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Abstract 

The Role of Qpe Equality in Meta-programming 

Emir Pasalic 

Supervising Professor: Timothy E. Sheard 

Meta-programming, writing programs that write other programs, involves two kinds of languages. The 

meta-language is the language in which meta-programs, which construct or manipulate other programs, are 

written. The object-language is the language of programs being manipulated. 

We study a class of meta-language features that are used to write meta-programs that are statically guar- 

anteed to maintain semantic invariants of object-language programs, such as typing and scoping. We use 

type equality in the type system of the meta-language to check and enforce these invariants. Our main 

contribution is the illustration of the utility of type equality in typed functional meta-programming. In 

particular, we encode and capture judgments about many important language features using type equality. 

Finally, we show how type equality is incorporated as a feature of the type system of a practical functional 

meta-programming language. 

The core of this thesis is divided into three parts. 

First, we design a meta-programming language with dependent types. We use dependent types to ensure 

that well-typed meta-programs manipulate only well-typed object-language programs. Using this meta- 

language, we then construct highly efficient and safe interpreters for a strongly typed object language. We 

also prove the type safety of the meta-language. 

Second, we demonstrate how the full power of dependent types is not necessary to encode typing proper- 

ties of object-languages. We explore a meta-language consisting of the programming language Haskell and 

a set of techniques for encoding type equality. In this setting we are able to carry out essentially the same 

meta-programming examples. We also expand the range of object-language features in our examples (e.g., 



pattern matching). 

Third, we design a meta-language (called Omega) with built-in equality proofs. This language is a signif- 

icant improvement for meta-programming over Haskell: Omega's type system automatically manipulates 

proofs of type equalities in meta-programs. We further demonstrate our encoding and meta-programming 

techniques by providing representations and interpreters for object-languages with explicit substitutions and 

modal type systems. 



Chapter 1 

Introduction 

Meta-programming is the act of writing programs that generate or manipulate other programs. The pro- 

grams manipulated are called object-programs and are represented as data. The programs doing the ma- 

nipulation are called meta-programs. The language in which meta-programs are written is called a meta- 

language. The language of object-programs is called an object-language. 

Meta-programming systems can be classified into two broad classes: homogeneous meta-programming 

systems and heterogeneous meta-programming systems. In homogeneous systems the object and meta- 

language are the same. In heterogeneous systems, the object- and meta-language are different. 

Homogeneous meta-programming languages have received a lot of attention over the years. Several 

homogeneous meta-programming languages have been implemented [110,119,77]. Many issues in homo- 

geneous meta-programming have been thoroughly explored: quasi-quotation [124,7]; type systems [30,29, 

126, 15, 13.51; semantics [lo, 82, 126, 127,86, 1061; intentional analysis [86,85]; applications [37, 115,421 

and so on. 

Programming languages designed specifically to support heterogeneous meta-programming have re- 

ceived less attention. The thesis of this dissertation is that heterogeneous meta-programming can be made 

into a useful meta-programming paradigm that can provide some of the same benefits as the homogeneous 

meta-programming paradigm: 

1. Static type safety for heterogeneous meta-programs. Type safety of heterogeneous meta-programs 

involves the following. The meta-program is written in a strongly typed language LM.  The object 

program is written in some object-language Lo, which is also strongly typed, but its type system may 

be different from the type system of the meta-language. A type-safe heterogeneous meta-program 

is one that statically guarantees that both the meta-program (in L M )  is type correct, and that any 

object-language program it generates or analyzes is also type correct (in the type system of Lo). 



2. Semantic invariants. From the point of view of the meta-programs, object-programs are just data. 

Often, this means that the values that represent object-programs in a meta-program represent only the 

(abstract) syntax of object-language programs. In a heterogeneous meta-programming framework 

the programmer should be given the tools to specify additional invariants that the representation of 

object-language programs should obey. For example, the meta-program might guarantee that only 

well-formed, correctly scoped object-programs are constructed. 

3 .  Practical concerns. Much of the success of meta-programming languages (e.g., MetaML, Scheme) 

comes from the abstractions they provide that make common meta-programming tasks easy to write. 

Such abstractions include quasi-quotation for constructing object-programs, built-in support for re- 

naming of bound variables (hygiene), and so on. 

In a heterogeneous meta-programming language, common tasks such as defining new object- 

language syntax, parsing, and implementing substitution should be supported by the meta-language. 

The programming language abstractions that serve as the interface to these common tasks should be 

intuitive and easy to learn, and should be well integrated with other (non meta-programming specific) 

features of the meta-language. 

1.2 Contributions 

We support our thesis by designing a language-based framework for heterogeneous meta-programming. In 

doing so, we have made a number of specific contributions. Here, we point out the three most significant 

ones, in order of importance. 

First, we illustrate the value of type equality in functional meta-programming languages. We have 

shown how judgments about many important features of object-languages (such as typing judgments for 

the simply typed A-calculus, pattern matching, and box and circle types) can be captured using type equal- 

ity, and manipulated safely by functional meta-programs. We present detailed descriptions of relevant 

meta-programming examples as a tutorial intended to demonstrate and teach type-equality based meta- 

programming. 

Second, we show how type equality can be used in an existing functional language (Haskell) and, more 

importantly, how support for type equality can be built into a sophisticated type system for a practical pro- 

gramming language (called Omega). In Omega, the programmer can use a generalized notion of algebraic 

data-types conveniently combined with support for type equality to represent interesting judgments about 

object-language programs. We have implemented a prototype of Omega, and demonstrated its utility on 

comprehensive heterogeneous meta-programming examples. 



Third, we design a programming language with dependent types and support for meta-programming 

(called MetaD). We use this language to present a novel way of addressing an interesting meta-programming 

problem (tagless and well-typed interpreters). We also explore the theoretical aspects of such languages by 

formalizing a core MetaD-like calculus and proving its type safety. We also compare the approach to 

meta-programming using dependent types in MetaD to the more lightweight approaches using Haskell and 

Omega. 

1.3 Background 

We outline some historically relevant work in meta-programming that represents the most direct roots of our 

own research. In the most general view, meta-programming is ubiquitous in computing. Any program that 

constructs or manipulates something else that could be considered a program is a meta-program. For ex- 

ample, compilers which translate a program in one object language to programs in another object language 

are meta-programs. On a more mundane level, even printing to a Postscript printer is meta programming: 

an application creates a Postscript program based on some internal data-structure and ships this program to 

the printer, which interprets and executes it to produce a hard copy. 

At another level, meta-programming is the study of meta-programs (and meta-languages) as formal sys- 

tems in their own right. While meta-programming is possible in any programming language that allows for 

representing data, a number of languages have been designed with abstractions that are intended to make 

writing meta-programs easier. 

The notion of treating programs as data was first explicitly developed by the LISP community. In this con- 

text, the notion of quasi-quotation [124,8] was developed as a way of making the interface to the data rep- 

resenting the object program "as much like the object-language concrete syntax as possible [116]." Quasi- 

quotation is a linguistic device used to construct LISP/Scheme s-expressions that represent LISP/Scheme 

object programs. The Scheme community has also developed the notion of hygiene [68] to prevent acciden- 

tal capture and dynamic scoping when manipulating object-language representations that contain binding 

constructs. 

The need for a meta-language (as a programming language that can be used as a common medium 

for defining and comparing families of (object) languages) was described by Landin [69]. Around the 

same time, Bohm also proposed using the A-calculus-based language CuCh as a meta-language for formal 

language description [12]. 

Nielson and Nielson [90,93,92] define programming languages and calculi that syntactically distinguish 

meta-level from object-level programs as a part of the language. These two level languages provided a tool 



for formulating and studying the semantics of compilation. 

Two important meta-programming systems emerged from the study of constructive modal logic by 

Davies and Pfenning [30, 291. Davies and Pfenning observed a correspondence between propositions in 

constructive modal (and temporal) logic and types that can be assigned to certain classes of meta-programs. 

The considerable body of research on MetaML 1133, 128, 82, 15, 127, 1321 described a strongly typed 

meta-programming language that supports construction and execution of object programs in a strongly 

typed setting. 

Language abstractions that support meta-programming are not limited to functional languages. Template 

rneta-programming [36, 371 in C++ (re)usesl the notion of a template to perform program generation at 

compile time. This mechanism has been successfully used in the design and implementation of high- 

performance C++ libraries 128,271. The work cited above just touches the surface of the vast area of meta- 

programming (Chapter 9 contains a more in-depth discussion of related work), but it illustrates several key 

ideas that have inspired our research. 

Starting with Landin, and throughout the work outlined above, the crucial idea is to approach meta- 

programming by studying meta-languages as formal systems in their own right. This allows us to concen- 

trate not on any particular meta-program and its properties, but on large classes of meta-programs, and to 

understand meta-programming at a considerably higher level of abstraction. 

The work on quasi-quotation and hygiene in Scheme, MetaML, and even the C++ templates, under- 

scores the importance of thinking clearly about internal object-language representation, and of the interface 

between the concrete syntax and the internal object-language representation. 

The work on logical modalities and type systems (Davies and Pfenning, MetaML) underscores both the 

utility and the importance of strong and expressive type systems for meta-programming languages. 

1.4 A Meta-programming Taxonomy 

In this section, we shall outline some basic ways of classifying meta-programs and meta-programming 

languages. We shall also define some of the vocabulary that will allow us to be precise about distinc- 

tions between meta-programming systems. Then, we will examine the "heterogeneous vs. homogeneous" 

classification in more detail. 

'It was initially designed as a preprocessing mechanism to add generics to C++. 



Generator vs. Analyzer. A basic classification of meta-programs can be expressed in terms of the two 

broad categories of program generators and program analyzers[116]. A meta-program is a program gener- 

ator if it only constructs object-language programs based on some inputs. A program analyzer is a meta- 

program that observes (analyzes) an object program, and computes some result. Some meta-programs can 

be both analyzers and generators, as in the case of source-to-source transformations and optimizations. 

Some meta-programming languages have meta-programming abstractions for writing of both generators 

and analyzers (e.g., Scheme, Lisp, v n  [86]), while others (e.g., MetaML or C++ with template meta- 

programming) only support writing generators. 

Homogeneous vs. Heterogeneous. Another way of classifying meta-programs is by dividing them into 

homogeneous and heterogeneous [126, 1161 meta-programs. This division is based on the identity of the 

meta- and object- language. A homogeneous meta-program, written in a language L, is a meta-program that 

constructs or manipulates other L programs. A heterogeneous meta-program is a meta-program, written in 

a language L1 that constructs or manipulates object-programs written in some language La. 

The property of being homogeneous and heterogeneous is closely related to the way that object-programs 

(considered as data that meta-programs manipulate) are represented in the meta-language. In a weak 

sense, any programming language with strings can be used to write heterogeneous (or homogeneous) 

meta-programs, since strings can be used to represent object-programs. However, when we speak about 

homogeneous meta-programming languages, we mean those programming languages that have some built- 

in data-structures and abstractions that are designed and intended for representing object-programs and are 

integrated into the larger system. 

There is much work in the area of homogeneous meta-programming, in particular, programming lan- 

guages with special abstractions for writing homogeneous program generators. This work has led to both 

theoretical breakthroughs and practical benefits. 

Open vs. Closed. In our discussion of object-language representation we have touched upon an important 

design decision faced by the designer of a meta-language. Basically, it involves the two following choices: 

A closed meta-language. In this situation, the meta-language designer chooses both the meta- and the 

object- language in advance of any actual meta-programming. The language designer decides on a particular 

set of linguistic features (e.g., quasi-quotation, typing discipline, hygiene) which are built into the meta- 

language to allow the programmer to construct object-language programs. A good example of a closed 

meta-language is MetaML. 

The closed-language scenario offers a number of benefits. The meta-language and object-language are 



identified once and for all. The programmer who uses the meta-language never needs to concern himself 

with representing, parsing, printing, or even type checking the object-programs. All of these problems 

can be addressed and solved by the language implementer. This promotes a tremendous amount of reuse 

across all meta-programs. Moreover, restricting the programmer's access to the underlying representation 

of object-language programs makes it easier to establish meta-theoretic properties that hold for all object 

programs. These properties can be used by the compiler/interpreter to perform optimizations, as is the case 

with the MetaML [I191 implementation. 

The obvious disadvantage of a closed meta-language manifests itself if the meta-language does not sup- 

port the object-language the programmer wants to manipulate. For example, MetaML provides the pro- 

grammer with an excellent way of constructing and executing MetaML object-programs, but if a program- 

mer wants to COnShUCt Java programs, he is entirely left to his own devices. 

An open meta-language. In this situation, the designer of the meta-language cannot assume what panic- 

ular object-language the meta-programmer is interested in manipulating. All the language designer can do 

is to design the meta-language so that it contains useful features that will allow the programmer to encode 

and manipulate the object language(s) of his choice. 

A meta-language can be open with respect to a particular feature of an object language. Many general 

purpose programming languages do provide some abstractions for encodlng object-language syntax. How- 

ever, most general purpose languages do not provide abstractions for meaningful manipulation of the object- 

language syntax (e.g., renaming of bound variables, capture-avoiding substitution, and so on). Rather, these 

operations must be implemented by the programmer for each new object language. This results in a great 

deal of repeated work across many implementations. 

For example, a general-purpose programming language like Standard ML may be open with respect to 

the programmer's ability to define abstract syntax of new object-languages, Algebraic data-types are a 

particular mechanism that SML offers to the programmer to accomplish this. Moreover, the type system of 

SML can guarantee that only syntax-correct object-language terms are ever constructed or manipulated by 

his meta-programs. SML offers the programmer no comparable abstractions that would allow him to encode 

sets of well-typed object-language terms. Of course, he can still make sure, by meta-theoretic reasoning 

about a particular meta-program, that this program manipulates only well-typed expressions. However, 

the meta-language offers him no guarantee that its type system will reject any meta-programs that try to 

construct ill-typed object programs. 



1.4.1 Homogeneous and Heterogeneous Meta-programming 

Homogeneous Meta-programming 

A classical example of a homogeneous meta-programming language is Scheme [110]. Here, we present a 

simple example of such meta-programming. Consider the following two functions written in Scheme. The 

first function, sum, takes a list of numbers and computes their sum. This is a fairly standard functional 

program involving no meta-programming. 

(define (sum 1) 

(if (null? 1) 0 (+  (car 1) (sum (cdr 1))))) 

;; Scheme session transcript 

I :=> (sum t ( l  2 3 ) )  

6 

The second function, sumgen, is quite similar to sum, except for the use of Scheme's meta-programming 

abstractions. Instead of adding the numbers in a list, sumgen computes a Scheme program that when 

executed produces the sum of all the numbers in a list. 

(define (sumgen 1) 

(if (null? 1) 0 ' ( +  , (car 1) , (sumgen (cdr 1))))) 

;; Scheme session transcript 

1  : => (sumgen ' ( 1  2 3 )  1 

(+ 1 (+ 2 (+ 3  0))) 

1 : => ( e v a l  (sumgen ' ( 1  2 3 )  ) ) 

6 

Scheme's meta-programming facilities are particularly convenient to work with because programs in 

Scheme are represented using the same structured expressions as all other data. In Scheme, any expression 

can be marked by back-quote, ( ' exp ) , indicating that the expression should be considered as constructing 

an s-expression representing a Scheme program. Inside a quoted expression, commas ( , exp) are used 

as an escape notation. An expression escaped with a comma is evaluated to an s-expression representing a 

Scheme program, which is then spliced into the larger program, where the comma occurs. 

Using these language constructs, the function sumgen is a meta-program which acts as a program gener- 

ator. Given a list of numbers ' (xl x2 x3 . . . xn ) , it constructs a scheme expression ( + xi (+  

x2 ( + x3 . . . ( + Xn 0)  ) ) ) . Scheme also comes equipped with the construct eval, which takes 

an s-expression representing a Scheme program and executes it. Thus the expression ( eval ( sumgen ' ( 1 2 3 ) ) ) 

first generates a program ( + 1 ( + 2 ( + 3 0 ) ) ) , and then evaluates it, returning the result 6. 



Most homogeneous meta-programming languages rely on quasi-quotation [8] (e.g., back-quote and 

comma in Scheme), which can be thought of as a special syntactic interface for constructing object-program 

code. Some of these languages (e.g., Scheme and MetaML) provide constructs for executing the object- 

language programs constructed by the meta-program (e.g., eval in Scheme and run in MetaML). 

A drawback of programming in Scheme is that Scheme is not statically typed. First, there is no way 

of statically guaranteeing type correctness of meta-programs. Second, there is no way of knowing object- 

programs are well-typed until they are executed by eval. For example, consider the following Scheme 

session: 

I:=> (define bad-program '(1 2 ) )  

bad -program 

I:=> bad-program 

(1 2) 

I:=> (eval bad-program) 

* * *  ERR0R:bigloo:eval: 
Not a procedure -- 1 
#unspecified 

Using the back-quote notation the programmer is able to construct a nonsensical program ( 1 2 ) . When 

we invoke eval on it, a runtime error is raised for attempting to apply the number 1 as if it were a 

function. Static typing in meta-programs has a number of advantages. In addition to guaranteeing that 

the meta-program encounters no type-errors while manipulating object-programs, a statically typed meta- 

programming language can also guarantee that any of the object-programs generated by the meta-program 

are also type-correct. A dissadvantage of these type system is that (in case of meta-programming languages 

with weaker type systems) they sometime may be too restrictive in object-programs that the programmer is 

allowed to construct (for an example of this phenomenon see Chapter 2.1.1). 

MetaML [126, 135, 1271 (and its derivative, MetaOCaml [77]) are examples of statically typed homo- 

geneous meta-programming languages. MetaML is designed as a conservative extension of the functional 

programming language Standard ML [80]. In MetaML, the type system is extended with a special type 

constructor (called code) that is used to classify object programs. For example, a program of type Int 

is a program that produces an integer value. On the other hand, a program of type (code Int) is a 

(meta-)program that produces an object program which, when executed, will produce an integer value. 

Let us revisit our sumgen example, this time written in MetaML. In MetaML, code brackets (written 

< . . . >) play the role of back-quote in Scheme, while tilde (called "escape") is analogous to Scheme's 

comma operator. The type of code is written with code brackets surrounding a type: 



9

Figure 1.1 Multi-stage structure of a Homogeneous Meta-Language

MetaML
Meta-language (stage 1) Meta-language ..!.s.tage2)

..~

(* sum : int list -> int *)

fun sum [] = 0

I sum (x: :xs) = x + (sum xs)

(* sumgen : int list -> <int> *)

fun sumgen [] = <0>

I sumgen (x::xs) = < x + -(sumgen xs) >

Many homogeneous meta-programming languages, MetaML included, support multi-stage program-

ming. The structureof a multi-stageprogramminglanguageis illustratedin Figure 1.1. In a multi-stage

program, a meta-program can be used to generate an object program which is itself a meta-program gen-

erating another program, and so on. The execution time of each meta-program is a computational stage.

Typed homogeneous meta-programming languages of the MetaML family have three properties that make

them well-suited for meta-programming:

1. Strong typing and type safety [129]. The strong typing of MetaML (also AD, A0, and some other

statically typed homogeneous meta-languages) guarantees that meta-programs are free from runtime

type errors (e.g., adding strings to integers, and so on). Furthermore, their type systems also guarantee

that any object programs constructed by a well-typed meta-program will be free of runtime type errors

when executed.

2. Phase errors. Phase errors occur when an object-language variable is used as if it were a meta-

language variable. Consider the following Scheme definition:

1:=> (define f1 \(lambda (x) (+ 1 x)))



I:=> £1 

(lambda (x) (+ 1 x)) 

I :=> (define f2 '(lambda (x)  , ( +  1 x ) ) )  

* * *  ERROR:bigloo:+: 

The first definition, f 1 creates an object program, i.e., a function that adds one to its argument. The 

second definition, f 2 attempts to create an object program that is a function. However, inside the 

body of the lambda abstraction, the comma operator forces Scheme to evaluate (i.e., in the meta- 

program) the expression ( + 1 x)  , where x is a variable that is bound only in the object program, 

and has no value assigned to it. Thus, when trying to evaluate ( + 1 x) the Scheme interpreter can 

find no value for x, and raises a runtime exception. If one tries to write f 2 in MetaML, the type 

checker statically catches such an error: 

val f2 = <fn x => " ( l + x )  > 

Error: phase error in 1 + x. 

3. Semantic coherence [127]. Object-program code in MetaML. is implemented as an abstract data 

type. This abstract data-type has an important meta-theoretic property, which guarantees that if two 

MetaML programs, pl and pa, are semantically equivalent, no meta-program can distinguish between 

their representations as code. 

This property guarantees the soundness of a simple equational theory that can be used to reason 

about object programs. For example, a program that generates < ( f n x => x) 4> is equivalent 

to the program that generates just c4>. Since no meta-program can distinguish between those two 

programs, the MetaML implementation can perform optimizing source-to-source transformations 

automatically, resulting in the construction of cleaner, more efficient code. 

However, MetaML's semantic coherence has more restrictive consequences. In particular, no meta- 

program can safely analyze the values of the abstract type that represents object-language programs. 

The only thing that can safely be done with object-programs, once constructed, is to execute them 

with run. In other words, MetaML only supports the writing of program generators. This prevents 

the user from implementing a whole class of interesting programs such as syntax-to-syntax transfor- 

mations (optimizations). 

Heterogeneous Meta-programming 

In a heterogeneous meta-program, the meta-language and the object-language are different. A typical 

heterogeneous meta-programming exercise has the following steps: 



1. The programmer encodes the syntax of the object language as some form of structured data in the 

meta-language. 

2. The programmer writes a meta-program that 

(a) Constructs an object program, or 

(b) Transforms an existing object- program into another object-program (which may be written in 

the same object language or not), or 

(c) Computes some other result over an existing object-program, e.g., its meaning, its size, its free 

variables, its data flow graph, and so on. 

How does this scenario compare to meta-programming in the homogeneous setting? When writing a 

homogeneous meta-program in MetaML the step (1) is unnecessary. The decision about how to represent 

object-language programs has already been made, once and for all, by the language designer. MetaML 

provides support for Step (2a) by its strongly typed quasi-quotation. Step (2b) is not directly possible in 

MetaML, since the language supports only generative meta-programming - once constructed, MetaML 

object programs cannot be analyzed, only executed. 

At first glance point (2c) looks like it is not possible in MetaML. But, consider the possibility when 

the object language is not MetaML, but some other object language represented by an algebraic data-type. 

Then, an interpreter for this language can be modified so that it computes a residual MetaML program. 

When run, this program will compute the result more efficiently than simply interpreting the original pro- 

gram [67, 1151. This is a well-known technique often called staging an interpreter. We will return to this 

idea many times later in the dissertation. 

1.5 Problem: Object-language Representation 

The main problem of designing a useful heterogeneous meta-programming paradigm is the problem of 

choosing object-language representations. In the next section, we outline a specific set of proposals and 

approaches to solve this problem. Here, we examine four ways of representing object-programs, and point 

out the advantages and disadvantages of using each in meta-programming. 

Strings. The simplest way of representing object-language programs is to use strings, i.e., to represent 

object programs tatually. This technique can be used in both homogeneous and heterogeneous meta- 

programs, but has an important drawback. Any meta-language with only standard string manipulation 



operations (e.g., concatenation, indexing, and so on) offers no abstractions to statically enforce the invari- 

ant that strings must represent only syntactically correct object-language programs. In practice, object- 

programs represented as strings may be quite difficult to analyze: some form of parsing must be used to 

access the underlying structure implicit in the strings. This process is both complicated and error-prone. 

One success case with string representations is Perl, a popular programming language for writing CGI 

scripts. Perl uses a powerful regular expression facility and a number of libraries to make string manipula- 

tion of programs more palatable to the programmer. 

Algebraic data-types. In functional programming languages, the abstract syntax of object-language pro- 

grams can be represented using algebraic data-types. Alternatively, other higher-level programming lan- 

guages have different structured data-facilities such as object hierarchies in Java or s-expressions in Lisp 

and Prolog. Here, we shall mainly address algebraic data-types in functional languages, but much of the 

argument should hold for similar data-representations as well. 

As a way of representing object-language syntax, algebraic data-types have a major advantage over 

strings. First, they are a natural way of encoding context-free abstract syntax trees. Consider the following 

BNF [87] specification of the syntax of a small A-calculus based language: 

(Var) ::= X,Y,Z,... 

(Exp) ::= (Var) I X(Var) .(Exp) 1 (Exp) (Exp) 

(Decl) ::= let (Var) = (Exp) 1 letrec (Var) = (Exp) 

The following Haskell declarations define three data-types, one for each non-terminal specified in the 

BNF grammar above. 

type Variable = String 

data E x p  = Var Variable 

I Abs Variable E x p  

1 rnQ E x p  E x p  

data Decl = L e t  Variable E x p  

I L e t R e c  Variable E x p  

It is not difficult to convince oneself that the three data-types in Haskell represent exactly the parse 

trees specified by the BNF grammar. It is also important to note that ill-formed syntax trees are statically 

rejected by Haskell's type system: just as there is no derivation for the ill-formed term (let x) A y, there is 

no well-typed analogue in Haskell (i.e., the Haskell expression ( ~ p p  (Let "xtl  ) Abs " y" ) is rejected 

by the type-checker). 

2~odulo  undefined values and infinite trees. 



The algebraic data-type representation significantly alleviates the draw-backs of string representations. 

For example, in functional languages pattern matching can be used to analyze algebraic data-types that 

represent object-programs. The typing discipline of the meta-language like Haskell or Standard ML catches 

and rejects meta-programs that can build syntactically incorrect object-programs. 

However, there are interesting properties of object-programs other than syntactic correctness that are 

not statically enforced by the meta-language using an algebraic data-type representation. For example, 

context-sensitive properties like typing of object-programs cannot be automatically checked and enforced. 

For example, a capture avoiding substitution operation for a typed object language should not only produce 

syntactically well-formed results, but should preserve the type of object-language terms on which it oper- 

ates. In a meta-program using algebraic data-types, it is up to the programmer to craft his meta-programs 

so that this meta-theoretic property holds. 

Abstract code type. Particularly interesting is the representation for object-language programs used by 

the homogeneous meta-language MetaML. In a MetaML program, values representing object-language 

programs are classified by a built-in abstract type of code. The programmer constructs and manipulates 

such values that represent object-language programs using a built-in quasi-quotation mechanism. However, 

the programmer has no access to the concrete, underlying representation of object-language programs: this 

representation is chosen by the implementers of MetaML, and fixed once for all. 

The MetaML style of code representation has major benefits. First, it statically guarantees that object- 

language programs represented in this way are syntax-correct and type correct. Second, this representation 

has several useful meta-theoretic properties: it enforces the correct static scoping discipline; it makes code 

representations of all ap-equivalent object programs observationally equivalent to meta-programs. The 

latter allows the programmer to perform standard equational reasoning about meta-programs in the presence 

of the run construct. 

In a heterogeneous setting, a MetaML-style abstract code type is also plausible. However, it is important 

to note that the choice of how to represent such code internally is a design decision taken by the language 

designer (and implementer), not by the programmer who merely uses the meta-language to write his own 

meta-programs. Therefore it is less likely to be useful in practice, since one would have to design and 

implement a new meta-language for every new object-language. 

Dependent types. Finally, we describe the most promising approach to representing object-language pro- 

grams. This particular technique of representation is not new - it has a long history in the logical framework, 

theorem proving, and type theory community, but has very seldom been used in meta-programming. 



This technique is similar to using algebraic data-types to represent the syntax of object-language pro- 

grams. However, instead of algebraic data-types, it relies on advanced type-theoretic techniques such as 

the inductive families in the Calculus of Inductive Constructions, predicate encoding in Cayenne [3], or 

LF [53]. Enriching the meta-language's type system with dependent types allows the programmer to en- 

code not only simple syntactic properties, but semantic ones as well. For example, the programmer can 

specify a data-type that encodes a set of only syntactically correct and type correct syntax trees. All func- 

tions that either generate or analyze an object program are forced statically by the meta-language to preserve 

the semantic properties of the object-language specified by the programmer. 

One area of concern when using dependent types is the accessibility and transparency of the type sys- 

tem to the programmer. While a dependent type system can statically enforce object-language program 

invariants, violating these invariants in meta-programs can result in complex and arcane compilationltype- 

checking errors that are not easily understood by a novice programmer. Furthermore, to appreciate and use 

dependent types, one is usually needs considerable background in theoretical computer science and type 

theory, making dependent types still less accessible to the average programmer. 

Generalized algebraic data-types. Using dependent types is an expressive mechanism. We conjecture 

that properties represented this way can be arbitrarily complex. But, in practice, even very simple proper- 

ties such as those that enforce correct scoping and typing disciplines of object programs are quite useful. 

Perhaps something less than the full expressive power of dependent type theory can still be useful in meta- 

programming? 

We will show that this is the case, by devising a method which is an extension of algebraic data-types 

with the notion of equality between types. We will use this method in two settings. Both of these are 

sufficient to specify scoping, typing and other invariants of object-language representations. 

First, we shall encode type equality in  aske ell^, and use it in conjunction with Haskell's existing algebraic 

data-types. This technique can be presented to the Haskell programmer as a new programming idiom and 

is accessible even to Haskell programmers without highly advanced type theoretic background. 

Second, we shall design a language (Omega) in which type equality, as a built-in, primitive notion is 

added to algebraic data-types. Omega provides the programmer with a practical and intuitive interface to 

type equality leading to smaller programs that are easier to understand and debug than their equivalents in 

the Haskell setting. 

3 ~ y  "Haskel" we actually mean Haskell plus a number of commonly available extensions such as higher-rank polymorphism and 
existential types, which are available in most popular Haskell implementations. 



1.6 Heterogeneous Meta-programming: Desiderata and Approaches 

In this section, we shall outline our proposal for putting heterogeneous meta-programming into practice. To 

do this, we shall have to design a meta-language for heterogeneous meta-programming. We shall outline 

the requirements, choices, and goals in designing such a meta-language, and the concrete approaches we 

take to meet them. 

There are many useful heterogeneous meta-programs. Recall the example of a postscript printer: the 

object language is (significantly) different from the meta-language. Another example is a compiler which 

translates a program in one object language (the input program) into a series of programs in various inter- 

mediate languages, finally resulting in a machine-language program. 

Left with only general-purpose languages, the programmer must re-implement many heterogeneous 

meta-programming features from scratch every time he writes a meta-program manipulating a new object 

language. Moreover, using the abstractions of the meta-language, the programmer has no way to formally 

check that important semantic invariants of the object-language are preserved. To address these problems 

we need an open meta-language for manipulating object-programs that allows for specifying and enforcing 

their key semantic properties. 

There are a number of goals that such a meta-language should achieve: 

1. It must be possible to easily define and manipulate many dzfferent object languages. 

2. It must be possible to express and statically enforce important object language properties such as 

typing and scoping. 

3. It should take into account efficiency, in the sense that the ability to express and manipulate the 

semantic properties of the object-language should not incur large runtime penalties. 

4. It must support good abstraction mechanisms, found in most general purpose-programming lan- 

guages, for writing software. Such abstraction mechanisms include, but are not limited to recursive 

definitions, pattern matching, inputloutput, and so on. 

5. It must preserve phase distinction between static type-checking and dynamic (runtime) computation. 

Points (1) and (2) are a simple consequence of the fact that we want an open meta-language for het- 

erogeneous meta-programming. The meta-language designer has no knowledge of the object-language 

particulars, but must instead equip the programmer with abstractions and techniques for object-language 

representation. 

They should be good techniques and abstractions, or at least better than what's currently offered in 

general-purpose programming languages: first, the meta-language should be equipped with a type system 



that guarantees important semantic properties of object-languages statically, where they can be automat- 

ically checked and enforced by the meta-language implementation; second, common techniques and pro- 

gramming idioms should be presented to show how the language features of an open meta-language can best 

be utilized. For example, there should be a clear process of implementing efficient and reliable interpreters 

for object languages. 

The requirement (3) has to do with a general scheme we have for creating implementation of object 

languages: we shall use staging to make meta-programs such as interpreters highly efficient, applying and 

extending the technique of staged interpreters [115]. 

The requirements (4) and (5) have to do with wanting to design a practical programming language - 

effects (e.g., UO, imperative features, and so on) must be reconciled with the need to effectively statically 

type-check meta-programs. 

What do we propose to satisfy these requirements? We tried several approaches: 

1. We can look for some existing meta-languages that were designed to address other problems and 

try to use them to solve ours. In fact, several languages used in the logical framework and theorem 

proving communities (e.g., LF, Coq) seem like good candidates. They allow us to specify type safe 

heterogeneous meta-programs and to encode semantic properties of object languages. However, in 

practical terms they leave much to be desired: none of them seem as good candidate for a practical 

programming language. 

2. Lacking an existing meta-language, we can design and implement our own. We shall argue that this 

is a plausible approach. We describe MetaD, a meta-language we designed to support open hetero- 

geneous meta-programming. We demonstrate the plausibility of MetaD by using it to implement an 

interesting example of heterogeneous meta-programming. We also present some theoretical results 

that establish the type safety of a calculus with the same features as MetaD. 

The drawback of this approach is that MetaD is a rather large language with number of advanced 

programming language features. Adopting MetaD requires many programmers to confront a rather 

steep learning curve. Implementing, maintaining and promoting such a new language is resource- 

intensive. 

3. We can try combining the approaches (1) and (2). Rather than completely designing a new meta- 

language from scratch, we can experiment with adding new features to an existing programming . . 
language to make it more effective for heterogeneous meta-programming. Of course this approach 

can be as fraught with complications as the previous approach if we are not careful. 

Fortunately, we read about a new technique for encoding equality proofs in Haskell [141,4]. This 



allowed us to experiment using a set of "tricks" for simulating dependent types in Haskell [75]. We 

applied these techniques to the problem of representing object-languages with semantic properties 

and found them highly expressive and very useful. This experimentation was very valuable because 

it allowed us to test our ideas without getting involved in making any changes to Haskell to start 

with. We learned much in this process. However, our experience pointed out some practical weak- 

nesses with this approach: constructing Haskell programs that preserve semantic properties of object- 

language programs is awkward and tedious when using explicit equality proofs since it requires the 

programmer to explicitly manipulate them at a very low level of abstraction. 

4. Experimenting with equality types in Haskell provided motivation for the next step, the design of 

the Omegalanguage. We were able to add small number of features to Haskell: built-in support 

for equality types, and inductive kinds. Omega-style equality types allowed us to retain (and even 

improve upon) the expressiveness of the Haskell-based approach we developed earlier, while making 

many of the tedious and routine tasks of manipulating equality proofs completely automatic. 

In the following sections, we discuss each of these approaches in more detail. We begin by explain- 

ing our choice to reject the first approach (Section 1.6.1), and concentrate on the latter two approaches 

(Sections 1.6.2 and 1.6.3). 

1.6.1 Heterogeneous Meta-Programming in Logical Frameworks 

Casting about for good candidates for an open heterogeneous meta-language it would not do to overlook a 

group of formal languages we shall somewhat loosely call logical frameworks [53]. Such meta-languages 

include various forms of dependently typed calculi 151, and systems such as Twelf [107], and Coq [6]. 

Implementing programming languages in these systems is based on a powerful idea: use highly expressive 

types systems with dependent types to represent semantic properties of the object language. 

The most important technique is to represent typing judgments of the object language as a form of struc- 

tured data so that only well-typed object programs can be constructed. As we shall see later, this is precisely 

the technique we shall advocate in the rest of this dissertation. However, from the pragmatic point of view 

of meta-programming these systems have a number of drawbacks. 

1 .  They are not designed as real programming languages. Logical framework-based systems such as 

Twelf and Coq are mostly targeted at a theorem proving audience. The languages themselves usually 

have some flavor of dependent typing, and use the Curry-Howard isomorphism to encode logical 

properties of programs. However, some of these systems (e.g., Alfa [52]) provide only the most 

rudimentary support for execution of user constructed programs. 



Perhaps the most attractive of these languages for open meta-programming is Coq. Although it is 

a proof checkedtheorem prover based on type theory, it is designed to support extraction of pro- 

grams [103]. Extraction allows the user to automatically synthesize a program in Scheme, Haskell 

or Objective Cam1 from Coq definitions and theorems. As we demonstrate in Appendix A, this 

scheme, however, has certain draw-backs of its own: the extracted programs are often type-incorrect 

(as viewed from the point of view of the extracted-to language). Moreover, the programmer has 

no direct control over the extraction process and must rely on the implementation of extraction to 

guarantee the correctness and static safety of generated programs. 

More importantly, Coq places considerable restrictions on the programs the user can write: all pro- 

grams must be guaranteed to terminate: and there is no support for standard programming language 

features such as VO or other effects. 

Being a consistent proof theory, Coq trades its effectiveness as a programming language to maintain 

its logical consistency by omitting any programming language features that do not have a pure type- 

theoretic (logical) meaning. In designing a language for heterogeneous meta-programming, we hope 

to more evenly balance the requirements of expressiveness with more practical software-engineering 

concerns. 

2.  They are dcficult to learn and use by meta-programmers. In using these systems the programmer 

must learn a great deal of type theory and logic. This may be inevitable, but perhaps we can find a 

way to express the necessary type-theoretic and logical concepts in a notation that would be more 

understandable to a programmer. 

3 .  ney do not address pragmatic concerns such as eficiency. Efficiency of programming language 

implementations is an important concern. When semantic properties of object languages are encoded 

in a meta-language, this encoding may require additional information (such as proofs of these prop- 

erties) to be constructed and manipulated by the meta-program even when all these properties are 

static. This often makes meta-programs unnecessarily complex and inefficient. 

1.6.2 A Language with Staging and Dependent Qpes - MetaD 

The approach we propose in the first part of the dissertation (Chapter 2) relies on a meta-language with the 

following features: 

1. Dependent types, 

4 ~ h i s  is quite limiting in deriving implementations of object-languages that have recursion or other control features that introduce 
non-termination. 



2. Meta-ML-style staging, and 

3. Representation (singleton) types. 

We will describe how these features of the meta-language are utilized in heterogeneous meta-programming 

and how they fit together by presenting a detailed example of meta-programs that manipulate a typed object 

language. We also prove the type safety of a formalized core (meta-)language that has the features discussed 

above. 

Dependent types. The meta-language we describe in Chapter 2 supports a generalization of algebraic 

data-types called dependent inductive type families 1351. 

The semantic properties of object-language syntax, such as object-language typing, are expressed by 

encoding the typing judgments of the object language as elements of dependent type families. The meta- 

programs we write manipulate these judgments as well as the syntax of object-languageprograms. Thus, we 

assure that whatever manipulations of object programs are performed by the meta-program, only well-typed 

object programs can be constructed or analyzed. 

Meta-ML-style staging. MetaML-style generative meta-programming (also called staging) can be very 

useful in an open heterogeneous meta-language. To illustrate why this should be so, consider implementing 

an interpreter for some object language L. The programmer first defines a data-type representing the set of 

expressions of L. Usually, an interpreter maps values from this set of L programs into some set of values 

V that denote the meanings of L programs. 

A standard programming technique relying on MetaML-style staging [I151 can be used to improve the 

interpreter for L in the following ways: 

1. Staging can be used to remove the interpretive overhead [67, 1151 as a way of generating a more 

efficient interpreter. First, MetaML meta-programming facilities are be used to divide the interpreter 

into two stages: the static stage, where the L expressions are analyzed by the interpreter, and the 

dynamic stage where computation of the interpreted program's value takes place. 

The staged interpreter maps the set of L expressions into a residual meta-language program of 

type (code V )  . When the staged interpreter is evaluated on some input L-expression, it com- 

putes/constructs a residual program is the result of (a) unfolding the interpreter - i.e., removing the 

case analysis over object programs; (b) removing environment look-ups. Therefore, executing the 

residual program generated by the staged interpreter for some particular L-expression is significantly 

more efficient than executing the original, non-staged, interpreter no the same L-expression [48,67]. 



2. Moreover, if the object language is strongly typed, the user can define a set of values that represent 

only well-typed expressions of L. In this case, an interaction between the highly expressive depen- 

dent type system and staging can result in an even more efficient staged interpreter by removing the 

tagging overhead [loo] that is often present in interpreters written in typed functional programming 

languages. (We will address this problem in considerable detail in Chapter 2.) 

As we will see, tagging overhead is caused by the type of the use universal value domain V - by 

replacing the universal value domain V with a dependent type can make tagging unnecessary. 

Representation (singleton) types. Finally, we will try to address the issues that arise when combining 

dependent types and effects such as UO or non-termination in programming languages. This will require 

reformulation of the dependently typed meta-language to use singleton types 158, 1141 - a restricted form 

of dependent typing. 

1.6.3 Haskell as a Heterogeneous Meta-programming Language 

The second part of the thesis develops another approach to heterogeneous meta-programming. This ap- 

proach is primarily motivated by pragmatic considerations. In the first part of the dissertation, we show 

that introducing a new meta-language with a considerable number of novel features can be used to pro- 

duce meta-programs that correctly and efficiently manipulate type-correct object-language programs. The 

second part of the thesis explores the question of whether it is possible that the same (or similar) kind of 

benefits could be derived in the setting of a functional language like Haskell. 

The answer to this question is a qualified "yes." We shall explore how some semantic properties of 

object-languages can be encoded in the type system of Haskell with commonly available extensions such 

as existential types and higher-rank polymorphism. 

Our approach depends on a technique of encoding equality between types to "fake" dependent and sin- 

gleton types in Haskell. The only language feature we propose adding to these fairly common extensions 

of Haskell is staging which is essential, we shall argue, for efficient implementations. We shall re-develop 

the interpreter examples in this new paradigm and compare the two approaches. The comparisons are use- 

ful. The techniques are effective, but using them can prove tedious, since they force the programmer to 

explicitly manage equality proofs in great detail. 



1.6.4 Extending Haskell - Omega 

We shall adopt an extension to Haskell's type system that makes these techniques significantly easier to 

use by automating most of the simple, but tedious, equality proof management. We call the resulting meta- 

language Omega. 

We shall also present three further examples of heterogeneous meta-programming. First, we shall define 

a couple of type-preserving source-to-source transformations on object languages. We shall also extend the 

range of object-language features presented in Chapters 4 and 5. The goal of this exposition is to provide 

a kind of meta-programming practicum that can be a source of examples and inspiration to heterogeneous 

meta-programmers. 

1.7 Outline of the Dissertation 

The main method of supporting our thesis is demonstration. For meta-programming, we shall concentrate 

on an interesting class of examples: implementing (staged) interpreters for object-languages. Implementing 

these interpreters provides the motivation for introduction of the language features and techniques that we 

design for heterogeneous meta-programming. We demonstrate the open nature of our meta-language by 

defining and manipulating several different object languages. An important part of the thesis is a tutorial- 

like presentation that demonstrates how to handle many possible object-language features. We intend this 

to show how more than just toy object-language features can be incorporated into our framework. 

Aside from this introduction chapter, this dissertation is divided into four parts. 

Part I: Dependent Types for Open Heterogeneous Meta-programming. In the first part of the disser- 

tation, we define a new meta-language for heterogeneous meta-programming called MetaD. MetaD 

is a functional language with staging and dependent types. As an example, define a small functional 

object language, and implement an interpreter for it, demonstrating along the way the benefits de- 

rived from the new language features built into MetaD. Next, (Chapter 3) we sketch out a proof of 

type safety of a simplified core calculus with the same features as MetaD. This proof combines stan- 

dard syntactic type safety proof techniques [I431 with syntactic techniques developed for multi-stage 

languages [I 271. 

Part II: Open Heterogeneous Meta-programming in Haskell. Rather than implement a meta-language 

with novel features, we propose a technique for encoding semantic properties of object languages in 

Haskell. 



The key technique that enables heterogeneous meta-programming in Haskell is to replace depen- 

dently typed inductive families of MetaD with carefully designed type constructors that encode typ- 

ing judgments of the object language. We will show how to do this in considerable detail (Chapter 4 

describes the general techniques), and implement object-language interpreter similar to the the one 

used as the main example in Part I (Chapter 5). 

Part 111: Omega and Further Applications. First, in Chapter 6, we address some of the awkwardness 

of the Haskell-based techniques introduced in Part 11. We do this by proposing a couple of exten- 

sions to the type system of Haskell that greatly simplify the writing of typing judgments of the object 

language. The new language extensions (bundled up in a Haskell-based programming language we 

call Omega) are presented through several examples. Most interesting of these examples is an imple- 

mentation of well-typed substitution over simply typed A-terms, an interesting demonstration of the 

power of Omega support writing object-language type-preserving syntax-to-syntax transformations. 

Next, we proceed to define and implement meta-programs that manipulate two rather different typed 

object languages whose type systems are based on modal logic (Chapter 7) and linear-time temporal 

logic (Chapter 8). 

Part N: Conclusion. First, we survey the relevant related work (Chapter 9). Finally, we summarize 

our findings, and discuss relevant topic for future work (Chapter 10). 



Part I 

Dependent Types for Open 

Heterogeneous Meta-programming 



Chapter 2 

Meta-programming in a Dependently Typed 

Framework 

2.1 Introduction 

In this chapter1 we begin to explore the design space of heterogeneous meta-programming systems, and to 

show the advantages of heterogeneous meta-programming over existing approaches to language implemen- 

tation. 

We will begin our exploration by examining the problem of defining tagless interpreters for typed object- 

and meta- languages. This problem in general is caused by limitations of the type systems of traditional 

meta-languages. 

Type systems of programming languages, especially strongly, statically typed functional languages such 

as Haskell, are syntactic formal system designed to guarantee the invariant that certain runtime behaviours 

of programs (runtime type errors such as applying a non-function value) never occur in programs accepted 

as valid by the type system. In most programming language implementations, the checing of the type 

validity of programs is performed statically, in a phase prior to execution. In Haskell and ML, to make the 

type system tractable and amenable to type inference, the type system is designed so that certain programs, 

even though they do not violate the runtime typing invariants, are nevertheless rejected by the type system. 

For example, consider the following function, written in an informal, Haskell-like notation: 

I -- f : : Int 4 Int -+ ? ?  

2 f O x = x  

3 f n x = \y+(f (n-1) (x+y)) 

The function f takes two integer arguments, n and x and produces an n-ary function that sums those 
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arguments up. Thus, for example ( f 2 0 ) results in the function \x + \y -+ x+y+ 0. 

While the function f never causes runtime errors, functional languages such as Haskell or ML reject it 

because they cannot give it a type: the result type in line 2 is an integer, while the result of the function in 

the line 3 is a function type that takes an integer argument. In fact, f has a whole family of function types 

whose codomain type varies in a regular, predictable way with the value of the function's first argument. 

Type systems of functional languages such as Haskell do not allow types to depend on values, and reject 

such functions despite the fact that they can be shown, by meta-theoretical means, never to violate typing 

discipline at runtime. 

In operational terms, what happens when the Haskell type checker tries to infer a type for f ?  First, it 

tries to infer the result type of the bodies of both branches of the definition of f .  Then, it attemplts to prove 

that they are the same type by trying to unify them. However, since it can find no solution to the equation 

I n t  = In t ->? ,  it rejects f .  

It is worth noting, however, that the function f can be given a type in a richer, dependently typed system. 

Instead returning a result of one particular type, f can be seen as returning a result type which depends on 

the value of the argument n: 

f 1 : : I n t  -+ I n t  -+ I n t  --+ I n t  

. . . . . . 
n tames - 

f n  : :  I n t - + I n t - - + I n t - +  ... + I n t  

Thus, if we could write a function g  from integers to types, we could easily give a type for f :  

g  0 = I n t  

g  n  = In t -+  ( g  ( n - 1 ) )  

Unfortunately, we cannot write such a function g  in Haskell. If one wanted to implement similar func- 

tionality, we would be forced to resort to a more indirect technique. 

Recall that the reason why the type-checking in Haskell of the function f fails is that for some values of 

its argument it must return an integer, and for others a function. But Haskell's type system assumes that, no 

matter what the value of an argument is, the function always returns a result of the same type. A solution 

to this problem is to use Haskell's data-type facility (combining sum and recursive types in this case) to 



produce a type of values that can be either an integer or an n-ary function: 

data Univ = z Int 
I S (Int -+Univ) 

Now, we can define a function that encodes the result of f, using the data-type Univ: f: 

The type Univ is used to unify the two possible kinds of values that f computes: integers and functions 

over integers. The constructors Z and S, which are there to allow the Haskell type-checker to veryfy that the 

two cases in the definition of f return a value of the same type, also result in runtime behavior of tagging 

the integer or function values with those constructors. 

Now if we apply the function f to some integer arguments, e.g., f 2 0, it yields a function value 

equivalent to: 

We can even define an application operation, which takes the arity of the Univ value, the Univ value 

itself, a list of integer arguments to be applied to it (empty if none), and returns the result of the application. 

The list here serves as another "universal data-type,'' used to store a (statically unknown) number of argu- 

ments to the function encoded by Univ. Note that if there is a mismatch between the arity, the number of 

arguments in the list, and the structure of the Univ, a runtime error is raised: 

applyuniv : : Int --+Univ-+ [Int] +Univ 

applyuniv 0 v [ I  = v 

applyuniv n (S f) (arg:args) = applyuniv (n-1) (f arg) args 

applyuniv - - - = error "Error in application of Univ" 

And here is the main difference between the Univ-based solution and true dependent types. Whereas the 

function f can be statically type-checked with a dependent type system, the Univ-based Haskell solution 

defers a part of this static type-checking to runtime in form of checking for the tags S and Z. In other 

words, whereas we want to statically enforce the invariant that f is never applied to the wrong numberltype 

of arguments, Haskell's type system as we have used it here, can only enforce the weaker invariant that f 

is either never applied to the wrong numberltype of arguments or if it is, an error value results at runtime. 

In this chapter, we shall concentrate on a very similar problem, that of super$uous tagging that often 

arises in staging and partial evaluation of object language interpreters. 



Figure 2.1 Interpreters and Tagging 

Object Language 

data Exp = I Int I Var String I Abs String Exp I App Exp Exp 
data Val = VI Int ( W Val->Val 

(define mkI (lambda (i) ' (I, i))) 
(define mkVar (lambda (x) '(Var, x))) 
(define mkAbs (lambda (n e) ' (Abs, n, e))) 
(define mknpp (lambda (el e2) ' (App, el, e2))) 

(define eval (lambda (t env 
(match-case t 
((I ?i) ' (VI, i)) 
(War ?n) (lookUp env n)) 
((Abs ?n ?to) 
' (VF , (lambda (v) 

(to eval (extend-env env n v))))) 
((App ?tO ?tl) 
(match-case (eval to env) 
((VF ?f) (f (eval tl env))) 
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(eval to 
(extend-erlv r 

( (App ?tO ?-' ' 
((eval to 
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env) (eval tl env))) 

eval e env = 
case e of 
I i +VI i 

I Var s -+env s 
1 Abs (s,e) -+ 

VF (\v-eval e (ext env s v)) 
I A p p f e  -+ 

case (eval f env) of 
VF vf -vf (eval e env) 

/ VI i -+error "Runtime type error" 

eval e env = 
case e of 
I i -+VI i 

I Var s -env s 
1 Abs (s,e) + 

W (\v-+eval e (ext env s v)) 
I m f e  -+ 

case (eval f env) of 
W vf +vf (eval e env) 

/ VI i -+error "Impossible case" 

2.1.1 Superfluous Tagging 

Superjluous tagging is a subtle but costly problem that can arise in interpreter implementations when both 

the object- and the meta-language are statically typed. In particular, in most typed meta-languages, there 

is generally a need to introduce a "universal datatype" (also called "universal domain") to represent object- 

language values uniformly (see [I261 for a detailed discussion). Having such a universal datatype means 

that we have to perform tagging and untagging operations at the time of evaluation to produce and manip- 

ulate object-language values represented by the universal domain. 

When the object-language is untyped (or dynamically typed), as it would be when writing a Haskell 

interpreter for Scheme, the checks are really necessary. 

When both the the object-language and the meta-language are also statically typed, as it would be when 

writing an ML interpreter in Haskell, the extra tags are not really needed. They are only necessary to stati- 

cally type check the interpreter as a meta-languageprogram. When this interpreter is staged, it inherits [81] 

this weakness, and generates programs that contain superJluous tagging and untagging operations. 



Figure 2.1 provides a brief illustration of this phenomenon. Consider an evaluator for X-calculus terms, 

which are defined at the top of the figure: the first two lines represent Haskell data-types encoding the set 

of expressions and values of the X-calculus; the bottom four lines are Scheme functions illustrating the 

structured representations of X-calculus terms. The bottom half of Figure 2.1 is a table divided into four 

quadrants, along two dimensions: the horizontal dimension shows whether the object language is statically 

typed, while the vertical dimension shows whether the meta-language is statically typed. Each quadrant 

shows a sample implementation of an evaluator: the top row in Haskell (a statically typed meta-language) 

and the bottom row in Scheme (a dynamically typed meta-language). 

In Haskell we use a universal data-type Val to represent all the possible values that the evaluator can 

compute. In the Scheme implementation, we use a particular form of s-expression: integer values are tagged 

in a list where the head is the atom 'VI and whose second element is the integer itself; the function values 

are tagged in a list whose head is the atom 'VF whose second element is the function value itself. 

1. Untyped Meta-language (Scheme). 

(a) Untyped Object Language. For a dynamically typed object language we must check at runtime 

whether the value we are applying is indeed a function. If it is not, we must define some 

semantics of runtime type errors (function raise-error in Figure 2.1). We note in passing 

that it is possible to omit this runtime check, and rely on Scheme's dynamic typing system to 

catch the error if a value other than a function is applied2. However, it is more reasonable to 

assume that a language designer would want to define her own semantics of runtime type errors. 

(b) Typed Object Language. Here, since we can assume (or know by meta-theoretical proof) that the 

object language is statically typed there is no need to implement runtime typing. For a function 

application we simply evaluate the function expression and the argument expression and then 

apply the first resulting value to the second. 

2. Typed Meta-language (Haskell) 

(a) Untyped Object Language. Similar to the untyped object language implementation in Scheme, 

we must introduce tags on runtime values that allow us to check whether what we are applying 

is indeed a function. We do this with a case analysis on the type Val. If the value being applied 

is not a function, we report a runtime type error. 

(b) Typed Object Language. This is surprising: because the object language is strongly typed, we 

can assume that no type error will occur at runtime (thus, error " Impossible case"), 

2 ~ n  that case the interpreter would look exactly like lb. 



and yet still the meta-language (Haskell in this case) forces us to use tags anyway. These tags are 

a puzzling source of asymmetry - we would expect the Haskell implementation of a statically 

typed object-language to be a lot more like the one in Scheme. 

This asymmetry can be quite costly. Early estimates of the cost of tags suggested that they produce up to 

a 2.6 times slowdown in the SML/NJ system [13 11. More extensive studies in the MetaOCaml system show 

that slowdown due to tags can be as high as 10 times [16, 621. How can we remove the tagging overhead 

inherent in the use of universal value domains? 

In the rest of this section we describe the problem of superfluous tags in more detail, and discuss existing 

approaches to solving it. 

An Untyped Interpreter 

We begin by reviewing how one writes a simple interpreter in an untyped language. For notational parsi- 

mony, we will use Haskell syntax but disregard types. An interpreter for a small lambda language can be 

defined as follows: 

data  Exp = I I n t  I Var St r ing  1 Abs St r ing  Exp 1 Agp Exp Exp 

eval  e env = 

case e of 

I i -+ i 

I V a r  s --, env s 

I Abs s e -+ ( \v  -+ eval  e (ex t  env s v ) )  

( App f e -+ (eval  f env) (eval  e env) 

This provides a simple implementation of object programs represented by the datatype Exp.  The function 

eval evaluates e (an Exp)  in an environment env that binds the free variables in the term to values. 

This implementation suffers from a severe performance limitation. If we were able to inspect the result of 

applying eval, such as ( eval ( Abs "x" (var " x " ) ) env0 ) , we would find that it is equivalent 

to 

(\v + eval (Var "x" ) (ext envO "x" v) ) . 

