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Chapter 1 

Introduction 

Modern processor microarchitectures can be incredibly complex. Although exact figures 

are kept secret, it can safely be said that leading manufacturers employ dozens if not 

hundreds of design and verification engineers for each new generation of processor. As 

semiconductor process improvements continue to deliver an exponentially increasing bud- 

get of transistors, processor architects are able to employ ever more sophisticated imple- 

mentation techniques to increase the amount of useful work performed per clock cycle. 

Some standard examples of performance increasing optimizations are: 

a Pipelining. Analogous to automobile assembly lines, operations that take more 

than one clock cycle to complete are often divided into stages. Each stage completes 

its work in one clock cycle. By connecting the stages with pipeline registers, multiple 

instances of complex operations can be processed per clock cycle. 

a Superscalar  execution. Multiple instructions are fetched per clock cycle. Dupli- 

cated execution units such as ALUs execute the fetched instructions concurrently. 

a Caching. Long-latency communication between the processor and main memory is 

minimized by storing past results in local caches for faster access. 

a Out-of-order execution. Fetched instructions are dynamically analyzed to deter- 

mine which instructions are independent of each other. Independent instructions are 

executed according to when a compatible execution unit is available, even though 

this may cause the operations to be performed in a different order than specified by 

the program. 



Speculation. The results of time-consuming operations are opportunistically pre- 

dicted. The processor uses the predicted result immediately, and simultaneously 

starts computing the real result of the operation. The processor then checks whether 

the prediction is correct once the operation completes. If the prediction is confirmed, 

the processor has saved time by parallelizing the operation. If the prediction is in- 

correct, the processor rolls back its internal state and then uses the correct result. 

Not only does each of these techniques incur a substantial amount of design complex- 

ity, cutting edge processor designs combine them to achieve further speedups. In fact, 

creating and verifying these designs is a significant proportion of the total microprocessor 

development lifecycle. As the number of possible gates in future microprocessors increases 

exponentially, so too does design complexity. 

It is now common for a commercial microprocessor design effort to take two years 

or more, as engineers resolve all of the possible interactions between microarchitectural 

features while trying to meet performance, area, power, and heat dissipation goals. 

Resolving all of these issues while trying to complete the project as quickly as possible 

almost always results in design defects, some of which may slip through testing efforts and 

end up in released products. Of course, similar defects routinely occur with large commer- 

cial software products. But whereas software faults can be easily fixed by downloading 

patches through the internet, a microprocessor defect may require the entire device to 

be replaced. These mistakes can become exceedingly expensive, both financially and in 

lowered customer confidence. Such mistakes have also become more widely publicized in 

recent years, as personal computers are increasingly sold to mass consumer markets. 

1.1 Hardware description languages 

One way to gain intellectual control over design complexity is to employ a formal modeling 

language. Such a language can provide several benefits. For example, Ashenden[4] notes 

that assuming the language has appropriate supporting tools, an architect can: 

Describe and understand the required behavior and attributes of a system 

unambiguously. 



Communicate these requirements to others precisely. 

Test the system by simulating it. 

Formally verify the system with respect to desired properties. 

Automatically synthesize implementations from the description. 

Of course, most description languages are not designed to support all of the above 

activities, at least initially. For example, the VHDL hardware description language[4] has 

a large set of language features for specifying circuits behaviorally. A user can simulate 

any behavioral VHDL description, but must describe circuits using a strict subset of these 

features to automatically synthesize a circuit implementation. On the other hand, low- 

level languages designed to describe circuits at the gate and transistor level are harder to 

simulate efficiently. 

In practice, a design engineer will typically work with multiple specification languages 

during a processor development lifecycle. In the early stages, the designer is more con- 

cerned with functional correctness and the performance tradeoffs between alternative mi- 

croarchitectural features at the granularity of individual clock cycles. Thus the design 

engineer is likely to use a high-level behavioral specification language, such as behavioral 

VHDL, or even C. As the overall design is solidified, lower level structural co~isiderations, 

such as size and layout constraints, power consumption budgets, and sub-clock-cycle tim- 

ing issues often encourage or require the engineer to develop circuit designs that can be 

directly synthesized and analyzed at the gate or transistor level. 

1.1.1 Goals of the Hawk language 

At the Oregon Graduate Institute we have been interested in developing high-level do- 

main specific programming languages based on structuring principles derived from typed 

functional programming languages. In particular, the Hawk project has been developing 

a behavioral specification language for processor microarchitectures. Our goal is to build 

a language that lets architects specify designs at a higher level of abstraction than can 

be done with current behavioral hardware specification languages. To achieve this we 



intend to use language features that promote concision, modularity, and reusability in 

specifications. 

Concision. Just as a program written in a higher level language such as C is easier 

for humans to understand and modify than the same program written in assembly 

language, so too do microarchitectures become more comprehensible as specifications 

are made more concise and abstract. Ideally we would like our specification language 

to be as concise as the high-level block diagrams that architects currently use to 

express microarchitectures. 

Modularity. Given the number of people required to design modern processor 

microarchitectures, it is essential to be able to decompose a large specification into 

separate units, with well-defined interfaces between them. In this way individual 

architects can concentrate on a portion of the overall microarchitecture, without 

having to understand the entire design in full detail. 

Reusability. Once a specification language has the ability to separate design ele- 

ments into modular units, a natural next step is to try to reuse commonly occuring 

design units by defining them once and then referring to the definition at each point 

of use. By eliminating redundant definitions, the overall size of the specification is 

reduced, and defects caused by creating incompatible versions of the same design 

element are prevented. 

However, we don't want our specification language to be so abstract that it is not 

executable. To gain confidence in a design's correctness and evaluate performance tradeoffs 

an architect may need to simulate a microarchitecture on a wide variety of programs. It 

is not uncommon for a microprocessor simulator to execute billions of instructions on a 

given design. 

In addition to concrete simulation, we would also like to simulate microarchitectures 

in Hawk symbolically. A symbolic simulator allows the user to execute a design with some 

of the inputs given as symbolic variables (or more generally expressions), rather than as 

concrete values. The simulator then executes the design with the symbolic inputs and 



returns the result as a symbolic expression. In this way a single symbolic test run can 

replace a whole family of concrete test runs. A good introduction to symbolic simulation 

techniques for processors is given by Moore[67], who uses the ACL2 theorem prover to 

symbolically simulate a small processor at  the instruction set architecture level. Symbolic 

simulation can sometimes detect errors simply because the returned expression "looks 

strange", i.e. is much larger or more complex than what was expected. This strategy was 

used by Greve[31] to detect microcode errors in a direct execution Java processor. Day, 

Lewis, and Cook[l9] have developed a version of Hawk that supports symbolic simulation 

and have used it to symbolically simulate the data flow of a superscalar out-of-order 

microarchitecture. 

To gain even more confidence in the correctness of a Hawk specification an architect 

should be able to turn to formal verification, where a mathematical proof demonstrates 

that a design satisfies desired correctness properties on all possible inputs. Since the design 

being verified can be quite large, this approach only becomes practical when the proof is 

carried out with the help of automated tools, such as model checkers and theorem provers. 

Constructing proofs requires formalizing both the design and the underlying specification 

language in some mathematical logic, such as set theory or higher order logic. This is not 

a trivial endeavor, and specification languages with complex or ill-defined semantics can 

substantially increase the amount of human and machine time necessary to complete the 

proof. 

1.2 Thesis statement 

Hawk was created as a typed functional programming language in order to provide a 

good balance between abstraction and expressiveness, executability, and ease of formal 

reasoning. In particular, this dissertation aims to show that: 

The concepts underlying lazy functional programming languages, particularly Haskell 

and its Hawk extensions, allow one to specify microarchitectures concisely, modu- 

larly, and reusably, while retaining the ability to simulate them on concrete test 

cases. 



Using equational reasoning principles, one can develop a microarchitecture algebra, 

whose laws enjoy the same degree of concision, modularity, and reusability as the 

microarchitecture specification. 

Such algebraic laws can be used to verify the correctness of pipelined microarchitec- 

tures. 

The Hawk specification language can be naturally formalized in higher order logic, 

and thus verification steps can be checked by a theorem prover. 

This thesis can be thought of as a case study supporting a larger agenda: To demon- 

strate that the equational reasoning principles underlying lazy functional languages, and 

specifically the Haskell programming language, provide a good foundation for developing 

domain-specific algebras. The hope is that such algebras increase one's understanding of 

the domains, and can be used to formally verify desired properties of specifications. 

1.3 Synopsis 

Part of the content of this thesis is made up of re-edited and expanded versions of three 

published papers and a technical report, all written primarily by this author. These papers 

introduce Hawk as a specification language[55], describe how algebraic reasoning can be 

used to simplify and verify pipelined microarchitectures[53, 541, and show how to define 

recursive functions, such as Hawk circuits, over coinductive types[52]. 

Accordingly, we begin the dissertation by introducing Hawk as a microarchitecture 

specification language embedded within Haskell. We then state equational laws that hold 

of microarchitectural components, such as register files and ALUs, and use them to incre- 

mentally simplify a pipelined microarchitecture. Finally, we formalize a subset of Hawk 

in higher order logic and prove a representative set of these microarchitecture laws, using 

a combination of equational reasoning and induction over time. 

The definition of mutually recursive functions over infinite streams is the most chal- 

lenging aspect of Hawk's formalization, since such definitions are not directly supported 

in current theorem provers. We develop a generalization of well-founded recursion, called 



Converging Equivalence Relations, that allows these definitions to be added conservatively 

in a straightforward and modular fashion. 

The remaining chapters of this thesis are as follows: 

Chapter 11: Introduction to Hawk 

This chapter introduces Hawk as a specification language. We introduce a simple pipelined 

microarchitecture and specify it first in Hawk at the register transfer level (RTL) and then 

with transactions, an abstract datatype for representing the complete microarchitectural 

state associated with an instruction. We show that the language features of Hawk com- 

bined with transactions as a structuring principle lead to a concise and understandable 

specification. 

Chapter 111: Microarchitecture algebra 

Next, we informally introduce our algebra of microarchitectural components by describing 

the components that comprise a more complex reference architecture than the one intro- 

duced in Chapter 2. We describe how these components are modeled in Hawk and state 

the laws that hold among them. 

Several of the laws contain projection circuits. Projections are not used in either the 

pipelined or the reference microarchitectures, but are instead artifacts of the verification 

process. We motivate the usefulness of projections, and describe the conditions under 

which they can appear in microarchitecture laws. 

Once the necessary laws have been introduced, we show how they can be used to 

simplify the pipelined microarchitecture. This simplification is presented graphically. 

Chapter IV: Formalizing Hawk in higher order logic 

In this chapter we introduce Higher Order Logic (HOL) and the Isabelle theorem prover 

briefly and informally. We use HOL to formalize Hawk and the microarchitecture algebra, 

and Isabelle to check the proofs. Since Hawk is a purely applicative functional language, 

many aspects of the language can be modeled directly in higher order logic itself. However, 

dealing with recursive Hawk definitions is more difficult. The standard semantics for 



Hawk is domain theoretic, with recursive definitions modeled by least fixpoints. Although 

Isabelle has an object logic (HOLCF) that provides some support for reasoning about 

domains, there is much more support for "pure" HOL. For example, there is no syntactic 

support in HOLCF for pattern-matching function definitions or pointed numeric domains. 

We thus focus on techniques for modeling Hawk directly in HOL. 

There is no natural "information order" among elements in pure HOL, and so there 

is no notion of a least fixpoint. However, it turns out that well-formed recursive Hawk 

definitions have unique fixpoints, and can therefore be uniquely defined using Hilbert's 

choice operator. It is a well known result of topology that unique fixpoints can be found 

for contracting functions in complete metric spaces. Intuitively, a metric space is a set of 

elements and an associated distance metric over pairs of elements. The distance metric 

returns a real-valued number indicating how far apart the two elements are. A contracting 

function over this metric space, when applied to each of a pair of elements, returns a 

corresponding pair of elements that is "closer" to each other than the original elements 

are. Banach's theorem states that contracting functions do in fact have unique fixpoints. 

It is possible to define suitable distance metrics for Hawk streams, and show that 

recursive Hawk definitions over these streams are contracting functions. However, this of- 

ten requires reasoning about division and exponentiation over real-valued domains, which 

relatively few theorem provers support well. Instead we adopt a different approach. 

Chapter V: Converging equivalence relations 

We develop an alternative framework, called Converging Equivalence Relations (CERs), 

for proving the uniqueness of fixpoint definitions. We develop analogs of metric spaces 

and contracting functions that do not require the use of continuous mathematics. Instead, 

reasoning proceeds by well-founded induction over discrete domains such as the natural 

numbers, which are well supported by all of the HOL-based theorem provers. 

This chapter describes CERs with proofs of the key results. We demonstrate that this 

technique can be mostly automated by Isabelle's higher-order tableau proof package. 



Chapter VI: Verifying the microarchitecture laws 

In this chapter we develop some techniques to simplify the proofs of the individual laws 

of Chapter 3, and use them to verify representative examples. We first develop a simple 

theory of transactions, and make the somewhat surprising observation that although the 

type system of Hawk is very useful in catching errors when constructing Hawk specifica- 

tions, it can be annoyingly restrictive when verifying laws about transaction fields. The 

statements of these theorems quantify over all of the fields in a transaction, which violates 

the HOL restriction that all quantifiers must range over elements of the same type. We 

develop a mechanism of first class field names  to overcome this difficulty. 

We use a combination of inductive reasoning over time and first class field names 

to prove two representative microarchitecture laws: a commutativity law between ALU 

and delay components, and a law that allows one to remove bypass circuits connected to 

register files. 

Chapter VII: Retrospective 

We conclude by analyzing the strengths and weaknesses of Hawk we encountered during 

the course of the dissertation. In particular, we discuss the relative merits of the functional 

basis of Hawk, the use of transactions, and the value of algebraic reasoning in the context 

of the Isabelle theorem prover. 

We also discuss the usefulness of defining functions by converging equivalence rela- 

tions, compared to defining them co-recursively. The CER framework provides a general 

method of defining recursive functions over a wide range of types, including coinductively 

defined types such as infinite lists and trees. The dissertation concludes by outlining future 

research directions. 



Chapter 2 

Introduction to Hawk 

The Hawk language is designed for building executable specifications of processor mi- 

croarchitectures. Currently Hawk is an embedded language (i.e. a set of libraries) within 

Haskell, a strongly-typed functional language with powerful abstraction capabilities, such 

as lazy (demand-driven) evaluation, first-class functions, and parametric polymorphism 

[351 [76l. 

2.1 The Hawk library 

We start with a simple example that introduces several functions used in later examples. 

Consider the resettable counter circuit of Figure 2.1. 

The reset wire is Boolean valued, while the other wires are integer valued. Of course, 

in silicon, integer-valued wires are represented by a vector of Boolean wires, but as a 

design abstraction, a Hawk user may choose to use a single wire. The circuit counts (and 

outputs) the number of clock cycles since reset was last asserted. 

2.1.1 Signals 

Notice that there is no explicit clock in the diagram. Rather, each wire in the diagram 

carries a signal (integer or boolean valued) which is an implicitly clocked value. The 

output of a circuit only changes between clock cycles. We build signals using an abstract 

type constructor called Signal. As a mental model we could think of a value of type 

Signal a as a function from non-negative integers to values of type a, as is often done in 

the hardware verification community[62, 921. 
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We can sample a signal s at  a given clock cycle n simply by evaluating s applied1 to n. 

Alternatively a signal could be thought of as an infinite stream of values (xo, XI, xz, . . .). 

Clearly the two views are interchangeable. In either case circuits are represented as func- 

tions from signals to signals. 

In the resettable counter example above, the constant 0 circuit outputs zero on every 

clock cycle. The select component chooses between its inputs on each clock cycle depending 

on the value of reset. If reset is asserted on a given cycle (has value true), then the output 

is equal to select's top input, in this case zero. If reset is not asserted, then its output is 

the value of its bottom input. In either case, select's output is the output of the entire 

circuit, as well as the input to the increment component, which simply adds 1 to its input. 

The output of increment is fed into the delay component. A delay component outputs 

whatever was on its input in the previous clock cycle: it "delays" its input by one cycle 

(delay circuits occur often enough that we draw them specially, as shaded horizontal or 

'Fhnction application in Hawk is written using juxtaposition, so that f applied to x and y is written 

a s f x y  



vertical bars). However, on the first clock cycle of the simulation there is no previous 

input, so on the first cycle delay outputs whatever is on its init input, which is zero in 

this circuit. 

2.1.2 Components 

The components used in the resettable counter are trivial examples of the sorts of things 

provided by the Hawk library, but let's look at a specification of each component in turn. 

The simplest component is constant 

constant :: a -> Signal a 

The constant function takes an input of any type a, and returns an output of type 

Signal  a, that is, a sequence of values of type a. For every clock cycle, (constant x) 

always has the same value x. Functions such as constant that can operate over more 

than one type are called polymorphic.  

The next component is s e l ec t :  

select : :  Signal Boo1 -> Signal a -> Signal a -> Signal a 

This declares s e l e c t  to be a function. In a Hawk declaration, anything to the left of 

an arrow is an argument to a function. Thus, the expression ( se l ec t  bs xs ys) ,  where 
bs is a Boolean signal, and xs and ys are signals of type a, will return an output signal 

of type a. The values of the output signal are drawn from xs and ys, decided each clock 
tick by the corresponding value of bs. For example, if 

then ( s e l e c t  bs xs ys)  is equal to the signal <xl  ,y2 ,x3 ,y4, . . . >. 

Hawk treats functions as first-class values, allowing them to be passed as arguments 

to other functions or returned as results. First-class functions allow us to specify a generic 

l i f t  primitive, which "lifts" a normal function from type a to type b into a function over 

the corresponding signal types: 

lift : :  (a -> b) -> Signal a -> Signal b 



The expression ( l i f t  f xs) , where xs = < X I ,  x2, x3, . . . >, is equal to the signal 

<f x l ,  f x2, f x3, . . .  >. 

The increment component is defined in terms of l i f t :  

increment :: Signal Int -> Signal Int 

increment xs = lift (+ I) xs 

Given the xs input signal, increment adds one to each component of xs and returns the 

result. 

The delay component is more interesting: 

delay : :  a -> Signal a -> Signal a 

This function takes an initial value of type a, and an input signal of type Signal a, 

and returns a value of type Signal a (the input arguments are in reverse order from 

the diagram). At clock cycle zero, the expression (delay ini tVal  xs) returns ini tVal .  

Otherwise the expression returns whatever value xs had at the previous clock cycle. This 

function can thus propagate values from one clock cycle to the next. 

2.1.3 Using the components 

Once we have defined primitive signal components like the ones above, we can define the 

resettable counter: 

resetcounter : :  Signal Boo1 -> Signal Int 

resetcounter reset = output 

where next = delay 0 (increment output) 

output = select reset (constant 0) next 

The resetcounter definition takes r e se t  as a Boolean signal, and returns an integer 

signal. The re se t  signal is passed into se lec t .  On every clock cycle where r e s e t  returns 

True, se lec t  outputs 0, otherwise it outputs the result of the next signal. On the first 

clock cycle next outputs 0, and thereafter outputs the result of whatever (increment 

output) was on the previous clock cycle. The output of the whole circuit is the output 

of the se lec t  function, here called output. Notice that output is used twice in this 



function: once as the input to increment, and once as the result of the entire function. 

This corresponds to the fact that the output wire in Figure 1 is split and used in two 

places. Whenever a wire is duplicated in this fashion, we must use a where statement in 

Hawk to name the wire. 

2.1.4 Recursive definitions 

There is something else curious about the output variable. It is being used recursively in 

the same place it is being defined! Most languages only allow such recursion for functions 

with explicit arguments. In Hawk, one can also recursion to define data-structures and 

functions with implicit arguments, such as the one above. 

If we didn't have this ability, we would have had to define resetcounter as follows: 

resetcounter reset = output 

where next t = (delay 0 (increment output)) t 

output t = (select reset (constant 0) next) t 

Every time we have a cycle in a circuit, we would have to create a local recursive 

function, passing an explicit time parameter. This breaks the abstraction of the Signal 

ADT. In fact, in the real implementation of signals, we don't use functions at all. We use 

infinite lists instead. Each element of the list corresponds to a value at a particular clock 

cycle; the first list element corresponds to the first clock cycle, the second element to the 

second clock cycle, and so on. By storing signals as lazy lists, we compute a signal value 

at a given clock cycle only once, no matter how many times it is subsequently accessed. 

Haskell allows recursive definitions of abstract data structures because it is a lazy 

language, that is, it only computes a part of a data structure when some client code 

demands its value. It is lazy evaluation that allows Haskell to simulate infinite data 

structures, such as infinite lists. 

2.1.5 Other embedded Haskell languages 

Hardware domains 

The Hawk team is not the first to take advantage of Haskell as a platform for embed- 

ding domain specific languages, or even languages for modeling hardware. For example, 



O'Donnell[70] has developed a Haskell library called Hydra that models hardware gates 

at several levels of abstraction, ranging from implementations of gates using CMOS and 

NMOS pass-transistors, up to abstract gate representations using lazy lists to denote 

time-varying values. Hydra has been used to teach advanced undergraduate courses on 

computer design, in which students use Hydra eventually to design and test a simple mi- 

croprocessor. Hydra is similar to Hawk in many ways, including the use of higher-order 

functions and lazy lists to model signals. However, Hydra does not allow users to define 

more structured signal types, such as signals of integers or signals of transactions. In 

Hydra, these composite types have to be built up as tuples or lists of Boolean signals. 

While this limitation does not cause problems in an introductory computer architecture 

course, structured signal types significantly reduce specification complexity for more real- 

istic microprocessor specifications. 

More recently, the Lava hardware description language has been designed. It also 

models gate and word level hardware circuits within Haskell. The original version of 

Lava[9] modeled circuits with a special monadic syntax, however a later version[l4] defines 

circuits using standard Haskell expression form, in the same manner as Hawk. Modern 

Lava has many other similarities to Hawk: Both model signaIs as first class entities, use 

polymorphism and higher-order functions to model generic wiring patterns, and model 

circuits with feedback as recursively-defined signals. Lava is discussed in more detail in 

Section 2.4. 

MHDL[6] is a hardware description language for describing analog microwave circuits, 

and includes an interface to VHDL. Though it tackles a very different part of the hardware 

design spectrum, like Hawk, MHDL is essentially an extended version of Haskell, although 

it is not technically an embedded language. The MHDL extensions have to do with 

physical units on numbers, and universal variables to track frequency and time etc. 

Other domain specific languages 

Haskell has successfully been used to specify other domains. For example, Haskell com- 

pared favorably in an experiment comparing several prototyping languages[34]. The ap- 

plication domain involved modeling the Geometric Region Server module, which tracks 



the regions surrounding ships and planes in a military theatre. The module is required to 

answer such questions as when an enemy plane will enter a friendly ship's weapons range, 

or whether a plane has entered a commercial airspace corridor. Experts in each of several 

languages including Haskell, C++, Awk, and Griffin wrote a prototype program based on 

the same requirements document. The Haskell solution was considered the most concise 

and understandable of all the submitted entries. The authors claim their major success 

factors were: their heavy use of higher-order functions, Haskell's simple syntax, and the 

availability of powerful list-manipulating primitives in the standard Haskell library. 

l?ran[23] is a Haskell library that models interactive multimedia animations. The au- 

thors provide ADTs for time-varying behaviors, events, and interactions between behav- 

iors and events. Unlike Hawk, Fran's model of time is continuous. Also, a Fran function 

can examine the values of future events, while Hawk signals only depend on current and 

past signal values. This non-monotonicity of time in Fran requires a more sophisticated 

time-interval analysis than is required for Hawk. 

2.2 A simple microprocessor 

In the microarchitecture domain, the Hawk libraries make essential use of Haskell's fea- 

tures. As a test of Hawk's capabilities, the Hawk team has specified and simulated several 

versions of the DLX microprocessor described in Hennessy and Patterson's widely used 

textbook[33]. The Hawk team chose to model the DLX because it is well known, and 

has excellent tool support. Several DLX simulators exist, as well as a version of the Gnu 

C compiler that generates DLX assembly instructions. The processor includes the most 

common instructions found in commercial RISC processors. 

The DLX architecture is too complex to explain in fine detail in an introductory 

chapter. Instead, for pedagogical purposes we show how to specify a simple microprocessor 

called SHAM (Simple HAwk Microprocessor). We begin with the simplest possible SHAM 

architecture (unpipelined), and then add features: pipelining, and a memory-cache. A 

corresponding annotated Hawk specification of the DLX itself can be found at the Hawk 

web page[44]. 
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Figure 2.2: Unpipelined version of SHAM. 

The unpipelined SHAM diagram is shown in Figure 2.2. The microprocessor consists 

of an ALU and a register file. The ALU recognizes three operations: ADD, SUB, and I N C .  

The ADD and SUB operations add and subtract, respectively, the contents of the two ALU 

inputs. The I N C  operation causes the ALU to increment its first input by one and output 

the result. The register file contains eight integer registers, numbered RO through R7. 

Register RO is hardwired to the value zero, so writes to RO have no effect. The register file 

has one write-port and two read-ports. The write-port is a pair of wires; the register to 

update, called writeReg, and the value being written, called writecontents. The input to 

each read-port is a wire carrying a register name. The contents of the named read-port 

registers are output every cycle along the wires contentsA and contentsB. If a register is 

written to and read from during the same clock cycle, the newly written value is reflected 

in the read-port's output, at least abstractly. This is consistent with the behavior of most 

modern microprocessor register files. 

SHAM instructions are provided externally; in our drive for simplicity there is no notion 

of a program counter. Each instruction consists of an ALU operation, the destination 



register name, and the two source register names. For each instruction the contents of 

the two source registers are loaded into the ALU's inputs, and the ALU's result is written 

back into the destination register. 

2.2.1 Unpipelined SHAM specification 

Let us assume we have already specified the register file and ALU, with the signatures 

below: 

data Reg = RO I Rl I R2 I R3 I R4 I R5 I R6 I R7 

regFile : :  Signal Reg -> Signal Reg -> 

(Signal Reg, Signal Int) -> 
(Signal Int, Signal Int) 

data Cmd = ADD I SUB I INC 

alu : :  Signal Cmd -> Signal Int -> Signal Int -> Signal Int 

The regFile specification takes two read-port inputs, a write-port input, and returns 

the corresponding read-port outputs. The a lu  specification takes a command signal and 

two input signals, and returns a result signal. Given these signatures and the previous 

definition of delay, it is easy in Hawk to specify an unpipelined version of SHAM: 

shaml : :  (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int) 

shaml (cmd ,destReg, srcRegA, srcRegB) = (destReg2 , aluoutput ' ) 
where 

(aluInputA,aluInputB) = regFile srcRegA srcRegB (destReg',aluOutput') 

aluoutput = alu cmd aluInputA aluInputB 

aluoutput' = delay 0 aluoutput 

destReg ' = delay RO destReg 

The definition of shaml takes a tuple of signals representing the stream of instructions, 

and returns a pair of signals representing the sequence of register assignments generated 

by the instructions. The first three lines in the body of sham1 read the source register 

values from the register file and perform the ALU operation. The next two lines delay the 



destination register name and ALU output, in effect returning the values of the previous 

clock cycle. The delayed signals become the write-port for the register file. It is necessary 

to delay the write-port since modifications to the register file logically take effect for the 

next instruction, not the current one. 

2.2.2 Pipelining 

Suppose we wanted to increase SHAM'S performance by doubling the clock frequency. We 

will assume that, while sham1 could perform both the register file and ALU operations 

within one clock cycle, with the increased frequency it will take two clock cycles to perform 

both functions serially. We use pipelining to increase the overall performance. While the 

ALU is working on instruction n,  the register file will be writing the result of instruction 

n - 1 back into the appropriate register, and simultaneously reading the source registers 

of instruction n + 1. 

But now consider a sequence of instructions such as: 

R2 <- Rl ADD R3 

R4 <- R2 SUB R5 

When the ADD instruction is in the ALU stage, the SUB instruction is in the register-fetch 

stage. But one of the registers that is being fetched ( ~ 2 ) ,  has not been written back into 

the register file yet, because the ALU is still calculating the result. The SUB instruction 

will read an out-of-date value for R2. This is an example of a data hazard, where naive 

pipelining can produce a result different from the unpipelined version of a microprocessor. 

To resolve this hazard, we will first add bypass logic to the pipeline. Later we will abstract 

away from this added complexity. 

Figure 2.3 contains the diagram of a pipelined version of SHAM with bypass logic. By 

the time the source operands to the SUB instruction (R2 and R5) are ready to be input into 

the ALU, the up-to-date value for R2 is stored in the delay circuit between the ALU and 

the register file's write-port. The bypass logic uses this stored value of R2 as the input to 

the ALU, rather than the out-of-date value read from the register file. The bypass logic 

examines the incoming instructions to determine when this is necessary. The following 

code contains the Hawk specification: 



Figure 2.3: Pipelined SHAM. Since the register file and the ALU each now take one clock 
cycle to complete, we now need extra Delay circuits. The Delay circuits in turn require 
us to add Select circuits to act as bypasses. The logic controlling the Select circuits is not 
shown. 
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sham2 : :  (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int) 

sham2 (cmd,destReg,srcRegA,srcRegB) = (destReg",aluOut') 

where 

(valueA,valueB) = regFile srcRegA srcRegB (destReg",aluOutJ) 

valueA ' = delay 0 valueA 

valueB ' = delay 0 valueB 

destReg' = delay RO destReg 

cmd ' = delay ADD cmd 

aluInputA = select validA valueA' alu0ut' 

aluInputB = select validB valueB' aluOutJ 

aluOut = alu cmd' aluInputA aluInputB 

alu0ut ' = delay 0 aluOut 

destReg9' = delay RO destReg' 

--- Control logic --- 

validA = delay True (noHazard srcRegA) 

validB = delay True (noHazard srcRegB) 

noHazard :: Signal Reg -> Signal Boo1 
noHazard srcReg = sigOr (sigEqua1 destRegY (constant RO)) 

(sigNotEqua1 destReg' srcReg) 

The data flow portion of the code is grouped according to pipeline stages: 

a The first line after the where keyword reads the contents of the source registers from 

the register file. 

a The next four lines delay the source register contents, the ALU command, and the 

destination register name by one cycle. 

a The two s e l e c t  commands decide whether the delayed values should be bypassed. 

The decision is made by the Boolean signals validA and validB, which are defined 

in the control logic section. 



The next line performs the ALU operation. 

The last two lines in the data-flow section delay the ALU result and the destination 

register. The delayed result, called a lu0u tY ,  is written back into the register file in 

the register named by destReg' ', as indicated in the first two lines of the section. 

The control logic section determines when to bypass the ALU inputs. The signals validA 

and validB are set to True whenever the corresponding ALU input is up-to-date. The 

definition of these signals uses the function noHazard, which tests whether the previous 

instruction's destination register name matches a source register name of the current 

instruction. If they do, then the function returns False. The exception to this is when 

the destination register is RO. In this case the ALU input is always up-to-date, so noHazard 

returns True. 

2.2.3 Transactions 

The definition of sham2 highlights a difficulty of many such specifications. Although the 

data flow section is relatively easy to understand, the control logic section is far from 

satisfactory. In fact, it often takes nearly as many lines of Hawk code to specify the 

control logic as it does to specify the data flow, and mistakes in the control logic may 

not be easy to spot. We need a more intuitive way of defining control logic sections in 

microprocessors. 

