
Algebraic Specificat ion and Verification

of Processor Microarchitectures

John Robert Matthews

B.S., University of Washington, 1990

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science and Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

October 2000

@ Copyright 2000 by John Robert Matthews

All Rights Reserved

The dissertation "Algebraic Specification and Verification of Processor Microarchi-

tectures" by John Robert Matthews has been examined and approved by the following

Examination Committee:

- - - - - , .
John ~ a u n c G ~
Professor
Thesis Research Adviser

- -
Dick Kieburtz
Professor

Mary s h e e p
Professor
Chalmers University of Technology

Dedication

To Julie and my parents.

Acknowledgements

I would like to thank my advisor, John Launchbury, for helping me to become a

researcher. John has been an excellent teacher and a major source of inspiration in this

work. He has given me just the right balance of direction, freedom, and encouragement.

Thank you John.

This work was funded by grants from the Air Force Material Command and Intel Cor-

poration, as well as a graduate research fellowship from the National Science Foundation.

These endowments helped me to pursue my own research agenda, for which I am grateful.

I was also funded by internships at Intel and Microsoft Research (Cambridge), where I

gained insight into the pragmatic goals and concerns of industrial verification. I would

like to thank Borislav Agapiev and Carl Seger of Intel, as well as Don Syme and Andrew

Gordon of Microsoft in giving me these internship opportunities and guidance. I would in

addition like to thank the many people at Intel and Microsoft who patiently answered my

wide-ranging questions, including Mark Aagaard, Luca Cardelli, Oege de Moor, Robert

Jones, Tom Melham, John O'Leary, and Simon Peyton Jones.

I greatly enjoyed my time at the Oregon Graduate Institute, as well as the stimulating

discussions and encouragement I received from the members of the PacSoft and Hawk

research groups. I spent some exceptional years here.

Byron Cook, Nancy Day, Jeff Lewis, and Thomas Nordin put a lot of time and effort

into developing aspects of the Hawk system, which I happily made use of. I fondly re-

member long talks on aspects of Hawk formalization with Byron Cook, Nancy Day, Sava

KrstiC and Mark Shields. Their knowledge and insight have improved my thesis.

I would also like to thank the other members of my thesis committee, Dick Kieburtz,

Dylan McNamee, and Mary Sheeran, and librarian Julianne Williams for their excellent

comments and discussions. I apologize now for any remaining omissions or errors.

I am indebted to my parents Bob Matthews, Elizabeth and Michael O'Connell, and

my brother Michael Matthews for the love and encouragement they have shown me for as

long as I can remember.

Finally, I would like to thank Julie, the love of my life, for being at my side all of these

years, even when I couldn't always be at hers. Thank you for helping me through it all.

Contents

. Dedication iv

. Acknowledgements v

. Abstract xvi

. 1 Introduction 1
. 1.1 Hardware description languages 2

. 1.1.1 Goals of the Hawk language 3
. 1.2 Thesis statement 5

. 1.3 Synopsis 6

. Introduction to Hawk 10
. 2.1 The Hawk library 10

. 2.1.1 Signals 10
. 2.1.2 Components 12

. 2.1.3 Using the components 13
. 2.1.4 Recursive definitions 14

. 2.1.5 Other embedded Haskell languages 14
. 2.2 A simple microprocessor 16

. 2.2.1 Unpipelined SHAM specification 18
. 2.2.2 Pipelining 19

. 2.2.3 Transactions 22
. 2.2.4 Transaction structure 23

. 2.2.5 Changes to handle transactions 24
. 2.2.6 Unpipelined SHAM 25

. 2.2.7 SHAM2 with transactions 26
. 2.2.8 Hazards 27

. 2.2.9 Hawk specification of extended SHAM 30
. 2.2.10 Extending transactions to other microarchitectures 32

. 2.2.11 Transactions in other modeling languages 33

. 2.3 Modeling the DLX 33
. 2.3.1 Executing the model 34

. 2.4 Other hardware modeling languages 35

. 3 Microarchitecture algebra 40
. 3.1 Introduction 40

. 3.2 Reference microarchitecture 41
. 3.3 Algebraic reasoning and the microarchitecture laws 43

. 3.3.1 Algebraic reasoning 43
. 3.3.2 Delay laws 45

. 3.3.3 Bypasses and bypass laws 46
. 3.3.4 Projection laws 48

. 3.4 Transforming the microarchitecture 49
. 3.4.1 Retiming stage 51

. 3.4.2 Move control wires stage 58
. 3.4.3 Propagate hazard information stage 63

. 3.4.4 Remove forwarding logic stage 66
. 3.4.5 Cleanup stage 68
. 3.4.6 Final pipeline 72

. 3.4.7 Verifying the final microarchitecture 72

. 4 Formalizing Hawk in higher order logic
. 4.1 Elements of higher order logic

. 4.1.1 Terms
. 4.1.2 Types and type operators

. 4.1.3 Primitive constants
. 4.1.4 Defined constants

. 4.1.5 Inference rules and proofs
. 4.1.6 Type definitions

. 4.1.7 Datatypes
. 4.2 The Isabelle theorem prover

. 4.2.1 Certifying proofs in Isabelle
. 4.2.2 Higher level tactics

. 4.3 Embedding Hawk
. 4.4 Modeling recursive definitions
. 4.4.1 Axiomatic definitions
. 4.4.2 Well-founded recursion

. 4.4.3 Coinductive types and corecursive functions

. 4.5 Defining recursive functions as fixed points 95
. 4.5.1 Unique fixed points 95

. 4.5.2 Properties of unique fixed points 96

. 5 Converging equivalence relations 98
. 5.1 Definition 98
. 5.2 Examples 100

. 5.2.1 Discrete CER 100
. 5.2.2 Lazy list CER 100

. 5.3 Contracting functions and the CER fixpoint theorem 102
. 5.4 Recursive definitions over coinductive lists 103

. 5.4.1 Defining iterates 104
. 5.5 Composing converging equivalence relations 105

5.5.1 Defining recursive functions with the function-space CER 106
. 5.5.2 Other CER combinators 109

. 5.6 Demonstrating equality between coinductive elements 109
. 5.7 Defining functions with unbounded look-ahead 111

. 5.8 Generalizing well-founded recursion 114

. 5.9 Proof of the CER fixpoint theorem 115
. 5.9.1 Outline 115

. 5.9.2 Converging approximation maps 116
. 5.9.3 Properties of apx 118

. 5.10 Applying CERs to Hawk circuits 121
. 5.11 Related work 121

. 6 Verifying the microarchitecture laws 124
. 6.1 A theory of transactions 125

. 6.1.1 Transaction as an abstract datatype 126
. 6.1.2 Transaction laws 127

. 6.1.3 Derived transaction operators 129
. 6.2 Exploiting symmetry in transaction fields 131

. 6.2.1 First class field names 132

. 6.2.2 Generalized field laws 135
. 6.3 Lifting the transaction theory to signals 136

. 6.4 Proof of alu time-invariance for nop 137
. 6.5 Temporal reasoning 142

. 6.6 Proving the registerFile-bypass law 142
. 6.6.1 Definition of envs and rf components 142

. 6.6.2 Converging equivalence relations for signals 144
. 6.6.3 Properties of envs component 148

. 6.6.4 Definition and properties of fvEnvs component 151

. 6.6.5 Definition and properties of bypass component 151
. 6.6.6 Proof of the microarchitecture law 153

. 7 Retrospective 156
. 7.1 The functional basis of Hawk 157

. 7.1.1 Structured datatypes 157
. 7.1.2 Lazy evaluation 159

. 7.1.3 Higher order functions 160
. 7.1.4 Static typing and polymorphism 161

. 7.1.5 Nondeterminism 162
. 7.2 Transactions 165

. 7.2.1 Verifying pipelines with transactions 165
. 7.2.2 Calculating space efficient pipelines 166

. 7.3 Algebraic reasoning 166
. 7.3.1 Proving the component laws 166

. 7.3.2 Simplifying the pipeline 169
. 7.4 Converging equivalence relations 170

. 7.5 Mechanizing the verification 171

. 7.5.1 Mechanizing the microarchitecture law proofs 172

. 7.5.2 Mechanizing the top level pipeline simplification 172
. 7.6 Conclusions and further research directions 177

. Bibliography 181

. Biographical Note 190

List of Tables

4.1 The primitive constants of HOL . 79

4.2 Some derived constants in Isabelle HOL . 79

List of Figures

2.1 Resettable Counter . A simple circuit that counts the number of clock cycles

between reset signals . 11
. 2.2 Unpipelined version of SHAM 17

2.3 Pipelined SHAM . Since the register file and the ALU each now take one

clock cycle to complete, we now need extra Delay circuits . The Delay

circuits in turn require us to add Select circuits to act as bypasses . The

logic controlling the Select circuits is not shown 20

2.4 A transaction as it flows through the pipeline . As the transaction pro-

gresses, its operands become more refined . 24
2.5 bypass circuit . 27

2.6 Block diagram of extended SHAM pipeline . Each Pipeline Register circuit

is made up of multiple Delay and Select circuits . The Select circuits are

used for bypassing, ensuring that the source operands are up-to-date 29

. 3.1 One-stage pipeline 41

3.2 Hawk code for reference microarchitecture 42

. 3.3 Universal circuit-duplication law 43
. 3.4 feedback rotation law 45

3.5 time-invariance law . 45
. 3.6 bypass circuit idempotence law 46

. 3.7 register-bypass law 46

. 3.8 hazard-bypass law 47
. 3.9 Hazard-squashing logic guarantees no hazards 48

. 3.10 Microarchitecture before simplification 50

. 3.11 Split delay circuit after regFile, using the circuit duplication law 51

. 3.12 Split delay circuit after alu, using the feedback-rotation law 51

3.13 Split twice the delay circuit leading to branchmisp and iCache, using two

. applications of the circuit-duplication law 52

3.14 Move delay circuits through the branchmisp and hazard circuits, using

. the corresponding time-invariance laws 52

xii

3.15 Move delay circuits through the o r and and circuits, using the circuit-

duplication law and the corresponding time-invariance laws
3.16 Move delay circuits through the k i l l circuit, using the corresponding time-

invariance laws .
3.17 Split the delay circuit after the k i l l circuit, using the circuit duplication

law .
3.18 Split the delay circuit after the rnem circuit, using the feedback rotation law

3.19 Split the bottom-most delay circuit, using the circuit duplication law . . .
3.20 Split the bottom-most delay circuit again, using the circuit duplication law

3.21 Move the delay circuit before the first bypass circuit through the first and

second bypasses, using the corresponding time-invariance laws
3.22 Move the delay circuit through the a lu circuit using the corresponding

time-invariance law .
3.23 Split the delay circuit after the a lu circuit using the feedback-rotation law

3.24 Move the delay circuit through the third bypass circuit using the corre-

sponding time-invariance law . 55

3.25 Move the delay circuit through the mem circuit using the corresponding

time-invariance law . 56

3.26 Split the delay circuit after the mem circuit, using the corresponding feedback-

rotation law . 56

3.27 Split the delay circuit below the mem circuit, using the corresponding circuit

duplication law . 56

3.28 Move the delay circuit through the last bypass circuit, using the corre-

sponding time-invariance law . 57

3.29 Move the delay circuit through the mem circuit, using the corresponding

time-invariance law . 57

3.30 Split the delay circuit after the mem circuit, using the feedback-rotation law 57

3.31 Split the bottom-rightmost delay circuit, using the circuit duplication law . 58

3.32 Projection insertion laws for pro j -branch-inf o 58

3.33 Insert pro j -branch-inf o projection on the inputs to iCache and branchmi sp,

using the corresponding projection laws from Figure 3.32 59

3.34 Move pro j -branch-inf o past the left-most delay, using the corresponding

time-invariance law . 59

3.35 Merge the two instances of pro j -branch-inf o, using the circuit duplication

law in reverse . 60

3.36 Split the delay circuit ahead of pro j -branch-inf o 60

...
Xlll

3.37 Move the pro j -branch-inf o circuit past the delay circuit using the corre-

. sponding time-invariance law

3.38 Projection-invariance laws for pro j -branch-inf o
3.39 Move pro j -branch-inf o past the third bypass and mem circuit, using the

. projection invariance laws from Figure 3.38

. 3.40 proj - c t r l projection insertion law

3.41 Add pro j - c t r l projections to the inputs of the hazard circuit using the cor-

responding projection-insertion laws (Figure 3.40), and move the right-most

pro j - c t r l circuit past the delay using the corresponding time-invariance law

3.42 Generalized nohaz projection insertion law
3.43 Insert a nohaz projection after the k i l l circuit, using the projection in-

. sertion law shown in Figure 3.42

3.44 Commute nohaz with the first bypass. using the corresponding projection

commutativity law (we also reroute the mem stage feedback wire)
3.45 register file commutativity laws .
3.46 Commute the first p ro j - c t r l projection with the register file. using the

first law of Figure 3.45 .
3.47 Commute the register file with the k i l l circuit. using the second law of

Figure 3.45 .
3.48 Commute the second proj - c t r l projection with the register file. using the

first law of Figure 3.45 .
3.49 Use the register-bypass law to remove the left-most bypass and the delay

. circuit below it

3.50 Remove the right-most bypass circuit using the hazard-bypass law
3.51 register file commutes with hazard projection
3.52 Swap the register file with nobaz. using the commutativity law in Figure 3.51
3.53 Remove nohaz, using the nohaz projection insertion law (Figure 3.42) in

. reverse

3.54 Merge the delay feeding into the remaining bypass circuit with the right-

bottom-most delay, using the circuit-duplication law in reverse
3.55 Remove the last bypass circuit, using the register-bypass law
3.56 Swap the pro j -branch-inf o projection with the delay next to it. using the

. corresponding time-invariance law

3.57 Merge the three forking delay circuits after the mem circuit, using the feed-
. back rotation law in reverse

. 3.58 More pro j - c t r l projection invariance laws

xiv

3.59 Move the right-most p ro j - c t r l circuit past the register file, using the first
. law of Figure 3.45 69

3.60 Move the right-most p ro j - c t r l circuit past the alu, using the first law in
. Figure 3.58 70

3.61 Move the right-most pro j x tr l circuit past the mem, using the second law
. in Figure 3.58 70

3.62 Swap the right-most pro j - c t r l circuit with the delay, using the corre-
. sponding time-invariance law 70

3.63 Merge the delay after the mem unit with the delay below the right-most
. pro j - c t r l , using the feedback rotation law in reverse 71

3.64 Remove pro j - c t r l circuits, using the projection insertion law of Figure 3.42
. inreverse 71

3.65 Split the pro j -branch-inf o projection, using the circuit duplication law . . 71

3.66 Swap the left-most proj-branch-inf o projection with the delay circuit

. below it, using the corresponding time-invariance law 72

3.67 The final pipeline, after removing the pro j -branch-inf o projections using

. the projection insertion laws of figure 3.32 in reverse 72

4.1 Inference rules specific to higher order logic. t(abs) holds if x is not free in

the assumptions. b (~ conu) holds if y is not free in a. * (a t) holds if x is
. not free in the assumptions, f , or g . 80

5.1 The CER axioms. Each of these axioms must hold for arbitrary i, x, y,

. a n d f 100

5.2 The Zlist-diag function constructs a limit list from an approximation map.

In (a) the approximation map converges to a finite list; In (b) to an infinite

list . 102

. 7.1 register file - bypass law 174

Abstract

Algebraic Specification and Verification

of Processor Microarchitectures

John Robert Matthews

Ph.D., Oregon Graduate Institute of Science and Technology

August, 2000

Thesis Advisor: Dr. John Launchbury

The Hawk language is a domain-specific extension of the pure functional language Haskell,

and is used to specify and reason about processor microarchitectures at a high level of

abstraction. We apply functional language technology and reasoning principles to concisely

specify pipelined microarchitectures in Hawk and verify them through a domain-specific

microarchitecture algebra. We develop a remarkably simple set of local equational laws

governing processor components such as register files, bypass logic, and execution units.

Many of these laws are verified in Isabelle, a higher order logic theorem prover. The

laws are used to incrementally simplify a complex pipelined microarchitecture, removing

pipeline stages and simplifying control logic, while retaining cycle-accurate behavior with

respect to the original pipelined design.

Proving these laws requires defining mutually recursive functions over coinductively

defined streams. Such definitions are not directly supported in current theorem provers.

We develop a generalization of well-founded recursion, called Converging Equivalence Re-

lations, that allows these definitions to be added conservatively in a straightforward and

modular fashion.

xvi

Chapter 1

Introduction

Modern processor microarchitectures can be incredibly complex. Although exact figures

are kept secret, it can safely be said that leading manufacturers employ dozens if not

hundreds of design and verification engineers for each new generation of processor. As

semiconductor process improvements continue to deliver an exponentially increasing bud-

get of transistors, processor architects are able to employ ever more sophisticated imple-

mentation techniques to increase the amount of useful work performed per clock cycle.

Some standard examples of performance increasing optimizations are:

a Pipelining. Analogous to automobile assembly lines, operations that take more

than one clock cycle to complete are often divided into stages. Each stage completes

its work in one clock cycle. By connecting the stages with pipeline registers, multiple

instances of complex operations can be processed per clock cycle.

a Superscalar execution. Multiple instructions are fetched per clock cycle. Dupli-

cated execution units such as ALUs execute the fetched instructions concurrently.

a Caching. Long-latency communication between the processor and main memory is

minimized by storing past results in local caches for faster access.

a Out-of-order execution. Fetched instructions are dynamically analyzed to deter-

mine which instructions are independent of each other. Independent instructions are

executed according to when a compatible execution unit is available, even though

this may cause the operations to be performed in a different order than specified by

the program.

Speculation. The results of time-consuming operations are opportunistically pre-

dicted. The processor uses the predicted result immediately, and simultaneously

starts computing the real result of the operation. The processor then checks whether

the prediction is correct once the operation completes. If the prediction is confirmed,

the processor has saved time by parallelizing the operation. If the prediction is in-

correct, the processor rolls back its internal state and then uses the correct result.

Not only does each of these techniques incur a substantial amount of design complex-

ity, cutting edge processor designs combine them to achieve further speedups. In fact,

creating and verifying these designs is a significant proportion of the total microprocessor

development lifecycle. As the number of possible gates in future microprocessors increases

exponentially, so too does design complexity.

It is now common for a commercial microprocessor design effort to take two years

or more, as engineers resolve all of the possible interactions between microarchitectural

features while trying to meet performance, area, power, and heat dissipation goals.

Resolving all of these issues while trying to complete the project as quickly as possible

almost always results in design defects, some of which may slip through testing efforts and

end up in released products. Of course, similar defects routinely occur with large commer-

cial software products. But whereas software faults can be easily fixed by downloading

patches through the internet, a microprocessor defect may require the entire device to

be replaced. These mistakes can become exceedingly expensive, both financially and in

lowered customer confidence. Such mistakes have also become more widely publicized in

recent years, as personal computers are increasingly sold to mass consumer markets.

1.1 Hardware description languages

One way to gain intellectual control over design complexity is to employ a formal modeling

language. Such a language can provide several benefits. For example, Ashenden[4] notes

that assuming the language has appropriate supporting tools, an architect can:

Describe and understand the required behavior and attributes of a system

unambiguously.

Communicate these requirements to others precisely.

Test the system by simulating it.

Formally verify the system with respect to desired properties.

Automatically synthesize implementations from the description.

Of course, most description languages are not designed to support all of the above

activities, at least initially. For example, the VHDL hardware description language[4] has

a large set of language features for specifying circuits behaviorally. A user can simulate

any behavioral VHDL description, but must describe circuits using a strict subset of these

features to automatically synthesize a circuit implementation. On the other hand, low-

level languages designed to describe circuits at the gate and transistor level are harder to

simulate efficiently.

In practice, a design engineer will typically work with multiple specification languages

during a processor development lifecycle. In the early stages, the designer is more con-

cerned with functional correctness and the performance tradeoffs between alternative mi-

croarchitectural features at the granularity of individual clock cycles. Thus the design

engineer is likely to use a high-level behavioral specification language, such as behavioral

VHDL, or even C. As the overall design is solidified, lower level structural co~isiderations,

such as size and layout constraints, power consumption budgets, and sub-clock-cycle tim-

ing issues often encourage or require the engineer to develop circuit designs that can be

directly synthesized and analyzed at the gate or transistor level.

1.1.1 Goals of the Hawk language

At the Oregon Graduate Institute we have been interested in developing high-level do-

main specific programming languages based on structuring principles derived from typed

functional programming languages. In particular, the Hawk project has been developing

a behavioral specification language for processor microarchitectures. Our goal is to build

a language that lets architects specify designs at a higher level of abstraction than can

be done with current behavioral hardware specification languages. To achieve this we

intend to use language features that promote concision, modularity, and reusability in

specifications.

Concision. Just as a program written in a higher level language such as C is easier

for humans to understand and modify than the same program written in assembly

language, so too do microarchitectures become more comprehensible as specifications

are made more concise and abstract. Ideally we would like our specification language

to be as concise as the high-level block diagrams that architects currently use to

express microarchitectures.

Modularity. Given the number of people required to design modern processor

microarchitectures, it is essential to be able to decompose a large specification into

separate units, with well-defined interfaces between them. In this way individual

architects can concentrate on a portion of the overall microarchitecture, without

having to understand the entire design in full detail.

Reusability. Once a specification language has the ability to separate design ele-

ments into modular units, a natural next step is to try to reuse commonly occuring

design units by defining them once and then referring to the definition at each point

of use. By eliminating redundant definitions, the overall size of the specification is

reduced, and defects caused by creating incompatible versions of the same design

element are prevented.

However, we don't want our specification language to be so abstract that it is not

executable. To gain confidence in a design's correctness and evaluate performance tradeoffs

an architect may need to simulate a microarchitecture on a wide variety of programs. It

is not uncommon for a microprocessor simulator to execute billions of instructions on a

given design.

In addition to concrete simulation, we would also like to simulate microarchitectures

in Hawk symbolically. A symbolic simulator allows the user to execute a design with some

of the inputs given as symbolic variables (or more generally expressions), rather than as

concrete values. The simulator then executes the design with the symbolic inputs and

returns the result as a symbolic expression. In this way a single symbolic test run can

replace a whole family of concrete test runs. A good introduction to symbolic simulation

techniques for processors is given by Moore[67], who uses the ACL2 theorem prover to

symbolically simulate a small processor at the instruction set architecture level. Symbolic

simulation can sometimes detect errors simply because the returned expression "looks

strange", i.e. is much larger or more complex than what was expected. This strategy was

used by Greve[31] to detect microcode errors in a direct execution Java processor. Day,

Lewis, and Cook[l9] have developed a version of Hawk that supports symbolic simulation

and have used it to symbolically simulate the data flow of a superscalar out-of-order

microarchitecture.

To gain even more confidence in the correctness of a Hawk specification an architect

should be able to turn to formal verification, where a mathematical proof demonstrates

that a design satisfies desired correctness properties on all possible inputs. Since the design

being verified can be quite large, this approach only becomes practical when the proof is

carried out with the help of automated tools, such as model checkers and theorem provers.

Constructing proofs requires formalizing both the design and the underlying specification

language in some mathematical logic, such as set theory or higher order logic. This is not

a trivial endeavor, and specification languages with complex or ill-defined semantics can

substantially increase the amount of human and machine time necessary to complete the

proof.

1.2 Thesis statement

Hawk was created as a typed functional programming language in order to provide a

good balance between abstraction and expressiveness, executability, and ease of formal

reasoning. In particular, this dissertation aims to show that:

The concepts underlying lazy functional programming languages, particularly Haskell

and its Hawk extensions, allow one to specify microarchitectures concisely, modu-

larly, and reusably, while retaining the ability to simulate them on concrete test

cases.

Using equational reasoning principles, one can develop a microarchitecture algebra,

whose laws enjoy the same degree of concision, modularity, and reusability as the

microarchitecture specification.

Such algebraic laws can be used to verify the correctness of pipelined microarchitec-

tures.

The Hawk specification language can be naturally formalized in higher order logic,

and thus verification steps can be checked by a theorem prover.

This thesis can be thought of as a case study supporting a larger agenda: To demon-

strate that the equational reasoning principles underlying lazy functional languages, and

specifically the Haskell programming language, provide a good foundation for developing

domain-specific algebras. The hope is that such algebras increase one's understanding of

the domains, and can be used to formally verify desired properties of specifications.

1.3 Synopsis

Part of the content of this thesis is made up of re-edited and expanded versions of three

published papers and a technical report, all written primarily by this author. These papers

introduce Hawk as a specification language[55], describe how algebraic reasoning can be

used to simplify and verify pipelined microarchitectures[53, 541, and show how to define

recursive functions, such as Hawk circuits, over coinductive types[52].

Accordingly, we begin the dissertation by introducing Hawk as a microarchitecture

specification language embedded within Haskell. We then state equational laws that hold

of microarchitectural components, such as register files and ALUs, and use them to incre-

mentally simplify a pipelined microarchitecture. Finally, we formalize a subset of Hawk

in higher order logic and prove a representative set of these microarchitecture laws, using

a combination of equational reasoning and induction over time.

The definition of mutually recursive functions over infinite streams is the most chal-

lenging aspect of Hawk's formalization, since such definitions are not directly supported

in current theorem provers. We develop a generalization of well-founded recursion, called

Converging Equivalence Relations, that allows these definitions to be added conservatively

in a straightforward and modular fashion.

The remaining chapters of this thesis are as follows:

Chapter 11: Introduction to Hawk

This chapter introduces Hawk as a specification language. We introduce a simple pipelined

microarchitecture and specify it first in Hawk at the register transfer level (RTL) and then

with transactions, an abstract datatype for representing the complete microarchitectural

state associated with an instruction. We show that the language features of Hawk com-

bined with transactions as a structuring principle lead to a concise and understandable

specification.

Chapter 111: Microarchitecture algebra

Next, we informally introduce our algebra of microarchitectural components by describing

the components that comprise a more complex reference architecture than the one intro-

duced in Chapter 2. We describe how these components are modeled in Hawk and state

the laws that hold among them.

Several of the laws contain projection circuits. Projections are not used in either the

pipelined or the reference microarchitectures, but are instead artifacts of the verification

process. We motivate the usefulness of projections, and describe the conditions under

which they can appear in microarchitecture laws.

Once the necessary laws have been introduced, we show how they can be used to

simplify the pipelined microarchitecture. This simplification is presented graphically.

Chapter IV: Formalizing Hawk in higher order logic

In this chapter we introduce Higher Order Logic (HOL) and the Isabelle theorem prover

briefly and informally. We use HOL to formalize Hawk and the microarchitecture algebra,

and Isabelle to check the proofs. Since Hawk is a purely applicative functional language,

many aspects of the language can be modeled directly in higher order logic itself. However,

dealing with recursive Hawk definitions is more difficult. The standard semantics for

Hawk is domain theoretic, with recursive definitions modeled by least fixpoints. Although

Isabelle has an object logic (HOLCF) that provides some support for reasoning about

domains, there is much more support for "pure" HOL. For example, there is no syntactic

support in HOLCF for pattern-matching function definitions or pointed numeric domains.

We thus focus on techniques for modeling Hawk directly in HOL.

There is no natural "information order" among elements in pure HOL, and so there

is no notion of a least fixpoint. However, it turns out that well-formed recursive Hawk

definitions have unique fixpoints, and can therefore be uniquely defined using Hilbert's

choice operator. It is a well known result of topology that unique fixpoints can be found

for contracting functions in complete metric spaces. Intuitively, a metric space is a set of

elements and an associated distance metric over pairs of elements. The distance metric

returns a real-valued number indicating how far apart the two elements are. A contracting

function over this metric space, when applied to each of a pair of elements, returns a

corresponding pair of elements that is "closer" to each other than the original elements

are. Banach's theorem states that contracting functions do in fact have unique fixpoints.

It is possible to define suitable distance metrics for Hawk streams, and show that

recursive Hawk definitions over these streams are contracting functions. However, this of-

ten requires reasoning about division and exponentiation over real-valued domains, which

relatively few theorem provers support well. Instead we adopt a different approach.

Chapter V: Converging equivalence relations

We develop an alternative framework, called Converging Equivalence Relations (CERs),

for proving the uniqueness of fixpoint definitions. We develop analogs of metric spaces

and contracting functions that do not require the use of continuous mathematics. Instead,

reasoning proceeds by well-founded induction over discrete domains such as the natural

numbers, which are well supported by all of the HOL-based theorem provers.

This chapter describes CERs with proofs of the key results. We demonstrate that this

technique can be mostly automated by Isabelle's higher-order tableau proof package.

Chapter VI: Verifying the microarchitecture laws

In this chapter we develop some techniques to simplify the proofs of the individual laws

of Chapter 3, and use them to verify representative examples. We first develop a simple

theory of transactions, and make the somewhat surprising observation that although the

type system of Hawk is very useful in catching errors when constructing Hawk specifica-

tions, it can be annoyingly restrictive when verifying laws about transaction fields. The

statements of these theorems quantify over all of the fields in a transaction, which violates

the HOL restriction that all quantifiers must range over elements of the same type. We

develop a mechanism of first class field names to overcome this difficulty.

We use a combination of inductive reasoning over time and first class field names

to prove two representative microarchitecture laws: a commutativity law between ALU

and delay components, and a law that allows one to remove bypass circuits connected to

register files.

Chapter VII: Retrospective

We conclude by analyzing the strengths and weaknesses of Hawk we encountered during

the course of the dissertation. In particular, we discuss the relative merits of the functional

basis of Hawk, the use of transactions, and the value of algebraic reasoning in the context

of the Isabelle theorem prover.

We also discuss the usefulness of defining functions by converging equivalence rela-

tions, compared to defining them co-recursively. The CER framework provides a general

method of defining recursive functions over a wide range of types, including coinductively

defined types such as infinite lists and trees. The dissertation concludes by outlining future

research directions.

Chapter 2

Introduction to Hawk

The Hawk language is designed for building executable specifications of processor mi-

croarchitectures. Currently Hawk is an embedded language (i.e. a set of libraries) within

Haskell, a strongly-typed functional language with powerful abstraction capabilities, such

as lazy (demand-driven) evaluation, first-class functions, and parametric polymorphism

[351 [76l.

2.1 The Hawk library

We start with a simple example that introduces several functions used in later examples.

Consider the resettable counter circuit of Figure 2.1.

The reset wire is Boolean valued, while the other wires are integer valued. Of course,

in silicon, integer-valued wires are represented by a vector of Boolean wires, but as a

design abstraction, a Hawk user may choose to use a single wire. The circuit counts (and

outputs) the number of clock cycles since reset was last asserted.

2.1.1 Signals

Notice that there is no explicit clock in the diagram. Rather, each wire in the diagram

carries a signal (integer or boolean valued) which is an implicitly clocked value. The

output of a circuit only changes between clock cycles. We build signals using an abstract

type constructor called Signal. As a mental model we could think of a value of type

Signal a as a function from non-negative integers to values of type a, as is often done in

the hardware verification community[62, 921.

reset

I control

Increment P Q
I

input

Constant 0

input b
Figure 2.1: Resettable Counter. A simple circuit that counts the number of clock cycles
between reset signals.

Select

iffN&.

type Signal a = (Int -> a)

output
+

We can sample a signal s at a given clock cycle n simply by evaluating s applied1 to n.

Alternatively a signal could be thought of as an infinite stream of values (xo, XI, xz, . . .).

Clearly the two views are interchangeable. In either case circuits are represented as func-

tions from signals to signals.

In the resettable counter example above, the constant 0 circuit outputs zero on every

clock cycle. The select component chooses between its inputs on each clock cycle depending

on the value of reset. If reset is asserted on a given cycle (has value true), then the output

is equal to select's top input, in this case zero. If reset is not asserted, then its output is

the value of its bottom input. In either case, select's output is the output of the entire

circuit, as well as the input to the increment component, which simply adds 1 to its input.

The output of increment is fed into the delay component. A delay component outputs

whatever was on its input in the previous clock cycle: it "delays" its input by one cycle

(delay circuits occur often enough that we draw them specially, as shaded horizontal or

'Fhnction application in Hawk is written using juxtaposition, so that f applied to x and y is written

a s f x y

vertical bars). However, on the first clock cycle of the simulation there is no previous

input, so on the first cycle delay outputs whatever is on its init input, which is zero in

this circuit.

2.1.2 Components

The components used in the resettable counter are trivial examples of the sorts of things

provided by the Hawk library, but let's look at a specification of each component in turn.

The simplest component is constant

constant :: a -> Signal a

The constant function takes an input of any type a, and returns an output of type

Signal a, that is, a sequence of values of type a. For every clock cycle, (constant x)

always has the same value x. Functions such as constant that can operate over more

than one type are called polymorphic.

The next component is s e l ec t :

select : : Signal Boo1 -> Signal a -> Signal a -> Signal a

This declares s e l e c t to be a function. In a Hawk declaration, anything to the left of

an arrow is an argument to a function. Thus, the expression (se l ec t bs xs ys) , where
bs is a Boolean signal, and xs and ys are signals of type a, will return an output signal

of type a. The values of the output signal are drawn from xs and ys, decided each clock
tick by the corresponding value of bs. For example, if

then (s e l e c t bs xs ys) is equal to the signal <xl ,y2 ,x3 ,y4, . . . >.

Hawk treats functions as first-class values, allowing them to be passed as arguments

to other functions or returned as results. First-class functions allow us to specify a generic

l i f t primitive, which "lifts" a normal function from type a to type b into a function over

the corresponding signal types:

lift : : (a -> b) -> Signal a -> Signal b

The expression (l i f t f xs) , where xs = < X I , x2, x3, . . . >, is equal to the signal

<f x l , f x2, f x3, . . . >.

The increment component is defined in terms of l i f t :

increment :: Signal Int -> Signal Int

increment xs = lift (+ I) xs

Given the xs input signal, increment adds one to each component of xs and returns the

result.

The delay component is more interesting:

delay : : a -> Signal a -> Signal a

This function takes an initial value of type a, and an input signal of type Signal a,

and returns a value of type Signal a (the input arguments are in reverse order from

the diagram). At clock cycle zero, the expression (delay ini tVal xs) returns ini tVal .

