of the prediction-error cost relative to  Jml (w) is somewhat expected 

because JPe(w) can be viewed as an approximation to  Jm'(w). Apparently, however, this approx- 

imation is less severe at lower SNRs, or when signal estimation is more difficult. Furthermore, the 

quadratic form of the prediction error cost conveys better stability properties. 

NNlc(AS) 

JmL (w) 
JmL (w) 

J"' (w) 

Jj (w) 

NNlc(WS) 

Jpe (w) 

Jm"w) 
J"' (w) 

5"' (w) 

NNch(AS) 

J ~ ' ( W )  

J q w )  

Jj (w) 
J"' (w) 



Regarding the EM cost, although the use of purely static derivatives is justified from a theoret- 

ical perspective, this may be partially responsible for the cost's relatively unfavorable performance. 

In a sequential approach, such as the dual EKF, the information contained in the recurrent deriva- 

tives of the state estimate sequence with respect to the weights is fairly crucial. The importance 

of computing recurrent derivatives is investigated in Section 4.8 on page 180. Otherwise, the poor 

performance of J e m ( w )  might be due to the approximations made in evaluating the EM cost 

sequentially. 

On white noise and low SNRs, the potential benefits (lower variance) of J j ( w )  are outweighed 

by its short-comings (increased bias). At high SNR, the primary advantage of the joint cost over 

the maximum-likelihood approach is its superior stability and lower sensitivity to ui and Qo. At 

low SNRs, the signal estimates, j i k ,  may simply be too inaccurate, thereby increasing the bias of 

the joint cost. Hence, the marginal estimation costs JPe(w) and ~ ~ ' ( w )  are favored because they 

are less sensitive to inaccurate signal estimates. Furthermore, this low SNR effect may also be 

responsible for the ranking on the Ikeda series, on which the signal NMSE values are especially 

high. In contrast, one reason for its relative success on colored noise may be that (with w, known) 

for a given SNR, colored noise is effectively less random than white noise because it is partly 

deterministic. Thus, the bias problem may be less problematic, in general, for colored noise. 

The error-coupled joint cost JeC(w) seems to suffer from conflicting requirements. On one 

hand, the algorithm requires reasonably good signal estimates, so that (as a joint method) its bias 

does not cause it to perform worse than the marginal approaches. On the other hand, however, 

the cost is designed to take estimation errors into account, so it will only outperform J j ( w )  when 

the estimation errors are fairly large. Furthermore, it relies somewhat on an assumption that the 

estimation errors are Gaussian: the approximation will be less severe for small errors than large 

ones. These factors may account for some of the unpredictability of the results. 

4.7.2 Unknown Process Noise Variance 

In the following set of experiments, the process noise variance 0: is unknown; it is estimated 

concurrently with the signal and weights using the modified variance filter shown in Formulae 3.12 

and 3.13 on page 78. The measurement noise statistics (either a:: or w, and a:<) are again 

assumed known. The forgetting factor A,: = .9993 is used for variance estimation, and A, = .9999, 

as before. Initial covariances of Po = I and Qo = .lI are used, with the exception of Jml (w)  arid 

JeC(w),  for which: Qo = .01I. 

An example of the simultaneous estimation of the signal, weights, and process noise variance 

is shown in Figure 4.32, wherein dual EKF estimation of the chaotic neural network signal in 3dB 
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Figure 4.32: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the 
J j (w)  and Jml(ai) cost functions. Only the last 150 points are shown. In the bottom plot, the 6: 
trajectory is compared with a: (horizontal line). 

AS noise is performed with the J j (w)  and ~ ~ ' ( 0 ; )  costs. The estimates are indicated by the heavy 

curve, the noisy data are shown by '+' signs, and the clean signal appears as a thin curve. 

Each weight estimation cost is tested in conjunction with the three best costs for estimating 

a;, as determined previously in the known model case of Section 4.5. These are: Jpe(a:) with 

qv,o = . I ,  Jml(u:) with qV,o = . I ,  and Jj(ai)  with qv,o = .01. Because the limit cycle results in the 

previous section were shown to be consistent with other results using the same noise type, these 

data are omitted from the current set of experiments. Only the linear, chaotic neural network, and 

Ikeda series are considered here. 

The boxplots in Figure 4.33 show the relative performance of the different cost function on 

the linear AR-10 data in stationary white measurement noise. For variance estimation, the success 

of the Jmz(a:) cost is ubiquitous. For weight estimation, the performances of the Jml (w)  and 

JPe(w) costs are very similar, although the prediction error cost has a significant advantage in all 

cases except the highest SNR. Because the model is linear, trajectories of the MSE in the weight 

estimates can be plotted along with the squared errors in 6EYk in Figure 4.34. The advantage of 

the JPe(w) cost can be attributed to an interaction that produces faster convergence of both the 

weights and the variance estimate 6:,k. 

Results for the chaotic neural network signal corrupted by stationary 4R-5 noise are shown 
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Figure 4.33: AR-10 data corrupted by white stationary noise at four different SNRs. Boxplots show 
the initial, overall, and final NMSEs for the signal estimates. As indicated, J(CJ;)  is varied within each 
panel, and J(w) is varied across panels. 
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Figure 4.34: Weight estimate MSE trajectories, and a: estimate squared error trajectories, for AR-10 
data corrupted by white stationary noise at four different SNRs. 



in the boxplots in Figure 4.35. Again, the variance estimation cost ~ " " ( a : )  is usually the best 

performer. For weight estimation, the maximum-likelihood cost J m l ( w )  gives the smallest average 

1000-point NMSE a t  higher SNRs, while at OdB J j ( w )  performs the best. Note that a t  most 

Chaotic NN Signal in AS Noise, Known at,, 

Final 1000-point signal NMSE 

0.07 1 
T T T  

Figure 4.35: Chaotic neural network data corrupted by stationary AR-5 noise at four different SNRs. 
Boxplots show the initial, overall, and final NMSEs for the signal estimates. As indicated. J((a:) is 
varied within each panel, and J ( w )  is varied across panels. 



SNRs, the joint cost Jj(w) does not differ significantly from the best choice, making it a good 

general-purpose cost. The average differences between the dual estimation MSE profiles and the 

EKF profiles are shown in Figure 4.36, along with the average variance error trajectories. 

Chaotic NN Signal in AS Noise, Known a;" 

Avg. Differenced MSE profile Average otk Squared-Error Trajectories 

Figure 4.36: Ensemble averaged, differenced signal estimate MSE profiles, and variance estimate error 
trajectories, for chaotic neural network data corrupted by stationary AR-5 noise. 



On nonstat ionary AR-5 noise added to neural network data, the results are very similar to 

those for stationary noise. As for the known variance case, the overall NMSE is used to  rank the 

cost functions, rather than the final 1000-point NMSE. As indicated by the boxplots in Figure 4.37, 

Chaotic NN Signal i n  A N  Noise, Known 

Overall signal NMSE 

Figure 4.37: Chaotic neural network data corrupted by nonstationary AR-5 noise at four different SNRs. 
Boxplots show the initial, overall, and final NMSEs for the signal estimates. As indicated, J (a i )  is 
varied within each panel, and J(w) is varied across panels. 

.oo 

3 1 
0 0.2 - 

1 
0.18 - 1 

1 I I I I I I I I I I 

.oo .yo .oo 

1 I I 

.QO 

I 
I I 1 I I I 

.QO ,oo .a7 

i 0.13 - 

3 
I 

I 
m 0.125 - 

1 
1 

0.12 - 
1 I I I I I 

~ ( ~ ; ) p e  rnl j pe rnl j pe rnl j pe rnl j pe rnl j 
J ( w ) p e  rnl em j ec 

2 p e  ml j pe rnl j pe rnl j pe rnl j pe rnl j 
b u )  J l w ) ~ e  rnl em j ec  

.oo .yo .oo 
1 

I I I 



Ikeda Series in PS Noise, Known a:- 
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Figure 4.38: Normalized lkeda data corrupted by stationary pink noise at four different SNRs. Boxplots 
show the overall and final 1000-point NMSEs for the signal estimates. As indicated. J ( u , ~ )  is varied 
within each panel, and J(w) is varied across panels. 
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the joint cost Jj(w) is the best choice a t  OdB and 3dB SNR, and Jrn"w) is better at the higher 

SNRs. 

The NMSE values for the Ikeda data are shown in the boxplots of Figure 4.38. It  is inter- 

esting to note that the performance here is actually better than in the "known a:" case, where a 

value obtained from training a predictor on clean data was used. Again, the maximum-likelihood 

weight cost J ~ ' ( W )  is superior at OdB SNR, whereas JeC(w) is better a t  higher SNRs. However, 

the advantage of the error-coupled weight cost over J ~ ' ( W )  a t  the higher two SNRs is not very 

significant; although the JeC(w) is listed in Table 4.5, this choice is fairly arbitrary. 

Table 4.5 summarizes the best cost functions when a: is unknown. Because Jm"a2) is the 

best cost for estimating a: in nearly all cases, it is not listed explicitly. Notice that the instability 

problem of the maximum-likelihood cost does not affect variance estimation, as the second deriva- 
tive 8 ' ~ " '  is a scalar, and therefore cannot be "ill-conditioned." The weight cost choices largely 

mirror those given in Table 4.4, with only a few changes. Comparing the various boxplots with 

Table 4.5: Best dual estimation cost functions for estimating w and a: when the measurement noise 
statistics are known. Column headings are abbreviations for the data sets listed on page 162. In all 
cases, Jm"a:) is the best variance estimation cost. 

J j  ( w )  Jj ( w )  
Jj ( w )  Jj ( w )  Jm' ( w )  

JeC(w) 

the known a: case shows the weight costs are generally robust to initial inaccuracies in a;. and 

that the variance estimation filter is highly effective. In most cases, the final 1000-point NMSEs 

are not significantly different from when a: is known. One exception is the improvement in the 

Ikeda results, discussed above. Another notable exception is that J j (w)  actually improves its 

performance a t  lower SNRs when a: is being estimated; this may be a result of a larger value 

of 6:,k accounting for errors in the model, much in the way the Jec(w) cost was designed (but 

generally fails) to work. This effect seems to be responsible for the top ranking of J ~ ( w )  on the 

chaotic neural network in OdB AN noise. 

4.7.3 Both Variances Unknown 

Recall that the signal is characterized by both the model weights, w ,  and the variance of the 

process noise, a:. The process noise often represents the stochastic component of the dynamics 

not represented by the model; hence, the process noise variance depends on specification of the 



model. Therefore, a scenario in which the process noise variance 0: is known, but the weights and 

measurement noise variance are not, is relatively unlikely. This case is therefore not investigated 

experimentally. 

Rather, in this set of experiments both the process noise variance, u:, and measurement noise 

variance, a: (a:" for colored noise), are assumed unknown. Each is estimated along with the 

signal and weights using a modified variance filter shown in Formulae 3.12 and 3.13 on page 78. 

For colored measurement noise, the model w, is assumed known. The forgetting factors used for 

variance estimation are: A,: = .9993 and A,; = .9993. 

An example of dual EKF estimation with unknown variance is shown in Figure 4.39. In the 

top plot, the estimates are indicated by the heavy curve, the noisy data are shown by '+' signs, 

and the clean signal appears as a thin curve. 

Dual EKF Estimate with Unknown Variances 

Process Noise Variance Estimate 
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Measurement Noise Variance Estimate lo4 

Figure 4.39: Example of dual EKF estimation of nonlinear time-series in 3dB colored noise, using the 
J ~ ( w )  ~ ~ " 0 : )  and ~ ~ ' ( u : ~ )  cost functions. Only the last 150 points are shown. In the bottom two 
plots, the 3: and 6En trajectories are compared against their true values (horizontal lines) 



The following results provide a comparison the various dual EKF cost functions. As in the 

previous group of experiments, four data sets are used: AR-10 in WS noise, chaotic neural network 

in AS and in AN noise, and the Ikeda series in pink noise. Because the stability problems of J m l ( w )  

and JeC(w) do not arise on the AR-10 and Ikeda signals, the smaller initial weight covariance 

Qo = .01I is used for these costs only on the neural network data; Qo = .1I is used everywhere 

else. The signal covariance is initialized by: Po = I. 

On each of the four data sets, the three or four most promising weight estimation costs are 

tested in conjunction with the three best costs for estimating the measurement noise variance, as 

determined in Section 4.5. These are: J p e  (a:), Jml (a:) , and Jem (a:), with initial error variance 

qn,o = . I  used for white noise, and qn,o = .O1 used when the noise is colored. In light of the previous 

group of experimental results, the cost for estimating a: is fixed at Jml(a:) with qv,o = . l .  

On the linear AR-10 signal corrupted by stationary white measurement noise, the weight costs 

JPe(w), Jml (w) ,  J e m ( w ) ,  and J j ( w )  are tested. The boxplots in Figure 4.40 show the final 

1000-point signal estimation NMSEs of the different combinations of cost functions. For weight 

estimation, the Jml (w)  and Jpe(w) costs perform similarly, although the maximum-likelihood cost 

shows a slight advantage at higher SNRs. Unfortunately, while the variance estimation costs show 

more distinct differences in performance, there is little consistency between noise levels: a t  OdB, 

Jpe(a;) has the best performance, although it shows the widest range in its weight MSEs; a t  3dB 

SNR, JPe(ai)  and J e m ( a i )  are not significantly different, but JPe(ai)  shows an advantage in terms 

of weight error; a t  7dB, J ~ ~ O : )  and J e m ( a i )  appear equivalent, but J e m ( a i )  shows convergence to 

significantly lower weight MSE in Figure 4.41 on page 173; finally, at IOdB, ~"'(cr;) is significantly 

better than the other costs. Ideally, then, JPe(cr:) should be used a t  lower SNRs, Jem(cr2) at 

medium SNRs, and Jml (a:) should be used at higher SNRs. This is clearly an undesirable situation 

because the SNR will generally not be known in advance (we are, after all, esti~riating a:). However, 

the penalty for selecting a suboptimal cost is not terribly high in this case; any of the top three 

costs will yield good performance. 

The results for the neural network data in stationary AR-5 noise are considerably more con- 

sistent. As shown in Figure 4.42 on page 174, the final 1000-point NMSE is almost always lowest 

for the J~~ (a:") variance cost. The J ~ ( w )  weight cost does the best at low SNRs, while J ~ ' ( W )  

is better a t  high SNRs. 

In nonstationary colored noise, the results are ranked according to the overall signal NMSE. 

Figure 4.43 is largely consistent with the stationary noise results, with J ~ ( W ) J ~ ' ( ~ : _ )  the best 

choice a t  low SNRs, and J ~ ' ( W )  J~~ (a:*) better at 10dB. At lOdB, the joint cost actually appears 

to  suffer from some stability problems, and gives its best performance in combination with the 
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Figure 4.41: AR-10 data corrupted by white stationary noise at four different SNRs. Boxplots show 
the final 1000-point weight MSEs. 
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Figure 4.42: Chaotic neural network data corrupted by stationary colored (AR-5) noise at four difFerent 
SNRs. Boxplots show the final 1000-point NMSEs for the signal estimates. 
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Figure 4.43: Chaotic neural network data corrupted by nonstationary colored (AR-5) noise at four 
different SNRs. Boxplots show the final 1000-point NMSEs for the signal estimates. 
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Figure 4.44: Chaotic neural network data corrupted by nonstationary colored noise at four different 
SNRs. Boxplots show the final 1000-point NMSEs for the variance estimates, b:=. 
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Jem(oin)  variance cost, which is otherwise a suboptimal choice. As with Jm"w), better results 

might be obtainable by using Qo = .O1 for the joint weight cost a t  10dB. 

Figure 4.44 on page 176 shows the overall NMSEs, along with the average trajectories 

of bin ,, . The best performance is generally provided by ~ " ' ( a : ~ ) .  Although the J P ~  ( g i n )  cost 

does a better job of tracking the nonstationarity, its higher volatility hurts its overall performance. 

Note that at 10dB the Jem(uin) cost displays a very slow time constant, resulting in significant 

lag misadjustment. 

Figure 4.45 shows the results on the Ikeda series with additive pink noise. At OdB and 3dB, 

Jml(w) is the best weight cost in terms of final 1000-point signal NMSE; a t  7dB and 10dB SNR, 

it is not distinguishable from JeC(w). However, both the maximum-likelihood and error-couple 

costs shows signs of instability at the 3dB and 7dB noise levels, making comparison difficult. 

Although better performance can be achieved by using Qo = .O1 for the initial weight covariance 

of these costs, this figure helps underscore their susceptibility to unstable behavior. For variance 

estimation, Jm"ain ) and JP" (sin ) show statistically equivalent performance at all SNRs (when 

paired with Jm'(w)).  The EM variance cost is significantly worse at all but the highest SNR. 

An examination of the boxplots shows again that the dual EKF costs are highly robust to 

inaccuracies in the noise variances, and that the variance estimation filters generally provide good 

performance. The best cost functions when both variances are unknown are summarized in Ta- 

ble 4.6. 

4.7.4 Effect of Prior Knowledge 

Table 4.6: Best dual estimation cost functions when estimating w ,  a:, and a: (or a:"). The process 
noise is estimated using the cost ~ " " ( a ; ) ,  as determined previously. Each row indicates the SNR of 
the noisy data. Column headings are abbreviations for the data sets listed on page 171. 

It is interesting a t  this point to stop and compare the best signal estimation results when estimating 

the signal, weights, and both variances using a dual Kalman filter or dual EKF, with results that 

can be obtained when the variances are known, or when applying a Kalman filter or EKF using the 

known model and noise variances. Figure 4.46 provides such a comparison in the form of boxplots 

of the final 1000-point signal NMSE, when estimating the AR-10 signal in white noise and the 
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Figure 4.46: Final 1000-point signal NMSEs when the signal, model, and noise variances are all 
estimated (by a dual Kalman filter), when only the variances are known (signal and model estimated by 
dual Kalman filter), and when everything is exactly known (signal estimated by Kalrnan filter or EKF). 
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chaotic network signal in stationary colored noise, with N = 20,000 points of data a t  4 different 

SNRs each. On the linear data, J ~ ~ W )  is used for weight estimation, and J j ( w )  is used on the 

neural network data; Qo = .1 is used in both cases. 

The results on the linear data are as expected: prior knowledge of the true model and noise 

statistics gives a significant performance advantage (although the difference is too small to see from 

a plot of the signal estimates). This advantage diminishes slowly as the SNR increases and the 

signal estimation problem becomes less difficult. Interestingly, knowledge of the noise variances 

has a t  least as big an impact on performance as does knowledge of the weights; a t  10 dB SNR, the 

known variance results and Kalman filter results are indistinguishable. 

However, on the nonlinear data, something interesting occurs: a t  low SNRs, the dual EKF 

with unknown variances actually performs better than the EKF. Why is this so? The most plau- 

sible explanation is that the Taylor series approximations inherent in the EKF algorithm make it 

a suboptimal estimator. However, the inaccuracies in the filter are partially compensated for by 

adjusting the values of the noise variances, and to a lesser extent, adjusting the model itself. Fur- 

thermore, the approximations made by the EKF are more severe when the signal error covariances 

PI, are on the same scale as the curvature of the nonlinearities. This is more likely to happen with 

noisier data, or with strongly nonlinear signals. Note that the effect is absent a t  higher SNRs, and 

on the linear data. 

