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Abstract 

Genetic Algorithms 

and 
Fitness Variance 

with an 

Application to the Automated Design 
of Artificial Neural Networks 

W. Michael Rudnick, Ph.D. 
Oregon Graduate Institute of Science & Technology, 1992 

Supervising Professor: Robert G. Babb I1 

Existing genetic algorithm (GA) theory addresses how schema fitness serves as a measure 

of the expected increase or decrease of schema representation within the population. The 

work presented here considers how schema fitness variance affects schema representation 

through GA decision-making. 

It has long been known that the more significant bits of binary coded parameters 

converge before bits of lesser significance. This phenomenon, called domino conuergence, 

is explored using the identity problem, f (x) = x. Sometimes convergence stops prema- 

turely (a  phenomenon called convergence stall), depending upon the relative magnitude 

of the mutation rate and the length of the encoding string. Analyses and models are 

presented exploring various aspects of these phenomena. 

GA convergence occurs in competition partitions. Each partition has an associated 

xviii 



signal (measure of the force tending towards correct decision-making within that par- 

tition) and noise (measure of the force hindering correct decision-making). Which has 

the upper hand within a particular partition determines if the GA chooses correctly 

between competing schemata, which in turn determines convergence in the partition. 

Signal, noise, and the signal-to-noise ratio (SNR) are each defined in terms of fitness 

variance, with the SNR reconciling the conflicting effects of signal and noise. Formulas 

for the flat-population schema fitness variance, signal, noise, and SNR are derived using 

the Walsh basis. Both domino convergence and convergence stall are examined from the 

signal versus noise perspective. 

Designing an artificial neural network (ANN) for a specified problem can be difficult. 

Since the design of biological neural networks is a result of evolution, evolutionary search 

techniques may be well suited to network design. Back-propagation is known to gener- 

alize well on the contiguity problem (counting the number of clumps of 1s in a binary 

input field) when hidden layer receptive fields are narrow, but with high performance 

variance (noise) due to local minima. 

Evolutionary network design is used as a case study in applying GAS to a difficult, 

noisy problem. A program called GAND, genetic algorithms for network design, is 

described and tested on the contiguity problem. A number of techniques are presented 

that allow GAND, starting with randomly generated network interconnections, to evolve 

architectures rivaling the best produced by hand. 
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Chapter 1 

Introduction 

The genetic algorithm (GA) is a population-based search technique abstracting the 

paradigm of natural evolution (Holland, 1975b; Goldberg, 1989c; Davis, 1991; Brady, 

1985; Casti & Karlqvist, 1986; Davis, 1987; Grefenstette, 1985; Grefenstette, 1987; 

Schaffer, 1989; Holland, 1984). Thus, like artificial neural networks, GAS are biologically 

motivated. 

Building blocks, which are short-defining-length, low-order schemata of above-average 

fitness containing optima or near-optima, are rightly recognized as one of the keys to 

GA function. If the population is rich in building blocks, crossover can combine them to 

produce good solutions. Holland's schema theorem (Holland, 1975b; Goldberg, 1989c) 

provides a lower bound on the expected representation of each schema in the next gen- 

eration's population based on its representation in the current population, and thereby 

serves as a measure of when building blocks are likely to grow. However, the schema 

theorem is only a result in expectation. Because of stochastic influences (Jong, 1975; 

Goldberg & Segrest, 1987), even when its inequality is satisfied the schema theorem does 

not guarantee a building block will grow. The present work addresses these stochastic 

deviations by defining schema fitness variance and examining how it affects a schema's 

increase or decrease in representation. 

The dissertation is organized as follows. This chapter introduces the GA through a 

simple example, establishes notational conventions and definitions, and reviews relevant 

GA theory, including Walsh functions and the Walsh schema transform. Chapter 2 

reviews the GA fitness variance literature and then derives an expression for schema 





as with all search techniques, the match, or lack thereof, between the structure of the 

search technique and the structure of the objective function determines the potential 

effectiveness of the search (Ackley, 1987). 

It  is worth noting that from an algorithmic perspective the GA has near-perfect 

parallelism in that the evaluation of each candidate solution can be performed in parallel. 

It is thus an ideal candidate for execution on highly parallel computer architectures. This 

is especially true when, as in the neural network design problem presented in Chapter 5, 

the bulk of the computational burden results from the evaluation of each candidate 

solution. 

