
COMPUTING WITH NANOSCALE DEVICES - LOOKING

AT ALTERNATE MODELS

Karthikeyan VijayaRamachandran

B.E., Sri Chandrasekhrendra Saraswati Viswa Maha Vidyalaya (2002)

A thesis presented to the faculty of the

OGI School of Science & Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Master of Science

In

Electrical and Computer Engineering

May 2005

The dissertation "Computing with Nanoscale Devices - Looking at Alternate
Models" by Karthikeyan VijayaRamachandran has been examined and approved by the
following Examination Committee:

- - # .

Dr. Daniel Harnmerstrom
Professor

Thesis Research Advisor

Dr. John Carruthers
Adjunct Professor
Intel Corporation

/ Dr. Raj Solanla
Professor

ACKNOWLEDGMENT

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I want to thank my thesis advisor Dr. Daniel Harnrnerstrom whose

help, stimulating suggestions and encouragement helped me in my research and in

writing this thesis. I am deeply indebted to Dr. John Carruthers for providing me with

suggestions and ideas throughout my research. I thank Dr. Raj Solanki for his help and

support.

Especially, I would like to give my special thanks to my parents whose patient

love enabled me to complete this work.

ABSTRACT

With modem CMOS technology likely to reach physical limits in the next decade

or so, researchers have been working on alternate approaches to continue semiconductor

scaling. This next level would be at the nanoscale, that is, electronic devices with

dimensions of a few nanometers, of a meter. This thesis represents an early step in

understanding one proposed implementation strategy for projected nanoscale devices.

Although various architectures have been proposed, the most promising and interesting is

that of a crossbar array with programmable cross points. A number of nanoscale crossbar

devices ("nanoarrays") have been demonstrated. The use of such architecture is being

researched at many levels and has yielded interesting results.

Our work aims at studying the electrical properties, efficiency and reliability of

the crossbar arrays for a particular type of memory structure. In the first phase of the

research we began by simulating the physical and electrical properties of the silicon

nanowire and testing a simple 2x2 crossbar array made of silicon nanowires. Based on

fabrication constraints obtained from real arrays, we have estimated a maximum array

size that can be achieved. In the second phase of the research we calculated the "RC"

delays for the crossbar array network. In this phase we studied two different crossbar

models - the "Molecular" model and the "Leiber" model, for estimating the delays. In the

final phase of this work we have done preliminary defects analysis of both the models

and estimated the tolerance level of the models for various defect densities.

Contents

... .. Acknowledgement iii

... Abstract iv
. . .. List of Figures vii

... 1 . Introduction 1
. . .. 1.1 Motivation -2

... 1.2 Background 3

... 1.2.1 Devices & Connectors 3

.. 1.2.2 Nanoarchitectures 5

... 1.3 Research Methodology 7

.. 1.3.1 Nanoarray Analysis 7

... 1.3.2 Model Development 7

.. 1.3.3 Simulation Models 9

.. 2 . Crossbar Arrays 11

.. 2.1 Crossbar Circuit Fabrication 12

.. 2.2 Crossbar Array Models 13

............... 2.2.1 SWNT-Based Nonvolatile Random Access Memory 14

............................... 2.2.2 Molecular Crossbar Array Architecture 16

.. 2.2.3 Leiber Model 17

... 2.2.4 Molecular Model 18

... Crossbar Circuits and Devices 20

......................... 2.3.1 Molecular Field Programmable Gate Arrays 20

2.3.2 Logic Gates and Computation f'rom Assembled

.. Nanowire Building Blocks 23

2.3.3 CMOS/Nano Co-Design for Crossbar-Based Molecular

.. Electronic Systems -23
... Simulation -27

... 3.1 Nanowire Simulation 27

... 3.1.1 Nanowire Resistance 27

.................................... 3.1.2 Simple and Comprehensive Models 28

.. 3.1.3 Simulations 29

... Simulation of Nanoarray 29

.. 3.2.1 Size of Nanoarray 29

.. 3.2.2 Crossbar Junctions per Unit area 31

.. 3.2.3 Simulations 32

... Delay Calculations 33

... 3.3.1 Leibers Model Delay 33

.. 3.3.2 Molecular Model Delay 35

.. 3.3.3 Simulations 36

... Defects Analysis 37

.. 3.4.1 Yield in Crossbar Array 37

.................................... 3.4.2 Defects Analysis with Redundancy 38

.. 3.4.3 Simulations 39

... Memory Density 39

................................... 3.5.1 Memory Density using crossbar cell 39

.. 3.5.2 Simulations 40

.. Results & Conclusions 41

... References -59

.. Appendices -62

... 6.1 Matlab Code -62

List of Figures

.. 1.3.1 Crossbar array 8

.. 2.2.1 Crossbar memory 14

.. 2.2.2 Carbon nanotube switch -16

... 2.2.3 Leiber Model -18

.................................. 2.2.4 Rotaxane switch - "Open" & "Close Configuration 19

.. 2.2.5 Molecular Model -20

... 2.3.1 " A N D gate using Molecular Crossbar 21

... 2.3.2 Molecular Latch using RTDs 21

... 2.3.3 Nanoblock 22

... 2.3.4 Crossbar Junction Device Model 24

.. 2.3.5 Crossbar Array Circuit model 25

.. 2.3.6 Decoder-Crossbar Array Memory 25

.. 3.2.1 "2 x 2" Nanoarray 30

.. 3.3.1 "Leber" Model circuit -34

... 3.3.2 "Molecular" Model circuit -36

vii

Chapter I

INTRODUCTION

With today's chip making technologies likely to reach physical limits in the next

10- 15 years, researchers are studying alternative approaches device technologies that

would allow the continued scaling of semiconductor circuits. Although current CMOS

has nano-scale aspects to it, most of its dimensions are closer to the microscale. The next

major level of scaling will be the use of nano-scale circuits with dimensions of only a few

nanometers. However, nano-scale devices as currently envisioned have significantly

more limited functionality than state of the art CMOS circuits.

Transistors are the electrical switches that form the core of CMOS circuit

technology. Being able to create nanoscale switches that are connected by nanowires

measuring a few nanometers in diameter would enable computer chips with over a trillion

transistors per square centimeter, which is several orders of magnitude more than current

CMOS technologies are likely to achieve.

Consequently there are various problems that researchers have to overcome in

order to create fully functional nano-electronic circuits. These include:

Developing a nanoscale device that is capable of acting as a non-linear switching

action;

Developing a technique to link the devices at both levels; and

Organizing the nano-switches in an architecture that is efficient, defect tolerant and

relative easy to build and program.

A promising architecture is a simple grid of rectangular nano-wires whose junctions

form tiny densely packed switching devices. The molecular-scale wires can be arranged

into interconnected, crossed arrays with non-volatile switching devices at their

crosspoints. These crossed arrays can function as programmable-logic arrays, memories

or programmable interconnects.

1.1 MOTIVATION

A standard MOSFET has three terminals: a source, drain and gate. Current flows

from the source to the drain and is controlled by the gate. When a voltage is applied to

the gate, its electric field creates a conductive channel between the source and drain that

allows current to flow, creating an elechically controlled switch. An input signal opens

the gate, switching the transistor on to create an output signal. Unfortunately, there are as

yet no real equivalent three-terminal devices at the nano-scale. However, a number of

"switches" have been proposed. Some switches use current shunting via variable

resistance molecular connections, others a crude FET made from crossed nanowires,

where one nanowire is the channel and the perpendicular nanowire becomes the gate. In a

nano-grid, each input nanowire crosses every channel, or output, nanowire.

The disadvantage of the nanowire crossbar as described above is that one input

nanowire affects all the output nanowires in the same way preventing selective

addressing of elements. Changing the resistance of the specific crossbar junctions is one

way to solve this problem. One approach is to change this resistance by chemically

modifying the junction. Groups at UCLA and HP have demonstrated molecules that

appear to exhibit several orders of magnitude changes in resistance in different states.

Another group at Harvard has demonstrated a nano-grid where they can chemically

modify specific cross point junctions in a nanowire grid.

In 2003, Hewlett-Packard Laboratories developed a method of addressing

individual junctions in a nanowire array memory device. They have described the

fabrication and testing of a molecular-electronic circuit that consists of a molecular

monolayer of rotaxanes sandwiched between metal nanowires. Each crosspoint was used

as a memory cell to create a dense crossbar memory. By varying the resistance of each

crosspoint they configured the crossbar array to function as a multiplexer and

demultiplexer which was used to read the memory elements formed by a separate

crossbar array[l].

The other grid architecture proposed by Charles Leiber and his group at Harvard

is formed by crossed nanowire Field Effect Transistor (cNW-FET) junctions, where

selective chemical modification of cross points in the arrays enables NW inputs to turn

specific FET array elements ON and OFF. The chemically modified cNW-FET arrays

function as decoder circuits, exhibit gain, and allow multiplexing and demultiplexing of

information as described in "Nanowire Crossbar Arrays as Address Decoders for

Integrated ~anos~sterns"[~~.

The Leiber Architecture has one major advantage over the Molecular

Architecture. The junctions in the HP device are made of resistors rather than transistors.

Transistors provide signal gain, meaning the output voltage is higher than the input

voltage. Because electrical signals fade, signal gain is necessary to allow signals to

propagate through circuits.

These two grid architectures form the basis of the work performed here, where we

evaluate both architectures as potential building block circuits in larger nano-grid based

systems, measuring delay and defect tolerance for the arrays aiming towards creating

memory and logic arrays.

1.2 BACKGROUND

In order to characterize these grid architectures we can divide the analysis into a

two level hierarchy composed of: (1) devices, (2) architectures. Each level of the

hierarchy consists of several devices. Although it is likely to undergo many revisions, this

hierarchy has provided a good starting point for the nanoarrays studied here.

1 2 1 DEVICES & CONNECTORS

The devices themselves constitute the lowest level of the hierarchy. A device is an

entity that can be defined as one which performs a useful action, which for the arrays

being analyzed here is generally a switch. A number of research groups are searching for

useful devices that can approximate the function of traditional 3-terminal Field Effect

Transistors (FETs) but at the nanoscale, though at the moment there is no real CMOS

transistor replacement. Likewise, nano-wires of some kind will be needed to carry the

signal between the various nano-switches. Nanoscale wires, such as carbon nanotubes

(CNTs) and silicon nanowires (SiNW) are being studied.

Carbon nanotubes. Carbon nanotubes consist of carbon atoms, rolled up to form

molecular tubes or cylinders with diameters between 1 to 20nm and length ranging from

100 nm to several microns. CNT-FET device structures have been fabricated and tested

with a standard source, drain and gate, with a CNT forming the channel.

Even though CNTs have much promise, there are many problems that need to be

solved. The biggest concerns the fabrication of CNTs. CNT fabrication is difficult to

control, and current technology produces a mixture of all types and sizes of CNTs. In

order to fabricate a specific device, the CNTs have to be sorted based on size and type,

which is not feasible for large numbers of CNTs.

Silicon nanowires. A typical SiNW typically has a diameter of 10-15 nm, and a

length of a few micrometers. Silicon nanowires are a promising candidate for use in

nano-scale circuits. One reason is that they have greater mobility compared to bulk

silicon. This characteristic is related to the quantum-confined nature of the wire, which

limits the number of available phonon states, thus reducing the number of electron

phonon scattering events.

FET structures have been fabricated using SiNW. Several geometries have been

developed including the back gate, top gate and coaxial gate, with each geometry having

its own unique I-V characteristics.

Silicon Nano-wires are a promising building block for the Cross-bar Arrays

studied in this research, and assumed for both the Molecular and Leiber array structures.

A cross bar array (or nano-grid) can be formed by placing an array of SiNWs at right

angles to another array of SiNWs, creating n2 cross-points formed in the array. The

cross-points of the arrays can be used to store information or to control the current flow

in the array. There are several advantages to a crossbar, including ease of programming.

However, the major advantage of the nano-scale cross-bar arrays is its density. And,

fabrication costs may not be exorbitant, since these arrays can be self assembled.

However, there are also disadvantages to nano-grids. The two most serious

disadvantages are unreliable operation (due to faults and defects) and speed of operation,

which will probably be much slower than that of a scaled CMOS. It is most likely that

these devices will be built on top of traditional CMOS, which can provide

communication with the outside world and signal restoration. A number of researchers

have proposed ways to connect CMOS to nano-grid structures, one example method is

proposed by Matthew M.Ziegler and Mircea ~ . ~ t a n [~ l . Recent work at OHSU's OGI

School of Science and Engineering has demonstrated a technique for growing silicon

nanowires at precise locations under a controlled environment.

Molecular Switches. Molecular memory is a term that refers to memories that are

built from a single molecule, atom or cell that stores one bit of information. The

information storage occurs with a change in the molecular configuration of the molecules

or atoms when voltage is applied, generally this can be quantified to two distinct

conduction states, representing logic '1' and logic '0'. Information is read out of the

molecular memory by measuring the resistance changes in the molecular connection.

Information storage occurs when there is a hysteresis effect between voltage and

resistance for larger voltage fluctuations. One such molecule that exhibits such a property

is catenane, which opens at 2 V, closes at 1 V, and can be read at 0.1 V. This effect is

sufficiently repeatable that the switch can be cycled open and closed many times. When

used between a metal wire and n-type silicon nanowire, the junction acts as a

programmable diode, making an addressable memory array. So far, conductance values

varying 4x between the two states have been shown.

Molecular switches can be used to build molecular-based logic gates. A thin (one

molecule) layer of rotaxane molecule, whose resistance can be significantly changed

based on its oxidation state, can be used as a switch. The closed switch configuration

exhibits a non-linear I-V characteristic. The switch can be programmed by applying

voltage in a certain range to oxidize the layer of rotaxane. But rotaxane switches have

their limitations. The switch operation is based on the principle of oxidation and since

oxidation in this case is irreversible, the switch programming is an one- time operation.

There is static current leakage in the devices fabricated using this process and only

inherently molecule-sized in one dimension.

1.2.2 NANOARCHITECTURES

The term nanoarchitecture is used here to connote a structure of multiple devices

that computes something useful, generally a logical function, or operates as a multi-

element memory, and that is built using molecular scale components. We will use

architecture to mean a nanoarchitecture in the context of the work being reported here.

According to this definition, architectures are the next structural level above devices and

basic circuits. The ITRS has suggested that a number of new, "emerging" architectures,

based on new characteristics may appear over the next two decades. Table 1.2.1

summarizes some of these emerging architectures.

3D Integration

Quantum cellular
automata

Challenges

Molecular

Advantages Architecture

Cellular
nonlinear
networks

Implementations

Quantum
computing

CMOS with
dissimilar material
systems

Arrays of quantum
dots

Less
interconnect
delay; enables
mixed
technology
solutions.

High functional
density; no
interconnects in
signal path

Intelligently
assembles
nanodevices

Supports
hardware with
defect densities >
50 %

Molecular switches
and memories

Single-electron array
architectures

Spin resonance
transistors, NMR
devices, single-flux
quantum devices

Supports
memory -based
computing

Supports
memory-based
computing

Exponential
performance
scaling, but can
break current
cr3'ptography

Heat removal; no
design tools
difficult test and
measurement

Limited fan out;
dimensional
control(1ow-
temperature
operation);
sensitive to
background charge

Requires
precomputing
testing

Limited
functionality

Subject to
background noise;
tight tolerances

Extreme
application
limitation; extreme
technology

1 I I I
Table 1.2.1 Emerging research architectures

1.3 RESEARCH METHODOLOGY

The research plan is divided into three phases. The first phase is to understand the

research area by studying the latest developments from other research. The second phase

is to study various models in order to select an efficient model for simulation. And the

third and final phase is to simulate the selected models and evaluate the models based on

delay and defect tolerance.