We use a notion of transactions within Hawk to specify the state of an entire instruction 

as it travels through the microprocessor (similar in spirit to Aagaard and Leeser [I]). A 

transaction holds an instruction's source operand values, the ALU command, and the 

destination operand value. Transactions also record the register names associated with 

the source and destination operands: 

data  Transaction = Trans DestOp Cmd SrcOp SrcOp 

type DestOp = Operand 

type SrcOp = Operand 

type Operand = (Reg,Value) 



data Value = Unknown I Val Int 

An operand is a pair containing a register and its value. Values can either be "un- 

known" or they can be known, e.g. Val 7. 

For example, the instruction (R3 <- R2 ADD Rl), when it has completed, would be 

encoded as shown below (assume that register R2 holds the value 3, and R 1  holds 4): 

Trans (R3,Val 7) ADD (R2,Val 3) (R1 ,Val 4) 

This expression states that register R3 should be assigned the value 7 as a result of 

adding the contents of register R2 and R1. 

Not all of the register values in a transaction are known in the early stages of the 

pipeline. When a register name does not have an associated value yet, it is assigned the 

value Unknown. For example, if the above instruction had not reached the ALU stage yet, 

then the corresponding transaction would be: 

Trans (R3,Unknown) ADD (R2,(Val 3)) (Rl,(Val 4)) 

Figure 2.4 shows how a transaction's values are filled in as it flows through the pipeline. 

2.2.4 Transaction structure 

In general, the Transaction datatype contains four subfields. The first field holds the 

destination register name and its current state. The state of a register indicates the 

current value for the register at a given stage of the pipeline. Possible state values are 

Unknown, or (Val k) .  The second field is the instruction's ALU operation, in this case 

the ADD command. The third and fourth fields hold the source operand register names 

and their corresponding states. In this example, it holds the names and states for the 

source operands R2 and Rl. If an instruction has less than two source operands, the extra 

operand fields are set to a default value of (RO, Val 0). 

The instruction (R3 <- R2 ADD Rl), before it enters the SHAM pipeline, is encoded 

as the transaction: 

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown) 
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Figure 2.4: A transaction as it flows through the pipeline. As the transaction progresses, 
its operands become more refined. 

At this point, none of the register values are known. 

2.2.5 Changes to handle transactions 

We change the regFile and alu functions so that they take and return transactions: 

r e g F i l e  : :  Signal  Transact ion -> 
Signal  Transact ion -> 

Signal  Transact ion 

a l u  : : Signal  Transact ion -> 

Signal  Transact ion 

Because the register file needs to both write new values to the CPU registers and 

read values from them, the regFile function takes a read transaction and a writeback 



transaction as inputs. The function first examines the destination register field of the 

writeback transaction and updates the corresponding register in the register file. It then 

outputs the read transaction, modified so that all of the source register fields contain 

current values from the register file. For example, suppose regFile is applied to the 

completed write-transaction (the second source operand is not used here): 

Trans (R1 ,Val 4) INC (R1 ,Val 3) (RO ,Val 0) 

and uses as its read transaction 

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown) 

If we further assume that register R1 is assigned 20 and R2 is assigned 3 before regFile's 

application, then regFile will update R1 to contain 4 from the writeback transaction, and 

will output a new transaction that is identical to the read transaction, except that all of 

the source registers have been assigned current values from the register file: 

Trans (~3,Unknown) ADD (R2,Val 3) (R1,Val 4) 

The revised a lu  function takes a transaction whose source operands have values, per- 

forms the appropriate operation, and outputs a modified transaction whose destination 

field has been filled in. Thus if the ADD transaction above were given to alu, it would 

return: 

Trans (R3,Val 7) ADD (R2,Val 3) (R1,Val 4) 

2.2.6 Unpipelined SHAM 

Using transactions, the unpipelined version of SHAM is even easier to specify than it was 

before. 

shamlTrans : :  Signal Transaction -> 

Signal Transaction 

shamlTrans instr = alu0utput' 

where 

aluInput = regFile instr alu0utput' 

aluoutput = alu aluInput 



alu0utput' = delay nop aluOutput 

nop = Trans (R0,Val 0) ADD (R0,Val 0) (R0,Val 0) 

But the real benefit of transactions comes from specifying more complex micro-architectures, 

as we shall see next. 

2.2.7 SHAM2 with transactions 

Transactions are designed to contain the necessary information for concisely specifying 

control logic. The control logic needs to determine when an instruction's source operand 

is dependent on another instruction's destination operand. To calculate the dependency, 

the source and destination register names must be available. The transaction carries these 

names for each instruction. Because of this additional information, bypass logic is easily 

modeled with following combinator: 

bypass : :  Signal Transaction -> 
Signal Transaction -> 

Signal Transact ion 

At any cycle, the bypass function usually just outputs its first argument. Sometimes, 

however, the second argument's destination operand name matches one or more of the 

first argument's source operand names. In this case, the matching source operand's state 

values are updated to equal the destination operand state value. The updated version of 

the first argument is then returned. 

So if at  clock cycle n the first argument to bypass is: 

Trans (R4,Unknown) ADD (R3,Val 12) (R2,Val 4) 

and the second argument at  cycle n is: 

Trans (R3,Val 20) SUB (R8,Val 2) (R11,Val 10) 

then because R 3  in the second transaction's destination field matches R 3  in the first transac- 

tion's source field, the output of bypass will be an updated version of the first transaction: 

Trans (R4,Unknown) ADD (R3,Val 20) (R2,Val 4) 



Figure 2.5: bypass circuit 

One special case to bypass's functionality is when a source register is RO. Since RO is a 

constant register, it does not get updated. 

Bypasses arise frequently enough in pipeline block-level diagrams that we draw them 

specially, as diamonds with the update input (i.e. the second argument) connected to 

either the top or the bottom, as shown in Figure 2.5. 

The pipelined version of SHAM with bypass logic is now straightforward. Notice that 

no explicit control logic is needed, as all the decisions are taken locally in the bypass 

operations. 

SHAM2Trans : :  Signal Transaction -> Signal Transaction 

SHAM2Trans instr = aluoutput' 

where 

readyInstr = regFile instr aluoutput' 

readyInstr2 = delay nop readyInstr 

aluInput = bypass readyInstr2 aluoutput' 

aluoutput = alu aluInput 

aluoutput' = delay nop aluoutput 

The first line takes i n s t r  and fills in its source operand fields from the register file. The 

filled-in transaction is delayed by one cycle in the second line. In the third line bypass is 

invoked to ensure that all of the source operands are up-to-date. Finally the transaction 

result is computed by a lu  and delayed one cycle so that the destination operand can be 

written back to the register file. 

2.2.8 Hazards 

There are some microprocessor hazards that cannot be handled through bypassing. For 

example, suppose we extended the SHAM architecture to process load and store instruc- 



R 3  <- MEM[R2] 

MEM [R51 <- R2 

The first instruction above is a load instruction; it loads the contents of the address pointed 

to by R2 into R3. The second instruction is a store; it stores the contents of R2 into the 

address pointed to by R5. A block diagram of the extended SHAM architecture is shown 

in Figure 2.6. There is now a load/store pipeline stage after the ALU stage. However, 

this introduces a new problem. Suppose SHAM executes the following two instructions in 

sequence: 

R2  <- MEM[Rl] 

R4  <- R2 ADD R 3  

These two instructions have a data hazard, just as before, but we can not use bypassing to 

resolve it. Bypassing depends on having a value to bypass at the beginning of a clock cycle, 

but R2's value won't be known until the end of the cycle, after the memory contents have 

been retrieved from the memory cache. To resolve this hazard, we have to stall the pipeline 

at  the register-fetch stage. When the first instruction has reached the end of the ALU 

stage, the second instruction will have reached the end of the register-fetch stage. At this 

point the delay circuits between the register-fetch stage and the ALU stage are overridden; 

on the next clock cycle they instead output the equivalent of a no-op instruction. The 

register-fetch stage itself re-reads the second instruction on the next clock cycle. In effect, 

the pipeline stall inserts a no-op instruction between the two instructions involved in the 

hazard: 

R2  <- MEMCRI] 

NOP 

R 4  <- R2 ADD R 3  

Now when the ADD instruction is about to be processed by the ALU, the load instruction 

has already completed the memory stage. R2's value is held in the pipeline registers after 

the memory stage, so bypass logic can be used to bring the ALU's input up-to-date. In 

order to stall correctly, we have to re-read the second instruction. Thus stalling reduces 

the performance of the pipeline. 
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Figure 2.6: Block diagram of extended SHAM pipeline. Each Pipeline Register circuit is 
made up of multiple Delay and Select circuits. The Select circuits are used for bypassing, 
ensuring that the source operands are up-to-date. 



2.2.9 Hawk specification of extended SHAM 

In this section we will give more evidence of the simplifying power of transactions by 

specifying the extended SHAM architecture. The load/store extension significantly com- 

plicates the control logic for the SHAM architecture. We shall see that transactions hold 

up well when we must add stalling logic to the pipeline. 

To start, we need to add the commands LOAD and STORE to the Cmd type: 

data Cmd = ADD I SUB I INC I LOAD I STORE 

We also need to define some additional Hawk circuits. The first circuit, k i l l ,  takes a kill 

signal and a signal of transactions. On each clock cycle, the k i l l  component returns its 

transaction input unchanged, unless the kill signal is asserted, in which case it returns the 

nop transaction: 

kill : :  Signal Bool -> Signal Transaction -> Signal Transaction 

kill ks inp = select ks (constant nop) inp 

The isLoadTrans circuit returns True whenever its argument signal is a load transaction: 

isLoadTrans :: Signal Transaction -> Signal Bool 

isLoadTrans ts = lift isLoad ts 

where 

isLoad (Trans - cmd - -) = (cmd == LOAD) 

Although we previously passed SHAM instructions as parameters, we now need to call a 
function, instrcache, to explicitly retrieve them: 

instrcache : :  Signal Bool -> Signal Transaction 

Since the pipeline can stall, we need a way to ask for the same instruction two cycles in a 

row. The instrcache function takes a Boolean signal and returns the current transaction. 

Whenever the argument signaI is True, then on the next cycle instrcache returns the 

same transaction as it did for the current clock cycle. Otherwise, it returns the next 

transaction as normal. 
We also need a circuit that actually performs the loads and stores: 

mem : :  Signal Transaction -> Signal Transaction 



On those clock cycles where the input transaction is anything but a load or store transac- 

tion, the mem function simply returns the transaction unchanged. On loads, mem updates 

the destination operand of the input transaction, based on the input load address. On 

stores, mem updates its internal memory array according to the address and contents given 

in the input transaction. The destination operand value is set to zero. 

We also define a new Hawk function, transHazard, that returns True whenever its two 

transaction arguments would cause a hazard, if the first transaction preceded the second 

transaction in a pipeline: 

transHazard :: Signal Transaction -> Signal Transaction -> Signal Boo1 

The extended Hawk specification using transactions is given below: 

SHAM3Trans : :  Signal Transaction 

SHAM3Trans = memOutJ 

where 

-- register-fetch stage -- 
instr = instrcache loadHzd 

readyInstr = regFile instr mem0ut' 

readyInstrl = delay nop (kill loadHzd readyInstr) 

-- ALU stage -- 
aluIn = bypass (bypass readyInstrl memOut7) alu0ut' 

aluOut = alu aluIn 

alu0ut' = delay nop aluOut 

-- memory stage -- 
memIn = bypass aluOutl mem0ut' 

memOut = mem memIn 

mem0ut7 = delay nop memOut 

----- Control logic ----- 

loadHzd = sigAnd (isLoadTrans readyInstr7) 

(transHazard readyInstrJ readyInstr) 

The register-fetch stage retrieves the instruction and fills in its source operands from the 

register file. The register-fetch pipeline register delays the transaction by one clock cycle, 



although if there is a load hazard, the register instead outputs a nop transaction on the 

next cycle. The ALU stage first updates the source operands of the stored transaction with 

the results of the two preceding transactions (memOut' and alu0ut') by invoking bypass 

twice. It then performs the corresponding ALU operation, if any, on the transaction and 

stores it in the ALU-stage pipeline register. The memory stage again updates the stored 

transaction with the immediately preceding transaction, performs any required memory 

operation, and stores the transaction. The stored transaction is written back to the register 

file on the next clock cycle. The control logic section determines whether a load hazard 

exists for the current transaction, that is, whether the immediately preceding transaction 

was a load instruction that is in hazard with the current transaction. 

As we can see, the body of the specification remains manageable. The small control 

logic section to detect load hazards is straightforward and is a minority of the overall 

specification. In contrast, an equivalent specification of this pipeline where the components 

of each transaction were explicitly represented contained over three times a s  many source 

lines. The lower-level specification's control section was almost as large as the dataflow 

section, and not nearly as intuitive. 

2.2.10 Extending transactions to other microarchitectures 

The essential idea behind transactions is to pass all of the microarchitectural state asso- 

ciated with a particular instruction in a single data structure as the instruction traverses 

the pipeline. This implies that more transaction fields may have to be created for more 

sophisticated pipelines. For example, the pipelined microarchitecture of Chapter 3 per- 

forms branch specz~lation, where the instruction fetching component predicts the address 

of the next instruction to be executed after a branch, called the branch target. This allows 

the pipeline to continue fetching and executing instructions even though the actual branch 

target won't be known until the ALU component has computed it in a later pipeline stage. 

If the prediction is incorrect, the pipeline must discard the transactions corresponding to 

instructions it had fetched after the branch, and start fetching the correct branch successor 

instructions instead. 

For pipelines containing branch speculation the predicted branch target is part of the 



microarchitectural state associated with the branch, and is therefore stored within the 

branch's transaction structure. This turns out to be quite useful when the actual branch 

target is calculated by the ALU component, since it can be compared to the speculated 

branch target to determine if a misprediction occurred. 

Other microarchitectural features such as virtual register tags, predication bits, excep- 

tion status flags, etc. may also require modifications to the transaction type. Haskell's 

type class mechanism can be used to create structured families of transaction types that 

can be instantiated to particular microarchitectures, depending on what state needs to be 

associated with a given instruction. The use of type classes in Hawk to abstract over mi- 

croarchitecture features is presented in Cook et a1[18]. We do not follow this approach in 

the thesis, however, since we will be dealing with a fixed set of microarchitectural features. 

2.2.1 1 Transact ions in other modeling languages 

We are not alone in noting the usefulness of transactions to regularize interfaces between 

microarchitecture components. In particular, 0nder and Gupta have used a similar con- 

cept of instruction contexts as a core datatype in UPFAST, an imperative microarchitec- 

ture simulation language [72]. Instruction contexts are allocated as mutable records as 

instructions are fetched. They are then passed along by components, which can imper- 

atively update context fields, if desired. A context is deallocated when it is no longer 

needed. 

Transactions have also been used by others to structure microarchitecture verifications, 

and their use for this purpose is discussed in Section 3.3.1. 

2.3 Modeling the DLX 

Using techniques comparable to those described in this chapter the Hawk team has mod- 

eled several DLX architectures: 

An unpipelined version, where each instruction executes in one cycle. 

A pipelined version where branches cause a one-cycle pipeline stall. 



A more complex pipelined version with branch prediction and speculative execution. 

Branches are predicted using a one-level branch target buffer. Whenever the guess 

is correct, the branch instruction incurs no pipeline stalls. If the guess is incorrect, 

the pipeline stalls for two cycles. 

An out-of-order, superscalar microprocessor with speculative execution. The mi- 

croarchitecture contains a reorder buffer, register alias table, reservation station, 

and multiple execution units. Mispredicted branches cause speculated instructions 

to be aborted, with execution resuming at the correct branch successor. Cook et 

a1[18] present an overview of this microarchitecture and its implementation in Hawk. 

The microarchitectural specification for the unpipelined DLX is written in a quarter 

page of uncommented source code, not including the reusable component definitions; the 

most complicated pipelined version takes up just over half a page. 

2.3.1 Executing the model 

We used the Gnu C compiler that generates DLX assembly to test our specifications on 

several programs2. These test cases include a program that calculates the greatest common 

divisor of two integers, and a recursive procedure that solves the towers of Hanoi puzzle. 

We have not made detailed simulation performance measurements on these pipeline 

specifications. In general we do not expect the current implementation of Hawk to break 

simulation-speed records. At the moment Hawk is a set of libraries written in a general- 

purpose lazy functional language, which imposes some performance costs. The transaction 

library also performs some run-time tests that would be "compiled-away" in a lower-level 

pipeline specification. We hope to increase Hawk's simulation efficiency in the future by 

investigating domain-specific compilation techniques, such as partially evaluating a Hawk 

microarchitecture with respect to the program it is simulating and the output signals being 

sampled. Performance could also be greatly improved by employing custom memory 

 hanks are due to Byron Cook for developing the DLX assembly to Hawk translator, and for inte- 
grating it with the Gnu C compiler 



allocation algorithms that take into account the fact that most Hawk programs only 

reference a small "window" of a signal at  any given clock cycle. 

2.4 Other hardware modeling languages 

Currently the hardware modeling language that is the most similar to Hawk is Lava, 

introduced in Section 2.1.5. However, a major point of departure from Hawk is Lava's 

ability to treat signal descriptions as first class values. In Hawk, a signal is simply a 

sequence of values, and there is no way to differentiate between two signal descriptions 

that happen to generate the same sequence. For example, the following two Hawk circuits 

are observationally equivalent: 

toggle : :  Signal Bool 

toggle = delay False (sigNot toggle) 

toggle' : :  Signal Bool 

toggle' = genDelays False 

where 

genDelays : :  Bool -> Signal Bool 

genDelays b = delay b (genDelays (not b)) 

The first Hawk definition, toggle,  describes a simple toggling circuit implemented by a 

feedback loop (sigNot is an inverter over boolean signals). A circuit could be naturally 

synthesized from this description using a single inverter and delay component. The second 

definition, t ogg le J ,  makes use of the recursively-defined genDelays function to describe 

an infinite number of delay components with alternating initial value parameters. Each 

delay component takes the rest of its values from the next delay component to be gen- 

erated. The toggle '  circuit description is not realizable in hardware, yet both toggle 

and toggle ' generate the same sequence of values <False,  True, Fa lse ,  . . . > and are 

therefore equal in Hawk. 

Lava can detect that these two circuit descriptions are different. Lava accomplishes 

this by extending the Haskell language slightly with a form of non-updatable reference[l3].  

Lava references act much like ordinary references in impure functional languages such 



as ML, except that they are "read-only". Once initialized, a Lava reference cannot be 

modified. Lava references differ from applicative data structures in that a newly created 

reference is distinct from any already existing reference, even if they both refer to the 

same value. Lava has an equality operator on references that can test whether its two 

reference parameters are in fact the same reference. 

A Lava signal is then a reference to the Lava component whose output generates the 

signal. A Lava component is a record containing a field for the component's name, such 

as "delay" or "not", a field for each static component parameter, such as the initial 

value parameter for a delay component, and a field for each of the the component's input 

signals. By performing equality tests on Lava signals, a Lava program can distinguish 

toggle from toggle ' ,  since the first circuit generates only two unique references, one 

each for the delay and sigNot components, while the second circuit (lazily) generates an 

unbounded number of references. 

Given a Lava description of a circuit, one can write a Lava function that generates its 

corresponding behavior as an infinite list. Lava also allows users to generate non-standard 

interpretations of circuits such as netlists and state-machine descriptions. Generation of 

non-standard interpretations is a powerful Lava capability. Lava has circuit interpretations 

that 

a synthesize VHDL code. 

a generate circuit formulas that can be checked by several verification tools, such as 

Gandalf[89], NP-tools[78], and Otter[56]. 

Unfortunately, Lava's ability to generate non-standard circuit interpretations comes at the 

price of giving up pattern-matching over signal elements. Haskell currently has a fixed 

interpretation of pattern-matching expressions which is incompatible with Lava's explicit 

signal representations. For example, it is quite convenient in Hawk to define an instruction 

opcode as an algebraic datatype (see Section 7.1.1) and then define components such as 

the ALU in terms of functions that pattern match on the opcode constructors. While the 

same functionality can be defined in Lava by bundling existing signal types and performing 



tests through nested conditional expressions3, the resulting code is often more verbose and 

less easy to read. 

Given the current state of the Haskell language, one has to choose between being 

able to define non-standard circuit interpretations versus defining signal transformers by 

pattern matching. Each has significant advantages. Since Hawk is primarily a behavioral 

specification language, we chose the latter. 

Custom-designed languages 

Of course, Haskell is not the only possible platform for designing hardware description 

languages. Most, but not all, hardware modeling languages are designed "from scratch", 

giving designers complete control, and responsibility, over the syntax, semantics, and 

tooling infrastructure of the language. 

For example, Daisy[36] and pFP[38] are examples of early hardware specification lan- 

guages based on higher order functional languages. Daisy as originally developed in John- 

son's dissertation is a lazy untyped functional language where circuits are specified as 

recursive signal equations, as they are in Hawk. The semantics of recursive definitions 

is given in terms of domain-theoretic least fixed points, rather than unique fixed points 

as used in this dissertation (unique fixed points are introduced in Section 4.5). Domain 

theoretic semantics are arguably more complex to reason about in a theorem prover than 

Hawk's higher order logic semantics, but have the advantage of allowing circuit equiva- 

lences to be proved directly via an elegant technique called fixpoint induction. 

pFP is a combinator-based language. Whereas Daisy and Hawk allow arbitrary recur- 

sive signal forms, in pFP all recursion is expressed through a set of higher order recursive 

combinator functions. In addition, pFP circuit components are connected via function 

composition, without explicitly naming the interface signals. Two advantages of such 

point-free specification languages are the simplicity of the language and supporting tools, 

3 ~ a v a  also has the ability to define new abstract signal types, with an associated set of abstract signal 
primitives. Each circuit interpretation must provide a definition of the primitives if it is to interpret circuits 
containing the abstract signal type. 



and the ability to specify layout directives. pFP's layout combinators allow circuit de- 

signers to state in high-level terms where circuit components should be realized on silicon. 

These directives are more difficult to implement in languages like Hawk that allow com- 

ponents to be interconnected arbitrarily. 

The Ruby[39] hardware description language is a successor to pFP. Created by Jones 

and Sheeran, Ruby is a combinator language based on relations, rather than functions. 

Circuit specifications in Ruby can be more general than in Hawk, in that relations can 

describe more circuits than functions can. For example, a Ruby circuit can directly model 

a bi-directional wire between two circuits C and D, such as a bus, where information flows 

from C to D on some clock cycles, and from D to C on others. Hawk's functional basis 

requires all wires to be uni-directional. A bi-directional wire between circuits C and D 

in Hawk must be modeled as two signals, one signal returned as an output from C and 

passed as an input to D, and the other returned from D and passed into C. 

Ruby can also model a nondeterministic circuit, whose outputs are not uniquely de- 

termined by its inputs. Ruby's support for nondeterminism enables a form of design by  

refinement, which we discuss in Section 7.1.5. 

Most of the published Ruby examples specify circuits that operate at  the gate and word 

level, and particularly circuits that contain fine-grained regular structure, such as systolic 

arrays. Such circuits generally process collections of fairly simple forms of data, such 

as vectors of booleans and numbers. Hawk has emphasized modeling the more complex, 

but less regular datatypes that typify microarchitecture component interfaces. Thus Hawk 

programs can declare algebraic datatypes and define circuits by pattern-matching, features 

which Ruby lacks. 

Ruby's emphasis on circuit layout is another example of the different set of design 

goals between the two languages. Ruby has combinators to specify where circuits are 

located in relation to each other and to external wires. Hawk's emphasis is on behavioral 

correctness, so Hawk circuits do not contain layout information. 

There are many other languages for specifying hardware circuits at  varying levels of 

abstraction. The most widely used such languages are Verilog and VHDL. Both of these 

languages are well suited for their roles as general-purpose, large-scale hardware design 



languages with fine-grained control over many circuit properties. Both of these languages 

are more general than Hawk in that they can model asynchronous as well as synchronous 

circuits, and can synthesize (a subset of) circuit descriptions into a form suitable for 

fabricating in silicon. However, Verilog and VHDL are large languages with complex 

event-simulation semantics, which makes circuit verification much more difficult (see, for 

example, Gordon[SO] for the challenges in formally verifying Verilog circuits). Also, neither 

of these languages supports higher level abstraction features as well as Hawk, such as 

polymorphically-typed circuits and higher-order circuit combinators. 

As part of Intel Corporation's Forte circuit verification environment, the lazy func- 

tional language Lifted-FL[2, 31 is used as a meta-language for describing abstract circuit 

models, circuit properties, and circuit verification algorithms. Lifted-FL extends the boo1 

datatype to contain symbolic boolean expressions, which are represented as ordered binary 

decision diagrams[l7] (BDDs). Synthesized gate-level circuit descriptions can be imported 

as Lifted-FL data structures from several conventional net-list file formats. Once imported, 

the circuits can be symbolically simulated and verified. The simulation and verification 

algorithms are written in Lifted-FL at a high level of abstraction, due in part to the 

language's support for higher order functions and algebraic datatypes, but also due to 

its intrinsic support for symbolic boolean expressions. Lifted-FL has been used to verify 

impressively large circuits, including several floating-point ALU cores[71]. 

HML[48, 491 is a hardware modeling language based on the functional language ML. 

ML also has higher-order functions and static polymorphic type checking, allowing many 

of the same abstraction techniques that are used in Hawk, with similar safety guarantees. 

HML follows the tradition of VHDL and Verilog in expressing circuit modules in a rela- 

tional style, where output signals become extra parameters, rather than returned values 

as in Hawk. The goal of HML is also rather different from Hawk, concentrating on circuits 

that can be immediately realized by translation to VHDL. 



Chapter 3 

Microarchitecture algebra 

3.1 Introduction 

We now turn from specifying and simulating microarchitectures written in Hawk to de- 

veloping a method for verifying them. This thesis approaches the verification task al- 

gebraically, by discovering behavior-preserving transformations for Hawk components. 

Transformational laws are well known in digital hardware, and form the basis of logic 

simplification and minimization, and of many retiming algorithms. Traditionally, these 

laws occur the gate level: de Morgan's law being a classic example. In this chapter we 

examine whether corresponding transformational laws hold at the microarchitectural level. 

A priori, there is no reason to think that large microarchitectural components should 

satisfy any interesting algebraic laws, as they are constructed from thousands of individual 

gates. Boundary cases could easily remove any uniformity that has to exist for simple 

laws to be present. Yet we have found that when microarchitectural units are presented 

as transaction processors, many powerful laws appear. Moreover, as we demonstrate in 

this chapter, these laws by themselves are powerful enough to allow us to show equivalence 

of pipelined and non-pipelined microarchitectures. 

We have used this algebraic approach to simplify a pipelined microarchitecture that 

uses forwarding, branch speculation and pipeline stalling for hazards. The resulting 

pipeline is very similar to the reference machine specification (i.e. no forwarding logic), 

while still retaining cycle-accurate behavior with the original implementation pipeline. 

The top-level transformation proof is simple enough to be carried out on paper, and can 

also be automated to some extent using Isabelle's higher-order rewriting tactics. 
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Figure 3.1: One-stage pipeline. 

Interestingly, both circuits and laws can be expressed diagrammatically. A paper 

proof (transformation using equivalence laws) proceeds as a series of microarchitecture 

block diagrams, each an incrementally transformed version of the last. The laws often 

have a geometric flavor to them, such as laws to swap two components with each other, 

or laws to absorb one component into another. We find this diagrammatic approach an 

excellent way to communicate proofs. 

The most time-consuming part of this technique has been discovering the local behavior- 

preserving laws. It is our experience that these laws are much easier to discover when using 

transactions to increase the level of abstraction. Not only do transactions reduce the size 

of microarchitecture specifications, they also provide enough "auxiliary" state information 

to make law-discovery practical. 

The rest of the chapter discusses many of the laws we have discovered. We then show 

their use by applying the laws in a proof of equivalence between two microarchitectures. 

3.2 Reference microarchitecture 

Figure 3.1 shows the diagram of a simple non-pipelined microarchitecture built out of 

transaction signal processors. The components are the same as those used in the SHAM3Trans 

microarchitecture in Sections 2.2.5 and 2.2.9, but have been augmented to handle branch 

instructions. In particular, the a lu  component computes target addresses for branch 

transactions, and the iCache examines completed branch transactions to determine when 

to change its internal PC. The textual Hawk description is shown in Figure 3.2: Like 

its SHAM3Trans counterpart, the iCache component produces new transactions, based 

on the value of the current program counter and the contents of program memory (the 

instruction-set architectures we consider have separate address spaces for instructions and 



referenceMA = writeback 
where 

r egF i l e In  = iCache (constant  False)  writeback 
a lu In  = r egF i l e  r egF i l e In  writeback 
memIn = a l u  a lu In  
memOut = mem memIn 
writeback = delay nop memOut 

Figure 3.2: Hawk code for reference microarchitecture 

data). Both the current PC and the instruction memory contents are internal to iCache. 

The instruction cache takes on its writeback input the completed transaction from the 

previous clock cycle. It examines each writeback transaction for branches that have been 

taken. When it finds such an instruction, it modifies its internal PC accordingly and starts 

fetching transactions from the branch target address. The iCache has as output a signal 

of transactions representing the newly-fetched instructions. Each transaction's source and 

destination operand values are initialized to zero, since the iCache doesn't know what 

values they should have1. The other pipeline components will fill in these fields with their 

correct values. The iCache has a second input, called s t a l l ,  which is a signal of Boolean 

values. On clock cycles where s t a l l  is asserted, the iCache will output the same trans- 

action as it did on the previous clock cycle. In this simple microarchitecture, s t a l l  is 

always false. In more complex pipelines, the s t a l l  signal is typically asserted when the 

pipeline needs to stall due to a branch misprediction. 

For more complex pipelines, we also allow the iCache to perform branch prediction, 

based on an internal branch target buffer. When performing branch prediction, the iCache 

will also annotate branch instruction transactions with the predicted branch target PC. 

A branchmisp component (not shown in Figure 3.1) can locally compare the predicted 

branch target with the actual branch target to determine if a branch misprediction has 

occurred. For branch predicting microarchitectures the iCache updates its internal P C  on 

all mispredicted branches, once they are received on the writeback input, rather than on 

'The SHAM3Trans version of the iCache component returned Unknown for the uninitialized operand 
values. This version of iCache will instead simply zero out the operand value fields, to simplify the proofs 
given in Chapter 6 



Figure 3.3: Universal circuit-duplication law 

taken branches. 

3.3 Algebraic reasoning and the microarchitecture laws 

With any algebraic reasoning there need to be some ground rules. We take as fundamental 

the notion of referential transparency or, in hardware terms, a circuit duplication law. Any 

circuit whose output is used in multiple places is equivalent to duplicating the circuit itself, 

and using each output once. This law is shown graphically in Figure 3.3. Because of the 

declarative nature of our specification language, every circuit satisfies this law. That is, it 

is impossible within Hawk for a specification of a component to cause hidden side-effects 

observable to any other component specification. In many specification languages this law 

does not hold universally. For example, duplicating a circuit that incremented a global 

variable on every clock cycle would cause the global variable to be incremented multiple 

times per clock period, breaking behavioral equivalence. Hawk circuits can still be stateful, 

but all stateful behavior must be local and/or expressed using feedback. 

3.3.1 Algebraic reasoning 

Referential transparency is what allows us to use algebraic reasoning effectively in Hawk, 

and is based on the referentially-transparent semantics of Haskell. In general, algebraic 

techniques for transforming functional programs are routinely used for equivalence check- 

ing and verification [7, 8, 431 and for compilation and optimization [26, 771. Much of the 

work in this thesis can be seen as an extension of these ideas. 

We have also been influenced by the algebraic techniques used in the relational hardware- 

description language Ruby[84] (Ruby is described in Section 2.4). Sizeable Ruby circuits 

have been successfully derived and verified through algebraic manipulation[37, 401, and a 



formal semantics of a dependently-typed subset of Ruby, called T-Ruby, has been mech- 

anized within Isabelle's Zermelo-Fraenkel set theory logic[79]. On top of the formal se- 

mantics, the T-Ruby design system[85] has been built as a set of tools to algebraically 

transform Ruby expressions and translate hardware-realizable T-Ruby circuits into struc- 

tural VHDL. The rewrite rules are verified within Isabelle's theory of T-Ruby circuits. 