Using the GA is fairly simple. First, a representation for candidate solutions must 

be defined, often a binary string encoding. Second, some comparison criteria must be 

established to evaluate the relative 'goodness' of different candidate solutions. A fitness 

function inducing a total order on candidate solutions is usually defined for this purpose. 

Finally, the GA operators and parameters are selected. These include deciding what 

kind of crossover, mutation, and selection to use; setting their associated parameters 

such as crossover and mutation rates; and setting the value of other GA parameters such 

as population size. 

The operation of the GA is also simple. First, an initial population of candidate 

solution strings, or genotypes, is generated, often by generating random strings. Then, 

generation cycles are performed repeatedly until a stopping criteria is reached. Stop- 

ping criteria are usually based on a fixed number of generations, a heuristic measure of 

population status, or a measure of population diversity. 

A generation cycle consists of selection, crossover, and mutation. During selection, 

genotypes having above-average fitness are chosen to  be parents. During crossover, the 

strings for two selected genotypes are combined to produce offspring. During mutation, 

with small probability each bit position of an offspring genotype is independently flipped. 

In the remainder of this section, an easy binary integer problem will be used to  illus- 

trate the simple GA. The simple GA may be thought of as 'vanilla' GA - nothing fancy, 

just good, everyday GA. The simple GA has none of the customized enhancements or 



operators that are sometimes beneficial for tackling certain problems. For an introduc- 

tory, yet fairly comprehensive treatment of the care and feeding of GAS, see Goldberg 

(1989~). 

The problem consists of using a binary string as a coding and then valuing the 

goodness of a solution by interpreting a binary string as an integer. Thus, its fitness 

function is 

where xi denotes the value of the i th most significant bit position of genotype x and I is 

the length of the representation in bits. A genotype string length of three and population 

size of six will be used to keep this example short. 

Table 1.1 shows the resulting GA run of 10 generations plus the initial population 

of randomly generated genotypes. Column one shows the generation number, where 

generation zero is the random population. Column two allows referring to  individual 

genotypes in the population by providing each with a number unique within the gener- 

ation. Column three shows each genotype's fitness. Columns four, five, and six show 

respectively, for each genotype, its number of mutations during the current generation, 

its crossover partner (if it mated), and its parent in the preceding generation. Finally, 

column seven shows each genotype as a binary string. 

First examine generation zero, the random population. Since selection, crossover, 

or mutation are not done on the seed population, the corresponding column entries 

are empty. Note genotype three has the highest fitness in the initial population. We 

were slightly unlucky in this, since for our simple, length-three problem, the probability 

that a perfect individual (genotype 111 has the highest possible fitness for our three bit 

problem) will occur in a randomly selected population of size six is 0.55. Figure 1.1 

shows average population fitness at  each generation. The expected average fitness for 

a randomly generated population is 3.5; thus the 3.67 actually obtained is close to  the 

expected value. 

Tournament selection is used. The idea is that candidate solutions in the current 





5.5 
fitness 

5 

3.5 
0 2 4 6 8 10 

generation 

Figure 1.1: Generation number versus average population fitness. 

population engage in tournaments with each other. The winner of each tournament is 

the candidate solution with the higher fitness. Its genotype is copied into the next gener- 

ation's population, where it undergoes crossover and mutation. Consider the population 

at generation 1. From column 'p' we can see genotype numbers 0, 3, and 5 from the 

previous generation each won two tournaments. Such a tournament selection outcome 

is sensible, since they are the three best genotypes in the previous generation. 

Two-point crossover occurs with probability 0.75. Two positions are selected at ran- 

dom, and the string segments between them are exchanged. Again, consider generation 1. 

For each member of the population, column 'c' shows the crossover partner's number 

from the previous generation. From it we can see that genotype number 0 in generation 

1 was the result of a crossover between genotypes 5 and 3 in generation 0. Genotype 

number 1 in generation 1 is the other side of the same crossover. Similarly, genotype 

numbers 3 and 0 in generation 0 were crossed to produce genotype numbers 2 and 3 in 

generation 1'. No crossover occurred for genotype numbers 4 or 5 in generation 1. 

'Because of where the crossovers occurred, the similarity between the genotypes crossed, and the fact 
that the genotype length is so short, each crossover has the effect of swapping the two genotypes. 