Hence, it is evident from Figure 4.46 that the dual Kalman filter converges to solutions which 

are both reasonably close to  the KF results on linear data, and which are potentially better than 

estimates produced by the EKF on noisy nonlinear data. 

4.8 Experiment 5: Static Derivatives in the Dual EKF 

Section 3.6.1 showed recursive equations for the derivatives of the prediction and estimate 

%k with respect to  the weights w and variances h2. In some situations, the expense associated 

with these computations is too high, and a cheaper alternative must be considered. One such 

alternative simply ignores the dependence of the state estimate i k  on the weights. This allows the 

derivative of the prediction to be computed as the partial derivative of the model with respect to 

the weights alone, and greatly reduces the computational cost. However, ignoring the derivative of 

the estimate, xk, also has a rather significant effect on the form of the joint cost functions J j ( w )  

and JeC(w) ,  both of which include the signal estimate i k  in one of their terms. 

Figure 4.47 shows the effect of using static derivatives when estimating the chaotic neural 

network time-series in 3dB colored noise. The difference between the static and full derivative 



estimates is slight enough that it is difficult to  see on the scale of the estimates; the bottom plot 

shows the difference a t  10 times the scale of the top plot. 

Dual EKF Estimate with Known Variances 

Difference between Static & Recurrent Derivatives 
I I 1 

Figure 4.47: The efFect of static derivatives on dual E K F  estimation of the chaotic neural network time- 
series in 3dB colored noise, using the Jj(w) cost and known noise variances. The bottom plot shows 
the difference between estimates using the static derivatives ( ' x '  in  top plot), and the ful l  derivatives 
(heavy curve in top plot). 

The general effect of the simplification on algorithm performance is shown in Figure 4.48, 

using the AR-10 and limit cycle data sets in white noise, the chaotic neural network data in both 

stationary and nonstationary AR-5 noise, and the Ikeda series in pink noise. In all cases, both 

variances are assumed known. 

On each data set, the signal NMSE for one choice of cost function is shown, followed by the 

performance when that cost is used with static derivatives. The initial covariance is Qo = .1I in all 

cases. On the two data sets with white noise, the effect is negligible, although the average NMSE 

is slightly higher with static derivatives in seven of the eight examples. However, the performance 

difference is much more noticeable on the three colored noise data sets, and is significant in nine 

of the twelve cases. 
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Figure 4.48: The effect of  using static derivatives of f (-) in the dual EKF, rather than full recurrent 
derivatives. The static derivative plots are labeled with a prime (') in the superscript. Boxplots show the 
final 1000-point signal NMSEs on all data sets, except on the chaotic NN (AN) data (fourth column), 
in which the overall signal NMSE is used. 



4.9 Experiment 6: Joint EKF Performance 

In this section, the performance of the joint EKF (JEKF) algorithm is compared with that of 

the dual EKF (DEKF). The three cases: noise variances known; a; unknown; and both noise 

variances unknown, are all considered using the same data and settings of parameters A, Po, etc., 

as in Section 4.7. In each case, the joint EKF performance is compared against the performance 

of the best dual EKF cost function for that particular data set and SNR. 

Following comments made in [45, 47, 611 regarding convergence problems of the joint EKF, 

and our own analysis (see Section 3.4.1) of the difficulties of this approach, the joint EKF might 

be expected to  generally perform somewhat worse than the dual EKF. However, these experiments 

show that the joint EKF can, in fact, give the same or better performance as the dual EKF in 

many cases. 

4.9.1 JEKF: Known Variances 

Figure 4.49 shows the results when both noise variances are known. In the white noise experiments, 

shown in the left two columns, there is generally no significant difference in performance between 

the dual EKF and joint EKF. Nonetheless, the joint EKF is favored on the linear data by its 

slightly lower average NMSE in all cases (the advantage is significant a t  3dB). The results are 

considerably more mixed on the limit cycle data. A similar story is told by the stationary and 

nonstationary AR-5 noise results, shown in the third and fourth columns. Here, the joint EKF 

shows a slight advantage a t  OdB, and the dual EKF does somewhat better at 10dB. Note that the 

performance on the AN noise is measured in terms of overall NMSE, and so contains information 

about the tracking behavior of the algorithms. 

The results are much more striking on the Ikeda series; here, the dual EKF shows a distinct 

advantage at every SNR. There are a couple of possible causes for this outcome. First, the non- 

linearity of the Ikeda map may actually be severe enough so that the additional nonlinearity of 

the joint state space hurts the JEKF's performance. Second, recall that the process noise variance 

rrz is not accurately known for the Ikeda series; it is possible that the JEKF is more sensitive to 

this inaccuracy than the DEKF, and its performance suffers as a result. This hypothesis is in 

agreement with an observation in [45] about the JEKF's sensitivity to the noise variances. 

4.9.2 JEKF: Unknown Process Noise Variance 

The case of a? unknown is considered in Figure 4.50. The results are very similar to  the known 

variance case, except that the significance of the JEKF's advantage is generally increased in the 
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Figure 4.49: The performance of the joint EKF compared with the best dual EKF cost functions, when 
both noise variances are known. Boxplots show the final 1000-point signal NMSEs on all data sets, 
except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE is used. 
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Figure 4.50: The performance of the joint EKF compared with the best dual EKF cost functions, when 
only the measurement noise statistics are known. Boxplots show the final 1000-point signal NMSEs on 
all data sets, except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE 
is used. 
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Figure 4.51: Averages of the differenced signal MSE profiles on NNch(AN) data (left), and the signal 
MSE profiles on the Ikeda(PS) data (right). Only the measurement noise statistics are known. In each 
plot, the joint EKF is compared against the best dual EKF cost, as listed in Figure 4.50. 



first three columns (the limit cycle data were not tested). On the WS noise examples, the pvalue 

is less than 2% for SNRs of 3dB and higher; the DEKF and JEKF results remain statistically 

equivalent at OdB. On the chaotic neural network data (second and third columns), the relative 

performance of the JEKF improves noticeably from the known variance case. 

On the Ikeda data, the DEKF retains its significant advantage, although the JEKF appears to 

perform more consistently than before, and at a smaller deficit in its average NMSE than when the 

variance is (incorrectly) known. This last observation agrees with the conjecture that the JEKF is 

not robust to  inaccuracies in a:. Nonetheless, as shown by the average MSE profiles in the right 

side of Figure 4.51, the JEKF is less robust on the Ikeda data than the DEKF; at OdB and 7dB 

SNR, noticeable spikes appear in the JEKF profiles near Ic = 18,000. Meanwhile, the left side of 

the figure shows the JEKF's superior convergence properties on the chaotic neural net,work data 

in nonstationary noise (at most SNRs). 

4.9.3 JEKF: Both Variances Unknown 

Finally, the joint EKF and dual EKF are compared when both noise variances are estimated online. 

Figure 4.52 shows that on the white noise data (left column), the JEKF is significantly less robust 

to  inaccuracies in 0: than the dual EKF algorithm: the dual EKF with Jm'(w) shows a definite 

advantage at all SNRs. On the autoregressive noise (AS and AN, middle columns), as well as on 

the Ikeda series in pink noise (right column) the relationship between the two algorithms shows 

little change from when a:= is known: the joint EKF maintains its advantage on the neural network 

series, while the dual EKF does significantly better on the Ikeda data. 

Figure 4.53 shows the ensemble averages of the differenced MSE profiles for the JEKF and dual 

EKF on the AR-10 (WS) data and neural network (AS) data. Note that the relative performance 

of the joint EKF appears to  improve with increasing SNR. 

The experimental results in this section can be summarized by the following observations: 

1. The performances of the two algorithms are similar when both the model structure and 

measurement noise variance are known exactly, although the joint EKF shows a slight (usually 

insignificant) advantage. 

2. On the Ikeda data, the dual EKF algorithm provides significantly better performance. Here, 

the nonlinearities are more severe, and the appropriate model structure for the neural network 

is uncertain. 
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Figure 4.52: The performance of the joint EKF compared with the best dual EKF cost functions, when 
estimating both noise variances. Boxplots show the final 1000-point signal NMSEs on all data sets, 
except on the chaotic NN (AN) data (fourth column), in which the overall signal NMSE is used. 
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Figure 4.53: Averages of the differenced signal MSE profiles on AR-lO(WS) data (left), and neural 
network (AS) data (right). In each plot, the joint EKF is compared against the best dual EKF cost, as 
listed in Figure 4.52. 



3. When the process noise variance is unknown, the joint EKF gains a significant advantage for 

white noise a t  medium to  high SNRs. Although the stationary colored noise results do not 

favor either algorithm, the results in nonstationary noise indicate the joint EKF possesses 

superior tracking performance when a: is unknown. The dual EKF maintains its advantage 

on the Ikeda data. 

4. When both variances are unknown, the advantage of the joint EKF on WS noise is completely 

reversed. However, the algorithms remain indistinguishable on AS noise, and the joint EKF 

exhibits better robustness on AN noise. The ranking of the Ikeda results is mostly unchanged. 

Overall then, the joint EKF appears more sensitive than the dual EKF to factors that increase 

estimation error, such as: low SNR, incorrect noise variances, uncertain model structure, and 

highly nonlinear dynamics. In fact, all of these effects can be interpreted in terms of the additional 

source of nonlinearity - and hence, linearization error - inherent to the joint EKFs concatenated 

state-space realization. The larger the state covariance Fr, (relative to  the scale of the underlying 

nonlinearities), the more severe the approximation imposed by the linearization of the EKF. Of 

course the dual EKF also requires linearization; the point is that the additional nonlinearity of the 

joint state-space model makes this effect more pronounced for the joint EKF. 

Nevertheless, the performance of the joint EKF is quite good in many cases. Furthermore, 

its lack of recurrent derivative computations can mean computational savings, although these are 

potentially offset by the larger dimension of the joint state vector (see Section 3.6.5 on page 112). 

4.10 Experiment 7: Model Mismatch Effects 

In most applications, the most appropriate model structure for the data is not known beforehand. 

The experimental results in this section address the robustness of the algorithms and cost functions 

in the face of model structure uncertainty. 

Experiments are run on the chaotic neural network series corrupted by stationary AR-5 noise, 

a t  3dB SNR. As just shown, the performances of the dual EKF (using Jml(w)  and J j ( w ) )  and 

joint EKF can be compared using the known 10-5-1 architecture that generated the signal, and the 

known noise parameters: w,, Mn = 5. Here, the performances are evaluated using two additional 

(incorrect) model structures: 

1. A 5-2-1 neural network architecture, and M, = 3 order noise model. 

2. A 10-8-1 neural network architecture, and M, = 10 order noise model. 
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Figure 4.54: The effect of incorrect model structure on the relative performances of the joint EKF and 
two dual EKF cost functions, when estimating both noise variances. Boxplots show the final 1000-point 
signal NMSEs on the chaotic neural network series in 3dB AS noise. The middle plot represents the 
model structure actually used to generate the data. 

The first structure is too rigid for the data; the second structure is overly flexible. As an additional 

source of error, the noise model w, is estimated in both cases from a fairly short section (500 point) 

of the noise data. Both of the variances: u: and u : ~  , are estimated on-line using Jml (u2), as before. 

The lefthand plot of Figure 4.54 shows the final 1000-point signal NMSE of the three algorithms 

on model structure (1); results for the "correct" structure appear in the middle plot; the righthand 

plot shows the performance with structure (2).  As expected, the performance of all algorithms is 

noticeably degraded by using the inappropriate model size. However, it is also clear that the joint 

EKF is considerably less robust to these changes than the dual EKF (J j (w)) ,  as indicated by the 

long top whisker of the joint EKF boxplots. Furthermore, notice that the maximum-likelihood 

cost function exhibits stability problems for both the underparameterized and overparameterized 

structures. 

The averaged, differenced MSE profiles of Jj(w) and the joint EKF are shown for the two 

incorrect model structures in Figure 4.55; these profiles can be compared with the corresponding 

plot in Figure 4.53 on page 189. 

5-2-1 NN. Ln=3 10-8-1 NN. Ln=lO 

Figure 4.55: Averages of the differenced signal MSE profiles of the dual EKF ( J j (w) )  and joint EKF 
for the two incorrect model structures. 



4.1 1 Experiment 8: Over-Training 

All of the experiments unto this point are performed in a purely "online" setting, in which each 

data point is used only once, as soon as it made available. As described in Section 3.6.3, it is 

sometimes possible to make more than one pass over the data. 

In situations where processor speed is high relative to the rate at which observations become 

available, a large number of training epochs can be performed before the next measurement arrives. 

In such contexts, over-training is a concern because the empirical distribution of the repeated data 

becomes increasingly biased, relative to  the true distribution. 

The present set of experiments is designed to investigate several algorithms - including the 

dual EKF, joint EKF, and a couple of iterative algorithms - with regard to their potential for over- 

training. As such, the algorithms are evaluated in terms of both training-set NMSE, calculated 

over the portion of the series used during training, and test-set NMSE, calculated over data not 

used during training. The algorithms can be compared by plotting their training and test set 

NMSEs as functions of the training epoch. Both estimation NMSEs (xk - 2k) and prediction 

NMSEs (yk - 2 i )  provide useful information. 

The experiments are performed on the Mackey-Glass chaotic series (described on page 127) 

corrupted by stationary white Gaussian noise a t  3dB SNR. A 5-18-1 neural network architecture (5 

inputs, 18 hidden units, and one output) is used to model the dynamics, based loosely on findings 

in [40]. Both noise variances are initialized with the ad-hoc procedure of Section 3.6.2, and are 

estimated along with the signal and weights using the ~ ~ ' ( a ~ )  cost function. Initial covariances: 

P o  = I, Qo = .1I, qu,o = qn,o = .1, and forgetting factors: A, = ,9999, A,z = ,9993 are used by 

the dual EKF and joint EKF. 

The dual EKF and joint EKF algorithms are compared against an iterative algorithm similar to 

that in [lo] which alternates between EKF signal estimation and backpropagation model estimation 

(BP-EKF). The BP-EKF algorithm performs EKF signal estimation followed by 100 epochs of 

a gradient descent algorithm minimizing the prediction error (ir ,  - 2 ~ ) ~ .  The variances were 

estimated using the sequential variance filters also used by the dual EKF and joint EKF. Although 

an iterative generalized EM algorithm was also implemented, it produced relatively poor results, 

and so is not included in the figures. 

A known-model performance benchmark is obtained by training a neural network predictor 

on 4000-points of the clean series using gradient descent, and stopping when the prediction error 

on the remaining 1000 points begins to increase (25,300 training epochs are used). The resultant 

innovations variance for the trained model is 4.8 x which can be used as the value of a:. 



The sample variance of the noise is used to obtain a:. Using these "known" values of the weights 

and variances, an EKF is applied to the noisy series to produce benchmark NMSE values against 

which to  compare the various dual estimation algorithms. 

Because over-training is affected by the length of the training window, Nwin, two different 

situations are considered. In the first, Nwin = 2000 with a test set of the subsequent 3000 points. 

in the second, Nwi, = 500, with 1500 points of test data; in both cases, it is assumed that enough 

processing power is available to make numerous passes over the data before the next data point 

arrives. 
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Figure 4.56: The average estimation and prediction NMSE trajectories on noisy Mackey-Glass data, 
using a 2000-point training-set, and 3000 points of test data. The average EKF result is indicated by 
a small square 

The average NMSE trajectories for the longer training set are shown in Figure 4.56. The 

superior training-set performance of the joint EKF and dual EKF with Jml(w) and JPe(w) costs 

is consistent with the on-line results shown previously for white measurement noise. Nearly all the 

algorithms exhibit over-training to some extent, as exhibited by the increase in the test-set NMSE 

after some number of epochs. Unique to the task of dual estimation is the possibility of such an 

increase appearing on the training set NMSE as well (as exhibited by the joint EKF in this case). 

This is because of the unsupervised nature of the task; the clean data are not available even during 

training, so the neural network can begin to  model the noise in the training data to some extent. 

In some circumstances, a block of data can be used during the training process to  monitor 

out-of-sample prediction NMSE, and control over-training. These data are usually referred to as a 

validation set to  distinguish it from a true test-set, which should not be used even for this purpose. 
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Figure 4.57: Boxplots of  estimation and prediction NMSEs, obtained from 2000 points of  Mackey-Glass 
data while using the 3000 point test-set for early-stopping validation. 

When available, the validation NMSE can be used to select the training epoch with the lowest 

error, and thereby avoid over-training. Seeing that the clean signal is not available to compute an 

estimation NMSE, the prediction NMSE can be used, where the prediction error is defined relative 

to the noisy data, as: (yk -ii). In Figure 4.56, the joint EKF and dual EKF with the Jrn"w) and 

Jpe(w) costs represent the best methods if the 1500 point "test data" are used for validation in 

this way. The boxplots in Figure 4.57 show the relative performance of the algorithms under this 

assumption. Note that the EKF with the known model is significantly outperformed by several 

of the dual estimation algorithms. As discussed in the on-line case, this is most likely due to the 

suboptimality of the EKF on nonlinear data. 

However, it is not always possible to provide a validation set. In particular, when the amount 

of data is limited, there will not be enough to train on and still provide a reliable estimate of 

performance on unseen data. One scenario in which this situation arises is in the use of short 

windows to process speech, or other time-varying signals. As shown in Figure 4.58, the problem 

of over-training is exacerbated by a shorter training window of 500 points. 

Hence, it is precisely when a validation set is most needed (i.e., with scarce data) that one 

is least likely to  be available. In these situations, one might consider using the dual EKF with 

J ~ ( w )  because it appears to be less susceptible to over-training. However, the joint cost clearly 

produces suboptimal performance on these data (white noise). A better result can sometimes be 

obtained by using the maximum-likelihood cost or the joint EKF algorithm, and stopping early a t  

some previously-chosen epoch. 
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Figure 4.58: The average estimation and prediction NMSE trajectories on noisy Mackey-Glass data, 
using a 500-point training-set, and 1500 points of test data. The BP-EKF results are not shown. 
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Figure 4.59: Boxplots of estimation and prediction NMSEs, obtained from 500 points of Mackey-Glass 
data while using the 1500 point test-set for early-stopping validation. 

Note that even if the particular application does not require generalization to  new data, the 

issue of over-training is still significant; the dual-estimation algorithm can begin to  incorporate 

the noise into its signal estimates, so that performance begins to degrade after some number of 

epochs. Although the ~ " ' ( w )  cost continues to minimize the training set NMSE in the preceding 

examples, this will not generally occur. In most applications over-training is of real concern, and 

should be guarded against if possible. 

A suitable choice of forgetting factor can be used to help prevent over-training. As described 



previously, a choice of X < 1 effectively controls the amount of data used for parameter estimation. 

The forgetting factor A, used in this set of experiments corresponds to  a time-constant of around 

10,000 points for the data window (see Figure 3.3 on page 59). A time-constant of around 2,500 

points might have prevented some of the over-training seen in Figure 4.58. However, early-stopping 

is a more direct approach to the problem. 

