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Abstract 

Towards A Compact Speech Recognizer: 
Subspace Distribution Clustering 

Hidden Markov Model 

Brian Kan-Wing Mak 

Supervisors: Etienne Barnard and Enrico Bocchieri 

After decades of research in speech recognition, the technology is finally entering into the 

commercial market. A significant challenge is to downsize research laboratory recognizers 

so that they can be used on platforms with less computational power: Most contemporary 

laboratory recognizers require too much memory to run, and are too slow for mass applica- 

tions. This thesis addresses the problem by greatly reducing the number of parameters in 

the acoustic models. We focus on more compact acoustic models because they constitute 

a major component of any speech recognizers, and the computation of their likelihoods 

consumes 50-70% of total recognition time for many typical tasks. 

The main contribution of this thesis is the formulation of a new acoustic modeling 

method which we call subspace distribution clustering hidden Markov modeling (SDCHMM). 

The theory of SDCHMM is based on tying continuous density hidden Markov mod- 

els (CDHMMs) at a new finer sub-phonetic unit, namely the subspace distribution. Two 

methods are presented to implement the SDCHMMs. The first implementation requires 

training a set of intermediate CDHMMs followed by model conversion in which the distri- 

butions from the CDHMMs are projected onto orthogonal subspaces, and similar subspace 

distributions are then tied over all states and all acoustic models in each subspace. By 

. . . 
Xlll 



exploiting the combinatorial effect of subspace distribution encoding, all original full- 

space distributions can be represented by combinations of a small number of subspace 

distribution prototypes. Consequently, there is a great reduction in the number of model 

parameters, and thus substantial savings in memory and computation. Furthermore, we 

demonstrate in the second implementation method that, given prior knowledge of the 

tying structure of the subspace distributions, SDCHMMs can be trained directly from 

much less data. This renders SDCHMM very attractive in the practical implementation 

of acoustic models, speaker-specific training, and speaker/environment adaptation. 

Evaluation on the ATIS (Airline Travel Information System) task shows that in com- 

parison to a CDHMM system, a SDCHMM system achieves 7- to l&fold reduction in 

memory required for acoustic models, runs 30-60% faster, and can be trained with 10-20 

times less data, without any loss of recognition accuracy. 

xiv 



Chapter 1 

Introduction 

Five decades of interdisciplinary research in widely different areas such as linguistics, 

psychoacoustics, signal processing, computer science, pattern recognition, and information 

theory, has greatly advanced the state of the art in automatic speech recognition (ASR). 

The ASR technology has evolved progressively from recognizing a few hundred isolated 

words with speaker dependency in the 70s, tens to  hundreds of connected words without 

speaker dependency in the 80s, to speaker-independent large-vocabulary continuous speech 

a t  present. The capabilities of some state-of-the-art recognizers over a wide range of tasks 

are summarized in Figure 1.1 [12,28,34,54,87]. In the figure, the difficulty of a recognition 

task (from the perspective of a recognizer) is measured by the perplexity of its language 

model, whereas the performance of a recognizer is gauged by its word error rate (WER). 

The perplexity of a language model is the average number of words that may follow another 

word [69]; and WER is the percentage of words which are wrongly recognized1. Although 

these recognizers are task-specific, and they usually only operate well in the domains and 

under the conditions (channel, signal-to-noise ratio, accent, etc.) they are trained for, they 

already represent a mature technology ready for large-scale deployment. 

The advancement of ASR technology can be attributed to the following factors: 

the success of modeling acoustics using the stochastic hidden Markov models (HMMs) 

the success of statistical language modeling which produces simple but powerful 

language models 

'see Section 3.1.2 for more details. 
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Figure 1.1: Capability of state-of-the-art automatic speech recognizers

. the use of dynamic programming algorithms together with pruning techniques in

efficiently searching the vast solution space;

. the availability of large domain-specific speech and text corpora which allow training

of more complex and accurate acoustic models as well as language models

. the blessing of Moore's law2 for progress in semiconductor technology -laboratory

workstations today are as powerful as a supercomputer less than two decades ago.

Without fast processors and large on-board memory, large-vocabulary continuous

speech recognition is simply impossible.

2In 1965, Gordon Moore identified that the logic density of silicon integrated circuits has been doubling
every eighteen months with proportional decreases in cost. The statement has held true since then.

8

<I.>

c:::>o::6



1.1 The Problem: Too Many Parameters 

Despite the long desire to use speech - often the most natural and efficient modality 

humans use to communicate - for human-machine interaction, the ASR technology has 

not prevailed, and the promise of a ubiquitous speech user interface has yet to be ful- 

filled. What is hidden behind the impressive ASR results in Figure 1.1 is the tremendous 

computational cost of many state-of-the-art recognizers: To arrive at the low WERs, rec- 

ognizers are running at one to two orders of magnitude slower than real time, requiring 

high-end research workstations equipped with hundreds of megabytes (MB) of memory. 

A significant challenge is to adjust laboratory recognizers so that they may be deployed 

on more affordable machines of lower processing power and smaller memory size without 

losing accuracy. Techniques exist to reduce memory requirement alone, for example, by 

using simpler but less accurate models, or through data compression [73]. There are also 

techniques to  speed up computation alone: for example, by simply exercising more vig- 

orous pruning schemes, by computing state likelihoods only from a small subset of the 

most relevant state probability density distributions [6, 8, 41, 63, 791, or by fast-match 

techniques [21]. However, these techniques are usually done a t  the expense of recognition 

accuracy; in the case of computation speedup, more memory is usually required. In order 

to achieve faster computation speed and smaller memory footprint without sacrificing ac- 

curacy - three seemingly conflicting goals - each system component (acoustic models, 

language model, search engine, knowledge database, etc.) should be subject to careful 

scrutiny. 

Analysis of the execution profiles of speech recognizers of various vocabulary sizes 

(except the very large vocabulary3) reveals that roughly 50-70% of the overall recognition 

time is spent in computing state likelihoods of the acoustic models. The result is not 

surprising; in their craving for cranking out every bit of recognition accuracy, laboratory 

speech recognizers are building highly complex acoustic models with a huge number of 

3For vocabulary size of more than tens of thousands of words, computation of state likelihoods amounts 
to about 25-30% of total runtime. Nonetheless, most ASR applications that are conceivably ready for 
deployment in the near future will have smaller vocabularies and will be the main focus in this thesis. 



parameters to capture the fine phonetic details. For example, let us look at two state- 

of-the-art recognizers which were among the top three systems in the ARPA evaluation 

of ATIS (Airline Travel Information System) [25] in 1994. AT&T's general-purpose ATIS 

recognizer [9] contains more than 6 million parameters in its acoustic models requiring 

more than 24MB of memory space and consequently runs at 7 times real time to obtain 

a WER of 5.2% on the ATIS task on an SGI Oz machine (MIPS RlOOOO CPU, 195 MHz, 

2GB shared memory). Similarly CMU's Sphinx I1 large-vocabulary recognizer [28] requires 

more than 40MB of memory to represent its acoustic models which have over 10 million 

parameters, and obtains a WER of 5.1% on the same task using an 175MHz Alphastation 

at the speed of 9 times real time4. In general, a large model parameter space leads to  the 

following problems: 

a larger memory requirement 

a slower recognition 

a requiring more training data 

requiring more data for speaker/environment adaptation. 

Thus, if we can reduce the number of free parameters in acoustic models - the basic 

component of any speech recognizer - both the memory and the speed problem will be 

addressed at the same time. In addition, if the goal of less training data can be achieved, 

productivity can be improved as well since recognition systems can then be trained in 

a shorter time using less memory. In this thesis, we propose a more efficient acoustic 

modeling methodology to  arrive at a more compact recognizer. 

1.2 Proposed Solution: It Is Time to Share More! 

The most common approach to reducing the number of parameters in acoustic mod- 

els is parameter tying: Similar structures are discovered among the acoustic models, 

'This is the recognition speed before the recent implementation of efficient search algorithms as de- 
scribed in [73]. The efficient search later increases the speed to 1.6 times real time. 



and they are then tied together to share the same value. With the (limited) amount 

of training data on hand, parameter tying allows more complex acoustic models to be 

estimated reliably while the number of model parameters will not grow unchecked. In 

the past, the technique of parameter tying has been applied successfully at various gran- 

ularities: Phones (generalized biphones/triphones [48], context-independent phones [49]), 

states (tied-state HMM [32, 88]), observation distributions (tied-mixture/semi-continuous 

HMM [4, 29, 80]), and feature parameters [85] have all been tied. For example, of the 

two aforementioned systems, AT&T's ATIS recognizer is a tied-state system, whereas 

CMU's Sphinx I1 employs semi-continuous HMMs. The technology trend is to tie acous- 

tic models at finer and finer details so as to maintain good resolution among models as 

much as possible. In this thesis, we propose to push the technique to an even finer sub- 

phonetic unit - subspace distributions - in the context of hidden Markov modeling5. 

Subspace distributions are the projections of the full-space distributions of an HMM in 

lower dimensional spaces. The hypothesis is that speech sounds are more alike in some 

acoustic subspaces than in the full acoustic full space. We call our novel HMM formulation 

"subspace distribution clustering hidden Markov modela'ng" (SDCHMM). 

Subspace distribution clustering hidden Markov models (SDCHMMs) are derived from 

already existing continuous density hidden Markov models (CDHMMs) without requiring 

any extra training data nor re-training. The distributions of CDHMMs are projected onto 

orthogonal subspaces (or streams6), and similar subspace distributions are then tied into 

a smaI1 number of distribution prototypes (or codewords) over all states and all acoustic 

models in each subspace. By exploiting the combinatorial effect of subspace distribution 

encoding, all original full-space distributions can be closely approximated by some com- 

binations of a small number of subspace distribution prototypes. Consequently, there is a 

great reduction in the number of model parameters, and thus substantial savings in mem- 

ory and computation. This renders SDCHMM very attractive in practical implementation 

5Since most state-of-the-art speech recognition systems are HMM-based, we thus only consider our 
thesis in such context. Recently artificial neural networks (ANN) have been applied to ASR with some 
success [3, 11, 761, but HMMs remain the dominant technology. 

61n this thesis, the two terms, "subspace" and "streamn are used interchangeably to mean a feature 
space of dimension smaller than that of the full feature space. "Subspace" is clearer mathematically, but 
"stream" is more common in the speech recognition community. 



of acoustic models. Furthermore, we demonstrate that given a priori knowledge of the 

tying structure of the subspace distributions in SDCHMMs, SDCHMMs can be trained 

directly from speech data without going through intermediate CDHMMs. Because of the 

great reduction of parameters in SDCHMMs, such SDCHMM training requires much less 

training data. It will therefore be of great importance to speaker-specific training and 

speaker/environment adaptation. 

From the perspective of quantization, one may consider SDCHMM as an approximation 

to the highly accurate CDHMM, achieving great data compression by subspace distribu- 

tion quantization. From the perspective of hidden Markov modeling, SDCHMM unifies 

the theory of CDHMM which employs full-space state probability density distributions 

and the feature-parameter-tying HMM [84, 851 which is generated by scalar quantization 

of the distributions. SDCHMM combines the accuracy of CDHMM with the compactness 

of feature-parameter-tying HMM. In this aspect, it is interesting to  compare this work 

with a similar approach called "split vector quantization" [44, 651 that has been success- 

fully applied to high-quality, low-bit rate speech coding for years. In speech coding, it is 

known that (full) vector quantization (VQ) results in smaller quantization distortion than 

scalar quantization at any given bit rate [35]. However, to attain the required high quality 

in practical telecommunication, full VQ suffers from training, memory, and computation 

problems much like those of our current complex ASR systems. Split VQ overcomes the 

complexity problem of full VQ by splitting the speech vectors into sub-vectors of lower 

dimensions and quantizing the sub-vectors in their subspaces. 

1.3 Thesis Summary and Outline 

In this thesis, we present the theory of subspace distribution clustering hidden Markov 

modeling. The development of the theory and its implementation is done using Gaussian 

distributions with diagonal covariances, though it can be applied more generally. Before 

the implementation of the new models, the following two basic issues are answered: 

how to define the subspaces? 

how to tie the subspace distributions? 



We suggest a simple but coherent definition for streams of any dimension: The streams 

comprise the most correlated features. We devise a modified k-means Gaussian cluster- 

ing scheme using the Bhattacharyya distance as the distance measure between Gaussian 

distributions [17]. Finally, two implementation methods for the SDCHMM are studied in 

detail: model conversion from CDHMMs and direct SDCHMM training. 

Throughout the thesis, the ATIS recognition task is used as the test-bed for evaluating 

the SDCHMMs. In summary, the performance of a set of 20-stream SDCHMMs converted 

from the context-dependent CDHMMs of the baseline AT&T7s ATIS system with only 64 

subspace Gaussian prototypes per stream epitomizes the power of SDCHMM: 

It is slightly more accurate than the baseline CDHMM system (WER of 5.0% versus 

5.2%). 

It  runs at twice the speed of the original system (3.5 versus 7.0 times real time). 

The acoustic models take up 1.8MB of memory compared with the original 24MB 

- a 13-fold reduction. 

If we have a priori knowledge of the tying structure of its subspace Gaussians and the 

mixture weights (borrowed from the original CDHMMs), it can be trained directly 

from scratch with as little as 8.3 minutes of speech with no loss of accuracy. (For 

comparison, the original CDHMM system is trained with 36 hours of speech.) 

The organization of this dissertation is as follows. 

In Chapter 2, the current technology of acoustic modeling is reviewed. After an in- 

troduction to  hidden Markov modeling, choices of speech modeling units are discussed, 

leading to  the necessity of the technique of parameter tying. Since many variations are 

used, we will discuss the most typical acoustic modeling techniques rather than specific 

implementations. 

In Chapter 3, we describe the baseline AT&T ATIS recognition system, the perfor- 

mance of which is used as a benchmark throughout this thesis. All aspects of the system 

such as signal processing, training procedure, language modeling, and search algorithm 



will be discussed. In addition, its accuracy, computation time, and memory requirement 

will be given. 

Chapter 4 is the main part of the thesis as it will present the theory of SDCHMM in 

detail, and explain why it is preferred by comparing with other modeling methodologies 

that are described in Chapter 2. 

Chapter 5 presents the first implementation method of SDCHMMs: model conversion 

from CDHMMs. Here, we propose a coherent definition for the streams and a Gaussian 

clustering algorithm to  convert CDHMMs to SDCHMMs, which are then evaluated on 

the ATIS task. The effect of different numbers of streams and different amounts of tying 

will be studied and evaluated on three metrics: accuracy, computation time, and memory 

requirement. 

In Chapter 6, we present a brief analysis on the phonetic-acoustic nature of the tying 

structure of SDCHMMs. That is, we examine whether the tying structure among different 

phonemes agrees with what we know from phonetics. 

Chapter 7 describes the second implementation method of SDCHMMs - direct SD- 

CHMM training. First, we expand the theory of SDCHMM by presenting the reestimation 

formulas of its various quantities. Then the SDCHMM training scheme is developed. Fi- 

nally, by progressively reducing the amount of ATIS training data by half each time, 

we study the training data requirement for SDCHMMs (which have many fewer model 

parameters than the original CDHMMs). 

Finally, in Chapter 8, we summarize our findings of using SDCHMM for automatic 

speech recognition, and our contributions in this thesis. We also suggest some directions 

for future development of SDCHMM, especially in the area of speaker or environment 

adaptation. 



Chapter 2 

Review of Acoustic Modeling Using 

Hidden Markov Model 

Before we may call upon the large inventory of classification methods to recognize speech, 

we first have to build a mathematical model for each speech sound from its acoustic signal 

so that the acoustic models describe the sounds as "closely" as possible (according to some 

cost function, such as likelihood). A mathematical model requires a definition of the input 

observation space, and a model form. In this chapter, we first look at some characteristics 

of speech which will help guide our choice of a mathematical model for speech. Then we 

will discuss some choices of speech units commonly used for acoustic modeling, leading to 

the need of parameter tying. 

2.1 Speech Characteristics 

Speech is produced through complex coordination among articulators in our vocal tract 

such as vocal cords, jaw bones, tongue, lips, etc. Although the dimensions, shapes and 

dynamic behaviors of the articulators vary from one person to another, they move in 

well coordinated ways, governed by the laws of physics. As a result, speech exhibits the 

following characteristics: 

SC-I: Speech is a time-varying signal. A speech model must describe the temporal be- 

havior of the acoustics. 

SC-11: Speech is not memoryless. Each speech sound is produced by a sequence of well- 

known movements of articulators. A speech model thus has to capture the sequential 



nature of speech. 

SC-111: As a mechanical system, our speech production system cannot change abruptly 

from one configuration to another, resulting in a "quasi-stationary" speech signal at 

intervals when its articulators stay a t  relatively stable positions during the course of 

the speech. 

SC-IV: Since the articulators move smoothly during the production of speech, successive 

acoustic samples are highly correlated, and there is much redundancy overall. This 

suggests that a more succinct representation of the raw speech signal is possible. 

SC-V: The realization of the same speech sound varies from person to person, and from 

time to time even with the same person. Thus a speech model must allow for such 

variabilities. 

2.2 Selection of Input Speech Space and Speech Model 

Besides accounting for the forgoing speech characteristics, the choice of acoustic repre- 

sentation and modeling methodology depends largely on the recognition paradigm. As 

of date, automatic speech recognition (ASR) has been best tackled in the framework pro- 

vided by statistical pattern recognition (SC-V). In the following, we will describe only the 

most common acoustic representation and modeling technique used in this paradigm. 

2.2.1 Cepstral Input 

Spectral representations have been found to be adequate for speech. In practice, short- 

term spectral analysis is usually applied over a window of 20-30ms of speech (SC-111) at 

about every 10ms (SC-I). The spectrum (envelope) is then encoded succinctly by a vector 

of, say, 12 cepstral coefficients [72] (SC-IV). Due to the findings from psychoacoustical 

studies which show that humans do not perceive frequencies greater than lkHz in a lin- 

ear scale but instead in a logarithmic scale, the cepstral coefficients are more commonly 

expressed as mel-frequency [82] cepstral coefficients (MFCC) or perceptual linear predic- 

tive (PLP) coefficients [24] in the Bark scale [go]. 



Figure 2.1: A first-order 3-state left-to-right hidden Markov model (where a;j 
denotes the transition probability from state a to state j )  

2.2.2 Hidden Markov Model 

Most of the aforementioned speech characteristics can be captured by a probabilistic finite- 

state machine called the hidden Markov model (HMM). Figure 2.1 shows a first-order 

3-state left-to-right HMM, most commonly used in ASR. The left-to-right HMM has a 

set of states with one designated as the (leftmost) starting state and one the (rightmost) 

ending state, representing the beginning and the ending of a speech sound. A state 

roughly corresponds to a quasi-stationary region in the speech sound (SC-111) while state 

transitions correspond to temporal movement of the speech signal (SC-I). In a left-to-right 

HMM, only left-to-right state transitions are allowed so as to  capture the sequential nature 

of speech (SC-11). When a state transition occurs, an acoustic observation is emitted. In 

various formulations, an emitted observation has been associated with the transition arc, 

the source state or the destination state. Here we associate an observation with the 

destination state. Both transitions and observation emissions are probabilistic and they 

model the temporal variability and acoustic variability of speech respectively (SC-V). The 

hidden nature of the model is due to a doubly embedded stochastic process: Only the 

stochastic process which emits acoustic events at the states is directly observable and the 

other stochastic process (state transition) which controls state occupancy is hidden. 

Figure 2.2 depicts a basic configuration of continuous density HMM-based acoustic 

models. In the figure, each phonetic unit is modeled separately by one left-to-right HMM 



which consists of three states, and the state observation probability distribution is esti- 

mated as a mixture density with two Gaussian components. 

phonetic 
units 

acoustic 
HMMs 

states 
Gaussian 
mixture 
densities 

Figure 2.2: Basic configuration of acoustic models using hidden Markov modeling 

First-order HMM Assumptions 

There are two major assumptions in the foregoing discussion: 

1. State-dependency of transition. For simplicity and computational tractability, a 

first-order HMM is used, so that state transitions only depend on the current state 

and not on the past state history nor the future states. Further, as a side effect, the 

assumption also leads to an unrealistic exponential state duration distribution. 

2. State-dependency of observation. An acoustic observation depends only on its emit- 

ting state, and not on neighboring states nor previous frames of observation. Con- 

sequently, states actually become stationary (not just quasi-stationary) and the ob- 

servations in a given state can thus be assumed to be independently and identically 



distributed. 

HMM Variants 

Obviously the two assumptions violate the fact that neighboring acoustic events are highly 

correlated. To alleviate the shortcomings, many modifications have been proposed recently 

which mainly differ in the extent to which they relax the assumptions: 

The simplest way to incorporate temporal or contextual information without modi- 

fying the HMM formulation is to add dynamic features onto the input feature vec- 

tor [la]. 

Higher-order HMMs have been used to include more of the past state history. Be- 

cause of the big increase in computational complexity, only second-order HMMs have 

been tried, but with limited success [58]. 

State-dependent correlations between successive frames are explicitly modeled by 

conditioning the observation probability jointly on both the current state and the 

preceding observation [64]. Because of the huge increase in the number of estimation 

parameters, approximation is used to express the joint conditional probabilities in 

terms of individual conditional probabilities in bigram-constrained HMMs [83] (using 

observation bigrams), or using an extended logarithmic pool [40] . 

Hybrid models of Artificial Neural Networks and HMMs incorporate contextual in- 

formation simply by using the current feature frame together with neighboring fea- 

ture frames [l 11 . 

Hybrid models of Recurrent Neural Networks and HMMs explicitly estimate the 

posterior phone probability of the current frame conditional on both the state and 

all its previous frames more effectively [76]. 

The state-dependent acoustic trajectory is modeled by an autoregressive process 

in autoregressive HMMs [37, 681, and in trended HMMs with a linear polynomial 

regression function of time [14]. 



Segmental HMMs such as the stochastic trajectory model [20] and stochastic seg- 

ment model [62] relax both assumptions and explicitly model acoustic trajectories 

of variable durations as well as the duration. 

A detailed description of HMMs is outside the scope of this thesis and interested 

readers are referred to [70]. 

2.2.3 Our Choice of HMM for Acoustic Modeling 

For simplicity and computational tractability, we employ the first-order HMMs with c e p  

stral coefficients augmented by their first- and second-order time derivatives as the speech 

features. They are most commonly used and are found to be about as accurate as the the- 

oretically more sound variants. Their simplicity and explicit parameterization also make 

them amenable to  a wide range of techniques that perform fast state-likelihood computa- 

tion [6, 8, 41, 63, 791 and reduce parameters through parameter tying (see Section 2.4). 