Mutation occurs with probability 0.1. For generation 1 from column 'm' we can see 

that only genotype numbers 3, 4, and 5 had a mutation. Note that genotype number 

4 in generation 1 is an optimal solution to  the problem because it has the maximum 

possible fitness value, 7. This happened because genotype number 0 from generation 0 

was chosen as the parent, no crossover occurred, and the single O-bit in the string was 

mutated into a l-bit. 

The creation of each generation may be followed in a similar fashion. Note how the 

optimal genotype gradually takes over, reducing genotypic variation in successive popu- 

lations. As seen in both Table 1.1 and Figure 1.1, by generation 6 the GA has essentially 

reached equilibrium, or converged (what constitutes GA convergence is discussed in Sec- 

tion 1.5). Because there are a total of 18 bit positions in the population and the mutation 

rate is 0.1, about two 0s are expected to be generated by mutation in an all-1s popula- 

tion. In each generation after the GA has reached convergence, selection removes the 0s 

created by mutation in the previous generation, and mutation in the current generation 

creates new 0s. In effect, selection is "cleaning up" the population at each generation, 

only to  have mutation "dirty it up" again. Thus, it is only happenstance that generation 

10 contains no Os, since it is only happenstance that no mutations occurred at generation 

10. 

1.2 GA Theory Objects 

Conceptually, GAS may be thought of as searching the space of possible solutions by 

combining partial solutions into complete solutions. A complete solution, or more pre- 

cisely the specification of a complete solution, is known as a genotype. Although in 

general a genotype may be variable length (for example, see Goldberg, Deb, and Korb 

(1989; 1990)) or use a k-ary alphabet, for simplicity a genotype will here be limited to 

length 1 binary strings. The space of all possible solutions, or the search space, is then 

simply all binary strings of length 1. 

Although the GA works directly only with a collection of complete solutions, the 



population, each genotype is an exemplar of many partial solutions. A schema, h,  is a 

set of all complete solutions sharing a specific partial solution. The plural of schema is 

schemata. Sharing a partial solution means fixing, or holding constant, the bit position 

values specifying the partial solution in all members of the schema. All other bit positions 

vary freely. Since it is the partial solution which all members of a schema have in 

common, a schema will be referred to as a partial solution. Schemata may be specified 

by a schema template, h, a string from the alphabet (0, 1, *). The + character is used 

to denote a varying position, and a 0 or 1 is used at each fixed position. Thus, for 

a length 1 = 3 binary coding, the schema template 0 * 1 denotes the schema s(0 * 
1) = (001, O l l ) ,  where s is a function taking a schema template and returning the 

associated schema. Thus, ~ (100)  = {loo), s(*1+) = (010,011,110, Ill),  and s(* + *) = 

{000,001,010,011,100,101,110,111). Note that the notation for schemata and schema 

templates are distinguishable, since a boldface h denotes a schema, while a plain text 

h denotes a schema t e m ~ l a t e . ~  Schema order, o(h), is the number of fixed positions in 

a schema, thus o(s(0 t 1)) = 2. Finally, schema defining length, 6(h), is the distance 

between the outermost fixed positions in the schema's schema template. Table 1.2 lists 

the 3' = 27 unique schemata for any 1 = 3 binary alphabet encodings (it also lists 

competition partitions, which will be dealt with shortly). Note that the size (number of 

elements) of a schema is Ihl = 2'-0(~). 

All schemata taken together may be thought of as forming a lattice, or hierarchy, 

of schema with respect to the subset relation, C (Vose & Liepins, 1991). The greater 

the order of the schema, the smaller it is, the more complete is the partial solution it 

specifies, and the lower it is in the lattice. Thus for our I = 3 example, s(* * *) is at 

the top of the lattice, since it contains every other schema, and s(000), s(001), s(010), 

s(011), s(100), s(101), s(110), and ~ (111)  occupy the bottom level of the lattice, since 

'This distinction will be followed generally: a bold-faced character will be used to denote the mathe- 
matical object, itself, while a non-bold-faced character will be used to denote a function returning such 
an object or a representation for such an object. Thus, a competition partition is denoted by J while 
the function given a schema and returning a competition partition is denoted by J .  



Table 1.2: Schema templates, schemata, partitions, partition numbers, and partition 
index sets for 1 = 3 problems. 