Otherwise the expression returns whatever value xs had at the previous clock cycle. This

function can thus propagate values from one clock cycle to the next.

2.1.3 Using the components

Once we have defined primitive signal components like the ones above, we can define the

resettable counter:

resetcounter : : Signal Boo1 -> Signal Int

resetcounter reset = output

where next = delay 0 (increment output)

output = select reset (constant 0) next

The resetcounter definition takes r e se t as a Boolean signal, and returns an integer

signal. The re se t signal is passed into se lec t . On every clock cycle where r e s e t returns

True, se lec t outputs 0, otherwise it outputs the result of the next signal. On the first

clock cycle next outputs 0, and thereafter outputs the result of whatever (increment

output) was on the previous clock cycle. The output of the whole circuit is the output

of the se lec t function, here called output. Notice that output is used twice in this

function: once as the input to increment, and once as the result of the entire function.

This corresponds to the fact that the output wire in Figure 1 is split and used in two

places. Whenever a wire is duplicated in this fashion, we must use a where statement in

Hawk to name the wire.

2.1.4 Recursive definitions

There is something else curious about the output variable. It is being used recursively in

the same place it is being defined! Most languages only allow such recursion for functions

with explicit arguments. In Hawk, one can also recursion to define data-structures and

functions with implicit arguments, such as the one above.

If we didn't have this ability, we would have had to define resetcounter as follows:

resetcounter reset = output

where next t = (delay 0 (increment output)) t

output t = (select reset (constant 0) next) t

Every time we have a cycle in a circuit, we would have to create a local recursive

function, passing an explicit time parameter. This breaks the abstraction of the Signal

ADT. In fact, in the real implementation of signals, we don't use functions at all. We use

infinite lists instead. Each element of the list corresponds to a value at a particular clock

cycle; the first list element corresponds to the first clock cycle, the second element to the

second clock cycle, and so on. By storing signals as lazy lists, we compute a signal value

at a given clock cycle only once, no matter how many times it is subsequently accessed.

Haskell allows recursive definitions of abstract data structures because it is a lazy

language, that is, it only computes a part of a data structure when some client code

demands its value. It is lazy evaluation that allows Haskell to simulate infinite data

structures, such as infinite lists.

2.1.5 Other embedded Haskell languages

Hardware domains

The Hawk team is not the first to take advantage of Haskell as a platform for embed-

ding domain specific languages, or even languages for modeling hardware. For example,

O'Donnell[70] has developed a Haskell library called Hydra that models hardware gates

at several levels of abstraction, ranging from implementations of gates using CMOS and

NMOS pass-transistors, up to abstract gate representations using lazy lists to denote

time-varying values. Hydra has been used to teach advanced undergraduate courses on

computer design, in which students use Hydra eventually to design and test a simple mi-

croprocessor. Hydra is similar to Hawk in many ways, including the use of higher-order

functions and lazy lists to model signals. However, Hydra does not allow users to define

more structured signal types, such as signals of integers or signals of transactions. In

Hydra, these composite types have to be built up as tuples or lists of Boolean signals.

While this limitation does not cause problems in an introductory computer architecture

course, structured signal types significantly reduce specification complexity for more real-

istic microprocessor specifications.

More recently, the Lava hardware description language has been designed. It also

models gate and word level hardware circuits within Haskell. The original version of

Lava[9] modeled circuits with a special monadic syntax, however a later version[l4] defines

circuits using standard Haskell expression form, in the same manner as Hawk. Modern

Lava has many other similarities to Hawk: Both model signaIs as first class entities, use

polymorphism and higher-order functions to model generic wiring patterns, and model

circuits with feedback as recursively-defined signals. Lava is discussed in more detail in

Section 2.4.

MHDL[6] is a hardware description language for describing analog microwave circuits,

and includes an interface to VHDL. Though it tackles a very different part of the hardware

design spectrum, like Hawk, MHDL is essentially an extended version of Haskell, although

it is not technically an embedded language. The MHDL extensions have to do with

physical units on numbers, and universal variables to track frequency and time etc.

Other domain specific languages

Haskell has successfully been used to specify other domains. For example, Haskell com-

pared favorably in an experiment comparing several prototyping languages[34]. The ap-

plication domain involved modeling the Geometric Region Server module, which tracks

the regions surrounding ships and planes in a military theatre. The module is required to

answer such questions as when an enemy plane will enter a friendly ship's weapons range,

or whether a plane has entered a commercial airspace corridor. Experts in each of several

languages including Haskell, C++, Awk, and Griffin wrote a prototype program based on

the same requirements document. The Haskell solution was considered the most concise

and understandable of all the submitted entries. The authors claim their major success

factors were: their heavy use of higher-order functions, Haskell's simple syntax, and the

availability of powerful list-manipulating primitives in the standard Haskell library.

l?ran[23] is a Haskell library that models interactive multimedia animations. The au-

thors provide ADTs for time-varying behaviors, events, and interactions between behav-

iors and events. Unlike Hawk, Fran's model of time is continuous. Also, a Fran function

can examine the values of future events, while Hawk signals only depend on current and

past signal values. This non-monotonicity of time in Fran requires a more sophisticated

time-interval analysis than is required for Hawk.

2.2 A simple microprocessor

In the microarchitecture domain, the Hawk libraries make essential use of Haskell's fea-

tures. As a test of Hawk's capabilities, the Hawk team has specified and simulated several

versions of the DLX microprocessor described in Hennessy and Patterson's widely used

textbook[33]. The Hawk team chose to model the DLX because it is well known, and

has excellent tool support. Several DLX simulators exist, as well as a version of the Gnu

C compiler that generates DLX assembly instructions. The processor includes the most

common instructions found in commercial RISC processors.

The DLX architecture is too complex to explain in fine detail in an introductory

chapter. Instead, for pedagogical purposes we show how to specify a simple microprocessor

called SHAM (Simple HAwk Microprocessor). We begin with the simplest possible SHAM

architecture (unpipelined), and then add features: pipelining, and a memory-cache. A

corresponding annotated Hawk specification of the DLX itself can be found at the Hawk

web page[44].

command srcRegA srcRegB destReg

-
Figure 2.2: Unpipelined version of SHAM.

The unpipelined SHAM diagram is shown in Figure 2.2. The microprocessor consists

of an ALU and a register file. The ALU recognizes three operations: ADD, SUB, and I N C .

The ADD and SUB operations add and subtract, respectively, the contents of the two ALU

inputs. The I N C operation causes the ALU to increment its first input by one and output

the result. The register file contains eight integer registers, numbered RO through R7.

Register RO is hardwired to the value zero, so writes to RO have no effect. The register file

has one write-port and two read-ports. The write-port is a pair of wires; the register to

update, called writeReg, and the value being written, called writecontents. The input to

each read-port is a wire carrying a register name. The contents of the named read-port

registers are output every cycle along the wires contentsA and contentsB. If a register is

written to and read from during the same clock cycle, the newly written value is reflected

in the read-port's output, at least abstractly. This is consistent with the behavior of most

modern microprocessor register files.

SHAM instructions are provided externally; in our drive for simplicity there is no notion

of a program counter. Each instruction consists of an ALU operation, the destination

register name, and the two source register names. For each instruction the contents of

the two source registers are loaded into the ALU's inputs, and the ALU's result is written

back into the destination register.

2.2.1 Unpipelined SHAM specification

Let us assume we have already specified the register file and ALU, with the signatures

below:

data Reg = RO I Rl I R2 I R3 I R4 I R5 I R6 I R7

regFile : : Signal Reg -> Signal Reg ->

(Signal Reg, Signal Int) ->
(Signal Int, Signal Int)

data Cmd = ADD I SUB I INC

alu : : Signal Cmd -> Signal Int -> Signal Int -> Signal Int

The regFile specification takes two read-port inputs, a write-port input, and returns

the corresponding read-port outputs. The a lu specification takes a command signal and

two input signals, and returns a result signal. Given these signatures and the previous

definition of delay, it is easy in Hawk to specify an unpipelined version of SHAM:

shaml : : (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int)

shaml (cmd ,destReg, srcRegA, srcRegB) = (destReg2 , aluoutput ')
where

(aluInputA,aluInputB) = regFile srcRegA srcRegB (destReg',aluOutput')

aluoutput = alu cmd aluInputA aluInputB

aluoutput' = delay 0 aluoutput

destReg ' = delay RO destReg

The definition of shaml takes a tuple of signals representing the stream of instructions,

and returns a pair of signals representing the sequence of register assignments generated

by the instructions. The first three lines in the body of sham1 read the source register

values from the register file and perform the ALU operation. The next two lines delay the

destination register name and ALU output, in effect returning the values of the previous

clock cycle. The delayed signals become the write-port for the register file. It is necessary

to delay the write-port since modifications to the register file logically take effect for the

next instruction, not the current one.

2.2.2 Pipelining

Suppose we wanted to increase SHAM'S performance by doubling the clock frequency. We

will assume that, while sham1 could perform both the register file and ALU operations

within one clock cycle, with the increased frequency it will take two clock cycles to perform

both functions serially. We use pipelining to increase the overall performance. While the

ALU is working on instruction n, the register file will be writing the result of instruction

n - 1 back into the appropriate register, and simultaneously reading the source registers

of instruction n + 1.

But now consider a sequence of instructions such as:

R2 <- Rl ADD R3

R4 <- R2 SUB R5

When the ADD instruction is in the ALU stage, the SUB instruction is in the register-fetch

stage. But one of the registers that is being fetched (~ 2) , has not been written back into

the register file yet, because the ALU is still calculating the result. The SUB instruction

will read an out-of-date value for R2. This is an example of a data hazard, where naive

pipelining can produce a result different from the unpipelined version of a microprocessor.

To resolve this hazard, we will first add bypass logic to the pipeline. Later we will abstract

away from this added complexity.

Figure 2.3 contains the diagram of a pipelined version of SHAM with bypass logic. By

the time the source operands to the SUB instruction (R2 and R5) are ready to be input into

the ALU, the up-to-date value for R2 is stored in the delay circuit between the ALU and

the register file's write-port. The bypass logic uses this stored value of R2 as the input to

the ALU, rather than the out-of-date value read from the register file. The bypass logic

examines the incoming instructions to determine when this is necessary. The following

code contains the Hawk specification:

Figure 2.3: Pipelined SHAM. Since the register file and the ALU each now take one clock
cycle to complete, we now need extra Delay circuits. The Delay circuits in turn require
us to add Select circuits to act as bypasses. The logic controlling the Select circuits is not
shown.

destReg command srcRegA srcRegB

RO

RO

nit
contentsB V V writeReg input

4 Delay -
ADD

input V init i n p u t v init input\/ init inputv init

Delay Delay Delay Delay

0

RegisterFile
input

Delay r-

i tTme V ;False i f T ~ e V iFa lse

I select 1 I select 1
I input1

>
input:! A''
>

A

cnntentsA

0 0

sham2 : : (Signal Cmd,Signal Reg,Signal Reg,Signal Reg) -> (Signal Reg,Signal Int)

sham2 (cmd,destReg,srcRegA,srcRegB) = (destReg",aluOut')

where

(valueA,valueB) = regFile srcRegA srcRegB (destReg",aluOutJ)

valueA ' = delay 0 valueA

valueB ' = delay 0 valueB

destReg' = delay RO destReg

cmd ' = delay ADD cmd

aluInputA = select validA valueA' alu0ut'

aluInputB = select validB valueB' aluOutJ

aluOut = alu cmd' aluInputA aluInputB

alu0ut ' = delay 0 aluOut

destReg9' = delay RO destReg'

--- Control logic ---

validA = delay True (noHazard srcRegA)

validB = delay True (noHazard srcRegB)

noHazard :: Signal Reg -> Signal Boo1
noHazard srcReg = sigOr (sigEqua1 destRegY (constant RO))

(sigNotEqua1 destReg' srcReg)

The data flow portion of the code is grouped according to pipeline stages:

a The first line after the where keyword reads the contents of the source registers from

the register file.

a The next four lines delay the source register contents, the ALU command, and the

destination register name by one cycle.

a The two s e l e c t commands decide whether the delayed values should be bypassed.

The decision is made by the Boolean signals validA and validB, which are defined

in the control logic section.

The next line performs the ALU operation.

The last two lines in the data-flow section delay the ALU result and the destination

register. The delayed result, called a lu0u tY , is written back into the register file in

the register named by destReg' ', as indicated in the first two lines of the section.

The control logic section determines when to bypass the ALU inputs. The signals validA

and validB are set to True whenever the corresponding ALU input is up-to-date. The

definition of these signals uses the function noHazard, which tests whether the previous

instruction's destination register name matches a source register name of the current

instruction. If they do, then the function returns False. The exception to this is when

the destination register is RO. In this case the ALU input is always up-to-date, so noHazard

returns True.

2.2.3 Transactions

The definition of sham2 highlights a difficulty of many such specifications. Although the

data flow section is relatively easy to understand, the control logic section is far from

satisfactory. In fact, it often takes nearly as many lines of Hawk code to specify the

control logic as it does to specify the data flow, and mistakes in the control logic may

not be easy to spot. We need a more intuitive way of defining control logic sections in

microprocessors.

We use a notion of transactions within Hawk to specify the state of an entire instruction

as it travels through the microprocessor (similar in spirit to Aagaard and Leeser [I]). A

transaction holds an instruction's source operand values, the ALU command, and the

destination operand value. Transactions also record the register names associated with

the source and destination operands:

data Transaction = Trans DestOp Cmd SrcOp SrcOp

type DestOp = Operand

type SrcOp = Operand

type Operand = (Reg,Value)

data Value = Unknown I Val Int

An operand is a pair containing a register and its value. Values can either be "un-

known" or they can be known, e.g. Val 7.

For example, the instruction (R3 <- R2 ADD Rl), when it has completed, would be

encoded as shown below (assume that register R2 holds the value 3, and R 1 holds 4):

Trans (R3,Val 7) ADD (R2,Val 3) (R1 ,Val 4)

This expression states that register R3 should be assigned the value 7 as a result of

adding the contents of register R2 and R1.

Not all of the register values in a transaction are known in the early stages of the

pipeline. When a register name does not have an associated value yet, it is assigned the

value Unknown. For example, if the above instruction had not reached the ALU stage yet,

then the corresponding transaction would be:

Trans (R3,Unknown) ADD (R2,(Val 3)) (Rl,(Val 4))

Figure 2.4 shows how a transaction's values are filled in as it flows through the pipeline.

2.2.4 Transaction structure

In general, the Transaction datatype contains four subfields. The first field holds the

destination register name and its current state. The state of a register indicates the

current value for the register at a given stage of the pipeline. Possible state values are

Unknown, or (Val k) . The second field is the instruction's ALU operation, in this case

the ADD command. The third and fourth fields hold the source operand register names

and their corresponding states. In this example, it holds the names and states for the

source operands R2 and Rl. If an instruction has less than two source operands, the extra

operand fields are set to a default value of (RO, Val 0).

The instruction (R3 <- R2 ADD Rl), before it enters the SHAM pipeline, is encoded

as the transaction:

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown)

Input

1

NopTransaction
I

Figure 2.4: A transaction as it flows through the pipeline. As the transaction progresses,
its operands become more refined.

At this point, none of the register values are known.

2.2.5 Changes to handle transactions

We change the regFile and alu functions so that they take and return transactions:

r e g F i l e : : Signal Transact ion ->
Signal Transact ion ->

Signal Transact ion

a l u : : Signal Transact ion ->

Signal Transact ion

Because the register file needs to both write new values to the CPU registers and

read values from them, the regFile function takes a read transaction and a writeback

transaction as inputs. The function first examines the destination register field of the

writeback transaction and updates the corresponding register in the register file. It then

outputs the read transaction, modified so that all of the source register fields contain

current values from the register file. For example, suppose regFile is applied to the

completed write-transaction (the second source operand is not used here):

Trans (R1 ,Val 4) INC (R1 ,Val 3) (RO ,Val 0)

and uses as its read transaction

Trans (R3,Unknown) ADD (R2,Unknown) (R1,Unknown)

If we further assume that register R1 is assigned 20 and R2 is assigned 3 before regFile's

application, then regFile will update R1 to contain 4 from the writeback transaction, and

will output a new transaction that is identical to the read transaction, except that all of

the source registers have been assigned current values from the register file:

Trans (~3,Unknown) ADD (R2,Val 3) (R1,Val 4)

The revised a lu function takes a transaction whose source operands have values, per-

forms the appropriate operation, and outputs a modified transaction whose destination

field has been filled in. Thus if the ADD transaction above were given to alu, it would

return:

Trans (R3,Val 7) ADD (R2,Val 3) (R1,Val 4)

2.2.6 Unpipelined SHAM

Using transactions, the unpipelined version of SHAM is even easier to specify than it was

before.

shamlTrans : : Signal Transaction ->

Signal Transaction

shamlTrans instr = alu0utput'

where

aluInput = regFile instr alu0utput'

aluoutput = alu aluInput

alu0utput' = delay nop aluOutput

nop = Trans (R0,Val 0) ADD (R0,Val 0) (R0,Val 0)

But the real benefit of transactions comes from specifying more complex micro-architectures,

as we shall see next.

2.2.7 SHAM2 with transactions

Transactions are designed to contain the necessary information for concisely specifying

control logic. The control logic needs to determine when an instruction's source operand

is dependent on another instruction's destination operand. To calculate the dependency,

the source and destination register names must be available. The transaction carries these

names for each instruction. Because of this additional information, bypass logic is easily

modeled with following combinator:

bypass : : Signal Transaction ->
Signal Transaction ->

Signal Transact ion

At any cycle, the bypass function usually just outputs its first argument. Sometimes,

however, the second argument's destination operand name matches one or more of the

first argument's source operand names. In this case, the matching source operand's state

values are updated to equal the destination operand state value. The updated version of

the first argument is then returned.

So if at clock cycle n the first argument to bypass is:

Trans (R4,Unknown) ADD (R3,Val 12) (R2,Val 4)

and the second argument at cycle n is:

Trans (R3,Val 20) SUB (R8,Val 2) (R11,Val 10)

then because R 3 in the second transaction's destination field matches R 3 in the first transac-

tion's source field, the output of bypass will be an updated version of the first transaction:

Trans (R4,Unknown) ADD (R3,Val 20) (R2,Val 4)

Figure 2.5: bypass circuit

One special case to bypass's functionality is when a source register is RO. Since RO is a

constant register, it does not get updated.

Bypasses arise frequently enough in pipeline block-level diagrams that we draw them

specially, as diamonds with the update input (i.e. the second argument) connected to

either the top or the bottom, as shown in Figure 2.5.

The pipelined version of SHAM with bypass logic is now straightforward. Notice that

no explicit control logic is needed, as all the decisions are taken locally in the bypass

operations.

SHAM2Trans : : Signal Transaction -> Signal Transaction

SHAM2Trans instr = aluoutput'

where

readyInstr = regFile instr aluoutput'

readyInstr2 = delay nop readyInstr

aluInput = bypass readyInstr2 aluoutput'

aluoutput = alu aluInput

aluoutput' = delay nop aluoutput

The first line takes i n s t r and fills in its source operand fields from the register file. The

filled-in transaction is delayed by one cycle in the second line. In the third line bypass is

invoked to ensure that all of the source operands are up-to-date. Finally the transaction

result is computed by a lu and delayed one cycle so that the destination operand can be

written back to the register file.

2.2.8 Hazards

There are some microprocessor hazards that cannot be handled through bypassing. For

example, suppose we extended the SHAM architecture to process load and store instruc-

R 3 <- MEM[R2]

MEM [R51 <- R2

The first instruction above is a load instruction; it loads the contents of the address pointed

to by R2 into R3. The second instruction is a store; it stores the contents of R2 into the

address pointed to by R5. A block diagram of the extended SHAM architecture is shown

in Figure 2.6. There is now a load/store pipeline stage after the ALU stage. However,

this introduces a new problem. Suppose SHAM executes the following two instructions in

sequence:

R2 <- MEM[Rl]

R4 <- R2 ADD R 3

These two instructions have a data hazard, just as before, but we can not use bypassing to

resolve it. Bypassing depends on having a value to bypass at the beginning of a clock cycle,

but R2's value won't be known until the end of the cycle, after the memory contents have

been retrieved from the memory cache. To resolve this hazard, we have to stall the pipeline

at the register-fetch stage. When the first instruction has reached the end of the ALU

stage, the second instruction will have reached the end of the register-fetch stage. At this

point the delay circuits between the register-fetch stage and the ALU stage are overridden;

on the next clock cycle they instead output the equivalent of a no-op instruction. The

register-fetch stage itself re-reads the second instruction on the next clock cycle. In effect,

the pipeline stall inserts a no-op instruction between the two instructions involved in the

hazard:

R2 <- MEMCRI]

NOP

R 4 <- R2 ADD R 3

Now when the ADD instruction is about to be processed by the ALU, the load instruction

has already completed the memory stage. R2's value is held in the pipeline registers after

the memory stage, so bypass logic can be used to bring the ALU's input up-to-date. In

order to stall correctly, we have to re-read the second instruction. Thus stalling reduces

the performance of the pipeline.

destReg command srcRegA srcRegB

I Pipeline Registers I
I I

Figure 2.6: Block diagram of extended SHAM pipeline. Each Pipeline Register circuit is
made up of multiple Delay and Select circuits. The Select circuits are used for bypassing,
ensuring that the source operands are up-to-date.

2.2.9 Hawk specification of extended SHAM

In this section we will give more evidence of the simplifying power of transactions by

specifying the extended SHAM architecture. The load/store extension significantly com-

plicates the control logic for the SHAM architecture. We shall see that transactions hold

up well when we must add stalling logic to the pipeline.

To start, we need to add the commands LOAD and STORE to the Cmd type:

data Cmd = ADD I SUB I INC I LOAD I STORE

We also need to define some additional Hawk circuits. The first circuit, k i l l , takes a kill

signal and a signal of transactions. On each clock cycle, the k i l l component returns its

transaction input unchanged, unless the kill signal is asserted, in which case it returns the

nop transaction:

kill : : Signal Bool -> Signal Transaction -> Signal Transaction

kill ks inp = select ks (constant nop) inp

The isLoadTrans circuit returns True whenever its argument signal is a load transaction:

isLoadTrans :: Signal Transaction -> Signal Bool

isLoadTrans ts = lift isLoad ts

where

isLoad (Trans - cmd - -) = (cmd == LOAD)

Although we previously passed SHAM instructions as parameters, we now need to call a
function, instrcache, to explicitly retrieve them:

instrcache : : Signal Bool -> Signal Transaction

Since the pipeline can stall, we need a way to ask for the same instruction two cycles in a

row. The instrcache function takes a Boolean signal and returns the current transaction.

Whenever the argument signaI is True, then on the next cycle instrcache returns the

same transaction as it did for the current clock cycle. Otherwise, it returns the next

transaction as normal.
We also need a circuit that actually performs the loads and stores:

mem : : Signal Transaction -> Signal Transaction

On those clock cycles where the input transaction is anything but a load or store transac-

tion, the mem function simply returns the transaction unchanged. On loads, mem updates

the destination operand of the input transaction, based on the input load address. On

stores, mem updates its internal memory array according to the address and contents given

in the input transaction. The destination operand value is set to zero.

We also define a new Hawk function, transHazard, that returns True whenever its two

transaction arguments would cause a hazard, if the first transaction preceded the second

transaction in a pipeline:

transHazard :: Signal Transaction -> Signal Transaction -> Signal Boo1

The extended Hawk specification using transactions is given below:

SHAM3Trans : : Signal Transaction

SHAM3Trans = memOutJ

where

-- register-fetch stage --
instr = instrcache loadHzd

readyInstr = regFile instr mem0ut'

readyInstrl = delay nop (kill loadHzd readyInstr)

-- ALU stage --
aluIn = bypass (bypass readyInstrl memOut7) alu0ut'

aluOut = alu aluIn

alu0ut' = delay nop aluOut

-- memory stage --
memIn = bypass aluOutl mem0ut'

memOut = mem memIn

mem0ut7 = delay nop memOut

----- Control logic -----

loadHzd = sigAnd (isLoadTrans readyInstr7)

(transHazard readyInstrJ readyInstr)

The register-fetch stage retrieves the instruction and fills in its source operands from the

register file. The register-fetch pipeline register delays the transaction by one clock cycle,

although if there is a load hazard, the register instead outputs a nop transaction on the

next cycle. The ALU stage first updates the source operands of the stored transaction with

the results of the two preceding transactions (memOut' and alu0ut') by invoking bypass

twice. It then performs the corresponding ALU operation, if any, on the transaction and

stores it in the ALU-stage pipeline register. The memory stage again updates the stored

transaction with the immediately preceding transaction, performs any required memory

operation, and stores the transaction. The stored transaction is written back to the register

file on the next clock cycle. The control logic section determines whether a load hazard

exists for the current transaction, that is, whether the immediately preceding transaction

was a load instruction that is in hazard with the current transaction.

As we can see, the body of the specification remains manageable. The small control

logic section to detect load hazards is straightforward and is a minority of the overall

specification. In contrast, an equivalent specification of this pipeline where the components

of each transaction were explicitly represented contained over three times a s many source

lines. The lower-level specification's control section was almost as large as the dataflow

section, and not nearly as intuitive.

2.2.10 Extending transactions to other microarchitectures

The essential idea behind transactions is to pass all of the microarchitectural state asso-

ciated with a particular instruction in a single data structure as the instruction traverses

the pipeline. This implies that more transaction fields may have to be created for more

sophisticated pipelines. For example, the pipelined microarchitecture of Chapter 3 per-

forms branch specz~lation, where the instruction fetching component predicts the address

of the next instruction to be executed after a branch, called the branch target. This allows

the pipeline to continue fetching and executing instructions even though the actual branch

target won't be known until the ALU component has computed it in a later pipeline stage.

If the prediction is incorrect, the pipeline must discard the transactions corresponding to

instructions it had fetched after the branch, and start fetching the correct branch successor

instructions instead.

For pipelines containing branch speculation the predicted branch target is part of the

microarchitectural state associated with the branch, and is therefore stored within the

branch's transaction structure. This turns out to be quite useful when the actual branch

target is calculated by the ALU component, since it can be compared to the speculated

branch target to determine if a misprediction occurred.

Other microarchitectural features such as virtual register tags, predication bits, excep-

tion status flags, etc. may also require modifications to the transaction type. Haskell's

type class mechanism can be used to create structured families of transaction types that

can be instantiated to particular microarchitectures, depending on what state needs to be

associated with a given instruction. The use of type classes in Hawk to abstract over mi-

croarchitecture features is presented in Cook et a1[18]. We do not follow this approach in

the thesis, however, since we will be dealing with a fixed set of microarchitectural features.

2.2.1 1 Transact ions in other modeling languages

We are not alone in noting the usefulness of transactions to regularize interfaces between

microarchitecture components. In particular, 0nder and Gupta have used a similar con-

cept of instruction contexts as a core datatype in UPFAST, an imperative microarchitec-

ture simulation language [72]. Instruction contexts are allocated as mutable records as

instructions are fetched. They are then passed along by components, which can imper-

atively update context fields, if desired. A context is deallocated when it is no longer

needed.

Transactions have also been used by others to structure microarchitecture verifications,

and their use for this purpose is discussed in Section 3.3.1.

2.3 Modeling the DLX

Using techniques comparable to those described in this chapter the Hawk team has mod-

eled several DLX architectures:

An unpipelined version, where each instruction executes in one cycle.

A pipelined version where branches cause a one-cycle pipeline stall.

A more complex pipelined version with branch prediction and speculative execution.

Branches are predicted using a one-level branch target buffer. Whenever the guess

is correct, the branch instruction incurs no pipeline stalls. If the guess is incorrect,

the pipeline stalls for two cycles.

An out-of-order, superscalar microprocessor with speculative execution. The mi-

croarchitecture contains a reorder buffer, register alias table, reservation station,

and multiple execution units. Mispredicted branches cause speculated instructions

to be aborted, with execution resuming at the correct branch successor. Cook et

a1[18] present an overview of this microarchitecture and its implementation in Hawk.

The microarchitectural specification for the unpipelined DLX is written in a quarter

page of uncommented source code, not including the reusable component definitions; the

most complicated pipelined version takes up just over half a page.

2.3.1 Executing the model

We used the Gnu C compiler that generates DLX assembly to test our specifications on

several programs2. These test cases include a program that calculates the greatest common

divisor of two integers, and a recursive procedure that solves the towers of Hanoi puzzle.

We have not made detailed simulation performance measurements on these pipeline

specifications. In general we do not expect the current implementation of Hawk to break

simulation-speed records. At the moment Hawk is a set of libraries written in a general-

purpose lazy functional language, which imposes some performance costs. The transaction

library also performs some run-time tests that would be "compiled-away" in a lower-level

pipeline specification. We hope to increase Hawk's simulation efficiency in the future by

investigating domain-specific compilation techniques, such as partially evaluating a Hawk

microarchitecture with respect to the program it is simulating and the output signals being

sampled. Performance could also be greatly improved by employing custom memory

 hanks are due to Byron Cook for developing the DLX assembly to Hawk translator, and for inte-
grating it with the Gnu C compiler

allocation algorithms that take into account the fact that most Hawk programs only

reference a small "window" of a signal at any given clock cycle.

2.4 Other hardware modeling languages

Currently the hardware modeling language that is the most similar to Hawk is Lava,

introduced in Section 2.1.5. However, a major point of departure from Hawk is Lava's

ability to treat signal descriptions as first class values. In Hawk, a signal is simply a

sequence of values, and there is no way to differentiate between two signal descriptions

that happen to generate the same sequence. For example, the following two Hawk circuits

are observationally equivalent:

toggle : : Signal Bool

toggle = delay False (sigNot toggle)

toggle' : : Signal Bool

toggle' = genDelays False

where

genDelays : : Bool -> Signal Bool

genDelays b = delay b (genDelays (not b))

The first Hawk definition, toggle, describes a simple toggling circuit implemented by a

feedback loop (sigNot is an inverter over boolean signals). A circuit could be naturally

synthesized from this description using a single inverter and delay component. The second

definition, t ogg le J , makes use of the recursively-defined genDelays function to describe

an infinite number of delay components with alternating initial value parameters. Each

delay component takes the rest of its values from the next delay component to be gen-

erated. The toggle ' circuit description is not realizable in hardware, yet both toggle

and toggle ' generate the same sequence of values <False, True, Fa lse , . . . > and are

therefore equal in Hawk.

Lava can detect that these two circuit descriptions are different. Lava accomplishes

this by extending the Haskell language slightly with a form of non-updatable reference[l3].

Lava references act much like ordinary references in impure functional languages such

as ML, except that they are "read-only". Once initialized, a Lava reference cannot be

modified. Lava references differ from applicative data structures in that a newly created

reference is distinct from any already existing reference, even if they both refer to the

same value. Lava has an equality operator on references that can test whether its two

reference parameters are in fact the same reference.

A Lava signal is then a reference to the Lava component whose output generates the

signal. A Lava component is a record containing a field for the component's name, such

as "delay" or "not", a field for each static component parameter, such as the initial

value parameter for a delay component, and a field for each of the the component's input

signals. By performing equality tests on Lava signals, a Lava program can distinguish

toggle from toggle ' , since the first circuit generates only two unique references, one

each for the delay and sigNot components, while the second circuit (lazily) generates an

unbounded number of references.

Given a Lava description of a circuit, one can write a Lava function that generates its

corresponding behavior as an infinite list. Lava also allows users to generate non-standard

interpretations of circuits such as netlists and state-machine descriptions. Generation of

non-standard interpretations is a powerful Lava capability. Lava has circuit interpretations

that

a synthesize VHDL code.

a generate circuit formulas that can be checked by several verification tools, such as

Gandalf[89], NP-tools[78], and Otter[56].

Unfortunately, Lava's ability to generate non-standard circuit interpretations comes at the

price of giving up pattern-matching over signal elements. Haskell currently has a fixed

interpretation of pattern-matching expressions which is incompatible with Lava's explicit

signal representations. For example, it is quite convenient in Hawk to define an instruction

opcode as an algebraic datatype (see Section 7.1.1) and then define components such as

the ALU in terms of functions that pattern match on the opcode constructors. While the

same functionality can be defined in Lava by bundling existing signal types and performing

tests through nested conditional expressions3, the resulting code is often more verbose and

less easy to read.

Given the current state of the Haskell language, one has to choose between being

able to define non-standard circuit interpretations versus defining signal transformers by

pattern matching. Each has significant advantages. Since Hawk is primarily a behavioral

specification language, we chose the latter.

Custom-designed languages

Of course, Haskell is not the only possible platform for designing hardware description

languages. Most, but not all, hardware modeling languages are designed "from scratch",

giving designers complete control, and responsibility, over the syntax, semantics, and

tooling infrastructure of the language.

For example, Daisy[36] and pFP[38] are examples of early hardware specification lan-

guages based on higher order functional languages. Daisy as originally developed in John-

son's dissertation is a lazy untyped functional language where circuits are specified as

recursive signal equations, as they are in Hawk. The semantics of recursive definitions

is given in terms of domain-theoretic least fixed points, rather than unique fixed points

as used in this dissertation (unique fixed points are introduced in Section 4.5). Domain

theoretic semantics are arguably more complex to reason about in a theorem prover than

Hawk's higher order logic semantics, but have the advantage of allowing circuit equiva-

lences to be proved directly via an elegant technique called fixpoint induction.

pFP is a combinator-based language. Whereas Daisy and Hawk allow arbitrary recur-

sive signal forms, in pFP all recursion is expressed through a set of higher order recursive

combinator functions. In addition, pFP circuit components are connected via function

composition, without explicitly naming the interface signals. Two advantages of such

point-free specification languages are the simplicity of the language and supporting tools,

3 ~ a v a also has the ability to define new abstract signal types, with an associated set of abstract signal
primitives. Each circuit interpretation must provide a definition of the primitives if it is to interpret circuits
containing the abstract signal type.

and the ability to specify layout directives. pFP's layout combinators allow circuit de-

signers to state in high-level terms where circuit components should be realized on silicon.

These directives are more difficult to implement in languages like Hawk that allow com-

ponents to be interconnected arbitrarily.