In particular, the continuous density HMM (CDHMM) is used as generally it is found to 

be highly accurate. For fast computation and trainability, the continuous state observation 

probability density distributions are estimated as mixture Gaussian densities with diagonal 

covariances. In theory, the mixture Gaussian density function can approximate, arbitrarily 

closely, any finite continuous density function. 

Finally, we would also like to point out some minor issues in our implementations of 

HMMs: 

Precise estimation of the transition probabilities is found unnecessary, and each 

transition arc is simply assigned an equal probability of l/fan-out, where fan-out is 

the number of arcs coming out of the source state [lo, 891. 

No explicit duration modeling is performed as it is not found necessary. 

Our HMMs are trained using the simpler segmental k-means algorithm [38] which 

has been found to work as well as the conventional Baum-Welch algorithm [3] ( [45, 

71, 891). 



2.3 Speech Unit to Model 

Although it may be most natural to model each word individually, the approach is im- 

practical in most recognition tasks, except those of small vocabularies and isolated words. 

In most cases, there are not sufficient training data for each word. One separate model for 

each word also requires large storage space and long decoding time. Thus, it is generally 

necessary to model sub-word units so that training, storage, and computational resources 

can be shared. The sub-word speech units are shared among the pronunciations of a lex- 

icon, and can avoid repetitions of likelihood computation of the models in, for example, 

fast lexical tree search. Chronologically, ASR has progressed with smaller and smaller 

units of speech exhibiting finer and finer acoustic details: 

Multi-phone units: syllables, demisyllables, and diphones. They encapsulate co- 

articulatory effects between phones. The major problem in the past was the large 

number (over 1000 demisyllables, 2500 diphones, and 20,000 syllables) of these units. 

With larger speech corpora nowadays, they are worth reconsidering1. 

Context-independent (CI) phones are monophones. Each phone is modeled by the 

same statistics, irrespective of its surrounding acoustic contexts. 

Context-dependent (CD) phones are phones uttered in a specific context. For in- 

stance, left/right biphones are phones on the right/left of another phone; triphones 

assume that acoustic realization depends only on the immediately preceding and 

following phones. 

Sub-phonetic units are components of a phonetic HMM such as states or distribu- 

tions. They are motivated mainly for efficient acoustic modeling and may not be 

associated with a phonetic meaning. 

'As a matter of fact, there is already renewed interest in using syllables as the modeling units [22, 27,331. 



2.4 Parameter Tying 

The history of acoustic modeling is guided by the need to  strike a balance between two 

conflicting goals for acoustic models: trainability and resolution. That is, the acoustic 

models should contain enough fine acoustic details so that different models can be resolved 

during decoding; but too many details generally result in too many model parameters, 

and reduce the robustness of model parameters when estimated from limited amounts 

of training data (and the amount of training data is always limited as the complexity of 

acoustic models grows). Moreover, a large number of model parameters leads to larger 

memory size, slower recognition, and more difficult speaker/environment adaptation. In 

the past, the technique of parameter tying has been applied successfully to obtain such a 

balance by reducing the number of parameters in acoustic models at various granularities. 

Let us look at some of the most typical HMM tying schemes. 

Monophone HMM: A monophone ties all allophones of a base phone. The small num- 

ber (less than 100) of monophones results in CI systems that are simple to implement 

and fast to run. However, the accuracy of CI systems is usually modest. 

Generalized context-dependent phone HMM: Generalized triphone HMMs [47] are 

most commonly used. The large number of triphones (about 125,000 in English, 

assuming all possible combinations of three phones) makes it almost impossible 

to model each of them equally reliably. Fortunately many contexts of the same 

base phone are similarly realized and may be clustered to much fewer generalized 

triphones. Generalized triphones derived using a phonetic decision tree have the 

additional benefit of capturing "unseen" triphones [48]. 

Tied-state HMM (TSHMM): Since co-articulatory effects are more prominent at the 

onset and ending of a phone than at its center, they are better categorized at local 

HMM states than over the whole HMM phone as in generalized triphones. Therefore 

TSHMM clusters the corresponding HMM states of the same base phone [32, 881. 

Young and Woodland reported a 5-fold reduction in the number of states in their 

TSHMM systems [88]. 



Tied-mixture HMM/semi-continuous H M M  (SCHMM): SCHMM is a generaliza- 

tion of the discrete HMM in which prototypes are continuous Gaussian distributions 

with diagonal covariances instead of just mean vectors [4, 29, 801. Consequently, an 

SCHMM enjoys fast computation of state likelihoods but reduces the quantization 

errors of discrete HMMs, with a negligible increase in model parameters. Moreover, 

the SCHMM is a special case of distribution tying in which all Gaussian components 

of all HMMs are clustered to a common set of Gaussian prototypes. 

Feature-parameter-tying H M M  (FPTHMM):  In speech coding, it is found that for 

the same bit rate, full-space vector quantization (VQ) is always more efficient than 

scalar quantization (SQ); nonetheless, SQ can represent each 1-dimensional feature in 

very few scalar codewords and thus requires much smaller storage for its codebooks. 

In the same spirit, FPTHMM [84,85] clusters Gaussian components of a continuous 

density HMM (CDHMM) with diagonal covariances in each dimension into very few 

1-dimensional Gaussian prototypes2. When combined with SQ of input features, 

likelihoods due to all shared scalar Gaussian prototypes can be pre-computed and 

stored in a look-up table. Subsequent (full-space) state observation likelihoods can 

then be computed more efficiently without any divisions or multiplications [78]. 

Several tying schemes may be cascaded together in a HMM system at the same time 

to achieve the best balance between model complexity and model-estimation robustness 

as exemplified in Figure 2.3. In the figure, the objects in each tying level, namely HMMs, 

states, and Gaussian distributions, are organized as a pool of shared objects. An object 

in a tying level may be shared by several objects in the previous level (to its left). Not 

only are the tying structures more compact to store, they also avoid evaluating the same 

object twice during recognition. Perhaps the best example is the hidden Markov network 

of [77] which ties allophones, states, distributions and feature parameters. Alternatively, 

several tying schemes may also be combined or merged. For example, genones [15] or state- 

clustered tied-mixture HMMs [61] divide all states into classes and only tie the mixtures 

'Speech recognition systems are only concerned with the storage space for the distributions. As an 
analogy, transmission bit rate in speech coding is equivalent to the memory requirements in ASR for 
encoding the full-space distributions by the scalar distribution prototypes of each dimension. 
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Figure 2.3: Various tying schemes of acoustic models using hidden Markov modeling 

within each class with the aim to enhance model resolution. 

In this thesis, we try to  push the technology of parameter tying to  a finer sub-phonetic 

level, namely that of subspace distributions. We call our new HMM derivative, the sub- 

space distribution clusten'ng hidden Markov model(SDCHMM). It  may be considered a 

generalization of distribution tying and feature-parameter tying techniques. Before we 

introduce our SDCHMM in Chapter 4, we first present in the next chapter the baseline 

ASR system and the benchmark test we will use throughout this thesis to  demonstrate 

the efficacy of SDCHMMs. 



Chapter 3 

AT&T7s Baseline ATIS Recognizer 

Throughout this dissertation, our novel subspace distribution clustering hidden Markov 

model(SDCHMM) is evaluated on the ARPA-ATIS task. The task is chosen for two 

reasons: Firstly, it represents a commercially viable application for automatic speech 

recognition technology in the near future; secondly, and most importantly, we were able 

to employ AT&T Labs' state-of-the-art ATIS recognizer. Clearly, it can be trivial to 

introduce improvements on a mediocre recognizer. On the other hand, if we can show sig- 

nificant enhancements to a highly fine-tuned and accurate recognizer, there is good reason 

to see SDCHMM as a promising alternative to the current acoustic modeling techniques. 

In this chapter, we describe in details the ATIS task, various components of AT&T7s 

baseline ATIS recognizer with emphasis on its acoustic models, as well as its benchmark 

performance against which our SDCHMM performance will be gauged in the later chap- 

ters. 

3.1 The ATIS task 

The Air Travel Information System (ATIS) task was initiated in 1989 in response to  the call 

from the ARPA Spoken Language Systems Program for development of speech recognition 

and natural language research, using spontaneous and goal-directed speech rather than 

read speech. An ATIS system allows users to speak naturally to inquire about air travel 

information stored as a relational database which is derived from the Official Airline Guide. 



3.1.1 ATIS Corpora 

Several ATIS corpora1 known as ATISO [23], ATIS12, ATIS2 [25], and ATIS3 [13] were 

collected over the years by several institutions: AT&T, BBN, CMU, MIT, NIST, SFU, and 

TI. To date, the corpora contain nearly 25,000 utterances with a vocabulary size of 1,536 

words. The query database includes information on 23,457 air flights for 46 cities and 52 

airports in the United States and Canada. A set of 981 utterances were set aside for the 

1994 ARPA ATIS evaluation. This official test set consists of 131 different subject-scenario 

combinations spoken by 24 different subjects. Below are some example utterances from 

the test set: 

"I would l i k e  t o  f ind  a f l i g h t  from Charlotte t o  Las Vegas that 

makes a stop i n  Saint Louis." 

"I would l i k e  t o  return from Chicago around seven p m t o  Kansas 

City. " 

"What are the pr ices  f o r  the f l i g h t s  on Wednesday evening." 

"Please show which f l i g h t  serves dinner." 

"Show me a l l  the morning f l i g h t s  from Philadelphia t o  Fort Worth 

"What does fare  code M mean?" 

3.1.2 ATIS Evaluation Tests 

There are three types of official evaluations [66]: 

SPREC: Zontaneous speech RECognition evaluation tests only the capability of the 

speech recognizer component in terms of word error rate (WER). That is, for each 

test utterance, the decoded string from a recognizer is compared (by a string align- 

ment software using dynamic programming algorithm [26]) with the known ortho- 

graphic transcription of the utterance, and the number of substituted words, deleted 

words, as well as inserted words are counted. The WER is computed as, 

'The ATIS corpora are now maintained and distributed by the Linguistic Data Consortium. Consult its 
website at http : //www.ldc.upenn.edu/ldc/catalog/html/speech_html/at is.html for more information 
about the corpora and how to obtain them. 

'ATIS1 is, however, never published. 



WER = %substitutions + %deletions + %insertions. 

NL: Natural Language understanding evaluation tests only the understanding compo- 

nent of a recognition system given the textual transcription of an utterance, and is 

measured by the correctly answered queries. 

SLS: &oken Language understanding evaluation tests the performance of the whole 

system (both the speech recognizer and the natural language understanding modules). 

3.2 The Baseline Recognizer 

In the 1994 ARPA-ATIS evaluation [66], AT&T's ATIS System had the best NL perfor- 

mance, answering 94.1% of the queries correctly, and was among the three second best 

systems in the SPREC test with a WER of 3.5%. Since this thesis deals only with acoustic 

modeling, efficacy of which is best measured by speech recognition alone (i.e. the SPREC 

test), we restrict ourselves here to describe only its speech-recognition component [lo]. 

Refer [52] for its NL understanding component. In addition, to allow faster research 

turnaround time, we adopt in this thesis a baseline system configuration which, in terms 

of computation time and memory requirement, is less costly but more realistic than the 

1994 evaluation system's. 

3.2.1 Signal Processing 

The recognizer frontend is based on mel-frequency cepstral analysis of input speech sam- 

pled at 16kHz. The DC bias is removed and the speech is pre-emphasized. At a frame 

rate of 100Hz, 31 mel-frequency energy components are computed from a filter bank by 

performing an FFT on a frame of 20ms of speech. The energies are converted to 12 mel- 

frequency cepstral coefficients (MFCCs) by cosine transform. Cepstral mean subtraction is 

then performed using the average MFCCs per utterance. Finally a speech feature vector 

for one frame is composed from 39 components: 12 MFCCs and normalized power, and 

their first- and second-order time derivatives computed as follows: 

x[t] = normalized MFCC or power 



3.2.2 Lexicon 

ATIS is a medium-vocabulary speech recognition task. There are 1,536 words in the 

lexicon with one pronunciation for each word. A set of 45 phones as shown in Table 3.1 

is used in the lexicon. 

Table 3.1: ATlS Phones (Phone-like Units) 

ao 1 bought 11 aw I now 11 ax I the I 

PHONE 
aa 

PHONE 
ae 

EXAMPLE 
father 

axr 
ch 
dx 
en 

m I man I I  n I not I I  n~ I ping I 

f 
ih 
.ih 

nx I anv 11 ow I boat 11 OY I bov I 

EXAMPLE 
bat 

diner 
church 
rider 
button 
four 
bit 
judge 

uh I book I I  uw I boot I I  v I very I 

PHONE 
ah 

aY 
d 
eh 
er 

P 
sh* 

EXAMPLE 
above 

g 
ix 
k 

Lexical Structure 

bye 
dad 
bet 
bird 

Pan 
she 

w I wet II Y ( yet 

An important factor in decoding efficiency is the organization of lexicon, or the lexical 

structure. When all the words (or phrases) are independently represented by a sequence 

of phonemes, the lexical structure is said to be linear. Recently, a more compact structure, 

the lexical (phonetic) tree [I, 59, 731 has been found to greatly improve search speed in 

large vocabulary speech recognition. In the lexical tree, words in the lexicon are arranged 

gag 
roses 
kick 

b 
dh 
el 
e Y 

r 
t 

(* The phone "zh" as in "measure" is folded into the phone "sh" .) 
z 

ban 
they 
bottle 
fake 

hh 

i~ 
1 

zoo 

hay 
beat 
lot 

red 
tell 

s 
th 

sad 
thief 



in a tree structure so that those with the same prefix (in their phonetic pronunciations) 

share the same part of the tree. Not only does the lexical tree greatly compress the lexicon, 

but it also avoids evaluating the same phonetic models twice. 

With the 1,536 words in our lexicon, there are only 1,502 distinct pronunciations. 

Counts of common prefixes of different lengths are shown in Table 3.2. From the table, 

the ratio of the number of root HMMs to the total number of words is 2.9% for a CI tree 

and 25.6% for a CD tree. Thus, the use of lexical tree will be more effective in a CI system 

than a CD system. As a result, the baseline CI recognizer employs a lexical tree and the 

baseline CD recognizer uses a linear lexicon (see also Section 3.2.6). 

Table 3.2: ATIS: Count of common prefixes of different lengths among the 
words in  the lexicon 

I PREFIX LENGTH I COUNT I 

3.2.3 Acoustic Modeling 

Both context-independent (CI) and context-dependent (CD) phone modeling are explored. 

The base phones include the 45 phones in Table 3.1 and three noise models. The CI 

system models each base phone, while the CD system models intra-word triphones, word- 

beginning right-context biphones, word-ending left-context biphones, and backs off to 



Algorithm 1: Baseline CDHMM training via segmental k-means algorithm 

Goal: To train CDHMM acoustic models using mixture Gaussian densities; each density 
has a maximum of M components with diagonal covariances. 

Step 1. Segment all training data into HMM states by supervised Viterbi algorithm. 

Step 2. For triphone modeling only, tie the corresponding states of triphones of the same 
base phone using the ensemble merging algorithm (as described in Algorithm 2). 

Step 3. Estimate the mixture Gaussian density of each state by k-means clustering using 
all the training data alloted to the (possibly tied) state. The maximum number of 
mixture components is fixed to M, and the mixture weights are set to the proportion 
of data frames assigned to a component. 

Step 4. Repeat Step 1 - 3 until the models converge. 

the appropriate biphones or monophones when there is not enough training data for the 

context (fewer than 1,000 speech frames in this implementation). Each phone model is 

a 3-state left-to-right continuous-density hidden Markov model (CDHMM), as shown in 

Figure 2.1, with the exception of one noise model which has only one state3. State obser- 

vation distributions are estimated as continuous mixture Gaussian densities with diagonal 

covariances. 

The CDHMM acoustic models are trained via the segmental k-means training algo- 

rithm [38] as described in Algorithm 1. The average frame likelihood of the training 

utterances is computed to test for model convergence. All acoustic models are speaker- 

independent and gender-independent4. 

3.2 -4 Ensemble Merging Algorithm for State Tying 

Triphone states are tied by the ensemble merging algorithm [9] shown in Algorithm 2. 

It is a bottom-up agglomerative clustering algorithm in which two states are tied if the 

tying results in minimum increase in total ensemble distortion. The distortion D; of a 

31n an attempt to model noises of different characteristics, three noise models of different complexities 
are used. The 1-state noise model is meant to model short noises, while the other two bstate noise models 
are to capture longer noises. 

41n ARPA's 1994 ATIS evaluation, AT&T7s system interpolated gender-dependent acoustic models with 
gender-independent acoustic models. 



Algorithm 2: Ensemble merging algorithm for state tying 

Goal: To tie a set of HMM states using an Euclidean distortion measure until each tied 
state has at least N feature vectors. 

Distortion Measure: The distortion of an ensemble of vectors is defined as the sum 
of Euclidean distances between each vector and the ensemble mean vector. Each 
component of a vector is normalized to unit variance before distortion computation. 

Step 1. Select the HMM state S;, the ensemble containing the fewest feature vectors. If 
the ensemble has more than N feature vectors, stop. 

Step 2. Find another state Sj, which when merged with the state S;, will give the smallest 
increase in total distortion. 

Step 3. Merge the two states, S; and Sj . 

Step 4. Repeat Step 1 - 3. 

Gaussian ensemble G; with n; D-dimensional feature vectors x of mean pi and variance 

u: is defined as 

def '0; = C I x - ~ i l  2 

XEGi 

When two ensembles G; and Gj are merged, the combined variance 07 of each dimension 

f becomes 

and the distortion increase is given by 

Equation (3.4) provides a more efficient implementation of the algorithm than a direct 

distortion computation using Equation (3.3). It also shows that the Euclidean distortion 

measure depends only on the first-order statistics of the ensemble distributions. 



In addition, to avoid an otherwise O(n3) complexity - O(n2) to compute the distortion 

increase between any two Gaussians in each iteration and O(n) iterations when a small 

number of prototypes are required - Algorithm 2 introduces the heuristic S t e p l :  At each 

iteration, the Gaussian corresponding to the smallest training ensemble must be merged. 

As a result, the complexity is reduced to O(n2) .  

3.2.5 Language Modeling 

In the domain-specific ATIS corpus, sequences of coherent words which are similar in 

semantics or syntax occur frequently. Two sorts of such word sequences are identified: 

word classes, and compound words or verbal foms. For example, a word class can be 

the set of flight numbers, the set of airport names, the set of arrival times, etc.; whereas 

phrases like "thank you", "I'd like to", or "how much" are three different compound words 

or verbal forms. The AT&T ATIS recognition system manually defines 13 word classes and 

about 100 compound words or verbal forms. Bigrams of these word sequences are modeled5 

using a second-order Variable N-gram Stochastic Automaton (VNSA) [75]. Modeling word 

classes instead of their individual words has an additional benefit of enhanced robustness 

due to more training examples. 

An example of a simple bigram language model of three tokens "a", "b", and "c" , and 

its VNSA implementation are shown in Figure 3.1. An €-transition in a VNSA serves two 

purposes: 

It reduces the word history during a traversal of the network and backs off to a 

language model of lower complexity. For instance, in Figure 3.l(a), the bigram 

P(bla) does not exist. The VNSA in Figure 3.l(b) approximates P(bla) with the 

unigram P(b) weighted by q, via the path a + E + b. i.e. P(bla) = q, . P(b). 

It introduces non-determinism to the decoding procedure. For instance, the string 

"cba" can be decoded as "cba", "ceba" , "cbea" , or "ecebea" , etc. The string with 

the highest probability is chosen. 

51n ARPA's 1994 ATIS evaluation, AT&T's system employed trigrams of word sequences realized by a 
third-order VNSA [74]. 



(a) Bigram language model 

Figure 3.1: An example of a (second-order) VNSA implementation of a simple 
bigram language model 



The values of the 77's are estimated by minimizing the perplexity of the language model 

using a separate held-out dataset [75]. 

3.2.6 Decoding 

Viterbi beam search [55, 56, 601 is used. Viterbi search is a dynamic programming alg* 

rithm [26] which finds the most likely sequence of states of HMMs for a given sequence of 

observations. To reduce the otherwise immense search space, Viterbi beam search prunes 

those states with log likelihoods less than that of the best path (at that moment) by a 

preset threshold called beam-width. It has been found that the beam-width can greatly be 

reduced with no loss in recognition accuracy [7]; further decrease in the beam-width will 

trade off accuracy for speed and memory. 

Further computation efficiency is obtained by evaluating the state likelihood due only 

to the most likely mixture component of the state (see also Section 4.3.2). It  has been 

verified empirically that the technique does not result in any loss of recognition accuracy [5, 

16, 59, 791. 

As in common practice, our decoder also ensures no Gaussian, state, or model like- 

lihoods are evaluated twice for a given frame of speech. (This factor, together with the 

high ratio of number of root HMMs to number of words in the lexicon (25.6%) for the CD 

lexical tree, render the use of lexical tree for the CD system unnecessary.) 

3.3 Baseline Performance 

All benchmark tests are run on ARPA's official 1994 ATIS evaluation test set. The baseline 

testing conditions and performance for both the CI and the CD systems are summarized 

in Table 3.3. Notice that all the triphones appearing in the ATIS corpora are modeled in 

the CD system. Due to the scarcity of training data for some triphones, the CD models 

are trained with an addition of 8,000 WSJ utterances6. 

The CI system is run on a low-end SGI machine comparable to a 166MHz Pentium 

'The WSJ corpus consists primarily of read speech with texts drawn from a machine-readable corpus 
of Wall Street Journal news text [67]. 



PC. The CD system is run on a high-end SGI machine which is about three times the 

speed of the low-end machine and is comparable to a 200MHz Pentium Pro PC. The 

machines are chosen to reflect a realistic performance on currently available desktop PCs. 

Clearly the performance due to one specific choice of beam-width in Table 3.3 can be 

misleading. Figure 3.2 shows a more complete picture of the performance when the beam- 

width varies from 70-170 in the CI system and 110-190 in the CD system. The baseline 

operating points are chosen to be close to the asymptotic accuracies attained a t  reasonable 

recognition time. 