J 
0 

1 

2 

4 

3 

5 

6 

7 

J 
((000,001,010,011, 
100,101,110,111)) 

{{000,010,100,110), 
{001,011,101, 111)) 
{{000,001,100,101), 
(010,011,110, Ill}} 
((000,001,010, O l l ) ,  
(100, 101,110, 111)) 

44000, <I loo), 
{001,101), 
{010,110), 
(011,111)) 
{{000,010), 
(001, O l l ) ,  
{100,110), 
(101,111)) 
{{000,001), 
(010, O l l ) ,  
{100,101), 
(110,111)) 

{{OOO), 
{OOl), 
{OlO), 
(Oil), 
{loo), 
(1011, 
(1101, 
(111)) 

h 
* * * 

. * * 0 
* * 1 
* 0 * 
* 1 * 
0 * * 
1 * * 
* o o  
* 0 1  
* 1 0  
* 1 1  
o * o  
o *  1 
1 * 0  
1 * 1 
OO* 
0 1 * 
l o *  
l l *  
0 0 0 
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
111 

Ji 

(0) 

(07 1) 

{0,2) 

(0, 4) 

(0,1,2,3) 

(0,1,4,5) 

(0,2, 4,6) 

(0,1,2,3,4,5,6,7) 

h 
(000,001,010,011, 
100,101,110,111) 

(000,010,100,110) 
(001,011,101,111) 
(000,001,100,101) 
(010,011,110, I l l }  
(000,001,010,011) 
(100, 101,110, Ill} 

(000,100) 
(001,101) 
(010,110) 
(011,111) 
(000,010) 
(001,011) 
(100,110) 
(101,111) 
{000,00 1) 
(010,011) 
(100,101) 
(1 10,111) 

(000) 
{ O O l I  
(010) 
(011) 
(100) 
(101) 
(110) 
(1111 



they contain no other ~ c h e m a . ~  

A competition partition, denoted by J, is a set of non-intersecting schemata, or par- 

tial solutions, fixing the same bit positions in their associated schema templates. For 

example, J = J(s( l l*))  = {s(00+), s(01*), s(10*), s(l l*)) is the competition partition 

containing all schemata fixing the two leftmost bit positions, or positions 1 - 1 and 1 - 2, 

where binary stings are labeled xl-1, xl-2,. . . , xo. The order of a partition, o(J), is the 

same as the order of the schemata it contains, or o(J) = o(h), h E J. Every complete 

solution, for example, a genotype in a population, belongs to exactly one schema within 

each partition. In effect, the partial solutions within a partition compete for repre- 

sentation in the GA's population of complete solutions. Hence the name, competition 

partition - a partition covering the search space in which the schemata in the parti- 

tion compete with each other for representation in the GA's population. An assumption 

underlying much of the work presented here is that competition partitions are the basic 

unit in which GA convergence occurs. Column J of Table 1.2 shows the competition 

partition for each of the schemata of 1 = 3 problems. 

Each competition partition may be identified by its partition number, J. The parti- 

tion number may be generated by starting with the schema template of the schema in 

the partition whose fixed positions are all Is, replacing each + in the schema template 

by 0, and interpreting the resulting binary string as an integer. Column J in Table 1.2 

lists partition numbers. 

Each competition partition also has an associated partition index set, J;, which will 

be used shortly in the Walsh schema transform. The elements of a partition's index 

set may be generated by taking the schema template of each schemata in the partition, 

replacing each t in the template by 0, and interpreting the resulting binary string as an 

integer. Column J; in Table 1.2 shows partition index sets. 

-- 

3Actually, the null set may be sensibly viewed as  occupying the bottom of the lattice with the order-1 
schema occupying the next higher level of the lattice. 



1.3 Schema Theorem 

Now that basis terms have been defined, the main theoretical result about whether or 

not any particular partial solution will thrive is reviewed. 

Schema fitness, f (h), the average fitness of the members of the population belonging 

where f (x) is the genotype fitness function and N(x) is the number of copies of genotype 

x in the population. Similarly, each partition has a partition fitness, f ( J ) ,  the average 

fitness of its elements, that is to sa.y, the average of its schema fitnesses. Partial solutions 

within each partition will, in general, have a spread in their fitnesses, which can be 

thought of as the partition's convergence signal. As will be shown in Chapter 3, a 

partition's signal is related to how much convergence occurs within that partition. 