This term will compute the correct result, but it contains an unevaluated recursive call to eval. This 

problem arises in both call-by-value and call-by-name languages, and is one of the main reasons for what 

is called the "layer of interpretive overhead" that degrades performance [67]. Fortunately, this problem can 

be eliminated using staging [126]. 



Staging the Untyped Interpreter 

Staging annotations partition the program into (temporally ordered) computational stages so that all com- 

putation at stage n is performed before any of the computations at stage n + 1. Brackets ( - ) surrounding 

an expression lift it to the next stage (building code). Escape -- drops its expression to a previous stage. 

The effect of escape is to splice pre-computed code values into code expressions that are constructed by 

surrounding brackets. Staging annotations change the evaluation order of programs, even evaluating under 

lambda abstraction. Therefore, they can be used to force the unfolding of the recursive calls to the eval 

function at code-generation time. Thus, by just adding staging annotations to the eval function, we can 

change its behavior to achieve the desired operational.semantics: 

eval' e env = 

case e of 

I i --+ (1) 

1 ~ a r  s -+ env s 

I Abs s e --+ (\v-+"(evalf e (ext env s (v)))) 

I ~ p p  f e --, ( "(eval' f env) "(eval' e env)) 

Now, applying eval ' to ( Abs " x " (Var It x l1 ) ) in some environment envO yields the result 

(\v 4 v). Now there are no leftover recursive calls to eval ' , since the abstraction case of eval ' uses es- 

cape to evaluate the body of the function "under the lambda:" (\v -+ " ( eval ' e ( ext env s (v) ) ) ). 

Multi-stage languages come with a run annotation run -that allows us to execute such a code fragment. 

A staged interpreter can therefore be viewed as user-directed way of reflecting a object program into a meta- 

program, which then can be handed over in a type safe way to the compiler of the meta-language. 

Staged Interpreters in a Meta-language with Hindley-Milner Polymorphism 

In programming languages, such as Haskell or ML, which use a Hindley-Milner type system, the above 

eval function (staged or unstaged) is not well-typed. Because both integers and functions can be returned 

as a result of the interpreter, each branch of the case statement may have a different type, and these types 

cannot be reconciled by simple first order unification. 

Within a Hindley-Milner system, we can circumvent this problem by using a "universal type." A universal 

type is a type that is rich enough to encode values of all the types that appear in the result of a function like 

eval. In the case above, this includes function as well as integer values. A typical definition of a universal 

type for this example might be: 

data V = VI Int ( VF V-+V. 

The interpreter can then be rewritten as a well-typed (Haskell) program: 



unF (VF f) = f 

unF (VI -) = error "Tag mismatch, expecting function" 

eval e env = 

case e of 

I i - + I i  

I Var x 4 env x 

I Abs x e -+ F (\v-+ eval e (ext envxv)) 

I App f e -+ (unF (eval f env)) (eval e env) 

Now, when we compute ( eva 1 ( Abs " x " (var " x" ) ) env0 ) we get back a value 

Just as we did for the untyped eval, we can stage this version of eval: 

eval e env = 

case e of 

1 i -+ (VI i) 

I Varx 4 envx 
I Abs x e 4 (VF (\v+ "(eval e (ext env x (v))))) 

I App f e -+ ((un~ "(eval f env)) "(eval e env)) 

Nowcomputing (eval (L("xW,V "x") ) env0) yields: ((VP (\v--+v) ) )  

Problem: Superfluous Tags 

Unfortunately, the result above still contains the tag W. While this may seem like minor issue in a small 

program like this one, the effect in a larger program will be a profusion of tagging and untagging operations. 

Such tags would indeed be necessary if the object-language was untyped. But if we know that the object- 

language is statically typed (for example, as a simply-typed lambda calculus) the tagging and untagging 

operations are really not needed. 

There are a number of approaches for dealing with this problem. Type specialization 1631 is a form 

of partial evaluation that specializes programs based not only on expressions, but also on types. Thus, 

a universal value domain in an interpreter may be specialized to arbitrary types in the residual versions, 

removing tags. Another recently proposed possibility is tag elimination [131, 130, 731, a transformation 

that was designed to remove the superfluous tags in a post-processing phase. Under this scheme, a language 

implementation is divided into three distinct stages (rather than the traditional two, static and dynamic). The 

extra stage, tag elimination, is distinctly different from the traditional partial evaluation (or specialization) 



stage. In essence, tag elimination allows us to type check the object program after it has been generated. 

If it checks, superfluous tags are simply erased from the interpretation. If not, a "semantically equivalent" 

interface is added around the interpretation. Tag elimination, however, does not statically guarantee that all 

tags will be erased. We must run the tag elimination at runtime (in a multi-stage language). None of the 

proposed approaches, however, guarantees (at the time of writing the staged interpreter) that the tags will 

be eliminated before runtime. 

We will present an alternative approach that does provide such a guarantee: in fact, the user never intro- 

duces the tags in the first place, because the type system of the meta-language is strong enough to avoid any 

need for them. 

2.2 Tagless Interpreters Using Dependent Types 

The solution to the tagging problem that we will present is based on the use of a dependently typed multi- 

stage language as the meta-language in which to implement object languages. 

A language has dependent types if its types can depend on values in the program. We have shown an 

informal example of this in Section 2.1. Crucial to this is the notion of type families - collections of related 

types indexed by a value. A typical dependent type is the dependent product, often written IIx : 71.72,  

where the type 7 2  may depend on the value of the bound variable x. For example, a dependent product 

(IIx : Int. if x == 0 then Int else 6001) is a type of a function that takes an Integer, and if that Integer is 

0, returns another integer; otherwise it returns a Boolean. 

We demonstrate this solution by means of an example: we build a compiler from an interpreter [I151 by 

staging, from beginning to end. The slogan we are guided by is "tag elimination by never introducing the 

tags in theJirst place! " 

We start by presenting a definition of a simple, strongly typed, object language, called Lo, giving its 

syntax and semantics. The remainder of this chapter describes an implementation of a tagless interpreter 

for Lo using dependent types and staging. 

Dependent types are used to express the invariant that only well-typed object-language programs can be 

constructed and manipulated by well-typed meta-programs. The interpreter for object-language programs 

is given family of types that vary with respect to the (object-language) type of the object-language program. 

For example, this allows it to return function values for object-languages with function types, integer values 

for object-programs with integer types, and so on. If the object-language type system is designed correctly 

to exclude object-language programs that "go wrong," then the meta-language type system forces the inter- 

preter to preserve this invariant without needing to check tags to ascertain at runtime whether the execution 



of the object-program has indeed "gone wrong." 

To illustrate viability of combining dependent types with staging, we have designed and implemented 

a prototype language we call MetaD. We use this language as a vehicle to investigate the issues that arise 

when implementing staged language implementations in a dependently typed setting: we thus re-develop 

the Lo implementation as a staged interpreter in MetaD. We also discuss the issues that arise in trying to 

develop a dependently typed programming language (as opposed to a type theory). 

For comparison, we give an implementation of a tagless interpreter for Lo in Coq [137] in Appendix A, 

where we shall critically examine our Coq implementation and consider its strengths and weaknesses com- 

pared to MetaD. 

In a subsequent chapter, we will present the technical contribution of formalizing a multi-stage language 

with such features, and proving its type safety. We do this by capitalizing on the recent work by Shao, Saha, 

Trifonov and Papaspyrou's on the TL system [114], which in turn builds on a number of recent works on 

typed intermediate languages [55,25, 145, 112,26, 1381. 

2.2.1 Object-Language Syntax and Semantics 

We begin by considering a definition of the syntax and semantics of LO. Lo is sufficiently simple to make 

our development and presentation manageable. It is, however, sufficient to demonstrate the main issues 

that arise when constructing a tagless interpreter with staging and dependent types. We begin by formally 

presenting the syntax and semantics of the object language. 

Figure 2.2 Syntax and static semantics of of Lo 

E X P r , r  I - e : r l  E X P r t e l : r - + r f  E X P r t e z : ~  

EXP r t n  : N ( ~ ~ ~ )  EXP r F Xt.e : T -+ TI 
(Lam) 

EXP r k  el  ez : rf 
(APP) 

V A R r F n : r  V A R r t n : r  
(Va) VAR r, : 7(V~-Base) Var- Weak) E X P r k V a r n : ~  ~ ~ R r , r ~ k ( n + l ) : r (  

Syntax. Figure 2.2 defines the syntax and type system of Lo. The language is a version of the simply 

typed A-calculus. Types include a base type of natural numbers (N), and function type former (-+). For 

simplicity of the development, we use de Bruijn indices for variables and binders, where natural number 

indices that identify a variable represent the number of intervening A-abstractions between the variable's 

use and binding site. 



Type system. The type system of Lo is presented also in Figure 2.2. It consists of two judgments: the 

well-typedness judgment defined inductively over the expression, e, (EXP I' k e : T), and the auxiliary 

variable judgment, (VAR I' t- n : T), which projects the appropriate type for a variable index from the 

type assignment I'. The splitting of the typing rules into two judgments is not essential, but will make 

our presentation a bit simpler when we define functions by induction on expressions and variable indices, 

respectively. 

Figure 2.3 Semantics of Lo 

'JI[Nl) = W  
 TI -+ 7-21 = 'J I [T~]~( '~~ 

Semantics. The semantics of the language LO is shown in Figure 2.3. This semantics consists of three 

parts: 

[ E X p r k e : ~ ]  : [m -+ or] 
[EXP r F n : N] p - - n 
[EXP r t Var n : T] p = ( [ V A R r t - n : r ] p  
[EXP r t X T . ~  : T - TI] p = x H ([EXP I?, T 1- e : 7/11 (p, x)) 
[EXP r 1- e l  e2 : T] p = [EXP r t el : T' -+ r]p([EXP r t e2 : ~ ' ] p )  

won - 1 
rr~gr, T] = ~ ~ [ r j  x 'JI[T] 

1. The semantics of types, which maps the (syntactic) types of Lo to their intended meaning, is given 

as the semantic function TI.] : T -+ * in Figure 2.3. The typing we give the semantic function Ti.], 

T -+ * is purely for reader's convenience. The base sets N, 1, as well as products and function spaces 

used are set-theoretical entities. For example, the meaning of the type N is the set of natural numbers, 

while the meaning of the arrow type 7 1  4 72 is the function space ' J J ~ [ [ T ~ ] ~ ~ [ ~ ~ ~ .  This function's 

role is to compute that type of the semantic function for expressions (similar to eval above), when 

given that expression's type. 

[VAR r t n : TI : urn - U T ~  

P A R r , r + O  : ~ ] p  = AZ(P) 
P A R  r, T' t ( n  + 1) : T ]  = P A R  r t Var n : r](nlp) 

2. The semantics of type assignments are defined as a semantic function 'JA[.] : G -+ *: each type 

assignment I' is mapped into a product of the sets denoting the individual types in the assignment. For 

example, the meaning of the type assignment I' = 0, Int, Int -+ Int, is the product set (1 x N) x (N --+ 

N). This function's role is to compute the type of the runtime environment of the semantic function, 

given the particular type assignment under which we type the object-language expressions whose 

meaning we are trying to compute. 

3. Finally, the semantics of programs is defined on typing judgments. Given a typing judgment [[EXP I' t 

e : TI, it maps the meaning of the type assignment I', 'JJ1[II'], to the meaning of the type of the object 

expression Turn. 



The definition of the semantic function [EXP . t . : -1 : (EXP r k e : T) -t TJI[[r] -+ 'Turn is 

given in Figure 2.3 . For its variable case, it uses an auxiliary function which projects (i.e., looks up) 

that variable's value from the runtime environment: [VAR k . : .J] : (VAR r t n : 7) -+ TJInr] -+ 

TlITll. 

This is a standard way of defining the semantics of typed languages [136, 51, 1081 (also known as 

categorical style), and the implementation in the next section will be a direct codification of this definition. 

2.3 A Brief Introduction to Meta-D 

In this section we shall enumerate here the main ingredients and features of Meta-D, a meta-language in 

which we shall then implement the tagless interpreter for Lo. The purpose of this section also is also to 

familiarize the reader with the syntax and type system of Meta-D, proceeding informally and by example. 

Dependent types. In designing Meta-D, we opt for a predicative style of dependent types with universes. 

The Coq sorts Set and Prop are unified into a single sort *I, which in turn is classified by an increasing 

order of sorts *2,  *3, . . .. All this is fairly standard [2, 1371. This flavor of dependent types, while it works 

very well in a type-theoretic theorem prover, may introduce some practical problems in a programming lan- 

guage implementation. We will explore how some of these problems may be solved while still maintaining 

the expressiveness of the type system. 

Basic staging operators. The type system of Meta-D includes a modal type constructor 0 (pronounced 

"code o f  '), as well as with the standard staging annotations (see Section 2.1.1 for examples of the notation). 

Typing rules of the code constructors are fairly standard [30, 29, 1261. The type system prevents phase 

errors, i.e., prevents uses of values defined at later stages during earlier stages. 

Inductive families. Inductive type families (e.g., [33, 221) can be thought of as dependent data types. 

While not strictly necessary (one can use Church encodings), they greatly improve the usability of the 

meta-language. 

The syntax for inductive families is largely borrowed from Coq, and has a very similar feel. Syntactically, 

each data-type defined must first be given its own type (special constants * 1,  * 2  are sorts, where *1 

classifies types, * 2 classifies kinds, and so on). Each constructor's type is written out fully, and is subject 

to standard positivity conditions [6] to ensure that the data-type defined is truly inductive. 

For example, to define the inductive family of natural numbers, instead of writing 



datatype Nat = z I s of Nat we write 

inductive Nat : *1 = Z : Nat 1 8 : Nat-+Nat. 

The inductive notation is more convenient when we are defining dependent data-types. Also, it allows 

the user to define not only inductive types, but also inductive kinds (by simply changing, say, *1 to *2 in 

the definition). As an example of dependent inductive families, consider the following definition: 

inductive L i s t  ( a : * l )  : Nat+*l = 

Nil : List a Z 

I cons : a+ (n:~at) -+ ( ~ i s t  a n) 4 (List a (S n) 

The inductive family (List a n) is a family of lists of elements of type a with length n. After a 

family's name, List, the user lists zero or more parameters. A parameter to List, in this case, is a type a 

: * 1. The parameters are arguments to the type family which do not change in any of the constructors. 

Next, after the colon, we give the typing of the type family. In the case of List a, it is a function from 

natural numbers, representing the list's length, to the sort of types, *I. Note that Nat here is the type of 

an index of the type family. The difference between parameters and indexes is that while parameters may 

not be changed anywhere in the types of the constructors, different constructors of the family may vary the 

values of the indexes. For example, the constructor Cons takes as its argument the value a, and a list of 

length n. The list it constructs, however, has a different index value, namely S n indicating that it is one 

element longer. 
To give an example, the list ex1 below is a list of integers of length three: 

val ex1 : :  L i s t  I n t  ( S  (S ( S  Z ) ) )  = 

Cons (102 (S (8 2)) (Cons 101 (S Z) (Cons 100 Z Nil))) 

Values of inductive families can be deconstructed using the case construct. The case is designed to be 

as similar as possible to case expressions in functional programming languages. For example, the following 

is a map function that converts a list of as to a list of bs: 

fun mapList (a:*l) (b:*l) (f : ( a 4 b ) )  (n:Nat) (1 : (List a n)) 
: (List b n) - - 

U l o f  
Nil 4 Nil 

I (Cons x m xs)-+(Cons (f x) m (mapList a b f m xs)) 

Dependent products (functions). Functions in Meta-D are defined using an ML-style syntax: 

fun funName (argl : ~ y p 1 )  . . . (arg, : ~ y p ~ )  : ~yp, = . . . . The function name follows the fun 

keyword, and is followed by declarations of the function's arguments, and finally the type of the func- 

tion's codomain. Function types, (x : tl ) 4 t2, (unlike in Coq, they are always written with the arrow 



-+) can be dependent, i.e., the codomain type t2 may mention the variable x. Also, the A-notation is 

modeled on ML: fn (x : t ) -+ e is an anonymous function that takes an argument of type t. 

To demonstrate dependent function types, we revisit the example from section 2.1. This involves the 

function f, which takes an argument n, some initial integer value x, and produces an n-ary function that 

sums up its arguments. The argument x is the integer value for the "nullary" case where n is zero. First, we 

define the function g which computes the type we can give to f: 

fun g (n:Nat) : *1 = 

w n o f  

Z + Nat 

I S n'+ (Nat-+(g n')) 

n times - 
The function g takes a natural number n and constructs a type N a t  + . . . + N a t .  

Now we are define to construct some inhabitants of this type. In particular, the function f from Sec- 

tion 2.1 Are there any inhabitants of this type, for a given n? Consider: 

fun f (n:Nat) (x:Nat) : (g n) = 

w n o f  

z-+ x 
I S n't (fn (y:Nat) -, (f n' (x+y))) 

As we have seen, inductive functions can be defined using recursion. It is assumed that the type-checker 

can prove that recursively defined functions terminate3. 

Another interesting function might be makeLi st, which, given a natural number n, produces a list of 

zeros of the length n: 

fun makeList (n:Nat) : (List Nat n) = 

case n of 
Z-+ Nil 

S nf-, (Cons Z n' (makeList n')) 

Dependent sums. Dependent sum types are also available. Dependent sum types are written as [ x : t I ( f 

X) . An element of such a sum is a pair of values: the first is a element of type t; the second element is of 

type f t, i.e., its type may depend on the value of the first element. The syntax for constructing such a pair 

3 ~ n  the actual implementation the user can instruct the type-checker to ignore termination checking, in which case type-checking 
may not terminate, as in Cayenne. This makes the type system, viewed as logic, unsound, but may be acceptable in programming 
practice [2] 



is written [x=el ] e2. Informally, the typing rule for sum introduction may look something like this: 

F k el : 7 1  r, x : T I  t e2 : (T2[2  := e l ] )  

I' k [x  = el]e2 : [x : r1]r2 (Sum) 

Dependent sums do not have a special elimination construct. Instead, the user can deconstruct them using 

case expressions and pattern matching. 

2.4 A Tagless Interpreter 

After that short introduction to the syntax of Meta-D, we can now begin to implement a tagless interpreter 

for Lo. First, we define data types that represent the syntax of Lo: the basic types, typing environments and 

expressions. The following non-dependent type families correspond to the syntactic categories of Lo: 

inductive Typ : *1 = UatT : Typ 

I ArrowT : Typ-+Typ+Typ 

inductive Env : *1 = W t y E  : Env 

I E x t E  : Env+ Typ - Env 
inductive Exp : *1 = EI : Nat-Exp ( *  n * )  

I EV : Nat - ~ x p  ( *  Varn * )  

I EL : Typ--tExp-+Exp ( *  X T . ~  * )  

I EA : ~ x p  -+ ~ x p  -+ Exp ( *  el ez * )  

Figure 2.4 The typing judgment J (without representation types) 

Expressions 

inductive J : (Env, Exp, Typ) +*1 = 
JN : (el:Env) + (n :Nat) - J(e1,EI n,NatT) 

I JV : (el:Env) -+ (n:Nat) - (t:Typ) - 
JV(el,n,t) -J(el,EV n,t) 

I JL : (e1:Env) (tl:Typ) - (t2:Ty-p) -+ (s2:Exp) - 
J(ExtE el tl,s2,ta)-+J(el,EL tl s2, ArrowT tl t2) 

I JA : (e:Env) + (sl:Exp) (s2:Exp) - (tl:Typ) -+ (t2 : Typ)- 
(J(e,sl,ArrowT ti t2)) + (J(e,sZ,tl))+J(e, EA sl s2, t2) 

Variables 

inductive JV : (Env, Nat, Typ) -+*l = 
) VZ : (e1:Env) + (t:Typ) -JV(ExtE el t, Z, t) 
1 VW : (e1:Env) - (t1:Typ) -+ (t2:Typ) 4 (i:Nat) --+ (JV(el,i,tl)) --I 

(JV(ExtE el t2, S i, tl)) 

Next, we implement the type judgment of Lo. To define the judgments, we need a dependent family 

indexed by three parameters: a type assignment Env, an expression Exp,  and a type Typ. The relevant 

definitions are shown in Figure 2.4. Each constructor in this datatype corresponds to one of the rules in the 

type system for our object language. 



We shall examine the various constructors of the inductive family J from Figure 2.4 in turn. The basic 

idea is to use the "judgments as types" principle [53]. We can view a typing rule as a combinator building 

larger proofs judgments out of smaller ones. Members of the type J (e, s,  t) are proofs of logical 

assertions that e k s : t .  These proofs are built-up using the constructors of the inductive type J. These 

combinators take proofs of hypothesis judgments (and the values of their free variables) to construct the 

proof conclusion judgment. 

1. The rule for natural number constants (JN). 

Given a type assignment e l ,  and a natural number n, we can produce the proof of the typing judgment 

J(e1, E I  n ,  N a t T ) , i . e . , e ~ k n : N .  

2. The rule for variables. Variables are implemented using the auxiliary judgment JV, also an indexed 

type family, whose indices are the type assignment, a number representing the de Bruijn index of a 

variable, and the type of the given variable. 

The variable judgment proofs have two cases. 

inductive JV : (Env, Nat, Typ) +*l = 

. . .  . . .  

(a) Base case, where the variable index is zero. 

I VZ : (e1:Env) 4 (t:Typ) -+JV(ExtE el t, Z, t) 

(b) Inductive case (also called weakening). Repeated applications of the weakening rule perform 

the lookup from the environment. 

3. The rule for lambda abstraction (Lam). 

JL : (e:Env) -+ (tl:Typ) -+ (t2:Typ) --+ (s:Exp) 4 

J(ExtE e tl, s, t2)4J(e, EL tl s, ArrowT ti t2). 

In this case, the first argument to the constructor is the type assignment e in which the X abstraction is 

typed. Next, it takes two types t l  and t2,  for the domain and the co-domain of the function expression 

respectively. Next, it takes an expression s which is the body of the lambda abstraction. Finally, it 

takes the proof of the antecedent judgment that (e, t l  k s : t2) ,  and constructs proof of the judgment 

( e  I- Xt.s : t l  4 t2) .  The correspondence between the constructor JL and the Lam rule from 

Figure 2.2 should be apparent. 



Figure 2.5 Dependently typed tagless interpreter 

fun project (e:Env) (rho:(envEval e)) 
(n : Nat) (t:Typ) (j : JV(e,n,t)) : (typEval t) = 

fun eval (e : Env) (rho: envEval(e)) 
(S : Exp) (t : Typ) (j : J(e,s,t)) : (typEval t) = 

a j o f  
JN e n -+n 

I JV e n  t jv dproject e rhon t jv 
I J L e  tl t2 s2 j'-+ 

(fn v: (typEval tl) --+ (eval (ExtE e tl) (rho,v) s2 t2 j')) 
I JA e 51 52 tl t2 j1j2+ 

(eval e rho sl (ArrowT tl t2) jl) (eval e rho s2 tl j2) 

4. The rule for application (JA) implements the App rule from Figure 2.2: given two premises e k- sl : 

t -+ t2 and e t- s2 : t l, the constructor builds the conclusion e k sl s2 : t2 :  

I JA : (e:Env) -4 (51 :EXPI -+ (s2   EX^) + (tl :T*) -, (t2 : ~ y p  ) -+ 

J(e,sl,ArrowT tl t2) + J(e,s2 ,tl) -+ 

J(e, EA 51 52, t2) 

In the definition of JS we see differences between the traditional datatype definitions and inductive 

datatypes: each of the constructors can have dependently typed arguments and a co-domain type J whose 

index arguments are different. Data-types in functional languages, on the other hand, force the constructors 

to return always the same type of the result. The variability of inductive family indexes will allow us to 

define functions by cases in which each case produces or consumes a value of the same inductive type, but 

where each case differs in the values of the indexes. 

The definition of J allows us to use this variability in the indices to enforce the following invariant: 

given a type assignment e, and an object-language expression s ,  and an object-language type t, if we can 

construct an inhabitant (proof) of the judgment J ( e , s , t ) , then e t- s : t (in the sense of the Figure 2.2). 

No functions that manipulate and produce proofs of typing judgments J can break this invariant and remain 

well-typed in MetaD. 

2.4.1 Interpreters of Types and Judgments 

Having defined Lo typing judgments as Meta-D inductive families, we are ready to implement the Lo 

interpreter in form of the function eval from Figure 2.5. One thing to note, however, is that the type of the 

range of the function eval must depend on the Lo type of the judgment being interpreted: for an integer 

Lo program, the result will be an integer, for a function Lo program, it will be a function and so on. 



This dependency is captured in the interpretation function typEval. Recall that syntax of Lo are repre- 

sented by inductive family ~ y p .  The function typEval gives the meanings of these object language types 

by mapping the inductive family Typ into meta-language types *I: 

fun typEval (t : Typ) : *1 = 

W t o f  

NatT -+ Nat 

I Arrm tl tl+ (typEval tl) -+ (typEval t2) 

Predictably, typEval maps Lo type NatT to the meta-language type of natural numbers Nat. 

Similarly, given a Lo arrow type ArrowT tl t2, typEval computes a Meta-D arrow type 

( typEval tl) -+ ( typEval t2 ) as its meaning (line 4, above). 

Similarly, type assignments of Lo must be given a meaning as well, since the type judgments of Lo 

programs depend on the structure of the type assignments which give types for the free variables in the Lo 

expressions. Recall that Lo type assignments are represented by the inductive family Env: its structure is 

that of a list of Lo types. 

The function envEval takes a representation of the Lo type assignment and computes the Meta-D type 

of the runtime environments corresponding to that type assignment: 

fun envEval (e : Env) : *1 = - 
case e of 

WlptyE +unit 

( E x t E  e2 t+ (envEval e2, typEval t) 

The runtime environment corresponding to the empty type assignment is simply the unit type. For a type 

assignment e2 extended by the type t, ~ x t E  e2 t, the type of the runtime environment is the product of 

the meaning of e2 and the meaning of t: (envEval e2, typEval t ) . 

The function eval is defined by case analysis on the proofs of the typing judgments (Figure 2.5). There 

are four such cases, each of which we shall examine in some detail: 

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t)) : (typEval t) = 

1 .  Natural number literals. The first case is the judgment for Lo literal expressions. If the proof of 

the judgment j of type J (e, s, t ) is of the form JN e n, then by the definition of J, we know 

that the expression s is of the form EI n, and that the Lo type t is equal to NatT. The codomain 

type of eval is typEval t, but since t equals NatT, we know that the result type of this case 

branch must be typEval NatT, which is equal to the Meta-D type nat. Fortunately, we have a 

nat, namely, n. 

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t)) : (typEval t) = 

case j of 



2. Variables. The variable case is more interesting. First, note that in this branch, the expression 

index is EV n for the natural number n which represents the index of the variable expression. The 

constructor Jv carries a proof of the variable sub-judgment JV ( e , n , t ) . 

fun eval (e:Env) (rho: envEval(e)) (s:Exp) (t:Typ) (j :J(e,s,t)) : (typEval t) = 

w j o f  
JV e n t jvdproject e rho n t jv 

. . .  . . .  . . .  

Thus, the meaning of variable judgments relies on the auxiliary function pro  j ect, which imple- 

ments the meaning of variable judgments: 

fun project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) (j:JV(e,n,t)) : (typEval t) = 

a j o f  

VZ e t+ #2 (rho) 

W3 e tl t2 i j ' - (project e (#1 (rho) ) i tl j ' ) 

The function pro  j ec t is defined by cases on the inhabitants of the variable judgment JV ( e , n, t ) , 

where n is the natural number index of the variable expression. There are two cases 

(a) The base case where the natural number index is zero. In this case, we know that e is of 
the form ( E x t ~  e' t) . We also know that the type of the runtime environment rho is 
envEval ( ExtT e ' t ) which is equivalent to the pair ( evalEnv e ' , evalTyp t ) . 
Now, to produce the result of typEval t, all we have to do is project the second element of 
the pair rho. 

fun project (e:Env) (rho:(envEval e)) (n:Nat) (t:Typ) - 
(j:JV(e,n,t)) : (typEval t) = 

case j of 
VZ e' t+ # 2  (rho) 

(b) The case where the index is greater than zero. Thus, the index n is equal to S m. We also 

know that the type assignment e is of the form ( ExtE e' t2 ) , and that we have the sub- 

judgment j ' of type JV (e ' , m, t ) . Furthermore, runtime environment rho is of the type 

( envEval ( ExtE e ' t2 ) ) which is just a pair ( envEval e ' , envEval t2 ) . 

Recall that the result we are computing is of the type (typEval t) . This result can be 

obtained by projecting m-th variable from the sub-judgment j ' under the first element of rho: 

fun project (e:Env) (rho:(envEval el) (n:Nat) (t:Typ) (j:JV(e,n,t)) - 
: ItypEval t) = 

case j of 
. . . . . . . . .  

I VW e' t t2 m jl+(project e'  (#l(rho)) m t j') 



3. Abstractions. 

fun eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:J(e,s,t)) : (twEval t) = 

=jI?f. 

I J L e  tl t2 s2 j f +  

(fn v:(typEval ti)-+(eval (ExtE e ti) (rho,v) s2 t2 j')) 

In the case for abstraction judgments we know the following: 

(a) s = E L  tl s2 

(b) j '  : J(ExtE e tltS2,t2) 

(c) t=ArrT tl t2 

(d) The result type typEval t is typEval ( ArrT t 1 t2 , which is equal to ( typEva1 t 1 -+ ( typEva 

Thus, the value that we are constructing in this branch must be of a function type ( typEval t 1 ) - > ( typEval t 2 

we A-abstract over a variablev : ( typEval t 1 ) , and must produce a value of type ( typEval t2 ) . 
Fortunately, we can do this if we evaluate recursively the proofs of the sub-judgment j ' . This j ' 

must be evaluated in an extended runtime environment of type ( envEval e , typEval t 1 ) , 

which we can construct by pairing rho with v. 

4. Applications. Evaluating proofs application judgments is straightforward. 

fun eval (e:Env) (rho:envEval(e)) (s:Exp) (t:Typ) (j:~(e,s,t)) : (typEval t) = 

a j o f  

The judgment proof j is constructed from two sub-proofs: 

I JA e ~1 ~2 tl t2 1 1 1 2 4  

( a ) j l  : J(e,sl,ArrT ti t2) 

(b) j2 : J(e,s~,tl) 

(eval e rho sl (ArrowT tl t2) jl) 

Recall that the value we are trying to compute is of the type t2. Recursively evaluating j 1 gives us 

a function of type ( typEval t 1 4 typEval t2 ) . Recursively evaluating j2 gives us a value of 

type type typEval tl . Simply applying the former to the latter yields the required result. 

(eval e rho s2 tl j2) 

To review, the most important feature to note about the function eval is that writing it does not require 

that we use tags on the result values, because the type system allows us to specify that the return type of 

this function is typEval t. Tags are no longer needed to help us discriminate what type of value we are 

getting back at runtime: the type system now tells us, statically. 



2.4.2 Staged Interpreters in Meta-D 

Figure 2.6 shows a staged version of eval. As with Hindley-Milner types, staging is not complicated by 
dependent types. The staged interpreter evalS, returns a value of type 0 ( typEval t ) . Note that the 
type of value assignments is also changed (see envEvalS in Figure 2.6): Rather than carrying runtime 
values for Lo, it carries pieces of code representing the values in the variable assignment: 

fun envEvalS (e : Env) : *1 = 

case e of EmptyE--+unit ) ExtE e2 t -+ (envEvalS e2, O(typEva1 t)) 

Figure 2.6 Staged tagless interpreter (without representation types) 

fun evalS (e : Env) (rho: envEvalS e) ( s  : Exp) (t : Typ) - 
(j : J(e,s,t)) : (O(typEva1 t)) = 

m j o f  

JN el "1 --+("I) 
( J V  el tl+ #2(rho) 
I JW el tl t2 i jl--+ evals el (#l(rho)) (EV i) tl jl 
I JL eel etl et2 es2 ejl--+ 

(fn v: (typEval etl) + ( "  (evalS (ExtE eel etl) (rho, (v)) es2 et2 ejl) ) )  
1 JA e s1 52 tl t2 jl j2 -+ 

("(eval~ e rho sl (ArrowT tl t2) jl) "(evalS e rho s2 tl j2)) 

Even though the eval function never performs tagging and untagging, the interpretative overhead from 

traversing its input is still considerable. Proofs of judgments must be deconstructed by eval at run-time. 

This may require even more work than deconstructing tagged values. With staging, all these overheads are 

performed in the first stage, and an overhead-free term is generated for execution in a later stage. Executing 

the function evalS produces the tagless code fragments that we are interested in. For example, if we 

construct and then evaluate the typing judgment for the expression (EA (EL NatT (EV 0 )  ) (EI 

1 ) ) , the code generated by eval S looks something like this: ( ( fn ( x : Nat ) => x) 1). 

Staging violations are prevented in a standard way by Meta-D's type system. The staging constructs 

are those of Davies [30] with the addition of cross-stage persistence [133]. We refer the reader to these 

references for further details on the nature of staging violations. Adding a run construct along the lines of 

previous works [128,82, 1321 was not considered here. 

Now we turn to addressing some practical questions that are unique to the dependent typing setting, 

including how the above-mentioned judgments are constructed. 

2.5 Constructing Proofs of Qping Judgments 

Requiring the user of a Lo interpreter to construct and supply the proof of a typing judgment for each 

program to be interpreted is not likely to be acceptable (although it can depend on the situation). The user 

should be able to use the implementation by supplying only the plain text of the object program. Therefore, 



Figure 2.7 The function typecheck (without representation types) 

fun tcVar (e:Env) (n:Nat) : ([t:Typ] (JV (e,n,t))) = 
case n of 

Z-+ (case e of ExtE e' t' + [t=t'l (VZ e' t')) 
I Sn'+ 

(case e of ExtE e' t2 -+ 

case (tcvar el n') of 
[rx:Typlj2 -+ [t=rx](JW e2 rx t2 n' j2)) 

fun typecheck (e : Env) (s : Exp) : ([t : Typ] J(e,s,t)) = 
= s o f  

El n-+ [t = NatTl (JN e n) 
I EV idx+ 

let [rt:Typ]jv = tcVar e idx - 
b [t=rt] (JV e idx rt jv) 

I EL targ s2 --+ 

[rt:Typ]j = (typecheck (ExtE e targ) s2) 
[t=ArrowT targ rtl (JL e targ rt s2 j) 

I EA S1 s2 -+ 

let [rtl:Typljl = (typecheck e sl) - 
[rt2 :Typl j2 = (typecheck e s2) 

in case rtl of -- 
ArrowT tdom tcod-+ 

[t=tcod] (JA e sl s2 tdom tcod jl 
(cast [assert rta=tdom, fn (t:Typ) -+J(e,s,t), j21 ) )  

the implementation needs to include at least a type checking function. This function takes a representation 

of a type-annotated program and constructs the proof of the appropriate typing judgment, if it exists. We 

might even want to implement type inference, which does not require type annotations on the input. Figure 

2.7 presents a function typecheck. This function is useful for illustrating a number of features of Meta-D: 

Dependent sums. The type of the result4 of typecheck is a dependent sum, written 

[ t : Typl J ( e , s , t ) 5 .  This means that the result of typecheck consists of an Lo type, and a typing 

judgment that proves that the argument expression has that particular type under a given type assignment. 

Since proofs of judgments are built from sub-proofs of sub-expression judgments, a case construct 

in(strong dependent sum elimination) is need to deconstruct the results of recursive calls to typecheck. 

Equality types. The case for constructing proofs of application judgments (Figure 2.7, lines 18-24) illus- 

trates an interesting point. Building a proof for the judgment of the expression ( EA s l  s2 ) first involves 

computing the proofs for the sub-terms s l  and s2. These judgments assign Lo types ( ArrowT tdom 

In a pure setting (that is with no computational effects whatsoever) the result of typecheck should be option ( [ t : 
~ypl ( J (e, s , t ) ) ) , since a particular term given to typecheck may not be well-typed. In the function given in this paper, we 
omit the opt ion, to save on space (and rely on incomplete case expressions instead). 

5~ note on the notation: the dependent product types IIx : 71 .72  are written as (x: tl) + t2 in MetaD. Analogously, we shall 
write dependent sum types using similar notation, replacing the parentheses with angle brackets. Thus, Cx : 71 . r 2  is written as 
[x: tll t2. 



t c od) and r t  2 to expressions s 1 and s 2, respectively. 

However, by definition of the inductive family J, in order to build the proof of the larger application 

judgment, t d o m  and r t 2  must be the same Lo type. The equality between t d o m  and r t 2  must be known 

statically, at type checking time of the function typecheck so that the Lo judgment for the application can 

be constructed. In particular, we must "cast", for example, from the type (J  ( e ,  s 2 ,  r t 2  ) ) to ( J (e ,  

s 2 ,  tdorn) ) . 
How can we do this? A standard way, in type theory, to deal with problems like this is to introduce a 

type family representing equality over particular values. Such a type family may look something like this 

in MetaD : 

inductive EQ ( a : * l ,  x : a) : a-+*l  = 

EQ-Ref1 : (EQ x x) 

Next, we define a function that can perform substitution of equals for equals: 

fun eqForEq : (a:*l) ( x , y  : a) (EQ a x y) (f : a -> *I) (f x) : (f y) = . . . 

The function eqForEq takes a proof that two values of type a, x and y ,  are equal. The next argument, 

f ,  is a function describing a type in terms of a value of type a. Next, a value of type ( f x) is taken, and 

(since x and y are equal) returns a value of type ( f y) . 

One question remaining is how to construct the proof EQ a  x y?  This cannot be answered in general, 

but for particular inductive types such as the data-type Typ, representing Lo types, such proofs can be 

constructed by inductively examining two terms, and combining proofs of equalities of sub-terms to produce 

proofs of equalities of larger terms: 

fun isEqTyp : (x : Typ) (y : Typ) : (option (EQ Typ x y)) = 

w x o f  

NatT 4 (case y of NatT 4 (SOME (EQ-Ref 1 NatT) ) 

I x  +NONE) 

I (ArrowT tl t2) -+ 

(case y of Arrm t3 t4 + 

(case (isEqTyp tl t3, isEqTyp t2 t4) of 

(SOME Pl, SOME p2) 4 . . . 
I - - NONE) 

I x + NONE) 

Assertlcast. In our presentation of Meta-D, we shall examine an alternative to the style of equality de- 

scribed above. We add two language constructs to Meta-D to express this sort of constraint between values. 

First, the expression of the form assert el=e2 introduces an equality judgment, (EQ t e l  e2 ) , 



between values of equality types. The type EQ t here is not the inductive family EQ defined above, al- 

though it is designed to perform a similar role. Instead, it is treated as a primitive type, whose introduction 

construct are the assert expressions. 

An elimination construct cast [ el , T, e2 1 is introduced to perform casting based on an asserted equal- 

ity. The typing rule for cast is as follows: 

r l - e l : E Q r t l t 2  r t - T : ~ + * l  r l - e a : ( T t l )  
CAST 

I? t- cast[el, T ,  e2] : (T t2) 

The cast expression takes three arguments: the first is the proof of equality between two values t l  and 

t2 of type 7; the second is a function T  that compute a type *1 dependent on a T value. Finally, it takes an 

expression of (T t l )  and converts it to an expression of type (T t2). 

Operationally, the expression assert el =e2 evaluates its two subexpressions and compares them for 

equality. If they are indeed equal, computation proceeds. If, however, the two values are not equal, the pro- 

gram raises an exception and terminates. Note that this forces us to use assert only over types of values 

that can be compared for equality at runtime. This would include integers, strings, various (ground) data- 

types, but exclude functions, along the lines of automatically derived equality types in Standard ML [80]. 

The cast construct makes sure that its equality judgment introduced by assert is strictly evaluated 

(resulting either in an equality proof or in runtime error), and if the equality check succeeds, acts simply as 

an identity on the second argument e2. 

The assert/cast is intended primarily to serve as a convenient programming shortcut and relieve 

the user from the effort of explicitly constructing equality proofs. It has no analog in type theory. The 

programmer need not use it: one can always use the EQ-like encoding of equality and construct equality 

proofs by examining the terms involved inductively. 

We examine the function typecheck in some detail: 

f u n t y p e c h e c k  ( e :  E n v )  ( s :  E x p )  : ( [ t :  Typl J ( e , s , t ) )  = 

= s o f  

1. Constant case. We start with an integer constant expression EI n. We know that the resulting Lo 
judgment has the (Lo)  type NatT. Thus, we build a dependent sum "package," [ t=NatT] (JN e n ) , 
whichhasthe(Meta-D)type [t:Typl (J(e,s,t) ) :  

fun t y p e c h e c k  ( e : E n v )  ( s : E x p )  : ( [ t : T y p ] J ( e , s , t ) )  = - 
m s o f  

E I  n--+ [ t  = N a t T ]  (JN e n)  

2. Variable case. Following the usual pattern, we will use an auxiliary function tcvar to construct 

the proof a variable judgment, which can then be plugged into the proof for the variable-expression 

judgment. 



fun tcVar (e:Env) (n:Nat) : ([t:Typ](JV (e,n,t))) = 

m n o f  

Z-+ (case e of ExtE e' t' -+ [t=t'] (VZ e' t')) 

I Sn'- ( ~ e o f E x t E  e' t2 + 

case (tcVar e' n') of 
[rx:Typlj2 -+[t=rx](JW e2 rx t2 n1 j2)) 

3. Abstraction case. The expression s  is of the form (EL targ s2) ,  where the Lo type targ 

is the type of the function's argument, and the LO expression s2 is the body of the A-abstraction. 

Type checking proceeds by first extending the type assignment e  with the LO type of the function's 

argument, and computing the proof for the abstraction body s 2  in the extended type assignment. 

The recursive call to typecheck returns a dependent sum [ rt : Typ I j . The variable rt is bound 

to the Lo type of the abstraction expression's body. The variable j, which has the (Meta-D) type 

J (Ext e targ,  s2, targ)  , is bound to the corresponding proof of the typing judgment for 

the abstraction body computed by the recursive call to typecheck. Finally, the type for the A- 

abstraction is returned as ( ArrowT targ rt ) , and combined with the abstraction judgment proof 

(JL e targ rt s 2  j): 

fun typecheck (e : Env) (s : Exp) : ([t : Typl J(e,s,t)) = 

w s o f  

EL targ s2 -+ 

let [rt:Typ] j = (typecheck (ExtE e targ) s2) 

in [t=ArrowT targ rtl (JL e targ rt s2 j) 

4. Application case. Starting with the LO application (EA s l  s2 ) , we first compute the judgment 

proof and type for each of the sub-expressions sl and s 2 .  Next, we check that the (Lo) type index 

r t 1 computed for the expression s 1 is indeed an arrow type with domain t dom and codomain 

tcod. 

In order to build proof of the typing judgment for the entire application expression, we must ensure 

that the type index of the judgment for the argument expression s2 must be equal to tdom. To this 

end, we use cast  to convert the judgment ( j  2 : J (e ,  s2 , r t 2  ) ) to J ( e ,  s2 , tdom) which 

is the type we need to construct the proof of the judgment for the entire application expression. 

fun typecheck (e : Env) ( s  : Exp) : ([t : Typl J(e,s,t)) = 

w s o f  

EA S1 s2 -+ 

let [rtl:Typ]jl = (typecheck e sl) - 
[rt2 :Typ] j2 = (typecheck e s2 l 

in case rtl of -- 
AZrm tdom tcod -+ 

[t=tcod] (JA e sl s2 tdom tcod jl 

(cast [assert rt2=tdom, fn (t:Typ) -+J(e,s,t), 121)) 



2.6 Representation Types 

Another practical concern is that types that depend on values can lead to either undecidable or unsound type 

checking in the meta-language. This happens when values contain diverging or side-effecting computations. 

In this section we discuss how both of these concerns can be addressed in the context of Meta-D. Combining 

effects with dependent types requires care. For example, the typecheck function is partial, because there 

are many input terms which are just not well typed in Lo. Such inputs to typecheck would cause runtime 

pattern match failures, or an equality assertion exception. We would like Meta-D to continue to have side- 

effects such as non-termination and exceptions. At the same time, dependently typed languages perform 

computations during type checking (to determine the equality of types). If we allow effectful computations 

to leak into the computations that are done during type checking, then we risk non-termination, or even 

unsoundness, at type-checking time. Furthermore, it is in general desirable to preserve the notion of phase 

distinction between compile time and runtime [17], where static (type-checking) computation and dynamic 

computation (program execution) are as clearly separated as possible. 

The basic approach we adopt to dealing with this problem is to allow types to only depend on other types, 

and not values. But, disallowing all dependencies of types on values would not allow us to express any of 

the evaluation or type checking functions for the implementation of Lo, since all of their types depend to 

some degree on the value of its argument. 

A standard solution to restoring some of the expressiveness of dependent types is to introduce a mech- 

anism that allows only a limited kind of dependency between values and types. This limited dependency 

uses so-called singleton or representation types [58, 146, 25, 26, 1381. The basic idea is to allow types to 

depend not on arbitrary expressions, but rather, just the values of runtime computations. This is achieved 

by a two-fold mechanism: 

1. The language of types and kinds is sufficiently enriched to allow for defining a representation of 

values at type level: the type language becomes in effect a powerful, but pure dependently typed 

language. 

The idea is that this type language contains not only types of runtime values, but also a logic that can 

be used to describe their properties. This is done by the standard "propositions-as-types" idea, except 

that everything is lifted one level up: properties of types are represented as (inductive) kinds, while 

proofs of those properties are lifted to the level of types. A special (inductive) kind is reserved to 

represent types that classify runtime expressions. 

2. A runtime, or computational language is introduced "below" the pure type language [114]. More 

importantly, values in the computational language are typed uniquely by their counterparts in the 



type language. In MetaD, we shall use the built-in type R to write such singleton types. 

For example, the type of the runtime value 1 is written as the type ( R 1) , where 1 is a type of 

kind I n t .  The value 1 in the runtime language is the only member of such a type (hence the name 

singleton). When types are given to the functions at the computational level, their behavior must be 

modeled at type level as well. 

For example, the runtime function that adds 1 to an integer has the following type: 

addone : (n : N a t )  (R n) -> ( R  (succ n ) )  

2.6.1 Working with Representation Types 

Now, we can rewrite our (pre-MetaD) interpreter so that its type does not depend on runtime values, which 

may introduce effects into the type-checking phase. Any computation in the type checking phase can now 

be guaranteed to be completely effect-free. The run-time values are now forced to have representation types 

that reflect, in the world of values, the values of inductive kinds. 

Meta-D provides the programmer with the interface to representation types through two main mecha- 

nisms: 

1. A special type construct R is used to express representation type dependency. 

For example, we can define an inductive kind N a t  

inductive N a t  : @ = Z : N a t  I S : N a t - + N a t  

Note that this definition is exactly the same as the one we had for the type N a t ,  except it is now 

classified by * 2 instead of * 1. Elements of N a  t are now types Z, ( S Z ) , ( S ( S Z ) ) , and so on. 

The type construct B takes an element of an inductively defined kind such as N a t ,  and forms a type 

R ( S Z ) : * 1. The type B ( S Z refers to a type that has a unique inhabitant that is the runtime 

representation of the number 1. 

2. We write the unique value inhabiting the type (B ( S  Z )  ) as (rep - ( S  Z )  ) . In other words: 

(rep ( S  Z ) )  : R (S Z ) .  

If one is to be able to analyze, at runtime, the elements of a representation type R n, an elimination 

construct is required. In particular, this is done by a form of case analysis on types [55,25, 145, 112, 

261 : 

tycase x by y of Cn xn +en 



A pattern (Cn xn ) matches against a value x of type K, where K is some inductive kind, only if we 

have provided a representation value y of type R ( x )  . 

A pattern (Cn xn ) matches against a representation type x, of inductive kind K. However, since 

we cannot allow computation at runtime to depend on types (which are available statically), we must 

also supply a runtime representation of the type x (i.e., a value of type R ( x )  . 

Inside the body of the case (en), the expression rep  xn provides a representation value for the part 

of the inductive constructor that xn is bound to. 

Let us consider a simple example. We well define inductively an addition function that adds two 

(singleton) naturals together. First note, however, that in order to give a type to this function, we must 

produce an addition function at the level of types (the function p lus  ' ). This is done using primitive 

recursion or, as in the example below, a special syntactic sugar for catamorphisms6: 

plus' (m:Nat) (n:Nat) : Nat = 

w m :  Natof 

Z d n  

I S m ' + S m f  

fun plus : (m:Nat) (m' :R(m) ) (n:Nat) (ni:Il(n)) : q(plus1 m n) = 

tycase m by m' of 
z -+n' 

1 8 p--+ ( r e p ( S ) )  (plus P (rep p) n n') 

2.6.2 Tagless Interpreter with Representation Qpes 

Figure 2.8 presents the implementation with representation types. Introducing this restriction on the type 

system requires us to turn the definition of Exp, Env, and Typ into definitions of kinds (again this is just a 

change of one character in each definition): 

I type n a t  = [ n : N a t l ( R ( n ) )  

2 induct ive  Nat : *2 = Z : Nat I S : ( N a t j N a t )  

4 induct ive  Typ : *2  = ArrowT : Typ+Typ+Typ I N a t T  : Typ 

6 induct ive  Exp : *2  = E I  : N a t j E x p  I EV : Nat+Exp 

7 ( EL : Typ+Exp-+Exp I EA : Exp+Exp+Exp 

9 induct ive  Env : *2  = m t y E  : Env I E x t E  : E n v + T y p ~ E n v  

6~ more general primitive recursion scheme can be implemented as in, for example, Coq [6] 



Because these terms are now kinds, we cannot use general recursion in defining their interpretation. 

Therefore, we use special primitive recursion (and catamorphism) constructs provided by the type language 

to define these interpretations:' 

fun typEval (t:Typ)-+*l = 

cata t:Typ of 
NatT -+ nat 

I (ArrT tl t2 -' (ti +t2 

fun envEval (e: Env) : *1 = 

cata e:Env of 
m t y E  -4 unit 

ExtE et t-+ (et,t) 

Judgments, however, remain a type, of kind * 1. The reason for this is that typing judgments are used at 

runtime by the interpreter. It is important to note, however, that now judgments are a type indexed by other 

types, not a dependent family indexed by values. 

For the most part, the definition of judgments and the interpretation function do not change. We need to 

change judgments in the case of natural numbers by augmenting them with a representation for the value 

of that number. The constructor JN now becomes 

JN : (el : Env) -+ (n : Nat) -+ (R n) -+ J(el,E1 n,NatT) 

and the definition of eval is changed accordingly. First, we define an auxiliary function mknat which 

converts a R (n) for some Nat n into the type nat which corresponds to the type to which object-language 

integer expressions are mapped. This function is then used to construct an appropriate value for the JN case: 

funmknat (n : Nat) (rn : R(n)) : nat = 

tycase n by rn of - 

z-+ [n=zerol (rep zero) 
I S n2--+ 

case (mknat n2 (rep n2) of 
[n2':Nat]rn2'+ [n=(S n2')l (rep(S) rn2') 

fun eval (e : Env) (rho: envEval e) (s : Exp) (t : Typ) 
( j  : J(e,s,t)) : (typEval t) = 

' ~ h e s e  constructs are similar to primitive recursive schemata that the Coq theorem prover derives for inductively defined type 
families -this technique can be readily reused in Meta-D. Alternatively, the functions can be defined using recursion, and a termination 
check (as, for example, in Alfa [52])  conducted before the functions are admitted by the system. The latter is currently the case, 
although our implementation of the termination check is, at this time, based on a rather simple syntactic criterion. 



29 c a s e  j of 
30 JN e l  n l  r n l 4 m k n a t  n l  r n l  

Note that even though modified eval uses a helper function (mknat) to convert a representation of a 

natural type to a natural number, in practice, we see no fundamental reason to distinguish the two. Iden- 

tifying them, however, requires the addition of some special support for syntactic sugar for this particular 

representation type. 

The remainder of the function e v a l ,  together with other parts of the implementation using representation 

types is given in Figure 2.8. It may be surprising to note that other than the changes mentioned above, there 

are no further modification to the text of the programs that needs to be made to the ones presented in the 

pure non-representation type setting. 

2.6.3 typecheck with Representation Types 

The full definition of t y p e c h e c k  is given at the bottom of Figure 2.8. 

Let us first examine the type signature of the new version of t y p e c h e c k .  

I fun typecheck (e  : Env) (re: R ( e ) )  

2 ( S  : EXP) (rs:  R ( s ) )  : ( [ t  : Typ] ( R ( t ) , J ( e , s , t ) ) )  = . . . 

Three things are worth noting: 

1. The function still returns a sum result consisting of an object language type and a proof of the judg- 

ment that the argument expression has that type. However, because Typ has been promoted to an 

inductive kind, the sum returned is more like an existential type than a dependently typed strong sum. 

In Meta-D notation, both are written the same way. 

2. Note also, that the result, in addition to the proof of the judgment, contains a runtime representa- 

tion of the object-language type, R ( t  ) , where t is the resulting object-language type. This is nec- 

essary in order to compare the object-language types returned by different recursive invocations of 

t y p e c h e c k  since the t y c a s e  construct requires both a t and a R ( t ) to compare types at runtime. 

3. Similarly, the arguments to t y p e c h e c k  are not only Envs and Exps , but their respective represen- 

tations. Again, this is necessary because of the tycase construct cannot examine the structure of 

the argument expressions or type assignments without their runtime representation. 



2.7 Conclusion 

In this chapter we have shown how a dependently typed programming language can be used to express 

a staged interpreter that completely circumvents the need for runtime tagging and untagging operations 

associated with universal datatypes. In doing so we have highlighted two key practical issues that arise 

when trying to develop staged interpreters in a dependently typed language. First, the need for functions 

that construct the proofs of typing judgments that the interpretation function should be defined over. And 

second, the need for representation types to avoid polluting the type language with the impure terms of the 

computational language. 

To demonstrate that staging constructs and dependent types can be safely combined, in the next chapter 

we shall formally develop a multi-stage computational language typed by Shao, Saha, Trifonov, and Pa- 

paspyrou's TL system [114]. This allows us to prove type safety in a fairly straightforward manner, and 

without having to duplicate the work done for the TL system. 

A practical concern about using dependent types for writing interpreters is that such systems do not have 

decidable type inference, which some view as a highly-valued feature for any typed language. 

In terms of programming, we have first started with a Cog implementation of a tagless interpreter. Next, 

we explored a dependently type programming language. We were guided by the idea of designing the 

meta-language that would be more accessible to a programmer than to a logician. We did not find that the 

explicit type annotations and new constructs were an excessive burden, and some simple tricks in the im- 

plementation of the meta-language could be enough to avoid the need for many such redundant annotations. 

However, representation types do seem to complicate our programs somewhat. 

In later chapters, we shall explore how much of the style of the tagless interpreter implementation could 

be implemented in a more main-stream setting of Haskell. 