What distinguishes our work is our focus on microarchitectural units as objects of 

study in their own right, whereas the Ruby research has emphasized circuits at  the gate 

level. Hawk's model of time is also somewhat different than Ruby's. Hawk uses natural 

numbers as time indexes, while Ruby uses integers. One place where this difference shows 

up is the fact that Ruby delay components form a bijection on signals, while Hawk delay  

components do not (they are injective, however). The bijectiveness of Ruby's delay  com- 

ponents make it somewhat simpler to retime circuits in that language. Another important 

difference is Hawk's greater emphasis on proving circuits equivalent by performing induc- 

tion over time, as occurs in Chapter 6. Ruby's integer-indexed signals do not permit this 

form of reasoning. 

Transactions 

Transactions are a key concept in allowing us to discover and formulate many of the 

algebraic laws of microarchitectural components. As we noted in Chapter 2, the usefulness 

of transactions for verification has been noticed before. Here we observe their uses in 

verification. For example, Aagaard and Leeser used transactions to specify and verify 

hierarchical networks of pipelines[l]. Further, Sawada and Hunt use an extended form of 

transactions in their verification of a speculative out-of-order microarchitecture 1821. Each 

transaction records two snapshots of the entire ISA state, before and after the instruction 

is executed. In their work, however, transactions are not part of the microarchitecture 

itself, but are constructed separately for verification purposes. 

In our work, transactions form a fundamental basis for algebraic laws over microar- 

chitectural components. The next few sections introduce many such laws, some of which 

are specific to particular combinations of components, while others are quite widely ap- 

plicable. Each instantiation of a law needs to be proved with respect to the specification 



Figure 3.4: feedback rotation law 

Figure 3.5: time-invariance law. 

of the circuit components involved. We do not verify the individual laws in this chapter, 

but several are proved correct using induction and equational reasoning in Chapter 6. 

3.3.2 Delay laws 

The delay circuit is a fundamental building block of clocked circuits, especially when 

combined with feedback. A feedback variant of the circuit duplication law shown in 

Figure 3.4, called the feedback rotation law, allows circuits to be split along feedback 

wires. This law is not universal, but it is valid for any circuit that does not contain 

zero-delay cycles. 

Happily, all of the laws we discuss, including the feedback rotation law itself, preserve a 

well-formedness property: if a circuit contains no zero-delay cycles, then any transformed 

circuit will also have no zero-delay cycles. 

The t ime-invariance law (Figure 3.5) is also widely applicable. A circuit is t ime-  

invariant  if one can retime the circuit by removing the delays from all the inputs of the 

circuit and placing new delays (with possibly different initial value parameters) on the 

circuit's outputs. All combinatorial circuits are time-invariant, and so are many stateful 

circuits like the register file and memory cache. Interestingly, the iCache is not as it can 

track the passage of time since initialization. 

We use the above laws extensively to remove pipeline stages. If a pipeline stage is 

time-invariant, then we can move the pipeline registers (represented as delay circuits) 



Figure 3.6: bypass circuit idempotence law 

Figure 3.7: register-bypass law 

from before the pipeline stage to afterwards. If subsequent pipeline stages are also time- 

invariant then we can repeat the process, eventually moving all of the delay circuits to the 

end of the pipeline. However, forwarding logic between pipeline stages must still access 

the appropriate time-delayed outputs of later pipeline stages. The feedback-rotation law 

polices this, and ensures that the appropriate time-delay is kept by forcing delays to be 

inserted on all feedback wires to the forwarding circuits. We will see examples of this 

enforcement in Section 3.4. 

The movement of delay components is an application of a technique called retiming[45, 

83, 861. A circuit is retimed when the delay components of the circuit are repositioned, 

while the functional components are left unchanged, Typically, circuits are retimed to 

reduce the clock cycle time. In contrast, we shall retime circuits as part of a simplification 

process. In fact, we often use the time invariance law to increase cycle time! 

3.3.3 Bypasses and bypass laws 

The purpose of bypass components as defined in Section 2.2.7 is to ensure that results 

computed in later pipeline stages are available to earlier pipeline stages in time to be 

used. Bypass circuits have many nice properties. Not only are they time-invariant and 

obey a kind of idempotence (Figure 3.6), but they also interact closely with register files 

and various execution units. 



no-haz exec1 exec2 

no-haz exec 1 exec2 

Figure 3.8: hazard-bypass law 

Register file - bypass law 

The fundamental interaction between a bypass and register file is shown in Figure 3.7. 

We call this the register-bypass law, and it is used repeatedly in eliminating forwarding 

logic when simplifying pipelines. The law states that we can delay writing a value into the 

register file, so long as we also take the value to be written and forward it to the output, 

in case that register was being read on the same clock cycle. 

Hazard - bypass law 

Another bypass law permits the removal of bypasses between execution units. It is often 

the case that after retiming all delay circuits to the end of a pipeline, two execution units 

in a pipeline (such as an ALU unit and a Load/Store unit) are connected with one-cycle 

feedback loops. Each bypass circuit is forwarding the outputs of an execution unit to the 

inputs of that same execution unit, one clock cycle later. 

If the upstream pipeline stages can guarantee that there is no hazard between successive 

transactions, then the double feedback is equivalent to the single feedback circuit shown 

at the bottom of Figure 3.8. This (conditional) identity is called the hazard-bypass law. 

To be more concrete, suppose execl is the ALU and exec2 the memory cache. Then 

an ALU-mem hazard arises if a transaction which loads a register value from memory is 

immediately followed by an ALU operation which requires that register's value (this is the 

same hazard as the one presented in Section 2.2.9). Under these circumstances the two 

feedback loops would give different results. Under all other circumstances the two circuits 



4 hazard hazard 

Figure 3.9: Hazard-squashing logic guarantees no hazards 

are equivalent. We express this conditional equivalence using the nohaz  component. It 

is an example of a projection component and is discussed in the next section. 

3.3.4 Projection laws 

Many laws, like the hazard-bypass law above, require that the input signals satisfy certain 

properties, and commonly, we may know that the output signal of a given component 

always satisfies a particular property. We can capture this knowledge of properties using 

signal projections. 

A signal projection is a component with one input and one output. As long as the 

input signal satisfies the property of interest, the component acts like an identity function, 

returning the input signal unchanged. However, if the input does not satisfy the property 

we are interested in, the projection component modifies the input signal in some arbitrary 

way so that the property is satisfied. 

Let us consider an example. For the hazard-bypass law we are interested in expressing 

the absence of ALU-mem hazards in a transaction signal. We reify this property as a 

nohaz  projection. On each clock cycle, the nohaz component compares the current 

input transaction with the previous input transaction. If there is no ALU-mem hazard 

between the two transactions, then the current transaction is output unchanged. If a 

hazard does exist, then nohaz  will instead output nopTrans, which is guaranteed not to 

generate a hazard (since nopTrans contains no source operands). 

Where do projections come from? After all, they are not the sort of component that 

microarchitectural designers introduce in the normal course of events. 

Fig 3.9 provides an example of a law which "generates" a projection. The hazard- 

squashing logic guarantees that its output contains no hazards, and this is expressed in 



that the circuit is unchanged when the nohaz  component is inserted on its output. 

(The hazard component outputs a Boolean on each clock cycle stating whether its two 

input transactions constitute a hazard. The k i l l  component takes a transaction signal 

and a Boolean signal as inputs. On each clock cycle, if the Boolean input is false, then 

k i l l  outputs its input transaction unchanged. If the Boolean input is true, then k i l l  

outputs a nopTrans, effectively "killing" the input transaction.) 

To be useful, a projection component needs to be able to migrate from a source circuit 

that produces it (such as the circuit in Figure 3.9) to a target circuit that needs the 

projection to enable an algebraic law (such as the hazard-bypass law). Thus a projection 

component must be able to commute with the intervening circuits between the source and 

the target circuit. Well-designed projections commute with many circuits. For instance, 

the n o h a z  projection commutes with bypass, a lu,  mem, and regFi le  components. It also 

commutes with delay components (that is, nohaz  is time-invariant). 

Projections are also convenient for expressing the fact that a component only uses 

some of the fields of an input transaction. For instance, the hazard component only looks 

at  the opcode, source, and destination register name fields of its two input transactions. 

We can create a projection called p r o j - c t r l  that sets every other field of a transaction to 

a default value, and prove a law stating that the hazard component is unchanged when 

pro j - c t r l  is added to any of its inputs. We can then show that pro j - c t r l  commutes 

with other components, such as bypasses and delays. This allows us to move the input 

wires to hazard across these other components, which is sometimes necessary to enable 

other laws. Similarly, the proj-branch-inf o projection allows us to move iCache and 

branchmisp component inputs. 

3.4 Transforming the microarchitecture 

The laws we have been discussing can be used for aggressively restructuring microarchi- 

tectures while retaining equivalence. We have used them to simplify several pipelined 

microarchitectures with a view to verification. The example we present here contains 

three levels of forwarding logic, resolves hazards by stalling the pipeline, and performs 



Figure 3.10: Microarchitecture before simplification 

branch speculation. The block diagram for this microarchitecture is shown in Figure 3.10. 

By using just algebraic laws, we have been able to reduce most of the complexity, leaving 

essentially an unpipelined microarchitecture. 

Our approach to pipeline simplification has echoes of the Unpipelining approach[46] of 

Levitt and Olukotun. Unpipelining is a verification technique where a pipelined microar- 

chitecture, specified as a state machine, is incrementally transformed into a functionally- 

equivalent unpipelined microarchitecture. Unpipelining proceeds by repeatedly merging 

the last stage of a pipeline into the next to last stage, producing a microarchitecture 

with one less stage on each iteration. On each iteration, the two microarchitectures are 

proven equivalent by induction over time. This is similar to our approach, except that 

we use transactions to encapsulate and reuse many of the verification steps, and we only 

need to prove the equivalence of the portion of the microarchitecture being transformed, 

rather than the entire microarchitecture, on each iteration. On the other hand, Levitt and 

Olukotun's implementation of unpipelining is much more automated than our work up to 

now, and can completely reduce a pipelined implementation to an unpipelined reference 

machine. 

The simplification of the microarchitecture in Figure 3.10 proceeds in five goal-directed 

stages: Retiming, moving control wires, propagating hazard information, removing for- 

warding logic, and cleanup. The stages are chosen somewhat arbitrarily, and are fairly 

specific to this microarchitecture. They nevertheless help to organize the top-level proof 

into subgoals. Each stage is described as we come to it in the simplification, and achieves 

the preconditions necessary to apply key microarchitecture laws in the next stage. The 

retiming stage is described next. 



3.4.1 Retiming stage 

We first remove all delay circuits from the main pipeline path, starting at the earliest 

stage in the pipeline. We accomplish this by repeatedly applying the time-invariance law, 

and by splitting delays along wires through the circuit duplication and feedback rotation 

laws. 

Figure 3.11: Split delay circuit after regFile, using the circuit duplication law 

We would now like to move a delay through the k i l l  circuit, but we can't, since the 

top input to k i l l  does not have a delay circuit. To place a delay on k i l l ' s  top input, 

we will need to move delay circuits through the branchmisp and hazard circuits. This 

is possible because branchmisp and hazard are pure combinational circuits that preserve 

default values (The default value for Booleans is False) and are therefore time-invariant. 

Figure 3.12: Split delay circuit after alu, using the feedback-rotation law 



Figure 3.13: Split twice the delay circuit leading to branchmisp and iCache, using two 
applications of the circuit-duplication law 

Figure 3.14: Move delay circuits through the branchmisp and hazard circuits, using the 
corresponding time-invariance laws 

We can similarly move these delay circuits through the or and and circuits (even 

though one of the and inputs is inverted), since these combinational circuits preserve the 

default False Boolean value. Finally, we can move the original delay circuit through the 

k i l l  circuit, since k i l l  is a combinational circuit and all of its inputs have delays. 

Figure 3.15: Move delay circuits through the or and and circuits, using the circuit- 
duplication law and the corresponding time-invariance laws 



Figure 3.16: Move delay circuits through the k i l l  circuit, using the corresponding time- 
invariance laws 

Figure 3.17: Split the delay circuit after the k i l l  circuit, using the circuit duplication 
law 

Once again, we can't move the delay circuit past the bypass circuit, since the other 

input to the bypass does not contain a delay. Fortunately, the other input originates at 

the delay circuit that is after the mem circuit, so we split that delay and move it to the 

bypass input. 

Figure 3.18: Split the delay circuit after the mem circuit, using the feedback rotation law 



Figure 3.19: Split the bottom-most delay circuit, using the circuit duplication law 

Figure 3.20: Split the bottom-most delay circuit again, using the circuit duplication law 

We can now move our wandering delay through the two bypass circuits, since bypasses 

are time-invariant, and they both have delay circuits on all inputs. 

I I branch-misp I 4 hazard h I 

Figure 3.21: Move the delay circuit before the first bypass circuit through the first and 
second bypasses, using the corresponding time-invariance laws 



Figure 3.22: Move the delay circuit through the alu circuit using the corresponding 
time-invariance law 

Figure 3.23: Split the delay circuit after the alu circuit using the feedback-rotation law 

Now we just have to move the two delay circuits before the third bypass circuit to 

the end of the pipeline. Fortunately, both bypass and mem are time-invariant. 

Figure 3.24: Move the delay circuit through the third bypass circuit using the corre- 
sponding time-invariance law 



Figure 3.25: Move the delay circuit through the mem circuit using the corresponding 
time-invariance law 

Figure 3.26: Split the delay circuit after the mem circuit, using the corresponding feedback- 
rotation law 

Figure 3.27: Split the delay circuit below the mem circuit, using the corresponding circuit 
duplication law 



Figure 3.28: Move the delay circuit through the last bypass circuit, using the correspond- 
ing time-invariance law 

Figure 3.29: Move the delay circuit through the mem circuit, using the corresponding 
t ime-invariance law 

We'll keep moving this last delay a bit, to set up for the hazard-bypass law later on. 

Figure 3.30: Split the delay circuit after the mem circuit, using the feedback-rotation law 



Figure 3.31: Split the bottom-rightmost delay circuit, using the circuit duplication law 

3.4.2 Move control wires stage 

In this stage we move all wires not directly involved with forwarding logic to either before or 

after all of the bypass circuits. This is to enable the hazard-bypass laws, which we apply in 

a later step. We move the wires by inserting projection circuits and using the corresponding 

projection-commutativity laws. While we're at it, we'll also insert p ro j - c t r l  circuits on 

the inputs to the hazard circuit, so that we can later on move the register file next to the 

first bypass. 

Figure 3.32: Projection insertion laws for pro j -branch-inf o 

The wire we want to move in this case is the feedback wire after the a l u  circuit, 

which becomes the input to branchmisp and iCache. The projection that allows us 

to move the wire is called pro j -branch-info. On each clock cycle, proj-branch-info 

examines the opcode field of its input transaction. If it is a branch instruction, then 



it outputs a transaction with the same opcode, destination register name, destination 

value, and speculative branch target PC fields as the input transaction, but with all other 

fields (including source-operand register name fields) set to their default values2. If the 

transaction is not a branch instruction, then pro j  -branch-inf o outputs nopTrans. Since 

the iCache and branchmisp circuits only examine branch instructions, and in fact only 

those fields that pro j -branch-inf o lets through to its output, then pro j -branch-inf o 

really is an input projection of these two circuits (Figure 3.32). We thus insert these 

projections and move them towards the a l u  circuit. 

Figure 3.33: Insert proj-branch-info projection on the inputs to iCache and 
branchmisp, using the corresponding projection laws from Figure 3.32 

Figure 3.34: Move pro j -branch-inf o past the left-most delay, using the corresponding 
t ime-invariance law 

- - 

'Our ISA architecture hard-wires register RO to zero, so RO serves as the default value for register names 



To continue moving the pro j -branchinf o projection, we apply the circuit duplication 

law in reverse, merging the two projections into one. 

Figure 3.35: Merge the two instances of pro j  -branch-inf o, using the circuit duplication 
law in reverse 

At this point we can't move the pro j -branch-inf o circuit any further, since we can- 

not insert a proj-branch-info circuit on the wire leading to the second bypass without 

changing the functionality of the pipeline. What we do instead is split the delay that 

is to the right of the projection, using the feedback rotation law (and split the feedback 

wire while we're at  it). Once we have duplicated the delay, we can continue moving 

pro j -branch-inf o down towards the a l u  circuit. 

Figure 3.36: Split the delay circuit ahead of pro j -branch-inf o 



Figure 3.37: Move the pro j  -branch-inf o circuit past the delay circuit using the corre- 
sponding time-invariance law 

Now that pro j  -branch-inf o is at the output of the alu circuit, we can use projection- 

invariance laws to move the projection to the end of the pipeline. Projection-invariance 

laws act somewhat like commutativity laws, and state that the output of a projection 

is unchanged when its input signal is moved across another circuit. Figure 3.38 shows 

some of the laws for proj-branch-info. In particular, we can move the projection past 

the third bypass circuit and the mem execution unit of Figure 3.37, since neither of these 

circuits alter a transaction's branch information. 

Figure 3.38: Projection-invariance laws for pro j -branch-inf o 



branch-misp hazard $a pro-branch-info + 
Figure 3.39: Move proj-branch-info past the third bypass and mem circuit, using the 
projection invariance laws from Figure 3.38 

Figure 3.40: pro j - c t r l  projection insertion law 

To prepare for a future stage, we will also add pro j  - c t r l  projections to the inputs of 

the hazard circuit. The p ro j - c t r l  circuit passes the opcode, source register name, and 

destination register name fields of its input transaction through unchanged, but zeros- 

out all other fields. Since the hazard circuit only examines these control fields, then the 

projection insertion law shown in Figure 3.40 is valid. 

Figure 3.41: Add p ro j - c t r l  projections to the inputs of the hazard circuit using the 
corresponding projection-insertion laws (Figure 3.40), and move the right-most p ro j  - c t r l  
circuit past the delay using the corresponding time-invariance law 



3.4.3 Propagate hazard information stage 

At this point we would like to start removing bypass circuits using the hazard-bypass law. 

But this law can only be applied when there are no hazards between the affected stages. 

So we generate a no-hazard projection at the end of the dispatch stage (which is justified 

by a projection-absorption law applicable to the kill-circuit complex in that stage), and 

then move it between the first and second bypass circuits. 

Figure 3.42: Generalized nohaz projection insertion law 

The nohaz projection insertion law shown in Figure 3.42 is a slight generalization of 

the law discussed in Section 3.3.4. This generalized law holds since the k i l l  circuit is 

still guaranteed to "squash" all potential hazards, and in fact may squash other trans- 

actions as well. We use this law to insert a nohaz circuit after the k i l l  circuit in the 

microarchitecture. 

Figure 3.43: Insert a nohaz projection after the k i l l  circuit, using the projection insertion 
law shown in Figure 3.42 

The nohaz projection commutes with bypass circuits. One can see this by noting 

that bypass never changes the transaction fields that nohaz examines. Thus no3az 

will squash the same transactions regardless of whether it is placed before or after the 

bypass. If nohaz does squash a transaction by replacing it with nopTrans, then bypass 



will not modify the squashed transaction, since nopTrans contains no source operands. 

The nohaz  circuit acts like an identity on transactions it does not squash, so again it 

does not matter whether it is placed before or after the bypass circuit in this case. 

Figure 3.44: Commute nohaz with the first bypass, using the corresponding projection 
commutativity law (we also reroute the mem stage feedback wire) 

Figure 3.45: register file commutativity laws 

We will next swap the register file with the k i l l  circuitry using the two laws shown in 

Figure 3.45, so that the register file is closer to the bypass circuits we want to eliminate. 

The first law holds since the register file does not modify a transaction's control fields. It 

is easy to show that the second law holds by performing a case analysis on the Boolean 

input into k i l l :  If the input is t rue  at a given clock cycle, then both the left-hand and 

right-hand circuits output nopTrans. If the input is f a l se ,  then the k i l l  circuit acts as 

an identity, so the outputs in both circuits are identical. 



Figure 3.46: Commute the first p r o j - c t r l  projection with the register file, using the first 
law of Figure 3.45 

Figure 3.47: Commute the register file with the k i l l  circuit, using the second law of 
Figure 3.45 

Figure 3.48: Commute the second p ro j - c t r l  projection with the register file, using the 
first law of Figure 3.45 



3.4.4 Remove forwarding logic stage 

We are now in a position to start removing bypass circuits. The first bypass circuit can 

be removed immediately, due to the register-bypass law: 

Figure 3.49: Use the register-bypass law to remove the left-most bypass and the delay 
circuit below it 

We can now apply the hazard-bypass law to remove the bypass circuit just prior to 

the memory unit. 

Figure 3.50: Remove the right-most bypass circuit using the hazard-bypass law 

Figure 3.51: register file commutes with hazard projection 

Next, we can swap the noAaz projection with the register file (Figure 3.51), since the 

register file never alters its input's control fields, and since the internal state of the register 



file is only affected by its writeback input, not its data input. Once we have swapped the 

two components, we can remove the nohaz  projection by applying the law in Figure 3.42. 

Figure 3.52: Swap the register file with nohaz ,  using the commutativity law in Figure 3.51 

Figure 3.53: Remove nohaz ,  using the nohaz  projection insertion law (Figure 3.42) in 
reverse 

Figure 3.54: Merge the delay feeding into the remaining bypass circuit with the right- 
bottom-most delay, using the circuit-duplication law in reverse. 



proj-branch-info + 
Figure 3.55: Remove the last bypass circuit, using the register-bypass law 

3.4.5 Cleanup stage 

The pipeline has now been simplified as much as possible, except that there are still some 

extra delay components as well as several unnecessary projection circuits. We merge delay 

components, then move the projection circuits back to their places of origin and remove 

them using the projection laws in the opposite direction. 

proj-branch-info 7 

Figure 3.56: Swap the proj-branch-info projection with the delay next to it, using the 
corresponding time-invariance law. 



proj-branch-info 4 

Figure 3.57: Merge the three forking delay circuits after the mem circuit, using the feedback 
rotation law in reverse. 

We would like to remove as many delay circuits as possible when simplifying microar- 

chitectures, and there is a way we can merge the delay leading into the hazard circuit 

with the delay after the mem unit. Neither the a lu  nor the mem units ever modify the 

control fields of a transaction, so pro j x tr l  commutes with both of them (Figure 3.58). 

Figure 3.58: More proj -c tr l  projection invariance laws 

proj-branch-info Li 

Figure 3.59: Move the right-most pro j -c tr l  circuit past the register file, using the first 
law of Figure 3.45 



Figure 3.60: Move the right-most p ro j - c t r l  circuit past the alu, using the first law in 
Figure 3.58 

Figure 3.61: Move the right-most pro j  - c t r l  circuit past the mem, using the second law in 
Figure 3.58 

Figure 3.62: Swap the right-most pro j  - c t r l  circuit with the delay, using the correspond- 
ing time-invariance law 



Figure 3.63: Merge the delay after the mem unit with the delay below the right-most 
p ro j - c t r l ,  using the feedback rotation law in reverse 

All that remains now is to absorb the projection circuits back into the circuits they 

were created from. 

Figure 3.64: Remove p ro j - c t r l  circuits, using the projection insertion law of Figure 3.42 
in reverse 

Figure 3.65: Split the pro j  -branch-info projection, using the circuit duplication law 



Figure 3.66: Swap the left-most proj-branch-info projection with the delay circuit below 
it, using the corresponding time-invariance law 

3.4.6 Final pipeline 

After removing the pro j  -branch-inf o projections, we come to the final microarchitecture 

in Figure 3.67. This circuit still outputs exactly the same transaction values, cycle-for- 

cycle, as the microarchitecture in Figure 3.10, but is considerably less complex. 

Figure 3.67: The final pipeline, after removing the proj-branch-info projections using 
the projection insertion laws of figure 3.32 in reverse 

3.4.7 Verifying the final microarchitecture 

We can now apply conventional state machine-based techniques to verify that the final 

microarchitecture is a valid implementation of its instruction set architecture. Such a 

verification was recently carried out by Day, Aagaard, and Cook[20] for the microarchi- 

tecture of Figure 3.67. Using alternate definitions of the Hawk primitives they were able 

to automatically translate the Hawk microarchitecture description to an observationally 

equivalent state machine representation. They then used the pipeline flushing methodol- 

ogy of Burch and Dill[ll] to complete the verification. 



Pipeline flushing method 

In the Burch and Dill approach an implementation microarchitecture represented as a state 

machine is shown to satisfy an instruction set architecture (ISA), also represented as a state 

machine, by constructing an abstraction function that maps the implementation machine's 

internal state to the internal state of the ISA machine. To verify the implementation 

machine it must be shown that an abstraction function F maps the initial state of the 

implementation machine to the corresponding ISA machine's initial state, and that given 

any reachable implementation machine state s and current input inp, that 

F (Nextimpl s inp) = N e x t ~ s ~  ( F  s )  inp (3-1) 

where Nextimpr and NextIsA are the next-state transition functions of the implementation 

and ISA state machines, respectively. 

The abstraction function F is constructed by Pushing the implementation machine. 

That is, F examines the implementation machine's internal state to determine which in- 

structions have been issued to the pipeline but have not completed yet, and calculates 

what the final architectural state (i.e. the contents of user-visible registers and memory) 

would be when those instructions are completed, assuming no new instructions were is- 

sued. F can be defined semi-automatically by augmenting Nextimpl with an extra boolean 

parameter called Push. If push is set then Nextimpl does not issue a new instruction to 

the pipeline, but does continue to process in-flight instructions. F is then constructed 

by iterating the augmented Nextimpl transition function (with Push set to true) until all 

in-flight instructions have completed. For pipelined architectures, the number of iterations 

is bounded by the number of pipeline stages. 

Day, Aagaard, and Cook constructed an appropriate abstraction function F by aug- 

menting the generated Hawk microarchitecture state machine in this fashion. They then 

used the automated verification tool SVC[5] to verify that F satisfied equation (3.1). This 

equation is only required to hold for reachable states, that is, implementation machine 

states obtainable from some series of next-state transitions from the initial state. The 

authors constructed a predicate P characterizing the set of reachable states, which they 

gave to SVC as an assumption. They verified that P did in fact characterize the set of 



reachable states using McMillan's SMV[58] model checker 

Benefit of algebraic simplification 

While the authors could have used pipeline flushing to verify the original pipelined microar- 

chitecture of Figure 3.10, they claim that the simplified microarchitecture of Figure 3.67 

is less complex, making it more amenable to automated verification. 



Chapter 4 

Formalizing Hawk in higher order logic 

To ensure the correctness of the Hawk transformations we described in Chapter 3, we 

need to work within a formal semantics for Hawk programs. That is, we need to have an 

unambiguous mathematical interpretation of what a given Hawk program means, as well 

as a notion of what it means for two Hawk programs to be equivalent. 

Since we are mainly concerned with verifying the correctness of microarchitectural 

laws, rather than fully modeling the Hawk language itself, we have chosen to formalize 

only a subset of the language. In particular, we have chosen those features of Hawk that 

can be directly interpreted as elements of higher order logic, as supported by the Isabelle 

theorem prover. This precludes us from using some of Hawk's more advanced features, 

such as multi-parameter type classes and nested definitions. Fortunately, the circuits and 

transformations we consider can be adequately expressed without these features, and in 

return we gain the full benefit of Isabelle's proof machinery, including its type checker, 

parser, pretty-printer, and higher-order unification tactics. 

Section 4.1 gives a brief and informal account of higher order logic, and assumes the 

reader is familiar with first order predicate calculus, and the basic concepts associated 

with typed functional languages, especially the notions of first-class functions and Hindley- 

Milner type polymorphism. It borrows heavily from material by Melham[64], as well as 

Gordon and Melham's introduction to another higher order logic theorem prover[29] (also 

called HOL), the Isabelle reference manua1[74], and the chapter on higher order logic in 

Isabelle's object logics manual[69]. The reader should consult these sources for a more 

thorough introduction. 



4.1 Elements of higher order logic 

Higher order logic is a logic of functions. The traditional bifurcation between terms 

and formulas made in predicate calculus is not present in higher order logic. Instead all 

operators, including quantifiers and propositional connectives, are represented by (possibly 

higher order) functions. To avoid logical inconsistencies, a type discipline is imposed on 

terms, based on a restricted form of Hindley-Milner polymorphism1. 

The use of higher order functions as a first class construct significantly reduces the 

number of primitive axioms and inference rules in HOL. Many of the primitive syntactic 

forms in predicate calculus, such as quantifiers and most of the logical operators, are 

actually derived operators in HOL. 

As a result, the kernel of a theorem prover implementing higher order logic can be quite 

small, as little as a few hundred lines of code in a functional programming language. This 

has the happy consequence of reducing the likelihood of defects occurring in the overall 

theorem prover implementation, provided that all proof steps are checked by the kernel. 

4.1.1 Terms 

Higher order logic terms are built from the following four syntactic entities: 

Constants. Examples are True, False, 0, and Suc (the function that takes a number 

n and returns n + 1). 

Variables. Elements of this category are drawn from an infinite set of variable 

names V. Variables can be bound inside function definitions, in contrast to constants, 

which cannot. 

Function applications. Applications are writ ten using juxtaposition (i.e. by sep- 

arating the function from the argument it is being applied to with spaces). Thus 

the application of the Suc function to the number 3 is written as Suc 3. 

 h he main restriction being that only top-level expressions can be given universal types. Thus the term 
let id = ( A  x. x) in (id id) is not typeable in higher order logic, however the top-level constant definition 
id = ( A  x. x) is typeable with type ' a  + ' a ,  as is the top-level expression id id. 



A-abstractions. This category corresponds to anonymous functions in a functional 

programming language. A A-abstraction denotes a function of one parameter. An ex- 

ample is the function that increments a number by two, written as (Ax. Suc (Suc x)). 

To improve readability, most higher order logic theorem provers allow the user to 

declare that a given two-argument function constant should be parsed and printed as an 

infix operator. Thus the term (+ 1 (+ 3 6))  can be more conveniently read and written 

as (1 + 3 + 6). To further reduce the number of parentheses needed one can express an 

operator's associativity and its precedence with respect to other operators. For example, 

if the user has declared an annotation stating that the multiplication operator has higher 

precedence than the addition operator, then one can write terms such as (+ (* 1 2) (* 8 3)) 

in the more familiar form of (1 * 2 + 8 * 3).  

Higher order logic is a "total" language, with a meaning defined for every well-typed 

term. Constants evaluate to themselves, and the meaning of an application of a A- 

abstraction to an argument is given by substitution. Thus the term (Ax. x + x) (2 * 3) 

is logically equivalent to (2 * 3) + (2 * 3). Notice that the argument expression (2 * 3) 

is substituted as is, without first "evaluating" it. One can also substitute expressions con- 

taining a mixture of free variables and constants. Substitution in such cases is capture- 

avoiding, meaning that bound variables in nested A-abstractions will be renamed if they 

clash with free variables in the argument being substituted. 

4.1.2 Types and type operators 

Every HOL term is associated with a type. To begin with, Isabelle HOL assumes an 

infinite set of type variables 7 V  (whose elements are typically written 'a, 'b,  etc), as 

well as the primitive type constants boo1 and nat, corresponding to a two-element set of 

booleans and the set of natural numbers, respectively. 