1.3.1 NANOARRAY ANALYSIS

The first phase for a research project is to completely understand the research

area. This work is focused on nanoscale devices and circuits specifically aimed at

building a nanoscale memory. Although we use a memory as the basic computational

model, the same grid structure can also be used to implement a programmable logic

array. The study helped clarify the memory architecture and its functionality. The next

concentration was in the area of nanoelectronics. The goal was to understand the

problems faced by the current approaches to nano-electronics. At the nanoscale we will

essentially be dealing with single molecules. Nanoscale circuits cannot be fabricated in

the same way as traditional CMOS circuits and must be self-assembled. Since we cannot

predict or control the arrangement of molecules, their function could be fully realized

only after they are completely assembled.

There are a number of different methods for creating nanoscale logic devices,

however, none of the current devices provide the capabilities of traditional CMOS. For

example, most can only realize two-terminal-rather than three terminal-transistor devices.

1.3.2 MODEL DEVELOPMENT

The second phase was to study and analyze various candidate nanoscale circuit

structures. A number of nano-electronic structures and their corresponding models have

been proposed for memory and grid-like structures. A crossbar memory architecture

seems to be the most promising and researchers are evaluating this architecture at many

levels. A number of architectures based on crossbar circuits employing two-terminal

devices have been recently suggested for memory and logic. Fig 1.3.1 shows an abstract

representation of such a crossbar, consisting of two sets of parallel nanowires crossing

perpendicularly.

Upper Phae

Bistable

Junction

Fig 1.3.1 Crossbar Array

The crossbar structure seems to have several advantages compared to other circuit

architectures, the wire dimensions can be scaled down to molecular sizes, while the

number of wires can be scaled up arbitrarily to form large-scale generic circuits that can

be configured for memory and/or logic applications. It has the potential for low-cost

fabrication and high device densities. Also it appears as if most nanogrid designs have the

potential to communicate efficiently with external circuits and systems. However, there

are also several potential drawbacks to crossbar circuits. Most of the proposed models

use two-terminal devices with no signal gain and inverting function. Another drawback is

that since the crossbar architecture is regular with wires running long distances next to

each other, there is significant interwire capacitance and even electron tunneling at the

nano-scale. Manufacturing defects are another concern, but that is universal among all

nano-electronic structures.

In this phase of the project, various architectures and models were evaluated

based on their use as a memory. The next step was to study various models of the

crossbar architecture in order to find a reasonable simulation model.

1.3.3 SIMULATION MODELS

In this third phase the model selected during the second phase was simulated. The

model simulation consisted of four steps. The first step was to simulate the electrical

characteristics of Silicon Nanowire (SiNW). The crossbar array network is created by

arrays of horizontal and vertical silicon nanowires. In order to measure the

characteristics of the crossbar array we had to start with the measurement of electrical

characteristics first of SiNW.

During this first simulation step, a model of a SiNW was created for measuring

the resistance of the nanowire. The relationship between the resistance and the length of

the SiNW and the resistance and diameter of the SiNW were studied. The range of

numerical values for length and diameter were chosen based on the typical size of a

SiNW. This simulation step gave a rough idea of the order of magnitude of SiNW

resistances. The simulation was carried out for larger dimensions to demonstrate the

range of values possible if current fabrication constraints could be overcome. The

conductivity of the S i W , which is fairly low at a nano-scale diameter has a significant

effect on the total speed of the array. If there is a way to find a SiNW with better

conductivity then that could lead to significant improvement in the size and speed of

nanoarrays.

In the second simulation step a simple crossbar array model was created, using the

nano-model developed in the first simulation step. The dimensions of the crossbar array

was 1x1 i.e. two SiNW's perpendicular to each other. Through this model the crossbar

intersection point, i.e., the crosspoint, was formed. The crosspoint is the region where the

vertical and horizontal nanowires cross each other and in which the data can be written

and read, allowing the crossbar array to be used as memory. The area occupied by the

crossbar array was calculated by simulating the model. The area was then calculated for

higher dimensions and for the largest array that could be reasonably fabricated,

considering the current fabrication constraints. In calculating the area occupied by the

array, certain assumptions were made on the pitch between SiNW's, the area of each

junction and the end dimensions of the array. The number of junctions per unit area was

calculated based on the area occupied by the crossbar array and the dimension of the

array, which has given us some interesting results.

The third simulation step was the "RC" delay calculation. For any grid structure,

the "RC" delay is one of the most import factors that determine grid performance. The

"RC" delay calculations were done on two models - 'Zeibers Model" and "Molecular

Model". The resistance values used for the delay calculation were from previous

simulations and the capacitance values used were from data obtained from Prof. Charles

Leiber (Harvard University). Two separate delay models were created corresponding to

the Leibers and Molecular models. Assumptions were made on the inductance of the

SiNW's and on the effect of coulomb blockage. The first assumption is that the

inductance of the silicon nanowire is low enough that its effect can be neglected, second

that there is no coulomb blockage at room temperature in the nanowires, and third that

the interwire pitch is large enough that there is no electron tunneling from one wire to

another. The worst case delays were calculated, i.e., the longest path for the current flow

was found for each case and then the delay for that path was estimated. The delay of each

model was studied with respect to the length and diameter of SiNW, the size of crossbar

array and the area of the crossbar array.

The fourth simulation step was a preliminary defects analysis on the crossbar

arrays. Two main defects were studied and the crossbar array area was compared before

and after introducing redundancy in the arrays. The redundancy was calculated based on

yield levels. Various array sizes were considered for the defects analysis.

During the final simulation step we have estimated memory density per cm2 of

crossbar array area. We used a standard cell containing a crossbar array with multiplexer

interconnects that can function as a memory. We used this cell to estimate the memory

densities for various memory capacities assuming a certain amount of defects rate and

compared with the density with that of a defects free crossbar memory

Chapter I1

CROSSBAR ARRAYS

This chapter describes crossbar array circuits in more detail. This chapter also

describes the primary device models used for analysis presented here, "Leibers Model"

and "Molecular model". The crossbar architecture has several advantages. First, the

dimensions of the wires can be scaled down to molecular sizes, and the array size can be

scaled up in two dimensions to form larger circuits that can be used to implement logic

andfor memory applications. Second, the addressing capacity of crossbar arrays is very

high. This characteristic of the crossbar circuits allows it to communicate efficiently with

external circuits such as CMOS. Third, the reconfigurable architecture makes

programmability easier. And finally the physical structure is very simple easing the

fabrication of crossbar circuits. In order to realize a completely functional nanoscale

memory using a crossbar array architecture, we have to require certain characteristics.

The first characteristic being reversibility, the programmable crosspoints should be able

to store both logic values and there should be reversibility in storage i.e. if a certain

crosspoint stores a logic value '0' we should be able to overwrite that with logic '1' and

vice versa many times without losing the data. In some applications a Read-Only-

Memory (ROM) is all that is required and so reversibility is not needed. To be useful, the

memory should have a detectable state change, i.e. data stored at a crosspoint should not

change until it is overwritten. Finally we should be able to integrate the memory structure

with CMOS circuitry.

2.1 CROSSBAR CIRCUIT FABRICATION

A crossbar circuit consists of two orthogonal sets of parallel aligned wires. A one

dimensional array of silicon nanowires can be fabricated using a wide variety of

techniques such as e-beam lithography, imprinting lithography or chemical self-

assembly. The nano-imprint lithography technique appears to be the most promising for

fabricating crossbar array circuits. Imprint lithography is a nanoscale processing

technique that can produce feature sizes less than 10 nm with high throughput and low

cost. Another advantage of the nano-imprinting technique over other techniques is that

the probability of fabrication defectslfaults is lower than when using high-energy

electrons under e-beam lithography, since imprinting reduces damage to circuit

components. In imprinting lithography a prepatterned mold is brought into soft contact

with a thin polymer film located on top of the substrate. By applying pressure and

increasing the temperature, the mold pattern is transferred into the polymer. The residual

polymer from the feature surface is removed and further processing can occur such as

metal deposition, etching etc. Thus nanoimprint lithography is cost-efficient, since no

sophisticated tools are required and has reasonably high throughput.

Fabricating a molecular electronic device or crossbar memory device using the

imprinting method has been proposed by a research group at HP Labs (US Patent -

6579742 - Chen; Yong (Palo Alto, CA)). Fabrication begins with at least one bottom

electrode on a substrate by forming a first layer on the substrate and then patterning the

first layer to form the bottom electrode by an imprinting technique. In the second step

the molecular switch film is deposited on top of the bottom electrode, optionally forming

a protective layer on top of the molecular switch film to avoid damage during further

processing. In the third step a polymer layer is deposited on top of the protective layer

and patterned by the imprinting method to form openings that expose portions of the

protective layer. In the final step, the top electrodes on the protective layer are connected

through the openings in the polymer layer by first forming a second layer on the polymer

layer and then patterning the second layer. Though it is still a long ways from volume

manufacturing, the above described fabrication method is one of the methods that are

being considered for fabrication of molecular crossbar array circuits.

Assuming that fabrication is possible, the next question concerns how to model

the computation performed by a crossbar array architecture for nanoscale devices and

circuits, especially for nanoscale memory. The next section summarizes the various

circuit and device models used in this research.

2.2 CROSSBAR ARRAY MODELS

A general crossbar memory is shown in Fig 2.2.1. The memory consists of two

components. The first is the actual crossbar array consisting of 16 vertical and 16

horizontal nanowires - forming a 256-bit memory circuit. At each intersection there is a

bistable molecular switch capable of storing a single bit of data. The connection between

the microscale and nanoscale is established at the binary tree multiplexer. The

multiplexers adopt some interesting architectural variations that allow them to bridge

from the micron or submicron scale of the larger sized wires to the nanowires. Each

multiplexer consists of four sets of complementary wire pairs, designed to address 24

nanowires. The scaling is logarithmic: 2'' nanowires would require only 10 wire pairs for

each multiplexer. One wire within each pair has an inverted input; for example a "0"

input sends one wire low and its complement high. Along each of the microscale wires

(the thicker wires in the figure) there are rectifying connections to the nanowires; each

pair of wires has a complementary arrangement of connections. When a certain address is

applied to the input, the multiplexer acts as a four-input AND gate so that only when all

four inputs are asserted will the nanowire go high. In this way larger memories can be

built using a minimal number of microscale wires.

1 0 1 0

Crossbar Array

I I
Fig 2.2.1 Crossbar Memory

The crossbar component of the memory architecture described above can be built

using either carbon nanotubes or silicon nanowires and hence there are two types of

crossbar arrays the Single walled carbon nanotube (SWNT) arrays and Silicon nanowire

(SiNW) arrays. The bistable molecular switch at the crosspoints or junctions can be of

two types either a single molecule that exhibits a bistable behavior or a Field Effect

Transistor (FET) obtained as a result of chemically treating the junction.

We have presented three different crossbar array models, in the first model the

crossbar array is made of carbon nanotubes and in the last two models the array is made

of silicon nanowires. We simulate and study only the two models in which the crossbar

array is made of silicon nanowires - "Leibers Model" and "Molecular Model".

2.2.1 SWNT-Based Nonvolatile Random Access ~emor~['Ol

Nanometer-diameter single-walled carbon nanotubes exhibit unique electronic,

mechanical, and chemical properties that make them attractive building blocks for

molecular electronics. Depending on diameter and helicity, SWNTs behave as one-

dimensional metals or as semiconductors, which, by virtue of their mechanical toughness

and chemical inertness, they are ideal materials for creating reliable, high-density

input/ouput (VO) wire arrays. The crossbar array using SWNTs is formed using a set of

parallel SWNTs on a substrate and a set of perpendicular SWNTs that are suspended on a

periodic array of supports. Each cross point in this structure corresponds to a device

element with a SWNT suspended above a perpendicular nanoscale wire.

The bistability of the crosspoint is realized from the interplay of the elastic

energy, which produces a potential energy minimum at finite separation (when the upper

nanotube is freely suspended), and the attractive van der Walls energy, which creates a

second energy minimum when the suspended SWNT is deflected into contact with the

lower nanotube. These two energy states correspond to well defined OFF and ON states.

A device element can be switched between these well defined OFF and ON states by

transiently charging the nanotubes to produce attractive or repulsive electrostatic forces

as shown in Fig 2.2.2. At each cross point in the array the suspended (upper) SWNT can

be either in the separated OFF state or the ON state in contact with the perpendicular

nanotube on the substrate (lower SWNT). The ON/OFF information at the crosspoint can

be easily read by measuring the resistance of the junction and, moreover, can be switched

between the OFF and ON states by applying voltages pulses at the cross point. This

crossbar array model yields a highly integrated, fast, and macroscopically addressable

nonvolatile random access memory (RAM) structure that promises significant density

and speed improvements.

One important limitation of arrays that use resistive crosspoint connections is the

possibility of spurious paths. That is, current can go both ways through such a

connection creating other, unintended paths, possibly having a vertical line turn on that

should be off.

There are several other issues that need to be considered before we could realize a

functional nonvolatile RAM using SWNT. Currently the most serious is that most

SWNT manufacturing techniques generate a random distribution of metallic and

semiconducting tubes.

Fig 2.2.2 Carbon nanotube switch

2.2.2 Molecular Crossbar Array ~rchitecture~~]. The crossbar architecture is a

general approach for molecular circuits. A molecular crossbar consists of two parallel

planes of molecular wire arrays separated by a thin chemical interlayer. The interlayer

has specific electrochemical properties. Each plane is made up of many parallel

molecular wires or nanowires and all the nanowires in each plane are of same type. The

two planes are placed in such a way that the wires in one plane cross the wires in the

other plane at right angles. At the junction points where the wires of two planes cross

each other a junction is formed. These junctions or crosspoints can be configured via

certain applied voltage levels to implement a number of switch configurations, or they

can be left unconfigured so that the junction can be treated as always "off', since there is

no electrical contact between the nanowires. These can be fabricated through chemical

self-assembly or nanoimprint lithography, both fabrication techniques are inexpensive.

This architecture is comparatively simple and can be connected to larger-scale external

circuits (conventional circuits) to provide I/0 to the molecular devices. The crossbar

circuits can be used as general programmable devices, such as PLAs, or they can be used

as large memories, where we store logic values '0' or ' 1 ' at the junctions.

2.2.3 LEIBERS MODEL - Nanowire Crossbar Arrays As Address Decoders for

Integrated ~ a n o s ~ s t e r n s ~ ~ ~

This model is based on the scalable crossed-nanowire field-effect transistor

(cNW-FET) architecture, in which each crosspoint forms a field-effect transistor. By

applying different voltage potentials to a horizontal line, each input nanowire line can

turn on and off specific output lines, with the horizontal wires creating the "gate" of the

FETs and vertical wires the "sourceldrain." This basic array structure functions as an

address decoder. The problem with spurious current paths is solved in this model since

there is no electrical connection between horizontal and vertical lines.