Figure 2.8 Tagless interpreter with representation types in MetaD 

inductive nat : *1 = zero : nat ( succ : (nat+nat) 
inductive Nat : *2 = Z : Nat ( S : (Nat-+Nat) 

inductive Typ : *2 = A r r m  : Typ+Typ+Typ ( N a t T  : Typ 

inductive Exp : *2 = E I  : Nat-+Exp I EV : Nat-+Exp 
I EL : Typ+Exp--r Exp I EA : Exp+Exp--+ Exp 

inductive Env : *2 = m t y E  : Env ( E x t E  : Env-+Typ-+Env 

inductive J : (Env, Exp, Typ)+*l = 
JN : (el : Env) -+ (n:Nat) -+ (rn : R n) -+J(el,EI n,NatT) 

( JV : (el : Env) -+ (t1:Typ) +J(ExtE el tl,EV Z,tl) 
I JW :(el : Env)+(tl : Typ)-+(t2 : Typ)+ (i : Nat) -+ 

J(e1,EV i,tl) +J(ExtE el t2,EV (S i), tl) 
I JL : (el : Env) -+ (tl : Typ) -+ (t2 : Typ) + (s2 : Exp) -+ 

J(ExtE el tl,s2,t2)--.J(el,EL tl s2,ArrowT tl t2) 
I JA : (e : Env) --+ (sl : Exp) -+ (s2 : Exp) + (tl : Typ) -+ (t2 : Typ) + 

J(e,sl.ArrowT tl t2)+J(e,s2,tl)-+J(e,EA sl s2,t2) 

a typEval : Typ + *1 = 
cats Typ nat (fn c : *l+fn d : *l+ (c-+d)) 

val envEval : Env -+ *1 = 
cata Env unit (fI1 r : *l+fn t : *l+(r,t)) 

fun cast (n : Nat) (rn : R(n)) : nat = tycase n by rn of Z+zero 
( S n2 +succ (cast n2 (rep n2)) 

fun eval (e : Env) (rho: envEval e) (s : Exp) (t : Typ) (j : J(e,s,t!) : (typEval t) = 
case j of 
JN el nl rnl+cast nl rnl 

I JV el tl -+#a (rho) 
/ JW el tl t2 i jl-+eval el (#l(rho)) (EV i) tl jl 
I JL eel etl et2 es2 ell-+fn v:(typEval etl)-+(eval (ExtE eel etl) (rh0.v) es2 et2 ejl) 
I JA e sl s2 tl t2 jl j2-+(eval e rho sl (ArrowT tl t2) jl) (eval e rho s2 tl j2) 

fun typecheck (e : Env) (re: R(e)) (s : Exp) (rs: R(s)) : ([t : Typl (R(t) ,J(e,s,t))) = 
tycase s by rs of 

EI n-+ [t = NatT] (NatT' , (JN e n (rep n) ) ) 
I EV n 4  
(tycase n by (rep n) of Z +  (tycase e by re of ExtE ee t 2 4  [t = t21 (rep t2, JV ee t2)) 

I S n--+ (tycase e by re of ExtE (e2) (t2) + 

( ( f n  x : ([t:Typl (R(t), J(e2,EV n,t))) -+ 

case x of [rx : Typ]j2-+([t = rx] 
(#I j2, JW e2 rx t2 n (#2 j2))) 

(typecheck e2 (rep e2) (EV n) (rep (EV n))))))) 
I EL targ s2+ 
((fn x : ([t : Typl (R(t),(J(ExtE e targ,s2,t)))) => 

-x of [t : Typl j2+ 
[t = ArrowT targ t] (rep (ArrowT targ (#1 t))), (JL e targ t s2 (#2 j2)) ) 

(typecheck (ExtE e targ) (rep (ExtE e targ)) s2 (rep s2))) 
I EA sl s2 + 

((fn xl : [tl : Typl IR(tl), (J(e,sl,tl)))--+ (fn x2 : [t2 : Typl (R(t2), (J(e,s2,t2)))+ 
m x l o f  [tl : Typ]jl+-x2 of [t2 : Typ]j2+ 
(tycase tl (#1 (jl)) of 
ArrowT tdom tcod -+ 

[t = tcod] (rep tcod, (JA e sl s2 tdom tcod jl 
(cast [assert t2=tdorn,J(e,s,tdom),j2]))) end))) 

(typecheck e (rep e) sl (rep sl)) (typecheck e (rep e) s2 (rep s2))) 



Chapter 3 

Staging and Dependent Types: Technical 

Results 

3.1 Introduction 

This chapter' is intended as a technical prolegomenon to the exploration of meta-theoretic properties of 

the meta-language MetaD used in the previous chapter. In particular, we are concerned with type safety 

properties meta-languages such as the language Meta-D. The result we report here is type safety for a 

formalized core subset of Meta-D. This result shows that multi-stage programming constructs can be safely 

used, even when integrated with a sophisticated dependent type system such as that of TL [114]. 

Let us first explain what is meant by "a formalized core subset of Meta-D." Formalizing a rather large 

programming language in which our examples in Chapter 2 have been written seems somewhat impractical: 

many details would overwhelm our ability to (a) manipulate the formal constructs effectively; and (b) clearly 

demonstrate the most essential features that we are trying to study. Thus, we shall cut down the formalism 

to its bare essentials, illustrating the following points: 

1. The meta-language we present includes singleton (representation) types. Instead of general inductive 

family definitions, the language has a couple of "built-in" singleton types such as natural numbers 

and booleans. Later, we shall expound on how the formal treatment can be extended to more complex 

data-types. 

2. The meta-language is designed to support staging with code-brackets and escape. With this we intend 

to show that staging can safely interact with other features under consideration. 

3. We shall formalize the asser t  /cast  expressions used in Chapter 2.6 and show that they, too, can 

be integrated into a meta-language in a type-safe way. 

  his chapter is based on previously published material [loo, 1011. 
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Another interesting feature of the presentation is the use of the TL [I141 framework in our formal devel- 

opment. Essentially, the idea is to obtain a powerful type system for the programming language by simply 

reusing a general theoretical framework for such languages developed by Shao et a1 as a part of the FLINT 

project. This allows us to reuse many of their technical results without having to prove them from scratch. 

3.2 The Language XHo 

In this section we will define and discuss the language X H ~ ~  which is a formalization of the ideas described 

above. First, we review some of the properties and definition of the TL framework which is used to define 

XHo.  Second, we define the syntax and static semantics of the language. Third, we define a small-step 

semantics of X H O ,  and, finally, prove the type safety of X H O .  

3.2.1 Review: TL 

TL is a general framework intended for designing sophisticated typed intermediate languages for compil- 

ers [114]. The basic architecture of the system is as follows: 

1. Different computational languages can be defined. These are typed programming languages or 

calculi intended for writing executable programs. As such, they can have effects such as non- 

termination, state and so on. However, the types for these computational languages are provided 

by the common type language TL. Several computational languages are presented by Shao et al. In 

this chapter we implement our own computational language with the features enumerated above. 

2. The type language TL is a typed specification language in the spirit of the Calculus of Inductive 

Constructions. This language supports dependent types, higher-order kinds and inductive families. It 

is intended for two purposes: 

(a) To describe the behaviors of computational/runtime programs in a pure, logical way, to represent 

logical properties of these programs and encode the proofs of these properties in a type-theoretic 

way. 

(b) A set of the computational language types is defined as an inductive kind in TL. Many different 

computational languages share TL as their typelspecification language. The advantages of this 

are again twofold: 

2~ brief note on the name XHo: XHo (pronunced "lambda H-circle") is derived from the name of the calculus A H ,  of uncertain 
provenance defined by Shao et a[. [I141 The circle has been appended to the name to indicate the addition of staging constructs, similar 
to Davies' naming of the calculus XO [29]). 



i. Many computational languages can be put together into a single meta-theoretical frame- 

work, where translation between them can be expressed and studied. In particular trans- 

formations from one language into another can be written in a way that, in some clearly 

defined sense, preserves (or transforms) types between them [114]. 

ii. TL promotes reuse in defining and proving properties about computational language, since 

meta-theoretical properties of TL are established once and for all. Such properties include 

"subject reduction, strong normalization, Church-Rosser (and confluence), and consistency 

of the underlying logic" [114]. 

The definitions and basic properties of TL that we reuse here are available in the Shao et a1 technical 

report [113]. Using the TL framework, we can arrive at an advantageous division of labor. In this chapter, 

we formally define and prove properties of a new computational language (I), while most theoretical work 

for the type language (2) can be simply reused from existing literature. 

3.2.2 The language XHO 

We follow the same approach used by the developers of TL, and build a computation language X H o  that 

uses TL as its type language. Integrating our formalization into the TL framework gives us significant 

practical advantages in formal development of X H O  : 

1. Important meta-theoretic properties of the type language we use, TL, have already been proved [114]. 

Since we do not change anything about the type language itself, all these results (e.g., the Church- 

Rosser property of the type language, decidable equality on type terms) are easily reused in our 

proofs. 

2. X H o  is based on the computational language AH [114]. We have tried to make the difference between 

these two languages as small as possible (essentially, just the addition of staging constructs). As a 

result, the proof of type safety of X H o  is very similar to the type safety proof for A H .  Again, we 

were able to reuse certain lemmata and techniques developed by Shao and others for AH in our own 

proof. 

The Syntax and Static Semantics of X H O  

Figure 3.1 defines X H o  computational types, and is the first step needed to integrate X H o  into the TL 

framework. The set of types for the computational language is simply the inductive TL kind 520, which is 

comprised of the following: 



Figure 3.1 The TL definition of the types of XHo 

inductive Nat : Kind ::= 0, 1,2,. . . 
inductive Bool : Kind ::= true ( false 
inductive 00 : Kind ::= snat : Nat -+ RO 

1 sbool : Bool -+ RO 

I : 00, 00 -+ 00 
I tuP : Nat -+ (Nat -+ 0 0 )  -+ 00 
1 v k  : I Ik  : Kind.(k -+ Cl0) + 00 
1 3k : I Ik  : Kind.(k -+ 0 0 )  -t 00 
I VKS : I Ik : KScheme.(k + 00)  -, 00 
1 ~ K S  : I Ik  : KScheme.(k -t 0 0 )  -+ RO 
1 0  :00-+no 
I EQ : Nat -+ Nat -+ 00 

Natural number operators 

@ : Nat -+ Nat -, Nat 
@ E {+,-, X , .  ..} 
@ : Nat -+ Nat -, Bool 
@ E {I, 2,  =, . . .) 

1. Singleton types  bool land sint. These types illustrate the central concept in the type system of XHO. 

They take an argument of the TL inductive kind Nat (or 6001) a XHo type (of the inductive kind 

0 0 )  that classifies individual natural number (or boolean) values in the computational language. 

We shall write a hat : over natural number literals in the computational language where necessary to 

disambiguate between them and TL natural numbers of kind Nat. For example, an integer constant 

100 in the computational language has the type (snat 100). Similarly, the XHO expression i$i has 

the type (snat 1 + 1) which is equal (in TL) to the type (snat 2). 

2.  Arrow types. These are simply the types of functions in XHo. For example, the computational- 

language addition operator has the following arrow type for any m, n : Nat: 

$ : (snat m) 4 (snat n) -+ (snat (m + n)) 

3 .  Tuple types. Tuple types are represented by two pieces of information: first, the natural number 

argument representing the size of the tuple, and, second, a function that, given a natural number i, 

returns the X H ~  type of the i-th component of the tuple. For example, the pair type A x B would be 

represented by 

(tup 2 (Xn.case n of 0 -+ A I 1 -+ B I - -+ Va.a)) 



4 .  Universal and existential types. Universal and existential types are essential in AHO. They can 

quantify over TL inductive kinds, such as nat, including the kind 00 itself. 

We use the syntactic following syntactic sugar for writing universals and existentials , omitting the 

sort s where it is clear from the context: 

V , X : A . B  = V , A ( A X : A . B )  

3, X : A.B - 3, A (AX : A.B) 

A brief note on terminology: the sort Kind is a (in TL terminology) kind schema, which classifies 

kinds. The sort KScheme is a singleton sort that classifies kind schemas. The reason for this termi- 

nology is that in TL all levels are lifted up by one: types play the role of programslproofs, kinds play 

the role of typestpropositions, and kind schemas play the role of kinds. 

The universal quantifier allows us to form types that are polymorphic in singleton values, such as 

the type (VX : Nat. (snat X )  + (snat X)) ,  which is the type of the identity function over natural 

number values in  AH^. It also allows us to use a standard notion of polymorphism. For example, the 

type (VX : 0 O . x  --t X) is the type of the polymorphic identity function in AHo. 

Existential quantifiers are very important as well. Recalling that in  AH^ each natural number has a 

different type, we can use existential types to represent the more usual type of all natural numbers. 

For example, the following definition is such a type of all natural numbers: 

CompNat : 00 = 3n : Nat. snat  n  

Similarly, we can "lift" the addition operation to work on the CompNat type as follows: 

plus : CompNat 4 CompNat 4 CompNat 

plus = AX : CompNat. Ay : CompNat. 

open x as M ,  m  in open y as N ,  n in (r = M  + N ,  m i n  : (snat r ) )  

The function plus works by first opening its arguments, adding them, and packing them up into a 

new existential package. Note that two addition operations are used: one at the type level (+) and 

one and the computational level (+). 

5. Code type. Code type is the type of (homogeneous) object program. It is modeled on the circle 

modality of Davies [29]. Intuitively the type (O(snat  1)) is the type of computational language 

program that, when executed, would yield the result 1. 

6 .  Equality type. We will also add an equality type over natural numbers to 00. Intuitively EQ m  n  

is a type of proofs that m equals n. We use these types to type the assert /cast constructs in the 

computational language. 



Level-indexed syntax. The syntax of the computational language X H O  is given in Figure 3.2. Instead of 

a single inductive set of expressions, we give a family of sets of expressions. This family is indexed by a 

natural number representing the level of the expression. A set of values is defined similarly. This technique 

of presenting syntax of staged language, called level-indexed families [29, 1261 has become a standard tool 

for defining reduction (and small-step) semantics of staged languages. Intuitively, the level-indexed families 

are designed to prevent certain unsafe operations. The family E0 is defined to exclude top-level escapes, 

for example. Thus, the reductions such as P are restricted only to E0 expressions; code operations such as 

escapes can be performed only on El expressions. Without these restrictions, the reduction semantics of 

staged languages is unsound [127]. 

The language X H O  contains recursion and staging constructs. It contains two predefined representation 

types: naturals and booleans. The i f  construct, as in A H  [114], provides for propagating proof information 

into branches (analogous to the tycase construct of MetaD); full implementation of inductive datatypes 

in the style of MetaD is left for future work. Since arbitrary dependent types are prohibited in X H o ,  we use 

universal and existential quantification to express dependencies of values on types and kinds. For example, 

the identity function on naturals is expressed in X j y 0  as follows: 

(An : Nat. Ax : (snat n).x) : Vn : Nat. (snat n) -+ snat n 

In AHOY we also formalize the assert/cast construct, which requires extending the language of 

computational types with equality judgment types. Similarly, we add the appropriate constructs to the 

syntax of X H o .  

Remark 1 (Level-indexed syntactic families) 1 .  Vn E N.En G En+'. 

PROOF. Proof of (1) is constructed easily by induction on the judgment e E En. Similarly for (2). 

Typing Judgments. The typing judgment of X H O  (Figure 3.4) has the form A; J? En e : A. It has two 

type assignments 

1. A E Sequence ( X  x N x A) is a type assignment that maps TL type variables to TL expressions. 

Also, each mapping carries a natural number indicating the level at which the variable is bound. A 

level-annotation erasure function (. 1,) is used to convert X H O  typing assignments A into a form 

required by the typing judgment of TL[114]. This interface then allows us to reuse the original TL 

typing judgment in the definition of the typing judgment for X H O .  



Figure 3.2 Stratified syntax of XHo 

X = type variables of TL 
A =. type expressions of TL 

W = variables of XHo 
e x p O € ~ O : : =  x I n I t t I f f I  f O I f i x x : A . f O I e y e ~ I e O I A ]  I ( X = A l , e 0 : A 2 )  

I open e0 as X ,  x in e0 1 (ez, . . . e:-,) I sel [A](ey, e:) I e? CB e: 
I if [Al,Azl(eo,Xl.e?,Xz.e:) ( ( e l )  
I assert ey : A1 = e i  : A2 I cast (ey, A, e:) 

f n  ::= AX : A.en I Ax : A.en 
expn+ E En+ ::= x I m I tt I ff I f n+  I fixx : A. fn+l  I en+ en+ I en+ [A] 

I (X  = A1, en+ : A2) I open en+ as X ,  x in en+ 
en+l I (e i+,  . . . , ,-,) I sel [~](e-;"+, eg+) I e;"+ @ egf I (en++) I "en 

I if [Al, A2](en+, Xl.e;"+, X2.e;') 
I assert e: : A1 = e i  : A2 I cast ( e t ,  A, e;) 

v~ E vo ..- . n l t t l f f  I f 0  I f i x x : A . f O I  ( X = A 1 , v 0 : A 2 )  I (vf ,..., vkPl)  I (vl)  
I assert v0 : A = v0 : B 

~1 E ~1 ..- - x I n I ttI ff I f v l  Ifixx:A.fvl Ivl  v1 Ivl[A] I ( X = A l , v l  :A2)  
( open vl as X ,  x in v1 I (v;, . . . ,v&-,) I sel [Al](vl, n l )  
I v1 CB v1 I if [Al, A2](v1, Xl.v:, X2.v;) 1 (v2) 

vn+2 E Vn+2 ::= x ( m I tt I f f  I f v1 I fixx : A. f vl I vn+' vn+' I vn+l [A] I ( X  = A1, vn+ : A2) 
I open vn+2 as X ,  x in vn+2 I (v;+', . . . , ~ k ? ~ ~ )  I sel [A](vn+ 2 ,  nn+2) 
I un+2 vn+2 I if [ A ~ ,  A ~ ]  ( v ~ + ~ ,  x1 .I$+', X ~ . V ; + ~ )  I ( v ~ + ~ )  I "vn+l 

fun ::= Xx:A.vn 1 AX:A. fvn  

2. r E Sequence (W x N x A) is a type assignment that maps XHOvariables to their types. Again, 

each mapping is annotated by the natural number representing the level at which the variable is bound. 

Intuitively, a type assignment I? is well-formed (written A Fn r) if for each (x, n ,  A) E I?, we have 

Atn t- A : a 0 .  

The type judgments are indexed by a natural number representing the level at which the typing is per- 

formed. When typing an expression surrounded by the code brackets, this number is incremented; similarly, 

when typing an escaped expression, the number is decremented. 

In what follows we shall examine the syntax of XHO terms from Figure 3.2. We will introduce each 

kind of term, and present its typing rule. First, note that there are two sets of object-level variables used in 

Figures 3.2 and 3.4: 

1. A set X type variables. This set ranges over TL types. Individual variables are written as X ,  Y, . . .. 

These are basically type variables in the System F and other polymorphic A-calculi. 

2. A set W of XHovariables, x ,  y, . . . that range over XHo values. 

Also, we will use meta-variable A, B, . . . to range over type expressions (i.e., expressions of TL). 



1. Variable expressions: e ::= x I . . . . The typing rule for variables is a rather standard combination 

of features of AH [114] enriched by the MetaML-style level annotations. This particular formulation 

supports cross-stage persistence by stating that the declaration level m of a variable's use need not 

be exactly the same as that of its use, n: a variable declared at an earlier stage can be used at a later 

stage. Changing the 5 into = would give a system without cross-stage persistence similar to that of 

A 0  [29], and would not fundamentally change our results. 

A t n r  ( x : A m ) € r  m s n  
Var 

A ; r F n x : A  

2. Constants: e ::= n I tt ( ff I . . . . The standard natural number constants, as well as Boolean constants 

are included in the language. Their typing rules are interesting: a Boolean or an integer constant has 

a sbool (or sint) type directly describing it: 

A tn m E { 0 , 1 , 2 , . . . )  
NatConst 

A ; r  kn m : (snat m) 

A tn r A tn r 
BoolTrue BoolFalse 

A; r t n  tt : (sbool True) A; r tn ff : (sbool False) 

3. Function and universal abstractions: 

Functions bind AH0variables, while type abstractions bind TL variables. There are, symmetrically, 

two application forms, one for functions, and the other for type abstractions. 

Unlike simply typed A-calculus, these rules have some important side conditions: 

The A-abstraction rule has a requirement that the explicit type A1 given to the variable is an 

OOtype. This is done by invoking the typing judgment of TL: Alnk A1 : O o .  

In the typing rule for the type abstraction, the type annotation is required to be of one of the 

sorts of TL: A ln t  B : s. The same condition is imposed by type application as well. 

Note that the type variable environment restriction Aln is used to convert the type environment 

A into a form that the typing judgment of TL can accept. 

AlnkAl : 00 A ; r , x : A Y  tn e :  A2 A ; r  tn e2 : A, 
Abs 

A; r tn (Ax : A1.e) : Al - A2 A ; r k n e l  e2:  A2 APP 



A , X : B n ; r t n  f : A  A, r kn e  : VsX : B.A2 
TAbs 

( A X :  B.  f )  : Q s X :  B . A  A ; r  kn e[A] : A2[X :=A] TAPP 

4. Existential expressions. Existential types are created using a (X = Al, e  : Ap) expressions with 

create an object of type 3 x . A ~ .  The corresponding elimination construct is open el as X ,  x  in ep 

which deconstructs existential objects. 

Typing rules for existential types are given below. Note that the same side conditions apply as for 

universal quantification. 

A; I 'kn  e : A [ X  :=Al]  A , X  : B n ; r , x :  A?[X1 :=XI  kn ep : Ap 
Pack Unpack 

A ; r t n ( X = A 1 , e : A ) : 3 , X : B . A  A; r kn (open el as X,  x in ep) : A2 

5. Fixpoint definitions 

The fixpoint construct allows for recursive definitions. The body of fix is syntactically restricted to 

function or type abstraction, since the language is intended to be call-by-value. 

. . 
Fix 

A ; r  kn (fixx : A. f )  : A  

6 .  Tuples. The tuple formation expression is the fairly standard (eo, . . . , en). 

e  ::= (eo, . . . , en) I sel [A] (el, ep) I . . . 

O < i < m . A ; r k n e i : A i  
Tuple 

A; r kn ( e ~ ,  . . . , em-1) :  UP m  (nth [Ao, . . . , Am-11) 

The elimination construct is a little less standard. It takes three arguments: 

1. The type A, which encodes the proof that the index being projected is less than the size of the tuple. 



2. The tuple expression itself. 

3. The index of the element of the tuple we are trying to project 

A; r kn el : (tup AS B) 

A; r tn e2 : snat A2 

AlnF A : LT A2A3 
Select 

A; r kn sel [A] (el,  e2) : (B  A2) 

4. Arithmetical expressions. Assorted arithmetical, comparison and other primitive operators are 

present wholesale as: 

@ : Nat -, Nat -+ Nat 8 : Nat -, Nat -t Bool 

A; r tn el : snat A1 A; r Fn el : snat Al 

A; r tn e2 : snat A2 A; tn e2 : snat A2 
Arith Arith2 

A; kn (elhez) : (snat (A1 @ A2)) A; Fn (el&,) : (sbool (Al 8 A2)) 

5. Conditional expressions. 

The conditionals are again rather less conventional. In addition to the discriminated boolean expres- 

sion e, it takes two type arguments A1 and A2, where A1 is a proposition over booleans at type level. 

The second one is the proof of Al A2. In each of the branches of the conditional a type variable is 

used to which the proof Al true (resp. Al false) is bound and thus available in the body of branch. 

A ln t  B : Bool -+ Kind AlnF A : (B AS) 

Cond 
A; r tn (if [B, A](e, Xl.el,  X2.e2)) : A2 

6. Explicit staging constructs. Brackets create a piece of code, while escapes splice in a piece of code 

into a larger code context: 

e ::= (e) I - e l  . . .  

A ; r  tnfl e :  A A ; r k n e : O A  
Bracket Escape 

A; r tn (e) : O A  A;  tn+l -e : A 



7. Finally there are assertlcast constructs that are used to constructldischarge equality proofs. 

e ::= assert el : A = ez : B I cast (el, B, ez) I . . . 

A; I? kn e l  : snat Al A ; I ' kn  e :  (IDA B)  

A; I? kn e2 : snat Az A; I? kn e2 : (snat A) 
Asrt ast A; I? kn assert el : Al = ez : A2 : (ID Al Az) A; I? In cast (el, B, el) : (snat B)' 

Figure 3.3 Typing restriction and type assignment promotion 

Oln = 
Aln,X : A m = n 

A,, : Amln = { 
A h  otherwise 

o+ = 0 
(A, X : An)+ = A+, X : An+' 

3.3 Semantics 

The semantics we shall consider here is the small step semantics (Definition 2 and Figure 3.5). The small 

step semantics depends on the notion of reductions (Definition 1) which relates valid redexes to their re- 

spective contractums. The small step semantics is expressed as a level-indexed family of relations between 

AHO terms (Definition 2) i.e., it describes the single-step call-by-value evaluation strategy, at a particular 

level, with respect to the notions of reduction. 

Definition 1 (Reductions) The notions of reduction in XHo are expressed by the relation -+ dejined in 

Figure 3.3. 

Definition 2 (Small-step semantics) The small step semantics of XHo is de$ned in Figure 3.5 as a rela- 
ey -+ eg 

tion - - c En x En. The rule is intended to omit the reduction " (vl) --+ vl, since the 
e: H e i  

levels are not correct for the redex. Rather; a separate rule is added to a. 

In terms of levels, the reduction relations can be divided into three groups: 



Figure 3.4 Type system of XHo 

A t n r  ( x : A m ) € r  m < n  A t n F O K  A t n r O K  A t n r O K  
A ; ~ P , : A  A; r Fn m : snat m A; !? tn tt : sbool True A, I' tn ff : sbool False 

Aln t  B : s Aln t  A : B 
A , X : B n ; r t n  f : A  A , r t n  e : V,X : B.A2 A ; r k n f l e : A  A ; r t n e : O A  

A; En (AX : B. f )  : V,X : B.A A; r tn e[A] : A2[X := A] A; r tn (e) : O A  A; r tn+l "e : A 

Aln t  A : B 
A; r t-" el : snat A1 Alnt  B : s 
A; r kn e2 : snat A2 A ; r t n  e :AIX:=A1]  

A ; r  t n  el @ e2 : snat ( ~ ~ 6 ~ 2 )  A ; r  tn (X = Al,e : A) : 3,X : B.A 

A, kn e : 3,X1 : B.Al A; r tn el : tup A3 B 
A l n t  A2 : A; I' kn e2 : snat A2 
A , X :  B;I ' ,x :A1[X1:= XI kn e2:Ap A l n t  A :  LTAz A3 

A; r kn open el as X, x in e2 : A2 X 'A A ; r t n s e l [ A ] ( e 1 , e 2 ) : B A 2  

Alnt  B : Boo1 + Kind A; r tn e : sbool A3 
Alnt  A : B As A , X l  : B t r u e ; r t e l  : A2 
Alnt  A2 : 00 A, XP : B false; r t- e2 : A2 O < i < r n . A , r t n e i : A i  

A; r tn if [B, A](e, Xl.el ,  X2 .e~)  : A2 A; I? tn ( e ~ ,  . . . , em-I) : tup m (nth [Ao, . . . , Am-1]) 

A ; r t n e : A 1  A1=A2 ~ l ~ t ~ 2 : C 2 ~  A ; r F n e l : s n a t A  A ; r F n e 2 : s n a t B  
A ; r t n e : A 2  A; r tn assert el : A = e2 : B : ID A B 

A; r tn cast (el, B,ez) : snat B 

0 
1. Most active reduction steps, such as beta and delta reductions, occur at level 0 (-). The rule for 

bracketed expressions forces the reduction of the expression inside the brackets to be reduced at a 

el IZ+t e2 
higher level: 

( e l )  (e2) 

1 
2. At level 1 (-), escapes are performed: 

"v l  A v l  . 
3. At level n > 2 expressions are simply rebuilt. Escaped expressions are reduced at a lower level, 

el F2  e2 

"en+l ?2+2 -ez ' 

Definition 3 (Termination) Let e E En be an  expression. 

n 1. Termination: e JJn iff 3v E Vn. e - v 
2. Non-termination: e qn @Vel.e I-% e' + 3e".e1 e". 



Figure 3.5 Small step semantics of XHo 

fn+l  n+l 
+-+ f;+ e? A e; .n+l e;+l n+l n+1 

1 - e z  
fixx : A. f?+l * fixx : A.  f F f l  ( X  = A l ,  e; : A2) +% ( X  = A l ,  e; : A*] (e"+l )  1-14, (,;+I) -,;+I z2 - e2 n+l 

ey  LA ey  .n+l =+: ,;+I 

open e; as X ,  x in eg 1-14, open e; as X ,  x in eg open as X ,  in e;+l open v,"+l as  X ,  in e;+l 

en +% ey  

if [ B ,  A ] ( e n ,  Xl .e; ,  X2.e;) 6 if [ B ,  A] (e ; ,  Xl .e; ,  Xz .eg)  

if [ B ,  ~ ] ( v ~ + l ,  Xl.e:+l, ~ z . e ; + ' )  * if [ B ,  A](++', X l . e ;+l ,  ~ ~ . ~ ; + l )  

,;+1 ,:+1 

if [ B ,  A ] ( v n + l ,  XI.V;+', X2.e;+') if [ B ,  A ] ( v n + l ,  x l . v ; f  l ,  x ~ . ~ ; +  1 )  

e? A e; e; A e; 

sel [A](e ; ,  e;)  sel [A](e ; ,  e g )  sel [ A ] ( v n ,  e;)  +% sel [ A ] ( v n ,  e;) 

f?+l f;+l en ern 

AX : ~ . f ; + '  * AX : B .  f;+l ( W E , .  . . ,WE,,  e n , .  . . , e;) (won , .  . . , u L l , e ' " ,  . . . , e;) 
e? A e;" e; A ein 

assert e;  : A = e; : B A assert ein : A = e;L : B assert v ;  : A = eg : B 6 assert v;  : A = ekn : B 
e; +% ein 

cast (e ; ,  B, e z )  Cast (ein,  B ,  e z )  

A Note on assert/cast The construct assert el : A = ez : B introduces a term of equality type 

ID A B provided that el and ez are A and B snats, respectively. The semantics of assert is perhaps 

the most difficult one to understand: there is only one form of assert value, assert v : A = v : B, 

i.e., only that where its argument values are equal. Otherwise, if the two values are not equal, the assert 

expression reduces to the non-terminating expression RID A B .  This is done in order to preserve the 

progress property, i.e., even if the asserted values are not equal, the system will not get stuck: rather failure 

of assertion is modeled by non-termination as embodied by the R term. (This should not be confused with 

the name of X H ~  types R O . )  

Similarly, the semantics of cast (el,  B, en) must first evaluate its first argument el (which is presumed 

to be an assert). Only if a value is obtained (i.e., assertion has not failed), the reduction rule simply 

eliminates the cast and proceeds to e2. 

31ncidentally, this is why the types must be canied with assert, in order to instantiate the R expression to the appropriate type. 



69 

Figure 3.6 Reductions of X H ~  

(Ax : A.eO) v0 -+ e0 [ x  : = vO] 
( A X  : B .  fO)[A]  -+ fOIX :=A]  
sel [Al]((v,O,. . . , v ; ) ,m)  -+ v ,  ifm < n 
open ( X I  = A l ,  v0 : A2) as X , x  in e0 -+ eOIX := A l ] [ x  := vO] 
(fix x  : A. f O )  v0 -+ fO[x  := f ixx : A.fO] v0 
( f i xx  : A. f0)[A2] -, fO[x  := f ixx : A.fO] [A2] 
m e n  -+ mBn 
if [B,A]( t t ,X l .e l ,xz .ez )  -t e l [ X 1  : = A ]  
i f  [B,  A](ff ,  X l .e i ,  T 2 . e ~ )  -+ ez[X2 := A] 
" ( v l )  -t v1 
assert v: : A = v,O : B -, SZID A ifvy # v,O 
cast (vO,  B ,  eO) -+ eO 

SZA r (fix f : () -, A.Xy : (). f y) () 

3.4 Properties of XHo 

In this section we will sketch out and develop the proof of the main technical result we report here, the type 

safety of RO (Theorem 1). For this proof, we adapt a standard syntactic techniques of Wright and Felleisen 

[143]. 

Theorem 1 (Type safety) If A; I'+ Fn en : A then e A* vn, and A, I?+ Fn v  : A, o r e  fi. 

PROOF. First, we establish the subject reduction property of the reductions of X H O  (Lemma 5). This can 

easily be generalized to the subject-reduction of the small-step reduction relation. Secondly, we establish 

the progress property of the small-step reduction relation (Lemma 1). Type safety property follows quite 

easily from these [143]. 

In proofs of critical lemmas, we shall need a property of TL (Remark 2) typing judgments observed by 

Shao&al. [ I  131.~ 

Remark 2 (Judgment normal forms [114]) Due to transitivity of conversion, any derivation of A; I? k n  

e : A can be converted into a normal form such that 

I .  The root node of the derivation is a CONV rule. 

2. Its first derivation ends with a rule other than CONK 

3. All of whose term derivations are in the normal form. 

4 ~ e  omit the proof (by transitivity of =o,, of TL and induction on the structure of typing judgments). 



Lemma 1 (Progress) ZfA; r+ Fn en : A, then en E Vn or 3e1.e - e' 

PROOF. Proof is by structural induction on the judgment e E En ,  and then by examination of cases on the 

typing judgment A; I'+ Fn en : A. We show some of the relevant cases. 

1 .  Variable case, en = x. There are two cases on n: 

(a) Case n = 0. If n = 0, then l ( A ;  r+ k0 x : A), since the levels of all variables in I'+ are 

greater than 0. 

(b) Case n > 0. Then, by definition of E Vn, x E Vn for all n > 0. 

2. Constant case, e E m, tt, f f .  This follows trivially, by definition of E Vn, since all the constants are 

already in Vn, for all n. 

3. Function abstraction case, e = Ax : A.e. Let us consider the normal form for the derivation 

A; r+ kn (Ax : A.e) : (A -+ A'). The derivation of A; F+ kn Ax : A.en : A' -+ A2 has a 

subderivation A; rf,  x : A:+' kn en : A3,where A3 = Az. By the inductive hypothesis there are 

again two possibilities: 

en Vn. Then, easily Ax : Al.en E Vn. 

3e'.en A el. Then, by definition of A, 3e1' = Ax : Al.el and e A e" 

4 .  Fixcase, e = fixx : A. fn.  

In the premise of the root of the derivation A; Fn (fix x : A. f n, : A must have been derived by 

the Fix rule, with the hypothesis A; I'+, x : An+' kn f : A2 (where A2 = A). We can apply the 

inductive hypothesis to this sub-derivation and have two possibilities: 

(a) f n  E Vn, from which it immediately follows by definition of Vn that fix x : A. f n  E Vn 

(b) 3e'. f n.  f 6 el, from which it follows by definition of that fix x : A. f n  fix x : A. f n. 

5 .  Code-bracket case, e = (en+ '). Then an antecedent of A; I'+ kn (en+' ) : O A  must have been 

A; r+ kn+' en+' : Al (where Al = A). We apply the inductive hypothesis, and examine two cases 

(a) en E Vn, then (en) E Vn by definition of Vn. 

(b) 3e'.en * e' Then, by definition of -, (en+') A (e"). 

6. Escape at level I ,  el = "eO. The type derivation looks as follows(in normal form): 

A; r+ Fo eO : OA1 
Esc Al = A  

A; r+ F1 "eO : Al 
A ; r +  k1 "eo : A 

CNV 



The induction hypothesis applies to the result of the conclusion of the subderivation D. There are 

two possibilities: 

(a) eO E V0 It is easily shown (by examination of cases and the type judgment rules) that the only 

value at level 0 that could have type OA1 is of the form (vl). Then, by definition of E V1, 

-(vl) E V1. 

0 1 (b) 3e'.e0 - e'. Then, by definition of A, "eO - "e'. 

7 .  Escape at higher level case, en+2 = -en+l. 

a - 

NV 
A; r+ tn+l e : galC ,,, 

A ; r +  Fnf2 - e :  A, A, = A  
A; r+ t n + 2  -, : A 

CNV 

We can apply the induction hypothesis to A; I'+ Fn+l e : ()Al. There are two possibilities now, 

(a) en+' E Vn+l. Then, by definition of Vnf2, -en+l E Vn+2 

n+l (b) 3e'.enf1 - e . Then, by definition of -, "en+ "el. 

8 .  The assert case, en = assert e';" : A = e; : B. The typing derivation can be put into following 

normal form 

91 2 

A; r+ tn ey : atCNV A; r+ t n  eg : 
A;r+Fn(asser te ; l . :A=e; :B): ( IDA'B')  A = A 1 r \ B = B 1  

ASSRT 

A; I?+ tn (assert ey : A = e; : B) : (ID A B) 
CNV 

D l  
Now, we can apply the induction hypothesis to subjudgments NV and 

A; r+ tn e; : 

9 2  
NV to obtain e';" E Vn V 3ei.e';" t--% e i  and e; E Vn V 3ei. - ez eb. A; r+ tn eg : B/' 

We examine the cases that arise one by one. 

(a) Case el E Vn and eg E Vn. If n > 0, then trivially assert e l  : A = e2 : B E Vn. Otherwise, 

if n = 0, there are two possibilities. First el = e2 in which case assert e l  : A = e2 : B E V0 

by definition. If they are not equal, however, there exists el' = RID A B to which assert el : 

A = e2 : B reduces. 

(b) Case el E Vn and 3ek .e~  A e',. Then by definition of A, 3e1' = assert el : A = e', : B 

such that assert el : A = e2 : B er'. 

(c) Case 3ei.el el and e2 E Vn. Then, as in previous case 3e1' = assert ei : A = e2 : B 

such that assert el : A = en : B A e". 



(d) Case 3ei.eY A e i  and 3ei. H ey A ei.  Then let el' be assert ei : A = e2 : B and by 

definition of 6, assert el : A = e2 : B A elf. 

9.  Cast case, en = Cast (ey, B, e;). This case is more interesting. The typing judgment for en can be 

put into the following normal form: 

A; I'+ tn e; : snat  A ' ~  * CAY 1 
A; r+ tn (cast (ey, B ,  eg)) : (snat B1) B = B1 

A; I'+ tn (cast (ey, B ,  e;)) : (snat B)  
CNV 

D l  
We can apply the induction hypothesis to subderivations 

A ; r +  En el : ID A1 B1 
and 

23 2 . We examine the cases that arise. 
A; r+ kn e; : snat A' 

(a) Case el E Vn and e:! E Vn. First, if n > 0, then trivially cast (el, B ,  ez) E Vn. Otherwise, if 

n = 0, then 3e1 = e:! such that by definition of reduction cast (el, B ,  ez) t-% el. 

(b) Case el E Vn and 3ef.ez A el. Then, same as above by definition of the reduction relation. 

n (c) Case 3ei .el A ei and ez E Vn. Then 3eI1 = cast (ei, B ,  ez) such that cast (el, B, e2) H 

el1 by definition of A. 

(d) Case 3ei .el +% ei and 3 e i . e ~  +-% e;. Similar as above case. 

Lemma 2 (Level Increment) IfA; I' En e : A, then A; r+ tn+' e : A. 

PROOF. Proof of Lemma 3.4 is by induction on height of type derivations of A; I? tn e : A. 

Lemma 3 (Substitution 1) IfA; r, x : Am, I" tn e : B and A; I?, I" tm ez : A, then A; r, r1 tn e[x := 

e2] : B. 

Lemma 4 (Substitution 2) If A, X : Bn; I' tn e : A1 and Al,tn A2 : B, then A; r [ X  := Az] tn e : 

A1 [X := A2]. 

PROOF. Proof of Lemma 3 is by induction on the type derivation. Also, Lemma 3.4 is used to prove the 

base case. 

Similarly, Lemma 4 is by induction on type derivations. 



Lemma 5 (Subject Reduction) Vn. $A, I'+ tn e : A and e -, e', then A, I'+ tn el : A. 

PROOF. Proof is by examination of cases of possible reductions e -+ el. 

1. Beta reduction, (Ax : A.eO) v0 -, eo [x := vO]. 

Consider the normal form of the typing judgment for the redex: 

D l  D2 
A , I ' t O ( A ~ : A . e O ) : A ~ A 1  A , I ' t o v O : A  

A, I? to (AX : A.eO) v0 : Al A1 = A2 APP 

A, I' I-0 (Ax : A.eO) v0 : A2 
CNV 

A,I'  to eO[x := vO] : A1 A1 = A2 
Applying substitution lemma 1, we have 

A,I '  to eO[x := vO] : A2 
CNV . 

2. (AX : A. f0)[A2] -+ f '[X := A2] The derivation for the redex can be put into following normal 
Dl 

A , X : A ; r ' k O  f 0 : B 2  Dz 
A , r  k0 (A,X : A. f O )  : V,X : A.Bz A , r  F n  Az : A  

A;  r F o  (AX : A. f 0 ) [ A 2 ]  : B2[X := Az] S*PP 
form: 

A ;  r ko (AX : A. f O ) [ A z ]  : B[X := Az] 
CONV 

Applying the substitution lemma (Lemma 4) we obtain A, I'[X := A] kn f O[X := A] : B2 [X := 

A]. But then, A,I '[X := A] I-" fOIX := A] : B [ X  := A], since B = Bz. 

Since A, I' to (A,X : A. fO)  : VsX : A.B2, then and T is well formed, then we must conclude 

that X $! FV(I ' ) ,  and so the substitution I'[X := A] = I'. Then, from this we easily conclude that 

A;I '  t f [X := A] : B[X := A]. 

The proof of this case is essentially unchanged from the proof in 11141. The type derivation of the 

redex can be put into the following normal form: 
'D 

Vi < m. t vi : A: i E 
A ; r +  I-C:tupnAy A; I'+ t mn : snat m 3 

A; I?+ t (a) : tupA2 A" A; I'+ tn m : snat A1 A; I?+ tn A' : LT A1 A2 
A; I'+ tn sel[At] ((vo, . . . , v,), m) : A1IA1 A"A1 = A 

A; r-t Fn sel[A1]((vo, . . . v,), m) : A 
Here, A =p,, A" A1,AY = A", and A1 = m. By examining the reduction, we have m < n. The 

redex reduces to the value v,. A; m = A, and A; I'+ kn Dm : A; m, we obtain A; rf Fn v, : A. 

4. open (Y = Al,vO : A2) as X, x in e0 -+ eOIX := Al][x := vO] (check) 

The derivation of the redex term (taking into consideration conversion and normal form) [e.p. too 

large to fit in here]: IF, A; I' to open (Y = AI, v0 : A2) as X ,  x in e0 : C,  then 



Applying the substitution lemma for types to 4, we obtain: 

A; ( r ,  x : A2[Y := X])[X := All to e O [ x  := All : C[X := All 

Since AloF C : 520, it can be easily shown that X @ FV(C).  Thus the above expression can be 

simplified to (by definition of substitution): 

Now, we apply the substitution lemma for terms (using the fact of 4) to obtain the typing from the 

contractum: 

A; r k0 e[X := Al][x := vO] : C 

5. (fixx : A. fO)  v0 -+ fO[x := fixx : A. f O ]  v0 By substitution lemma for terms. 

6. (fix x : A. f O )  [A2] 4 f '[x := fix x : A. f O] [A2] By substitution lemma for types. 

7 .  m @ n - + m s n  
2, 

A ; r  ko i @ j : snat ibj 

By the adequacy of TL representation of arithmetic ([I 141,Lemma 1) it easily follows A; r k0 i85j : 

snat ihj. 

8. if [B, A] (tt, X l  .ey , X2.ey) -+ e: [XI := A] (proven in the paper[ll3]. same proof) 

9. if [B, A](ff, Xl.ey, X2.e:) -+ e![X2 := A] (proven in the paper[ll3]. same proof) 

10. " (vl) -+ v1 The type derivation for the redex " (vl) can be put into the following normal form: 

A ; r F 1 v 1 : A 3  Br A z = A 3  
A ;  r Fo (vl) : OA3 

CNV 
A; r to ( ~ 1 )  : OAZ 

Esc A2 = A  
A; r t1 es(vl)  : A2 

CNV 
A ; r  t1 -(vl)  : A  

A ; r F 1 v 1 : A 3  Br A z = A 3  
A; r FO ( v ~ )  : OA3 

CNV 
A;  r to ( ~ 1 )  : OA2 Esc 



Immediately, from the conclusion of subderivation D it follows that 

D 
NV A3 = A2 

A; r t-n v 1  : ~3' 
CNV A2 = A  air kn v1  : AZ CNV a;r t-1 ~ 1  : A  

11. Reduction assert v: : A = v! : B -+ R I D  A B if vl # v2. Immediately, we can construct a 

derivation of ID A B for R I D  A B as follows: 

FIX 
A; r I- ( f ix  f : () -+ ID A B.Xy : ().f y )  : () -+ ID A B A ; w ) : ( ) m p  

A; r t (f ix  f : () -+ ID A B.Xy : (). f y )  () 

12. The case of the reduction cast (vO, B, eO) -4 e0 is the most interesting one. The normal form of the 

derivation for the subject term is as follows: 

A ; r  ko el : ID A B A ; r  t-O ea : snat A NV 
A; r to cast (v ,  B ,  e) : (snat B )  

We must show that A; r k0 e : snatB. At first, this would seem very difficult because we have no 

proof that A reduces to B. However, since v is a value of type ID A B,  its first argument must have 

been of type snatB. 

Now, by adequacy on equality of values, we know that Vvl : snat A. Vvz : snat B. vl = v2 + 
A =p,, B Then it is possible to use CNV to construct the derivation A; r to e : snat B. 

Lemma 6 (Subject reduction (H)) V n  E N. A, r+ tn e : A and e  e', then A; kn e' : A. 

PROOF. Proof follows easily from Lemma 5 and induction on the height of derivations of a. 

3.5 Conclusion 

In this section we have presented a calculus that combines type theoretic features such as singleton types 

and equality assertions with staging. While this language is not identical with Meta-D, we conjecture that 

its extension to full Meta-D features is possible (though quite tedious in practice). However, having proved 

type safety of such a language we have, in principle, showed that it is plausible to combine a form of 

dependent typing and staging in a programming language. 



Furthermore, we believe that the route we took in our examination of X H o  could have important practical 

benefits. Namely, since XHO is defined as one of the computational languages in the FLINT framework, it 

should, in principle, be possible to use any future FLINT implementation to provide a general infrastructure 

for the implementation of programming languages with features similar to XHo . We have not experimented 

with adding XHo to the FLINT compiler, but we consider it an interesting direction for future work. 
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Chapter 4 

Equality Proofs 

4.1 Introduction 

In Chapter 2 we have explored the practice of heterogeneous meta-programming with dependent types. 

In this chapter we shall develop the ideas presented earlier in a different setting: we will show that a 

heterogeneous meta-programming framework can be implemented in a functional language with higher- 

rank polymorphism. The meta-language under consideration is strikingly similar to current dialects of 

Haskell, but with a few key extensions. 

Outline of this chapter. This chapter is organized as follows. First, we describe a technique for imple- 

menting equality proofs between types in Haskell-like languages (Section 4.2). Then we illustrate how 

equality proofs can be used to encode domain values, and predicates in Haskell's type system. We develop 

an example that defines arithmetic operators on natural number domain values, and encodes a couple of 

interesting predicates over over natural numbers (Section 4.3). 

4.2 Type Equality 

One can view a language such as Haskell from the perspective of the Curry-Howard 160,451 isomorphism: 

types are proposition in a logical language (where types are formulas); programs that inhabit particular 

types are proofs of the propositions that correspond to their types. For example, the function Ax : Int. x is 

the proof of the rather simple, tautological proposition Int -+ Int. Of course, since Haskell allows us to write 

non-terminating programs, every type is inhabited by the non-terminating computation. This means that 

the Haskell types, viewed as a logical system, is unsound; thus, when encoding a proposition as a Haskell 

type we should keep in mind that in order to preserve soundness, we must ensure that no non-termination 

is introduced. 



In this section, we focus on one such kind of proposition, that of equality between types. The first key idea 

of this approach is to encode equality between types as a Haskell type constructor. Figure 4.1 implements 

an encoding of such an equality. Thus, in Haskell, we can define a type constructor Equal : * + * -+ *, 

which states that two types are equal 

data Equal a b  = Equal (Vp. (cp  a )  -+ (cp b ) )  

c a s t  : : Equal a b+  (cp a )  4 (cp b)  

c a s t  (Equal f) = f 

This rather elegant trick of encoding the equality between types a and b as a polymorphic function 

Vcp.(p a)  -+ (cp b) has been proposed by Baars and Swierstra [4], and described earlier in a somewhat 

different setting by Weirich [141]. The logical intuition behind this definition (also known as Leibniz 

equality [96]) is that two types/propositions are equal if, and only if, they are interchangeable in any context. 

This context is represented by the arbitrary Haskell type-constructor p. Another explanation, elaborated 

in [4], is that since cp is universally quantified, the function with type p a -+ cp b cannot assume anything 

about the structure of cp, and so the only terminating function with type cp a 4 cp b is the identity function. 

Given a proof of (Equal a b )  , we can easily construct functions a2b : : Equal a b  -+ a 4 b and 

b2 a : : Equal a b  + b  4 a which allow us to "cast" between the two types. These casting operations 

act as elimination constructs on equality types. In addition to casting, we define a number of equality proof 

combinators that allow us to build new equality proofs from already existing ones. 

The general overview with type signatures of these combinators is given Figure 4.1. One can see these 

combinators as operations on an abstract data-type: more complex equality proofs can be derived from 

simpler ones algebraically through the use of these combinators. 

4.2.1 Proof examples 

We now give a small example of how equality combinators can be used in constructing new proofs of 

equality out of old ones. A simple theorem that can be derived about equality can be stated as follows: For 

anya, bandc, $ a =  bthen$a=c,  thenb=c. 

We can show the proof in natural deduction style. The leaves of the tree are discharged assumptions pl 

and p2. Using symmetry (for historical reasons called Sym), and then transitivity on the two premises of 

the root, we derive Equal b c. 

[pl : Equal a b] 
(Sym) [p2 : Equal a c] Equal b a (Trans) 
Equal b c 



The same proof can be illustrated by a diagram below. The dotted lines (e.g., a 4 b ) represent 

the premises, where pl :: Equal a b. Equality lines ( b ) represent derived equalities, where 

e :: Equal b c. 

C 

How do we prove this theorem in Haskell? As we view Haskell types as propositions, we will first state 

the above theorem formally as a Haskell type. Under this scheme, the equality a = b becomes the type 

(Equal a b )  . Implication is simply the Haskell arrow type. 

Equals a b+Equals  a c-+Equals b c 

Proving this theorem now becomes simply constructing a (terminating) Haskell function that has the 

above type. We shall call the function theorem0, and give its definition below: 

theorem0 : :  Equals a b-+Equals a c-+Equals b c 

theorem0 p l  p2 = sym p l  <> p2 

We now show another proposition and its proof. The proposition is: If a = b and c = d, then (a -+ c) = 

( b  -+ d).  

In programming, as we will see, the proofs are most frequently used to cast between types that can be 

proved equal. Consider the following example. Suppose that we have a function f 1 of type a -+ c, but we 

need a function of type b -, d. Fortunately, we can prove that type a equals b and c equals d. 

This leads us to state another theorem: 

Equal a b-+Equal c d-+ ( a - + c )  -+ (b -+d)  

The proof of this proposition is the function theoreml which is defined as follows: 

theoreml : :  Equal a b - + ~ q u a l  c d +  (a-+c) -+ (b-+d) 

theoreml p l  p2 f = a2b (subTab p l  p2) f 

-- p l  :: Equal a b 

-- p2 : :  Equal c d 

-- subTab p l  p2 : : Equal ( a  -+ c )  (b-+d) 

-- a2b (subTab p l  p2) : :  ( a - + c )  --t (b-d)  

We start the proof with two premises: 



p l  : :  Equal a  b 

p2 : :  Equal c  d  

Then, we use the combinator (see Figure 4.1) 

subTab : :  Equal a  b-+Equal c d+Equal ( f  a  c )  ( f  b  d)  

with the premises to obtain the equality proof Equal ( a  --t c )  ( b  -+ d)  . The casting operator a2b is 

then used with this combinator to obtain ( a  -+ c  ) --t (b --+ d)  . 

4.2.2 Implementing Equality Proof Combinators 

In Figure 4.1 we show a number of functions that manipulate proofs of type equalities. They can roughly 

be divided into three groups: 

1. Proof construction combinators. The types of these combinators correspond to standard properties of 

equality: reflexivity, symmetry, transitivity and congruence. 

2. Casting operators. These functions act as elimination rules for equality. The majority of these op- 

erators use the proof that types a  and b  are equal to cast from the type F [ a ]  to F [bl , where F is 

some type context. In the Calculus of Constructions (and similar type theories) this context F can 

be described as a function F : * ->*, and equality elimination can be given a single type such as 

( f : * - - t* ) -+ (Equa l  a  b ) - + ( f  a ) + ( £  b). InHaskell,however,wearenotallowedto 

write such arbitrary functions over types, and have to implement a separate combinator for every 

possible context F [ -1 . 

3. Axioms. The axioms allow us to manipulate proofs of equalities of compound types (e.g., pairs) to 

derive proofs of equalities their constituent parts. 

Proof construction 

Here, we describe the implementation for each of the combinators that are used to construct equality proofs. 

We will give definitions of the combinators whose types are listed in Figure 4.1 and comment on the 

implementation of each one of them. The set of proofs presented below is not complete, even though it 

seems to be sufficient in practice. New theorems may need to be derived either algebraically by using the 

existing set of combinators, or, if that proves difficult, by applying the techniques for implementing proof 

combinators outlined below. 

The simplest of the proof combinators is the reflexivity proof ref 1. 



Figure 4.1 Representing type equality in Haskell 

data Equal a  b  = Equal (vcp. (cp  a )  -+ (cp b ) )  
cast  : :  (Equal a  b) + t  a + t  b  
cas t  (Equal f )  = f 

-- Algebra for constructing proofs 
-- Reflexivity 
r e f l  : : Equal a  a  
-- Transitivity 
t rans  : :  Equal a  b t E q u a l  b  c t E q u a l  a  c  
-- Symmetry 
SYm : :  Equal a  b4Equal  b  a  
- - Congruence 
subTa : : Equal a  b 4  Equal ( f  a )  ( f  b) 
subTab : :  Equal a  b4Equal  c  d-+Equal (f  a  c )  ( f  b  d)  

-- Casting functions 
b2a : :  Equal a b-+b-+a 
a2b : :  Equal a  b 4 a - b  
castTa : :  Equal a  b-+c a  --t c  b  
castTa- : :  Equal a  b t c  a  d-+c b  d  
castTab : :  Equal a1 a2-+Equal b l  b2 t f  a1 b l - + f  a2 b2 
castTa- : :  Equal a b - + c  a  d  e + c  b  d e  
-- Equality Axitnns 
pairpar ts  : : Equal ( a ,  b) ( c ,  d) + (Equal a  c ,  Equal b  d) 

I -- re f lex iv i ty  

2 r e f l  : : Equal a  a 

3 ref 1 = Equal i d  

Although this proof seems trivial, it is often quite useful in programming with equality proofs, as 

many combinators are derived by manipulating ref 1 (see below). 

a Transitivity of equality is implemented by the combinator trans. 

-- t r a n s i t i v i t y  

t rans  : :  Equal a  b--+Equal b  c-+Equal a  c  

t rans  x  y = Equal (cas t  y . cast  x)  

inf ix1 c> 

X <> y = t rans  x y  

The function trans takes two equality proofs, x : : Equal a  b  and y : : Equal b  c, and applies 

cas t  to them. This results in two functions, 



cast x :: Vcp.cp a+cp b 

casty : :  Vcp.cp b+cp c 

One should note that both of these functions, by definition of Equal, must be identity functions 

(instantiated at their particular types), since they are polymorphic in p. The composition of these 

functions yields another function which is polymorphic in type constructor cp (and therefore must be 

an identity function): 

cast y . cast x :: Vcp.cp a+cp c 

This function can then be wrapped in Equal obtaining a proof object of type Equal a c. 