More complex types can be constructed through the use of type operators. The ap- 

plication of a type operator to one or more types is written in postfix form. The only 

primitive type operator in HOL is fun, the function-space operator, which given a domain 

type T and range type a as arguments, denotes the type of functions from T to a. The 



Isabelle theorem prover provides an infix syntax for the fun operator, so that (7, a)  fun 

can be more conveniently read and written as r + a .  The infix form is right-associative, 

so that 7 + a + p is the same as 7 + (a + p) .  Isabelle also provides several theories 

containing derived type operators, such as set and list. 

Type polymorphism 

It is often the case that a term can be assigned more than one type. For example, 

the function that returns Due  regardless of its argument, (A x. Due) ,  could have type 

bool + boo!, but could also have type nut + bool or type (bool * bool) + bool. In fact, 

for any type 7, the function above could have type r + bool. Rather than restricting 

such terms to a single type, one can instead assign them a polymorphic type, using type 

variables. Thus one could associate the type 'a + bool to the term, where 'a is a variable 

drawn from n/. By default the Isabelle theorem prover infers the most general such type 

when constructing terms. 

4.1.3 Primitiveconstants 

Pure higher order logic contains only three primitive constants: Implication, equality, and 

the Hilbert &-operator (also called choice). The constants and their type signatures are 

shown in Figure 4.1. The meaning of implication and equality correspond to their intuitive 

meanings in other classical logics: A + B is true if and only if either A is false or B is 

true (or both). The term x = y is true exactly when x is logically equivalent to y. 

The third primitive constant is somewhat similar to the axiom of choice in set theory. 

Given a function P of type r =+ bool, then Eps P denotes some element x of type T such 

that P x is true. No other information about x is known. If no such element exists (i.e. P 

is equal to ( A  x. False)), then Eps P denotes a fixed, arbitrary element of type 7. To make 

choice expressions more readable, they are often written in an alternate syntax using the 

E symbol, so that if E is a boolean-valued expression possibly containing occurrences of 

x,  then Eps (A x. E )  is written as E x .  E ,  and pronounced as "some x such that E holds 

(if any)" . 



Table 4.1: The primitive constants of HOL 

Table 4.2: Some derived constants in Isabelle HOL 

Constant 
implication 
equality 

4.1.4 Defined constants 

Name 
+ 

choice I Evs  I ( ' a +  bool) + ' a  I E X . P X  
- - I ' a  + ' a  + boo1 

Constant 
truth 
falsity 
negation 
conjunction 
disjunction 
universal 
quantifier 
existential 
quantifier 
unique 
existence 
function 
composition 
conditional 
let 

Surprisingly, the above three constants are enough to allow all of the traditional predicate 

calculus quantifiers and Boolean connectives to be defined as derived constants. The 

names, types and syntax of the derived constants are given in Figure 4.2. 

x = y  

4.1.5 Inference rules and proofs 

Type 
boo1 + boo1 + boo1 

Name 
True 
False 
Not  
And 
Or  
All  

Ex 

Ex1 

Comp 

If 
Let 

Most of the axioms and inference rules of higher order logic correspond to those for pred- 

icate calculus. Rather than present them all, in Figure 4.1 we show the additional rules 

needed to support equality, functions, and choice. Each rule assumes that its constituent 

terms are well-formed and that all free variables among the predicates are consistently 

typed. In the rules the letters P and Q stand for boolean-valued terms, R stands for a 

Notation 
P  + Q 

Type 
boo1 
boo1 
boo1 + boo1 
boo1 + boo1 + boo1 
boo1 + boo1 =+ boo1 
( ' a  + bool) + boo1 

( ' a  + bool) + boo1 

( ' a  + bool) + boo1 

( ' a *  ' b ) + ( ' c +  ' a ) = +  ' c +  ' b  

boo1 + ' a  + ' a  + ' a  
' a  + ( ' a  + ' b )  ' b  

Notation 
True 
False 
1P 
p A Q  
P V Q  
V x .  P x  

3 x . P x  

3! x.  P  x  

f o g 

zf P  then x  else y 
let x=e in f x 



a = b  - (sym) a = b b =  c 
-(re%) a = a  b = a  a = c  (trans) 

a = b  f = g  a = b  
(AX. a) = (AX. b) ( abs)t f a = g b  (comb) 

b 
f x = g x  

(Ax. a )  = (Ay. a[y/x]) (a conv) ((Ax. a) b) = a[b/x] (P f = g  (ext)* 

Figure 4.1: Inference rules specific to higher order logic. t(abs) holds if x is not free in 
the assumptions. b(a conv) holds if y is not free in a. '(ext) holds if x is not free in the 
assumptions, f ,  or g. 

predicate term (i.e. a function-valued term returning a boolean), a ,  b, and c stand for 

terms of any type, x and y stand for variables of any type, and f and g stand for functions. 

The intended meaning is that if all of the terms above the bar are provably true, then the 

predicate below the bar is provably true. If no terms are displayed above the bar, then 

the conclusion holds unconditionally, and is an axiom. 

Proofs 

A proof in higher order logic is carried out by "pasting together" existing inference rules 

and theorems into a tree-like structure. The root of the tree contains the statement being 

proved, and the leaves contain axioms or pre-proven theorems. The intermediate nodes 

consist of inference rule instantiations. The root of the proof is drawn at the bottom of 

the tree, and the leaves at the top. For example, the theorem g ( ( A  x. f x) a) = g (f a) 

has the following natural deduction proof: 

g = g  (refl) ( ~ x . f x ) a = f a  (P conv) 
(comb) 

9 ((A x. f x) a) = g (f a) 



Derived rules 

One can also build new inference rules in natural deduction style by constructing proofs 

with undischarged premises. For example, the following derived rule, which we call 

(p expand), is often useful: 

(Ax. P) a 

P[alxl 
(P expand) 

The rule states that boolean terms already shown to be true can be P-expanded at the 

top-level. This rule is valid, since it is the pasting together of rules already known to be 

valid: 

(Ax. P) a = P[a/x] (P con4 (Ax. P) a 

P[alxI 
(= E )  

Notice that the premise (Ax. P) a of the derived rule occurs as an undischarged premise 

of the pasting. Any use of (P conv) can always be replaced by the corresponding sequence 

of existing rules. 

The converse of this derived rule is also useful 

P[a'xl (p o n t r )  
(Ax. P) a 

which has a similar derivation. One can use derived inference rules to shorten proofs. For 

example, we can use (P expand) and (P contr) to show2 that (EX. x = z) = z for free 

variable z as follows: 

= , (refrIP contr) 
(Ax. x = z) z 

(Ax. x = z) (Eps (Ax. x = z)) (E I )  

Eps (Ax, x = z) = z (P expand) 

Without (P  expand) and (/3 contr) the proof takes three extra steps and is too large to 

easily fit on this page. 

 emem ember that ( E X .  x = z )  is syntactic sugar for Eps (Ax. x = z )  



4.1.6 Type definitions 

While in theory the primitive bool and nat types and the function space type operator 

are enough to construct any type of interest, in practice it is often useful to define new 

types and type operators that are characterized by abstract value constructors and prop- 

erties only. Higher order logic theorem provers such as Isabelle provide a type definition 

mechanism to define new abstract types and type operators safely, by constructing them 

as subtypes of existing types. 

To define a new type, the user specifies a name T for the new type, a type expression 

r composed from existing types, and a membership predicate P :: r + bool indicating 

which elements of r should represent elements of the new type. The user also has to 

exhibit a theorem stating that P holds for at least one element of r, since all types in 

higher order logic must be non-empty3. The type definition package then generates a new 

type constant with name T ,  a pair of functions Rep-T :: T + r and Abs-T :: r + T ,  

and the following axioms: 

V ( x  :: T ) .  P (Rep-T x )  

V ( x  :: T ) .  Abs-T (Rep-T x )  = x 

V ( y  :: 7). P y -+ Rep-T (Abs-T y )  = y 

The axioms state that Abs-T and Rep-T comprise an isomorphism between the elements 

of the new type and the domain of P. This isomorphism allows the user to prove abstract 

properties about elements of T in terms of its representation elements of type r. Once 

these properties have been proven, the user never need refer to the representation elements. 

We demonstrate this by example. 

The prod type operator 

As well as types, the user can define new type operators through the same mechanism by 

parameterizing the type expression r with type variables. The number of type variables 

in the type expression r determines the number of arguments to the type operator. 

3~on-emptiness is required so that the choice operator (e) always denotes a meaningful value. 



For example, the ( ' a ,  ' b )  prod type operator, written as ( ' a  * ' b ) ,  takes two types ' a  

and ' b  as arguments, and constructs the type of all ordered pairs ( x  :: ' a ,  y  :: ' b )  drawn 

from the argument types. We can characterize this type abstractly in terms of three 

functions 

pair :: ' a  + ' b  + ( ' a  * ' b )  

fs t  :: ( ' a  * ' b )  + ' a  

s n d  :: ( ' a  * ' b )  + ' b  

and three axioms: 

( F s t )  V  x  y. fs t  ( p a i r  x  y )  = x  

( S n d )  V  x  y.  snd  (pa i r  x  y )  = y 

( P r o d E q )  V ( p : :  ( ' a  * ' b ) ) q .  ( p  = q )  = ( f s t p  = f s t q  A s n d p  = s n d q )  

Following Melham[63] we can define the ( ' a  * ' b )  type operator by specifying the oper- 

ator name as prod,  the type expression as ' a  =+ ' b  + bool, and the membership predicate 

P  as 

P f  holds for a function f :: ' a  + ' b  + bool when f  x  y  is true for exactly one pair of 

elements x  :: ' a  and y  :: ' b .  Thus the function f  represents the abstract pair ( x ,  y ) .  The 

theorem 

P ( A  x  y .  x  = ( E  x .  False)  A y  = ( E  y .  False) )  

demonstrates that P holds for at least one element of the representation type. 

Once the theorem prover has admitted prod as a new type operator, we can define the 

functions pair ,  f s t ,  and snd  as follows: 

pair = A x  y .  Abs-prod ( A  a  b. a  = x  A b  = y )  

fs t  = X p .  E X .  3 y .  (Rep-prod p )  x y  

s n d  = X p .  E y .  3 x .  (Rep-prod p )  x  y  



From these definitions and the generated isomorphism axioms, we can prove the abstract 

prod axioms (Fst), (Snd), and (ProdEq) as theorems. Once proved, it is no longer neces- 

sary to explicitly refer to the definitions of pair, fst, and snd. 

4.1.7 Datatypes 

Using similar tricks to the prod type definition above, it is relatively straightforward, 

though tedious, to create an abstract unit type, as well as type operators for sums, lists, 

and trees. Structured types such as these are useful enough that several theorem provers 

have implemented datatype definition packages, which allow the user to concisely specify 

a broad class of inductively structured types and automatically prove their abstract prop- 

erties as theorems. These packages are patterned after the datatype declaration forms 

common to typed functional languages such as ML and Haskell. 

A datatype declaration consists of a new type name Ty, possibly parameterized by 

type variables 'al . . . 'a,, and a finite list of constructor specifications. Each constructor 

specification consists of a new name Ci and a list of argument types ti,l . . . ti,k,. 

datatype ( 'al, . . . , 'a,) Ty = Cl tl,l . . . tl,k, I 
c2 t2,l - . t2,k2 I 

Each tilj can either be an existing type, one of the type variables 'al . . . 'a,, or the 

newly-declared type ( 'al, . . . , ' a , )  Ty . 

Given such a datatype declaration, the Isabelle datatype package automatically gen- 

erates a new type definition for Ty and a new constant definition for each constructor: 

cl :: t1,i + . . . =3 + ('al, . . . , 'an) Ty 

C2 :: t2,1 + . . . + t2,kz + ('al, . . . , 'a,) Tg 

. . . 

Cm :: tm,1 +- . . . + tm,km + ('al, . . . , 'a,) Ty 



The package also generates a series of theorems about the constructors, including the fact 

that no two constructors ever return the same element of Ty , that each constructor of one 

or more arguments is an injective function, and that together the constructors comprise 

all of the elements of Ty . 

In addition, the package generates a structural induction theorem, allowing the user 

to prove global properties of the new type. The structural induction theorem states 

that a predicate P :: ( 'al ,  . . . , 'a,) Ty + boo1 holds for all elements of Ty if for each 

constructor Ci ,  the term P ( C i   xi,^ . . . xi,k,) holds for all  xi,^, . . . , xi,k,. In proving that 

P ( Ci Xi,l . . . xi,k,) holds, it is assumed that P xi,j already holds for each argument x,,j of 

type ( 'a l ,  . . . , 'a,) Ty .  

List datatype 

As an example, the type of finite ' a  lists can be defined by the following datatype decla- 

ration 

datatype ' a  list = Nil I 
Cons ' a  ( ' a  l ist)  

with Nil representing the empty list and Cons x xs representing the list constructed from 

head element x :: ' a  and tail list xs :: ' a  list. Thus the list [I, 2, 31 of the first three 

positive natural numbers is represented by the expression Cons 1 (Cons  2 (Cons  3 Ni l ) )  of 

type nut  list. 

From the list datatype declaration, the datatype package generates the following in- 

format ion: 

A new type operator definition with name ' a  Eist, 

Constant definitions for the constructors 

Nil : : l a l i s t  

Cons : : ' a  + ' a  list + ' a  list 

A theorem stating that Nil and Cons always return separate ' a  Eist elements 



V x xs. Nil # Cons x xs 

A theorem stating that Cons is an injective function 

Vx y xs ys. (Cons x xs = Cons y ys) = (x = y A xs = ys) 

A theorem stating that together Nil and Cons generate all the elements of type 

' a  list 

V (xs :: ' a  list). xs = Nil V (3 y ys. xs = Cons y ys) 

A structural induction theorem for proving global properties of ' a  list elements. 

V (P :: ' a  Eist + bool) (xs :: ' a  list). 

P Nil A (V y ys. P ys -+ P (Cons y ys)) + P xs 

The 'a list type could alternatively be defined directly in terms of existing types, using 

the type definition package. However, it would be quite a bit of work to manually verify 

the necessary Eist properties. 

Soundness of datatype definitions 

When generating a new datatype definition, a theorem prover could simply create the 

needed datatype properties as axioms. However in practice most datatype packages con- 

struct new datatypes conservatively by invoking the theorem prover's underlying type defi- 

nition facility. A representation predicate for the datatype and a set of function definitions 

corresponding to the datatype constructors is fashioned such that the desired datatype 

properties can be proven by the package as theorems. In this way the consistency of the 

logic is guaranteed to be preserved. 

4.2 The Isabelle theorem prover 

Many of the proofs in this thesis have been checked by the generic theorem prover Isabelle 

(which we have already referred to in passing). Rather than supporting a single logic, a 



generic theorem prover is designed to support several logics by instantiating custom provers 

from a reusable set of program modules. This is based on the observation that many 

components of a theorem prover, such as parsing, pretty printing, theory management, 

rewriting tactics, etc. do not particularly depend on the actual logic used. Building a 

theorem prover able to tackle large verification tasks requires a substantial amount of 

infrastructure, so it is beneficial to reuse common tools when possible. Isabelle has been 

instantiated for several logics, including Zermelo-Fraenkel set theory[22], higher order 

logic, and domain theory. 

4.2.1 Certifying proofs in Isabelle 

Isabelle is derived from the Cambridge LCF system and follows the LCF approach to cer- 

tifying proofs4. In this approach the user interface to the theorem prover is an interactive 

read-eval-print loop to the programming language ML. Axioms and theorems are repre- 

sented as elements of an abstract data type called thm. The inference rules of higher order 

logic are represented as ML functions that return elements of type thm. The premises of 

an inference rule become parameters of the associated ML function. 

The user creates new theorems by calling ML procedures, either interactively or from a 

batch file. The static type system of ML ensures that only the axioms and thm-returning 

functions of the thm abstract data type can be used to build new theorems. However, 

the user can automate common patterns of inference by defining ML procedures, called 

tactics, that use existing t h m  functions and values. These tactics are themselves first class 

thm-returning functions that can be used to build even more powerful tactics, and so on. 

In this way very high level tactics that perform thousands of primitive inferences can be 

invoked to certify large proofs securely. To illustrate this approach, we provide a few of 

Isabelle's axioms and inference rules for higher order logic. In these examples we represent 

Isabelle terms as strings for readability. In practice terms are built from an algebraic ML 

datatype cterm. 

4 ~ h e  LCF systems have had a profound influence on the design of both higher order logic theorem 
provers and modern typed functional languages. Gordon[27] provides an historical account of LCF and 
the theorem provers influenced by it. 



"True" : thm 

beta-conversion : cterm -> thm 

transitive : thm -> thm -> thm 

The first three expressions are axioms. The fourth expression is a function corresponding to 

the ( p  conv) inference rule. Given a cterm of the form " (Ax. a) b", the beta-conversion 

function returns a thm of the form " (Ax. a) b = a[b/xl". The function dynamically 

checks that its cterm argument is a lambda abstraction applied to an argument, and 

that the cterm is well-typed according to the type rules of higher order logic. If these 

conditions do not hold then beta-conversion raises an exception instead of returning. 

The transitive function corresponds to the (trans) inference rule. It  takes two equational 

thm arguments of the form "a = b" and "b = c", respectively. The function checks that 

both arguments are in fact equations, and that they have the common term b. If the 

checks succeed then transitive returns the theorem "a = c". 

4.2.2 Higher level tactics 

Proofs are constructed by connecting inference rules, axioms and theorems together in 

some focused way. Patterns of proof construction are called tactics. 

Isabelle provides a wealth of tactics, ranging from the primitive inference rules ex- 

ported by the thm abstract data type to tactics that rewrite a theorem according to a list 

of already-proven equations5, perform prolog-style proof search, and allow the user to in- 

teractively prove theorems in a goal-directed fashion. Such high level tactics are essential 

to carry out verifications of any reasonable size. For example the function 

simplify : simpset -> thm -> thm 

'Isabelle also provides a primitive rewriting tactic as part of the thm abstract data type for efficiency 



is one of Isabelle's rewriting tactics. It takes a simpset, which is a collection of equation 

theorems indexed by the structure of their left hand sides for rapid pattern matching, 

and a thm to rewrite against. It repeatedly rewrites the theorem using the the equations 

stored in the simpset as left-to-right rewrite rules until no more equations match any of 

the theorem's subterms. The simplify function then returns the reduced theorem. 

Readability of Isabelle proofs 

One disadvantage of the LCF approach to certifying theorems is that the structure of the 

proof itself is not evident, as it is in an English description. Even proofs carried out using 

primitive tactics contain very little readable proof structure. For example, the primitive 

proof of the theorem ( E  x. x = t )  = t is given as the following ML expression in Isabelle: 

ref 1 RS (read-instantiate [("PI1 ,"(%x. x = ?t) " ) I  selec't1) 

For this reason we will present subsequent higher order logic proofs in English, rather than 

as Isabelle expressions. 

4.3 Embedding Hawk 

Given a formal mathematical basis such as higher order logic, there are two common 

methods for formalizing a programming language such as Hawk within the logic, termed 

shallow embedding  and deep embedding[ lO] .  

Shallow embeddings 

In a shallow embedding programming language elements are modeled directly as cor- 

responding elements within higher order logic. Thus programming language types are 

modeled as types within the logic, programming language numbers as logical numbers, 

programming language functions as logical functions, and so on. 

A shallow embedding works well when the language features being modeled are already 

present within the logic. In this case all of the logical rules for type checking and proving 

equality of expressions can be used as is. A disadvantage is that there are typically many 

more logical functions than there are programming language functions. For example, it is 



relatively easy in higher order logic to specify the function that solves the halting problem. 

These "extra" functions usually make it impossible to prove global properties about the 

programming language being modeled. Another disadvantage occurs with respect to the 

type system of a language. One often wants to prove global properties of the form "for 

all types T, every program of type T has property X. . . ". In many cases proofs of such 

properties require the use of case analysis or induction over all types, but typically this 

cannot be done within the logic (though see Volker[91]). 

Deep embeddings 

A deep embedding consists of one or more inductively defined datatypes representing the 

abstract syntax of the programming language, and a meaning function (or more generally 

a relation) that maps syntactic elements to logical (semantic) elements. In effect, one 

builds an interpreter for the language being embedded. One way to determine whether an 

embedding of a language is shallow or deep is to ask how programming language variables 

are modeled. In a shallow embedding, language variables become variables of the logic; 

in a deep embedding, language variables become constants of the datatypes representing 

the abstract syntax. 

A deep embedding allows one to prove global properties by induction over the datatypes 

representing the abstract syntax of the language. For example, a deep embedding can often 

be used to prove that all programs in the language are computable, or that all well-typed 

programs never generate runtime type errors. 

Another advantage of a deep embedding is its ability to model language features not 

present in the logic. For instance, the Haskell programming language has a sophisticated 

notion of overloading based on type classes. While the higher order logic employed by 

Isabelle implements single parameter type classes, it does not have support for Haskell's 

multi-parameter or constructor classes. These advanced type class features can only be 

modeled in Isabelle through a deep embedding. 

The primary disadvantage of deep embeddings is the low level at  which the language 

is specified, and the lack of built in theorem proving support for even the simplest op- 

erations. All type checking, parsing, pretty-printing, a-conversion and @-conversion of 



functions, and evaluation of expressions has to be programmed into the theorem prover 

as part of the embedding. A well-developed theoren1 prover like Isabelle has a great deal 

of specialized code for performing inference over its native logic, such as specialized unifi- 

cation and rewriting tactics, heuristically guided proof search routines, and so on. These 

routines either cannot be used on deeply embedded expressions, or have to be manu- 

ally refitted. Also, since embedded language expressions are encoded as abstract syntax 

datatypes within the logic, there is an extra level of interpretive overhead when calling 

inference routines on them. 

Embedding Hawk 

In this thesis we are primarily interested in proving equivalence between specific microar- 

chitecture components, rather than demonstrating global properties over all possible Hawk 

programs. In addition, almost the entire subset of Haskell's features that are needed to 

implement these components are already present in higher order logic. For these reasons 

we have pursued a shallow embedding of Hawk. 

4.4 Modeling recursive deffhitions 

The one critical feature of Hawk that beer order logic does not directly support is the 

ability to define recursive values, such 4 signals. 

In general, a recursive definition is given by 9ne or more equations, with the function 

(or value) being defined on the left hand side of each equation and an expression, possibly 

containing an instance of the functiorl beirig defined, on the right hand side. 

Unlike most programming langua&es, Isabelle 4oes not normally allow users to create 

arbitrary recursive definitions, since doing so couid easily lead to false theorems. For 

instance, suppose that Isabelle allowed the following recursive function definition: 

f :: nat nut 

f z =  f x + l  

Isabelle would then add the aba~ve equa,tion as s new theorem. But we could then 



subtract f x from both sides to conclude that 0 = 1 is also a theorem, which is clearly 

inconsistent. 

4.4.1 Axiomatic definitions 

Isabelle does allow the user to assume the truth of an arbitrary Boolean formula by 

declaring it as a new axiom of a theory. Using this facility, the user could create a new 

theory and specify a recursive Hawk definition as a series of equational axioms. It would 

then be the user's responsibility to show outside of the logic that dl of the axioms are 

consistent. However, since we want to ensure a high level of confidence in the correctness of 

our microarchitecture laws, we would prefer a mechanism that could be verified completely 

within the logic, and thus be checked by Isabelle itself. 

4.4.2 Well-founded recursion 

Rather than specify recursive functions by possibly inconsistent axioms, Isabelle and sev- 

eral other higher order logic (HOL) theorem provers[29, 73, 811 provide well-founded re- 

cursive function definition packages, where new functions can be defined conservatively. 

Recursive functions are defined by giving a series of pattern matching reduction rules, and 

a well-founded relation. 

For example, the map function applies a function f pointwise to each element of a 

finite list. This function can be recursively defined in Isabelle by the following equations: 

map :: (a  -+ p) -+ a list -+ p list 

"UP f [I = [I 
map f (x#xs) = ( f  4 # (map f xs) 

The first rule states that map applied to the empty list, denoted by 1, is equal to the 

empty list. The second rule states that map applied to a list constructed out of the head 

element x and tail list xs, denoted by x#xs, is equal to the list formed by applying f to 

x and map f to xs recursively. 



To define a function using well-founded recursion, the user must also supply a well- 

founded relation on one of the function's arguments6. A well-founded relation (<) is a 

relation with the property that there exists no strictly decreasing infinite sequence of 

elements XI ,  x2, x3,x4,. . .. 
Given a well-founded relation the recursive definition package checks each reduction 

rule, ensuring every recursive call on the right-hand side of the rule is applied to a smaller 

argument than on the left-hand side, according to the relation. 

In the case of map, we can supply the well-founded relation 

xs < ys EE length xs < length ys 

The relation holds when the number of elements in the relation's left-hand list argument 

is less than the number of elements in the relation's right-hand argument. The definition 

of map contains only one recursive rule, and it is easy to prove that the xs argument of 

the recursive call of map is smaller than the (x#xs) argument on the left-hand side of the 

rule, according to this relation. In general, well-founded relations ensure that there are 

no infinite chains of nested recursive calls. 

4.4.3 Coinductive types and corecursive functions 

Although well-founded recursion is a useful definition technique, there are many recursive 

definitions that fall outside its scope (including most of the recursively defined circuits in 

Hawk). For instance, there is a non-inductive type of lazy lists in the Isabelle[73] theorem 

prover, denoted by a llist, that is the set of all finite and infinite lists of type a. The 

function lmap over this type is uniquely specified by the following recursive equations7: 

Emap cannot be defined using well-founded recursion since the length of an infinite list 

does not decrease upon taking its tail. In fact, the expression 

'Some well-founded recursion packages only allow single-argument functions to. be defined. In this case 
one can gain the effect of multi-argument curried functions by tupling. 

7~sabelle uses a different syntax for lazy lists than for finite lists. In this dissertation we use the same 
syntax for both types. 



lmap f (xl # 2 2  # x3 # . . .) can be unfolded using the above rules to an infinite chain of 

recursive calls: 

Defining functions corecursively 

The a llist type is an example of a coinductive type. Although there is no general induction 

principle for coinductive types, one can use principles of coinduction to show that two 

coinductive values are equal, and one can build coinductive values using corecursion. 

In Isabelle's theory of lazy lists[75], for instance, potentially infinite lists are built 

through the llist-corec operator, which has type P + (P + unit + (a * P)) + (a  llist). 

The llist-corec operator uniquely satisfies the following recursion equation: 

if g b = In1 () 
llist-corec bg = 

(x # (Elist-corec b' g)), if g b = Inr (x, b') 

The llist-corec operator takes as arguments an initial value b and a function g. When g is 

applied to b, it either returns In1 (), indicating that the result list should be empty, or the 

value Inr (x, b'), where x represents the first element of the result list, and b' represents 

the new initial value to build the rest of the list from. Function g is called iteratively in 

this fashion, constructing a potentially infinite list. 

Using Elist-corec, we can define lmap corecursively as follows: 

Emap f xs - Elist-corec xs (map-head f) 

where 



map-head :: ( a  -+ P) -+ a llist + (unit + (P * a llist)) 

map-head f xs - case xs of 

n + In1 0 
I (x#xsl) + Inr (f x, xs') 

We could then prove by coinduction that this definition satisfies lmap's recursive equations. 

Needless to say, this is not the most intuitive specification of lmap, and most people would 

prefer to specify such functions using recursion, if possible. More importantly, corecursive 

definitions do not match the recursive style of Hawk specification we have developed so 

far. 

4.5 Defining recursive functions as fixed points 

In the remainder of this chapter and continuing in Chapter 5 we will present a more 

general approach that will allow us to define functions such as lmap recursively. The basic 

steps required in our framework to prove that a set of recursive equations is well defined 

in higher order logic are as follows. The use must: 

Express the recursive equations as a fixed point of a functional F. 

Show that for any two different potential solutions supplied to F, F maps them to 

two potential solutions that are closer together, in a suitable sense. 

Invoke the main result (Section 5.3) to show that the above property of F is sufficient 

to guarantee that there is a unique solution to the original set of recursive equations. 

In this section we deal with the first step. 

4.5.1 Unique fixed points 

We can convert a system of pattern matching recursive equations into a functional form 

by employing a standard technique from domain theory[32, 901. We start by recasting 

the equations as a single recursive equation using argument destructors or nested case- 

expressions. For example, the recursive equations defining the lmap function are equivalent 

to the following single recursive equation: 



lmap f 1 = case 1 of 

n =. n 
I ( X # X S )  * (f 2) # (lmap f xs) 

Given f ,  we can reify this pattern of recursion into a non-recursive functional F of 

type ( a  llist + P llist) + ( a  llist + P llist) that takes a function parameter lmap-f : 

F lmap-f = X I  . case 1 of 

n + n  
I (x#xs) * ( f  5 )  # ([map-f 4. 

Using the recursive equations for Emap, it is easy to show that lmap f = F (Emap f) .  The 

value lmap f is called a fixed point of F.  In general, an element x of type a is a fixed point 

of a function g of type a + a if x = g x. A function may have many fixed points, or none 

at all. Considering g as a functional representation of a system of recursive equations, each 

fixed point of g represents a valid solution to the system. If the function g has exactly 

one fixed point x ,  then we can think of g as defining the value x.  We use Hilbert's choice 

operator ( E )  to formalize this notion in HOL: 

fix :: ( a  + a )  + a 

f i x g ~ ~ x . x = g x A ( V y z . y = g y ~ z = g z + y = ~ )  

The expression fixg represents the unique fixed point of g, when one exists. If g does not 

have a unique fixed point, then fixg denotes an arbitrary value. 

4.5.2 Properties of unique fixed points 

As an aside, several nice properties hold when one can establish that a system of recursive 

equations has a unique solution. For example, unique fixed points can sometimes "absorb" 

functions applied to other fixed points. 

Lemma 1 Given functions F : a + a ,  G : /? + /3, f : a! + 8, and value x : a ,  such 

that x is a (not necessarily unique) fixed point of F ,  G has unique fixed point fixG, and 

f o F = G o  f ,  then f x = f i x G .  



Proof: We have f  x = f  (F x) = G ( f  x). Thus f  x is a fixed point of G. Since G's fixed 

point is unique, then f x = fix G 

Unique fixed points can also be "rotated", in the following sense: 

Lemma 2 I f  the composition of two functions g : p -+ a and h : a -+ p has a unique fixed 

point fix (g o h), then h o g also has a unique fixed point, and fix (g o h) = g (fix (h o g)). 

Proof: We first note that h (fix (g o h)) = h ((g o h) (fix (g o h))) = (h o g) (h (fix (g o h))). 

Thus h (fix (g o h)) is a fixed point of h o g. Next, suppose that x is an arbitrarily chosen 

fixed point of h o g. Then g x = g ((h o g) x) = (g o h) (g x). Thus g x is a fixed point of 

g o h. Since g o h has a unique fixed point, then g x  = fix (g o h). Applying h to both sides 

of this equation, we have h (g x) = h (fix (g o h)).  Since x is a fixed point of h o g, we can 

reduce the above equation to x = h (fix (g o h)),  which demonstrates that the fixed point 

of h o g is unique. Using the definition of fix, we have fix (h o g) = h (fix (g o h)). Applying 

g to both sides of this equation and using the unique fixed point property of g o h, we 

conclude that g(fix (h o g)) = fix (g o h) 

Although we will not use Lemma 1 or Lemma 2 explicitly, they justify many of the 

graphical transformations that have been undertaken in Chapter 3. In the next chapter 

we will show how to find unique fixed point solutions to recursive function definitions in 

a manner that can be semi-automated in Isabelle. 



Chapter 5 

Converging equivalence relations 

While unique fixed points are a useful definition mechanism, it can be difficult to show 

that they exist for a given function. A direct proof usually involves constructing an explicit 

fixed point witness using other definition techniques, such as corecursion or well-founded 

recursion. Little effort seems to be saved. 

