Algebraic Specification and Verification

of Processor Microarchitectures

John Robert Matthews
B.S., University of Washington, 1990

A dissertation submitted to the faculty of the
Oregon Graduate Institute of Science and Technology
in partial fulfillment of the
requirements for the degree
Doctor of Philosophy
in

Computer Science and Engineering

October 2000

(© Copyright 2000 by John Robert Matthews
All Rights Reserved

il

The dissertation “Algebraic Specification and Verification of Processor Microarchi-
tectures” by John Robert Matthews has been examined and approved by the following

Examination Committee:

John I__.aﬁn;l{ﬁﬁ'gf ’ ()
Professor
Thesis Research Adviser

Dick Kieburtz
Professor

P

Lb an-l\%Nay(ee /
ssistant Prdfessor

Mary Sheeﬁn

Professor
Chalmers University of Technology

it

Dedication

To Julie and my parents.

iv

Acknowledgements

I would like to thank my advisor, John Launchbury, for helping me to become a
researcher. John has been an excellent teacher and a major source of inspiration in this
work. He has given me just the right balance of direction, freedom, and encouragement.
Thank you John.

This work was funded by grants from the Air Force Material Command and Intel Cor-
poration, as well as a graduate research fellowship from the National Science Foundation.
These endowments helped me to pursue my own research agenda, for which I am grateful.
I was also funded by internships at Intel and Microsoft Research (Cambridge), where I
gained insight into the pragmatic goals and concerns of industrial verification. T would
like to thank Borislav Agapiev and Carl Seger of Intel, as well as Don Syme and Andrew
Gordon of Microsoft in giving me these internship opportunities and guidance. I would in
addition like to thank the many people at Intel and Microsoft who patiently answered my
wide-ranging questions, including Mark Aagaard, Luca Cardelli, Oege de Moor, Robert
Jones, Tom Melham, John O’Leary, and Simon Peyton Jones.

I greatly enjoyed my time at the Oregon Graduate Institute, as well as the stimulating
discussions and encouragement I received from the members of the PacSoft and Hawk
research groups. I spent some exceptional years here.

Byron Cook, Nancy Day, Jeff Lewis, and Thomas Nordin put a lot of time and effort
into developing aspects of the Hawk system, which I happily made use of. I fondly re-
member long talks on aspects of Hawk formalization with Byron Cook, Nancy Day, Sava
Krstié and Mark Shields. Their knowledge and insight have improved my thesis.

I would also like to thank the other members of my thesis committee, Dick Kieburtz,
Dylan McNamee, and Mary Sheeran, and librarian Julianne Williams for their excellent

comments and discussions. I apologize now for any remaining omissions or errors.

I am indebted to my parents Bob Matthews, Elizabeth and Michael O’Connell, and
my brother Michael Matthews for the love and encouragement they have shown me for as
long as I can remember.

Finally, T would like to thank Julie, the love of my life, for being at my side all of these

years, even when I couldn’t always be at hers. Thank you for helping me through it all.

vi

Contents

Dedication. iv
Acknowledgements v
Abstract xvi
1 Introduction e 1
1.1 Hardware description languages, 2
1.1.1 Goals of the Hawk language 3

1.2 Thesisstatement e 5
1.3 Synopsis . -o e e 6
Introduction to Hawk 10
21 TheHawk library L 10
2.1.1 Signals. e e e 10

2.1.2 Components e e 12

2.1.3 Using thecomponents 13

2.1.4 Recursive definitions L L oL 14

2.1.5 Other embedded Haskell languages 14

2.2 A simple microprocessor L. e e e e e e e 16
2.2.1 Unpipelined SHAM specification 18

2.2.2 Pipelining 19

2.2.3 Transactions e 22

2.2.4 Tramsaction structure, 23

2.2.5 Changes to handle transactions 24

2.2.6 Unpipelined SHAM 25

2.2.7 SHAM2 with transactions, 26

228 Hazards e 27

2.2.9 Hawk specification of extended SHAM 30

2.2.10 Extending transactions to other microarchitectures 32

2.2.11 Transactions in other modeling languages 33

vii

2.3 Modelingthe DLX e 33
23.1 Executingthemodel 34

2.4 Other hardware modeling languages, 35
3 Microarchitecture algebra o oo L 40
3.1 Imtroduction. e 40
3.2 Reference microarchitecture oL L. 41
3.3 Algebraic reasoning and the microarchitecture laws 43
3.3.1 Algebraicreasoning 43

