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of Processor Microarchitectures

John Robert Matthews
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The Hawk language is a domain-specific extension of the pure functional language Haskell,
and is used to specify and reason about processor microarchitectures at a high level of
abstraction. We apply functional language technology and reasoning principles to concisely
specify pipelined microarchitectures in Hawk and verify them through a domain-specific
microarchitecture algebra. We develop a remarkably simple set of local equational laws
governing processor components such as register files, bypass logic, and execution units.
Many of these laws are verified in Isabelle, a higher order logic theorem prover. The
laws are used to incrementally simplify a complex pipelined microarchitecture, removing
pipeline stages and simplifying control logic, while retaining cycle-accurate behavior with
respect to the original pipelined design.

Proving these laws requires defining mutually recursive functions over coinductively
defined streams. Such definitions are not directly supported in current theorem provers.
We develop a generalization of well-founded recursion, called Converging Equivalence Re-
lations, that allows these definitions to be added conservatively in a straightforward and

modular fashion.

xvi




Chapter 1

Introduction

Modern processor microarchitectures can be incredibly complex. Although exact figures
are kept secret, it can safely be said that leading manufacturers employ dozens if not
hundreds of design and verification engineers for each new generation of processor. As
semiconductor process improvements continue to deliver an exponentially increasing bud-
get of transistors, processor architects are able to employ ever more sophisticated imple-
mentation techniques to increase the amount of useful work performed per clock cycle.

Some standard examples of performance increasing optimizations are:

e Pipelining. Analogous to automobile assembly lines, operations that take more
than one clock cycle to complete are often divided into stages. Each stage completes
its work in one clock cycle. By connecting the stages with pipeline registers, multiple

instances of complex operations can be processed per clock cycle.

e Superscalar execution. Multiple instructions are fetched per clock cycle. Dupli-

cated execution units such as ALUs execute the fetched instructions concurrently.

e Caching. Long-latency communication between the processor and main memory is

minimized by storing past results in local caches for faster access.

e Out-of-order execution. Fetched instructions are dynamically analyzed to deter-
mine which instructions are independent of each other. Independent instructions are
executed according to when a compatible execution unit is available, even though
this may cause the operations to be performed in a different order than specified by

the program.



e Speculation. The results of time-consuming operations are opportunistically pre-
dicted. The processor uses the predicted result immediately, and simultaneously
starts computing the real result of the operation. The processor then checks whether
the prediction is correct once the operation completes. If the prediction is confirmed,
the processor has saved time by parallelizing the operation. If the prediction is in-

correct, the processor rolls back its internal state and then uses the correct result.

Not only does each of these techniques incur a substantial amount of design complex-
ity, cutting edge processor designs combine them to achieve further speedups. In fact,
creating and verifying these designs is a significant proportion of the total microprocessor
development lifecycle. As the number of possible gates in future microprocessors increases
exponentially, so too does design complexity.

It is now common for a commercial microprocessor design effort to take two years
or more, as engineers resolve all of the possible interactions between microarchitectural
features while trying to meet performance, area, power, and heat dissipation goals.

Resolving all of these issues while trying to complete the project as quickly as possible
almost always results in design defects, some of which may slip through testing efforts and
end up in released products. Of course, similar defects routinely occur with large commer-
cial software products. But whereas software faults can be easily fixed by downloading
patches through the internet, a microprocessor defect may require the entire device to
be replaced. These mistakes can become exceedingly expensive, both financially and in
lowered customer confidence. Such mistakes have also become more widely publicized in

recent years, as personal computers are increasingly sold to mass consumer markets.

1.1 Hardware description languages

One way to gain intellectual control over design complexity is to employ a formal modeling
language. Such a language can provide several benefits. For example, Ashenden[4] notes

that assuming the language has appropriate supporting tools, an architect can:

e Describe and understand the required behavior and attributes of a system

unambiguously.



Communicate these requirements to others precisely.

Test the system by simulating it.

Formally verify the system with respect to desired properties.

Automatically synthesize implementations from the description.

Of course, most description languages are not designed to support all of the above
activities, at least initially. For example, the VHDL hardware description language[4] has
a large set of language features for specifying circuits behaviorally. A user can simulate
any behavioral VHDL description, but must describe circuits using a strict subset of these
features to automatically synthesize a circuit implementation. On the other hand, low-
level languages designed to describe circuits at the gate and transistor level are harder to
simulate efficiently.