We shall often write the transitivity combinator as in infix operator (<>), taking two equality 

proofspl : : Equal a b, and p2 : : Equal b c, andproducingaproofof Equal a c: 

Symmetry is implemented by the combinator sym. This combinator has the simple definition we 

give below, following the development of [4]: 

newtype Flip f a b = Flip (un~lip : :  f b a) 

sym : : Equal a b--+Equal b a 

sym p = unFlip (cast p (Flip refl)) 

The function sym implements the proof that equality is symmetric: given a proof that Equal a b, 

it constructs the proof that Equal b a. To implement sym, we use an auxiliary data-type Flip. In 

function sym, we first start with the proof ref 1 (that equality is reflexive) which has type (Equal 

a a). We then apply the constructor Flip to ref 1 to get a value of type ( (Flip Equal 

a ) a) . Recall that the expression ( cast p ) has the type Vp.cp a  -+ cp b. In particular, cp can 

be instantiated to (Flip Equal a). Thus, when cast p is applied to (Flip refl) , we get 

a value of type ( (Flip Equal a) b). Finally, we apply unFlip to it to obtain a proof of 

Equal b a. We can illustrate this diagrammatically: 

Flip -1 Equal a a  - (Flip Equal a )  a  
''. .., sym p 

'A 

Equal b a  %&Flip Equal a )  b 



Resorting to this auxiliary data-type (Flip) definition is necessary, because Haskell's type system 

cannot correctly infer the appropriate instantiation of the higher-order type constructor cp. 

The combinator subTa : : Equal a b + Equal ( f a) ( f b) (Figure 4.1, line 13) constructs 

a proof that equality is congruent with respect to application (unary) Haskell type constructors. 

newtype C f a x = C {un~ : :  Equal (f a) (f x)) 

subTa : :  Equal a b -> Equal (f a) (f b) 

subTa p = unC (cast p (C ref11 

We start with the premise p : : Equal a b. Next, we apply the constructor C to a reflexivity proof 

ref 1, resulting in a value of type (C f a) a. The expression cast p is applied to this value, 

obtaining (C f a ) b. Finally, unC projects a proof of type Equal ( f a) ( f b) from this 

value. Diagrammatically, this looks as follows: 

C Equal a a - (C f a) a 
",.. ..., subTa p 

'.. . 1 cast p 

''A 

Equal (fa) (f b )  u~ (C f a) b 

The function subTab is an instance of congruence of type equality, generalized to binary type con- 

structors. 

newtype C2 f a b x y = C2 { unC2 : :  Equal (f a b) ( f  x y )  ) 

subTab : :  Equal a b -> Equal c d -> Equal (f a c) (f b d) 

subTab pl p2 = unC2 (castTab pl p2 (C2 refl)) 

It relies on the function castTab: : Equal a b 4 Equal c d+ ( f a c) 4 ( f b d) 

(Figure 4.1, line 21) whose definition will be given below. First we obtain an expression 

of type (C2 f a b) a b by applying the constructor C2 to ref 1. Then, we apply the 

function castTab pl p2 to C2 ref 1. The result has the type (C2 f a b) c d. Fi- 

nally, projecting from C2 by applying unC2 produces a proof of the desired proposition 

Equal (f a b) ( f  b d). 



It is worth noting that subTab and subTa are very similar. In subTab, the auxiliary data-type C2 

plays the same role as the auxiliary data-type C in subTa. In fact, their definitions are also similar, 

except that C2  works on a binary type constructor f .  

Similarly, subTa uses cas t  : : Equal a b + f a --+ f b, while the definition of 

subTab uses castTab, which is merely a generalization of cas t  to a binary type constructor 

f .  

pl : Equal a b C2 Equal a a - (C2 f a c) a c 

.... subTab pl p2 I castTab pl p2 

'A 

Equal(f  a c )  (f b d ) u f i c ( C 2  f a c )  bd 

Casting operations 

Casting operators are elimination rules for equality proofs Equal. 

The simplest of these, a2b and b2a take proof of type Equal a b and return a function that 

converts from a to b (and back, respectively). 

newtype Id  x = Id { unId :: x) 

a2b : :  Equal a b+a--tb 

a2b p x = unId (cast  p ( I d  x)) 

b2a : :  Equal a b + b + a  

b2a = a2b . sym 

The construction of a2b follows a familiar pattern. First, we inject the argument x of type a into 

the auxiliary (identity) type constructor Id. Then, we apply cast  p to obtain Id  b. Finally, we 

project using unId to obtain a b object. To define b2a we simply invert the proof object and apply 

a2b. 

Id SY In 
a-Ida Equal a b - Equal b a 

- .  
b-a  



The function castTa- is a form of casting-congruence. 

castTa- : :  Equal a b - + c  a d-+c b d 

castTa-p x = unFlip (cast p) (Flip x) 

Starting with a proof p: Equal a b and a value x of type f a y, we first apply Flip to x, 

obtaining a value of type (Flip f y  a. Then, we apply cast p, obtaining (Flip f y )  b. 

Finally, we apply unFlip to get f y  b. 

Flip 
f a Y - (Flip f Y) a 

I 
I castTa- p Imp 
Y 

a The function castTab is simply the composition of functions castTa- and cast. 

castTab :: Equal a1 a2 -> Equal bl b2 -> f a1 bl -> f a2 b2 
castTab pl p2 = castTa- pl . cast p2 

Starting with an argument of type f a1 bl, castTa- pl transforms it into f a2 bl. Then, 
cast pz cast p2 finally returns f a2 b2: f 

b l c ! ( f  a 2 )  bl - (f a 2 )  b2 . 

The function castTa further generalizes casting to ternary type constructors. 

newtype Flip3 f a b c = Flip3 (un~lip3 : :  f b c a) 

castTa- :: Equal a b -> c a x y  -> c b x y 
castTa- p x = unFlip3 (castTa- p (Flip3 x)) 

A Note On Strategies for Implementing Equality Operations 

From the previous examples, we can observe a more general pattern of programming with equality proofs 

and deriving equality combinators. UsuaIly, one starts with some equality proof p of type Equal a b, 

and the goal is to produce a function that transforms some other type (R [a] ) to type R [b] .' 
For example, if we have a type Int -+ Bool and an equality type Equal c Bool, one should be 

able to derive the type Int -+ c from it. Haskell's type checker, however, is not designed to make this 

conclusion automatically. Instead, the programmer must devise a type constructor R, so that applying R 

to ~ o o l  produces the type ( Int --+ Bool ) and applying R to c to produce ( Int -+ c ) . Then, casting 

'The can be thought of as a type R context with one hole. 



operations on (i.e., castTa) that type constructor allow the programmer to derive R c, from R Bool, 

which is the same as Int -+ c. 

More generally, the implementation of many equality combinators usually proceeds as follows: the first 

step is to take apart the proof p using the cast  combinator to obtain a function f of type Vcp. cp a -+ cp b. 

Note that the polymorphic variable cp can then be instantiated to any unary type constructor. The next step 

is to define an auxiliary (n + 1)-ary type constructor T. 

The type constructor T is a function of the context R in which we want to substitute b for a. Then, a value 

of type (T tl . . . t,) a is created. When the function f is applied to this value, cp becomes instantiated to 

T t l  . . . t,, and the result is of type (T t l  . . . tn)  b. Finally, the function unT is used to project the desired 

final result in which a has been replaced by b. We can show this pattern diagrammatically: 

Axioms 

A number of "equality axioms" are also postulated. The axiom most commonly used in the examples that 

follow is pairparts: 

pairparts : : Equal (a, b) (c, d )  -+ (Equal a c, ~ q u a l  b d )  

pairparts = --  primitive 

These axioms specify how Haskell type constructors (e.g., products, sums, and so on) behave with respect 

to equality. The pairparts axiom allows us to conclude that if two products are equal, then so are their 

constituent parts. 

It has been argued that axioms such as pairparts cannot be defined in Haskell itself [19]. In our 

framework, they are introduced as primitive constants. We conjecture that this does not compromise the 

consistency of the overall Haskell type system, but we can offer no proof at this time. In practical terms, 

one possible implementation2 of pairparts would be 

2 ~ e r e  unsaf eCast is the function with the type a -+ b. Strictly speaking, this function should not exist in standard Haskell, but 
it can be written in most Haskell implementations using a well-known "unsafe 10 reference trick." 



pairparts : :  Equal (a,b) (c,d) + (Equal a c, Equal b d) 

pairparts (Equal f) = (Equal (unsafecast f), Equal (unsafecast f)) 

4.3 Proofs and Runtime Representations in Haskell 

How do we use equality proofs? In this section, we will illustrate this by developing a small implementation 

of operations on natural numbers. Natural numbers are defined inductively as the least set closed under the 

rules: 

The type of natural numbers in a functional language can be thought of as a logical proposition. This 

type is inhabited by an infinite number of distinct proofs, each of which can be identified with a particular 

natural number. For example, the Haskell data-type Nat is such a type: 

data Nat = Zero 1 Succ Nat 

Note that each expressions of type Nat is an equally valid proof of this proposition. For example, 

Zero : Nat, butalso Succ Zero : Nat. 

As we have seen, individual natural numbers cannot be distinguished from one another at the level of 

types. There are, however, interesting properties of individual natural numbers that can be useful in types. 

For example, we might want to know that the type of an array indexing function takes an index which is 

provably less than the size of the array. If this property can be specified and proved statically in the type 

system, then we can dispense with runtime array bounds checking without compromising safety of the 

program. 

To make assertions about particular natural numbers in types, e.g., asserting their equality, we need first 

to represent natural numbers at the level of types, where each natural number corresponds to some type. 

Thus, we define the following two data-types 

data Z = Z 

newtype S x = S x 

The type Z has one constructor, also named Z, and represents the natural number zero. The successor 

operation is represent by the type constructor S : * -+ *. The intended meaning is that the expression 

S ( S Z ) : S ( S z ) represents the natural number 2 at the type level. 

One should note at this point, that the two types Z and S are not by themselves enough to encode natural 

numbers at type level. In fact, we could refer to them as pre-numbers: one could apply type constructor S 



to any Haskell type. Thus, S "Xu : ( S  String) clearly does not represent a natural number. How can 

we enforce the requirement that the naturals are well-formed? 

The solution is to use equality types to define a Haskell type constructor corresponding to the inductive 

judgment n E N .  

data IsNat n = IsZero (~qual n Z) 

I Va. IsSucc (IsNat a) 
(Equal n ( S  a ) )  1 

The data-type I sNat : * -+ * is just such a type constructor: we read IsNat n as n E  M. In defining the 

data-type IsNat, we define a data-constructor for every derivation rule of the inductive judgment n E N .  

Thus, inhabitants of I sNat n act as proofs that n E N: for every derivation of the judgment n E N ,  there 

is a value of type I sNa t n3. 

1. The constructor IsZero implements the base case of the proof of the judgment n E N ,  - It 
z E N' 

takes as its single argument a proof that the argument type is equal to Z. 

n € N  
2. The constructor IsSucc is the inductive step - as its first argument it takes the proof of the 

s ~ E N '  
antecedent judgment IsNat a. Its second argument is the proof that n equals to the successor of 

this 0, where cu is some existentially quantified type representing a natural number. 

Smart Constructors. Recall that the type constructor I sNat has one argument, a type representing the 

natural number n, such that IsNat n means that n E N. We shall call this type argument the index of 

IsNat. 

In the definition of the inductive judgment n E N, we use pattern matching to specify the shape of the 

index. For example, the base case rule forces the index to be zero: - In HaskeIl data-types, however, 
z E N'  

we cannot pattern match on the index. Rather, we use equality proofs as additional premises to force a 

particular "shape" on the index type argument. 

Hence, Haskell gives the constructor IsZero the type Equal n Z --t IsNat n. When IsZero is 

applied to refl : : Equal a a, the type variable a is unified with Z, obtaining the typing: 

IsNat refl :: IsNat Z 

This pattern is captured by the value z and function s whose definition is given below: 

3 ~ i t h  the usual caveat that such values do not contain non-terminating computations. 



z : : IsNat Z 

z = IsZero refl 

s : : IsNat n-+IsNat ( S  n) 

s n = IsSucc n refl 

The functions z and s are called "smart constructors," since they correspond to the data constructors of 

IsNat, but also do some useful work. Note that the type of z : : IsNat Z corresponds now exactly to the 

judgment form - z E N' 
Similarly, the constructor IsSucc has the type IsNat m-+ Equal b (S n) -+ IsNat b. The 

smart constructor s takes an argument of type IsNat n. Then, it applies the constructor IsSucc to it, 

obtaining 

IsSucc n : :  Equal b (S n)-+IsNat b 

Finally, the resulting function is applied to ref 1. This forces the type variable b to be unified with S n, 

obtaining the result of type S n. 

Note the use of existential types in defining constructors. Existential quantification and equality do not 

n E N 
appear in the rule ---- However, the type of the smart constructor s : : IsNat n -+ IsNat ( S n) 

s ~ E N '  
n E N  

again directly corresponds to the judgment - 
s ~ E N '  

Runtime values. Another thing to note is that there is a one-to-one correspondence between natural num- 

bers (at the value level) and elements of the data-type I sNat. The isomorphism is easily constructed by in- 

duction over natural numbers and judgments of n E N .  For example, the expression s z : I sNat ( S Z ) 

is the only (if we ignore the bottom element in Haskell semantics) element of the type IsNat (S Z )  . 

This property is quite useful, since it implies that we can use the values of type IsNat n to represent indi- 

vidual natural numbers as runtime values, as well as proofs that a particular type n is a representation of a 

natural number. 

The IsNat type also bears a strong resemblance to the notion of singleton types [114, 581. In the 

FLINT [I  12, 1 141 compiler framework, a data-type for natural numbers (for example) is represented at the 

level of kinds, as an inductive kind Nat. This kind classifies a set of types {0,1,2,. . . ). However, there is 

also a type snat : Nat -+ *, which classifies runtime natural numbers . Each runtime natural number 

value f i  has the type snat n. The typing rules in such a system might look like: 

A t n : Nat A,r t el : snat m A,r I- ea : snat n 
Literal) (Plus) 

A, l? k f i  : (snat n)( A, I? k e14e2 : (snat(m + n))  



In our implementation, type constructors S and z play the role of natural numbers at the type level; the 

type constructor IsNat plays the role of snat, values of types IsNat Z, IsNat (S Z) , and so on, 

play the role of runtime naturals. The only difference with FLINT is that there is no way to represent 

the inductive kind N a t  itself - the well-formedness of naturals at the type level must be enforced by the 

inductive definition of I sNa t. 

Predicates 

IsOdd and IsEven are two mutually inductive predicates on natural numbers, defined as the least rela- 

tions that satisfy the rules: 

lsOdd n IsEven n 

IsEven z IsEven (s n)  lsOdd (s n) 

Here, we will show how those predicates can be encoded using equality types in HaskelL4 First, for 

clarification, let us tentatively assign a "type" to these predicates. In a dependently typed system such as 

Coq [43, for the same example], predicates IsOdd and IsEven would be given a type: 

~sOdd, IsEven : (n : nat) +Prop 

In our Haskell encoding, we collapse this distinction: both naturals and propositions are types of kind *. 
Thus, we define two type constructors IsEven and IsEven which have the kind * --+ *: 

data IsEven t = Z-Even (Equal t Z) 

I Vn. S-Even (Oddn) (Equal t (S n)) 

data IsOdd t = n .  S-Odd (Even n) (Equal t (S n)) 

We also define the corresponding "smart constructors" which allow us to easily build proofs of these 

predicates: 

z-even :: Even Z 

z-even = Z-Even refl 

s-even : : IsOdd n 4 IsEven ( S n) 

s-even x = S-Even x refl 

4 ~ h i l e  we shall refer to the language as "Haskell," it is important to remember that we use more features than available in Haskell 
98 [641 (higher rank polymorphism, existential types, and so on). All of these features are available in the most popular Haskell 
implementations. 



s-odd :: IsEven n-+IsOdd ( S  n) 

s-odd x = S-Odd x ref1 

The first example we present is the function odd0rEven. This function proves the property of natural 

numbers that V n  E W.lsEven n V Isodd n. 

The disjunction of two propositions is represented using Haskell's Either data-type: 

data Either a b = Left a ( Right b 

In the implementation below, we will represent the proposition (IsEven n) V (IsOdd n) by auxiliary 

data-type I sOddOrEven : : * -+ * . 

This is not strictly necessary, but it enables us to express the desired property of being odd or even as 

an application of a unary type constructor. This, in turn, makes the implementation less verbose, since 

the equality proof and casting combinators are more concise when working with unary constructors. We 

examine the function oddOrEven in more detail: 

newtype IsOddOrEven n = OE (Either (IsOdd n) (IsEven n)) 

1 = OE . Left 
r = OE . Right 

oddOrEven : :  IsNat n --+ IsOddOrEven n 

oddOrEven (Iszero p) = castTa (sym p) (r z-even) 
oddOrEven (IsSucc n p) = 

case oddOrEven n of 
OE (Leftop)-+castTa (symp) (r (s-evenop)) 

OE (Right op+castTa (sym p) (1 (s-odd op)) 

Line 7 is the base case of this function: 

oddOrEven (Iszero p)  = castTa (sym p) (r z-even) 

-- P : :  Equal n Z 
- - r z-even :: IsOddOrEven Z 

-- castTa (sym p) (r z-even) :: IsOddOrEven n 

If a runtime representation of the natural number is given, then we construct a base case for 



even number: the expression ( r z-even) has type ( IsOddOrEven Z ) ; then, the proof ( sym p) 

: : Equal Z n is then used to cast back to ( IsOddOrEven n) . 

Similarly, in the inductive step (lines lo and I , ) ,  first construct a proof recursively, and then, depending on 

whether the recursive proof is odd or even, construct the next even or odd proof, respectively. 

oddOrEven (IsSucc n p) = 

case oddOrEven n of 
OE (Left op)--1 castTa (sym p) (r (s-even op)) 

OE (Right op)-+ castTa (sym p) (1 (s-odd op)) 

A similar and important function is one that constructs the proof of equality between two naturals. This 

function is an instance of a common pattern in programming with equality proofs: two values whose 

types are judgments indexed by types a and b are compared structurally to possibly obtain a result of 

type Equal a b (hence the Maybe type in the range of equalNat). This is, in effect, a runtime check 

which allows us to convert between types a and b. 

equalNats : : IsNat a-+IsNat b--+Maybe (Equal a b) 

equalNats (IsZero pl) (IsZero p2) = return ( p l  <> (sym p2)) 

-- pl : :  Equal a Z 

-- p2 : : Equal b Z 

-- pl <> (sym p2) : :  Equal a b 
equalNats (IsSucc nl pl) (IsSucc n2 p2) = 

{ p3 <- equalNats nl n2 
; return (pl <> (subTa p3) <> (sym p2) } 

-- pl : :  Equal a (S -1) 
-- p2 : : Equal b (S -2 ) 
-- p3 : :  Equal -1 -2 

-- subTa p3 :: (S -1) (S -2) 

--  pl <> (subTa p3) <> (sym p2) : :  Equal a b 

equalNats - - = Nothing 

Example: Arithmetic 

As our next example we implement addition of natural numbers. The addition function in the encoding of 

natural numbers presented above has the following properties: it takes two arguments, integers n and m, 

and returns an integer z ,  such that z = n + m. SO, what type do we give our function in Haskell? 

plus : :  IsNat a -> IsNat b -> IsNat ( ?  a b) 



The only valid thing we can give in place of the question mark would be a type function of kind * -+ * -+ 

*. However, such functions5 are not permitted by type systems of most practical programming languages 

including Haskell. Thus, we must encode addition at the type level indirectly. First, although we do not 

have computation and functions at type level, we can use type constructors to simulate relations between 

types. Thus, we define addition as an inductive relation PlusRel m n i, where i = m + n. 

PlusRel n m i 
32 E N. 

PlusRel z m m PlusRel (s n) m (s i) 

We encode this relation as a ternary Haskell type constructor 

- - PlusRel : :  * -+ * -+ *+*  
data PlusRel m n i = 

Z-PlusRel (Equal m Z )  (Equal n i) 

1 yap. S-PlusRel (PlusRel P n a) (Equal m (S P)) (Equal i ( S  a)) 

zPlusRel : :  PlusRel Z i i 
zPlusRel = Z-PlusRel refl refl 

sPlusRel : :  PlusRel m n i 4  PlusRel (S m) n (S i) 
sPlusRel p = S-PlusRel p refl refl 

Now, we are ready to define the addition function. There are two steps to creating this function. The first, 

intermediate step is the function pl. 

pl : :  IsNat m-+IsNat n+PlusRel m n z-+IsNat z 
pl - n r = p n r where 

p : : IsNat n-+ PlusRel m n z -+ IsNat z 

p n (RPZ pl p2) = (cast p2 n) 

p n (RPS r pl p2 ) = cast (symp2) (s (p n r)) 

This function takes three arguments: two natural numbers m and n, and a proof that m + n = z .  It is 

defined in terms of the function p, which is defined inductively on the structure of the proof of addition 

relation PlusRel m n z: from PlusRel m n z, and the representation of n, p is able to construct 

the proof of the judgment I sNa t z . In computational terms, this is equivalent to constructing the natural 

number representing the resulting sum. Of course, this function is not all that useful since it requires the 

S ~ s  opposed to type constructors. 



proof of the judgment PlusRel as one of its arguments. It is possible to construct this proof out of m E N 

and n E N. 

What would the type of such a function look like? One possibility is 

constructProof : :  IsNat mtIsNat n+PlusRel m n z 

However, the type variable z appears only on the positive side of the arrow type above which would 

mean that a PlusRel m n z can be constructed for all types z. This is patently false. The problem is 

that of quantification: given any two natural numbers m and n, we can construct the proof that for some z,  

m + n = z. Thus, we need to existentially quantify the type variable z .  The type of cons tructproof 

would then look like: 

constructProof : :  IsNat m-+IsNat n43a.PlusRel m n a 

The function plus defined below (lines 5-11) performs the actions of cons truc tProof and pl simul- 

taneously, yielding a result of type Ia.(PlusRel m n a) x (IsNat a). Slightly complicating the notation 

below is the fact that in Haskell existential types can only be used in data-type definitions. Therefore, we de- 

fine an auxiliary data-type Exists. This type constructor takes a unary type constructor f and implements 

the existential type 3a.f a. 

- - Exists $7 E 3a.~(a) 

data Exists f = Va. Exists ( f  a) 

data P1 x y z = P1 (PlusRel x y z) (IsNat z) 

plus : : (IsNat x )  -+ (IsNat y) -+ (Exists (P1 x y)) 

plus (Iszero pl) m = 

Exists (((Pl (castTa- (sym pl) (zPlusRel)) m))) 

plus (IsSucc n pl) m = 

case plus n m of 
Exists (P1 pj y )  --t 

Exists ((PI (castTa- (sym pl) (sPlusRel p j ) )  (s y ) ) )  

Example: Putting IsNat into the Num Class 

In the IsNat encoding, each natural number has a different (and incompatible) type: the number one has 

the type I sNa t ( S Z ) , the number two has the type I sNat ( S ( S Z ) ) , and so on. Is there a type 

that represents the entire set of natural numbers? Naturally, there is such a type and it is 3a. lsNat a. Thus, 

we can finally implement a traditional Haskell addition function by declaring (Exists IsNat ) to be an 

instance of the class Num. 



instance Num (Exists IsNat) where 

( + )  (Exists m) (Exists n) = 

Exists (P1 prf 2 )  = plus m n 

in Exists z - 

Example: Encoding the Ordering Relation 

Another interesting relation on natural numbers is ordering. The relation m < n on natural numbers can be 

defined by induction on n as the least relation that satisfies the rules 

The implementation in Haskell consists of the data-type LEQ : : * -+ * --+ * and the corresponding pair 

of smart constructors. 

data LEQ m n = 

LEQRefl (Equal m n) 

I V a .  LEQ-S (LEQ m a) (Equal n ( S  a)) 

leq-ref1 : :  LEQ a a 

leq-ref1 = LEQ-Ref1 refl 

leq-s : :  LEQ a b -> LEQ a (S b) 

leq-s s = LEKS s refl 

With the Haskell implementation of I, we can begin to construct interesting proofs. 

compLEQ : :  (IsNat m) 4 (IsNat n) -.Maybe (LEQ m n) 

compLEQ (Iszero pl) (Iszero p2) = return (LEQ-Ref1 (pl c> (sym p2))) 

compLEQ (z@(IsZero pl)) (IsSucc n' p2) = 

do { rtcompLEQ z n'; return (LELS r p2) } 
compLEQ (IsSucc m pl) (Iszero p2) = Nothing 

compLEQ (IsSucc m pl) (IsSucc n p2) = 

do { rtcompLEQ m n; return (castTab (sym pl) (sym p2) (theoreml r)) ) 

newtype Thl x y = Thl {un~hl : :  LEQ (S x) (S y ) }  

theoreml : :  (LEQ m n) --+ (LEQ (S m) (S n ) )  

theoreml (LEQRefl pl) = unThl (castTa- (sym pl) (Thl leq-refl)) 



The function compLEQ, presented above, takes two natural number representations (of types IsNat m 

and IsNat n), and returns the proof that m 5 n, if such a proof can be constructed. We will examine this 

function more closely to familiarize ourselves with the practice of programming with these encodings. The 

construction of LEQ rn n proceeds by induction on the structure of the two numbers. 

The base case (line 2) assumes that both numbers are zero. 

( 2 )  compLEQ (Zero pl) (Zero p2) = return (LEQ-Ref1 (pl <> (sym p2))) 

The proofs pl and p2 have types Equal m Z and Equal n Z, respectively. The combined proof 

pl <> (sym p2 ) has the type Equal m n. This is exactly what the base case constructor for LEQ 

requires, and is used to build the proof that LEQ m n. 

The second case (lines 3-4) is the case when the first argument is zero, and the second is some Succ n' . 

( 3 )  compLEQ (z@(Zero pl)) (Succ nf p2) = 

do { r+-compLEQ z n'; return (LEQ-S r p2) ) 

This proceeds by constructing the proof compLEQ z n' of the type LEQ Z n' . Then, the proof 

p2 : : Equal n ' ( S n) is used to construct LEQ Z n. 

The following case always returns Nothing, since no non-zero nat is less than zero. 

c0mpLEQ (Succ m pl) (Zero p2) = Nothing 

Finally, the inductive step where both numbers are non-zero (lines 6-7) is the most interesting one: 

( 6 )  compLEQ (Succ m pl) (Succ n p2) = 

do { r t- compLEQ m n 
; return (castTab (sym pl) (sym p2) (theoreml r) ) ) 

- - m :: IsNat -1 
- - n : : IsNat -2 

-- pl : : Equal m (S -1) 

-- p2 : : Equal n (S -2 ) 

-- sym p2 : :  Equal (S -2) n 
- - r : : LEQ -1 -2 

-- theoreml r : :  LEQ (S -1) (S -2) 

The two arguments are taken apart and variables m and n have types m : : I sNat -1 and n : : I sNat -2. 

There are also two proofs, pl : : Equal m ( S -1 ) and Equal n ( S -2 ) . The recursive call to 

compLEQ sl s2 produces an inequality proof of type LEQ -1 -2, and the function 

6 ~ e  use the notation -1, and so on to indicate types of Skolem constants in Haskell type checking of existential type eliminations. 



theorem1 : :  LEQ m n -> LEQ ( S  m) ( S  n) 

is used to obtain the proof of type LEQ ( S -1 ) ( S -2 ) . Finally, proofs m and n are used to cast back 

to type LEQ m n. 



Chapter 5 

Language Implementation Using Haskell Proofs 

In Section 4.3 we have familiarized ourselves with basic techniques of encoding judgments and their proofs 

in Haskell, and with programming using these proofs. Next, we introduce our first heterogeneous meta- 

programming example utilizing these techniques. This development proceeds in a number of steps: first, 

we define an object language; then, we introduce a runtime representation of types of the object lan- 

guage(Section 5.1); then we introduce an encoding of well-typed terms for the object language defined 

in Section 5.2. The implementation consists of a type of object language typing judgments, an interpreter 

that evaluates the proofs of those judgments to meta-language values, and a type-checker that constructs 

typing judgment proofs. 

5.0.1 The Language L1 

First, we present is the language L1. The language L1 (Figure 5.1) is a small, simply typed functional lan- 

guage. We explain the relevant definitions in some more detail before proceeding onto the implementation 

of L1. 

Syntax of L1. The syntax of L1 consists of three inductively defined sets. 

T E % : : =  i n t 1 ~ ~ - - + T ~ 1 ~ ~ ~ ~ 2  

r€(6::= () Ir,r 
e E IE ::= n ( X7.e I el e2 I Var n I el @ e2 ( ( e l ,  e2) ( T ( o , ~ )  e 

First, there is a set of types, T ,  which includes natural numbers (or some other base types), function 

spaces ( r l  -+ r2), and binary products ( r l  x r 2 )  Second, there is a set of type assignments, r, which are 

sequences of types. The type T in a type assignment of r at position n assigns type T to the free variable 

Var n. Third, there is a set of expressions which contain the usual lambda calculus constructs presented in 

Church style (domains of abstractions are explicitly typed). Variable binding is expressed in the positional 



style, counting the number of intervening binding sites prior to the binding of the variable itself [13, 141. 

Support for integer literals, and arithmetic operators (el @ e2) is also included. 

Static semantics. The type system of L1 is also shown in Figure 5.1: the presentation is that of a small 

applied simply typed A-calculus. 

l? t e l  : int t ez : int r k n : ~  
Lit) r I- n : int' r t e l  @ e2 : int (Arith) r, T t- var n : 7 

War) 

r k e l : r l  I ' t - e z : ~ ~  I ' l - e : r l x r 2  I ' F ~ : T ~ x T ~  
(Pair) Pi 1) Pi2) r I- (el, ez) : TI x 72 r t (nl e) : TI( r t- (n2 e) : m( 

The typing judgment is fairly standard. It is defined by structural induction on L1 expressions. Type 

assignments grow when they encounter the A-abstraction. When a free variable Var n is encountered, an 

auxiliary judgment I' k n : T is used (rules VarS and VarZ). This judgment is defined by induction over the 

variable index: if the variable index is greater then zero, this judgment weakens the context and decrements 

the index until the VarZ rule applies. 

Semantics of L1. The semantics of L1 presented in Figure 5.1 are given in the denotational style [125,50]. 

The semantic functions are set-theoretic maps from syntactic sets to the corresponding semantic sets. There 

are three such maps: 

1. First, types are mapped into semantic sets. The type of naturals is mapped to the set of natural 

numbers. Arrow types are mapped into function spaces, product types into products of underlying 

sets. 

U.1 : 7 + Set 

[int] = N 

[TI + ~ 2 1  = ( u ~ l I I + U ~ 2 I I )  

871 ~ 7 2 1  = ( I71 IX  1721 



2. The semantics of type assignments is a "nested" product of the types in the assignment: 

8.1 : I? -+ Set 

[on = 1 

[IF, 70 = urn X urn 

3. Finally, the semantics of L1 programs is defined in "categorical style," by induction over the typing 

derivations of L1. The semantic function no]' takes a proof of a judgment I? !- e : T and produces 

"an arrow,'' i.e., a function from the meaning of the type assignments to the meaning of the type of 

the expression e. In its variable case, the semantic function relies on the auxiliary family of semantic 

functions L1.D : (I? t- n : T )  -+ ( ([ I?]  -+ I T ] )  , which for some integer n, performs the look-up of 

the n-the element of the runtime environment: 

c l.1 : (I' t n : T )  -+ ( [ I? ]  -t [ T I )  
~ U O D  ( - , v )  = u  

c [ n +  11 ( P , - )  = L([n]] p 

The semantic function is defined as follows: 

UoI] : (I' k e : 7 )  ---t ( [ I? ]  - ur]) 

[I? k Var n]  p = c ~ n 1  P 

([I' I- Xr1.e : -+ r2j p = ( X  : I [ T ~ ] )  H ( [ I ? ,  I- e : r2] ( p ,  x)) 

[I' I- el e2 : T ]  p = ([I? k el : TI 4 T ]  p ([I' !- e2 : 7/11 p)  

[I? !- (e1,e2) : x r21 p = ([I? I- el : T I ] ,  ([I? t e2 : 7 2 % )  

[Ft- rn e : T ~ ]  p = xn [[r k e :  7 1  x 7211 

Basic Properties of L1. For the sake of completeness of our presentation, we state some basic properties 

of the language L1. These are fairly standard (e.g., [ S ] ) ,  but will be useful in justifying some design choices 

in the latter implementation of L1. 

Proposition 2 (Generation lemma for L1) The following implications hold: 

l o n e  should note that the semantic function I*] is actually a family of functions indexed by e,r and 7, and as such is given a 
dependent type 

n e ~ ~ , r € r , T € ~ ( r  t- e : 7) -+ Brll -+ U711 



2. P e l  e2 : T  +3r1.1'kel  : T I - - , T  a n d r t  ez : T I  

3. r t (Xrl.e) : r  + 372.7 = T I  -+T2 andr , r1  k  e  : 7 2 .  

4. rl- (el ,e2) : T + 3~1,rz.r  = r l  x 7 2  a n d r t  el : r l , I ' k  ea: r 2  

5. I? k .rrl e  : T + 3rI.I' t- e  : r  x T I  

6. I? k  .rrl e  : T + 3rI.l' t e  : T I  x T 

7. r17-to:7- 

8. I ' , r r t ( n + l ) : r + r t n : r  

PROOF. Proof is by induction on the height of derivations, as in [ 5 ] .  

Proposition 3 (Uniqueness of derivations) For all e  E El T E T,  r E I?, ifr I- e  : 7, then there is only 

one derivation tree that is the proof of I' k  e  : T .  

PROOF. Proof is by induction on the height of derivation I' t e  : T and using the generation lemma. 

5.0.2 Implementation of L1: an Overview 

The implementation of L1 in many ways mirrors the definitions in Section 5.0.1, in so far as it, too, L1 

consists of three "artifacts." One could view the three artifacts as syntax, semantics and pragmatics of the 

language L1, respectively: 

1. A data-type representing typing judgments of L1. The inhabitants of this type represent typing deriva- 

tions of L1. This data-type, which we will call (well-typedness) judgments, is similar to the induc- 

tively defined types and relations from Section 4.3. 

2. An interpreter which defined over proofs of typing judgments of L1. The interpreter is a (total) a 

mapping from well-typed judgments to the meanings of types for those judgments, and thus directly 

corresponds to the family of semantic functions [[a]. 

3. A type-checking function. This function takes syntactic (not necessarily well-typed) L1 pre-terms and 

constructs a proof of L1 typing judgment or raises an error. This function has no direct correspon- 

dence to the semantic definitions given from (Figure 5.1). Rather, it implements a well-formedness 

condition on L1 typing derivations that is assumed implicitly by those definitions. 



Figure 5.1 The language L1 

Syntax Type System 
r t n : ~  

Types T ::= int ( T I  4 T2 1 T I  x ~2 
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L[n + 11 (p ,  -) = ~ [ n ] "  n 

5.1 Runtime Representations of Object-language Types 

As we have seen in Section 4.3, values of interesting domains for which we encode properties and predicates 

(e.g., natural numbers in the previous section) are encoded as types in the meta-language. We will call such 

types in the meta-language domain value types. For example, the types S, Z, IsNat , PlusRel are 

such types (and type constructors). Domain value types are not formally different from any other meta- 

language types - the distinction of purely one of convention and use. 

5.1.1 Types 

The set of L1 types is represented by a subset of Haskell types themselves. The semantic function [*] : T -, 

Set gives the appropriate mapping from L1 types to the types in the metalanguage, in this case Haskell. The 

type Rep t defines which Haskell types are permitted to be used as L1 types: if, for some Haskell type t, 

we have a value of type Rep t, then this is a proof that there exists an L1 type r ,  such that [[TI = t. 

We will call this type runtime type representations: (or reps) a value of data-type Rep t represents type 

t (Figure 5.2). 

1 data Rep t 

2 = Rint (Equal t Int) 

3 ] Runit (Equal t ( ) )  

4 1 yap. Rarr (Rep a )  (Rep P )  (Equal t (a+@)) 
5 I yap. Rpair (Rep a )  (Rep P )  (Equal t (a , ) 



rint : : Rep Int 

rint = Rint refl 

runit : :  Rep 0 
runit = Runit refl 

rarr : : Rep a -+ Rep b + Rep (a -+ b) 

rarr rl r2 = Rarr rl r2 refl 

rpair : :  Rep a+Rep b-+Rep (a,b) 

rpair rl r2 = Rpair rl r2 refl 

The constructor Rint : : Rep t (line 2 )  contains the proof that the type t is equal to the type Int. 

Similarly, the constructor Rarr (line 4) contains representations of the domain and the codomain types a 

and ,B together with a proof that type t equals to a -+ P. The domain and codomain types are existentially 

quantified. The equality proof allows us to cast between t objects and the function space a -+ P whenever 

we deconstruct the representation itself. 

The important feature of runtime type representations (henceforth Reps) is that they can be compared 

for equality. The function testEq compares to type Reps (of types tl and t2) at runtime and if they are 

equal, constructs a proof of that equality. This proof can then be used to cast from values of type t 1 to 

values of type t 2. 

testEq : :  Rep tl-+Rep t2+Maybe (Equal tl t2) 

testEq (RUnit pl) (RUnit p2) = return (pl <> (sym p2)) 

testEq (RInt pl) (RInt p2) = return (pl c> (sym p2)) 

testEq (RArr dl cl pl) (RArr d2 c2 p2) = 

do { p3 <- testEq dl d2 

; p4 <- testEq cl c2 

; return (pl <> (subTab p3 p4) c> (sym p2)) ) 
testEq (RPair dl cl pl) (RPair d2 c2 p2) = 

do { p3 <- testEq dl d2 

; p4 c- testEq cl c2 

; return (pl <> (subTab p3 p4) o (sym p2)) ) 
testEq - - = Nothing 

The base cases are quite simple. For example, the case comparing two representations of unit type 

testEq (Runit pl) (RUnit p2) = return (pl c> (sym p2)) 

The proof object pl has the type Equal tl ( ) , and the proof object p2 has the type Equal t2 ( . 
sym P2 These proofs are easily combined to construct the proof Equal t 1 t2: 1 &, () - t2 . 



The other cases work by deconstructing the two Reps in parallel, comparing their subparts for equality, 

and combining them into proofs of equality between the original Reps. We examine the case for RArr 

(lines 4-7). 

t e s t E q  ( r l @ ( R A r r  d l  c l  p l ) )  ( r 2 @ ( R A r r  d2  c 2  p 2 ) )  = 

d o  { p 3  <- t e s t E q  d l  d2  

; p4  <- t e s t E q  c l  ~2 
; r e t u r n  ( p l  <> ( subTab  p 3  p 4 )  <> (sym p 2 ) )  } 

We start with proof objects p l  : : Equal tl (-1 -+ -2) and p2 : : Equal t2 (-3 -+ -4). The first recursive 

call to tes t E q  computes the proof object p 3  : : Equal -1 -3, and the second recursive call computes the 

proof object p 4  : : Equal -2 -4. The proofs p2 and p3  are combined by subTab  to obtain the proof 

subTab  p 3  p 4  :: E q u a l  (-1+-2) (-3-+-4) 

The final result is obtained by combining these proofs (using the proof combinators t r a n s  and sym), 

which we show graphically: 

Type representations are a powerful programming tool. As we have seen before, domain value types 

encode interesting values in the system. Programming languages such as Haskell, however, do not allow 

computation to take place at the type level. Runtime comparison of type representations can be used to 

simulate this kind of computation. At runtime, a value of type Rep t ,  can be compared to some other 

value R e p  t ' . If they are equal, then we know that the domain value type t evaluates to t ' , and can use 

the resulting equality proof to cast between the two. If the equality test fails, that means that the domain 

value type t would not evaluate to t ' and the expression was not correctly typed in the first place, leaving 

the user the ability to gracefully exit the program. This technique has also been used to implement dynamic 

typing in a disciplined and type safe manner [4]. 

To demonstrate the use of the function t es tEq ,  consider the following small example: 

I i n c r e m e n t  : : R e p  t -+ t -+ Maybe I n t  

2 i n c r e m e n t  rt  i = 



do { p <- testEq rt rint -- p:: Equal t Int 
; return ((a2b pl i) + 1) ) 

The function increment expects two arguments: a representation of type t, and a value of type t. If 

the representation is an integer, increment increments the integer by one; otherwise, it returns No thing. 

This function relies on testEq (line 3) to compare the argument representation to Rep Int. If the 

comparison succeeds, the proof p can then be used to convert a t object into an integer and perform the 

addition. Otherwise, the monad simply propagates failure. 

5.1.2 Expressions 

Following the method demonstrated in Section 4.3, we can map the remaining syntactic definitions of L1 

into their corresponding Haskell data-types. First, we will define a number of types and type constructors 

that correspond to syntactic pre-terms of L I .  

newtype ABS t e = ABS (Rep t) e 

newtype VAR x = VAR x 

newtype APP el e2 = APP el e2 

newtype LIT i = LIT i 

We call them "pre-terms" because up to this point there is no way to ensure that these types are combined 

in a syntactically correct way. For example, the following expression does not correspond to any valid L1 

term: 

VAR (VAR (LIT String)) : :  VAR (VAR (LIT String)) 

Now, we return from our digression and define an inductive judgment IsExp : : * --t *. This judgment 

defines what it means to be a well-formed syntactic expression. The intuition is that if we have a value 

of type IsExp t, then t is a domain value type representing some syntactic expression e at the type 

level. Furthermore, there is again a one-to-one correspondence between values of type IsExp t and the 

expression represented by t . 

data IsExp t = 

Vn . IsVar (IsNat n) (Equal t (VAR n)) 
I Qel e2. ~ s ~ p p  (IsExp el) (IsExp e2) (Equal t (APP el e2)) 

( Qtdom e . ~ s ~ b s  (Rep tdom) (IsExp e) (Equal t (ABS tdom e)) 

1 vn. IsLit n (Equal t (LIT n)) 



isVar : :  IsNat n -> IsExp (Var n) 

isVar n = V n refl 

isApp : :  IsExp el -> IsExp e2 -> IsExp (APP el e2) 

isApp el e2 = IsApp el e2 refl 

isAbs :: Rep t -> IsExp e -> IsExp (ABS t e) 

isAbs t e = IsAbs t e refl 

isLit : :  a -> IsExp (LIT a) 

isLit n = IsLit n refl 

The type constructor IsExp plays the same role for expression, as the type constructor IsNat for the 

naturals. For example, 

expl : :  ISEW (ABS Int (ABS (Int-+Int) (APP (VAR Z) (VAR (S Z))))) 

expl = isAbs rint 

(isAbs (rarr rint rint) 

(isApp (isVar z) (isVar (s z)))) 

Well-formed type assignments can also be represented at the level of types. 

data IsGamma gamma = 

IsEmpty (Equal gamma 0 
I Qg t. IsGarnrnaExt (IsGamma gamma) (Rep t) (Equal gamma (g,t)) 

isEmpty : :  IsGamma 0 
isEmpty = IsEmpty refl 

isGammaExt : :  IsGamma g4Rep t+IsGamma (g,t) 

isGammaExp g r = IsGammaExp g r refl 

The purpose of this section has been to demonstrate that more complex domain value types (e.g., those 

representing expressions, type assignments etc.) can be represented and manipulated in the paradigm we 

propose. In what follows, we will not use this particular encoding as it is not needed - it has been presented 

here just for completeness' sake. 



5.2 Judgments: representing well-typed terms 

We begin with a few preliminary observations. First, we recall that there is a set of derivations of the 

judgment I' I- e : T.  This set is defined inductively by the rules in Figure 5.1. Now, we examine the 

correspondences between definitions of various sets (Figure 5.1) and the Haskell implementation. 

The set of types T ,  is encoded by Haskell types themselves. For example, the L1 type Int -+ Int is 

represented by the Haskell type Int -+ Int. Thus, the semantic function in Figure 5.1, ([TI) is then 

simply the identity function, since the meanings of terms of a certain type will be mapped into exactly the 

same type again.2 Similarly, type assignments (contexts, r) are represented in Haskell using the Haskell 

product type. For example the type assignment 0, lnt, Int -+ Int is represented by the Haskell nested 

product ( ( ( ) , Int ) , Int -+ Int ) . The underlying semantics of these types, in turn, is provided by the 

semantics of the underlying language, namely Haskell. Now, we are ready to present the actual encoding 

of type judgments and their proofs. 

The judgment r k e : r is implemented by a Haskell type constructor Exp g t of kind * -t * -+ *. 

Each derivation rule from the top of Figure 5.1 is represented by a constructor of the Exp data-type. We 

can read the type e : : Exp g t as "Under the type assignment g, there is an expression e that has 

type t." Figure 5.2 summarizes the relevant definitions for the Haskell encoding. 

We have shown how the syntactic expressions of L1 can be encoded at type level as a judgment IsExp 

(Section 5.1.2). Following the pattern described in the natural numbers example (Section 4.3), one might 

expect that judgments would be encoded by a ternary type constructor of kind * -+ * -+ * + *, so that 

I? k e : T corresponds to Exp g e t. 

Instead, in our encoding, we will opt for an encoding of the L1 typing judgment that does not require the 

L1 expressions to appear in its type. This is because the the expression part of the judgment is uniquely 

determined by the type assignment, the type of the expression, and the structure of the typing derivation 

(See Proposition 3).3 

How is the set of typing judgments encoded in Haskell? Each constructor of Exp corresponds for a 

derivation rule of the static semantics of L1. We examine each data-constructor of Exp  in detail below. 

Variables. If we examine the judgments of Figure 5.1 for variable cases, we will notice that the two cases 

for variables are defined inductively on the natural number that represents the distance of the variable from 

its binding site. To simulate this induction on the bound variable indices, rather than on the structure of 

is due to the fact that types in Haskell and types in LI are very similar. For some other language whose types differ from 
Haskell's, one must find a less trivial mapping into Haskell types. 

3~nother  way of saying this is that the type judgment is syntax directed. 



~igure  5.2 Haskell implementation of Exp.  

d a t a  E x p  e t 
= Lit I n t  ( E q u a l  t I n t )  
( V ( V a r  e t )  
( Y a p .  Abs ( R e p  a )  ( E x p  ( e , a )  p )  ( E q u a l  t (a-+PI ) 
1 V a .  App (EXP e ( a - + t ) )  ( E x p  e a )  
I V a p .  Pair ( E x p  e a )  ( E x p  e P) ( E q u a l  t ( a , / ? ) )  
I yap. Pi1 ( E x p  e ( a , p ) )  ( E q u a l  t a )  
( V a p .  Pi2 ( E x p e  ( o , p ) )  ( E q u a l  t P )  

data V a r  e t 
= Vy. z ( E q u a l  e ( y , t ) )  
( V y a .  S ( V a r  y  t )  ( E q u a l  e ( y , a ) )  

data R e p  t 
= Rint ( E q u a l  t I n t )  
) Runit ( E q u a l  t 0) 
( yap. Rarr ( R e p  a )  ( R e p  0 )  ( E q u a l  t ( a + P ) )  
I Y a p .  Rpair ( R e p  a )  ( R e p  P )  ( E q u a l  t (a  , 

expressions, we define an auxiliary data-type V a r  of kind * -+ * 4 *. 

data V a r  e t 

= Vy.  Z ( E q u a l  e ( y , t ) )  

( v ~ a .  S ( V a r y  t )  ( E q u a l  e ( y , a ) )  

We show the derivation rule and the definition of the constructor side by side: 

y , t  t o :  t z ( E q u a l  e ( y , t )  

Just as in the judgment of Figure 5.1, there are two cases: 

y t - n : t  

y , a t -  ( n + l ) :  t 

1. First, there is the constructor Z. This constructor translates the inductive definition directly: as its 

argument it takes a proof that there exists some environment y  such that the environment t is equal 

to y  extended by t . 

1 Vya.  S (EXP 7 t )  

( E q u a l  e ( y , a )  L 

2. The second constructor, S takes a proof that ( V a r  y  t )  , and as its second argument it takes the 

proof that the environment e is equal to the pair (7, a), where both y and a are existentially quanti- 

fied. 



The names S and Z are chosen to show how the proofs of the variable judgment are structurally the same 

as the natural number indices. Finally, the sub-proofs for the variable case are "plugged" into the definition 

of Exp e  t using the constructor V. 

Finally, for the Var data-type we define the two smart constructors: 

z : :  Var ( a , b )  b  

z = Z r e f l  

s : :  (Var e  t )  -+ (Var ( e , a )  t )  

s v = S v r e f l  

r , a t -e : /3  
Abstraction. The typing rule for abstraction is Translation of this derivation into r t- Xa.e : a  4 p' 
Haskell is as follows: 

data Exp e t = . . . 
(Qa p. Abs (Rep a )  (Exp ( e , a )  (Equal t ( a - + P ) )  

Intuitively, we can create a typing derivation using the Abs rule if there exist some Haskell types a and 

p such that 

a. We can provide a representation of the type a. This part directly corresponds to the requirement that 

the syntax of the lambda expression carry the type of the argument variable. 

b. We can provide a proof of the judgment Exp ( e ,  a )  P. This is equivalent to the proof of the 

antecedent I?, a t- e : p: the abstraction is well-typed if the body of the abstraction is well-typed in 

an environment extended with the domain type, (e, a)  and has the codomain type P. 

c. And finally, if we can construct the proof that the argument type t is equal to the type a  4 P. 
Haskell's system of data-types forces each data constructor function to return a Exp e  t. This 

equality proof argument allows us to work around this restriction, since the proof that t equals a 4 P 
allows us to cast a t into the type a  -+ P. 

The smart constructor for abstraction is defined as follows: 

abs : : Rep tl-+Exp ( e , t l )  t2-+Exp e ( t l 4 t 2 )  

abs typ body = Abs typ body r e f l  



Application. The definition of the data constructor for application is given below. 

I Qa. App (Exp e (a-+t)) ( ~ x p  e a) 

It takes two arguments: first is the proof of judgment of the function expression - this expression has an 

arrow type cr -+ t ;  the second argument is the proof of the judgment for the argument to which the function 

is applied. It's type must be identical to the type a: of the function domain. 

Since this constructor does not contain any equality proofs, there is no need for a smart constructor. For 

syntactic uniformity with other smart constructors, a trivial smart constructor is defined for this case: 

app :: Exp e (tljt2) - + E m  e tl-+~xp e t2 

~ P P  = APP 

Examples. We show a couple of examples of L1 typing judgments in Haskell and their proofs. First 

thing to note is that the proofs are constructed using the lower-case smart constructors; the use of these 

functions forces the Haskell type system to automatically infer the correct shape of the arguments to the 

type constructor ~ x p  whose value is being constructed. First, we define the value examplel. 

examplel : : Exp e (Int -+ ( Int -+ Int ) -+ Int ) 

examplel = -- Xx.Xf. f x 
abs rint 

(abs (rarr r i n t  rint) 

(app (V z) (V (s z))) 

The definition examplel corresponds to the following L1 type derivation: 

(VarZ) 
0 , I n t tO : In t  (VarS) 

0,  Int, Int -+ Int t 1 : Int 0, lnt, Int -+ Int t 0 : (Int -+ Int) (Varz) 
Var) 

0, lnt, lnt -+ Int t Var 1 : Int 0,  lnt, lnt + lnt t ~ a r  0 : (lnt -+ lnt) ( 

0, Int, Int -+ Int t (Var 0) (Var 1) : Int APP) 
(Abs) 

0, Int t- Xlnt -+ Int. (Var 0) (Var 1) : ((lnt -+ Int) -+ Int) 
0 t Alnt. Xlnt -+ Int. (Var 0) (Var 1) : (Int -+ (Int -+ Int) -+ Int) (Abs) 

Also, note that the following definition, example2, shows how to write proofs of Exp judgments for 

open terms. 

example2 : :  Exp ((a,b),(Int,b) -+ c) (Int -+ c) 

example2 = -- Xx2. fl (xO, x2) 
abs rint 

(app (V (s z)) (pair ( V  z) (V (s (s z))))) 



Variable indices 1 and 2 are used in the body of the abstraction. This forces the type of the environment 

argument to Exp to grow to accommodate a correct type assignment for the free variables. The definition 

example2 corresponds to the following L1 typing derivation: 

VarZ) ... ... ... 
. . . ((lnt x b)  + c )  I- o : ((lnt x b)  -+ c ) (  ... ... ... 
. . . ((lnt x b)  --t c ) ,  Int k 1 : ((lnt x b)  -+ c )  . . . I- ~ a r  o : ~nt ' "~) . . . I- ~ a r  2 : bW) iPYr 
o , b ,  ((lnt x b) -t c ) ,  lnt k ~ a r  1 : ((lnt x b)  --t c )  . . I -  (VarO,Var2): Int x c  ' 1  

0 ,  b, ((lnt x b)  -+ c ) ,  Int t- (Var 1) (Var 0, Var 2 )  : (Int -+ C )  (APP) 
(Abs) 

0 ,  b, ((lnt x b)  -+ C )  t- Xlnt. (Var 1) (Var 0,Var 2 )  : (Int - c )  

One should note that type variables that occur in the type of example2 are not part of the type system of 

L1; rather, they are meta-variables. Intuitively, this corresponds to a whole family of L1 judgments, where 

arbitrary L1 types can be substituted for meta-variables b and c. 

5.2.1 Interpreter 

The interpreter function is, in a way, the simplest of all the artifacts of the language implementation in this 

style. It is a function of type Exp e t -+ e -+ t, whose definition is shown in Figure 5.3. 

In this function the equality proofs that proofs of judgments contain become essential. 

( 2 )  eval (Lit i p) env = b2a p i 
-- p : :  Equal t Int 
- - i : : Int 

-- b2a p i : :  t 

In line 2, the eval function must return a result of type t, but all we have is the integer i. However, we 

also have the proof p : : Equal t Int. Now we can use the function b2a to obtain (b2a p i ) 

which has the type t. 

The the variable case (line $ simply passes control to the auxiliary function evalvar. 

eval (V v) env = evalVar v env 

evalVar : :  (Var e t) + e -+ t 

evalVar (Z p) env = snd (a2b p env) -- p : : Equal e (-1, t) 

evalvar (S v p) env = evalvar v (fst (a2b p env)) 
- - env : :  e 
- - v :: Var -1 t 



-- P : :  Equal e (-1,-2) 
-- a2b p env : :  (-1,-2) 

This function performs the appropriate projection from the environment: in line 3 1 ,  we first use the proof 

object p : : Equal e ( y , t ) to cast the environment e into type (y, t), and then to project the second 

element of type t. Line 12 implements the weakening case for variables. Again, the equality proof p is used 

to cast the environment to a pair, and pass the sub-environment to the recursive call to evalvar. 

The case for application is defined as follows (in line 4): 

eval (App f x) env = (eval f env) (eval x env) 
-- f : : Exp e (-1-t) 
- - x : :  Exp e -1 

-- eval f env :: -l+t 

-- eval x env :: -1 

-- (eval f env) (eval x env) : :  t 

First, the function part of the application is evaluated, obtaining a function value of type a -+ t; next, 

the argument is evaluated obtaining a value of type a. Finally the resulting function is applied, obtaining a 

result of type t. It is worth noting that in this case the function eval is called recursively at two different 

instances, namely Exp e ( a  -+ t ) and Exp e a, requiring the use of polymorphic recursion. 

Figure 5.3 Ll : the interpreter eval 

eva 1 
eva 1 
eva 1 
eval 
eval 
eva 1 
eva 1 
eva 1 

: :  (Exp e t) -+ e -+ t 
(Lit i p) env = b2a p i 
(V V) env = evalVar v env 
( A m  f x) env = (eval f env) (eval x env) 
(Abs r body p) env = b2a p ( \  x + eval body (env,x) ) 

(Pair x y p) env = b2a p (eval x env, eval y env) 
(Pi1 e p) env = b2a p (fst (eval e env)) 
(Pi2 e p) env = b2ap (snd (eval e env)) 

evalVar : : (Var e t) -+ e -+ t 
evalvar (Z p)  env = snd (a2b p env) 
evalvar ( S  v p) env = evalVar v (fst (a2b p env)) 

Other cases of eval are similar to the ones already discussed above, and will not be elaborated in detail. 