We propose an alternative proof technique, based on concepts from domain theory[32, 

901 and topology[l2, 801 where one builds a collection of ever-closer approximations to 

the desired fixed point, and shows that the limit of these approximations exists, is a fixed 

point of the function under consideration, and is unique. The approximation process can 

be parameterized to some extent, and reused across multiple definitions that are "similar" 

enough. Furthermore these parameterized approximations can be composed hierarchically, 

yielding more powerful approximation techniques. 

5.1 Definition 

To make the notion of approximation precise, we need a way of stating how '(close" two 

potential approximations are to each other. One approach would be to define a suitable 

metric space[l2] and use the corresponding distance function, which returns either a ratio- 

nal or real number, given any two elements in the domain of the metric space. However, 

proving that a series of approximations converges to a limit point often requires reasoning 

about exponentiation and division over a theory of rationals or reals. An alternative way 

to measure "closeness", which we call converging equivalence relations (CER) ,  instead only 

involves reasoning about well-founded sets, such as the set of natural numbers, or the set 



of finite lists. In many cases we can prove a unique fixed point exists by performing a sim- 

ple induction over the natural numbers, something which all of the current HOL theorem 

provers support well. 

A converging equivalence relation consists of: 

a A type p, called the resolution space 

a A type 7, called the target space 

a A well-founded, transitive relation (<) over type p, called a resolution ordering 

A three-argument predicate (=) of type (p + r + T + bool), called an indexed 

equivalence relation. Given an element i of type p, and two elements x and y of type 
i 

T ,  we denote the application of (=) to i ,  x and y as (x = y), and if this value is true, 

then we say that x and y are equivalent at resolution i. 

The resolution ordering (<) and indexed equivalence relation (=) must satisfy the prop- 

erties in Fig. 5.1, for arbitrary i , i f  : p; x, y ,z  : r; and f : p -+ 7. Axioms (5.1), (5.2), 

and (5.3) state that (=) must be an equivalence relation at each resolution i. Axiom (5.4) 

states that if a resolution i has no lower resolutions, then (E) treats all target elements 

as equivalent at that resolution. Such resolutions are called minimal. There is always 

at least one minimal resolution (and perhaps more than one), since (<) is well-founded. 

Axiom (5.5) states that if two elements are equivalent at a particular resolution, then 

they are equivalent at  all lower resolutions. Thus higher resolutions impose finer-grained, 

but compatible, partitions of the target space than lower resolutions do. Although no 

particular resolution may distinguish all elements, (5.6) states that if two elements are 

equivalent at all resolutions, then they are in fact equal. 

Axioms (5.7) and (5.8) deal with "limits" of approximations. First some terminology: 

a function f : p -+ r from the space of resolutions to the target space of elements is called 

an approximation map. An approximation map f is convergent up to resolution i if for all 

resolutions j and j' such that j < j' < i, then (f j )  is equivalent at resolution j to (f j ' ) .  

Note that it is possible for (f i) itself not to be equivalent to any of the lower-resolution 



i 
X M X  (5.1) 

i i 
x = y + y m x  (5.2) 

i i i 
x % y A y ~ z - - + X M Z  (5.3) 

i 
( V j . l ( j  < 2 ) )  + x M 3 (5.4) 

i' i 
x % y ~ i < i ' - - + x m y  (5.5) 

j ( V j . z = y )  + x = y  (5.6) 

j j 
( V j , j l . j  < j '  < i --+ ( f j )  M ( f j ' ) )  + ( 3 z . V j  < i . z %  ( f j ) )  (5.7) 

( V j , j r . j  < j l  + ( f j )  A ( f j ' ) )  + ( 3 z . v j . z  ( f j ) )  (5.8) 

Figure 5.1: The CER axioms. Each of these axioms must hold for arbitrary i ,  x ,  y ,  and f .  

( f  j ) ' s .  An approximation map f is globally convergent if for all resolutions j and j' such 

that j < j', then (f j )  A ( f  j r ) .  

Axiom (5.7) states that iff is convergent up to resolution i ,  then there exists a limit-like 

element z that is equivalent at each resolution j < i to the corresponding ( f  j )  approx- 

imation (there may be multiple such elements). Axiom (5.8) states that if f is globally 

convergent, then there exists a limit element z that is equivalent to each approximation 

( f  j )  at resolution j .  

5.2 Examples 

5.2.1 Discrete CER 

The simplest useful CER has as a resolution space a two-element type containing the values 
I 

I and T ,  with (I < T), and a target space r with ( m )  defined such that ( x  = y )  -. Due,  
T 

and ( x  z y )  = ( x  = y ) .  Axioms (5.1) through (5.6) are easy to verify. Axiom (5.7) holds 

for any element. The limit element satisfying (5.8) is f T .  

5.2.2 Lazy list CER 

We can construct a converging equivalence equation for comparing coinductive lists by 

comparing the first i elements of two lazy lists l I  and l2 at a given resolution i. To perform 



the comparison, we make use of the Etake function, with type nut  + a llist -+ a list. The 

expression (ltake n xs)  returns a finite list consisting of the first n elements of xs. If xs 

has fewer than n elements, then ltake returns the whole of xs. The ltake function can be 

defined by well-founded recursion on its numeric argument with the following recursive 

equations: 

ltake 0 xs - - 0 
ltake (n + 1) [I = 0 
ltake (n  + 1)  ( x # x s )  = x # (ltake n x s )  

We then define the lazy list CER with the natural numbers as the resolution space, (a  llist) 

as the target space, the usual ordering on the natural numbers for (<), and ( z )  defined 

as follows: 
2 

xs z ys - (ltake i xs = ltake i ys). 

Axioms (5.1) through (5.3) hold trivially. The only minimal resolution in this CER is 

0, and since (ltake Oxs )  = [I, then (5.4) holds. If two lazy lists are equal up to the first 

i positions, then they are equal up to any it < i position, so (5.5) holds. Axiom (5.6) 

reduces to the Take Lemma[75], which can be proved by coinduction. 

Axioms (5.7) and (5.8) require us to construct appropriate limit elements, given an 

approximation map. Both limit elements can be constructed by a single function, which 

we call Elist-diag. For a given approximation map f ,  the limit elements may be of infinite 

length, so we define llist-diag by corecursion, using llist-corec: 

llist-diag f r llist-corec 0 (nthElem f) 

where 

The helper function nthElem uses the ldrop function on lazy lists. The ldrop function 

has type nut -+ (a 1li.st) --+ (a  llist), and (ldrop i xs)  removes the first i elements from xs, 

returning the remainder. Like Etake, it is defined by well-founded recursion on its numeric 



f O = . . .  

f 6 = [xO, x l ,  x2, x3, x41 

f 7 = [xO, x l ,  x2, x3, x41 

Figure 5.2: The llist-diag function constructs a limit list from an approximation map. In 
(a) the approximation map converges to a finite list; In (b) to an infinite list. 

argument: 

ldrop 0 xs - xs - 

ldrop (n + 1)  = [I 

ldrop (n + 1)  (x # xs)  = ldrop n xs 

The overall action of llist-diag is to construct a so-called diagonal list from the approx- 

imation map f ,  where the nth element of the result list is drawn from the nth element of 

approximation f (n + I), if the nth element exists. If the nth element does not exist (i.e., 

the length of f (n + 1) is less than n), then the result list is terminated at that point. This 

process is shown in Fig. 5.2. There are two possible cases. In Fig. 5.2-a, we see that the 

approximation map f converges to the finite list [xo, X I ,  2 2 ,  23,  x4]. In Fig. 5.2-b, the 

approximation map f is converging to the infinite list [xo, XI, x2, 23, 2 4 ,  xs, xs, . . .] 
It turns out that for any CER whose (<) relation is the less-than ordering on the 

natural numbers, the following property implies both (5.7) and (5.8): 

With some work, one can show that this property holds for the lazy list CER by supplying 

llist-diag f as the existential witness element for x. 

5.3 Contracting functions and the CER fixpoint theorem 

In the theory of metric spaces, a contracting function is a function F such that for any 

two points x and y, F x is closer to F y than x is to y, given a suitable distance function. 



Banach's theorem states that all contracting functions over suitable metric spaces have 

unique fixed points. We can define an analogous notion over a CER: 

Definition 1 A function F is contracting over a C E R  given by (<) and (e) if for all 

resolutions i and target elements x and y ,  

i' 
( W 1 < i . x e y )  - - + ( F ~ ) & ( F ~ ) .  

Intuitively, a function is contracting if, given two elements x and y that are close enough 

together at all lower resolutions i' < i to satisfy the CER, but are potentially too far 

away at resolution i ,  then F maps them to two elements that are now close enough at 

resolution i. 

For example, the function consZero xs = (O#xs) is contracting over the lazy list CER, 

since given any i and two lazy lists x s  and ys ,  

(Vi' < i . ltake i' xs = ltake i' ys)  + ltake i (conszero x s )  = ltake i (consZero ys).  

The main result of this chapter is as follows: 

CER Fixpoint Theorem A contracting function F over a C E R  has a unique fixed 

point. 

The proof is discussed in Sect. 5.9. For now, we would like to apply this theorem to 

define some simple recursive functions over lazy lists. 

5.4 Recursive definitions over coinductive lists 

To begin with, we can simplify the definition of a contracting function F over a CER when 

the (<) relation of that CER is the less-than relation over the natural numbers. In this 

case, Definition 1 reduces to 

i i+l 
V i x y . x  x y + ( F x )  z ( F y ) .  

Specializing this formula for the lazy list CER, we have that F is contracting on lazy lists 

if 

V i x y .  l t a k e i x  = l takei  y -+ ltake (i + 1 )  ( F  x )  = ltake (i  + 1 )  ( F  y ) .  (5.10) 



5.4.1 Defining i terates 

Let us establish that the following recursive equation, defined over x and f ,  has a unique 

solution, and is thus a definition: 

iterates = (x # ( lmap f i terates)) (5.11) 

This equation builds the infinite list [ x ,  f x ,  f (f x ) ,  . . .I. We first define the non-recursive 

functional F that characterizes this equation: 

F iterates' - ( x  # (Emap f iterates')). 

and then show that it is a contracting function. To do this we rely on (5.10),  and assume 

we have two arbitrary lazy lists xs and ys such that ltake i xs = ltake i ys. We now need 

to show that ltake (i + 1 )  ( F  x s )  = ltake (i + 1)  ( F  ys) .  Using a process of equational 

simplification we are able to reduce the goal to the assumption, as follows: 

ltake (i + 1 )  ( F  xs )  = ltake (i + 1)  ( F  ys) 

ltake (i + 1 )  ( x  # ( h a p  f x s ) )  = Etake (i  + 1)  ( x  # ( lmap f y s ) )  

H ltake i ( lmap f x s )  = Etake i ( lmap f ys)  

+ ltake i xs = ltake i ys 

The simplification relies on the following facts, each proved by induction on i: 

(ltake (i + 1)  ( z  # xs )  = Etake (i + 1)  ( z  # ys ) )  (ltake i xs )  = ltake i ys )  

(ltake i ( lmap f x s )  = ltake i (Emap f ys) + (Itake i xs = ltake i ys)  

These facts illustrate a nice property of this proof: We did not have to expand the def- 

initions of (#) or lmap during the simplification process, relying instead on an abstract 

characterization of their behavior with respect to ltake. This turns out to be the case for 

many functions, even recursive ones defined by contracting functions. In general we can 

often incrementally define recursive functions and prove properties about how they behave 

with respect to (z),  without having to expand the definitions of functions making up the 

body of the recursive definition. 



5.5 Composing converging equivalence relations 

The lazy list CER allows us to give recursive definitions of individual lazy lists, but 

we are often more interested in recursively defining functions that transform lazy lists. 

Fortunately, there are several CER combinators that allow us to build CERs over complex 

types, if we have CERs that operate on the corresponding atomic types. 

Local and global limits 

When constructing a new CER C 1  out of an existing CER C ,  we usually have to show 

(5.7) and (5.8) hold for C' by invoking (5.7) and (5.8) for C, to create the necessary limit 

witness elements. To make this process explicit, we use Hilbert's choice operator ( E )  to 

create functions that return these witness elements1, given an appropriate approximation 

mapping f :  

local-limit :: ( p  + T )  + p -+ T 
j local- l imit f i  = ( ~ z . V j  < z . z =  ( f j ) )  

global-limit :: ( p  -+ T )  + T 

j 
global-limit f = ( E Z  . V j  . z = ( f  j ) )  

We can use the axiom of choice for HOL, as well as (5.7) and (5.8) to prove the basic 

properties we want local-limit and global-limit to have for any CER given by (<) and (z): 

( V .  < < i ( f j ) ( j l ) )  (V j  < i . ( l o c a l - l i m i t f i ) & ( f j ) )  (5.14) 

( j ,  . < j + ( f )  ( f  j ) )  + (Vj  . (global-limit f )  & ( f  j ) )  (5.15) 

Function-space CER 

The functions local-limit and global-limit allow us to concisely specify the limit elements 

of CER combinators. For example, given a CER C from resolution space p to target space 

 his is merely a convenience. The CER properties can be shown with a little more work in Isabelle 
using (5.7) and (5.8) directly. 



T given by (<) and ( w ) ,  we can construct a new function-space over C CER with the 

same resolution ordering (<), and a new indexed equivalence relation (w') with type 

p + ( a  + r )  -+ ( a  + r )  + bool, defined as 

i i 
g w' h = V x . ( g x )  z ( h x ) .  

The limit elements satisfying (5.7) and (5.8) can be given as 

local -limit -fun f i (Ax . local -limit (Xi . f i x )  i )  

global-limit-fun f = (Ax .  global-limit (Xi. f i x ) )  

Given these limit-producing functions, it is relatively easy to show that the function-space 

over C CER satisfies the CER axioms. As an example of the kind of reasoning involved, 

we prove that local -limit-fun satisfies (5.7). 

Lemma 3 Given a CER (<, w ) ,  approximation map f of type p + ( a  + T ) ,  and (w') 
J 

defined as above, then if (Vj, j ' .  j < j' < i -+ ( f  j )  w' ( f  j ' ) ) ,  
i 

then V j  . local-limit-fun f i w' ( f  j ) .  

Proof: Given the definition of (w')  and local-limit-fun, we must show for arbitrary x 
j 

and j that local~limit f i x w f j x. Let f '  = Xi. f i x .  Then f' is an approximation map 
i of type p + r .  Thus we need to show that local-limit f ' i  w f' j. By definition of (w') and 

j 
the premise of the lemma, we have (Vj, j', x .  j < j' < i + ( f  j x )  w ( f  j ' x ) ) .  Applying 

the definition of f ' ,  we have (Vj, j'. j < j' < i 4 ( f ' j )  ( f ' j ' ) ) .  By (5.14) we have 
i V j  < i. local-limit f' i w ( f '  j ) ,  as desired. 

5.5.1 Defining recursive functions with the function-space CER 

Defining lmap 

We can apply the function-space CER to define lmap recursively. The recursion equations 

for lmap are: 

lmap f 0 = 0 
lmap f (x#xs) = ( f  x )  # (Imap f xs) 



We translate the equations into a non-recursive form (parameterized over f )  

F  lmap' r (Xxs . case xs of 

U * U  
I (Y # Y S )  * (f Y )  # @map' ~ 4 ) .  

We then need to show that fix F  is the unique fixed point of F  by proving that F  is a 

contracting function on the function-space over lazy lists CER. By (5.9) we must show for 
i (i+l) 

arbitrary resolution i  and functions g  and h,  that (g e' h  + ( F  g) e' ( F  h ) ) .  Expand- 

ing definitions, we obtain 

i (i+l) 
g  R5' h  + ( F g )  e' ( F  h )  

i (i+l) 
@ (Vxs .gx s  ~5 h x s ) - - + ( V x s . ( F g x s )  e ( F h x s ) )  

(V xs . ltake i  (g xs) = ltake i  ( h  xs ) )  -+ 

(V xs . ltake ( i  + 1) ( F  g xs) = ltake ( i  + 1)  ( F  h  xs)) .  

So, to prove F  is contracting we take an arbitrary resolution i  and two arbitrarily chosen 

functions g  and h  such that (V xs . ltake i  (g xs) = Etake i  ( h  x s ) ) ,  and show for an arbitrary 

xs that ltake ( i  + 1)  ( F  g  xs) = ltake ( i  + 1)  ( F  h  xs). There are two cases to consider: 

case xs = 0:  
ltake ( i  + 1) ( F  g  0) = Etake ( i  + 1) ( F  h  [I) 

++ ltake ( i  + 1) 1 = ltake ( i  + 1) 0 
@ True. 

case xs = (y#ys): 

ltake ( i  + 1 )  ( F  g  (y#ys) )  = ltake (i + 1) ( F  h (y#ys) )  

@ Etake ( 2  + 1) ( ( f  Y )  # (g ys))  = ltake ( 2  + 1) ( ( f  Y )  # ( h  ys))  

@ ltake i (g ys) = ltake i  ( h  ys) 

@ True {by assumption). 



Given the definition of F and basic lemmas about Etake, Isabelle's high-level simplification 

tactics allow the above proof to be carried out in two steps. The proof completes in about 

a second on a 266MHz Pentium 11. 

Defining lappend 

We can apply the function-space CER combinator repeatedly, to prove that multi-argument 

curried functions have unique fixed points. As a concrete example, the curried function 

lappend has type a Elist + a Elist + a llist. It takes two lazy list arguments xs and ys 

and returns a new list consisting of the elements of xs followed by the elements of ys. The 

recursive equations for lappend are 

lappend 1 y s =  ys 

lappend ( x # x s )  ys = ( x  # Eappend xs ys)  

To prove that these equations have a unique solution, we apply the function-space CER 

combinator to the lazy list CER to obtain a new CER C'. We then apply the function- 

space CER combinator again to C', obtaining a new CER C" with the usual less-than 

relation on n a t  for (<) and the following indexed equivalence relation (&"': 
i 

g =" h r ( V x s  y s . l t a k e i ( g x s  ys)  = l t a k e i ( h x s  ys ) ) .  

Next, we convert the recursive equations for lappend into a non-recursive function F :  

F lappendl - (Xxs ys . case xs of 

[I * YS 

I ( x  # xs') + (x # (lappend' as' ys ) ) ) .  

By (5.9) we must show for arbitrary resolution i and functions g and h, that 

(V xs ys . ltake i (g  xs ys)  = Etake i (h  xs y s ) )  -+ 
(V xs ys . ltake (i + 1)  ( F  g xs ys) = ltake (i + 1)  ( F  h xs ys ) ) .  

So we take arbitrary i ,  xs ,  and ys, and prove 

ltake (i + 1 )  ( F  g xs ys)  = ltake (i + 1 )  ( F  h xs ys)  

assuming we have (V xs ys . ltake i (g xs ys) = ltake i ( h  xs ys ) ) .  There are two cases to 

consider, depending on whether xs is empty or not: 



case xs = 0: 
ltake (i + 1) ( F g  0 ys) = ltake (i + 1 )  (F h ys) 

u ltake (i + 1) ys = ltake (i + 1) ys 
# True. 

case xs = (x#xsl): 

l take (i + 1)  (F g (x#xs1) ys) = ltake (i + 1) (F h (x#xsl) ys) 
@ ltake (i + 1) (x # (g xs' ys)) = ltake (i + 1) (x # (h xs' ys)) 

@ ltake i (g xs' ys) = ltake i (h xs' ys) 

u True {by assumption). 

Thus we can conclude that lappend has a unique fixed point definition. We were able to 

carry out this proof in Isabelle in three steps, again taking about a second of CPU time. 

5.5.2 Other CER combinators 

CER combinators can also be defined over product and sum types. The lazy list CER 

can be generalized to work over any coinductive type that has a notion of depth, such as 

coinductive trees. A more powerful function-space CER is discussed in Sect. 5.7. 

5.6 Demonstrating equality between coinductive elements 

Converging equivalence relations can also be useful in showing that two elements of a target 

space are equal. Axiom (5.6) (restated below) says that to show two target elements x 

and y are equal, one simply needs to show they are equivalent at all resolutions j 

We can often demonstrate that x and y are equivalent at all resolutions by well-founded 

induction, since (<) is a well-founded relation. For example, given two arbitrary lazy lists 

ys and zs, we can prove the following lemma about lappend. 

Lemma 4 Vxs . ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys 2s)). 



Proof 

case i = 0: 

Take xs to be an arbitrary lazy list. Then 

l take i ( lappend (lappend xs ys) zs) = ltake i ( lappend xs (Eappend ys 2s)) 

l take 0 ( lappend (lappend xs ys) zs) = l take 0 ( lappend xs ( lappend ys 2s)) 

.3 [I = [I 

True. 

case i = ( k  + 1): 
Induction hypothesis: 

Assume (Yes . ltalce k (Eappend (lappend xs ys) zs) = 

ltake k (Eappend xs ( lappend ys 2s))) 

Take xs to be an arbitrary lazy list. Then 

l take i ( lappend (lappend xs ys) zs) = ltake i ( lappend xs ( lappend ys 2s)) 

e ( l take  ( k  + 1)  (lappend (lappend xs ys) zs) = 

l take ( k  + 1) ( lappend xs ( lappend ys zs))) 

subcase xs = [I: 

( l take  ( k  + 1) ( lappend (lappend [I ys) zs) = 

ltake ( k  + 1) ( lappend [] ( lappend ys zs))) 

@ ( l take  ( k  + 1) ( lappend ys zs) = 

l take ( k  + 1) ( lappend ys zs)) 

@ True. 

subcase xs = ( x  # xs'): 

@ ( l take  ( k  + 1) ( lappend (Eappend ( x  # xs') ys) zs) = 

l take ( k  + 1) ( lappend ( x  # xs') ( lappend ys 2s))) 

@ ( l take  ( k  + 1) ( lappend ( x  # ( lappend xs' ys)) zs) = 

l take ( k  + 1)  ( x  # ( lappend xs' ( lappend ys 2s)))) 



w (Etake ( k  + 1 )  ( x  # (lappend (lappend xs' y s )  2 s ) )  = 

ltake ( k  + 1 )  ( x  # (lappend xs' (lappend ys 2 s ) ) ) )  

w (l take k (lappend (lappend xs' ys)  z s )  = 

ltake k (lappend xs' (lappend ys z s ) ) )  

w True {by induction hypothesis). 

This proof took four steps in Isabelle, and relied on the following facts about lappend, 

each proved in two steps by expanding lappend's recursive definition once and simplifying: 

lappend 1 ys = ys 

lappend ( x # x s )  ys = x # (lappend xs ys)  

Given Lemma 4 and C E R  axiom (5.6) instantiated to the lazy list C E R ,  we can then easily 

show in one Isabelle step that lappend (lappend xs ys)  zs = lappend xs (lappend ys 2s).  

5.7 Defining functions with unbounded look-ahead 

The list-processing functions defined so far examine their arguments by performing at most 

one pattern match on a lazy list before producing an element of a result list. However, there 

is a class of functions that can examine a potentially infinite amount of their argument 

lists before deciding the next element to output. An example is the lazy filter function 

of type (a  -+ bool) -+ a llist + a llist ,  which takes a predicate P and a lazy list xs ,  and 

returns a lazy list of the same type consisting only of those elements of xs satisfying P. A 

candidate set of recursion equations for this function might be 

lfiEter P 1 = [I 
lfilter P ( x # x s )  = lfilter P x s ,  if l ( P s )  

lfilter P ( x # x s )  = x # (lfilter P x s ) ,  if P x 

Sadly, this intuitively appealing set of equations does not completely define lfilter. If lfilter 

is given an infinite list xs ,  none of whose elements satisfy P, then the above equations do 

not specify what the result list should be. The lfilter function is free to return any value 

at all in this case. In other words, the equations do not have a unique solution. 



Happily, however, we can remedy the situation as follows: We define by induction over 

nut a predicate firstPeEemAt of type ( a  -+ bool) -+ a llist -+ nut --+ bool. The expression 

(firstPelemAt P xs i )  is true if xs has at  least ( i  + 1) elements and i is the position of 

the first element of xs satisfying P. We can then define the predicate never of type 

(a  -+ bool) -+ a llist -+ bool as 

never P xs r V i . i(firstPe1emAt P xs i )  

which is true when there are no elements in xs satisfying P .  If we modify the initial 

recursive equations as follows: 

lfilter P xs - 
- 0, if never P xs 

lfilter P (x#xs)  = lfilter P xs ,  if ~ ( n e u e r  P xs) A l ( P  x )  

lfilter P (x#xs)  = x # (lfilter P xs ) ,  if P x 

then the set of equations does indeed have a unique solution. This function is not com- 

putable, since the predicate never can scan an infinite number of elements, but it is 

nevertheless mathematically valid in HOL. We can define a well-founded function-space 

CER combinator that is powerful enough to prove this. Given a CER C with (<) of type 

p -+ p + bool and ( z )  with type p -+ 7 -+ 7 -+ bool, and another well-founded transitive 

relation ( 4 )  of type a -+ a -+ bool, we define our new CER C' with ( < I )  and (z') as 

follows: 

(<') :: ( p  * a )  -+ ( p  * a )  -+ bool 

(z') :: ( p  * a )  -+ ( a  -+ 7 )  -+ ( a  --+ 7 )  -+ boo1 

(a', t ' )  <' (a ,  t )  z a' < a V (a' = a A t' 4 t )  
(4 

g e' h  - V a' t' . (a', t') <' (a ,  t )  -+ ( g  t') & ( h  t') 

It is a fair amount of work to show that C' is in fact a CER, so we elide the details. 

Intuitively C' allows us to generalize well-founded recursion in the following way: A 

well-founded recursive function is forced to have its argument decrease in size on every 

recursive call. With C',  the function being defined is allowed a choice; it can either decrease 



the size of its argument when making a recursive call, or not decrease its argument size 

but then make sure the element it is returning is "larger" than the element returned from 

its recursive call. 

In the case of functions returning lazy lists, a "larger" lazy list is one that looks just 

like the lazy list returned by the recursive call, but with at least one extra element added 

to the front. 

For us to use C' on lfilter, we need to specify a suitable well-founded transitive relation 

(4).  The relation we choose is one that holds when the first element satisfying P occurs 

sooner on the left-hand argument than on the right-hand argument: 

xs + ys r firstpelem P xs < firstpelem P ys  

where 

firstpelem P xs = 0, if never P xs 

= 1 + ( E Z  . firstPelemAt P xs i), otherwise 

We arbitrarily decide that a list containing no P-elements is +-smaller than any list with 

at least one P-element. 

When analyzing the revised recursive equations for lflter, if zs has no P-elements then 

we return immediately, otherwise zs  has to have at least one P-element. If that element 

is not at the head of the list, then the tail of the list is +-smaller than xs. If the first 

P-element is at the head of xs, then the tail of the list is not +-smaller than xs, but the 

output list has one more element than the list returned by the recursive call. Thus we 

informally conclude that lfilter is uniquely defined. 

We have also proved this fact formally in Isabelle. After inductively proving various 

simple lemmas about JirstPeEemAt, never, and JirstPelem, we were able to prove that 

lfilter is uniquely defined in five steps. We first translated the recursive equations above 

into a contracting function F. We used C' prove that F is contracting, first by expanding 

the definition of F and simplifying, and then by performing a case analysis (no induction 

required!) on whether the nat component of the current resolution was equal to zero. It 

took Isabelle two seconds to perform the proof. 



Although we had to prove lemmas about firstPelemAt, never, and firstpelem, the 

proofs are not hard and it turns out we can reuse these results when defining other func- 

tions that perform unbounded search on lazy lists. For example, the lflatten function takes 

a lazy list of lazy lists, and flattens all of the elements into a single lazy list. The lflatten 

function can also be uniquely defined using never: 

ZfEatten xss = [I, if never (Xxs .xs # [) xss 

ljlatten (xs#xss) = lappend xs (lflatten xss), otherwise 

The proof proceeds in Isabelle exactly as it does for lfilter except that we perform one 

additional case analysis on whether xs = [I. The proof takes three seconds to complete. 

5.8 Generalizing well-founded recursion 

This section discusses how WFFun, the well-founded function space CER of Section 5.7 

can be used to show that well-founded recursive function definitions have unique solutions. 

WFFun is parameterized by two arguments: A well-founded relation (4) and a base 

CER C. In Section 5.7, C was used to allow the function f being defined to call itself 

recursively on arguments that were not strictly (+)-smaller, provided that in this case f 

also returned a "larger" (i.e. more defined) result than the result of the recursive call. C 

was used to measure the definedness of the returned results. 

In contrast, a well-founded function definition can call itself recursively on only strictly 

(+)-smaller arguments, but no requirements are placed on the function's return value. 

These requirements can be met in the CER framework by instantiating C to the discrete 

CER of Section 5.2.1. The discrete CER has only two resolutions, I and T, corresponding 

to completely undefined values and completely defined values, respectively. 

To show that a fixed point functional F of type (p + T) + (p + T) is contracting on 

the instantiated WFFun CER, it is sufficient to show that F satisfies the following formula 

for all i of type p and functions g and h of type p + T : 

(Vj.  j + i - + g j = h j ) + F g i = F h i  



In words, the formula states that when calling the recursive function at resolution i ,  the 

result only depends on recursive calls made at (<)-smaller values. That is, we can replace 

every recursive call in the body of the function being defined by a call to another function 

that only agrees with the "true" recursive function at arguments smaller than i ,  without 

changing the result of the overall expression. But this will be true if in fact the function 

is well-founded, since such functions only make recursive calls at smaller arguments. 

From a theorem proving point of view, the formula above is particularly well suited 

to Isabelle's conditional rewriting tactics. In trying to show the formula holds for F, the 

rewriter will automatically convert the antecedent into a conditional rewrite rule, and 

then attempt to simplify the consequent. All applications of g in the left hand side of the 

consequent will be rewritten in terms of h by the added rewrite rule, provided the rewriter 

can show that g's argument is (+)-smaller than i. If it succeeds, then the left hand side 

will be syntactically equal to the right hand side, and the formula will simplify to the 

constant R u e .  

5.9 Proof of the CER fixpoint theorem 

5.9.1 Outline 

Given a CER with resolution space p, target space r, well-founded transitive relation (<), 

indexed equivalence relation (w), and an arbitrary contracting function F of type r -+ 7, 

our technique will be to construct an approximation map apx F that converges globally 

to the desired fixed point. We then prove that this fixed point is unique by showing that 

any two fixed points of F are equal. 

The function apx of type (r + r )  -+ p -+ r that builds an approximation map from a 

contracting function is defined by well-founded recursion on (<). 

apx F i = F (local-limit (apx F) i) (5.16) 

At each resolution i, the function apx uses local-limit to obtain the best possible 

approximation of fix F, given the approximations it has already computed at all lower 



resolutions2. The result of calling local-limit may still not be close enough at resolution i,  

so apx maps the local limit through F, which will bring the result close enough. Isabelle's 

theory of well-founded functions ensures that the recursive instance of apx F in the body 

of the definition is only applied to strictly smaller resolutions than i. 

Once we have proved by well-founded induction that apx is well defined, we then 
i 

establish that apx F is convergent up to each resolution i, and that apx F i x F (apx  F i )  . 
a 

This will allow us to show that global-limit (apx F) = F (global-limit ( apx  F) )  at each 

resolution i ,  and are thus equal by (5.6) .  This result establishes that a fixed point exists 

for F .  We then show that any two fixed points x and y of F are equivalent at all resolutions 

by well-founded induction, and thus are equal, again by (5.6).  

5.9.2 Converging approximat ion maps 

We assume throughout this treatment that (<) and (=) are arbitrary predicates satisfying 

the CER axioms, and that F is a contracting function over this CER. We do not bother 

to state these properties as premises of the lemmas and theorems below. 

Our first task is to develop a theory of converging approximation maps, which will 

allow us to show in Section 5.9.3 that apx is globally convergent. To do this we need to 

define some terms. 

j Definition 2 Two  elements x and y of type r are equivalent up to resolution i if x = y 

for all j < i. 