4.12 Discussion 

The experiments in this chapter, while fairly extensive, are necessary for making some important 

observations about the dual EKF and joint EKF. 

Estimation of the noise variances can generally be done very successfully by the dual EKF, 

and is best performed by minimizing the maximum-likelihood variance cost functions. 

For weight estimation, J ~ ~ w )  can produce the best results in many situations, but it is un- 

fortunately prone to numerical problems related to the inversion of the approximate Hessian. 

For white noise data, the prediction-error cost Jpe(w) produces very good estimates (often 

not significantly worse than Jm"w)), without stability problems. 

In colored noise, the joint cost J j (w)  gives good, stable solutions, sometimes better than the 

less stable Jml(w) cost. 

The Jem(w)  and Jec(w)  methods do not work well in general. This may be due to the 

approximations made by the dual EKF, as described in Chapter 3, or in development of 

the costs themselves. For example, the error-coupled cost is deveIoped using a Gaussian 

assumption on the dynamics error fk, and the EM cost is usually computed noncausally 

using a smoother, rather than in the sequential manner of the dual EKF. 

The joint EKF is not seen to suffer from the convergence problems reported in the litera- 

ture. However, its higher sensitivity to inaccuracies in noise variances and model structure 

information makes it a less robust alternative to the dual EKF in real-world dual estimation 

applications. 

Iterating the dual EKF over the same data set is likely to cause over-training. Early-stopping 

is a must, and can be implemented with either a cross-validation approach, or using a prede- 

termined number of iterations ( e .g . ,  5 epochs). This issue is explored further in Chapter 5. 



In the next chapter, the above observations are put into practice when approaching several 

time-series estimation and prediction problems. 



Chapter 5 

Applications 

The controlled experiments in the previous chapter provide an empirical comparison of cost func- 

tions and algorithms on several of different types of time-series data. In this chapter, many of the 

experiments described are performed on real-world data, for which the clean signal is not available. 

A range of application domains are considered, including estimation of river flow, enhancement of 

speech, and prediction of economic time-series. 

The purpose of these experiments is to illustrate the use of the dual EKF in some realistic signal 

processing settings, and to demonstrate the potential advantage of the dual estimation approach. 

Some of the applications considered here have been studied extensively in the literature, with 

researchers incrementally improving their results over the years using a variety of model structures 

and training methods. The purpose of this chapter is not necessarily to  supersede these published 

results; in some cases this is unlikely, as the experiments herein are limited to the autoregressive 

model structure discussed in Chapter 1 of this thesis. However, by showing the advantage of the 

dual EKF used with AR models, the results in this chapter underscore the potential of the dual 

EKF to improve upon previously published results when used with the alternative model structures 

described in the literature. 

Because the clean signal and true model are generally not available in these experiments, 

the only objective criterion is prediction error; in applications for which estimation error is of 

primary concern, only a subjective evaluation of the results is possible. An exception is the speech 

enhancement section, in which several controlled experiments are included (with the clean speech 

available) in addition to actual recordings of noisy speech. Results of another controlled experiment 

- on a known discrete-time chaotic map - are presented in the next section. 



5.1 Chaotic Henon Map 

The study of chaos has far reaching applications in the study and analysis of real-world systems. A 

chaotic system can be characterized by the dimensionality and appearance of its attractor. A model 

of a chaotic system can therefore be evaluated in terms of its ability to  reproduce the attractor 

of the original system [84]. This first experiment considers a well-known, but artificial, chaotic 

system, and demonstrates the benefit of a dual estimation perspective of modeling the dynamics 

in the presence of noise. 

In 1976, Michele H6non proposed the following system of equations for modeling chaos in two 

dimensions: 

The map takes points (a, b) through three successive transformations: a bending; a compression 

in the a-direction; and a reflection through the diagonal, a = b. To obtain a one dimensional 

time-series for the following experiment, the signal is defined as xk = ak, 

The phase plot of xk+l versus xk (in the upper left part of Figure 5.1) shows the chaotic 

attractor. A neural network can be trained as a predictor on this signal, using an EKF training 

algorithm. The network is then iterated - feeding back the predictions of the network as future 

inputs - to produce the attractor shown in the upper right plot. The individual data points are of 

course not the same as the original data, but it is clear that the dynamics have been captured by 

the (5 input, 7 hidden unit) neural network. 

However, if the signal is corrupted by white noise at lOdB SNR, and a neural network with 

the same architecture is trained on these noisy data, the dynamics are not adequately captured. 

The iterated predictions of the neural network trained on noisy data are shown in the bottom left 

part of the figure. While the general outline of the original attractor is apparent, the dynamics 

exhibit limit cycle behavior with far less complexity. 

In contrast, using the dual EKF to train the neural network on the noisy data captures 

significantly more of the chaotic dynamics, as shown in the bottom right plot of Figure 5.1. Here, 

JPe(w) is used for weight estimation, and the maximum-likelihood cost is used for estimating 0:. 

The measurement noise variance is assumed to be known. Parameter covariances are initialized at 

. I ,  and the initial signal covariance is Po = I. Forgetting factors are: A, = ,9999, and A,? = .9993. 

As with both of the EKF-trained networks, a separate validation set is used for early-stopping. 

Although the attractor is not reproduced with total fidelity, its general structure has been extracted 
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Figure 5.1: Phase plots of: xk+l versus xk for the original Henon series (top left); the series generated 
by a neural network trained on xk (top right); the series generated by a neural network trained on yk 
(bottom left); the series generated by a neural network trained on yk, using the dual EKF (bottom 
right). 

from the noisy data. 

5.2 Willamette River Flow 

The data in this experiment were first published by Percival and Walden ([64], 1993), and are 

available in digital form at the Carnegie Mellon University StatLib web site [9]. The data consist 

of the log of the monthly average flow in the Willamette River, as measured daily near Salem, 

Oregon for about 33 years. The series, shown at the top of Figure 5.2, contains only 395 points, 

so the dual EKF must be iterated over the data to obtain a solution. 

The problem is made more difficult by the limited amount of data, and the lack of prior 

information about its collection, such as the reliability of the sensors, or an estimate of the noise 

which might have been gleaned from the original daily measurements. Nonetheless, the data are 

useful for demonstrating the dual estimation approach. 
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Figure 5.2: The log of the monthly average Willamette River flow, as measured daily near Salem, 
Oregon (top). The dual EKF estimate of the series (middle) captures its annual periodicity, and agrees 
well with the result published in [64] using a harmonic analysis approach (bottom). 

The first challenge is to  select a suitable model structure for the data (see Figure 1.3 on page 4). 

With so few data available, a proper model validation set is not a possibility. However, a small 

validation set (e.g., the last 95 points) can be used as a sort of guide during the model selection 

process. A model can be selected by trying several structures, and picking one that seems to 

extract as much of the structure in the signal as possible, and provide reasonable generalization 

in the validation set. This trial and error process should ideally be replaced with a more rigorous 

approach, but it produces good results, nevertheless. 

In particular, the middle plot of Figure 5.2 is obtained with the dual EKF using a 20 input, 5 

hidden unit, single output neural network, the maximum-likelihood costs for weight and variance 

estimation. Forgetting factors: A, = .9997 and A02  = ,9993 are used to control over-training. 10% 

of the data are chosen randomly for cross-validation, to determine that iteration should be stopped 

after 5 epochs. The algorithm is subsequently trained with the full data set to obtain a prediction 

NMSE of 0.3258 and an estimation residual (yk - 2k) with variance 0.1801 (unnormalized). The 

estimate of the measurement noise variance is around 62 = 0.184. 



Results published in [64] using statistical harmonic analysis provide an additional, external 

form of validation. As shown by the bottom plot of Figure 5.2, the dual EKF results agree quite 

well with those in [64]. Both approaches uncover the seasonal regularity of the data; moreover, 

the dual EKF estimate contains some additional structure and variation among the annual cycles. 

Note that the estimation residual is comprised of both actual measurement noise, and unmodeled 

global climatic and weather fluctuations. These additional factors are considered to be noise only 

in the sense that the data set is insufficient to  model their dynamics. 

Willamette River Autocorrelation Functions 
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Figure 5.3: Autocorrelation of the river flow data (solid line, top plot), estimates (dashed line, top) and 
residuals (bottom plot) over two annual cycles. The dual EKF is able to extract the periodic structure 
of the data, and produces a residual with little temporal correlation (nearly white). 

The autocorrelations of the original data, the dual EKF estimates, and the estimation residuals 

are provided in Figure 5.3. The strong periodicity of the data is indicated by the autocorrelation of 

the time-series and signal estimates in the top plot. The bottom plot shows that the autocorrelation 

of (2k - yk) is strongly peaked a t  the oth tap, suggesting that there is very little temporal structure 

left in this residual. 

5.3 Sunspot Prediction 

Since the year 1700, the number of sunspots visible from the Earth have been counted and recorded 

on an annual basis. A method devised by Rudolph Wolf incorporates the number of sunspots and 

the number of sunspot groups, and continues to be used today (see Figure 5.4). Daily numbers are 

computed as a weighted average of observations a t  locations around the globe, and can be summed 

to  produce the annual series. Because the number of sunspots is a good indicator of solar activity, 
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Figure 5.4: The annual sunspot series, from 1700 to 1994 (295 points). Data up to 1920 are typically 
used for training, and the remaining data are divided into three test sets: 1921-55, 1956-79, and 1980- 
1994. The bottom plot shows estimates (solid line) and predictions (dashed line) generated by a dual 
KF, using a linear model and the Jpe(w) cost. 

the series has been the focus of much study over the years (e.g., see [97, 91, 861). Of course, more 

accurate indicators of solar activity are in use today, but none with as lengthy an historical record. 

However, even with three centuries of annual sunspot numbers, there is not enough data to 

build good models of the series. Furthermore, there are good reasons to believe that significant 

measurement noise exists in the data: the sunspot numbers derive from a crude integer count of 

an underlying process which is continuously valued; counts are highly subjective and depend on 

the atmospheric conditions between the sun and the observer; the series does not differentiate 

between larger and smaller diameter sunspots; other relevant information, such as the duration 

of the sunspots, is not considered. These errors make the data somewhat stochastic, and a good 

candidate for a dual estimation approach. 

Recent approaches to sunspot prediction in the literature include linear AR models, as well 

as neural network predictors [91], and committee machines [86]. Typically, the 221 points from 

1700 through 1920 are used for training the predictor, and the remaining data are used for testing 

purposes. The test data is often subdivided into three parts: 1921-55, 1956-79: and 1980-94, with 

prediction MSEs reported on each of these periods separately, as well as on the entire test set. To 

facilitate comparison with previously published results, the MSEs are all divided by the constant 
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Figure 5.5: The boxplot on the left shows the performance of the dual KF over ten runs, compared 
with that of a standard AR-12 predictor (squares). "Testl", "Test2", and "Test3", correspond to the 
three test subsets listed in the text. In the right plot, the optimal errors and early-stopping epochs (*) 
are shown, connected with lines to the corresponding errors and epochs returned by the cross-validation 
approach. 

1535, instead of a traditional NMSE measure. 

For the dual Kalman filter approach, a linear AR-12 model is chosen. Although nonlinear model 

structures have been used successfully in the literature, they tend to  incorporate nonstandard 

architectural features which make them difficult to reproduce here. The linear AR-12 model 

produces reasonably good predictions, is sufficient for demonstrating the dual Kalman approach. 

The prediction-error cost function is used for weight estimation, and the maximum-likelihood 

cost is used for estimating both variances. Parameter covariances are initialized a t  . l ,  and the 

initial signal covariance is Po = I. Forgetting factors of A, = .9993 A,: = .999, A,? = ,999 

are selected to control over-training on the extremely short data set. The series is scaled to  fall 

between 0 and 1, but is not otherwise normalized. 

The dual KF is iterated over the training set, with early-stopping implemented by the cross- 

validation approach described in Section 3.6.3 on page 108: 10% of the training set is held out. 

Because the validation set is selected at random, results vary from one run to the next. Therefore, 

the experiment is repeated 10 times, and the resultant prediction MSEs (normalized by 1535) are 

shown graphically in Figure 5.5. Also shown are the MSE values for a standard AR-12 model, 

trained on the noisy data using a forward-backward least-squares approach; these MSEs are indi- 

cated by superimposed squares in the boxplot. Although the dual KF results are generally better 

than for the least-squares AR-12 model, the variance is fairly high, and the performance is ac- 

tually worse on some individual runs. A large part of the problem is indicated in the right plot 

of Figure 5.5; this shows the optimal test set MSE/1535 of each of the ten runs, positioned at 



the appropriate epoch. A line is drawn from this point to the epoch and MSE actually returned 

for that run using the cross-validation scheme. The length and steep slope of several of these 

lines indicate that the attempt at early-stopping is not very effective. In some cases training was 

stopped more than 100 epochs too early, while in other cases training was stopped too late. 

As an alternative, the cross-validation approach is abandoned, and the dual KF is stopped after 

5 epochs, based on the results of the iterative Mackey Glass experiment in the previous chapter. 

Again, this has the advantage of allowing all the training data to be used for model adaptation. As 

always, the model is initialized using a least-squares fit to the noisy data, so there is no variation 

between runs in this case. The results are shown in Table 5.1, along with those for the standard 

least-squares predictor, and the average of the cross-validation results over 10 repetitions. 

Table 5.1: Sunspot prediction MSE/1535. Standard AR-12 predictor results are compared with the 
dual KF using a 10% cross-validation set (CV), and using 5 epochs of training. 

As with the river flow data, the autocorrelation of the estimation residual ( y k  - ik) can be used 

to determine the amount of left-over structure not contained in the signal estimates. Similarly, the 

autocorrelation of the prediction error ( y k  - ?;) shows the degree to which the predictions can be 

improved. As presented in Figure 5.6, these autocorrelations show that the dual KF has captured 

Sunspot Residual Autocorrelation Functions 

Figure 5.6: Autocorrelation functions of the sunspot estimation residual (top) and prediction error 
(bottom) over two 11 year cycles show little temporal structure in the terms: ( y k  - 5k) and ( y k  - 5 i ) ,  
respectively. 



most of the structure in the data, leaving nearly white estimation and prediction residuals. 

This experiment underscores the difficulty associated with building predictive models from 

short data sets. The dual Kalman filter has the potential to produce more accurate predictions, 

but it requires that attention be given to  the problem of over-training. These issues are reinforced 

in the next experiment on a macroeconomic time-series. 

5.4 Index of Industrial Production 

The level of economic activity in the country is of great interest to policy makers and companies, as 

it influences many aspects of our lives, such as the unemployment rate, the stock market, demand 

for goods and real estate, inflationary pressures, and the general mood of the populace. 

The two primary measures of economic activity in the U.S. are the gross domes t i c  product and 

the i n d e x  of  industr ial  production (IP). As with most macroeconomic series, the IP is a composite 

index of many different economic indicators, each of which is generally measured by a survey of 

some kind. Moody ([55], 1995) cites several reasons for the difficulty in forecasting such series. 

Among them are: the lack of prior (analytical) models for the data; high levels of noise due to  

unmodeled disturbances and inexact survey techniques; nonstationarity due to changes in the 

world economy and changes in the definition of the series itself; and the possible nonlinearity of 

the dynamics, which makes simpler linear modeling techniques inadequate. 

Nonetheless, many economists have used linear regression techniques to  build empirical models 

that predict the IP using several other economic series as inputs. An important baseline approach 

is to  predict the I P  from its past values, using a standard autoregressive model; e.g., results with 

an AR-14 model are reported by Moody et al. ([56], 1993). This linear AR model is well suited 
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Figure 5.7: lndex o f  Industrial Production in the U.S., from January 1940 through March 2000. Data 
available from Federal Reserve [20]. 



for investigating the benefit of dual estimation to this problem, and it is tested in the following 

experiments along with a neural network model. The high level of noise, and the presence of 

nonlinear dynamics make the IP an excellent candidate for testing the dual EKF. 

The monthly IP data is shown in Figure 5.7. To remove the trend, the differences between the 

log, values for adjacent months are computed. This is called the IP monthly rate of return, and 

is shown a t  the top of Figure 5.8 for January 1950 to January 1990. 

Both a linear AR-14 model and neural network (14 input, 4 hidden unit) model are tested. 

Consistent with experiments reported in [56], data from January 1950 to December 1979 are used 

for a training set, and the remainder of the data is reserved for testing. The dual K F  (or dual 

EKF) is iterated over the training set for several epochs, and the resultant model - consisting of 

w, 6,2, and 6; - is used with a standard KF (or EKF) to produce causal predictions on the test 

set. 

To obtain the predictions shown in Figure 5.8, the weights are estimated with the joint cost 

J j (w) ;  the costs JPe(w), Jml(w)  are also tested. Both the noise variances are estimated using the 

maximum-likelihood cost: Jm1(u2). All initial parameter covariances are set to  . l ,  and the initial 
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Figure 5.8: Monthly rate of return of the lndex of Industrial Production in the U.S., 1950-1990 (top). 
The dual KF prediction for a typical r u n  (middle), is shown along with the signal estimates (dotted 
line). The prediction residual is also shown (bottom). 
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Figure 5.9: Autocorrelation functions of the Index of Industrial Production time-series (solid) and signal 
estimate (dashed) over two years (top plot). The autocorrelation of the prediction error is also shown 
(bottom plot). 

signal covariance is Po = I. As in the previous examples, the autocorrelation functions (shown in 

Figure 5.9) show very little structure in the prediction error (yk - 2; ) .  

As expected from Section 4.11, over-training is a serious concern because the algorithm is being 

run repeatedly over a very short training set (only 360 points). The scarcity and nonstationarity 

of the data makes the use of a validation set highly problematic. Based on experience with other 

types of data, and the results in Experiment 8, only 5 training epochs are used. 

Nonetheless, the effect of over-training is shown in Figure 5.10, for the neural network model 

with the maximum-likelihood and prediction-error costs, in particular. The experiment is repeated 

10 times with different initial weights, wo,  to produce the boxplots in the left part of the figure. The 

result of training an AR-14 model with least-squares (LS) is included as a benchmark, and clearly 

indicates the advantage of dual estimation. Results for a neural network predictor trained with an 

EKF weight filter on the noisy data indicate that there is little advantage to using a nonlinear rrlodel 

on the original series. However, the dual EKF with J J ( w )  cost produces significantly better results 

with the neural network, although the potential for over-training actually hurts the performance 

of the J p e  (w) and Jml (w) costs. 

Although better results are reported on this problem [56] using models with external inputs 

from other series, the dual EKF results are quite competitive. While the dual EKF can in principle 

be applied to models that incorporate exogenous inputs, the investigation of these possibilities is 

beyond the scope of this thesis. 
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Figure 5.10: Boxplots of the prediction NMSE on the test set (1980-1990) are shown in the left plot. 
  he middle and right plots show average convergence behavior of linear and neural network model 
structures, respectively. 