332 Delaylaws L 45
3.3.3 Bypassesand bypasslaws, 46
334 Projectionlaws 48

3.4 Transforming the microarchitecture 49
3.4.1 Retimingstage 51

342 Movecontrol wiresstage L. 58

3.4.3 Propagate hazard information stage 63
3.4.4 Remove forwarding logicstage 66
345 Cleanupstage e e e e 68

34.6 Finalpipeline e 72

3.4.7 Verifying the final microarchitecture 72

4 Formalizing Hawk in higher order logic, ... 75
4.1 Elements of higher order logic 76
4.1.1 Terms o o e e e e e e 76
4.1.2 Typesand typeoperators i, i
4.1.3 Primitiveconstants L 0oL 78
414 Defined constantso L L 79
4.1.5 Inferencerulesandproofs 79
4.1.6 Typedefinitions Lo oL 82
4.1.7 Datatypes e e e e e 84

4.2 The Isabelle theorem prover, 86
4.2.1 Certifying proofsin Isabelle 87
4.2.2 Higherlevel tactics 88

4.3 EmbeddingHawk L 89
4.4 Modeling recursive definitions oL o 0oL 91
4.4.1 Axiomatic definitions oo 0oL oL 92

442 Well-founded recursion L. 92

4.43 Coinductive types and corecursive functions 93

viii

4.5 Defining recursive functions as fixed points L. 95

451 Uniquefixedpoints., 95
4.5.2 Properties of unique fixed pointso, 96
Converging equivalence relations 98
51 Definition 98
5.2 Examples e e e e 100
521 Discrete CER oo 100
522 Lazylist CER e 100
5.3 Contracting functions and the CER fixpoint theorem 102
5.4 Recursive definitions over coinductive lists, 103
54.1 Defining iterates 104
5.5 Composing converging equivalence relations 105
5.5.1 Defining recursive functions with the function-space CER 106
5.5.2 Other CER combinators 109
5.6 Demonstrating equality between coinductive elements 109
5.7 Defining functions with unbounded look-ahead 111
5.8 Generalizing well-founded recursion o0 L. 114
5.9 Proof of the CER fixpoint theorem 115
591 OQutline 115
5.9.2 Converging approximation maps, 116
5.9.3 Propertiesofapz L 118
5.10 Applying CERs to Hawk circuits 121
511 Related work e 121
Verifying the microarchitecture laws 124
6.1 A theory of transactions Lo oL, 125
6.1.1 Transaction as an abstract datatype 126
6.1.2 Transactionlaws 127
6.1.3 Derived transaction operators, 129
6.2 Exploiting symmetry in transaction fieldso L. 131
6.2.1 Firstclassfieldnames 132
6.2.2 Generalized fieldlaws 0oL 135
6.3 Lifting the transaction theory tosignals 136
6.4 Proof of alu time-invariance fornop 137
6.5 Temporal reasoningo 142
6.6 Proving the registerFile-bypasslaw 142
6.6.1 Definition of envs and rf components 142

ix

6.6.2 Converging equivalence relations for signals 144

6.6.3 Properties of envs componento 148

6.6.4 Definition and properties of fuEnvs component 151

6.6.5 Definition and properties of bypass component 151

6.6.6 Proof of the microarchitecture law 153

7 Retrospective e e 156
7.1 The functional basisof Hawk 157
7.1.1 Structured datatypes 157

7.1.2 Lazyevaluation 159

7.1.3 Higher order functions L. 160

7.1.4 Static typing and polymorphism 161

7.1.5 Nondeterminism 162

7.2 Transactions e 165
7.2.1 Verifying pipelines with transactions 165

7.2.2 Calculating space efficient pipelines. 166

7.3 Algebraicreasoning oL o e 166
7.3.1 Provingthecomponentlaws. 166

7.3.2 Simplifying the pipeline 0oL 169

7.4 Converging equivalence relations L. 170
7.5 Mechanizing the verification00 L. 171
7.5.1 Mechanizing the microarchitecture law proofs 172