The general pattern could be summarized as follows. The function eval takes apart a proof of a judgment 

(~xp or V a r )  to produce a value: the type of the value produced is contained in the type index of the 

judgment. The proof of the judgment must contain sufficient equality proofs that can be used to circumvent 



typing problems that arise by casting. The inductive nature of the judgment proofs often requires that eval 

be called recursively at different types, so the use of polymorphic recursion is essential. 

Figure 5.4 Syntactic pre-expressions and types 

type Name = String 

data E 
= I Int I A E E ( Lam Name T E 
( Var Name ( P E E ( P1 E 
I P2 E 

data T = 'da. T (Rep a) 
tint,tunit : :  T 
tint = T rint 
tunit = T runit 
tarr : :  T --+ T -+ T 
tarr x y = 
case (x,y) of (T a,T b) --, T (rarr a b) 

tpair x y : : T -+ T --+ T 

In Section 5.2 we have shown how the data-type Exp e t encodes only well-typed L1 terms.4 In 

Section 5.2.1 we have presented an interpreter which maps well-typed L1 terms of type E x p  e t into 

corresponding values of type t. One part that is missing in this language implementation is some lund 

of parsing or type-checking function. Such a function must take as its arguments either strings, or simple 

pre-expressions of L1, and produce Exp e t values if the input terms are well-typed (or if they are textual 

representations of well-typed L1 terms). 

We make a small digression here to make an observation about the syntactic pre-terms E (Figure 5.4). 

For increased human readability the pre-expressions do not use de Bruijn style of variable representation. 

Thus the type-checking function converts these terms with variable names to the nameless notation of 

Exp judgment proofs. This is easily accomplished by simply keeping a history of binding occurrences 

of variables as we descend down the term, then computing its position in the list at variable use sites. 

Second, pre-expressions E carry type annotations on bound variables in A-abstractions. For this we need 

some syntactic representation of types. We resort to a very useful and concise trick: a type of syntactic 

representations of L1 types will simply be the data-type T, where T = 3a.Rep a. This way, converting the 

4 ~ o  be precise, values of this data-type encode proof derivations of the typing judgments of L1, but since for each well-typed L1 
expression in a given context there is only one such derivation, we can treat the proofs as standing for their corresponding terms. We 
will use the term "well-typed expression" for such a proof where the correspondence is clear from the context. 



syntactic types T into Reps is accomplished by simply "unpacking" existential package type T. 

Having defined syntactic pre-terms, we encounter a problem, however, when we try to give a type to the 

type-checking function: 

The problem is that types to be used in place of and ?z are different depending on the values of the 

E argument, which means that the function t c  could not return a single type, but rather a whole family of 

types. For example, for an input term Ax : Int. x it must return Exp e ( In t -+Int  ) , while for the input 

term 4 it must return E x p  e Int .  

Fortunately, using existential types we can indeed give a type to the function t c  used above. This type 

is: 

t c  : :  . - .  -+ M a y b e  (3ap. ( ( R e p  P I ,  ( R e p  a ) ,  

( E x p  a P I ) )  

One thing to note is that in Haskell we must encode existential types as data-types. This is why we define 

the data-type J f ,  which takes a binary type constructor f ,  and encodes 3aP. (Rep P)(Rep a)(f a P). 
Then, f can be instantiated either with E x p  to obtain the range type of tc, or with V a r  to obtain the range 

type of lookup(shown later). The full implementation of the function t c  is given in Figure 5.5. 

data J f = yap. J ( R e p  ,L?) ( R e p  a) ( f  a P) 

t c  : :  [ N a m e ]  t E 4 T -+ M a y b e  (J E x p )  

The first argument to the function is a list of variable names, which is used to compute the appropriate 

variable indices. The second argument is, of course, the pre-expression for which a judgment will be 

constructed. The third argument of t c  is the initial type assignment giving types for free variables in the 

input expression. Conceptually, this is a list of types corresponding to the types whose indices are listed in 

the first argument. However, we will use a single nested pair type to encode this list in order to make our 

definitions more compact. 

The M a y b e  type of the codomain represents the possibility that the input may not be well-typed and 

therefore no E x p  can be produced. In addition to an (Exp a P) it is necessary that the function return a 

runtime representation of the types of the environment and the result as well, so they too are included in the 

type of J above. 

The type J Exp (line 1) is defined as a representation of 3et . ( R e p  t ) ( R e p  e )  (Exp e t ) and 



J Var for 3e t . (Rep t ) (Rep e) (Var e t ) , since Haskell allows the use existential types only 

in data-type definitions. 

Now let us examine some of the cases for which the function tc is defined. The case for literals (line $ 

is quite simple: the type environment argument is unpacked and stored as the type representation of the 

environment. 

( 4 )  tc vs (I i) (T env) = return (J rint env (lit i) ) 

Type representation rint is used to encode the type of the expression itself. The proof of the typing 

judgment itself is (lit i). These three values are packed up together and returned as a result of type 

J Exp. 

Next case is the abstraction (lines 8-10). 

( 8 )  tc vs (Lam name t e) gamma = 

do { J rcod (Rpair renv rdom pl) j +- tc (name:vs) e (tpair gamma t) 

(10) ; return (J (rarr rdom rcod) renv (lam rdom (castTa- pl j))) ) 

Here we first recursively construct proof for the typing judgment of the body of the A-abstraction in 

the type assignment extended by the domain type. Then, another package is constructed as a proof of 

the judgment for the abstraction. In line 10 the combinator castTa- is used to cast j, which has the 

type Exp -e cod to Exp (env, dom) cod, where rdom : : Rep dom, rcod : : Rep cod and 

renv : : Rep env. Such use of casting and other equality combinators is necessary to ensure that 

existential variables do not escape the scope of their unpacking. 

The case for application (lines 11-17) is more complex. 

(11) tc vs ( A  f a) gamma = 

do { J rf envl f +- tc vs f gamma -- rf : :  Rep f 
; J ry env2 y t tc vs a gamma -- ry : : Rep y 
; Rarr a b pl +- return rf 
; p2 t testEq ry a -- p2 : :  Equal y a 
; p3 +- testEq env2 envl 

(17)  ; return (J b envl (app (castTa pl f) (castTab p3 p2 y) ) ) } 

It uses test Eq in a number of places to ensure that the representation of the types returned by the recur- 

sive calls match. For example, the type of the domain of the function must be equal to the representation of 



the type of the argument. Then, various casting operators use the proofs of equality returned by those tests 

to correctly type the resulting judgment. The function testEq ensures that if any of these equalities fail, 

the entire type-checking function fails as well. 

Finally, we show the variable case. 

( 5 )  tc vs (Var str) gamma = 

(6) do { J t e j c lookup str vs gamma 

( 7 )  ; return (J t e ( V  j ) )  ) 

( 2 4 )  lookup : : [Char] --+ [ [Char] ] -+ T -+ Maybe (J Var) 

lookup nm [ I  env = Nothing 

lookup nm (n:ns) (T (Rpair a b pl) ) = 

if eqStr nm n 

then return (J b (rpair a b) z )  

else do { J ty rgamma j t lookup nm ns (T a) 

; return(J ty (rpair rgamma b) ( s  j ) ) )  

(31) lookup nm ns env = Nothing 

As with eval, the variable case (lines 3-7) is implemented using an auxiliary function to handle the 

induction on variable indices: the function tc passes control to the function lookup (lines 24-31). The 

function lookup constructs the sub-derivation of type J Var, by searching down the list of variable 

names and building appropriate Var index. Once lookup returns, its result is unpacked (line 6) and 

repackaged as a J Exp. 

5.3 Pattern matching and L: 

In this section, we shall extend the language L1 with sum types and pattern matching. We shall call the 

language so obtained L:. The motivation for this step is twofold: 

1. Patterns are an interesting feature of most modern functional programming language. Demonstrating 

that patterns can be easily and elegantly integrated into our implementation framework is a further 

demonstration of its usefulness and power. 

2. Pattern matching introduces the notion of failure into the semantics of the language. Such failure 

is one of the simplest computational effects that can be introduced into a programming language. 

Concentrating on such a simple effects will help motivate our further forays into this area. 



Firmre 5.5 Tv~echecking function for LI 

data J f = Va0. J (Rep 0) (Rep a) (f a 0) 

tc :: [Name] -+ E + T + Maybe (JExp) 
tc vs (I i) (T env) = return (J rint env (lit i)) 
tc vs (Var str) gamna = 
do { J t e j + lookup str vs gamma 

; return (J t e (V j)) ) 
tc vs (Lam name t e) garma = 
do { J rcod (Rpair renv rdom pl) j +- tc (name:vs) e (tpair gamma t) 

; return (J (rarr rdom rcod) renv (lam rdom (castTa- pl j) 1 )  ) 
tc vs (A f a) ganuna = 
do { J rf envl f t tc vs f gamma -- rf :: Rep f 

; J ry env2 y t tc vs a gamma -- ry : :  Rep y 
; Rarr a b pl c return rf 
; p2 t testEq ry a -- p2 : :  Equal y a 
; p3 t testEq env2 envl 
; return (J b envl (app (castTa pl f) (castTab p3 p2 y)J) ) 

tc vs (P x y) garmna = 
do { J rx envl xexp + tc vs x gamma -- rf : :  Rep f 

; J ry env2 yexp + tc vs y gamma -- ry : :  Repy 
; pl t testEq env2 envl 
; return(J (rpair rx ry) envl (pair xexp (castTab pl ref1 yexp)))] 

lookup : :  [Char] -+ [ [Charll + T + Maybe (J Var) 
lookup nm [ I  env = Nothing 
lookup nm (n:ns) (T (Rpair a b pl)) = 

if eqStr nm n 
then return (J b (rpair a b) z) 
else do { J ty rgamma j +- lookup nm ns (T a) 

; return(J ty (rpair rgarma b) (s 1))) 
lookup nm ns env = Nothing 

5.3.1 Syntax of LF 

First, the definition of L: types is obtained by extending L1 types with sums: 

Patterns. We shall first define a notion of pattern that will allow us a more succinct and flexible notation 

for eliminations of both sums and products, modeled after similar constructs in functional languages such 

as Standard ML or Haskell. 

The set of patterns is defined as follows: 

Patterns can either be variable bindings (e,) which are annotated by the type of the values they bind, the left 

or right case of the sum constructor, or pairs of patterns. In the text that follows, we shall omit the explicit 

type annotations whenever they are discernible from the context. 



r t - p : ~ ~ i r ~  
Var) Inl) 

r k a T : ~ + r , T i  r t- I ~ I  p : Tl + T2 =1 r2( 

r t - p : r 2 + r 2  r t- PI : 71 + r2 r2 t p2 : 72 3 r3 
(Inr) (Pair) 

r ~ - I n r p : ~ ~ + ~ ~ + r ~  r k (pl,p2) : r1 x 72 * r3 
The intuition behind the pattern checking relation rl 'r p : T + r2 is: "under the type assignment 

rl, the pattern p deconstructs an expression of type T yielding an extended type assignment r2." The 

positional style for naming variables that we have adopted throughout this chapter means that variables 

bound in patterns do not have names. Since more than one variable can be bound in pattern, we must make 

a decision as to what numerical indices those variables will be referred to: we chose that the "furthest" 

binding site is the leftmost-bottommost ~ar iab le .~  The picture in Figure 5.6 illustrates the binding structure 

of the term A(., 0). (Var 1, Var 0) ,  where the curved lines point to the binding site of variables in the body 

of an abstraction. 

Figure 5.6 Binding multiple variables in patterns. 

r k elnt : Int i I?, Int r, Int l- .lnt,lnt : Int i r, Int, Int -+ Int 
r I- (olnt, .Int-+lnt) : (lnt x (Int -+ lnt)) =+ r, lnt, (lnt -+ Int) /i\ r I- Inl .lnt+lnt) : (Int x (Int -+ lnt)) + Int i I?, lnt, (Int - Int) 

The definition of the pattern checking relation (case for pairs) reflects this - left sub-pattern bindings 

precede right sub-pattern bindings in the augmented type assignments. For example, the Figure 5.6 gives 

the derivation rules for proofs of the pattern judgment for Inl (.lnt, .~~t+l~t). 

The next step is to extend the A-abstractions of L1 to work with patterns. Note that the patterns in A- 

abstractions do not admit alternatives, and we will delay the discussion of the semantics of pattern matching 

failure until later section when we discuss the case expressions. The syntactic form for the new A-abstraction 

is as follows: 

e E IE ::= - .  a 1 Ap.e 

The typing rule incorporates the new pattern typing judgments: 

The new-style abstractions include the old-style abstraction virtually unchanged: I- A.lnt.Var : (Int -+ 

S~lternatively, we could say that the rightmost-uppermost variable is the one whose index is 0. 



Int). However, now we can have more complicated abstractions: I? t- X(olnt, oBOoI).(Var 0,Var 1) : 

(Int x Bool -+ Bool x Int). 

Sums. There are two new expression forms that are used as introduction constructs for sums, the two 

injections Inl and Inr. A case construct is used for sum elimination: 

e E IE ::= . . . ( Inl,, , e ( Inr,, , e I case e of pn + en 

One thing to note is that the case expression takes an arbitrary number of matches of patterns that are the 

same as the ones introduced for A-abstractions: they can be incomplete and/or nested to an arbitrary depth. 

The typing rules for sum introduction and elimination are given below: 

Inr) 
I' F Inl,, , e : (71 + ~ 2 )  (In1) r F 1nrTl T2 e : (71 + 72)' 

(Case) 
I? t case el of p, -+ em : 72 

5.3.2 Semantics of L1 with Patterns 

The semantics of sum types is easy to give in the categorical style we have used in Section 5.0.1. The 

meaning of a sum type is the disjoint sum of the meanings of the two summands: 

The addition of pattern matching to L 1  introduces a notion of pattern matching failure to the semantics 

of L1 programs. The notion of failure may manifest itself in two (related) ways: 

1 .  Global failure. Pattern matching may fail when no pattern can be found to deconstruct a particular 

value. This may occur, for example, in A-expressions (or incomplete case expressions), such as 

(A(lnl 0). Var 0) (Inr 10). In case of such a failure, the meaning of the program is undefined. 

2. Local failure. Pattern matching may fail as one of a number of alternatives in a case expression. 

Local failure may, or may not, be promoted into a global failure: if one of a number pattern matches 

in a case expression fails, the control should be passed to other matches, until one of them succeeds. 

If there no such succeeding patterns, a global failure should take place. 

The problem posed by introducing effects such as failure into the semantics of programming languages is 

that the entire semantic definition must be "overhauled," in order to properly propagate the effect of failure 



throughout the meaning of the program. We note here that local failure is more benign in this sense then 

global failure - it is possible to statically ensure that all pattern matches are complete, so that local failure is 

never promoted into a global failure. Encoding such a static restriction in the type system is an interesting 

problem for future work. 

One way to structure denotational semantic definitions so as to be able to manage effects in a more clean, 

generic and modular way is to use monads ([84,83,72]). 

The denotations of L1 programs augmented by pattern matching are the meanings of the L1 types aug- 

mented by a special value Fail indicating failure of pattern matching somewhere in the program. Thus, 

definition of the monad M for our purposes would be 

M A  = A + {Fail) 

returnN e = In1 e 

(Inr Fail) *M f = Inr 

(In1 V) *N f = f v 

Two non-proper morphisms, f a i  1 and O(pronounced "fatbar"), are also defined. 

failM = Inr Fail 

(Inr Fail) 0 m = m 

ml 0 m 2  = m l  

The first, fail, represents a failing computation. The second, 1, is a biased (left) choice operator (also called 

"fatbar"): given two computations, its value is the first one, unless it fails, in which case it returns the second 

computation. (For a detailed discussion of semantics of patterns in Haskell, and of "fatbar", see [56]). 

Finally, we can define the meaning of types of L: in a new monad-based framework. 

Sums in L: are mapped to the (set theoretic) sums in the meta-language. One notable difference from the 

semantics of L1 types is that the function space has been changed so that its domain is M [7-21. This reflects 

the fact that functions suspend computations and their effects: after a function is applied, computing the 

result of the range type [r21 may also result in effects that the monad M hides. 



The semantics of patterns is defined as follows: 

[r t- : T + rt] : [r] -+ [r] + M [rl] 
[ I ' I - o T : r + r , r ] v p  =  return^ ( p ,  v )  

[I' t- Inl p : (rl + 7 2 )  + rl] (In1 v) p = ~ ~ t - p : 7 1 + ~ r ~ v p  

[r I- Inl p : (rl + 7-2) =+ rl] (Inr v )  p = failM 

[r t- lnr p : (rl + 7 2 )  + r f]  (Inr V )  p = [r t- p : 7 2  + rl]] v p 

[[r I- lnr p : (71 + 7 2 )  =+. r'] (In1 v )  p = failM 

nr t- ( p l , p 2 )  : (71 x 7 2 )  + r3n (v1,v2)  P =  curt- P I  : 7, + rln vl P )  kM A P ~ .  

([rl t- P2 : 7 2  * r2] V 2  P I )  

The meaning of patterns is defined by induction on the derivations of the pattern inference judgment 

r I- p : T + rf.  The meaning is a function that deconstructs a value of type [r] and produces a runtime 

environment transformer that either augments the runtime environment with bindings for variables in the 

pattern p. Note that deconstructing a sum value, if there is a mismatch in the injections between the pattern 

and the value, may result in failure. Hence the type 

Now, let us consider the semantics of functions with pattern matching: 

The meaning of functions consists of two parts: first, meaning of pattern deconstructs the function ar- 

gument. If this computation succeeds, a new runtime environment p' is constructed and the body of the 

function is evaluated in this new environment. 

Finally, we consider the meaning of case expressions. 

(IF t- case e of p, -+ en : r f ]  p = [rt- e :  rlj *M Av. 

I-pl : T + rl] v p *M Apl . [ [r l  I- el : r f ]  p1 

[ [ r t - ~ ~ : ~ + r ~ ] v p * ~  ~ p ~ . [ r ~  t e 2 : r 1 ]  p2 

0 . . . ... . . . 

1 [r I- pn : T + r,] v p k~ ~ p ~ .  Orn I- en : 7/11 pn 

5.3.3 Implementation of L1 with Patterns 

The data-type P a t  t g i n  gout corresponds to the well-typedness judgments on patterns Tin t- p : r + 
rout. 



data  Pat t g i n  gout = 

PVar (Equal gout (g in ,  t )  ) 

1 Yap. PIn l  (Pa t  a g in  gout)  (Equal t (E i the r  a P I )  
I Yap. PInr (Pat  P g in  gout)  (Equal t (E i the r  a P I )  
( Vapy. PPair (Pat  a g in  y) (Pat  P y gout)  (Equal t ( a , P ) )  

Note that we omit the actual encodings of patterns in the type Pat since it is unnecessary to the de- 

velopment presented here. The case for variable-binding patterns PVar carries the proof that the type of 

the target type assignment gout is equal to the source type assignment g i n  paired with the type of the 

pattern itself (Equal gout (g in ,  t ) ). The left injection pattern PInl  takes as its argument the proof 

of a pattern judgment Pat a g in  gout, together with the proof that t equals E i the r  a P. The most 

interesting case is the pair pattern. Its first argument is a proof of the pattern judgment Pat a g in  P. 
The target type assignment of the first argument, y, is then given as a source type assignment to the second 

argument Pat p 7 gout, thus imposing a sequence on type assignment extension for pairs. Finally, this 

constructor also needs a proof that the type of the pattern t equals ( a ,  P) . 

Below, we give the definitions of the smart constructors for building proofs of pattern judgments. 

pvar : : Pat a  b  ( b , a )  

pvar = PVar r e f l  

p i n l  : :  Pat a  b  c-+Pat  (E i the r  a  d )  b  c 

p i n l  pa t  = PInl  pa t  r e f l  

p i n r  : :  Pat a  b  c + P a t  (E i the r  d  a )  b  c  

p i n r  p a t  = PInr  pa t  r e f l  

ppa i r  :: Pat a  b c-+Pat d  c e - - + P a t  ( a , d )  b e  

ppa i r  p a t l  pat2 = PPair p a t l  pat2 r e f l  

The next step is to extend the definition of expressions to work with patterns. 

I da ta  Exp e t 

2 = L i t  I n t  (Equal t I n t )  

3 ( V ( V a r e t )  

4 1l~ap-y.  Abs (Pat  a e y )  ( E x p y p )  (Equal t ( a - + P ) ) I  
5 1 V a .  App ( E x p e  ( a 4 t ) )  ( E x p e a )  

6 1 Yap. P a i r  ( ~ x p  e a )  ( ~ x p  e  P )  (Equal t ( a , P ) )  



8 abs : :  Pat a b c+Exp c d-+Exp b (a+d) 

9 a b s p  e = A b s p  e ref1 

The only change from the previous definition (Figure 5.2) is the A-abstraction case (Line 4): the abstrac- 

tion constructor takes as its first argument a pattern judgment which, given an argument of the domain type 

a, produces an extended type assignment y. Then, the judgment for the body of the abstraction is typed 

under the the extended type assignment ywith the codomain type P. Note, that with the introduction of 

pair patterns, we have dispensed with the need for separate elimination constructs (Pi1 and Pi2) for the 

product types. 

Example We list an example well-typed term with patterns: 

-- swap = A(., .).(Var 0, Var 1) 

swap : :  Exp a ((b,c) + (c,b)) 

swap = abs (ppair pvar pvar) (pair (V z )  (V ( s  2))) 

The function swap uses the pattern (a, 0) to deconstruct a pair, and returns a pair with the order of its 

elements reversed. Note that the variable index zero, V z, refers to the rightrnost variable in the pattern. 

Case expressions Case expressions are used to eliminate sum types. We extend the typing judgment for 

expressions with the constructor Case: 

data Exp e t = 

. . .  . . . . . . . . .  
I Qa. ECase (Exp e a) [Match e a tl 

data Match e t' t = forall e'. Match (Pat t' e e') (Exp e' t) 

A case expression consists of a discriminated expression of type Exp e a, and a list of matches. The 

data-type Match is a ternary type constructor: its first argument is the type assignment e; its second 

argument is the type of the discriminated expression t ' ; its third argument is the result type of the match 

t. Since each pattern in a match may bind a different number of variables, the type assignment that the 

right hand side expression of each of the matches in a case may be different. Thus, an existential type is 

introduced in the definition of the matches. A match is a pair of a pattern and an expression, where for each 

match there exists an output type assignment e produced by that pattern, in which the expression is typed. 



An Interpreter for L: 

There are a number of design choices to take when implementing the interpreter for the language with 

pattern-matching. The first is how to handle local and global failure. For the interpreter we will present 

here we have opted for the following: 

1. Global failure is modeled by a non-terminating Haskell computation. This diverges somewhat from 

the set-theoretic model we have outlined above, but it makes our definitions more concise. 

2. Local failure is modeled by computations in the Haskell Maybe monad, as outlined in Section 5.3.2. 

In case expressions, after alternatives to the local failures are exhausted, global failure is raised. 

The first step is to implement the evaluation function for patterns. 

fatbar : : Maybe a -+Maybe a -+Maybe a 

fatbar (Just  x)  e = Jus t  x 

fatbar Nothing e = e 

evalPat : : (Pat t ein eout) -+ t +  (ein-+Maybe eout) 

evalpat (PVar p) v = \e+return (b2a p ( e ,v )  ) 

evalpat (PInl p t  p)  v = \ e+  case a2b p v of 
Left x j eva lPa t2  pt  x e 

Right --+Nothing 

evalPat (PInr p t  p) v = \e+ case a2b p v of 
Left - -+ Nothing 

Right x-+ evalPat2 p t  x e 

evalPat (PPair pa t l  pat2 p) v = \e -+ 

l e t  v '  = a2b p v - 
i n  do { e '  <- evalPat2 pa t l  (£st v f )  e -- 

; evalPat2 pat2 (snd v ' )  e l )  

The function evalpat takes a proof of the pattern judgment Pat t ein eout, a value of type t, 

and returns an environnzent transformer function ein +Maybe eout, where the Maybe type in the co- 

domain indicates that pattern matching may fail (local failure). 

The case for variables is trivial: given a value v, the environment transformer simply adds the value v 

onto the initial environment. 

The case for Inl patterns is more interesting. First, the value v is discriminated to determine whether it 

is the left or right injection of a sum. If it is the left injection, evalPat recursively deconstructs the sub- 

pattern with the projection of the value. If, however, the value has the form of the right injection, failure is 

symoked using the non-proper morphism fail. The case for the right injection pattern is symmetric. 



Finally, for pair patterns, evalpat first evaluates the left sub-pattern with the left element of the pair 

value. Then, the right sub-pattern is recursively matched. The environment is threaded through from the 

results of the left to the input of the right pattern match. 

Having defined evalpat, we are ready to give semantics of A-abstractions with patterns and the case 

expressions: 

eval : :  (Exp e t) +e--rt 

. . . . . . . . .  . . .  
eval (Abs pat exp p) env = b2a p 

(\x- 
case (evalPat pat x env) of 

;rust env' -+eval exp env' 

Nothing-error "Pattern match failure in abstraction!") 

eval (Case e branches) env = 

case (evalcase (eval e env) branches env) of 
JUSt V'V 

Nothing-+error "Pattern match failure" 

evalCase : : tl-+ [Match e tl t21 + e-Maybe t2 

evalCase val [ I  env = fail 

evalcase val ((Match pat branch):rest) env = 

(& { e' <- evalPat pat val env 
; return (eval branch e' ) ) )  

' fatbar ' 
(evalcase val rest env) 

The case of eval for abstraction (line 3-7) creates a function value whose argument, x, is passed to 

eva 1 Pat in order to create an extended runtime environment env ' . In case of failure of eva 1 Pat , an 

error is raised. If the pattern matching succeeds, the body of the function is evaluated in the augmented 

runtime environment env ' . 
The case of eval for the case expressions first evaluates the expression to be discriminated, and passes 

the resulting value to the function evalcase. If evalcase succeeds, its value is returned as the final 

result. In case of failure of evalcase, a pattern matching error (global failure) is raised. 

The function evalcase (lines 13-19) performs the evaluation of a case expression. If there are no matches 

left to examine (line 14), failure is raised. Otherwise, for each of the matches, the pattern is evaluated with 

evalpat against the value of the discriminated expression. If the pattern match succeeds, the augmented 

environment is passed on to eval of the right hand side of the match. If a local failure occurs along the 

way, evalcase re-tries with the next match. 



Example As a more comprehensive example, we implement the factorial function. This function uses a 

few more syntax building combinators than has been introduced in the previous text. These are additions to 

L: that support recursive definitions (fix), arithmetic and integer comparison operations. Their signatures 

are given below: 

data  Exp e  t = . . . 
I F i x  (Exp ( e , t )  t )  

f i x  : :  Exp ( e , t )  t - + E x p  e  t 

fix e  = Fix e 

eval  ( F i x  e )  env = eval  e  (env, eval  (Fix e )  env) 

l t e  : :  Exp e  Int-+Exp e  Int-+Exp e Boo1 

tirnes,minus : :  Exp e  Int-Exp e  Int-Exp e  I n t  

fac t2  : :  Ext e  ( I n t - - + I n t )  

Note that we use lines and arrows to connect a use site of a variable with its binding site. Note also that 

f i x  binds a variable which is used in the recursive call to the factorial. 

5.4 Staging 

The technique for encoding and interpreting languages presented in the previous sections may at first ap- 

pear untagged. The interpreter function eval has the type Exp e t -+ e --+ t: instead of injecting all 

possible types of its result values into a single value domain, the interpreter returns "untagged values: in- 

tegers, functions, and so on6. However, instead of tagging with injections into the universal domain, these 

interpreters exhibit another form of tagging, as can be recalled from the following part of the definition of 

eval: 

-- 

60ne should note that a number of programming language features come together to make this possible. The use of equality types 
has already been explained in considerable detail. Furthermore, parametric polymorphism and polymorphic recursion allow us to type 
functions like eval . 



eval :: (Exp e t) -+e-+t 

eval (Lit i p) env = lb2a i 

eval (Pair el e2 p) env = (eval el env, eval e2 env) 

Note that the boxed casting operations in fact play the same role as injections and projections of the 

universal value domains in more traditional implementations of interpreters in Haskell. In this section, 

however, we will point to a crucial difference between taggingluntagging operations with an universal value 

domain and the casting and equality operators we use. This distinction becomes visible and practically 

useful only when we add staging to the meta-language. 

5.4.1 Staging: Interpretive and Tagging Overhead 

We will first make a small digression to introduce and motivate the notion and techniques of staging. 

Consider the following interpreter for L:. We use typing judgment as usual, but the range of the eval is a 

universal domain of values (V) which is a sum of functional values (tag VF), integers (tag VI), pairs (tag 

vP), and tagged sums (tag vS). The interpreter evalO contains uses of tagging and untagging operations 

(i.e., the operations which inject or project intolout of the universal value domain), which are highlighted. 

data V = VF (V+V) 1 VS Int 1 VP V V 1 VS (Either V V) 
unVF (VF f )  = f 

evalO : : Exp e t-+ [Val] -+Val 

evalO (Lit i -) env = i 

evalO (V var) env = evalVarO var env 
evalO (App f x) env = [unVFI (evalO f env) (evalO x env) 
evalO (Abs pat e -) env = 

IVP((\v--t eval0 e (unJust (evalPatO pat v env) ) ) 

evalVarO : :  Var e t -> [Vl -> V 

evalVarO ( Z  -1 (v:vs) = v 

evalVarO (S s -) (v:vs) = evalVarO s vs 

evalPatO :: Pat t ein eout -> V -> [V] -> Maybe [V] 
evalPatO (PVar -) v env = return (v:env) 

An examination of the interpreter evalO reveals two sources of inefficiency: 



Interpretive overhead. Interpretive overhead [67] is the main reason why interpreted programs are as 

a rule less efficient than compiled programs. The overhead comes from the fact that the interpreter must 

spend considerable computation time and resources to analyze and interpret a program at runtime of the 

program it is interpreting. For example, the function evalO calls itself recursively in the body of a VF 

value when it interprets an Abs expression. Moreover, these recursive calls to evalO are latent: they are 

not symoked until the function value VF f is untagged and applied at run-time. If the functional value is 

applied many times, the latent recursive calls will be performed each time. 

A more efficient implementation can be obtained by specializing the interpreter with respect a given 

object program (the first Futamura projection [38, 671): this in effect unfolds the interpreter "statically," at 

a stage earlier than the actual execution of the program being interpreted, thus removing from the runtime 

execution of the program all the operations on its source syntax performed by the interpreter. This means, 

among other things, that latent recursion present in the VF case can be removed by "evaluating under the 

lambda" of the tag VF. For example, instead a value 

we obtain the equivalent, but more efficient 

Traditionally, partial evaluation has been used to perform this kind of specialization of interpreters. 

Meta-programming by staging offers a particularly elegant way of removing this interpretive overhead 

(e.g., L1151). 

Following MetaML r13.5, 1341, we will introduce into our meta-language a type of code, (here written 

Ot, taking the syntax from Davies [30,29]) which indicates "computation of t deferred to the next com- 

putational stage." An introduction construct for this code type are the code brackets ( e ) ,  which delay the 

expression e of type t, obtaining a value of type Ot. Code can be "spliced" into a larger code context by 

the escape expression " e. When an escape expression appears inside code brackets, the escaped expression 

is computed at the earlier computational stage. The results of this computation (which itself must be a code 

value) is then "spliced" at the same spot in the delayed context where the escape had first appeared. 

We consider adding staging constructs to Haskell as a conservative extension relatively uncontroversial. 

Combining staging constructs with a call-by-name language should be no more difficult than combining 

them with a call-by-value one [127]. We have implemented an interpreter for a Haskell-like language with 

staging [122], in which the subsequent program examples are written. 

We will now stage the example interpreter eval0, obtaining a two-stage version, evalOS. The ex- 

ecution of the function evalOS is divided into two distinct computational stages: in the first stage, the 



interpreter is unfolded over a particular expression, performing all the interpretive operations on the syntax 

of the program itself; in the second stage (properly a run-time stage of the interpreted expression), only 

computation pertaining to the object program on which the interpreter was specialized remains. 

evalOS :: Exp e t-+O[~all -+()Val 

evalOS (Lit i -) env = ((VII i) 
evalOS (V var) env = evalVarOS var env 

evalOS (Agp f x) env = " (evalOS f env) "(evalOS x env)) 

evalOS (Abs pat e -) env = 

(m(\v+" (eva10~ e (unJust " (evalPatOS pat (v) env))) ) 

evalVarOS : : Var e t --, [OVI -+ O V  

evalVarOS (Z -1 env = (head env) 

evalVarOS (S  s -) env = evalVarOS s (tail "env) 

evalPatOS : : Pat t ein eout -+V+ [OV] -+O (~aybe [VI ) 

evalPatOS (War -) v env = (return (v:env)) 

Applying the function eval 0s to an example expression yields the following result: 

ex1 = eval2 (Abs (Abs (App (Var 0) (Var 1) ) ) ) [ 1 
--(VF (\x+~F(\y--, unVF (head [y,x] ) (head (tail [y,xl ) ) ) ) )  

vl = run ex1 

vl : :  v 

MetaML also has a run operation which takes an expression of type O t  and runs the delayed computa- 

tion now, yielding a value of type t. It is important to note that run ex1 returns a V  from whose evaluation 

all recursive calls to evalOS have been removed: even though it is easily provable that in MetaML [I271 

( eval 0 e [ ] ) is semantically equivalent to ( run ( eval 0 S e [ 1 ) ) , the latter expression executes 

potentially considerably faster then the first (see [62, 161 for some experimental measurements). 

Tagging overhead. Another kind of overhead introduced into interpreters is tagging overhead (for a 

detailed explanation see Section 2.1.1). Tagging overhead occurs in certain situations when both the meta- 

language and the object-language are strongly typed, but the type system of the meta-language forces the 

programmer to "sum up" the values of the object-language programs purely in order to make the interpreter 



type-check [loo]. If we only consider interpreting well-typed object language programs, these tags are 

unnecessary - the strong typing of the object language ensures that no tag mismatch occurs at runtime. 

This is the case with the interpreter evalO given above, since evaluating proofs judgments restricts the 

function to evaluating only well-typed L$ expressions. When such an interpreter is staged, the tagging and 

untagging operations are inherited by the residual program. 

For example, the residual program first shown above has three tagging operations (shown boxed): 

(IVF( (\x-+m(\y-+ wl (head [y,xl) (head (tail [y,xl))))) 

When interpreting large programs, these tags can proliferate and cause considerable run-time perfor- 

mance penalty [13 11. 

5.4.2 Staging the Interpreter for LF 

We will proceed with staging of the interpreter for L: in a couple of steps. First, we will make the most 

straightforward (nalve) staging modification to the interpreter we have already presented. Then, we will 

discuss how certain binding time improvements [67] can be made to the original interpreter to make staging 

even more efficient. 

First Attempt 

The simplest way of staging an interpreter is to begin with the text of the original (non-staged) interpreter, 

and simply add staging annotations to it, separating the interpreter into two phases: the static (staging time) 

and dynamic (run-time) phase. In this operation we are guided by types: we shall add a single circle type 

to the types of values we expect to be performed in the dynamic phase. 

Thus, the type of the eval function is changed from ( E m  e t ) -+ e -+ t to 

( ~ x p  e t ) -+ Oe 4 O t ,  meaning that the runtime environment binding values to variables, and the 

value returned by the interpreter are dynamic. The source L1 program itself (Exp e t )  remains static. 

We now examine the annotations and changes that need to be made to the definition of eval. 

evalS :: Exp e t - + O e - + O t  

evalS (Lit i p) env = castTa (sym p) (i) 

evalS (V v) env = evalVarS v env 

evalS (Abs pat body p) env = castTa (sym p)  

(\x -+ (let env2 = unJust -(evalPatS pat (x) env) 

in -(evalS body ( env2 ) ) ) )  - 
evalS (App el e2) env = (-(evalS el env) -(evalS e2 env)) 



evalVarS : : Var e t -+ O e  -+ O t  

evalVarS (Z p) env = (snd (castTa p env)) 

evalVarS ( 6  v p) env = ( env2 = £st -(castTa p envl 

in (evalVarS v (env2)) ) - 

evalPatS :: Pat t ein eout-+O t + O  ein+O(~aybe eout) 

evalPatS (War p) v ein = (Dust -(castTa (sym p) (("ein,-v) ) ) )  
evalPatS (PInl pt p) v ein = 

( case " (castTa p v) of 
Left x -+-(evalPatS pt (x) ein) 

Right -+~othing) 

evalPatS (PInr pt p) v ein = 

(case " (castTa p v) of 

Left - -+ Nothing 

Right x 4 -(evalPatS pt (x) ein)) 

evalPatS (PPair patl pat2 p) v ein = 

(a (vl,v2) = -(castTa p v) 

in do { eoutl <-  -(evalPatS patl (vl) ein) - - 
; "(evalPatS pat2 (v2) (eoutl)) )) 

The simplest case is evaluating integer literals: 

(2) evals (Lit i p) env = [cast~a (sym p) I (i) 
The integer value (i) is returned in the next stage. Note that the casting operation is changed from 

b2a p : : Int 4 t to castTa (sym p) : : 01nt 4 O t  -which reflects the fact that cast must be 

"pushed through" the 0 type constructor. Similar changes to casting operations to make them work in a 

code context are made throughout the interpreter. 

Next, we examine the variable case: 

(9) evalVarS : : Var e t 4 O e  - Ot 
(10) evalVarS (2 p) env = (snd - (castTa p env)) 
(11) evalVarS (S v p) env = ( let env2 = £st "(castTa p env) 

in " (evalVarS v (env2) ) ) 

The auxiliary function evalVarS is similarly annotated to ensure that the environment is projected from 

at runtime of the object program. Thus, evaluating variable ( s z ) with some environment (e) results in 

(snd ( f s t e ) ). Note that projection of the appropriate value from the environment is thus completely 

delayed to the runtime. 



Example 

Let us now consider staging a sample L1 program. 

ex1 :: Exp a ( I n t - + I n t - +  ( ~ n t , I n t ) )  

ex1 = abs (abs (pa i r  ( V  z )  (V ( S  z)))) 

Two things should be noted. First, much of the interpretive overhead has been removed from the resulting 

expression. 

However, one small piece of this overhead remains: whenever a variable is evaluated, it is looked up in 

the environment dynamically. This is too dynamic, since the actual position in the runtime environment is 

known statically and does not change for each ~ar iab le .~  Recognizing this fact and changing our imple- 

mentation to take advantage of it constitutes a binding time improvement, which we shall discuss later. 

Second, all tagging overhead has been removed from the resulting code. This is a significant improve- 

ment over earlier implementations of staged interpreters (e.g., [115]). It was made possible by a careful use 

of equality operators and casting: since code is just another type constructor, we were able to cast a type 

"through" code - allowing us to perform the actual casting at an earlier stage. This behavior is very rem- 

iniscent of tag elimination [130, 1311, where a separate stage (between static and runtime stages) is used 

to perform the elimination of tagged values in residual code of a staged interpreter. Here, the r61e of this 

special tag elimination stage is played by stage 0, while stage 1 becomes the run-time stage for interpreted 

programs. 

Binding Time Improvements 

The process of (slightly) changing the interpreter to make it more amenable to staging is known as binding 

time improvement [67]. In the remainder of this section, we will make two binding time improvements 

to the staged interpreter for L t  with the goal of removing even more interpretive overhead, especially the 

dynamic lookup mentioned above. 

1 .  Partially static environments. What the previous staged interpreter fails to take advantage of is the 

fact that the runtime environment is partially static. Namely, while the values in the environment are 

' In other words, the environment in this interpreter is partially static. 



not known until stage one, the actual shape of the environment is known statically and depends only 

on the structure of the term being interpreted. We should be able to do away with the dynamic lookup 

of values in the runtime environment. The resulting interpreter should produce residual code for the 

above example that looks like this: 

2. Pattern matching and control flow. Pattern matching as presented in the semantics above relies 

on the failure monad, and the f atbar operator to propagate pattern matching failure. This makes 

residual code rather complicated and less efficient. A standard technique in staging is to rewrite such 

code in continuation passing style. Instead of propagating failure with the monad, we will simply 

rewrite our pattern matching function evalpat to accept a success-and-failure continuation. The 

residual code produced by this interpreter is much cleaner and easier to read, implementing cases in 

L1 by cases in the residual program. 

Partially Static Environments. Recall that environments in the previous definitions of the interpreter are 

dynamic nested pairs of the form ( ( ( . . . , v2 ) , v l  ) ). The corresponding partially static environment is 

a set of static nested pairs, in which each second element is a dynamic value: ( ( . . . , (v2) ) , (vl) ) . This 

relationship between environment types and the corresponding partially static environments is encoded by 

the following data-type: 

data PSE e 
- - I N I T  Oe 

( yap. EXT (PSE a)  OP (Equal e ( a ,P )  ) 

-- smart constructor 

ext :: PSE a+Ob-+pSE ( a , b )  

ext e t = EXT e t ref1 

A partially static environment (hence, a PSE) can either be completely dynamic (INIT), or it can be an 

environment extended by a dynamic value. The equality proof argument ensures that the type argument e 

is identical in form to the form of type assignment index of judgments (the e in ( Exp e t ) and (Var e 

t I ). Now, we can give a new type to the interpreter, as follows: 

eval2 S . .  . . Exp e t+(PSE e ) - + O t  

evalVar2S : :  Var e t-+ (PSE e )  +Ot  



The interpreter now takes a well-typed expression (Exp e t) , and a partially static environment 

(PSE e) , and produces a delayed result of type Ot. The largest change is in the evaluation function 

for variables, evalVar2 S: 

evalVar2S : : Var e t -+ (PSE e) --+ O t  

evalVar2S (Z p) (EXT - b p2) = castTa prf b 

where (-,prf) = pairparts (trans (sym p2) p) 

evalVar2S (S s p) (EXT e - p2) = evalVar2S s (castTa prf e) 

where (prf , -) = (pairparts ( trans (sym p2 ) p) ) 

The base case takes a derivation of the typing judgment for variable zero, which contains the equality 

proof p : : Equal e (a, t ) . Its second argument is a PSE, with b : : OD, and the proof p2 of type 

Equal e (a, P )  . The main work is performed by constructing the proof prf, which shows that P is 

equal to t . A simple cast then converts the value b from the type ( OD) to ( 0 t ) . Note that the definition 

of prf uses the product equality axiom pairpart s. 

The inductive case is similar. The pair equality axiom is again used to obtain a proof object and cast the 

sub-environment so that the recursive call to evalVar2S is well typed. 

The functionality of evalVarS can also be retained by simply providing two additional cases for 

evalVar2S, i.e., when the PSE is of the form ( INIT dynenv) . 

evalVar2S (S s p) (INIT env) = evalVar2S s (INIT (fst "(castTa p env))) 
evalVar2S (Z p) (INIT env) = (snd ("(castTa p env) ) )  

Pattern Matching and Continuations. We have seen how PSE's are used by the new interpreter. It re- 

mains yet to see how those environments are extended. Rewriting the function eva1Pat 2 S in continuation 

passing style is not difficult. We start by giving it a new type: 

evalPat2S : :  Pat t ein eout-+ 

O t  -+ (PSE ein) -+ 

(Maybe ( PSE eout -+ Oans ) -+ Oans 

The function evalPat2 S takes a pattern judgment (Pat t ein eout ) , a delayed value of type t, 

an input PSE of type ein, and a continuation function. The continuation takes as its argument a maybe 

type which is either a new, augmented PSE eout, or Nothing and returns a piece of code of some answer 

type ans. When given the (Just ein) argument, the continuation constructs the answer for the case in 



which the pattern matching succeeds. When given Nothing, the continuation constructs the code for the 

case in which the pattern matching fails. 

evalPat2S (PVar p) v ein k = k (J'ust (castTa (sym p) (ext ein v))) 

The variable case always succeeds. Therefore, the input PTE is extended by the value (ext ein v), and 

passed to the continuation as success (Just). 

evalPat2S (PInl pt p) v ein k = 

(case " (castTa p v) of 

Left x- i"  (evalPat2S pt (x) ein k) 
Right x --, " ( k Nothing) ) 

The PInl case (lines 18-39) creates a piece of code which first analyzes the input value v, generating a 

case expression with two branches. The first branch is generated for the case where value is of the form 

(Left x) . Its body is generated by eval Pa t 2 S which calls itself recursively on the sub-pattern pt and 

input value (x) without modifying the continuation k. The other branch, however, concerns the situation 

where the input value is of the form (Right x) , i.e., a mismatch has occurred. The body of this branch 

is generated by the continuation k, symoked with failure, " (k Nothing) . 

Finally, we examine the case for pair patterns (lines 43-47). 

evalPat2S (PPair ptl pt2 p) v ein k = 

(case " (castTa p v) of 
(vl,v2) 4" (evalPat2S ptl (vl) ein (h (v2)) ) ) 

where h n Nothing = k Nothing 

h n (J'ust eoutl) = evalPat2S pt2 n eoutl k 

Given a pair pattern with sub-patterns pt 1, and pt2, and an input value v, the input value pair is first 

deconstructed into its elements vl and v2. Then, evalPat2S calls itself recursively with the left sub- 

pattern pt 1, the value (vl), the input environment ein, and, most importantly, the enlarged continuation 

h (v2). The continuation h (v2) (lines 46-47) discriminates against its argument: 

1. If it is Nothing, then a previous pattern match must have failed and it symokes the initial continua- 

tion k with Nothing to propagate the failure. 

2. If the previous pattern matching has succeeded with some new augmented environment eoutl, it 

symokes evalPat2S recursively with the right-hand side patterns and values, giving it the new 

environment as its input, and the initial continuation k. 



Putting It A11 Together. The full implementation of the binding time improved interpreter for L r  is 

given in Figure 5.7 on page 14 1. Combining all the improvements shown above, we can return to eval2 S. 

Consider, for example, the case for A-abstraction (lines 14-16). This case constructs a piece of code that is 

a function (\x -+ . . . ). The body of this function is constructed by a call to eval Pat 2 S which is given 

the pattern, the discriminated value (x), the current environment and the continuation h. The continuation 

h generates the body of the A-abstraction using the enlarged environment constructed by eval~at2S in 

cases of success, and error raising code error " failure " in case the pattern matching fails. 

For example, when run with the input program Alnl . (Var O), the staged interpreter eval2S returns 

the following code: 

(\x-+ case x of (Left y) -+ y 

(Right z )  4 error f ailure") 

: : code ( (Either a b) -+a) 

It is also worth noting that if the pattern abstracted over by an L1 abstraction does not contain sums, the 

failure portion of the continuation is never symoked, and no case expressions are generated. For example, 

the input program A .Var 0: 

(\x-+x) : :  (forall a . code (a-+a)) 

Let us also consider how case expressions are defined: cases are constructed using the auxiliary function 

evalCase2 S (lines 20-24). 

eval2S (ECase e matches) env = 

(let value = " (eval2S e env) 
in " (evalCase2S (value) matches env) ) - 

evalCase2S : : Otl+ [EE e tl t2] 4 PSE e d  0t2 

evalCase2S val [ ]  env = (error "failure") 
evalCase2S val ((EE (pat,branch)) : rest) env = 

evalPat2S pat val env h 
where h (Nothing) = evalCase2S val rest env 

h (-st env2) = eval2S branch env2 

First, code is constructed for the discriminated expression, and bound to the variable value. Then, 

evalCase2S is called to match all the branches of the cases against (value). This trick is used to 



prevent code duplication between individual matches. The evaluation of each match proceeds just as with 

A-abstraction. The only difference is that in case of failure, the continuation h symokes evalCase2S 

recursively to construct further branches for all alternatives. 

We show the code generated by eval2S for the expression 

A rn .case Var 0 of 

Inl + Var 0 

Inr rn + Var 0 

( \ x + u  v = x 

in case v of (Left y) +y -- 
(Right - )  -+ 

case v of (Left - )  +error "fail" 
(Right z )  + z  ) 

5.5 Conclusions 

In previous chapters we have proposed and elaborated on a technique for implementation of strongly typed 

object languages. Essential to this technique are certain properties of the object language, such as being 

strondy typed; these properties are used to justify producing interpreters which are efficient and reliable 

by construction. In particular, we have used dependent types to encode inductive sets of only well-typed 

terms. Interpreters can be defined over these well-typed terms to avoid tagging overhead, and staged to 

avoid interpretive overhead. 

In this chapter, we have explored the extent to which similar techniques can be adapted in the setting 

of the more popular programming language Haskell. The motivation for this is twofold. First, we wish to 

explore the power and flexibility of Haskell-like type systems in order to understand its potential for meta- 

programming. The second reason is pragmatic: although the meta-programming system with dependent 

types has many useful theoretical properties, such systems have yet to develop a wider user base, and is ' 

thus liable to gain wider acceptance. 

5.5.1 Computational Language vs. Specification Language 

To implement object languages (interpreters, compilers, type-checkers, static analysis tools, and so on), one 

needs a meta-language. The meta-programming framework we have developed requires the meta-language 



to be typed. In such a typed language we can distinguish between a computational stratum of the meta- 

language which describes the programs that are executed at runtime, and a static specification stratum, 

which is used to specify properties of the programs in the computational stratum. In functional languages 

the distinction between these is rather simple: programs that result in some value-yielding computation at 

runtime are the computational stratum, while types of these programs whose validity is checked statically 

(at type-checking time) are the specification stratum. The distinction between these two coincides with the 

usual separation between static and dynamic phases of a program execution. 

This phase distinction [17] is often difficult to maintain in programming languages with dependent types 

since type-checking (static phase) often requires evaluation (dynamic phase) because types can depend on 

dynamic values. In MetaD [loo] and FLINT [114], this distinction is maintained by an elaborate stratifica- 

tion: the language is explicitly divided into a computational language whose expressions are classified by 

a type system (specification language) which itself is a highly expressive language (a version of the Calcu- 

lus of Inductive Constructions [24, 221). The specification language is expressive enough that interesting 

domain values that exist at runtime (such as integers) can also be represented at the level of types. Logi- 

cal propositions are then also implemented at the level of kinds, proofs of these propositions being types. 

Singleton types [57] are used to force a correspondence between runtime-values and their representations 

at type level. 

In our Haskell implementation, this complex structure must be mapped into the only two levels available: 

runtime Haskell programs and static Haskell types (and type constructors, and so on). We summarize the 

main correspondences. 

Domain value types. These Haskell types that are conceptually intended to represent runtime values 

at the level of types. They correspond to the elements of the inductive kind Nat in FLINT [114]. One 

difference between our encoding of domain-value types and the inductive kinds in MetaD and FLINT is 

that we have no way of enforcing a priori the well-formedness of such domain value types - rather, in our 

Haskell implementation, they are like terms upon whom structure must be imposed by a disciplined use of 

these terms. 

Well-formedness judgments. These play a dual role in the Haskell implementation. First, they are 

there to impose a structure on domain value types: the type IsNat from Section 4.3 is a particularly 

good example of this. For example, the type S ( S  z )  represents the natural number 2, but the type 

S ( S ( String -+ Int ) ) should be excluded from consideration as a valid representation in the domain 

of integers. Type constructor IsNat ensures that any argument type given to it is well-formed; by requiring 

IsNat types as arguments for functions, the user can ensure that only well-formed domain value naturals 

are used in types of her programs. 



Well-formedness judgments as singleton types. Another important consideration is to connect runtime 

values to the domain value types that describe them. A standard way that has been proposed to deal with 

this is to introduce a type constructor snat : Nat -+ * (where Nat is the inductive kind of natural 

numbers) such that 

given a type term n of kind Nat, if a computation value v has type snat n, then v denotes 

the natural number represented by n. [I 141. 

A good example that illustrates this connection in our Haskell implementations is the addition of num- 

bers (Section 4.3). The way we speak about addition between domain value types at type-checking time is 

by the type constructor PlusRel m n z: a value of the type PlusRel m n z is a proof that z equals 

m plus n. However, this property must ultimately be connected to some runtime value and a function that 

performs addition at runtime. A number of systems establish this connection between runtime values and 

their representations at type level through singleton types [57, 146, 1141. 

In our Haskell implementation, however, the role of snat is played by certain well-formedness judg- 

ments (e.g., IsNat). The MetaD and FLINT the system ensures that this representation is correct by 

construction (a meta-theorem guarantees that sna t adequately represents runtime natural number values), 

in our framework, the user must ensure that the well-formedness judgment corresponds to the objects that 

are modeled closely enough (usually a 1-to-1 correspondence) so that the proofs (or derivations) of these 

well-formedness judgments can be used as a representation of the objects themselves. 

In most interesting cases (inductively defined sets, such as the set of natural numbers), this is easily es- 

tablished (e.g., IsNat n % N, for any n). Still, it is important to emphasize that the burden of establishing 

this correspondence falls upon the programmer, and that there seems to be no way to prove this adequacy 

within the system i t sev  

5.5.2 Staging 

We have also shown that staging can be successfully combined with equality-proof based implementations 

of programming languages. In particular, the combination of staging and equality proofs allows us to write 

staged interpreters from which tagging overhead has been removed by construction. 



Figure 5.7 Staged interpreter for L: with binding time improvements. 

data PSE e = INIT O e  

I Vap. EXT (PSE a) (OD) (Equal e (ff,P) ) 

ext : :  PSE e-+Ot--+PSE (e,t) 

ext e t = EXT e t ref1 

eval2S : :  Exp e t+ (PSE e) -+Ot 

eval2S (Lit i p) env = castTa (sym p) (i) 

eval2S (V v) env = evalV2S v env 

eval2S (App el e2) env = ( "(eval2S el env) "(eval2S e2 env)) 
eval2S (EInl e p) env = castTa (sym p)  eft "(eval2S e env)) 
eval2S (EInr e p) env = castTa (sym p) (~ight "(eval2S e env)) 

eval2S (Abs pat body p) env = castTa (sym p) 

(\xi "(evalPat2S pat (x) env h)) 

where h (Nothing) = (error "fail") 

h (Just e) = eval2S body e 

eval2S (ECase e matches) env = 

( let value = S(eval2S e env) -(evalCase2S (value) matches env)) 

evalCase2S : : Otl -+ [Match e tl t21 +PSE e-+Ot2 

evalCase2S val [I env = (error "fail") 

evalCase2S val ((Match (pat,body)):rest) env = evalPat2S pat val env h 

where h (Nothing) = evalCase2S val rest env 

h (Just env2) = eval2S body env2 

evalVar2S :: Var e t-+ (PSE e) --rot 

evalVar2S (2  p) (EXT - b p2) = castTa prf b 

where (-,prf) = pairparts (trans (sym p2) p) 

evalVar2S (S s p) (EXT e - p2) = evalVar2S s (castTa prf e) 

where (prf,-) = (pairparts (trans (sym p2) p)  ) 

evalVar2S ( 2  p) (INIT env) = (snd "(castTa p env)) 

evalVar2S (S s p) (INIT env) = evalVar2S s (INIT (fst (castTa p env))) 

evalPat2S : : Pat t ein eout -+ O t  -+ (PSE ein) -+ 

(Maybe (PSE eout ) -+ Oans ) Oans 

evalPat2S (PVar p) v ein k = k (Just (castTa (sym p) (ext ein v))) 

evalPat2S (PInl pt p) v ein k = 

( case "(castTa p v) of Left x i"(evalPat2S pt (x) ein k) 
Right x--+"(k Nothing) ) 

evalPat2S (PInr pt p) v ein k = 

( case -(castTa p v) of Left x-+'- (k Nothing) 
~ight x-+" (evalPat2S pt (x) ein k)) 

evalPat2S (PPair ptl pt2 p) v ein k = 

(case "(castTa p v) of 
(vl,v2) -+"(evalPatZS ptl (vl) ein (h (v2)))) 

where h n Nothing = k Nothing 

h n (Just eoutl) = evalPat2S pt2 n eoutl k 



Part I11 

Omega and Further Applications 



Chapter 6 

A Meta-language with Built-in Type Equality 

6.1 Introduction 

Earlier in this dissertation we looked at different ways of providing support for open heterogeneous meta- 

programming. First, we used a custom-designed meta-language with dependent types. Next we devised a 

methodology for supporting open heterogeneous meta-programming in Haskell. 