Table 3.3: ATIS: Testing conditions and performance of the baseline CI/CD systems 

CONDITION/PERFORMANCE 

#Test Sentences 

Vocabulary 

Language Model 

#Training Utterances 

#HMMs 

#States 

Max. #Mixtures per State 

#Gaussians (39-dimensional) 

#Acoustic Parameters 

Search 

Lexical Structure 

Beam-Width 

CPU 

Word Error Rate 

Time (x real-time) 

HMM Memory Usage 

CI SYSTEM CD SYSTEM 

981 (1994 ARPA-ATIS evaluation set) 

1,536 words 

word-sequence bigram (perplexity x 20) 

N12,000 ATIS 

48 

142 

16 

2,254 

178,066 

N20,000 ATIS + -8,000 WSJ 

9,769 

3,916 (tied) 

20 

76,154 

6,016,166 

one-pass Viterbi beam search 

lexical tree 

100 

150MHz MIPS R4400 

9.4% 

1.93 

0.71MB 

linear lexicon 

170 

195MHZ MIPS RlOOOO 

5.2% 

7.06 

24MB 
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X X 
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X 

Recognition Time (x real-time) 

Figure 3.2: (the baseline performance of Table 3.3 are marked with squares) 

It can be seen that even with this medium-vocabulary domain-specific task, the more 

accurate CD system is still about an order of magnitude away from real-time performance 

on a high-end PC. Execution profiles of the systems show that 50-70% of the total run- 

time is spent on computing state likelihoods of the acoustic models. The acoustic models 

alone consume more than 24MB of memory; and when combined with the language models 

and the software code, the whole recognition system can easily exceed 40MB of memory. 

Tasks with larger vocabularies will require more complex acoustic and language models 

and thus even more memory. Therefore, a large reduction in the memory size of the 

acoustic models is desirable. Furthermore, the baseline systems require a large amount of 

training data: The CI and the CD systems are trained with 18 and 36 hours of speech 



respectively. One major cause for all these (computation, memory, and training) costs is 

the large set of model parameters, the reduction of which is the main theme of this thesis. 



Chapter 4 

Subspace Distribution Clustering Hidden 

Markov Model (SDCHMM) 

We pointed out in Chapter 1 that many of the state-of-the-art speech recognizers are 

too big (consuming a lot of memory) and too slow to run in desktop personal computers 

that most people can afford. We attribute part of the problem to their complex acous- 

tic models, encompassing millions of model parameters. To reduce the large number of 

model parameters without compromising recognition performance, we apply the proven 

technology of parameter tying. 

4.1 Theory of SDCHMM 

The theory of SDCHMM is derived from that of the continuous density hidden Markov 

model (CDHMM). Let us first consider a set of CDHMMs (possibly with tied states) in 

which state-observation distributions are estimated as mixture Gaussian densities with 

M components and diagonal covariances. Later we will extend the theory by considering 

CDHMMs with other types of mixture densities. 

Using the following notations (where, as usual, bold-faced quantities represent vectors): 

0 : an observation vector of dimension D 

P ( 0 )  : state output probability given observation 0 

(with subscripts of CDHMM or SDCHMM when the context requires clarity) 

c, : weight of the m-th mixture component 

pm : mean vector of the m-th mixture component 



a; : variance vector of the m-th mixture component 

N(.) : Gaussian probability density function (pdf) 

the state observation probability is given by 

The key observation is that a Gaussian with diagonal covariance can be expressed 

as a product of subspace Gaussians where the subspaces (or streams) are orthogonal and 

together span the original full feature vector space. Formally, let us denote the fuII vector 

space of dimension D by 7ZD with an orthonormal basis, which are composed of the column 

vectors of the D x D identity matrix. IZD is decomposed into K orthogonal subspaces 

7 Z d k  of dimension dk ,  1 5 k 5 K, with the following conditions: 

Condition 1: 

Condition 2: 

Condition 3: The basis of each subspace is composed of a subset of the basis 

vectors of the full vector space. 

Each of the original full-space Gaussians is projected onto each of the K subspaces 

to obtain K subspace Gaussians of dimension dk ,  1 5 k 5 K ,  with diagonal covariances. 

That is, Equation (4.1) can be rewritten as 

where 

O k  : projection of observation 0 onto the k-th subspace 

pmk : projection of mean vector of the m-th component onto the k-th subspace 

u : projection of variance vector of the m-th component onto the k-th subspace 



For each stream, we treat the subspace Gaussians as the basic modeling unit, and 

tie them across all states of all CDHMM acoustic models. Hence, the state observation 

probability in Equation (4.4) is modified as 

The ensuing HMM will be called the subspace distribution clustering hidden Markov 

model (SDCHMM). Figure 4.1 shows an extension of the various HMM tying schemes of 

Figure 2.3 to include SDCHMMs. There are 4 streams in the example. 

4.1.1 Generalization 

The foregoing SDCHMM formulation can be generalized to any mixture density insofar 

as the component pdf 3 ( 0 )  can be expressed as a product of subspace pdf's of the same 

functional form. That is, 

provided that the three conditions on the subspaces mentioned above are satisfied. 

An obvious candidate for this functional is a Gaussian pdf with block-diagonal covari- 

ance. A matrix, A, is said to be in block-diagonal form if A can be partitioned into square 

submatrices such that all non-diagonal square submatrices are null (or zero). That is, a 

block-diagonal matrix A has the form of 

where Akk, 1 5 k 5 K, are square matrices. 

A block-diagonal matrix has the following two useful properties in our context: 





Property 1: The determinant of a block-diagonal matrix is equal to the product of the 

determinants of its diagonal submatrices. That is, 

Property 2: The inverse of a block-diagonal matrix is another block-diagonal matrix 

where the constituent diagonal submatrices are the inverses of the original diagonal sub- 

matrices. That is, 

Thus a Gaussian with block-diagonal covariance can also be expressed as a product of 

subspace Gaussians with full covariance as 

where I=, is the block-diagonal covariance matrix of the full-space Gaussian, and !Emk is 

the full covariance matrix of the k-th stream subspace Gaussian. The rest of SDCHMM 

theory then applies as before. 

While other pdf functionals or Gaussians with block-diagonal covariances appear in- 

triguing, they have not been widely studied (except, e.g., [89]) in automatic speech recog- 

nition. To keep our focus on the main issue of SDCHMM in this thesis, we investigate only 

SDCHMMs based on CDHMMs with mixture Gaussian densities and diagonal covariances. 

4.2 Distribution Clustering 

In practice, the proposed SDCHMM as in Equation (4.5) can be obtained by clustering 

or quantizing the subspace Gaussians of CDHMMs in each stream. That is, to derive 



K-stream SDCHMMs from a set of CDHMMs in which there are originally a total of N 

full-space Gaussian distributions, the subspace Gaussians in each stream are clustered into 

a small set of L subspace Gaussian prototypes (or codewords) 

where L << N. Each original subspace Gaussian is then "approximated" by its nearest 

subspace Gaussian prototype 

with 1 being given by 

I = argmin dist ( ~ ( 0 ~ ;  pmk, Nquantized 

l l s < L  
(Ok; p q k 7  O ; k ) )  

where dist(-) measures the distance between two Gaussian distributions. 

In this respect, SDCHMMs can be considered as an approximation to the conventional 

CDHMMs. Since it has been proved by years of research that CDHMM is a good model 

for speech recognition, a carefully-designed approximation to  the CDHMM formulation 

- SDCHMM - should, in principle, also deliver high performance. 

In general, since quantization in lower dimensions results in smaller quantization er- 

ror (see Appendix A for a formal proof), more streams should be adopted in SDCHMMs 

in order to maintain the performance of their parent CDHMMs. 

Two distribution clustering algorithms are discussed in length and evaluated in Chap- 

ter 5. 

4.3 Why Are SDCHMMs Good? 

If the subspace distributions are properly clustered, all original full-space distributions 

can be represented by some combinations of a small number of subspace distribution pro- 

totypes with small quantization errors. The combinatorial effect of subspace distribution 

encoding can be very powerful: For instance, a 20-stream SDCHMM system with as few 



as 2 subspace distribution prototypes per stream can represent 220 = 1,048,576 differ- 

ent full-space distributions. Of course, in reality, more prototypes are required to ensure 

small quantization errors. This can be achieved with more streams or more prototypes 

per stream. 

4.3.1 Savings in Model Parameters and Memory 

Table 4.1 computes the number of model parameters in discrete HMMs (DHMMs), semi- 

continuous HMMs (SCHMMs), CDHMMs and SDCHMMs. Each stream of DHMMs is 

described by discrete VQ prototypes and state observation histograms. SCHMMs are 

similar to DHMMs except that the prototypes are now continuous Gaussians. CDHMMs 

parameters comprise the mixture weights and the means and variances of the mixture 

Gaussian densities. SDCHMMs parameters consist of mixture weights, continuous sub- 

space Gaussian prototypes for each stream, and the encoding indices (or pointers) between 

the original full-space Gaussians and the subspace Gaussian prototypes. For large sys- 

tems, the number of HMM states S is relatively large (typically several thousands), and 

any terms involving S dominate the sums in the first row of Table 4.1. The second row 

of the table gives the approximated number of model parameters in such large systems. 

Hence, in terms of the number of model parameters, DHMMs are dominated by their state 

observation histograms, SCHMMs by their mixture weights, CDHMMs by their Gaussians 

and SDCHMMs by their subspace Gaussian encoding indices. 

Table 4.1: Number of model parameters in various types of HMM 
(S = #states, M = #mixtures per state, L = #codewords per 
stream, K = #streams and D = feature dimension) 

For DHMMs and SCHMMs, the number of streams is usually 3 or 4 [28, 501, and the 

number of prototypes is about 256-1024; while CDHMMs typically have 20-30 mixture 

DISCRETE 
HMM 

CONTINUOUS 
DENSITY HMM 

SEMI-CONTINUOUS 
HMM 

SUBSPACE DISTRIBUTION 
CLUSTERING HMM 



components per state density. For example, in large system (with large value of S) ,  if M = 

20, L = 256, K = 4, and D = 39, the number of model parameters in DHMMs, SCHMMs, 

and CDHMMs will be 1024S, 1024S, and 1560s respectively. Thus CDHMMs generally 

require more memory than DHMMs and SCHMMs. Since most of the memory consumed 

by CDHMMs is used to store the Gaussian parameters, if SDCHMMs can approximate 

CDHMMs with few subspace Gaussian prototypes, substantial memory savings can be 

achieved. For example, using the same figures for M and K ,  the number of parameters 

in SDCHMMs will be 80s. However, as will be seen in the next chapter, more streams 

are required in SDCHMMs to  obtain similar performance to CDHMMs, with a typical 

value of 20 streams. Even with 20 streams, the SDCHMMs will have only 400s model 

parameters - less than half of those of DHMMs and SCHMMs. 

Notice that there is a trade-off between memory savings and performance of SDCH- 

MMs. To reduce memory requirement (which is mostly used to store the subspace Gaus- 

sian encoding indices), fewer streams are desirable. However, fewer streams mean higher 

stream dimensionality which means greater quantization errors and poorer performance 

for a given number of prototypes (see Appendix A). 

4.3.2 Savings in Computation 

As mentioned in Section 3.2.6, the state likelihood can be approximated by the likelihood 

of the most likely mixture component of the state with no loss of overall recognition 

accuracy. That is, the summation operator of Equation (4.5) is replaced by the max 

operator as 

which becomes 

in the logarithmic domain. 

The computational efficiency of SDCHMMs comes from the fact that, since a small 

number of the subspace Gaussians are shared by a large number of full-space Gaussian 



components, all these subspace Gaussian log likelihoods can be pre-computed once and 

only once at the beginning of every frame, and their values are stored in lookup tables. 

During Viterbi decoding [86], the state log likelihood computation of Equation (4.12) is 

reduced to a summation of K pre-computed subspace Gaussian log likelihoods and the 

mixture weight for each component of the state. Obviously, the wider the beam-width, the 

greater the savings in state likelihood computation (as there will be more active states). 

Again, there is a trade-off between computational savings and the performance of 

SDCHMMs. To increase the likelihood computation efficiency, fewer streams are desirable 

as fewer additions are then needed to compute the full-space state likelihoods. However, 

fewer streams will lead to poorer performance unless more prototypes are used. 

4.4 Comparison with Semi-Continuous HMM 

At first glance, SDCHMMs may appear similar to SCHMMs [4, 29, 801: Both methods 

divide the feature space into streams, and tie subspace distributions across all states of 

all HMMs. However, close scrutiny shows that K-stream SCHMMs compute the state 

likelihood differently as 

where cmk is the weight of the m-th mixture component in the k-th stream. 

Comparing Equation (4.13) with Equation (4.5), one finds two differences: 

There is a switch between the product operator (n) and summation operator (C) in 

the two equations. 

In an SCHMM state, each of the K subspace Gaussians is associated with its own 

mixture weight cmk, whereas one mixture weight c, is shared among all the K 

subspace Gaussians of a SDCHMM state. 

Both differences arise from the fact that SCHMMs assume stream independence in the 

global feature space, whereas SDCHMMs assume stream independence in the local feature 

space - an assumption inherited from CDHMMs with mixture Gaussian densities and 



diagonal covariances. That is, for each state, SCHMMs estimate one mixture Gaussian 

density from each of the streams independently, and then combine the subspace Gaussian 

likelihoods by assuming again independent streams. However, the assumption of feature 

independence between the streams commonly used in speech recognition is hardly justified. 

SDCHMMs therefore start with CDHMMs using the full feature speech vectors without 

assuming any feature independence. The correlation between features at each state is well 

modeled by a mixture Gaussian density. The implicit assumption of stream independence 

in the local feature space results directly from using Gaussians with diagonal covariances 

in the pdf estimation process. Theoretically, a mixture Gaussian density with diagonal 

covariances may model any distribution, should there be sufficient Gaussians and ample 

training data. An implication of the difference in the scope of the assumptions is the 

number of streams required: The SCHMM favors fewer streams of higher dimensions, so 

that correlation among more features can be modeled and there will be fewer mixture 

weights; on the contrary, SDCHMM favors more streams of lower dimensions so that 

quantization of the subspace Gaussians of CDHMMs will give smaller quantization errors 

and more accurate models (Table 4.1). 

We will consequently test the following hypothesis in Chapter 5: By deriving our 

SDCHMMs from the more accurate CDHMMs with the less stringent assumption of stream 

independence in the local feature space, the SDCHMMs may be equally accurate even with 

fewer model parameters. 

Another difference between SDCHMM and SCHMM not readily observed from Equa- 

tions (4.5) and (4.13) is that SCHMM requires each state to have the same number of 

mixture components equal to the number of distribution prototypes while SDCHMM does 

not. As a result, SDCHMM usually has many fewer mixture components per state, and 

thus has the following advantages over SCHMM: 

Fewer components mean fewer mixture weights which then take less memory space. 

Fewer components are involved in state likelihood computation which then takes less 

CPU time. 



4.5 Comparison with Feature-Parameter-Tying HMM 

The feature-parameter-tying HMM (FPTHMM) [84, 851 turns out to be a special case 

of our SDCHMM when the number of streams is set to the size of the feature vector; 

i.e. K = D. In a sense, the FPTHMM is the scalar quantization (SQ) version of our 

SDCHMM. In Section 4.3.1, it is shown that the main storage cost of SDCHMMs is 

incurred by the subspace Gaussian encoding indices which grow in proportion with the 

number of streams. Similarly Equation (4.12) indicates that the computation cost of 

the state likelihood is directly proportional to the number of streams once all subspace 

Gaussian likelihoods are pre-computed. Thus, although SQ of the subspace Gaussians in 

FPTHMMs has the advantage of simplicity and generally requiring fewer prototypes, it 

will need more storage space and more computation time than SDCHMMs with K < D. 

The difference will be more conspicuous for large systems. 

The definition of streams, the number of streams, and the number of prototypes, all 

affect the system performance of automatic speech recognition as measured in terms of 

memory size, computation time, and recognition accuracy. Their interactions will be 

investigated in the next chapter where a practical implementation of SDCHMMs from 

CDHMMs is proposed and evaluated on the ATIS recognition task. 



Chapter 5 

Implementat ion of SDCHMMs (I) : 

Model Conversion from Continuous 

Density HMMs (CDHMMs) 

The formulation of the subspace distribution clustering hidden Markov model (SDCHMM) 

as of Equation (4.5) of Chapter 4 suggests that SDCHMMs may be implemented in the 

following two steps: 

1. Train continuous density hidden Markov models (CDHMMs) for all the phonetic 

units (possibly with tied states), wherein state observation distributions are esti- 

mated as mixture Gaussian densities with diagonal covariances. 

2. Convert the CDHMMs to SDCHMMs by tying the subspace Gaussians in each 

stream as shown in Figure 5.1. 

Since the training of CDHMMs is well covered in the literature [31,69], we will not repeat 

it here. Instead, when we discuss the reestimation of SDCHMM parameters in Chapter 7, 

we will review the reestimation of CDHMM parameters as well. In this chapter, we assume 

that a set of (well-trained) CDHMMs is given, and we focus only on the conversion of the 

CDHMMs to SDCHMMs. 

Tying of subspace Gaussians consists of splitting the full speech feature vector space 

into disjoint subspaces, projecting mixture Gaussians of CDHMMs onto these subspaces, 

and then clustering the subspace Gaussians into a small number of Gaussian prototypes in 

each subspace. In the following, we investigate various streams definitions and distribution 



stream 
definition 

Figure 5.1: Conversion of CDHMMs to SDCHMMs 

clustering algorithms to tie subspace Gaussians. The subsequent model conversion schemes 

are simple and fast. Yet the converted SDCHMMs are as accurate as the original CDHMMs 

but run faster and consume less memory. In addition, no re-training of the converted 

SDCHMMs is found necessary. 

5.1 Issue I: Stream Definition 

To derive K-stream SDCHMMs, we first have to partition the feature set fID with D 

features into K disjoint feature subsets Ctdk  with dk features, 1 5 k 5 K .  Formally, let 

?!be such a partition, then 

h' 
F!= n d k : C d k = ~  mdfIdknfIdl  = B f o r l < k # j < K  (5.1) i k = l  

The number of all possible partitions Np can be found as follows. If the dimensions 

of all partitions, dk, 1 < k 5 K, are distinct, then Np is given by 

On the other hand, if all partitions are of the same dimension, i.e. dl = d2 = . - - = dK = d 

then 



In general, let there be K1 partitions with different dimensions, and Kg partitions with 

the same dimension such that K1 + K2 = K. That is, dk, 1 _< k 5 K1, are distinct, but 

dKl+1 = dK1+2 = - - .  = dK = d. Then 

The partition F'z is optimal if subsequent tying of subspace Gaussians in the feature 

subspaces of the partition results in minimal total quantization error for a pre-determined 

number of prototypes and clustering algorithm. In general, the clustering problem cannot 

be solved analytically, and is tackled numerically using iterative procedures. Since the 

total number of possible partitions is usually very large, it is not feasible to determine 

the optimal partition by numerically computing the quantization errors due to all possible 

candidates. Thus some heuristic approach has to be used to obtain a reasonable partition. 

5.1.1 Common Streams 

Our speech input comprises 39 features: 12 MFCCs, normalized power, and their first- 

and second-order time derivatives. Based on commonly-used streams in discrete HMM 

and semi-continuous HMM, the following "common" definitions of streams are explored: 

1-stream definition: all features in one stream. 

4-stream definition: cepstra, their first derivatives, their second derivatives, and power 

terms in four separate streams. 

li%mFl 

13-stream definition: twelve streams of each cepstral coefficient together with its 

derivatives, and one stream of the power terms. 
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39-stream definition: each 1-dimensional feature is put into one stream. 

The main heuristic here is to put conceptually similar features together in one stream. 

The 1-stream and 39-stream definitions are included for reference. Note that 1-stream 

SDCHMMs are identical with the original CDHMMs, and 39-stream SDCHMMs are the 

same as feature-parameter-tying HMMs (FPTHMMs). 

5.1.2 Correlated-Feature Streams 

We adopt the heuristic that correlated features, by definition, should tend to cluster in a 

similar manner, and require each stream to have the most correlated features. Intuitively 

this criterion should result in smaller distortions for the clustered subspace Gaussians. For 

example, let us consider two features Fl and Fz, having (scalar) data clustered around 

a, b, c, d and p, q, r, s with the same covariance respectively. If their means are fully corre- 

lated, they will give rise to four 2-dimensional Gaussians: Gl (a,p), G2(b, q), G3(c, r ) ,  and 

G4(d, s) ,  and their means lie on a straight line as shown in Figure 5.2(a). A clustering 

algorithm using an Euclidean distortion measure will produce two clusters, {GI, G2) and 

{G3,G4). NOW let us assume that the Fl and F2 data are fixed but that their means 

are not correlated as described in Figure 5.2(b), forming the Gaussians Gl (a, p), G2 (b, r ) ,  

G3(c, q) and G4(d, s).  Although subsequent clustering produces the same two clusters, 

{GI, G2} and {G3, G4) as before, the distortion of the resulting clusters in this case is 

much larger. The reason is that according to Equation (3.4), the increase in the Euclidean 

distortion on clustering two Gaussians is proportional to the Euclidean distance between 

their means; it is clear that the distance between the means of G1 and G2, or G3 and G4 

are larger in Figure 5.2(b) than that in Figure 5.2(a). 

Strictly speaking, the correlation should be computed from Gaussian mean vectors of 

the given CDHMMs to deduce the stream definitions. In this work, however, in order to 

obtain one single stream definition for all ATIS experiments, we compute the correlations 



(a) Correlated features 

(b) Uncorrelated features 

Figure 5.2: Effect o f  correlated and uncorrelated features on clustering 



from feature frames of 1,000 ATIS training utterances instead. In preliminary experiments, 

we found little difference between stream definitions derived by these two methods. Note 

also that, although the features are assumed uncorrelated locally within each Gaussian 

distribution, during clustering of the subspace Gaussians, it is the global feature correlation 

that matters. 

This definition has the additional benefit of providing a single coherent definition for 

any arbitrary number of streams of any dimension. 

Multiple Correlation Measure 

The correlation pjj between two variables is commonly measured by Pearson's moment 

product correlation coefficient 

where ui and oj are the standard deviations of the i-th and j-th variables respectively, 

and o;j is the square root of their covariance. Nevertheless, multiple correlation measures 

among three or more variables are less studied. In the statistics literature, multiple cor- 

relation is usually reduced to a binary correlation as follows: One variable is identified as 

the criterion variable and the rest as the predictor variables. A single derived variable is 

computed from a linear combination of the predictor variables and the binary correlation 

between the derived variable and the criterion variable is taken as the multiple correlation 

among the variables. One way to determine the combination weights of the derived vari- 

able is to compute what are called the beta weights so as to maximize the resulting binary 

correlation [39]. 

However, in our context, a multiple correlation measure that emphasizes mutual cor- 

relations among all variables at the same time is more desirable. In this thesis, we propose 

a new definition of a multiple correlation coefficient R defined as 

R ef 1 - determinant of correlation matrix of the variables. (5-6) 



That is, the multiple correlation coefficient R among k variables is, 

In particular, when there are only two variables, 

= ' - 

Hence, in the case when there are only two variables, R equals the square of the moment 

product correlation coefficient. 