When a voltage is applied to a row nanowire in a crossbar array, it will affect each

of the output nanowires in the same way, which makes it difficult to perform selective

addressing of elements. Multiple effects are possible by differentiating the crosspoints so

that each input affects only specific output crosspoints in the array. This is done by

modifying the gate to create two states1. This allows the creation of an arbitrary logic

device, known as a PLA (Programmable Logic Array). A memory can also be build,

though in this case it would be Read-Only Memory, since the programming is done off-

line before the circuit is used. For example, for an array of size NxN, when one output

nanowire is turned on or off by a single input, differentiation of diagonal elements of a

square array produces an addressing code where the row nanowire M will address the

column nanowire M. This idea can be generalized to enable a small number of output

NWs if two or more inputs are used to turn on or off a given output, or similarly, a small

number of wires could address a much denser array of nanowires, as is required to bridge

between micro and nanoscale features. The cNW-FET devices and arrays were assembled

from silicon nanowire building blocks with fluid-directed assembly.

' Lieber is somewhat vague as to exactly how this modification is performed.

C h d c a l l y Liekrs Model
treated Jun -
c W - E E T

Conducting Channef

Fig 2.2.3 Leiber Model

The cNW-FET crosspoint array defines an address decoder architecture that has

the desired functionality and is reasonably scalable. This decoder can serve as an

approach for bridging between microscale wires and dense nanoscale arrays. In addition

real functioning circuits have been built in Lieber's lab. Consequently, we have chosen

this nano-grid architecture as one of the models used for simulation. The model is shown

in above Fig.2.2.3.

2.2.4 MOLECULAR MODEL - Nanoscale Molecular-Switch Crossbar ~ircuits['].

This model uses molecular cross-point devices incorporating an amphiphilic

bistable rotaxane sandwiched between two metal nanowires forming a reversible,

electrically toggled switch. Thus the basic element in the circuit is the NWIrotaxanelNW

junction formed at each crosspoint, which acts as a reversible and nonvolatile switch.

The rotaxane molecule consists of two mechanically interlocked components: a dumbbell

encircled by a ring as shown in Fig 2.2.4. The large stoppers - one hydrophobic and the

other hydrophilic - at either end of the central shaft makes the molecules amphiphilic, and

also create a large area for each molecule in a monolayer film.

Fig 2.2.4 Rotaxane switch - "Open" & "Close" Configuration

In order for the current to flow from one nanowire to another the switch

connecting the two nanowires must be "ON". In this model we calculate the total number

of junctions in the current path as the total number of junctions that are "ON" during

current flow. Thus for delay calculations we consider the resistance and capacitance of all

the "ON" junctions in the current path. This model was used for simulation. The model is

shown in Fig.2.2.5.

20

Mof ecular
S~vitch

Fig 2.2.5 Molecular Model

2.3 CROSSBAR CIRCUITS AND DEVICES

2.3.1 Molecular Field Programmable Gate ~rra~s["l . Field Programmable Gate

Arrays are reconfigurable chips that can be programmed after fabrication to implement a

desired circuit. In fact, most FPGAs today can be reprogrammed many times. Universal

logic blocks, as used in an FPGA, normally consist of Cbit look-up tables and can be

programmed to implement any arbitrary logic function of 4 bits. The programmable

switch block and interconnection network provide flexible routing channels to connect

the logic blocks into different structures. The advantage of using FPGAs is that their

flexibility allows arbitrary functions, in some cases, the ability to configure around

defects. But FPGAs have increased area-delay product due to the overhead of the storage

elements that hold the program state, as well as the "general" purpose, switchable

interconnect. The basic nano-grid architecture with molecular switches at the crosspoints

can allow the implementation of a simple "programmable logic" device. The molecular

switches in their closed state act as a diode. Such a grid array can also be used as a

memory. Fig 2.3.1 shows the implementation of an AND gate using the molecular model

crossbar. One disadvantage of the diode-resistor logic is the lack of signal restoration. A

molecular latch based on molecular resonant tunneling diode (RTDs) can be used for

voltage restoration and VO isolation. Fig 2.3.2 shows a molecular latch using two RTDs.

Molecular Device
L I

Fig 2.3.1 "AND" gate using Molecular Crossbar

The fundamental building block of a molecular FPGA is the 2-D crossbar array.

These nanoblocks are can be viewed as universal logic blocks that can be programmed

for any logical relation between input and output bits. They can also be configured as

simple switch blocks for signal routing, though given the slower speed of molecular scale

logic, it is not clear how much routing will actually be done at the molecular scale. Fig

2.3.3 shows the schematic of a nanoblock. It is composed of three sections: (1) A

molecular logic array (MLA) is the crossbar array network with molecular switches at

crosspoints used for logic implementation; (2) the latches (inline NDRs) that are used for

signal restoration and latching at the outputs for sequential circuit implementation; and

(3) the U0 area for connecting the nanoblock to its neighboring blocks through switch

blocks.

The molecular F'PGA is fault tolerant because of its inherent redundancy and

regularity, and its rich interconnect capabilities. The impact of a fault is limited to a small

portion of the FPGA or even a small portion of a nanoblock. At this point, the molecular

self-assembly process appears as if it will only be useful for implementing regular,

periodic structures. The fundamental component of the molecular FPGA, the molecular

switch, can be programmed without extra control signals and can hold its state without

extra memory elements. Since the switch behaves like a diode in its ON state, it is

suitable for resistor-diode type of logic. The molecular F'PGA is promising for realizing

functional circuits from molecular-scale devices.

OiP are latched by
inl b e M3Rs that also
restore signals with

Fig 2.3.3 Nanoblock

2.3.2 Logic Gates and Computation from Assembled Nanowire Building locks['^].

Semiconductor nanowires (NWs) can be used for assembling a range of nanodevices

including FETs, p-n diodes, bipolar junction transistors and complementary inverters.

NW devices can be assembled in a predictable manner because of the electronic

properties and dimensions of the NWs can be precisely control during synthesis.

A nanoscale p-n junction and arrays of these junctions can be assembled using p-

type silicon (p-si) and n-type gallium nitride (n-GaN) NWs. The p-n junction and FET

mays can be configured as OR, AND, and NOR logic gates with gain. Current-voltage

measurements show that these p-n junction devices exhibit the current rectification

characteristics of p-n diodes with a typical turn-on voltage of about 1 . 0 ~ . A nanoscale

FET, specifically a p-channel FET with both a nanoscale conducting channel and a

nanoscale gate, can be formed using n-type gallium nitride and p-type silicon crossed

NW structure. And due to the small gate area, they will switch fairly quickly, though

because of slow interconnect that may not be as useful as we would like.

These structures are called crossed NW FETs (cNW-FETs). The current-voltage

data measurements on cNW-FET show a large decrease in conductance with increasing

gate voltage. Thus logic devices can be made by use of the primary diode and FET

devices. A two-input OR gate can be assembled using a 2(p) by l(n) crossed p-n junction

array with the two p-Si NWs as inputs and the n-GaN NW as the output. Similarly an

AND gate can be assembled using 1 (p-Si) by 3 (n-GaN) multiple junction array. Also a

logic NOR gate can be assembled by using a 1 (p-Si) by 3 (n-GaN) cNWFET array. The

controllable electronic characteristics and reproducible properties of the assembled SiNW

devices make it possible to realize various logic circuits at nanoscale.

2.3.3 CMOS/Nano Co-Design For Crossbar-Based Molecular Electronic

~ ~ s t e r n s [' ~ ~ . A crossbar junction device model is shown in Fig 2.3.4. The model consists

of diodes representing the on-state behavior and the off-state behavior, respectively, in

parallel with a parasitic junction capacitance. The model can be switched to the on state

by applying a voltage bias (Vd) greater than the on-state threshold (VthresON). In the on

state, the device follows the behavior of the diode on the left branch of the circuit.

Similarly by applying a reverse voltage bias greater than the threshold, causes the device

to follow the behavior of the diode in the right branch of the circuit. This model can

mimic variety of crossbar junction devices based on the threshold values and junction

capacitances.

A circuit model of a crossbar network is show in Fig 2.3.5. This crosspoint circuit

has an input vector that is applied to the rows and the output vector is generated by the

columns. R, represents the lumped resistance of the row nanowire and the contact

resistance at the input. The resistance Rw represents the lumped column nanowire

resistance and contact resistance. The resistance R@ represents the pull down resistance

added to the circuit. A single crosspoint can be selected in the circuit by applying a logic

"1" to the selected row and a logic "0" to the nonselected rows and the column outputs

are placed at logic "0". The state of the selected junction is determined by the output

voltage or by the output current leaving the selected column.

Fig 2.3.4 Crossbar Junction Device Model

Fig 2.3.5 Crossbar Array Circuit model

Fig 2.3.6 Decoder-Crossbar Array Memory

Since the crossbar array has poor signal restoration by itself it cannot be used for

memory or logic. A decoder/crosspoint array combination provides the framework for

addressing memory for data storage as well as memory based logic, decoders using

stochastic computational elements or stochastic decoders were suggested for this purpose.

Fig 2.3.6 shows a three-input decoder combined with a crossbar array for implementing a

memory. The diode-resistor logic of the crossbar array does not include an inversion

function hence both the address signals and their complements are needed. The circuit is

a look-up table consisting of rows of diode-resistor AND gates forming the decoder and

columns of diode-resistor OR gates forming the memory array. Interfacing between

CMOS and nanoscale circuitry is important and creates problems due to the difference in

the signal levels of two circuits. The input signal swing for the crossbar technology will

most likely be different than the operating voltage levels for the CMOS, hence we need to

use CMOS level shifters to drive the decoder address lines. Also sense amplifiers are

needed to restore the crossbar output signal to CMOS voltage levels.

There are numerous possibilities for assembling circuits and devices at nanoscale.

The circuits and devices presented above are examples of circuits that can be built using

crossbar arrays made of SiNWs. We have presented circuits and devices that are

necessary for realizing a nanoscale memory.

Chapter I11

SIMULATION

This chapter describes simulation of the crossbar array network. The simulations

were carried out in a step-by-step manner with increasing level of detail at each step. The

first step was the simulation of a silicon nanowire and the study of its electrical

characteristics. The next step was the simulation of a simple crossbar array made of

silicon nanowires with crosspoints. Complexity was then added by increasing the size of

the crossbar array. The next step was to add the "RC" delay calculations to the crossbar

array simulations. The delay calculations were done on two models "Leibers" model and

"Molecular" model.

3.1 NANOWIRE SIMULATION

In this first simulation step the electrical characteristics of a silicon nanowire were

modeled. The primary goal of this step was to get a rough order of magnitude estimate of

silicon nanowire electrical resistance.

3.1.1 Nanowire Resistance The resistance of the silicon nanowire was calculated using

the general resistance formulae,

R = (p x L) / A

A = I I X D ~ / ~

Where,

R - Resistance of the nanowire

p - Resistivity of the nanowire

L - Length of the nanowire

A - Area of the nanowire

D - Diameter of the nanowire

We used conservative estimates of the parameters and calculated the highest

possible silicon nanowire resistance. A simple model was created which computes

nanowire resistance for a given length and diameter of wire. As with the entire

simulation, this model was implemented in MATLAB ("Expo-nanowire.mV is the

MATLAB listing of the model). A typical nanowire diameter is of the order of 10 - 15

nm and the typical length of a nanowire is on the order of 15 ym. The resistivity of a

typical silicon nanowire was found experimentally to be of the order of 10 ohm-cm. By

using worse case parameters, the silicon nanowire resistance was determined to be

8 .4848~ '~ ohms.

3.1.2 Simple and Comprehensive Models. The next step during this simulation was

to study the range of nanowire resistance for nanowires of various dimensions. The fxst

case considered was determine the resistance of nanowires for varying nanowire

diameters. In this case the length of the nanowire was kept constant at 10 ym, which is

the average length of the fabricated nanowires, and the diameter of the nanowire was

varied from 5 to 20 nm with 2 nm increments. The resistivity was maintained at a

constant 10 ohm-cm. This model is described in "Exp 1-nanowire.m9', both textual and

graphical outputs of the model have been generated.

The next case considered was the resistance of nanowires for various lengths. In

this case the diameter of the nanowire was kept constant at 10 nm, the average diameter

of real nanowires, and the length of the nanowire was varied from 1 to 20 ym with 2 pm

increments. The resistivity was maintained constant at 10 ohm-cm. This model is

described in "Exp 1 - 1 nan0wire.m.". The objective of the above study was to obtain the

range of nanowire resistances for typical lengths and diameter of nanowires. The range

for resistance for the first case was 5 0 . 9 3 ~ ' ~ to 3 . 1 8 3 ~ ' ~ ohms and for the second case

were 1 . 2 7 3 ~ ' ~ to 25 .465~ '~ ohms. A comprehensive model that calculates resistance for

various combinations of length and diameter of nanowire is described in

"Exp2-nan0wire.m". The comprehensive model calculates nanowire resistance for

nanowire lengths 1 - 20 ym and nanowire diameters 5 - 25nm. The difference between

the simple model and the comprehensive model is that the latter calculates, for each

length of the nanowire, the resistance of the nanowire for a range of nanowire diameters.

A similar model that calculates, for each diameter of the nanowire, the resistance of the

nanowire for a range of nanowire lengths is described in "Exp2-1-nan0wire.m'.

3.1.3 Simulations. Using the comprehensive models we were able to vary the

resistivity, length and diameter of the nanowires simultaneously. The length was varied

between 1 pm and 20 pm and the diameter of the nanowire was varied between 5 nm and

25 nm. A summary of the simulation results is presented in the results chapter.

3.2 SIMULATION OF NANOARRAY

The first simulation step gave us an approximate nanowire electrical resistance for

a range of physical parameters. The next step was to simulate an array of multiple silicon

nanowires. In this simulation step we estimated the length of the nanowires for various

sized arrays, crossbar array area, and number of crossbar junctions per unit area. From

these data we could then estimate the maximum crossbar array size and the

corresponding array area.

3.2.1 Size of Nanoarray.

The size of the nanoarray can be calculated from the number of row and column

nanowires. For example a nanoarray of size "2 x 3" has "2" row nanowires and "3"

column nanowires. Nanoarrays can be either symmetric (the same number of inputs as

outputs) or asymmetric (the numbers of input and outputs differ). For simplicity, we

have only simulated symmetric nanoarrays. The length of the nanowire changes with the

size of the nanoarray. We have created a simple model for calculating the length of the

nanowire for various sized nanoarrays. The model takes into consideration the length of

the crossbar array junction and the nanowire pitch, i.e., the distance between the centers

of parallel nanowires. Also, the model includes extra wire length for creating contacts to

external, CMOS, circuitry. The crossbar array is shown in Fig 3.2.1. The model is

described in "Exp3-nanoarray.mV. This model calculates the length and resistance of the

row and column nanowires. In the case of symmetric nanoarrays the length and resistance

of row and column nanowires will be the same, but the model can also calculate the

length and resistance of row and column nanowires for non-symmetric arrays.

C r u s h junction

I I

Fig 3.2.1 "2 x 2" Nanoarray

We have made certain assumptions on the lengths of the end contacts and the

diameter. The length of the end contact was assumed to be 50 nm, the diameter of the

nanowire was assumed to be 15 nm and the pitch was assumed to be, twice the diameter

of the nanowire, 30 nm. Thus the length of the row and column nanowires can be

calculated as follows,

Lcol = 2 * Lend + i * D + ((i - 1) * NWpitch)

L, = 2 * Lena + j * D + (Cj - 1) * NWpitch)

Where,

Lcol = Length of column nanowire

Lo, = Length of row nanowire

Lend = Length of end contact

i = Number of rows

j = Number of columns

NWpikh = Distance between two adjacent nanowires or nanowire

pitch

Thus after calculating the lengths of row and column nanowires the resistance of

the nanowires can be calculated using the formulae from the previous simulation step.