The Ruby[39] hardware description language is a successor to pFP. Created by Jones

and Sheeran, Ruby is a combinator language based on relations, rather than functions.

Circuit specifications in Ruby can be more general than in Hawk, in that relations can

describe more circuits than functions can. For example, a Ruby circuit can directly model

a bi-directional wire between two circuits C and D, such as a bus, where information flows

from C to D on some clock cycles, and from D to C on others. Hawk's functional basis

requires all wires to be uni-directional. A bi-directional wire between circuits C and D

in Hawk must be modeled as two signals, one signal returned as an output from C and

passed as an input to D, and the other returned from D and passed into C.

Ruby can also model a nondeterministic circuit, whose outputs are not uniquely de-

termined by its inputs. Ruby's support for nondeterminism enables a form of design by

refinement, which we discuss in Section 7.1.5.

Most of the published Ruby examples specify circuits that operate at the gate and word

level, and particularly circuits that contain fine-grained regular structure, such as systolic

arrays. Such circuits generally process collections of fairly simple forms of data, such

as vectors of booleans and numbers. Hawk has emphasized modeling the more complex,

but less regular datatypes that typify microarchitecture component interfaces. Thus Hawk

programs can declare algebraic datatypes and define circuits by pattern-matching, features

which Ruby lacks.

Ruby's emphasis on circuit layout is another example of the different set of design

goals between the two languages. Ruby has combinators to specify where circuits are

located in relation to each other and to external wires. Hawk's emphasis is on behavioral

correctness, so Hawk circuits do not contain layout information.

There are many other languages for specifying hardware circuits at varying levels of

abstraction. The most widely used such languages are Verilog and VHDL. Both of these

languages are well suited for their roles as general-purpose, large-scale hardware design

languages with fine-grained control over many circuit properties. Both of these languages

are more general than Hawk in that they can model asynchronous as well as synchronous

circuits, and can synthesize (a subset of) circuit descriptions into a form suitable for

fabricating in silicon. However, Verilog and VHDL are large languages with complex

event-simulation semantics, which makes circuit verification much more difficult (see, for

example, Gordon[SO] for the challenges in formally verifying Verilog circuits). Also, neither

of these languages supports higher level abstraction features as well as Hawk, such as

polymorphically-typed circuits and higher-order circuit combinators.

As part of Intel Corporation's Forte circuit verification environment, the lazy func-

tional language Lifted-FL[2, 31 is used as a meta-language for describing abstract circuit

models, circuit properties, and circuit verification algorithms. Lifted-FL extends the boo1

datatype to contain symbolic boolean expressions, which are represented as ordered binary

decision diagrams[l7] (BDDs). Synthesized gate-level circuit descriptions can be imported

as Lifted-FL data structures from several conventional net-list file formats. Once imported,

the circuits can be symbolically simulated and verified. The simulation and verification

algorithms are written in Lifted-FL at a high level of abstraction, due in part to the

language's support for higher order functions and algebraic datatypes, but also due to

its intrinsic support for symbolic boolean expressions. Lifted-FL has been used to verify

impressively large circuits, including several floating-point ALU cores[71].

HML[48, 491 is a hardware modeling language based on the functional language ML.

ML also has higher-order functions and static polymorphic type checking, allowing many

of the same abstraction techniques that are used in Hawk, with similar safety guarantees.

HML follows the tradition of VHDL and Verilog in expressing circuit modules in a rela-

tional style, where output signals become extra parameters, rather than returned values

as in Hawk. The goal of HML is also rather different from Hawk, concentrating on circuits

that can be immediately realized by translation to VHDL.

Chapter 3

Microarchitecture algebra

3.1 Introduction

We now turn from specifying and simulating microarchitectures written in Hawk to de-

veloping a method for verifying them. This thesis approaches the verification task al-

gebraically, by discovering behavior-preserving transformations for Hawk components.

Transformational laws are well known in digital hardware, and form the basis of logic

simplification and minimization, and of many retiming algorithms. Traditionally, these

laws occur the gate level: de Morgan's law being a classic example. In this chapter we

examine whether corresponding transformational laws hold at the microarchitectural level.

A priori, there is no reason to think that large microarchitectural components should

satisfy any interesting algebraic laws, as they are constructed from thousands of individual

gates. Boundary cases could easily remove any uniformity that has to exist for simple

laws to be present. Yet we have found that when microarchitectural units are presented

as transaction processors, many powerful laws appear. Moreover, as we demonstrate in

this chapter, these laws by themselves are powerful enough to allow us to show equivalence

of pipelined and non-pipelined microarchitectures.

We have used this algebraic approach to simplify a pipelined microarchitecture that

uses forwarding, branch speculation and pipeline stalling for hazards. The resulting

pipeline is very similar to the reference machine specification (i.e. no forwarding logic),

while still retaining cycle-accurate behavior with the original implementation pipeline.

The top-level transformation proof is simple enough to be carried out on paper, and can

also be automated to some extent using Isabelle's higher-order rewriting tactics.

False

Figure 3.1: One-stage pipeline.

Interestingly, both circuits and laws can be expressed diagrammatically. A paper

proof (transformation using equivalence laws) proceeds as a series of microarchitecture

block diagrams, each an incrementally transformed version of the last. The laws often

have a geometric flavor to them, such as laws to swap two components with each other,

or laws to absorb one component into another. We find this diagrammatic approach an

excellent way to communicate proofs.

The most time-consuming part of this technique has been discovering the local behavior-

preserving laws. It is our experience that these laws are much easier to discover when using

transactions to increase the level of abstraction. Not only do transactions reduce the size

of microarchitecture specifications, they also provide enough "auxiliary" state information

to make law-discovery practical.

The rest of the chapter discusses many of the laws we have discovered. We then show

their use by applying the laws in a proof of equivalence between two microarchitectures.

3.2 Reference microarchitecture

Figure 3.1 shows the diagram of a simple non-pipelined microarchitecture built out of

transaction signal processors. The components are the same as those used in the SHAM3Trans

microarchitecture in Sections 2.2.5 and 2.2.9, but have been augmented to handle branch

instructions. In particular, the a lu component computes target addresses for branch

transactions, and the iCache examines completed branch transactions to determine when

to change its internal PC. The textual Hawk description is shown in Figure 3.2: Like

its SHAM3Trans counterpart, the iCache component produces new transactions, based

on the value of the current program counter and the contents of program memory (the

instruction-set architectures we consider have separate address spaces for instructions and

referenceMA = writeback
where

r egF i l e In = iCache (constant False) writeback
a lu In = r egF i l e r egF i l e In writeback
memIn = a l u a lu In
memOut = mem memIn
writeback = delay nop memOut

Figure 3.2: Hawk code for reference microarchitecture

data). Both the current PC and the instruction memory contents are internal to iCache.

The instruction cache takes on its writeback input the completed transaction from the

previous clock cycle. It examines each writeback transaction for branches that have been

taken. When it finds such an instruction, it modifies its internal PC accordingly and starts

fetching transactions from the branch target address. The iCache has as output a signal

of transactions representing the newly-fetched instructions. Each transaction's source and

destination operand values are initialized to zero, since the iCache doesn't know what

values they should have1. The other pipeline components will fill in these fields with their

correct values. The iCache has a second input, called s t a l l , which is a signal of Boolean

values. On clock cycles where s t a l l is asserted, the iCache will output the same trans-

action as it did on the previous clock cycle. In this simple microarchitecture, s t a l l is

always false. In more complex pipelines, the s t a l l signal is typically asserted when the

pipeline needs to stall due to a branch misprediction.

For more complex pipelines, we also allow the iCache to perform branch prediction,

based on an internal branch target buffer. When performing branch prediction, the iCache

will also annotate branch instruction transactions with the predicted branch target PC.

A branchmisp component (not shown in Figure 3.1) can locally compare the predicted

branch target with the actual branch target to determine if a branch misprediction has

occurred. For branch predicting microarchitectures the iCache updates its internal P C on

all mispredicted branches, once they are received on the writeback input, rather than on

'The SHAM3Trans version of the iCache component returned Unknown for the uninitialized operand
values. This version of iCache will instead simply zero out the operand value fields, to simplify the proofs
given in Chapter 6

Figure 3.3: Universal circuit-duplication law

taken branches.

3.3 Algebraic reasoning and the microarchitecture laws

With any algebraic reasoning there need to be some ground rules. We take as fundamental

the notion of referential transparency or, in hardware terms, a circuit duplication law. Any

circuit whose output is used in multiple places is equivalent to duplicating the circuit itself,

and using each output once. This law is shown graphically in Figure 3.3. Because of the

declarative nature of our specification language, every circuit satisfies this law. That is, it

is impossible within Hawk for a specification of a component to cause hidden side-effects

observable to any other component specification. In many specification languages this law

does not hold universally. For example, duplicating a circuit that incremented a global

variable on every clock cycle would cause the global variable to be incremented multiple

times per clock period, breaking behavioral equivalence. Hawk circuits can still be stateful,

but all stateful behavior must be local and/or expressed using feedback.

3.3.1 Algebraic reasoning

Referential transparency is what allows us to use algebraic reasoning effectively in Hawk,

and is based on the referentially-transparent semantics of Haskell. In general, algebraic

techniques for transforming functional programs are routinely used for equivalence check-

ing and verification [7, 8, 431 and for compilation and optimization [26, 771. Much of the

work in this thesis can be seen as an extension of these ideas.

We have also been influenced by the algebraic techniques used in the relational hardware-

description language Ruby[84] (Ruby is described in Section 2.4). Sizeable Ruby circuits

have been successfully derived and verified through algebraic manipulation[37, 401, and a

formal semantics of a dependently-typed subset of Ruby, called T-Ruby, has been mech-

anized within Isabelle's Zermelo-Fraenkel set theory logic[79]. On top of the formal se-

mantics, the T-Ruby design system[85] has been built as a set of tools to algebraically

transform Ruby expressions and translate hardware-realizable T-Ruby circuits into struc-

tural VHDL. The rewrite rules are verified within Isabelle's theory of T-Ruby circuits.

What distinguishes our work is our focus on microarchitectural units as objects of

study in their own right, whereas the Ruby research has emphasized circuits at the gate

level. Hawk's model of time is also somewhat different than Ruby's. Hawk uses natural

numbers as time indexes, while Ruby uses integers. One place where this difference shows

up is the fact that Ruby delay components form a bijection on signals, while Hawk delay

components do not (they are injective, however). The bijectiveness of Ruby's delay com-

ponents make it somewhat simpler to retime circuits in that language. Another important

difference is Hawk's greater emphasis on proving circuits equivalent by performing induc-

tion over time, as occurs in Chapter 6. Ruby's integer-indexed signals do not permit this

form of reasoning.

Transactions

Transactions are a key concept in allowing us to discover and formulate many of the

algebraic laws of microarchitectural components. As we noted in Chapter 2, the usefulness

of transactions for verification has been noticed before. Here we observe their uses in

verification. For example, Aagaard and Leeser used transactions to specify and verify

hierarchical networks of pipelines[l]. Further, Sawada and Hunt use an extended form of

transactions in their verification of a speculative out-of-order microarchitecture 1821. Each

transaction records two snapshots of the entire ISA state, before and after the instruction

is executed. In their work, however, transactions are not part of the microarchitecture

itself, but are constructed separately for verification purposes.

In our work, transactions form a fundamental basis for algebraic laws over microar-

chitectural components. The next few sections introduce many such laws, some of which

are specific to particular combinations of components, while others are quite widely ap-

plicable. Each instantiation of a law needs to be proved with respect to the specification

Figure 3.4: feedback rotation law

Figure 3.5: time-invariance law.

of the circuit components involved. We do not verify the individual laws in this chapter,

but several are proved correct using induction and equational reasoning in Chapter 6.

3.3.2 Delay laws

The delay circuit is a fundamental building block of clocked circuits, especially when

combined with feedback. A feedback variant of the circuit duplication law shown in

Figure 3.4, called the feedback rotation law, allows circuits to be split along feedback

wires. This law is not universal, but it is valid for any circuit that does not contain

zero-delay cycles.

Happily, all of the laws we discuss, including the feedback rotation law itself, preserve a

well-formedness property: if a circuit contains no zero-delay cycles, then any transformed

circuit will also have no zero-delay cycles.

The t ime-invariance law (Figure 3.5) is also widely applicable. A circuit is t ime-

invariant if one can retime the circuit by removing the delays from all the inputs of the

circuit and placing new delays (with possibly different initial value parameters) on the

circuit's outputs. All combinatorial circuits are time-invariant, and so are many stateful

circuits like the register file and memory cache. Interestingly, the iCache is not as it can

track the passage of time since initialization.

We use the above laws extensively to remove pipeline stages. If a pipeline stage is

time-invariant, then we can move the pipeline registers (represented as delay circuits)

Figure 3.6: bypass circuit idempotence law

Figure 3.7: register-bypass law

from before the pipeline stage to afterwards. If subsequent pipeline stages are also time-

invariant then we can repeat the process, eventually moving all of the delay circuits to the

end of the pipeline. However, forwarding logic between pipeline stages must still access

the appropriate time-delayed outputs of later pipeline stages. The feedback-rotation law

polices this, and ensures that the appropriate time-delay is kept by forcing delays to be

inserted on all feedback wires to the forwarding circuits. We will see examples of this

enforcement in Section 3.4.

The movement of delay components is an application of a technique called retiming[45,

83, 861. A circuit is retimed when the delay components of the circuit are repositioned,

while the functional components are left unchanged, Typically, circuits are retimed to

reduce the clock cycle time. In contrast, we shall retime circuits as part of a simplification

process. In fact, we often use the time invariance law to increase cycle time!

3.3.3 Bypasses and bypass laws

The purpose of bypass components as defined in Section 2.2.7 is to ensure that results

computed in later pipeline stages are available to earlier pipeline stages in time to be

used. Bypass circuits have many nice properties. Not only are they time-invariant and

obey a kind of idempotence (Figure 3.6), but they also interact closely with register files

and various execution units.

no-haz exec1 exec2

no-haz exec 1 exec2

Figure 3.8: hazard-bypass law

Register file - bypass law

The fundamental interaction between a bypass and register file is shown in Figure 3.7.

We call this the register-bypass law, and it is used repeatedly in eliminating forwarding

logic when simplifying pipelines. The law states that we can delay writing a value into the

register file, so long as we also take the value to be written and forward it to the output,

in case that register was being read on the same clock cycle.

Hazard - bypass law

Another bypass law permits the removal of bypasses between execution units. It is often

the case that after retiming all delay circuits to the end of a pipeline, two execution units

in a pipeline (such as an ALU unit and a Load/Store unit) are connected with one-cycle

feedback loops. Each bypass circuit is forwarding the outputs of an execution unit to the

inputs of that same execution unit, one clock cycle later.

If the upstream pipeline stages can guarantee that there is no hazard between successive

transactions, then the double feedback is equivalent to the single feedback circuit shown

at the bottom of Figure 3.8. This (conditional) identity is called the hazard-bypass law.

To be more concrete, suppose execl is the ALU and exec2 the memory cache. Then

an ALU-mem hazard arises if a transaction which loads a register value from memory is

immediately followed by an ALU operation which requires that register's value (this is the

same hazard as the one presented in Section 2.2.9). Under these circumstances the two

feedback loops would give different results. Under all other circumstances the two circuits

4 hazard hazard

Figure 3.9: Hazard-squashing logic guarantees no hazards

are equivalent. We express this conditional equivalence using the nohaz component. It

is an example of a projection component and is discussed in the next section.

3.3.4 Projection laws

Many laws, like the hazard-bypass law above, require that the input signals satisfy certain

properties, and commonly, we may know that the output signal of a given component

always satisfies a particular property. We can capture this knowledge of properties using

signal projections.

A signal projection is a component with one input and one output. As long as the

input signal satisfies the property of interest, the component acts like an identity function,

returning the input signal unchanged. However, if the input does not satisfy the property

we are interested in, the projection component modifies the input signal in some arbitrary

way so that the property is satisfied.

Let us consider an example. For the hazard-bypass law we are interested in expressing

the absence of ALU-mem hazards in a transaction signal. We reify this property as a

nohaz projection. On each clock cycle, the nohaz component compares the current

input transaction with the previous input transaction. If there is no ALU-mem hazard

between the two transactions, then the current transaction is output unchanged. If a

hazard does exist, then nohaz will instead output nopTrans, which is guaranteed not to

generate a hazard (since nopTrans contains no source operands).

Where do projections come from? After all, they are not the sort of component that

microarchitectural designers introduce in the normal course of events.

Fig 3.9 provides an example of a law which "generates" a projection. The hazard-

squashing logic guarantees that its output contains no hazards, and this is expressed in

that the circuit is unchanged when the nohaz component is inserted on its output.

(The hazard component outputs a Boolean on each clock cycle stating whether its two

input transactions constitute a hazard. The k i l l component takes a transaction signal

and a Boolean signal as inputs. On each clock cycle, if the Boolean input is false, then

k i l l outputs its input transaction unchanged. If the Boolean input is true, then k i l l

outputs a nopTrans, effectively "killing" the input transaction.)

To be useful, a projection component needs to be able to migrate from a source circuit

that produces it (such as the circuit in Figure 3.9) to a target circuit that needs the

projection to enable an algebraic law (such as the hazard-bypass law). Thus a projection

component must be able to commute with the intervening circuits between the source and

the target circuit. Well-designed projections commute with many circuits. For instance,

the n o h a z projection commutes with bypass, a lu, mem, and regFi le components. It also

commutes with delay components (that is, nohaz is time-invariant).

Projections are also convenient for expressing the fact that a component only uses

some of the fields of an input transaction. For instance, the hazard component only looks

at the opcode, source, and destination register name fields of its two input transactions.

We can create a projection called p r o j - c t r l that sets every other field of a transaction to

a default value, and prove a law stating that the hazard component is unchanged when

pro j - c t r l is added to any of its inputs. We can then show that pro j - c t r l commutes

with other components, such as bypasses and delays. This allows us to move the input

wires to hazard across these other components, which is sometimes necessary to enable

other laws. Similarly, the proj-branch-inf o projection allows us to move iCache and

branchmisp component inputs.

3.4 Transforming the microarchitecture

The laws we have been discussing can be used for aggressively restructuring microarchi-

tectures while retaining equivalence. We have used them to simplify several pipelined

microarchitectures with a view to verification. The example we present here contains

three levels of forwarding logic, resolves hazards by stalling the pipeline, and performs

Figure 3.10: Microarchitecture before simplification

branch speculation. The block diagram for this microarchitecture is shown in Figure 3.10.

By using just algebraic laws, we have been able to reduce most of the complexity, leaving

essentially an unpipelined microarchitecture.

Our approach to pipeline simplification has echoes of the Unpipelining approach[46] of

Levitt and Olukotun. Unpipelining is a verification technique where a pipelined microar-

chitecture, specified as a state machine, is incrementally transformed into a functionally-

equivalent unpipelined microarchitecture. Unpipelining proceeds by repeatedly merging

the last stage of a pipeline into the next to last stage, producing a microarchitecture

with one less stage on each iteration. On each iteration, the two microarchitectures are

proven equivalent by induction over time. This is similar to our approach, except that

we use transactions to encapsulate and reuse many of the verification steps, and we only

need to prove the equivalence of the portion of the microarchitecture being transformed,

rather than the entire microarchitecture, on each iteration. On the other hand, Levitt and

Olukotun's implementation of unpipelining is much more automated than our work up to

now, and can completely reduce a pipelined implementation to an unpipelined reference

machine.

The simplification of the microarchitecture in Figure 3.10 proceeds in five goal-directed

stages: Retiming, moving control wires, propagating hazard information, removing for-

warding logic, and cleanup. The stages are chosen somewhat arbitrarily, and are fairly

specific to this microarchitecture. They nevertheless help to organize the top-level proof

into subgoals. Each stage is described as we come to it in the simplification, and achieves

the preconditions necessary to apply key microarchitecture laws in the next stage. The

retiming stage is described next.

3.4.1 Retiming stage

We first remove all delay circuits from the main pipeline path, starting at the earliest

stage in the pipeline. We accomplish this by repeatedly applying the time-invariance law,

and by splitting delays along wires through the circuit duplication and feedback rotation

laws.

Figure 3.11: Split delay circuit after regFile, using the circuit duplication law

We would now like to move a delay through the k i l l circuit, but we can't, since the

top input to k i l l does not have a delay circuit. To place a delay on k i l l ' s top input,

we will need to move delay circuits through the branchmisp and hazard circuits. This

is possible because branchmisp and hazard are pure combinational circuits that preserve

default values (The default value for Booleans is False) and are therefore time-invariant.

Figure 3.12: Split delay circuit after alu, using the feedback-rotation law

Figure 3.13: Split twice the delay circuit leading to branchmisp and iCache, using two
applications of the circuit-duplication law

Figure 3.14: Move delay circuits through the branchmisp and hazard circuits, using the
corresponding time-invariance laws

We can similarly move these delay circuits through the or and and circuits (even

though one of the and inputs is inverted), since these combinational circuits preserve the

default False Boolean value. Finally, we can move the original delay circuit through the

k i l l circuit, since k i l l is a combinational circuit and all of its inputs have delays.

Figure 3.15: Move delay circuits through the or and and circuits, using the circuit-
duplication law and the corresponding time-invariance laws

Figure 3.16: Move delay circuits through the k i l l circuit, using the corresponding time-
invariance laws

Figure 3.17: Split the delay circuit after the k i l l circuit, using the circuit duplication
law

Once again, we can't move the delay circuit past the bypass circuit, since the other

input to the bypass does not contain a delay. Fortunately, the other input originates at

the delay circuit that is after the mem circuit, so we split that delay and move it to the

bypass input.

Figure 3.18: Split the delay circuit after the mem circuit, using the feedback rotation law

Figure 3.19: Split the bottom-most delay circuit, using the circuit duplication law

Figure 3.20: Split the bottom-most delay circuit again, using the circuit duplication law

We can now move our wandering delay through the two bypass circuits, since bypasses

are time-invariant, and they both have delay circuits on all inputs.

I I branch-misp I 4 hazard h I

Figure 3.21: Move the delay circuit before the first bypass circuit through the first and
second bypasses, using the corresponding time-invariance laws

Figure 3.22: Move the delay circuit through the alu circuit using the corresponding
time-invariance law

Figure 3.23: Split the delay circuit after the alu circuit using the feedback-rotation law

Now we just have to move the two delay circuits before the third bypass circuit to

the end of the pipeline. Fortunately, both bypass and mem are time-invariant.

Figure 3.24: Move the delay circuit through the third bypass circuit using the corre-
sponding time-invariance law

Figure 3.25: Move the delay circuit through the mem circuit using the corresponding
time-invariance law

Figure 3.26: Split the delay circuit after the mem circuit, using the corresponding feedback-
rotation law

Figure 3.27: Split the delay circuit below the mem circuit, using the corresponding circuit
duplication law

Figure 3.28: Move the delay circuit through the last bypass circuit, using the correspond-
ing time-invariance law

Figure 3.29: Move the delay circuit through the mem circuit, using the corresponding
t ime-invariance law

We'll keep moving this last delay a bit, to set up for the hazard-bypass law later on.

Figure 3.30: Split the delay circuit after the mem circuit, using the feedback-rotation law

Figure 3.31: Split the bottom-rightmost delay circuit, using the circuit duplication law

3.4.2 Move control wires stage

In this stage we move all wires not directly involved with forwarding logic to either before or

after all of the bypass circuits. This is to enable the hazard-bypass laws, which we apply in

a later step. We move the wires by inserting projection circuits and using the corresponding

projection-commutativity laws. While we're at it, we'll also insert p ro j - c t r l circuits on

the inputs to the hazard circuit, so that we can later on move the register file next to the

first bypass.

Figure 3.32: Projection insertion laws for pro j -branch-inf o

The wire we want to move in this case is the feedback wire after the a l u circuit,

which becomes the input to branchmisp and iCache. The projection that allows us

to move the wire is called pro j -branch-info. On each clock cycle, proj-branch-info

examines the opcode field of its input transaction. If it is a branch instruction, then

it outputs a transaction with the same opcode, destination register name, destination

value, and speculative branch target PC fields as the input transaction, but with all other

fields (including source-operand register name fields) set to their default values2. If the

transaction is not a branch instruction, then pro j -branch-inf o outputs nopTrans. Since

the iCache and branchmisp circuits only examine branch instructions, and in fact only

those fields that pro j -branch-inf o lets through to its output, then pro j -branch-inf o

really is an input projection of these two circuits (Figure 3.32). We thus insert these

projections and move them towards the a l u circuit.

Figure 3.33: Insert proj-branch-info projection on the inputs to iCache and
branchmisp, using the corresponding projection laws from Figure 3.32

Figure 3.34: Move pro j -branch-inf o past the left-most delay, using the corresponding
t ime-invariance law

- -

'Our ISA architecture hard-wires register RO to zero, so RO serves as the default value for register names

To continue moving the pro j -branchinf o projection, we apply the circuit duplication

law in reverse, merging the two projections into one.

Figure 3.35: Merge the two instances of pro j -branch-inf o, using the circuit duplication
law in reverse

At this point we can't move the pro j -branch-inf o circuit any further, since we can-

not insert a proj-branch-info circuit on the wire leading to the second bypass without

changing the functionality of the pipeline. What we do instead is split the delay that

is to the right of the projection, using the feedback rotation law (and split the feedback

wire while we're at it). Once we have duplicated the delay, we can continue moving

pro j -branch-inf o down towards the a l u circuit.

Figure 3.36: Split the delay circuit ahead of pro j -branch-inf o

Figure 3.37: Move the pro j -branch-inf o circuit past the delay circuit using the corre-
sponding time-invariance law

Now that pro j -branch-inf o is at the output of the alu circuit, we can use projection-

invariance laws to move the projection to the end of the pipeline. Projection-invariance

laws act somewhat like commutativity laws, and state that the output of a projection

is unchanged when its input signal is moved across another circuit. Figure 3.38 shows

some of the laws for proj-branch-info. In particular, we can move the projection past

the third bypass circuit and the mem execution unit of Figure 3.37, since neither of these

circuits alter a transaction's branch information.

Figure 3.38: Projection-invariance laws for pro j -branch-inf o

branch-misp hazard $a pro-branch-info +
Figure 3.39: Move proj-branch-info past the third bypass and mem circuit, using the
projection invariance laws from Figure 3.38

Figure 3.40: pro j - c t r l projection insertion law

To prepare for a future stage, we will also add pro j - c t r l projections to the inputs of

the hazard circuit. The p ro j - c t r l circuit passes the opcode, source register name, and

destination register name fields of its input transaction through unchanged, but zeros-

out all other fields. Since the hazard circuit only examines these control fields, then the

projection insertion law shown in Figure 3.40 is valid.

Figure 3.41: Add p ro j - c t r l projections to the inputs of the hazard circuit using the
corresponding projection-insertion laws (Figure 3.40), and move the right-most p ro j - c t r l
circuit past the delay using the corresponding time-invariance law

3.4.3 Propagate hazard information stage

At this point we would like to start removing bypass circuits using the hazard-bypass law.

But this law can only be applied when there are no hazards between the affected stages.

So we generate a no-hazard projection at the end of the dispatch stage (which is justified

by a projection-absorption law applicable to the kill-circuit complex in that stage), and

then move it between the first and second bypass circuits.

Figure 3.42: Generalized nohaz projection insertion law

The nohaz projection insertion law shown in Figure 3.42 is a slight generalization of

the law discussed in Section 3.3.4. This generalized law holds since the k i l l circuit is

still guaranteed to "squash" all potential hazards, and in fact may squash other trans-

actions as well. We use this law to insert a nohaz circuit after the k i l l circuit in the

microarchitecture.

Figure 3.43: Insert a nohaz projection after the k i l l circuit, using the projection insertion
law shown in Figure 3.42

The nohaz projection commutes with bypass circuits. One can see this by noting

that bypass never changes the transaction fields that nohaz examines. Thus no3az

will squash the same transactions regardless of whether it is placed before or after the

bypass. If nohaz does squash a transaction by replacing it with nopTrans, then bypass

will not modify the squashed transaction, since nopTrans contains no source operands.

The nohaz circuit acts like an identity on transactions it does not squash, so again it

does not matter whether it is placed before or after the bypass circuit in this case.

Figure 3.44: Commute nohaz with the first bypass, using the corresponding projection
commutativity law (we also reroute the mem stage feedback wire)

Figure 3.45: register file commutativity laws

We will next swap the register file with the k i l l circuitry using the two laws shown in

Figure 3.45, so that the register file is closer to the bypass circuits we want to eliminate.

The first law holds since the register file does not modify a transaction's control fields. It

is easy to show that the second law holds by performing a case analysis on the Boolean

input into k i l l : If the input is t rue at a given clock cycle, then both the left-hand and

right-hand circuits output nopTrans. If the input is f a l se , then the k i l l circuit acts as

an identity, so the outputs in both circuits are identical.

Figure 3.46: Commute the first p r o j - c t r l projection with the register file, using the first
law of Figure 3.45

Figure 3.47: Commute the register file with the k i l l circuit, using the second law of
Figure 3.45

Figure 3.48: Commute the second p ro j - c t r l projection with the register file, using the
first law of Figure 3.45

3.4.4 Remove forwarding logic stage

We are now in a position to start removing bypass circuits. The first bypass circuit can

be removed immediately, due to the register-bypass law:

Figure 3.49: Use the register-bypass law to remove the left-most bypass and the delay
circuit below it

We can now apply the hazard-bypass law to remove the bypass circuit just prior to

the memory unit.

Figure 3.50: Remove the right-most bypass circuit using the hazard-bypass law

Figure 3.51: register file commutes with hazard projection

Next, we can swap the noAaz projection with the register file (Figure 3.51), since the

register file never alters its input's control fields, and since the internal state of the register

file is only affected by its writeback input, not its data input. Once we have swapped the

two components, we can remove the nohaz projection by applying the law in Figure 3.42.

Figure 3.52: Swap the register file with nohaz , using the commutativity law in Figure 3.51

Figure 3.53: Remove nohaz , using the nohaz projection insertion law (Figure 3.42) in
reverse

Figure 3.54: Merge the delay feeding into the remaining bypass circuit with the right-
bottom-most delay, using the circuit-duplication law in reverse.

proj-branch-info +
Figure 3.55: Remove the last bypass circuit, using the register-bypass law

3.4.5 Cleanup stage

The pipeline has now been simplified as much as possible, except that there are still some

extra delay components as well as several unnecessary projection circuits. We merge delay

components, then move the projection circuits back to their places of origin and remove

them using the projection laws in the opposite direction.

proj-branch-info 7

Figure 3.56: Swap the proj-branch-info projection with the delay next to it, using the
corresponding time-invariance law.

proj-branch-info 4

Figure 3.57: Merge the three forking delay circuits after the mem circuit, using the feedback
rotation law in reverse.

We would like to remove as many delay circuits as possible when simplifying microar-

chitectures, and there is a way we can merge the delay leading into the hazard circuit

with the delay after the mem unit. Neither the a lu nor the mem units ever modify the

control fields of a transaction, so pro j x tr l commutes with both of them (Figure 3.58).

Figure 3.58: More proj -c tr l projection invariance laws

proj-branch-info Li

Figure 3.59: Move the right-most pro j -c tr l circuit past the register file, using the first
law of Figure 3.45

Figure 3.60: Move the right-most p ro j - c t r l circuit past the alu, using the first law in
Figure 3.58

Figure 3.61: Move the right-most pro j - c t r l circuit past the mem, using the second law in
Figure 3.58

Figure 3.62: Swap the right-most pro j - c t r l circuit with the delay, using the correspond-
ing time-invariance law

Figure 3.63: Merge the delay after the mem unit with the delay below the right-most
p ro j - c t r l , using the feedback rotation law in reverse

All that remains now is to absorb the projection circuits back into the circuits they

were created from.

Figure 3.64: Remove p ro j - c t r l circuits, using the projection insertion law of Figure 3.42
in reverse

Figure 3.65: Split the pro j -branch-info projection, using the circuit duplication law

Figure 3.66: Swap the left-most proj-branch-info projection with the delay circuit below
it, using the corresponding time-invariance law

3.4.6 Final pipeline

After removing the pro j -branch-inf o projections, we come to the final microarchitecture

in Figure 3.67. This circuit still outputs exactly the same transaction values, cycle-for-

cycle, as the microarchitecture in Figure 3.10, but is considerably less complex.

Figure 3.67: The final pipeline, after removing the proj-branch-info projections using
the projection insertion laws of figure 3.32 in reverse

3.4.7 Verifying the final microarchitecture

We can now apply conventional state machine-based techniques to verify that the final

microarchitecture is a valid implementation of its instruction set architecture. Such a

verification was recently carried out by Day, Aagaard, and Cook[20] for the microarchi-

tecture of Figure 3.67. Using alternate definitions of the Hawk primitives they were able

to automatically translate the Hawk microarchitecture description to an observationally

equivalent state machine representation. They then used the pipeline flushing methodol-

ogy of Burch and Dill[ll] to complete the verification.

Pipeline flushing method

In the Burch and Dill approach an implementation microarchitecture represented as a state

machine is shown to satisfy an instruction set architecture (ISA), also represented as a state

machine, by constructing an abstraction function that maps the implementation machine's

internal state to the internal state of the ISA machine. To verify the implementation

machine it must be shown that an abstraction function F maps the initial state of the

implementation machine to the corresponding ISA machine's initial state, and that given

any reachable implementation machine state s and current input inp, that

F (Nextimpl s inp) = N e x t ~ s ~ (F s) inp (3-1)

where Nextimpr and NextIsA are the next-state transition functions of the implementation

and ISA state machines, respectively.

The abstraction function F is constructed by Pushing the implementation machine.

That is, F examines the implementation machine's internal state to determine which in-

structions have been issued to the pipeline but have not completed yet, and calculates

what the final architectural state (i.e. the contents of user-visible registers and memory)

would be when those instructions are completed, assuming no new instructions were is-

sued. F can be defined semi-automatically by augmenting Nextimpl with an extra boolean

parameter called Push. If push is set then Nextimpl does not issue a new instruction to

the pipeline, but does continue to process in-flight instructions. F is then constructed

by iterating the augmented Nextimpl transition function (with Push set to true) until all

in-flight instructions have completed. For pipelined architectures, the number of iterations

is bounded by the number of pipeline stages.