Since the correlation matrix is symmetric, its determinant is equal to the product of 

its eigenvalues. Therefore, 

1 P12 P13 .. - P l k  

P2l  1 p23 ... P2k 

P31 /-?32 1 P3k 

. .  - .  

Pkl  Pk2 Pk3 ' '  1 

where X j  is the j-th eigenvalue of the correlation matrix. Equation (5.8) gives a geometri- 

cal interpretation to the multiple correlation measure. When all the variables are highly 

correlated, the correlation matrix corresponds to  an elongated ellipsoid with most eigen- 

values except one being small, giving a small value for their product and thus a high value 

of R. When the variables are less correlated, the matrix is more spherical, giving a higher 

value for the eigenvalue product and smaller value of R. It can also easily be shown that 

R has the following desirable properties of a correlation measure: 

when all variables are correlated, i.e. Vi, j, p ; j  = 1, R = 1 

when all variables are uncorrelated, i.e. Vz, j, p; j  = 0, R = 0. 



Algorithm 3: Selection of the most correlated-feature streams (of the same dimension) 

Goal: Given D features, define K n-dimensional streams with D = nK 

Step 1. Compute the multiple correlation coefficient among any set of n features accord- 
ing to Equation (5.7). (There are totally C(D, n)  coefficients.) 

Step 2. Sort the multiple correlation coefficients in descending order, each tagged by an 
n-feature tuple indicating the features it computes from. 

Step 3. Starting from the top, an n-feature tuple is moved from the sorted list to the 
"solution list" if none of its features already appear in any feature tuples of the 
solution list. 

Step 4. Repeat Step 3 until all features appear in the solution list. 

Step 5. The feature tuples in the "solution list" are the K-stream definition. 

Derivation of Streams 

Practically, we apply a greedy algorithm [26] to obtain streams in which the features are 

most correlated, as depicted in Algorithm 3. It is simple to  modify the algorithm in cases 

when the number of features D is not a multiple of the number of streams K.  For instance, 

one may require ( K  - 1) streams to have the same dimension, and have this dimension 

as large as possible. This is accomplished by setting n to  either [D/K] or [D/K1 so 

that (D - n(K - 1)) is positive and is minimized, and then proceeding with Algorithm 3 

to find the first ( K  - 1) streams. The leftover (D - n ( K  - 1)) features are then put 

together as the last stream. Since the streams are restricted to have the same dimension 

except at most one of them, the computation of multiple correlation coefficients involves 

only determinants of any n x n matrices obtained by deleting any (D - n) rows and the 

corresponding columns from the D x D feature correlation matrix - which needs to be 

computed once. As a result, the algorithm is efficient. 

Table 5.1 shows the definitions of 13 and 20 correlated-feature streams generated by 

Algorithm 3 using 1,000 utterances from the ATIS training corpus. From the 20-stream 

definition, MFCC and A2MFCC are found mostly correlated. Moreover, many streams 

of the 13-stream definition are feature supersets of streams from the 20-stream definition. 



Table 5.1: ATIS: Definitions of correlated-feature streams 

(a) 13-stream definition (b) 20-stream definition 

I STREAM I FEATURES [ STREAM I FEATURES ] 
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5.2 Issue 11: Subspace Gaussian Clustering 

Two very different clustering schemes are investigated: The bottom-up agglomerative 

clustering algorithm used previously for tying HMM states in Chapter 3, and a top-down 

modified k-means clustering algorithm. 

5.2.1 Agglomerative Gaussian Clustering Algorithm 

The ensemble merging algorithm for state tying described in Algorithm 2 of Section 3.2.3 

can be applied without modification to cluster subspace Gaussians in each stream instead 

of HMM states. It is a bottom-up agglomerative clustering scheme in which two subspace 

Gaussians are merged if they result in minimum increase in distortion (scatter). The 



algorithm has a complexity of O(n2). 

5.2.2 Modified k-means Gaussian Clustering Algorithm 

Algorithm 4 shows a newly devised O(JLn) modified k-means clustering algorithm which 

derives L subspace Gaussian prototypes in J iterations without using any heuristics. With 

J L  << n for large acoustic models, the linearity in n implies improved efficiency (over the 

ensemble merging algorithm). 

Algorithm 4: Modified k-means Gaussians clustering algorithm 

Goal: To derive K-stream SDCHMMs with L subspace Gaussian prototypes per stream. 

Step 1. Initialization: First train a 1-stream Gaussian mixture model with L components. 
Project each of the L Gaussian components onto the K subspaces according to the 
given K-stream specification. The resultant KL subspace Gaussians will be used as 
initial subspace Gaussian prototypes. 

Step 2. Similarly project each Gaussian pdf in the original CDHMMs onto the K sub- 
spaces. 

Step 3. For each stream, repeat Step 4 & 5 until some convergence criterion is met. 

Step 4. Membership: Associate each subspace Gaussian of CDHMMs with its nearest 
prototype as determined by their Bhattacharyya distance. 

Step 5. Update: Merge all subspace Gaussians which share the same nearest prototype 
to  become the new subspace Gaussian prototypes. 

To compute the distance between two Gaussians during distribution clustering, we 

adopt the classification-based Bhattacharyya distance, which is defined as 

where, pi and Xi, i = 1,2, are the means and covariances of the two Gaussians [17]. The 

Bhattacharyya distance has been used in several speech-related tasks [42, 54, 571, leading 

to good results. The Bhattacharyya distance captures both the first- and the second-order 

statistics, and is expected to give better clustering results than the Euclidean distortion 

measure of Equation (3.4), which makes use of only the first-order statistics. 



To initiate the iterative k-means clustering procedure for the conversion of CDHMMs 

to K-stream SDCHMMs with L suhspace Gaussian prototypes per stream, we first train 

a Gaussian mixture model with L components using 1,000 ATIS training utterances. The 

L Gaussians are split into L subspace Gaussians for each stream, which are then used as 

seeds for clustering. If no training data is available, one may, for example, randomly pick 

L subspace Gaussians from the CDHMMs to start the clustering procedure. 

5.3 ATIS Recognit ion Evaluation 

AT&T's context-independent (CI) and context-dependent (CD) baseline ATIS recognizers 

of Section 3.2 are utilized for our SDCHMM evaluation. All components of the base- 

line recognizers are kept intact, except that their acoustic models are converted from 

CDHMMs to SDCHMMs. The testing conditions are exactly the same as those described 

in Table 3.3. All subspace Gaussian log-likelihoods are pre-computed at the beginning of 

each frame, and their values are stored in tables in contiguous memory1. In addition, for 

implementation and system simplicity, all streams are tied to the same number of subspace 

Gaussian prototypes in all our SDCHMMs. 

5.3.1 Evaluation of Stream Definitions and Clustering Algorithms 

With the two types of stream definitions of Section 5.1 and the two clustering algorithms 

of Section 5.2, four different combinations of stream definitions and clustering algorithms 

are tested using 13 streams: 

common stream definition + ensemble merging 

common stream definition + modified k-means Gaussian clustering 

correlated-feature stream definition + ensemble merging 

correlated-feature stream definition + modified k-means Gaussian clustering. 

'We have also tried to compute the subspace Gaussian log-likelihoods on the fly during decoding, but 
unless when there are more than 512 prototypes per stream, pre-computation of the log-likelihoods always 
entails faster recognition. 



Thirteen streams are chosen because both the common stream definition and the 

correlated-feature stream definition readily apply. Each stream consists of exactly three 

features, and is tied to 8-256 subspace Gaussian prototypes. Each of the ensuing 13-stream 

SDCHMM systems is then tested on the 1994 ATIS evaluation dataset. 

Figure 5.3(a) and (b) show incremental improvements in recognition performance when 

correlated-feature streams and/or the modified k-means Gaussian clustering algorithm 

are used. The incremental improvement due to either correlated-feature streams or the 

modified k-means Gaussian clustering algorithm alone is similar in the case of CI models. 

In the case of CD models, most of the gain in accuracy comes from the modified k- 

means Gaussian clustering algorithm. Nonetheless, the improvements are observed with 

both CI and CD models at almost all levels of quantization - various numbers of subspace 

Gaussian prototypes. This shows that by bringing more knowledge into play - correlation 

in the correlated-feature stream definition and second-order statistics in the modified k- 

means Gaussian clustering algorithm, better subspace Gaussian tying is achieved. In 

particular, the improvement is more pronounced with fewer prototypes. For example, 

for the CD SDCHMMs, WER with 8 subspace Gaussian prototypes per stream drops 

24% compared with 10% drop with the use of 256 prototypes. This is desirable as fewer 

prototypes usually translate into faster recognition. 

Henceforth, all experiments are run with SDCHMMs derived using the modified k- 

means Gaussian clustering algorithm with correlated-feature streams except for the 4- 

stream SDCHMMs which are derived with the common Pstream definition. 

5.3.2 Evaluation of SDCHMMs 

I. Recognition Accuracy 

For 1,4, 13, 20, and 39 correlated-feature streams, the modified k-means Gaussian cluster- 

ing algorithm is run, in each case, to obtain CI SDCHMMs with 8-256 subspace Gaussian 

prototypes per stream, or CD SDCHMMs with 2-256 subspace Gaussian prototypes per 

stream. Figure 5.4 shows their recognition accuracies in terms of word error rate (WER). 

In general, WER decreases with more streams and more prototypes as expected, since 

more streams of smaller dimensions should result in smaller distortions when the subspace 
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Figure 5.3: ATIS: Recognition accuracy of 13-stream SDCHMMs with various 
stream definitions and clustering schemes 
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Figure 5.4: ATIS: EfFect of number of streams and subspace Gaussian pro- 
totypes on SDCHMM recognition accuracy(the best systems o f  
Table 5.2 are marked with squares) 



Gaussians are quantized, and more prototypes should give smaller quantization errors. In 

other words, when the same number of prototypes is used, SDCHMMs with more streams 

are more accurate; or, SDCHMMs with more streams can achieve the same accuracy 

with fewer prototypes than SDCHMMs with fewer streams. For example, 39-stream CD 

SDCHMMs obtain the best WER of 5.0% with 16 subspace Gaussian prototypes, while 

20-stream CD SDCHMMs require 64 prototypes, and 13-stream CD SDCHMMs reach 

their best WER of 5.2% with at least 128 prototypes. 

However, for CD models, the WER actually increases for 20- and 39-stream SDCHMMs 

after 128 and 64 prototypes respectively. This suggests that some of the original CD 

CDHMMs may not be well trained (even with the addition of some 8,000 WSJ training 

utterances. See Section 3.3). Subspace Gaussian tying may help improve these poorly 

trained models by interpolating them with better-trained models, or by pooling together 

more training data for them. 

The best C1 SDCHMMs (with 20 streams and 128 prototypes, or 39 streams and 32 

prototypes) compare well with the baseline CI CDHMMs (9.5% vs. 9.4%, a relative 1% 

increase in WER), and the best CD SDCHMMs (with 20 streams and 64 prototypes, or 

39 streams and 16 prototypes) actually outperform the baseline CD CDHMMs (5.0% vs. 

5.2%, a relative 4% reduction in WER). 

Finally, Figure 5.4(b) shows that even with two subspace Gaussian prototypes, or one 

bit of information per stream, a 39-stream CD SDCHMM system can still achieve a WER 

of only 9.1%. This is not too surprising when one realizes that this SDCHMM system 

can, in principle, represent 239 or about half a trillion distinct full-space Gaussians, and 

there are only about 76,154 Gaussians in the original CDHMM system - about one-tenth 

of one-millionth of the representables. From another perspective, it also suggests high 

redundancy in current CDHMMs, and that SDCHMMs are more efficient in representing 

the model parameter space. 



11. Recognition Speed 

The corresponding total recognition times of the SDCHMM systems of Figure 5.4 are pre- 

sented in Figure 5.5 relative to real-time performance. The relationships between recog- 

nition speed and the number of prototypes are generally parabolas that curve upwards. 

The longer recognition time at the two ends of the parabolic curves are due to two very 

different effects: 

In general, more prototypes simply require more computation for the subspace Gaus- 

sian log-likelihoods. 

Fewer prototypes lead to poorer SDCHMMs (due to larger quantization errors) with 

less discriminating power and more active states during a Viterbi search using the 

same beam-width, and thus more computation. Figure 5.6 shows the corresponding 

number of active states. Notice the high correlation between the number of active 

states in Figure 5.6 and WERs of Figure 5.4. 

The first effect is weaker in the CD SDCHMM system than in the CI SDCHMM system. 

It is because that there are many more active states during decoding in the CD system 

than in the CI system - about 10 times more from Figure 5.6. With the large number of 

active states in the CD system, the pre-computation of subspace Gaussian log-likelihoods 

represents a small proportion of the total computation time. Consequently, the speed of 

the CD SDCHMM system is insensitive to  the first effect. 

The impact of the number of streams on recognition speed is complicated by the above 

two effects, but in general, more streams means more additions in the computation of state 

log-likelihoods (Equation (4.12)) and hence longer recognition time. In addition, another 

complication arises from the software implementation. For the same number of subspace 

Gaussian prototypes per stream, the total number of function calls to compute their log 

likelihoods increases with the number of streams. Each function call adds overhead due 

to invocation of the call, and initialization of various data structures. 

2The relationship between the number of active states during decoding and final recognition accu- 
racy should not be overstated. At best, the number of active states may be used to explain the poorer 
performance of the converted models (compared with their original ones) but not to predict the latter. 
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Figure 5.5: ATIS: Effect of number of  streams and subspace Gaussian pro- 
totypes on SDCHMM recognition speed (the best systems of Ta- 
ble 5.2 are marked with squares) 
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Figure 5.6: ATIS: Number of active states during decoding 



5.3.3 Summary of Best Results 

From the discussion above, there is a trade-off between recognition accuracy and recog- 

nition speed by adjusting the number of streams and the number of prototypes. By 

overlaying Figure 5.5 onto Figure 5.4, the best SDCHMM recognition performance with 

various numbers of streams are determined and summarized in Table 5.2. The table also 

lists comparative results for the baseline CDHMMs (or 1-stream SDCHMMs): 

TIME : recognition time 

PR : reduction in the number of model parameters. The figures in parentheses include 

also the encoding indices/pointers when original full-space Gaussians are mapped to 

their subspace Gaussians - one index/pointer per subspace Gaussian per stream. 

MS : memory savings, assuming 4-byte floats for mixture weights, Gaussian means, and 

variances, and 1-byte indices for encoding subspace Gaussians. 

Table 5.2: ATIS: Summary of the best results(K = #streams, n = #sub- 
space Gaussian prototypes per stream, CI = context independent, 
CD = context dependent, WER = word error rate (%), T lME is 
relative to  that of the baseline system, PR = parameter reduction, 
and MS = memory savings. For PR, figures in parentheses take 
into account the mappings of su bspace Gaussians t o  the full-space 
Gaussians. For MS, 1-byte mappings are assumed.) 

CI/CD 

CI 
CI 

K 

1 
13 

WER 
9.4 
9.7 

n 

2254 
256 

TlME 

1.00 
0.72 

PR 
1 

8 (3.5) 

MS 

1 
6.1 



The CD SDCHMMs perform better than the CI SDCHMMs when compared with 

their respective baseline systems. The CD SDCHMMs require fewer prototypes but give 

relatively better accuracies, higher computation efficiency, greater memory savings and 

larger reduction in model parameters. The most plausible explanation is that the CI 

models are less complex and robustly trained due to the large amount of available training 

data. Further tying of CI model parameters renders over-smoothing of the parameters. As 

a result, more prototypes are required to  maintain acceptable quantization errors. On the 

contrary, the CD SDCHMMs are highly complex and model all triphone contexts observed 

in the data, but modeling the rare triphones has always been a problem. The baseline 

CDHMMs resort to state-tying to alleviate the problem. Obviously, results of Table 5.2 

suggest that some triphones are still not well trained, and further tying at the smaller 

sub-phonetic unit of subspace Gaussians can effectively reduce the model parameter space 

to obtain more robust models. Nevertheless, it is still amazing to see that the 76,154 

Gaussians of the baseline CDHMMs can be represented by 32 - 128 subspace Gaussians 

per stream. 

Thirteen, 20 or 39 streams all work well in both CD or CI systems, but their impacts 

on savings in computation, memory, model parameters and accuracy are quite different. 

For the CI systems, 13- to  39-stream SDCHMMs all give similar performance in terms 

of accuracy, speed and memory requirement. The only difference lies in their number 

of model parameters: 39-stream SDCHMMs (with 1-dimensional scalar streams) have 

the fewest model parameters if one does not count the subspace Gaussian encoding pa- 

rameters, thanks to the efficiency of scalar quantization which requires fewer prototypes. 

However, once we include the encoding parameters, 39-stream SDCHMMs require more 

model parameters than SDCHMMs with fewer streams because they consume one encod- 

ing parameter per stream for each subspace Gaussian. On the other hand, since there are 

many more distributions and HMM state evaluations in CD systems than in CI systems, 

the greater sharing of Gaussian parameters in CD SDCHMMs entails greater savings in 

computation, memory, and model parameters. 

Various statistical significance tests from NIST (National Institute of Standards and 

Technology) are run on the performance differences among the recognition systems of 



Table 5.2, and their results are presented in Appendix C. Most of the tests indicate no 

significant difference among the various CI (CD) systems. The only test that indicates a 

difference actually finds the SDCHMM systems more accurate. 

Operating Curves 

The foregoing discussion that is based on Viterbi decoding using one particular beam- 

width can be biased. Figure 5.7 studies the effect of beam-width on various SDCHMM 

systems of Table 5.2 with their operating curves. An operating curve shows the speed and 

accuracy of a recognizer at varying beam-width. 

The asymptotic performances of CI SDCHMMs are basically the same as those of their 

parent CI CDHMMs, while CD SDCHMMs outperform CD CDHMMs asymptotically. In 

addition, the SDCHMM curves always lie to the left of the CDHMM curve on each graph; 

thus SDCHMM systems are always faster. Similarly, operating curves of SDCHMMs 

with fewer streams also lie to  the left of SDCHMMs with more streams though they 

may saturate sooner with poorer accuracies (for example, compare the operating curves 

of 20-stream and 39-stream CI SDCHMMs, or those of 13-stream and 20-stream CD 

SDCHMMs). The best compromise seems to  come from 20-stream SDCHMM systems. 

5.4 Summary and Discussion 

We show that by properly projecting mixture Gaussians of accurate CDHMMs onto sub- 

spaces using the correlated-feature stream definition and carefully tying the ensuing sub- 

space Gaussians by the modified k-means Gaussian clustering algorithm, accurate SDCH- 

MMs can be converted from CDHMMs. The correlated-feature stream definition, though 

not guaranteed optimal, gives reasonably good results. The resulting SDCHMMs fulfill 

the promises of faster computation and less memory requirement. For example, compared 

with the baseline CDHMM system, the best CI SDCHMM system saves the total compu- 

tation time by 30% and obtain an 8-fold reduction in HMM memory with an insignificant 

(absolute) 0.1% drop in accuracy. Similarly, the best CD SDCHMM system outperforms 

the baseline CDHMM system by 0.2% in absolute accuracy, yet it runs twice as fast with 
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Figure 5.7: ATIS: Operating curves of SDCHMMs(the best systems of Ta- 
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a 13-fold reduction in memory used for acoustic models. 

The model conversion is fast, since both the correlated-feature stream definition and 

the modified k-means clustering scheme are algorithmically simple. For instance, on an 

SGI machine (195MHZ MIPS RlOOOO), conversion of CI CDHMMs to  SDCHMMs can 

be accomplished in less than a minute, while the conversion of CD models takes a few 

minutes to an hour, depending on the extent of quantization3. 

As a side effect of subspace Gaussian tying, some full-space Gaussians will become 

identical after the tying process. Table 5.3 shows the number of distinct full-space Gaus- 

sians after subspace Gaussian tying. Notice that even with 32 prototypes per stream, 

there is very little compression (less than 1%) of full-space Gaussians using 13, 20 or 39 

streams. This shows the efficacy of SDCHMMs: The distinctiveness of the Gaussians is 

well maintained despite the great compression in the subspaces. 

Table 5.3: ATIS: Number of distinct full-space Gaussians after subspace 
Gaussian tying in context-dependent SDCHMMs 

The CD SDCHMMs show greater relative improvements than the CI SDCHMMs prob- 

ably due to the higher degree of redundancy and decreased robustness of the original CD 

CDHMMs. One may thus postulate that SDCHMMs may be more effective with larger 

acoustic models. 

- 

3The computation of the modified k-means Gaussian clustering algorithm is proportional to the number 
of Gaussians. The ratio of numbers of Gaussians in the CD and CI systems is 76154 : 2254 = 34 : 1. 



The 39-stream SDCHMMs in our case are equivalent to feature-parameter-tying HMMs 

(FPTHMMs). Our results show that, although they give the highest compression of 

subspace Gaussians, they do not give the greatest reduction in computation time and 

memory size. The major shortcomings of FPTHMMs - SDCHMMs with scalar streams 

- are: 

When the original full-space Gaussians are encoded by the subspace Gaussian pro- 

totypes, more mapping indices/pointers are required. 

During decoding, the computation of each state log-likelihood involves additions of 

more subspace Gaussian log-likelihoods. 

The impact of the number of streams on accuracy, computation time, and memory 

size is complicated. All things considered, 13 and 20 streams seem to be better choices. 

Re-training of the converted CI SDCHMMs has also been studied, and no significant 

improvement is observed. Since the converted CD SDCHMMs already surpass the baseline 

performance, based on our experience with re-training the CI SDCHMMs, we are not 

surprised that re-training will not improve the CD SDCHMMs. On the other hand, 

with the great reduction of Gaussian parameters (mixture weights, Gaussian means, and 

variances) by one to two orders of magnitude, one should expect SDCHMMs to be trained 

from scratch with much less training data than their parent CDHMMs. Direct training of 

SDCHMMs will be pursued in Chapter 7. 



Chapter 6 

Analysis of the Subspace Distribution 

Tying Structure 

In the last chapter, continuous density HMMs (CDHMMs) were converted to subspace dis- 

tribution clustering HMMs (SDCHMMs) by projecting the Gaussians of CDHMMs onto 

subspaces and clustering the subspace Gaussians in each stream into a small set of pro- 

totypes. The Gaussian clustering process is fully automatic, utilizing only acoustic infor- 

mation from the data. Yet recognition results on the ATIS task (Table 5.2) show that, for 

instance, SDCHMMs with 20 streams and 64 subspace Gaussians prototypes per stream 

are adequate to represent the original context-dependent CDHMMs containing 76,154 full- 

space Gaussians - a reduction of Gaussian parameters (means and variances) by a factor 

of more than 1,000. Such efficient tying suggests that the original Gaussians were highly 

redundant. It  is therefore interesting to %ee" how acoustics in terms of the subspace 

Gaussians are similarly realized by which speech units. We refer to the tying information 

among subspace Gaussians of SDCHMMs together with the mappings between them and 

the full-space Gaussians of CDHMMs as the subspace Gaussian tying structure(SGTS), 

or generally subspace distribution tying structure (SDTS) when the type of distribution is 

immaterial for the discussion. 