However, practical experience with open heterogeneous meta-programming in Haskell does have one 

practical draw-back: it is tedious, requiring a lot of human intervention for rather simple tasks such as 

equality combinator manipulation. Since the combinator manipulation is pretty straightforward, albeit te- 

dious, we became interested in extending the type system of Haskell to automate the manipulation of 

equality proofs as much as possible. 

At this point we read Cheney and Hinze's work on phantom types [19]. Cheny and Hinze devise a 

type system that automatically propagates equalities between types, and solves type equality congruences. 

With this type system, we could easily implement all our examples in a much simpler, cleaner nota- 

tion. Furthermore, Cheney and Hinze presented a proof that such a type system is type safe, and that 

type-checking is decidable. Finally, using this type system we no longer had to resort to axioms for ma- 

nipulating equality types (e.g., pairparts : : Equal ( tl , t2 ) ( t3 , t4) -+ (Equal t 1 t3, 

Equal t 2 t 4 ) ), which could not be implemented in Haskell itself, but had to be given as primitives. 

Inspired by their idea we proceeded to experiment and design a functional programming language, based 

on Haskell, that implements their proposals along with some other features our experimentation in the 

previous chapter found might be useful. We called this language Omega [122]. Omega has proved to be a 

very useful vehicle for heterogeneous meta-programming, and much of its design was directly motivated 

'Material from this chapter was published as [I211 and [98]. 



by the kind of meta-programming we have demonstrated in this dissertation. We will familiarize the reader 

with Omega through the small tutorial offered in this chapter. 

6.2 Omega: A Meta-language Supporting Type Equality 

The essential characteristic of programming with type equality is the manipulation of the proofs of equali- 

ties between types using equality combinators. It has two practical drawbacks. First, manipulation of proofs 

using combinators is tedious. Second, while present throughout a program, the equality proof manipula- 

tions have no real computational content - they are used solely to leverage the power of the Haskell type 

system to accept certain programs that are not typable when written without the proofs. With all the clutter 

induced by proof manipulation, it is sometimes difficult to discern the difference between the truly impor- 

tant algorithmic part of the program and mere equality proof manipulation. This, in turn, makes programs 

brittle and rather difficult to change. 

What if we could extend the type system of Haskell, in a relatively minor way, to allow the type-checker 

itself to manipulate and propagate equality proofs? That is the idea behind Omega [122]. In the remainder 

of this Chapter, we shall use Omega, rather than pure Haskell to write our examples. We conjecture that, 

in principle, whatever is possible to do in Omega, it is also possible to do in Haskell (plus the usual set of 

extensions), only in Omega it is expressed more cleanly and succinctly. 

The syntax and type-system of Omega was designed to closely resemble Haskell (with GHC extensions). 

For practical purposes, we could consider (and use) it as a conservative extension to Haskell. In this section, 

we will briefly outline only the relevant differences between Omega and Haskell. 

6.3 An Omega Primer 

Omega is implemented as a stand-alone interpreted language, similar to the Hugs implementation of Haskell. 

Using a rudimentary module system, the user can load, type-check and execute source files that closely 

resemble Haskell. In this section, we shall explain some essential features of Omega, informally and by 

example. The language Omega has many interesting features such as built-in type equality, the polymorphic 

and extensible kind system, support for staging. These features were motivated by the examples appearing 

in earlier chapters. 



6.3.1 Data-types with Equality 

Here, we shall discuss the most important difference between Haskell and Omega: the data-type definition. 

First, recall the definition of a type of well-typed A-terms from Chapter 5. 

data E x p  e t 

=   it I n t  ( E q u a l  t I n t )  

I v ( V a r  e t )  

1 yap. ~ b s  ( R e p  a )  (EXP ( e ra )  P) ( ~ q u a l  t ( a - + P ) )  
( V a .  ~ p p  ( E x p  e ( a - + t ) )  ( E ~ P  e a )  

data V a r  e t 

= Q  z ( E q u a l  e ( y , t ) )  

I Q y a .  S ( V a r  y t) ( E q u a l  e ( y , a ) )  

These data-types rely on the data-type ( E q u a l  a b) , which is the type of proofs that the types a and b 

are equal. When constructing E x p  or V a r  values, the user must construct and supply the required equality 

proofs. 

In Omega, the equality between types is not encoded explicitly (using the type constructor E q u a l ) ,  but, 

rather, it is built-in and implicit. Let us reformulate the well-typed A-terms using Omega syntax: 

data E x p  e t 

= L i t  I n t  w h e r e  t = I n t  

1 V ( V a r  e t )  

I V a P .  Abs ( R e p  a )  ( E x p  (e ,a )  P )  w h e r e  t = (a--+PI 
1 a .  APP ( E x p  e ( a - + t ) )  ( E x p  e a)  

data V a r  e t 

= Vy. 2 w h e r e  e = ( y , t )  

( V y a .  S ( V a r  y t )  w h e r e  e = ( y , a )  

Each data-constructor in Omega may contain a w h e r e  clause which contains a list of equations between 

types in scope of the definition. These equations play the same role as the E q u a l  in our Haskell examples, 

with one important difference. The user is not required to provide any actual evidence of type equality - the 

Omega type checker keeps track of equalities between types and proves and propagates them automatically. 

Cheney and Hinze formally define a type system with equality types [19]. We will quickly sketch out 

such a type system here, omitting most of the details. Figure 6.1 summarizes the Cheney and Hinze's typing 

judgments: a standard A-calculus typing relation is augmented with equality contexts Q, which keep track 

of known equalities between types. An additional judgment, A; 9 I- TI = 7 2 ,  is defined to prove equalities 



Figure 6.1 Type system for Omega-like language (based on Cheney and Hinze). 

E ::= r l = r 2  Type equations - c ..- ..- . I C; dataT cY = 3P : rc.C a with E Data-type signatures 
Q  ::= . 1 Q , ~  Equation contexts 
e ::= C [ 7 ] F I c a s e [ ~ ] e o f r n s ) . . .  Expressions: constructors and case 
ms ::= (C  [PIT -+ e l m s )  1 .  Pattern matches 

A ; Q ~ - T = T  Type equivalence 
A ; Q ; r t e : r  Typing expressions 
A; Q; I? k  ms : T 7 + a Pattern match typing 

- 
d a t a T a =  3 0 :  :.CBwithE€ C  

A; Q; r I- ei : ( 7 i [ F / ~ , ~ / p ] )  
A; Q  I- ~i [F/Z, A ; @ ; r t - e : T 7  A ; Q ; F t - m s : T ? + u  

(Cons) (Case) 
a ; Q ; r I - c [ - ? ] a : ~ ?  A; Q; r k  case[r] e  of ms : a 

A ; Q ; r k m s : T 7 + 0  A , ~ ; Q , F [ ~ / Z , ~ / P ] ; ~ , K : ~ ~ [ ~ / E , ~ / P ]  k e : u  
(Match) 

A ; @ ; r t ( C [ ~ ] z  - + e ( m s ) : T ? + g  

A ; e :  A ; Q ~ T ~  = 7 2  
(EqCoerce) 

A ; @ ; r  k  e :  T~ 

between types. Data-types are defined as in the Omega examples above: each constructor definition may 

contain a set of equalities between types. 

Novel typing rules for constructor application and case expressions are formulated in the following way: 

1. When applying a constructor C, which is defined to require equations E, those equations must be 

proven (using the equality judgment A; Q  \k rl = T ~ )  to hold based on the current equality context 

(rule Cons, Figure 6.1). 

2. When taking apart a constructor value using case, an appropriate instantiation of the equations E from 

the definition of the constructor are added to the equality context when type-checking the body of 

each case match (rules Case and Match, Figure 6.1). 

3. Finally, a conversion rule that allows us to assign the type r 2  to an expression that has the type 

71, provided that we can prove that 71 equals TZ in the current equality context (rule EqCoerce, 

Figure 6.1). 

For further details, the reader is referred to the Cheney and Hinze paper [19]. The Omega interpreter 

includes a a type checker for a similar type system, supporting many Haskell-like type system features and 

type inference. We briefly explain how such a type checker works in practice. 



The mechanism Omega uses to keep track of equalities between types is very similar to the constraints 

that the Haskell type checker uses to resolve class-based overloading. A special qualified type [65] is used 

to assert equality between types, and a constraint solving system is used to simplify and discharge these 

assertions. When assigning a type to a type constructor, the equations specified in the where clause just 

become predicates in a qualified type. Thus, the constructor L i t  is given the type Qe  t . ( t = I n t  ) => 

I n t  4 Exp e t .  The equation t = I n t  is just another form of predicate, similar to the class membership 

predicate in the Haskell type (for example, Eq a => a -> a -> Bool).  

When type-checking an expression, the Omega type checker keeps two sets of equality constraints. 

Obligations. The first set of constraints is a set of obligations. For example, consider type-checking the 

expression (Lit 5 ) .  The constructor Lit has the type V e  t . ( t = I n t )  => I n t  4 Exp e t. Since 

L i t  is polymorphic in e and t ,  the type variable t can be instantiated to I n t .  Instantiating t to I n t  also 

creates the equality constraint obligation I n t = I n t ,  which can be trivially discharged by the type checker. 

Lit 5 : : ~ x p  e I n t  with obligation I n t  = I n t  

One practical thing to note is that the data-constructors of Exp and V a r  are now given the following 

types: 

Lit : : Ve t .  t=Int => Exp e t 

V : :  Ve t .  V a r  e t - + E x p  e t 

Abs : :  Q t  tl t 2  e .  t= ( t l - s t2 )  =z Exp ( e , t l )  t 2 - + E x p  e t 

App : :  e t l  t .  Exp e ( t l - + t ) + E x p  e t l - + E x p  e t 

It is important to note that the above qualified types can be instantiated to the same types that the smart 

constructors for well-typed abstract syntax have in Haskell. We have already seen this for L i t .  Consider 

the case for A b s  . First, the type variable t can be instantiated to ( t 1 -+ t 2 ) . Now, the proof obligation 

introduced by the constructor is ( t 1 -+ t 2 ) = ( t 1 -+ t 2 ) , which can be immediately discharged. This 

IeavesthetypeExp ( e , t l )  t 2 - + E x p  e ( t l j t 2 ) .  

Assumptions. The second set of constraints is a set of assumptions or facts. Whenever, a constructor 

with a w h e r e  clause is pattern-matched, the type equalities in the where-clause are added to the current 

set of assumptions in the scope of the pattern. These assumptions can be used to discharge obligations. For 

example, consider the following partial definition: 

e v a l L i s t  : :  Exp e t - + e - + [ t l  

e v a l L i s t  e x p  e n v  = 

case exp of Lit n - +  [ n l  



When the expression exp of type ( Exp e t ) is matched against the pattern (Lit n) , the equality 

t =Int from the definition of Lit is introduced as an assumption. 

The type signature of evalList induces the requirement that the right-hand side of the case expres- 

sion have the type [ t ] . However, the right-hand side of the case expression, [nl , has the type [ Int I . 

The type checker now must discharge (prove) the obligation [ t I = [ Int I , while using the fact, introduced 

by the pattern (Lit n) that t=Int. The Omega type-checker uses an algorithm based on congruence- 

closure [88], to discharge equality obligations. 

In Haskell, the proof of this obligation would fall on the programmer, by explicitly constructing a proof 

value of type (Equal [ t] [Int] ) ,or using the function castTa : : Equal a b -> f a -> 

f btocastfrom [Intl to [tl. 

evalList :: Exp e t+e+ [tl 

evalList exp env = 

case exp of Lit n tInt--, castTa t I n t  [n] 

In Omega, these proofs are constructed automatically, and this is perhaps the greatest practical benefit of 

Omega. 

Another interesting example of programming in Omega is to re-implement, explicitly, the equality type 

(Equal a b) . Consider the following definition: 

data Equal a b = Eq where a = b 

Note that the constructor Eq requires no arguments. The type Omega assigns to it is a=b => Equal 

a b, which can be simplified to Equal a a - the same type as the Haskell equality combinator self 

. . . . Equal a a. 

Since Omega's type system already knows how to manipulate equalities, writing equality proof combi- 

nators becomes trivial. Consider the transitivity combinator: 

trans : :  Equal a b-+Equal b c-+Equal a c 

trans (abQEq) (bc@Eq) = Eq 

First, matching the pattern ab@Eq introduces the assumption a=b. Similarly, the pattern bc@Eq intro- 

duces the assumption b=c. The result, ~q requires the proof obligation a=c to be discharged in order to 

return a value of type Equal a c. The congruence closure algorithm in the Omega type checker can then 

easily discharge this obligation based on the available assumptions. 

Finally, we emphasize that, even though the examples in the chapters that follow are presented in Omega, 

they can all be implemented in Haskell as well, with the already alluded-to caveats that primitive equality 



proof combinators such as pairparts may need to be used on the Haskell side. For the rest of this 

chapter (and subsequent chapters that use Omega), Omega should be considered as notational convenience. 

We have designed Omega to achieve a greater conciseness and clarity of presentation, because the explicit 

equality proof manipulation in meta-programs manipulating more complex object-languages can become 

very tedious. 

6.3.2 Inductive Kinds 

Let us recall the Haskell encoding of the natural numbers at the type level from Chapter 4. At the type level, 

natural number 0 is represented by the type Z, number 1 by the type ( S Z ) , 2  by ( S ( S Z ) ) , and so on. 

data Z = 

data S x = 

data IsNat n = IsZero (Equal n Z) 

I V m. IsSucc (IsNat m) (Equal n (S m)) 

This definition follows a standard pattern. First, each constructor of natural numbers is defined as a 

type constructor, Z : : * and S : : * -+ *, respectively. It is worth noting that there are no values 

classified by Z, ( S Z) , and so on. This can be seen by the lack of constructor functions for Z and S. It is 

also worth noting that the type system of Haskell has no way of statically preventing the type constructors Z 

and S from being combined with other types to construct ill-formed representations that do not correspond 

to any natural number, such as ( S ( S ( Int + Boo1 ) ) ) . 

Second, we define a type constructor of runtime representations of natural numbers I sNat : : * 4 *. 

This data-type allows us to construct values that are classified by IsNat which are parameterized by well- 

formed natural numbers at the type level. In other words, IsNat reflects the natural numbers at the type 

level (comprised of S and Z) to the value level. The type constructor IsNat comes with a built-in invariant: 

for any value classified by the type ( I sNat n) , the type n is a well-formed representation of some natural 

number. 

The type constructor IsNat performs the role of a singleton type: there is only one valid value of type 

IsNat n, i.e., that which is isomorphic to the natural number n.' Type constructors such as IsNat allow 

the programmer to connect the type-level representations of naturals with the behavior of programs. For 

example, a function of the type ( ( IsNa t m) + ( IsNa t ( S ( S m) ) ) ) takes any natural number as 

its argument and returns a natural number that is greater by 2. 

2 ~ o t e  that there is no way in Haskell or Omega to check that a particular type consbuctor such as I s N a t  is indeed a singleton 
type. Rather, being a singleton is a meta-theoretical property that the programmer must maintain in writing his program. 



value I type 1 kind I sort ( . . .  
5 . . . . Int . . * 0 . . . . *1 : :  . . .  . . 

Nat : :  *1 : :  . . .  
z . . . . Nat . . . . *I : :  .. .  
S : :  Nat --, Nat : :  *1 : :  . . .  

IsNat : :  Nat --, *O : :  *1 : :  . . .  
IsZero : :  IsNat Z . . * 0 . . : :  *I : :  . . .  

- 
IsSucc : : (IsNat rn) -+ (IsNat n) : : * 0 . . . . *I : :  . . .  

Table 6.1 : Classification in Omega. 

In Omega, there is a simple feature that makes the encoding technique described above both simpler and 

more user friendly. This feature allows the programmer to define new kinds. 

Before we demonstrate how kind declarations work, we shall explain the classification system of Omega. 

In Haskell, values and expressions are classijied by types. In Omega, the classification scheme is somewhat 

more general. Values and expressions are classified by types, as in Haskell. Types themselves are classified 

by the kind * 0. Kinds (e.g., * 0) are classified by * 1, * 1 by * 2 and so on. Kinds can be combined using a 

kind arrow (-). Table 6.1 gives an example of the classification relation in Omega. 

To represent natural numbers at the type level in Omega, we shall define a new kind Nat: 

kind Nat = Z I S Nat 

The kind Nat has two type constructors: (1) Z of kind Nat; (2) S of kind Nat-Nat. For example, 

( S Z )  is a valid type of kind Nat. It is important to note, however, that ( S Z ) is not a type of kind * 0. 

Now, we can define a type of runtime representations of natural numbers. It is a type constructor I sNat 

: : Nat-*0: 

data IsNat (n :  :Nat) = Iszero where n = Z 

I Qm. IsSucc (IsNat m) 
where n = ( S  m) 

one :: IsNat (S Z) 

one = IsSucc IsZero 

It is important to notice that the two versions of the example above, Haskell and Omega, are equally 

expressive: using two different type constructors for successor and zero works equally well as the Omega's 

kind declaration. The advantage of using Omega is that certain kind errors can be caught earlier, since the 

kind definition facility provides an additional amount of type discipline at the kind level which is missing in 

Haskell. Thus, the user cannot even write a type ( S Boo1 ) , since that would result in a kind error. Also, 

it allows us to combine all the constructors that represent values at the type level (with the same kind) in 



Figure 6.2 Simply typed A-calculus with substitutions. 
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one single definition which makes it easier for the programmer to modify and maintain. 

6.4 Omega Example: Substitution 

To round off the introduction to Omega we present a slightly larger example. First, we shall define a 

language of simply typed A-calculus judgments, and then implement a type-preserving substitution function 

on those terms. 

This example demonstrates type-preserving syntax-to-syntax transformations between object-language 

programs. Substitution, which we shall develop in the remainder of this Chapter, is one such transforma- 

tion. Furthermore, a correct implementation of substitution can be used to build more syntax-to-syntax 

transformations. At the end of this Chapter, we shall provide an implementation of big-step semantics that 

uses substitution. 

The substitution operation we present preserves object-language typing. Unlike the interpreters we have 

presented previously, it not only analyzes object-language typing judgments, but also builds new judgments 

based on the result of that analysis. 

6.4.1 The Simply Qped A-calculus with mped Substitutions 

Figure 6.2 defines two sets of typed expressions. The first set of expressions, presented in the top half 

of Figure 6.2 is just the simply typed A-calculus. The second set of expressions, presented in the bottom 



Figure 6.3 Substitutions 
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half of the figure defines a set of typed substitutions. The substitution expressions are taken from the Xu- 

calculus [9]. There are several of other ways to represent substitutions explicitly as terms (see Kristoffer 

Rose's excellent paper [ I l l ]  for a comprehensive survey), but we have chosen the notation of Xu for its 

simplicity. 

A substitution expression a is intended to represent a mapping from de-Bruijn indices to expressions 

(i.e., a substitution), the same way that A-expressions are intended to represent functions. As in Xu, we 

define three kinds of substitutions in Figure 6.2 (see Figure 6.3 for a graphical illustration): 

1. Slash ( e l ) .  Intuitively, the slash substitution maps the variable with the index 0 to e, and any variable 

with the index n + 1 to Var n. 

2. Shift (t). The shift substitution adjusts all the variable indices in a term by incrementing them by 

one. It maps each variable n to the term Var (n + 1). 

3. Lift ( fi (a)). The lift substitution ( fi (u)) is used to mark the fact that the substitution a is being 

applied to a term in a context in which index 0 is bound and should not be changed. Thus, it maps the 

variable with the index 0 to Var 0. For any other variable index n+l ,  it maps it to the term that a maps 

to n, with the provision that the resulting term must be adjusted with a shift: ((n + 1) HT ( ~ ( n ) ) ) .  

Typing substitutions. The substitution expressions are typed. The typing judgments of substitutions, 

written rl t u : r2, indicate that the type of a substitution, in a given type assignment, is another type 



assignment. The intuition behind the substitution typing judgment is the following: the type assignment rl 
assigns types to the free variables that may occur in the expressions that are a part of the substitution a ;  

the type assignment assigns types to the free variables in any expression that the substitution a may act 

upon. 

Example. We describe a couple of example substitutions. 

1. Consider the substitution (True/). This substitution maps the variable with the index 0 to the Boolean 

constant True. The type of this substitution is I? t- True/ : r, Bool. In other words, given any type 

assignment, the substitution (True/) can be applied in any context where the variable 0 is assigned 

type Bool. 

2. Consider the substitution a = (0 (True/)). a is the substitution that replaces the variable with the 

index 1 with the constant True. 

Recall that the type of any substitution 8 under a type assignment I?, is a type assignment A (written 

F t 8 : A), such that for any expression el to which the substitution 8 is applied, the following must 

holdA t- el : T a n d r  I- 8(e1) : T. 

So, what type should we assign to a ?  When applied to an expression, a lift substitution ( a  = ft (True/ 

)) does not change the variable with the index 0. Thus, when typing a as r k a : A, we know 

something about the shape of I' and A. Namely, for some A', we know that A = (A', T), and 

for some I", we know that I? = (I", T). The type assignments A' and I?' are determined by the 

sub-substitution True/, yielding the following typing derivation: 

onst 
I? t- True : BoolC Slash r t- BOOI/ : r, BOOI 

Lift 
I', T I- fi (BooI/) : I?, Bool, T 

We briefly explain the typing rules for the substitutions (Figure 6.2): 

1. Slash (el).  A slash substitution e/ replaces the 0-index variable in an expression by e. Thus, in any 

context I?, where e can be given type r ,  the typing rule requires the substitution to work only on 

expressions in the type assignment I?, T, where the 0-index variable is assigned the type T. 

P I - e : ~  
(Slash) 

I? t ~ / : I ' , T  

2. Shift (T). Since the shift substitution maps all variables with index n to a variable with index n + 1, 

this means that, whatever a type assignment assigned to the index 0, prior to the substitution, the 



Figure 6.4 Applying substitutions to terms 
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substitution can be contracted because after the substitution is performed 0-index variable no longer 

occurs. 

r , ~  t-f: r (Shift) 

3. Lift ( f i  ( a ) ) .  For any variable index ( n  + 1) in a term, the substitution fi ( a )  applies a  to n  and then 

shifts the resulting term. Thus, the 0-index term in the type assignment remains untouched, and the 

rest of the type assignment is as specified by a: 

r t - ~ : r '  
Lift) r ,  T !- f i  ( a )  : ri, T( 

5 
Applying substitutions. In the remainder of this Section, we show how to implement a function (we call 

it subst) that takes a substitution expression a ,  a A-expression e, and returns an expression such that all 

the indices in e have been replaced according the substitution. In the simply typed A-calculus, substitution 

preserves typing, so we expect the following property to be true of the substitution function subst: if 

l ? t a : A a n d A t e : ~ , t h e n ~ t s u b s t a e : ~ .  

How should subst work? Figure 6.4 presents two judgments, (a ,  e l )  + e2 and (a ,  n )  + e, which 

describe the action of substitutions on expressions and variables, respectively. These judgments are derived 

from the reduction relations of the Av-calculus [9] .  It is not difficult to show that this reduction strategy in- 

deed does implement capture avoiding substitution, although we omit such proof here to avoid unnecessary 

digression (see Benaissa, Lescanne & al. [9] for proofs). 



Next, we show how to implement this substitution operation in Omega, using expression and substitution 

judgments instead of expressions and substitution expressions. 

6.4.2 Judgments 

The expression and substitution judgments can be easily encoded in Omega. The data-types Var and 

Exp encode expression and variable judgments presented in Figure 6.2. We have only added a constructor 

Cons t for constant expressions in order to be able to write more interesting examples. The A-calculus 

fragment is identical to the one presented earlier in this chapter, and we shall not belabor its explanation. 

data Var e t = Vd. Z where e = (d,t) 

I Vd t2. S (Var d t) where e = (d,t2) 

data Exp e t = V (Varet) 

I Vtl t2. Abs (Exp (e,tl) t2) where t = tl+t2 

Ivtl. APP ( E w e  (tl-t)) ( ~ x p e t l )  

I Const t 

Next, we define a data-constructor Subst gamma delta that represents the typing judgments for 

substitutions . The type constructor Subst gamma delta represents the typing judgment r t a : A 

presented in Figure 6.2. 

data Subst gamma delta = 

1 Shift where gamma = (delta,tl) 

1 Slash (Expgammatl) wheredelta= (gamma,tl) 

I Vdell gaml tl. Lift (Subst gaml dell) 
where delta = (dell,tl), gamma = (gam1,tl) 

6.4.3 Substitution 

Finally, we define the substitution function subst. It has the following type: 

subst :: Subst gamma delta -> Exp delta t -> Exp gamma t 

It takes a substitution whose type is delta in some type assignment gamma, an expression of type t that is 

typed in the type assignment delta, and produces an expression of type t typable in the type assignment 

gamma. 

We will discuss the implementation of the function subst (Figure 6.5) in more detail. In several relevant 

cases, we shall describe the process by which the Omega type-checker makes sure that the definitions 



Figure 6.5 Substitution in simply typed A-calculus. 

subst : :  Subst gamma delta-+Exp delta t-+Exp gamma t 
subst s (App el e2) = App (subst s el) (subst s e2) 
subst s (Abs e) = Abs (subst (Lift s) e) 
subst (Slash e) (V 2)  = e 
subst (Slash e )  (V (S n)) = V n 
subst (Lift s) (V 2 )  = V Z 
subst (Lift s) (V (S n)) = subst Shift (subst s (V n)) 
subst Shift (V n)  = V (S n) 

are given correct types. Recall that every pattern-match over one of the Exp or Subst judgments may 

introduce zero or more equations between types, which are then available to the type-checker in the body of 

a case (or function definition). The type checker may use these equations to prove that two types are equal. 

In the text below, we sometimes use the type variables gamma and delta for notational convenience, but 

also Skolem constants like -1134. These are an artifact of the Omega type-checker (they appear when 

pattern-matching against values that may contain existentially quantified variables) and should be regarded 

as type constants. 

1. The application case (line 2) simply applies the substitution to the two sub-expression judgments and 

then rebuilds the application judgment from the results. 

2. The abstraction case (line 3) pushes the substitution under the A-abstraction. It may be interesting to 

examine the types of the various subexpressions in this definition. 

~ b s  e : ~ x p  delta t,wheret=tl+t2 

e : Exp (delta,tl) t2 

s : Subst gamma delta 

Lift s : Subst (gamma, tl) (delta, tl) 

subst (Lift s) e : Exp (gamma,tl) t2 

The body of the abstraction, e has the type (delta, t 1 ) , where t 1 is the type of the domain of 

the A-abstraction. In order to apply the substitution s to the body of the abstraction (e), we need 

a substitution of type ( Subs t (gamma, t 1 ) ( delta , t 1 ) ) . This substitution can be obtained 

by applying Lift to s. Then, recursively applying subst with the lifted substitution to the body 

e, we obtain an expression of type (Exp (gamma, tl) t2 1 , from which we can construct a X- 

abstraction of the ( Exp gamma ( t 1 -+ t 2 ) ) . 

3. The variable-slash case (line 4-5). There are two cases when applying the slash substitution to a 

variable expression: 



(a) Variable 0. The substitution ( Slash e) has the type ( Subst (gamma) (gamma, t ) ) , 

and contains the expression e : : Exp gamma t. The expression ( V  Z )  has the type 

( ~ x p  (delta, t ) t ) . Pattern matching introduces the equation gamma=delta, and we 

can use e to replace (V Z ) . 

Slash e :: (Subst (gamma) (gamma, t) ) 

e :: Exp gamma t 

(b) Variable n + 1. Pattern matching on the substitution argument introduces the equation 

de 1 t a= ( gartuna, t 1 ) . Pattern matching against the expression (V ( S n ) ) introduces 

the equation delta= (gamma' , t ) , for some gamma'. The expression result expression 

( V  n) has the type (Exp gamma ' t ) . The type checker then uses the two equalities 

to prove that it has the type ( ~ x p  gamma t) . It does this by first using congruence to 

prove that gamma=gamma', and then by applying this equality to obtain Exp gamma' t 

= Exp gamma t. 

Slash e :: Subst gamma (gamma,t) 

(V (S n)) :: Exp delta t 

4. The variable-lift case (lines 6-7). There are two cases when applying the lift substitution to a variable 

expression. 

(a) Variable 0. This case is easy because the lift substitution places makes no changes to the variable 

with the index 0. We are able simply to return ( V  Z ) as a result. 

(b) Variable n+l .  The first pattern (Lif t s : : Subst gamma delta), on the substitution, 

introduces the following equations: 

delta = (d' ,-l) , 

gamma = (gi,-1) 

The pattern on the variable (V ( S n) : : Var delta t) introduces the equation 

delta = (d2,-2) 

The first step is to apply the substitution s of type ( Subst g ' d' ) to a decremented vari- 

able index (V n )  which has the type n : : Var d2 t. To do this, the type checker has 

to show that g ' =d2, which easily follows from the equations introduced by the pattern, yield- 

ing a result of type (Exp g' t) . Applying the Shift substitution to this result yields an 

expression of type ( Exp ( g ' , a ) t ) (where a is can be any type). Now, equations above 

can be used to prove that this expression has the type ( Exp gamma t ) using the equation 

gamma= (g' , -1). 



5. Variable-shift case (line 8). Pattern matching on the Shift substitution introduces the equation 

gamma = ( delta, -1 ) . The expression has the type ( Exp delta t ) . Applying the successor 

to the variable results in an expression (V ( S n ) ) of type ( Exp ( delta, a) t ) . Immediately, 

the type checker can use the equation introduced by the pattern to prove that this type is equal to 

(Exp gamma t ) . 

We have defined type-preserving substitution simply typed A-calculus judgments. It is worth noting that 

Omega has proven very helpful in writing such complicated functions: explicitly manipulating equality 

proofs for such a function in Haskell, would result in code that is both extremely verbose and difficult to 

understand. 

6.4.4 A Big-step Evaluator 

Finally, we implement a simple evaluator based on the big-step semantics for the A-calculus. The evaluation 

relation is given by the following judgment: 

Note that in the application case, we first use the substitution ( e 2 / ,  e l )  =+ e3 to substitute the argument 

ea for the variable with index 0 into the body of the A-abstraction. 

A big-step evaluator differs from the other interpreters for object languages we have presented in this 

dissertation. Whereas the other interpreters map object-language judgments to some related domain of 

values, the big-step evaluator is implemented as the function eval which takes a well-typed expression 

judgment of type ( ~ x p  delta t ) , and returns judgments of the same type. The evaluator reduces ,f?- 

redices using a call-by-name strategy, relying upon the substitution implemented above. 

eval : :  Exp delta t -> Exp delta t 

eval (App el e2) = 

case eval el of 

Abs body -> eval (subst (Slash e2) body) 

eval x = x 

Note that the type of the function eval statically ensures that it preserves the typing of the object I 
language expressions it evaluates, with the usual caveats that the Exps faithfully encode well-typed A- I 
expressions. 

Finally, let us apply the big-step evaluator to a simple example. Consider the expression, example. 



example :: Exp gamma (a+a) 

example = (Abs (V 2 ) )  'ARP' ((Abs (Abs (V 2) 1 )  'App' (&s (V 2 ) ) )  

-- example = (A x.x) ((A y. (A z.z))) (A x.x) 

The expression example evaluates the identity function. Applying eval to it yields precisely that 

result: 

evExample = eval example 

-- evExampl e = (Abs (V Z )  I : Exp gamma (a -+ a) 



Chapter 7 

Example: A' 

. . 
Up until now, we have considered object-languages based on the simply typed A-calculus. In this section, 

we shall expand our range of object-languages by first providing implementations of well-typed interpreters 

for two object languages whose type systems are somewhat different from the type-system of the meta- 

language. These languages, we shall call them LD and L o ,  are based on the two extension of the typed 
. .  I 

A-calculus, with modal and temporal operators, Xu [31] and Xo 1291. I 
Why these particular languages? First, they are interesting typed languages in their own right, as use- 

ful formalisms for describing two different kinds of staged computation. Second, formalizing their type 

systems in a Haskell-like language to obtain sets of well-typed object terms is a more challenging task, 

allowing us to showcase our heterogeneous meta-programming methodology. 

The calculus An is an extension of the simply typed A-calculus. This calculus was defined by Davies 

and Pfenning as the language of proof-terms for propositions in the necessity fragment of the intuitionistic 

modal logic S4 [30, 3 11. The propositions in this logic (and, hence, types in Ao) come equipped with the 

modal necessity (also called "necessitation") operator 0. 

Logically, the box operator expresses propositions that are necessarily true (the term valid is also used). 

For example, O(a -+ a), is such a proposition since (a -+ a )  is always true, irrespective of the truth-value 

of a. 

An is a (homogeneous) meta-programming language. The logical box operator used to classify types of 

object-programs (of An). For example, the type (Int -+ OString) in AD is a type of a program generator 

that takes an integer and produces a piece of code that, when executed, yields a string value. Davies and 

Pfenning prove certain binding time separation properties [3 11 that guarantee that, for example, while the 

program of type (Int -+ Elstring) generates the residual program of type String, all computation pertaining 

to its integer argument is performed while the residual program is being constructed, i.e., there is no leftover 

earlier stage computation in the residual program. 

In this section, we shall present a small object language, called Lo that is based on the type system of 



Figure 7.1 The syntax of the language Lo. 

b €]I%::= Inti... base types 
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7.1 Syntax of Lo. 

The core syntax of the language Lo is given in Figure 7.1. Types in Lo are either base types such as 

Int, Bool, function types, box types or products. Expressions are somewhat non-standard and we need to 

explain them. 

Variables. In standard formalizations of An [3 11, there are usually two (distinct) sets of variables. The fist 

is the set of variables bound by A-abstractions. The second set is the set of modal variables that range over 

code fragments (box values), and are bound by the let box expressions. Following Davies and Pfenning, 

we shall call the former variables (OR) we shall call value variables, and the latter (OL) modal variables. 

As is usual in examples we have presented so far, we opt for a de Bruijn style of variable naming. The 

name of each variable is a natural number indicating the number of intervening binding sites between the 

use and the definition of a variable. In Chapter 5, variables are represented by natural numbers. This has 

required us to formulate a separate auxiliary typing judgment for variables. Here, we slightly modify the 

notation for variables, following the example of Chen and Xi [18], who adopt their notation from the study 

of A-calculus with explicit substitutions (See Kristoffer H. Rose's excellent tutorial [ I l l ]  for more about 

explicit substitutions.) 

In this notation, there is only one syntactic form for variables, corresponding to the index 0. Since in Lo 

we have two separate sets of variables, we shall use two such expressions, OL for value variables, and OR 

for modal variables. 

Variables at higher indices are obtained by a "shift" (e.g.,[71]) syntactic construct (1 e and e r ,  for value 

and modal variables, respectively, where T, on the left or on the right, binds more tightly than application). 

Intuitively, the expression e increments the indices of all free value variables in e by one. 

We find this notation slightly more concise in practice, and include it here to simplify our presentation, 

since it allows us to, among other things, write only one eval function, dispensing with the auxiliary 

function lookup of Chapter 5. 



In Figure 7.2 we give a few examples of programs in a Xu-based programming language with named 

variables, and their equivalent in the formalism of Lo. 

Figure 7.2 A comparison between Xu and Lo syntax. 

XU term - 
XX.XY.(X, Y) 
let box u = box(1 + 2) in 
let box v = box(3 + 4) in 

Box and Unbox. The two novel expression forms in Lo are box and let box, which act as introduction 

and elimination forms for the box types. The expression (box e) acts as a form of quasi-quotation. It 

constructs an object-language program e. The expression (let box e l  in e2) takes an object-language 

program el, runs it, and binds its value to a box variable OL in the body of the expression el. 

Lo term 

X.X.(t OL, OL) 
let box (box (1 + 2)) in 
let box (box (3 + 4)) in 

box (v, u) 
power :: Int -+ O(1nt -t Int) 
power 0 = box(Xx : Int. 1) 
power (n + 1) = 

let box u = power n in 
box(Xx. x * (u x)) 

Products and constants. In defining Lo we shall also assume that we have a number of other, uncon- 

troversial simple types such as products. Furthermore, we will assume that for various base types such as 

integers, booleans and so on, we have a sufficient number of constants (including operations like addition, 

comparison, and so on) for practical purposes. We will show later how such constants can be elegantly 

embedded into Haskell encodings of Lo typing judgments. 

box(OR, OR f) 
power = fix powerF 
powerF = Xlnt -+ O(1nt -+ Int). Xlnt. 

if (OR == 0) 
then box (XNat.1) 
else let box((OR T) (OR - 1)) in box(Xlnt.0~ * ( 0 ~  OR)) 

7.2 Type System of Lo 

The type system of Lo is given by the typing judgment relation ((A; r k e : t )  G x G x IE x 11') 

in Figure 7.3. The first thing to notice is that there are two type assignments, A and I'. The intuition 

behind this is that the A-fragment of Lo is typed in the usual fashion using the type assignment I?. Since 

represents closed code, boxed expressions can be well-typed only when r is the empty type assignment (see 

rule Box in Figure 7.3). However, variables that range over code fragments can still be used inside boxed 

expression, and their types are recorded by the type assignment A. This allows us type-check expressions 

that combine smaller box fragments into larger ones. 



Figure 7.3 The Static Semantics of Lo 

The X fragment 

A ; I ' t e : r  
R-Var R-Shift n; r ,~  t- oR : T a ; r ,~ /  t- e f: T 

A;I',rl k e  : r 2  A;rI-el:r1+r2 A ; r t e 2 : r 2  
Abs 

A, r  t- Ar1.e: 71 -' 72 A; I? I- e l  e2 : TZ 
APP 

The modal fragment 

A ; r k e : r  
L-Var L-Shift 

A , T ; ~  t- OL : T A , ~ / ; r k f  e : r  

A ; ( ) k e : r  A;rl-el:Cl~l A , T I ; ~ ~ ~ z : T  
Box Unbox 

A;I' I- boxe: UT A;r  k let box e l  in e2 : T 

The A-fragment. The rules for the modal fragment are the standard rules for the simply type A-calculus, 

except where it comes to the treatment of variables. A variable expression OL implements the start rule of 

looking up its type from the rightmost position in the type assignment r .  The rule for shift (L-Shift) im- 

plements the weakening - the expression e is typed in a smaller type assignment. The rules for abstraction, 

applications, and products (not shown in the figure) are completely standard. 

The modal fragment. The static semantics of the modal fragment consists of four typing rules in Fig- 

ure 7.3: 

L-Var: and L-Shzft are the lookup and weakening cases for the set of non-lambda-bound variables. 

They are the same as their A fragment counterparts, except that they use the type assignment A. 

Box. The box takes a sub-expression e, and type-checks it in the empty A-fragment type assignment. 

If, under that assumption, the expression e has type T, then the whole expression box e has the type 

or. 

This captures the modal inference rule about necessity: e is a proof of a necessarily true proposition 

T only if T can be proven with no assumptions (indicated by the empty type assignment). Note, 

that while type-checking e we are allowed to use any variables that are typed in the type assignment 

A, since the type assignment A, a.s we will see, is augmented only with types that are themselves 

necessarily true. 

Unbox. The let box expression is an elimination construct for boxed expression. It takes two subex- 

pressions, e l  and e2. Then, the expression el must be shown to have some type Url. If this is the 



case, we are allowed to introduce an additional assumption (bind a variable) in the type assignment 

A that has the type 71. If, with such an augmented A we can prove that the expression ez has type 7, 

then we may conclude that the entire expression has the type T. 

Note that this is the only rule in which the modal type assignment A is extended. Moreover, it is 

extended only with a type of a closed code fragment. Intuitively, the modal variables can occur free 

inside boxed expression precisely because we know that they only range over expressions that are 

themselves closed. 

Examples. Finally, we give a couple of examples involving expressions with box types. 

Consider the expression examplel (for some type A): 

examplel : OA -+ A 

examplel = XCIA. let box OR in OL 

The type of this expression tells us, in terms of logic, that if A is necessarily true, than A is true. The 

typing derivation is listed below: 

R-Var L-Var 
0; 0, CIA t OR : OA 0 A 0 • L : A Unbox 

0: 0. DA F let box OR in 01 : A . . >, . >, . .. - ADS 0; () t XOA.let box OR in OL : (m -+ A) 

example2 : O(A -+ B )  -+ CIA -+ U B  

let box OR f in 

example2 = XO(A -, B) .  XOA. 

box((T OL) OL) 

0; (O(A -+ B)) + OR : O(A ' B) R-Shi* 0;  (O(A -+ B),  CIA) I- OR f :  O(A -+ B) APP 
(A -. B ,  A); 0 ((T OL) OL) : B Box 0 ;  (O(A + B), CIA) t box((T OL) OL) : OB 

R-Var 0; (O(A -+ E ) ,  OA) t OR : OA J Unbox, twice 
let box OR T in 

box((T OL) OL) Abs, twice 

let box OR T in 



7.3 Encoding Lo in Omega 

A first step is to encode the Lo judgments described in Figure 7.3 into an Omega(or, with slight modi- 

fications, Haskell) data-type. We shall use the technique that should be familiar to the reader by how of 

representing the typing judgment A; r I- e : r by a Haskell type constructor Exp d e l t a  gamma tau. 

Note that with Omega, there is no need to implement a set of smart constructors for the data-type defined 

in Figure 7.4. 

Figure 7.4 Typing judgments of Lo in Haskell. 

- E x p a r t =  
V r'. VarR where = (r',t) 

1 v r' t'. ShiftR (Exp A r' t) where r=(rl,t ')  
I V tl t2. Abs ( ~ x p  A ( r , t l )  t2) where t=(tl -+ t2) 
I v t l .  APP   EX^ A r (ti -+ t))   EX^ A r t i )  

1 Lift t String 

1 V A'. VarL where A=(A9,t) 
1 b' A' t'. ShiftL (Exp A' r t) where A=(A',t') 
] V t l .  BoxExp (Exp A () t l )  where t=(Box t l )  
lVt1. UnBox (ExpAr(Boxt l ) ) (Exp(A, t l ) r t )  

The type assignments are represented by a nested product type. The lambda-calculus fragment is com- 

pletely standard, as in Lo (Chapter 5). 

The judgment described in Figure 7.4 also contains the constructor ( L i f t  t S t r i n g  : : 

t -+ Exp a b t )  . This constructor represents constants in the object language. It can be used to in- 

ject any Omega value (of type t )  into Exp. It also takes a string argument that represents the name of 

the constant, for pretty-printing purposes. For example, the constant plus is encoded by simply lifting the 

additionoperator: ( L i f t  ( + )  " + " )  :: Exp d g ( I n t - i I n t - + I n t ) .  

Next, we consider the encoding of the modal fragment. The constructor BoxExp is used to create 

judgments of boxed terms. It has one argument, a judgment of type Exp A ( ) t 1. This ensures that the 

boxed expression is closed - any mention of free value variables will require the value type assignment to 

be a pair, causing a type mismatch with the requirement that the body expression have the type ( ) . For 

example, the judgment for the Lo term (box (A. OR)) is represented by the Omega declaration examplel, 

given below: 

examplel :: Exp a b (Box ( c  -> c ) )  

examplel = Box (Abs VarR) 



However, if we try to create the judgment for the term (box OR),  which cannot be correctly typed, the 

Omega type-checker complains with the following error message: 

Lambdabox> b o x  varr 

ERROR - Type e r r o r  i n  a p p l i c a t i o n  

* * *  E x p r e s s i o n  : b o x  varr 

* * *  Term : varr 
* * *  TYPe : Exp c (d ,b)  b 

* * *  Does n o t  m a t c h  : Exp a ( )  b 

The where-clause in the definition of the constructor specifies a proof obligation that t is equal to 

Box t 1. The type constructor Box here is some, as yet undefined representation of boxed values. We will 

consider how to define Box later on. 

Example: Power function. Here we shall construct an example Lo well-typed program. The function 

power  from In Figure 7.2 we show an integer exponentiation function power.  This function can be 

staged based on the situation where its exponent argument is known. Thus, in Lo, power is given the type 

( r n t  4 ( I n t  i. I n t  ) ) : given an integer exponent argument n, power  generates a residual program 

that computes xn, given its argument x. 

Figure 7.5 The staged power function in Lo. 

power :: Exp a b (Integer -+ Box (Integer -+ Integer)) 
power = fixpoint 'App' (Abs $ Abs $ Body) 

where body = iffun 'App' cond 'App' zerocase 'App' ncase 
cond = eq 'App' varr 'App' (Lift 0 "0") 
zerocase = Box (Abs (int 1)) 
ncase = Unbox reccall newbox 
reccall = (ShiftR VarR) 'App' (minusone 'App' VarR) 
newbox = Box (Abs $ times 'App' VarR 'App' (VarL 'App' VarR)) 
minusone= Lift (\x 4 x-1 ) "dec" 
times = Lift (\x y 4 x y) "times" 
iff un = Lift (\x y z -+ if x then y else z) "if" 
eq = Lift (==) "=='I 

fixpoint :: Exp d g ((a -+ a) -+ a) 
fixpoint = Lift fix "fix" 

where fix f = f (fix f) 

Figure 7.5 shows the definition of the power  function in the Omega encoding of Lo. We examine this 

definition more closely: 



In the first line, we can see that power is defined by using recursion. The Lo constant f ixpoint 

is applied to a functional (abs $ abs $ body) , where the first abstracted variable represents 

the recursive call to the function power, and the second argument is the exponent n. 

The body of function power is a conditional expression that compares the exponent to 0, and then 

takes two cases: 

1. zerocase. If the exponent is equal to zero, we simply return the code of a function that, given 

any argument, returns 1: box (abs (int 1) 1. 

2. ncase. If the exponent is not zero, we first recursively construct the code for the exponentiation 

function for a smaller exponent (reccall). The result of this recursive call is a piece of code 

of type U(Int -+ Int) .  Then, this piece of code is un-boxed, and a new piece of code is 

constructed using the un-boxed value (newbox). 

7.4 An Interpreter for Ln 

We shall give the semantics of Lo by providing an interpreter for the Omega encoding of the typing judg- 

ments of Lo. 

The A-fragment of Lo is virtually identical to the interpreter for Lo in Chapter 5. The important question 

is how to implement the modal fragment. In defining the meaning of Lo programs, we are guided by the 

semantics of XO described by Davies and Pfenning [31]. 

First, we must decide what meaning to give to expressions of type Box a. In a functional language 

(with recursion) the simplest meaning of boxed terms, as discussed by Davies and Pfenning, are suspended 

computations: 

[OA] = 1 -+ [A] 

Furthermore, such a semantics must respect the following identities [31, page 191: 

b o x e  = Ax: 1 . e  

let box u = el in e2 = (Ax : 1 4 r. ez[u := x ( ) I )  e . ~  

With these guidelines in mind, we can begin to devise an interpreter for Lo. The interpreter (Figure 7.6) 

takes a typing judgment of Lo of type ( E x p  d g t I , a runtime modal environment, a runtime value 

environment, and returns a Haskell value of type t. As before, the runtime value environment is simply a 

value of type g. However, we have seen that for modal of type t, we use the type ( ) -+ t, so the modal 

environment cannot simply be the nested tuple of type d. Rather, it is a closely related type (ME d) , 

defined below: 



data ME-e = RMPTY 

( vent. EXT (ME e') (()+t) where e=(er,t) 

-- EXT : :  ME a -> ( 0  -> b) -> ME (a,b) 

Now, a runtime modal environment of type ME ( ( ( ) , Int ) , Int ) can be created as follows: 

me1 : :  ((O,Int),Int) 

me1 = EMPTY 'EXT' ( \  - -> 1) 'EXT' ( \  - -> 2 )  

Finally, we are ready to give a type to the function eval: 

eval : :  Exp d g t-+ (ME dl-g-+t 

Figure 7.6 The interureter for Ln. 

eval :: Exp delta gamma t -+ ME delta -+ gamma -+ t 
eval VarR e l  e2 = snd e2 
eval (ShiftR exp) e l  e2 = eval exp e 1 (fst e2) 
eval (Abs body) el e2 = ( \v 4 (eval body) el  (e2,v)) 
eval (App f x )  e 1 e2 = (eval f e l  e2) (eval x e l  e2) 

eval VarL (EXT - f) e2 = (f 0) 
eval (ShiftL e) (EXT env' -) e2 = eval e env' e2 
eval (BoxExp body) e l  e2 = (Box (\ - -+ (eval body e l  0))) 
eval (UnBox expb body) e l  e2 = 

'(Box u) = eval expb el e2 
& eval body (ext e l  u) e2 

We concentrate on explaining the modal fragment (the bottom half of Figure 7.6): 

1. Modal variables. The modal variable lookup is fairly standard. We consider the two relevant cases: 

(a) The VarL judgment provides us with an assumption that gamma = (x, t) . The runtime 

environment supplies another assumption, gamma= ( y  , t2 ) . These assumptions are combined 

to obtain an equality t2=t, which is induced by the type signature in relation to the result 

( f  ( )  ::t2). 

(b) Similarly, the ShiftL case implements weakening. Again, assumptions introduced by pattern 

matching on the modal runtime environment are combined with the assumptions introduced by 

pattern matching over the Lo judgment so that the weakened runtime modal environment can 

be passed as an argument to the recursive call of eval. 

2. Box. First, we must decide how to represent boxed values. Here, we shall chose to define a data-type 

Box a as suspended computations over a. The eval function simply delays the evaluation of the 

body of the boxed expression and returns this computation wrapped up in a Box: 



&& Box a = Box (() --+ a) 

eval (BoxExp body) e l  e2 = (Box (\ - -+ (eval body e l  0))) 

3. Unbox. The un-boxing is performed by first evaluating the expression to a Box value, binds the 

computation inside the Box in the 0-th position in the modal dynamic environment, and proceeds to 

evaluate the body of the let box expression. 

eval (UnBox expb body) e l  e2 = 

let (Box U) = eval expb e l  e2 - 

in eval body (ext e l  u) e2 - 

It is worth reiterating the point made by Davies and Pfenning [31], that at first, there does not seem to be 

any difference between the meaning of the box modality, and simple call-by-name delay. While this is true, 

it is important to note that the modal type system of Lg rejects certain programs that using delayed values 

(i.e., () i A) would allow us to write. The type system accepts as correct only those programs that exhibit 

correct meta-programming properties (e.g., binding time separation [31]). 



Chapter 8 

Example: XO 

Davies and Pfenning define another version of the typed A-calculus enriched with types based on temporal 

logic, called AO. The logic on which the type system for A 0  is based is the discrete linear-time temporal 

logic.' 

The motivation for devising this calculus seems to have been its ability to express, in a simple and natural 

way, binding-time analysis in partial evaluation [29]. The notion of "a particular time" in temporal logic 

correspond to computational stages (binding times) in partial evaluation. 

Figure 8.1 The syntax of the language Lo. 

b EB: :=  Inti... base types 
T E T : : =  ~ ~ T + T ~ ~ T ( T X T  types 
r E (6 ::= () I I', (T, n) type assignments 
e E IE ::= c ( 0 1 e f 1 A7.e 1 el e2 1 (el, e2) I e 1 7r2 e A-fragment 

I next e 1 prev e temporal fragment 

8.1 Syntax of Lo 

The syntax of the language L o  is defined in Figure 8.1. The types of Lo are the types of the simply typed 

A-calculus, enriched with 0-types. In logic, the formula O A  indicates that A is valid at the next moment. 

Similarly, if we regard them as types of a programming language, we can see type (Int --, 0 Bool) as a type 

of a function that takes an integer argument, and returns a boolean at the next computational stage. These 

computational stages are ordered with respect to evaluation, so that evaluation of all redices that occur at 

stage n happens before evaluation of the redices at the stage n + 1. 

Type assignments are lists of types, where each type in a list is annotated with a natural number. This 

natural number represents the "time moment" (or stage) at which the free variable is bound. 

'A "temporal logic is an extension to logic to include proofs that formulas are valid at particular times" [29]. 



Figure 8.2 Type System of Lo. 

r t n e : r  
Var Shift 

I?, (7 ,  n )  t-n 0 : r r, (r ' ,  m) tn e  f :  T 

r ,  ( r l , n )  Fn e : 7 2  I? Fn  el : 4 72 J? tn e2 : 71 

I ' F n A r 1 . e :  71 4 7 2  
Abs r t n  el e2 : 72 

APP 

I? Fn+l e  : T I? k n  e : Or 
Next Rev r tn next e  : Or I? Fn+l prev e  : T 

The set of expressions consists of a completely standard A-calculus fragment, and a temporal fragment 

consisting of two constructs: 

1. next e. The next is an introduction construct for the circle types. Operationally, it delays the execution 

of the expression e  until the next computational stage. In a way, it is analogous to the box expression 

of Lo, except that, as we will see, there is no requirement that e  be closed. 

2. prev e. The prev is en elimination construct for the circle types. While constructing a value at the 

next computational stage, the prev expression allows the control to pass back to the current stage, 

provided that its result is a next-stage value. This next stage value can then be plugged back into the 

next-stage context surrounding the prev. 

8.2 Type System of Lo 

The typing judgment of Lo is defined in Figure 8.2. The typing relation r k n  e : r G x N x IE x T is 

indexed by a natural number n, which represents a particular time at which an expression e  has type T .  The 

typing rules for next and prev constructs manipulate this time index: 

1. At some time index n ,  a value of type Or represents a value at the next moment. Thus, to show that 

next e  has type Or at the moment n, we must prove that e  has type T at the time index n + 1. 

Next 
I' Fn nexte : Or 

2. An expression can be "escaped" by using prev only in the context of type-checking an expression 

at a later (non-0) point in time, and only if the escaped expression is a circle type (i.e., it already 

represents a computation at a later point in time). One should note that this formulation of the rule 

prevents typing of prev when the time index n is equal to zero, since there can be no earlier point in 

time. 



I ' F n e : O r  
Prev 

I? tn+l  prev e : T 

The treatment of variables in the type system is also somewhat different from the simply typed A-calculus. 

When a variable is bound by a A-expression, the time index n at which it is bound is recorded in the type 

assignment together with the type of the variable. The variable rule is written in a way that ensures that 

only variables bound at time index n can be used at the same time index. 

8.3 Encoding Lo in Omega 

Recall that the typing judgments of Lo are indexed by a natural number that represents the time index at 

which the judgment is valid. Encoding this judgment as an Omega type constructor requires us to have a 

representation of natural numbers at the level of types in order to represent time indexes. Thus, we first 

define natural numbers at the type level, along the lines described in Chapter 4: 

kind Nat = Z 

1 SNat 

& IsNat (n :: Nat) = IsZero (Equal n Z) 

1 Vm. IsSucc (Nat m) where n = (S m) 

Natural numbers at the level of types are represented by the type constructors Z and S of kind N a t .  The 

type constructor IsNat n is a runtime representation of the natural number n. The type signatures of the 

constructors are as follows: 

IsZero : :  N a t  Z 

IsSucc : : N a t  n + N a t  ( S  n) 

The encoding of the typing judgment of Lo in Omega is shown in Figure 8.3. The type constructor Exp 

has three arguments: 

1. The first argument, n ,  is the time index. 

2. The second argument, e, is the type assignment. It is encoded as a nested tuple in the following 

mapping: 

tr :: G -t types 

tr 0 = 0 
tr r, rn = (trr, (7, n) )  



Figure 8.3 Typing judgment of Lo in Omega. 

data Exp (n::Nat) e t = V e'. Var - 
1 V e' t' m. Shift 
I Vtlt2.  Abs 
1 V 1 App 
I Const 
1 Fix 
I V t' m. Next 
I .  Prev 

where e=(e', (t,n)) 
(Exp n e' t) where e=(e' ,(t' ,m)) 
(Exp n (e,(tl ,n)) t2) where t=(tl t2) 
(Exp n e (tl -+ t)) (Exp n e t l )  
t String 
(Exp n (e,(t,n)) t) 
(Exp m e t') where t=(Circle n t'), m = (S n) 
(Exp m e (Circle m t)) where n=(S m) 

3. Finally, there is the representation of types. Base and arrow types of Lo are represented by their 

corresponding Omegatypes. The circle types are represented by the type constructor C i r c l e ,  which 

we shall discuss in more detail later. 