We have assumed a nanowire pitch of twice the diameter of the nanowire, which should

eliminate any possibility of electrons tunneling between adjacent nanowires.

3.2.2 Crossbar Junctions per unit area.

At each intersection of row and column nanowires a crossbar junction is formed.

The crossbar junction of the n a n o m y is where the data can be stored and read back

through the nanowires. The number of crossbar junctions in a nanoarray can be computed

from the size of the nanoarray.

Number of crossbar junctions = i x j

Where,

i = Number of rows

j = Number of columns

Thus for a nanoarray of size "3 x 3" the total number of crossbar junctions is "9".

The number of crossbar junctions increases with the square of one dimension of the

nanoarray. We have created a model that can calculate the total crossbar area and the

number of crossbar junctions per unit area for a given nanoarray size. This model is

described in "Exp4- nanoarray.m". The model uses the following calculation,

Number of junctions per cm2 = NW / ACB

ACB = Lrow * Leo1

Where,

Njm = Number of crossbar junctions

ACB = Area of crossbar array

As a next simulation step, a model was created that can compute the above thus

showing the variation between the length and the resistance of the nanowires, the length

of the nanowire and the crossbar area, and the number of junctions per unit area. This

model is described in "Exp5-nanoarray.m9'. This model can compute the above for a

range of nanoarray sizes, we computed data for the range of nanoarray sizes between "1 x

1" and "500 x 5 0 0 . Based on the maximum length of the nanowire that can be fabricated

assuming current techniques, we have found that the largest array that can be built is "450

x 450", for which the length of nanowire is approximately 20 p m We have also

estimated a limit on the array size based on the current fan-in and fan-out limitations. The

limit was estimated based on the total voltage drop in the worst case path. The voltage

drop was estimated by, for a given supply voltage and current, calculating the total

resistance in the worst case current path.

3.2.3 Simulations. Three models were developed during this simulation step. Using

the simple model, "Exp3-nanoarray.m," we did individual simulations on different

nanoarray sizes to measure the length of the row and column nanowires. The simulated

nanoarray sizes were mostly symmetrical; we did a few simulations on asymmetrical

nanoarrays to study the variation in the row and column nanowires. The array size based

on fan-in and fan-out constraints was estimated using the model "Exp3-1-nanoarray.m".

We assumed a supply voltage of 2V and current of 100pa. We estimated the voltage drop

across the worst case path, i.e. the current flow from the first row to the last column of

the array. The maximum array size was found by having a 40% tolerance level. We

ignored the effects due to transient currents in our simulations. We found the, with the

above tolerance level, largest array size to be "205x205".

The model described in "Exp4-nanoarray.m7' was simulated for the same set

nanoamay sizes, and the number of crossbar junctions per unit area was estimated. We

studied the relation between the lengths of the nanowires and the nanoarray size using the

comprehensive model "ExpS-nanoarray.m". In order to cover the maximum space of

nanoarray sizes we performed simulations on the comprehensive model with the

nanoarray size between "1 x 1" and "500 x 50Owith increments of "15","20 and "25".

The relationship between the length of the nanowires and the crossbar array area is

exponential for symmetric nanoarrays.

Another interesting result obtained from the simulations is the behavior of the

number of crossbar junctions per unit area with crossbar array area. The number of

crossbar junctions per unit area becomes almost a constant for nanoarray sizes greater

than "350 x 350". The increase in the number of junctions per unit area after this

nanoarray size is very minimal that the increase can be neglected. This simulation step

has yielded results on the crossbar array size relationship and length of the nanowires on

the storage capacity of the arrays.

3.3 DELAY CALCULATIONS

As discussed in chapter 2, crossbar array architectures are most suited for

implementing memories. When designing with crossbar arrays it is important to the

signal delays of the arrays. We have assumed that all delay is RC and that all other types

of electrical influence (e.g., inductance, inter-wire tunneling and coulomb blockage) are

minimal. Our delay calculations are done for the two models: the "Leibers model" and

the "Molecular model". The "Molecular" model has a steady state current that flows from

one horizontal wire to another vertical wire or vice versa (depending on the "ON"

junctions). The "Leiber" model, on the other hand, is electrically isolated. In the

"Leiber" model the current flows only through the vertical wires, and there can be some

transient current during switching but there is no steady state current from horizontal to

vertical wires or vice versa.

3.3.1 Leibers Model Delay. This model is based on a scalable crossed-nanowire field-

effect transistor (cNW-FET) architecture in which each crosspoint of the crossbar bar is

modified to form a field-effect transistor, which allows specific input nanowire lines to

turn on and off specific output lines hence an input row nanowire is made to address a

single output column nanowire.

We have made certain assumptions in order to estimate the "RC" delay of this

model. The first assumption is that the conducting channels are made of typical SiNW's

with a resistivity of 10 Ohm-Cm and that the resistivity of the SiNW at the crosspoint is

0.1 Ohm-Cm. Thus the crosspoint, with low resistance, can be used to switch " O N or

"OFF' selected column nanowires by applying the lower threshold voltage. The "RC"

delay involved can be calculated from the size of the nanoarray, worst case delay was

calculated for all the cases. The model is described in "Exp6-nanoarray-1eiber.m" and

shown in Fig 3.3.1. The total "RC" delay was calculated as follows,

C-tot = (C-con * Cjun) / ((2 * Cjun) + (C-con))

R-tot = (2 * R-con) + Rjun + R-wire

Where,

R-con = Resistance of nanowire end contacts

R j u n = Resistance of crossbar junction

R-wire = Resistance of the nanowire in current path

C-con = Capacitance of nanowire end contacts

C j u n = Capacitance of crossbar junction

"Leiberw Model Equivalent Circait

Fig 3.3.1 "Leiber" Model circuit

The resistance of the nanowire in the delay path was calculated in the same

manner in which the resistance of the nanowire was calculated in first simulation step

(Refer 4.1.1 Nanowire Resistance). The length of the nanowire in the current path for the

resistance calculation was obtained as follows,

Using the above equations, the "RC" delay was calculated for different array

sizes. The worst-case delay for each case was estimated by measuring the total resistance

and capacitance in the longest delay path.

3.3.2 Molecular Model Delay. This model is based on crossbar arrays fabricated using

molecular crossbar junctions. The crossbar junction is made up of rotaxane molecules

sandwiched between Ti/Pt nanowires. Each junction acts as a reversible and nonvolatile

switch. Thus the basic difference between the "Leiber" and "Molecular" models is the

way in which the crosspoint is prepared. As described earlier there is no current flow

from a horizontal nanowire to a vertical nanowire in "Leiber" model, but in the case of

"Molecular" model the current flow is controlled by the resistance at the crosspoints with

current flowing from a horizontal nanowire to a vertical nanowire.

In order to calculate the "RC" delay for this model, we have made certain

assumptions. The resistance at a crosspoint is high when the molecular switch at the

crosspoint is "OW' and is low when the molecular switch is "ON". We assume that the

current flows to the next closest crosspoint with a lower resistance or " O N without any

delay. The " O N and "OW' resistance of the crosspoint made of Pt/rotaxane/Ti junction

is in the range of "lo6 - 5x lo8 " and "> 4x lo9 ". The model is shown in Fig 3.3.2.

The "RC" delay for this model was calculated as follows,

C-tot = (C-con * C jun) 1 ((2 * Cjun) + (C-con)

R-tot = (2 * R-con) + (Rjun * Njms) + R-wire

RC-delay = R-tot * C-tot

The resistance of the nanowire in the current path was calculated in the same

manner in which the resistance of the nanowire was calculated in first simulation step.

The length of the nanowire in the current path for the resistance calculation was obtained

as follows,

This model is simulated using "Exp6~nanoarray~molecular.m". The "RC" delay

was calculated for various nanoarray sizes and the worst-case delay was calculated for all

the cases.

Fig 3.3.2 "Molecular" Model circuit

c
u
R
R
E
N
5"

F
L
0
UP '

3.3.3 Simulations. The "Leiber" and "Molecular" models were simulated for the

array sizes of "lx 1" to "400x400. The total "RC" delay was calculated using the above

equations for the two models. The worst-case delay was calculated by measuring the

delay in the current path, which included the maximum number of crossbar junctions

(only for the "Molecular" model). For example, for an array of size "4x4" the worst-case

delay can be measured in the path - "1 1 - 12- 13- 14-24-34-44", where "1 1" indicates the

(row 1, column 1) junction. Alternatively, the worst-case delay path can also be: "1 1-21-

31-41-42-43-44". Both paths would give the same "RC" delay, since the total number of

junctions is "7". Thus, in general, current entering the first row and leaving the last

column of the nanoarray will include the maximum number of crossbar junctions in its

path and hence will produce the largest "RC" delay. The "RC" delay of both models was

plotted against the nanowire length and the total crossbar array area. The delays of both

Worst Cast Path
Rwire = Rw 1 ~RU~~-RW~+RF~~~~+RW~+R'ZF~~
Rjun = R ~ V = + R ~ + R ~ - R ~ + R ~ - ? - R ~ - C R ~

R\i7 f

f

Rtv2)*$X

R,&rj) "
c j u o b

ox 0 ox 0,1'
!

""'
Rw4

-"A,&-

$*R4

" " "
"

R?v5 R7~6
-"A,/,#- -,,A,&-

"R5 *R7

models were compared in the simulation "Exp7-newnanoarray-b0th.m". The simulation

results, delay comparisons and conclusion are presented in the results and conclusions

chapter.

3.4 Defects Analysis

When crossbar arrays are assembled, there is a possibility that the nanoscale wires

will have poor or nonexistent contacts and the switches at the crossbar junctions may not

be functioning properly. In order for the crossbar array to be fully functional, even with

the defects in the array, there must be a way to avoid the faulty wires and non-functional

junctions. But in order to avoid the defects and still function properly there must be

spares nanowires and switches which can be used. Thus a crossbar array can be designed

to tolerate the defects by both local wire sparing and array sparing. The method is similar

to the way one designs spare rows and columns in conventional DRAM memories.

3.4.1 Yield in Crossbar Array

The percentage of yield for a crossbar array can be calculated from the ratio

between the total number of crossbar junctions or crosspoints (that acts as switches) and

the number of functional crossbar junctions. For example for a crossbar array of size

"3x3",

Total Number of crossbar junctions = 3 x 3 = 9

If total number of functional CB Juns = 5

Yield = 519 * 100

-= 55%

We consider only two main causes of defects in a crossbar array, a non-functional

crosspoint i.e. the switch is either broken or shorted and hence unusable, and broken

nanowire i.e. the contact at one end of the nanowire is sufficiently poor as to be unusable.

Current research suggests that non-functional crosspoint faults occur in single digit yield

percentages and broken nanowire type faults are very unlikely. It also suggests a reliable

growth of silicon nanowires which are over 10 um i.e. silicon nanowires of lengths up to

10 - 12 um can be grown without any breaks.

In this simulation step we have performed a preliminary defects analysis on

various sized crossbar arrays based on yield percentages and crossbar area.

3.4.2 Defects Analysis with Redundancy

The term "Redundancy" can be defined as, in our case, the total number of spare

wires and junctions. The redundant nanowires present in the system are not always used.

These wires are used only used to avoid the defects, if any, in the system. The number of

redundant wires in the system is determined by the yield percentage. Redundancy is

inversely proportional to the yield percentage. But the as the number of redundant

nanowires increases the total crossbar array area also increases. Thus we need to

compensate on the crossbar array area in order to obtain a good defect tolerance.

For any crossbar array size of "m x n" and yield percentage " Y ,

Total number of crossbar juns = Nfunc = m * n

Total non-functional juns = Nnon.func= ((100 - Y) 1 100) * Nfmc)

Number of Redundant nanowires = Nredun = (Nnon-func) (U2)

Thus for any given crossbar array we can estimate the redundancy using the yield

percentage. By finding the square root of the total non-functional junctions we obtain the

number of rows and columns of the redundant crossbar array introduced into the system.

We then calculate the redundant crossbar array area by estimating the length of row and

column nanowire of the redundant array (refer 3.2.1 size of nanoarray).

Redundant Array area = Aredun = Lmw(redun) * Lcol(redun)

Total Crossbar Area = A + Aredun

Where,

Lrow(redun) = Length of row nanowire in redundant array

LcoI(redun) = Length of column nanowire in redundant array

A = Area of original crossbar array

3.4.3 Simulations

The model was simulated for array sizes between "5x5" and "600x600". The

redundancy, original crossbar array area, total crossbar array area was estimated for all

the array sizes. The total crossbar area and original crossbar array area were plotted

against the redundancy and crossbar array size. The length of the nanowire, for array

sizes greater than "255 x 255", is greater than 12 um. Thus for array sizes greater than

"255x255" we have to take into account the broken nanowire defects. Thus we

compensated for the defect by decreasing the total yield percentage. We have done four

sets of simulations array sizes between "5x5" to "255x255" with yield 90% and 95% and

array sizes between "5x5" to "505x505" with yield 80% and 85%. "Exp8-nanoarray.m"

describes the model. A summary of all the simulation results is presented in the results

and conclusions chapter.

3.5 Memory Density

Memory density can be obtained by calculating the number of bits that can be

accommodated in a unit area. In the case of crossbar array memories the memory density

is very high due to the very small occupied by the crossbar array. But to build a memory

using crossbar arrays we need to have multiplexer along with the crossbar array in order

to read and write data onto the array. Thus a crossbar memory cell can be considered to

be a combination of a definite sized nanoscale crossbar array and a microscale

multiplexer. The area occupied by the crossbar memory cell will be much higher when

compared to the area of just the crossbar array. In this simulation step we have estimated

the area of a crossbar memory cell containing a "250x250" crossbar array and a

microscale multiplexer and have calculated the number such cells that are required to

obtain memory capacities that we are using today and also have estimated the memory

density for all the cases with and without redundancy.

3.5.1 Memory density using crossbar Cell

The memory capacity of a crossbar memory cell containing a "250x250 can be

calculated as follows,

Total number of bits = 250 * 250 = 62500

Memory Capacity = 62500 1 (8*1024)

= 7.62 KB or 7.45e-3 MB

Thus one memory cell has a capacity of around 7.6 KB. Therefore the total

number of such cells required to obtain a memory capacity of 256, 5 12, 1024 and 2048

MB was calculated. Assuming a 90% yield in the crossbar array the array area with

redundancy was calculated similar to the previous simulation step (refer 3.4.1). Assuming

that the multiplexer occupies around 50 times the total crossbar area (including

redundancy) the total area occupied by the cells was estimated for each case, 256, 512,

1024 and 2048MB. The memory density was estimated as follows,

For the case of 256 MB,

Memory density = Total number of bits

Area occupied by the
cells to obtain256MB
of memory

3.5.2 Simulations

The simulation model is described in "Exp9-nanoarray.m". The model was

simulated to calculate the area of individual crossbar array cell, total area with

redundancy (with an assumed yield of 90%) and the final area including the multiplexer

area. It was also simulated to obtain the memory densities for 256, 512, 1024 and 2048

MB. The memory densities for all the cases without redundancy was found and

compared. A summary of all the simulation results is presented in the results and

conclusions chapter.