5.5 Speech Enhancement 

This section considers the removal of noise from speech signals. Speech enhancement has many 

applications, ranging from front-ends for automatic speech recognition systems, to telecommu- 

nications in aviation, military, teleconferencing, and cellular environments. While there exist a 

broad array of traditional enhancement techniques, (e.g., spectral subtraction, signal-subspace 

embedding, time-domain iterative approaches, etc. [33]) such methods frequently result in audible 

distortion of the signal, and are somewhat unsatisfactory in real-world noisy environments. 

Recent neural network based filtering methods utilize data sets where the clean speech is 

available as a target signal for training. These methods are often effective within the training set, 

but tend to  generalize poorly for actual sources with varying signal and noise levels (a  review of 

neural based approaches can be found in [89]). Furthermore, the network models in these methods 

do not fully take into account the nonstationary nature of speech. 

5.5.1 Dual Estimation Approach 

The dual estimation algorithms developed in this thesis have the advantage of generating estimates 

using only the noisy signal itself. To address its nonstationarity, the noisy speech is windowed 

into shorter, approximately stationary sections, as described in Section 3.6.4 on page 110. The 

dual estimation algorithms are then iterated over each window to  generated the signal estimate. 

Effectively, a sequence of time-series models is trained on the specific noisy speech signal of interest, 

resulting in a nonstationary model which can be used to remove noise from the given signal. For 

linear models, f (.), this basically reduces to the classic linear predictive coding (LPC) model of 

speech. 



This approach to speech enhancement poses some problems for dual estimation algorithms. 

First, it is clear that the appropriate model structure will vary (with the complexity of the signal 

dynamics) from one window to the next, depending on whether the current window comprises, for 

example, a fricative, vowel, or silent interval (noise-only). However, the nature of the application 

generally precludes (or a t  least makes undesirable) the use of a system identification loop (see 

Figure 1.3 on page 4) to determine the model structure. Ideally, a Bayesian approach to  model 

selection might be used as an integral part of the dual estimation process, but this is beyond the 

scope of this thesis. Hence, in this section, a model structure is chosen which in some way is a 

compromise between the various levels of dynamic complexity encountered in the signal. 

A second difficulty inherent to speech signals is that they contain long segments of silence, 

for which the process noise variance is effectively zero. However, a Kalman filter will diverge if 

a: = 0, because the data get completely ignored, and numerical inaccuracies accumulate. This 

problem is usually overcome by setting a: to some small positive value. In the present context, 

a: is estimated online, so the difficulty is overcome by putting a lower limit (e.g., on &:,,, 

within the variance estimation filter. 

A third problem is the need for large amounts of data to achieve low model variance and avoid 

over-training on one hand, and the need for short windows to address the nonstationarity of the 

signal on the other hand. The problem of data scarcity can be ameliorated somewhat by using 

the parameters learned in one window to initialize the next window; the overlap between windows 

makes this especially appropriate. The problem of within-window nonstationarity can be partially 

addressed by using model structures of higher complexity (e.g., a neural network instead of an LPC 

model). Of course, higher complexity models also require more data, so this is a partial solution 

a t  best. 

Fourth, proper normalization of the speech signal is difficult, because of the large variation in 

signal levels. This makes the appropriate choice of parameters such as Po and Qo problematic. 

While each window could be normalized individually to have zero mean and unit variance, this 

introduces radical changes in the dynamics from one window to the next. Thus, the speech 

signals are normalized in their entirety (amplitude variation notwithstanding), as was done for 

the stationary signals considered earlier in this chapter. 

Finally, the dual estimation approach per se does not address the large body of knowledge 

about human perception of speech that has been developed in the literature of speech processing 

and psychology. For example, a great deal is known about the effects of masking, phase distor- 

tion, critical bands, etc., on speech perception [57]. However, the flexibility of the dual estimation 



approach offers the potential for incorporating much of this knowledge: e.g., by use of percep- 

tually constrained cost functions, or by independent processing of different critical bands. These 

possibilities remain as promising areas of future research. 

Before proceeding with the experimental results, it is worth mentioning that the windowing 

approach to processing speech is only one of several possibilities. Although using overlapping 

windows is fairly straightforward, the approach introduces an inherent delay in the enhancement 

process, making it unsuitable for real-time applications (computational requirements notwithstand- 

ing). An alternative approach, mentioned in Section 3.6.3, involves sliding the window by only 

one point each time, so that an estimate of the current value of the signal is always available. 

However, this increases the computational expense considerably, and is not likely to improve the 

quality of the overall speech estimate. As a topic of future research, the windowing scheme might 

be avoided altogether by finding a way to track the changing dynamics of the signal, perhaps by 

using a parameterized model of the state-transition function for w, instead of the identity map. 

This approach is discussed further in Chapter 6. 

5.5.2 Evaluation of Speech 

Because a human listener is often the end-user of a speech enhancement system, proper evaluation 

of performance is very difficult to perform. This is because objective measures, such as SNR, 

are poor indicators of speech quality or intelligibility, as perceived by humans. Although sev- 

eral "perceptual" objective quality measures have been developed (e.g.,  Itakura-Saito distortion, 

weighted-spectral slope, log area ratio, log-likelihood ratio, etc. [28]), they are not adequate for 

making a definitive evaluation of speech enhancement algorithms. To date, the only effective means 

of comparison is subjective testing with human listeners (e.g., calculating mean opinion scores). 

However, such tests are time consuming and expensive to perform, so they are not frequently used. 

The algorithms developed in this thesis are designed to minimize mean squared error, or 

increase SNR. Hence, although they are evaluated in terms of the objective measures listed above, 

SNR is the primary criterion used for selecting an algorithm. Rather than compute the SNR of the 

entire signal at once, however, a more perceptually relevant measure is used, known as segmental 

SNR. This is computed as the average of the SNRs computed within 240-point windows, or frames 

of speech: 

S S N R  = E ~ ~ X ( S N R , ,  -1OdB). 
#frames 

i 

Here, SNRi  is the SNR of the i th frame (weighted by a Hanning window), which is thresholded 

from below a t  -10 dB. The thresholding reduces the contribution of portions of the series where no 



speech is present (i.e.,  where the SNR is strongly negative) [28], and is expected to improve the 

measure's perceptual relevance. 

5.5.3 Controlled Comparisons 

In addition to their limited perceptual relevance, a major drawback of segmental SNR and the 

other objective measures is that they require the clean speech signal as a reference. Therefore, the 

algorithms are compared by testing them with a controlled experiment similar to those presented 

in the previous chapter. To reduce the processing requirements of multiple repetitions, a short 

section of speech is used, corresponding to a single word ("tool") spoken by a woman with a 

British accent. The speech is sampled at 8 kHz. Ten repetitions of white Gaussian noise are added 

a t  3 dB SNR to  produce the noisy speech. The measurement noise variance, u:, is estimated from 

the first NWin points of the signal, whereas the process noise variance a: is estimated on-line using 

the maximum-likelihood cost function. Although o i  could be estimated on-line as well, this is 

typically unnecessary in a stationary noise environment. 

Of course, more extensive testing on longer signals with various speakers should ideally be 

performed; as mentioned above, perceptual testing by human subjects is also required for an 

adequate ranking of algorithms. However, the purpose of these experiments is more limited in 

scope: we wish to determine how the results in early sections for more generic signals translate 

into the speech domain. 

In some initial experiments, over-training was found to be a serious problem, with the maxi- 

mum value of SNRi  occurring after around 5 epochs, and decreasing thereafter (even as the weight 

cost continues to improve). The effect is fairly independent of window length and model structure; 

hence, the number of epochs is fixed at 5. The parameter covariances are initialized a t  .l, except 

Qo = .01I for ~ ~ ' ( w ) ;  the initial signal covariance is Po = I. Forgetting factors are A, = ,9997 

A,: = .9993. 

Apart from choosing an appropriate cost function for speech enhancement, an appropriate 

value for the window length, NWin, must be determined, as must a model structure for f (.). Two 

model structures are tested: a tenth order linear AR model; and a neural network with 10 inputs, 

4 hidden units in a single layer, and one output. Furthermore, two different windowing schemes 

are tried: 

1. Windows of length 512, shifted by 64 points. 

2. Windows of length 128, shifted by 32 points. 



For each of the four cases, both the dual EKF algorithm (with weight costs: JPe(w), Jml (w) ,  and 

J j (w) ) ,  and the joint EKF algorithm are tested. In addition, the batch EM algorithm is tested 

with the linear architecture (the nonlinear batch GEM algorithm is not effective). Finally, the 

traditional method of spectral subtraction is tested, using code developed by Levent Arslan at 

Duke University1. This is intended for benchmarking purposes only; more sophisticated forms of 

spectral subtraction have been developed, and would most likely produce more competitive results. 

Measures for the original noisy speech are also computed to indicate relative improvement of the 

enhancement algorithms. 

For each algorithm or cost function, the perceptual measures are averaged across all frames 

and compiled in the boxplots of Figure 5.11. The top plot shows the segmental SNR, which is the 

only measure for which larger numbers indicate better performance. For most quality measures, 

the result using NWi, = 512 compares favorably with the corresponding result using the shorter 

window, with the exception of the Itakura-Saito measure. The advantage of the longer window is 

related to  the amount of noisy data required to estimate the parameters. It is possible that shorter 

windows would be sufficient for processing speech that is less noisy. 

The Itakura-Saito and weighted spectral slope measures are immediately suspect, because the 

distance for unprocessed speech (labeled "y"), is in many cases lower than that of the processed 

speech. The degradation in the Itakura-Saito measure is localized to several silent (non-speech) 

frames, but these values greatly inflate the average distance, nonetheless. These two measures are 

disregarded in the rest of the discussion. 

On the longer window, the neural network model shows a higher segmental SNR than the 

linear model; this advantage is less pronounced on shorter windows, which is probably due to the 

larger number of parameters used in the neural network. The outcome is less conclusive for the 

other measures. 

In terms of the segmental SNR, the best results are obtained by the dual EKF with J m l ( w )  

cost, using a neural network and longer window. The advantage of the maximum-likelihood cost 

over J j ( w )  is expected in the white noise case, based on experiments in the previous chapter. The 

weaker performance of the joint EKF is very likely a result of the model structure errors inherent 

to  the speech enhancement problem, and inaccuracies in the noise variance estimates. Another 

factor might be lack of data reweighting for weight training (see page 110) in the joint EKF. 

As expected, the spectra1 subtraction shows very poor segmental SNR performance; however, 

the algorithm is an average performer in terms of the log area ratio and log likelihood measures. 

'The default settings of NWi ,  = 128 Hanning windows, shifted by 64 points are used. 
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two panels. Results are further divided into linear and neural network models, as indicated. Values for 
the noisy speech and spectral subtraction result are shown on the left. 
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to  the top-performing dual EKF algorithm. 

This highlights the potential advantage of using noncausal processing in off-line applications; 

one possible approach is a dual forward-backward Kalman filter investigated in [87], but this has 

not been fully developed. A simpler form of noncausal estimation could be performed by taking 

the signal estimates 2k+l from the last element of the state vector 5ik+M, thereby using a limited 

amount of future data to estimate the signal. This type of processing is sometimes referred to as 

"fixed-lag" smoothing. 

5.5.4 Digit Recognition 

Apart from increasing the perceptual quality and intelligibility of speech for human listeners, an 

important application of speech enhancement technology is as a front-end to automatic speech 

recognition (ASR) systems. Often ASR systems are trained to recognize relatively clean speech, 

but must deal with noisy environments when put into use. Such noise might originate from a 

factory setting, an automobile, or even computer fan noise. 

One way of increasing the robustness of an ASR system to  noisy speech is by preprocessing the 

speech with an enhancement algorithm. The effectiveness of the dual EKF in this application is 

demonstrated using speech corpus and ASR system2 developed a t  the Oregon Graduate Institute's 

Center for Spoken Language Understanding (CSLU). The speech corpus consists of zip-codes, 

addresses, and other digits read over the telephone by various people; the ASR system is a speaker- 

independent digit recognizer, trained exclusively to recognize numbers from zero to nine when rea,d 

over the phone. 

A subset of 599 sentences was used in this experiment. As seen in Table 5.2, the recognition 

rates on the clean telephone speech are quite good. However, adding white Gaussian noise to  

the speech a t  6dB significantly reduces the performance. As a benchmark, the standard spectral 

subtraction routine described in the previous section was used to  enhance the noisy speech, re- 

sulting in a significant improvement in recognition. In addition, an enhancement algorithm built 

into the speech codec TIA/EIA/IS-718 for digital cellular phones (published by the Telecommuni- 

cations Industry Association) was used, with the compression features of the algorithm disabled. 

Although the perceptual quality of the IS-718 enhancement is considerably better than the spectral 

subtraction result, the recognition rates are significantly worse. 

The dual EKF algorithm is applied with maximum-likelihood costs for estimating the weights 

and process noise variance, and with static derivatives to  reduce the computational expense. The 

2 ~ h e  author wishes to  thank Edward Kaiser for his invaluable assistance in this experiment 



measurement noise variance is estimated from the first window (512 points) of the noisy signal. The 

neural network architecture and other parameters are chosen as in the previous experiment. As 

shown by Table 5.2, the dual EKF outperforms both the IS-718 and spectral subtraction recognition 

rates by a significant amount. The improvement in terms of correctly recognized sentences is even 

more dramatic. 

Table 5.2: Automatic speech recognition rates for clean recordings of telephone speech (spoken digits), 
as compared with the same speech corrupted by white noise, and subsequently processed by spectral 
subtraction (SSUB), a cellular phone enhancement standard (IS-718), and the dual EKF. 

5.5.5 SpEARData 

Clean 
Noisy 

SSUB 
IS-718 

Dual EKF 

As mentioned earlier, computing perceptual quality measures of enhanced speech requires access to 

clean speech waveforms. Often, then, enhancement is performed on artificially corrupted speech, 

wherein a noise waveform is added in digital form to the clean speech waveform. While this 

provides access to the clean speech, the results are somewhat questionable, because the noise was 

not part of the same acoustic environment as the speech. 

To increase the level of realism of the noisy speech, and yet still provide access to the clean 

speech waveform, a database of acoustically corrupted speech is under development as part of 

CSLU1s Speech Enhancement Assessment Resource (SpEAR [13]). Noisy speech files in this 

database were created by simultaneously playing both noise and speech waveforms in the same 

room, and recording the acoustic combination clock-synchronously to  produce a noisy speech wave- 

form. A reference to  the clean speech is also created by playing the speech waveform in the room 

(without noise) and re-recording it. This allows for segmental SNR to be computed for both the 

noisy speech and the enhanced speech. 

A portion of the SpEAR database was processed by the dual EKF in order to evaluate the 

algorithm on a broader array of noise types. A variety of noise sources are acoustically combined 

with two different sentences, spoken by an American male and an American female, respectively. 

The clean speech files originate from the TIMIT database. Noise sources from the SPIB database 

[69] are: 

Correct Words 

96.37% 
59.21% 
77.45% 
67.32% 
82.19% 

Correct Sentences 

85.81% (5141599) 

21.37% (1281599) 
38.06% (2281599) 
29.22% (1751599) 
52.92% (3171599) 



Noise recorded from the co-pilot's seat in a two-seat F-16, traveling a t  a speed of 500 knots, 

and an altitude between 300 and 600 feet. The sound level during the recording process was 

103 dBA. 

Factory noise recorded in an automobile production hall. 

Noise recorded inside a Volvo 340 in 4th gear on an asphalt road, a t  120 km/h in rainy 

conditions. 

In addition, pink noise, stationary white noise, and nonstationary (bursting) white noise are used. 

Note that the spectra of all noise sources are altered by the acoustics of the SpEAR recording 

environment, which was a carpeted room with painted plaster-board walls. For these experiments, 

the l6kHz SpEAR data was downsampled to  8kHz before processing. 

In most cases, the noise parameters w, and a:, (L, = 10) are estimated from a 512 point 

window of noise a t  the beginning of each recording. For the Volvo noise the model (L, = 12) is 

estimated using the entire noise file, available by subtracting the clean reference. The model of 

the bursting white noise ( L ,  = 10) is estimated using a long segment of stationary white noise, 

and the value of crin is estimated online using Jm' (a in) .  This requires that the algorithm track 

the noise level from one window to the next; because there are portions of the waveform with no 

measurement noise, the value of 6;n was thresholded at a minimum value of 

In all cases, the dual EKF is used with J j ( w )  and Jrn"(a;) costs, the usual choices of initial 

covariances, and with A, = .9997 A,: = ,9993, A,; = .9993. Table 5.3 presents the results in 

terms of average segmental SNR. The segmental SNR is shown for the noisy speech, and for the 

enhanced speech using both the standard and static derivative forms of the algorithm. In most 

cases, the full recursive derivative produces somewhat better results; however, the static derivative 

results are often quite close or better. In particular, the results on the low frequency Volvo noise 

Table 5.3: Dual EKF enhancement results using a portion of the SpEAR database. All results are 
in dB, and represent the segmental S N R  averaged over the length of the waveform. Results labeled 
"static" were obtained usin 

F-16 
Factory 

Volvo 
Pink 

White 
Bursting 

the static approximation to the derivatives. 
Male Voice (Seg. SNR) Female Voice (Seg. SNR) 
before 1 after 1 static before I after I static 



favor the static derivative results, for reasons that are unclear. 

The application of the dual EKF to some "real-world" noisy speech signals is considered next. 

5.5.6 Car Phone Speech 

In this example, the dual EKF is used to process an actual recording of a woman talking on her 

cellular telephone while driving on the highway. The signal contains a significant level of road 

and engine noise, in addition to the distortion introduced by the telephone channel. The speech 

is enhanced by the dual EKF with costs: J j ( w ) ,  J ~ ' ( C J ~ ) ,  and parameters: Po = 1, Qo = .01, 

qv,o = . l .  The measurement noise is modeled with an AR-12 model using a separate portion of the 

signal which does not contain speech. The process noise variance a: is estimated on-line within 

the dual EKF framework. Following the results in Section 5.5.3, the longer window length (512 

points) is used, with a feedforward neural network architecture of 10-4-1. 

The results appear in Figure 5.12, along with the noisy signal. Spectrograms of both the noisy 

speech and estimated speech are included to aid in the comparison. To make the spectrograms 

easier to  view, the spectral tilt is removed, and their histograms are equalized according to the 

range of intensities of the enhanced speech spectrogram3. 

The noise reduction is most successful in non-speech portions of the signal, but is also apparent 

in the visibility of formants of the estimated signal, which are obscured in the noisy signal. The 

perceptual quality of the result is quite good, with an absence of the "musical noise" artifacts 

often present in spectral subtraction results. The spectrogram suggests that better results might 

be obtained by processing different frequency bands individually and combining the results. This 

would potentially suppress the residual noise at high frequencies, and wherever no speech signal is 

present in a particular band. However, this issue is left as a topic of future research. 