In practice, a design engineer will typically work with multiple specification languages
during a processor development lifecycle. In the early stages, the designer is more con-
cerned with functional correctness and the performance tradeoffs between alternative mi-
croarchitectural features at the granularity of individual clock cycles. Thus the design
engineer is likely to use a high-level behavioral specification language, such as behavioral
VHDL, or even C. As the overall design is solidified, lower level structural considerations,
such as size and layout constraints, power consumption budgets, and sub-clock-cycle tim-
ing issues often encourage or require the engineer to develop circuit designs that can be

directly synthesized and analyzed at the gate or transistor level.

1.1.1 Goals of the Hawk language

At the Oregon Graduate Institute we have been interested in developing high-level do-
main specific programming languages based on structuring principles derived from typed
functional programming languages. In particular, the Hawk project has been developing
a behavioral specification language for processor microarchitectures. Our goal is to build
a language that lets architects specify designs at a higher level of abstraction than can

be done with current behavioral hardware specification languages. To achieve this we



intend to use language features that promote concision, modularity, and reusability in

specifications.

e Concision. Just as a program written in a higher level language such as C is easier
for humans to understand and modify than the same program written in assembly
language, so too do microarchitectures become more comprehensible as specifications
are made more concise and abstract. Ideally we would like our specification language
to be as concise as the high-level block diagrams that architects currently use to

express microarchitectures.

e Modularity. Given the number of people required to design modern processor
microarchitectures, it is essential to be able to decompose a large specification into
separate units, with well-defined interfaces between them. In this way individual
architects can concentrate on a portion of the overall microarchitecture, without

having to understand the entire design in full detail.

e Reusability. Once a specification language has the ability to separate design ele-
ments into modular units, a natural next step is to try to reuse commonly occuring
design units by defining them once and then referring to the definition at each point
of use. By eliminating redundant definitions, the overall size of the specification is
reduced, and defects caused by creating incompatible versions of the same design

element are prevented.

However, we don’t want our specification language to be so abstract that it is not
executable. To gain confidence in a design’s correctness and evaluate performance tradeoffs
an architect may need to simulate a microarchitecture on a wide variety of programs. It
is not uncommon for a microprocessor simulator to execute billions of instructions on a
given design.

In addition to concrete simulation, we would also like to simulate microarchitectures
in Hawk symbolically. A symbolic simulator allows the user to execute a design with some
of the inputs given as symbolic variables (or more generally expressions), rather than as

concrete values. The simulator then executes the design with the symbolic inputs and



returns the result as a symbolic expression. In this way a single symbolic test run can
replace a whole family of concrete test runs. A good introduction to symbolic simulation
techniques for processors is given by Moore[67], who uses the ACL2 theorem prover to
symbolically simulate a small processor at the instruction set architecture level. Symbolic
simulation can sometimes detect errors simply because the returned expression “looks
strange”, i.e. is much larger or more complex than what was expected. This strategy was
used by Greve[31] to detect microcode errors in a direct execution Java processor. Day,
Lewis, and Cook[19] have developed a version of Hawk that supports symbolic simulation
and have used it to symbolically simulate the data flow of a superscalar out-of-order
microarchitecture.

To gain even more confidence in the correctness of a Hawk specification an architect
should be able to turn to formal verification, where a mathematical proof demonstrates
that a design satisfies desired correctness properties on all possible inputs. Since the design
being verified can be quite large, this approach only becomes practical when the proof is
carried out with the help of automated tools, such as model checkers and theorem provers.
Constructing proofs requires formalizing both the design and the underlying specification
language in some mathematical logic, such as set theory or higher order logic. This is not
a trivial endeavor, and specification languages with complex or ill-defined semantics can
substantially increase the amount of human and machine time necessary to complete the

proof.

1.2 Thesis statement

Hawk was created as a typed functional programming language in order to provide a
good balance between abstraction and expressiveness, executability, and ease of formal

reasoning. In particular, this dissertation aims to show that:

e The concepts underlying lazy functional programming languages, particularly Haskell
and its Hawk extensions, allow one to specify microarchitectures concisely, modu-
larly, and reusably, while retaining the ability to simulate them on concrete test

cases.




e Using equational reasoning principles, one can develop a microarchitecture algebra,
whose laws enjoy the same degree of concision, modularity, and reusability as the

microarchitecture specification.

e Such algebraic laws can be used to verify the correctness of pipelined microarchitec-

tures.

e The Hawk specification language can be naturally formalized in higher order logic,

and thus verification steps can be checked by a theorem prover.