With the huge number of combinations of phonetic units, HMM states, and Gaussian 

components in the SDCHMMs, it will be very hard to visualize the whole subspace Gaus- 

sian tying structure in a single picture. In the following, we present a simple quantitative 

analysis of the number of subspace Gaussians shared by the corresponding HMM states of 

any pair of phones. We hope that the analysis will shed some light on the acoustic-phonetic 



nature of speech. 

6.1 SDCHMMs to Analyze 

In order to generate some readable visual plots of the subspace Gaussian tying structure 

between some pair of phones, we employ a less complex SDCHMM system. To do that, 

we first re-train context-independent (CI) CDHMMs with about 4,000 ATIS training ut- 

terances using the segmental k-means training algorithm [38]. The CI CDHMMs have the 

same HMM configuration as the baseline system except that there are only four Gaus- 

sian mixture components per state. Twenty-stream CI SDCHMMs are then derived from 

the CDHMMs by the model conversion scheme as explained in Chapter 5 requiring 64 

prototypes per stream. The resulting CDHMMs and SDCHMMs have recognition WERs 

of 12.2% and 12.6% respectively1. The SGTS of the 20-stream CI SDCHMMs is then 

analyzed. 

6.2 Methodology 

For the corresponding states of any two phonetic SDCHMMs with the same number of 

HMM states, which are modeled as mixture Gaussian densities, the constituent subspace 

Gaussians of their full-space Gaussians are compared. Specifically, for each stream, the 

number of common subspace Gaussians a t  the corresponding states of the two SDCHMMs 

are counted imespective to which mixture components the subspace Gaussians come from. 

The procedure may be expressed in pseudo-code as follows: 

for each pair of phones (P, Q) with the same number of states 

for each state 

{ 

num~common~subgaussian = 0 

for each stream 

'These results are worse than the baseline CI models of Table 3.3. It is mainly due to their reduced 
model complexit,y: 4 mixtures vs. 16 mixtures per density in the baseline models. 



P.lzst = subspace Gaussians from all mixture components of 

phone P in this state projected onto this stream 

Q.list = subspace Gaussians from all mixture components of 

phone Q in this state projected onto this stream 

num-common-subgaussian += CommonSu bgaussian (P.list, Q.1ist) 

1 
print (num-common-subgaussian) 

1 
CommonSubgaussian(listl, l ist2) 

find the number of common subspace Gaussians between listl and list2 

1 

Since each subspace Gaussian may be represented by its prototype index, a 20-stream 

full-space Gaussian can be represented by a tuple of 20 prototype indices, one for each 

stream. For example, the 4-mixture density of the third state of the phones "s" and "z" 

are represented as: 

{ < 2, 4 ,  3, 2,  9 ,  46, 2, 52, 2, 2,  33, 13, 46, 37, 13, 21, 46, 60, 42, 2 >, 

< 0,  24, 31, 34, 28, 2, 28, 35, 46, 37, 46, 46, 33, 46, 37, 46, 46, 48, 24, 21 >, 

< 2,  24, 12, 24, 2, 46, 24, 16, 13, 21, 47, 12, 46, 46, 46, 46, 2, 48, 28, 2 >, 

< 4,  37, 12, 25, 34, 46, 4 ,  52, 31, 21, 16, 25, 12, 51, 44, 24, 5 ,  25, 12, 4 > ) 

and 

{ < 46, 4 ,  47, 2, 47, 46, 13, 52, 2, 2,  33, 46, 46, 41, 13, 21, 46, 13, 24, 2 >, 
< 0,  24, 31, 34, 28, 12, 28, 35, 27, 37, 46, 12, 33, 46, 37, 21, 46, 48, 13, 21 >, 
< 46, 24, 46, 24, 2, 46, 24, 16, 13, 21, 47, 52, 33, 46, 46, 46, 2,  57, 28, 2 >, 

< 0 ,  4, 46, 44, 28, 13, 47, 37, 25, 1, 5, 4, 25, 51, 35, 21, 5, 25, 25, 25 > ) 

respectively. Thus to determine the number of common subspace Gaussians in the twelfth 

stream of the third state of "s" and "z", the two lists (13, 46, 12, 25) and (46, 12, 52, 



4) are compared and the result is two. Note that the order of the indices is ignored. The 

computation is repeated for every stream, and the counts are accumulated for each state. 

6.3 Results 

Since all the 45 ATIS phones (excluding the three noise models) shown in Table 3.1 

have three states, the number of common subspace Gaussians between any pairs of the 

45 phones can be computed for each of their three states. The results are tabulated in 

Table B.l(a)-(c) in Appendix B as confusion matrices, one for each state. 

The phones are further divided into two major categories: 18 vowels and 27 consonants2. 

Histograms of counts of the number of common subspace Gaussians between any two 

phones within each category and across the two categories are shown in Figure 6.1 to- 

gether with some of their statistics. 

In addition, Figure 6.2(a)-(c) provides a visualization of the SGTS between three pairs 

of phones belonging to various phonetic categories: 

vowel-vowel pair: "ae" and "eh" 

consonant-consonant pair: "s" and "z" 

consonant-vowel pair: "t" and "iy" . 

In each of the three figures, the abscissas are stream indices ranging from 1 to 20, 

while the ordinates are the subspace Gaussian prototype indices for each stream. For each 

stream of the 4-mixture Gaussians of a state, the subspace Gaussian prototype indices 

of the first phone in the pair are represented by the four letters "a", "b", "c", and " d .  

Subspace Gaussians symbolized by the same letter belong to the same full-space Gaussian 

component. Thus if one connects all the letter "al"s together across the 20 streams, 

one obtains the "trajectory" of a full-space Gaussian encoded by its subspace Gaussian 

prototypes. On the other hand, the four subspace Gaussian prototype indices of the second 

phone in the pair of the same stream are represented indiscriminately by square boxes. A 

- - - - 

*The vowels are: aa, ae, ah, ao, aw, ax, am, ay, eh, er, ey, ih, ix, iy, ow, oy, uh, and uw; the consonants 
are: b, ch, d, dh, dx, el, en, f ,  g, hh, jh, k, 1, m, n, ng, nx, p, r, s, sh, t ,  th, v,  w, y, and z. 



Slat el 

(a) Between any two vowels (b) Between any two consonants 

(c) Between a vowel and a consonant (d) Between any two phones 

Figure 6.1: ATIS: Counts o f  the number of common subspace Gaussians be- 
tween phones of different broad categories 



match of subspace Gaussians between the two phones occurs when any of the four letters 

is "captured" by a box. (Due to  the low resolution on the ordinate, only when a letter 

is right in the middle of a square box is there a match.) From Table B.l, the number of 

matches in the three figures, from the first state to the third state are: 

rn between "ae" and "eh" : 21, 26, 27 

rn between "s" and "z": 25, 28, 48 

between "t" and "iy": 0, 0, 5. 

6.4 Discussion 

The figures in Table B.l should be compared with the expected number of common sub- 

space Gaussians between two SDCHMM states should the match occur by pure chance. 

The problem may be re-phrased in the following abstraction: 

Given a box of N balls numbered 1 to N, and two bags, each having a 

capacity of m balls, a ball is randomly picked from the box and put into a 

bag, and a ball of the same number is put back into the box from the stock. 

The procedure is repeated 2m times until both bags are full. Now compare 

the two sets of m balls in the two bags, and determine the expected number 

of matches. 

Note that the number of matches does not follow a simple binomial distribution because 

the match ignores the position of the m balls in a bag. In our case, N = 64 and m = 4, and 

the expected number of matches is found to be 0.24 per stream. Thus the expected number 

of common subspace Gaussians between two 20-stream SDCHMM states is 20 x 0.24 = 4.8 

should the match occur by chance. 

By comparing the expected number of matches of 4.8 and the figures shown in Ta- 

ble B.l, Figure 6.1, and Figure 6.2, we have the following observations: 

rn The extent of sharing of subspace Gaussians splits along broad phonetic categories 

(vowels and consonants; and within consonants, along sub-categories of fricatives, 



plosives, nasals and approximants [43]). That is, there is more sharing of subspace 

Gaussians between two vowels or two c nsonants than between a vowel and a con- 

sonant; and, within consonants, there i I more sharing between two fricatives, two 

plosives, etc. The effect is most obviou from Figure 6.2 in which vowel pair "ae"- 

"eh" and consonant pair "sn-"2" have 2 -60% of their subspace Gaussians shared in 

pair "t" - "iyn 

1 
all three states; whereas there is basically no sharing between the consonant-vowel 

In the mid-states, where the effect is weak and the identity of a phone 

is better preserved, there is of subspace Gaussians between vowel- 

consonant pairs, while more sharing. In fact, the average 

number (3.48) of vowel-consonant pairs is well 

below the case of vowel-vowel pairs is 

also more uniform than that of conson nt-consonant pairs. This may be attributed 

by the more gradual differences in the ", rticulations of the vowels. In contrast, the 

articulations of different categories of c nsonants are very different (c.f. nasals vs. 

plosives) . Y 
On average, there is more sharing betw n two vowels than between two consonants. 

This again confirms the greater between vowels. 

All the observations are well in accord with our phonetic knowledge about the phones. 

The analysis provides some understanding od the efficiency of subspace distribution clus- 

tering hidden Markov modeling in encoding dhe phonetic information. 



Stream lndex of State-1 of 'ae"and 'eh" 

Stream lndex of State2 of *ae"and "eh" 

Stream lndex of State6 of "ae"and 'eh" 

Figure6.2: Subspace Gaussian tying structure (a) between "ae" and 
"eh" (number of matches from the 1st t o  the 3rd state are 21, 
26, 27) 
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Chapter 7 

Implementation of SDCHMMs (11) : 

Direct SDCHMM Training 

Using the model conversion technique explained in Chapter 5, subspace distribution clus- 

tering hidden Markov models (SDCHMMs) can be trained from raw speech data in an 

indirect training scheme as shown in Figure 7.l(a). 

Model conversion is simple and runs quickly, and the ensuing SDCHMMs fulfill three 

promises of the technique of parameter tying: 

fewer model parameters 

faster computation of model likelihoods 

no loss in recognition accuracy (and possibly some gain). 

However, since the scheme requires intermediate CDHMMs, it requires an amount of train- 

ing data as large as CDHMM training does, and does not take advantage of the fewer model 

parameters in SDCHMMs. Recognition performance of SDCHMMs in Table 5.2 indicates 

that, if the subspace Gaussian tying structure (SGTS)l is ignored, SDCHMMs have many 

fewer model parameters (mixture weights, Gaussian means, and variances) - by one to 

two orders of magnitude - than their parent CDHMMs. Thus, if we have a priori knowl- 

edge of the SGTS, or in general, the subspace distribution tying structure (SDTS), one 

should be able to train SDCHMMs directly from much less speech data as schematically 

'SGTS is defined in Chapter 6 as the tying information among subspace Gaussians of SDCHMMs 
together with the mappings between them and the full-space Gaussians of CDHMMs. 
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Figure 7.1: SDCHMM training schemes 

shown in Figure 7.l(b). That an SGTS imposes a great constraint on the HMM config- 

uration may have one wonder why a presumed SGTS necessarily leads to good acoustic 

models. However, the acoustic-phonetic analysis of SGTS in Chapter 6 suggests that the 

SGTS is not arbitrary; it efficiently represents the inherent inter-relationship among the 

phones. The presumption of an SGTS should therefore be considered as a utilization of 

phonetic knowledge in designing our acoustic models, resulting in fewer model parameters 

and theoretically requiring less training data. 

In this chapter, we first review the reestimation formulas of CDHMM parameters, and 

then extend them to the reestimation of SDCHMM parameters. It will be shown that 

SDCHMM reestimation is just a special case of CDHMM reestimation where statistics 



are gathered in a way dictated by the SGTS. Then, in a set of experiments wherein ATIS 

training data are progressively halved each time, the data requirement for directly training 

SDCHMMs from scratch is investigated, and is compared with that for training CDHMMs. 

7.1 A Review of Maximum Likelihood Estimation of CDHMM 

Parameters Using the EM Algorithm (with Single Ob- 

servation Sequence) 

An N-state HMM X is defined by three sets of parameters: 

initial-state probabilities rr = [rl , r z  , . . . , r,] 

state-transition probability matrix a = {ai i ) ,  1 5 i, j 5 N 

state observation pdf's b = [bl, b2,. . . , b,]. 

Given an observation sequence of T frames of a speech unit, 0 = 0102 0 . .  o, (where 

ot is the observation vector at time t),  and a pre-defined HMM configuration for the 

unit, the estimation problem is to find an HMM X r (rr, a ,  b) such that a score function 

C(0 ,  A) is maximized. Cast as an optimization problem, the estimation is most commonly 

solved by the iterative Baum- Welch (BW) algorithm [3], a specific case of the Expectation- 

Maximization (EM) algorithm [30] with the log likelihood as the score function. That is, 

C(0,A) Sf l ogP(0  I A) 

In each iteration of the EM algorithm, the current model parameters X r (rr, a, b) are 

reestimated to i = (ir, &, b) which maximizes the score function. This is done sequentially 

in two steps: an E-step and an M-step. 

An auxiliary function, commonly called the Q function, for the expected cost of the new 

model conditional on the observation and the old model is constructed as follows: 

Q(X, A) * Eq [log P ( O )  p I A) 1 O,h] 



The expectation £[-I is evaluated over all possible state sequences q = q, q, - - . q, , which is 

the hidden data or the random variable of the stochastic Markov process. 

The theory of EM algorithm guarantees a monotonic improvement in the value of the 

Q function after each iteration of the E-step and M-step. The final result is a locally, if 

not globally, optimal model. 

7.1.2 M-step 

Since 

Equation (7.2) may be split into a sum of three independent Q functions: 

where ir; = hi2, . . . , hiN], and 

Maximization of Q(A,A) can then be done by maximizing the three independent Q 

functions separately, since each involves a different set of optimization variables. By taking 

the first derivative of each of the Equations (7.6)-(7.8) and using appropriate Lagrange 

multipliers, the maximal value of I\ is 

where 



is the probability of being in state i at time t, and 

. . def tt ( 2 , ~ )  = p(q, = 2 ,  q,,, = j l 0 7 X )  (7.12) 

is the probability of being in state i at time t and state j at time t + 1, given the model X 

and the observation sequence 0 .  The likelihood functions y (-) and <(-) can be efficiently 

computed by the forward-backward algorithm [69]. 

The reestimation formula of b depends on the functional form of the state observation 

pdf. Here, we will consider only the two cases when the state output distribution is either 

a single Gaussian distribution or a mixture Gaussian density. 

Case I: Single Gaussian Output Distribution 

That is, b;(ot) = N(ot;  pi ,  Xi). Then 

where (ot - c;)' is the transpose of (ot - fii). 
Conceptually, the reestimate of the mean (covariance) of a Gaussian of state i is the 

normalized sum of its observations (cross product of deviations from mean observations) 

weighted by their probability of being in state i. 

Case 11: Mixture Gaussian Output Distribution 
M M That is, bi(0t) = Cim N(ot; P;,, xi,), C m = l  Cim = 1. 

Since an HMM state with a mixture density is equivalent to a multi-state HMM with 

single-mixture densities [36], the reestimates of b are similar to those of Case I except that 

the quantity r:(i) is modified as $(i, m) which is the probability of being in state i and 

the m-th mixture component at time t, given the model X and the observation sequence 

0. Hence, 



7.1.3 Viterbi Training 

A simple variant of the Baum-Welch training algorithm, called the Viterbi training al- 

gorithm, is commonly used in practice. It is simpler and faster, and by many reports 

as effective as the Baum-Welch algorithm. Essentially, instead of considering all possi- 

ble state segmentations to decide the updates as in the Baum-Welch algorithm, Viterbi 

training uses only the most likely state sequence. That is, Viterbi training modifies the Q 

function as follows: 

where 

All the reestimation formulas of x ,  a, and b for the Baum-Welch method shown above can 

be readily adapted for Viterbi training by simply changing the definitions of the likelihood 

functions y(-) and t(-)  as follows: 

1 if q, = i and q,,, = j 
<?(2, j)  = 

0 otherwise 

7.2 Extension to Maximum Likelihood Estimation of SD- 

CHMM Parameters 

SDCHMM parameters may be estimated using the EM algorithm in much the same way 

as CDHMM parameters are estimated above. In fact, the additional constraints imposed 

by the SDTS only alter the way in which statistics are gathered from the observations in 

the estimation of distribution parameters. Moreover, since the SDTS concerns all acoustic 



models, the main difference between CDHMM estimation and SDCHMM estimation is that 

while each CDHMM may be estimated in isolation, all SDCHMMs have to  be estimated 

at the same time. 

In the following, let us denote the whole set of SDCHMMs of all speech units by A, 

and augment each observation sequence 0 and model parameters n, a;, and 6; to  oX, x X ,  

a? ,  and bb respectively to make their model dependency explicit. The new Q function is 

modified as: 

N N 

= C ~ r ( x , * ?  )+ C C ~ a ; ( x ,  6;) + C c Q~~ (A, 6;) . (7.22) 
A€h XEA i=l XEA i=l 

where Qx(A, ri", Qai (A, 6;) and Qbi (A, 6;)  are defined as in Equations (7.6)-(7.8). 

7.2.1 Reestimation of rr and a in SDCHMM 

It  is clear that from the theory of SDCHMM (Equation (4.5)) that only the state ob- 

servation pdf b?(.) of the CDHMM is modified, while the definitions of the initial-state 

probabilities x and state-transition probabilities a are kept intact. Hence, x and a can 

still be estimated separately for each SDCHMM, and their reestimation formulas remain 

the same as those of the conventional CDHMM given by Equations (7.9) and (7.10) re- 

spectively. 

7.2.2 Reestimation of b in SDCHMM 

According to the theory of SDCHMM, the state observation pdf b?(.) of state i of a K- 

stream SDCHMM A is assumed to  be a mixture density with M components bh( . )  and 

mixture weights c;,, 1 I m 5 M, such that bbm(.) is a product of K subspace pdf's 

bkk( - ) ,  1 5 k 5 K ,  of the same functional form. That is, 



where bhk(-) and otk are the projections of b L  (-) and 0; onto the k-th feature subspace 

respectively. 

The reestimation formula for the mixture weights cim is the same as in the case of 

CDHMM given by Equation (7.15) since it does not depend on the functional form of the 

component distribution. For the reestimation of component distribution, again, only a 

single Gaussian distribution and a mixture Gaussian density are considered. 

Let us denote the whole set of state output distributions of all models by B. From 

Equation (7.22), the Q function for B is given by 

Case I: Single Gaussian Output Distribution 

Let us first look at the special case when there is only one Gaussian in the mixture density. 

Equation (7.24) may then be simplified to 

by dropping the mixture weight of unity and the mixture component subscript m. Sub- 

stituting Equation (7.8) and Equation (7.26) into Equation (7.25), we have 



where 

As the streams are assumed independent in the local acoustic space, each QBk (A, 8 k )  

can be maximized independently. 

Now suppose there are Lk subspace pdf prototypes hkl(.), 1 5 1 5 Lk, in the k-th 

stream of the set of K-stream SDCHMMs A, 1 5 k 5 K. Each subspace pdf, say, b;k(.) 

in stream k of state i, is tied to one of the subspace pdf prototypes of the stream, say, 

hkl(.), 1 5 I 5 Lk. That is, VX E A, V i E [ l ,N],  V k E [ l ,K] ,  3 1 E [l ,Lk] such that 

btk(-) E hkl (.). Then the reestimation of btk(-) becomes the reestimation of hkr (-) and may 

be expressed verbally as follows: 

reestimation of the pdf parameters as in conventional 
reestimation of the 

CDHMM, but the statistics are gathered from all 
parameters of pdf = 

frames belonging to  all b;k(-) - hkr(.) over all states 
hkl(.) 

and all models. 

Thus the Q function for the subspace pdf's in the k-th stream of Equation (7.28) can 

be rewritten as: 
N T  

QB, (A, B,) = x P(qt = i I o*, A)  . log(ik[(otk)) such that b i  (.) - hu(-) 

In particular if the pdf's are Gaussians, that is, 

then the new model is 

EXEA Zi . bh =hkl zT=l ̂i:(i)(O?k - fik1)(0: - f ikl) '  

kkl = tk-  
T (7.31) C A ~ A  xi : 64 =hkl C t = l ~ t * ( i )  

zk- 



Case 11: Mixture  Gaussian Output  Distribution 

Again extending the reestimation of b to the general case of mixture densities can simply 

be done by taking into account all mixture components, and substituting $(a, m) for $(a) 

in Equations (7.30) and (7.31) as follows: 

' * € A  ' i , m  : b:mk.hkr ET=, ?,"<i, m> - 4, 
b k l  = 

' * ~ ~ ' i , r n  : b;\,kzhkl ET=~ -t,"<i, m) 

7.2.3 Remarks 

Although the reestimation formulas of SDCHMMs look much like those of semi-continuous 

HMMs (SCHMMs) (or tied-mixture HMM), there are several important differences: 

While all SCHMM states share the same set of subspace Gaussians, the tying of 

subspace Gaussians among the SDCHMM states is governed by the SDTS and is 

generally not the same for all the states. This requires the modifier Zi,_ : b+ =h , zmk- kl 
in the reestimation formulas of SDCHMM. 

Since streams in an SCHMM are assumed globally independent, the model param- 

eters of each stream are estimated independently. Thus, for a K-stream SCHMM, 

there will be K different sets of x ,  a, state density mixture weights and distribution 

prototypes. On the other hand, streams are locally independent in an SDCHMM. 

Except for the K different sets of distribution prototypes, one for each stream, a 

K-stream SDCHMM has only one set of other model parameters (z, a, and state 

density mixture weights). 

Similarly, the likelihood functions y(.) and I(-)  are computed only once for all streams 

of an SDCHMM, whereas an SCHMM requires their computation separately for each 

stream. 



7.3 Evaluation of Direct SDCHMM Training 

In this section, we study the following problem: 

If the "perfect" subspace Gaussian tying structure for the acoustic models of a 

task is known, how much training data is required to directly train SDCHMMs 

for the task? 