Day, Aagaard, and Cook constructed an appropriate abstraction function F by aug-

menting the generated Hawk microarchitecture state machine in this fashion. They then

used the automated verification tool SVC[5] to verify that F satisfied equation (3.1). This

equation is only required to hold for reachable states, that is, implementation machine

states obtainable from some series of next-state transitions from the initial state. The

authors constructed a predicate P characterizing the set of reachable states, which they

gave to SVC as an assumption. They verified that P did in fact characterize the set of

reachable states using McMillan's SMV[58] model checker

Benefit of algebraic simplification

While the authors could have used pipeline flushing to verify the original pipelined microar-

chitecture of Figure 3.10, they claim that the simplified microarchitecture of Figure 3.67

is less complex, making it more amenable to automated verification.

Chapter 4

Formalizing Hawk in higher order logic

To ensure the correctness of the Hawk transformations we described in Chapter 3, we

need to work within a formal semantics for Hawk programs. That is, we need to have an

unambiguous mathematical interpretation of what a given Hawk program means, as well

as a notion of what it means for two Hawk programs to be equivalent.

Since we are mainly concerned with verifying the correctness of microarchitectural

laws, rather than fully modeling the Hawk language itself, we have chosen to formalize

only a subset of the language. In particular, we have chosen those features of Hawk that

can be directly interpreted as elements of higher order logic, as supported by the Isabelle

theorem prover. This precludes us from using some of Hawk's more advanced features,

such as multi-parameter type classes and nested definitions. Fortunately, the circuits and

transformations we consider can be adequately expressed without these features, and in

return we gain the full benefit of Isabelle's proof machinery, including its type checker,

parser, pretty-printer, and higher-order unification tactics.

Section 4.1 gives a brief and informal account of higher order logic, and assumes the

reader is familiar with first order predicate calculus, and the basic concepts associated

with typed functional languages, especially the notions of first-class functions and Hindley-

Milner type polymorphism. It borrows heavily from material by Melham[64], as well as

Gordon and Melham's introduction to another higher order logic theorem prover[29] (also

called HOL), the Isabelle reference manua1[74], and the chapter on higher order logic in

Isabelle's object logics manual[69]. The reader should consult these sources for a more

thorough introduction.

4.1 Elements of higher order logic

Higher order logic is a logic of functions. The traditional bifurcation between terms

and formulas made in predicate calculus is not present in higher order logic. Instead all

operators, including quantifiers and propositional connectives, are represented by (possibly

higher order) functions. To avoid logical inconsistencies, a type discipline is imposed on

terms, based on a restricted form of Hindley-Milner polymorphism1.

The use of higher order functions as a first class construct significantly reduces the

number of primitive axioms and inference rules in HOL. Many of the primitive syntactic

forms in predicate calculus, such as quantifiers and most of the logical operators, are

actually derived operators in HOL.

As a result, the kernel of a theorem prover implementing higher order logic can be quite

small, as little as a few hundred lines of code in a functional programming language. This

has the happy consequence of reducing the likelihood of defects occurring in the overall

theorem prover implementation, provided that all proof steps are checked by the kernel.

4.1.1 Terms

Higher order logic terms are built from the following four syntactic entities:

Constants. Examples are True, False, 0, and Suc (the function that takes a number

n and returns n + 1).

Variables. Elements of this category are drawn from an infinite set of variable

names V. Variables can be bound inside function definitions, in contrast to constants,

which cannot.

Function applications. Applications are writ ten using juxtaposition (i.e. by sep-

arating the function from the argument it is being applied to with spaces). Thus

the application of the Suc function to the number 3 is written as Suc 3.

 h he main restriction being that only top-level expressions can be given universal types. Thus the term
let id = (A x. x) in (id id) is not typeable in higher order logic, however the top-level constant definition
id = (A x. x) is typeable with type ' a + ' a , as is the top-level expression id id.

A-abstractions. This category corresponds to anonymous functions in a functional

programming language. A A-abstraction denotes a function of one parameter. An ex-

ample is the function that increments a number by two, written as (Ax. Suc (Suc x)).

To improve readability, most higher order logic theorem provers allow the user to

declare that a given two-argument function constant should be parsed and printed as an

infix operator. Thus the term (+ 1 (+ 3 6)) can be more conveniently read and written

as (1 + 3 + 6). To further reduce the number of parentheses needed one can express an

operator's associativity and its precedence with respect to other operators. For example,

if the user has declared an annotation stating that the multiplication operator has higher

precedence than the addition operator, then one can write terms such as (+ (* 1 2) (* 8 3))

in the more familiar form of (1 * 2 + 8 * 3).

Higher order logic is a "total" language, with a meaning defined for every well-typed

term. Constants evaluate to themselves, and the meaning of an application of a A-

abstraction to an argument is given by substitution. Thus the term (Ax. x + x) (2 * 3)

is logically equivalent to (2 * 3) + (2 * 3). Notice that the argument expression (2 * 3)

is substituted as is, without first "evaluating" it. One can also substitute expressions con-

taining a mixture of free variables and constants. Substitution in such cases is capture-

avoiding, meaning that bound variables in nested A-abstractions will be renamed if they

clash with free variables in the argument being substituted.

4.1.2 Types and type operators

Every HOL term is associated with a type. To begin with, Isabelle HOL assumes an

infinite set of type variables 7 V (whose elements are typically written 'a, 'b, etc), as

well as the primitive type constants boo1 and nat, corresponding to a two-element set of

booleans and the set of natural numbers, respectively.

More complex types can be constructed through the use of type operators. The ap-

plication of a type operator to one or more types is written in postfix form. The only

primitive type operator in HOL is fun, the function-space operator, which given a domain

type T and range type a as arguments, denotes the type of functions from T to a. The

Isabelle theorem prover provides an infix syntax for the fun operator, so that (7, a) fun

can be more conveniently read and written as r + a . The infix form is right-associative,

so that 7 + a + p is the same as 7 + (a + p) . Isabelle also provides several theories

containing derived type operators, such as set and list.

Type polymorphism

It is often the case that a term can be assigned more than one type. For example,

the function that returns Due regardless of its argument, (A x. Due) , could have type

bool + boo!, but could also have type nut + bool or type (bool * bool) + bool. In fact,

for any type 7, the function above could have type r + bool. Rather than restricting

such terms to a single type, one can instead assign them a polymorphic type, using type

variables. Thus one could associate the type 'a + bool to the term, where 'a is a variable

drawn from n/. By default the Isabelle theorem prover infers the most general such type

when constructing terms.

4.1.3 Primitiveconstants

Pure higher order logic contains only three primitive constants: Implication, equality, and

the Hilbert &-operator (also called choice). The constants and their type signatures are

shown in Figure 4.1. The meaning of implication and equality correspond to their intuitive

meanings in other classical logics: A + B is true if and only if either A is false or B is

true (or both). The term x = y is true exactly when x is logically equivalent to y.

The third primitive constant is somewhat similar to the axiom of choice in set theory.

Given a function P of type r =+ bool, then Eps P denotes some element x of type T such

that P x is true. No other information about x is known. If no such element exists (i.e. P

is equal to (A x. False)), then Eps P denotes a fixed, arbitrary element of type 7. To make

choice expressions more readable, they are often written in an alternate syntax using the

E symbol, so that if E is a boolean-valued expression possibly containing occurrences of

x, then Eps (A x. E) is written as E x . E , and pronounced as "some x such that E holds

(if any)" .

Table 4.1: The primitive constants of HOL

Table 4.2: Some derived constants in Isabelle HOL

Constant
implication
equality

4.1.4 Defined constants

Name
+

choice I Evs I (' a + bool) + ' a I E X . P X
- - I ' a + ' a + boo1

Constant
truth
falsity
negation
conjunction
disjunction
universal
quantifier
existential
quantifier
unique
existence
function
composition
conditional
let

Surprisingly, the above three constants are enough to allow all of the traditional predicate

calculus quantifiers and Boolean connectives to be defined as derived constants. The

names, types and syntax of the derived constants are given in Figure 4.2.

x = y

4.1.5 Inference rules and proofs

Type
boo1 + boo1 + boo1

Name
True
False
Not
And
Or
All

Ex

Ex1

Comp

If
Let

Most of the axioms and inference rules of higher order logic correspond to those for pred-

icate calculus. Rather than present them all, in Figure 4.1 we show the additional rules

needed to support equality, functions, and choice. Each rule assumes that its constituent

terms are well-formed and that all free variables among the predicates are consistently

typed. In the rules the letters P and Q stand for boolean-valued terms, R stands for a

Notation
P + Q

Type
boo1
boo1
boo1 + boo1
boo1 + boo1 + boo1
boo1 + boo1 =+ boo1
(' a + bool) + boo1

(' a + bool) + boo1

(' a + bool) + boo1

(' a * ' b) + (' c + ' a) = + ' c + ' b

boo1 + ' a + ' a + ' a
' a + (' a + ' b) ' b

Notation
True
False
1P
p A Q
P V Q
V x . P x

3 x . P x

3! x. P x

f o g

zf P then x else y
let x=e in f x

a = b - (sym) a = b b = c
-(re%) a = a b = a a = c (trans)

a = b f = g a = b
(AX. a) = (AX. b) (abs)t f a = g b (comb)

b
f x = g x

(Ax. a) = (Ay. a[y/x]) (a conv) ((Ax. a) b) = a[b/x] (P f = g (ext)*

Figure 4.1: Inference rules specific to higher order logic. t(abs) holds if x is not free in
the assumptions. b(a conv) holds if y is not free in a. '(ext) holds if x is not free in the
assumptions, f , or g.

predicate term (i.e. a function-valued term returning a boolean), a , b, and c stand for

terms of any type, x and y stand for variables of any type, and f and g stand for functions.

The intended meaning is that if all of the terms above the bar are provably true, then the

predicate below the bar is provably true. If no terms are displayed above the bar, then

the conclusion holds unconditionally, and is an axiom.

Proofs

A proof in higher order logic is carried out by "pasting together" existing inference rules

and theorems into a tree-like structure. The root of the tree contains the statement being

proved, and the leaves contain axioms or pre-proven theorems. The intermediate nodes

consist of inference rule instantiations. The root of the proof is drawn at the bottom of

the tree, and the leaves at the top. For example, the theorem g ((A x. f x) a) = g (f a)

has the following natural deduction proof:

g = g (refl) (~ x . f x) a = f a (P conv)
(comb)

9 ((A x. f x) a) = g (f a)

Derived rules

One can also build new inference rules in natural deduction style by constructing proofs

with undischarged premises. For example, the following derived rule, which we call

(p expand), is often useful:

(Ax. P) a

P[alxl
(P expand)

The rule states that boolean terms already shown to be true can be P-expanded at the

top-level. This rule is valid, since it is the pasting together of rules already known to be

valid:

(Ax. P) a = P[a/x] (P con4 (Ax. P) a

P[alxI
(= E)

Notice that the premise (Ax. P) a of the derived rule occurs as an undischarged premise

of the pasting. Any use of (P conv) can always be replaced by the corresponding sequence

of existing rules.

The converse of this derived rule is also useful

P[a'xl (p o n t r)
(Ax. P) a

which has a similar derivation. One can use derived inference rules to shorten proofs. For

example, we can use (P expand) and (P contr) to show2 that (EX. x = z) = z for free

variable z as follows:

= , (refrIP contr)
(Ax. x = z) z

(Ax. x = z) (Eps (Ax. x = z)) (E I)

Eps (Ax, x = z) = z (P expand)

Without (P expand) and (/3 contr) the proof takes three extra steps and is too large to

easily fit on this page.

 emem ember that (E X . x = z) is syntactic sugar for Eps (Ax. x = z)

4.1.6 Type definitions

While in theory the primitive bool and nat types and the function space type operator

are enough to construct any type of interest, in practice it is often useful to define new

types and type operators that are characterized by abstract value constructors and prop-

erties only. Higher order logic theorem provers such as Isabelle provide a type definition

mechanism to define new abstract types and type operators safely, by constructing them

as subtypes of existing types.

To define a new type, the user specifies a name T for the new type, a type expression

r composed from existing types, and a membership predicate P :: r + bool indicating

which elements of r should represent elements of the new type. The user also has to

exhibit a theorem stating that P holds for at least one element of r, since all types in

higher order logic must be non-empty3. The type definition package then generates a new

type constant with name T , a pair of functions Rep-T :: T + r and Abs-T :: r + T ,

and the following axioms:

V (x :: T) . P (Rep-T x)

V (x :: T) . Abs-T (Rep-T x) = x

V (y :: 7). P y -+ Rep-T (Abs-T y) = y

The axioms state that Abs-T and Rep-T comprise an isomorphism between the elements

of the new type and the domain of P. This isomorphism allows the user to prove abstract

properties about elements of T in terms of its representation elements of type r. Once

these properties have been proven, the user never need refer to the representation elements.

We demonstrate this by example.

The prod type operator

As well as types, the user can define new type operators through the same mechanism by

parameterizing the type expression r with type variables. The number of type variables

in the type expression r determines the number of arguments to the type operator.

3~on-emptiness is required so that the choice operator (e) always denotes a meaningful value.

For example, the (' a , ' b) prod type operator, written as (' a * ' b) , takes two types ' a

and ' b as arguments, and constructs the type of all ordered pairs (x :: ' a , y :: ' b) drawn

from the argument types. We can characterize this type abstractly in terms of three

functions

pair :: ' a + ' b + (' a * ' b)

fs t :: (' a * ' b) + ' a

s n d :: (' a * ' b) + ' b

and three axioms:

(F s t) V x y. fs t (p a i r x y) = x

(S n d) V x y. snd (pa i r x y) = y

(P r o d E q) V (p : : (' a * ' b)) q . (p = q) = (f s t p = f s t q A s n d p = s n d q)

Following Melham[63] we can define the (' a * ' b) type operator by specifying the oper-

ator name as prod, the type expression as ' a =+ ' b + bool, and the membership predicate

P as

P f holds for a function f :: ' a + ' b + bool when f x y is true for exactly one pair of

elements x :: ' a and y :: ' b . Thus the function f represents the abstract pair (x , y) . The

theorem

P (A x y . x = (E x . False) A y = (E y . False))

demonstrates that P holds for at least one element of the representation type.

Once the theorem prover has admitted prod as a new type operator, we can define the

functions pair , f s t , and snd as follows:

pair = A x y . Abs-prod (A a b. a = x A b = y)

fs t = X p . E X . 3 y . (Rep-prod p) x y

s n d = X p . E y . 3 x . (Rep-prod p) x y

From these definitions and the generated isomorphism axioms, we can prove the abstract

prod axioms (Fst), (Snd), and (ProdEq) as theorems. Once proved, it is no longer neces-

sary to explicitly refer to the definitions of pair, fst, and snd.

4.1.7 Datatypes

Using similar tricks to the prod type definition above, it is relatively straightforward,

though tedious, to create an abstract unit type, as well as type operators for sums, lists,

and trees. Structured types such as these are useful enough that several theorem provers

have implemented datatype definition packages, which allow the user to concisely specify

a broad class of inductively structured types and automatically prove their abstract prop-

erties as theorems. These packages are patterned after the datatype declaration forms

common to typed functional languages such as ML and Haskell.

A datatype declaration consists of a new type name Ty, possibly parameterized by

type variables 'al . . . 'a,, and a finite list of constructor specifications. Each constructor

specification consists of a new name Ci and a list of argument types ti,l . . . ti,k,.

datatype ('al, . . . , 'a,) Ty = Cl tl,l . . . tl,k, I
c2 t2,l - . t2,k2 I

Each tilj can either be an existing type, one of the type variables 'al . . . 'a,, or the

newly-declared type ('al, . . . , ' a ,) Ty .

Given such a datatype declaration, the Isabelle datatype package automatically gen-

erates a new type definition for Ty and a new constant definition for each constructor:

cl :: t1,i + . . . =3 + ('al, . . . , 'an) Ty

C2 :: t2,1 + . . . + t2,kz + ('al, . . . , 'a,) Tg

. . .

Cm :: tm,1 +- . . . + tm,km + ('al, . . . , 'a,) Ty

The package also generates a series of theorems about the constructors, including the fact

that no two constructors ever return the same element of Ty , that each constructor of one

or more arguments is an injective function, and that together the constructors comprise

all of the elements of Ty .

In addition, the package generates a structural induction theorem, allowing the user

to prove global properties of the new type. The structural induction theorem states

that a predicate P :: ('al , . . . , 'a,) Ty + boo1 holds for all elements of Ty if for each

constructor Ci , the term P (C i xi,^ . . . xi,k,) holds for all xi,^, . . . , xi,k,. In proving that

P (Ci Xi,l . . . xi,k,) holds, it is assumed that P xi,j already holds for each argument x,,j of

type ('a l , . . . , 'a,) Ty .

List datatype

As an example, the type of finite ' a lists can be defined by the following datatype decla-

ration

datatype ' a list = Nil I
Cons ' a (' a l ist)

with Nil representing the empty list and Cons x xs representing the list constructed from

head element x :: ' a and tail list xs :: ' a list. Thus the list [I, 2, 31 of the first three

positive natural numbers is represented by the expression Cons 1 (Cons 2 (Cons 3 Ni l)) of

type nut list.

From the list datatype declaration, the datatype package generates the following in-

format ion:

A new type operator definition with name ' a Eist,

Constant definitions for the constructors

Nil : : l a l i s t

Cons : : ' a + ' a list + ' a list

A theorem stating that Nil and Cons always return separate ' a Eist elements

V x xs. Nil # Cons x xs

A theorem stating that Cons is an injective function

Vx y xs ys. (Cons x xs = Cons y ys) = (x = y A xs = ys)

A theorem stating that together Nil and Cons generate all the elements of type

' a list

V (xs :: ' a list). xs = Nil V (3 y ys. xs = Cons y ys)

A structural induction theorem for proving global properties of ' a list elements.

V (P :: ' a Eist + bool) (xs :: ' a list).

P Nil A (V y ys. P ys -+ P (Cons y ys)) + P xs

The 'a list type could alternatively be defined directly in terms of existing types, using

the type definition package. However, it would be quite a bit of work to manually verify

the necessary Eist properties.

Soundness of datatype definitions

When generating a new datatype definition, a theorem prover could simply create the

needed datatype properties as axioms. However in practice most datatype packages con-

struct new datatypes conservatively by invoking the theorem prover's underlying type defi-

nition facility. A representation predicate for the datatype and a set of function definitions

corresponding to the datatype constructors is fashioned such that the desired datatype

properties can be proven by the package as theorems. In this way the consistency of the

logic is guaranteed to be preserved.

4.2 The Isabelle theorem prover

Many of the proofs in this thesis have been checked by the generic theorem prover Isabelle

(which we have already referred to in passing). Rather than supporting a single logic, a

generic theorem prover is designed to support several logics by instantiating custom provers

from a reusable set of program modules. This is based on the observation that many

components of a theorem prover, such as parsing, pretty printing, theory management,

rewriting tactics, etc. do not particularly depend on the actual logic used. Building a

theorem prover able to tackle large verification tasks requires a substantial amount of

infrastructure, so it is beneficial to reuse common tools when possible. Isabelle has been

instantiated for several logics, including Zermelo-Fraenkel set theory[22], higher order

logic, and domain theory.

4.2.1 Certifying proofs in Isabelle

Isabelle is derived from the Cambridge LCF system and follows the LCF approach to cer-

tifying proofs4. In this approach the user interface to the theorem prover is an interactive

read-eval-print loop to the programming language ML. Axioms and theorems are repre-

sented as elements of an abstract data type called thm. The inference rules of higher order

logic are represented as ML functions that return elements of type thm. The premises of

an inference rule become parameters of the associated ML function.

The user creates new theorems by calling ML procedures, either interactively or from a

batch file. The static type system of ML ensures that only the axioms and thm-returning

functions of the thm abstract data type can be used to build new theorems. However,

the user can automate common patterns of inference by defining ML procedures, called

tactics, that use existing t h m functions and values. These tactics are themselves first class

thm-returning functions that can be used to build even more powerful tactics, and so on.

In this way very high level tactics that perform thousands of primitive inferences can be

invoked to certify large proofs securely. To illustrate this approach, we provide a few of

Isabelle's axioms and inference rules for higher order logic. In these examples we represent

Isabelle terms as strings for readability. In practice terms are built from an algebraic ML

datatype cterm.

4 ~ h e LCF systems have had a profound influence on the design of both higher order logic theorem
provers and modern typed functional languages. Gordon[27] provides an historical account of LCF and
the theorem provers influenced by it.

"True" : thm

beta-conversion : cterm -> thm

transitive : thm -> thm -> thm

The first three expressions are axioms. The fourth expression is a function corresponding to

the (p conv) inference rule. Given a cterm of the form " (Ax. a) b", the beta-conversion

function returns a thm of the form " (Ax. a) b = a[b/xl". The function dynamically

checks that its cterm argument is a lambda abstraction applied to an argument, and

that the cterm is well-typed according to the type rules of higher order logic. If these

conditions do not hold then beta-conversion raises an exception instead of returning.

The transitive function corresponds to the (trans) inference rule. It takes two equational

thm arguments of the form "a = b" and "b = c", respectively. The function checks that

both arguments are in fact equations, and that they have the common term b. If the

checks succeed then transitive returns the theorem "a = c".

4.2.2 Higher level tactics

Proofs are constructed by connecting inference rules, axioms and theorems together in

some focused way. Patterns of proof construction are called tactics.

Isabelle provides a wealth of tactics, ranging from the primitive inference rules ex-

ported by the thm abstract data type to tactics that rewrite a theorem according to a list

of already-proven equations5, perform prolog-style proof search, and allow the user to in-

teractively prove theorems in a goal-directed fashion. Such high level tactics are essential

to carry out verifications of any reasonable size. For example the function

simplify : simpset -> thm -> thm

'Isabelle also provides a primitive rewriting tactic as part of the thm abstract data type for efficiency

is one of Isabelle's rewriting tactics. It takes a simpset, which is a collection of equation

theorems indexed by the structure of their left hand sides for rapid pattern matching,

and a thm to rewrite against. It repeatedly rewrites the theorem using the the equations

stored in the simpset as left-to-right rewrite rules until no more equations match any of

the theorem's subterms. The simplify function then returns the reduced theorem.

Readability of Isabelle proofs

One disadvantage of the LCF approach to certifying theorems is that the structure of the

proof itself is not evident, as it is in an English description. Even proofs carried out using

primitive tactics contain very little readable proof structure. For example, the primitive

proof of the theorem (E x. x = t) = t is given as the following ML expression in Isabelle:

ref 1 RS (read-instantiate [("PI1 ,"(%x. x = ?t) ") I selec't1)

For this reason we will present subsequent higher order logic proofs in English, rather than

as Isabelle expressions.

4.3 Embedding Hawk

Given a formal mathematical basis such as higher order logic, there are two common

methods for formalizing a programming language such as Hawk within the logic, termed

shallow embedding and deep embedding[lO] .

Shallow embeddings

In a shallow embedding programming language elements are modeled directly as cor-

responding elements within higher order logic. Thus programming language types are

modeled as types within the logic, programming language numbers as logical numbers,

programming language functions as logical functions, and so on.

A shallow embedding works well when the language features being modeled are already

present within the logic. In this case all of the logical rules for type checking and proving

equality of expressions can be used as is. A disadvantage is that there are typically many

more logical functions than there are programming language functions. For example, it is

relatively easy in higher order logic to specify the function that solves the halting problem.

These "extra" functions usually make it impossible to prove global properties about the

programming language being modeled. Another disadvantage occurs with respect to the

type system of a language. One often wants to prove global properties of the form "for

all types T, every program of type T has property X. . . ". In many cases proofs of such

properties require the use of case analysis or induction over all types, but typically this

cannot be done within the logic (though see Volker[91]).

Deep embeddings

A deep embedding consists of one or more inductively defined datatypes representing the

abstract syntax of the programming language, and a meaning function (or more generally

a relation) that maps syntactic elements to logical (semantic) elements. In effect, one

builds an interpreter for the language being embedded. One way to determine whether an

embedding of a language is shallow or deep is to ask how programming language variables

are modeled. In a shallow embedding, language variables become variables of the logic;

in a deep embedding, language variables become constants of the datatypes representing

the abstract syntax.

A deep embedding allows one to prove global properties by induction over the datatypes

representing the abstract syntax of the language. For example, a deep embedding can often

be used to prove that all programs in the language are computable, or that all well-typed

programs never generate runtime type errors.

Another advantage of a deep embedding is its ability to model language features not

present in the logic. For instance, the Haskell programming language has a sophisticated

notion of overloading based on type classes. While the higher order logic employed by

Isabelle implements single parameter type classes, it does not have support for Haskell's

multi-parameter or constructor classes. These advanced type class features can only be

modeled in Isabelle through a deep embedding.

The primary disadvantage of deep embeddings is the low level at which the language

is specified, and the lack of built in theorem proving support for even the simplest op-

erations. All type checking, parsing, pretty-printing, a-conversion and @-conversion of

functions, and evaluation of expressions has to be programmed into the theorem prover

as part of the embedding. A well-developed theoren1 prover like Isabelle has a great deal

of specialized code for performing inference over its native logic, such as specialized unifi-

cation and rewriting tactics, heuristically guided proof search routines, and so on. These

routines either cannot be used on deeply embedded expressions, or have to be manu-

ally refitted. Also, since embedded language expressions are encoded as abstract syntax

datatypes within the logic, there is an extra level of interpretive overhead when calling

inference routines on them.

Embedding Hawk

In this thesis we are primarily interested in proving equivalence between specific microar-

chitecture components, rather than demonstrating global properties over all possible Hawk

programs. In addition, almost the entire subset of Haskell's features that are needed to

implement these components are already present in higher order logic. For these reasons

we have pursued a shallow embedding of Hawk.

4.4 Modeling recursive deffhitions

The one critical feature of Hawk that beer order logic does not directly support is the

ability to define recursive values, such 4 signals.

In general, a recursive definition is given by 9ne or more equations, with the function

(or value) being defined on the left hand side of each equation and an expression, possibly

containing an instance of the functiorl beirig defined, on the right hand side.

Unlike most programming langua&es, Isabelle 4oes not normally allow users to create

arbitrary recursive definitions, since doing so couid easily lead to false theorems. For

instance, suppose that Isabelle allowed the following recursive function definition:

f :: nat nut

f z = f x + l

Isabelle would then add the aba~ve equa,tion as s new theorem. But we could then

subtract f x from both sides to conclude that 0 = 1 is also a theorem, which is clearly

inconsistent.

4.4.1 Axiomatic definitions

Isabelle does allow the user to assume the truth of an arbitrary Boolean formula by

declaring it as a new axiom of a theory. Using this facility, the user could create a new

theory and specify a recursive Hawk definition as a series of equational axioms. It would

then be the user's responsibility to show outside of the logic that dl of the axioms are

consistent. However, since we want to ensure a high level of confidence in the correctness of

our microarchitecture laws, we would prefer a mechanism that could be verified completely

within the logic, and thus be checked by Isabelle itself.

4.4.2 Well-founded recursion

Rather than specify recursive functions by possibly inconsistent axioms, Isabelle and sev-

eral other higher order logic (HOL) theorem provers[29, 73, 811 provide well-founded re-

cursive function definition packages, where new functions can be defined conservatively.

Recursive functions are defined by giving a series of pattern matching reduction rules, and

a well-founded relation.

For example, the map function applies a function f pointwise to each element of a

finite list. This function can be recursively defined in Isabelle by the following equations:

map :: (a -+ p) -+ a list -+ p list

"UP f [I = [I
map f (x#xs) = (f 4 # (map f xs)

The first rule states that map applied to the empty list, denoted by 1, is equal to the

empty list. The second rule states that map applied to a list constructed out of the head

element x and tail list xs, denoted by x#xs, is equal to the list formed by applying f to

x and map f to xs recursively.

To define a function using well-founded recursion, the user must also supply a well-

founded relation on one of the function's arguments6. A well-founded relation (<) is a

relation with the property that there exists no strictly decreasing infinite sequence of

elements XI , x2, x3,x4,. . ..
Given a well-founded relation the recursive definition package checks each reduction

rule, ensuring every recursive call on the right-hand side of the rule is applied to a smaller

argument than on the left-hand side, according to the relation.

In the case of map, we can supply the well-founded relation

xs < ys EE length xs < length ys

The relation holds when the number of elements in the relation's left-hand list argument

is less than the number of elements in the relation's right-hand argument. The definition

of map contains only one recursive rule, and it is easy to prove that the xs argument of

the recursive call of map is smaller than the (x#xs) argument on the left-hand side of the

rule, according to this relation. In general, well-founded relations ensure that there are

no infinite chains of nested recursive calls.

4.4.3 Coinductive types and corecursive functions

Although well-founded recursion is a useful definition technique, there are many recursive

definitions that fall outside its scope (including most of the recursively defined circuits in

Hawk). For instance, there is a non-inductive type of lazy lists in the Isabelle[73] theorem

prover, denoted by a llist, that is the set of all finite and infinite lists of type a. The

function lmap over this type is uniquely specified by the following recursive equations7:

Emap cannot be defined using well-founded recursion since the length of an infinite list

does not decrease upon taking its tail. In fact, the expression

'Some well-founded recursion packages only allow single-argument functions to. be defined. In this case
one can gain the effect of multi-argument curried functions by tupling.

7~sabelle uses a different syntax for lazy lists than for finite lists. In this dissertation we use the same
syntax for both types.

lmap f (xl # 2 2 # x3 # . . .) can be unfolded using the above rules to an infinite chain of

recursive calls:

Defining functions corecursively

The a llist type is an example of a coinductive type. Although there is no general induction

principle for coinductive types, one can use principles of coinduction to show that two

coinductive values are equal, and one can build coinductive values using corecursion.

In Isabelle's theory of lazy lists[75], for instance, potentially infinite lists are built

through the llist-corec operator, which has type P + (P + unit + (a * P)) + (a llist).

The llist-corec operator uniquely satisfies the following recursion equation:

if g b = In1 ()
llist-corec bg =

(x # (Elist-corec b' g)), if g b = Inr (x, b')

The llist-corec operator takes as arguments an initial value b and a function g. When g is

applied to b, it either returns In1 (), indicating that the result list should be empty, or the

value Inr (x, b'), where x represents the first element of the result list, and b' represents

the new initial value to build the rest of the list from. Function g is called iteratively in

this fashion, constructing a potentially infinite list.

Using Elist-corec, we can define lmap corecursively as follows:

Emap f xs - Elist-corec xs (map-head f)

where

map-head :: (a -+ P) -+ a llist + (unit + (P * a llist))

map-head f xs - case xs of

n + In1 0
I (x#xsl) + Inr (f x, xs')

We could then prove by coinduction that this definition satisfies lmap's recursive equations.

Needless to say, this is not the most intuitive specification of lmap, and most people would

prefer to specify such functions using recursion, if possible. More importantly, corecursive

definitions do not match the recursive style of Hawk specification we have developed so

far.

4.5 Defining recursive functions as fixed points

In the remainder of this chapter and continuing in Chapter 5 we will present a more

general approach that will allow us to define functions such as lmap recursively. The basic

steps required in our framework to prove that a set of recursive equations is well defined

in higher order logic are as follows. The use must:

Express the recursive equations as a fixed point of a functional F.

Show that for any two different potential solutions supplied to F, F maps them to

two potential solutions that are closer together, in a suitable sense.

Invoke the main result (Section 5.3) to show that the above property of F is sufficient

to guarantee that there is a unique solution to the original set of recursive equations.

In this section we deal with the first step.

4.5.1 Unique fixed points

We can convert a system of pattern matching recursive equations into a functional form

by employing a standard technique from domain theory[32, 901. We start by recasting

the equations as a single recursive equation using argument destructors or nested case-

expressions. For example, the recursive equations defining the lmap function are equivalent

to the following single recursive equation:

lmap f 1 = case 1 of

n =. n
I (X # X S) * (f 2) # (lmap f xs)

Given f , we can reify this pattern of recursion into a non-recursive functional F of

type (a llist + P llist) + (a llist + P llist) that takes a function parameter lmap-f :

F lmap-f = X I . case 1 of

n + n
I (x#xs) * (f 5) # ([map-f 4.

Using the recursive equations for Emap, it is easy to show that lmap f = F (Emap f) . The

value lmap f is called a fixed point of F. In general, an element x of type a is a fixed point

of a function g of type a + a if x = g x. A function may have many fixed points, or none

at all. Considering g as a functional representation of a system of recursive equations, each

fixed point of g represents a valid solution to the system. If the function g has exactly

one fixed point x , then we can think of g as defining the value x. We use Hilbert's choice

operator (E) to formalize this notion in HOL:

fix :: (a + a) + a

f i x g ~ ~ x . x = g x A (V y z . y = g y ~ z = g z + y = ~)

The expression fixg represents the unique fixed point of g, when one exists. If g does not

have a unique fixed point, then fixg denotes an arbitrary value.

4.5.2 Properties of unique fixed points

As an aside, several nice properties hold when one can establish that a system of recursive

equations has a unique solution. For example, unique fixed points can sometimes "absorb"

functions applied to other fixed points.

Lemma 1 Given functions F : a + a , G : /? + /3, f : a! + 8, and value x : a , such

that x is a (not necessarily unique) fixed point of F , G has unique fixed point fixG, and

f o F = G o f , then f x = f i x G .

Proof: We have f x = f (F x) = G (f x). Thus f x is a fixed point of G. Since G's fixed

point is unique, then f x = fix G

Unique fixed points can also be "rotated", in the following sense:

Lemma 2 I f the composition of two functions g : p -+ a and h : a -+ p has a unique fixed

point fix (g o h), then h o g also has a unique fixed point, and fix (g o h) = g (fix (h o g)).

Proof: We first note that h (fix (g o h)) = h ((g o h) (fix (g o h))) = (h o g) (h (fix (g o h))).