We examine the encoding of Lo judgments as the data-type Exp in more detail: 

1. The A-calculus fragment. The A-calculus is fairly standard, except for the treatment of variables. 

First, in a A-abstraction, a variable is bound at the same time index as the overall judgment. In the 

variable case, the time-index annotation in the type assignment is required to match the time-index 

of the overall expression. 

2. Next. The 'next' construct is defined as follows. The argument to the constructor N e x t  is an Exp of 

type t ' , at the some time-index m. The equality constraint forces the type of the overall judgment, 

t, to be equal to C i r c l e  n t ' . Finally, there is the additional equality constraint that m equals to 

( S n) . This forces the sub-expression argument to N e x t  to be an expression at a higher time index. 

3. Prev. The constructor P r e v  takes one argument: a sub-judgment of type ( Exp m e ( C i r c l e  m t ) ) 

There is also an equality proof that forces the overall judgment's time index n to be equal to the suc- 

cessor of m. 

It is worth noting how this prevents P r e v  expressions at time index zero. If we wanted to have an 

expression P r e v  e have the type Exp e t we would induce an equality proof obligation to 

show that Z equals S m, for some m. In Omega this would result in a type error. 

The types of the constructors for the Lo judgments are listed in Figure 8.4. Let us look at a couple of 

simple examples of Lo judgments. 

e l  :: Exp (S n) e (t -+ t) 

e l  = Prev (next (abs var)) 



Figure 8.4 Type signatures for constructors of L g  judgments. 

Var :: Exp n (e,(t,n)) t 
Shift :: Exp n e t 4 Exp n (e,(t2,m)) t 
Abs :: Exp n (e,(t 1,n)) t2 -+ Exp n e (tl -+ t2) 
App : :Expne( t l -+t2) -+Expnet l -+Expnet2  
Next :: Exp (S n) e t 4 Exp n e (Circle n t) 
Prev :: Exp n e (Circle n t) -+ Exp (S n) e t 

e2 :: Exp n e (Circle n t -+ Circle n t) 

e2 = Abs (Next (Prev var)) 

e3 :: Exp n e (Circle n (t l  -+ t2) -+ Circle n t l  -+ Circle n t2) 

e3 = Abs (Next ((Prev (Shift Var)) 'App' (Prev Var))) 

1. The judgment e l  is "escaped," using P r e v  at the top level, so the Omega type checker infers ( S n ) 

as its time index. 

2. The judgment e 2  is an identity function that takes an argument of type 07 and immediately splices 

it, using P r e v  into a Next-stage code. The N e x t  and P r e v  cancel each other out, leaving an 

identity function of type Or -+ 07. 

3. The judgment e 3  is slightly more complicated. It takes two arguments, a function  TI -' 72) and 

a delayed value of type and produces a delayed result of type 072. 

8.4 An Interpreter for Lo 

In defining an interpreter for Lo we are guided by the big-step semantics for a small temporal functional 

language defined by Davies and Pfenning [29]. They define the semantics of this language as a family 

of functions, indexed by a natural number representing the time index, which maps expressions to values 
n 

(written:) e - V. 
The interpreter we define here is based on the same idea, although it has a more denotational style. The 

following observations can be taken as general guidelines in defining the interpreter. 

Time-indexed evaluation 

The work that the interpreter performs can be divided into three distinct modalities, based on the time index. 



1. At the time index 0. The time index 0 represents expressions that are to be evaluated now. This means 

that the A-calculus fragment must be interpreted at the time index 0. For example, at time index 0, 

should map the expression (A.Var)O to the integer value 0, and so on. 

2. At the time index 1. The time index 1 represents expressions that are to be evaluated at the next stage 

(i.e., the next moment in time). In particular, this means that the real work (e.g., reducing P-redices) 

of the A-calculus fragment is not to be performed at time index 1. However, escaping expressions of 

the form (prev e) can occur inside time index 1 expressions. In this case, the expression e must be 

evaluated at time index 0, produce a time-index-1 value that is to be spliced in place of prev e. 

This is illustrated in Davies and Pfenning's big-step semantics by the following rule: 

0 
e v next v 

wall 
prev e - v 

3. At the time index n > 1. At the time index greater than 1, there is no real work. The interpreter 

must merely traverse, and rebuild, the original term, making sure to increment its time index when 

evaluating under next, and to decrement its time index when evaluating under prev. 

Values 

The interpreter for Lo is a written as a family of functions indexed by a natural number presenting the time 

index. It must well-typed expressions Cjudgments) of Lo into values. At the time index 0, the values for the 

A-calculus fragment seem quite straight-forward: an expression of type Int -+ Int can simply be mapped 

into an Int -+ Int function. However, when considering the modal fragment, the notion of values gets a 

little more complicated. 

First, at the time index 0, we have a type of values Circle n t that represent the delayed (modal) 

values of type t at time index n. Second, Davies and Pfenning introduce a notion of a set of values, at some 

index n, that is a subset of the set of expressions in a particular normal form. The idea is that the set of 

values at time index (n  + 1) is isomorphic to the set of expressions at time index 0. 

data Val n e t = 

ValConst t 

I V m e'. VarV where e = (ef,(t,n)), n=S m 

1 V m p  t2 e t .  ShiftV (Val (S m) e' t) 

where e = (e1,(t2,p)), n=(S m) 

I V m tl t2. AbsV (Val ( S  m) (e, (tl, (S m))) t2) 

where t=tl->t2, n = S m 

I V m tl.AppV (Val n e (tl->t)) (Val n e tl) where n = S m 



1 V t . NextV (Val (S n) e t' ) where t = (Circle n t' ) 

( V m tl.PreW (Val (S m) e (Circle (S m) t)) where n = (S (S m)) 

1 V env. Closed env (Val n env t) 

data Circle n t = V env. Circle env (Val ( S  n) env t) 

8.4.1 The Interpreter 

With this in mind, we can tentatively assign a type to the interpreter. In order to be able to tackle the three 

distinct interpreter modes in separate steps, we shall divide the interpreter into three functions: 

evalO : :  Exp Z e t+e-+t 

evall : :  Exp (S Z) e t+e-+Val (S Z) e t 

evalN : : IsNat n4Exp (S n) -+e-tVal (S n) e t 

First, we present the interpreter at time index 0. The A-calculus fragment is fairly standard (see Chap- 

ter 5). 

I evalO : :  Exp Z e t-+e+t 

z evalO (Const c t) env = c 

3 evalO Var (env' , (v, Z) ) = v 

4 evalO (Shift e) (envf,-) = evalO e env' 

s evalO (Abs e) env = \x-+evalO e (env, (x,Z)) 

6 evalo (Agp el e2) env = (evalO el env) (evalO e2 env) 

7 evalO (Next e) env = Circle env (evall e env) 

The only exception is in the treatment of variables.The values in the runtime environment carry their time 

indexes. These time indexes are ignored when extracting values from the environment (lines 3 and I). The 

A-abstraction case must bind a new variable in the runtime environment (line s). In addition to the actual 

value, its time index (Z) is also bound. 

Let us consider the modal fragment. The first thing to note is that the function evalO is not defined for 

the case when the Lo judgment is of the form Prev e. This is because, by definition of Exp, judgments 

of the form Prev e cannot have the type ~ x p  Z e t. Finally, on line 7, we show the definition of 

eval 0 for the judgment of the form Next e. First, the sub-expression e of type Exp ( S Z ) e t 

is evaluated by evall, to obtain the result of type Val (S Z) e t. Such a value, together with the 

current environment env can be wrapped inside a Circle value to obtain the result of type Circle (S 

Z) t. 

Now, let us consider the definition of evall, the interpreter at the time index 1: 



evall : :  Exp (S Z) e t-+ejVal (S Z) e t 

evall Var env = VarV 

evall (Shift e) env = ShiftV (evall e (£st env) ) 

evall (Abs e) env = AbsV (evall e (env, (undefined,undefined))) 

evall (App el e2) env = AppV (evall el env) (evall e2 env) 

evall (Prev e) env = case (evalO e env) of 
Circle e val-+Closed e val 

evall (Next e) env = NextV (evalN two e env) 

where two = IsSucc (IsSucc Iszero) 

For the A-calculus fragment of Lo, the function evall performs rebuilding. The simplest example 

of this is on line 9: starting with the variable expression Var : : Exp ( S Z ) ( e , ( t , S Z ) ) , it 

constructs a value VarV :: Val (S Z) (e,(t,S Z)). For other A-fragment expressions (lines 10-12) such rebuilding 

is performed recursively on the structure of the term. 

The most interesting part of evall is the case for Prev judgments (line 13-14). First, the sub-judgment 

e is evaluated by evall to obtain a circle (delayed) value. This value is de-constructed, its Val judgment 

extracted. The actual splicing of this code is performed by the constructor Closed, which allows us to 

form a closure out of any value, by remembering the environment in which it is defined. 

The case of Next e (line 15) proceeds by evaluating the judgment e at a higher time index to obtain a 

value of type Val ( S ( S Z ) ) e t, and then wrapping the result with NextV to obtain a value of type 

Val (S Z )  e (Circle (S Z )  t). 

Finally, we consider the function evalN which implements the interpreter at a time index greater than 

1 : 

evalN : :  IsNat (S (Sn))-+Exp (S (S n)) e t--+e-+Val (S (S n)) e t 

evalN (IsSucc (IsSucc n)) Var env = VarV 

evalN (IsSucc (IsSucc n)) (Shift e )  env = 

Shiftv (evalN (IsSucc (IsSucc n)) e (fst env) 

evalN (IsSucc (IsSucc n ) )  (Abs e) env = 

AbsV (evalN (IsSucc (IsSucc n)) e (env, (undefined,undefined))) 

evalN (IsSucc (IsSucc n)) (App el e2) env = 

AppV (evalN (IsSucc (IsSucc n)) el env) 

(evalN (IsSucc (IsSucc n)) e2 env) 

evalN (IsSucc (~ssucc (IsSucc n))) (Prev e) env = 

PreW (evalN (IsSucc (IsSucc n) e env) 

evalN n (Next e) env = NextV (evalN (IsSucc n) e env) 



The function evalN takes as its first argument a natural number representation of the current time index. 

To ensure that this time index is at least 2, the argument's type is specified as I sNat ( S ( S n) ) . In 

both the A-calculus and the temporal fragment the function evalN behaves the same: the judgments are 

recursively rebuilt (transformed into values), while the time indexes increment and decrement whenever 

Next or Prev is encountered. 

8.4.2 Power Function 

The first example we present is that of the power function, analogous to the one shown in Figure 7.5 for 

Lo. 

power : :  Exp Z env (Int-+ (Circle Z Int) -+ (Circle Z Int)) 

power = Fix (Abs (Abs (Abs body))) 

where body = myif 'App' vl 'App' vO 'App' body2 

body2 = Next (times 'App' (Prev vO) 'App' 

(Prev 

(v2 'App' (minus 'App' vl 'App' one) 'App' vO))) 

myif = Const (\c t e+if c then t else e) "if" 
one = Const 1 "one" 

times = Const (+) "+ "  
minus = Const ( - )  " - "  

example = Next (Abs (Prev (power2 'App' (Const 2 "2") 'App' (Next Var)))) 

-- Next (\x--+ (Prev (power 2 (Next x)))) 
result = evalO example 0 

The function power takes two arguments. The first, the exponent is an integer value. The second, the 

base, is a delayed integer value (of type Circle z Int), and produces as a result a delayed integer value 

(of type Circle ( S z ) Int). The function power can be specialized (line 12) to exponent two to obtain 

a delayed function value of type Circle Z ( Int -4 Int ) . Evaluating example (line 14) yields the 

following result (slightly cleaned-up and pretty-printed): 

result = 

(Circle 

( Absv 

(qPPV 

(AppV 

(ValConst <fn> "times") 

(AppV (AppV (ValConst <fn> "times") (ValConst 1 "1")) 

VarV) ) 



V a r V ) ) )  : Circle  Z (Int -> Int) 



Part IV 

Conclusion 



Chapter 9 

Related Work 

We shall organize our survey of related work by dividing it into 2 broad topics: 

1. Meta-programming. (Section 9.1) 

(a) Homogeneous meta-programming. (Section 9.1.1) 

(b) Heterogeneous rneta-programming. (Section 9.1.2) 

2. Dependent types, type theory and meta-programming. (Section 9.2) 

(a) General background. (Section 9.2.1) 

(b) Meta-programming with dependent types. (Section 9.2.2) 

(c) Simulating dependent types in Haskell. (Section 9.3) 

9.1 Meta-Programming 

Here we provide a very general overview of the work most directly relevant to this dissertation. We begin 

with some background remarks on meta-programming, noting that a more detailed historical and taxonomic 

survey of programming languages that support meta-programming has been written by Sheard [116]. 

The notion of treating programs as data was first explicitly developed by the LISP community. In this 

context, the notion of quasi-quotation [124, 81 was developed as a way of making the interface to the data 

representing the object program "as much like the object-language concrete syntax as possible." [116] A 

historical discussion, tracing quasi-quotation from the original ideas of Quine, to their impact on MetaML 

is given by Taha [126]. The idea of the need for a meta-language (that can be used as a common medium for 

defining and comparing families of (object) languages) can be traced to Landin [69]. Similarly, Bohm pro- 

posed using the A-calculus-based language CuCh as a meta-language for formal language description [12]. 



Nielson and Nielson [90,93,92] define programming languages and calculi that clearly distinguish meta- 

level from object-level programs as a part of the language. This work can be seen as motivated by a search 

for a formal way to study the semantics of compilation. They recognized that compilation can be seen a 

meta-program with two phases: a static phase, where the compiler constructs a residual output program 

from some input program, and a dynamic phase where the residual program itself is executed. Thus, they 

design a functional language with two levels corresponding to the two phases of compilation 1941: all 

language constructs come in two flavors, minimally distinguished by the syntax. We note also that the 

two levels are essentially the same language, i.e., that the meta-programming described is homogeneous. 

Nielson and Nielson study the denotational semantics of such two-level languages, [91] as well as their 

applications to abstract interpretation [92]. They also generalize their work to multi-stage languages [95]. 

An important impetus to the study of meta-programming languages came from the partial evaluation 

community. 

Partial evaluation researchers approached the problem from a more syntactic point of view, not really 

considering the staging constructs as first-class (semantically motivated) parts of the language. With the 

benefit of hindsight, however, this perhaps explains why they did not develop type systems that would 

statically guarantee type correctness of both the static and dynamic stages in two-level languages. 

Gomard and Jones [49] present a two-level A-calculus as a part of their development of a partial evaluator 

for the A-calculus and the study of binding time analysis for such an evaluator. In this scheme, a binding time 

analyzer takes a (single-level) A-expression, and produces a two-level A-expression. Then, the semantics of 

the two-level calculus can be used to reduce 2-level expressions produced by the BTA, yielding a residual 

program that consists entirely of the level-2 parts of the 2-level expression. They also develop a type system 

for the 2-level calculus in order to be able to judge the correctness of the annotations produced by the BTA. 

However, only level-1 terms are typed; the residual programs constructed using the dynamic part of the 2 

level calculus are dynamically typed. 

Gliick and Jprrgensen [46, 471 studied binding time analysis and partial evaluation with more than two 

stages. Their generalization of binding time analysis to multiple stages is acknowledged [I261 as being a 

major source of inspiration for the MetaML family of multi-stage languages. 

Two important meta-programming systems emerged from the study of constructive modal logic by 

Davies and Pfenning [30,29] (See Section 9.1.1). 

MetaML [I351 (See Section 9.1.1 for a detailed discussion) is an important synthesis of many previous 

generative meta-programming languages. It extends the work on modal calculi of Davies and Pfenning, 

introducing new concepts such as cross-stage persistence, and type-safe combination of reflection (the run 

construct) with open code. 



9.1.1 Homogeneous Meta-Programming 

The division into homogeneous and heterogeneous meta-programming languages has was introduced by 

Taha [I261 and Sheard 1116, for an excellent survey]. In this section, we shall trace the context of homoge- 

neous meta-programming, starting with modal-logic based A-calculi, and proceeding to MetaML. 

Modal Logic: An and A 0  

Many homogeneous meta-programming systems are motivated by the study of modal logic. In particular, 

we shall examine two related logical systems (and their associated versions of the A-calculus): the first, 

A', corresponds to the modal logic S4; the second, XO, corresponds to linear-time temporal logic. Both 

of these systems have found applications in the study of meta-programming. Each of them captures an 

important intuition about program generators. One of them, A' captures the notion of closed code, which 

can be executed from within the meta-program. The other, AO, allows manipulation of open code fragments 

that can be easily combined by "splicing." Combining the two modalities results in a meta-programming 

language that captures very precisely the notion of homogeneous program generators. However, such a 

combination is not straightforward, since the splicing (escaping) of A 0  and code execution (run) of A' 

interact and interfere with each other. Sheard and Thiemann provide a good discussion of the issue and a 

survey of related work that addresses it [123]. 

The calculi An and A 0  both use modal operators, (necessity) in An and 0 (next) in AO, to classify 

terms that produce object-language programs. For example, the type ( A  4 O B )  is seen as a type of a 

program generator that takes an argument of type A and produces an object language program of type B. 

The calculus An can be seen as the language of proof terms for the propositional modal logic S4 [106]. 

On the logical side, box (0) is the necessity operator. The necessity operator corresponds to a type of 

code, i.e., values that represent object language expressions. In particular, it classifies, a type of closed 

code, i.e., a type of object programs that do not contain free variables. The type system of Xu ensures 

that no free variables escape from the box construct by keeping two type assignments, A, and r, (see 

Figure 9.1). When type-checking the expression box e, the expression e must be type-checked, in the empty 

the type assignment r (this is the type assignment that is augmented when type-checking A-abstractions), 

indicating that there are no free variables in e. However, the box elimination construct binds its variable in 

the other environment(A) thus allowing manipulation of unboxed values when building inside other boxed 

expressions. 

Let us consider a standard example, the power function which, given two integers n and x, computes xn. 

Rather than providing a function of type Int -+ Int --+ Int, we shall define a function of the related type 

Int -+ ( Int -+ Int ) , i.e., given the argument n, it produces a program that when given the argument 



Figure 9.1 The type system of Xu. 

A-fragment 

A ; r t x : ~  a ; r t - ~ : ~  
Var 1 Var2 A ; r , y : r l t x : r  

Weak2 
~ ; ~ , x : T ~ - x : T  A , x : T ; ~ ~ - X : T  A , V  : T / ; ~ ~ - X : T  

A;I',x : T I  k e :  TZ A ; r t - e l  :TI  + T Z  A ; r t - e z :  TI 
Abs A ; r t -  X x : ~ l . e :  7 1  + 7 2  A ; I ' t e l e z : ~  APP 

A ; ( ) k e : ~  A ; r k e l  :Orl A , z :  ~ 1 ; r k e z  : T  
Box Unbox 

A ; I ' l - b o x e : U ~  A; r t- let box x  = el in ez : T 

x computes xn . 

power : :  I n t - + O ( I n t + I n t )  

power 0 = box ( \ x +  1 )  

power ( n + l )  = letbox f = power ninbox (\x+ x * ( f  x ) )  

Applying the power function to the argument 2 yields the program pow2. Note that pow2 contains a 

number of "administrative redices." The generated program can be run by using let box construct to obtain 

the value of 32, shown below. 

pow2 : :  ~ ( I n t + I n t )  

pow2 = power 2 
- - pow2 = box(\xl -+xl  * ff\x2--, x 2  * ((\x3+ 1) x 2 ) )  X I ) )  

r e s u l t  = let box f = pow2 i n  f 3 
- - result = 9 

Davies and Pfenning [29] also studied type systems extending the Curry-Howard isomorphism from 

simple propositional logics to the constructive (linear-time) temporal logic. Such a system is shown to 

accurately describe binding time analysis in (multi-stage) partial evaluation. More notably, they state and 

prove the property of time-ordered normalization. This property means that reductions preserve the binding 

time of redices in XO terms: all terms typed at an earlier "time", say O A  are evaluated before terms typed 

at a later time, say, 0 0 A. This property also means that XO realistically describes partial evaluation, or, 

more generally, generative multi-staged meta-programming of a certain kind. 

They prove that their calculus is equivalent with the system of Gomard and Jones [49] by providing 

translations between them. 



Figure 9.2 The type system of XO. 

A-fragment 

r F n x : ~  
Var 

r , x n : 7 t n x : T  r , y : ~ ~ m ~ ~ : 7  
Weak 

r , x : r ? k n e : r 2  r kn el : TI -+ 72 r Fn ez : rl 
Abs 

r F n  Ax: r1.e: 7 1  -+ 2 r Fn el e2 : 7 2  
APP 

J? t-"+' e : T I? I-" el : 07 
Next Prev r tn next e : Or r Fn+l prev el  : T 

The main technical trick in the type system (Figure 9.2) is 

1. To annotate the typing judgment with a natural number level index. This index is augmented when 

type-checking inside the next construct, which delays evaluation. Similarly, the index is decremented 

when type-checking the prev construct, which escapes back to the previous level to compute a pro- 

gram fragment that is to be spliced into a larger object-program context. 

2. To annotate the variable bindings in the type assignment r with the level at which those variables are 

bound. This assures that no variable in the program can be used "at the wrong time," thus preventing 

phase errors, situations in which a variable is used before it is defined. 

The power function example can be replicated in XO as well. 

power : : I n t  --+ O1nt  --, O1nt  

power 0 x = next 1 

power ( n + l )  x = next ( (  prev x )  * (prev (power n ( next x) 1 )  

r e s u l t  = power 2 ( n e x t  3 )  

-- r e s u l t  = n e x t  (3*3*1)  

Note that the residual code produced by the XO version of the power function does not contain the 

extraneous P-redices present in the residual code generated by the Xu implementation. 

Type systems of Xu and XO are interesting examples of non-standard type systems. In Chapters 7 and 8 

we describe encoding, using our Haskell techniques, of well-typed terms in A' and xO, as well as well- 

typed interpreters for a version of both languages. It is interesting to note that in our XO something very 



much like the time-ordered normalization (see above) becomes a statically enforceable invariant encoded 

in the type of an interpreter for the encoding of well-typed XO terms. 

MetaML 

The calculi based on and 0 modalities have both comparative advantages and disadvantages when used 

in meta-programming. The program generators written in XO tend to be easier to write and generate more 

efficient residual programs. Program generators written with Xu tend to leave a large number of "admin- 

istrative redices" in the residual programs [29]; some of these administrative redices can be eliminated in 

XO . 

The disadvantage of XO is that the generated residual code (whose types are classified by the 0 type 

constructor) cannot be programmatically executed in the type system of XO (there is no XO analogue to 

unbox). 

The considerable body of research on MetaML [133, 128,82, 15, 127, 1321 is an attempt to combine the 

ease of programming of the 0 modality with the ability to run generated programs of the modality, all 

in a strongly typed setting. The general approach can be outlined as follows: 

1. MetaML uses a slightly modified version of the 0 modality. In MetaML, it is a type constructor, 

called "code", and written as a bracket around a type: (A). The constructs prev and next are replaced 

by bracketed code templates ((e)) and escapes ("e). 

2. MetaML introduces a run construct in the language which takes an expression of type (A) and pro- 

duces an expression of type A. However, this is unsound in general, since (A) might contain free 

variables whose value bindings may not be known at the time of running the piece of code. A number 

of type-systems have been devised to deal with this problem: 

(a) Before a piece of code can be run, the type system must prove that it is closed 11331. This 

is done by making sure that it is typable in an empty typing context. While this approach is 

safe, there are situations in which it rejects programs that are perfectly safe. It also prevents X 

abstractions over certain terms that contain run. 

(b) Counting the number of escapes, brackets and run that surround a term can also used to pre- 

vent run from going wrong. 11281 This is a very syntactic method of ensuring the safety of 

run. Similarly, such a type system can be seen as being to restrictive, disallowing abstractions 

over run. Nevertheless, this type system can be quite useful in practice. The programming 

'1n practice this means that execution of residual programs generated is performed by some extra-linguistic (ad hoc) means - e.g., 
a top-level way of executing programs. 



language implementation of MetaML [I191 uses a type system based on this idea, extended to 

a conservative extension of Standard ML of New Jersey [79]. 

(c) A further development of MetaML type system, called AIM [82], solved this problem by in- 

troducing an additional modality, essentially "box," as a refinement of the MetaML type of 

code. Then, only boxed code terms ( [ ( A ) ] )  can be executed using run. Unlike the previous 

approaches, this type system allows for abstractions over run. However, the formalism of AIM 

makes the meta-programming with explicit staging a lot more verbose and, at times, somewhat 

awkward [132, for discussion]. 

(d) Recently, Taha and Nielsen presented a type system for MetaML using environment classi- 

jers [132]. The environment classifiers are a formal way explicitly naming environments in 

which free meta-variables appearing in open code are defined. The advantage of this type sys- 

tem is that is allows the safe kinds of open code to be executed. This approach harmonizes the 

tension between the approaches (2b) and (2c): "while the first approach allows us to run open 

code, but not abstract run, the second allows us to do the latter but not the former. [The type 

system with environment classifiers] provides both features." [132, page 21. 

(e) Finally, addressing the same difficulties of safely combining run and escape as (2d), Sheard 

and Thiemann [123] design another type system for MetaML. This type system is based on 

constraint solving and subtyping. The advantage of this system seems to be that it does not 

require the programmer to supply any annotations beyond the usual MetaML ones, and that it 

seems amenable to type inference. Unlike Taha and Nielsen's type system [132], it does not 

require explicit annotations on cross-stage persistent constants. 

In addition to these features, MetaML supports cross-stage persistence, allowing later-stage programs 

to use values defined at an earlier stage. A good deal of work has also been done to support stag- 

ing of imperative MetaML programs 1151, as well as to provide "industrial strength" implementations of 

MetaML [16, 1191. 

We digress, briefly, to consider how is MetaML, a homogeneous meta-language, relevant to the heteroge- 

neous meta-programming framework we propose. In the examples presented throughout this dissertation, 

we have concentrated on heterogeneous programming scenarios of a particular kind. In this kind of hetero- 

geneous meta-programming, we use a homogeneous fragment of the meta-language as an efficient "back 

end" for implementation. The scenario can be described as follows: 

1. We start with an encoding of the syntax (and type system) of some object language L1. 

2. We manipulate the object-programs by deconstructing their representations and (e.g., in the case of 
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interpreters) map them to some domain of values, also encoded as a part of the meta-language.

However, we can use staging in step 2, obtaining not a value in the meta-language, but a residual program

in the meta-language that computes that value. The usual arguments for obtaining more efficient programs

through staging still apply in this situation. This way, we have a heterogeneous system which translates

programs in the object language L1 into programs (represented in MetaML-style using the code type) in

the meta-language. By so combining heterogeneous and homogeneous meta-programming we can reap the

benefits from both worlds: we can (a) safely manipulate object programs in many different object languages,

while (b) writing highly efficient interpreters for such object languages by using MetaML notion of staging

to remove the interpretive and tagging overhead inherent in writing interpreters for such object languages.

9.1.2 Heterogeneous Meta-Programming

Now, we shall briefly trace the genealogy of the main ideas presented in this dissertation. A couple of addi-

tional topics is worth mentioning in connection to heterogeneous meta-programming - intentional analysis,

and the pragmatics of the interface to object-language syntax - and we shall review them.

A Historical Overview

Initial motivation for our study of heterogeneous meta-programming came from the work on imple-

menting of domain specific languages in a safe, efficient and disciplined way by staging interpreters in

MetaML [118]. The basis of this approach is to define an object language as a data-type in MetaML [119],

write a definitional interpreter for it, and then stage this interpreter to obtain an efficient residual program

from which the interpretive overhead has been removed.

The first problem, however, was that with algebraic data-types in MetaML there was no way of ensuring

that only well-typed programs of the object language are interpreted. If the object language is strongly

typed, developing a way of statically ensuring well-typedness of the object language encoding would pro-

vide an additional sense of safety (and reliability) of staged interpreters by guaranteeing that no type errors

would be generated by the residual program. Furthermore, we saw that encoding and using type informa-

tion about the object language would allow us to generate tagless staged interpreters that are more efficient

because no tagging overhead is introduced by the implementation [100].

As a first step we developed a prototype meta-language with staging and dependent types [100], and

implemented our first tagless staged interpreters. This language was initially modeled on Coq [137] and

similar type theory-based languages. However, it was soon recast into a FLINT-style [114] framework

that allowed us to write staged interpreters in a meta-language with effects such as general recursion and



partiality without having to compromise either type safety of the meta-language, or the expressive power to 

represent well-typed object-language terms. 

Such work provided a proof of concept and a simple prototype implementation, but we were concerned 

with a couple of pragmatic issues. First, implementing and, more importantly, maintaining a large new 

programming language with a complicated type system and staging did not seam feasible at the time. 

Second, existing programming languages with dependent types [2] did not seem to attract a large user base 

among functional programmers. 

At the same time, we became aware of Baars and Swierstra's [4] paper that used equality types to rep- 

resent types at runtime as a way of integrating dynamic typing in Haskell. Their work, in turn, has roots 

in Weirich's paper presenting an encoding of equality between types in Haskell [141]. Also relevant is 

McBride's work on simulating dependent types in Haskell [75]. 

We adapted these techniques to represent typing judgments of X-calculus terms in Haskell. To do this we 

needed to use only very standard extensions to Haskell98, available most Haskell implementations, such as 

higher-rank polymorphism and existential types. To experiment with staging, we assumed that Haskell can 

be extended, conservatively, with staging constructs 2. In this programming language environment, we were 

able to define the same tagless staged interpreters, and apply our technique to a larger set of heterogeneous 

meta-programming examples. 

Intentional Analysis 

Here, we take intentional analysis to refer to the ability of a meta-program to analyze the (syntactic) repre- 

sentation of object-programs. In the context of homogeneous meta-programming systems such as MetaML, 

intentional analysis is problematic from the semantic point of view. Indeed, MetaML (and related systems) 

are known as generative meta-programming languages since the programmer is only allowed to generate 

programs, not to rewrite or examine them. 

MetaML and Intentional Analysis. MetaML enjoys interesting (non-trivial) equational properties. The 

a-,P-, 17-, and bracket-cancellation reductions are sound with respect to the operational semantics of 

MetaML 11271. This allows the MetaML implementations to perform a number of optimizations on their 

representation of code without changing the meaning of programs. For example, certain trivial P-redices are 

removed, rewriting simplifications based on monadic laws are performed on code containing Haskell-style 

do expressions, and l e t  expressions are hoisted to avoid excessive nesting. 

All these optimizations yield a representation of code that is highly readable when printed. Automatic 

2 ~ n  implementation of such a language was produced by Sheard [ I  17, for Tim Sheard's prototype implementation]. 



removal of certain administrative redices in code representation sometimes also yields more efficient object 

programs. However, the equational properties that justify these optimizations conflict with intentional 

analysis. Simply put, if the user can observe the difference between, say the pieces of code ( ( f n  x 

=> X )  1) and (I), then the equational properties are no longer sound and optimizations cannot be safely 

performed. A satisfactory formulation of intentional analysis that can be safely integrated into MetaML 

implementations has yet to be discovered. 

In the techniques for heterogeneous meta-programming we propose, intentional analysis can be per- 

formed on source object languages encoded by the programmer (while still statically ensuring that such 

intentional analysis preserves typing properties of the object program). The part of the meta-language that 

deals with staging, however, allows only generative meta-programming. We conjecture that in practice this 

will prove to be a reasonable compromise: intentional analysis can be used to perform optimizing source- 

to-source transformations on the syntax of object-language programs, while staging is used to ultimately 

ensure efficiency of object-language implementations. 

FreshML. Pitts and Gabbay [39, 41, 1091 formulate an elegant theory for manipulating abstract syntax 

with the notion of variable binding. From the programming language point of view, this allows them to 

construct data-types representing sets of syntactic terms modulo a-conversion. Theoretical foundation of 

this work is Fraenkel-Mostowsky set theory, which provides models for such sets of terms. Unlike previous 

approaches, such data-types admit a simple and elegant notion of structural induction, while still preserving 

a-equivalence. 

Integrating the key ideas of FreshML and nominal logic into a meta-programming framework has already 

been proposed by Nanevski [86]. In our examples, we opt for de Bruijn style of representing syntax modulo 

a-renaming. The main reason is that it is not entirely clear how to express typeful abstract syntax in this 

framework, although we conjecture that Nanevski's scheme might very well be adapted to our encoding of 

typing judgments. The investigation of this question is left for future work. 

Names and necessity. An interesting approach to meta-programming was proposed by Nanevski and 

Pfenning [86, 851. It can be seen as a parallel effort to solve many of the same problems that MetaML 

was invented to address. Whereas MetaML starts with the 0 modality and finds various ways of relaxing 

it to allow for execution of open code, Nanevski's language, vn starts with the modality and relaxes 

its restrictions on open code by using the ideas form Pitts and Gabbay's nominal logic to allow certain 

kinds of free variables. The main idea seems to be to combine A' of Davies and Pfenning with nominal 

logic of Pitts and Gabbay [40]. This nominal-modal logic seems to provide a very rich system for meta- 

programming: the modal fragment allows for construction of programs, including the run operation, while 



the nominal fragment permits certain kinds of intentional analysis over constructed meta-programs. Thus, 

while residual programs generated in this framework tend to be very similar to ones generated by An, 

intentional analysis can be used to make the residual programs considerably more efficient. 

DALI. For sentimental reasons, we mention an attempt by the author to study a form of intentional anal- 

ysis in the context of the A-calculus [99]. The approach was inspired by a proposal by Dale Miller [78] for 

extending data-types in ML-like languages with a form of higher-order abstract syntax. Our approach was 

to introduce a kind of object-level bindings that can be deconstructed using a form of higher-order patterns 

in a A-calculus. We studied the reduction semantics of such a calculus in an untyped setting and showed its 

coherence with a rather standard natural semantics. This approach has been superseded by the considerably 

more elegant theories of Pitts and Gabbay's nominal logic [40] and un [86]. 

Typeful code representation. Hongwei Xi and Chiyan Chen [I81 have presented a framework for meta- 

programming (though they seem mostly interested in studying homogeneous meta-programming) that is 

very similar to the approach described in Chapter 5. This work seems to have been carried out syn- 

chronously with our work, and we became aware of it relatively late in the course of our own investigations. 

Xi and Chen represent object-language programs using constants whose types are essentially the same 

as the smart constructors for the type Exp e t in Chapter 5. Instead of Haskell, they use their own 

language with guarded recursive data-type constructors [144]. The use of guarded recursive data-types 

makes it unnecessary to resort to equality-proof based encodings that we use in our implementations, and 

thus results in code that is both easier to read and write. The main difference between their examples and 

ours is that we show how we can combine the use of staging with typeful syntactic representations to derive 

more efficient implementations. 

Finally, they present embeddings of MetaML into this language by translation. This translation, however, 

seems to be a meta-theoretical operation which is not defined in the language itself. Rather, they seem to 

see their language as a general semantic meta-language. Other meta-programming languages like An, A 0  

and MetaML can be given semantics by translation into their language. It might be interesting to compare 

our implementations of An and A 0  in Chapters 7 and 8 to their translations. 

Pragmatics of Object-language Syntax 

In the examples presented in this dissertation, we use algebraic data-types (albeit augmented with tech- 

niques that allow them to statically encode important program invariants) to represent the syntax of object- 

language programs. Parsing and pretty-printing interface to these data-types can be implemented. This 



is done post hoc, by writing functions that construct elements of these algebraic data-types from a purely 

syntactic representation (e.g., strings or untyped s-expressions). In Chapters 3 and 5, we have shown how 

to write such functions (called typecheck). 

In this dissertation, we chose not to concentrate further on this problem since a simple, though not very 

practical, solution for it does seem to exist. However, a heterogeneous meta-programming language would 

gain considerably in usability, if the programmer could be exposed to object-language programs through 

some kind of interface based on concrete syntax of the object-language. Concrete types, or conctypes [I] are 

a way of allowing the programmer to specify her algebraic data-types in a BNF-like notation, where the non- 

terminals correspond to types. From this specification, parsers that allow the programmer to write the new 

data-types in whatever concrete syntax she chooses can be automatically synthesized. Furthermore, pattern 

matching can also be extended to use concrete syntax. Several contemporary theorem provers allow their 

users to extend concrete syntax of expressions [137, 1041 by providing an interface to the underlying parser 

and pretty-printer. Visser [140] has also investigated meta-programming with concrete object-language 

syntax in the context of the term-rewriting language Stratego [139]. 

An interesting question is whether conctypes could be extended to handle object-language syntax with 

Haskell judgments in a type-safe way. Such an extension would have to synthesize (or otherwise allow 

the user to insert) appropriate equality proofs. Furthermore, how such conctypes would be typed is not 

immediately obvious. Pursuing this question would provide an interesting direction for future work. 

9.2 Dependent Types, Qpe Theory and Meta-programming 

9.2.1 Background 

Logical frameworks were introduced by Harper, Plotkin and Honsell [53, 541 as a "formal meta-language 

for writing deductive systems." This work was similar to the earlier work of Martin-Lof on type theory as 

a foundation for mathematics. Several theorem provers have been built that are either directly based on or 

closely related to the LF approach: Elf[105], Coq[137],Nupr1[2 11. 

Nordstrgm, Petersson and Smith [97] describe at length an approach to using Martin-Lof type theory as 

a programming language. However, as a practical programming language the pure type theory they present 

is somewhat limited. Furthermore, in the Martin-Lof type theory as presented by Nordstrgm et al., there is 

little attention given to pragmatics such as efficiency or ease of use. There is also no particular consideration 

of how such programming system might relate to meta-programming. 

Several programming languages have been designed to take advantage of expressive dependent type 

systems. Twelf[l07] can be used as a logic programming language based on higher-order unification. 



Cayenne[2] is a Haskell-like functional programming language with dependent types. Cayenne, makes 

little effort to isolate runtime computation from type-checking. Rather, it combines dependent type theory 

with arbitrary recursion, making the type-checking undecidable. It is argued that in practice this is not 

such a significant drawback. An important example of programming in Cayenne is an implementation of 

a tag-free interpreter [3]. Compared to the tagless interpreters presented in Chapter 2, this implementation 

has two distinctive features we wish to critique. 

First, we note that the lack of primitive inductive types forces the rather awkward scheme of encoding 

typing judgments of the object language using predicates. Unlike Coq, where these predicates could be 

propositions without computational content, the Cayenne implementation must manipulate them at runtime. 

This brings us to our second point. The lack of staging makes it difficult to see what practical gains are 

achieved in terms of performance over a tagged interpreter. 

Xi and Pfenning study a number of practical approaches to introducing dependent types into program- 

ming languages [145, 1461. Like our approach, they are concerned with designing practical programming 

languages where dependent types can be used to gain efficiency and expressivity. Their solution to the prob- 

lems of integrating dependent types with an ML-like language is to limit the dependencies to a particular 

domain (decidable subset of integer arithmetic), and use constraint solving to type check their programs. 

They also appear to have pioneered the use of singleton types in programming languages, inspired perhaps 

by Hayashi [58]. 

The FLINT group's work on certified binaries[ll4] is perhaps the most closely related to the language 

MetaD we proposed in Chapter 2. They divide their language into a computational and non-computational, 

linguistically separate parts. The computational parts are programs written in one or more computational 

languages, while the specification language, part of which servers as a type language for the computational 

languages, is shared among many computational languages. The connection between computational and 

specification languages is achieved through the use of singleton types. Computational-language programs 

are annotated with proofs of various properties. These proofs are encoded in the specification language. 

Each computational language in this approach must be defined separately in the meta-theory. Shao et 

al. present a number of such computational languages that can be used as intermediate representations in 

a compiler pipeline. Then, they define type (and property)-preserving translations between them. Note 

that these definitions are not written in a programming (meta-)language. It is argued that in a sufficiently 

powerful formalism (say the calculus of constructions), such transformations could be expressed. 

In these computational languages, singleton types are "hard-wired," usually only on simple types such as 

integers, which is a reflection, perhaps, of their intended use as relatively low-level intermediate languages 

in a compiler pipeline. In a heterogeneous meta-programming framework, we expect to use the inductive 



families facility to allow the user to define new computational languages and provide a uniform interface to 

singleton types along the lines described in Chapter 3. 

9.2.2 Meta-programming and Dependent Types 

Program Generators with Dependent Types. Sheard and Nelson [I201 investigated combining a re- 

stricted form of dependent types with a two-level language. Their type system allows them to construct 

dependently typed program generators, but restrict such generators to functions expressible with catamor- 

phisms. This way, termination of program generators can always be guaranteed. In this framework, both 

programs and their types are expressed with catamorphisms, which makes inference also possible. For 

more information about type inference and dependent types, one might consult Nelson's dissertation [89]. 

In many ways, this work resembles and anticipates that of Bjorner [l  11. 

Certified binaries. Shao et a1 [ I  141 define a general framework for writing certifying compilers. They 

sketch out how such a system could work by defining a number of typed intermediate languages (e.g., a 

lambda-calculus, a language with explicit continuations, a closure conversion language etc). Each of these 

languages is strongly typed in a sophisticated type system with singleton types. These type systems allow 

each a program in each of the intermediate languages to encode and statically certify important invariants 

such as bounded array indexing. A certification-preserving compiler consists in a series of transformations 

between these intermediate languages. Each transformation takes a well-typed program in one intermediate 

language and produces a well typed program in another intermediate language, so that the certified invari- 

ants present in the input programs are true in the result of the transformation. The invariants are specified 

in a version of the Calculus of Inductive Constructions. 

It is worth noting, however, when this system is considered as a meta-programming system, that they do 

not give a formal meta-language in which these transformations are defined. They conjecture that such a 

system could formally be specified in some type theory (e.g., Coq) but it is not obvious how to do this. 

9.2.3 Program Extraction as Meta-programming 

Coq. Coq [I371 is an interactive theorem prover based on the Calculus of Inductive Constructions [22], 

itself an extension of the Calculus of Constructions [23]. The original CoC system had two sorts:3 Set, 

which was impredicative, and Type which was predicative, where Set:Type. Coq extended this basic 

formalism with a number of useful features: 

3~oughly  speaking, morally equivalent to Martin-Uf's universes [74]. 



1. Inductive (and also co-inductive) definitions allow the user to define new types that resemble the al- 

gebraic data-type, rather than having to work with awkward Church encodings. The types of these 

inductive definitions are dependent (for a discussion of inductive families, see Dybjer [34,35]). Con- 

sider a definition for lists of a particular size, a type that is classified by Set. 

Inductive List [A:Sefl : nat + Se t  := 

Nil : (List A U) 

I Cons : (n:nat; x A; xs:(List A n))(List A ( S  n)). 

Definition oneList : (List Char(1)) := (Cons Char(0) 'A' (Nil Chat)). 

Definition twoList : (List Char(2)) := (Cons Char(1) 'B' oneLisf). 

Definition threeList :(List Char(3)) := (Cons Char(2) 'C' twoLisf). 

The list type has a parameter A (i.e., it is a type of polymorphic lists), and a natural number index 

indicating the list's length. Constructing such lists is arguably as easy as constructing lists in ML. 

Coq can also automatically derive primitive recursion combinator(s) for List for writing functions 

that analyze lists. 

2. The sort Prop is a "twin of Set," [142] also impredicative, which is intended for specifying (non- 

computational) propositions. Types classified by Prop can also be defined inductively. 

As an example, consider a membership predicate over the List previously defined. The inductively 

defined predicate Member has one parameter, A : Se t  - the type of the elements of the list, and three 

indexes: 

(a) The element of type A. 

(b) A natural number indicating the length of the list. 

(c) A list in which the membership of the first index argument is asserted. 

lnductive Member [A:Sefl : A+(n:naf)(List A n) -4 Pro$ := 

MemberHead : (a:A; n:nat; rest : (List A n)) 

(Member A a ( S  n) (Cons A n a resf)) 

I MemberTail : (a,b:A; n:nat; rest : (List A n)) 

(Member A a n resf) -+ (Member A a ( S  n) (Cons A n b resf)). 

4~ecal l  from that in Coq notation, the II types are written using parentheses. The type shown here can be written, using the more 
classical II notation as: II- : A.IIn : nat.II- : (List A n).Prop 



We can easily build a proof, for example, that 'B' is a member of the list ['A', 'B', 'C'] by using the 

following proof script: 

Lemma x l  : (Member Char'B' (3) threeLisf). 

Compute. Constructor. Constructor. Qed. 

Print x l .  

x l  = 

(MemberTail Char'B' 'C' (2) (Cons Char(1) 'B' (Cons Char(0) 'A' (Nil Chai))) 

(MemberHead Char 'B' (I) (Cons Char (0) 'A' (Nil Chai)))) 

: (Member Char 'B' (3) threeLisf) 

The most interesting feature of Coq is the extraction of programs from proofs [103]. The idea is based on 

the notion of Heyting interpretation of propositions, which can give a realization of an intuitionistic proof 

as a functional program. Several systems (theorem provers) have been inspired by this notion to provide a 

way of creating executable programs from logical specifications and their proofs [59, 103,201. 

The most significant feature of Coq is that it treats the twin sorts S e t  and Prop differently with respect 

to program extraction: 

1. Inhabitants of types with sort Prop are, for the purpose of program extraction and execution, treated 

as comments - to be erased from the final result. 

2. Inhabitants of types with sort Se t  remain in the extracted programs. However, it can be shown 

through realizability results [I031 that dependent types can also be removed from the extracted pro- 

gram: given a Coq term (program), the extraction produces a computationally equivalent F, program. 

3. Finally, the F, program produced by the extraction process is mapped onto a program in one of 

several common functional languages (Haskell, Objective CAML, Scheme). 

Let us consider the results of extraction for the lists with length examples above. First thing to note is 

that the list values with length, when extracted, correspond simply to normal list, except that each Cons 

node carries the natural number index of the length of its tail. However, in the type of the list, the natural 

number index does not appear at all. 

module Main where 

import qualified Prelude 

data List a = Nil I Cons Nat a (List a) 



oneList = Cons 0  'A' Nil 

twoList = Cons ( S  0 )  'B' oneList 

threeList = Cons ( S  ( S  0 ) )  'C' twoList 

Now, consider extracting the membership property x l ,  defined above as a proof that 'B' is a member of 

the list ['A', 'B', 'C']. Note that xl is defined as -, which should never be evaluated in the program.5 

module Main where 

import qualified Prelude 

- = Prelude.error "Logical or arity value used'' 

xl = - 

Let us now critique program extraction as a technique for meta-programming (in particular, its incarna- 

tion in Coq), and contrast it with solutions we propose. 

1 .  Pragmatic complexity of the system. The pragmatic complexity of the system expresses itself in two 

different ways. 

(a) The reasonable scenario for meta-programming with Coq would require a user to first imple- 

ment the critical parts of her (meta)program in Coq, formalize and prove properties about it, and 

finally, to use the automatic extraction to derive a CAML or Haskell program. This extracted 

program must then be integrated with the existing programming environment in the target lan- 

guage. 

This requires the programmer to be an expert in both Coq (a system not so easily mastered 

by an average (meta)programmer), and the general programming language environment (e.g., 

Haskell) into which the Coq-derived programs are integrated. 

(b) Developing a large program half in Coq, half in Haskell, for example, has a considerable poten- 

tial of quickly turning into a software engineering nightmare. 

2. Integration with existing programming languages and type systems. Recall that programs extracted 

from Coq are F, programs. Mapping such F, programs into a typed functional language such as 

Haskell or OCaml is often feasible in practice, but not always [103]. In these cases, the extracted 

programs cannot be well-typed in the languages targeted by the extraction mechanism. The practical 

solution adopted by the implementor of Coq is to insert unsafe casting operations, when extracting 

OCaml program. 

-- -- - 

SSince Haskell is lazy, so long as no-one pulls on a logical proposition value, no runtime error is raised. Coq prohibits definitions 
of Set-based values by cases over Propbased ones, so the error is never raised in practice. 



When the target platform of program extraction is Haskell, this approach becomes problematic, since 

some Haskell implementations require type information produced by the type-checker in the process 

of compilation. 

3. Lack of programming-language features. Many standard programming language features, such as 

printing and state, cannot be accessed directly in Coq. It is possible to use these features post hoc, by 

transforming programs extracted from Coq by hand and integrating them into larger programs written 

in Haskell or OCaml. This approach, however, may adversely affect the maintainability of programs. 

9.2.4 Typeful Meta-programming 

An interesting approach to well-typed meta-programming, anticipating both our techniques and those of Xi 

and Chen [144], is presented by B j w e r  [I l l .  The meta-language is presented as a two-level A-calculus. 

Bjorner introduces a type constructor for terms that is very similar to our encoding of typing judgments 

in Haskell. A object language expression is represented by a special type constructor which takes as its 

argument a sort. Sorts are types of a special (non-*) kind, which represent the type of object-language 

terms. The sorts encode, in Bjorner's case, simple types. For example, type of the object-language function 

from integers to integers would be Term[ intsort->intsort I ) .  Similarly, a meta-program which 

optimizes or simplifies an object-program in a (object-)type-preserving way has the type: 

simplify : : Vv: sort. Term[vl +Term[vl 

The meta-language is equipped with "well-typed" constructors and deconstructors for these values. The 

type system of the meta-language is explicitly designed to support type inference. This inference is re- 

stricted to types that are (rank-2) polymorphic in the sorts. The machinery that allows this is rather compli- 

cated, using a system based on higher-order semi-unification and constraint solving. An interesting example 

in Bjorner's meta-language is a type-preserving map function: 

map : : vw: sort. (vv: sort. Term[v] -+Term[vl ) --+Term[wl +Term[wl 

map f (App(M,N)) = f (APP (map f M, map f N)) 

map f (Lam(M,N)) = f (Lam (M, map f N)) 

map f (Var N) = f (Var N) 

The morally equivalent function in Haskell, with our typing judgment representations, would look as 

follows: 

map : :  (Vel tl. Exp el tl-+Exp el tl)+Exp e t+Exp e t 

map f x = case x of Var p l j f  (Var pl) 



App el e 2 4 f  (App (map f el) (map f e2)) 

Abs el p+ f (Abs (map f el) p) 

Shift e p+f (Shift (map f e) p) 

Unlike Bj~rner's system, where many interesting types of programs that manipulate typed object- 

language syntax can be automatically inferred, our approach requires the programmer to explicitly manipu- 

late equality proof objects. This seems to be a consequence of the fact that the object-language is hardwired 

into the system. The user could not change or redefine the notion of well-typed object-language syntax. 

An interesting question for future work would be whether a system like Bjgmer's could be automatically 

synthesized from a specification of the object-language type system. 

9.3 Dependent Qpes in Haskell 

Faking it. A comprehensive description of how to simulate some aspects of dependent types in Haskell 

was presented by Conor McBride [75]. The technique is quite similar to the one we present in Chapter 4. 

First, values of any first-order monomorphic type can be lifted ("faked") into the type world: 

1. For each such type T, a Haskell class T t is created. 

2. For each constructor C : tl  + . . . + t ,  -t t ,  a data-type C : * -t . . . * -+ * is created, as well as 

an instance placing the data-type C into the class T. 

For example, natural numbers are defined as follows: 

class Nat n 

instance Nat Zero 

instance Nat n => Nat (Succ n) 

data Zero = Zero 

data Succ n = Succ n 

Second, n-ary type families (i.e., functions from n values to types) are implemented as (n  + 1)-ary 

multi-parameter type classes, where the (n + 1)th parameter is functionally dependent [66] on the previous 

n parameters. Consider the type family, which given a natural number n, computes a type of a function 

with n natural number arguments. 

nAry : : Nat -z  * 
nAry Z = Nat 

nAry (S n)  = Nat -> (nAry n) 



This can be encoded by a multi-parameter type class: 

class Nat n =z  NArry n r I n -> r where . . .  
instance NAry Zero Nat where . . .  
instance NAry n r => NAry (Succ n) (Nat -> r) where . . .  

Functions typed by this type family can then be defined as members of the class NAry. 

This technique allows the type "computed" by the type family to be computed by the Horn-clause reso- 

lution machinery already present in Haskell type-checkers. McBride explains his technique by providing a 

number of interesting examples, such as a zipwi th function with a variable number of arguments, and a 

data-type of lists whose length can be determined statically. 

The main difference between our approach and that of McBride is that we have chosen not to rely on 

Haskell's class system to "fake" dependent types. When we lift values of first-order monomorphic types to 

the type level, we do so by using an inductively defined type constructor instead of a type class. 

data Zero = Zero 

data Succ n = Succ n 

data IsNat n = IsNat-Zero (Equal n Zero) 

I forall n'. IsNat-Succ (IsNat n') (Equal n (Succ n ' ) )  

Similarly, type families become other inductively-defined data-types. In manipulating these families, we 

rely on the equality proofs in these data-types and a library of equality casting and manipulating functions. 

This means that we cannot rely on Haskell's type checker to compute the results of type functions. We 

motivate our style of "faking dependent types" in Haskell by the following two points: 

1. Since we have explicit equality proofs in our type families, we can use casting combinators to perform 

casting across the code type constructor, and thus move all dynamic computation related to the faking 

of dependent types to an earlier stage. Runtime computation incurred by McBride's encoding of 

dependent types is performed by manipulating dictionaries which are not accessible to the user, and 

thus could not be easily used to create truly tagless interpreters. 

A point related to this, noted by McBride, is that "at runtime, these programs are likely to put much a 

greater strain on the implementation of ad hoc polymorphism than it was ever intended to bear." [75, 

page 151 

2. In terms of programming style, Horn-clause notation of Haskell class definitions is not always the 

most intuitive way of writing functions over types. Furthermore, code for one function (which has a 



dependent type that is being faked) tends to be scattered among many different instances of a single 

class, leading to rather brittle-looking code. 

Phantom Qpes. Hinze and Cheney [19] have recently resurrected the notion of "phantom type," first 

introduced by Leijen and Meijer [70]. Hinze and Cheney's phantom types are designed to address some of 

the problems that arise when using equality proofs to represent type-indexed data (e.g., our typing judgment 

Exp). Their main motivation is to provide a language in which polytypic programs, such as generic traversal 

operations, can be more easily written. This system, which can be seen as a language extension to Haskell, 

also bears a striking similarity to Xi's guarded recursive datatypes [144], although it seems to be slightly 

more expressive. 

The main difference between phantom types and the techniques presented in Chapters 4 and 5 lies in the 

treatment of equality types. Instead of explicitly embedding equality types in data-type definitions, Cheney 

and Hinze propose a language extension which allows the programmer to state equalities between types in 

a data-type definitions. For example, the typing judgment for A-calculus would be represented as follows 

(note that the variables not bound by the data-declarations, e.g. t 1,  are implicitly existentially quantified): 

d a t a  Exp e t = Var with e = ( e ' ,  t )  

I Abs (Exp ( e , t l )  t 2 )  with t = t l - > t 2  

I 4PP (Exp e ( t l ->t ) )  ( E x p  e t l )  

This definition has a couple of advantages over the definitions with explicit equality proofs. First, the "smart 

constructors" are unnecessary to provide a useful interface for constructing Exps. The system automatically 

assigns the "smart constructor" types to the regular constructors. Second, there is comprehensive support 

for de-constructing data-types with equality constraints. 