5.5.7 Richard Nixon 

On November 17, 1973, during the height of the Watergate scandal, President Richard Nixon 

spoke to the American people in an attempt to reassure them of his innocence. A portion of the 

speech, in which Nixon states, "... because people have gotta know whether or not their Presidents's 

a crook; well, I'm not a crook," is represented by the waveform and spectrogram a t  the top of 

Figure 5.13. In this example, the additive noise appears to be subject to quantization effects, 

and clearly violates the assumption of Gaussianity. The noise level is much lower than in the car 

3Thanks to J. A. du Preez at the University of Stellenbosch for MATLAB code used to compute these spectrograms. 
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Figure 5.12: Enhancement of car phone speech. The noisy waveform appears in the top plot, followed
by its spectrogram. The third and fourth plots contain the spectrogram and waveform, respectively, of
the dual EKF result.
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Figure 5.13: Enhancement of Richard Nixon's "I'm not a crook" speech. The noisy waveform appears
in the top plot, followed by its spectrogram. The third and fourth plots contain the spectrogram and
waveform, respectively, of the dual EKF result.
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phone example, but the reduction of noise is apparent in both the spectrogram and waveform of 

the enhanced speech, shown in the bottom half of Figure 5.13. 

5.5.8 Seminar Recording 

A last example comes from a recording made during a lecture in the Portland Area Semiconductor 

Seminar Series at the Oregon Graduate Institute. The seminars are routinely videotaped and 

stored in an archive. However, during one particular lecture, the audio recording equipment was 

configured improperly, resulting in a very loud buzzing noise throughout the entire recording. The 

noise has a fundamental frequency of 60 Hz (indicating that improper grounding was the likely 

culprit) but many other harmonics and frequencies are present as well. As suggested by Figure 5.14, 

the SNR is extremely low, making for an unusually difficult audio enhancement problem. 

5.6 Discussion of Results 

While the speech enhancement results in the previous section are very promising for both ASR 

and human-listener applications, much additional work remains to improve the application of the 

dual EKF to speech processing. A voice activity detector could be used to  re-estimate the noise 

model from nonspeech segments of the waveform, thereby improving performance in the presence of 

slowly varying measurement noise correlations. Perhaps the most promising area of future research 

involves the use of perceptually motivated cost functions for the signal and weight estimation filters. 

Additional gains can possibly be made by simply band-pass filtering the speech into critical bands, 

and estimating the waveform in each band separately before recombining. 

In any case, the results shown on econoniic, geophysical, and speech data demonstrate the 

potential of the dual EKF approach, and its applicability to a wide variety of real-world signal 

processing problems. The next chapter summarizes the general conclusions that can be drawn 

from this research, and describes directions for further refinement of the dual Kalman filtering 

approach. 
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Figure 5.14: Enhancement of high-noise seminar recording. The noisy waveform appears in the top
plot, followed by its spectrogram. The third and fourth plots contain the spectrogram and waveform,
respectively, of the dual EKF result.



Chapter 6 

Conclusions and Future Work 

6.1 General Summary 

This thesis approaches dual estimation from a maximum a posteriori perspective. By maximizing 

the joint conditional density p,y , , lyy ,  the most probable values of the signal and parameters 

are sought, given the noisy time-series. This probabilistic perspective elucidates the relationships 

between various dual estimation methods proposed in the literature, and allows their categorization 

in terms of methods that maximize the joint conditional density function directly, and those that 

maximize a related marginal conditional density function. 

This approach offers some insights about previously developed methods. For example, the 

prediction-error cost is viewed as an approximation to the maximum-likelihood cost; moreover, 

both are classified as marginal estimation cost functions. Thus, the recursive prediction error 

method of [61, 471 is quite different from the joint EKF approach [38, 121, which minimizes a joint 

estimation cost1. Furthermore, the joint EKF and errors-in-variables algorithms are shown to offer 

two different ways of minimizing the same joint cost function: one is a sequential method, and the 

other is iterative. 

The relative utility of the various cost functions is evaluated through the development of 

the dual extended Kalman filter. The dual EKF provides a common algorithmic platform for 

implementing a broad variety of methods, and allows for the direct comparison of the different 

cost functions used in the literature. Extensive empirical comparisons are performed, with the 

outcomes provided in Chapter 4. 

The dual EKF is an effective sequential dual estimation method, which is applicable to  both 

linear and nonlinear time-series models, and which can be used in the presence of white or colored 

measurement noise. The algorithm is comprehensive in that it provides sequential estimation of 

'This fact is overlooked in (471, which emphasizes the similarity of these two algorithms 



noise variance parameters within the same theoretical framework used to  estimate the model and 

signal. 

Furthermore, the generality of the dual EKF is demonstrated in a range of application domains, 

including speech enhancement, economic forecasting, and analysis of geophysical data. These 

results illustrate the potential of the dual EKF for processing many different types of signals. In 

addition, the flexibility of the approach allows for the future development and use of application- 

specific cost functions and pre-processing schemes; these and other possible directions for future 

research are described in the next section. 

6.2 Possible Extensions 

The dual EKF allows a relatively small amount of prior information - in the form of the model 

structure of the dynamics and a model of the noise - to be used in solving the dual estimation 

problem. Many of the research directions suggested below would allow for other types of prior 

information to be included. Other ideas involve an attempt to reduce the amount of required prior 

information even further: either by learning the noise model (as in monaural signal separation), or 

by adapting the complexity of the model structure. Alternatives to  the EKF, and the importance 

of developing specific applications are also discussed. 

Model Improvements. As mentioned in Chapter 1, the simple nonlinear autoregressive model 

structure used in this thesis can be generalized to include exogenous control inputs to the 

function f (.), and to  allow for multiple observations (dim(yk) > 1). These adjustments would 

be fairly straightforward in the state-space framework, and would greatly increase the range 

of applications; the algorithm could be used for system identification in control settings, and 

for predicting economic time-series using information contained in other series. 

More general forms of distortion can also be considered by allowing for the observation to 

be a nonlinear function of x k  and n k ,  rather than a linear addition. Convolutional noise and 

other forms of channel distortion can be addressed by such a model. 

Nonlinear Noise Models. This thesis assumes a linear AR model for colored measurement 

noise. In some cases, the dynamics of the noise would be better modeled with a nonlinear 

autoregression, like the model used for the dynamics of signal. This modification would be 

very straightforward, and would be useful when the noise and signal are of similar complexity. 

Monaural Signal Separation. An additional step towards equal treatment of the signal and 

noise is to regard the model parameters of the noise as unknown. Any distinction between 



signal and noise is thereby removed, and the problem is reframed as that of separating two 

signals from a single (monaural) source. The problem, referred to as monaural blind signal 

separation, is a very challenging area of research. However, some preliminary work in [88] 

demonstrates the potential of the dual EKF in this setting. 

Model Structure Selection and Regularization Besides the noise model, another key piece 

of information used by the dual EKF is the complexity of the signal dynamics, f (.). This 

thesis assumes a predetermined model structure for each signal, with a specific parameter- 

ization. However, in some contexts a suitable model structure will not be known a priori. 

In this case, an adjustment to  the cost function to  introduce regularization 1301 could pro- 

vide some control over the model complexity. Other approaches to  model selection, such as 

pruning (301, can be used to select to appropriate number of parameters in the model. 

Filtering in Other Transform Domains. The definition of the state vector xk in Equation 3.11 

as the lagged values of the signal, xk, is only one of an infinite number of possibilities. Other 

representations of the signal, including polynomial and wavelet transforms, can also be con- 

sidered. These alternative state-space definitions might be chosen to allow prior information 

about the signal to be included in the model, or to facilitate the use of application-specific 

cost functions and constraints. 

Nonstationary Signal Modeling. Windowing nonstationary signals into short overlapping seg- 

ments, as is done in this thesis for speech data, introduces the additional difficulties of data 

scarcity and over-training. A more desirable approach to filtering signals with time-varying 

dynamics might be developed by using domain-switching models, or by estimating a contin- 

uous model of the dynamics exhibited by wk. In other words, the changes in the dynamics of 

the signal are themselves modeled by a fixed function, whose parameters must be estimated 

along with xk and wk. This approach assumes that the dynamics of wk remain in a bounded 

region of the parameter space, but would offer the advantage of making all the noisy data in 

the past available for estimation of the signal. 

Alternatives to the EKF. Appendix D provides an analysis of the approximations made by the 

extended Kalman filter, and the inaccuracies that result when the model is highly nonlinear. 

Alternative filters have been derived which offer the potential of better accuracy than the 

EKF, and which could be substituted for the signal, weight, or variance filters of the dual 

EKF algorithm. The use of unscented Kalman filters (UKF) [35] in this manner was inves- 

tigated recently using the JPe(w) cost, with promising results [go]. Whereas the UKF still 



adheres to a Gaussian assumption on the state, a sequential Monte Carlo approach known as 

particle filtering [15] avoids the Gaussian assumption altogether, although a t  increased com- 

putational expense. These alternative filtering methods could be used within a sequential 

dual estimation approach similar to the dual EKF, but with improved convergence properties 

for highly nonlinear signals. 

Speech Enhancement. Some suggestions for improving the speech enhancement results of the 

dual EKF are made a t  the end of the previous chapter. In addition, several of the ideas 

mentioned above have particular relevance to the speech domain. First, the extension of the 

model to  handle channel distortion could improve results in the telecommunication domain, 

where noise is not purely additive. Second, because background noise often includes other 

speaking voices, the problem of monaural blind signal separation is important for developing 

robust speech applications. Third, the development of perceptually-motivated cost func- 

tions using our knowledge of the human auditory system could be facilitated by estimating 

the speech in alternative transform domains. Finally, the ability to track dynamic regimes 

within the speech waveform would obviate the need for windowing speech, thereby improving 

performance and computation time. 

Application Development. The results shown in the previous chapter are somewhat prelim- 

inary in the sense that the dual EKF was applied to these data sets with little or no 

application-specific modification. Numerous issues arise in the context of a particular ap- 

plication; the adaptation or alteration of the algorithm to accommodate these issues would 

certainly produce results superior to those shown here, and represents an important direction 

for future research. 

The power of the dual EKF approach comes from its theoretical foundation, and its ability 

to  be used with many different cost functions and application domains. This flexibility makes 

the dual EKF an excellent starting point for a number of possible research directions. Although 

certainly not exhaustive, the above list contains ideas regarded by the author as the most promising 

in terms of their potential benefit to the research community. Some of these proposals are quite 

straight-forward; others represent a considerable amount of work. All of them would increase the 

impact of the dual EKF paradigm on a variety of fields. 



Bibliography 

[I] Hirotugu Akaike. Maximum likelihood identification of Gaussian autoregressive moving aver- 

age models. Biometrika, 60(2):255-65, 1973. 

[2] Brian D. 0. Anderson and John B. Moore. Optimal Filtering. Prentice-Hall, 1979. 

[3] A. Blake, B. North, and M. Isaard. Learning multi-class dynamics. In Advances in  Neural 
Information Processing Systems 11, pages 389-95. MIT Press, 1999. 

[4] S. F. Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transac- 
tions on Acoustics Speech and Signal Processing, ASSP-27:113-20, 1979. 

[5] Thomas Briegel and Volker Tresp. Fisher scoring and a mixture of modes approach for 
approximate inference and learning in nonlinear state space models. In Advances in  Neural 
Information Processing Systems 11, pages 403-9. MIT Press, 1999. 

[6] William L. Brogan. Modern Control Theory. Prentice Hall, 1991. 

[7] A. E. Bryson, Jr.  and L. J. Henrikson. Estimation using sampled data containing sequentially 
correlated noise. American Institute of Aeronautics and Astronautics ( A I A A )  Journal of 
Spacecraft and Rockets, 5(6):662-5, 1968. 

[8] Chi-Tsong Chen. Linear System T h e o y  and Design. Saunders, Harcourt Brace College 
Publishers, 1984. 

[9] Carnegie Mellon University, Department of Statistics: StatLib - Datasets Archive. Avail- 
able on the Internet a t  http://lib.stat.cmu.edu/datasets/, Last Updated: March 10, 2000. 
Accessed: September 1, 2000. 

[lo] Jerome T .  Connor, R. Douglas Martin, and Les E. Atlas. Recurrent neural networks and 
robust time series prediction. IEEE Transactions on Neural Networks, 5(2):240-54, 1994. 

[ll] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons, 
1991. 

[12] Henry Cox. On the estimation of state variables and parameters for noisy dynamic systems. 
IEEE Transactions on Automatic Control, AC-9:5-12, 1964. 

[13] Center for Spoken Language Understanding: Speech Enhancement Assessment Resource 
(SPEAR). Available on the Internet at http://cslu.ece.ogi.edu/nsel/data/index.htm1, Last 
Updated: June 1, 2000. Accessed: September 1, 2000. 



(141 J. F. G. de Reitas, M. Niranjan, and A. H. Gee. The EM algorithm and neural networks for 

nonlinear state space estimation. Technical Report TR-313, Cambridge University Engineering 

Dept., 1998. 

[15] J .  F. G. de Fkeitas, M. Niranjan, A. H. Gee, and A. Doucet. Sequential Monte Carlo methods 

for optimisation of neural network models. Technical Report TR-328, Cambridge University 

Engineering Department, 1998. 

1161 A. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data  via 

the EM algorithm. Journal of the Royal Statistical Society, B39:l-38, 1977. 

[17] Pieter Eykhoff. System Identification: Parameter and State Estimation. John Wiley & Sons, 

1974. 

[18] Lee A. Feldkamp. Informal email correspondance with Eric A. Wan, 2000 

[19] Gene F. Franklin, J .  David Powell, and Michael L. Workman. Digital Control of Dynamic 

Systems. Addison-Wesley, 1990. 

1201 FRED: Federal Reserve Economic Data. Available on the Internet at 

http://www.stls.frb.org/fred/, Last Updated: July, 2000. Accessed: September 1, 2000. 

[21] Sharon Gannot, David Burshtein, and Ehud Weinstein. Iterative-batch and sequential algo- 

rithms for single microphone speech enhancement. In International Conference on Acoustics, 

Speech, and Signal Processing, ICASSP, pages 1215-8. IEEE, 1998. 

[22] Zoubin Ghahramani. Learning dynamic Bayesian networks. In C.L. Giles and M. Gori, editors, 

Adaptive Processing of Sequences and Data Structures, pages 168-97. Springer-Verlag, 1998. 

1231 Zoubin Ghahramani and Sam T .  Roweis. Learning nonlinear dynamical systems using an 

EM algorithm. In Advances in Neural Information Processing Systems 11, pages 431-7. A4IT 

Press, 1999. 

1241 Jerry D. Gibson, Boneung Koo, and Steven D. Gray. Filtering of colored noise for speech 
enhancement and coding. IEEE Transactions on Signal Processing, 39(8):1732-41, 1991. 

1251 Gene H. Golub and Charles F. van Loan. An analysis of the total least squares problem. 

SIAM Journal of Numerical Analysis, 17(6):883-93, 1980. 

[26] Narendra K. Gupta and Raman K. Mehra. Computational aspects of maximum likelihood 

estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic 

Control, AC-19(6):774-83, 1974. 

[27] S. Hammel, C. K. R. T. Jones, and J. V. hloloney. Global dynamical systems and bifurcations 

of vector fields. Journal of the Optical Society of America, B 2(552), 1985. 

[28] John H. L. Hansen and Bryan L. Pellom. An effective quality evaluation protocol for speech 

enhancement algorithms. In Proceedings of the International Conference on Spoken Language 

Processing, ICSLP-98, pages 2819-22. Australian Speech Science and Technology Association, 

1998. 



[29] Simon Haykin. Adaptive Filter Theory. Prentice-Hall, 3rd edition, 1996. 

[30] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, 2nd edition, 
1999. 

1311 Simon Haykin and Jose Principe. Making sense of a complex world. Signal Processing Maga- 
zine, 15(3):66-80, 1998. 

[32] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970. 

[33] John H. L. Hansen John R. Deller, John G. Praokis. Discrete-Time Processing of Speech 

Signals. Macmillan Publishing Company, 1993. 

[34] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algo- 
rithm. Neural Computation, 6(2):181-214, 1994. 

[35] S. J .  Julier and J.  K. Uhlmann. A new extension of the Kalman filter t o  nonlinear systems. In 
Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, 
Simulation and Controls, pages 182-93. SPIE, 1997. 

[36] R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory. Journal 
of Basic Engineering, 83D:95-108, 1960. 

[37] Boneung Koo, Jerry D. Gibson, and Steven D. Gray. Filtering of colored noise for speech 
enhancement and coding. In International Conference on Acoustics, Speech, and Signal Pro- 
cessing, ICASSP, volume 1, pages 349-52. IEEE, 1989. 

[38] Richard E .  Kopp and Richard J .  Orford. Linear regression applied t o  system identification 

for adaptive control systems. American Institute of Aeronautics and Astronautics (AIAA) 
Journal, 1:2300-06, 1963. 

[39] Vikram Krishnamurthy, Leigh Johnston, and Andrew Logothetis. Optimal MAP estimation 

of bilinear systems via the EM algorithm. In International Conference on Acoustics, Speech, 
and Signal Processing, ICASSP, pages 2373-6. IEEE, 1998. 

[40] A. Lapedes and R. Farber. Nonlinear signal processing using neural networks: prediction and 

system modelling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, 1987. 

[41] Byung-Gook Lee, Ki Yong Lee, and Souguil Ann. An EM-based approach for parameter 
enhancement with an application to speech signals. Signal Processing, 46:l-14, 1995. 

[42] Ki Yong Lee, Byung-Gook Lee, Iickho Song, and Jisang Yoo. Recursive speech enhancement 
using the EM algorithm with initial conditions trained by HMM's. In International Conference 
on Acoustics, Speech, and Signal Processing, ICASSP, pages 621-4. IEEE, 1996. 

[43] Frank L. Lewis. Optimal Estimation. John Wiley & Sons, 1986. 

[44] Jae S. Lim and Alan V. Oppenheim. All-pole modeling of degraded speech. IEEE Transactions 
on Acoustics Speech and Signal Processing, 26(3):197-210, 1978. 



230

[45] Lennart Ljung. Asymptotic behavior of the extended Kalman filter as a parameter estimator

for linear sytems. IEEE Transactions on Automatic Contml, AC-24(1):36-50, 1979.

[46] Lennart Ljung. System Identification: Theory for the User. Prentice-Hall, 1987.

[47] Lennart Ljung and Torsten Soderstrom. Theory and Practice of Recursive Identification. MIT
Press, 1983.

[48] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 2nd edition, 1984.

[49] Michael C. Mackey and Leon Glass. Oscillations and chaos in physiological control systems.

Science, 197(4300):287-9,1977.

[50] R. Douglas Martin. Robust methods for time series. Technical Report 20, Department of

Statistics, University of Washington, 1982.

[51] Michael B. Matthews and G. S. Moschytz. Neural-network nonlinear adaptive filtering using

the extended Kalman filter algorithm. In International Neural Network Conference, INNC-90,

volume 1, pages 115-9. Kluwer Academic, 1990.

[52] Michael B. Matthews and George S. Moschytz. The identification of nonlinear discrete-time
fading-memory systems using neural network models. IEEE Transactions on Circuits and

Systems-II, 41(11):740-51, 1994.

[53] Peter S. Maybeck. Stochastic Models, Estimation, and Contml, volume 2. Academic Press,
1982.