7.5.2 Mechanizing the top level pipeline simplification 172

7.6 Conclusions and further research directions 177
Bibliography 181
Biographical Note 190

List of Tables

4.1 The primitive constants of HOL

4.2 Some derived constants in Isabelle HOL

xi

2.1

2.2
2.3

2.4

2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14

List of Figures

Resettable Counter. A simple circuit that counts the number of clock cycles
between reset signals. Lo
Unpipelined version of SHAM.
Pipelined SHAM. Since the register file and the ALU each now take one
clock cycle to complete, we now need extra Delay circuits. The Delay
circuits in turn require us to add Select circuits to act as bypasses. The
logic controlling the Select circuits is not shown.
A transaction as it flows through the pipeline. As the transaction pro-
gresses, its operands become more refined. L. 0oL L
bypass circuit L e
Block diagram of extended SHAM pipeline. Each Pipeline Register circuit
is made up of multiple Delay and Select circuits. The Select circuits are
used for bypassing, ensuring that the source operands are up-to-date.

One-stage pipeline.
Hawk code for reference microarchitecture
Universal circuit-duplicationlaw
feedback rotation law oL Lo oo
time-invariance law. Lo oL oL o o
bypass circuit idempotence lawo 0oL
register-bypass law L Lo
hazard-bypasslaw
Hazard-squashing logic guarantees no hazards
Microarchitecture before simplification
Split delay circuit after regFile, using the circuit duplication law
Split delay circuit after alu, using the feedback-rotation law
Split twice the delay circuit leading to branch_misp and iCache, using two

applications of the circuit-duplicationlaw
Move delay circuits through the branch misp and hazard circuits, using

the corresponding time-invariance laws L.

xii

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23
3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

Move delay circuits through the or and and circuits, using the circuit-

duplication law and the corresponding time-invariance laws 52
Move delay circuits through the kill circuit, using the corresponding time-
invariance laws L L. L oL e 53

Split the delay circuit after the kill circuit, using the circuit duplication

law . . . e e e e e e e 53
Split the delay circuit after the mem circuit, using the feedback rotation law 53
Split the bottom-most delay circuit, using the circuit duplication law . . . 54
Split the bottom-most delay circuit again, using the circuit duplication law 54
Move the delay circuit before the first bypass circuit through the first and
second bypasses, using the corresponding time-invariance laws 54
Move the delay circuit through the alu circuit using the corresponding
time-invariance law 0oL oL L L 55
Split the delay circuit after the alu circuit using the feedback-rotation law 55
Move the delay circuit through the third bypass circuit using the corre-
sponding time-invariance lawo L oL oL 55
Move the delay circuit through the mem circuit using the corresponding
time-invariance law L. L L L 56
Split the delay circuit after the mem circuit, using the corresponding feedback-
rotation law L. e e e 56
Split the delay circuit below the mem circuit, using the corresponding circuit
duplication law L 56
Move the delay circuit through the last bypass circuit, using the corre-
sponding time-invariance law 0L 0oL o7
Move the delay circuit through the mem circuit, using the corresponding
time-invariance law L L Lo Lo 57
Split the delay circuit after the mem circuit, using the feedback-rotation law 57
Split the bottom-rightmost delay circuit, using the circuit duplication law . 58
Projection insertion laws for proj branch_info 58
Insert proj_branch_info projection on the inputs to iCache and branch_misp,
using the corresponding projection laws from Figure 3.32 59
Move proj_branch_info past the left-most delay, using the corresponding
time-invariance law L L oL 59
Merge the two instances of proj_branch_info, using the circuit duplication

law InTeverse L e e e e e e 60
Split the delay circuit ahead of proj branchinfo 60

x1il

3.37

3.38
3.39

3.40

3.41

3.42

3.43

3.44

3.45
3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55
3.56

3.57

3.58

Move the proj_branch_info circuit past the delay circuit using the corre-
sponding time-invariance law L. L. 61
Projection-invariance laws for proj_branch_info 61
Move proj_branch_info past the third bypass and mem circuit, using the
projection invariance laws from Figure 3.38 62
proj-ctrl projection insertion lawo 0L 62
Add proj_ctrl projections to the inputs of the hazard circuit using the cor-
responding projection-insertion laws (Figure 3.40), and move the right-most
proj-ctrl circuit past the delay using the corresponding time-invariance law 62
Generalized no_haz projection insertionlaw 63