Note that x and y do not have to be equivalent at resolution i itself to be equivalent up to 

resolution i. 

Definition 3 Given an  element x of type r and an approximation mapping f of type 
j 

p + 7, then x is a local limit at  resolution i of f if x z ( f  j ) ,  for all j < i. 

Local limits imply local convergence: 

Lemma 5 If x i s  a local limit at resolution i o f f ,  then f is convergent up  t o  

resolution i .  

'Here the definition of local-limit using Hilbert's choice operator seems essential. 



k 
Proof: Assuming arbitrary k < j < i ,  we must show ( f  k )  w ( f  j ) .  Since x is a local 

j t 
limit at resolution i of f ,  then ( f  j )  w x, and ( f  k )  z x. Since k < j ,  then by (5.5) we 

k k k 
have ( f  j )  z 2. Since ( z )  is an equivalence relation, then ( f  k )  FZ ( f  j )  

Lemma 6 Given an  approximation map f and resolution i ,  if for all it < i it i s  the case 

that f i' is a local limit at resolution if o f f ,  then f is convergent up to  resolution i. 

k 
Proof: Assuming arbitrary k < j < i ,  we must show ( f  k )  z ( f  j ) .  By assumption we 

j' have that f j is a local limit at resolution j o f f .  That is, Vj' < j . f j w f j'. In particular, 
k k 

f j x f k ,  which is equal by (5.2) to ( f  k )  z ( f  j ) .  

Lemma 7 If x and y are both local limits at resolution i o f f ,  then x and y are equivalent 

up to  resolution i. 

j j Proof: We must show for arbitrary j < i that x z y. This holds since x z ( f  j )  and 
j j 

y z ( f  j )  by assumption, and since ( F Z )  is an equivalence relation. 

Lemma 8 I f f  i s  locally convergent up to resolution i ,  then local-limit f i is a local limit 

at resolution i of f .  

j Proof: By (5.7) we know there exists some element z such that V j  < i . z z ( f  j ) .  By Def- 
j 

inition 5.12 we have that local-limit f i = ( E Z  .V j  < i .  z w ( f  j ) ) .  By the axiom of choice 
j 

for HOL, we can conclude that V j  < i . (local-limit f i )  z ( f  j ) .  That is, local-limit f i is a 

local limit at resolution i of f  

Lemma 9 If f i s  globally convergent, then global-limit f is a global l imit o f f .  

2 
Proof: By (5.8) we know there exists some element z such that V i  . z z ( f  i ) .  By Def- 

i 
inition 5.13 we have that global-limit f = ( ~ z  . V i .  z z ( f  i ) ) .  By the axiom of choice for 

2 
HOL, we can conclude that V i  . global-limit f z (f i ) .  That is, global-limit f is a global 

limit of f 



i i 
Lemma 10 If x  w y,  and G  is a contracting function, then G x  FZ G  y. 

i 
Proof: If x  w y, then x  is equivalent to y at all lower resolutions, by (5.5). Thus x  

and y are equivalent up to resolution i .  Thus by the definition of contracting function, 
i 

G x x G y .  

Lemma 11 If x  is a local limit at resolution i o f f ,  and G  is a contracting function, then 

G  x is a local limit at resolution i of G  o f .  

j Proof: Given arbitrary j < i ,  we must show that G x  w G  ( f  j ) .  By assumption we have 
j 3 x = f j .  Then by Lemma 10 we have G x  w G  ( f  j), as desired. 

5.9.3 Properties of apx 

Before we can establish that apx F converges to the desired fixed point of F, we need to 

show that apx is a valid well-founded recursive definition. We will accomplish this using 

Isabelle's theory of well-founded relations, which contains a general recursion operator, 

wfrec, with type 

( a  * a)  set -+ ( ( a  -+ p )  -+ ( a  -+ p ) )  -+ a -+ P 

The theory contains a theorem stating that if (<) is a well-founded relation, then wfrec 

satisfies the following law: 

wfrec (<) H a  = H (cut (wfrec (<) H )  a)  a 

where 

cut f i x  = if x  < i then f x  else arbitrary 

The helper function cut is used to ensure that recursive calls to wfrec (<) H are only 

made at (<)-smaller values than a, ensuring well-foundedness. If H attempts to invoke 

wfrec (<) H with any other value, then cut returns a fixed arbitrary element instead. We 

can then define apx as follows: 



apx F i r wfrec (<) H i  

where 

H apx' i r F (local -limit apx' i )  

This non-recursive version of apx satisfies Isabelle's requirements for definitions. We 

now need to prove (5.16) as a lemma. 

Lemma 12 apx F i = F (local-limit (apx F)  i )  

Proof: 

apx F i 

= {Def. of a p x )  

wfrec (<) H i  

= {wfrec law) 

H ( c u t  (wfrec (<) H )  i )  i 

= {Def. of apx in reverse) 

H (cu t  (apx  F )  i )  i 

= {Def. of H) 

F (local-limit ( cu t  (apx  F )  i )  i )  

= {Def. of local-limit) 
3 

F ( E Z  . Q j  < i . z = ( ( c u t  (apx F )  i )  j ) )  

= {Def. of cut ,  and j < i in the body of the universal quantifier) 
j 

F ( E z . Q ~  < ~ . Z M  ( a p x F j ) )  

= (Def. of local-limit) 

F (local -limit (apx  F )  i )  

We now proceed to show that apx F globally converges to the unique fixed point of F .  

i Lemma 13 If (apx  F i )  i s  a local limit at resolution i of apx F ,  then apx F i % F (apx  F i )  

Proof: We have that apx F is convergent up to resolution i by Lemma 5. By Lemma 8 

local-limit (apx  F )  i is also a local limit at resolution i of apx F .  Therefore local-limit (apx  F )  i 



and apx F i are convergent up to resolution i .  By the definition of contracting func- 
2 

tion, we have F (local-limit (apx F )  i )  z F (apx F i ) .  By Lemma 12, this is equal to 
a 

apx F i  z F (apx F i )  

Lemma 14 For all resolutions i ,  apx F i is a local limit at resolution i to apx F .  

Proof: By well-founded induction on i .  Thus we assume for all j < i that apx F j is a 

local limit at  resolution j to apx F .  By the induction hypothesis and Lemma 6 we have 

that apx F is convergent up to resolution i .  By Lemma 8 we have local-limit (apx F )  i is 

a local limit at  resolution i of apx F .  By Lemma 11 we have that F (local-limit (apx F )  i )  

is a local limit at resolution i of F o apx F .  This means that apx F i is a local limit at 

resolution i of F o apx F ,  by Lemma 12. 

To show that apx F i is a local limit at resolution i of apx F ,  we need to show for arbi- 
j 

trary j < i that apx F i z apx F j. Since apx F i is a local limit at resolution i of F o  apx F ,  
j 

then apx F i cz F (apz  F j ) .  By the induction hypothesis and Lemma 13 we have that 
j j j 

apx F j z F (apx F j ) .  Since ( z )  is an equivalence relation, we have apx F i = apx F j ,  as 

desired 

i 
Lemma 15 For all resolutions i ,  apx F i z F (apx F i )  

Proof: By Lemmas 13 and 14 

Lemma 16 apx F is globally convergent. 

i 
Proof: Given arbitrary i and j such that i < j ,  we must show that apx F i  cz apx F j. 

But this follows immediately from Lemma 14 and Definition 3 

Lemma 17 global-limit (apx F )  = F (global-limit (apx F ) )  



2 
Proof: Given an arbitrary resolution i ,  we have that global-limit (apx  F) E apx F i ,  

2 
by Lemma 9 and Lemma 16. We also have F (global-limit (apx  F ) )  E F (apx  F i ) ,  by 

i i 
Lemma 10. By Lemma 15 we have apx F i z F (apx  F i ) .  Since ( z )  is an equivalence 

i 
relation, we can conclude that global-limit (apx  F) z F (global-limit (apx  F ) ) .  Since i was 

arbitrarily chosen, the above equivalence holds for all resolutions i. Therefore the two 

values are equal, by (5.6) 

This demonstrates that F has a fixed point. All that remains is to show that the fixed 

point is unique. 

Lemma 18 If x = F x and y = F y for contracting function F ,  then x = y. 

i 
Proof: To show x = y it suffices to show for arbitrary i that x E y, by (5.6). We shall 

j 
demonstrate this by well-founded induction on i .  Thus we assume that x = y, for all 

resolutions j < i .  By the induction hypothesis and the definition of contracting function 
i i 

we have that F x z F y. Since F x = x and F y = y, we conclude that x z y. 

5.10 Applying CERs to Hawk circuits 

The CER framework was originally developed to conservatively define recursive Hawk 

circuit definitions in higher order logic. Section 6.6.2 gives an example, where the internal 

state of a register file component is defined as a (higher order) recursive signal transformer 

called envs. Section 6.6.2 proves that envs uniquely satisfies its defining equation by 

creating a CER for signals and then demonstrating that the envs is contracting on the 

function space over signals CER. 

5.11 Related work 

The support for and application of well-founded induction and general coinduction has 

seen wide acceptance in the HOL theorem proving community. The well-founded definition 

package TFL used in HOL98 and Isabelle was written by Slind[88]. It can handle nested 



pattern matching in rule definitions, nested recursion in function bodies, and generates 

custom induction rules for each definition[87]. The PVS theorem prover[81] also uses 

well-founded induction as a basic definitional principle. A general theory of inductive and 

coinductive sets in Isabelle was developed by Paulson[75], based on least and greatest 

fixed points of monotone set-transforming functions, as well as a package for defining 

new inductive and coinductive sets by user-given introduction rules. The package avoids 

syntactic restrictions in the introduction rules by reasoning about each rule's underlying 

set-transformer semantics. 

Paulson's Isabelle theories were applied by Frost[25] to formalize the static and dy- 

namic semantics of a small functional language and prove that the two semantics were 

consistent with each other. Recursive functions are represented by infinitely nested envi- 

ronments, requiring consistency to be proved by coinduction. The underlying ideas of the 

language and proof, as well as the concept of coinduction as a variant of fixpoint induction, 

were introduced by Milner and Tofte[65]. 

A coinductive theory of streams (infinite-only lists) was developed by Miner[66] in the 

PVS theorem prover. Miner used this theory to model synchronous hardware circuits as 

corecursively-defined stream transformers. Using coinduction, he was able to optimize 

the implementation of a fault-tolerant clock synchronization circuit and a floating-point 

division circuit. In several cases a subcircuit was replaced by an optimized subcircuit, and 

the correctness of the replacement depended on non-trivial environmental assumptions in 

the surrounding circuit. Coinduction was used to verify the environmental assumptions 

and to show that the subcircuits were equivalent under the assumed environment. 

A well-known alternative to coinductive types is the mathematical framework of pointed 

complete partial orders and continuous functions, also known as domain theory[32, 901. 

This theory is supported by the HOLCF[68] object-logic in Isabelle, and also allows one 

to define infinite data structures such as lazy lists and trees. A wide variety of functions 

over these structures can then be recursively defined. The primary disadvantage of this 

approach is that one must add "extra" bottom-elements to the structures being defined. 

These extra elements are usually used to indicate non-termination. For example, a lazy 

filter function lfilter that removes all elements of a lazy list xs not satisfying a predicate P 



can be defined recursively in HOLCF, but the expression Zfilter P xs returns I instead of 

[I when xs is an infinite list containing no elements satisfying P. In contrast, Section 5.7 

introduces a CER powerful enough to define an lfilter that returns in this case. Also, only 

so-called admissible predicates can be reasoned about inductively in domain theory, and 

it can be quite challenging to prove that a desired predicate is admissible. A comparison 

of the HOLCF approach to several other encodings of lazy lists is presented by Devillers 

et a1[21]. 

Topology[l2, 801 provides another well-established definition mechanism. The notions 

of Cauchy sequences, complete metric spaces, and contractions inspired much of this work. 

We have not worked out the exact relationship between converging equivalence relations 

and Cauchy metric spaces; although one can construct a distance function for every nat- 

indexed CER, it is not clear that distance functions can be always be constructed for more 

complex resolution spaces. Also, the conditions under which a function F is contracting 

in a CER seem to be less restrictive than the corresponding conditions in a metric space. 

More importantly from a verification perspective, well-founded induction seems easier 

to apply in current theorem provers than does the continuous mathematics required for 

metric spaces. 



Chapter 6 

Verifying the microarchitecture laws 

Converging equivalence relations allow us to formally specify Hawk circuits as recursive 

equations over signals. We can use these equations to reason about Hawk components, 

and in particular prove the validity of the microarchitecture laws used in Chapter 3. 

Many of the laws are localized enough that one can consider verifying them automat- 

ically by some kind of decision procedure. Since most decision procedures for hardware 

equivalence checking are based on state-machine transducer formalisms, a natural ap- 

proach would be to first translate the left and right hand sides of the microarchitecture 

law being verified into state machine transducers, and then verify that the two transducers 

are observationally equivalent. Algorithms for performing such equivalency verifications 

on finite state machines have been extensively studied, including techniques based on Bi- 

nary Decision Diagrams[l7] and Sttilmarck's Method[50]. In fact, several commercial tools 

now exist for performing equivalency checking on large hardware circuits. 

These techniques cannot immediately be used on Hawk circuits, since the lack of a 

priori bounds on the size of words or the number of registers used in Hawk microarchitec- 

tures means that typical Hawk components translate into infinite state, instead of finite 

state, transducers. Fortunately, significant progress has also been made on checking the 

equivalence of infinite state machine transducers, using symmetry reduction[l5, 241 and 

abstraction[l6] techniques. Usually these techniques require some manual intervention, 

although often less than that required for pure theorem proving-based approaches. 

However, in keeping with our theme of exploring algebraic methods for performing 

microarchitecture verification, we have chosen to continue verifying the individual laws 

themselves using a combination of equational reasoning and induction. 



The equivalence proofs themselves can be quite large, even given the relatively simple 

component definitions needed to specify the pipeline of Chapter 3. It is not that the proofs 

are mathematically sophisticated, but rather that the components process large amounts 

of disparate data, namely the field values of transactions. The aim of this chapter is to give 

a flavor of the kind and amount of reasoning involved in proving two transaction-processing 

components behaviorally equivalent, and to present some techniques for reducing the size 

of the associated proof. Since even the "reduced" proofs of these laws can be quite lengthy 

we only sketch a couple of examples in this chapter: the alu time invariance law and the 

registerFile-bypass law. 

6.1 A theory of transactions 

The main source of proof complexity results from the large number of fields that a transac- 

tion contains, and the fact that the field values are of different types. A typical equivalence 

proof of two transaction-processing components F and G will involve a series of cases, one 

for each transaction field, showing that the two circuits output identical field values. Many 

of the cases will be symmetric with respect to each other, differing only in the name of 

the field mentioned in the proof and the field's type. To reduce the amount of redundancy 

in such proofs this section will present a theory of transactions where transaction fields 

themselves are logical objects, and can be quantified over. In this way a symmetric group 

of cases in a proof can be reduced to a single proof parameterized over the symmetrically- 

used field names. 

We begin by precisely defining what a transaction is in higher order logic. Intuitively a 

transaction is a record containing all of the fields that a microarchitecture uses to process 

one instruction. The set of fields needed depends on the instruction set architecture 

and the complexity of the microarchitecture implementing it. For the branch-predicting 

microarchitecture we consider in this thesis, we require the following fields: 

a destRegFld :: Reg 

The destination register name. 

destValFld :: Word 



The destination register contents. 

a opcodeFld :: Opcode 

The operation the transaction is to perform. 

a slRegFld :: Reg 

The first source operand register name. 

a slValFld :: Word 

The first source operand register contents. 

s2RegFld :: Reg 

The second source operand register name. 

slValFld :: Word 

The second source operand register contents. 

specPCFld :: Word 

The speculative next address to fetch. This value is set by the branch target predic- 

tion buffer in the instruction cache. If the ALU calculates the actual next address 

for a branch instruction to be different from the speculative next address, then a 

branch misprediction has occurred. 

nextPCFld :: Word 

The actual next address to fetch. Initialized by the instruction cache to the address 

following the address the transaction was fetched from. On branch instructions, the 

ALU will set this field to the actual branch target address. 

6.1.1 Transaction as an abstract datatype 

There are many different ways in higher order logic to create such records. Rather than 

fix a particular model, we define a new type called Pans, with a function for constructing 

a transaction given initial values for each field, and a series of accessor functions, one for 

each transaction field. 



mkTransl :: Reg + Word + Opcode + Reg + Word + 
Reg =+ Word $ Word + Word + Trans 

dstRegl :: Trans + Reg 

dst ValName' :: Trans + Word 

opcode' :: Trans + Opcode 

s 1 Reg' :: Trans + Reg 

s 1 Val' :: Trans + Word 

s2Reg' :: Trans + Reg 

s2Val' :: Trans + Word 

spec P C' :: Trans =+ Word 

nextPC' :: Trans + Word 

We will follow the convention that functions that take or return transactions or transaction 

fields will have a ( I )  appended to their name (as opposed to functions that operate on 

signals of transactions). 

6.1.2 Transaction laws 

There are two properties we want elements of the transaction type to satisfy. First, it 

must be the case that each field accessor function retrieves the same value as was used to 

construct that field of the transaction: 

dstRegl (mkTrans' dstReg dst ValName opc sl Reg 

slVal s2Reg s2Val specPC nextPC) = dstReg 

dst ValName' (mkTrans1 dstReg dst ValName opc s l  Reg 

slVal s2Reg s2Val specPC nextPC) = dst ValName 

nextPC' (mkTransl dstReg dst ValName ope slReg 

slVal s2Reg s2Val specPC nextPC) = nextPC 

Second, it must be the case that two transactions are equal exactly when all of their fields 

are equal: 



( t r l  = tr2) = (dstRegt trl  = dstRegl tr2 A 

dst ValNamel tr 1 = dst ValName' tr2 A 

opcode' trl = opcode' tr2 A 

s l  Reg' tr 1 = sl Reg1 tr2 A 

slVall trl = slVall tr2 A 

s2Reg1 trl = s2Reg1 tr2 A 

s2Valt trl  = s2VaE1 tr2 A 

specPC1 trl = specPC' tr2 A 

nextPC' trl = nextPC' tr2) 

To prevent the possibility of logical inconsistencies, we use Isabelle's type definition 

package to define Trans and derive the appropriate laws as theorems. In our definitions, we 

define a transaction simply as a tuple of its fields, mkTranst as a function that constructs a 

tuple from its field arguments, and the field accessors as the appropriate tuple projections. 

Another choice would have been to use Isabelle's datatype package. 

From the two transaction properties above we can show that mkTransl can construct 

any valid transaction tr by using the transaction accessors on tr itself. 

( tr  = mkTranst (dstRegl tr) (dstValNamel tr)  (opcode' tr) 

(slRegl tr)  (slVal' tr)  (s2Reg1 tr )  (s2VaE' tr)  

(specPCt tr)  (nextPC1 t r ) )  

= {second transaction property; use let expression to share common subterms) 

(let tr2 = mkTransl (dstRegl t r )  (dstValNamel t r )  (opcode' t r )  

(slRegl tr) (slVaE1 tr) (s2Reg1 tr)  (s2Valt tr) 

(specPC1 tr)  (nextPC1 tr)  



in dstRegl tr = dstRegl tr2 A 

dst ValNamel tr = dst ValNamel tr2 A 

opcode' tr = opcode' tr2 A 

slRegl tr = slRegl tr2 A 

slVall tr = slVall tr2 A 

s2Reg1 tr = s2Reg1 tr2 A 

specPC1 tr = specPC' tr2 A 

nextPC1 tr = nextPC1 tr2) 

= {expand let expression; first transaction property) 

(dstReg1 tr = dstRegl tr A 

dst ValNamel tr = dst ValNamel tr A 

opcode' tr = opcode' tr A 

slRegl tr = slReg1 tr A 

slVall tr = slVall tr A 

s2Reg1 tr = s2Reg' tr A 

specPC1 tr = specPC1 tr A 

nextPC1 tr = nextPC1 tr )  

= {logic) 

True 

Thus we know that transactions contain no "hidden" fields. 

6.1.3 Derived transaction operators 

Many of the Hawk components take existing transactions and construct new transactions 

from them that change just a few fields. We can simplify the definitions of these com- 

ponents by defining a series of transaction updaters, each of which takes a transaction 

field value and an existing transaction and returns a new transaction just like the original 

except with the appropriate field updated: 

setDstRegl :: Reg + Trans + Trans 

setDstRegl reg tr = 



mkTranst reg (dstValNamel t r )  (opcodel t r )  (slRegl t r )  (slValt t r )  

(s2Reg1 t r )  (s2VaE1 t r )  (specPC' t r )  (nextPC1 t r )  

setDst Val' :: Word + Trans + Trans 

setDstVall val tr = 

mkTransl (dstRegl t r )  val (opcode' t r )  (slRegl t r )  (slVall t r )  

(s2Reg1 t r )  (s2Va11 t r )  (specPC1 t r )  (nextPCt t r )  

setNextPC1 :: Word =+ Trans =+ Trans 

setNextPC1 pc tr = 

mkTransl (dstRegl t r )  (dst ValName' t r )  (opcode' t r )  ( s l  Reg' t r )  (slVaE1 t r )  

(s2Reg1 t r )  (s2Va11 t r )  (specPC1 t r )  pc 

We can derive several useful laws for these functions. Taking the setDstRegl function as 

a representative example, we can show for an arbitrary transaction tr that the updater 

does in fact update the appropriate field: 

dstRegl (setDstRegl reg t r )  

= {definition of setDstRegl) 

dstRegl (mkTranst reg (dstValNamet t r )  (opcode' t r )  (slRegl t r )  (slVall t r )  

(s2Reg1 t r )  (s2Va11 t r )  (specPC1 t r )  (nextPC' t r ) )  

= {first transaction property) 

reg 

It is also the case that none of the other fields are modified, for example the opcode field: 

opcode' (setDstRegl reg t r )  

= {definition of setDstRegl) 

opcode' (mkTransl reg (dstValNamel t r )  (opcode' t r )  (slRegl t r )  (slVall t r )  

(s2Reg1 t r )  (s2VaE1 t r )  (specPC1 t r )  (nextPC1 t r ) )  

= {first transaction property) 

opcode' tr 



We can similarly show that all of the other transaction fields remain unchanged. 

6.2 Exploiting symmetry in transaction fields 

We would like to prove this last property as a general theorem. We can define (outside of 

higher order logic) the set of field accessors 

and the set of field updaters 

and define a bijection update : A -+ U that maps each field accessor to its corresponding 

field updater. Thus update (dstRegl) = setDstRegl, update (dst ValName ) = setDst Val', 

and so on. We would like to prove the following fact in higher order logic: 

'd t E Trans, fld E A, fldl E A, x E dom(fldl). 

fld # j?dl -+ fld (update(fldl) x t)  = fld t 

That is, if we update a field of a transaction and then examine a different field of the 

result, it should be the same as the original transaction's field. While we can prove that 

every instance of the above formula is true, the type system of higher order logic is too 

restrictive to allow us to prove the formula itself as a theorem. We cannot even construct 

the set A in higher order logic, since the elements of A are of different types. 

Since any given microarchitectural component only modifies a few transaction fields, 

it would be nice if we could prove something like the above statement as a theorem and 

avoid having to re-prove that each of the other fields of the transaction returned by the 

component is unchanged. For example, the alu component only modifies the dst ValName 

and nextPC fields. We would like to prove the following formula 

'if t E Trans, n E Time, fld E A - {dst ValNamel, nextPC'). fld (alu t n) = fld ( t  n) 

but we run into similar problems. As it stands we have to instead prove each instance of 

this formula as a separate theorem. 



6.2.1 First class field names 

We can work around HOL's inability to quantify over types by using a well-known tech- 

nique from the typed functional programming community. 

Instead of trying to define the set A of transaction accessors directly, we will define 

a new datatype of accessor names, called FzeldNm, all of whose elements have the same 

type: 

datatype Operand = Dst I Srcl I Src2 

datatype FzeldNm = RegNm Operand / ValNm Operand I 
opcodeNm I specPCNm ( nextPCNm 

Note that the RegNm and ValNm constructors have been parameterized by their operand 

location. Thus, for example, RegNm Dst is the name of the destination register field, and 

ValNm Srcl is the name of the field holding the first source operand register contents. We 

will also define a uniform datatype for holding the contents of a field: 

datatype Field Value = Reg Value' Reg ( Word Value' Word ( Opcode Value' Opcode 

We can now create a single parameterized field accessor function that takes a field name 

and a transaction and returns the appropriate field contents as a FieldValue. 

field' :: FzeEdNm + Trans + FieldValue 

field' n m  t = 



case nm of 

(RegNm Dst) + Reg Value' (dstRegl t )  

I ( ValNm Dst) + WordValue' (dst ValName' t )  

I opcodeNm + Opcode Value' (opcodel t )  

( (RegNm Srcl) + Reg Value' ( s  1 Reg' t ) 

I ( ValNm Srcl) 3 WordValue' (slVall t )  

I (RegNm Src2) + Reg Value' (s2Reg1 t )  

I ( ValNm Src2) + WordValue' (s2Va11 t )  

I specPCNm + Word Value' (specPC' t )  

( nextPCNm 3 WordValue' (nextPC1 t )  

end 

We would like to create a parameterized field updater function in a similar fashion 

update1 :: FieEdNm + FieldValue + Bans + Bans 

but the primitive field updaters do not take FieldValue elements as parameters. To 

solve this problem we define a series of type cast functions, one for each constructor in 

FieldValue. We use Hilbert's choice operator to perform the cast. If the casting functions 

are given a FieldValue element that does not correspond to the type they are casting to, 

then the choice operator will return an arbitrary element of the correct type. 

castToRegl :: Field Value =+- Reg 

castToRegt fv = ( E  r .  fv = Regvalue' r )  

cast To Word' :: Field Value + Word 

cast To Word' fv = ( E  w . fv = Word Value' w ) 

castToOpcodel :: Field Value =+ Opcode 

castToOpcodel fv = ( E  opc. fv = Opcode Value' opc) 

We also define a predicate indicating whether a FieldValue element is compatible with a 

given FieEdNm : 



vaEidFieldType :: FzeldNm + FieldValue + boo1 

validFzeldType n m  fv = 

case fv of 

(Reg ValueJ r )  + ( n m  = (RegNm Dst)  V 

n m  = (RegNm Srcl)  V 

n m  = (RegNm Src2)) 

I ( Word Value' w) + ( n m  = ( ValNm Dst) V 

n m  = (ValNm Srcl)  V 

n m  = ( ValNm Src2) V 

n m  = specPCNm V 

n m  = nextPCNm) 

I ( Opcode Value' opc) 3 n m  = opcodeNm 

end 

We use the casting functions to define the parameterized field updater: 

update' :: FieldNm + FieldValue + Trans + Trans 

update' n m  v = 

case n m  of 

(RegNm Dst) setDstReg1 (castToReg1 v )  

I ( ValNm Dst) + setDst Val' (castTo Word' v )  

I opcodeNm + setOpcoder (castToOpcode' v )  

1 (RegNm Srcl)  + setSIRegl (castToRegJ v )  

I ( ValNm Srcl)  + sets1 Val' (castTo Word' v )  

I (RegNm Src2) + setS2RegJ (castToRegl v )  

I ( ValNm Src2) =+ sets2 Val' (castTo Word' v )  

( specPCNm + setSpecPCr (castTo Word' v )  

1 nextPCNm + setNextPC1 (castTo Word' v )  

end 



6.2.2 Generalized field laws 

Variants of the previous formulas (that couldn't be stated in higher order logic) can now 

be proved as theorems 

vaEidFieEdType nm x -+ field' nm (update' nm x t )  = x 

nm # nm' -+ field' nm (update' nm' x t )  = field' nm t 

V nrn $! {( ValNm Dst), nextPCNm). field' nm (alu t n )  = field' nm ( t  n )  

The second transaction property can also be stated much more concisely as 

( s  = t )  = (V nm. field' nm s = field' nm t )  

Theorems such as these will substantially reduce the amount of work we need to do to prove 

the desired microarchitecture laws. More importantly, the corresponding Isabelle proof 

scripts will require significantly fewer changes whenever new transaction fields are added 

to the transaction ADT. This is because many of the lemmas are implicitly parameterized 

over a range of field names. Proof steps using those lemmas will automatically cover the 

new field names. For example, uses of the lemma 

V nm $! { (  ValNm Dst), nextPCNm). field' nm (alu t n )  = field' nm ( t  n )  

will remain valid even after new transaction fields are added to a microarchitecture, pro- 

vided the alu component does not modify the fields. 

However, we still use the original typed transaction operators for specifying Hawk 

circuits, to take advantage of Isabelle's strong type checking. Once we have a well-typed 

circuit description, we invoke Isabelle's rewriting tactics to automatically transform it into 

a form that uses field' and update' operations. 

The rewriting tactics require a list of already-proven equational theorems that are 

treated as rewrite rules. We therefore prove such equations for each field accessor and 

up dater. For example, we prove the equational theorem for the dstRegl accessor as follows: 

dstRegl t = castToRegl (field' (RegNm Dst) t )  



= {definition of field' applied to (RegNm Dst)) 

dstRegt t = castToRegl (Reg Value' (dstRegt t ) )  

= {definition of cast ToReg') 

dstRegl t = ( E  r. Reg Value' (dstReg' t )  = Reg Value' r )  

= {RegValuel is injective) 

dstRegl t = ( E  r .  dstRegl t = r )  

= {b'y. ( E X .  y = 2) = y)  

dstRegl t = dstRegl t 

- - 

True 

These equational theorems can also be proved automatically using Isabelle's rewriting 

tactics. 

6.3 Lifting the transaction theory to signals 

Since Hawk circuits operate on streams of transactions, we find it convenient to define 

lifted versions of the primitive transaction operators. 

mkTrans :: Reg + Word + Opcode + Reg + Word + 
Reg + Word + Word + Word + Trans 

mkTrans = lift9 mkTranst 

dstReg :: Signal Trans + Signal Reg 

dstReg = lift dstReg1 

dstValName :: Signal Trans + Signal Word 

dst ValName = lift dst ValName' 

setDstReg :: Signal Reg + Signal Trans =+ Signal Reg 



setDstVa1 :: Signal Word + Signal Trans =+ Signal Word 

setDst Val = lift setDst Val' 

Similarly, the laws governing the transaction operators can also be "lifted" to correspond- 

ing laws about the stream-oriented operators. For example, the lifted version of the second 

transaction property for the dstRegl accessor becomes 

dstReg (mkTrans dstReg dst ValName opc s 1 Reg 

slVal s2Reg s2Val specPC brPC) = dstReg 

6.4 Proof of alu time-invariance for nop 

We can now define microarchitecture components using the abstract transaction opera- 

tions. For example, suppose we are defining the alu transaction-processing component. 

Assume that we have already defined the following two functions: 

arithcore :: Opcode + Word + Word =$ Word 

branchcore :: Opcode + Word Word + Word +- Word 

Given an opcode describing an arithmetic operation and the values of the two source 

operands, arithcore performs the corresponding arithmetic operation. The branchcore 

function takes an opcode specifying a branch instruction, the values of the two source 

operands, and the value for the next program counter, and performs the appropriate 

branch calculation. For instance, if brIfZero is the opcode value for the "branch if zero" 

instruction, then branchcore brIfZero test addr next returns addr if test is equal to zero, 

otherwise it returns next. We leave unspecified what arithcore and branchcore return 

when given inappropriate opcodes. 

Suppose we also have the two functions isArithOp and isBranchOp, both of type 

Opcode + bool. The isArithOp function returns true when given an arithmetic opcode, 

and isBranchOp returns true when given a branch opcode. 