Schema fitness is central to determining whether the proportion of a population 

belonging to a schema will grow or shrink in the succeeding generation. The proportion 

of a population belonging to schema h is 

where N ( x )  is the number of copies of genotype x in the population and n is the size of 

the population. Define 7 as the average fitness of the population, or 

where G is the search space. When no crossover or mutation is performed, the ex- 

pected proportion of h in the population, E(P(h)),  will grow or shrink as f (h) > f or 

f(h) < f, respectively. These notions have been generalized by Holland (1975b). He 

proved a lower bound, widely known as the schema theorem, on the expected proportion 

of schema elements in the successor population based on the current proportion, the 

relative magnitude of the current schema fitness to the current population fitness, and 



the expected maximum disruption due to crossover and mutation. The schema theorem 

may be stated mathematically as 

where E is expectation, P(h, t )  is the proportion of the population a t  time t belonging 

to schema h, p, is crossover probability, p, is mutation probability. It is both a powerful 

theoretical tool and useful in practical applications. However, it also has limitations 

both because it is a bound and because it is an expectation. 

1.4 Walsh-Schema Transform 

Although genotype fitness is usually expressed in the binary basis, there is no intrinsic 

reason for doing so. As was first pointed out by Bethke4 (1980), Walsh functions have 

advantages for use as a basis for expressing schema average fitness. Walsh functions may 

be defined as 

where x is a binary string, and xi and j; denote bit i of the binary representation of each 

integer. Continuing our three-bit example, $Jo(OOO) = 1, $o(O1l) = 1, $1(011) = -1, 

$3(011) = 1, $J5(011) = -1, $7(011) = 1, and $7(111) = -1. In effect, the value of Walsh 

function j is the product of a bitwise exclusive-or between the binary representation of 

j and the binary representation of the function's argument. Likewise, a two-dimensional 

Walsh function may be defined (for later use) as 

Likewise, +j(h) and +j,k(h) may be defined as 

' ~ ~ ~ a r e n t l ~  working from a suggestion by Andy Barto. 



and 

where p converts characters in the schema template associated with h into bits by 

replacing *s with 0s. 

Walsh functions provide a basis for real valued functions with integer domains ex- 

pressed as binary strings. Thus, any real fitness function over binary strings, or integers, 

may be replaced by a linear combination of the Walsh functions, 

in effect simply rewriting the fitness function in the Walsh basis, where the Walsh coef- 

ficients may be expressed as 
1-1 

Schema average fitness is conventionally expressed as 

where lhl is the size of h. Since schema average fitness is a real function with binary 

domain, it may be expressed in the Walsh basis. Bethke (1980) has done this, and 

Goldberg (1989a) reviews and extends Bethke's work. The main result states that, 

under the flat population assumption, the fitness of a schema may be expressed as 

where the partition index set J i (h)  is the index set of the competition partition containing 

h. In effect, the index set contains those terms that "make up" schema average fitness in 

the sense that associated Walsh functions determine parity within the fixed positions of 

the schema. The pat population assumption says tha.t the population being considered 

is the complete search space, or equivalently in this case, that Equation 1.13 gives the 

expected fitness of a schema for a randomly generated population of genotypes. As will 



Table 1.3: Walsh basis schema fitnesses for I = 3 problems. 

be seen later, the elements of the index set are identical for every schema in any particular 

competition partition. Thus, a schema's average fitness may be calculated as a partial, 

signed sum of the Walsh coefficients, where the sign of each coefficient is determined by 

the parity of the schema template at  the positions fixed by the particular Walsh term's 

index. 

To make this concrete, consider once again our three-bit example. Table 1.3 shows 

the Walsh coefficients, including the sign produced by the associated Walsh function, in 

the Walsh basis schema fitness sum for all possible three-bit schemata and J,(h) is the 



number of the partition containing h. Note that Table 1.3 is applicable to all three-bit 

problems, regardless of coding and fitness function used, since all the coding and fitness 

function information is captured by the Walsh coefficients in Equation 1.13. 

For example, the expected fitness of the schema s ( t1 t )  may be figured as follows. 

First as can be seen from Table 1.3, the index set for the summation in Equation 1.13 is 

J ; ( t l+)  = {0,2); thus there are two terms in the sum, ~ ~ + ~ ( h )  and w2&(h). Because 

the parity of any schema over no fixed positions (associated with $0) is even, $o(*l*) = 1; 

and because parity of *I* over bit position 2 2  (associated with +2) is odd, +2(*1*) = -1. 