An SGTS used for direct SDCHMM training of a task is considered "perfect" if it is 

obtained through model conversion of CDHMMs to SDCHMMs of the same task. On the 

other hand, an SGTS is said to be "imperfect" for SDCHMM training if it is obtained 

from model conversion of CDHMMs of a different task, or CDHMMs of the same task but 

acquired in a different environment (ambient noise, channel, gender, etc.). The perfect 

SGTS is employed in this thesis to study the upper bound for the effectiveness of direct 

SDCHMM training when the exact SGTS for a task is known. 

The ATIS task is again chosen for evaluating the direct SDCHMM training scheme. 

Both context-independent (CI) and context-dependent (CD) SDCHMMs will be trained 

and evaluated. Nonetheless, more emphasis is put on the CI models simply because the 

simpler and fewer CI models allow us to train and test many CDHMMs and SDCHMMs 

of various complexities in a manageable amount of time. Moreover, CI modeling tends 

to be more stable as there is usually ample coverage of training data for the CI phones. 

In contrast, CD modeling requires delicate fine-tuning effort to obtain a good balance 

between training data and model accuracy, which may complicate our main research goal 

here. 

Speech is converted into 39-dimensional feature vectors as described in Section 3.2.1. 

Each phone model is a 3-state left-to-right HMM with the exception of one noise model 

which has only one state. The testing conditions (test dataset, vocabulary, pronunciation 

models, language models, decoding algorithm, and beam-width) are exactly the same as 

those described in Table 3.3. All these have been used consistently throughout this thesis. 

Lastly, the number of streams is fixed to 20 for all SDCHMMs trained below. This 

follows from the conclusion in Chapter 5 which suggests that 20 streams give a good 

balance between accuracy, computation time, and model memory on the ATIS task. 



7.3.1 Methodology 

To evaluate the effectiveness of direct SDCHMM training, its training data requirement 

is compared with that for CDHMM training. The evaluation procedure consists of the 

following basic steps: 

Step 1. Generate N data subsets S;, 1 5 i 5 N, from all the given training data by 

progressively cutting the data in half. That is, the amount of data in is half of 

that in S;. 

Step 2. Train CDHMM acoustic models with all available training data in Sl 

Step 3. Convert the CDHMMs to SDCHMMs as described in Chapter 5 (Figure 7.l(a)). 

Step 4. Deduce the subspace distribution tying structure from the converted SDCHMMs. 

Step 5. For each data subset (S1, S2, S3, . . . , SN), repeat Steps 6 and 7. 

Step 6. Train CDHMMs and adjust (lower) the number of components in each state 

mixture density to obtain the best CDHMMs with the reduced amount of training 

data. 

Step 7. Train SDCHMM acoustic models using the direct SDCHMM training scheme as 

shown in Figure 7.l(b) with the SDTS obtained in Step 4. 

Step 8. Compare the recognition performance of all CDHMMs and SDCHMMs obtained 

in the above steps. 

7.3.2 Preparation of Training Datasets 

A collection of 16,896 utterances from the ATIS-2 and ATIS-3 corpora(see Section 3.1), 

which were acquired at five sites (BBN, CMU, MIT, NIST, and SRI), are employed in 

this study. They are divided into 16 datasets of roughly 1,000 utterances each, denoted 

as S1, S2, S3, . . . , to S16, so that data from the five sites are spread out into each dataset 

as evenly as possible. The 100 longest utterances from S16 are selected for bootstrapping 

HMMs and this set is denoted as dataset A. Other smaller datasets are derived as follows: 



Table 7.1: ATIS: Training datasets (* Datasets are phonetically labeled by the 
baseline ATlS recognizers. t Figures are averages.) 

DESCRIPTION 

baseline CD CDHMMs training data 
Y 
Test 

S1-16 

1 D* 1 12,421 1 2.1 1 12 utterances from subset C 1 

DURATION (min.) 

2.167 
DATASET 

X 

S1-4 
S 1-2 
S1 
SO 
A* 

B* 
C* 

#FRAMES 

13,000.205 , , 

6,444,959 
545,642 

8,883,240 

dataset SO contains 500 utterances from dataset S1 

, , 

2,140,470 
1,080,650 
527,599 
249,565 

101,309 

49,616 
27,811 

E1-ElO* 
F1-FlO* 

dataset B contains 50 utterances from dataset A 

1,074 
9 1 

1,480 

dataset C contains 25 utterances from dataset B 

- J 

baseline CI CDHMMs training data 
981 (1994 ARPA's official) test utterances 

16,896 utterances 
357 
180 
88 
42 

17 

8.3 
4.6 

7,758t 
2,702t 

dataset D contains 12 utterances from dataset C 

4,226 utterances 
2,114 utterances 
1,055 utterances 
500 utterances from subset S1 

100 utterances from subset S16 

50 utterances from subset A 
25 utterances from subset B 

E-sets comprise 10 datasets denoted as El ,  E2, . . . , E10, and each contains 15 utterances 

from dataset S15, three from each of the five collecting sites. 

1.29t 
0.45t 

F-sets comprise 10 datasets denoted as F1, F2, . . . , F10, which are sub-sampled from the 

15 utterances from subset S15 
5 utterances from subset S15 

corresponding Esets  such that each contains five utterances, one from each of the five 

collecting sites. 

All the various datasets are summarized in Table 7.1. Datasets S5 to S14 are not used 

at all in this study. Datasets A, B, C, D, the Esets, and the F-sets are all phonetically 

labeled. This is done by aligning each utterance with its transcription through Viterbi 



decoding using the baseline CI-CDHMM (CD-CDHMM) ATIS recognizers of Chapter 3 

when CI (CD) SDCHMMs are trained. 

7.3.3 Hybrid Viterbi/Baum- Welch Training Procedure 

In this evaluation, we adopt a combination of Viterbi training (VT) and Baum-Welch (BW) 

reestimation to  train all acoustic models, with an additional step of segmental k-means (SKM) 

training for CDHMM training. The hybrid VT/BW training procedure takes advantage 

of the simplicity of Viterbi training and the accuracy of Baum-Welch. The procedures 

for training CDHMMs and SDCHMMs are schematically depicted in Figure 7.2, and the 

details are described in Algorithm 5 and Algorithm 6 .  

The training procedures for CDHMMs and SDCHMMs are very similar, but the fol- 

lowing differences are worthy of notice: 

While each CDHMM phone may be trained in isolation (using Viterbi training), all 

SDCHMM phones must be estimated at the same time since all of them contribute 

to the statistics of the subspace Gaussian prototypes. 

SDCHMM training does not need the segmental k-means algorithm to derive the 

required model complexity of M mixtures per state because the complexities of all 

models are defined in the given SGTS. 

The asymmetry in the SGTS is crucial to successful training of the SDCHMM. If we 

initialize all components of an M-mixture CDHMM in the same way (as SDCHMMs 

are initialized in Algorithm 6 ) ,  they will remain identical after training. The resulting 

M-mixture CDHMM is functionally no different from a 1-mixture CDHMM. On the 

other hand, in the case of SDCHMM initialization, since it is impossible for all 

mixture components of all phones to tie to the prototypes in exactly the same way, 

each subspace Gaussian prototype will not receive the same set of observations after 

initialization. 

Finally, since strictly left-to-right 3-state HMMs are used, all initial-state probabilities 

are zero, except those of the first states which have total probability of unity. That is, for all 
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Algorithm 5: Hybrid ViterbiIBaum-Welch training algorithm for estimating C D H M M  

Goal: To train CDHMM acoustic models. Each state output distribution is a mixture 
Gaussian density with M components and diagonal covariances. 

Step 1. Uniform State Segmentation: Segment the small set of phonetically labeled boot- 
strap data into HMM states evenly. That is, if a labeled phone has T frames of 
speech, and is modeled by an N-state CDHMM, each state will have T I N  frames. 

Step 2. CDHMM Initialization: A 1-mixture CDHMM is initialized for each phone with 
the state-segmented data. 

Step 3. Phone-Level Baum- Welch (B W) Reestimation: Each initial CDHMM is reesti- 
mated with several BW iterations until the model converges to obtain the boot- 
strapped 1-mixture CDHMMs. The boundaries of the labeled phones are kept intact 
during the reestimation. 

Step 4. Segmental k-means (SKM) training: Segment all training data with the boot- 
strapped 1-mixture CDHMMs using Viterbi segmentation so that each frame of 
speech is labeled with an HMM state. Then for each state, cluster all the speech 
vectors of the state into a maximum of M ensembles using the k-means clustering 
method to obtain the required model complexity of M-mixture densities. 

Step 5. Phone-Level Baum- Welch Reestimation: Refine the M-mixture CDHMMs with 
more BW iterations. Again phone boundaries determined from the Viterbi segmen- 
tation is fixed during the reestimation. 

Step 6. Phone-Level Viterbi Segmentation: Phonetically re-segment all training data 
with the most current M-mixture CDHMMs. No state segmentation is required. 

Step 7. Perform phone-level Baum-Welch reestimation. 

Step 8. Repeat Steps 6 and 7 until the models converge. 

models, TI  = 1.0 and T Z  = ~3 = 0.0. We further simplify our training procedures by fixing 

all state-transition probabilities to 0.5 as many researchers have found that in practice, 

an estimated state-transition matrix makes no difference in recognition performance [46]. 

7.3.4 Experiment I: Effectiveness of Direct SDCHMM Training 

We first check, for the same amount of training data, whether SDCHMMs trained by the 

direct SDCHMM training algorithm achieve the same recognition performance as that of 

the SDCHMMs converted from CDHMMs. Only CI models are trained in this experiment, 



Algorithm 6: Hybrid Viterbi/Baum-Welch training algorithm for estimating SDCHMMs 

Goal: To train SDCHMM acoustic models with a given subspace Gaussian tying struc- 
ture (SGTS). Each state output distribution is a mixture Gaussian density with M 
components and diagonal covariances. 

Step 1. Uniform State Segmentation: Segment the small set of phonetically labeled boot- 
strap data into HMM states evenly. That is, if a labeled phone has T frames of 
speech, and is modeled by an N-state SDCHMM, each state will have T I N  frames. 

Step 2. SDCHMM Initialization: Initialize all states of all phones with the uniformly- 
segmented state frames. Each frame is assumed to contribute equally to each Gaus- 
sian component of its M-mixture SDCHMM state - that is, the probability of a 
frame being generated by each Gaussian component is 1/M. 

Step 3. Phone-Level Baum- Welch (B W) Reestimation: All initial SDCHMMs are rees- 
timated with several BW iterations until the models converge to obtain the boot- 
strapped M-mixture SDCHMMs. The boundaries of the labeled phones are kept 
intact during the reestimation. 

Step 4. Phone-Level Viterbi Segmentation: Phonetically re-segrnent all training data 
with the most current M-mixture SDCHMMs so that each frame of speech is la- 
beled with an HMM (phone). No state segmentation is required. 

Step 5. Phone-Level Baum- Welch Reestimation: Refine the M-mixture SDCHMMs with 
more BW iterations. Again phone boundaries determined from the Viterbi segmen- 
tation is fixed during the reestimation. 

Step 6. Repeat Steps 4 and 5 until the models converge. 

and the SGTS from the converted SDCHMMs is used for direct SDCHMM training. The 

number of VT cycles and BW iterations at various stages of the training procedure are 

determined empirically when the expected log likelihoods of the models converge. 

(A) Procedure 

1. Training of CDHMMs: CDHMMs are trained with the dataset S1-4 (meaning a 

combination of S1, S2, S3, and S4). Following the CDHMM training procedure of 

Algorithm 5, the phonetically labeled data of dataset A is used to  bootstrap a 1- 

mixture CDHMM for each of the 48 (CI) monophones. Five BW iterations are run 

after model initialization. Using the bootstrapped l-mixture CDHMMs and all the 



training utterances in S1-4, CDHMMs with 16-mixture or 32-mixture densities are 

obtained with one iteration of segmental k-means training. The models are then 

reestimated with 20 BW iterations. Lastly, one cycle of the hybrid VT/BW training 

with 10 BW iterations gives the final models. The number of Gaussians in the 

16-mixture and 32-mixture CDHMMs are 2,143 and 4,086 respectively. 

2. Derivation of SGTS: The 16-mixture and 32-mixture CDHMMs trained with S1-4 

are converted to 20-stream SDCHMMs with 16, 32, 64, and 128 subspace Gaussian 

prototypes per stream. Recognition on the ATIS test data determines the best 

SDCHMMs in each case of model complexity: 128 prototypes for the 16-mixture 

SDCHMMs and 64 prototypes for the 32-mixture SDCHMMs. SGTS's are derived 

from the best sets of l&mixture and 32-mixture SDCHMMs and are denoted as 

CI-SGTS-M16-nl28 and CI-SGTS-M32-n64 respectively. 

3. Training of SDCHMMs: Two sets of SDCHMMs are trained with the dataset S1- 

4 using each of the two SGTS's derived above. Following the SDCHMM training 

procedure of Algorithm 6,20-stream SDCHMMs with the given SGTS are initialized 

with the bootstrap data from dataset A. Five BW iterations are run to get the 

bootstrapped SDCHMMs. All the training data are then phonetically re-labeled by 

Viterbi alignment, and another 5 BW iterations give us the final SDCHMMs. 

(B) Result and Discussion 

The recognition results of the three sets of models: 

CI CDHMMs trained from the dataset S1-4 

CT SDCHMMs converted from the CDHMMs (converted SDCHMMs) 

a CI SDCHMMs directly trained from the dataset S1-4 using the SGTS of the con- 

verted SDCHMMs (trained SDCHMMs) 

on the ATIS test data are shown in Table 7.2. 

The new 16-mixture CI CDHMMs actually perform slightly better than the baseline 

16-mixture CI CDHMMs (9.0% vs. 9.4% (see Table 3.3)), though they are trained with 



Table 7.2: ATIS: Comparison of recognition accuracies among CI CDHMMs, 
CI SDCHMMs converted from the CDHMMs, and CI SDCHMMs 
estimated by direct SDCHMM training using the SGTS of the 
converted SDCHM Ms 

only -4,000 utterances (while the baseline system is trained with - 12,000 utterances). The 

baseline system is trained using the standard SKM algorithm, while the new CDHMMs 

are trained by the new hybrid VT/BW algorithm. This shows that the VT/BW training 

algorithm works well. 

Secondly, even though the baseline 16-mixture CDHMMs and the new 16-mixture 

CDHMMs are trained in very different ways, the 20-stream SDCHMMs converted from 

both sets of CDHMMs have exactly the same recognition performance (as judged by their 

word error rates (Table 3.3 vs. Table 7.2). This suggests that the model conversion scheme 

to create SDCHMMs from CDHMMs is robust. 

Thirdly and most importantly, the SDCHMMs trained from scratch using our novel 

direct SDCHMM training algorithm perform as well as the converted SDCHMMs. The 

result demonstrates the effectiveness of direct SDCHMM training. In fact, the average 

Bhattacharyya distances per prototype between the converted SDCHMMs and the trained 

SDCHMMs for the two cases of CI-SGTS-M16-n128 and CI-SGTS-M32-n64 are 0.038 and 

0.014 respectively. These distances translate to  high Bhattacharyya errors2 of 48.1% and 

49.3% respectively, suggesting that the two sets of subspace Gaussians in the converted 

SDCHMMs and the trained SDCHMMs are very similar. Thus if one is only given the 

SGTS and the training data of a set of converted SDCHMMs, the SDCHMMs can be 

"recovered" by our direct SDCHMM training algorithm to a fair degree of approximation. 

#MIXTURES 
PER 

STATE 
16 
32 

2Bhattacharyya error is defined here as 0.5exp(-Bhattacharyya distance) x 100%. As a reference, 
should any two Gaussians be identical, their Bhattacharyya distance will be zero, giving a Bhattacharyya 
error of 50%. 

#PROTOTYPES 
PER 

STREAM 
128 
64 

TOTAL 
#GAUSSIAN 

COMPONENTS 
2143 
4086 

WORD ERROR RATE (%) 
CDHMM 

9.0 
8.5 

CONVERTED 
SDCHMM 

9.5 
8.7 

TRAINED 
SDCHMM 

9.3 
8.7 



7.3.5 Experiment 11: Data Requirement for Training Context-Independent 

SDCHMM 

Once the effectiveness of direct SDCHMM training is established, we go a step further to 

investigate how many training data are required. In this experiment, the data require- 

ment for training CI SDCHMMs is compared to that for training CI CDHMMs using the 

methodology described in Section 7.3.1. 

(A) Procedure 

The same procedure for training CDHMMs as in Experiment I is repeated with five training 

datasets: A only, SO only, S1 only, S1-2, and S 1 4 .  Dataset A is used to bootstrap all 

models. The maximum number of mixtures3 in each state density is also varied from one 

to 32 in powers of two. 

Similarly, the same SDCHMM training procedure of Experiment I is repeated with 

the five datasets. In addition, we also train SDCHMMs with the smaller datasets: B only, 

C only, and D only. These latter SDCHMMs are only bootstrapped with the training 

data under study in each case (and not with dataset A) using three BW iterations. It  

is found that no more VT/BW cycles are needed as the models already converge after 

bootstrapping. 

(B) Result and Discussion 

The recognition accuracies of all CDHMMs and SDCHMMs trained above are shown in 

Figure 7.3. In addition, Table 7.3 presents the model complexities, in terms of the total 

number of Gaussians, of all the CDHMMs. 

As the model complexity decreases, the accuracy or resolution power of HMMs is 

compromised. This may be caused by limited amount of training data, or by hard-limiting 

the number of mixtures in each state density. The effect is clearly observed in Table 7.3 and 

Figure 7.3: When the model complexity (measured in terms of the number of Gaussians) 

is reduced, the recognition accuracy drops. The recognition performance of all CDHMMs 

with different number of mixtures falls off when they are presented with fewer than 197 

minutes of training speech (dataset S1-2). In contrast, the recognition performance of 

the 20-stream SDCHMMs trained with CI-SGTS-M16-nl28 or CI-SGTS-M32-n64 using 

3Note that the final number of mixtures in a density produced by the segmental k-means algorithm (Al- 
gorithm l) can be fewer than what the user specifies, when there are too few training data in the state. 



Table 7.3: ATIS: Number o f  Gaussians in CDHMMs trained with different 
datasets and various numbers of mixtures per state 

20-stream SDCHMM EEcIl 

8 - 
(Dl (C) (B) (A) (SO) (Sl) (Sl-2) (Sl-4) 

I I , I I I I 

2.1 4.6 8.3 17.0 59.0 105.0 197.0 374.0 

Total Duration of Training Utterances (minutes) 

Figure 7.3: ATIS: Comparison between the amount o f  training data required 
for CDHMM training and direct SDCHMM training ( M  = #mix- 
tures and n = #subspace Gaussian prototypes per stream) 



the direct SDCHMM training algorithm does not start to fall significantly until there is 

less than 8.3 minutes of training speech (dataset B). Moreover, the performance of these 

two sets of SDCHMMs, trained with only 8.3 minutes of speech, is unmatched by any 

CDHMMs (with the same or simpler model complexity) trained with less than 197 minutes 

of speech in this study. This is a roughly 20-fold reduction in the amount of training data 

for SDCHMMs. The result should be attributed to the fewer model parameters (mixture 

weights, Gaussian means, and variances) of SDCHMMs - the ratios of the number of 

model parameters in the two SDCHMMs to  that in their parent CDHMMs are 1:14 (for 

CI-SGTS-M16-nl28) and 1:36 (for CI-SGTS-M32-n64). 

Furthermore, as the amount of training data is reduced, the performance of SDCHMMs 

degrades gracefully whereas the performance of CDHMMs drops sharply. For example, 

when the amount of training data is pared down from 374 minutes (dataset S1-4) to 

17 minutes (dataset A) the word error rates (WERs) of the 16-mixture and 32-mixture 

CDHMMs increases by almost 100%. On the other hand, the WER of the correspond- 

ing SDCHMMs trained using CI-SGTS-M16-n128 and CI-SGTS-M32-n64 drops by only 

-20% when the amount of training data is slashed from 374 minutes (dataset S1-4) to 

2.1 minutes (dataset D). At first sight, this does not seem to be possible: For instance, 

when the 32-mixture SDCHMMs are trained with CI-SGTS-M32-n64 and the dataset D, 

there are only 12421 frames of speech to train the 4,086 Gaussians of the 48 monophones. 

That is, on average, there are about only 259 training frames per phone or three training 

frames per Gaussian! Even worse is the fact that some phones are rare, or do not even 

appear in the small training dataset D as shown in the frame distribution over the phones 

in Figure 7.4(a). For example, phones "hh" and "oy" do not occur in dataset D, and 

consonants like "el", "g" , "jh , "nx" , "th" , and "uh" are rare. However, if one looks at 

the frame distribution over the 64 subspace Gaussians of each stream of the SDCHMMs 

in Figure 7.4(b), one should be convinced that there are ample estimation data for most of 

the subspace Gaussians (194 frames on average), and there is full coverage for all of them. 

Thus the efficient sharing of Gaussian parameters in the SDCHMMs plays an equally 

important role in reducing the training data requirements. 

Another benefit of the greatly reduced number of model parameters in SDCHMMs 

is that the direct SDCHMM training procedure is simpler and faster than the CDHMM 

training scheme. For datasets larger than SO, direct SDCHMM training requires only 

one VT/BW pass on the bootstrapped models, while CDHMM training requires an extra 

SKM/BW pass. On smaller datasets, A to D, the models converge even faster - within 
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Figure 7.4: Frame distribution of training dataset D (2.1 minutes. 12421 frames of speech) 



training data 

5 10 15 20 

Number of Baum-Welch Iterations 

Figure 7.5: ATIS: Over-training with small amount of training data (dataset 
D, 2.1 minutes of speech) 

the BW iterations during bootstrapping. SDCHMM training also goes through fewer BW 

iterations on the VT/BW pass than CDHMM training. However, there is one important 

caveat on training SDCHMMs with a small amount of data: We observe that they can 

easily be over-trained. For example, Figure 7.5 shows the WERs on both the training 

and testing data after each BW iteration during the SDCHMM training using CI-SGTS- 

M16-n128 and dataset D. The training flattens quickly after five BW iterations but over- 

training occurs after two BW iterations. Thus in practice, we need to stop training with 

a cross-validation technique. 



7.3.6 Experiment 111: Performance Variability with Little Training Data 

(A) Procedure 

When the amount of training data is small, the effect of random sampling of training data 

may become important. To check the performance variability of SDCHMM training with 

little training data, we repeat the SDCHMM training procedure of Experiment I1 with 20 

even smaller datasets: E l  only, E2 only, . . . , El0 only, Fl only, F2 only, . . . , and F10 only. 

Each of the E-sets contains 15 utterances, and each of the F-sets contains five utterances, 

with durations ranging from 13.35 seconds to 97.82 seconds of speech. Both CI-SGTS- 

M16-n128 and CI-SGTS-M32-n64 are tried. We find that with these very small datasets, 

only one BW iteration after SDCHMM initialization is enough for model convergence. 