Chapter IV

RESULTS & CONCLUSIONS

This chapter summarizes the simulation results and draws some conclusions. The

Matlab models (.m files) are provided in the appendix. In total, eleven models were

developed. Each simulation made specific assumptions for the simulation parameters.

Only the more important results are presented in this chapter, other results are presented

graphically in the appendix.

Simulation # 1.1 - "R" of nanowire:

Conclusion # 1.1.1 - Typical resistance of a silicon nanowire is of the order 8.4848~+'

ohms.

Simulation Result

(Nanowire Resistance)

8 ~ " ohms

Model

Expo-nano wire .m

Input Parameters

(Assumed)

D = 15~- 'cm,

L = 1 5 ~ - ~ cm,

p = 10 ohm-cm

Simulation # 1.2 - "R" of nanowire for varying "D":

Model: "Exp 1 -nanowire .m"

Input Parameters (Assumed): L = ~ o E - ~ cm, p = 10 ohm-cm -

Observation # 1.2.1 - The nanowire resistance decreases exponentially with diameter.

Diameter

x l0I0 D(SiNW) Vs R(SiNW) for Typical L = 0.001 cm

Resistance

6

5':

4

cn
E
6 3 - z
2

1

0

I I I

-

,
- '\a,

-

-

4,. ,
- -

i

%\\.

- *-.- -
- - -*--.-.- *---.., *-.-----+-.----) -.---- *. - - - - - - +

I I I

0.5 1 1.5 2 2.5
Wcm) x 1 0 - ~

Simulation # 1.3 - "R" of nanowire for varying "L":

Model: "Exp 1- 1 -nanowire.mW

Input Parameters (Assumed): D = ~ o E - ~ cm, p = 10 ohm-cm

Length

(cm)

1 E - ~

3~~

5~~

7~~

9 ~ - ~

1 I E - ~

I ~ E - ~

1 5 ~ ~

1 7 ~ - ~

1 9 ~ - ~

Observation # 1.3.1- The nanowire resistance increases linearly with length

Resistance

(ohms)

1 E+'

4 ~ + '

6 ~ "

9 ~ "

1 1 . 5 ~ "

14E+'

1 6 . 5 ~ ' ~

1 9 ~ "

2 1 ~ "

24"

L(SiNW) Vs R(SiNW) for Typical D = 1 p006cr-n
2.5

2

n
1.5

E
6
z

1

0.5

0
0

1 I I

#+

,

- -

- -

,d=
, - I -

,+-
I

8

,+'
- , -

+ '
, ,

I

)LC

I I I

0.5 1 1.5 2

Simulation # 1.4 - Nanowire Simulation (Comprehensive model)

Model: "Exp2-nanowire.m7'

Resistance

(ohms)

5 ~ "

1 .5~"

7.5~'"

4.4~'"

2.8~'"

2 ~ ' ~

3~" '

1E+l0

4 .5~"

2 .6~"

1 .7~+'

1.2~+'

5.6E+lU

1.7~'"

8 .2~"

4 .8~+ '

3. 1 ~ "

2 . 2 ~ + ~

8.E+"

2.5EC1'

1.2~"'

7E+'

4 . 6 ~ "

3 .2~"

Input Parameters

L

(cm)

(Assumed): p = 10 ohm-cm

Diameter

(cm)

5 ~ - '

9 ~ - '
1 3 ~ - ~

1 7 ~ "

2 1 ~ - '

2 5 ~ "

5~~

9~~

1 3 ~ - ~

1 7 ~ - ~

2 1 E - ~

2 5 ~ - '

5 ~ - '

9~~

1 3 ~ ~

I ~ E - ~

2 1 E - ~

2 5 ~ "

5 ~ - '

9~~

1 3 ~ - '

1 7 ~ ~

2 1 ~ - '

2 5 ~ - '

Observation # 1.4.1 - From above simulations the nanowire resistance, for diameters 10

- 20 nm and lengths 10- 15 pm, ranges between 0 .2037~ '~ and 8.1487 E+1° .

nanowire length of 20 pm, is "450x450".

Simulation # 1.5 - Size of Nanoarray

Simulation Result

"L " Array Size

20 pm 450x450

Model

Exp3-nanoarray.m

Conclusion # 1.5.1 - The maximum size of nanoarray, based on a typical maximum

Input Parameters

(Assumed)

D = 1 5 ~ ' ~ cm

p = 10 ohm-cm

Lend = ~ o E - ~ cm

NWpitch = 3 0 ~ ' ~ cm

Simulation # 1.6 - Size of Nanoarray Based on Fan-in and Fan-out

Model: Exp3-1-nan0array.m

Input Parameters(Assumed): D = 1 5 ~ ~ cm, p = 10 ohm-cm

Lend = ~ o E - ~ Cm, Wpitch = 3 0 ~ ~ ~ Cm

V = 2 V , I = 100pa

I I I I
Conclusion # 1.6.1 - The maximum array size after accounting for the fan-in and fan-out

constraints is "205x205"

Voltage Drop

(V)

1.98

Array Size

5x5

Resistance

(ohms)

1 . 9 5 ~ ' ~

Conclusion # 1.7.1 - The total number of crossbar junction per unit area for a maximum

nanoarray size of "450x450" is 4.8971 E+".

Simulation # 1.7 - Number of Crossbar Junctions per unit area

Simulation Result

" CBarea " "CBjms

/cm2 "

4.135 1E" cm2 4.897 lE'1°

Model

Exp4-nanoarray.m

Input Parameters

(Assumed)

Array size="450

x ~ ~ O " , L ~ ~ ~ = ~ O E - ~ cm,

NWPitch=30ES Cm

Simulation # 1.8 - Nanoarray Simulation (Comprehensive Model)

Model: "Exp5-nanoarray.mW

Input Parameters (Assumed): D = 1 5 ~ - ~ cm, p = 10 ohm-cm

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

405x405

455x455

505x505

Array Area

(cm2)

8 . 7 0 ~ "

6 . 4 7 ~ ~

2.30~"

4.96~- '

8.64~- '

1 . 3 3 ~ - ~

1 . 9 0 ~ - ~

2 . 5 7 ~ - ~

3 . 3 4 ~ - ~

4 . 2 2 ~ - ~

5. ~ o E - ~

L

(pm)

0.3

2.5

4.8

7

9.3

12

14

16

18

21

23

CB,, /emZ

2.8~"'

4.6~"'

4.7~"'

4.84E+1°

4.86~"'

4.87~"'

4.88~"'

4.89~"'

4.90~"'

4.90~"'

4.90~" O

Cross bar /4rea(m2) x ld6

Conclusion # 1.8.1 - The total number of crossbar junction per unit area becomes

almost constant for nanoarray sizes greater than "350x350"

Simulation # 1.9 - Leiber Model Delay

Model: "Exp6-nanoarray-1eiber.m"

Input Parameters (Assumed): D = 1 5 ~ - ~ , p = 10 ohm-cm,

R-con = 1Ef6, C-con = 1E-18 F,

R j u n = 6 . 6 6 ~ + ~ ohm, C j u n = 1E-18 F

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

Conclusion # 1.9.1 - The total "RC" delay increases with the array size. This conclusion

can be explained as the array size increases the length of the conducting channel in the

current path also increases and thus increasing the total resistance in the current path. We

can conclude that the total "RC" delay in this model is directly proportional to the length

of the conducting channel.

Delay

(sets)

5.30~-"

4 . 7 8 ~ ' ~

9.02~'"

1 .3 2 ~ - '

1.75~-'

2.17~-'

2.60~"

3.02~"

x 1 d9 Array area Vs Delay
3.5

3

2.5

-
2 -

Q) V)
V

W.
nl - g 1.5

1

0-5

I I I I I

- -
, -

I - -.--\
,>

I

3e-9sec
.*+-

- ,..-..- -2.6e-9 sec -

-. **- 2.17e-9 sec -

, -+ 1.75e-9 sec

- -
3 '- a 1 -32e-9 sec

,
- ,-- 902e-10 S ~ C -

I

-$A 4 . 8 ~ 1 1 sec -

I

,
1 1 I I I

0.5 1 1.5 2 2.5 3
Array area(un2) x 1 om6

Simulation # 1.10.1 - Molecular Model Delay

Model : "Exp6~nanoarray~molecular .m9'

Input Parameters (Assumed): D = 1 5 ~ - ~ , p = 10 ohm-cm,

R-con = 1 E + ~ , C-con = 1 ~ - ' F,

R j u n = 6 . 6 6 ~ + ~ ohm, C j u n = 1E-18 F

Delay

(sew

6.50~"

6 . 3 3 ~ "

1.20~-'

1.77~-'

2.34~"

2.90~-'

3 . 4 7 ~ '

4.04~-'

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

ld9 Array area Vs Delay

Njum

9

109

209

309

409

509

609

709

4.5

4

3.5

3
rcII

V)

$ 2.5
U1
V

h
(D
- 2 - 0"

1.5

1 -

0.5

o+

I I I I I

- -
, - .. -46

- * - - - . - * - -

- /*-* 4e-9sec -
..' . . -3.47e-gsec -

.#<.
-

, - 2.9~9 sec
- -

m ' ,. ---2.34e-9 sec
-

>+ 1.77e-9 sec
- -

F: --+ 1 -2e-9 sec
; -

6.3e-10 sec
-;

-

I I I I I

0 0.5 1 1.5 2 2.5 3
Array area(cm2) lod

Conclusion # 1.10.1 - The total "RC" delay increases with the array size. This can be

explained as the array size increases the total array area increases and the total number of

junctions in the current path also increases thus increasing the total resistance.

Simulation # 1.1 1.1 - Comprehensive Simulation

Model: "Exp7-nanoarray-b0th.m"

Input Parameters (Assumed): D = 1 5 ~ ~ , R-con = 1 ~ ' ~ ,

C-con = I E - ' ~ F, R j u n = 6 . 6 6 ~ + ~ ohm,

C j u n = 1 ~ ' ~ F,

p = 1 ohm-cm

Molecular Delay

(sets)

7 . 2 8 ~ ' ~

6 .60~- ' '
1.25~"'

1.83~-"

2.42~-"

3.01~"'

3.60~-"

4.19~-"

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

Leiber Delay

(secs)

5.97~-l2

4.84~-l1

9.08~-l

1.33~-"

1.75~-"

2.1 8 ~ " '

2.60~"'

3 . 0 3 ~ "

p = 0.1 ohm-em

p = 1 ~ ' ~ ohm-cm

Molecular Delay

(sea)

1 . 5 0 ~ "

9.40~-"

1.72~-l

2.5 1E-' '
3.30~-l1

4 . 0 9 ~ ' ~ l

4 . 8 8 ~ "

5 . 6 6 ~ ' '

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

Leiber Delay

(sea)

1 . 2 1 ~ ' ~

5.46~-lz

9.70~-"

1.40~-l '
1.81~-"

2.24~" '
2 . 6 6 ~ "

3 . 0 9 ~ ' '

Molecular Delay

(sea)

8 . 7 3 ~ ' ~

3 . 1 5 ~ "

5.43~-"

7.7 1E-lZ

9 . 9 9 ~ ' ~

1.22~-l '
1.45~" '
1 . 6 8 ~ ' '

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

Leiber Delay

(secs)

6 . 9 4 ~ - ' ~

7 . 3 6 ~ " ~

7 . 7 9 ~ ' ~ ~

8 . 2 1 ~ "

8 . 6 4 ~ " ~

9.06~-"

9.48~-l3

9.91E-l~

w Array area Vs Detay for R(Jun) =66666.6667

Array area(un2) x 3 od

Conclusion # 1.11.1 - The "Leiber" model delay is lower when compared to the

"Molecular" model delay. The delay of both models decreases slightly with increasing

values of silicon nanowire resistivity.

Simulation # 1.12.1 - Defects Analysis

Model: "Exp8-nanoarray .mw

Input Parameters(Assumed): D = 1 5 ~ ~ cm, p = 10 ohm-cm

Lend = SOE-~ crn, NWpitch = 3 0 ~ ~ ~ cm

Yield = 95%

Yield = 90%

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

Redundancy

1

12

23

35

46

57

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

Original Crossbar

Area

(cm2)

8 . 7 ~ "

6.4~- '

2 . 3 ~ - ~

5E-'

8 . 6 ~ - ~

1 . 3 ~ - ~

Redundancy

2

17

33

49

65

81

Total Crossbar

Area

(cm2)

1 E - ~

6.8~- '

2.4 E-'

5 . 2 ~ - ~

9. 1 ~ - '

1 . 4 ~ ' ~

Original Crossbar

Area

(em2)

8 . 7 ~ "

6 . 5 ~ - ~

2 .3~"

5 ~ - '

8 . 6 ~ - '

1 . 3 ~ - ~

Total Crossb Area

(cm2)

l . 2 ~ - ~

7 . 2 ~ - ~

2 .5~- '

5 . 5 ~ - '

9 . 5 ~ - '

1 . 5 ~ - ~

Yield = 85%

Yield = 80%

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

405x405

455x455

505x505

Redundancy

2

21

41

60

79

99

118

137

157

176

196

Array Size

5x5

55x55

105x105

155x155

205x205

255x255

305x305

355x355

405x405

455x455

Original Crossbar

Area

(cm2,

8 . 7 ~ "

6 . 5 ~ ~

2 .3~- '

5E-'

8 . 6 ~ '

1 . 3 ~ - ~

1 . 9 ~ - ~

2 . 6 ~ - ~

3 . 3 ~ ~

4 . 2 ~ - ~

5 . 2 ~ - ~

Redundancy

2

25

47

69

92

114

136

159

181

203

Total Crossb Area

(cm2)

1.2~- '

7 .5~-"

2 . 7 ~ ~ ~

5 . 7 ~ - ~

1 ' OE-

1 . 5 ~ ' ~

2 . 2 ~ ' ~

3 ~ - ~

3 . 8 ~ - ~

4 . 9 ~ - ~

6Ea

Original Crossbar

Area

(em2,

8 . 7 ~ " ~

6.5 E - ~

2 .3~- '

5E-

8 .6~- '

1 . 3 ~ ~

1 . 9 ~ - ~

2 . 6 ~ - ~

3 . 3 ~ - ~

4 . 2 ~ ~ ~

Total Crossb Area

(cm2

1.2~- '

7 . 9 5 ~ ' ~

2 . 8 ~ - '

6 ~ - ~

1 E - ~

1 . 6 ~ "

2 . 3 ~ - ~

3 . 1 ~ - ~

4 ~ - ~

5 E - ~

Crossbar Area [cm2] x lo4

Redundancy Vs Crossbar Area for yield =90
160

140

120

t
c Cu u
c 80
3 0

i?
60

40

20

I
*

I - ' .- .. _.-- .-
C - - - _.- _.- . -

. - -4- -*-* - .* - - - - - - .* ..a-

-
- +-:---> - -

.a- ,<- - .- .-
+ .<--;w+ - ' - . _ - _ - .' *,' - -

.+-*-* - .+, -' .'-- - +-'* -
. , , I --+ - Crossbar area (with redundancy) . , - -+ - Crossbar area (without redundancy)

A- - , , -

&'
- ,:' - + '
?$

-

1 I I 1 I

1 2 3 4 5 6

Conclusion # 1.12.1 - From above simulation results we say that a crossbar array has

better defects tolerance, for yield percentages between 80 to 95 and occupy relatively less

area, for array sizes between "255x255" and "305x305".