Thus h (fix (g o h)) is a fixed point of h o g. Next, suppose that x is an arbitrarily chosen

fixed point of h o g. Then g x = g ((h o g) x) = (g o h) (g x). Thus g x is a fixed point of

g o h. Since g o h has a unique fixed point, then g x = fix (g o h). Applying h to both sides

of this equation, we have h (g x) = h (fix (g o h)). Since x is a fixed point of h o g, we can

reduce the above equation to x = h (fix (g o h)), which demonstrates that the fixed point

of h o g is unique. Using the definition of fix, we have fix (h o g) = h (fix (g o h)). Applying

g to both sides of this equation and using the unique fixed point property of g o h, we

conclude that g(fix (h o g)) = fix (g o h)

Although we will not use Lemma 1 or Lemma 2 explicitly, they justify many of the

graphical transformations that have been undertaken in Chapter 3. In the next chapter

we will show how to find unique fixed point solutions to recursive function definitions in

a manner that can be semi-automated in Isabelle.

Chapter 5

Converging equivalence relations

While unique fixed points are a useful definition mechanism, it can be difficult to show

that they exist for a given function. A direct proof usually involves constructing an explicit

fixed point witness using other definition techniques, such as corecursion or well-founded

recursion. Little effort seems to be saved.

We propose an alternative proof technique, based on concepts from domain theory[32,

901 and topology[l2, 801 where one builds a collection of ever-closer approximations to

the desired fixed point, and shows that the limit of these approximations exists, is a fixed

point of the function under consideration, and is unique. The approximation process can

be parameterized to some extent, and reused across multiple definitions that are "similar"

enough. Furthermore these parameterized approximations can be composed hierarchically,

yielding more powerful approximation techniques.

5.1 Definition

To make the notion of approximation precise, we need a way of stating how '(close" two

potential approximations are to each other. One approach would be to define a suitable

metric space[l2] and use the corresponding distance function, which returns either a ratio-

nal or real number, given any two elements in the domain of the metric space. However,

proving that a series of approximations converges to a limit point often requires reasoning

about exponentiation and division over a theory of rationals or reals. An alternative way

to measure "closeness", which we call converging equivalence relations (CER) , instead only

involves reasoning about well-founded sets, such as the set of natural numbers, or the set

of finite lists. In many cases we can prove a unique fixed point exists by performing a sim-

ple induction over the natural numbers, something which all of the current HOL theorem

provers support well.

A converging equivalence relation consists of:

a A type p, called the resolution space

a A type 7, called the target space

a A well-founded, transitive relation (<) over type p, called a resolution ordering

A three-argument predicate (=) of type (p + r + T + bool), called an indexed

equivalence relation. Given an element i of type p, and two elements x and y of type
i

T , we denote the application of (=) to i , x and y as (x = y), and if this value is true,

then we say that x and y are equivalent at resolution i.

The resolution ordering (<) and indexed equivalence relation (=) must satisfy the prop-

erties in Fig. 5.1, for arbitrary i , i f : p; x, y ,z : r; and f : p -+ 7. Axioms (5.1), (5.2),

and (5.3) state that (=) must be an equivalence relation at each resolution i. Axiom (5.4)

states that if a resolution i has no lower resolutions, then (E) treats all target elements

as equivalent at that resolution. Such resolutions are called minimal. There is always

at least one minimal resolution (and perhaps more than one), since (<) is well-founded.

Axiom (5.5) states that if two elements are equivalent at a particular resolution, then

they are equivalent at all lower resolutions. Thus higher resolutions impose finer-grained,

but compatible, partitions of the target space than lower resolutions do. Although no

particular resolution may distinguish all elements, (5.6) states that if two elements are

equivalent at all resolutions, then they are in fact equal.

Axioms (5.7) and (5.8) deal with "limits" of approximations. First some terminology:

a function f : p -+ r from the space of resolutions to the target space of elements is called

an approximation map. An approximation map f is convergent up to resolution i if for all

resolutions j and j' such that j < j' < i, then (f j) is equivalent at resolution j to (f j ') .

Note that it is possible for (f i) itself not to be equivalent to any of the lower-resolution

i
X M X (5.1)

i i
x = y + y m x (5.2)

i i i
x % y A y ~ z - - + X M Z (5.3)

i
(V j . l (j < 2)) + x M 3 (5.4)

i' i
x % y ~ i < i ' - - + x m y (5.5)

j (V j . z = y) + x = y (5.6)

j j
(V j , j l . j < j ' < i --+ (f j) M (f j ')) + (3 z . V j < i . z % (f j)) (5.7)

(V j , j r . j < j l + (f j) A (f j ')) + (3 z . v j . z (f j)) (5.8)

Figure 5.1: The CER axioms. Each of these axioms must hold for arbitrary i , x , y , and f .

(f j) ' s . An approximation map f is globally convergent if for all resolutions j and j' such

that j < j', then (f j) A (f j r) .

Axiom (5.7) states that iff is convergent up to resolution i , then there exists a limit-like

element z that is equivalent at each resolution j < i to the corresponding (f j) approx-

imation (there may be multiple such elements). Axiom (5.8) states that if f is globally

convergent, then there exists a limit element z that is equivalent to each approximation

(f j) at resolution j .

5.2 Examples

5.2.1 Discrete CER

The simplest useful CER has as a resolution space a two-element type containing the values
I

I and T , with (I < T), and a target space r with (m) defined such that (x = y) -. Due,
T

and (x z y) = (x = y) . Axioms (5.1) through (5.6) are easy to verify. Axiom (5.7) holds

for any element. The limit element satisfying (5.8) is f T .

5.2.2 Lazy list CER

We can construct a converging equivalence equation for comparing coinductive lists by

comparing the first i elements of two lazy lists l I and l2 at a given resolution i. To perform

the comparison, we make use of the Etake function, with type nut + a llist -+ a list. The

expression (ltake n xs) returns a finite list consisting of the first n elements of xs. If xs

has fewer than n elements, then ltake returns the whole of xs. The ltake function can be

defined by well-founded recursion on its numeric argument with the following recursive

equations:

ltake 0 xs - - 0
ltake (n + 1) [I = 0
ltake (n + 1) (x # x s) = x # (ltake n x s)

We then define the lazy list CER with the natural numbers as the resolution space, (a llist)

as the target space, the usual ordering on the natural numbers for (<), and (z) defined

as follows:
2

xs z ys - (ltake i xs = ltake i ys).

Axioms (5.1) through (5.3) hold trivially. The only minimal resolution in this CER is

0, and since (ltake Oxs) = [I, then (5.4) holds. If two lazy lists are equal up to the first

i positions, then they are equal up to any it < i position, so (5.5) holds. Axiom (5.6)

reduces to the Take Lemma[75], which can be proved by coinduction.

Axioms (5.7) and (5.8) require us to construct appropriate limit elements, given an

approximation map. Both limit elements can be constructed by a single function, which

we call Elist-diag. For a given approximation map f , the limit elements may be of infinite

length, so we define llist-diag by corecursion, using llist-corec:

llist-diag f r llist-corec 0 (nthElem f)

where

The helper function nthElem uses the ldrop function on lazy lists. The ldrop function

has type nut -+ (a 1li.st) --+ (a llist), and (ldrop i xs) removes the first i elements from xs,

returning the remainder. Like Etake, it is defined by well-founded recursion on its numeric

f O = . . .

f 6 = [xO, x l , x2, x3, x41

f 7 = [xO, x l , x2, x3, x41

Figure 5.2: The llist-diag function constructs a limit list from an approximation map. In
(a) the approximation map converges to a finite list; In (b) to an infinite list.

argument:

ldrop 0 xs - xs -

ldrop (n + 1) = [I

ldrop (n + 1) (x # xs) = ldrop n xs

The overall action of llist-diag is to construct a so-called diagonal list from the approx-

imation map f , where the nth element of the result list is drawn from the nth element of

approximation f (n + I), if the nth element exists. If the nth element does not exist (i.e.,

the length of f (n + 1) is less than n), then the result list is terminated at that point. This

process is shown in Fig. 5.2. There are two possible cases. In Fig. 5.2-a, we see that the

approximation map f converges to the finite list [xo, X I , 2 2 , 23, x4]. In Fig. 5.2-b, the

approximation map f is converging to the infinite list [xo, XI, x2, 23, 2 4 , xs, xs, . . .]
It turns out that for any CER whose (<) relation is the less-than ordering on the

natural numbers, the following property implies both (5.7) and (5.8):

With some work, one can show that this property holds for the lazy list CER by supplying

llist-diag f as the existential witness element for x.

5.3 Contracting functions and the CER fixpoint theorem

In the theory of metric spaces, a contracting function is a function F such that for any

two points x and y, F x is closer to F y than x is to y, given a suitable distance function.

Banach's theorem states that all contracting functions over suitable metric spaces have

unique fixed points. We can define an analogous notion over a CER:

Definition 1 A function F is contracting over a C E R given by (<) and (e) if for all

resolutions i and target elements x and y ,

i'
(W 1 < i . x e y) - - + (F ~) & (F ~) .

Intuitively, a function is contracting if, given two elements x and y that are close enough

together at all lower resolutions i' < i to satisfy the CER, but are potentially too far

away at resolution i , then F maps them to two elements that are now close enough at

resolution i.

For example, the function consZero xs = (O#xs) is contracting over the lazy list CER,

since given any i and two lazy lists x s and ys ,

(Vi' < i . ltake i' xs = ltake i' ys) + ltake i (conszero x s) = ltake i (consZero ys).

The main result of this chapter is as follows:

CER Fixpoint Theorem A contracting function F over a C E R has a unique fixed

point.

The proof is discussed in Sect. 5.9. For now, we would like to apply this theorem to

define some simple recursive functions over lazy lists.

5.4 Recursive definitions over coinductive lists

To begin with, we can simplify the definition of a contracting function F over a CER when

the (<) relation of that CER is the less-than relation over the natural numbers. In this

case, Definition 1 reduces to

i i+l
V i x y . x x y + (F x) z (F y) .

Specializing this formula for the lazy list CER, we have that F is contracting on lazy lists

if

V i x y . l t a k e i x = l takei y -+ ltake (i + 1) (F x) = ltake (i + 1) (F y) . (5.10)

5.4.1 Defining i terates

Let us establish that the following recursive equation, defined over x and f , has a unique

solution, and is thus a definition:

iterates = (x # (lmap f i terates)) (5.11)

This equation builds the infinite list [x , f x , f (f x) , . . .I. We first define the non-recursive

functional F that characterizes this equation:

F iterates' - (x # (Emap f iterates')).

and then show that it is a contracting function. To do this we rely on (5.10), and assume

we have two arbitrary lazy lists xs and ys such that ltake i xs = ltake i ys. We now need

to show that ltake (i + 1) (F x s) = ltake (i + 1) (F ys) . Using a process of equational

simplification we are able to reduce the goal to the assumption, as follows:

ltake (i + 1) (F xs) = ltake (i + 1) (F ys)

ltake (i + 1) (x # (h a p f x s)) = Etake (i + 1) (x # (lmap f y s))

H ltake i (lmap f x s) = Etake i (lmap f ys)

+ ltake i xs = ltake i ys

The simplification relies on the following facts, each proved by induction on i:

(ltake (i + 1) (z # xs) = Etake (i + 1) (z # ys)) (ltake i xs) = ltake i ys)

(ltake i (lmap f x s) = ltake i (Emap f ys) + (Itake i xs = ltake i ys)

These facts illustrate a nice property of this proof: We did not have to expand the def-

initions of (#) or lmap during the simplification process, relying instead on an abstract

characterization of their behavior with respect to ltake. This turns out to be the case for

many functions, even recursive ones defined by contracting functions. In general we can

often incrementally define recursive functions and prove properties about how they behave

with respect to (z), without having to expand the definitions of functions making up the

body of the recursive definition.

5.5 Composing converging equivalence relations

The lazy list CER allows us to give recursive definitions of individual lazy lists, but

we are often more interested in recursively defining functions that transform lazy lists.

Fortunately, there are several CER combinators that allow us to build CERs over complex

types, if we have CERs that operate on the corresponding atomic types.

Local and global limits

When constructing a new CER C 1 out of an existing CER C , we usually have to show

(5.7) and (5.8) hold for C' by invoking (5.7) and (5.8) for C, to create the necessary limit

witness elements. To make this process explicit, we use Hilbert's choice operator (E) to

create functions that return these witness elements1, given an appropriate approximation

mapping f :

local-limit :: (p + T) + p -+ T
j local- l imit f i = (~ z . V j < z . z = (f j))

global-limit :: (p -+ T) + T

j
global-limit f = (E Z . V j . z = (f j))

We can use the axiom of choice for HOL, as well as (5.7) and (5.8) to prove the basic

properties we want local-limit and global-limit to have for any CER given by (<) and (z):

(V . < < i (f j) (j l)) (V j < i . (l o c a l - l i m i t f i) & (f j)) (5.14)

(j , . < j + (f) (f j)) + (Vj . (global-limit f) & (f j)) (5.15)

Function-space CER

The functions local-limit and global-limit allow us to concisely specify the limit elements

of CER combinators. For example, given a CER C from resolution space p to target space

 his is merely a convenience. The CER properties can be shown with a little more work in Isabelle
using (5.7) and (5.8) directly.

T given by (<) and (w) , we can construct a new function-space over C CER with the

same resolution ordering (<), and a new indexed equivalence relation (w') with type

p + (a + r) -+ (a + r) + bool, defined as

i i
g w' h = V x . (g x) z (h x) .

The limit elements satisfying (5.7) and (5.8) can be given as

local -limit -fun f i (Ax . local -limit (Xi . f i x) i)

global-limit-fun f = (Ax . global-limit (Xi. f i x))

Given these limit-producing functions, it is relatively easy to show that the function-space

over C CER satisfies the CER axioms. As an example of the kind of reasoning involved,

we prove that local -limit-fun satisfies (5.7).

Lemma 3 Given a CER (<, w) , approximation map f of type p + (a + T) , and (w')
J

defined as above, then if (Vj, j ' . j < j' < i -+ (f j) w' (f j ')) ,
i

then V j . local-limit-fun f i w' (f j) .

Proof: Given the definition of (w') and local-limit-fun, we must show for arbitrary x
j

and j that local~limit f i x w f j x. Let f ' = Xi. f i x . Then f' is an approximation map
i of type p + r . Thus we need to show that local-limit f ' i w f' j. By definition of (w') and

j
the premise of the lemma, we have (Vj, j', x . j < j' < i + (f j x) w (f j ' x)) . Applying

the definition of f ' , we have (Vj, j'. j < j' < i 4 (f ' j) (f ' j ')) . By (5.14) we have
i V j < i. local-limit f' i w (f ' j) , as desired.

5.5.1 Defining recursive functions with the function-space CER

Defining lmap

We can apply the function-space CER to define lmap recursively. The recursion equations

for lmap are:

lmap f 0 = 0
lmap f (x#xs) = (f x) # (Imap f xs)

We translate the equations into a non-recursive form (parameterized over f)

F lmap' r (Xxs . case xs of

U * U
I (Y # Y S) * (f Y) # @map' ~ 4) .

We then need to show that fix F is the unique fixed point of F by proving that F is a

contracting function on the function-space over lazy lists CER. By (5.9) we must show for
i (i+l)

arbitrary resolution i and functions g and h, that (g e' h + (F g) e' (F h)) . Expand-

ing definitions, we obtain

i (i+l)
g R5' h + (F g) e' (F h)

i (i+l)
@ (Vxs .gx s ~5 h x s) - - + (V x s . (F g x s) e (F h x s))

(V xs . ltake i (g xs) = ltake i (h xs)) -+

(V xs . ltake (i + 1) (F g xs) = ltake (i + 1) (F h xs)) .

So, to prove F is contracting we take an arbitrary resolution i and two arbitrarily chosen

functions g and h such that (V xs . ltake i (g xs) = Etake i (h x s)) , and show for an arbitrary

xs that ltake (i + 1) (F g xs) = ltake (i + 1) (F h xs). There are two cases to consider:

case xs = 0:
ltake (i + 1) (F g 0) = Etake (i + 1) (F h [I)

++ ltake (i + 1) 1 = ltake (i + 1) 0
@ True.

case xs = (y#ys):

ltake (i + 1) (F g (y#ys)) = ltake (i + 1) (F h (y#ys))

@ Etake (2 + 1) ((f Y) # (g ys)) = ltake (2 + 1) ((f Y) # (h ys))

@ ltake i (g ys) = ltake i (h ys)

@ True {by assumption).

Given the definition of F and basic lemmas about Etake, Isabelle's high-level simplification

tactics allow the above proof to be carried out in two steps. The proof completes in about

a second on a 266MHz Pentium 11.

Defining lappend

We can apply the function-space CER combinator repeatedly, to prove that multi-argument

curried functions have unique fixed points. As a concrete example, the curried function

lappend has type a Elist + a Elist + a llist. It takes two lazy list arguments xs and ys

and returns a new list consisting of the elements of xs followed by the elements of ys. The

recursive equations for lappend are

lappend 1 y s = ys

lappend (x # x s) ys = (x # Eappend xs ys)

To prove that these equations have a unique solution, we apply the function-space CER

combinator to the lazy list CER to obtain a new CER C'. We then apply the function-

space CER combinator again to C', obtaining a new CER C" with the usual less-than

relation on n a t for (<) and the following indexed equivalence relation (&"':
i

g =" h r (V x s y s . l t a k e i (g x s ys) = l t a k e i (h x s ys)) .

Next, we convert the recursive equations for lappend into a non-recursive function F :

F lappendl - (Xxs ys . case xs of

[I * YS

I (x # xs') + (x # (lappend' as' ys))) .

By (5.9) we must show for arbitrary resolution i and functions g and h, that

(V xs ys . ltake i (g xs ys) = Etake i (h xs y s)) -+
(V xs ys . ltake (i + 1) (F g xs ys) = ltake (i + 1) (F h xs ys)) .

So we take arbitrary i , xs , and ys, and prove

ltake (i + 1) (F g xs ys) = ltake (i + 1) (F h xs ys)

assuming we have (V xs ys . ltake i (g xs ys) = ltake i (h xs ys)) . There are two cases to

consider, depending on whether xs is empty or not:

case xs = 0:
ltake (i + 1) (F g 0 ys) = ltake (i + 1) (F h ys)

u ltake (i + 1) ys = ltake (i + 1) ys
True.

case xs = (x#xsl):

l take (i + 1) (F g (x#xs1) ys) = ltake (i + 1) (F h (x#xsl) ys)
@ ltake (i + 1) (x # (g xs' ys)) = ltake (i + 1) (x # (h xs' ys))

@ ltake i (g xs' ys) = ltake i (h xs' ys)

u True {by assumption).

Thus we can conclude that lappend has a unique fixed point definition. We were able to

carry out this proof in Isabelle in three steps, again taking about a second of CPU time.

5.5.2 Other CER combinators

CER combinators can also be defined over product and sum types. The lazy list CER

can be generalized to work over any coinductive type that has a notion of depth, such as

coinductive trees. A more powerful function-space CER is discussed in Sect. 5.7.

5.6 Demonstrating equality between coinductive elements

Converging equivalence relations can also be useful in showing that two elements of a target

space are equal. Axiom (5.6) (restated below) says that to show two target elements x

and y are equal, one simply needs to show they are equivalent at all resolutions j

We can often demonstrate that x and y are equivalent at all resolutions by well-founded

induction, since (<) is a well-founded relation. For example, given two arbitrary lazy lists

ys and zs, we can prove the following lemma about lappend.

Lemma 4 Vxs . ltake i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys 2s)).

Proof

case i = 0:

Take xs to be an arbitrary lazy list. Then

l take i (lappend (lappend xs ys) zs) = ltake i (lappend xs (Eappend ys 2s))

l take 0 (lappend (lappend xs ys) zs) = l take 0 (lappend xs (lappend ys 2s))

.3 [I = [I

True.

case i = (k + 1):
Induction hypothesis:

Assume (Yes . ltalce k (Eappend (lappend xs ys) zs) =

ltake k (Eappend xs (lappend ys 2s)))

Take xs to be an arbitrary lazy list. Then

l take i (lappend (lappend xs ys) zs) = ltake i (lappend xs (lappend ys 2s))

e (l take (k + 1) (lappend (lappend xs ys) zs) =

l take (k + 1) (lappend xs (lappend ys zs)))

subcase xs = [I:

(l take (k + 1) (lappend (lappend [I ys) zs) =

ltake (k + 1) (lappend [] (lappend ys zs)))

@ (l take (k + 1) (lappend ys zs) =

l take (k + 1) (lappend ys zs))

@ True.

subcase xs = (x # xs'):

@ (l take (k + 1) (lappend (Eappend (x # xs') ys) zs) =

l take (k + 1) (lappend (x # xs') (lappend ys 2s)))

@ (l take (k + 1) (lappend (x # (lappend xs' ys)) zs) =

l take (k + 1) (x # (lappend xs' (lappend ys 2s))))

w (Etake (k + 1) (x # (lappend (lappend xs' y s) 2 s)) =

ltake (k + 1) (x # (lappend xs' (lappend ys 2 s))))

w (l take k (lappend (lappend xs' ys) z s) =

ltake k (lappend xs' (lappend ys z s)))

w True {by induction hypothesis).

This proof took four steps in Isabelle, and relied on the following facts about lappend,

each proved in two steps by expanding lappend's recursive definition once and simplifying:

lappend 1 ys = ys

lappend (x # x s) ys = x # (lappend xs ys)

Given Lemma 4 and C E R axiom (5.6) instantiated to the lazy list C E R , we can then easily

show in one Isabelle step that lappend (lappend xs ys) zs = lappend xs (lappend ys 2s).

5.7 Defining functions with unbounded look-ahead

The list-processing functions defined so far examine their arguments by performing at most

one pattern match on a lazy list before producing an element of a result list. However, there

is a class of functions that can examine a potentially infinite amount of their argument

lists before deciding the next element to output. An example is the lazy filter function

of type (a -+ bool) -+ a llist + a llist , which takes a predicate P and a lazy list xs , and

returns a lazy list of the same type consisting only of those elements of xs satisfying P. A

candidate set of recursion equations for this function might be

lfiEter P 1 = [I
lfilter P (x # x s) = lfilter P x s , if l (P s)

lfilter P (x # x s) = x # (lfilter P x s) , if P x

Sadly, this intuitively appealing set of equations does not completely define lfilter. If lfilter

is given an infinite list xs , none of whose elements satisfy P, then the above equations do

not specify what the result list should be. The lfilter function is free to return any value

at all in this case. In other words, the equations do not have a unique solution.

Happily, however, we can remedy the situation as follows: We define by induction over

nut a predicate firstPeEemAt of type (a -+ bool) -+ a llist -+ nut --+ bool. The expression

(firstPelemAt P xs i) is true if xs has at least (i + 1) elements and i is the position of

the first element of xs satisfying P. We can then define the predicate never of type

(a -+ bool) -+ a llist -+ bool as

never P xs r V i . i(firstPe1emAt P xs i)

which is true when there are no elements in xs satisfying P . If we modify the initial

recursive equations as follows:

lfilter P xs -
- 0, if never P xs

lfilter P (x#xs) = lfilter P xs , if ~ (n e u e r P xs) A l (P x)

lfilter P (x#xs) = x # (lfilter P xs) , if P x

then the set of equations does indeed have a unique solution. This function is not com-

putable, since the predicate never can scan an infinite number of elements, but it is

nevertheless mathematically valid in HOL. We can define a well-founded function-space

CER combinator that is powerful enough to prove this. Given a CER C with (<) of type

p -+ p + bool and (z) with type p -+ 7 -+ 7 -+ bool, and another well-founded transitive

relation (4) of type a -+ a -+ bool, we define our new CER C' with (< I) and (z') as

follows:

(<') :: (p * a) -+ (p * a) -+ bool

(z') :: (p * a) -+ (a -+ 7) -+ (a --+ 7) -+ boo1

(a', t ') <' (a , t) z a' < a V (a' = a A t' 4 t)
(4

g e' h - V a' t' . (a', t') <' (a , t) -+ (g t') & (h t')

It is a fair amount of work to show that C' is in fact a CER, so we elide the details.

Intuitively C' allows us to generalize well-founded recursion in the following way: A

well-founded recursive function is forced to have its argument decrease in size on every

recursive call. With C', the function being defined is allowed a choice; it can either decrease

the size of its argument when making a recursive call, or not decrease its argument size

but then make sure the element it is returning is "larger" than the element returned from

its recursive call.

In the case of functions returning lazy lists, a "larger" lazy list is one that looks just

like the lazy list returned by the recursive call, but with at least one extra element added

to the front.

For us to use C' on lfilter, we need to specify a suitable well-founded transitive relation

(4). The relation we choose is one that holds when the first element satisfying P occurs

sooner on the left-hand argument than on the right-hand argument:

xs + ys r firstpelem P xs < firstpelem P ys

where

firstpelem P xs = 0, if never P xs

= 1 + (E Z . firstPelemAt P xs i), otherwise

We arbitrarily decide that a list containing no P-elements is +-smaller than any list with

at least one P-element.

When analyzing the revised recursive equations for lflter, if zs has no P-elements then

we return immediately, otherwise zs has to have at least one P-element. If that element

is not at the head of the list, then the tail of the list is +-smaller than xs. If the first

P-element is at the head of xs, then the tail of the list is not +-smaller than xs, but the

output list has one more element than the list returned by the recursive call. Thus we

informally conclude that lfilter is uniquely defined.

We have also proved this fact formally in Isabelle. After inductively proving various

simple lemmas about JirstPeEemAt, never, and JirstPelem, we were able to prove that

lfilter is uniquely defined in five steps. We first translated the recursive equations above

into a contracting function F. We used C' prove that F is contracting, first by expanding

the definition of F and simplifying, and then by performing a case analysis (no induction

required!) on whether the nat component of the current resolution was equal to zero. It

took Isabelle two seconds to perform the proof.

Although we had to prove lemmas about firstPelemAt, never, and firstpelem, the

proofs are not hard and it turns out we can reuse these results when defining other func-

tions that perform unbounded search on lazy lists. For example, the lflatten function takes

a lazy list of lazy lists, and flattens all of the elements into a single lazy list. The lflatten

function can also be uniquely defined using never:

ZfEatten xss = [I, if never (Xxs .xs # [) xss

ljlatten (xs#xss) = lappend xs (lflatten xss), otherwise

The proof proceeds in Isabelle exactly as it does for lfilter except that we perform one

additional case analysis on whether xs = [I. The proof takes three seconds to complete.

5.8 Generalizing well-founded recursion

This section discusses how WFFun, the well-founded function space CER of Section 5.7

can be used to show that well-founded recursive function definitions have unique solutions.

WFFun is parameterized by two arguments: A well-founded relation (4) and a base

CER C. In Section 5.7, C was used to allow the function f being defined to call itself

recursively on arguments that were not strictly (+)-smaller, provided that in this case f

also returned a "larger" (i.e. more defined) result than the result of the recursive call. C

was used to measure the definedness of the returned results.

In contrast, a well-founded function definition can call itself recursively on only strictly

(+)-smaller arguments, but no requirements are placed on the function's return value.

These requirements can be met in the CER framework by instantiating C to the discrete

CER of Section 5.2.1. The discrete CER has only two resolutions, I and T, corresponding

to completely undefined values and completely defined values, respectively.

To show that a fixed point functional F of type (p + T) + (p + T) is contracting on

the instantiated WFFun CER, it is sufficient to show that F satisfies the following formula

for all i of type p and functions g and h of type p + T :

(Vj. j + i - + g j = h j) + F g i = F h i

In words, the formula states that when calling the recursive function at resolution i , the

result only depends on recursive calls made at (<)-smaller values. That is, we can replace

every recursive call in the body of the function being defined by a call to another function

that only agrees with the "true" recursive function at arguments smaller than i , without

changing the result of the overall expression. But this will be true if in fact the function

is well-founded, since such functions only make recursive calls at smaller arguments.

From a theorem proving point of view, the formula above is particularly well suited

to Isabelle's conditional rewriting tactics. In trying to show the formula holds for F, the

rewriter will automatically convert the antecedent into a conditional rewrite rule, and

then attempt to simplify the consequent. All applications of g in the left hand side of the

consequent will be rewritten in terms of h by the added rewrite rule, provided the rewriter

can show that g's argument is (+)-smaller than i. If it succeeds, then the left hand side

will be syntactically equal to the right hand side, and the formula will simplify to the

constant R u e .

5.9 Proof of the CER fixpoint theorem

5.9.1 Outline

Given a CER with resolution space p, target space r, well-founded transitive relation (<),

indexed equivalence relation (w), and an arbitrary contracting function F of type r -+ 7,

our technique will be to construct an approximation map apx F that converges globally

to the desired fixed point. We then prove that this fixed point is unique by showing that

any two fixed points of F are equal.

The function apx of type (r + r) -+ p -+ r that builds an approximation map from a

contracting function is defined by well-founded recursion on (<).

apx F i = F (local-limit (apx F) i) (5.16)

At each resolution i, the function apx uses local-limit to obtain the best possible

approximation of fix F, given the approximations it has already computed at all lower

resolutions2. The result of calling local-limit may still not be close enough at resolution i,

so apx maps the local limit through F, which will bring the result close enough. Isabelle's

theory of well-founded functions ensures that the recursive instance of apx F in the body

of the definition is only applied to strictly smaller resolutions than i.

Once we have proved by well-founded induction that apx is well defined, we then
i

establish that apx F is convergent up to each resolution i, and that apx F i x F (apx F i) .
a

This will allow us to show that global-limit (apx F) = F (global-limit (apx F)) at each

resolution i , and are thus equal by (5.6) . This result establishes that a fixed point exists

for F . We then show that any two fixed points x and y of F are equivalent at all resolutions

by well-founded induction, and thus are equal, again by (5.6).

5.9.2 Converging approximat ion maps

We assume throughout this treatment that (<) and (=) are arbitrary predicates satisfying

the CER axioms, and that F is a contracting function over this CER. We do not bother

to state these properties as premises of the lemmas and theorems below.

Our first task is to develop a theory of converging approximation maps, which will

allow us to show in Section 5.9.3 that apx is globally convergent. To do this we need to

define some terms.

j Definition 2 Two elements x and y of type r are equivalent up to resolution i if x = y

for all j < i.

Note that x and y do not have to be equivalent at resolution i itself to be equivalent up to

resolution i.

Definition 3 Given an element x of type r and an approximation mapping f of type
j

p + 7, then x is a local limit at resolution i of f if x z (f j) , for all j < i.

Local limits imply local convergence:

Lemma 5 If x i s a local limit at resolution i o f f , then f is convergent up t o

resolution i .

'Here the definition of local-limit using Hilbert's choice operator seems essential.

k
Proof: Assuming arbitrary k < j < i , we must show (f k) w (f j) . Since x is a local

j t
limit at resolution i of f , then (f j) w x, and (f k) z x. Since k < j , then by (5.5) we

k k k
have (f j) z 2. Since (z) is an equivalence relation, then (f k) FZ (f j)

Lemma 6 Given an approximation map f and resolution i , if for all it < i it i s the case

that f i' is a local limit at resolution if o f f , then f is convergent up to resolution i.

k
Proof: Assuming arbitrary k < j < i , we must show (f k) z (f j) . By assumption we

j' have that f j is a local limit at resolution j o f f . That is, Vj' < j . f j w f j'. In particular,
k k

f j x f k , which is equal by (5.2) to (f k) z (f j) .

Lemma 7 If x and y are both local limits at resolution i o f f , then x and y are equivalent

up to resolution i.

j j Proof: We must show for arbitrary j < i that x z y. This holds since x z (f j) and
j j

y z (f j) by assumption, and since (F Z) is an equivalence relation.

Lemma 8 I f f i s locally convergent up to resolution i , then local-limit f i is a local limit

at resolution i of f .

j Proof: By (5.7) we know there exists some element z such that V j < i . z z (f j) . By Def-
j

inition 5.12 we have that local-limit f i = (E Z .V j < i . z w (f j)) . By the axiom of choice
j

for HOL, we can conclude that V j < i . (local-limit f i) z (f j) . That is, local-limit f i is a

local limit at resolution i of f

Lemma 9 If f i s globally convergent, then global-limit f is a global l imit o f f .

2
Proof: By (5.8) we know there exists some element z such that V i . z z (f i) . By Def-

i
inition 5.13 we have that global-limit f = (~ z . V i . z z (f i)) . By the axiom of choice for

2
HOL, we can conclude that V i . global-limit f z (f i) . That is, global-limit f is a global

limit of f

i i
Lemma 10 If x w y, and G is a contracting function, then G x FZ G y.

i
Proof: If x w y, then x is equivalent to y at all lower resolutions, by (5.5). Thus x

and y are equivalent up to resolution i . Thus by the definition of contracting function,
i

G x x G y .

Lemma 11 If x is a local limit at resolution i o f f , and G is a contracting function, then

G x is a local limit at resolution i of G o f .

j Proof: Given arbitrary j < i , we must show that G x w G (f j) . By assumption we have
j 3 x = f j . Then by Lemma 10 we have G x w G (f j), as desired.

5.9.3 Properties of apx

Before we can establish that apx F converges to the desired fixed point of F, we need to

show that apx is a valid well-founded recursive definition. We will accomplish this using

Isabelle's theory of well-founded relations, which contains a general recursion operator,

wfrec, with type

(a * a) set -+ ((a -+ p) -+ (a -+ p)) -+ a -+ P

The theory contains a theorem stating that if (<) is a well-founded relation, then wfrec

satisfies the following law:

wfrec (<) H a = H (cut (wfrec (<) H) a) a

where

cut f i x = if x < i then f x else arbitrary

The helper function cut is used to ensure that recursive calls to wfrec (<) H are only

made at (<)-smaller values than a, ensuring well-foundedness. If H attempts to invoke

wfrec (<) H with any other value, then cut returns a fixed arbitrary element instead. We

can then define apx as follows:

apx F i r wfrec (<) H i

where

H apx' i r F (local -limit apx' i)

This non-recursive version of apx satisfies Isabelle's requirements for definitions. We

now need to prove (5.16) as a lemma.