Insert a no_haz projection after the kill circuit, using the projection in-

sertion law shown in Figure 3.42 63
Commute no_haz with the first bypass, using the corresponding projection
commutativity law (we also reroute the mem stage feedback wire) 64
register file commutativity laws L. 64
Commute the first proj_ctrl projection with the register file, using the
first law of Figure 3.45 65
Commute the register file with the kill circuit, using the second law of
Figure 3.45 e e 65
Commute the second proj_ctrl projection with the register file, using the
first law of Figure 3.45 Lo 65
Use the register-bypass law to remove the left-most bypass and the delay
circuit below it 66
Remove the right-most bypass circuit using the hazard-bypass law 66
register file commutes with hazard projection 66

Swap the register file with no_haz, using the commutativity law in Figure 3.51 67
Remove no_haz, using the no_haz projection insertion law (Figure 3.42) in
TEVETSE . . v v i v e e i e e e e e e e e e e e e e e 67
Merge the delay feeding into the remaining bypass circuit with the right-
bottom-most delay, using the circuit-duplication law in reverse. 67
Remove the last bypass circuit, using the register-bypass law 68
Swap the proj_branch_info projection with the delay next to it, using the
corresponding time-invariance law. Lo oL L 68
Merge the three forking delay circuits after the mem circuit, using the feed-
back rotation law inreverse. L Lo oo 69

More proj_ctrl projection invariance laws 69

xiv

3.59

3.60

3.61

3.62

3.63

3.64

3.65
3.66

3.67

4.1

5.1

5.2

7.1

Move the right-most proj._ctrl circuit past the register file, using the first

law of Figure 3.45 69
Move the right-most proj_ctrl circuit past the alu, using the first law in
Figure 3.58 oL e 70
Move the right-most proj_ctrl circuit past the mem, using the second law
in Figure 3.58 L 70

Swap the right-most proj._ctrl circuit with the delay, using the corre-
sponding time-invariance lawo oL oL 70
Merge the delay after the mem unit with the delay below the right-most
proj._ctrl, using the feedback rotation law in reverse 71
Remove proj_ctrl circuits, using the projection insertion law of Figure 3.42
inreverse 71
Split the proj_branch_info projection, using the circuit duplication law . . 71
Swap the left-most proj_branch_info projection with the delay circuit
below it, using the corresponding time-invariance law 72
The final pipeline, after removing the proj_branch_info projections using

the projection insertion laws of figure 3.32 inreverse 72

Inference rules specific to higher order logic. (abs) holds if x is not free in
the assumptions. °(a« conv) holds if y is not free in a. *(ezt) holds if x is
not free in the assumptions, f,org. 80

The CER axioms. Each of these axioms must hold for arbitrary ¢, z, v,
and f. . .. e e 100
The llist_diag function constructs a limit list from an approximation map.

In (a) the approximation map converges to a finite list; In (b) to an infinite

Xv

Abstract

Algebraic Specification and Verification
of Processor Microarchitectures

John Robert Matthews

Ph.D., Oregon Graduate Institute of Science and Technology
August, 2000

Thesis Advisor: Dr. John Launchbury

The Hawk language is a domain-specific extension of the pure functional language Haskell,
and is used to specify and reason about processor microarchitectures at a high level of
abstraction. We apply functional language technology and reasoning principles to concisely
specify pipelined microarchitectures in Hawk and verify them through a domain-specific
microarchitecture algebra. We develop a remarkably simple set of local equational laws
governing processor components such as register files, bypass logic, and execution units.
Many of these laws are verified in Isabelle, a higher order logic theorem prover. The
laws are used to incrementally simplify a complex pipelined microarchitecture, removing
pipeline stages and simplifying control logic, while retaining cycle-accurate behavior with
respect to the original pipelined design.