Simulation # 1.13.1 - Memory Density

Model: "Exp9-nanoarray .m"

Input Parameters (Assumed) : D = 1 5 ~ ' ~ cm, p = 10 ohm-cm

Lend = 5 0 ~ ~ cm, NWpitch = 3 0 ~ ' ~ cm

Yield = 95%, Multiplexer area = 50x

ARRRAY SIZE

Number of Rows 250

Number of Columns 250

Length of the Row Nanowire(cm) 0.001 1

New Length of the Row Nanowire(cm) 3.6250e-004

Total Area of the crossbar array(cmA2) 1.28 14e-006

Total Area of the crossbar array with redundancy (cmA2) 1.4 128e-006

Final Area of the crossbar array with redundancy (including multiplexer

area)(cmA2) 7.2054e-005

Number of Crossbar Junctions in 1cmA2 area 8.6740e+008

The number of "250x250" cells required for different memory capacities,

cells-256 = 36571

cells-512 = 73143

cells-1024 = 146286

cells-2048 = 29257 1

Total array area, including redundant array area and multiplexer area,

assuming multiplexer occupies 50 x of crossbar array area.

array-area-256 = 2.63 cmA2

array-area-5 12 = 5.27 cmA2

array-area- 1024 = 10.54 cmA2

array-area-2048 = 2 1.10 cmA2

mem-density-256 = 8.6740e+008 bits/cmA2

mem-density-5 12 = 8.6740e+008 bits/cmA2

mem-density- 1024 = 8.8540e+008 bits/cmA2

mem-density-2048 = 8.8540e+008 bits/cmA2

Conclusion # 1.13.1 - ern or^ density for a "250x250 array without redundancy

(including multiplexer area) is 9.56E+008 and the memory density with

redundancy(inc1uding multiplexer area) is 8.67E+8. The difference is approximated

8.9E+7 bits/cm2. Thus redundancy causes a considerable amount of loss in memory

density.

Conclusions - Based on our simulations we conclude the following

The resistance of a typical nanowire in the range of Giga Ohms

The optimal array size is "360x360, based on a typical length of the nanowire

that can be fabricated.

The optimal array size based on fan-in and fan-out constraints is "205x205".

The total number of crossbar junctions per unit area becomes almost constant for

array sizes greater than "360x360.

Based on "RC" delay simulations "Leiber" model has less delay compared to the

"Molecular" model.

A crossbar array of size between "255x255" and "305x305" has better defect

tolerance characteristics.

The redundancy when introduced in crossbar array in order to have a better defect

tolerance considerably reduces the memory density.

Chapter V

REFERENCES

Nanoscale molecular-switch crossbar circuits - Yong Chen (Quantum Sci. Res.,
Hewlett Packard Labs., Palo Alto, CA, USA;); Gun-Young Jung; Ohlberg,
D.A.A.; Xuema Li; Stewart, D.R.; Jeppesen, J.O.; Nielsen, K.A.; Stoddart, J. F.;
Williams, R.S.Nanotechnology, v 14, n 4, April 2003, p 462-8

Nanowire crossbar arrays as address decoders for integrated nanosystems -
ZhaoHui Zhong (Dept. of Chem. & Chem. Biol., Harvard Univ., Cambridge, MA, USA;);
Deli Wang; Yi Cui; Bockrath, M.W.; Lieber, C.M.Science, v 302, n 5649, 21 Nov.
2003, p 1377-9

The future of nanocomputing - Bourianog George Computer, v 36, n 8, August,
2003, p 44-53

A case for CMOS/nano co-design - Ziegler, M.M. (Dept. of Electr. & Comput. Eng.,
Virginia Univ., Charlottesville, VA, USA); Stan, M.R. IEEE/ACM International
Conference on Computer Aided Design. IEEE/A CM Digest of Technical Papers
(Cat. No.O2CH37391), 2002, p 348-52

OHSU News - http://www. ohsu. edu/news/2004/022404nano. html

Plenty of room, indeed - Roukes, M. Scientific American, v 285, n 3, September,
2001, p 42

Electronically configurable molecular-based logic gates - Collier, C. P. (Dept. of
Chem. & Biochem., California Univ., Los Angeles, CA, USA;); Wong, E.W.;
Belohradsky, M.; Raymo, F.M.; Stoddart, J. F.; Kuekes, P. J.; Williams, R.S.; Heath, J. R.
Science, v 285, n 5426, 16 July 1999, p 391 -4

Defect-tolerant Logic with Nanoscale Crossbar Circuits - Tad Hogg and
Greg Snider, HP LABS May 25 2004.

Carbon nanotube-based nonvolatile random access memory for molecular
computing - Rueckes, T. (Dept. of Chem., Harvard Univ., Cambridge, MA, USA;); Kim,
K.; Joselevich, E.; Tseng, G. Y.; Cheung, C.-L.; Lieber, C.M. Science, v 289, n 5476, 7
July 2000, p 94-7

[lo] Logic gates and computation from assembled nanowire building blocks -
Huang, Y. (Dept. of Chem., Haward Univ., Cambridge, MA, USA;); Duan, X.; Cui, Y.;
Lauhon, L.J.; Kim, K.-H.; Lieber, C.M. Science, v 294, n 5545, 9 Nov. 2001, p 1313-
I 7

[l l] CMOSInano co-design for crossbar-based molecular electronic systems -
Ziegler, M.M. (Dept. of Eng. & Comput. Electron., Univ. of Virginia, Charlottesville, VA,
USA); Stan, M.R. IEEE Transactions on Nanotechnology, v 2, n 4, Dec. 2003, p
2 1 7-30

[12] A multilevel cache memory architecture for nanoelectronics - Crawley, D.
(Dept. of Phys. & Astron., Univ. Coll. London, UK) Proceedings Ninth Great Lakes
Symposium on VLSI, 1999, p 346-7

[13] Hybrid semiconductor-molecular nanoelectronics - Likharev, Konstantin
(Department of Physics, State University of New York) Industrial Physicist, v 9, n 3,
June/July, 2003, p 20-23

[14] Stochastic assembly of sublithographic nanoscale interfaces - DeHon, A. (Dept.
of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA;); Lincoln, P.; Savage,
J.E. IEEE Transactions on Nanotechnology, v 2, n 3, Sept. 2003, p 165-74

[15] The CMOSInano interface from a circuits perspective - Ziegler, M.M. (ECE
Dept., Virginia Univ., Charlottesville, VA, USA); Stan, M.R. Proceedings of the 2003
IEEE International Symposium on Circuits and Systems (Cat. No.O3CH37430),
2003, pt. 4, p N-904-7 ~01.4

[16] Design and analysis of crossbar circuits for molecular nanoelectronics -
Ziegler, M.M. (ECE Dept., Virginia Univ., Charlottesville, VA, USA); Stan, M.R.
Proceedings of the 2002 2nd IEEE Conference on Nanotechnology (Cat.
No.O2TH8630), 2002, p 323-7

[17] Array-based architecture for FET-based, nanoscale electronics - DeHon, A.
(Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA, USA) IEEE
Transactions on Nanotechnology, v 2, n 1, March 2003, p 23-32

[18] Decoding of stochastically assembled nanoarrays - Gojman, B. (Dept. of Comput.
Sci., Brown Univ., Providence, RI, USA); Rachlin, E.; Savage, J.E. IEEE Computer
Society Annual Symposium on VLSI, 2004, p 11 -1 8

[19] A universal device model for nanoelectronic circuit simulation - Ziegler, M.M.
(ECE Dept., Virginia Univ., Charlottesville, VA, USA); Rose, G. S. ; Stan, M. R.

Proceedings of the 2002 2nd IEEE Conference on Nanotechnology (Cat.
N0.02 TH8630), 2002, p 83-8

[20] Is nanoelectronics the future of microelectronics - Lundstrom, M. (Electr. &
Comput. Eng., West Lafayette, IN, USA) ISLPED'02: Proceedings of the 2002
International Symposium on Lower Power Electronics and Design (IEEE Cat.
NO. 02TH8643), 2002, p 1 72- 7

[21] Computing with Hysteretic Crossbar Arrays - G.Snider Applied Physics A 80,
2005, p 11 65-1 172

[22] Defect-tolerant demultiplexers for nano-electronics constructed from error-
correctiong codes- Kuekes, P.J. ,Robinett, W., Seroussi, G., Stanley Williams R.
Applied Physics A 80, 2005, 11 61 -1 164

[23] Nanoelectronic Architecture - Kuekes, P.J. ,Snider, G., Hogg, T., Stanley
Williams R. Applied Physics A 80, 2005, 11 83-1 195

[24] A novel interconnection technique for manufacturing nanowire devices - Saif
Islam, M., Sharma, S., KAmins, T.I., Stanley Williams, R. Applied Physics A
80,2005, 1133-1140

MATLAB CODE

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t PHASE # 1 - Simulation of a SILICON
Nanowire ' 1
R = 0;
A = 0;
D = 15e-7;
L = 15e-4;
K = 10;
Rl-store = 0;
Dl-store = 0;
A = (pi * (DA2)) / 4; % Resistance Calculation %
R = (K * L) / A;
Rl-store = R;
Dl-store = D;
fprintf('\n\n\n\t\t\t\t S I M U L A T I 0 N # 1 - "R" of Nanowire
for a Nanowire "D" ')
fprintf('\n\n\t\tDiameter of the nanowire(cm)\n ')
disp (Dl-store)
fprintf('\n\t\tResistance of the nanowire(Ohms)\n ')
disp (Rl-store)

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t PHASE # 1 - Simulation of a SILICON
Nanowire ')
R = 0;
A = 0;
D = 0;
L = 10e-4;
K = 10;
Rl-store(1) = 0;
Dl-store(1) = 0;
count = 1;
% Resistance for Range of Diameter %
for D = 5e-7 : 2e-7: 40e-7

A = (pi * (DA2)) / 4;
R = (K * L) / A;
Rl-store(count) = R;
Dl-store (count) = D;
count = count + 1;

end
fprintf('\n\n\n\t\t\t\t S I M U L A T I 0 N # 1 - "Rw of Nanowire
for a range of Nanowire "D" ')
fprintf('\n\n\t\tDiameter of the nanowire(cm)\n ')

disp(D1-store)

fprintf('\n\t\tResistance of the nanowire(Ohms)\n ')

disp (Rl-store)
plot (Dl-store, Rl-store, 'r: * ') ;
xlabel('D(cm) ')

ylabel('R(0hms) ')
title ([D (SiNW) Vs R(SiNW) for Typical L = ', num2str (L) , cm']) ;

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t PHASE # 1 - Simulation of a SILICON
Nanowire ')
R1 = 0;
A1 = 0;
Dl = 10e-7;
L1 = 0;
K = 10;
R2_store(l) = 0;
L2_store(l) = 0;
countl = 1;
% Resistance for Range of Length %
for L1 = le-4 : 2e-4: 20e-4;

A1 = (pi * (DlA2)) / 4;
R1 = (K * L1) / Al;
R2-store (countl) = R1;
L2_store(countl) = L1;
countl = countl + 1;

end
fprintf('\n\n\t\t\t\t S I M U L A T I 0 N # 2 - "R" of Nanowire for
a range of Nanowire "L" ')
fprintf('\n\n\t\tLength of the nanowire(cm)\n\nf)
disp (L2-store)
fprintf('\n\t\tResistance of the nanowire(Ohms)\n ')

disp (R2-store)
figure (1)
plot (L2-store,R2_store, 'r:+')
xlabel('L(cm) ')
ylabel ('R(0hms) ')
title(['L(SiNW) Vs R(SiNW) for Typical D = ',num2str (Dl), 'cm']);

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\tPHASE # 1 - Simulation of a SILICON
Nanowire\nl)
R = 0;
A = 0;
D = 0;
L = le-4;
K = 10;
Rl-store(1) = 0;
Dl-store(1) = 0;
Ll-store(1) = 0;
count = 1;

countl = 1;
i = 1;
n = 1;
pt = 0;
s = 0;
% Resistance for various corninations of Length and Diameter
%
while L < 20e-4
fprintf('\n\n Length of the Nanowire(cm):',L);
disp (L)
for D = 5e-7 : 4e-7: 25e-7;

A = (pi * (DA2)) / 4;
R = (K * L) / A;
Rl-store (count) = R;
Dl-store (count) = D;
count = count + 1;

end
fprintf('\t\t Diameter of the Nanowire(cm)\n1);
disp (Dl-store)
fprintf('\t\t Resistance of the Nanowire(ohms)\nl);
disp (Rl-store)
if(i < 4)
figure (n)
subplot (2,2, i)
plot (Dl-store, Rl-storeI ' :r* ')
xlabel('D(cm) ')
ylabel ('R (Ohms) ')
A = L/le-7;
legend('L=',num2str (A) I 'nm1)
i=i+l;
else

figure (n)
subplot(2,2,i)
plot(Dl~storelRl~store~ ':r*')
xlabel('D(cm) ')

ylabel('R(0hms) ')
A = L/le-7;
legend (' L = ' num2str (A) I 'nml)
i = 1;
n = n+l;

end
count = 1;
Ll-store (countl) = L;
L = L + 5e-4;
countl = countl + 1;
Rl-store = 0;
Dl-store = 0;
End

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\tPHASE # 1 - Simulation of a SILICON
Nanowire\nl)
R = 0;

A = 0;
D = le-7;
L = 0;
K = 10;
Rl-store(1) = 0;
Dl-store(1) = 0;
Ll-store(1) = 0;
count = 1;
countl = 1;
i = 1;
n = 1;
% Resistance for various combinations of Length and
Diameter %
while D < 20e-7
fprintf('\n\n Diameter of the Nanowire(cm) :',L);
disp (D)
for L = le-4 : 4e-4: 20e-4;

A = (pi * (DA2)) / 4;
R = (K * L) / A;
Rl-store(count) = R;
Ll-store(count) = L;
count = count + 1;

end
fprintf('\t\t Length of the Nanowire(cm)\nl);
disp (Ll-store)
fprintf('\t\t Resistance of the Nanowire(ohms)\n');
disp (Rl-store)
if(i < 4)

figure (n)
subplot (2,2, i)
plot (Ll-store, Rl-store, ' :r* ')
xlabel('L(cm) ')
ylabel ('R(0hms) ')
A = D/le-7;
title (['For D=', num2str (A), 'nm'])
i=i+l;

else
figure (n)
subplot(2,2,i)
plot(L1-store,Rl-store, ':r*')
xlabel('L(cm) ')
ylabel ('R(0hms) ')
A = D/le-7;
title(['For D=',num2str(A), 'nm'])
i = 1;
n = n+l;

end
count = 1;
Dl-store (countl) = D;
D = D + 5e-7;
countl = countl + 1;
Rl-store = 0;
Dl-store = 0;