This thesis can be thought of as a case study supporting a larger agenda: To demon-
strate that the equational reasoning principles underlying lazy functional languages, and
specifically the Haskell programming language, provide a good foundation for developing
domain-specific algebras. The hope is that such algebras increase one’s understanding of

the domains, and can be used to formally verify desired properties of specifications.

1.3 Synopsis

Part of the content of this thesis is made up of re-edited and expanded versions of three
published papers and a technical report, all written primarily by this author. These papers
introduce Hawk as a specification language[55], describe how algebraic reasoning can be
used to simplify and verify pipelined microarchitectures[53, 54|, and show how to define
recursive functions, such as Hawk circuits, over coinductive types[52].

Accordingly, we begin the dissertation by introducing Hawk as a microarchitecture
specification language embedded within Haskell. We then state equational laws that hold
of microarchitectural components, such as register files and ALUs, and use them to incre-
mentally simplify a pipelined microarchitecture. Finally, we formalize a subset of Hawk
in higher order logic and prove a representative set of these microarchitecture laws, using
a combination of equational reasoning and induction over time.

The definition of mutually recursive functions over infinite streams is the most chal-
lenging aspect of Hawk’s formalization, since such definitions are not directly supported

in current theorem provers. We develop a generalization of well-founded recursion, called



Converging Equivalence Relations, that allows these definitions to be added conservatively
in a straightforward and modular fashion.

The remaining chapters of this thesis are as follows:

Chapter II: Introduction to Hawk

This chapter introduces Hawk as a specification language. We introduce a simple pipelined
microarchitecture and specify it first in Hawk at the register transfer level (RTL) and then
with transactions, an abstract datatype for representing the complete microarchitectural
state associated with an instruction. We show that the language features of Hawk com-
bined with transactions as a structuring principle lead to a concise and understandable

specification.

Chapter III: Microarchitecture algebra

Next, we informally introduce our algebra of microarchitectural components by describing
the components that comprise a more complex reference architecture than the one intro-
duced in Chapter 2. We describe how these components are modeled in Hawk and state
the laws that hold among them.

Several of the laws contain projection circuits. Projections are not used in either the
pipelined or the reference microarchitectures, but are instead artifacts of the verification
process. We motivate the usefulness of projections, and describe the conditions under
which they can appear in microarchitecture laws.

Once the necessary laws have been introduced, we show how they can be used to

simplify the pipelined microarchitecture. This simplification is presented graphically.

Chapter IV: Formalizing Hawk in higher order logic

In this chapter we introduce Higher Order Logic (HOL) and the Isabelle theorem prover
briefly and informally. We use HOL to formalize Hawk and the microarchitecture algebra,
and Isabelle to check the proofs. Since Hawk is a purely applicative functional language,
many aspects of the language can be modeled directly in higher order logic itself. However,

dealing with recursive Hawk definitions is more difficult. The standard semantics for



Hawk is domain theoretic, with recursive definitions modeled by least fixpoints. Although
Isabelle has an object logic (HOLCF) that provides some support for reasoning about
domains, there is much more support for “pure” HOL. For example, there is no syntactic
support in HOLCF for pattern-matching function definitions or pointed numeric domains.
We thus focus on techniques for modeling Hawk directly in HOL.

There is no natural “information order” among elements in pure HOL, and so there
is no notion of a least fixpoint. However, it turns out that well-formed recursive Hawk
definitions have unique fixpoints, and can therefore be uniquely defined using Hilbert’s
choice operator. It is a well known result of topology that unique fixpoints can be found
for contracting functions in complete metric spaces. Intuitively, a metric space is a set of
elements and an associated distance metric over pairs of elements. The distance metric
returns a real-valued number indicating how far apart the two elements are. A contracting
function over this metric space, when applied to each of a pair of elements, returns a
corresponding pair of elements that is “closer” to each other than the original elements
are. Banach’s theorem states that contracting functions do in fact have unique fixpoints.

It is possible to define suitable distance metrics for Hawk streams, and show that
recursive Hawk definitions over these streams are contracting functions. However, this of-
ten requires reasoning about division and exponentiation over real-valued domains, which

relatively few theorem provers support well. Instead we adopt a different approach.

Chapter V: Converging equivalence relations

We develop an alternative framework, called Converging Equivalence Relations (CERs),
for proving the uniqueness of fixpoint definitions. We develop analogs of metric spaces
and contracting functions that do not require the use of continuous mathematics. Instead,
reasoning proceeds by well-founded induction over discrete domains such as the natural
numbers, which are well supported by all of the HOL-based theorem provers.

Thi