Proving these laws requires defining mutually recursive functions over coinductively
defined streams. Such definitions are not directly supported in current theorem provers.
We develop a generalization of well-founded recursion, called Converging Equivalence Re-
lations, that allows these definitions to be added conservatively in a straightforward and

modular fashion.

xvi

Chapter 1

Introduction

Modern processor microarchitectures can be incredibly complex. Although exact figures
are kept secret, it can safely be said that leading manufacturers employ dozens if not
hundreds of design and verification engineers for each new generation of processor. As
semiconductor process improvements continue to deliver an exponentially increasing bud-
get of transistors, processor architects are able to employ ever more sophisticated imple-
mentation techniques to increase the amount of useful work performed per clock cycle.

Some standard examples of performance increasing optimizations are:

e Pipelining. Analogous to automobile assembly lines, operations that take more
than one clock cycle to complete are often divided into stages. Each stage completes
its work in one clock cycle. By connecting the stages with pipeline registers, multiple

instances of complex operations can be processed per clock cycle.

e Superscalar execution. Multiple instructions are fetched per clock cycle. Dupli-

cated execution units such as ALUs execute the fetched instructions concurrently.

e Caching. Long-latency communication between the processor and main memory is

minimized by storing past results in local caches for faster access.

e Out-of-order execution. Fetched instructions are dynamically analyzed to deter-
mine which instructions are independent of each other. Independent instructions are
executed according to when a compatible execution unit is available, even though
this may cause the operations to be performed in a different order than specified by

the program.

e Speculation. The results of time-consuming operations are opportunistically pre-
dicted. The processor uses the predicted result immediately, and simultaneously
starts computing the real result of the operation. The processor then checks whether
the prediction is correct once the operation completes. If the prediction is confirmed,
the processor has saved time by parallelizing the operation. If the prediction is in-

correct, the processor rolls back its internal state and then uses the correct result.

Not only does each of these techniques incur a substantial amount of design complex-
ity, cutting edge processor designs combine them to achieve further speedups. In fact,
creating and verifying these designs is a significant proportion of the total microprocessor
development lifecycle. As the number of possible gates in future microprocessors increases
exponentially, so too does design complexity.

It is now common for a commercial microprocessor design effort to take two years
or more, as engineers resolve all of the possible interactions between microarchitectural
features while trying to meet performance, area, power, and heat dissipation goals.

Resolving all of these issues while trying to complete the project as quickly as possible
almost always results in design defects, some of which may slip through testing efforts and
end up in released products. Of course, similar defects routinely occur with large commer-
cial software products. But whereas software faults can be easily fixed by downloading
patches through the internet, a microprocessor defect may require the entire device to
be replaced. These mistakes can become exceedingly expensive, both financially and in
lowered customer confidence. Such mistakes have also become more widely publicized in

recent years, as personal computers are increasingly sold to mass consumer markets.

1.1 Hardware description languages

One way to gain intellectual control over design complexity is to employ a formal modeling
language. Such a language can provide several benefits. For example, Ashenden[4] notes

that assuming the language has appropriate supporting tools, an architect can:

e Describe and understand the required behavior and attributes of a system

unambiguously.

Communicate these requirements to others precisely.

Test the system by simulating it.

Formally verify the system with respect to desired properties.

Automatically synthesize implementations from the description.

Of course, most description languages are not designed to support all of the above
activities, at least initially. For example, the VHDL hardware description language[4] has
a large set of language features for specifying circuits behaviorally. A user can simulate
any behavioral VHDL description, but must describe circuits using a strict subset of these
features to automatically synthesize a circuit implementation. On the other hand, low-
level languages designed to describe circuits at the gate and transistor level are harder to
simulate efficiently.

In practice, a design engineer will typically work with multiple specification languages
during a processor development lifecycle. In the early stages, the designer is more con-
cerned with functional correctness and the performance tradeoffs between alternative mi-
croarchitectural features at the granularity of individual clock cycles. Thus the design
engineer is likely to use a high-level behavioral specification language, such as behavioral
VHDL, or even C. As the overall design is solidified, lower level structural considerations,
such as size and layout constraints, power consumption budgets, and sub-clock-cycle tim-
ing issues often encourage or require the engineer to develop circuit designs that can be

directly synthesized and analyzed at the gate or transistor level.