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t Phase # 1 - "L" and "R" of the SiNW for
VARIOUS SIZED ARRAYS\nr)
R-row = 0;
R-col = 0;
A = 0;
D = 15e-7;
L-row = 0;
L-col = 0;
K = 10;
no-row = 350;
no-col = 350;
% Length of Row and Column Nanowires %
L-col = (50e-7+ (no-row * 15e-7) + ((no-row-1) * 30e-7) +50e-7) + 15e-7;
L-row = (50e-7+(no_col * 15e-7)+((no-col-1) * 30e-7)+50e-7) + 15e-7;
A = (pi * (DA2)) / 4;
R-row = (K * L-row) / A;
R-col = (K * L-col) / A;
fprintf('\n\tARRRAY SIZE\nr)
fprintf('\n\t\tNumber of Rows I)
disp (no-row)
fprintf('\t\tNumber of Columns I)
disp (no-col)
fprintf('\n\t\tLength of the Row Nanowire(Cm) I)
disp (L-row)
fprintf('\n\t\tLength of the Column Nanowire(Cm) I)
disp (L-col)
fprintf('\n\t\tResistance of the Row Nanowire(0hms) I)
disp (R-row)
fprintf('\n\t\tResistance of the Column Nanowire(0hms)')
disp (R-col)

clc
clear all
fprintf('\n\t\t\t\t\t\t Size of nanoarray based on fan-in & fan-out
constraints]\nr)
R-jun = 0;
R-con = le6;
R-tot = 0;
R-wire = 0;
A = 0;
A-jun = 15e-7 * 15e-7;
L-jun = 15e-7;
D = 15e-7;
K1 = 10;
K2 = 0.1;
% Assumed Input Current and Voltage %
I = 100e-12;
v1 = 2;
count = 1;
Lwire = 0;

no-row = 5;
no-col = 5;
I-in = 1;
I-out = no-row;
while (no-row <= 400)

track = 0;
display = 0;
no-juns = 0;
x = 1; y = I-in;
while(x < I-out)

if (no-row <=8)
track (no-row, no-col) = 0;
track(x,y) = 1;

end
x = x+l;
no-juns = no-juns +l;

end
while(y <= no-col)

if (no-row <=8)
track(x,y) = 1;
display = 1;

end
y = y +l;
no-juns = no-juns +l;

end
% Length of Nanowire in Current Path %
L-wire = (50e-7+((no-juns-1) * 30e-7)+50e-7);
A = (pi * (DA2)) / 4;
% Resistance of Nanowire in Current Path %
R-wire = (K1 * L-wire) / A;
R-jun = (K2 * L-jun) / A-jun;
% Total Resistance and Volatage Drop Calculations %
R-tot = (R-con * 2) + (R-jun * no-juns) + R-wire;
V2 = I * R-tot;
V-drop = V1 - V2;
V-drop-store(count) = V-drop;
array-size-store(count) = no-row;
fprintf('\n\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows ' 1
disp (no-row)
fprintf('\t\tNumber of Columns I)

disp (no-col)
fprintf('\tCURRENT FLOW')
fprintf('\n\t\tCurrent entering col')
disp (I-in)
fprintf('\t\tCurrent leaving row I)

disp (I-out)
fprintf('\t\tNumber of crossbar junctions for current flow:')
disp (no-juns)
fprintf('\t\tTotal Resistance(0hms):')
disp (R-tot)
fprintf ('\t\tVoltage (V) : ')
disp (Vl)
fprintf('\t\tCurrent (Amps):')
disp(1)
fprintf (' \t\tVoltage Drop (V) ')

disp (V-drop)

if(disp1ay == 1)
fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE:\n\nl)
disp (track)

else
fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE WAS OMITTED TO AVOID

COMPLEXITY\n\nl)
end
no-row = no-row + 50;
no-col = no-col + 50;
I-in = 1;
I-out = no-row;
count = count + 1;
end
plot(array~size~store,V~drop~store,'r:*')

xlabel ('Array area (cmA2) ')
ylabel ('Currnet (Amps) ')
title(['Array area Vs Current'])

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t\tNumbe of the Crossbar junctions in
a given area \n')
R-row = 0;
R-col = 0;
L-row = 0;
L-col = 0;
no-row = 3;
no-col = 3;
no-cbjuns = 0;
% Length of Column and Row Nanowires %
L-col = (50e-7+(no-row * 15e-7)+((no-row-1) * 30e-7)+50e-7) + 15e-7;
L-row = (50e-7+ (no-col * 15e-7) + ((no-col-1) * 30e-7) +50e-7) + 15e-7;
no-juns = no-row * no-col;
crossbar-area = L-row * L-col;
% Number of Crossbar Junctions per unit area %
no-cbjuns = no-juns/crossbar-area;
fprintf('\n\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows ' 1
disp (no-row)
fprintf('\t\tNumber of Columns ')

disp (no-col)
fprintf('\n\t\tLength of the Row Nanowire(cm)
disp (L-row)
fprintf('\n\t\tLength of thecolumn Nanowire(cm) ')
disp (L-col)
fprintf('\n\t\tTotal Area of the crossbar array(cmA2) ')

disp(crossbar-area)
fprintf('\n\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t Phase # 1 - "L" and "R" of the SiNW for
VARIOUS SIZED ARRAYS\nl)
R-row = 0;
R-col = 0;
A = 0;
D = 15e-7;
K = 10;
L-row = 0;
L-col = 0;
Lrow-store = 0;
Lcol-store = 0;
Rrow-store = 0;
Rcol-store = 0;
CBjuns-store = 0;
CBarea-store = 0;
count = 1;
no-cbjuns = 0;
i = 1;
j = 1;
no-row = 5;
no-col = 5;
% Length and Crossbar junctions per unit area for various
array sizes %
while (no-row <= 560 & no_co1<560)

L-col = (50e-7+(no-row * 15e-7)+((no-row-1) * 30e-7)+50e-7);
L-row = (50e-7+ (no-col * 15e-7) + ((no-col-1) * 30e-7) +50e-7) ;
A = (pi * (DA2)) / 4;
R-row = (K * L-row) / A;
R-col = (K * L-col) / A;
no-juns = no-row * no-col;
crossbar-area = L-row * L-col;
no-cbjuns = no-juns/crossbar-area;
Lrow-store(count) = L-row;
Rrow-store (count) = R-row;
Lcol-store(count) = L-col;
Rcol-store(count) = R-col;
CBjuns-store(count) = no-cbjuns;
CBarea-store(count) = crossbar-area;
fprintf('\n\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows)
disp (no-row)
fprintf('\t\tNumber of Columns l)
disp (no-col)
fprintf('\n\t\tLength of the Row Nanowire(Cm) l)
disp (L-row)
fprintf('\n\t\tLength of the Column Nanowire(Cm)')
disp (L-col)
fprintf('\n\t\tResistance of the Row Nanowire(0hms) l)
disp (R-row)
fprintf(l\n\t\tResistance of the Column Nanowire(0hrns)')
disp (R-col)
fprintf('\n\t\tTotal Area of the crossbar array(cmA2) ')

disp (crossbar-area)
fprintf('\n\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)
no-row = no-row + 50;
no-col = no-col + 50;
i = i+l;
j = j+l;
count = count + 1;

end
figure (1)
plot (Lrow-store, Rrow-store, 'r:+')
xlabel ('L [row] (cm) ')
ylabel ('R [row] (Ohms) ')
title (['L(SiNW) Vs R(SiNW) '1) ;
figure (2)
plot(Lcol~store,Rcol~store,'r:+')
xlabel ('L [col] (cm) ')
ylabel ('R [col] (Ohms))
title(['L(SiNW) Vs R(SiNW)']);
figure (3)
plot (Lrow-store, CBarea-store, 'r : + ')
xlabel ('L (cm) ')
ylabel ('Array area (cmA2) ')
figure (4)
plot(CBarea-store,CBjuns-store)
xlabel('Crossbar Area (cmA2) ')
ylabel('No of CBjunctionsl)

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t Phase # 1 - RC Delay calculation -
LEIBER MODEL \n')
R-row = 0;
R-col = 0;
R-jun = 0;
C-jun = le-18;
R-con = le6;
C-con = le-18;
R-tot = 0;
C-tot = 0;
R-wire = 0;
R-tot-store = 0;
C-tot-store = 0;
delay-store = 0;
A = 0;
A-jun = 15e-7 * 15e-7;
L-jun = 15e-7;
D = 15e-7;
K1 = 10;
K2 = 0.1;
count = 1;
Lwire = 0;
no-row = 5;

no-col = 5;
while (no-row <= 400)

L-col = (50e-7+ (no-row * 15e-7) + ((no-row-1) * 30e-7) +50e-7) ;
L-row = (50e-7+(no_col * 15e-7)+((no-col-1) * 30e-7)+50e-7);
A = (pi * (DA2)) / 4;
R-row = (K1 * L-row) / A;
R-col = (K1 * L-col) / A;
no-juns = no-row * no-col;
crossbar-area = L-row * L-col;
no-cbjuns = no-juns/crossbar-area;
Lrow-store(count) = L-row;
Rrow-store(count) = R-row;
Lcol-store(count) = L-col;
Rcol-store (count) = R-col;
CBjuns-store(count) = no-cbjuns;
CBarea-store(count) = crossbar-area;
L-wire = (50e-7+ ((no-row-1) * 15e-7) + ((no-row-1) * 30e-7) +50e-7) ;

% Length of Wire in Current Path %
R-wire = (K1 * Lwire) / A;

% Resistance of Wire in Current Path %
R-jun = (K2 * L-jun) / A-jun;
R-tot = (R-con * 2) + R-jun + R-wire;

% Total Resistance in current path %
C-tot = (C-con * C-jun) / ((2 * C-jun) + (C-con));

% Total Capacitance in current path %
delay = R-tot * C-tot;

% Delay Calculation %
R-tot-store(count) = R-tot;
C-tot-store(count) = C-tot;
delay-store(count) = delay;
fprintf('\n\tARRRAY SIZE\nV)
fprintf('\n\t\tNumber of Rows ' 1
disp (no-row)
fprintf('\t\tNumber of Columns ' 1
disp (no-col)
fprintf('\t\tLength of the Row Nanowire(Cm) I)

disp (L-row)
fprintf('\t\tLength of the Column Nanowire(Cm) ')

disp (L-col)
fprintf('\t\tResistance of the Row Nanowire(0hms) ')

disp (R-row)
fprintf('\t\tResistance of the Column Nanowire(0hms)')
disp (R-col)
fprintf('\t\tTotal Area of the crossbar array(cmA2) ')
disp (crossbar-area)
fprintf('\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)
fprintf('\t\tTotal Resistance(0hms):')
disp (R-tot)
fprintf('\t\tTotal Capacitance(F):')
disp (C-tot)
fprintf('\t\tRC Delay [WORST CASE] (sets):')
disp (delay)
no-row = no-row + 50;
no-col = no-col + 50;
I-in = 1;

I-out = no-row;
count = count + 1;

end
figure (1)
plot(Lrow~store1delay~storeI 'r:+')
xlabel ('L (NW) [cm] ')
ylabel ('RC Delay [secs] ')
title(['L(NW) Vs Delay'])
figure (2)
plot(CBarea~store,log(delay~st~re)~ 'r:*')
xlabel ('Array area (cmA2) ')
ylabel('Delay[LOG SCALE]')
title(['Array area Vs Delay'])
figure (3)
plot(CBarea~store1CBjuns~storeI ':r*')
xlabel('Array area(cmA2)')
ylabel('CB Juns per cmA2')
title(['No CBjuns Vs Delay'])
figure (4)
plot(CBarea-storeldelay-storeI 'r:*' 1
xlabel ('Array area (cmA2) ')
ylabel (' Delay (secs) ')
title(['Array area Vs Delay'])
disp (R-jun)
disp (L-wire)
disp (R-wire)

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t Phase # 1 - RC Delay calculation -
MOLECULAR MODEL \nl)
R-row = 0;
R-col = 0;
R-jun = 0;
C-jun = le-18;
R-con = le6;
C-con = le-18;
R-tot = 0;
C-tot = 0;
R-wire = 0;
R-tot-store = 0;
C-tot-store = 0;
delay-store = 0;
A = 0;
A-jun = 15e-7 * 15e-7;
L-jun = 15e-7;
D = 15e-7;
K1 = 10;
K2 = 0.1;
count = 1;
L-wire = 0;
no-row = 5;
no-col = 5;
I-in = 1;

I-out = no-row;
while(no-row <= 400)

L-col = (50e-7+ (no-row * 15e-7) + ((no-row-1) * 30e-7) +50e-7) ;
L-row = (50e-7+ (no-col * 15e-7) + ((no-col-1) * 30e-7) +50e-7) ;
A = (pi * (DA2)) / 4;
R-row = (K1 * L-row) / A;
R-CO~ = (K1 * L-CO~) / A;
no-juns = no-row * no-col;
crossbar-area = L-row * L-col;
no-cbjuns = no-juns/crossbar-area;
Lrow-store(count) = L-row;
Rrow-store (count) = R-row;
Lcol-store(count) = L-col;
Rcol-store (count) = R-col;
CBjuns-store(count) = no-cbjuns;
CBarea-store(count) = crossbar-area;
track = 0;
display = 0;
no-juns = 0;
x = 1; y = I-in;
while(x < I-out)

if (no-row <=8)
track (no-row, no-col) = 0;
track (x,y) = 1;

end
x = x+l;
no-juns = no-juns +l;

end
while(y <= no-col)

if (no-row <=8)
track (x,y) = 1;
display = 1;

end
y = y +l;
no-juns = no-juns +l;

end
% Length o f nanowire i n current path %
L-wire = (50e-7+ ((no-juns-1) * 30e-7) +50e-7) ;
% Resistance of nanowire i n current path%
R-wire = (K1 * L-wire) / A;
(K2 * L-jun) / A-jun;
% Total Resistance i n current path %
R-tot = (R-con * 2) + (R-jun * no-juns) + R-wire;
% Total Capacitance i n current path %
C-tot = (C-con * C-jun) / ((2 * C-jun) + (C-con));
% Delay Calculation %
delay = R-tot * C-tot;
R-tot-store(count) = R-tot;
C-tot-store(count) = C-tot;
delay-store(count) = delay;
fprintf('\n\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows ' 1
disp (no-row)
fprintf('\t\tNumber of Columns ' 1
disp (no-col)
fprintf('\tCURRENT FLOW')

fprintf('\n\t\tCurrent entering col')
disp (I-in)
fprintf('\t\tCurrent leaving row ')
disp (I-out)
fprintf('\t\tLength of the Row Nanowire(Cm) ')
disp (L-row)
fprintf('\t\tLength of the Column Nanowire(Cm) I)

disp (L-col)
fprintf('\t\tResistance of the Row Nanowire(0hms) ')
disp (R-row)
fprintf('\t\tResistance of the Column Nanowire(0hms)')
disp (R-col)
fprintf('\t\tTotal Area of the crossbar array(cmA2) ')
disp (crossbar-area)
fprintf('\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)
fprintf('\t\tNumber of crossbar junctions for current flow:')
disp (no-juns)
fprintf('\t\tTotal Resistance(0hms):')
disp (R-tot)
fprintf('\t\tTotal Capacitance(F):')
disp (C-tot)
fprintf (' \t\tRC Delay [WORST CASE] (secs) : ')
disp (delay)

if(disp1ay == 1)
fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE:\n\nl)
disp (track)

else
fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE WAS OMITTED TO AVOID