We assume that the nop transaction is neither an arithmetic instruction nor a branch 

instruction: 

isArithOp (opcode' nop) = False 

isBranchOp (opcode' nop) = False 

Given these functions we can define the alu component as follows: 

alu' :: Trans + Trans 

alu' tr = 

let opc = opcode' inp 

s l v  = slval' inp 

s2v = s2Va11 inp 

dstv = i f  isArithOp opc 

then arithcore opc s l v  s2v 

else (dest Val' inp) 

oldNextPC = nextPC' inp 

nxtPC = i f  isBmnchOp ope 

then branchcore opc s l v  s2v oldNextPC 

else oldNextPC 

in 

setDstVall dstv (setNextPC1 nxtPC inp) 

alu :: Signal Trans =+- Signal Trans 

alu = lift alu' 

Now suppose we want to prove that the alu circuit is time-invariant for nop. That 

is, we want to prove that for any given transaction signal inp that alu (delay nop inp) is 

equal to delag nop (alu inp). 

In general, to prove that two signals s and t are equal, we need to prove that for each 

time n the corresponding signal elements s n and t n are equal. (where we are considering 



a signal of type T to be a function from time to 7.) Thus we must show for each time n that 

the transaction alu  (de lay  n o p  i n p )  n is equal to the transaction delay  n o p  ( a l u  i n p )  n. 

We will generalize this statement and prove the following lemma. 

Lemma 19 For  all x of type  T, f  of t ype  T + p, a n d  xs of t ype  S ignal  7 ,  t h e n  

l i f t  f  ( d e l a y  x xs) = delay  ( f  x) (Eift f  xs) 

Proof: We must show for all times n that 

l i f t  f  ( d e l a y  x xs) n = delay ( f  x) (Eift f  xs) n 

There are two cases to consider: The case where n = 0 and the case where n = k  + 1, 
for some time k :  

case n = 0: 

Eift f  ( d e l a y  x xs) 0 

= {definition of l i f t )  

f  ( d e l a y  x xs 0) 

= {definition of d e l a y )  

f x  

= {definition of d e l a y )  

de lay  ( f  x) ( l i f t  f xs) 0 

case n = k  + 1: 

l i f t  f  ( d e l a y  x xs) ( k  + 1) 
= {definition of lift) 

f  ( d e l a y  x xs ( k  + 1)) 
= {definition of d e l a y )  

f (XS k )  

= {definition of l i f t )  

Eift f  xs k 

= {definition of d e l a y )  

de lay  ( f  x) ( l i f t  f  xs) ( k  + 1) 



Since alu = lift a h ' ,  we can use Lemma 19 to prove that alu is time-invariant for 

nop, provided we show that alu' nop = nop. To do this we rely on the second property 

of transactions, and prove that every field of alu' nop is equal to the corresponding field of 

nop. Let aluModFields be the set { ValNm Dst, nextPCNm). From the definition of alu' 

and the laws for the transaction field accessors and updaters we can derive the following 

field laws: 

n m  $! aluModFields -+ field' n m  (alu' t )  = field' n m  t 

field' ( ValNm Dst) (alu' t )  = 

if isArithOp (castToOpcodel (field' opcodeNm t ) )  

then WordValue' (arithCore (castToOpcodel (field' opcodeNm t ) )  

(castTo Word' (field' ( ValNm Srcl)  t ) )  

(castTo Word' (field' ( ValNm Src2) t ) ) )  

else (field' (ValNm Dst) t )  

field' nextPCNm (alu' t )  = 

if isBranchOp (castToOpcodel (field' opcodeNm t ) )  

then WordValue' (branchcore (castToOpcodel (field' opcodeNm t ) )  

(castTo Word' (field' ( ValNm Srcl)  t ) )  

(castTo Word' (field' ( ValNm Src2) t ) )  

(castTo Word' (field' nextPC t ) ) )  

else (field' nextPCNm t )  

Using these laws and the second property of transactions we can show that alu' preserves 

every field of nop: 

case n m  4 aluModFields: 

field' n m  (alu' nop) = field' n m  nop 



case n m  = ( ValNm Dst):  

field' ( ValNm Ds t )  (alu' nop)  

= {alu' law for ( ValNm D s t ) )  

( i f  isArithOp (castToOpcodel (field' opcodeNm n o p ) )  

then WordValuel (arithCore (castToOpcode' (field' opcodeNm n o p ) )  

(castTo Word' (field' ( ValNm S r c l )  n o p ) )  

(castTo Word' (field' ( ValNm Src2) n o p ) ) )  

else (field' ( ValNm Ds t )  nop ) )  

= {castToOpcodel (field' opcodeNm t )  = opcode' t )  

( i f  isArzthOp (opcode' nop)  

then Word Value' (ari thcore (castToOpcodel (field' opcodeNm n o p ) )  

(castTo Word' (field' ( ValNm S r c l )  n o p ) )  

(castTo Word' (field' ( ValNm Src2) n o p ) ) )  

else (field' ( ValNm Ds t )  nop ) )  

= {isArithOp (opcodel nop)  = False) 

field' ( ValNm Ds t )  nop 

case n m  = nex tPCNm: 

field' nex tPCNm (alu' nop)  

= {alu' law for nex tPCNm)  

(zf isBranchOp (castToOpcode' (field' opcodeNm nop) )  

then Word Value' (branchcore (castToOpcodel (field' opcodeNm n o p ) )  

(castTo Word' (field' ( ValNm S r c l )  nop ) )  

(castTo Word' (field' ( ValNm Src2) nop ) )  

(castTo Word' (field' nextPC n o p ) ) )  

else (field' nex tPCNm n o p ) )  

= {castToOpcode' (field' opcodeNm t )  = opcode' t )  



(if isBranchOp (opcode' n o p )  

then WordValue' (branchcore (castToOpcode' (field' opcodeNm n o p ) )  

(castTo Word' (field' ( ValNm S r c l )  n o p ) )  

(castTo Word' (field' ( ValNm Src2) n o p ) )  

(castTo Word' (field' nex tPC n o p ) ) )  

else (field' n e x t P C N m  n o p ) )  

= {isBranchOp (opcode' n o p )  = False) 

field' n e x t P C N m  nop  

Notice that with the generalized field' laws we were able to prove equivalent all of the 

fields corresponding to the names not in aluModFieEds in one step. 

6.5 Temporal reasoning 

It is usually necessary to perform induction over time when proving equivalences of com- 

ponents containing internal state, especially when the state-holding elements are part of a 

feedback loop in the circuit. When performing such proofs, one often has to expose the in- 

ternal state holding elements and prove properties of them directly. As an example, in the 

next section we will use inductive reasoning over signals to prove the registerFile-bypass 

law presented in Section 3.3.3. 

6.6 Proving the registerFile-bypass law 

We begin by defining the rf and bypass components in higher order logic, and then state 

some lemmas about them that will be necessary to the overall proof. 

6.6.1 Definition of envs and rf components 

The register file used in the proof follows a write-before-read protocol. On every clock 

cycle, the contents of the register file are updated by the current value on the writeback 

input before the file contents are read and sent to the output. 



We also designate a special register, called RO, as a zero register. The contents of RO 

are hardwired to zero in the instruction set architecture, and writes to RO have no effect. 

We also stipulate that the register name fields of the nop transaction are set to RO: 

regFieldNms = {(RegNm Dst), (RegNm Srcl), (RegNm Src2)) 

V f E regFieldNms. field' f nop = Reg Value' RO 

The rf component is defined in terms of an auxiliary function called envs, which is 

responsible for maintaining the register file contents. The envs component outputs the 

entire contents of the register file on every clock cycle, which the rf component then 

reads when constructing its output transaction. The contents of the register file are 

represented abstractly as a function of type Reg + Word, which we call an environment. 

This representation allows the envs component to store the entire register file in a single 

delay component. 

We define envs below recursively, using the function space over signals CER. The 

extEnvl helper function modifies an environment by overwriting the contents of a given 

register, provided it is not RO. The extEnv function does the same, but is lifted over 

signals. 

We also define the polymorphic sApply function, which given a signal of functions and 

a signal of arguments, applies each function to its corresponding argument and returns 

the results as a signal. We use sApply in the rf definition to read the register file contents 

returned by envs on each clock cycle. 

type Env = (Reg + Word) 

extEnvt :: Reg + Word + Env + Env 

extEnvl reg val env = 

(A r .  if r = RO then 0 else if r = reg 

then val 

else (env r)) 

extEnv :: Reg Signal + Word Signal + Env Signal + Env Signal 



envs  :: Trans Signal + (Reg + W o r d )  Signal 

envs  wb = extEnv (dstReg wb)  (dstVa1 wb)  (delay ( A  r .  0) ( e n v s  w b ) )  

sApply :: ( ' a  + ' b )  Signal + ' a  Signal + ' b  Signal 

sAppEy = lift2 ( A  f x. f x )  

r f  :: Trans Signal + Trans Signal 3 Trans Signal 

r f  inp  wb = 

let registers = envs wb 

s l v  = sApply registers ( s l  Reg i n p )  

s 2 v  = sAppEy registers (s2Reg i n p )  

in setSlVal s lv  ( s e t s 2  Val s2v i n p )  

6.6.2 Converging equivalence relations for signals 

Like many stateful components in Hawk, the envs component is defined as a recursive 

equation over signals. To ensure that this definition is consistent we need to demonstrate 

that the equation has a unique solution. We do this by defining a converging equivalence 

relation (CER) for signals, and then show that the fixpoint functional associated with 

envs's definition is contracting. 

Recalling Chapter 5, a CER contains four components: a resolution type p, a target 

type r, a well-founded, transitive relation (<) of type p + p + bool called the resolution 

ordering, and an indexed equivalence relation (=) of type p + T + r =+ bool. We can 

define a signal CER that is similar to the lazy list CER, with nut  for the resolution type, 

and the usual less-than ordering on the naturals for (<). The target type is the type of 

signals, which we are modeling as functions indexed on the naturals, ( n u t  +- ' a ) .  The 

indexed equivalence relation is defined as: 



In other words, two signals f and g are equivalent at resolution n if their first n - 1 

elements are equal. 

The first six CER axioms are easy to verify with these definitions. The last two axioms 

can be proved with the following existential witness elements, respectively: 

local-signal-limit F i E F (i - 1) 

global-signal-limit F = (A n. F (n + 1) n )  

Proofs of the last two CER axioms involve, at  some point, choosing an arbitrary pair 

of resolutions i and j such that j < i ,  and then performing a case analysis on whether 

j = i - 1 .  

Equivalences for the lift primitives 

The family of lift primitives lift, lift2, . . . , and the delay primitive can be abstractly char- 

acterized as conditional equivalence laws that specify how they preserve the (=) relation. 

These equivalences can be used to prove that cyclic circuits like envs are contracting, 

without having to expand the definitions of the primitives. 

The lift primitive is a combinational circuit, so its output value at any time n is 

dependent on its input value at that same time value: 

n 
xs = ys + lift iftf xs E lift f ys (6.1) 

n 
Proof: Assume the antecedent xs = ys. Expanding the definition of ( z ) ,  this is equivalent 

to assuming (V i .  i < n + xs i = ys i). Expanding the definition of (=) on the consequent 

side of the formula, we must show for arbitrary i < n that lift f xs i = lift f ys i. By 

definition of lift this goal is equivalent to showing f (xs i)  = f (ys i) .  But this is true 

since xs 2 = ys i by assumption 

By similar reasoning every liftk primitive can be characterized as 

The body of envs makes use of the auxiliary functions extEnv, dstReg, and dstValName. 



All of these auxiliaries are defined in terms of liftk primitives, and therefore obey the 

following signal CER equivalences: 

n n n 
ws x xs A ys z zs -+ e x t E n v  ws ys z e x t E n v  xs zs 

n n 
xs = ys -+ dstReg xs z dstReg ys 

n n 
xs z ys + dstVal xs cs dstVal ys 

Equivalence for the delay primitive 

The delay component is a contracting function for the signal CER, which accords with 

the intuition that every feedback cycle in a well formed circuit definition must contain at 

least one delay: 

n n t l  
xs z ys + delay z xs x delay z ys 

Notice that the initial value parameters to both delay components have to be equal for 

the equivalence to hold. 
n 

Proof: Assume the antecedent xs x ys. This is equivalent to assuming (V i. i < n -+ 

xs i = ys i). Expanding (z)  in the consequent, we must show for arbitrary i < n + 1 

that delay z xs i = delay z ys i. If i = 0, this reduces by the definition of delay to 

showing that z = z, which is true. If i > 0, then the consequent reduces to showing that 

xs (i - 1) = ys (i - I), which is true by assumption since i - 1 < n CI 

Proving envs is contracting 

Now that we have equivalences for all of the functions in the body of envs, we need to show 

that the recursive definition of envs itself is consistent by showing that it is contracting 

over some CER. Since the definition is parameterized on the argument wb, we show that 

the fixpoint functional 

F (A envs' wb. e x t E n v  (dstReg wb) (dstVal wb) (delay (A r. 0) (envs' wb))) 

derived from the recursion equation for envs is contracting on the function space over 

signals CER defined in Section 5.5. This lifted CER still uses the of the signal 



CER, so by (5.10) of Section 5.4 and the definition of (=) for the function space CER 

combinator it suffices to show for arbitrary resolution i and functions g and h that 

i i;tl 
( V x s . g x s = h x s )  + V x s . F g x s  - F h x s  

i 
We assume the antecedent (V xs. g xs = h xs)  and prove the consequent for arbitrary xs 

by applying the appropriate equivalences: 

i;tl 
F g x s  - F h x s  

= {Definition of F) 

extEnv (dstReg xs)  (dst ValName xs) (delay ( A  r .  0 )  ( f  x s ) )  

extEnv (dstReg xs)  (dstValName xs)  (delay ( A  r .  0) (g  x s ) )  

-e {Equivalence law for extEnv) 

i+l 
(dstReg xs)  x (dstReg xs)  A 

(dst  ValName xs) '&I (dst ValName xs)  A 

(delay ( A  r .  0 )  ( f  x s ) )  (delay ( A  r .  0 )  (g  x s ) )  

= {(m) is reflexive at all resolutions by CER axiom (5.1)) 

(delay ( A  r .  0 )  ( f  xs ) )  (delay ( A  r .  0 )  (g  xs) )  

-e {Equivalence law for delay component) 
i 

(f "4 " (9  xs)  

= {Assumption) 

D u e  

Demonstrating that recursive Hawk circuits like envs are contracting can usually be proved 

within Isabelle in a couple of steps, by relying on Isabelle's high-level rewriting and tableau 

decision procedures. The result of invoking the decision procedures is the recursive equa- 

tion for envs proved as a certified theorem. 



6.6.3 Properties of envs component 

The core of the register file-bypass verification involves proving various properties of the 

recursive envs function. There are five basic properties of envs needed in the top-level 

proof. The first two envs properties state that RO is a zero register. 

envs wb n RO = 0 

dstRegl (wb ( n  + 1 ) )  = RO + envs wb ( n  + 1)  r = envs wb n r 

The third envs property states that the environment returned by envs on a given clock 

cycle has been updated correctly with respect to the current wb transaction. 

dstRegl (wb n )  # RO + envs wb n (dstRegl (wb n ) )  = dstValNarnel (wb n )  

The fourth and fifth envs properties deal with register values that are not being written to 

on the current cycle. The fourth property states that initially every register not currently 

being written to is zeroed out. 

r # dstRegl (wb 0 )  + envs wb 0 r = 0 

The fifth envs property states that at every cycle after the initial cycle, every register that 

is not currently being written to is equal to the value it had on the previous cycle. 

r # dstRegl (wb (la + 1 ) )  + envs wb ( n  + 1)  r = envs wb n r 

The above properties can be proved by unwinding the definitions of envs and its con- 

stituents. For example, we prove the last property as follows: 

Assume r # dstRegl (wb ( n  + 1 ) ) .  Then 

case r = RO: 

envs wb ( n  + 1)  RO 

= {First property of envs) 

0 

= {First property of envs) 



envs wb n RO 

case r # RO: 

envs wb ( n  + 1) r 

= {Definition of envs) 

extEnv (dstReg wb) 

(dst ValName wb) 

(delay (A r .  0 )  (envs wb))  ( n  + 1) r 

= {Definitions of extEnv,lift4, dstReg, dst Val ,lzft,delay } 

extEnvl (dstRegl (wb ( n  + 1 ) ) )  

(dst ValNamel (wb ( n  + 1 ) ) )  

(envs wb n )  r 

= {Definition of extEnvl) 

(if r = RO then 0 else ij r = (dstRegl (wb ( n  + 1 ) ) )  

then (dst ValNamel (wb ( n  + 1 ) ) )  

else (envs wb n r ) )  

= { r  # RO A r # dstRegl(wb(n + 1 ) ) )  

envs wb n r 

The last two properties of envs can be stated as a single theorem by using the delay 

component. 

r # dstRegl (wb n )  -+ envs wb n r = envs (deday nop wb) n r 

The proof proceeds by induction on time values n ,  and a compound case analysis on the 

values of r and wb: 

Assume r # dstRegl (wb n ) .  Then 

case r = RO: 

envs wb n RO 

= {First envs property) 

0 



= {First enus property) 

enus (delay nop wb) n RO 

case r # RO A n = 0 :  

envs wb 0 r 

= {Assumption and fourth enus property) 

0 

= {r  # dstRegl (delay nop wb 0 ) ;  fourth envs property) 

enus (delay nop wb) 0 r 

case r # RO A n = ( k  + 1)  A r = dstReg' (wb  k ) ,  for some k:  

enus wb ( k  + 1)  r 

= {Assumption and fifth enus property) 

enus wb k r 

= {Third enus property) 

dst ValNamel (wb  k )  

= {Definition of delay) 

dst ValNamel (delay nop wb ( k  + 1 ) )  

= {r = dstRegl (delay nop wb ( k  + 1 ) ) ;  Third envs property) 

enus (delay nop wb) ( k  + 1 )  r 

case r # RO A n = ( k  + 1)  A r # dstReg' (wb  k ) ,  for some k :  

Inductive hypothesis: 

r # dstRegl (wb  k )  -+ enus wb k r = enus (delay nop wb) k r. 

Then 

enus wb ( k  + 1 )  r 

= {Assumption and fifth enus property) 

enus wb k r 

= {ind. hyp.) 

enus (delay nop wb) k r 



= { r  f dstRegl (delay nop wb ( k  + 1 ) ) ;  fifth envs property) 

envs (delay nop wb) ( k  + 1) r 

6.6.4 Definition and properties of fvEnvs component 

The registerFile-bypass proof makes heavy use of the field' function, which operates over 

FieldValues. We can simplify the proof somewhat by introducing an alternate version of 

the envs function, called fvEnvs, that returns environments of type Field Value + FieEdValue. 

The use of fvEnvs removes the need to insert cast operations when applying an environ- 

ment to the RegValue' returned by a field' operation. 

type FvEnv = Field Value + Field Value 

fvEnvsl :: Env + FvEnv 

fvEnvsl env = ( A  fv. WordValuel (env (castToRegl fv)))  

fvEnvs :: Trans Signal =+- FvEnv Signal 

fvEnvs wb = Zzft fvEnvsl (envs wb) 

The properties proved of envs carry over to fvEnvs. For example, the delay law for fvEnvs 

becomes 

(RegValue' r )  # field' (RegNm Dst) (wb n )  + 
fvEnvs wb n (RegValue' r )  = fvEnvs (delay nop wb) n (Reg Value' r )  

6.6.5 Definition and properties of bypass component 

All that remains before we tackle the main registerFile-bypass proof is to define bypass 

and derive its characteristic properties. The bypass component is defined in terms of the 

auxiliary function bypassSelect, which performs the bypass operation on a single operand 

value. 

bypassSelectf :: Reg =+ Word .d Reg + Word =+- Word 



b ypassSelectl inpReg inp  Word wbReg wb Word = 

if inpReg = RO V wbReg # inpReg 

then inp  Word 

else wb Word 

bypassselect :: Reg Signal + Word Signal + Reg Signal + Word Signal + 
Word Signal 

bypassSelect = lift4 bypassSelect' 

bypass :: Trans Signal + Trans Signal + Trans Signal 

bypass input  writeback = 

let wbReg = dstReg writeback 

wb Val = dst ValName writeback 

s l v  = bypassselect ( s lReg  i npu t )  ( s lVal  input )  wbReg wbVal 

s2v  = bypassselect (s2Reg input )  (s2Val input )  wbReg wbVal 

in setSlVa1 s l v  ( s e t s 2  Val s2v input )  

The properties we derive from the definition of bypass are that the component does 

not modify any input transaction field other than the two source operand values: 

V f $ { ValNm Src l ,  Va lNm Src2).  

field' f (bypass inp wb n)  = field'f ( i np  n )  

and that bypass performs correctly on the source operand values: 

V i E { S r c l ,  Src2).  



let  inpReg = field' ( R e g N m  i )  ( i n p  n )  

wbReg = field' ( R e g N m  D s t )  ( w b  n )  

in (( inpReg = (Reg  Value' RO) V inpReg # wbReg + 
field' ( V a l N m  i )  (bypass i n p  wb n )  = field' ( V a l N m  i) ( i n p  n ) )  

A 

( inpReg # (Regvalue '  RO) A inpReg = wbReg + 
field' ( V a l N m  i )  (bypass i n p  wb n )  = field' ( V a l N m  D s t )  ( w b  n ) ) )  

These properties can be proved by expanding the definitions of bypass, b ypassSelect , and 

bypassSelectl ,  and then performing a case analysis on the appropriate register name fields 

of i n p  and wb. 

6.6.6 Proof of the microarchitecture law 

Now that we have the needed fvEnvs  and bypass properties, the top level proof itself is 

relatively straightforward. The formal statement of the theorem is as follows: 

bypass ( r f  i n p  (delay  n o p  w b ) )  wb = rf i n p  wb 

We prove these two signals equal by showing that they are equal at all time periods n ,  for 

all transaction fields f E FieEdNm: 

case f E FieEdNm - {(  V a l N m  S r c l ) ,  ( V a l N m  S r c 2 ) ) :  

f ield' f  (bypass ( r f  i n p  (delay  nop  w b ) )  wb n )  

= {bypass  doesn't modify field f )  

field' f ( r f  i n p  (delay  n o p  w b )  n )  

= { r f  doesn't modify field f )  

field' f ( i n p  n )  

= { r f  doesn't modify field f )  

field' f ( r f  i n p  wb n )  



case f = V a l N m  i ,  for i E { S r c l ,  S rc2 ) :  

subcase field' ( R e g N m  i )  ( i n p  n )  = RegValue1  RO: 

field' ( V a l N m  i )  (bypass  ( r f  i n p  (de lay  n o p  w b ) )  w b  n )  

= {Subcase assumption; bypass preserves zero registers of input) 

field' ( V a l N m  i )  ( r f  i n p  (de lay  n o p  w b )  n )  

= {Subcase assumption; r f  preserves zero registers of transactions) 

W o r d  Value' 0 

= {Subcase assumption; rf preserves zero registers of transactions) 

field' ( V a l N m  i )  ( ~ f  i n p  w b  n)  

subcase field' ( R e g N m  i )  ( i n p  n )  # Reg Value' RO A 

field' ( R e g N m  i )  ( i n p  n )  = field' ( R e g N m  D s t )  ( w b  n ) :  

L.H.S. : 

field' ( V a l N m  i )  (bypass  ( r f  i n p  (de lay  n o p  w b ) )  w b  n )  

= { r f  preserves R e g N m  i field; bypass overwrite law) 

field' ( V a l N m  D s t )  ( w b  n) .  

R.H.S. : 

field' ( V a l N m  i )  ( r f  i n p  w b  n )  

= {Definition of r f ;  field and update  laws) 

s A p p l y  ( f v E n v s  w b )  ( f ield ( R e g N m  i )  i n p )  n 

= {Lift laws) 

f vEnvs l  w b  n (field' ( R e g N m  i) ( i n p  n ) )  

= {Subcase assumptions; third e n v s  property} 

field' ( V a l N m  D s t )  (wb n) .  

subcase field' ( R e g N m  i )  ( i n p  n )  # RegVaEue' RO A 

field' ( R e g N m  i )  ( i n p  n )  # field' ( R e g N m  D s t )  ( w b  n ) :  

field' ( V a l N m  i )  ( bypass  ( r f  i n p  (de lay  n o p  w b ) )  w b  n )  

= { r f  preserves R e g N m  i field; bypass no-overwrite law) 



field' ( ValNm i) ( r f  inp (de lay  nop wb) n) .  

= {Subcase assumptions; rf delay law) 

field' ( ValNm i )  ( r f  inp wb n )  

Thus, with some work we've been able to algebraically verify the important register file 

- bypass law. The other microarchitecture law proofs, especially those involving circuits 

with cyclic state holding elements, use similar techniques. That is, the original circuits 

are generalized to circuits where all internal state elements are visible. The generalized 

circuits are proved equivalent by induction over time. The microarchitecture law then 

holds as a special case. Section 7.5 of the next chapter discusses our efforts to mechanize 

the microarchitecture laws and pipeline simplifications. 



Chapter 7 

Retrospective 

On page one of the 1988 textbook Introduction to Functional Programming, Bird and 

Wadler[7] summarize one of the primary motivations behind using a pure functional lan- 

guage as a means for creating executable specifications: 

A characteristic feature of functional programming is that if an expression pos- 

sesses a well-defined value, then the order in which a computer may carry out 

the evaluation does not affect the outcome. In other words, the meaning of an 

expression is its value and the task of the computer is simply to obtain it. It 

follows that expressions in a functional language can be constructed, manip- 

ulated and reasoned about, like any other kind of mathematical expression, 

using more or less familiar algebraic laws. The result, as we hope to justify, is 

a conceptual framework for programming which is at once very simple, very 

concise, very flexible and very powerful. 

One can view this thesis as a case study for Bird and Wadler's programme, demonstrating 

that functional specification languages and algebraic reasoning can feasibly model domains 

of a useful size, in this case pipelined processor microarchitectures. The rest of this chapter 

evaluates the merits of this approach. In particular, we will examine the strengths and 

weaknesses of 

a Using a functional programming language as the basis of a high-level hardware de- 

scription language. 

a Transactions as a microarchitectural structuring principle. 



The algebraic approach to pipeline transformation and verification, and its mecha- 

nization in Isabelle. 

We will also discuss the usefulness of converging equivalence relations as a general mech- 

anism for defining recursive values in higher order logic. 

7.1 The functional basis of Hawk 

This section discusses the benefits and limitations of Hawk's functional basis as we encoun- 

tered them during the course of this thesis. Although the decision to make Hawk an em- 

bedded language within Haskell imposed some restrictions, in general Haske117s collection 

of functional language features allowed us to specify microarchitectures at an impressively 

high level of abstraction. 

7.1.1 Structured datatypes 

Algebraic datatypes and pattern matching were used extensively when specifying the alu 

and mem components of the DLX microarchitecture. The Haskell functions implementing 

these components have to perform a series of tests on the opcode field to determine what 

exact operation to perform. Even though the DLX architecture is built around a simplified 

RISC instruction set, the meaning of an opcode can still become quite involved. The Hawk 

team used a hierarchical collection of algebraic datatypes to represent opcode values, and 

used nested pattern matching to perform the necessary tests. 

data Opcode = ExecOp AluOp 

1 MemOp LoadStore 0 p  

I ... 



data AluOp = Add Signedness 

I Sub Signedness 

1 Mult Signedness 

I Div Signedness 

1 And 

I Or I Xor 

I ShiftLL I ShiftRL I ShiftRA 

I Cmp Comparison 

I . . .  

data Signedness = Signed 1 Unsigned 

data Comparison = LessThan 

I LessEqual 

1 Greater Than 

I GreaterEqual 

1 Equal 

I NotEqual 

data LoadStoreOp = Load WordSize Signedness 

I Store WordSize 

1 NOP 

data WordSize = Byte I HalfWord ( FullWord 

In lower-level hardware description languages, these opcode values would simply be 

laid out as a single bit-vector, or perhaps as an unstructured collection of scalar variables. 

In this case, the designer of the alu and mem decoding logic would have to be careful to 

select the correct bitfield subranges or scalar variables using nested conditionals. Even 

when using scalar variables it is often the case that the meaning of some variables depends 

on the values contained in other variables. For example, a "wordsize" variable would 

have no meaning if the arithmetic opcode variable is set to "Xor", since in the DLX the 

exclusive-or operation is always performed at full word size. 



It is quite easy to make a mistake in such situations, even for instruction sets as simple 

as the DLX. While Hawk's type system will catch incorrect pattern-match expressions au- 

tomatically, lower level hardware languages typically do not enforce subrange boundaries, 

nor do they provide any way to state that the interpretation of one variable is dependent 

on the value held in another. In these languages such mistakes have to be debugged at 

runtime. The situation becomes even worse when several designers are responsible for 

decoding portions of the instruction. 

7.1.2 Lazy evaluation 

Formally we model signals as functions over time, but in a simulation implementation 

Hawk signals are implemented as lazy infinite lists. This design choice is essential if we 

want to implement shared signal values efficiently. Consider the following Hawk circuit 

fib = delay 1 (lift2 (+) fib fib') 

fib' = delay 1 fib 

which calculates the Fibonacci sequence [ I ,  1 ,  2, 3, 5 ,  . . .]. Notice that the fib signal is 

referenced twice in a feedback loop: once as an argument to lift2, and once as an argument 

to delay in the definition of fib'. If we use lazy lists, Haskell's lazy evaluation strategy will 

calculate a given element of this sequence once, if needed to evaluate a client expression, 

and then store the result in memory, so that subsequent references to the element are 

evaluated in constant time. What this means for the fib sequence is that it takes at most 

O(n)  accesses to compute the nth element of the signal, since lower-numbered fib elements 

are effectively cached in the runtime heap. 

On the other hand, if we had implemented signals as functions the optimized code 

eventually generated by Haskell for fib would have looked something like this: 

f i b 0  = 1 

f i b 1  = 1 

fib n = fib ( n  - 1) + fib ( n  - 2 )  

The two recursive calls to fib mean that every call to fib n  takes 0 ( 2 n )  recursive calls to 

evaluate. This exponential blowup in evaluation time happens whenever a shared signal 



is referenced in two or more places within a feedback loop, as f i b  is. In essence, Haskell's 

lazy evaluation mechanism applied to lists automatically implements a form of dynamic 

programming. 

7.1.3 Higher order functions 

Haskell's ability to manipulate functions as first class values not only allows us to con- 

veniently map functions over signals through the lift primitives, it also allows common 

wiring patterns to be encapsulated as higher order Hawk components. For example, Cook 

et a1[18] describe a parameterized reservation station component as part of a superscalar 

out-of-order microarchitecture. The reservation station component station takes a signal 

of unordered collections of transactions and sends each transaction to an appropriate ex- 

ecution unit, if one is available. If no execution unit is available, the reservation station 

stores the transaction in an internal reservation bufer until an execution unit becomes 

free. 

To increase its generality the station component is parameterized on a list of execution 

units exec Units, among other things. Each execution unit is a function that takes a reset 

signal and a signal of transaction collections (each transaction collection is implemented 

as a list of transactions). The execution unit returns two signals of transaction collections: 

The first signal consists of transactions that the execution unit refused to process, either 

because it is already processing a transaction or because the transaction is of the wrong 

type. The second signal contains transactions that the execution unit has completed on 

that clock cycle. The Hawk code for the reservation station component is sketched below: 

type ExecUnit = Signal Bool -+ Signal [Trans] + (Signal [Trans], Signal [Trans]) 

station :: (Int, [ExecUnit]) -+ (Signal Bool, Signal [Trans]) -+ Signal [Trans] 

station (numReservations, execUnits) (reset, inputl'ransactions) = . . . 