Lemma 12 apx F i = F (local-limit (apx F) i)

Proof:

apx F i

= {Def. of a p x)

wfrec (<) H i

= {wfrec law)

H (c u t (wfrec (<) H) i) i

= {Def. of apx in reverse)

H (cu t (apx F) i) i

= {Def. of H)

F (local-limit (cu t (apx F) i) i)

= {Def. of local-limit)
3

F (E Z . Q j < i . z = ((c u t (apx F) i) j))

= {Def. of cut , and j < i in the body of the universal quantifier)
j

F (E z . Q ~ < ~ . Z M (a p x F j))

= (Def. of local-limit)

F (local -limit (apx F) i)

We now proceed to show that apx F globally converges to the unique fixed point of F .

i Lemma 13 If (apx F i) i s a local limit at resolution i of apx F , then apx F i % F (apx F i)

Proof: We have that apx F is convergent up to resolution i by Lemma 5. By Lemma 8

local-limit (apx F) i is also a local limit at resolution i of apx F . Therefore local-limit (apx F) i

and apx F i are convergent up to resolution i . By the definition of contracting func-
2

tion, we have F (local-limit (apx F) i) z F (apx F i) . By Lemma 12, this is equal to
a

apx F i z F (apx F i)

Lemma 14 For all resolutions i , apx F i is a local limit at resolution i to apx F .

Proof: By well-founded induction on i . Thus we assume for all j < i that apx F j is a

local limit at resolution j to apx F . By the induction hypothesis and Lemma 6 we have

that apx F is convergent up to resolution i . By Lemma 8 we have local-limit (apx F) i is

a local limit at resolution i of apx F . By Lemma 11 we have that F (local-limit (apx F) i)

is a local limit at resolution i of F o apx F . This means that apx F i is a local limit at

resolution i of F o apx F , by Lemma 12.

To show that apx F i is a local limit at resolution i of apx F , we need to show for arbi-
j

trary j < i that apx F i z apx F j. Since apx F i is a local limit at resolution i of F o apx F ,
j

then apx F i cz F (apz F j) . By the induction hypothesis and Lemma 13 we have that
j j j

apx F j z F (apx F j) . Since (z) is an equivalence relation, we have apx F i = apx F j , as

desired

i
Lemma 15 For all resolutions i , apx F i z F (apx F i)

Proof: By Lemmas 13 and 14

Lemma 16 apx F is globally convergent.

i
Proof: Given arbitrary i and j such that i < j , we must show that apx F i cz apx F j.

But this follows immediately from Lemma 14 and Definition 3

Lemma 17 global-limit (apx F) = F (global-limit (apx F))

2
Proof: Given an arbitrary resolution i , we have that global-limit (apx F) E apx F i ,

2
by Lemma 9 and Lemma 16. We also have F (global-limit (apx F)) E F (apx F i) , by

i i
Lemma 10. By Lemma 15 we have apx F i z F (apx F i) . Since (z) is an equivalence

i
relation, we can conclude that global-limit (apx F) z F (global-limit (apx F)) . Since i was

arbitrarily chosen, the above equivalence holds for all resolutions i. Therefore the two

values are equal, by (5.6)

This demonstrates that F has a fixed point. All that remains is to show that the fixed

point is unique.

Lemma 18 If x = F x and y = F y for contracting function F , then x = y.

i
Proof: To show x = y it suffices to show for arbitrary i that x E y, by (5.6). We shall

j
demonstrate this by well-founded induction on i . Thus we assume that x = y, for all

resolutions j < i . By the induction hypothesis and the definition of contracting function
i i

we have that F x z F y. Since F x = x and F y = y, we conclude that x z y.

5.10 Applying CERs to Hawk circuits

The CER framework was originally developed to conservatively define recursive Hawk

circuit definitions in higher order logic. Section 6.6.2 gives an example, where the internal

state of a register file component is defined as a (higher order) recursive signal transformer

called envs. Section 6.6.2 proves that envs uniquely satisfies its defining equation by

creating a CER for signals and then demonstrating that the envs is contracting on the

function space over signals CER.

5.11 Related work

The support for and application of well-founded induction and general coinduction has

seen wide acceptance in the HOL theorem proving community. The well-founded definition

package TFL used in HOL98 and Isabelle was written by Slind[88]. It can handle nested

pattern matching in rule definitions, nested recursion in function bodies, and generates

custom induction rules for each definition[87]. The PVS theorem prover[81] also uses

well-founded induction as a basic definitional principle. A general theory of inductive and

coinductive sets in Isabelle was developed by Paulson[75], based on least and greatest

fixed points of monotone set-transforming functions, as well as a package for defining

new inductive and coinductive sets by user-given introduction rules. The package avoids

syntactic restrictions in the introduction rules by reasoning about each rule's underlying

set-transformer semantics.

Paulson's Isabelle theories were applied by Frost[25] to formalize the static and dy-

namic semantics of a small functional language and prove that the two semantics were

consistent with each other. Recursive functions are represented by infinitely nested envi-

ronments, requiring consistency to be proved by coinduction. The underlying ideas of the

language and proof, as well as the concept of coinduction as a variant of fixpoint induction,

were introduced by Milner and Tofte[65].

A coinductive theory of streams (infinite-only lists) was developed by Miner[66] in the

PVS theorem prover. Miner used this theory to model synchronous hardware circuits as

corecursively-defined stream transformers. Using coinduction, he was able to optimize

the implementation of a fault-tolerant clock synchronization circuit and a floating-point

division circuit. In several cases a subcircuit was replaced by an optimized subcircuit, and

the correctness of the replacement depended on non-trivial environmental assumptions in

the surrounding circuit. Coinduction was used to verify the environmental assumptions

and to show that the subcircuits were equivalent under the assumed environment.

A well-known alternative to coinductive types is the mathematical framework of pointed

complete partial orders and continuous functions, also known as domain theory[32, 901.

This theory is supported by the HOLCF[68] object-logic in Isabelle, and also allows one

to define infinite data structures such as lazy lists and trees. A wide variety of functions

over these structures can then be recursively defined. The primary disadvantage of this

approach is that one must add "extra" bottom-elements to the structures being defined.

These extra elements are usually used to indicate non-termination. For example, a lazy

filter function lfilter that removes all elements of a lazy list xs not satisfying a predicate P

can be defined recursively in HOLCF, but the expression Zfilter P xs returns I instead of

[I when xs is an infinite list containing no elements satisfying P. In contrast, Section 5.7

introduces a CER powerful enough to define an lfilter that returns in this case. Also, only

so-called admissible predicates can be reasoned about inductively in domain theory, and

it can be quite challenging to prove that a desired predicate is admissible. A comparison

of the HOLCF approach to several other encodings of lazy lists is presented by Devillers

et a1[21].

Topology[l2, 801 provides another well-established definition mechanism. The notions

of Cauchy sequences, complete metric spaces, and contractions inspired much of this work.

We have not worked out the exact relationship between converging equivalence relations

and Cauchy metric spaces; although one can construct a distance function for every nat-

indexed CER, it is not clear that distance functions can be always be constructed for more

complex resolution spaces. Also, the conditions under which a function F is contracting

in a CER seem to be less restrictive than the corresponding conditions in a metric space.

More importantly from a verification perspective, well-founded induction seems easier

to apply in current theorem provers than does the continuous mathematics required for

metric spaces.

Chapter 6

Verifying the microarchitecture laws

Converging equivalence relations allow us to formally specify Hawk circuits as recursive

equations over signals. We can use these equations to reason about Hawk components,

and in particular prove the validity of the microarchitecture laws used in Chapter 3.

Many of the laws are localized enough that one can consider verifying them automat-

ically by some kind of decision procedure. Since most decision procedures for hardware

equivalence checking are based on state-machine transducer formalisms, a natural ap-

proach would be to first translate the left and right hand sides of the microarchitecture

law being verified into state machine transducers, and then verify that the two transducers

are observationally equivalent. Algorithms for performing such equivalency verifications

on finite state machines have been extensively studied, including techniques based on Bi-

nary Decision Diagrams[l7] and Sttilmarck's Method[50]. In fact, several commercial tools

now exist for performing equivalency checking on large hardware circuits.

These techniques cannot immediately be used on Hawk circuits, since the lack of a

priori bounds on the size of words or the number of registers used in Hawk microarchitec-

tures means that typical Hawk components translate into infinite state, instead of finite

state, transducers. Fortunately, significant progress has also been made on checking the

equivalence of infinite state machine transducers, using symmetry reduction[l5, 241 and

abstraction[l6] techniques. Usually these techniques require some manual intervention,

although often less than that required for pure theorem proving-based approaches.

However, in keeping with our theme of exploring algebraic methods for performing

microarchitecture verification, we have chosen to continue verifying the individual laws

themselves using a combination of equational reasoning and induction.

The equivalence proofs themselves can be quite large, even given the relatively simple

component definitions needed to specify the pipeline of Chapter 3. It is not that the proofs

are mathematically sophisticated, but rather that the components process large amounts

of disparate data, namely the field values of transactions. The aim of this chapter is to give

a flavor of the kind and amount of reasoning involved in proving two transaction-processing

components behaviorally equivalent, and to present some techniques for reducing the size

of the associated proof. Since even the "reduced" proofs of these laws can be quite lengthy

we only sketch a couple of examples in this chapter: the alu time invariance law and the

registerFile-bypass law.

6.1 A theory of transactions

The main source of proof complexity results from the large number of fields that a transac-

tion contains, and the fact that the field values are of different types. A typical equivalence

proof of two transaction-processing components F and G will involve a series of cases, one

for each transaction field, showing that the two circuits output identical field values. Many

of the cases will be symmetric with respect to each other, differing only in the name of

the field mentioned in the proof and the field's type. To reduce the amount of redundancy

in such proofs this section will present a theory of transactions where transaction fields

themselves are logical objects, and can be quantified over. In this way a symmetric group

of cases in a proof can be reduced to a single proof parameterized over the symmetrically-

used field names.

We begin by precisely defining what a transaction is in higher order logic. Intuitively a

transaction is a record containing all of the fields that a microarchitecture uses to process

one instruction. The set of fields needed depends on the instruction set architecture

and the complexity of the microarchitecture implementing it. For the branch-predicting

microarchitecture we consider in this thesis, we require the following fields:

a destRegFld :: Reg

The destination register name.

destValFld :: Word

The destination register contents.

a opcodeFld :: Opcode

The operation the transaction is to perform.

a slRegFld :: Reg

The first source operand register name.

a slValFld :: Word

The first source operand register contents.

s2RegFld :: Reg

The second source operand register name.

slValFld :: Word

The second source operand register contents.

specPCFld :: Word

The speculative next address to fetch. This value is set by the branch target predic-

tion buffer in the instruction cache. If the ALU calculates the actual next address

for a branch instruction to be different from the speculative next address, then a

branch misprediction has occurred.

nextPCFld :: Word

The actual next address to fetch. Initialized by the instruction cache to the address

following the address the transaction was fetched from. On branch instructions, the

ALU will set this field to the actual branch target address.

6.1.1 Transaction as an abstract datatype

There are many different ways in higher order logic to create such records. Rather than

fix a particular model, we define a new type called Pans, with a function for constructing

a transaction given initial values for each field, and a series of accessor functions, one for

each transaction field.

mkTransl :: Reg + Word + Opcode + Reg + Word +
Reg =+ Word $ Word + Word + Trans

dstRegl :: Trans + Reg

dst ValName' :: Trans + Word

opcode' :: Trans + Opcode

s 1 Reg' :: Trans + Reg

s 1 Val' :: Trans + Word

s2Reg' :: Trans + Reg

s2Val' :: Trans + Word

spec P C' :: Trans =+ Word

nextPC' :: Trans + Word

We will follow the convention that functions that take or return transactions or transaction

fields will have a (I) appended to their name (as opposed to functions that operate on

signals of transactions).

6.1.2 Transaction laws

There are two properties we want elements of the transaction type to satisfy. First, it

must be the case that each field accessor function retrieves the same value as was used to

construct that field of the transaction:

dstRegl (mkTrans' dstReg dst ValName opc sl Reg

slVal s2Reg s2Val specPC nextPC) = dstReg

dst ValName' (mkTrans1 dstReg dst ValName opc s l Reg

slVal s2Reg s2Val specPC nextPC) = dst ValName

nextPC' (mkTransl dstReg dst ValName ope slReg

slVal s2Reg s2Val specPC nextPC) = nextPC

Second, it must be the case that two transactions are equal exactly when all of their fields

are equal:

(t r l = tr2) = (dstRegt trl = dstRegl tr2 A

dst ValNamel tr 1 = dst ValName' tr2 A

opcode' trl = opcode' tr2 A

s l Reg' tr 1 = sl Reg1 tr2 A

slVall trl = slVall tr2 A

s2Reg1 trl = s2Reg1 tr2 A

s2Valt trl = s2VaE1 tr2 A

specPC1 trl = specPC' tr2 A

nextPC' trl = nextPC' tr2)

To prevent the possibility of logical inconsistencies, we use Isabelle's type definition

package to define Trans and derive the appropriate laws as theorems. In our definitions, we

define a transaction simply as a tuple of its fields, mkTranst as a function that constructs a

tuple from its field arguments, and the field accessors as the appropriate tuple projections.

Another choice would have been to use Isabelle's datatype package.

From the two transaction properties above we can show that mkTransl can construct

any valid transaction tr by using the transaction accessors on tr itself.

(tr = mkTranst (dstRegl tr) (dstValNamel tr) (opcode' tr)

(slRegl tr) (slVal' tr) (s2Reg1 tr) (s2VaE' tr)

(specPCt tr) (nextPC1 t r))

= {second transaction property; use let expression to share common subterms)

(let tr2 = mkTransl (dstRegl t r) (dstValNamel t r) (opcode' t r)

(slRegl tr) (slVaE1 tr) (s2Reg1 tr) (s2Valt tr)

(specPC1 tr) (nextPC1 tr)

in dstRegl tr = dstRegl tr2 A

dst ValNamel tr = dst ValNamel tr2 A

opcode' tr = opcode' tr2 A

slRegl tr = slRegl tr2 A

slVall tr = slVall tr2 A

s2Reg1 tr = s2Reg1 tr2 A

specPC1 tr = specPC' tr2 A

nextPC1 tr = nextPC1 tr2)

= {expand let expression; first transaction property)

(dstReg1 tr = dstRegl tr A

dst ValNamel tr = dst ValNamel tr A

opcode' tr = opcode' tr A

slRegl tr = slReg1 tr A

slVall tr = slVall tr A

s2Reg1 tr = s2Reg' tr A

specPC1 tr = specPC1 tr A

nextPC1 tr = nextPC1 tr)

= {logic)

True

Thus we know that transactions contain no "hidden" fields.

6.1.3 Derived transaction operators

Many of the Hawk components take existing transactions and construct new transactions

from them that change just a few fields. We can simplify the definitions of these com-

ponents by defining a series of transaction updaters, each of which takes a transaction

field value and an existing transaction and returns a new transaction just like the original

except with the appropriate field updated:

setDstRegl :: Reg + Trans + Trans

setDstRegl reg tr =

mkTranst reg (dstValNamel t r) (opcodel t r) (slRegl t r) (slValt t r)

(s2Reg1 t r) (s2VaE1 t r) (specPC' t r) (nextPC1 t r)

setDst Val' :: Word + Trans + Trans

setDstVall val tr =

mkTransl (dstRegl t r) val (opcode' t r) (slRegl t r) (slVall t r)

(s2Reg1 t r) (s2Va11 t r) (specPC1 t r) (nextPCt t r)

setNextPC1 :: Word =+ Trans =+ Trans

setNextPC1 pc tr =

mkTransl (dstRegl t r) (dst ValName' t r) (opcode' t r) (s l Reg' t r) (slVaE1 t r)

(s2Reg1 t r) (s2Va11 t r) (specPC1 t r) pc

We can derive several useful laws for these functions. Taking the setDstRegl function as

a representative example, we can show for an arbitrary transaction tr that the updater

does in fact update the appropriate field:

dstRegl (setDstRegl reg t r)

= {definition of setDstRegl)

dstRegl (mkTranst reg (dstValNamet t r) (opcode' t r) (slRegl t r) (slVall t r)

(s2Reg1 t r) (s2Va11 t r) (specPC1 t r) (nextPC' t r))

= {first transaction property)

reg

It is also the case that none of the other fields are modified, for example the opcode field:

opcode' (setDstRegl reg t r)

= {definition of setDstRegl)

opcode' (mkTransl reg (dstValNamel t r) (opcode' t r) (slRegl t r) (slVall t r)

(s2Reg1 t r) (s2VaE1 t r) (specPC1 t r) (nextPC1 t r))

= {first transaction property)

opcode' tr

We can similarly show that all of the other transaction fields remain unchanged.

6.2 Exploiting symmetry in transaction fields

We would like to prove this last property as a general theorem. We can define (outside of

higher order logic) the set of field accessors

and the set of field updaters

and define a bijection update : A -+ U that maps each field accessor to its corresponding

field updater. Thus update (dstRegl) = setDstRegl, update (dst ValName) = setDst Val',

and so on. We would like to prove the following fact in higher order logic:

'd t E Trans, fld E A, fldl E A, x E dom(fldl).

fld # j?dl -+ fld (update(fldl) x t) = fld t

That is, if we update a field of a transaction and then examine a different field of the

result, it should be the same as the original transaction's field. While we can prove that

every instance of the above formula is true, the type system of higher order logic is too

restrictive to allow us to prove the formula itself as a theorem. We cannot even construct

the set A in higher order logic, since the elements of A are of different types.

Since any given microarchitectural component only modifies a few transaction fields,

it would be nice if we could prove something like the above statement as a theorem and

avoid having to re-prove that each of the other fields of the transaction returned by the

component is unchanged. For example, the alu component only modifies the dst ValName

and nextPC fields. We would like to prove the following formula

'if t E Trans, n E Time, fld E A - {dst ValNamel, nextPC'). fld (alu t n) = fld (t n)

but we run into similar problems. As it stands we have to instead prove each instance of

this formula as a separate theorem.

6.2.1 First class field names

We can work around HOL's inability to quantify over types by using a well-known tech-

nique from the typed functional programming community.

Instead of trying to define the set A of transaction accessors directly, we will define

a new datatype of accessor names, called FzeldNm, all of whose elements have the same

type:

datatype Operand = Dst I Srcl I Src2

datatype FzeldNm = RegNm Operand / ValNm Operand I
opcodeNm I specPCNm (nextPCNm

Note that the RegNm and ValNm constructors have been parameterized by their operand

location. Thus, for example, RegNm Dst is the name of the destination register field, and

ValNm Srcl is the name of the field holding the first source operand register contents. We

will also define a uniform datatype for holding the contents of a field:

datatype Field Value = Reg Value' Reg (Word Value' Word (Opcode Value' Opcode

We can now create a single parameterized field accessor function that takes a field name

and a transaction and returns the appropriate field contents as a FieldValue.

field' :: FzeEdNm + Trans + FieldValue

field' n m t =

case nm of

(RegNm Dst) + Reg Value' (dstRegl t)

I (ValNm Dst) + WordValue' (dst ValName' t)

I opcodeNm + Opcode Value' (opcodel t)

((RegNm Srcl) + Reg Value' (s 1 Reg' t)

I (ValNm Srcl) 3 WordValue' (slVall t)

I (RegNm Src2) + Reg Value' (s2Reg1 t)

I (ValNm Src2) + WordValue' (s2Va11 t)

I specPCNm + Word Value' (specPC' t)

(nextPCNm 3 WordValue' (nextPC1 t)

end

We would like to create a parameterized field updater function in a similar fashion

update1 :: FieEdNm + FieldValue + Bans + Bans

but the primitive field updaters do not take FieldValue elements as parameters. To

solve this problem we define a series of type cast functions, one for each constructor in

FieldValue. We use Hilbert's choice operator to perform the cast. If the casting functions

are given a FieldValue element that does not correspond to the type they are casting to,

then the choice operator will return an arbitrary element of the correct type.

castToRegl :: Field Value =+- Reg

castToRegt fv = (E r . fv = Regvalue' r)

cast To Word' :: Field Value + Word

cast To Word' fv = (E w . fv = Word Value' w)

castToOpcodel :: Field Value =+ Opcode

castToOpcodel fv = (E opc. fv = Opcode Value' opc)

We also define a predicate indicating whether a FieldValue element is compatible with a

given FieEdNm :

vaEidFieldType :: FzeldNm + FieldValue + boo1

validFzeldType n m fv =

case fv of

(Reg ValueJ r) + (n m = (RegNm Dst) V

n m = (RegNm Srcl) V

n m = (RegNm Src2))

I (Word Value' w) + (n m = (ValNm Dst) V

n m = (ValNm Srcl) V

n m = (ValNm Src2) V

n m = specPCNm V

n m = nextPCNm)

I (Opcode Value' opc) 3 n m = opcodeNm

end

We use the casting functions to define the parameterized field updater:

update' :: FieldNm + FieldValue + Trans + Trans

update' n m v =

case n m of

(RegNm Dst) setDstReg1 (castToReg1 v)

I (ValNm Dst) + setDst Val' (castTo Word' v)

I opcodeNm + setOpcoder (castToOpcode' v)

1 (RegNm Srcl) + setSIRegl (castToRegJ v)

I (ValNm Srcl) + sets1 Val' (castTo Word' v)

I (RegNm Src2) + setS2RegJ (castToRegl v)

I (ValNm Src2) =+ sets2 Val' (castTo Word' v)

(specPCNm + setSpecPCr (castTo Word' v)

1 nextPCNm + setNextPC1 (castTo Word' v)

end

6.2.2 Generalized field laws

Variants of the previous formulas (that couldn't be stated in higher order logic) can now

be proved as theorems

vaEidFieEdType nm x -+ field' nm (update' nm x t) = x

nm # nm' -+ field' nm (update' nm' x t) = field' nm t

V nrn $! {(ValNm Dst), nextPCNm). field' nm (alu t n) = field' nm (t n)

The second transaction property can also be stated much more concisely as

(s = t) = (V nm. field' nm s = field' nm t)

Theorems such as these will substantially reduce the amount of work we need to do to prove

the desired microarchitecture laws. More importantly, the corresponding Isabelle proof

scripts will require significantly fewer changes whenever new transaction fields are added

to the transaction ADT. This is because many of the lemmas are implicitly parameterized

over a range of field names. Proof steps using those lemmas will automatically cover the

new field names. For example, uses of the lemma

V nm $! { (ValNm Dst), nextPCNm). field' nm (alu t n) = field' nm (t n)

will remain valid even after new transaction fields are added to a microarchitecture, pro-

vided the alu component does not modify the fields.

However, we still use the original typed transaction operators for specifying Hawk

circuits, to take advantage of Isabelle's strong type checking. Once we have a well-typed

circuit description, we invoke Isabelle's rewriting tactics to automatically transform it into

a form that uses field' and update' operations.

The rewriting tactics require a list of already-proven equational theorems that are

treated as rewrite rules. We therefore prove such equations for each field accessor and

up dater. For example, we prove the equational theorem for the dstRegl accessor as follows:

dstRegl t = castToRegl (field' (RegNm Dst) t)

= {definition of field' applied to (RegNm Dst))

dstRegt t = castToRegl (Reg Value' (dstRegt t))

= {definition of cast ToReg')

dstRegl t = (E r. Reg Value' (dstReg' t) = Reg Value' r)

= {RegValuel is injective)

dstRegl t = (E r . dstRegl t = r)

= {b'y. (E X . y = 2) = y)

dstRegl t = dstRegl t

- -

True

These equational theorems can also be proved automatically using Isabelle's rewriting

tactics.

6.3 Lifting the transaction theory to signals

Since Hawk circuits operate on streams of transactions, we find it convenient to define

lifted versions of the primitive transaction operators.

mkTrans :: Reg + Word + Opcode + Reg + Word +
Reg + Word + Word + Word + Trans

mkTrans = lift9 mkTranst

dstReg :: Signal Trans + Signal Reg

dstReg = lift dstReg1

dstValName :: Signal Trans + Signal Word

dst ValName = lift dst ValName'

setDstReg :: Signal Reg + Signal Trans =+ Signal Reg

setDstVa1 :: Signal Word + Signal Trans =+ Signal Word

setDst Val = lift setDst Val'

Similarly, the laws governing the transaction operators can also be "lifted" to correspond-

ing laws about the stream-oriented operators. For example, the lifted version of the second

transaction property for the dstRegl accessor becomes

dstReg (mkTrans dstReg dst ValName opc s 1 Reg

slVal s2Reg s2Val specPC brPC) = dstReg

6.4 Proof of alu time-invariance for nop

We can now define microarchitecture components using the abstract transaction opera-

tions. For example, suppose we are defining the alu transaction-processing component.

Assume that we have already defined the following two functions:

arithcore :: Opcode + Word + Word =$ Word

branchcore :: Opcode + Word Word + Word +- Word

Given an opcode describing an arithmetic operation and the values of the two source

operands, arithcore performs the corresponding arithmetic operation. The branchcore

function takes an opcode specifying a branch instruction, the values of the two source

operands, and the value for the next program counter, and performs the appropriate

branch calculation. For instance, if brIfZero is the opcode value for the "branch if zero"

instruction, then branchcore brIfZero test addr next returns addr if test is equal to zero,

otherwise it returns next. We leave unspecified what arithcore and branchcore return

when given inappropriate opcodes.

Suppose we also have the two functions isArithOp and isBranchOp, both of type

Opcode + bool. The isArithOp function returns true when given an arithmetic opcode,

and isBranchOp returns true when given a branch opcode.

We assume that the nop transaction is neither an arithmetic instruction nor a branch

instruction:

isArithOp (opcode' nop) = False

isBranchOp (opcode' nop) = False

Given these functions we can define the alu component as follows:

alu' :: Trans + Trans

alu' tr =

let opc = opcode' inp

s l v = slval' inp

s2v = s2Va11 inp

dstv = i f isArithOp opc

then arithcore opc s l v s2v

else (dest Val' inp)

oldNextPC = nextPC' inp

nxtPC = i f isBmnchOp ope

then branchcore opc s l v s2v oldNextPC

else oldNextPC

in

setDstVall dstv (setNextPC1 nxtPC inp)

alu :: Signal Trans =+- Signal Trans

alu = lift alu'

Now suppose we want to prove that the alu circuit is time-invariant for nop. That

is, we want to prove that for any given transaction signal inp that alu (delay nop inp) is

equal to delag nop (alu inp).

In general, to prove that two signals s and t are equal, we need to prove that for each

time n the corresponding signal elements s n and t n are equal. (where we are considering

a signal of type T to be a function from time to 7.) Thus we must show for each time n that

the transaction alu (de lay n o p i n p) n is equal to the transaction delay n o p (a l u i n p) n.

We will generalize this statement and prove the following lemma.

Lemma 19 For all x of type T, f of t ype T + p, a n d xs of t ype S ignal 7 , t h e n

l i f t f (d e l a y x xs) = delay (f x) (Eift f xs)

Proof: We must show for all times n that

l i f t f (d e l a y x xs) n = delay (f x) (Eift f xs) n

There are two cases to consider: The case where n = 0 and the case where n = k + 1,
for some time k :

case n = 0:

Eift f (d e l a y x xs) 0

= {definition of l i f t)

f (d e l a y x xs 0)

= {definition of d e l a y)

f x

= {definition of d e l a y)

de lay (f x) (l i f t f xs) 0

case n = k + 1:

l i f t f (d e l a y x xs) (k + 1)
= {definition of lift)

f (d e l a y x xs (k + 1))
= {definition of d e l a y)

f (XS k)

= {definition of l i f t)

Eift f xs k

= {definition of d e l a y)

de lay (f x) (l i f t f xs) (k + 1)

Since alu = lift a h ' , we can use Lemma 19 to prove that alu is time-invariant for

nop, provided we show that alu' nop = nop. To do this we rely on the second property

of transactions, and prove that every field of alu' nop is equal to the corresponding field of

nop. Let aluModFields be the set { ValNm Dst, nextPCNm). From the definition of alu'

and the laws for the transaction field accessors and updaters we can derive the following

field laws:

n m $! aluModFields -+ field' n m (alu' t) = field' n m t

field' (ValNm Dst) (alu' t) =

if isArithOp (castToOpcodel (field' opcodeNm t))

then WordValue' (arithCore (castToOpcodel (field' opcodeNm t))

(castTo Word' (field' (ValNm Srcl) t))

(castTo Word' (field' (ValNm Src2) t)))

else (field' (ValNm Dst) t)

field' nextPCNm (alu' t) =

if isBranchOp (castToOpcodel (field' opcodeNm t))

then WordValue' (branchcore (castToOpcodel (field' opcodeNm t))

(castTo Word' (field' (ValNm Srcl) t))

(castTo Word' (field' (ValNm Src2) t))

(castTo Word' (field' nextPC t)))

else (field' nextPCNm t)

Using these laws and the second property of transactions we can show that alu' preserves

every field of nop:

case n m 4 aluModFields:

field' n m (alu' nop) = field' n m nop

case n m = (ValNm Dst):

field' (ValNm Ds t) (alu' nop)

= {alu' law for (ValNm D s t))

(i f isArithOp (castToOpcodel (field' opcodeNm n o p))

then WordValuel (arithCore (castToOpcode' (field' opcodeNm n o p))

(castTo Word' (field' (ValNm S r c l) n o p))

(castTo Word' (field' (ValNm Src2) n o p)))

else (field' (ValNm Ds t) nop))

= {castToOpcodel (field' opcodeNm t) = opcode' t)

(i f isArzthOp (opcode' nop)

then Word Value' (ari thcore (castToOpcodel (field' opcodeNm n o p))

(castTo Word' (field' (ValNm S r c l) n o p))

(castTo Word' (field' (ValNm Src2) n o p)))

else (field' (ValNm Ds t) nop))

= {isArithOp (opcodel nop) = False)

field' (ValNm Ds t) nop

case n m = nex tPCNm:

field' nex tPCNm (alu' nop)

= {alu' law for nex tPCNm)

(zf isBranchOp (castToOpcode' (field' opcodeNm nop))

then Word Value' (branchcore (castToOpcodel (field' opcodeNm n o p))

(castTo Word' (field' (ValNm S r c l) nop))

(castTo Word' (field' (ValNm Src2) nop))

(castTo Word' (field' nextPC n o p)))

else (field' nex tPCNm n o p))

= {castToOpcode' (field' opcodeNm t) = opcode' t)

(if isBranchOp (opcode' n o p)

then WordValue' (branchcore (castToOpcode' (field' opcodeNm n o p))

(castTo Word' (field' (ValNm S r c l) n o p))

(castTo Word' (field' (ValNm Src2) n o p))

(castTo Word' (field' nex tPC n o p)))

else (field' n e x t P C N m n o p))

= {isBranchOp (opcode' n o p) = False)

field' n e x t P C N m nop

Notice that with the generalized field' laws we were able to prove equivalent all of the

fields corresponding to the names not in aluModFieEds in one step.

6.5 Temporal reasoning

It is usually necessary to perform induction over time when proving equivalences of com-

ponents containing internal state, especially when the state-holding elements are part of a

feedback loop in the circuit. When performing such proofs, one often has to expose the in-

ternal state holding elements and prove properties of them directly. As an example, in the

next section we will use inductive reasoning over signals to prove the registerFile-bypass

law presented in Section 3.3.3.

6.6 Proving the registerFile-bypass law

We begin by defining the rf and bypass components in higher order logic, and then state

some lemmas about them that will be necessary to the overall proof.

6.6.1 Definition of envs and rf components

The register file used in the proof follows a write-before-read protocol. On every clock

cycle, the contents of the register file are updated by the current value on the writeback

input before the file contents are read and sent to the output.

We also designate a special register, called RO, as a zero register. The contents of RO

are hardwired to zero in the instruction set architecture, and writes to RO have no effect.

We also stipulate that the register name fields of the nop transaction are set to RO:

regFieldNms = {(RegNm Dst), (RegNm Srcl), (RegNm Src2))

V f E regFieldNms. field' f nop = Reg Value' RO

The rf component is defined in terms of an auxiliary function called envs, which is

responsible for maintaining the register file contents. The envs component outputs the

entire contents of the register file on every clock cycle, which the rf component then

reads when constructing its output transaction. The contents of the register file are

represented abstractly as a function of type Reg + Word, which we call an environment.

This representation allows the envs component to store the entire register file in a single

delay component.

We define envs below recursively, using the function space over signals CER. The

extEnvl helper function modifies an environment by overwriting the contents of a given

register, provided it is not RO. The extEnv function does the same, but is lifted over

signals.

We also define the polymorphic sApply function, which given a signal of functions and

a signal of arguments, applies each function to its corresponding argument and returns

the results as a signal. We use sApply in the rf definition to read the register file contents

returned by envs on each clock cycle.

type Env = (Reg + Word)

extEnvt :: Reg + Word + Env + Env

extEnvl reg val env =

(A r . if r = RO then 0 else if r = reg

then val

else (env r))

extEnv :: Reg Signal + Word Signal + Env Signal + Env Signal

envs :: Trans Signal + (Reg + W o r d) Signal

envs wb = extEnv (dstReg wb) (dstVa1 wb) (delay (A r . 0) (e n v s w b))

sApply :: (' a + ' b) Signal + ' a Signal + ' b Signal

sAppEy = lift2 (A f x. f x)

r f :: Trans Signal + Trans Signal 3 Trans Signal

r f inp wb =

let registers = envs wb

s l v = sApply registers (s l Reg i n p)

s 2 v = sAppEy registers (s2Reg i n p)

in setSlVal s lv (s e t s 2 Val s2v i n p)

6.6.2 Converging equivalence relations for signals

Like many stateful components in Hawk, the envs component is defined as a recursive

equation over signals. To ensure that this definition is consistent we need to demonstrate

that the equation has a unique solution. We do this by defining a converging equivalence

relation (CER) for signals, and then show that the fixpoint functional associated with

envs's definition is contracting.

Recalling Chapter 5, a CER contains four components: a resolution type p, a target

type r, a well-founded, transitive relation (<) of type p + p + bool called the resolution

ordering, and an indexed equivalence relation (=) of type p + T + r =+ bool. We can

define a signal CER that is similar to the lazy list CER, with nut for the resolution type,

and the usual less-than ordering on the naturals for (<). The target type is the type of

signals, which we are modeling as functions indexed on the naturals, (n u t +- ' a) . The

indexed equivalence relation is defined as:

In other words, two signals f and g are equivalent at resolution n if their first n - 1

elements are equal.