1.1.1 Goals of the Hawk language

At the Oregon Graduate Institute we have been interested in developing high-level do-
main specific programming languages based on structuring principles derived from typed
functional programming languages. In particular, the Hawk project has been developing
a behavioral specification language for processor microarchitectures. Our goal is to build
a language that lets architects specify designs at a higher level of abstraction than can

be done with current behavioral hardware specification languages. To achieve this we

intend to use language features that promote concision, modularity, and reusability in

specifications.

e Concision. Just as a program written in a higher level language such as C is easier
for humans to understand and modify than the same program written in assembly
language, so too do microarchitectures become more comprehensible as specifications
are made more concise and abstract. Ideally we would like our specification language
to be as concise as the high-level block diagrams that architects currently use to

express microarchitectures.

e Modularity. Given the number of people required to design modern processor
microarchitectures, it is essential to be able to decompose a large specification into
separate units, with well-defined interfaces between them. In this way individual
architects can concentrate on a portion of the overall microarchitecture, without

having to understand the entire design in full detail.

e Reusability. Once a specification language has the ability to separate design ele-
ments into modular units, a natural next step is to try to reuse commonly occuring
design units by defining them once and then referring to the definition at each point
of use. By eliminating redundant definitions, the overall size of the specification is
reduced, and defects caused by creating incompatible versions of the same design

element are prevented.

However, we don’t want our specification language to be so abstract that it is not
executable. To gain confidence in a design’s correctness and evaluate performance tradeoffs
an architect may need to simulate a microarchitecture on a wide variety of programs. It
is not uncommon for a microprocessor simulator to execute billions of instructions on a
given design.

In addition to concrete simulation, we would also like to simulate microarchitectures
in Hawk symbolically. A symbolic simulator allows the user to execute a design with some
of the inputs given as symbolic variables (or more generally expressions), rather than as

concrete values. The simulator then executes the design with the symbolic inputs and

returns the result as a symbolic expression. In this way a single symbolic test run can
replace a whole family of concrete test runs. A good introduction to symbolic simulation
techniques for processors is given by Moore[67], who uses the ACL2 theorem prover to
symbolically simulate a small processor at the instruction set architecture level. Symbolic
simulation can sometimes detect errors simply because the returned expression “looks
strange”, i.e. is much larger or more complex than what was expected. This strategy was
used by Greve[31] to detect microcode errors in a direct execution Java processor. Day,
Lewis, and Cook[19] have developed a version of Hawk that supports symbolic simulation
and have used it to symbolically simulate the data flow of a superscalar out-of-order
microarchitecture.

To gain even more confidence in the correctness of a Hawk specification an architect
should be able to turn to formal verification, where a mathematical proof demonstrates
that a design satisfies desired correctness properties on all possible inputs. Since the design
being verified can be quite large, this approach only becomes practical when the proof is
carried out with the help of automated tools, such as model checkers and theorem provers.
Constructing proofs requires formalizing both the design and the underlying specification
language in some mathematical logic, such as set theory or higher order logic. This is not
a trivial endeavor, and specification languages with complex or ill-defined semantics can
substantially increase the amount of human and machine time necessary to complete the

proof.

1.2 Thesis statement

Hawk was created as a typed functional programming language in order to provide a
good balance between abstraction and expressiveness, executability, and ease of formal

reasoning. In particular, this dissertation aims to show that:

e The concepts underlying lazy functional programming languages, particularly Haskell
and its Hawk extensions, allow one to specify microarchitectures concisely, modu-
larly, and reusably, while retaining the ability to simulate them on concrete test

cases.

e Using equational reasoning principles, one can develop a microarchitecture algebra,
whose laws enjoy the same degree of concision, modularity, and reusability as the

microarchitecture specification.

e Such algebraic laws can be used to verify the correctness of pipelined microarchitec-

tures.

e The Hawk specification language can be naturally formalized in higher order logic,

and thus verification steps can be checked by a theorem prover.

This thesis can be thought of as a case study supporting a larger agenda: To demon-
strate that the equational reasoning principles underlying lazy functional languages, and
specifically the Haskell programming language, provide a good foundation for developing
domain-specific algebras. The hope is that such algebras increase one’s understanding of

the domains, and can be used to formally verify desired properties of specifications.