Since the execution units are themselves functions, the station component is an example 

of a higher order component. In practice it is quite useful to be able to vary the type 

and number of execution units given to station, without having to change the reservation 



station's definition. 

The top-level pipelined microarchitecture considered in this thesis did not have a reg- 

ular enough structure to significantly benefit from exploiting the higher order features of 

Hawk, other than using the lij? primitives. We did use higher order functions to formally 

model the contents of the register file component in Section 6.6.1. 

7.1.4 Static typing and polymorphism 

The Hawk team has relied extensively on Haskell's static typing enforcement to quickly 

catch coding mistakes when implementing microarchitectures. Without explicit type 

checking, errors that normally took us seconds to find and fix could have taken minutes 

or hours to debug at runtime. It is particularly easy in modeling to forget the difference 

between a static value of type r and a dynamic signal whose elements are of type 7. For 

example, the following Hawk code is ill-typed, and is quickly rejected by the type checker: 

select :: Signal Boo1 + Signal a + Signal a -+ Signal a 

resultReg :: Signal Reg 

resultValid :: Signal Boo1 

finalResult :: Signal Reg 

finalResult = select result Valid resultReg RO 

The type error that Hugs 98 (a Haskell interpreter) prints out is: 

ERROR (line 20): Type error in application 

*** Expression : select resultvalid resultReg RO 

*** Term : RO 

*** Type : Reg 

*** Does not match : Signal a 

The type checker is pointing out that in the definition of finalResult, RO is a static register 

name, not a signal as required by select. If Hawk was a dynamically typed language, this 

error would not have been detected until select was evaluated at a clock cycle where 



result Valid was false. If this is a rare occurrence, then it could be quite a while before the 

bug is even detected. 

Explicit type annotations have also been quite helpful as a form of machine-checked 

documentation. Several of the microarchitectures in the Hawk library have been initially 

designed by one person and then enhanced or maintained by another. We invariably find 

that explicitly typed code is easier to understand by other team members. 

While Haskell's polymorphic type system admits a wide range of useful programs while 

automatically inferring general types for them, there are conceptually valid microarchitec- 

ture designs that Haskell can only type check by adding explicit typecasts1. For example, 

a module may be implementing a shared bus with a signal of heterogeneously-typed ele- 

ments. At any given clock cycle the bus contains a single value of a fixed type, but the 

type of the value can change from clock cycle to clock cycle. The information indicating 

which type the value has may not even be part of the value itself. The type might in- 

stead be communicated in a separate signal, or have been sent on the bus on an earlier 

clock cycle. Currently a Hawk implementation of such a bus would require the designer 

to create a new datatype containing a constructor for each type of value the bus may 

transmit. The decision as to which constructor to use in a given clock cycle would have 

to be gleaned from whatever source the type information is being communicated, even if 

that source is in another module. The abstract Hawk designs we have created so far have 

not exhibited these problems, but it may become an issue when trying to model industrial 

microarchitectures "wire accurately". 

7.1.5 Nondeterminism 

The functional basis of Haskell causes Hawk circuits to be completely deterministic. For 

any fixed set of inputs, a Hawk circuit will always evaluate to the same value. In con- 

trast, several hardware and concurrency oriented specification languages such as IOA[51], 

Ruby[39], SMV[58], and TLA+[41] allow circuits to have nondeterministic behaviors. 

Nondeterministic circuits can be used to model partial specifications. For instance, 

'Haskell implements typecasting through a (currently experimental) universal t ype  mechanism. 



the Hawk reference microarchitecture processes exactly one instruction per cycle, without 

stalling. One could instead model a reference processor that nondeterministically stalls 

zero or more clock cycles after processing an instruction. Any correctly designed pipelined 

processor would exhibit a set of behaviors2 contained in the set of all reference processor 

behaviors. The pipelined machine's behaviors would then be said to refine the reference 

machine's behaviors. 

The uniform treatment of specifications and implementations enabled by nondeter- 

minism is considered by some to be an advantage of refinement-oriented specification 

languages. Hawk does not support nondeterminism directly, but we can simulate non- 

deterministic behaviors in Hawk through oracles, which are simply external parameters 

indicating which nondeterministic choice to make. For example, the stuttering nats circuit 

outputs the natural numbers in sequence, with possibly repeated elements: 

stutterNats :: Signal Boo1 + Signal Int 

stutterNats stutter = out 

where 

out = delay 0 (select stutter out' (lift (+ 1) out ) )  

out' = delay 0 out 

The stutter parameter is a boolean signal indicating when to repeat the current value on 

the next clock cycle. By varying the values of stutter we can simulate all of stutterNats 

intended nondeterministic behaviors. If we wanted, we could go on to prove that constant 0 

and the non-stuttering circuit nats both refine stutteringNats, by providing signals 

constant True and constant False, respectively, as the witness oracles. That is, we prove 

that 

stutteringNats (constant R u e )  = constant 0 

and that 

stutteringNats (constant False) = nats 

'A pipelined processor specification could also have nondeterministic components, such as the latency 
of execution units or caches 



We can also use oracles to show that one nondeterministic Hawk circuit refines another. 

For example, the circuit created by initially outputting 0 and then outputting the results 

of stutteringNat delayed by one cycle, is a refinement of the original stutteringNat circuit. 

We state this formally by existentially quantifying the oracle parameter: 

V oracle. 3 oracle'. 

delay 0 (stutteringNats oracle) = stutteringNats oracle' 

We can prove this law by choosing oracle arbitrarily and then supplying a witness oracle 

expression for oracle' in terms of oracle. The witness oracle we need to choose in this case 

is delay True oracle. 

In general, a separate oracle parameter must be created for every independent source 

of nondeterminism in a circuit. This can become tedious for large, hierarchically specified 

circuits such as microarchitectures, and can make higher levels of the hierarchy hard to 

read3. 

On the other hand, a designer can explicitly create oracles in Hawk to exhibit specific 

(and repeatable) nondeterministic behaviors of interest. In particular, a designer can 

create executable refinement mappings that test whether one hawk circuit refines another. 

The designer first creates an oracle witness function in Hawk, then randomly generates 

a series of oracles. The implementation circuit is simulated on each randomly generated 

oracle, and the specification circuit is simulated on the oracle produced by invoking the 

witness function on the randomly generated oracle. If the witness function and the circuits 

are correctly writ ten, the two circuits should output the same signals. 

A designer can even run these tests before a formal refinement verification is carried 

out. Once the witness function has been thoroughly tested, it can be used directly in the 

refinement proof. In this way design engineers can assist in formal refinement verifications 

without having to become expert in the verification tools. 

3 ~ h i s  can be ameliorated to some extent by passing a record of oracles as a single parameter, or through 
the use of implicit parameters[47], an experimental Haskell feature for implementing dynamically scoped 
variables. 



7.2 Transactions 

Another major thrust of this thesis is the use of transactions as the central unit of commu- 

nication between microarchitecture components. The notion of transactions as an abstract 

data type is independent of any specific hardware design language, although Hawk's sup- 

port for structured datatypes and polymorphism make the concept easier to express. 

7.2.1 Verifying pipelines with transactions 

One of the transaction structure's major design benefits is its ability to express com- 

ponent interfaces uniformly, allowing designers to quickly interconnect microarchitecture 

subsystems at the block-diagram level. Another is the fact that the logic controlling a 

microarchitectural feature can usually be expressed in the component containing the data 

being controlled. 

In our experience these advantages have been crucial to discovering algebraic laws. 

Take for example the bypass laws. If we were to express the bypass and delay components 

used in this law directly at the word level then there would have been a natural temptation 

to consolidate the logic controlling the bypass circuitry at the beginning of the pipeline, 

when the source register names first become available (because then only a couple of bits 

containing the results of the register name comparisons would have to be stored and sent 

to the bypass selection circuits, rather than the several dozen bits currently needed to 

send the register names themselves. Also, the logic needed to test whether the destination 

register was RO would not have been duplicated in each bypass component.). 

Unfortunately, this premature commitment to implementation efficiency can substan- 

tially complicate law discovery. We were not able to find the bypass laws until the "extra" 

control logic was localized to the data it was manipulating. Equally important was the 

reduction in the number of top-level pipeline components enabled by transactions. Com- 

ponents that are widely separated at the word level, such as the kill circuitry and the 

last bypass circuit in the pipeline of Chapter 3 appear much closer when expressed as 

transaction processors. This extra concision in specification made it easier to discover the 

hazard - bypass law, which spans multiple pipeline stages. 



7.2.2 Calculating space efficient pipelines 

Transactions help in quickly prototyping processor microarchitectures and significantly 

aid algebraic reasoning. However, directly synthesizing a transaction-processing microar- 

chitecture to silicon would result in a circuit containing many unnecessary wires and 

state-holding elements, especially in later pipeline stages. We have performed some initial 

experiments on transformations that remove this unnecessary structure. 

The idea is to define each microarchitecture component in terms of a core circuit and a 

wrapper circuit. The core circuit implements the component's functionality. The wrapper 

circuit is responsible for extracting the necessary transaction fields to deliver to the core, 

and packaging the results back up again as an output transaction. Transaction fields not 

needed by the core are passed through unmodified. 

Microarchitecture synthesis then proceeds by expanding the pipeline's components into 

their constituent wrapper and core circuit definitions. A backwards dependency analysis 

on the pipeline's output wires determines which core components are actually used. The 

rest are unneeded and can be removed. A separate phase performs retiming and common 

subcircuit analysis to eliminate duplicate components. An interesting future research 

project would be to find out how efficient such a synthesized pipeline is relative to a 

pipeline designed entirely at the word level. 

7.3 Algebraic reasoning 

Hawk is designed to be a language that supports high level reasoning as well as specifi- 

cation. The algebraic reasoning developed in this thesis can be stratified into two essen- 

tially separate tasks: Proving the local microarchitecture component laws, and simplifying 

pipelines using those local laws. 

7.3.1 Proving the component laws 

Currently component law proofs seem to require quite a bit of verification expertise. A 

typical proof must perform induction over time and one or more case analyses on key 

transaction field values. Components can have large or unbounded state spaces, making 



completely automated techniques like model checking infeasible. Often the definition of 

a component needs to be generalized so that all values stored in internal delay circuits 

become parameters or return values. This was seen in Section 6.6.1 when we had to define 

the rf component in terms of a more general envs component that returned the entire 

contents of the register file at each clock cycle. 

In some ways it is disappointing that components have to be so carefully constructed in 

order to get inductive proofs to succeed. Often the generalized components start looking 

like the state machine transducers common to more imperative specification languages. 

Originally this seemed to be a disadvantage of Hawk's stream-transformer style of spec- 

ification, but we now tend to think of it as a general problem in theorem proving. It 

is often the case that recursively defined functions over an inductive domain have to be 

generalized to prove properties of interest. This is true regardless of the inductive domain. 

For multi-parameter functions the generalized form depends on which parameter is being 

inducted over and is thus an artifact of the proof, not the definition. 

We speculate that in many cases this generalization step can be automated, provided 

the user specifies which parameter to induct over. For example, it should be possible to 

write an Isabelle tactic that automatically converts a first-order Hawk circuit description 

into a state-machine transducer form, even if the circuit contains occurrences of other 

recursively-defined circuits. If indeed such a tactic could be built then Hawk specifications 

could be written in a more natural style, and converted only as necessary for temporal 

induction proofs. 

Higher order Hawk definitions are more of a challenge. There may not be an automatic 

way to convert a function that recurses over more than one parameter, as higher order 

components often do. In these cases the user would have to provide a conversion manually, 

which would then be used by the automated tactic when translating first order circuits 

containing the higher order component. 



Typed versus untyped verification logics 

Component proofs were also complicated by the type discipline imposed by higher order 

logic. We often wanted to quantify over elements of disparate types, particularly trans- 

action field values. The transactions considered in this thesis had three types of fields: 

Register names, words, and opcodes. More sophisticated microarchitectures could have 

many more, such as exception flags, predication bits, thread identifiers, etc. It is a hassle 

having to create "universal" datatypes to inject these values into and coercion functions to 

move back and forth between them. An excellent article by Lamport and Paulson[42] dis- 

cusses similar such problems. They suggest that although typed programming languages 

offer significant advantages, typed specification languages may not be the best choice, at 

least when it comes to carrying out formal correctness proofs. They make the following 

points (among others): 

Untyped set theory is an extremely expressive formalism, and underlies most of 

conventional mathematics. 

Simple type systems, such as the type system of higher order logic, significantly 

restrict the class of allowable specifications. 

Specifications containing "type errors7' in untyped formalisms are quickly detected 

when attempting correctness proofs. 

Features found in more complex type systems such as predicate subtyping usually 

make type checking undecidable and can make it hard to modularize specifications. 

None of them approaches the flexibility of untyped set theory. 

In a mechanical verification system, a typed formalism automates routine infer- 

ences such as "if x is a nat and y is a nat ,  then x + y is a nat.  However in a 

programmable theorem prover like Isabelle's ZF set theory logic these kinds of in- 

ferences can automated by writing a special "type-inference7' tactic over the domain 

of the specification problem. 



Most formal specifications are not formally verified. Mechanical type checking can 

help catch errors in these cases. 

They go on to observe that perhaps the best approach is to create an untyped specification 

language with the ability to build domain-specific type systems at the user level. Spec- 

ifications could then be annotated and type-checked according to whatever type system 

is appropriate for that domain. Since the underlying formalism is untyped, specification 

fragments annotated using different type systems could be combined. Bogus type errors 

could be resolved during formal verification. 

Our own experience with formally verifying typed Hawk specifications accords with 

their observations. Of course, it is easy to take for granted those things higher order logic 

does well and remember only the difficulties. We plan to re-verify some of the component 

laws in Isabelle's set theory formalism to get a more realistic sense of the tradeoffs involved. 

Hawk is both a programming language and a specification language. Even within the 

Hawk team many more microarchitectures have been specified and simulated in Hawk than 

have been verified. So, on balance, strong typing has been a definite win. However, there 

is nothing preventing us specifying and simulating Hawk circuits in a typed language like 

Haskell, and then verifying them in an untyped formalism. Translation between Hawk and 

set theory could be automated, and inferred types can become set-membership constraints 

in the translated formalism. 

7.3.2 Simplifying the pipeline 

Currently, proving local component laws requires substantial experience in logic and in- 

ductive proof methods. Fortunately using the laws to simplify pipelines requires far less 

training in formal methods. As we demonstrated in Chapter 3, pipeline simplifications 

can be carried out graphically without resort to complex higher order reasoning or induc- 

tive generalization. Microarchitects quickly understand simplifications we present, and 

state that they would feel comfortable in applying the technique themselves. In fact, the 

Hawk team has considered building a visual theorem prover that would allow designers to 

carry out simplifications by selecting components and choosing from a menu of allowed 



transformations. 

We have also found the microarchitecture laws to be fairly reusable when simplifying 

variations in the pipeline's design. We originally verified much simpler pipelines than the 

one presented in Chapter 3. Over time we increased the sophistication of the pipelines, 

and had to discover and prove new microarchitecture laws for the added components. 

Previously discovered laws, however, still remained applicable for the most part. This was 

true even when we added new transaction fields, such as the fields for carrying out branch 

speculation. 

It remains to be seen how many of the component laws will still apply when simplifying 

more dynamic processor microarchitectures, such as those employing out of order execution 

and superscalar instruction fetching. In the microarchitectures presented in this thesis, the 

possible paths a transaction can take through a pipeline are limited, and closely correspond 

to the pipeline's component structure. In contrast, the paths a transaction takes through 

a modern out of order microarchitecture are much more determined by the structure of the 

program being executed than the pipeline. It is unclear whether structural simplification 

techniques will be as effective on such data-driven processors. 

7.4 Converging equivalence relations 

The CER framework was developed in this thesis to solve a specific problem - showing 

that recursively defined signals are well formed. Over time it has become clear that the 

technique can be generalized to solve a wide range of recursive equations outside of the 

context of Hawk, such as the noncomputable function definitions for filtering and flattening 

infinite lists. In fact, as shown in Section 5.8 a CER combinator can be defined that is 

powerful enough to define any well-founded recursive function. 

It  would be quite interesting to build a recursive function definition package based 

on the CER framework. The package would be as expressive as existing packages for 

well-founded functions, but could also define non-well-founded functions as well. 



7.5 Mechanizing the verification 

We were able to automate within Isabelle many, but not all, of the paper-and-pencil 

proofs performed for this work. Specifically, we successfully generated Isabelle proofs for 

the following theories and components: 

Converging Equivalence Relations theory. This theory includes proofs of the 

CER fixpoint theorem, the signal and lazy list CER axioms, and the CER combina- 

tors. A descendant theory proves that the recursive equations defining the functions 

iterates, lrnap, lappend, Zfilter, and ljlatten have unique solutions. 

Recursive Hawk circuit definitions. Several Hawk circuits containing feedback 

signals are defined in Isabelle by invoking the CER fixpoint theorem, including the 

resettable counter circuit of Section 2.1, the envs circuit of Section 6.6.1, and several 

pipelined microarchitectures. 

Microarchitecture component laws. Most of the time-invariance laws have 

Isabelle proofs, as well as the feedback rotation law, the register file - bypass law, 

and the hazard - bypass law. We did not have time to prove the laws governing 

the nohaz and branchmisp components. However, their proofs should not present 

any difficulties, now that a theory of first class field names has been developed (see 

below). 

First class field names theory. The theory of transaction field names has only 

recently been mechanized in Isabelle. The primary motivation for mechanizing this 

theory is to make the microarchitecture component law proofs more robust in the 

face of changes to the transaction datatype. Previously, whenever the transaction 

type was extended by new field declarations, substantial portions of the component 

law proofs would have to be modified. It is, in fact, the main reason why the nohaz 

and branchmisp laws have not yet been mechanized, since these components require 

the addition of the specPCFld transaction field (which is not currently part of the 

transaction datatype). Now that disparately-typed fields can be quantified over, 

adding the specPCFld should be a much simpler matter. 



Pipeline simplification theory. To verify the top-level pipeline simplification pre- 

sented in Chapter 3 we axiomatized all of the microarchitecture laws in a separate 

theory, and then used the laws as rewrite rules to simplify the pipelined microarchi- 

tecture of Figure 3.10 to the reduced microarchitecture of Figure 3.67. We overcame 

difficulties with Isabelle's rewriting tactics by converting the microarchitecture laws 

and pipeline to a different form, described in Section 7.5.2. 

7.5.1 Mechanizing the microarchitecture law proofs 

The paper-and-pencil proofs of microarchitecture laws can be quite lengthy, even for simple 

circuits such as the registerFile-bypass law. Fortunately many of the steps simply consist 

of rewriting with respect to previously proven theorems. These steps can be automated 

in theorem provers like Isabelle that can repeatedly simplify a subgoal with respect to a 

list of equational theorems. 

A more difficult part of proving microarchitectural laws is defining stateful components 

in terms of appropriate auxiliary functions. The auxiliary functions of a component need 

to be defined in such a way that all of the component's important internal states are 

visible during the inductive proof. For the registerFile-bypass law, this involved defining 

the auxiliary function enus, which exposed the internal state of the register file contents. 

It turns out that in many cases these auxiliary functions are essentially the component's 

corresponding state machine transducers, as is the case for enus. The benefit of such 

transducer-like functions is that one can relate the value returned by the transducer in 

the next clock cycle in terms of the inputs to the transducer in the next clock cycle and 

values returned by the transducer in the current clock cycle. This is precisely the form of 

relation needed when carrying out temporal induction. 

7.5.2 Mechanizing the top level pipeline simplification 

Simplifying microarchitectures algebraically in Isabelle has been problematic. Hawk pipeline 

definitions consist of mutually-recursive signal definitions. Isabelle's rewriting tactics can 

handle mutually-recursive pattern matching function definitions by only rewriting func- 

tions that are applied to explicit constructors. This is exactly what is needed to prove the 



inductive properties used in the component laws, and Isabelle's sophisticated conditional 

and higher order rewriting package is of great help there. Unfortunately Hawk signal 

definitions at the pipeline level do not use pattern matching, and so naive rewriting often 

loops. Instead, top level rewrite steps must currently be done one at a time. 

Another difficulty concerns expression sharing. In Isabelle let-expressions are just syn- 

tactic sugar for function applications. Most Isabelle tactics do not support let-expressions 

directly, requiring the user to expand them first. The problem with this is that all sharing 

of sub-terms is lost during the expansion. Hawk microarchitectures contain significant 

signal sharing, and expanding them can increase the size of a pipeline by an order of mag- 

nitude. This size increase also increases tactic execution time by an order of magnitude, 

and makes the pipeline much harder to read during verification. 

One possible solution to both of these problems is to add support in Isabelle for 

recursive let-expressions (letrecs), defined as unique fixed points. When simplifying letrecs, 

later variable declarations could be rewritten in terms of earlier declarations automatically, 

but not vice-versa. Special tactics could be defined to change the order of declarations in 

a letrec if a different rewriting order was desired. An earlier declaration would only be 

expanded in a later declaration if it then enabled a rewrite rule to simplify the expanded 

expression. New common subterms created during simplification would be collected as 

shared variable declarations. 

Adding letrec support would not require changing Isabelle's trusted kernel of primi- 

tive inference rules. It would require substantially modifying tactics written outside of 

the kernel, such as the rewriter and tableau resolution tactics. Instead, we followed an 

alternative approach that reuses more of Isabelle's existing infrastructure. 

Conversion to relational form 

To take advantage of Isabelle's existing tools for reasoning about formulas (terms of type 

bool), the microarchitecture laws and pipeline definition were first converted to relational 

form. A Hawk circuit in relational form is represented as a predicate equality, rather than 

a function. The equality is parameterized on both the input and the output signals of the 

circuit, by representing the signals as free variables. The predicate equation is true exactly 



when the outputs equal the result of applying the circuit to the inputs. For example, the 

relational form of the regFiEe circuit could be given in terms of the free output variable 

out, and the free input variables inp and rb: 

out = regFiIe inp wb 

More complex circuits containing internal signals and recursion can be expressed in 

relational form through the use of existential quantification and conjunction. For instance, 

recall the register file - bypass law, presented again in Figure 7.1 with named internal wires. 

regFile reg File 
prevWb 

Figure 7.1: register file - bypass law 

The circuit on the left hand side of this law can be expressed as the following relation 

on the free variables out, inp and wb: 

(3 prev Wb rf0ut. prev Wb = delay nop wb A 

rf0ut = regFzle inp prevWb A 

out = bypass rfOut wb) 

The internal signal variable names prev Wb and rfOut are bound by the existential quan- 

tifier, and thus are not visible in any enclosing context. Specifying circuits as relations in 

this way is a commonly taken approach when verifying hardware designs in higher order 

logic[28, 641. 

The microarchitecture law of Figure 7.1 can now be expressed in higher order logic as 

an equality between the two circuit relations: 



'd out inp wb. 

( 3  prevWb r f0ut .  prevWb = delay nop wb A 

rf Out = regFile inp prev Wb A 

out = bypass rfOut wb) 

- - 

(out  = regFile inp wb) 

Assuming that the pipeline to be simplified is also expressed in relational form, then 

the above equality (once proven) can be used as a rewrite rule, at least in principle. In 

practice, Isabelle's current rewriting tactics are too restrictive to use such rules naturally. 

In particular, the rewriting tactics will not apply existentially-quantified rewrite rules 

unless the order of the existential quantifiers in the left hand side of the rewrite rule exactly 

matches the order in the term being rewritten. Similarly, the order of each conjunct in 

the rewrite rule must exactly match the order of the subject term's conjuncts. 

To remedy this situation we developed a set of tactics that allow conjuncts and exis- 

tential variables within Isabelle to be reordered on demand. We also developed tactics to 

apply the circuit duplication and feedback - rotation laws in this relational setting. Once 

the tactics were written, the pipeline was simplified step by step. Unfortunately, each 

step had to be carried out manually, requiring a total of 88 tactic invocations. However, 

there is nothing in principle to prevent Isabelle's rewriting tactics from being generalized 

to handle existentially quantified conjunctions in rewrite rules. Upgrading the rewriting 

tactics would dramatically reduce the number of manual simplification steps required. 

Justifying the conversion to relational form 

The question still remains as to whether relational conversions are valid, as currently Hawk 

microarchitecture laws are verified as equations between values, not relations. Fortunately 

the conversion can be justified by the fact that all recursive Hawk circuits are defined as 

unique fixed points. 

To begin with, any recursive circuit in Hawk can be expressed as a function of a 

projection p and a unique fixed point fix F 



circuit = Ainputs. p (fix F )  

by expressing the input signals of the circuit as parameters of the function (i.e. inputs), 

and both the output and internal wires of the circuit as elements of a tuple, which becomes 

the result of fix F .  The function p then projects out only the output signals. 

For example, the circuit shown in the left hand side of Figure 7.1 can be expressed as 

A inp wb.p (f ix F )  

where 

F = ( A  (out ,  prev Wb,  r f0u t )  . ( bypass rfOut wb, 

delay nop wb, 

regFile inp prev Wb)) 

p = ( A  (ou t ,  prev Wb, rfOut) . out) 

Thus, any microarchitectural law can be written as an equation between two circuits of 

the form: 

(Ail . . .in. p1 (fix F l ) )  = (Xil . . . in. p2 (fix F2))  

where Fl and F2 may contain occurrences of il . . . i n .  If Fl and F2 have unique fixed 

points (possibly over different types), then the above equation is provably equivalent in 

higher order logic to 

v il . . . in out. 

( 3  tuplel. tuplel = Fl tuplel A out = pl tuplel) 

- - 

( 3  tuple2. tuple2 = F2 tuple2 A out = p2 tuple2) 

When this equation is expanded in terms of Fl ,  F2, pl, and p2, and simplified by the 

following tuple equality rule 



the resulting reduced equation is in the required relational form. 

Performing the same inferences in reverse order, two circuits that have been proven 

equivalent in relational form can be converted to an equality between the same circuits ex- 

pressed as unique fixed points. Thus microarchitecture pipelines that have been simplified 

relationally can be converted back into conventional Hawk expression form. 

It is important to note that conversion to relational form may not be valid in general 

when Fl and Fz do not have unique fixed points. 

7.6 Conclusions and further research directions 

In all, Hawk has proved to be an excellent platform for quickly specifying and reasoning 

algebraically about pipelined microarchitectures at an abstract level. The strengths of 

Hawk revolve around its abstraction capabilities and executability: 

Abstract and modular specificat ion. The combination of functional language 

structuring principles with the domain-specific transaction ADT leads to remarkably 

concise, yet understandable, pipelined microarchitecture descriptions. In particular, 

transactions combined with mutual recursion at the stream level allow us to build 

processor components as separate modules, then easily compose them at the top 

level. 

Abstract and modular reasoning. At the same time, the simple semantics 

underlying Hawk allows one to reason about source level hawk descriptions directly 

as expressions in higher order logic. The equational laws we have derived for local 

microarchitecture components are independent of context, and can thus be used in 

a modular fashion. Hawk's equational theorems and proofs can also be displayed 

visually, so that users do not need to be versed in the complexities of higher order 

or temporal logic to follow them. 

Executability. Hawk is fully executable, so designers can test new designs on 

concrete and symbolic inputs. One can even simulate first order Hawk microar- 

chitectures visually. Hawk project members Thomas Nordin and Byron Cook have 



developed Visual Hawk, a graphical front end to the Hawk interpreter. In Visual 

Hawk a designer can create circuit diagrams by dragging microarchitecture compo- 

nents from a palette onto a canvas and then connecting them with wires. Each wire 

represents a signal. The tool performs static type checking and input/output mode 

analysis to ensure that wires are only connected between compatible component 

ports. The designer can simulate microarchitecture circuits interactively, and then 

double click on a wire to obtain a trace of all the values sent along it so far. 

The executability of Hawk combined with good user interface support makes Hawk 

a useful tool to designers even in the absence of formal verification. 

Embedded language. Hawk is built upon and compatible with the general- 

purpose programming language Haskell. Thus we immediately can make use of the 

existing interpreters, compilers, programming texts, and user community associated 

with Haskell. 

Of course, Hawk is not perfect. The major weaknesses of Hawk and the algebraic method 

uncovered during the course of this thesis involve simulation efficiency and lack of automa- 

tion when verifying Hawk circuits: 

Efficiency. Hawk's high level of abstraction comes at a cost. Current Hawk imple- 

mentations run at two to three orders of magnitude more slowly than state of the art 

imperative microarchitecture simulators. Much of this slowdown comes from using 

a general purpose Haskell compiler, and the efficiency of Hawk simulations could 

be improved by at least two orders of magnitude by employing domain-specific 

compilation techniques, such as converting streams into mutable variables, stati- 

cally scheduling expression evaluation, monomorphizing polymorphic expressions, 

and custom garbage collection. But it is unclear even with these optimizations how 

closely we could approach the efficiency of the very best hand-tuned microarchitec- 

ture simulators. 

Infinite state spaces. Most Hawk components operate over unbounded datatypes. 

For instance, the register file component can have an infinite number of registers. 



Each register can contain a word value of unbounded size. Similar generality is built 

into other components, such as the instruction and data caches. Unfortunately, most 

of the fully automatic model checking algorithms operate over finite state spaces, and 

thus can not be used directly. Theorem provers can easily handle infinite state spaces, 

but require a great deal of effort and expertise to use. In practice, this significantly 

limits the size of Hawk specifications that can be verified in a reasonable amount 

of time. However, a promising intermediate technology called compositional model 

checking (discussed in the future work section below) may help reduce the amount 

of manual intervention needed to prove microarchitecture laws. 

Hidden state. At the lowest level, local equational laws have to be proved by some 

form of induction. Often one has to generalize the equation being proved to a bisim- 

ulation relation that holds at all points in time, and relates values at the previous 

time step to values at the current time step. With state machine formalisms, all of 

these previous and current values can be referenced explicitly. Hawk components, 

on the other hand, tend to hide previous values (which are the outputs of delay 

circuits) deep within the component definitions. To build a suitable bisimulation in 

Hawk, one has to parameterize initial arguments to delay circuits as arguments to 

the entire component, or one has to construct auxiliary state observation functions 

and define the bisimulation in terms of these. In either case it is extra work that 

does not need to be done with state machine oriented verification. 

From a generic theorem proving perspective this thesis' most widely applicable result is 

the development of converging equivalence relations. The CER framework generalizes def- 

inition by well-founded recursion, and may turn out to be a useful way to define functions 

over a broad range of coinductive data structures, such as infinite lists, infinite trees, and 

cyclic graphs. 



Future work 

The work described here can be extended in several directions. Besides increasing the 

power of Isabelle by adding support for recursive let-expressions and CER-definable func- 

tions, we also intend to complete the algebraic verification of the pipeline of Chapter 3. 

At the moment the pipeline cannot be simplified to a reference machine because of the 

extra nop transactions output when the pipeline stalls. It should however be possible to 

simplify the pipeline to a stalling reference machine, where the reference machine's stalling 

behavior is governed by an external oracle. By feeding the stalling control logic of the 

pipelined ~nachine as the reference machine's oracle, the two microarchitectures should 

output exactly the same transactions. Given suitable additional component laws concern- 

ing the instruction cache, it should be possible to prove the two processors equivalent 

algebraically. 

We also intend to automate component law proofs further by applying recent work 

on abstract model checking, particularly the work of McMillan[57, 61, 59, 601 on verifying 

infinite state models. McMillan and the author have performed some preliminary experi- 

ments on verifying component laws, with promising results. Abstract model checking was 

able to reduce infinite state space versions of the registerFile - bypass and hazard - bypass 

laws down to a series of small finite state model checking problems, which were then solved 

automatically. It was necessary to add a few refinement maps and manual annotations 

stating which variables were used in a symmetric manner, but overall the approach seemed 

much more automatic than the current inductive proofs carried out in Isabelle. 
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