The first six CER axioms are easy to verify with these definitions. The last two axioms

can be proved with the following existential witness elements, respectively:

local-signal-limit F i E F (i - 1)

global-signal-limit F = (A n. F (n + 1) n)

Proofs of the last two CER axioms involve, at some point, choosing an arbitrary pair

of resolutions i and j such that j < i , and then performing a case analysis on whether

j = i - 1 .

Equivalences for the lift primitives

The family of lift primitives lift, lift2, . . . , and the delay primitive can be abstractly char-

acterized as conditional equivalence laws that specify how they preserve the (=) relation.

These equivalences can be used to prove that cyclic circuits like envs are contracting,

without having to expand the definitions of the primitives.

The lift primitive is a combinational circuit, so its output value at any time n is

dependent on its input value at that same time value:

n
xs = ys + lift iftf xs E lift f ys (6.1)

n
Proof: Assume the antecedent xs = ys. Expanding the definition of (z) , this is equivalent

to assuming (V i . i < n + xs i = ys i). Expanding the definition of (=) on the consequent

side of the formula, we must show for arbitrary i < n that lift f xs i = lift f ys i. By

definition of lift this goal is equivalent to showing f (xs i) = f (ys i) . But this is true

since xs 2 = ys i by assumption

By similar reasoning every liftk primitive can be characterized as

The body of envs makes use of the auxiliary functions extEnv, dstReg, and dstValName.

All of these auxiliaries are defined in terms of liftk primitives, and therefore obey the

following signal CER equivalences:

n n n
ws x xs A ys z zs -+ e x t E n v ws ys z e x t E n v xs zs

n n
xs = ys -+ dstReg xs z dstReg ys

n n
xs z ys + dstVal xs cs dstVal ys

Equivalence for the delay primitive

The delay component is a contracting function for the signal CER, which accords with

the intuition that every feedback cycle in a well formed circuit definition must contain at

least one delay:

n n t l
xs z ys + delay z xs x delay z ys

Notice that the initial value parameters to both delay components have to be equal for

the equivalence to hold.
n

Proof: Assume the antecedent xs x ys. This is equivalent to assuming (V i. i < n -+

xs i = ys i). Expanding (z) in the consequent, we must show for arbitrary i < n + 1

that delay z xs i = delay z ys i. If i = 0, this reduces by the definition of delay to

showing that z = z, which is true. If i > 0, then the consequent reduces to showing that

xs (i - 1) = ys (i - I), which is true by assumption since i - 1 < n CI

Proving envs is contracting

Now that we have equivalences for all of the functions in the body of envs, we need to show

that the recursive definition of envs itself is consistent by showing that it is contracting

over some CER. Since the definition is parameterized on the argument wb, we show that

the fixpoint functional

F (A envs' wb. e x t E n v (dstReg wb) (dstVal wb) (delay (A r. 0) (envs' wb)))

derived from the recursion equation for envs is contracting on the function space over

signals CER defined in Section 5.5. This lifted CER still uses the of the signal

CER, so by (5.10) of Section 5.4 and the definition of (=) for the function space CER

combinator it suffices to show for arbitrary resolution i and functions g and h that

i i;tl
(V x s . g x s = h x s) + V x s . F g x s - F h x s

i
We assume the antecedent (V xs. g xs = h xs) and prove the consequent for arbitrary xs

by applying the appropriate equivalences:

i;tl
F g x s - F h x s

= {Definition of F)

extEnv (dstReg xs) (dst ValName xs) (delay (A r . 0) (f x s))

extEnv (dstReg xs) (dstValName xs) (delay (A r . 0) (g x s))

-e {Equivalence law for extEnv)

i+l
(dstReg xs) x (dstReg xs) A

(dst ValName xs) '&I (dst ValName xs) A

(delay (A r . 0) (f x s)) (delay (A r . 0) (g x s))

= {(m) is reflexive at all resolutions by CER axiom (5.1))

(delay (A r . 0) (f xs)) (delay (A r . 0) (g xs))

-e {Equivalence law for delay component)
i

(f "4 " (9 xs)

= {Assumption)

D u e

Demonstrating that recursive Hawk circuits like envs are contracting can usually be proved

within Isabelle in a couple of steps, by relying on Isabelle's high-level rewriting and tableau

decision procedures. The result of invoking the decision procedures is the recursive equa-

tion for envs proved as a certified theorem.

6.6.3 Properties of envs component

The core of the register file-bypass verification involves proving various properties of the

recursive envs function. There are five basic properties of envs needed in the top-level

proof. The first two envs properties state that RO is a zero register.

envs wb n RO = 0

dstRegl (wb (n + 1)) = RO + envs wb (n + 1) r = envs wb n r

The third envs property states that the environment returned by envs on a given clock

cycle has been updated correctly with respect to the current wb transaction.

dstRegl (wb n) # RO + envs wb n (dstRegl (wb n)) = dstValNarnel (wb n)

The fourth and fifth envs properties deal with register values that are not being written to

on the current cycle. The fourth property states that initially every register not currently

being written to is zeroed out.

r # dstRegl (wb 0) + envs wb 0 r = 0

The fifth envs property states that at every cycle after the initial cycle, every register that

is not currently being written to is equal to the value it had on the previous cycle.

r # dstRegl (wb (la + 1)) + envs wb (n + 1) r = envs wb n r

The above properties can be proved by unwinding the definitions of envs and its con-

stituents. For example, we prove the last property as follows:

Assume r # dstRegl (wb (n + 1)) . Then

case r = RO:

envs wb (n + 1) RO

= {First property of envs)

0

= {First property of envs)

envs wb n RO

case r # RO:

envs wb (n + 1) r

= {Definition of envs)

extEnv (dstReg wb)

(dst ValName wb)

(delay (A r . 0) (envs wb)) (n + 1) r

= {Definitions of extEnv,lift4, dstReg, dst Val ,lzft,delay }

extEnvl (dstRegl (wb (n + 1)))

(dst ValNamel (wb (n + 1)))

(envs wb n) r

= {Definition of extEnvl)

(if r = RO then 0 else ij r = (dstRegl (wb (n + 1)))

then (dst ValNamel (wb (n + 1)))

else (envs wb n r))

= { r # RO A r # dstRegl(wb(n + 1)))

envs wb n r

The last two properties of envs can be stated as a single theorem by using the delay

component.

r # dstRegl (wb n) -+ envs wb n r = envs (deday nop wb) n r

The proof proceeds by induction on time values n , and a compound case analysis on the

values of r and wb:

Assume r # dstRegl (wb n) . Then

case r = RO:

envs wb n RO

= {First envs property)

0

= {First enus property)

enus (delay nop wb) n RO

case r # RO A n = 0 :

envs wb 0 r

= {Assumption and fourth enus property)

0

= {r # dstRegl (delay nop wb 0) ; fourth envs property)

enus (delay nop wb) 0 r

case r # RO A n = (k + 1) A r = dstReg' (wb k) , for some k:

enus wb (k + 1) r

= {Assumption and fifth enus property)

enus wb k r

= {Third enus property)

dst ValNamel (wb k)

= {Definition of delay)

dst ValNamel (delay nop wb (k + 1))

= {r = dstRegl (delay nop wb (k + 1)) ; Third envs property)

enus (delay nop wb) (k + 1) r

case r # RO A n = (k + 1) A r # dstReg' (wb k) , for some k :

Inductive hypothesis:

r # dstRegl (wb k) -+ enus wb k r = enus (delay nop wb) k r.

Then

enus wb (k + 1) r

= {Assumption and fifth enus property)

enus wb k r

= {ind. hyp.)

enus (delay nop wb) k r

= { r f dstRegl (delay nop wb (k + 1)) ; fifth envs property)

envs (delay nop wb) (k + 1) r

6.6.4 Definition and properties of fvEnvs component

The registerFile-bypass proof makes heavy use of the field' function, which operates over

FieldValues. We can simplify the proof somewhat by introducing an alternate version of

the envs function, called fvEnvs, that returns environments of type Field Value + FieEdValue.

The use of fvEnvs removes the need to insert cast operations when applying an environ-

ment to the RegValue' returned by a field' operation.

type FvEnv = Field Value + Field Value

fvEnvsl :: Env + FvEnv

fvEnvsl env = (A fv. WordValuel (env (castToRegl fv)))

fvEnvs :: Trans Signal =+- FvEnv Signal

fvEnvs wb = Zzft fvEnvsl (envs wb)

The properties proved of envs carry over to fvEnvs. For example, the delay law for fvEnvs

becomes

(RegValue' r) # field' (RegNm Dst) (wb n) +
fvEnvs wb n (RegValue' r) = fvEnvs (delay nop wb) n (Reg Value' r)

6.6.5 Definition and properties of bypass component

All that remains before we tackle the main registerFile-bypass proof is to define bypass

and derive its characteristic properties. The bypass component is defined in terms of the

auxiliary function bypassSelect, which performs the bypass operation on a single operand

value.

bypassSelectf :: Reg =+ Word .d Reg + Word =+- Word

b ypassSelectl inpReg inp Word wbReg wb Word =

if inpReg = RO V wbReg # inpReg

then inp Word

else wb Word

bypassselect :: Reg Signal + Word Signal + Reg Signal + Word Signal +
Word Signal

bypassSelect = lift4 bypassSelect'

bypass :: Trans Signal + Trans Signal + Trans Signal

bypass input writeback =

let wbReg = dstReg writeback

wb Val = dst ValName writeback

s l v = bypassselect (s lReg i npu t) (s lVal input) wbReg wbVal

s2v = bypassselect (s2Reg input) (s2Val input) wbReg wbVal

in setSlVa1 s l v (s e t s 2 Val s2v input)

The properties we derive from the definition of bypass are that the component does

not modify any input transaction field other than the two source operand values:

V f $ { ValNm Src l , Va lNm Src2).

field' f (bypass inp wb n) = field'f (i np n)

and that bypass performs correctly on the source operand values:

V i E { S r c l , Src2).

let inpReg = field' (R e g N m i) (i n p n)

wbReg = field' (R e g N m D s t) (w b n)

in ((inpReg = (Reg Value' RO) V inpReg # wbReg +
field' (V a l N m i) (bypass i n p wb n) = field' (V a l N m i) (i n p n))

A

(inpReg # (Regvalue ' RO) A inpReg = wbReg +
field' (V a l N m i) (bypass i n p wb n) = field' (V a l N m D s t) (w b n)))

These properties can be proved by expanding the definitions of bypass, b ypassSelect , and

bypassSelectl , and then performing a case analysis on the appropriate register name fields

of i n p and wb.

6.6.6 Proof of the microarchitecture law

Now that we have the needed fvEnvs and bypass properties, the top level proof itself is

relatively straightforward. The formal statement of the theorem is as follows:

bypass (r f i n p (delay n o p w b)) wb = rf i n p wb

We prove these two signals equal by showing that they are equal at all time periods n , for

all transaction fields f E FieEdNm:

case f E FieEdNm - {(V a l N m S r c l) , (V a l N m S r c 2)) :

f ield' f (bypass (r f i n p (delay nop w b)) wb n)

= {bypass doesn't modify field f)

field' f (r f i n p (delay n o p w b) n)

= { r f doesn't modify field f)

field' f (i n p n)

= { r f doesn't modify field f)

field' f (r f i n p wb n)

case f = V a l N m i , for i E { S r c l , S rc2) :

subcase field' (R e g N m i) (i n p n) = RegValue1 RO:

field' (V a l N m i) (bypass (r f i n p (de lay n o p w b)) w b n)

= {Subcase assumption; bypass preserves zero registers of input)

field' (V a l N m i) (r f i n p (de lay n o p w b) n)

= {Subcase assumption; r f preserves zero registers of transactions)

W o r d Value' 0

= {Subcase assumption; rf preserves zero registers of transactions)

field' (V a l N m i) (~ f i n p w b n)

subcase field' (R e g N m i) (i n p n) # Reg Value' RO A

field' (R e g N m i) (i n p n) = field' (R e g N m D s t) (w b n) :

L.H.S. :

field' (V a l N m i) (bypass (r f i n p (de lay n o p w b)) w b n)

= { r f preserves R e g N m i field; bypass overwrite law)

field' (V a l N m D s t) (w b n) .

R.H.S. :

field' (V a l N m i) (r f i n p w b n)

= {Definition of r f ; field and update laws)

s A p p l y (f v E n v s w b) (f ield (R e g N m i) i n p) n

= {Lift laws)

f vEnvs l w b n (field' (R e g N m i) (i n p n))

= {Subcase assumptions; third e n v s property}

field' (V a l N m D s t) (wb n) .

subcase field' (R e g N m i) (i n p n) # RegVaEue' RO A

field' (R e g N m i) (i n p n) # field' (R e g N m D s t) (w b n) :

field' (V a l N m i) (bypass (r f i n p (de lay n o p w b)) w b n)

= { r f preserves R e g N m i field; bypass no-overwrite law)

field' (ValNm i) (r f inp (de lay nop wb) n) .

= {Subcase assumptions; rf delay law)

field' (ValNm i) (r f inp wb n)

Thus, with some work we've been able to algebraically verify the important register file

- bypass law. The other microarchitecture law proofs, especially those involving circuits

with cyclic state holding elements, use similar techniques. That is, the original circuits

are generalized to circuits where all internal state elements are visible. The generalized

circuits are proved equivalent by induction over time. The microarchitecture law then

holds as a special case. Section 7.5 of the next chapter discusses our efforts to mechanize

the microarchitecture laws and pipeline simplifications.

Chapter 7

Retrospective

On page one of the 1988 textbook Introduction to Functional Programming, Bird and

Wadler[7] summarize one of the primary motivations behind using a pure functional lan-

guage as a means for creating executable specifications:

A characteristic feature of functional programming is that if an expression pos-

sesses a well-defined value, then the order in which a computer may carry out

the evaluation does not affect the outcome. In other words, the meaning of an

expression is its value and the task of the computer is simply to obtain it. It

follows that expressions in a functional language can be constructed, manip-

ulated and reasoned about, like any other kind of mathematical expression,

using more or less familiar algebraic laws. The result, as we hope to justify, is

a conceptual framework for programming which is at once very simple, very

concise, very flexible and very powerful.

One can view this thesis as a case study for Bird and Wadler's programme, demonstrating

that functional specification languages and algebraic reasoning can feasibly model domains

of a useful size, in this case pipelined processor microarchitectures. The rest of this chapter

evaluates the merits of this approach. In particular, we will examine the strengths and

weaknesses of

a Using a functional programming language as the basis of a high-level hardware de-

scription language.

a Transactions as a microarchitectural structuring principle.

The algebraic approach to pipeline transformation and verification, and its mecha-

nization in Isabelle.

We will also discuss the usefulness of converging equivalence relations as a general mech-

anism for defining recursive values in higher order logic.

7.1 The functional basis of Hawk

This section discusses the benefits and limitations of Hawk's functional basis as we encoun-

tered them during the course of this thesis. Although the decision to make Hawk an em-

bedded language within Haskell imposed some restrictions, in general Haske117s collection

of functional language features allowed us to specify microarchitectures at an impressively

high level of abstraction.

7.1.1 Structured datatypes

Algebraic datatypes and pattern matching were used extensively when specifying the alu

and mem components of the DLX microarchitecture. The Haskell functions implementing

these components have to perform a series of tests on the opcode field to determine what

exact operation to perform. Even though the DLX architecture is built around a simplified

RISC instruction set, the meaning of an opcode can still become quite involved. The Hawk

team used a hierarchical collection of algebraic datatypes to represent opcode values, and

used nested pattern matching to perform the necessary tests.

data Opcode = ExecOp AluOp

1 MemOp LoadStore 0 p

I ...

data AluOp = Add Signedness

I Sub Signedness

1 Mult Signedness

I Div Signedness

1 And

I Or I Xor

I ShiftLL I ShiftRL I ShiftRA

I Cmp Comparison

I . . .

data Signedness = Signed 1 Unsigned

data Comparison = LessThan

I LessEqual

1 Greater Than

I GreaterEqual

1 Equal

I NotEqual

data LoadStoreOp = Load WordSize Signedness

I Store WordSize

1 NOP

data WordSize = Byte I HalfWord (FullWord

In lower-level hardware description languages, these opcode values would simply be

laid out as a single bit-vector, or perhaps as an unstructured collection of scalar variables.

In this case, the designer of the alu and mem decoding logic would have to be careful to

select the correct bitfield subranges or scalar variables using nested conditionals. Even

when using scalar variables it is often the case that the meaning of some variables depends

on the values contained in other variables. For example, a "wordsize" variable would

have no meaning if the arithmetic opcode variable is set to "Xor", since in the DLX the

exclusive-or operation is always performed at full word size.

It is quite easy to make a mistake in such situations, even for instruction sets as simple

as the DLX. While Hawk's type system will catch incorrect pattern-match expressions au-

tomatically, lower level hardware languages typically do not enforce subrange boundaries,

nor do they provide any way to state that the interpretation of one variable is dependent

on the value held in another. In these languages such mistakes have to be debugged at

runtime. The situation becomes even worse when several designers are responsible for

decoding portions of the instruction.

7.1.2 Lazy evaluation

Formally we model signals as functions over time, but in a simulation implementation

Hawk signals are implemented as lazy infinite lists. This design choice is essential if we

want to implement shared signal values efficiently. Consider the following Hawk circuit

fib = delay 1 (lift2 (+) fib fib')

fib' = delay 1 fib

which calculates the Fibonacci sequence [I , 1 , 2, 3, 5 , . . .]. Notice that the fib signal is

referenced twice in a feedback loop: once as an argument to lift2, and once as an argument

to delay in the definition of fib'. If we use lazy lists, Haskell's lazy evaluation strategy will

calculate a given element of this sequence once, if needed to evaluate a client expression,

and then store the result in memory, so that subsequent references to the element are

evaluated in constant time. What this means for the fib sequence is that it takes at most

O(n) accesses to compute the nth element of the signal, since lower-numbered fib elements

are effectively cached in the runtime heap.

On the other hand, if we had implemented signals as functions the optimized code

eventually generated by Haskell for fib would have looked something like this:

f i b 0 = 1

f i b 1 = 1

fib n = fib (n - 1) + fib (n - 2)

The two recursive calls to fib mean that every call to fib n takes 0 (2 n) recursive calls to

evaluate. This exponential blowup in evaluation time happens whenever a shared signal

is referenced in two or more places within a feedback loop, as f i b is. In essence, Haskell's

lazy evaluation mechanism applied to lists automatically implements a form of dynamic

programming.

7.1.3 Higher order functions

Haskell's ability to manipulate functions as first class values not only allows us to con-

veniently map functions over signals through the lift primitives, it also allows common

wiring patterns to be encapsulated as higher order Hawk components. For example, Cook

et a1[18] describe a parameterized reservation station component as part of a superscalar

out-of-order microarchitecture. The reservation station component station takes a signal

of unordered collections of transactions and sends each transaction to an appropriate ex-

ecution unit, if one is available. If no execution unit is available, the reservation station

stores the transaction in an internal reservation bufer until an execution unit becomes

free.

To increase its generality the station component is parameterized on a list of execution

units exec Units, among other things. Each execution unit is a function that takes a reset

signal and a signal of transaction collections (each transaction collection is implemented

as a list of transactions). The execution unit returns two signals of transaction collections:

The first signal consists of transactions that the execution unit refused to process, either

because it is already processing a transaction or because the transaction is of the wrong

type. The second signal contains transactions that the execution unit has completed on

that clock cycle. The Hawk code for the reservation station component is sketched below:

type ExecUnit = Signal Bool -+ Signal [Trans] + (Signal [Trans], Signal [Trans])

station :: (Int, [ExecUnit]) -+ (Signal Bool, Signal [Trans]) -+ Signal [Trans]

station (numReservations, execUnits) (reset, inputl'ransactions) = . . .

Since the execution units are themselves functions, the station component is an example

of a higher order component. In practice it is quite useful to be able to vary the type

and number of execution units given to station, without having to change the reservation

station's definition.

The top-level pipelined microarchitecture considered in this thesis did not have a reg-

ular enough structure to significantly benefit from exploiting the higher order features of

Hawk, other than using the lij? primitives. We did use higher order functions to formally

model the contents of the register file component in Section 6.6.1.

7.1.4 Static typing and polymorphism

The Hawk team has relied extensively on Haskell's static typing enforcement to quickly

catch coding mistakes when implementing microarchitectures. Without explicit type

checking, errors that normally took us seconds to find and fix could have taken minutes

or hours to debug at runtime. It is particularly easy in modeling to forget the difference

between a static value of type r and a dynamic signal whose elements are of type 7. For

example, the following Hawk code is ill-typed, and is quickly rejected by the type checker:

select :: Signal Boo1 + Signal a + Signal a -+ Signal a

resultReg :: Signal Reg

resultValid :: Signal Boo1

finalResult :: Signal Reg

finalResult = select result Valid resultReg RO

The type error that Hugs 98 (a Haskell interpreter) prints out is:

ERROR (line 20): Type error in application

*** Expression : select resultvalid resultReg RO

*** Term : RO

*** Type : Reg

*** Does not match : Signal a

The type checker is pointing out that in the definition of finalResult, RO is a static register

name, not a signal as required by select. If Hawk was a dynamically typed language, this

error would not have been detected until select was evaluated at a clock cycle where

result Valid was false. If this is a rare occurrence, then it could be quite a while before the

bug is even detected.

Explicit type annotations have also been quite helpful as a form of machine-checked

documentation. Several of the microarchitectures in the Hawk library have been initially

designed by one person and then enhanced or maintained by another. We invariably find

that explicitly typed code is easier to understand by other team members.

While Haskell's polymorphic type system admits a wide range of useful programs while

automatically inferring general types for them, there are conceptually valid microarchitec-

ture designs that Haskell can only type check by adding explicit typecasts1. For example,

a module may be implementing a shared bus with a signal of heterogeneously-typed ele-

ments. At any given clock cycle the bus contains a single value of a fixed type, but the

type of the value can change from clock cycle to clock cycle. The information indicating

which type the value has may not even be part of the value itself. The type might in-

stead be communicated in a separate signal, or have been sent on the bus on an earlier

clock cycle. Currently a Hawk implementation of such a bus would require the designer

to create a new datatype containing a constructor for each type of value the bus may

transmit. The decision as to which constructor to use in a given clock cycle would have

to be gleaned from whatever source the type information is being communicated, even if

that source is in another module. The abstract Hawk designs we have created so far have

not exhibited these problems, but it may become an issue when trying to model industrial

microarchitectures "wire accurately".

7.1.5 Nondeterminism

The functional basis of Haskell causes Hawk circuits to be completely deterministic. For

any fixed set of inputs, a Hawk circuit will always evaluate to the same value. In con-

trast, several hardware and concurrency oriented specification languages such as IOA[51],

Ruby[39], SMV[58], and TLA+[41] allow circuits to have nondeterministic behaviors.

Nondeterministic circuits can be used to model partial specifications. For instance,

'Haskell implements typecasting through a (currently experimental) universal t ype mechanism.

the Hawk reference microarchitecture processes exactly one instruction per cycle, without

stalling. One could instead model a reference processor that nondeterministically stalls

zero or more clock cycles after processing an instruction. Any correctly designed pipelined

processor would exhibit a set of behaviors2 contained in the set of all reference processor

behaviors. The pipelined machine's behaviors would then be said to refine the reference

machine's behaviors.

The uniform treatment of specifications and implementations enabled by nondeter-

minism is considered by some to be an advantage of refinement-oriented specification

languages. Hawk does not support nondeterminism directly, but we can simulate non-

deterministic behaviors in Hawk through oracles, which are simply external parameters

indicating which nondeterministic choice to make. For example, the stuttering nats circuit

outputs the natural numbers in sequence, with possibly repeated elements:

stutterNats :: Signal Boo1 + Signal Int

stutterNats stutter = out

where

out = delay 0 (select stutter out' (lift (+ 1) out))

out' = delay 0 out

The stutter parameter is a boolean signal indicating when to repeat the current value on

the next clock cycle. By varying the values of stutter we can simulate all of stutterNats

intended nondeterministic behaviors. If we wanted, we could go on to prove that constant 0

and the non-stuttering circuit nats both refine stutteringNats, by providing signals

constant True and constant False, respectively, as the witness oracles. That is, we prove

that

stutteringNats (constant R u e) = constant 0

and that

stutteringNats (constant False) = nats

'A pipelined processor specification could also have nondeterministic components, such as the latency
of execution units or caches

We can also use oracles to show that one nondeterministic Hawk circuit refines another.

For example, the circuit created by initially outputting 0 and then outputting the results

of stutteringNat delayed by one cycle, is a refinement of the original stutteringNat circuit.

We state this formally by existentially quantifying the oracle parameter:

V oracle. 3 oracle'.

delay 0 (stutteringNats oracle) = stutteringNats oracle'

We can prove this law by choosing oracle arbitrarily and then supplying a witness oracle

expression for oracle' in terms of oracle. The witness oracle we need to choose in this case

is delay True oracle.

In general, a separate oracle parameter must be created for every independent source

of nondeterminism in a circuit. This can become tedious for large, hierarchically specified

circuits such as microarchitectures, and can make higher levels of the hierarchy hard to

read3.

On the other hand, a designer can explicitly create oracles in Hawk to exhibit specific

(and repeatable) nondeterministic behaviors of interest. In particular, a designer can

create executable refinement mappings that test whether one hawk circuit refines another.

The designer first creates an oracle witness function in Hawk, then randomly generates

a series of oracles. The implementation circuit is simulated on each randomly generated

oracle, and the specification circuit is simulated on the oracle produced by invoking the

witness function on the randomly generated oracle. If the witness function and the circuits

are correctly writ ten, the two circuits should output the same signals.

A designer can even run these tests before a formal refinement verification is carried

out. Once the witness function has been thoroughly tested, it can be used directly in the

refinement proof. In this way design engineers can assist in formal refinement verifications

without having to become expert in the verification tools.

3 ~ h i s can be ameliorated to some extent by passing a record of oracles as a single parameter, or through
the use of implicit parameters[47], an experimental Haskell feature for implementing dynamically scoped
variables.

7.2 Transactions

Another major thrust of this thesis is the use of transactions as the central unit of commu-

nication between microarchitecture components. The notion of transactions as an abstract

data type is independent of any specific hardware design language, although Hawk's sup-

port for structured datatypes and polymorphism make the concept easier to express.

7.2.1 Verifying pipelines with transactions

One of the transaction structure's major design benefits is its ability to express com-

ponent interfaces uniformly, allowing designers to quickly interconnect microarchitecture

subsystems at the block-diagram level. Another is the fact that the logic controlling a

microarchitectural feature can usually be expressed in the component containing the data

being controlled.

In our experience these advantages have been crucial to discovering algebraic laws.

Take for example the bypass laws. If we were to express the bypass and delay components

used in this law directly at the word level then there would have been a natural temptation

to consolidate the logic controlling the bypass circuitry at the beginning of the pipeline,

when the source register names first become available (because then only a couple of bits

containing the results of the register name comparisons would have to be stored and sent

to the bypass selection circuits, rather than the several dozen bits currently needed to

send the register names themselves. Also, the logic needed to test whether the destination

register was RO would not have been duplicated in each bypass component.).

Unfortunately, this premature commitment to implementation efficiency can substan-

tially complicate law discovery. We were not able to find the bypass laws until the "extra"

control logic was localized to the data it was manipulating. Equally important was the

reduction in the number of top-level pipeline components enabled by transactions. Com-

ponents that are widely separated at the word level, such as the kill circuitry and the

last bypass circuit in the pipeline of Chapter 3 appear much closer when expressed as

transaction processors. This extra concision in specification made it easier to discover the

hazard - bypass law, which spans multiple pipeline stages.

7.2.2 Calculating space efficient pipelines

Transactions help in quickly prototyping processor microarchitectures and significantly

aid algebraic reasoning. However, directly synthesizing a transaction-processing microar-

chitecture to silicon would result in a circuit containing many unnecessary wires and

state-holding elements, especially in later pipeline stages. We have performed some initial

experiments on transformations that remove this unnecessary structure.

The idea is to define each microarchitecture component in terms of a core circuit and a

wrapper circuit. The core circuit implements the component's functionality. The wrapper

circuit is responsible for extracting the necessary transaction fields to deliver to the core,

and packaging the results back up again as an output transaction. Transaction fields not

needed by the core are passed through unmodified.

Microarchitecture synthesis then proceeds by expanding the pipeline's components into

their constituent wrapper and core circuit definitions. A backwards dependency analysis

on the pipeline's output wires determines which core components are actually used. The

rest are unneeded and can be removed. A separate phase performs retiming and common

subcircuit analysis to eliminate duplicate components. An interesting future research

project would be to find out how efficient such a synthesized pipeline is relative to a

pipeline designed entirely at the word level.

7.3 Algebraic reasoning

Hawk is designed to be a language that supports high level reasoning as well as specifi-

cation. The algebraic reasoning developed in this thesis can be stratified into two essen-

tially separate tasks: Proving the local microarchitecture component laws, and simplifying

pipelines using those local laws.

7.3.1 Proving the component laws

Currently component law proofs seem to require quite a bit of verification expertise. A

typical proof must perform induction over time and one or more case analyses on key

transaction field values. Components can have large or unbounded state spaces, making

completely automated techniques like model checking infeasible. Often the definition of

a component needs to be generalized so that all values stored in internal delay circuits

become parameters or return values. This was seen in Section 6.6.1 when we had to define

the rf component in terms of a more general envs component that returned the entire

contents of the register file at each clock cycle.

In some ways it is disappointing that components have to be so carefully constructed in

order to get inductive proofs to succeed. Often the generalized components start looking

like the state machine transducers common to more imperative specification languages.

Originally this seemed to be a disadvantage of Hawk's stream-transformer style of spec-

ification, but we now tend to think of it as a general problem in theorem proving. It

is often the case that recursively defined functions over an inductive domain have to be

generalized to prove properties of interest. This is true regardless of the inductive domain.

For multi-parameter functions the generalized form depends on which parameter is being

inducted over and is thus an artifact of the proof, not the definition.

We speculate that in many cases this generalization step can be automated, provided

the user specifies which parameter to induct over. For example, it should be possible to

write an Isabelle tactic that automatically converts a first-order Hawk circuit description

into a state-machine transducer form, even if the circuit contains occurrences of other

recursively-defined circuits. If indeed such a tactic could be built then Hawk specifications

could be written in a more natural style, and converted only as necessary for temporal

induction proofs.

Higher order Hawk definitions are more of a challenge. There may not be an automatic

way to convert a function that recurses over more than one parameter, as higher order

components often do. In these cases the user would have to provide a conversion manually,

which would then be used by the automated tactic when translating first order circuits

containing the higher order component.

Typed versus untyped verification logics

Component proofs were also complicated by the type discipline imposed by higher order

logic. We often wanted to quantify over elements of disparate types, particularly trans-

action field values. The transactions considered in this thesis had three types of fields:

Register names, words, and opcodes. More sophisticated microarchitectures could have

many more, such as exception flags, predication bits, thread identifiers, etc. It is a hassle

having to create "universal" datatypes to inject these values into and coercion functions to

move back and forth between them. An excellent article by Lamport and Paulson[42] dis-

cusses similar such problems. They suggest that although typed programming languages

offer significant advantages, typed specification languages may not be the best choice, at

least when it comes to carrying out formal correctness proofs. They make the following

points (among others):

Untyped set theory is an extremely expressive formalism, and underlies most of

conventional mathematics.

Simple type systems, such as the type system of higher order logic, significantly

restrict the class of allowable specifications.

Specifications containing "type errors7' in untyped formalisms are quickly detected

when attempting correctness proofs.

Features found in more complex type systems such as predicate subtyping usually

make type checking undecidable and can make it hard to modularize specifications.

None of them approaches the flexibility of untyped set theory.

In a mechanical verification system, a typed formalism automates routine infer-

ences such as "if x is a nat and y is a nat , then x + y is a nat. However in a

programmable theorem prover like Isabelle's ZF set theory logic these kinds of in-

ferences can automated by writing a special "type-inference7' tactic over the domain

of the specification problem.

Most formal specifications are not formally verified. Mechanical type checking can

help catch errors in these cases.

They go on to observe that perhaps the best approach is to create an untyped specification

language with the ability to build domain-specific type systems at the user level. Spec-

ifications could then be annotated and type-checked according to whatever type system

is appropriate for that domain. Since the underlying formalism is untyped, specification

fragments annotated using different type systems could be combined. Bogus type errors

could be resolved during formal verification.

Our own experience with formally verifying typed Hawk specifications accords with

their observations. Of course, it is easy to take for granted those things higher order logic

does well and remember only the difficulties. We plan to re-verify some of the component

laws in Isabelle's set theory formalism to get a more realistic sense of the tradeoffs involved.

Hawk is both a programming language and a specification language. Even within the

Hawk team many more microarchitectures have been specified and simulated in Hawk than

have been verified. So, on balance, strong typing has been a definite win. However, there

is nothing preventing us specifying and simulating Hawk circuits in a typed language like

Haskell, and then verifying them in an untyped formalism. Translation between Hawk and

set theory could be automated, and inferred types can become set-membership constraints

in the translated formalism.

7.3.2 Simplifying the pipeline

Currently, proving local component laws requires substantial experience in logic and in-

ductive proof methods. Fortunately using the laws to simplify pipelines requires far less

training in formal methods. As we demonstrated in Chapter 3, pipeline simplifications

can be carried out graphically without resort to complex higher order reasoning or induc-

tive generalization. Microarchitects quickly understand simplifications we present, and

state that they would feel comfortable in applying the technique themselves. In fact, the

Hawk team has considered building a visual theorem prover that would allow designers to

carry out simplifications by selecting components and choosing from a menu of allowed

transformations.

We have also found the microarchitecture laws to be fairly reusable when simplifying

variations in the pipeline's design. We originally verified much simpler pipelines than the

one presented in Chapter 3. Over time we increased the sophistication of the pipelines,

and had to discover and prove new microarchitecture laws for the added components.