(B) Result and Discussion 

Figure 7.6 shows the scatter plots of the recognition accuracies of SDCHMMs trained with 

each of the two SGTS's over each of the 20 datasets. Superimposed on each scatter plot is 

a cubic B-spline fit generated by the statistical software S-PLUS [81]. The performance of 

the CI-SGTS-M32-n64 SDCHMMs degrades more slowly than that of the CI-SGTS-M16- 

n128 SDCHMMs when the amount of training data decreases. This is clearly due to the 

fact that there are even fewer model parameters and more sharing among the subspace 

Gaussians of the CI-SGTS-M32-n64 SDCHMMs. Nonetheless, it is observed that the 20 

individual recognition results for each set of SDCHMMs fit well into the curve-fitting spline 

with only small fluctuations. Combining these results with those of Experiment 11, we see 

a consistent trend that SDCHMMs can be trained with many fewer data over different 

samples of training sets. 

7.3.7 Experiment IV: Data Requirement for Training Context-Dependent 

SDCHMM 

Since Experiment I1 already shows that context-independent SDCHMMs require much less 

training data than CDHMMs, we next investigate if context-dependent (CD) SDCHMMs 

also require little training data. Thus, only CD SDCHMMs are trained. 

(A) Procedure 

As mentioned before, CD modeling requires more fine tuning to control the phonetic cov- 

erage (e.g. through using other parameter tying techniques such as state tying). In order 
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Figure 7.6: ATIS: Variability with few training data (M = #mixtures and 
n = #subspace Gaussian prototypes per stream) 

10 - 

8 - 

not to let other factors possibly complicate our main research goal here, we start from 

the baseline context-dependent ATIS CDHMMs of Chapter 3. The subspace Gaussian 

tying structure, denoted as CD-SGTS-M20-n64, is extracted from the 20-stream SDCH- 

MMs converted from this baseline CD CDHMMs, which have 20-mixtures and 64 sub- 

space Gaussian prototypes per stream. This SGTS is used for all CD SDCHMM training 

in this experiment. We also have all training data phonetically labeled by the baseline 

CD CDHMMs. To save training computation, subsequent SDCHMM training will not 

re-segment any training data. 

The exact training procedure is as follows: For datasets no smaller than SO (i.e. SO only, 

S1 only, S1-2, S1-4, S1-8, and S1-16), CD SDCHMMs are again initialized with the CD- 

SGTS-M20-n64 using the phonetically transcribed dataset A as described in Algorithm 6.  

Then it is found that one BW iteration is enough to get the bootstrapped CD SDCHMMs. 

The bootstrapped models are reestimated by running the BW training algorithm on the 

A 

baseline M=16, n=128 SDCHMM (9.50/~------------------ --- ............................. 
.................................................. 

baseline M=32, n=64 SDCHMM (8.7%) 

10 

- 8 



training data under study. Again one BW iteration is enough for the models to converge. 

On the other hand, for the smaller datasets (i.e. A only, B only, C only, and D only), 

the bootstrapping - uniform state segmentation followed by SDCHMM initialization and 

one BW iteration - alone is found to be sufficient as further BW reestimation gives no 

further improvement on the models' likelihoods. 

(B) Result and Discussion 

The middle curve of Figure 7.7 shows the recognition performance of the resulting CD 

SDCHMMs. While we may expect a large performance degradation with little training 

data (since the CD models are more complex than the CI models), that the asymptotic 

performance does not meet the baseline performance and occurs with more than 735 

minutes of speech (dataset S1-8) is a big disappointment. 

One possible explanation may be the insufficient coverage of the triphones being mod- 

eled in the smaller training datasets. In the baseline system, all triphones appearing in all 

of the ATIS corpora are modeled; there are altogether 9,769 of them. However, due to in- 

sufficient coverage for some triphones, an additional 8,000 utterances from the Wall Street 

Journal corpus are employed to provide the coverage. To check our conjecture, we find 

out the number of triphones that are not covered in each training dataset, and the result 

is overlaid onto Figure 7.7 (the top curve). When the amount of training data is less than 

59 minutes (dataset SO), the triphones coverage is only about 5% (in the smallest dataset 

D) - 30% (in dataset SO); the low coverage seems to cause the irregular performance of 

the trained CD SDCHMMs. Even with all data from S1-16, about 8% of the triphones 

are unrepresented. This may explain the gap between the asymptotic performance of the 

trained CD SDCHMMs, and that of the baseline (converted) CD SDCHMMs (WERs of 

5.5% vs. 5.0%). 

In addition, we have the following two observations about training CD SDCHMM: 

Although there is inadequate triphone coverage with a limited amount of training 

data, there is still high coverage of the subspace Gaussians of the CD SDCHMMs 

(full coverage in all our experiments). 

When a speech unit is not observed in the training data, the main effect on SDCHMM 

training is that the mixture weights of its SDCHMM will not be learned - they stay 

at their initial values of 1/M (where M is the number of Gaussian mixtures in the 

state density) and are not reestimated in subsequent VT/BW training cycles. 
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Figure 7.7: ATIS: Data requirement for CD SDCHMM training 

Hence, to confirm our conjecture that the poor performance of CD SDCHMM training 

is due to poor triphone coverage in the given training data, we repeat the experiment 

by borrowing the mixture weights from the baseline CD SDCHMMs, and by fixing them 

during direct SDCHMM training. For the small datasets A, B, C, and D, two to five 

BW iterations are now required, whereas only one BW iteration after bootstrapping is 

still adequate for larger datasets. The result is presented in the bottom curve on Fig- 

ure 7.7. By incorporating additional a priori knowledge of the mixture weight (on top of 

the SGTS, CD-SGTS-M20-n64), the CD SDCHMMs (which have a model complexity of 

76,154 Gaussians), can now be trained from as little as 8.3 minutes of speech (dataset 

B) with no degradation in performance when compared with the baseline CD CDHMMs, 

even when only 14% of the triphones are observed in the training data. 



Table 7.4: Comparing data requirements for SDCHMM training and 
CDHMM training(M = #mixtures per state, N = total #Gaus- 
sian components, n = #subspace Gaussian prototypes per stream, 
T = amount of training data in  minutes, and WER = word error 
rate (%)) 

7.4 Summary and Discussion 

In this chapter, we successfully train SDCHMMs directly from much less data without 

training intermediate CDHMMs. For example, Table 7.4 compares the performance of 

CI SDCHMMs thus trained with CI CDHMMs of the smallest possible model complexity 

that can be trained with the least amount of speech and give similar recognition accuracy. 

It  can be seen that the amount of data required for direct SDCHMM training is about 10 

- 20 times less than that for CDHMM training. Such great reduction in the amount of 

training data is attributed to  the many fewer model parameters in SDCHMMs as well as 

to  the efficacious tying of subspace Gaussians among the models. While the fewer model 

parameters, in theory, require less estimation data, should the tying of subspace Gaussians 

not be efficacious, SDCHMM training would have required even sampling of the phones 

in the training data. However our experiments show that even when many phones are 

under-represented in the training data(Figure 7.4(a) or Figure 7.7), there is still a good 

coverage of the subspace Gaussians (Figure 7.4(b)); hence, good estimation of SDCHMMs 

is still possible. 

When the amount of training data is small (say, less than 8 minutes of speech on the 

ATIS task), the performance of the ensuing SDCHMMs degrades gracefully. However, 

over-training readily occurs in this case. In this study, we exhaustively search for the best 



BW iteration to stop using the test data. In practice, cross-validation using unseen data 

should be employed. 

Direct SDCHMM training requires a priori knowledge of, at least, the subspace Gaus- 

sian tying structure. Although in our experiments, the tying structure is derived from an 

existing recognizer on the same task, our results are still significant. One possible applica- 

tion is speaker enrollment - using a speaker-independent SGTS to train speaker-specific 

SDCHMMs with little enrollment data. 

Results of Experiment IV also suggest that if more a priori information is available, 

even less training data may be sufficient. For instance, we may also incorporate the 

mixture weights and/or Gaussian variances in addition to  the SGTS from the converted 

SDCHMMs (from which the SGTS is derived), and fix them during SDCHMM training. 

This may be found useful in speaker (environment) adaptation. 

Of course, we still need one set of CDHMMs from which to derive the SGTS for 

SDCHMM training. It  will be interesting to investigate if the SGTS is task independent 

so that one may deduce a "generic" SGTS from a very accurate CDHMMs and apply it 

to SDCHMM training in other tasks. 



Chapter 8 

Conclusions and Future Work 

This thesis addresses the problem of high computational cost (in both time and space) of 

contemporary speech recognizers by greatly reducing the number of parameters in their 

acoustic models. We choose to  tackle the problem by making more compact acoustic 

models because they constitute a major component of any speech recognizer, and com- 

puting their likelihoods takes up 5&70% of total recognition time for many typical tasks 

(other than very large vocabulary recognition). We start with a set of continuous den- 

sity hidden Markov models (CDHMMs) using mixture Gaussian densities with diagonal 

covariances, which are currently the most accurate models for speech recognition. Then, 

by exercising the technique of parameter tying at a finer sub-phonetic level, namely that 

of subspace distributions, we arrive at a set of more compact models which we call the 

subspace distribution clustering hidden Markov models (SDCHMMs). 

While it can be trivial to reduce the computational cost of a speech recognizer at the 

expense of its accuracy, it is much harder to increase its speed and reduce its memory 

footprint while retaining its accuracy at the same time. Since the problem is mainly 

attributed to the large number of model parameters, we employ the proven technique 

of parameter tying to reduce the redundancy in CDHMMs - and thus create a more 

efficient representation of the acoustic models (SDCHMMs). The technique of parameter 

tying has the additional benefit of reducing the amount of data required to train the new 

SDCHMMs. 

In this thesis, we have given a full account of the theory and the implementation of 

SDCHMM. Through a series of training and recognition experiments on the ATIS task, we 

demonstrate that in comparison to the CDHMMs, the new SDCHMMs have the following 

advantages: 

They reduce the number of Gaussian parameters (means and variances) by as much 

as three orders of magnitude. 



They reduce the total number of model parameters (mixture weights, Gaussian 

means, and variances) by 20-80 times. 

They achieve 7- to 18-fold decrease in memory size. 

They run 30-60% faster. 

They can be directly estimated with 10-20 times less training data. 

All these are achieved with no loss in recognition accuracy. 

8.1 Contributions 

The most significant contribution of this thesis is the formulation of a new acoustic 

modeling method which we call subspace distribution clustering hidden Markou model- 

ing (SDCHMM). The theory of SDCHMM is formulated as a simple derivative of CDHMM 

based on tying subspace distributions from a set of conventional CDHMMs. Two meth- 

ods are presented to implement the SDCHMMs as shown in Figure 8.1: One requires 

training intermediate CDHMMs and the other requires a priori knowledge of the subspace 

distrdbzltion tying structure (SDTS). 

Working with the implementation and evaluation of SDCHMM, this thesis contains 

further contributions as follows: 

New Unit of Parameter Tying 

We show that tying at an even finer sub-phonetic unit, the subspace distribution, is possi- 

ble. The hypothesis is that speech sounds are more alike in some acoustic subspaces than in 

the full acoustic space. An analysis of the ensuing SDCHMMs shows that similar phoneme 

pairs indeed share more subspace Gaussians than non-similar phoneme pairs. Empirically 

we also show that fewer subspace Gaussian prototypes are required in SDCHMMs with 

more streams. 

Generalization of CDHMM with Locally Independent St reams 

We generalize the formulation of CDHMM by introducing the notion of locally independent 

streams. By splitting the local acoustic space of each distribution of the CDHMMs into 

disjoint subspaces (or streams), and tying the subspace distributions, SDCHMMs maintain 

the accuracy of CDHMMs by retaining the essential complexity but reducing redundancy 
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Figure 8.1: Two methods of training SDCHMMs 
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in the latter through efficient representation of the acoustic space. While the use of 

streams is not new, streams are usually assumed globally independent - an obviously 

wrong assumption - in other HMM derivatives (for example, discrete HMM or semi- 

continuous HMM). Locally independent streams in SDCHMM come naturally from the 

theory of CDHMM with diagonal covariances; from this perspective, they are not an 

assumption at all. 

Generalization of CDHMM and FPTHMM 

The SDCHMM provides a full spectrum of HMMs with variable number of streams, with 

the CDHMM at  one end of the spectrum utilizing full-space distributions and the feature- 

parameter-tying HMM (FPTHMM) at the other extreme utilizing scalar distributions. 

One may pick the optimal SDCHMMs according to the relevant system requirements and 

configuration (recognition accuracy, processing power, and RAM/cache space). 



Direct Training of Parameter-Tying HMM from Speech 

Parameter-tying HMMs are usually created in two steps: The parent HMMs are first 

trained from scratch, and the parameters of interest are then tied in a separate procedure. 

While it is common and straightforward to re-train the resulting HMMs (wherein some 

model parameters are tied), we introduce the novel idea of treating the subspace distri- 

bution tying structure as part of the HMM architecture to facilitate training SDCHMMs 

directly from speech data without intermediate CDHMMs. As a result, we demonstrate 

that SDCHMMs can be trained from much less data than CDHMMs. 

8.2 Future Work 

In this thesis, we have presented a complete description of the theory of SDCHMMs 

and we have proposed a definition of streams, a novel Gaussian clustering algorithm, 

and two methods of SDCHMM implementation. The results of their evaluation on the 

ATIS task are very encouraging. Nonetheless, more experiments on tasks of different 

perplexities and recording conditions should be done to confirm the current findings. In 

addition, techniques which deal with current HMMs should be reconsidered in the context 

of SDCHMMs to make use of its compactness and its SDTS. The following are some 

interesting topics we will be pursuing in the near future. 

Model Improvement 

Currently we adopt a definition of streams, which uses the heuristic that correlated features 

tend to cluster in a similar manner. It  is obtained by a greedy algorithm and it works 

reasonably well in this study. Nevertheless, it will be preferable to have a more formal 

definition of streams without the use of any heuristics. 

The importance of stream definition will become more evident when we investigate 

other functionals for the mixture component distribution. One plausible candidate is a 

Gaussian distribution with block-diagonal covariance. In the past, Gaussian distributions 

with diagonal covariance were the most popular choice because of their trainability and 

computational efficiency. However, it is claimed in [53] that better acoustic models are 

obtained with explicit modeling of correlations among cepstral parameters. Though Gaus- 

sian distributions with full covariance are able to model such correlations, they are too 

costly for likelihood computations, for storage, and for training. Hence, Gaussian distribu- 

tions with block-diagonal covariance, which only model the most important correlations 



explicitly seem to be a good compromise. For example, for the 39-dimensional feature 

vector in our recognition system, its diagonal covariance involves 39 variances, and its full 

covariance has 39 x 39 = 1521 parameters. A 13-stream block-diagonal covariance of the 

features with 3 features per stream will only have 3 x 3 x 13 = 117 parameters - only 

three times the number of parameters in a diagonal covariance. In fact, [89] used such a 
distribution with two streams: One for the static features and the other for the dynamic 

features. In the context of our SDCHMM, more streams are preferable, and that will also 

mean a much smaller increase in distribution parameters when compared with the use of 

diagonal covariance. 

Hybrid Speaker-Dependent TrainingISpeaker Adaptation (SDTISA) 

One of the most exciting findings in this thesis is the small data requirement for training 

SDCHMMs. Though it is generally agreed that speaker-dependent (SD) models perform 

better than speaker-independent (SI) models, speaker-dependent training is greatly ham- 

pered by the lack of speaker-specific training data. However, in Chapter 7, we show that 

speaker-independent SDCHMMs can be trained with as little as 8 minutes of ATIS speech. 

This opens up new possibilities for training speaker-dependent SDCHMMs with little data. 

The idea is to reduce the amount of data required for training speaker-dependent SD- 

CHMMs through the incorporation of a priori knowledge of a speaker-independent SDTS, 

which can be derived from a large amount of training data. The underlying assumption is 

that the SDTS is speaker independent, or approximately speaker independent. From an- 

other perspective, the procedure can also be considered as a speaker adaptation procedure 

- adapting the model parameters of speaker-independent SDCHMMs while keeping the 

speaker-independent SDTS intact. Generalizing this hybrid SDT/SA approach, one may 

employ the following schemes in training speaker-dependent SDCHMMs, progressively 

using more a priori information from the speaker-independent models: 

SD data + SI SDTS + SD SDCHMMs 

SD data + SI SDTS + SI mixture-weights + SD SDCHMMs 

SD data + SI SDTS + SI mixture-weights + SI variances -+ SD SDCHMMs. 

One may further enhance the robustness of the SD SDCHMMs through interpolation 

with the SI SDCHMMs. 



Speaker Adaptation 

The SDTS derived from SDCHMMs may be used in speaker adaptation of non-SDCHMMs 

as well. There are two common approaches for speaker adaptation: The Bayesian learning 

approach and transformation-based approach, best exemplified by the MAP [I91 and the 

MLLR [51] techniques respectively. With either approach, when very little speaker-specific 

data is available, one is generally required to put the model parameters (usually only the 

Gaussian means) into equivalence classes to share the scarce resources. Since our analysis 

in Chapter 6 suggests that the SDTS is phonetically plausible, one may use the SDTS to 

define the equivalence classes. For instance, if one starts with CDHMMs, one may derive 

the equivalence classes from an SDTS obtained by converting the CDHMMs to SDCHMMs 

with an appropriate number of subspace distribution prototypes per stream, depending 

on the amount of adaptation data - fewer prototypes when there are fewer data. 

A similar approach may be applied for adaptation to other environmental factors (such 

as noise, channel, etc.) as well. 

Task-Independent Model Bootstrapping 

It will be also interesting to see if the SDTS derived from one speech corpus can be 

applied to another corpus, particularly when the latter is acquired under similar recording 

conditions. If this is the case, one may obtain a set of bootstrapped SDCHMMs for a new 

task quickly with few training data using a well-trained SDTS. Thereafter, one has the 

option to continue SDCHMM training, or convert the set of SDCHMMs to CDHMMs for 

further training. 

8.3 Final Remarks 

At the outset, our aim was to derive more compact acoustic models. In conclusion, we 

obtain two reduced upper bounds on the acoustic models of ATIS: 

A reduced upper bound on the minimum number of Gaussian parameters. Table 5.2 

suggests that for the 39-dimensional speech features (12 MFCCs and normalized 

energy, and their first- and second-order derivatives) we use for the ATIS task, 32- 

128 Gaussian prototypes per stream are adequate with 13-39 streams. 



A reduced upper bound on the minimum data requirement for training HMMs. In 

conventional training of continuous density HMMs, each HMM is trained indepen- 

dently, requiring a large amount of training data. The analysis in Chapter 6 suggests 

that the subspace Gaussian tying structure can capture the inter-relationship among 

the phones. By making use of this prior knowledge in the direct SDCHMM training 

scheme of Chapter 7, the whole set of HMMs can be trained simultaneously with 

about eight minutes of ATIS speech. 

It  is our belief that more compact acoustic models are possible, and we hope that this 

thesis sheds some light in this direction. 
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Appendix A 

Smaller Quantization Error in Lower 

Dimensions 

In this Appendix, we want to show that for a set of Gaussian ensembles with diagonal 

covariance matrices, the Gaussian quantization error is always smaller when quantization 

is done in lower dimensions. 

Let us consider three 2-dimensional Gaussians Gi with n; vectors and mean (xi, y;), 

1 < i < 3, and diagonal covariances as shown in Figure A.1. Let us denote the distortion 

of a Gaussian ensemble in the Zdirnensional space as Vx,, and that in the F, and F, 

dimension by 27, and 27, respectively. We further assume a distortion measure with the 

following additivity property: 

Additivity Property: 

That is, the distortion of a full-space Gaussian (with diagonal covariance) is the sum of 

the distortions of its independent subspace Gaussians. As an example, the Euclidean 

distortion measure defined in Equation (3.2) satisfies this property. 

Now let us compute the increase in distortion when two of the three Gaussians are 

clustered in 2-dimensional or 1-dimensional space. (Clearly, by the definition of the distor- 

tion, the total distortion of the Gaussians before clustering is the same, regardless whether 

it is computed in Zdimensional or 1-dimensional space.) 



Figure A. l :  Smaller quantization error in lower dimensions 

Gaussian Clustering in 2-Dimensional Space 

Without loss of generality, let us assume that among the three Gaussian pairs: {GI, G2), 

{G1,G3), and {G2, G3), clustering G;, and Gjo, 1 5 io # jo 5 3, gives the minimum 

increase in distortion. That is, 

Gaussian Clustering in l-Dimensional Space 

Now, if the Zdimensional Gaussians are projected onto each of the orthogonal l-dimensional 

subspaces F, and Fy, we obtain three l-dimensional Gaussians in each of the subspaces: 

GIrr G2,, and Ggx in F,, and GI,, G2y, and G3, in Fy. In the subspace F,, let us assume 

that G;, and Gj,, 1 5 il # jl 5 3, cluster together with the minimum increase in distor- 

tion. Similarly, in the subspace F,, G;, and G;,, 1 < i 2  # j2 5 3, cluster together with 

the minimum increase in distortion. That is, 

and 



Hence, we have 

and 

Adding Equations (A.5) and (A.6), we have 

A R ( i l , j l )  + A q ( i 2 , j ~ )  

5 Avx(i0,jo) + AvY(io,jo) 

= ADxy(io,j0> . (by the additivity property) 

It is straightforward to extend the proof to Gaussians of higher dimensions. 

Note that the fact that smaller quantization errors are obtained in lower dimensions 

does not contradict the general claim that vector quantization (VQ) is more efficient than 

scalar quantization (SQ) (or quantization in lower dimension). The former only implies 

that for the same number of prototypes per stream, the quantization error is smaller when 

there are more streams of lower dimensions. However, if we measure the quantization 

efficiency in terms of the number of coding bits, the smaller quantization errors obtained 

with K streams is achieved at the expense of K times the number of bits required by VQ. 

In other words, it is generally found that for the same number of coding bits, quantization 

in the full space achieves smaller quantization errors than quantization in the subspaces. 

For example, for a 10-dimensional vector space, if we use one bit to encode the full space 

in VQ, there are only two 10-dimensional prototypes to represent the full space, giving rise 

to enormous quantization errors. However, even one bit per feature in SQ can effectively 

represent 2'' = 1,024 different full-space prototypes with much smaller errors. On the 

other hand, it is more efficient to use ten bits to directly encode the full space with 

VQ than SQ, since VQ does not make the assumption of feature independence and thus 

produces better prototypes with less quantization errors. One major shortcoming of VQ is 

its larger memory requirement: For the same example, encoding the 10-dimensional space 

with 10-bit VQ requires a codebook of 1,024 10-dimensional vectors, whereas a 10-bit SQ 

codebook contains only 2' x 10 = 20 scalars which is equivalent to two 10-dimensional 

vectors in memory size. 