[54] Raman K. Mehra. Identification of stochastic linear dynamic systems using Kalman filter

representation. American Institute of Aeronautics and Astronatics (AIAA) Journal, 9:28-31,
1971.

[55] John Moody. Economic forecasting: challenges and neural network solutions. In International

Symposium on Artificial Neural Networks, 1995. Keynote address.

[56] John Moody, Uzi Levin, and Steve Rehfuss. Predicting the U.S. index of industrial production.

Neural Network World, 3(6):791-4, 1993.

[57] Brian C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press, 4th edition,
1997.

[58] Bruce R. Musicus and Jae S. Lim. Maximum likelihood parameter estimation of noisy data. In
International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pages 224-7.
IEEE, 1979.

[59] Alex T. Nelson and Eric A. Wan. Neural speech enhancement using dual extended Kalman
filtering. In Proceedings of the International Conference on Neural Networks, ICNN'97, vol-
ume 4, pages 2171-5. IEEE, 1997.



231

[60] Alex T. Nelson and Eric A. Wan. A two-observation Kalman framework for maximum-

likelihood modeling of noisy time series. In Proceedings of International Joint Conference on

Neural Networks, IJCNN'98. IEEE, 1998. [CDROM].

[61] Lawrence W. Nelson and Edwin Stear. The simultaneous on-line estimation of parameters

and states in linear systems. IEEE Transactions on Automatic Control, AC-21(2):94-8, 1976.

[62] Maciej Niedzwiecki and Krzysztof Cisowski. Adaptive scheme of elimination of broadband
noise and impulsive disturbances from AR and ARMA signals. IEEE Transactions on Signal

Processing, 44(3):528-37, 1996.

[63] K. K. Paliwal and A. Basu. A speech enhancement method based on Kalman filtering. In
International Conference on Acoustics, Speech, and Signal Processing, ICASSP, pages 177-80.
IEEE, 1987.

[64] Donald B. Percival and Andrew T. Walden. Spectral Analysis for Physical Applications:

Multitaper and Conventional Techniques. Cambridge University Press, 1993.

[65] Edward S. Plumer. Training neural networks using sequential-update forms of the extended

Kalman filter. Informal Report LA-UR-95-422, Los Alamos National Laboratory, 1995.

[66] Gintaras V. Puskorius and Lee A. Feldkamp. Neural control of nonlinear dynamic systems with

Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2):279-
97, 1994.

[67] Gintaras V. Puskorius and Lee A. Feldkamp. Extensions and enhancements of decoupled

extended Kalman filter training. In Proceedings of the International Conference on Neural

Networks, ICNN'97, volume 3, pages 1879-83. IEEE, 1997.

[68] H. E. Rauch, F. Tung, and C. T. StriebeI. Maximum likelihood estimates of linear dynamic

systems. American Institute of Aeronautics and Astronautics (AlA A) Journal, 3(8):1445-50,
1965.

[69] Rice University: Signal Processing Information Base (SPIB). Available on the Internet at

http://spib.ece.rice.edu/signaI.html, Last Updated: September 19, 1995. Accessed: Septem-
ber 15, 1999.

[70] John A. Rice. Mathematical Statistics and Data Analysis. Wadsworth and Brooks/Cole, 1988.

[71] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
1996.

[72] D. E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal represen-
tations by error propagation. In Rumelhart, McClelland, et aI., editors, Parallel Distributed

Processing, volume 1, chapter 8, pages 318-62. MIT Press, 1986.

[73] Tim Sauer, James A. Yorke, and Martin Casdagli. Embedology. Journal of Statistical Physics,

65(3/4):579-616,1991.



[74] Nicol N. Schraudolph. Online local gain adaptation for multi-layer perceptrons. Technical 

Report IDSIA-09-98, Istituto Dalle Molle di Studi sulllIntelligenza Artificiale (IDSIA), 1998. 

[75] G. Seber and C. Wild. Nonlinear Regression, chapter 10: Errors-in-Variables Models, pages 

491-527. John Wiley & Sons, 1989. 

[76] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting using 

the EM algorithm. Journal of Time Series Analysis, 3(4):253-64, 1982. 

[77] Sharad Singhal and Lance Wu. Training multilayer perceptrons with the extended Kalman 

filter. In Advances in Neural Information Processing Systems I ,  pages 133-40. Morgan Kauff- 

man, 1989. 

[78] Harold W. Sorenson, editor. Kalman Filtering: Theory and Application. IEEE Press, 1985. 

[79] Robert F. Stengel. Optimal Control and Estimation. Dover Publications, 1994. 

[80] Stephen C. Stubberud and Mark Owen. Artificial neural network feedback loop with on-line 

training. In International Symposium on Intelligent Control, pages 514-9. IEEE, 1996. 

[81] John Sum, Lai wan Chan, Chi sing Leung, and Gilber H. Young. Extended Kalman filter- 

based pruning method for recurrent neural networks. Neural Computation, 10(6):1481-1505, 

1998. 

[82] Floris Takens. Detecting strange attractors in turbulence. In D. Rand and L.S. Young, 

editors, Dynamical systems and turbulence, pages 366-81. Springer-Verlag, 1981. Lecture 
Notes in Mathematics, volume 898. 

[83] Volker Tresp and Reimar Hofmann. Missing and noisy data in nonlinear time-series prediction. 
In B. Wilson et al., editors, Neural Networks for Signal Processing V. IEEE Signal Processing 

Society, 1995. 

[84] Eric A. Wan. Finite Impulse Response Neural Networks with Applications in Time Series 

Prediction. PhD thesis, Stanford University, 1993. 

[85] Eric A. Wan. Modeling nonlinear dynamics with neural networks: examples in time 
series prediction. In Proceedings of the Fifth Workshop on Neural Networks: Aca- 
demic/Industrial/NASA/Defense, WNN93/FNN93, pages 327-32. Simulation Councils, 1993. 

[86] Eric A. Wan. Combining fossil and sunspot data: committee predictions. In Proceedings of 
the International Conference on Neural Networks, ICNN197, volume 4, pages 2176-80. IEEE, 
1997. 

[87] Eric A. Wan and Alex T. Nelson. Dual Kalman filtering methods for nonlinear prediction, 
estimation, and smoothing. In Advances in Neural Information Processing Systems 9, pages 
793-99. MIT Press, 1997. 



[88] Eric A. Wan and Alex T. Nelson. Neural dual extended Kalman filtering: Applications in 

speech enhancement and monaural blind signal separation. In Neural Networks for Signal 

Processing VII, pages 466-75. IEEE, 1997. 

[89] Eric A. Wan and Alex T. Nelson. Removal of noise from speech using the dual EKF algorithm. 

In International Conference on Acoustics, Speech, and Signal Processing, ICASSP, volume 1, 

pages 381-4. IEEE, 1998. 

[go] Eric A. Wan, Rudolph van der Merwe, and Alex T. Nelson. Dual estimation and the unscented 

transformation. In Advances in Neural Information Processing Systems 12, pages 666-72. MIT 

Press, 2000. 

[91] Andreas S. Weigend, Benardo A. Huberman, and David E. Rumelhart. Predicting the future: 

a connectionist approach. International Journal of Neural Systems, 1:193-209, 1990. 

[92] Andreas S. Weigend, Hans Georg Zimmermann, and Ralph Neuneier. Clearning. Technical 
Report CU-(3772-95, University of Colorado Dept . of Computer Science, 1995. 

[93] Ehud Weinstein, Alan V. Oppenheim, Meir Feder, and John R. Buck. Iterative and sequential 

algorithms for multisensor signal enhancement. IEEE Transactions on Signal Processing, 

42(4):846-59, 1994. 

[94] Paul J. Werbos. Handbook of Intelligent Control, chapter 10, pages 283-356. Van Nostrand 

Reinhold, 1992. 

[95] R. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural 
networks. Neural Computation, 1:270-80, 1989. 

[96] Ronald J.  Williams. Training recurrent networks using the extended Kalman filter. In Proceed- 
ings of the International Joint Conference on Neural Networks, IJCNN'92, volume 4, pages 

241-6. IEEE, 1992. 

[97] G. U. Yule. On a method of investigating periodicity in disturbed series with special reference 

t o  Wolfer's sunspot numbers. Philosophical Transactions of the Royal Society of London, A, 

226:267-98, 1927. 



Appendix A 

Gaussian Conditional Densities 

In this appendix, the functional form for several of the conditional densities used in this thesis 

are derived under a Gaussian assumption on the process and measurement noises. Namely, in 

Section 2.3, expressions for the terms on the right hand side of Equation 2.8: 

were displayed without derivation. In Section 2.4, an expression for the marginal likelihood pyr lw 

was stated. Derivations for these expressions are provided below. For convenience, the AR model 

of Equation 1.1 is rewritten here as: 

Xk = f(xk--I, . . .  Xk-M,W) + V k  

Y k  = xk + nki V k E  {l . . .  N } .  

A . l  Joint Likelihood p,pl,pw 

This conditional density appears as the first term in Equation 2.8, and can be thought of as a joint 

likelihood function for the signal and weights. By employing the definition of conditional densities, 

we can write: 

which, because yk = xk + nk, reduces to: 



If nk is zero-mean white Gaussian noise, then p,, I,, - N(xk ,  u i ) ,  and each term in the product is 

and 

This is the first term on the right hand side of Equation 2.9 on page 23. 

A.2 Conditional Density pxflw 

This conditional density appears as the second term in Equation 2.8. It  can be expanded as: 

which, because xk = f (xk-1, . . . , xk-M, W) + vk , reduces to: 

If vk is zero-mean white Gaussian noise, then each term in the product is 

- - 1 exp (- (xk iui'''), 
p x k l x k ~ : ~  

where xl, ~ [ x r , ~ { x t > : ~ Z , w I  

Hence, 

This is the second term on the right hand side of Equation 2.9 on page 23. 



A.3 Marginal Likelihood py:lw 

This conditional density appears as the first term in Equation 2.48 on page 35, and is a marginal 

likelihood function for the weights. By employing the definition of conditional densities, we can 

write: 

When the dynamics f (.) are linear, and both v k  and n k  are zero-mean white Gaussian processes, 

then each term in the product is: 

- 1 
P ~ k ~ ~ : - l ~  - 

J~ (A. 19) 

and 

This is the expression given in Equation 2.49 on page 35. I f f  (.) is nonlinear, the densities pYk IY ; - l  

will lose their Gaussian form, and Equation 2.49 represents an approximation. 



Appendix B 

Second Marginal Expansion 

This appendix investigates an alternative marginal cost function. Although no practical algorithm 

results from this exercise, the development is nonetheless interesting. In Section 2.4, the joint 

density is expanded into two terms as: 

Pxywlyy = Pxplyyw ' Pwlyy 1 

where the first term is maximized with respect to the signal, and the second term with respect to 

the weights. 

An alternative to the above expansion is given by: 

This suggests an alternative estimation scheme, in which { ik)r  is found by maximizing the second 

term, p x p l y p ,  and w is found by maximizing the first term, p w l y y x y .  

Similar to the comment made in Section 2.4 about the first expanded form, note that w can be 

estimated from the first term alone, but to maximize p x ~ w l y y  with respect to {xk)?, both terms 

need to be maximized. While algorithms based on the first expanded form have appeared in the 

literature, the same is not true of the second form. This is primarily because of the difficulty in 

maximizing pxy l y ; "  , as is shown below. 

B.1 Model-Free Signal Estimation 

To begin, consider the estimation of {xk)p  via the second term. Applying Bayes rule, we see that: 

While the prior pyy can be ignored (it is independent of {xk)p) ,  the same is not true of p x r .  In 

this case, the prior p x r  is an important part of the density because it contains our knowledge that 

{ x k ) y  was generated by an autoregressive process. 



To see the importance of this prior, consider maximizing the likelihood p y y ( , ~  alone. The 

corresponding cost function is: 

which does not produce an interesting result. The maximum-likelihood estimates in this case would 

be {Zk)? = { ~ k ) ? .  

The problem is that the time series {xk)fJ has not been constrained to be generated by an 

autoregressive process. To make this restriction more explicit in the prior, we can rewrite it as 

p x p l ~ ,  where M represents the model structure of the autoregressive model, independent of a 

specific choice of parameters w 

The prior can then be written as: 

This expression can be simplified by making the model structure M implicit in the parameters w. 

That is, 

Pxyw - Pxylw ' Pw 
P X ~ I M  = - - 

Pwlxp Pwlxy 

The density pXyl,y can now be written as: 

Where we have used the fact that pYp~,p = p y ~ l x y w .  Because pw and pyp are independent of 

{xk)?, we can find {Zk)? by maximizing the function: 

or, equivalently, its log: 

with respect to {xk)?. This produces a new cost function, given by: 

JXr lyy (x ,w)  = J'(x?~w) - JwlXp(x ,w) ,  
(B. 11) 

T -1 where Jwlxp(x ,w)=(w' -w({z t )y ) )  Pw ( w - w ( { ~ k ) F ) ) -  



The second term represents a penalty for estimates { g k } F  that agree too well with the assumed 

value of w.  This effectively removes any bias on the solution which might result from the specific 

choice of w.  

Making use of this additional term in the cost function can prove difficult, however. In partic- 

ular, since w will typically be found by a nonlinear optimization procedure, there is no closed-form 

expression for w as a function of {xk) fV .  Without this expression, the derivative of the weights 

with respect to the time-series cannot be computed, and the cost function cannot be minimized. 

B .2 Signal-Based Weight Estimation 

Assuming that a signal estimate {$k)fV is found, however, weight estimates w can now be found 

by maximizing the first term in the expansion of the joint density in Equation B.l ,  p,lyyxy. This 

can be written as: 

Since pypXr is independent of w ,  the numerator alone can be maximized to  estimate the weights. 

Furthermore, the term p, can be dropped if we assume that no prior information is available on 

the distribution of the weights. This leaves p y ~ , ~ I w  as the likelihood function for the weights. As 

described in Section 2.3, this can be maximized by minimizing one of the cost functions given in 

Equations 2.13, 2.14 on page 25, or for error coupling, Equations 2.19, 2.20 on page 28. 

However, if { i k ) ?  is actually obtained by maximizing p x ~ l y ~ ,  then it will be independent of 

w. In this case, the versions of the costs which reflect this independence (namely Equations 2.14 

and 2.20) are the most appropriate. 



Appendix C 

Kalman Filtering 

The Kalman filter [36] generates optimal state estimates for linear systems. In this appendix, the 

Kalman filter is derived from the MAP perspective, both in the context of signal estimation, and 

in the context of weight estimation. 

C. 1 Signal Estimation 

Recall the linear state-space representation for a noisy time-series {yk}r ,  given in Equations 3.11 and 3.12 

on page 47: 

Section 3.2 showed how sequential estimation of the signal { x k ) r  requires recursive estimation 

of the state xk. This involves the two steps illustrated in Figure 3.2: (1) the generation of the 

posterior statistics from the prior statistics, and (2) generation of the prior statistics from the 

posterior statistics a t  the previous time step. 

C . l . l  Posterior State Estimation 

The posterior mean of the state is defined as: 

which is equivalent t,o t,he MAP estimate: 

kk = a rgmaxp~ ,  ly:,w 
xk 

(C.2) 

when the statistics are Gaussian. The solution to the MAP formulation of the problem is shown 

below. 



The posterior density for the state can be expanded by as 

- that Pykly;-lXkW - Pyklxk- Also, pYt lw can be dropped because it is functionally independent 

of k ;  hence, the MAP state estimate is found as: 

'k = a r g ~ ~ ( ~ y k l x k  . P ~ ~ ~ ~ ~ - ~ ~ ) '  (C.4) 

Under the Gaussian assumption, the two terms can be written out explicitly as: 

where 2; E [ X ~ J { ~ ~ ) F - ' ,  W] and P i  E[(xk - k;)2~{Yt):-1, W] represent the prior mean and 

covariance of the state. Therefore, taking the negative log of (p,,Ix, . pxkly:-lw) yields 

where a is a constant to account for the normalizing terms in the Gaussian density functions. 

Hence, f k  can be found by minimizing the expression in Equation C.5. This is done by taking the 

derivative with respect to  the unknown xk and setting it to zero: 

Collecting (xk - 2;) terms on the left hand side gives: 

and solving for xk yields: 

Letting f k  take the value of the solution, this can be rewritten in the more familiar form as: 

X, = + Kk(yk - Ckk;), (c. 11) 

where K k  ((PI;)-' + c ~ ~ ~ ~ c ) - ~ c ~ ~ , ~  



(A-' + BDC)-' = A - AB(CAB + D-')-'CA 

Formula C.l:  The matrix inversion lemma. 

is commonly referred to as the Kalman gain. 

Note that computing the gain K k  involves inverting an M x M dimensional matrix, where M 

is the length of the state vector xk. This can be a relatively expensive procedure for large state 

vectors. Alternatively, the matrix inversion lemma (see Formula C.l)  allows K k  to  be written in 

a form that involves inverting a matrix with the same dimension as the measurement, yk (in this 

case a scalar). 

Applying the matrix inversion lemma to: 

Kk = ((PL)-' + C ~ C J ~ ~ C ) - ' C ~ O ; ~  gives 

K k  = (P; - p ; c T ( c p ; c T  + O ; ) - ~ C P ; ) C ~ ~ ; ~ ,  

which can be simplified by the following algebraic steps: 

leaving the commonly-used form: 

For one-dimensional time-series data, C has dimension 1 x M, so the above equation involves 

inverting only a scalar. 

C.1.2 Posterior Covariance Estimation 

Recall that to  continue sequential estimation of the state, the posterior error covariance Pk is also 

required. This can be found by using the definition: 



and substituting the definition of ik in Equation C . l l  to give: 

T 
Pk = E[(xk - kl, - Kk(yk - Ckki) )  (xk - k i  - Kk(yk - C k k i ) )  1. (C.20) 

Multiplying out the quadratic produces: 

Pk = E[(xk - %i) (xk  - k ~ ) ~ ]  

+KkE[(yk - Ck%i)(~k - ~ k k i ) ~ ] ~ ;  

While the first term on the right hand side of Equation C.21 evaluates immediately to P;, 

evaluation of the second, third, and fourth terms in this last expression involves rewriting (yk - 

Ck%]i) as: 

( ~ k  - Cki )  = ( C X ~  + nk) - Cki 

= C(xk - %k) + nk, 

so that the second term in Equation C.21 contains 

where the cross-term vanished because the measurement noise nk is assumed to be white, and 

therefore uncorrelated with (xk - 2;) .  The third term in Equation C.21 is simply the transpose 

of the second. The fourth term contains: 

where the cross-terms are again dropped to give: 

=cp,cT + u:, 
Substituting the terms C.23 and C.24 into Equation C.21 yields: 

which, using Kk = p i C T ( c p ; c T  + IT:)-', gives: 



This provides the posterior error covariance Pk as a linear function of the prior covariance P k .  