The managing and propagation of equality proofs is handled automatically by the type-system. Equality 

proofs are never explicitly manipulated by the programmer. Instead, the type-checker uses unification to 

solve type equality constraints that arise from deconstructing Exp values. Furthermore, certain equality 

proof manipulation operations that cannot be implemented in Haskell, but rather have to be declared as 

primitive, need not be used since the built-in constraint-solver in the type checker is powerful enough 

infer the equalities they are used to compute. 

Recasting our Haskell examples in Cheney and Hinze's language is a relatively simple exercise, as we 

have shown in Chapter 6. One obstacle to using Cheney and Hinze's phantom types was the lack of an 

implementation. This is why we developed Omega which, while still a prototype, is the first non-toy 

implementation of Cheney and Hinze's type system. 

6~orexample the function pairparts : : Equal (a ,  b) (c ,d)  -+ (Equal a  c ,  Equal b d)  



Chapter 10 

Discussion and Future Work 

In the bulk of this dissertation, we have elaborated on a general framework based on programming lan- 

guages, type systems, and techniques, that supports the practice of heterogeneous meta-programming. We 

have thoroughly explored the design space of meta-language features intended to guarantee that meta- 

programs maintain semantic invariants of object-language programs. In Chapter 6, we have described a 

functional programming language equipped with built-in support for type equality, and demonstrated its 

power as a meta-programming language by implementing a number of interesting examples (Chapters 6-8). 

In this Chapter, we summarize our findings and results, and discus directions for future work. 

1 0 .  Thesis and Findings 

Recall that the thesis of this dissertation, stated in Chapter 1.1, is that heterogeneous meta-programming 

can be made into a useful meta-programming paradigm that can provide some of the same benefits as the 

homogeneous meta-programming languages: 

1. safety features (e.g., type safety of object-language interpreters, memory and separation safety in 

imperative object languages), 

2. increased efficiency derived from the combination of semantic properties and staging, 

3. type-safe object-language generation and manipulation 

The first question we asked ourselves was whether it was possible to manipulate object-language pro- 

grams that are not only syntactically correct, but also type correct? As a first step toward answering this 

question, we have designed a meta-language for heterogeneous meta-programming. The key property of 

this meta-language is that it allowed us to define the algebraic data-type representing abstract syntax in a 

way that preserves a notion of well-typedness of the object-language as a statically checkable invariant. 



Figure 10.1 

- 
(a)  Interpreter (b)  Staged Interpreter 

0, Object language program with (object) type T 

MITI Meta-language program of type [TI 
M, A tagless staged interpreter written in the meta-language. 

M ( g T I )  A residual program generated by the staged interpreter. 

This meta-language, called MetaD, combined, roughly speaking, type system with dependent types with 

staging in the style of MetaML. 

Next, after implementing a prototype of MetaD, we used it to write a "well-typed interpreter" (in the 

sense of Augustsson and Carlsson [3]) for a typed object language. This implementation exemplified a 

step-by-step methodology for an important class of heterogeneous meta-programming applications, which 

we reiterate here: 

1. Start with a (strongly) typed object language. Variable binding in the language should utilize the 

index-based technique of de Bruijn [13]. While this can make the formal encoding of the object 

language somewhat awkward, it greatly simplifies the implementation. 

2. Use the dependently typed inductive definition facility of MetaD to encode the typing judgments of 

the object-language terms as an inductive family. 

3. Write a semantics for the object language. We have found that the "categorical style" semantics, an 

inductive mapping from the typing judgments of the object language to an arrow from the meaning of 

type assignments to the meaning of types, fits most naturally into our methodology. Such a semantics 

is then implemented as a definitional interpreter in the meta-language by providing the following: 

(a) A map from the syntactic representation of object-language types to their meanings as meta- 

language types. 

(b) A map from the syntactic representation of object-language type assignments to the type of the 

runtime environments in the meta-language. 

(c) Finally, a map from the typing judgments of object-language expressions (Step 2) to "arrows" 

from the meaning of the associated typing assignment to the meaning of the object-language 

type. 



4. Reformulate the interpreter (3) by adding staging annotations [I 151. Accomplishing this step makes 

the deconstruction of typing judgments happen at the first stage, yielding a interpretive-overhead 

free residual program. We make an observation that such a program is free of both interpretive and 

tagging overhead (when the object language is a typed X-calculus) and can thus be considered as a 

simple, though reasonably efficient form of compilation [38]. 

Figure 10.1 illustrates the general point of this transformation by a way of "T-diagrams". The diagram 

(a) corresponds to an interpreter of step 3. Note that we have annotated the object-language program 

0 ,  with its object-language type T .  The current step (4) accomplishes the transformation to diagram 

(b), where a meta-program M, transforms the object-language program 0, into another program in 

the meta-language, M(,,n), while preserving the relationship between the object-language type T and 

the metalanguage type (([TI). 

5. Implement an associated class of meta-programs that, given a (possibly ill-typed) syntactic represen- 

tation of an object-language term, constructs, if possible, a valid proof of its typing judgment that can 

be executed using the interpreter (defined in Step 4). 

The steps (1)-(5) can be considered a paradigmatic example of heterogeneous meta-programming, con- 

sisting of an object language and an interpreter-based implementation of such a language. This kind of 

implementation in the meta-language we proposed has the following features: 

1. The implementation of the interpreter for the object-language program ensures statically that only 

well-typed object-language programs are interpreted. If the object-language is strongly typed, the ab- 

sence of runtime type errors is guaranteed in the interpreter by the type system of the meta-language.' 

2. Adding the infrastructure for explicit staging to such an interpreter allows us to leverage the strong 

typing properties of the object-language to implement more efficient interpreters that do not require 

injecting their results into a universal domain by tagging values at runtime. 

Inspection of code generated by staging clearly reveals the absence of tags. We refer to an empiri- 

cal study comparing programs generated by staged interpreters with and without tags [62].  In this 

study, Huang and Taha show that in practice removing tags from residual programs generated by 

MetaML results, on average, in twofold speedup of programs. We expect these results to hold for our 

implementations as well. 

3. Tagless interpreters are an example of programs that analyze typed object-language programs. We 

have also shown how to build "parsing" functions that construct such object-language programs in a 

'provided, of course, that the meta-language is type safe. 



type-safe way. We have implemented object-language type preserving syntax-to-syntax transforma- 

tions (substitution example in Chapter 6.4), as an example of meta-programs that both analyze and 

construct well-typed object-language terms. 

Next, we explored the question of whether the various language features present in MetaD could be 

harmoniously combined? To answer this question, we gave a formal definition of a small calculus that has 

all the ingredients of a heterogeneous meta-programming meta-language: a form of dependent types and 

staging. We proved that such a language is type safe with respect to an operational semantics. While this 

does not constitute a formal proof that the more general programming language MetaD is type safe as well, 

it represents a good prima facie evidence that the main ingredients of MetaD can be safely and orthogonally 

combined in a single language. A full formalization of the part of MetaD that contains dependent families 

is left as a question for future work. 

The next question we asked ourselves was whether the full expressive power of the dependent types used 

in MetaD is really necessary for the meta-programming paradigm outlined above. Can the typing judg- 

ments of object languages be encoded using something more akin to data-types in functional programming 

languages than the inductive type families of the calculus of constructions? 

Here, we demonstrated how such encodings (as well as definition of well-typed, tagless interpreters, type- 

checkers, and other meta-programs) can be accomplished using a technique for encoding type equality in 

Haskell-like languages. Thus, we have successfully recast the object-language implementation methodol- 

ogy (full steps 1-5) in Haskell. 

The advantage of this approach is primarily in obtaining a more practical heterogeneous meta- 

programming platform. However, we discovered significant practical drawbacks of this approach as well: 

explicit manipulation of type equality encodings in Haskell can be both cumbersome and inefficient. 

What was needed is a meta-programming language that allowed the programmer to use type equality in 

his encodings of abstract syntax, but automated much of the tedium of type equality manipulation. This is 

why we designed and implemented the functional language Omega, the first implementation of a functional 

language with automatic type equality manipulations. 

In designing Omega, we started with a functional language similar to Haskell. We modified its type 

system to automatically keep track of type equalities. The most important new language feature we added 

was a generalized algebraic data-type definition facility which allowed to programmer to specify equalities 

between types that must hold for each constructed element of the data-type. We implemented a type checker 

that automatically proves and propagates these type equalities through the meta-program. With Omega, 

we were able to implement all our Haskell examples in a cleaner, simpler style. We evaluated Omega's 

usefulness as a meta-language on an expanded set of meta-programming examples. 



Examples. Another modality of support, to which our thesis lends itself naturally, is by detailed examples 

which showcase a set of techniques which, taken together, make up a practical idiom for heterogeneous 

meta-programming. Also, the examples have the nature of a tutorial - the goal is to teach readers interested 

in heterogeneous meta-programming how to implement an important class of heterogeneous meta-programs 

by describing step by step implementations. 

Evaluation. In Chapter 1 we have outlined a set of criteria that a usable heterogeneous meta-programming 

language should fulfill. We review these criteria and comment on how the work presented in the rest of this 

dissertation addresses each of them. 

1 .  Is it possible to deJine and manipulate different object languages? Yes. In Chapter 3 we have demon- 

strated how an example object-language based on the simply typed A-calculus can be encoded as an 

inductive family in MetaD. In Chapter 5, we have started with an encoding of the same X-calculus 

based language. Then, we extended the object language, non-trivially, with pattern matching to 

demonstrate how a wider variety of object-language features can be treated with our technique. Then, 

we have shown (Chapters 6 4 ,  how an even more interesting set of object-language type systems can 

be encoded, this time using Omega: Xu, XO and the calculus of explicit substitutions. 

2 .  Is it possible to statically enforce important object-language properties such as typing and scoping? 

Yes. In Chapter 3, we show how to produce such encodings in dependently typed language MetaD 

by using dependently typed inductive fa mi lie^.^ 

In Chapter 5 we have described a technique that allows us to do this in Haskell. While Haskell, 

as a meta-language, does not guarantee the soundness of the logical predicates that encode object- 

language properties, we discuss how this problem can be handled in practice. Finally, in Chapter 6 

we demonstrate how such invariants are enforced in Omega. 

3. Can we write eficient meta-programs? Yes. A classical way of achieving efficiency in interpreters 

(and other meta-programs) is by applying staging techniques to them [126, 1151. Having described 

a way of encoding object-language abstract syntax that, as McBride put it, "allowing us to equip 

data-structures [and abstract syntax] with built-in invariants" [75], is there any useful that staging can 

play in the larger scheme of things? 

We have been able to demonstrate how we can derive tangible benefits from using both typeful repre- 

sentations of object-language syntax and staging. As a demonstration, we develop implementations 

of tagless staged interpreters, thus providing a plausible solution to the problem posed by Taha in 

2 ~ o r  comparison the reader might peruse Appendix A for a comparative development in Coq 



the context of MetaML [126, page 1513]. In MetaD and Haskell staging plays an important role in 

producing efficient tagless interpreters, since manipulating typing judgments/equality proofs incurs 

some runtime overhead that can be removed using staging. 

In Omega, we can write truly tagless interpreters (removing all tagging overhead) without the need 

for staging, since the Omega type system performs type equality proof manipulation statically, at 

type-checking time. Staging can still be used in Omega to remove interpretive overhead from tagless 

interpreters. 

4 .  How easy is it to integrate it into functional programming in general? The answer is a qualified 

'yes.' This is a pragmatic question that we have explored in the second part of the dissertation 

( swing  with Chapter 4). A plausible criticism of MetaD (and, to some extend, of Coq) is that 

it is a "toy" implementation that one cannot easily integrate with "real" functional languages. By 

describing a way of encoding well-typed syntactic judgments of object-language programs, we have 

argued that heterogeneous meta-programming can be made available to the "broad masses" of Haskell 

programmers. 

Most importantly, we have shown how type equality can be incorporated into a practical program- 

ming language (Omega). Built-in type equality provides the meta-programmer a generalization of 

traditional algebraic data-types that we demonstrate to be as useful as MetaD inductive families in 

practical meta-programming. At the same time, to a programmer already familiar with functional 

programming and algebraic data-types, the mechanisms in Omega present a significantly less steep 

learning curve than dependent types. - 

10.2 Future Work 

Finally, we conclude our exposition by outlining several areas for future work on heterogeneous meta- 

programming. 

Faking dependent types. In this dissertation we have presented a number of examples of encoding typing 

judgments of various object languages in Haskell and Omega. We may also observe that this technique is a 

instance (in the context of heterogeneous meta-programming) of a general technique for "faking" dependent 

type-like behavior in functional languages with a sufficiently expressive type system. The question that 

arises, then, is "how complete4 is this 'faking' technique?' We do not provide a formal, rigorous answer 

3"Are there practical, sound type systems for expressing tag-less re@ers?" 
4~ similar question about soundness has a rather facile negative answer, since in Haskell all types are inhabited. However, it is not 

unreasonable to argue that with a modicum of self-discipline, this question need not adversely affect the programmer in practice. 



to this question; rather, we concentrate on exploring, through examples, a class of problems where the 

technique is sufficient for interesting applications. However, there are some negative observations about the 

power of the technique that we can formulate. 

We recall that in the object-language typing judgments that we have defined, the indexes (representing 

object-language types and type assignments in the types of object-language judgments) have all been first 

order data-types. This property has made it easy to encode (simulate) the values of those indexes at the type 

level in the meta-language. What if, however, we wish to encode higher-order values at the type level? Two 

related problems present themselves: 

1. Presumably, we would like to represent functions, say of type t 1 --, t 2 by type constructors of kind 

* -+ *, with the appropriate side conditions that the argument and the result of such a type constructor 

is only used on type-level representations of t 1 to yield type-level representations of t 2. However, 

type constructors in Haskell are not really functions on types - they are syntactically restricted to an 

applicative form of already-defined type constructors. No or similar computational rules apply to 

them. 

When we simulate type-family computations (i.e., computing a type based on a value simulated at 

type level), we rely on Haskell (or Omega's) type checker's implementation of unification to perform 

the actual work of computation. Since type checkers for functional languages cannot be relied on to 

perform sophisticated computations if they are to preserve type inference, we often have to help it 

along by supplying equality proofs and various casting operations in our programs. 

As we have noted already, the lack of real functions at type level also means that we cannot perform 

evaluation on such type constructors either.5 

2. Another technique that makes faking dependent types in HaskelVOmega usable is the ability to have 

runtime representations of values that are encoded at type-level. These runtime representations can 

be compared (not surprisingly, at runtime) to yield equality proofs, which, in turn, can be used to 

cast between such representations. For example, this is a technique heavily relied on by the function 

typecheck in Chapter 5. 

However, it is not quite clear what a runtime representation of a type constructor would look like, 

especially considering the fact that only values classified by types of the kind * can exist at runtime. 

Let us further illustrate the problems above by an example. Suppose we have defined a type of lists in 

5 ~ s  is not completely true, since perhaps we could encode S and K combinators at type level, and perhaps create inductive 
judgments that would allow us to drive a form of reduction of such combinators "from below", by designing carefully constructed 
data-types at runtime. However, this is not a practical solution. 



Omega, so that the length of the list is encoded in its type: 

-- k i n d  N a t  = Z I S N a t  

data L i s t  a n = N i l  w h e r e  n = Z 

I V m. Cons a ( L i s t  a rn) where n = S m 

The type of the function that appends two list can be most naturally expressed so that the length of the 

list it returns is the sum of the lengths of its two arguments: 

append : : L i s t  a r n - + L i s t  a n - + L i s t  a Im+n] 

However, neither Omega nor Haskell allow us to write such a type since we cannot define addition as 

a function at the level of types. The current solution is to encode addition as a relation between natural 

number at the level of types: 

a p p e n d  : :  P l u s  m n q + L i s t  a n + L i s t  a m + L i s t  a q 

This style is both unnecessarly complex (since it introduces confusing auxiliary judgments), and ineffi- 

cient (since we must construct and manipulate the proof of P l u s  at runtime). The question then is whether 

Omega's type system can be suitably extended to make it possible to address them, perhaps by allowing a 

restricted form of functional values at type level. 

Logical framework in Haskell. The question then becomes whether Omega's type system can be suitably 

extended to make it possible to address them, perhaps by allowing a restricted form of functional values at 

type level. 

Logical framework in Haskell. Related to the previous question is whether we could embed a sufficiently 

expressive logic into HaskelVOmegaby various 'faking' techniques? In other words, can we fake our way 

into a logic powerful enough to allow us to write non-trivial, predicate based, specifications (and proofs of 

those specifications) of executable HaskelYOmegaprograms? 

The details of this question remain both tantalizing and elusive. 

Object-language binding constructs. The use of de Bruijn indices to represent binders in object- 

languages has been used throughout this dissertation. We are well-aware that this technique is both awkward 

and error prone.6 When it comes to representing syntax with binders, at least until recently, one could feel 

6 ~ e  note, in passing, that de Bruijn indices seem to be less error-prone in typeful syntax representations, since static type-checking 
can catch a lot of "off-by-one errors" that tend to creep into programs manipulating de Bruijn-style terms. 



justified in paraphrasing a famous apothegm of Churchill's: de Bruijn's is the worst style of representing 

binding constructs, except for all those others that have been tried. However, there are some glimmers of 

hope. 

In the context of mechanical theorem proving, McKinna and Pollack [76] present certain formalizations 

of the A-calculus and type theory (PTSs) without resorting to de-Bruijn representation of terms. Their 

technique, however, seems much more applicable to theorem proving than to meta-programming. 

We have already discussed Nanevski's adaptation of Pitts and Gabbay's nominal logic to meta- 

programming in An. In particular, Nanevski introduces a type constructor ( A  ft B) for "binding a (fresh) 

object variable of type A in an object-program of type B." In the future, we plan to explore how such a 

construct can be adapted to representing typeful object language syntax. This direction seems to show most 

promise. 

Related to this concern is the question we raised in Section 9.1.2 of whether we can integrate some 

support for pretty-printing and parsing that would allow us to interface with object-language programs 

using concrete syntax. 

Semantic properties of object programs. In this dissertation, we have concentrated on representing one 

class of properties of object-language syntax, namely, type correctness. This seems reasonable in the con- 

text of heterogeneous meta-programming, since manipulating object-language syntax that is well-typed is 

quite useful. However, an interesting question for future work is whether there are other interesting prop- 

erties that could be easily encoded and integrated into our heterogeneous meta-programming framework. 

One such example would be to encode safety properties of programs (e.g., proof of array bounds check- 

ing, division by zero, and so on). Another interesting question is whether we can have object-language 

representation with multiple kinds of properties, integrated into a single heterogeneous meta-programming 

framework in a modular way. 



Appendix A 

Tagless Interpreters in Coq 

A.l Introduction 

Coq [I371 is an interactive theorem prover based on the Calculus of Inductive Constructions [22]. Since 

the underlying logic of Coq is a constructive type theory, the theorem prover has been designed to support 

extraction [102] of programs from proofs and definitions. Such a system seems at first to be at least a 

good candidate for the kind of meta-language that we are seeking in which to implement object language 

manipulations that preserve semantic properties. Tagless interpreters are an excellent example of such a 

manipulation, and its development using Coq is indeed possible to a large extent. 

Figure A.l Syntactic Definitions for Lo in Coq. 
lnductive nat : Set := 0 : nat I S : natjnat. 
lnductive T : Set := N : T I ArrT: T 4 T 4 T.  
InductiveIE: Set:=Const: nat-,IEI Var: nat-tIEI Abs: T+lE-+IEI App:lE-,IE-+lE. 
lnductive G : Set := Empty: G I Ext : G -+ T -+ G. 

lnductive HasTypeVar: G -, nat -+ T -+ Prop := 
Has TypeVar-Zero : (r:G;tT)(HasTypeVar (Ext l? f )  0 f )  

I HasTypeVar- Weak: (r:G;n:nat; t,t': T)(HasTypeVarl? n f)-+ (HasTypeVar(ExtF t') (Sn)  f ) .  

lnductive HasType : G -+ lE -+ T -+ Prop := 
HasType- Const : (r:G;n:naf)(HasType I? (Const n) N) 

I Has Type- Var : (r:G;n: nat; t:T) (Has Type Var r n f )  -+ (Has Type r ( Var n) f )  
I HasType-Abs : (r:G;tl,t2T;e:IE) (HasType (Ext l? t l )  e t2) -+ (HasType l? (Abs t l  e) (ArrT t l  t2)) 
I HasType-App : (r:G;tl,t2T;el,e2E) (HasType r e l  (ArrT t l  t2)) + (HasType r e2 t l )  -+ 

(HasType r (App e 1 e2) t2). 

For pedagogical reasons, then, we shall first develop a tagless interpreter using the Coq system. We will 

introduce Coq syntax and operations as we go along. The reader is referred to the excellent tutorial by 

Gimenez [44] for more systematic instruction. 

The Figure A. 1 is a Coq script defining the syntax and the type system of Lo. This script consists of a 

series of inductive definitions. 



Let us briefly examine the syntax of one of these definitions: 

lnductive T : Set  := N : T I ArrT: T + T -+ T. 

The inductive family can most easily be thought of as a data-type in traditional functional languages. The 

above definition introduces a new type T. This new type is itself given the type Se t  (more on this later). 

Following the assignment sign (:=), we list a number of constructors, where each constructor is given its 

full type. Naturally, the result type of each constructor must be T. After accepting this definition, Coq 

allows the user to use T very much as one does a data-type in Haskell or ML: expressions of type T can be 

examined with case expressions, and recursive functions (provided that they are indeed primitive-recursive, 

i.e., that they terminate) can be defined over them. 

Inductive definitions go beyond data-types in the sense that they allow the inductive families to be de- 

pendently typed. The inductive families HasTypeVar and HasType, in Figure A.l, are an example of such 

dependent typing. 

A.l.l  A Brutal Introduction to Coq Syntax 

Before we dissect these definitions, let us review the syntax of Coq. In addition to traditional function type 

former 71 --+ 72, Coq supports the dependent function space IIx : 71.72. In Coq syntax, this is written 

by prepending parentheses which bind a variable whose scope extends to the right: (x: TI) T2. Multiple 

nested II-types, IIxl : 71 .IIx2 : 72. . . . rn can be combined in the syntax as (XI: TI; x2 T2; . . . ) Tn. Further 

syntactic sugar is provided when II-abstracting over multiple variables of the same type: IIxl : 7.11x2 : 7.7' 

can be written as the Coq type (xI,x2: T )  T'. As is usual with dependent types, the function type T I 4  T2 is 

just syntactic sugar for (II- : Tl.T2) (in Coq notation, (-:TI)T2). 

Function abstraction Ax : 7.e is written in Coq the same as the II-abstraction, except that square brackets 

are used instead of parentheses: [x T1]e is a function that takes an argument x(of type TI) and whose body 

is the expression e. In all binding constructs that require typing annotation (e.g., [x: TI] T2) the user can 

omit the type of the variable provided that the type can be inferred from context by placing a question mark 

instead of a term (e.g., [x:?] T2). If the inference is impossible, the system complains. 

It is also worth noting that, contrary to common practice in functional programming, application ( e l  e2) 

has lower priority in Coq than various binding constructs. Thus, the expression [x: T]xyis fully parenthe- 

sized as (([x: Tjx) y. 

Returning to inductive definitions, let us consider the definition of the inductive family HasTypeVar. 

The inductive family HasTypeVar corresponds to the auxiliary typing judgment VAR F l- n : T from 

Figure 2.2. It is defined as follows: 

Inductive HasTypeVar : G + nat + T -, Prop := 



HasTypeVar-Zero : (r:G;t:T)(HasTypeVar(Extr f) 0 f) 

I HasTypeVar- Weak : (r:G;n:nat; t,t' : T)(HasTypeVar r n f)+ (HasTypeVar (Ext r t') 

( S  n) 0. 

A couple of points are worth noting: 

As in the definition of the inductive family T, the type family HasTypeVaritself must first be given 

a type. Rather than just Set, the type HasTypeVar is a function taking three arguments (sometimes 

called indexes): a type assignment G, a natural number nat, and a Lo type T, and returning the sort 

Prop. In a way, this is analogous to a Haskell notion of type constructol; except that whereas Haskell 

type constructors are functions from types to types (in Coq one would write them as Prop-, Prop), 

Coq type families are functions from values to types. 

One can think of sorts as special types that classify other types. The sort Prop is a type of logical 

propositions/formulas. The sorts Set and Prop are similar to the notion of kind * in Haskell, except 

that Coq divides the kind of types into two distinct parts: one reserved for programs and values 

(Sef) and the other reserved for logical propositions (Prop). Logically, this distinction is not strictly 

necessary: Se t  by itself would be sufficient. Indeed, most dependently typed languages unify S e t  

and Prop into one single sort (e.g., Cayenne [2]). However, as we will see later, Prop and S e t  

can be given different "operational" properties if we treat Coq definitions as programs: Se t  types 

become types of runtime values (integers, functions and so on), while Prop types become mere 

logical properties of those values which are used at type-checking but are discarded from the runtime 

computation. 

The values of the inductive family HasTypeVarcan be built up using the two constructors, HasType- 

Var-Zero and HasTypeVar- Weak. The types of these constructors merit a closer examination: 

1. The constructor HasTypeVar-Zero is the base case of the typing judgment on variables. It 

corresponds to the (Var-Base) rule from Figure 2.2: 

Var-Base) 
V A R ~ , ~  F O : ~ (  

It has the dependent type (r:G;t:T)(HasTypeVar(Extr f) 0 f). This means that it is a depen- 

dently typed function which takes two arguments, r of type G and t of type T, and returns a 

value of type (HasTypeVar (Ext l7 f )  0 f). 

2. The constructor HasTypeVar- Weakis the weakening (inductive) case of the typing judgment 



on variables. It corresponds to the Var-Wea rule from Figure 2.2: t 
Var- Weak) 

Now, having defined Lo well-typedness judgments 

provable Coq propositions. 

It also has a dependent type: 

(I':G;n:nat; t,t': T)(HasTypeVarr n t)-+ 

Again, the constructor itself is a depender 

assignment r .  Its second argument is a 

types tand t'. Finally, its last argument is a 

all these arguments, its result is of type 

A closer examination reveals that this type 

judgments in Figure 2.2: the last argument 

the rule. The result of the type correspond:; 

the antecedent simply serve to "close" the 

are implicitly universally quantified. 

as Coq inductive families, they can be treated as 

~;HasTypeVar(Extr t )  ( S  n) 0. 

tly typed function. Its first argument is the type 

natlral number n. Its next two arguments are two Lo 

typing judgment of type (HasTypeVarr n t). Given 

(HasTypeVar(Ext r t') ( S  n) t) .  

corresponds exactly to the inductive definition of 

to the constructor corresponds to the antecedent of 

to the rule consequent. The arguments preceding 

-?ree variables in the judgment, which in Figure 2.2 

A.1.2 A Brutal Introduction to Theorem roving in Coq t 

Theorem example1 : (HasType (Ext Empty N) 

(Abs (ArrT N N) (Ap ( Var (0)) ( Var ( 1 ) ) ) )  

(ArrT (ArrT N N) N)) 4 

But first, we shall briefly digress here to review the 

Howard isomorphism[61,97], to prove a proposition ? 

of the type that corresponds to P.' Usually, propositions 

prover is also capable of interactively constructing 

As an example, consider the judgment (EXP 0, N  t- 

i.e., that the Lo expression AN -+ N. (Var 0) (Var 1) 

0, N .  First, we write down the appropriate Coq type tt 

Empty N) (Abs (ArrT N N) (App (Var (0)) (Var ( 1 ) ) ) )  

Next, we issue the command Theorem, and give a 

known to the system (example 1): 

'In other words, find an expression e whose type is '3' 

process of theorem proving in Coq. Due to the Curry- 

in Coq, all one has to do is to construct an inhabitant 

are types whose sort is Prop, although the theorem 

inhabitants of types with sort Set as well. 

X(N -+ N).(Var 0) (Var 1) : ( N  --+ N )  -+ N ) ,  

l-as type ( N  -+ N )  -+ N  under the type assignment 

at corresponds to this proposition: (HasType (Ext 

(ArrT(ArrT N N) N)). 

rame under which the inhabitant of this type will be 



After this command is issued, Coq goes into the interactive theorem proving mode. It prints the type of 
examplel, declared above, as a goal (below the line) and prompts the user for next command: 

coq output 
1 subgoal 

............................ ............................ 

( H a s T y p e  ( E x t  E m p t y  N )  ( A b s  ( A r r T  N  N )  ( A p p  ( V a r  ( 0 ) )  ( V a r  (1)))) 

( A r r T  ( A r r T  N  N )  N )  ) 

Now, we issue the command Proof to begin proving the theorem. The first tactic we chose to use is the 

tactic EApply (we also sometimes use a closely related tactic called Apply - the reader can assume them 

to be basically equivalent). This tactic takes an argument expression e. The theorem prover first computes 

the type of e. If it is an arrow type, it tries to unify its result type with the type of the current goal. If the 

unification succeeds, the current goal is replaced by the types of the arguments to the function. If the type of 

e is not a function and the unification with the current goal succeeds, the goal is eliminated. The argument 

we give to EApply is the constructor HasType-Abs: 

EApply Has Type- Abs. 

Having succeeded in the previous tactic, the theorem prover prints out a new goal: 

C o q  output  
1 subgoal 

............................ ............................ 
( H a s T y p e  ( E x t  ( E x t  E m p t y  N )  ( A r r T  N  N )  ) ( A p p  ( V a r  ( 0 )  ) ( V a r  (1) ) ) N )  

Since the expression for which we are constructing the proof now is an application, it is a good idea to 

try to apply the constructor HasType-App: 

EApply HasType-App. 

Again, the tactic succeeds. Now the system introduces two new goals (one for each of the two HasType 

arguments to HasType-App), and prints: 

coq output  
2 subgoals 

............................ ............................ 

( H a s T y p e  ( E x t  ( E x t  E m p t y  N )  ( A r r T  N  N ) )  ( V a r  ( 0 ) )  ( A r r T  ?3 N ) )  

subgoal 2 i s :  

( H a s T y p e  ( E x t  ( E x t  E m p t y  N )  ( A r r T  N  N )  ) ( V a r  (1) ) ? 3 )  

We could continue to use EAppy with HasType constructors, but Coq has much more sophisticated 

tactics that can figure out automatically what constructors to apply. One such tactic is called Constructor: 

Constructor. 



Now, a new subgoal is created instead of the first goal. Notice that it has used the constructor HasType- Var 

and the new goal is a variable judgment: 

coq output 
2 subgoals 

............................ ............................ 
(HasTypeVar (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT ?3 N) ) 

subgoal 2 is: 

(HasType (Ext (Ext &pty N) (ArrT N N) ) (Var (1) ) ?3) 

We quickly dispense with this subgoal by instructing the theorem prover to repeatedly apply the Con- 

structor tactic until it proves the current goal: 

Repeat Constructor. 

Now we are left with only one goal (former subgoal 2): 

coq output 
1 subgoal 

............................ ............................ 
(HasType (Ext (Ext Empty N) (ArrT N N) ) (Var (1)) N) 

Again, we dispense with it using the EAuto tactic (which combines Constructor with other automatic 

reasoners): 

EAuto. 

And we are done! The system prints: 

Coq output 

Subtree proved! 

This indicates that all the subgoals have been discharged and the proof is completed. We issue the one 

final command Qed, to instruct the prover to accept the definition of example I we have just interactively 

constructed: 

Coq output 
EApply HasType-Abs. 

EApply HasType-App. 

Constructor. 

Repeat Constructor. 

example1 is defined 

To review, the above theorem is defined using a proof script which consists of a series of commands 



(tactics) given to the interactive theorem prover between commands Proof and Qed. Due to the type- 

theoretic nature of Coq, the proof of the theorem constructed above can also be viewed as a program that 

the theorem prover constructs interactively. Thus, requesting the system to print the value of the variable 

example 1 yields the following response: 

Print examplel. 

Coq output 
examplel = 

(HasType-Abs (Ext Empty N) (ArrT N N) N (App (Var (0) ) (Var (1) ) ) 

(HasType-App (Ext (Ext Empty N) (ArrT N N) ) N N (Var (0) ) (Var (1) ) 

(HasType-Var (Ext (Ext Empty N) (ArrT N N)) (0) (ArrT N N) 

(HasTypeVar-Zero (Ext Empty N) (ArrT N N))) 

(HasType-Var (Ext (Ext Empty N) (ArrT N N) ) (1) N 

(HasTypeVar-Weak (Ext Empty N) (0) N (ArrT N N) 

(HasTypeVar-Zero Empty N) I ) ) )  
: (HasType ( E x t  Empty N)  

( A b s  (ArrT  N N)  (App (Var  ( 0) ) (Var (1) 1 )  ) (ArrT  (ArrT  N NJ N) ) 

Further Tactic Examples. To round off this little tutorial, we shall give another example of interactive 

theorem proving to introduce the user to the tactics that will be used later on in this chapter. First, one 

should recall that the interactive prover is not limited to proving propositions, but can be used to construct 

the inhabitants of any Coq type. We shall thus consider defining an inhabitant of the type (m,n:naf)nat, in 

particular, the addition function. Since this type is not a Prop, we shall use the keyword Definition instead 

of Theorem to enter into the interactive mode: 

Definition plus : (m,n:naf)nat. Proof. 

The first thing that happens when entering the interactive mode is that Coq prints the type of the goal we 

are trying to define: 

coq output 
1 subgoal 

We will opt to define this function by recursion on its first argument rn. We issue the command Fix 1, 

and the theorem prover responds with: 

coq output 
1 subgoal 

plus : nat->nat->nat 
............................ ............................ 

nat->nat->nat 



We can see that we have acquired a new assumption, named plus which has the same type as the value 

we are trying to define. This assumption corresponds to a recursive call to the function plus itself. 

Next, since we are trying to prove an implication (->), we can instruct the prover to use the implication 

introduction rule as far as possible. The tactic lntros does just this. 

Coq output 
1 subgoal 

p lus  : nat ->nat ->nat  

m : na t  

n  : na t  
............................ ............................ 
na t  

Now, we have two more assumptions, named m and n, of type nat and are trying to show an inhabitant 

of nat. Any nat would logically do, but we want to define a particular nat that is the sum of m and n. 

This can be best accomplished by examining the cases over one of the assumptions, say,m. We issue the 

following command: 

NewDestruct m. 

Now, the prover has split the proof into two subgoals 

1. The first case is when m is zero: 

coq output 
2 subgoals 

p lus  : n a t - m a t - m a t  

n  : na t  
............................ ............................ 

na t  

subgoal 2 i s :  

na t  

But, if m is zero, then that sum of rn and n is just n, and we can issue the appropriate command: 

Apply n. 

2. Thus, the first goal is discharged. Now, for the inductive case where m is of the form S no, for some 

natural number no: 

coq output 
1 subgoal 

p lus  : na t -ma t ->na t  

no : n a t  

n  : na t  



............................ ............................ 

nat 

Well, we know that since mS no, m + n = S(n0  + n), we can immediately provide the natural we 

want: 

Apply@ (plus no n)) 

This discharges all subgoals, and we exit the interactive mode by the command Defined, which is analo- 

gous to Qed (there is a slight, but for our purposes unimportant difference in how the theorem prover keeps 

track of values depending on which of the two commands is used). 

We can also instruct Coq to print the definition of plus: 
Print plus: 

coq output 
plus = 

Fix plus 

{plus [m:nat] : nat-7nat :=  

[n:nat]Cases m of 

(0) => n 

I ((SnO)) => (S (plusnon)) 

end) 

: nat->nat->nat 

A.1.3 Semantics of Lo in Coq 

The next step is to define the semantics of the language Lo. As we have seen in Section 2.2.1, the semantics 

is defined inductively over the well-typedness judgments. In our Coq implementation, the meaning of Lo 

types is a function that maps Ts into Set. Similarly, type assignments are also mapped to Set, i.e., to a 

nested product of the meaning of individual types in the type assignments. 

The semantic functions evalT and evalTS are defined below by recursion on Lo types and type as- 

signments, respectively. This form of definition is quite similar to programs in Haskell or ML, with the 

exception that Coq attempts to prove that the recursively defined function always terminates by examining 

a particular argument (in this case the type or the type assignment) and ensuring that it is structurally smaller 

at every recursive call: 

Fixpoint evalT [ TT] : Set := Fixpoint evalTS [I' : 61 : Se t  := 

Cases  T of Cases  I? of 

N =+ nat Empty + unit 

I (ArrT t tO) + (evalT f,4(evalT tO) I (Ext I" t )  + ((evalTS r ')  x (evalT t ) )  

end. end. 
Alternatively, we can make the appropriate definitions using Coq's interactive theorem proving facility, 

where we use tactic to generate the code for the functions we wish to define. The convenience of this 



approach is that arguments available to a definition are shown as premises, while the types whose values 

we are trying to construct are shown as current goals. The proof environment makes sure that all the cases 

are addressed and that only well typed programs are constructed. Furthermore, certain Coq tactics[32] can 

be used as powerful program generation tools. After the definition is complete, the user can easily inspect 

the source of the function she has interactively defined. Thus, the semantics of types and type assignments 

can be defined by the following proof script: 

Definition evalT : T -+ Set. Proof lnduction 1. EApply nat. Intros. EApply (X-+XO). Defined. 

Definition evalTS : (6 + Set. Proof Induction 1. EApply unit. Intros. EApply (Xx(eva1T to ) .  

Defined. 

Syntactic notations. Another useful facility that Coq provides is to define syntactic shortcuts which allow 

the user a rather flexible way of extending the syntax of her programs. Prefix, infix and mixfix operators 

can easily be declared. For example, the following definitions allow us to use the more convenient notation 

T[[t] instead of (evalT t): 

Notation " 7 l[ t 1 " := (evalT t). 

Notation " 7s ([ ts 1 " := (evalTS ts). 

The syntax for these definitions is rather intuitive: concrete syntax appears on the left of the assignment 

sign (:=) surrounded by quotes. The corresponding Coq expression is written on the right - identifiers 

mentioned in both are considered as variables ranging over syntactic expressions (variable t above). Upon 

accepting a syntactic notation definition, the Coq system automatically generates parsing and pretty-printing 

functionality and the newly defined notations can be freely mixed with other Coq syntax. 

Syntactic notations can be used to make our definition of typing judgments syntactically identical with 

the definitions in Figure 2.2. First, we declare notations for types, expressions and type  assignment^:^ 

Notation "tl  - t2' := (ArrT t l  t2) (at level65, right associativity). 

Notation " X t . e "  := (Abs t e) (at level40, left associativity). 

Notation " A @ B" := (App A B) (at level 50, left associativity). 

Notation " () " := Empty. 

Notation "G ;; r' := (Ext G f )  (at level60, left associativity). 

Finally, we can define a more traditional mixfix notation for typing judgments: 

Notation " ' VAR'r t n : t" := (HasTypeVarr n t).  

Notation " ' EXPI7 t e : t" := (HasTyper e t).  

2 ~ o t e  that this system is not perfect, and instead of application just being el ez we had to use the infix symbol Q lest the parser 
confuse application in Lo with application of Coq. 



Resuming with the semantics of Lo, the next step is to define the auxiliary function lookup, which imple- 

ments the semantics of variable look-up: it takes as its argument a type assignment, a natural number index 

of the variables, and returns a function from the meaning of the type assignment to the meaning of the type 

of the variable: 

Definition IookUp : (r:G)(n:naf)(t:T)(VARI' I- n : t)+(35 I[ I' 1) + (7 [ t]). 

We shall define this function interactively, with tactics. The function is defined by recursion on the second 

argument, the natural number index of the variable. We use the tactic Fix 2, which gives us access to the 

recursive call to lookup. This gives an assumption 

lookup : (r:G)(n:naf)(t:T)(VARI' t n : f)-t('JS [ r ]) -+ (T [[ t I). 
Next, we recall that what the type we are trying to prove is a (dependent) function type. In general, to 

prove the proposition (xP)Q, we have to prove Q under the assumption x P. In Coq, we use the tactic 

lntros to do this, and obtain the following assumptions: 

r : G  

n : nat 

t :  T 

H : ( V A R r I - n : t )  

HO : TsUr1 

The new goal becomes TI[fl. 

The definition now proceeds by case analysis on the type assignment r :  NewDestructr. 

Now, there are two different cases for the variable I?: 

1. Case r = Empty. If l' is empty, then the assumption H has the type Var Empty I- n : t. If we 

examine the inductive definition of the variable judgments, we notice that there is no derivation such 

that under the empty environment some variable index has a type, i.e., we cannot project from an 

empty environment. 

This means that one of our assumptions, H, is false, and logically, from falsity we can prove any goal. 

In Coq, we shall prove this case by using the Absurd tactic, which takes a proposition P proves an 

arbitrary proposition Q, provided that both not P and P follow from the current assumptions. The 

formula for P we use is simply (Var Empty t n : t). The formula Q is, of course, the original goal 

T(Irg. 

Absurd ( VAR Empt&n: f ) .  

Now, the goal ~ ( V a r  Empty k n : t) follows by examining the types of the constructors for 



HasTypeVar and determining that there is no derivation with an empty type environment. Coq 

has a tactic automatically does this: Inversion H. 

Next, the goal (Var Empty k n : t) follows trivially from the assumptions: Trivial. 

Now the initial goal %[t] has been proved. 

2. Case r = I", tl. For the second case, the original assumptions are rewritten with respect the new 

value of r :  

r1 : G 
t l  : T 

n : nat 

t :  T 

H : (VAR (Extr l t l  k n : t) 

HO: Yqrg  

Now, we proceed by cases on the natural number index n. 

NewDestruct n. 

(a) The first case, when n is 0. In this case, based on the hypothesis H, it easily follows that t l  = t, 

by examining the possible derivations. Thus, we assert a new goal t l  = t and prove it by 

Inversion: Assert (t=tl). Inversion H. 

Now we can use this equality to rewrite all ts into tls (using the tactic Subsf) and simplify our 

assumptions and goals by issuing the following commands: EAut0.Subst t. 

r1 : G 
t l  : T 

H :  (VAR  EX^ rt t i  1 o : t i )  

HO : %[Ext I?' t l] 

Recall, that the goal we are proving now is Y[tl]. Now, the assumption HO has the type 

YS[Ext I?' tl], which can be simplified by simply unfolding the definition of the meanings 

of type assignments to obtain the product: 

HO : 'Jsirlg x q t i g .  

Now, to obtain the goal, we only need to project the second part of HO: 

EApply (Snd Ha). 

(b) There remains the one final case when the variable n is of the form S m. This case will be 

computed by making a recursive call to the function lookup. 



However, before such a recursive call can be made, we must have the appropriate judgment to 

give it to as an argument. Thus, we first assert a new goal that (VAR I" I- m : t), which is easily 

proved by inversion: 

Assert ( VAR to F m : f). Inversion H. Trivial. 

Then use this newly proved assumption, named H I ,  as one of the arguments to the recursive 

call of 100kUp. One final step is to provide the runtime value of type 'JS[I"n, which is obtained, 

as in the previous case by projecting, this time the first element, from the assumption (HO : 

~s[rq x q t i j ) .  

Apply (IookUp to m t H 1 (Fst Ha)). 

The recursive call is accepted because the index argument m is structurally smaller than the 

initial argument n, which allows Coq to prove termination of IookUp: 

Defined. 

Having discharged all the cases, the interactive theorem prover states that all the goals have been proved. 

The command Defined instructs the prover to accept the proof term generated in the preceding interactive 

session as a definition for the function lookup. Since it is defined using recursion, Coq makes sure before 

accepting the definition that IookUp always terminates. 

The first thing one notices when examining the definition of IookUp, whether in terms of the interactive 

proof script or in terms of the generated code, is the large amount of "logical book-keeping." One example 

of this is the first case which we had to show that lookup in an empty environment leads to absurdity. 

Similarly, we had to assert and prove properties in other cases either to be able to project the 0-th variable 

or to make a recursive call to IookUp: both of these properties were easily obtainable from the definition of 

the typing judgment. These assertions end up being morally equivalent to various "generation lemmas" [ 5 ]  

one often proves when defining typing relations. 

All this logical apparatus clutters up our definitions and makes the connection with the semantics stated in 

Section 2.2.1 rather obscure. So the question that presents itself immediately is why not define thefunction 

lookUp by direct induction over the typing judgment (VAR I? I- n : t)? Then, the assertion (VAR r F  m : f), 

for example, would be directly obtained from the inductive step, rather than having to be proved. 

The reason why this does not work is a rather subtle but important feature of the Coq theorem prover. 

In order to obtain a property of the system called proof irrelevance [I, objects of kind Prop cannot be 

deconstructed (inductively, or by cases) in order to createlprove objects of kind Set. In other words, com- 

putational objects that live in the Set universe cannot depend on the structure of the proof objects in Prop, 

since the actual structure of a proof should be irrelevant: all proofs of the property P are equally valid. 



The advantage of this principle is in the possibility of extraction, where the Coq system constructs pro- 

grams (in Caml, Haskell, or Scheme) from its proofs or definitions. Under the extraction scheme, all objects 

of kind Prop, i.e., all proofs of properties are simply erased from the generated program. Thus, although 

the Coq term for IookUp is quite large, the extracted program is much more manageable, since most of the 

logical book-keeping disappears from the extracted program. 

Still, it is possible to define functions such as 100kUp more straightforwardly in Coq itself. The step 

required is to redefine the typing judgments to have kind Set rather than Prop. 

Figure A.2 New syntactic definitions for Lo, where judgments are in Set. 
lnductive T : Set := N :  T I ArrT: T -+ T -+ T.  
InductiveIE: Set:=Const: nat-+IEI Var: nat-+IEIAbs: T+IE-+IEIApp: IE-+IE-+IE. 
lnductive G : Set := Empty: G I Ext : G -+ T -+ (6. 

Notation " t l  - t2' := (ArrTtl t2) (at level65, right associativity). 
Notation " X t . e" := (Abs t e) (at level40, left associativity). 
Notation " A @ B " := (App A B) (at level 50, left associativity). 
Notation " () " := Empty. 
Notation "G ;; f'  := (Ext G t) (at level60, left associativity). 

lnductive HasTypeVar: G -+ nat -+ T -+ := 
HasTypeVar-Zero : (F:G;t:T)(HasTypeVar (I' ;; t) 0 t) 

I HasTypeVar- Weak: (r:G;n:nat; t,t': T)(HasTypeVarI' n f)-+ (HasTypeVar(r;;t? (S  n) t). 
Notation " ' VAR'I' t n : t" := (HasTypeVarr n t). 

lnductive HasType : G -+ E -+ T -+ := 
HasType-Const : (I':G;n:naf)(HasType I' (Const n) N) 

I HasType-Var: (I':G;n:nat;tT) (VARI' k n :  t) -+ (HasTypeI' (Varn) t) 
I HasType-Abs : (I':G;tl,t;?:T;e:E) (HasType(I';;tl) e t2) -+ (HasTypeI' ( A  t l  . e) ( t l  - t2)) 
I HasType-App : (r:G;tl,t2:T;el,e;?:IE) (HasTypeI' e l  ( t l h t 2 ) )  -+ (HasTyper e2 t l )  -+ 

(HasType I' (e l  @ e2) t2). 
Notation " ' EXP' I' k e : t " := ( HasType F e f). 

A.1.4 Set Judgments 

Figure A.2 details the changes to the syntactic definitions that need to be made. The only change is in the 

type declaration of the type families HasTypeVar and HasType: they are declared as returning Set rather 

than Prop. This means, in particular, that they are no longer simply logical propositions, but also "runtime 

values." Now, let us examine a new, simpler definition of the function lookup: 

Definition IookUp : (I':G)(n:nat)(t:T)(VARI' t- n : t)+('JS [I I' 1) -+ (7 [[ t ] ) .  

Now, rather than by general recursion on the index, we can immediately define the function by induction 

on the typing judgment argument (VAR I' t n : t). If we name the judgment argument H, then the following 

interactive commands to the theorem prover set up the definition by induction on H: 

Intros. Induction H. 



The definition is now split into two cases, yielding two goals: 

1. The case for the base judgment, the runtime environment argument has the type 'JS [I"; t ] .  We can 

immediately obtain the goal 7 [t] by projecting the second value from the runtime environment HO, 

which is a pair: 

EApply (snd ? ? Ha). 

2. In the case for the weakening judgment, we obtain the premises by the induction hypothesis: 

HrecH: ('JS I[ F1 ])-+(T f). 

HO: TS nrl,r 1 
What remains now is to apply the induction hypothesis to a smaller runtime environment: 

EApply (HrecH (fst ? ? Ha)). 

Defined. 

To finish off, we can easily define the function eval which interprets typing judgments of expressions: 

Definition eval: ( r :G;  e:IE; t:T)(EXPr t- e : f) -+ (TS I[ l? 1 )  -, (T [ t ] ) .  

This function is defined by recursion on the fourth argument, the typing judgment Hof type (EXPI' I- e 

: f), which is analyzed by cases: 

Fix 4. Intros. NewDestruct H. 

There are four cases: 

1. In the case for integer constants, we have the integer constant n available as one of our assumptions. 

The goal to be proved is of type 7[q ,  which simplifies to nat. Thus to prove the goal we only need 

to exhibit a natural number, in particular the number n. 

EApply n. 

2. In the case for variables, two assumptions are interesting, namely the variable sub-judgment H and 

the variable index n: 

HO: (VarI'i- n : t) 

n : nat 

With these assumptions, we can make a call to the auxiliary function lookup, previously defined: 

Apply (IookUp r n t Ha). 

3. The function case creates as its result a function, the body of which is evaluated in an expanded 

runtime environment: 

Simpl. Intros. EApply (eval (l?;;t 1) e t2 h (H0,H)). 



4. Finally, for the application case we compute the function value fun, as well as the argument value 

arg by recursive calls to eval. Then, fun is applied to arg to obtain the meaning of the application. 

LetTac fun := ( eva l r  el (tl-t2) h Ha). LetTac arg := ( eva l r  e2 tl hO Ha). EApply (fun 

arg). Defined. 

A.1.5 Program Extraction: Tagless Interpreters 

We have mentioned Coq's ability to perform program extraction from its theorems and definitions. Ex- 

traction is fully automatic. The user only need specify some general parameters, such as for what target 

language (Haskell, OCaml, Scheme) extraction is performed, and simply indicate a Coq definition that 

should be extracted: 

Recursive Extraction lookup. 

When issued this command, the theorem prover performs automatic extraction and prints out the text of 

the generated program, data-types, function definitions and all. 

Figure A.3 Extraction of IookUp (Propbased judgments) as a Haskell function. 

module Main where 
import qualified Prelude 
- = Prelude.error "Logical or arity value used" 
data Nat = 0 ( S Nat 
data Prod a b = Pair b a 
fst p = case p of Pair x y + x 
data Typ = N I ArrT Typ Typ 
data TS = mty I E x t  TS Typ 
lookup gamma n t hO = 
case gamma of 

mty --+ Prelude.error "absurd case" 
E x t  to tl -+ 

(case n of 0 -+ (case hO of Pair f e -+ e) 
S no --t lookup to no t (£st hO)) 

We may compare the two Haskell programs generated by extraction from the Prop and Set-based 

implementations (Figure A.3 and Figure A.4, respectively). 

Note that in Figure A.3 there is no trace of typing judgments. The function lookup takes only three 

arguments: the type assignment, the index number and the runtime environment. Now, a combination of 

these arguments could be given to lookup so that the resulting combination is not well-typed (i.e., there 

is no VAR judgment in the original Coq definition). 

In these cases, the extracted program (e.g., line 11) uses the Haskell error value. These are cases that 

were defined by the Absurd tactic in the original - if the terms are well typed these cases should never 

occur. 



Figure A.4 Extraction of IookUp (Set-based judgments) as a Haskell function. 

module Main where 
import qualified Prelude 
data Nat = 0 1 S Nat 
data Prod a b = Pair b a 
£st p = case p of Pair x y + x 
snd p = case p of Pair x y -+ y 
data Typ = N I ArrT Typ Typ 
data TS = m t y  I Ext TS Typ 
data HasTypeVar = HasTypeVar-Zero TS Typ 

I HasTypeVar-Weak TS Nat Typ Typ HasTypeVar 
lookup gamma n t h hO = 
let - 

f to no tl hl h2 = 
hl of 

HaaTypeVar-Zero gamma0 t2 + snd h2 
HasTypeVar-Weak gamma0 nl t2 t' h3 + f gamma0 nl t2 h3 (£st h2) 

in f gamma n t h hO - 

By contrast, the Set-based typing judgments (Figure A.4) are extracted as a Haskell data-type HasTypeVar. 

Furthermore, the function lookup takes a HasTypeVar as its fourth argument and pattern matches over 

it. This means that only well-typed judgments are analyzed and that there are no absurd cases. The price 

we pay for the Set-based definition is that the additional data-type HasTypeVar must be passed around 

in the extracted program and analyzed. This could result in potential runtime penalties. 

An even more serious problem is present in the extracted problems in both styles of implementation: 

the programs extracted need not be, and usually are not, well typed in Haskell. The function lookup 

(Figures A.3 and A.4) XXX is a case in point: each time around the recursive loop the runtime ' environment 

has a different type. This is because the type-system of Haskell is less expressive than the type system of 

Coq: Haskell rejects some well-typed Coq programs, even though they never cause runtime type errors. 

For these extracted programs to be successfully compiled, the Haskell type checker must be turned off.3 

Since Haskell cannot type-check the program, the user must rely on the correctness of Coq's extraction 

algorithm to assure that the programs do not go wrong at r ~ n t i m e . ~  

A.2 Do We Need a Different Meta-Language? 

With the experience described above one might ask: Is Cog an adequate meta-language for our purposes 

of generating safe and efficient tagless interpreters? What additionaVd13erent features would be desirable 

3 ~ o q  extraction for Objective Cam1 inserts the appropriate calls to the casting function, O b  j . cast  where it detects that Caml's 
type system is inadequate. This feature is not yet implemented for Haskell extraction. 

4 ~ n  the writing of this chapter the author has discovered a rather unpleasant bug in Cog 7.4 extraction, so the issue, if anecdotal, is 
by no means irrelevant. 



in such a meta-language? 

1. Dependent types, especially inductive families, are quite useful in representing typing judgments, and 

providing clean, direct implementations of object-language semantics. Furthermore, the interactive 

theorem proving interface seems to be a very practical way of generatinglwriting programs. 

2. However, a straightforward implementation in Coq along the lines shown for Lo may be inadequate 

for many practical languages that do not enjoy the property of strong normalization. The Calculus 

of Inductive Construction, on which Coq is based, is a strongly normalizing calculus. That means, 

for example, that we have an object language with non-termination and/or arbitrary recursion, we 

cannot use Coq's function space to model the function space of object programs. While it is possible 

to develop domain theory in Coq, extraction of such definitions would not necessarily yield useful 

artifacts. 

An ideal meta-language would find a way to combine non-termination (and maybe other effects) with 

dependent types in some useful and manageable way. 

3. Program generation via extraction may look good but introduces a number of problems: 

(a) If we use Propbased implementation, considerable difficulties emerge with implementation of 

interpreters. First, we cannot define the meanings of programs (which live in Sef) directly by 

induction/cases over typing judgments (which live in Prop). This can sometimes be circum- 

vented by proving a number of "generation lemmas," but those lemmas become increasingly 

difficult to prove and use the more complex the language we are interpreting. Second, various 

"logical book-keeping" distracts from the clarity of definitions and obscures their connection to 

the semantics. 

(b) If we use Set-based judgments, the interpreters generated by extraction are neither really tag- 

less, nor are they typable in Haskell. This leads to both a loss of performance, as well as to a 

loss of reliability - we must rely on the correctness of the program extraction rather than the 

host language type system. 

If we are to combine the simplicity and ease of (b) with the efficiency of (a), we would obtain quite a 

satisfactory implementation. Is this possible? Fortunately, it is, if we abandon program extraction in 

favor of meta-programming by staging. Then, we can use the (b) style to define interpreters, but use 

staging to perform all tagging-like operation (deconstruction of typing judgments) before the runtime 

of a particular object-language program (more about this later). 
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