COMPLEXITY\n\nl)
end
no-row = norow + 50;
no-col = no-col + 50;
I-in = 1;
I-out = no-row;
count = count + 1;
end
figure (1)
plot (Lrow-store, delay-storef 'r : + ')
xlabel (' L (NW) [cm] ')
ylabel ('RC Delay [secs] ')
title(['L(NW) Vs Delay'])
figure (2)
plot(CBarea-store,log(delay-store)! 'r:*')
xlabel ('Array area (cmA2) ')
ylabel('Delay[LOG SCALE]')
title(['Array area Vs Delay'])
figure (3)
plot(CBarea-store,CBjuns-storef ':r*')
xlabel('Array area(cmA2)')
ylabel('CB Juns per cmA2')
title(['No CBjuns Vs Delay'])
figure (4)
plot(CBarea-store,delay-storef 'r:*')
xlabel ('Array area (cmA2) ')
ylabel ('Delay (secs) ')

title(['Array area Vs Delay'])

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t Phase # 1 - RC Delay Calculation -
LEIBER & MOLECULAR MODEL \nl)
fprintf('\n\t\t\t\t\t\t CASE # 1 Delay for current flowing from column
nanowire to row nanowire[Exits in the right]\nl)
i=l ;
R-row = 0;
R-col = 0;
R-jun = 0;
C-jun = le-18;
R-con = le6;
C-con = le-18;
R-totmol = 0;
C-totmol = 0;
R-tot-lei = 0;
C-tot-lei = 0;
R-wire-lei = 0;
R-wiremol = 0;
delay-lei = 0;
delaymol = 0;
R-tot-store-lei = 0;
R-tot-storemol = 0;
C-tot-storemol = 0;
C-tot-store-lei = 0;
delay-store-mol = 0;
delaystore-lei = 0;
A = 0;
A-jun = 15e-7 * 15e-7;
L-jun = 15e-7;
D = 15e-7;
K1 = le-3;
K2 = 0.1;
count = 1;
Lwire-lei = 0;
L-wiremol = 0;
no-row = 5;
no-col = 5;
I-in = 1;
I-out = no-row;
fprintf('\n\tRESISTANCE OF THE CROSSBAR JUNCTION(0hms) ')

disp (R-jun)

while (no-row <= 400)
L-col = (50e-7+ (no-row * 15e-7) + ((no-row-1) * 30e-7) +50e-7) ;
L-row = (50e-7+ (no-col * 15e-7) + ((no-col-1) * 30e-7) +50e-7) ;
A = (pi * (DA2)) / 4;
R-row = (K1 * L-row) / A;
R-CO~ = (K1 * L-CO~) / A;
no-juns = no-row * no-col;
crossbar-area = L-row * L-col;
no-cbjuns = no-juns/crossbar-area;

Lrow-store(count) = L-row;
Rrow-store(count) = R-row;
Lcol-store(count) = L-col;
Rcol-store(count) = R-col;
CBjuns-store(count) = no-cbjuns;
CBarea-store(count) = crossbar-area;
track = 0;
display = 0;
no-juns = 0;
x = 1; y = I-in;
while(x < I-out)

if (no-row <=8)
track (no-row, no-col) = 0;
track(x,y) = 1;

end
x = x+l;
no-juns = no-juns +l;

end
while(y <= no-col)

if (no-row <=8)
track(x,y) = 1;
display = 1;

end
y = y +l;
no-juns = no-juns +l;

end
% Molecular Model %
L-wiremol = (50e-7+((no-juns-1) * 30e-7)+50e-7);
% Leiber Model %
L-wire-lei = (50e-7+((no-row-1) * 15e-7)+((no-row-1) * 30e-7)+50e-7);

R-totmol = (R-con * 2) + (R-jun * no-juns) + R-wire-mol;
R-tot-lei = (R-con * 2) + R-jun + R-wire-lei;

delaymol = R-tot-mol * C-tot-mol;
% Molecular Model Delay %
delay-lei = R-tot-lei * C-tot-lei;
% Leiber Model Delay %

delay-store-mol(count) = delay-mol;
delay-store-lei(count) = delay-lei;

fprintf('\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows ' 1
disp (no-row)
fprintf('\t\tNumber of Columns ')
disp (no-col)
fprintf('\n\tARRRAY DESCRIPTION\n\n')
fprintf('\t\tLength of the Row Nanowire(Cm) ')
disp (L-row)
fprintf('\t\tLength of the Column Nanowire(Cm) ')
disp (L-col)
fprintf('\t\tResistance of the Row Nanowire(0hms) ')
disp (R-row)
fprintf('\t\tResistance of the Column Nanowire(0hms)')
disp (R-col)
fprintf('\t\tTotal Area of the crossbar array(cmA2) I)

disp (crossbar-area)
fprintf('\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)
fprintf('\tCURRENT FLOW\nr)
fprintf('\n\t\tCurrent entering col')
disp (I-in)
fprintf('\t\tCurrent leaving row ')
disp (I-out)
fprintf('\t\tNumber of crossbar junctions for current flow(for Mol):')
disp (no-juns)
fprintf('\tDELAY CALCULATION\n\nl)
fprintf('\t\tTotal Resistance(0hms)-Leiber:')
disp(R-tot-lei)
fprintf('\t\tTotal Resistance(0hms)-Molecular:')
disp(R-totmol)
fprintf('\t\tTotal Capacitance(F) [Molecular]:')
disp (C-totmol)
fprintf('\t\tRC Delay (secs)[Molecular]: ')
disp(de1ay-mol)
fprintf (' \t\tTotal Capacitance (F) [Leiber] : ')
disp(C-tot-lei)
fprintf (' \t\tRC Delay (secs) [Leiber] : ' 1
disp(de1ay-lei)
if (display == 1)

fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE:\n\n1)
disp (track)

else
fprintf('\t\tCURRENT FLOW MATRIX FOR THIS CASE WAS OMITTED TO AVOID

COMPLEXITY\n\nV)
end
no-row = no-row + 50;
no-col = no-col + 50;
I-in = 1;
I-out = no-row;
count = count + 1;
end
figure (i)
plot(CBarea~store,Lrow~store, 'r:*' 1
xlabel ('Crossbar Area [cmA2] ')
ylabel('L(NW) (cm)')
title(['CB Area Vs L(NW) for R(Jun) = ' ,num2str (R-jun)])
i = i+l;

figure (i)
plot (Lrow-store, Rrow-store, 'r: * ')
xlabel('L(NW) [cm]')
ylabel('R(0hms) I)

title(['L(NW) Vs R for R(Jun) =',num2str(R-jun)])
i = i+l;
figure (i)
plot(CBarea~store,CBjuns~~t~re, 'r:*')
xlabel ('Crossbar area (cmA2) ')
ylabel('Crossbar juns')
title(['CB Area Vs No of Juns for R(Jun) =',num2str(R_jun)])
i = i+l;
figure (i)
subplot (2,1,1)
plot(Lrow~store,delay~store~molI 'IS:+')
xlabel('L(NW) [cm] ')

ylabel ('RC Delay [secs] ')
title(['L(NW) Vs Delay(Molecu1ar) for R(Jun) =',num2str (R-jun)])
subplot (2,1,2)
plot(Lrow-store,delay-store-lei, 'r:+')
xlabel('L(NW) [cm]')
ylabel('RC Delay [secs] ')
title(['L(NW) Vs Delay(Leiber) for R(Jun) =',num2str (R-jun)])
i = i +l;
figure (i)
subplot (2,1,1)
plot(CBarea~store,delay~st~re~mol~ 'r:*')
xlabel ('Array area (cmA2) ')
ylabel ('Delay (secs) ')
title(['Array area Vs Delay(Molecu1ar) for R(Jun) =',num2str(R-jun)])
subplot (2,1,2)
plot(CBarea-store,delay-store-lei, 'r:*')
xlabel('Array area(cmA2)')
ylabel ('Delay (secs) ')
title(['Array area Vs Delay(Leiber) for R(Jun) =',num2str(R-jun)])
i = i + l ;
figure (i)
subplot (2,1,1)
semilogy(CBarea~store,delay~store~mol,'r:*' 1
xlabel ('Array area (cmA2) ')
ylabel('Delay[LOG SCALE]')
title(['Array area Vs Delay(Molecu1ar) for R(Jun)=',num2str(R-jun)])
subplot (2,1,2)
semilogy(CBarea~store,delay~store~leit 'r:*')
xlabel('Array area(cmA2)')
ylabel('Delay[LOG SCALE]')
title(['Array area Vs Delay(Leiber) for R(Jun) =',num2str(R-jun)])

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t\tDefects Tolerance based on yield
Percentage and Redundancy \nl)
yield = 80;
i = 1;

while (yield < 100)
R-row = 0;
R-col = 0;
L-row = 0;
L-col = 0;
no-row = 5;
no-col = 5;
no-cbjuns = 0;
new-L-row = 0;
redundant-col = 0;
new-no-row = 0;
new-no-col = 0;
total-crossbar-area = 0;
count = 1;
while(no-row < 550)

% Total Junctions %
no-juns = no-row * no-col;

% Nonfunctional junctions %
total-nonfunc-juns = ((100 - yield) / 100) * no-juns;
nonfunc-juns = round(tota1~nonfunc~jun~);
% Redundancy Calculation %
redundancy = sqrt(nonfunc-juns);
redundant-row = round(redundancy);
redundant-col = round(redundancy);
if (redundant-row > 0)

% Redundant rows %
new-no-row = redundant-row;
% Redundant Columns %
new-no-col = redundant-col;

end;
L-col = (50e-7+(no-row * 15e-7)+((no-row-1) * 30e-7)+50e-7);
L-row = (50e-7+ (no-col * 15e-7) + ((no-col-1) * 30e-7) +50e-7) ;
-

crossbar-area = L-row * L-col;
crossbar~area~store(count) = crossbar-area;
if (new-no-row > 0)

new-L-col = (50e-7+(new_norow * 15e-7)+((new-no-row-1) *
30e-7) +50e-7) + 15e-7;

new-L-row = (50e-7+(new-no-col * 15e-7)+((new-no-col-1) *
30e-7) +50e-7) + 15e-7;

new-crossbar-area = new-L-row * new-L-col;
% Total Crossbar area including redundancy %

total-crossbar-area = new-crossbar-area + crossbar-area;
new~crossbar~area~store(count) = new-crossbar-area;

total~crossbar~area~store(count) = total-crossbar-area;
redundancy-store(count) = new-no-row;

end;
diff-area = total-crossbar-area - crossbar-area;
diff-area-store(count) = diff-area;
no-cbjuns = no-juns/crossbar-area;
array-size-store(count) = no-row;
fprintf('\n\tARRRAY SIZE\nl)
fprintf('\n\t\tNumber of Rows I)
disp (no-row)
fprintf('\t\tNumber of Columns I)
disp (no-col)
fprintf('\n\t\tLength of the Row Nanowire(cm)

disp (L-row)
fprintf('\n\t\tNew Length of the Row Nanowire(cm) ')
disp(new-L-row)
fprintf('\n\t\tLength of thecolumn Nanowire(cm) ')
disp (L-col)
fprintf('\n\t\tTotal Area of the crossbar array(cmA2) ')
disp (crossbar-area)
fprintf('\n\t\tTotal Area of the crossbar array with

redundancy (cmA2) ')
disp(tota1-crossbar-area)
fprintf('\n\t\tRedundancyl)
disp(redundancy-store(count))
fprintf('\n\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)
no-row = no-row + 50;
no-col = no-col + 50;
count = count + 1;
disp (redundant-col)
disp(new-no-col)
disp(diff-area)
disp (yield)

end;
figure (i)
plot(total~crossbar~area~store,redundancy~store~ 'r:*')
ylabel('Redundancy ')
xlabel ('Crossbar Area [cmA2] ')
title(['Redundancy Vs Crossbar Area for yield=',num2str(yield)])
hold on
plot(crossbar~area~store,redundancy~store~ 'b:+')
ylabel('Redundancy ')
xlabel ('Crossbar Area [cmA2] ')
title(['Redundancy Vs Crossbar Area for yield=',num2str(yield)])
legend('Crossbar area (with redundancy)','Crossbar area (without

redundancy) ')
hold off;
i = i + l ;
yield = yield + 5;

end;

clc
clear all
fprintf('\n\n\t\t\t\t\t\t\t\t\t\t\tNano Memory Density comaparable to
todays memory capacity \nl)
yield = 90;
R-row = 0;
R-col = 0;
L-row = 0;
L-col = 0;
no-row = 250;
no-col = 250;
no-cbjuns = 0;
new-L-row = 0;
redundant-col = 0;
new-no-row = 0;

new-no-col = 0;
mem-capacity = 7e-3;
cells-256 = round(256/mern_capacity)
cells-512 = round(512/mem-capacity)
cells-1024 = round(l024/mem~capacity)
cells-2048 = round(2048/mem-capacity)
total-crossbar-area = 0;
% Total Junctions %
no-juns = no-row * no-col;
% Nonfunctional junctions %
total-nonfunc-juns = ((100 - yield) / 100) * no-juns;
% Redundancy Calculation %
redundancy = sqrt(tota1-nonfunc-juns); redundant-row =

round(redundancy);
redundant-col = round(redundancy);
% Redundant rows %
new-no-row = redundant-row;
% Redundant Columns %
new-no-col = redundant-col;
L-col = (50e-7+(no-row * 15e-7)+((no-row-1) * 30e-7)+50e-7);
L-row = (50e-7+(no_col * 15e-7)+((no-col-1) * 30e-7)+50e-7);
new-L-col = (50e-7+(new-no-row * 15e-7)+((new-no-row-1) * 30e-7)+50e-
7);
new-L-row = (50e-7+(new_no_col * 15e-7)+((new-no-col-1) * 30e-7)+50e-
7);
crossbar-area = L-row * L-col;
new-crossbar-area = new-L-row * new-L-col;
total-crossbar-area = new-crossbar-area + crossbar-area; % Total
Crossbar area including redundancy %
multiplexer-area = 50 * total-crossbar-area;
final-crossbar-area = multiplexer-area + total-crossbar-area;
no-cbjuns = no-juns/final-crossbar-area;
% Area occupied by a l l the c e l l s %
array-area-256 = cells-256 * final-crossbar-area
array-area-512 = cells-512 * final-crossbar-area
array-area-1024 = cells-1024 * final-crossbar-area
array-area-2048 = cells-2048 * final-crossbar-area
% Memory Density %
mem-density-256 = (250*250*cells-256) / array-area-256
mem-density-512 = (250*250*cells-512) / array-area-512
mem-density-1024 = (250*250*cells-1024) / array-area-1024
mem-density-2048 = (250*250*cells-2048) / array-area-2048
fprintf('\n\tARRRAY SIZE\n1)
fprintf('\n\t\tNumber of Rows)
disp (no-row)
fprintf('\t\tNumber of Columns ')

disp (no-col)
fprintf('\n\t\tLength of the Row Nanowire(cm) I)
disp (L-row)
fprintf('\n\t\tNew Length of the Row Nanowire(cm) ' 1

disp (L-col)
fprintf('\n\t\tTotal Area of the crossbar array(cmA2) ')

disp (crossbar-area)

fprintf('\n\t\tTotal Area of the crossbar array with redundancy(cmA2)

disp(tota1-crossbar-area)
fprintf('\n\t\tFinal Area of the crossbar array with
redundancy(inc1uding multiplexer area)(cmA2) I)
disp(fina1-crossbar-area)
fprintf('\n\t\tNumber of Crossbar Junctions in lcmA2 area')
disp(no-cbjuns)