C.1.3 Prior Estimation 

Now that equations have been obtained for xk and P k ,  it remains to  be shown how 2;+, and 

Pi+,  are generated for the next time step. Using the state-space equations makes this fairly 

straightforward. The prior state estimate is: 

kk+l = E [ ~ k + l  I { y t l : ,  wl 

= E[Axk + Bvk-1 ~ { y t ) : ,  W ]  

= ~ ~ [ x k I { ~ t ) : , w ]  + ~ ~ [ v k - 1  l { ~ t ) : , w ]  

= A&, 

where the conditional expectation of vk-1 is zero under the assumption that the process noise is 

white. 

The prior covariance is obtained readily as: 

pF+l = E[(xk+l - $L+l) (~k+l  - ~ ~ + l ) T ( { ~ t } : , ~ ]  

= E[(Axk + B v ~ - 1  - A&)(Axk  + Bvk-1 - ~ ~ k ) ~ I { ~ t ) t ,  W ]  

= E[(A(xk - 2k) 4- Bvk-i)(A(xk - G k )  + ~vk- - i )~I {Y t ) ik : ,  W ]  

= AE[(xk - - h ) T I { ~ t ) t ,  w ] A T  + B ~ [ ( v k - l ) ~ ( { y t ) : ,  w ]BT 

= A P ~ A ~  + B ~ ; B ~  

These equations for generating the prior mean and covariance from the posteriors are often referred 

to as the t ime-update  equations of the Kalman filter. The equations for generating posteriors from 

the priors are referred to as the measurement -upda te  equations. Both sets of Kalman filter equations 

are summarized in Formula 3.1. 

C.2 Weight Estimation 

The Kalman filter can also be used to  produce optimal sequential estimates of the weights when 

the clean signal xk is known. The following development exactly parallels that just presented for 

state estimation, with the addition of a description of recursive least squares a t  the end of the 

section. 

The linear state-space representation: 



is used to  characterize the weights as a (stationary) random walk. 

The MAP estimate of the weights is defined in Equation 3.45 on page 55 as: 

wk  = arg max p,lxf, 
W 

and the corresponding sequential MAP cost is derived as: 

(xk - xJ2 
Jk(w) = o: + (W - W;)~(Q;) -~(W - WL), 

where the signal prediction is written in the linear case as x i  = x:-'_,wk. The prior weight estimate 

and error covariance are given in Equation 3.54 and 3.55 on page 57 as: 

+; = +k-l where Gk-1 ~ [ w k - l  I{X~}?-~], and 

Q i  = Qk-l + U k ,  where Qk-1 A E[(w - ~k-l)( . )~l{xt>:- ' ] .  

Hence, the prior weight estimate w; and covariance Q; are directly dependent on the posterior 

estimate wk-1 and covariance Qk-1 from the previous time step. These equations constitute 

the time-update of the Kalman weight filter. The measurement-update involves computing the 

posterior mean and covariance from the priors. Assuming Gaussian statistics, this can be done by 

finding the MAP estimate. 

C.2.1 Posterior Weight Estimation 

The MAP estimate of the weights is found by taking the derivative of Jk (w)  with respect to w, 

and setting it to zero: 

Collecting (w - w i )  terms on the left hand side gives: 

and solving for w yields: 

Letting wk  take the value of the solution, this can be rewritten in the more familiar form as: 

T 
wk = wijk + KT(xk - X ~ - ~ W ; ) ,  (C.36) 

1 
where K T  ((Q;)-l+ x ~ - ~ ~ ; ~ x : - ~ ) -  ~ ~ - ~ o ; ~  



is the Kalman gain for weight estimation. Using the matrix inversion lemma as in Equations C.12- 

C.18 allows K r  to be written in the alternate form: 

C.2.2 Posterior Covariance of Weights 

The posterior covariance of the weights is 

Substituting the definition of wk in Equation C.36 gives: 

Multiplying out the quadratic produces: 

Qk = E[(w - w ~ ) ( w  - W F ) ~ ]  

-E[(w-wk)(xk - W ; ) ~ ] ( K ~ ) ~  

T -KrE[(xk - ? ; - l ~ , ) ( ~  - w,) ] 

+KrE[(xk - ?;-l~i)(~k - x T - ~ % + L ) ~ ] ( K ~ ) ~  
While the first term on the right hand side of Equation C.40 evaluates immediately to  Q;, 

evaluation of the second, third, and fourth terms in this last expression requires rewriting (xk - 

kkT_lw;) as: 

Hence, the second term in Equation C.40 contains 

where the cross-term vanished because the process noise vk is white, and is therefore uncorrelated 

with (w - w;). The third term in Equation C.40 is simply the transpose of the second. The fourth 

term contains: 



where the cross-terms are again dropped to give: 

Substituting the terms C.42 and C.43 into Equation C.40 yields: 

which, using KT = ~ ; k ~ - ~  (jt~'l~;xk-l + a;)-', gives: 

This provides the posterior error covariance Qk as a linear function of the prior covariance Q;. 

The covariance can also be written another way by substituting the definition of KT to  give: 

2 -1 -T Q~ = (I - ~ i k ~ - ~  f ow) x ~ - ~ ) Q ;  (C. 46) 

- 
- Q, - ~ ; z ~ - ~ ( k : - ~ ~ ; k ~ - ~  + O : ) - ~ ? ; - ~ Q ~  (c.47) 

- 2  - T  
= ( ( & ~ ) - l  + kk-lu, x ~ - ~ ) - ' ,  (C.48) 

where the last step follows directly from the matrix inversion lemma. With this equation in place, 

an alternative expression can now be obtained for the Kalman gain in Equation C.36: 

This expression is not generally used in the Kalman weight filter, but it is useful for showing 

the relationship between Kalman weight filtering and the modified Gauss-Newton optimization 

technique. 

C.2.3 Recursive Least Squares 

As stated in Section 3.3, RLS can be viewed as a special case of the Kalman weight filter by 

constraining the covariance of uk such that 

By defining: 

1 X 1 
Xk " ( _ ~ k ) - l  = (_Q;l)- , 

u, *", 



the weight measurement update Equations 3.60-3.62 from Formula 3.5: 

can be replaced by: 

which is the RLS algorithm in its more efficient form. An equivalent form is obtained by substi- 

tuting Equation C.52 into Equation (2.54 to  get: 

which, by the matrix inversion lemma (Formula C.1), is: 

implying that 

This is the traditional form of the RLS update of the data covariance matrix. Rewriting Equa- 

tion (3.49 on the previous page as Kp = allows the weight update in Equation C.53 to 

be written as 

which, by Equation C.54 , is: 

G~ = c ; ~ ( A ~ ~ - ~ ~ ~ - ~  + x ~ - ~ z ~ )  

= ( A k l  + x 1 x k )  where pk 2 Cki?k. 



However, it immediately follows that: 

Hence, the weights are given by: 

and Equations 3.60-3.62 are equivalent to the RLS equations: 

(C.68) 

(C .69) 

(C. 70) 

as promised. 



Appendix D 

The EKF Approximation 

The preceding appendix shows derivations of the Kalman signal and weight filters under the as- 

sumption of a linear state space system. In this appendix we consider the ramifications of ap- 

plying Kalman filtering techniques to nonlinear systems. Because the nonlinearity of the signal 

filters used in this thesis is limited to the time-update, the measurement-update of the EKF is 

not addressed herein. The exact nature of the approximation made by the extended Kalman filter 

(EKF) time-update is considered first; this is followed by an analysis of the potential severity of 

this approximation. 

D.l  Approximating the Expectation 

Generating the prior mean ii+l and covariance Pkfl requires evaluating: 

where the conditional expectation of vk+l is zero under the assumption that the process noise is 

white. When the model is nonlinear, evaluation of this expectation is non-trivial. Recalling the 

structure of the vector function F(.),  gives: 



where i k  = E [xk I {yt):, w] . The EKF approximates the expectation of f ( x k ,  w) using a Taylor 

series expansion about x k :  

and keeping only the first two terms: 

The conditional expectation of the second term is zero, so expectation of the truncated Taylor 

series gives: 

Approximate evaluation of P;+, requires writing the truncated Taylor series of the entire 

vector function: 

F ( x L )  = F ( k k )  -k Ak . (xk - i k )  

where A k  is defined as: 

The prior covariance is defined as: 

Inserting the first order Taylor series approximation gives: 

Equations D.5 and D.9 form the time-update equations for the extended Kalman filter. The 

measurement-update is the same as in the linear case, so the EKF is obtained merely by replacing 



the KF time-update equations (C.27 and C.28) with the following: 

(D. 10) 

(D.11) 

as given in Formula 3.2 on page 51. 

D.2 Severity of the EKF Approximation 

This section investigates how close the EKF time-update approximations are to  the true mean and 

covariance. If, for a particular application, the errors in the approximations are on the same order 

as the approximations themselves, then the EKF is of little practical use. 

This concern can be addressed by considering the portion of the Taylor series that was disre- 

garded during the truncation ( i .e . ,  the higher order terms). In particular, defining the remainder 

term as1: 

allows the Taylor series can be rewritten as 

Hence, the error in the EKF estimate of the mean has magnitude E [ ~ e r n l { ~ ~ ) : ,  w] (when 
,. - 
xk+, is a vector, the error is restricted to the first element). Ideally, this value could be determined 

by seeing what the infinite series: 

converges to. Of course, computing the central moments E[(xk - ~ ~ k ) ~ l { y ~ ) $ ,  W] of x k  requires 

knowledge of the current conditional distribution, and is not generally tractable. However, assum- 

ing that xk is a Gaussian random variable (so far, we are still treating the scalar case)! the required 

moments are easily computed. This Gaussianity assumption might only be valid for k = 0 (with 

Gaussian prior, xo) ,  but is reasonable since the EKE' propagates only the mean and covariance 

of the distribution anyway. If we accept that the Gaussian assumption is central to  the EKF, 

'Of course is a multidimension tensor in general, so this notation is incorrect unless x k  is a scalar (M = 1). 
(ax) 

For the sake of simplicity, then, consider only the scalar case for the time being. 



the remaining question is: how well does EKF compute the mean and variance of a propagated 

Gaussian random variable? 

Unfortunately, the central moments of a Gaussian distribution increase without bound with 

the order, i. If u,, is the (conditional) standard deviation of xk, then [32]: 

I 

k all odd i 2 1, 
E[(xk - ~ k ) i l { ~ t ) l  ,w] = (D.15) 

1 . 3  . 5 .  . . (i - 1 ) ~ : ~  all even i > 2 i" 
The rapid growth of the moments causes the sum in Equation D.14 to diverge, even for fairly 

pedestrian choices of f (.). For example, consider the simple function f (xk) = tanh(xk), which is a 

reasonable choice since the neural networks considered in this thesis incorporate this nonlinearity. 

The higher derivatives of tanh(xk) also grow arbitrarily large, but when scaled by the inverse of 

the factorial, give a convergent family of functions, as shown in Figure D.1. However, a plot of the 

Figure D.l:  The scaled derivatives of f (x) = tanh(x) appearing in the Taylor series: ai f (nh)  
(ax)'  . 

maximum value of each of these scaled derivatives as a function of the order i can be compared 

with a plot of the Gaussian central moments (see Figure D.2) to see that the series will always 

diverge after some value of i .  Smaller values of only increase the value of i after which the 

terms in Equation D.12 begin increasing without bound. 

The problem of diverging moments can be circumvented by writing what is called the "Taylor 

series with a remainder term:" 

(D. 16) 



Figure D.2: The even Gaussian moments for a:, = .15 (circles), compared with the scaled derivatives 
of tanh (*). For any value of a:, , the moments will eventually grow faster than the scaled derivatives 
shrink. 

where ct. is unspecified. The infinite sum has been replaced by a finite sum by redefining the 

remainder as: 

rem = (xk - I Z ~ ) ~ G ( X ~ ,  w ) ( x ~  - kk), (D.17) 

where 

D.2.1 Error in the Mean 

Note that we are now returning to the more general case where xk is a vector. Generally, the 

expectation of the remainder cannot be computed in this form (and we have just seen the difficulties 

encountered when using the standard Taylor series expansion). However, an upper bound can be 

computed for E[rem], as follows. First, define d (xk - xk), and let d(j) and G(jxrn) denote 

individual elements of d and G ,  respectively. Then the remainder term is: 

= remj,,, where remj,, = G ( j ~ ~ ) d ( j ) d ( ~ ) .  (D.19) 

Therefore (suppressing the conditioning arguments of the expectation from the notation): 



Taking each term separately, 

where c is the correlation coefficient, and ac and crdd are the standard deviations of G(jlm) and 

d(j)d(m), respectively. Note that E[d(j)d(")] = p(jlm), so: 

Generally, the terms E[G(~?")] and c r ~  are not computable, and the correlation coefficient is un- 

known. However, the bounds: 

E [ G ( ~ I ~ ) ]  < max 1G(jlm) 1, CJG < 2 max I G ( ~ > ~ )  1, and < 5 1 (D.22) 

can be employed to bound the expected remainder as: 

This gives an upper bound on the error in the EKF approximation to in terms of the second 

derivatives of f (.), and a combination of the second and fourth central moments of xl;, assuming 

xk is Gaussian. The inequality is somewhat easier to interpret when xk is a scalar with conditional 

variance g:, . In this case: 

For the particular choice f (-) = tanh(.), the bound can be computed to be around 1.47 - u:,. The 

value of f (xk) is between -1 and 1, so ~ 2 ,  = .O1 will produce an error of at least 1.5%. 

D.2.2 Error in the Covariance 

A bound on the error in the EKF estimate of the covariance Pk+l can also be determined by 

analysis of the Taylor series remainder. Because in the time-series case the nonlinearity appears 

only in the first element of F(xk, w), the error is restricted to the top left corner of the covariance: 



(P- )(O,O). Substituting the Taylor series with remainder into Equation D.8 (instead of the k+l 

truncated series) gives: 

[( 
T 

P,, = E F ( i k )  + Brem + + Ak(xk - i k )  - F(lik) - B ~ j r e m ] )  ( . ) ] (D.25a) 

= E [ ( ~ ( r e m  - E[rem]) + Ak(xk - i r )  + Bur+l) ( .  (D.25b) 

= A ~ E [ ( X ~  - i k ) ( x k  - i k ) * ] ~ :  + BE[(rem - ~ [ r e m ] ) ~ ] ~ ~  
(D.25~)  

+ BE [(uk+l 12] BT 

= AkpkA;  + B ~ : B ~  + ~ ( ~ [ ( r e m ) ~ ]  - E[remI2)BT, (D .25) 

where we continue to suppress the conditioning arguments of the expectations for more compact 

notation. Hence, the error in the EKF covariance update is B ( E [ ( ~ e m ) ~ l  - ( ~ [ r e m ] ) ~ ) ~ ~ .  As 

before, the expectations cannot be computed in general, so an upper bound on the error is sought. 

The maximum of a difference between two positive numbers is greater than the difference of the 

two maxima, so the desired bound on the error must be found as the maximum of the first term 

alone. 

Starting with the component-wise definition of rem given in Equation D.19, an expression for 

rem2 is obtained: 

Therefore: 

Following the approach used for the mean, an upper bound for the individual terms is found to 

yield the overall bound on the error in the top left element of the covariance: 

E[rem2] 5 max [ ( ~ ( j . ~ ) ) ~ ]  
j,m,n,o 

( ~ [ d ( j )  d(m)d(n)d(o)] + 2 , / ~  [(&I d(m)d(n)d(0))2] - ~ [ d ( j )  d(m)d(n)d(o)]2), 

which is a function of the second derivatives of f (.), and the fourth and eighth central moments of 

xk. Like the bound on the error in the mean, this expression simplifies considerably in the scalar 



case: 

~ [ r e r n ~ ]  5 - max 
4 

W)) 2] . (3 + 8&)0 :~ .  
5 - max 

4 

This gives a bound of around (3.35. ~ 4 ~ )  for f (.) = tanh(.). For 0 2 ~  = .O1 the bound on the error 

is around 0.03%. 

D .2.3 Conclusions 

The EKF uses an approximate (and therefore suboptimal) method of calculating the mean and 

covariance of a Gaussian random variable passed through a nonlinear map. The errors in the mean 

and covariance are likely to  accumulate to some degree over multiple time-steps, and the state will 

become increasingly non-Gaussian. However, the measurement update of the EKF has the effect 

of reducing the error in the mean, and shrinking the covariance, so the errors will not generally 

increase indefinitely. By exploring the errors made at each time-step, this appendix provides a 

first step towards the broader problem of understanding the effects of the EKF approximation as 

a recursive function of time. The following general conclusions can be drawn: 

1. The error in the mean will be large if the state covariance is on the same scale as the 

nonlinearity. Hence, problems are more likely to arise when the state covariance is large; i.e., 

when the measurement noise and process noise have high variance. 

2. The error in the covariance will also depend on the scale of the nonlinearity with respect to 

the statistics of the state. However, Equation D.25 indicates that an adjustment to u; can 

potentially be used to compensate for this error. Therefore, estimating u: along with the 

state can sometimes produce better state estimates than when the true variance a: is used. 

The bounds in this appendix can help in determining when signal estimates might be sig- 

nificantly improved with a more expensive algorithm, such as a higher-order Kalman filter (in- 

corporating additional Taylor series terms) [53], unscented Kalman filter 1351, or particle filter 

~ 5 1 .  



Appendix E 

Observed-Error Derivatives 

The observed-error form of the weight filter, discussed in Section 3.3.2 on page 62, is based on 

the idea of approximating the gradient and Hessian of a cost function by choosing an appropriate 

form for the measurement equation in the state-space representation of the weights. This allows a 

Kalman weight filter to be used as an efficient, sequential modified-Newton algorithm. 

A variety of cost functions can be minimized by altering the form of the observed-error vector, 

ek; the appropriate form for the prediction error cost is shown on page 63. This appendix shows 

how the choices for the observed-error and its first derivative (appearing in Section 3.5 on page 70) 

approximate the gradient and Hessian of the other four costs discussed in this thesis. 

E . l  Joint Cost (Direct Substitution) 

Minimizing the joint cost function with the observed-error form of the dual EKF requires defining 

the instantaneous cost as: 

- A where ek A (yk - i k )  and zk = ( i k  - i i ) .  

E. l . l  Weight Estimation 

The gradient of Jk with respect to the weights is given by: 

and the Hessian is: 

2 2 
q ~ k  = -%ek%e: an + - 5 ~ 4 k ~ 2 F  0, + 4 2 )  



where o(2) represents the terms with second-order derivatives with respect to  w. Such terms will 

necessarily be neglected by a first-order approximation to the Hessian. As suggested on page 73, 

the gradient and Hessian can be approximated by defining the observed-error measurement as: 

so that e T e k  = J k ,  as required. Furthermore, letting a: = $1, 
r 7 

gives the negative instantaneous gradient. A first-order approximation to the instantaneous Hessian 

is given by: 

E.1.2 Variance Estimation 

The gradient of Jk with respect to the variance of either the measurement or process noise is given 

by: 

and the second derivative is: 

or, equivalently: 

a2 Jk 

(E. 12) 



The observed-error vector is defined as: 

Letting op = $1, the exact negative gradient is given by H ~ ~ D F ~ ~ ~ .  However, the first-order 

component of the second derivative is merely approximated by: 

(E.13) 

or, gathering like terms: 

- !I ao2 - 
-$@+& 

1 ae4 I eb( , 80' 
a 2 ( ; : ) 3 2 *  

I e , )  3 a m 2  -A+ 
1 a% 5 * 

---a, aoZ + Z ( U ? % / ~ )  av2 - 

Comparing this expression to the one in Equation E.12 shows that the third and sixth coefficients 

are off by a factor of i. Although this cannot be remedied, the second derivative is most closely 

approximated by matching the first and fourth coefficients: 

, SO that ~ ~ , k  = v A 
ek = 

and 

- - 
(en)' 

oil ek 

( l v )  + 
oy1Lk - - 

These equalities are satisfied so long as en and eV are redefined as the time-varying quantities: 

and a k  and yk are chosen to satisfied the conditions: 

for all time k. As described on page 76, this redefinition is equivalent to adding the offset log(ak) + 
log(yk) to  the cost J k  

E.1.3 Colored Noise 

When the measurement noise nk is colored, the observed-error forms are the same as for the white 

noise case, except with the noise error, fik = (fik - h i ) ,  replacing ek = (yk - 3k), and colored noise 

innovations variance, a:*, replacing o:. 