Previously discovered laws, however, still remained applicable for the most part. This was

true even when we added new transaction fields, such as the fields for carrying out branch

speculation.

It remains to be seen how many of the component laws will still apply when simplifying

more dynamic processor microarchitectures, such as those employing out of order execution

and superscalar instruction fetching. In the microarchitectures presented in this thesis, the

possible paths a transaction can take through a pipeline are limited, and closely correspond

to the pipeline's component structure. In contrast, the paths a transaction takes through

a modern out of order microarchitecture are much more determined by the structure of the

program being executed than the pipeline. It is unclear whether structural simplification

techniques will be as effective on such data-driven processors.

7.4 Converging equivalence relations

The CER framework was developed in this thesis to solve a specific problem - showing

that recursively defined signals are well formed. Over time it has become clear that the

technique can be generalized to solve a wide range of recursive equations outside of the

context of Hawk, such as the noncomputable function definitions for filtering and flattening

infinite lists. In fact, as shown in Section 5.8 a CER combinator can be defined that is

powerful enough to define any well-founded recursive function.

It would be quite interesting to build a recursive function definition package based

on the CER framework. The package would be as expressive as existing packages for

well-founded functions, but could also define non-well-founded functions as well.

7.5 Mechanizing the verification

We were able to automate within Isabelle many, but not all, of the paper-and-pencil

proofs performed for this work. Specifically, we successfully generated Isabelle proofs for

the following theories and components:

Converging Equivalence Relations theory. This theory includes proofs of the

CER fixpoint theorem, the signal and lazy list CER axioms, and the CER combina-

tors. A descendant theory proves that the recursive equations defining the functions

iterates, lrnap, lappend, Zfilter, and ljlatten have unique solutions.

Recursive Hawk circuit definitions. Several Hawk circuits containing feedback

signals are defined in Isabelle by invoking the CER fixpoint theorem, including the

resettable counter circuit of Section 2.1, the envs circuit of Section 6.6.1, and several

pipelined microarchitectures.

Microarchitecture component laws. Most of the time-invariance laws have

Isabelle proofs, as well as the feedback rotation law, the register file - bypass law,

and the hazard - bypass law. We did not have time to prove the laws governing

the nohaz and branchmisp components. However, their proofs should not present

any difficulties, now that a theory of first class field names has been developed (see

below).

First class field names theory. The theory of transaction field names has only

recently been mechanized in Isabelle. The primary motivation for mechanizing this

theory is to make the microarchitecture component law proofs more robust in the

face of changes to the transaction datatype. Previously, whenever the transaction

type was extended by new field declarations, substantial portions of the component

law proofs would have to be modified. It is, in fact, the main reason why the nohaz

and branchmisp laws have not yet been mechanized, since these components require

the addition of the specPCFld transaction field (which is not currently part of the

transaction datatype). Now that disparately-typed fields can be quantified over,

adding the specPCFld should be a much simpler matter.

Pipeline simplification theory. To verify the top-level pipeline simplification pre-

sented in Chapter 3 we axiomatized all of the microarchitecture laws in a separate

theory, and then used the laws as rewrite rules to simplify the pipelined microarchi-

tecture of Figure 3.10 to the reduced microarchitecture of Figure 3.67. We overcame

difficulties with Isabelle's rewriting tactics by converting the microarchitecture laws

and pipeline to a different form, described in Section 7.5.2.

7.5.1 Mechanizing the microarchitecture law proofs

The paper-and-pencil proofs of microarchitecture laws can be quite lengthy, even for simple

circuits such as the registerFile-bypass law. Fortunately many of the steps simply consist

of rewriting with respect to previously proven theorems. These steps can be automated

in theorem provers like Isabelle that can repeatedly simplify a subgoal with respect to a

list of equational theorems.

A more difficult part of proving microarchitectural laws is defining stateful components

in terms of appropriate auxiliary functions. The auxiliary functions of a component need

to be defined in such a way that all of the component's important internal states are

visible during the inductive proof. For the registerFile-bypass law, this involved defining

the auxiliary function enus, which exposed the internal state of the register file contents.

It turns out that in many cases these auxiliary functions are essentially the component's

corresponding state machine transducers, as is the case for enus. The benefit of such

transducer-like functions is that one can relate the value returned by the transducer in

the next clock cycle in terms of the inputs to the transducer in the next clock cycle and

values returned by the transducer in the current clock cycle. This is precisely the form of

relation needed when carrying out temporal induction.

7.5.2 Mechanizing the top level pipeline simplification

Simplifying microarchitectures algebraically in Isabelle has been problematic. Hawk pipeline

definitions consist of mutually-recursive signal definitions. Isabelle's rewriting tactics can

handle mutually-recursive pattern matching function definitions by only rewriting func-

tions that are applied to explicit constructors. This is exactly what is needed to prove the

inductive properties used in the component laws, and Isabelle's sophisticated conditional

and higher order rewriting package is of great help there. Unfortunately Hawk signal

definitions at the pipeline level do not use pattern matching, and so naive rewriting often

loops. Instead, top level rewrite steps must currently be done one at a time.

Another difficulty concerns expression sharing. In Isabelle let-expressions are just syn-

tactic sugar for function applications. Most Isabelle tactics do not support let-expressions

directly, requiring the user to expand them first. The problem with this is that all sharing

of sub-terms is lost during the expansion. Hawk microarchitectures contain significant

signal sharing, and expanding them can increase the size of a pipeline by an order of mag-

nitude. This size increase also increases tactic execution time by an order of magnitude,

and makes the pipeline much harder to read during verification.

One possible solution to both of these problems is to add support in Isabelle for

recursive let-expressions (letrecs), defined as unique fixed points. When simplifying letrecs,

later variable declarations could be rewritten in terms of earlier declarations automatically,

but not vice-versa. Special tactics could be defined to change the order of declarations in

a letrec if a different rewriting order was desired. An earlier declaration would only be

expanded in a later declaration if it then enabled a rewrite rule to simplify the expanded

expression. New common subterms created during simplification would be collected as

shared variable declarations.

Adding letrec support would not require changing Isabelle's trusted kernel of primi-

tive inference rules. It would require substantially modifying tactics written outside of

the kernel, such as the rewriter and tableau resolution tactics. Instead, we followed an

alternative approach that reuses more of Isabelle's existing infrastructure.

Conversion to relational form

To take advantage of Isabelle's existing tools for reasoning about formulas (terms of type

bool), the microarchitecture laws and pipeline definition were first converted to relational

form. A Hawk circuit in relational form is represented as a predicate equality, rather than

a function. The equality is parameterized on both the input and the output signals of the

circuit, by representing the signals as free variables. The predicate equation is true exactly

when the outputs equal the result of applying the circuit to the inputs. For example, the

relational form of the regFiEe circuit could be given in terms of the free output variable

out, and the free input variables inp and rb:

out = regFiIe inp wb

More complex circuits containing internal signals and recursion can be expressed in

relational form through the use of existential quantification and conjunction. For instance,

recall the register file - bypass law, presented again in Figure 7.1 with named internal wires.

regFile reg File
prevWb

Figure 7.1: register file - bypass law

The circuit on the left hand side of this law can be expressed as the following relation

on the free variables out, inp and wb:

(3 prev Wb rf0ut. prev Wb = delay nop wb A

rf0ut = regFzle inp prevWb A

out = bypass rfOut wb)

The internal signal variable names prev Wb and rfOut are bound by the existential quan-

tifier, and thus are not visible in any enclosing context. Specifying circuits as relations in

this way is a commonly taken approach when verifying hardware designs in higher order

logic[28, 641.

The microarchitecture law of Figure 7.1 can now be expressed in higher order logic as

an equality between the two circuit relations:

'd out inp wb.

(3 prevWb r f0ut . prevWb = delay nop wb A

rf Out = regFile inp prev Wb A

out = bypass rfOut wb)

- -

(out = regFile inp wb)

Assuming that the pipeline to be simplified is also expressed in relational form, then

the above equality (once proven) can be used as a rewrite rule, at least in principle. In

practice, Isabelle's current rewriting tactics are too restrictive to use such rules naturally.

In particular, the rewriting tactics will not apply existentially-quantified rewrite rules

unless the order of the existential quantifiers in the left hand side of the rewrite rule exactly

matches the order in the term being rewritten. Similarly, the order of each conjunct in

the rewrite rule must exactly match the order of the subject term's conjuncts.

To remedy this situation we developed a set of tactics that allow conjuncts and exis-

tential variables within Isabelle to be reordered on demand. We also developed tactics to

apply the circuit duplication and feedback - rotation laws in this relational setting. Once

the tactics were written, the pipeline was simplified step by step. Unfortunately, each

step had to be carried out manually, requiring a total of 88 tactic invocations. However,

there is nothing in principle to prevent Isabelle's rewriting tactics from being generalized

to handle existentially quantified conjunctions in rewrite rules. Upgrading the rewriting

tactics would dramatically reduce the number of manual simplification steps required.

Justifying the conversion to relational form

The question still remains as to whether relational conversions are valid, as currently Hawk

microarchitecture laws are verified as equations between values, not relations. Fortunately

the conversion can be justified by the fact that all recursive Hawk circuits are defined as

unique fixed points.

To begin with, any recursive circuit in Hawk can be expressed as a function of a

projection p and a unique fixed point fix F

circuit = Ainputs. p (fix F)

by expressing the input signals of the circuit as parameters of the function (i.e. inputs),

and both the output and internal wires of the circuit as elements of a tuple, which becomes

the result of fix F . The function p then projects out only the output signals.

For example, the circuit shown in the left hand side of Figure 7.1 can be expressed as

A inp wb.p (f ix F)

where

F = (A (out , prev Wb, r f0u t) . (bypass rfOut wb,

delay nop wb,

regFile inp prev Wb))

p = (A (ou t , prev Wb, rfOut) . out)

Thus, any microarchitectural law can be written as an equation between two circuits of

the form:

(Ail . . .in. p1 (fix F l)) = (Xil . . . in. p2 (fix F2))

where Fl and F2 may contain occurrences of il . . . i n . If Fl and F2 have unique fixed

points (possibly over different types), then the above equation is provably equivalent in

higher order logic to

v il . . . in out.

(3 tuplel. tuplel = Fl tuplel A out = pl tuplel)

- -

(3 tuple2. tuple2 = F2 tuple2 A out = p2 tuple2)

When this equation is expanded in terms of Fl , F2, pl, and p2, and simplified by the

following tuple equality rule

the resulting reduced equation is in the required relational form.

Performing the same inferences in reverse order, two circuits that have been proven

equivalent in relational form can be converted to an equality between the same circuits ex-

pressed as unique fixed points. Thus microarchitecture pipelines that have been simplified

relationally can be converted back into conventional Hawk expression form.

It is important to note that conversion to relational form may not be valid in general

when Fl and Fz do not have unique fixed points.

7.6 Conclusions and further research directions

In all, Hawk has proved to be an excellent platform for quickly specifying and reasoning

algebraically about pipelined microarchitectures at an abstract level. The strengths of

Hawk revolve around its abstraction capabilities and executability:

Abstract and modular specificat ion. The combination of functional language

structuring principles with the domain-specific transaction ADT leads to remarkably

concise, yet understandable, pipelined microarchitecture descriptions. In particular,

transactions combined with mutual recursion at the stream level allow us to build

processor components as separate modules, then easily compose them at the top

level.

Abstract and modular reasoning. At the same time, the simple semantics

underlying Hawk allows one to reason about source level hawk descriptions directly

as expressions in higher order logic. The equational laws we have derived for local

microarchitecture components are independent of context, and can thus be used in

a modular fashion. Hawk's equational theorems and proofs can also be displayed

visually, so that users do not need to be versed in the complexities of higher order

or temporal logic to follow them.

Executability. Hawk is fully executable, so designers can test new designs on

concrete and symbolic inputs. One can even simulate first order Hawk microar-

chitectures visually. Hawk project members Thomas Nordin and Byron Cook have

developed Visual Hawk, a graphical front end to the Hawk interpreter. In Visual

Hawk a designer can create circuit diagrams by dragging microarchitecture compo-

nents from a palette onto a canvas and then connecting them with wires. Each wire

represents a signal. The tool performs static type checking and input/output mode

analysis to ensure that wires are only connected between compatible component

ports. The designer can simulate microarchitecture circuits interactively, and then

double click on a wire to obtain a trace of all the values sent along it so far.

The executability of Hawk combined with good user interface support makes Hawk

a useful tool to designers even in the absence of formal verification.

Embedded language. Hawk is built upon and compatible with the general-

purpose programming language Haskell. Thus we immediately can make use of the

existing interpreters, compilers, programming texts, and user community associated

with Haskell.

Of course, Hawk is not perfect. The major weaknesses of Hawk and the algebraic method

uncovered during the course of this thesis involve simulation efficiency and lack of automa-

tion when verifying Hawk circuits:

Efficiency. Hawk's high level of abstraction comes at a cost. Current Hawk imple-

mentations run at two to three orders of magnitude more slowly than state of the art

imperative microarchitecture simulators. Much of this slowdown comes from using

a general purpose Haskell compiler, and the efficiency of Hawk simulations could

be improved by at least two orders of magnitude by employing domain-specific

compilation techniques, such as converting streams into mutable variables, stati-

cally scheduling expression evaluation, monomorphizing polymorphic expressions,

and custom garbage collection. But it is unclear even with these optimizations how

closely we could approach the efficiency of the very best hand-tuned microarchitec-

ture simulators.

Infinite state spaces. Most Hawk components operate over unbounded datatypes.

For instance, the register file component can have an infinite number of registers.

Each register can contain a word value of unbounded size. Similar generality is built

into other components, such as the instruction and data caches. Unfortunately, most

of the fully automatic model checking algorithms operate over finite state spaces, and

thus can not be used directly. Theorem provers can easily handle infinite state spaces,

but require a great deal of effort and expertise to use. In practice, this significantly

limits the size of Hawk specifications that can be verified in a reasonable amount

of time. However, a promising intermediate technology called compositional model

checking (discussed in the future work section below) may help reduce the amount

of manual intervention needed to prove microarchitecture laws.

Hidden state. At the lowest level, local equational laws have to be proved by some

form of induction. Often one has to generalize the equation being proved to a bisim-

ulation relation that holds at all points in time, and relates values at the previous

time step to values at the current time step. With state machine formalisms, all of

these previous and current values can be referenced explicitly. Hawk components,

on the other hand, tend to hide previous values (which are the outputs of delay

circuits) deep within the component definitions. To build a suitable bisimulation in

Hawk, one has to parameterize initial arguments to delay circuits as arguments to

the entire component, or one has to construct auxiliary state observation functions

and define the bisimulation in terms of these. In either case it is extra work that

does not need to be done with state machine oriented verification.

From a generic theorem proving perspective this thesis' most widely applicable result is

the development of converging equivalence relations. The CER framework generalizes def-

inition by well-founded recursion, and may turn out to be a useful way to define functions

over a broad range of coinductive data structures, such as infinite lists, infinite trees, and

cyclic graphs.

Future work

The work described here can be extended in several directions. Besides increasing the

power of Isabelle by adding support for recursive let-expressions and CER-definable func-

tions, we also intend to complete the algebraic verification of the pipeline of Chapter 3.

At the moment the pipeline cannot be simplified to a reference machine because of the

extra nop transactions output when the pipeline stalls. It should however be possible to

simplify the pipeline to a stalling reference machine, where the reference machine's stalling

behavior is governed by an external oracle. By feeding the stalling control logic of the

pipelined ~nachine as the reference machine's oracle, the two microarchitectures should

output exactly the same transactions. Given suitable additional component laws concern-

ing the instruction cache, it should be possible to prove the two processors equivalent

algebraically.

We also intend to automate component law proofs further by applying recent work

on abstract model checking, particularly the work of McMillan[57, 61, 59, 601 on verifying

infinite state models. McMillan and the author have performed some preliminary experi-

ments on verifying component laws, with promising results. Abstract model checking was

able to reduce infinite state space versions of the registerFile - bypass and hazard - bypass

laws down to a series of small finite state model checking problems, which were then solved

automatically. It was necessary to add a few refinement maps and manual annotations

stating which variables were used in a symmetric manner, but overall the approach seemed

much more automatic than the current inductive proofs carried out in Isabelle.

Bibliography

[I] Mark Aagaard and Miriam Leeser. Reasoning about pipelines with structural hazards.

In Theorem Provers in Circuit Design, TPCD794 (Bad Herrenalb, Germany, 1994),

LNCS, v. 901, pages 13-32. Springer-Verlag, New York, 1995.

[2] Mark D. Aagaard, Robert B. Jones, Thomas F. Melham, John W. O'Leary, and Carl-

Johan H. Seger. A methodology for large-scale hardware verification. To appear in

proceedings of Formal Methods in Computer Aided Design, FMCAD'OO, 2000.

[3] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A prag-

matic implementation of combined model checking and theorem proving. In Theorem

Proving in Higher Order Logics, TPHOLs'99 (Nice, France, 1999), LNCS, v. 1690,

pages 323-340. Springer, New York, 1999.

[4] Peter J. Ashenden. The Designer's Guide to VHDL. Morgan Kaufmann, San Ran-

cisco, 1996.

[5] Craig Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations of

theories with equality. In Formal Methods in Computer Aided Design, FMCAD'96

(Palo Alto, 1996), LNCS, v. 1166, pages 187-201. Springer, New York, 1996.

[6] David Barton. Advanced modeling features of MHDL. In International Conference

on Electronic Hardware Description Languages, ICEHDL'95 (Las Vegas, 1995), pages

71-77. Society for Computer Simulation, 1995.

[7] Richard Bird and Philip Wadler. Introduction to Functional Programming. Prentice

Hall, Englewood Cliffs, 1988.

[8] Richard S. Bird and Oege De Moor. Algebra of Programming. Prentice Hall, Engle-

wood Cliffs, 1996.

[9] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware design

in Haskell. In The 1998 ACM SIGPLAN International Conference on Functional

Programming, ICFP798 (Baltimore, Maryland, 1998), pages 174-184. ACM Press,

New York, 1998.

182

[10] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, and

John Van Tassel. Experience with embedding hardware description languages in

HOL. In IFIP Transactions on Theorem Provers in Circuit Design (Nijmegen, The

Netherlands, 1992), pages 129-156. North-Holland, New York, 1992.

[11] Jerry Burch and David Dill. Automatic verification of pipelined microprocessor con-

trol. In Computer Aided Verification, CAV'94 (Stanford, 1994), LNCS, v. 818, pages

68-80. Springer, New York, 1994.

[12] Girard Buskes and Arnoud van Rooij. Topological Spaces: from distance to neighbor-

hood. Springer, New York, 1997.

[13] Koen Claessen and David Sands. Observable sharing for functional circuit description.

In Advances in Computing Science - ASIAN'99 (Phuket, Thailand, 1999), LNCS, v.

1742, pages 62-73. Springer, New York, 1999.

[14] Koen Claessen and Mary Sheeran. A tutorial on Lava: A hardware de-

scription and verification system. Revised: April 7th, 2000. Available:

http://www.cs.chalmers.se/Cs/Grundutb/Kurser/svh [Viewed: August - 9th,

2000].

[15] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model

checking. In Computer Aided Verification, CAV'93 (Elounda, Greece, 1993), LNCS,

v. 697, pages 450-462. Springer-Verlag, New York, 1993.

[16] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and ab-

straction. ACM Transactions on Programming Languages and Systems, 16(5):1512-

1542, 1994.

[17] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,

Cambridge, 1999.

[18] Byron Cook, John Launchbury, and John Matthews. Specifying superscalar

microprocessors in Hawk. Workshop on Formal Techniques for Hardware and

Hardware-like Systems, FTH'98 (Unpublished, Marstrand, Sweden, 1998). Available:

http://www.cse.ogi.edu/PacSoft/projects/Hawk/papers [Viewed: August 10th,

2000].

[19] Nancy Day, Jeffrey Lewis, and Byron Cook. Symbolic simulation of microprocessor

models using type classes in Haskell. Technical Report CSE-99-005, Oregon Graduate

Institute, Computer Science Department, Portland, Oregon, 1999.

183

[20] Nancy A. Day, Mark D. Aagaard, and Byron Cook. Combining stream-based and

state-based verification techniques for microarchitectures. To appear in proceedings

of Formal Methods in Computer Aided Design, FMCAD'OO, 2000.

[21] Marco Devillers, David Griffioen, and Olaf Muller. Possibly infinite sequences in

theorem provers: A comparative study. In Theorem Proving in Higher Order Logics,

TPHOLs'97 (Murray Hill, New Jersey, 1997), LNCS, v. 1275, pages 89-104. Springer,

New York, 1997.

[22] Keith Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer-

Verlag, New York, 1993.

[23] Conal Elliott and Paul Hudak. Functional reactive animation. In International Con-

ference on Functional Programming, ICFP'97 (Amsterdam, The Netherlands, 1997),

pages 263-273. ACM Press, New York, 1997.

[24] E. Allen Emerson and Richard J. 'Irefler. From asymmetry to full symmetry: New

techniques for symmetry reduction in model checking. In Correct Hardware Design

and Verification Methods, CHARME'99 (Bad Herrenalb, Germany, 1999), LNCS2 v.
1703, pages 142-156. Springer-Verlag, New York, 1999.

[25] Jacob Frost. A case study of co-induction in Isabelle. Technical Report 359, University

of Cambridge, Computer Laboratory, February 1995. Revised version of CUCL 308,

August 1993.

[26] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A Short Cut to

Deforestation. In Functional Programming Languages and Computer Architecture,

FPCA '93 (Copenhagen, Denmark, 1993), pages 223-232. ACM Press, New York,
1993.

[27] M. J. C. Gordon. From LCF to HOL: a short history. Revised: 2000. Avail-

able: http://www.el.earn.ae .uk/users/mj eg/papers/HolHistory .html [Viewed:

August 10th, 2000].

[28] M. J. C. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G.J. Milne and P.A. Subrahmanyam, editors, Formal Aspects

of VLSI Design, pages 153-177. North-Holland, New York, 1986.

[29] M. J. C. Gordon and eds. T. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, New York, 1993.

184

[30] Mike Gordon. The semantic challenge of Verilog HDL. In Logic in Computer Sci-

ence, LICS'95 (San Diego, 1995), pages 136-145. IEEE Computer Society Press, Los

Alamitos, 1995.

[31] David A. Greve. Symbolic simulation of the JEM1 microprocessor. In Formal Methods

in Computer Aided Design, FMCAD'9S (Palo Alto, 1998), LNCS, v. 1522, pages 321-

333. Springer, New York, 1998.

[32] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques.

MIT Press, Cambridge, 1992.

[33] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach, Second Edition. Morgan Kaufmann, San Francisco, 1995.

[34] Paul Hudak and Mark Jones. Haskell vs. Ada vs. C++ vs. Awk vs. ...: An experiment

in software prototyping productivity. Technical Report YALEUjDCSjRR-1049, Yale

University, October 1994.

[35] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to

Haskell, version 98. Revised: June 2000, by Reuben Thomas. Available:

http://www.haskell. org/tutorial [Viewed: August 10th, 2000].

[36] Steven D. Johnson. Synthesis of Digital Systems from Recursive Equations. MIT

Press, Cambridge, 1984.

[37] G. Jones and M. Sheeran. The study of butterflies. Technical Report PRG-TR-14-90,

Programming Research Group, Oxford University Computing Laboratory, 1990.

[38] Geraint Jones and Mary Sheeran. Timeless truths about sequential cir-

cuits. In Concurrent Computations: Algorithms, Architectures and Technology.

Plenum Press, New York, 1988. Available: ftp: / /ftp. comlab. ox. ac. uk/pub/

Documents/techpapers/Geraint. Jones/MUFP-1-87 .ps. Z [Viewed: August 10th,

2000].

[39] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Formal Methods for

VLSI Design, pages 13-70. North-Holland, New York, 1990.

[40] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement in

Ruby. In Mathematics of Program Construction, LNCS, v. 669, pages 107-136.

Springer- Verlag, New York, 1993.

..

185

[41] Leslie Lamport. Specifying concurrent systems with TLA+. Revised: March

3rd, 1999. Available: http://www.research.digital.com/SRC/tla/papers .html

[Viewed: August 10th, 2000].

[42] Leslie Lamport and Lawrence C. Paulson. Should your specification language be

typed? ACM Transactions on Programming Languages and Systems, 21(3):502-526,

May 1999.

[43] John Launchbury. Graph algorithms with a functional flavour. In Advanced Func-

tional Programming, LNCS, v. 925, pages 308-331. Springer, New York, 1995.

[44] John Launchbury et al. Hawk release 2.2. Revised: November 22nd, 1999. Available:

http://www.cse.ogi.edu/PacSoft/projects/Hawk/ [Viewed: August 10th, 2000].

[45] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorith-

mica, 6:5-35, 1991.

[46] Jeremy Levitt and Kunle Olukotun. A scalable formal verification methodology for

pipelined microprocessors. In Design Automation Conference, DAC'96 (Las Vegas,

1996), pages 558-563. ACM Press, New York, 1996.

[47] Jeffrey Lewis, Mark Shields, Erik Meijer, and John Launchbury. Implicit parame-

ters: Dynamic scoping with static types. In Principles of Programming Languages,

POPL'OO (Boston, 2000), pages 108-118. ACM Press, New York, 2000.

[48] Yanbing Li. HML: An innovative hardware design language and its translation to

VHDL. Master's thesis, Cornell University, 1995.

[49] Yanbing Li and Miriam Leeser. HML: An innovative hardware design language

and its translation to VHDL. In IFIP International Conference on Computer

Hardware Description Languages and their Applications, CHDL '95 (Tokyo, Japan,

1995), pages 691-696. IEEE, New York, 1995. Revised: June 18th, 1999. Available:

ftp://ftp.ece.neu.edu/pub/mel/hml/paper [Viewed: August 10th, 2000]. ISBN:
4930813670.

[50] Carl Johan Lillieroth and Satnam Singh. Formal verification of FPGA cores. Nordic

Journal of Computing, 6(3):299-319, October 1999.

[51] N. A. Lynch and M. R. Tuttle. An introduction to Input/Output Automata. CWI

Quarterly, 2(3):219-246, 1989.

..

1521 John Matthews. Recursive function definition over coinductive types. In Theorem

Proving in Higher Order Logics, TPHOLs799 (Nice, France, 1999), LNCS, v. 1690,

pages 73-90. Springer, New York, 1999.

[53] John Matthews and John Launchbury. Elementary microarchitecture algebra. In

Computer Aided Verification, CAV799 (Trento, Italy, 1999), LNCS, v. 1633, pages

288-300. Springer, New York, 1999.

[54] John Matthews and John Launchbury. Elementary microarchitecture algebra: Top-

level proof of pipelined microarchitecture. Technical Report CSE-99-002, Oregon

Graduate Institute, Computer Science Department, Portland, Oregon, March 1999.

[55] John Matthews, John Launchbury, and Byron Cook. Microprocessor specification

in Hawk. In International Conference on Computer Languages, ICCL798 (Chicago,

1998), pages 90-101. IEEE Computer Society, Los Alamitos, 1998.

[56] William McCune and Larry Wos. Otter-the CADE-13 competition incarnations.

Journal of Automated Reasoning, 18(2):211-220, April 1997.

[57] K. L. McMillan. Verification of an implementation of Tomasulo's algorithm by com-

positional model checking. In Computer Aided Verification, CAV798 (Vancouver, BC,

Canada, 1998), LNCS, v. 1427, pages 110-121. Springer, New York, 1998.

[58] Ken L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston,

1993.

[59] Ken L. McMillan. Circular compositional reasoning about liveness. Technical Report

1999-02, Cadence Berkeley Labs, Cadence Design Systems, 1999.

[60] Ken L. McMillan. A methodology for hardware verification using compositional model

checking. Technical Report 1999-03, Cadence Berkeley Labs, Cadence Design Sys-

tems, 1999.

[61] Ken L. McMillan. Verification of infinite state systems by compositional model check-

ing. Technical Report 1999-01, Cadence Berkeley Labs, Cadence Design Systems,

1999.

[62] T. F. Melham. Abstraction mechanisms for hardware verification. In VLSI Spec-

ification, Verification and Synthesis, pages 129-157. Kluwer Academic Publishers,

Boston, 1988.

[63] T . F. Melham. Automating recursive type definitions in higher order logic. In Current

Trends in Hardware Verification and Automated Theorem Proving, pages 341-386.

Springer-Verlag, New York, 1989.

[64] T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge University

Press, New York, 1993.

[65] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87:209-220, 1991.

[66] Paul Miner. Hardware Verification Using Coinductive Assertions. PhD thesis, Indiana

University, 1998.

[67] J. Strother Moore. Symbolic simulation: An ACL2 approach. In Formal Methods

in Computer Aided Design, FMCAD798 (Palo Alto, 1998), LNCS, v. 1522, pages

334-350. Springer, New York, 1998.

[68] Olaf Miiller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. HOLCF =

HOL + LCF. Journal of Functional Programming, 9:191-223, 1999.

[69] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle's logics: HOL. Revised: October 31st, 1999. Available:

http: //www . cl . cam. ac .uk/Research/HVG/Isabelle/docs .html [Viewed: Au-

gust loth, 20001.

[70] John OIDonnell. From transistors to computer architecture: Teaching functional

circuit specification in Hydra. In FPLE'95, Functional Programming Languages in

Education, LNCS, v. 1022, pages 195-214. Springer, New York, 1995.

[71] John O'Leary, Xudong Zhao, Rob Gerth, and Carl-Johan H. Seger. For-

mally verifying IEEE compliance of floating-point hardware. Intel Tech-
nology Journal [Online], 1999. Revised: First quarter, 1999. Available:

http : //developer. intel . com/technology/it j / [Viewed: August 18th, 20001.

(Note that this online journal does not have individual page numbers or give vol-

urnelissue number for this title).

[72] Soner 0nder and Rajiv Gupta. Automatic generation of microarchitecture simula-

tors. In IEEE International Conference on Computer Languages, ICCL798 (Chicago,

1998), pages 80-89. IEEE Computer Society, Los Alamitos, 1998.

[73] Lawrence Paulson. Isabelle: A Generic Theorem Prover. LNCS, v. 828. Springer-

Verlag, New York, 1994.

[74] Lawrence C. Paulson. The Isabelle reference manual. Revised: October 31st, 1999.

Available: http : //www . cl . cam. ac . uk/Research/HVG/Isabelle [Viewed: August

loth, 20001.

[75] Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.

Journal of Logic and Computation, 7(2):175-204, April 1997.

[76] Simon L. Peyton Jones et al. Haskell 98: A non-strict, purely functional language.

Revised: February ls t , 1999. Available: http : //www . haskell . org/onlinereport
[Viewed: August 10th) 20001.

[77] Simon L. Peyton Jones and And+ L. M. Santos. A transformation-based optimiser

for Haskell. Science of Computer Programming, 32(1-3):3-47, September 1998.

[78] Prover Technology AB. NP-tools 2.4: A commercial propositional validity checker and

satisfaction algorithm. Revised: 2000. Available: http : //www . prover. corn [Viewed:

August loth, 20001.

[79] 0. Rasmussen. Formalising Ruby in Isabelle ZF. In L. C. Paulson, editor, Proceedings

of the First Isabelle Users Workshop, Tech. Report 379, pages 246-265. University of

Cambridge, September 1995.

[go] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, third

edition, 1976.

[81] John Rushby and David W. J . Stringer-Calvert. A less elementary tutorial for the

PVS specification and verification system. Technical Report SRI-CSL-95-10, SRI

International, Menlo Park, CA, June 1995. Revised, July 1996.

[82] J. Sawada and W. A. Hunt. Processor verification with precise exceptions and spec-

ulative execution. In Computer Aided Verification, CAV'98 (Vancouver, BC, 1998),

LNCS, v. 1427, pages 135-146. Springer, New York, 1998.

[83] J. Saxe and S. Garland. Using transformations and verifications in circuit design.

Formal Methods in System Design, 4(1): 181-210, 1994.

[84] R. Sharp and 0. Rasmussen. An introduction to Ruby. Teaching Notes ID-U: 1995-

80, Dept. of Computer Science, Technical University of Denmark, 1995.

[85] R. Sharp and 0. Rasmussen. The T-Ruby design system. In Computer Hardware

Description Languages and their Applications, CHDL '95 (Tokyo, Japan, 1995)) pages

587-596. 1995. Available: f tp : //f tp. it. dtu. dk/pub/Ruby/chdl95 .ps . Z [Viewed:

August loth, 20001.

[86] M. Sheeran. Retiming and slowdown in Ruby. In The Fusion of Hardware Design and

Verification (Glasgow, Scotland, 1988), pages 289-308. North-Holland, New York,

1988.

[87] K. Slind. Derivation and use of induction schemes in higher-order logic. In Theorem

Proving in Higher Order Logics, TPHOLs797 (Murray Hill, New Jersey, 1997), LNCS,

v. 1275, pages 275-290. Springer, New York, 1997.

[88] Konrad Slind. Function definition in higher order logic. In Theorem Proving in Higher

Order Logics, TPHOLs796 (Turku, Finland, 1996), LNCS, v. 1125, pages 381-398.

Springer-Verlag, New York, 1996.

[89] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199-204, April 1997.

[go] Robert D. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[91] Norbert Volker. Disjoint sums over type classes in HOL. In Theorem Proving in

Higher Order Logics, TPHOLs799 (Nice, France, 1999), LNCS, v. 1690, pages 5-18.

Springer, New York, 1999.

[92] Philip Windley and Michael Coe. A correctness model for pipelined microprocessors.

In Theorem Provers in Circuit Design, TPCD'94 (Bad Herrenalb, Germany, 1994),

LNCS, v. 901, pages 33-51. Springer-Verlag, New York, 1995.

Biographical Note

John Matthews was born in 1967, in Corvallis, Oregon. He received his B.S. degree

in Computer Science, Math, and Statistics from the University of Washington in 1990.

He then worked for five years at Hewlett-Packard Company as a software engineer. He

returned to school at the Oregon Graduate Institute in 1995, pursuing a Ph.D. degree in

Computer Science.

	200010.matthews.john to p. 90.pdf
	200010.matthews.john to p. 190.pdf