1.3 Synopsis

Part of the content of this thesis is made up of re-edited and expanded versions of three
published papers and a technical report, all written primarily by this author. These papers
introduce Hawk as a specification language[55], describe how algebraic reasoning can be
used to simplify and verify pipelined microarchitectures[53, 54|, and show how to define
recursive functions, such as Hawk circuits, over coinductive types[52].

Accordingly, we begin the dissertation by introducing Hawk as a microarchitecture
specification language embedded within Haskell. We then state equational laws that hold
of microarchitectural components, such as register files and ALUs, and use them to incre-
mentally simplify a pipelined microarchitecture. Finally, we formalize a subset of Hawk
in higher order logic and prove a representative set of these microarchitecture laws, using
a combination of equational reasoning and induction over time.

The definition of mutually recursive functions over infinite streams is the most chal-
lenging aspect of Hawk’s formalization, since such definitions are not directly supported

in current theorem provers. We develop a generalization of well-founded recursion, called

Converging Equivalence Relations, that allows these definitions to be added conservatively
in a straightforward and modular fashion.

The remaining chapters of this thesis are as follows:

Chapter II: Introduction to Hawk

This chapter introduces Hawk as a specification language. We introduce a simple pipelined
microarchitecture and specify it first in Hawk at the register transfer level (RTL) and then
with transactions, an abstract datatype for representing the complete microarchitectural
state associated with an instruction. We show that the language features of Hawk com-
bined with transactions as a structuring principle lead to a concise and understandable

specification.

Chapter III: Microarchitecture algebra

Next, we informally introduce our algebra of microarchitectural components by describing
the components that comprise a more complex reference architecture than the one intro-
duced in Chapter 2. We describe how these components are modeled in Hawk and state
the laws that hold among them.

Several of the laws contain projection circuits. Projections are not used in either the
pipelined or the reference microarchitectures, but are instead artifacts of the verification
process. We motivate the usefulness of projections, and describe the conditions under
which they can appear in microarchitecture laws.

Once the necessary laws have been introduced, we show how they can be used to

simplify the pipelined microarchitecture. This simplification is presented graphically.

Chapter IV: Formalizing Hawk in higher order logic

In this chapter we introduce Higher Order Logic (HOL) and the Isabelle theorem prover
briefly and informally. We use HOL to formalize Hawk and the microarchitecture algebra,
and Isabelle to check the proofs. Since Hawk is a purely applicative functional language,
many aspects of the language can be modeled directly in higher order logic itself. However,

dealing with recursive Hawk definitions is more difficult. The standard semantics for

Hawk is domain theoretic, with recursive definitions modeled by least fixpoints. Although
Isabelle has an object logic (HOLCF) that provides some support for reasoning about
domains, there is much more support for “pure” HOL. For example, there is no syntactic
support in HOLCF for pattern-matching function definitions or pointed numeric domains.
We thus focus on techniques for modeling Hawk directly in HOL.

There is no natural “information order” among elements in pure HOL, and so there
is no notion of a least fixpoint. However, it turns out that well-formed recursive Hawk
definitions have unique fixpoints, and can therefore be uniquely defined using Hilbert’s
choice operator. It is a well known result of topology that unique fixpoints can be found
for contracting functions in complete metric spaces. Intuitively, a metric space is a set of
elements and an associated distance metric over pairs of elements. The distance metric
returns a real-valued number indicating how far apart the two elements are. A contracting
function over this metric space, when applied to each of a pair of elements, returns a
corresponding pair of elements that is “closer” to each other than the original elements
are. Banach’s theorem states that contracting functions do in fact have unique fixpoints.

It is possible to define suitable distance metrics for Hawk streams, and show that
recursive Hawk definitions over these streams are contracting functions. However, this of-
ten requires reasoning about division and exponentiation over real-valued domains, which

relatively few theorem provers support well. Instead we adopt a different approach.

Chapter V: Converging equivalence relations

We develop an alternative framework, called Converging Equivalence Relations (CERs),
for proving the uniqueness of fixpoint definitions. We develop analogs of metric spaces
and contracting functions that do not require the use of continuous mathematics. Instead,
reasoning proceeds by well-founded induction over discrete domains such as the natural
numbers, which are well supported by all of the HOL-based theorem provers.

Thi