E.2 Joint Cost (Error Coupled) 

Sequential minimization of Jec(w) requires yet another form of the observed-error weight filter. 

Here the instantaneous error is: 

E.2.1 Weight Estimation 

The gradient of Jk with respect to the weights is: 

and the Hessian is given by the unwieldy expression: 

Combining terms where possible gives: 

As before o(2) is used to represent the terms containing second derivatives with respect to w. 

The gradient and Hessian of Jk are approximated by defining the observed-error term and its 



negative gradient as: 

where e e , k  = log(2~0:~)  and egYk = log(2Tgk). This satisfies e r e k  = Jk, and HZkuy2ek = -aJk 

gives the negative gradient as expressed in Equation E.20. 

The Hessian is approximated by: 

or by rearranging the terms: 

7 (E.23) 

- 
2 

- 2% ( K ~ ~ ~ B ~  + Q P ~ R ~ ~ ~ )  + - a P k ~ T $ k .  gk 

Comparing Equations E.22 and E.25 shows that H Z ~ ~ ; ~ H , , ~  approximates the first-order part of 

the Hessian best when the coefficients of the first and fourth terms are matched (the coefficients of 

the second and fifth terms are unalterably off by a factor of i). This is accomplished by redefining 

l e , k  and egtk as the time-varying quantities: 

- 
1 ( e e , k ) - h  

- 
-- 

2 02k %T(u:k 1 
1 -,RTek + 2 ( n 2 : i ( 3 / z )  L T u 2 k  

1 (fg,k)-$ c ~ ( ~ ~ )  -- 
2 .9k 

- - 

where 01, and yk are chosen for each k such that: 

, and Ho,k = e k  = 

as required. 

- - 
(ee,k)' 

ueilek 

(eg,k)4 
gi-l/2) x k 
- - 



E.2.2 Variance Estimation 

The gradient of the error-coupled joint cost with respect to either of the noise variances is given 

by: 

dJk - 1 da:, e i  am:, 2ek aek +-- 
da2 a:, 6a2 (o:J2 aa2 a:, do2 

and the Hessian is given by the unwieldy expression: 

Combining terms where possible gives: 

As before, o(2) is used to represent the terms containing second derivatives with respect to a. 

These derivatives are provided by the Kalman variance filter by defining the observed-error ik 

the same as t?k in Equation E.23, and computing ~ , , k  as: 

Defining a: = +I as before gives ~ z ~ a ; ~ ~ ~  = -3. Similar to the weight estimation form, the 

second derivative is approximated by: 



Again, the coefficients of the second and fourth terms differ by a factor of $ from the coefficients 

in the expression for the true second derivative in Equation E.30. However, the first and fourth 

coefficients can be made to  match by forcing the identities: 

as before. 

E.2.3 Colored Noise 

As with J i w ,  the colored noise forms of the observed-error for J,"cw are very similar to the white 

noise case. Again, Ak = (fik - h i ) ,  replaces ek; the variance of ek is replaced by the variance of 
- 
fik: gn,k. 

E.3 Maximum-Likelihood Cost Function 

The instantaneous cost for maximum-likelihood estimation is 

where ~k = (yk - 2;). 

E.3.1 Weight Estimation 

The gradient of Jk with respect to the weights is: 

The Hessian is given by: 



These quantities are approximated by letting 

-- 

t k  - [?I , giving E C ~ , ~  = 1 (E.39) 
E k  

and letting o: = $1. This gives ~ T ~ o ; ~ i ~  = - a J k  as desired. Meanwhile, 

or by rearranging the terms: 

Comparing Equations E.38 and E.41 shows that H ~ ~ u ; ~ H , , ~  approximates the first-order part of 

the Hessian best when the coefficients of the first and third terms are matched (the coefficients of 

the second term is unalterably off by a factor of $1. This is accomplished by redefining l , , k  with 

the time-varying quantity: 

where a k  is chosen for each k such that: 

E.3.2 Variance Estimation 

The derivative of Jk with respect to the noise variances is: 

The Hessian is given by: 



These quantities are approximated by letting 

l ( e  ) -3  aaz 

e k  4 [el giving = 
3-33 (E.47) 

f f , k  Ek 

and letting CT: = 31. This gives ~ : ~ f f ; ~ ~ ~  = - 3 as desired. Meanwhile, 

or by rearranging the terms: 

Comparing Equations E.45 and E.49 shows that H : , U ; ~ H , , ~  approximates the first-order part of 

the Hessian best when the coefficients of the first and third terms are matched (the coefficients of 

the second and fifth terms are unalterably off by a factor of i). As with weight estimation, this is 

accomplished with Equation E.43. 

E.4 EM Cost Function 

The sequential EM cost is derived in Appendix F to be: 

where only the predictions 2 i k  and covariances pLIk and p i k  can be considered functions of the 

weights. 

E.4.1 Weight Estimation 

The gradient of the instantaneous cost J k  with respect to the weights is: 

and the Hessian is given by: 



Using o: = $1 gives Hzko;2ek = -a Jk as desired, and 

These quantities are approximated by letting 

The first term is the first-order part of the Hessian in Equation E.52. The last two terms can be 

dropped by simply letting p i k  = P L l k  approach m (use a very large number) in the definitions of 

e k  and H0,k above. The effect of this redefinition cancels out of the gradient computation, and 

gives the desired approximation to the Hessian. 

, giving Ho,k = - 

E.4.2 Variance Estimation 

- - 
0 , ' ~ i k  

* a p L I k  
2 r v  6 

KpGk 
- 2 c w  - 

The derivative of Jk with respect to either of the variances is: 

dJk - 1 numk - - 
do2 u 2  ( u ~ ) ~  

and the second derivative is: 

a2 J~ - I 2numk , - -- +- 
( a 0 2 ) ~  (0212 ( u 2 ) 3  o w l  

where numk is the appropriate numerator term: 

( ~ k  - 2 k ) 2  +plclk when o2 = o:, 
numk = 

( 2 ,  - i.ik)2 + pklk - 2pLIX + p i k  when 0' = o:. 

These quantities are approximated by letting 

ik 4 [ a ] , with derivative eOgk = - 
c-'~K [$&I 2 ( 0 ~ ) 3 / ~  ' 

Letting a: = :I gives ~ z ~ a ; ~ i ~  = - a J k  as desired. Meanwhile, 

Forcing ek = -2 gives the exact second derivative, scaled by a factor of a. This scaling factor is 

easily fixed by using tZk and 2HO,k in the variance filter. 



E.4.3 Colored Noise 

For colored measurement noise, the sequential EM cost is: 

However, the derivatives for the weight and variance filters are computed exactly as in the white 

noise case, with the exception that the numerator term numk is now defined as 

when u2 = c:". 



Appendix F 

EM Cost Function 

The expectation-maximization (EM) algorithm is useful in many different settings. This appendix 

derives the EM cost function in the context of the dual estimation problem. The off-line problem 

is considered here, wherein all data up to time N is available. The development for the linear 

white noise case closely follows that given by Shumway and Stoffer in [76], but is restricted to  

one-dimensional measurements, yk. 

F. l  Batch EM 

The expectation-maximization cost function is given in Equation 2.55 on page 37 as: 

From here forward the conditioning arguments in the expectation are implied, but not shown. 

Moving the expectation inside the sum and expanding the quadratics gives: 

Furthermore, defining 



allows the cost to  be rewritten as: 

(F.8) 

Note that iklN = C i k l N ,  and p k l ~  = C p k l ~ C T .  

F. l . l  Linear Case 

Furthermore, if the model is linear, then i;, = ~ ~ j i ~ - ~ ~ ~ ,  and: 

The quantities iklN, ik-l/N, PIIN, P ; ~  can all be generated from the current weight 

estimates W by a Kalman smoother [68], modified slightly as in [76] to produce P:~. These values 

are no longer interpreted as functions of the unknown parameters w, a:, and a:. In fact, of all 

the terms in the cost function, only iq,, p i N ,  and p:lN are functions of w. The weights can 

therefore be estimated by minimizing 

Similarly, all the terms in the numerator in Equation 2.55 are dependent on the previous 

variance estimates, 6; and 6;, rather than on the variance being estimated. Hence, a: is estimated 

using the partial cost: 



while the portion relevant to estimating a: is: 

(F. 13) 

Closed form solutions for w ,  a:, and u; are derived as in [76] by setting the gradients of the 

costs to zero. For weight estimation, this gives: 

Solving for w gives: 

Similarly, the process noise variance can be estimated by taking the derivative of the cost 

Jem (a:) with respect to a:, and setting it to zero: 

(F. 18) 

The measurement noise variance can be estimated by setting the derivative of its cost with respect 

to a: to zero: 

Equations F.16, F.18, and F.20 are known as the M-step of the algorithm. The new estimates of 

the parameters are then used in the Kalman smoother (or E-step), which is followed by another 

M-step, and so on. 

F. 1.2 Nonlinear Case 

As mentioned in Chapter 3, nonlinear systems require a generalized M-step1, and the E-step is 

often performed with an extended Kalman smoother (EKS). In this case, the prediction term 

lThe variance estimation can still be performed in closed form. 



of Equation F.3 is approximated as Z,IN = f ( k N , w ) ,  and the variances p i ,  and p: , ,  are 

approximated as 

where the covariance P L - l I N  is itself approximated by the EKS. The transition matrix AklN is 

t found by linearizing f  (.) at x k - l I N .  Similarly, the cross-variance p k l N  is approximated as: 

where the covariance P$ is approximated by a modified EKS. 

F.2 Colored Noise EM Cost 

As given in Equation 2.58 on page 37, the colored-noise EM cost is: 

As before, the conditioning arguments are suppressed for brevity 'in the following development. 

Moving the expectation inside the sum and expanding the quadratic terms gives: 

2 2 2 [x: - 2 x k 2 ;  + 
J,e" (w)  = N log(4n CT~O,,, ) + CE 

k=l ff ," 



Using the definitions: 

and the corresponding terms defined for the signal xk in Equations F.2-F.6, allows the cost to be 

written as: 

For linear models, the closed form solutions for w and a: that minimize this cost are the same 

as given in Equations F.16 and F.18; for nonlinear models, the generalized M-step for w is also 

unchanged. Meanwhile, the variance of the process noise driving the colored measurement noise is 

found as: 

- The noise model is assumed linear, so fiiN = ~ ~ i i ~ - ~ ~ ~ .  Furthermore, note that p n , k l ~  - 

where Pn,k lN = C O V [ X ~ { ~ ~ ) ~ ~ ,  w,  wn] and: 



The quantities dk-,IN, P n , k l N 1  P,,k-, I N ,  P: ,~,~ can all be generated from the current weight 

estimates w and w, by a Kalman smoother, modified to accomodate colored noise, and to produce 



Appendix G 

Errors-in-variables (EIV) models are sometimes used to handle regression problems wherein the 

regressors are measured with error [75].  Because the autoregressive models used in this thesis for 

time-series analysis are a special kind of regression problem, a strong relationship exists between 

the EIV framework and the dual estimation methods developed in this thesis. 

Consider the batch problem of estimating w and xfT given the vector of noisy observations 

y r .  The EIV model makes a distinction between input and output variables, and between the 

deterministic and stochastic parts of the input-output relationship. In the context of noisy time- 

series, the input and output data are the same thing. The "input data" are 

and the "output data" are: 

Hence, the input data contain errors (yk - xk) ,  with variance a:, and the output data contain 

errors (yk - f ( ~ k - ~ ,  w)), with variance a: + a:. Furthermore, the cross-covariance between the 

two errors is a:. These errors can be concatenated in the column vector: 

where (x-)fT is a column vector with elements: 21, = f ( x k - 1 , ~ ) .  The maximum likelihood 

estimates of xy and w are found by maximizing the log-likelihood of E, or minimizing the cost 

function: 

where E-' is the covariance of E. The EIV method consists of iteratively: 



1. minimizing ~ ( x t ,  w) with respect to  x y ,  with w fixed at the current estimate: w. 

2. minimizing ~ ( x t ,  w) with respect to w, with x y  fixed a t  the current estimate: xy. 

When the model is linear, these steps can be solved in closed form with a batch weighted least- 

squares type of solution. 

The relationship of the EIV cost to the joint cost explored in Chapter 2 can be seen by 

expanding E in Equation G.4 as: 

Letting the components of e and E be denoted by ek = (yk - xk)  and ~t = (yk - xi), respectively, 

the cost can be written in component form as: 

However, note that the term ( ~ k  - ek) is identical to (xk - x i ) ,  so the EIV cost is identical to the 

joint cost given in Equation 2.11 on page 23: 



Appendix H 

Measurement Noise Variance Upper 

Bound 

On page 105, a procedure is described for estimating u; by starting at  an upper bound, and 

decrementing the estimate. In this appendix, the upper bound for the measurement noise variance 

is derived. Recall the formulation of a noncausal mapping from 2M + 1 noisy data points yk+E 
to  an estimate of the xk: 

T k+M 
i k  = W Y k - ~ .  ( H . 1 )  

Consider weight estimates of the form: 

6 = R z ( r y y  - 62eo),  ( H . 2 )  

where w = w *  is the optimal weight vector when 6; = o:. Then the variance of the estimate can 

be expressed in terms of 6:: 

- T k+M k+M - 
var(Pk) = E [ w  Y k - ~  . yk-Mw] (H.3) 

= iTiLYyw (H.4) 

= (r, ,  - 6 ~ e o ) ~ ; ~ ~ , , ~ ; ~ ( r y ,  - 6 i e 0 ) ,  (H.5) 

= (r,, - i+ :eo )~ , - , ' ( r ,~  - 6 ie0 ) .  (H.6) 

To find 6: such that P k  is the minimum variance estimate, set the derivative of the variance 

(with respect to 6; )  to  zero: 

dvar(2i.k) 
= 2(ryy  - 6ieo)R,-,'(-eo) = 0 au; (H.7) 



To show that this is an upper bound on the true variance a:, consider the MSE of the optimal 

estimator: 

2 
= ff, - 2(ryy - d e ~ ) ~ R ; ; r ~ ,  + (ryy - c7~e0)~R;t(r~, - o;eo) (H.13) 

2 2 TR-1 
= 02 - 2r;y~,-,'ry, + 2a:eFRiiryX + r ; y ~ ~ r y y  - 2rT YY R-lazeo YY n + (a,) eo Y Y  eo, 

(H.14) 

where rcy~;t = e: gives: 

- - a2 - 2eTry, + 2a:eTR,-krY, + e:ryy - 2eo T a,eo 2 + (a,,) 2 2 ~  e,, ~ Z e o  (H.15) 

= a: - 202 + 2 a i e ~ R ~  (r,, - 02eo) + a: - 2 4  + ( a : ) 2 ( ~ ~ ) ( 0 2 0 )  (H.16) 

= a: + 2ai - 2 ( 0 2 ) ~ ( ~ ; ~ ) ( ~ ~ ~ )  - 20; + (a:)2(~;l)(0,0) (H.17) 

= a: - ( a ~ ) 2 ( ~ $ ) ( 0 ~ 0 )  (H.18) 

= a: (1 - a: (R;l)(O1O)). (H.19) 

Now, of course the MSE must be non-negative, which means that: 

giving the desired upper bound on a:. When R is not known, it can be replaced by an estimate, 

R. 



Appendix I 

T Test 

Section 4.2.2 describes the problem of determining whether two algorithmic treatments, (a  # b) E 

A, produce losses L, (xr  , w, yr) and Lb ( x r  , W, y y )  which are significantly different. The t test - 

a common method for determining statistical significance [70] - is described in this Appendix for 

that purpose. 

Letting p, 4 Ey[L,] be the expectation of the loss over all noise realizations, the treatment- 

specific loss can be rewritten as L, = p, +&,, where E, represents a zero-mean random disturbance 

due to  the specific realization of the data. 

Given R repetitions of the measurement noise, the loss of the ath treatment on the rth repetition 

of the data is denoted by L:', where r E {1,2,.  . . , R). Each LF1 can be thought of as a sample 

from the distribution on La. The sample mean of La can be computed as h c:=, L!], and used 

to evaluate a.  When comparing two treatments, however, the significance of the difference in their 

sample means must be considered. 

Note however, that because the same R repetitions of the data (y?)['] (and initial parameters 

wo, &:,O, c?:,~) are used across all methods, the samples for any two treatments are not independent. 

In fact, taken for any two methods at a time, the results constitute paired samples [70], because 

the conditions contributing to, for example, L t l  and LF1, differ only in the treatment used. 

On the other hand, defining the difference d,,b (La - L6) creates a random variable that is 

sampled independently, by d:; (L!' - LP1). Assuming a Gaussian distribution on the difference, 

with mean pa,b = pa - pb and variance the significance can be tested by determining how 

likely it is that the distribution of daVb has zero mean. This can be done by way of a t test [70]. 

Computing the sample average Do,b = $ x,. d:;, and normalizing as: 

produces a random variable, m, with normal distribution. Furthermore, the sample variance, 



s2 - 1 [.I D - R-l Cr(da,b - Da,b)2, scaled as: 

produces a chi-squared random variable, v, with R - 1 degrees of freedom. 

Given two independent random variables m - N ( 0 , l )  and v - X 2 ,  the random variable 

t = m / G  is distributed with the t distribution with n degrees of freedom [70]. Therefore, the 

statistic 

will have the t distribution with R - 1 degrees of freedom if and only if pa,b = 0. This condition is 

referred to as the null hypothesis, Ho; it represents the case of no difference between algorithmic 

treatments a and b. 

Therefore, the probability that pa,b = 0 when Ita,b( 2 tl for some positive value of t l  , is given 

by: 

where pt,-, is the pdf of the t distribution with R - 1 degrees of freedom. The smallest possible 

value of a occurs when tl is chosen to equal ItarbJ; this minimum value of a is known as the pvalue 

of ta,& When the pvalue is close to zero, the probability of pa,b = 0 is low, indicating a significant 

difference between treatments a and b. A large pvalue, on the other hand, indicates that there is 

not sufficient evidence for differentiating between a and b. 
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