Appendix B 

Count of Common Subspace Gaussians 

between Phones 
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1 3 2 2 1 3 4 5 4 0 7 4 1 7 6 1 8 8 0 1 4 5 6 1 1 2 3 9 6 4 9 2 3 8 6 2 2 4 1 0 1 0 1 3 7 4 4  

9 4 1 7 1 4 8 0 5 3 3 1 8 5 9 1 0 3 8 5 3 1 4 6 3 3 2 1 8 6  7 9  1 3  
e l 1 0 6 6 8 1 3 9 3 1 0 3 3 8 7 6 1 0 1 5 2 7 1 3 1 1 5 5 5 8 0 7 1 1 3 3 2 1 5 6 6 7 6 1 5 2 2 1 0 4 5 1 2 4  

4  2  6  3  7 8 0 4  1 4  1 1  6  9 3 4 2 5 3  0  4  5  9  1 4  2  0  6  4  
2 1 0 0  1 3  1 4 8 0 1  7  4  3  1 1  3  2  0  6  4 2 0 1 6 2 2 5 4  3  1 6  

0 1 9 0 2 2 1 2 1 8 1  1 1 8 0 3  7 2 2 5  1 4  2  5 9 9  1 0 1 6 8  5 7 0  1  
h h 6 8 5 6 5 2 4 4 8 4 2 5 2 5 1 0 2 1 2 8 2 3 5 3 4 7 3 8 0 7 2 4 8 5 4 3 3 5 1 0 8 4 8 7 1 0 1 4  

4 1 6 8  9  9  3  1 4  7  7 8 0 3  2  3  3  6 1 1 1 0 4  7  6 1 4 8  6  4  2 1 4  
8  1 1 3 6 1 0 2  1 3 2 2 2 3 8 0 6 2 3 0 6 1 8 5 3  1 2 0 6 6 4 0  1  

1 8 1 3 1 1 1 0 3 7 5 1 5 4 7 6 1 1 0 1 3 5 2 3 7 4 3 1 5 6 1 5 4 2 6 8 0 3 3 4 4 1 7 3 3 2 2 3 6 2 5  
1 1 0 2 5 2 4 2 0 1 1 2 6 8 2 9 8 6 9 1 1 8 3 2 3 8 0 1 2 1 1 8 6 2 3 2 0 6 7 7 3 6  

n 1 0 6 7 7 5 1 0 6 3 8 6 1 0 6 7 1 4 6 0 9 1 5 3 3 2 2 5 6 3 4 3 4 5 3 3 3 1 2 8 0 2 6 1 3 4 3 5 6 6 1 6 1 5 4  
n g 6 7 3 8 9 8 6 4 4 8 1 0 5 1 0 9 1 0 1 2 1 1 2 8 0 3 3 7 2 5 2 2 4 6 0 4 1 1 2 6 8 0 6 2 2 4 6 2 2 1 4 6 4  

5  5 6  8 1 4 6 3 0 5  3 1 1 6 4 8 1 3 6 8 0 1 1 4  3  1 6  1 7 5  6 6  
3 1 3 7 6 6 6  1 0 6 9 3 1 0 1 8 1  6 4  2 1 1 8 0 2 3 0 1 5 1 4 8 4 2 3  

3 4 8 5 4 9 1 1 6 1 1 0 1 8 1 6 1 2 2 8 4 2 3 4 2 3 5 4 4 9 5 4 5 7 2 3 2 4 2 8 0 2 2 4 6 0 5 3 3  
1 0 0 0 1 1 4 0 2 3 2 5 2 0 1 1 0 7 3 3 3 5 4 3 3 2 8 0 2 4 1 1 1 3 1 0 2 8  

0 2 3 0  4  2  2  9 1 6 0  8 6  1 3  2  6  6  1 0  2 2 4 8 0 0 1 1 6  2  2 2 2  
7  5 1 9 1 0 1 8 1  1 2 1 6 4 1 4 2 0 2  0  6  2  6 1 5 4  1 0 8 0 6  5  4  0  5  
5 1 4 7 1 0 6  0  4 2 5 8  8  8  6  2  6  1 2  1 1 4 6 1 1 1 1 6 8 0 8  4  2 1 1  

1 3 0 1 5 9 4 1 3 7 4 2 4 5 7 6 6 3 7 6 1 7 8 0 3 6 5 8 8 0 6 3 6  
~ 1 2 7 2 2 2 3 2 1 1 1 5 1 4 4 1 7 1 1 0 2 7 7 9 5 0 3 7 1 4 4 6 7 1 4 5 4 5 1 2 4 4 6 8 0 1 0 1  

5 1 1 1 0 1 5 6 5 2 0 1 7 2 3 1 5 2 1 2 4 1 1 2 6 1 0 0 2 0 2 3 5 6 6 2 3 0 2 0 2 3 1 0 8 0 2  
2 1 4 4  4  3  4  4  6  1 1 4 1 4 1  5  6 4  4  6  3  3 2 8 2 2 5 1 1 6  1 2 8 0  



Table B.l: ATIS: Number o f  common subspace Gaussians between any two  phones (c) 3rd state 
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aa ae ah ao aw ax axr ay eh er ey ~ h  IX ~y ow oy uh uw 
a a 8 0 2 0 8 2 2 1 9 8 1 0 1 0 1 5 7 1 0 7 8 6 1 5 3 6  4  
a e 2 0 8 0 1 1 1 7 1 1 1 3 1 0 1 2 2 7 7 1 0 1 1 1 2 7 1 7 5  9  5  

a o 2 2 1 7 9 8 0 1 6 8 1 1 9 1 6 4 5 4 6 2 1 1 4  7  5  

a x 8 1 3 2 0 8  5 8 0 4  7  7 1 1 1 4 1 3 1 1 1 6 1 2 7 1 0 1 5 4  

1 0 1 2 6  9  6  7  4  8 0 1 1 8  1 9 1 1 1 5 1 7 7  1 6 6  
e h 1 5 2 7 9 1 6 8 7  

7  7 1 1 4  6 1 1 1 6 8 1 0 8 0 8 1 4 1 4 6  9  4 1 2 9  

7 1 1 8  4  5  1 3 8  1 1 1 1 1 4 1 2 8 0 2 1 1 3 7  7 1 8 1 4 3 1 1 6  
8  1213 6  5  11 12 15 8  14102180 8  10141021  

o w 1 5 1 7 1 3 1 1 1 2 1 2 8  
0 ~ 3 5 6 4 0 7  
u h 6 9 1 1 7  8 1 0 9  6 6 1 2 5 1 8 1 0 8 1 2 4 8 0 1 4 6 1 3 5  

5  7 5  4 1 5 1 1 1 0 2  9 8 1 4 2 1 1 2 1 2 5 1 4 8 0 6 6 8  
8 4 3  5 1 0 4  9 1 1 2  9 3 3 6 8  8  6 6  
7  5  8  9  2  7 4  9  8  11 9  11 9  7  9  5  13 6  
6  8  3  5  3  7  7  9  6  7  3  6  7  3  7  6  5  8  
5  6  9  6  5  5  7  1 0 3  9  6  9  7  9  6  6  7  5  

d x 5 1 1 7 5  7  8  4  7 5  6 7 8 8 7  3 1 1 3  

7  6  5  8  4  6  6  4  4  5  4  3  2  2  5  2  8  4  
5  8  9  6  4 8  6  1 0 6  6  9 1 1 7  8  5  8  6  9  

h h 6 9 7 7 4 2  
j h 6 8 5 8 1 0 5  2 1 0 2  5 3 1 2 7 7  2  3 9  6  

5  5  4  7  5  8  4  7  3 1 0 1 0 6  1 5  9 3  6  6  
1 7 7 5 1 5 1 3 4  8 1 1 9  5 8 1 2 8 8 1 0 2 1 0 8  

8  7  2  6  6  9  6  4  5  8  8 1 0 7 1 6 8  5  7  7  
6 3  3 6  4 1 1  7  3 6  7 8 8 1 3 1 0 8  5 1 3 2 0 8  

n g 5 6 9 4  5 1 2 3  4 5 8 1 4 6 9 9  9  5 9  
n x 2 9 8 7 6 7  

9 7 7 1 1 7 9  4  
9 1 3 8 8 1 1 9 2 1 1 1 8 2 1 7  7 1 5 6  9  8  
5  8  7  3  2  2  7  8  5  8  6  9 1 0 3  7  4  6  3  

s h 6 5  5  1 1  6  4  8 5 9 7 1 0 1 2 6  5  
3 6 3 4  5  6 1 0 5  5  7 9 4  7  5  7  1 9  
9  7  7  4  9  5  8  4  6 1 1 8  7  4  3  6  2  7  
4  3 3  1 5  9  2  5  2  6 5 1 1 6 5  5  3  7  
6 9 5 1 1 1 6 5  9  4 1 0 3 2 3 3 5  

6  6  5  3  2  3  6  1 0 6  7 1 0 7 6  4  7 3  5  3  

b ch d dh dx el en f g  hh jh k I rn n ng nx p r s sh t th v w  y z 
8 7 6 5 5 6 7 7 5 6 6 5  7 8 6 5  2 9 9 5 6 3 9 4 6 5 6  
4  5  8  6 1 1 8  8  6  8  9  8  5  7  7  3  6  9  7 1 3 8  5  6  7  3  9  3  6  

a h 8 1 1 8 0 9 1 3 2 0 9 6 9 1 1 4 8 1 3 6 1 3 6 1 1 7 3 8 3 9 7 5 3 5 9 7 5 4 5 2 3 9 8 7 8 7 5 3 7 3 5 3 5  
5 9 5 6 5  7 4 8 6 7 8 7 1 5 6 6 4  7 1 1 8 3  1 4 4  1 1 1 5 3  

a w 1 9 1 1 1 3 1 6 8 0 5 8 6 8 6 6 5 5 4 1 2 0 8 4 1 0 2 3 5 7 1 0 6 4 4 4 1 0 5 1 3 6 4 5 6 7 1 1 2 1 5 9 5 1 6 5 2  
7  7  5  8  5  7  6  8  2  5  8  4  9 1 1 1 2 7  9  9  2  6  6  5  9  5  2  3  

a x r l O l O 9 1 1 8 4 8 0 4 3 1 6 7 8 1 2 4 8 1 9 1 1 9 4 7 7 4 3 5 6 6 5 2 4 8 6 7 3 4 4 2 1 7 4 1 0 8 2 9 3 6  
1 0 1 1 9  9  1 0 7 1 1  5  4  1 0 8  1 0 7 1 1 4  3  4  1 0 5  1 1 8  8  5  4  5  4  6  10 

3 1 1 8 0 1 0 8 1 1 8 7 7 6 6 2 2 8 6 3 5 7 5 4 6 7 2 3 9 5 6 5 6 3 8 5 5 5 6 2 1 0 7 6  
9 1 1 7  9  6  2  4  5  6  9  5 1 0 5  8  7  8  7  8 2 1 8  9  7 1 1 6  3  5  7  

e y 1 0 1 0 4 5 6 1 4 7 1 9 8 8 8 0 1 2 1 0 2 1 1 0 5 5 8 3 9 3 6 7 6 9 4 9 6 3 1 0 8 8 8 1 4 5 7 7 6 7 9 8 5 2 6 1 0  
9  8  6  7  3 1 1 6 1 2 6 1 2 1 0 8  6 1 0 6  7  9 1 0 4  7 1 1 3  6  7  

6  9  7  7  8  6  9  2  7  8  7  1  8  7  13 9  7  6  151012 7  4  6  3  4  6  
i y 6 7 6 2 4 1 6 4 1 7 7 6 2 1 1 3 8 8 0 1 1 8 8 1 2 8 7 3 9 7 5 6 2 8 7 7 5 8 1 6 1 0 9 1 2 5 6 3 6 5 3 5 5 1 4 4  

7 7 9 1 0 7 1 0 1 1 8 0 4 1 2 1 2 8 9 7 6 3 6 1 2 5 5 7 2 9 1 0 8 8 9 5 8 9 7 5 7 6 5 7 0 7  
1 1 6 6 4 5 7 1 4 8 4 6 0 4 5 6 5 6 6 1 1 8 7 2 8 3 3 3 2 5 5 5 9 4 8 4 6 1 2 3 3 7 3  

7 3 5 1 0 8 6 4 9 6 1 0 7 1 3 9 6 1 1 7 6 9 9 7 7 4 0 5  
5  3 3 1 1 4 9  2  6 6 8 7 2 0 8 1 0 3 1 1 3 1 0 5  1 5 4  5 3  

6 8 0 7 1 4 1 3 1 0 6 8 8 9 3 9 6 6 1 1 8  3 1 2 5 1 0 7 4 1 0 9 1 2 4  2 8  
7  80 9  12 3  2  5  1310 3  2015 8  3  9  4  4  11 4  182015 7  6 3  0  22 
1 4 9 8 0 1 8 1 0 3  5 1 1 1 6 2 1 1 9  6 1 2 1 3 1 3 6  3  6  9 1 3 1 2 1 4 1 1 6  3  9  
1 3 1 2 1 8 8 0 1 7 3  6  6 1 4 9 1 0 8  6 1 2 9  7 1 5 5  7 1 0 9  8 1 3 1 0 6  3  9  

3 1 0 3 1 0 1 7 8 0 4 8 8 1 6 5  8 3  5 1 5 7  7 1 5 0 1 0 6 7 3  5 1 2 8 5  3  
e l 6 8 5 7 1 0 5 3 1 1 7 2 6 6 6 5 6 8 5 3 6 2 3 3 4 8 0 6 3 5 4 5 3 1 6 3 3 4 4 4 5 1 2 4 2 4 8 6 3  
e n 7 8 3 4 6 7 5 5 5 4 9 7 9 6 1 2 7 1 0 1 1 8 5 5 6 8 6 8 0 5 3 1 4 3 5 9 2 5 1 5 8 4 6 6 2 9 4 7 3 4 4  

8 1 3 1 1 6  8  3  5 8 0 5  4 1 1 1 0 4  1 8  5  3  9  5  7 1 5 6 1 4 7  2  2  6  
9 1 0 1 6 1 4 1 6 5  3  5 8 0 7 1 0 1 7 5  5  6 1 0 9  5  9 1 1 6 1 3 9  8  3  5 1 1  

5 8 7 9 6 6 8 7 7 3 4 2 3 3 2 9 5 4 1 4 7 8 0 6 4 6 1 0 3 3 1 1 1 1 8 9 6 3 7 7 2 4 9  
9 2 0 1 1 1 0 8 5 4 1 1 1 0 6 8 0 8 6 5 5 6 8 9 2 4 1 8 6 9 1 3 5 4 4  
6 1 5 9  8  3  3  3 1 0 1 7 4  8 8 0 5  3  3  8  4 2 0 8 1 2 7 1 7 1 3 7  0  1 1 0  
6 8 6 6  5 1 6 5 4  5  6 6 5 8 0 1 0 9  3 6 1 0 8  5 4  4 5  1 2 1 5 3  
1 1 3 1 2 1 2 1 5 3  9  1 5 1 0 5  3 1 0 8 0 1 7 1 4 1 7 5  6 1 1 6  2  9  7 1 1 5  7  

9 1 3 9  7 3 2 5 8 6  3  5  3  9 1 7 8 0 2 7 9  7  4 6  8  9  7  8  4  3  5 
8 3 4 1 3 7 7 4 1 5 5 1 0 3 6 8 3 1 4 2 7 8 0 6 1 0 6 3 0 6 1 0 1 0 4 3 2  

4 1 0 6 7 5 1 0 7 1 2 5 9 6 1 0 1 2 4 6 1 5 1 5 4 8 3 9 1 1 8 4 6 1 7 9 6 8 0 3 9 6 6 5 7 1 0 8 9 6  
5 3 8 7 6 6 5 8 4 1 1 3 5 1 1 3 5 0 4 4 9 5 1 1 9 2 0 1 0 5 7 1 0 3 8 0 8 9 9 1 7 1 7 7 1 0 1 0  

7 1 1 1 0 4 6  7 1 0 5 6 5 9 8  2 8 8 6 4  6 9 8 8 0 6 4  6 9  3 1 0 4  5  
7 1 8 9 1 0 6  1 6  7 1 1 9  4 1 2 5 1 1 6  3  6  9  6 8 0 1 3 1 6 1 0 5  0  1 4 8  

6 9 1 0 4 2 0 1 3 9 7 2 2 1 5 6 6 1 8 7 4 6 8 0 6 9 4 1 3 8 0 9 1 1 1 1 5 3 1 1  
5 1 0 1 5 1 2 8 3 4 9 6 1 3 3 6 1 7 4  2  9 6  5 1 7 6 1 6 9 8 0 1 2 7  2  0 1 5  
1 9  7 1 4 1 3 5  2  4 1 4 9  7  9 1 3 5  9  7 1 0 7 1 7 9 1 0 1 1 1 2 8 0 1 6 2  1 1 1  
5 1 2 6 1 1 1 0 1 2 4  7 7 8  7 1 3 7  1 7 8 1 0 1 0 7 3 5 1 1 7 1 6 8 0 2  3 6  

7 3 4 4 4 3 6 6 8 8 3 2 3 2 5 0 2 1 1 1 4 4 8 1 1 0 0 5 2 2 2 8 0 7 0  
5 3 3 5 5 2 3 6 7 5 6 6 4 1 4 0 7 0 5 2 0 3 3 5 6 4 2 5 4 4 1 5 5 3 3 9 0 4 1 3 0 1 3 7 8 0 0  

8 2 2 9  9  3  3  4  6 1 1 9  4 1 0 3  7  5  2  6 1 0 5 4 8 1 1 1 5 1 1 6  0  0 8 0  



Appendix C 

Statistical Significance Tests 

The statistical significance test suite from NIST (National Institute of Standards and Tech- 

nology) is used in ARPA evaluations of automatic speech recognition technologies. It  

encompasses four tests: 

Matched Pair Sentence Segment (Word Error) Test (MP) 

Signed Paired Comparison (Speaker Word Accuracy) Test (SI) 

Wilcoxon Signed Rank (Speaker Word Accuracy) Test (WI) 

McNemar (Sentence Error) Test (MN). 

Here, we apply the test suite to gauge the accuracy differences among four context- 

independent (CI) SDCHMM systems and four context-dependent (CD) SDCHMM systems 

of Table 5.2. The four systems in each case have 1, 13, 20, and 39 streams. The eight 

systems are identified as follows: 

lstream.g2254.ci - 1-stream CI SDCHMM system with 2,254 full-space Gaussians 

13stream.g256.ci - 13-stream CI SDCHMM system with 256 subspace Gaussians 

prototypes per stream 

20stream.gl28.ci - 20-stream CI SDCHMM system with 128 subspace Gaussians 

prototypes per stream 

39stream.g32.ci - 39-stream CI SDCHMM system with 32 subspace Gaussians pro- 

totypes per stream 

lstream.g76154.cd - 1-stream CD SDCHMM system with 76,154 full-space Gaus- 

sians 



13stream.gl28.cd - 13-stream CD SDCHMM system with 128 subspace Gaussians 

prototypes per stream 

20stream.g64.cd - 20-stream CD SDCHMM system with 64 subspace Gaussians 

prototypes per stream 

39stream.gl6.cd - 39-stream CD SDCHMM system with 16 subspace Gaussians 

prototypes per stream. 

The test results are shown in Table C.l and Table C.2. A system identifier showing up 

in a table entry implies it is the better system when compared with the system having the 

row identifier. We see that results from the three tests other than the MP Test suggest no 

statistically significant difference in performance among the four systems in each of the two 

groups. On the other hand, the MP Test finds that the SDCHMM systems are actually 

better than the original CDHMM system (i.e. l-stream SDCHMM system). Since each of 

the four test measures different quantities (word errors, sentence errors and speaker word 

errors) and employs different assumptions, it is fair to conclude that the new SDCHMM 

systems are as accurate as the original CDHMM systems. 



Table C.l: ATIS: Statistical significance tests on the best CI S D C H M M  systems 

Composite Report of All Significance Tests 
For the Context-Independent SDCHMM Test 

Test Name Abbrev 

Matched Pair Sentence Segment (Word Error) Test MP 
Signed Paired Comparison (Speaker Word Accuracy) Test SI 
Wilcoxon Signed Rank (Speaker Word Accuracy) Test WI 

McNemar (Sentence Error) Test MN 

...................................................................................................... 
I lstream.g2254.ci I 13stream.g256.ci I 20stream.gl28.ci I 39stream.g32.ci 

------------------+------------------+---------------------+---------------------+-------------------- 

Istream.92254.ci 

13stream.g256.ci 

------------------+------------------+---------------------+---------------------+-------------------- 

20stream.gl28.ci 

MP 13stream.g256.ci 
SI same 
WI same 
MN same 

------------------+------------------+---------------------+---------------------+-------------------- 

MP 39stream.g32.ci 
S I same 
WI same 
MN same 

------------------+------------------+---------------------+---------------------+-------------------- 

MP 20stream.gl28.ci 
SI same 
WI same 
MN same 

MP 20stream.gl28.ci 
S I same 
WI same 
MN same 

MP 39stream.g32.ci 
SI same 
WI same 
MN same 

MP 39stream.g32.ci 
SI same 
WI same 
MN same 



Table C.2: ATIS: Statistical significance tests on the best C D  S D C H M M  systems 

Composite Report of All Significance Tests 
For the Contest-Dependent SDCHMM Test 

Test Name Abbrev . 
..................................................... ------- 

Matched Pair Sentence Segment (Word Error) Test MP 
Signed Paired Comparison (Speaker Word Accuracy) Test SI 
Wilcoxon Signed Rank (Speaker Word Accuracy) Test WI 

McNemar (Sentence Error) Test MN 

I lstream.g76154.cd I 13stream.gl28.cd I 20stream.g64.cd I 39stream.gl6.cd 
-------------------+-------------------+---------------------+--------------------+-------------------- 

lstream.g76154.cd 

13stream.gl28.cd 

20stream.g64.cd 

MP 13stream.gl28.cd 
SI same 
WI same 
MN same 

-------------------+-------------------+---------------------+--------------------+-------------------- 

-------------------+-------------------+---------------------+--------------------+-------------------- 

MP 20stream.g64.cd 
SI same 
WI same 
MN same 

MP 20stream.g64.cd 
SI same 
WI same 
MN same 

MP 39stream.gl6.cd 
SI same 
WI same 
MN same 

MP 39stream.gl6.cd 
SI same 
WI same 
MN same 

MP 39stream.gl6.cd 
SI same 
WI same 
MN same 
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