Thus, the Walsh basis schema fitness sum is f (+ l+ )  = wo - w2. Similarly, the expected 

fitness of schemata t10 and 110 are f(t10) = wo + wl - w2 - w3 and f(110) = wo + wl - 
wz - wg - wq - wg + w6 + w,, respectively. 

So why use the Walsh basis? There are two main reasons. The first is computational. 

For GAS to work, the population must become rich in building blocks, so that these small 

partial solutions may be combined into larger partial solutions. For this enrichment to  

happen, the building block's fitness must be greater than that of the population as a 

whole. The Walsh basis sum for schema fitness contains 2 0 ( ~ )  terms. The binary basis 

expression for schema fitness, Equation 1.12, contains 2 ' - 0 ( ~ )  terms. Thus when o(h) is 

small relative to I ,  as it is for building blocks, the Walsh basis expression has fewer terms. 

The second reason has to do with structure of the Walsh basis, schemata, and competition 

partitions. The Walsh basis schema fitness sum for the each schemata in a competition 

partition all contain the same Walsh coefficients, only the sign of the coefficients change 

according to the placement of l-bits among the schema's fixed positions. The structure 

of the Walsh basis matches the structure of the competition partitions and schemata 

- the Walsh basis respects competition partitions. Thus, the Walsh basis is used to 

calculate the variance of schema fitness in the next chapter. 



1.5 A Note on GA Convergence 

Although it is not the purpose of the present work to analyze or even attempt to for- 

mally define GA convergence, it is worthwhile to characterize what is meant by GA 

convergence. Because the GA is a population-based search technique, convergence may 

be conceptualized as the reduction of diversity in the population over time (generations). 

It is relatively easy to tell when there is little diversity left in the population, and hence, 

when convergence has occurred. Usually the more important question is, can we deter- 

mine how good is the solution to which the GA converged? The issues of convergence, 

computational complexity, and quality of solution are often formally dealt with in a con- 

vergence proof - a formal proof characterizing both the nature of convergence and the 

quality of the solution to be found by the search technique. Although some progress has 

been made towards a formal GA convergence proof (Goldberg & Segrest, 1987; Eiben 

et a]., 1990; Goldberg, 1990b; Davis & Principe, 1991; Nix & Vose, year unknown), no 

one has yet established a convergence proof for the simple GA. 

Several heuristic convergence measures relating to lack of population genotype di- 

versity have been defined; they are often used as GA stopping criteria. De Jong (1975) 

used alleles lost as the basis for a convergence measure. Goldberg (1983) has used com- 

parison of average fitness to maximum fitness for convergence determination and has 

explicitly computed the fitness variance (Goldberg, 1991a). Wilson (1987) has used an 

entropy-based measure of diversity for the modification of control parameters . Both a 

normalized measure of the average proportion of 0s versus 1s at  each genotype position 

and average fitness have been used as convergence indicators in the evolutionary network 

design work presented in Chapter 5. Chapter 4 also uses the proportion of 1s versus 0s at  

each genotype position to indicate the relative convergence of each position. Generally 

speaking, when these measures become stationary, convergence is said to have occurred. 



Chapter 2 

Variance in Genetic Algorithms 

As shown by the schema theorem, the expected fitness of a building block is an important 

quantity because it indicates whether, in a particular problem, the GA will be able to  find 

optimal or near-optimal points through recombination of building blocks. On the other 

hand, because most GAS depend upon statistical sampling, knowing expected schema 

average fitness is not enough; the statistical variation, or distribution, of fitness must also 

be considered to determine the amount of sampling required to reliably accept or reject 

a building block with respect to one of its competitors (Holland, 1973; Holland, 1975a; 

Jong, 1975; Goldberg & Segrest, 1987; Goldberg et al., 1989; Davidor, 1991). Towards 

this end, it is desirable to  calculate the variance of schema average fitness, or collateral 

noise, and for the reasons cited in Section 1.4 it is useful to do so in the Walsh basis. In 

the remainder of this chapter and following the work of Goldberg and Rudnick (1990), 

an expression for schema fitness variance in the Mralsh basis is derived. The derivation 

is followed by a brief overview of several applica.tions and extensions in Section 2.2, and 

a detailed derivation of a population size using fitness variance in Section 2.3. 

2.1 Computing Schema Fitness Variance 

As in the Walsh schema transform computation of schema average fitness, a flat popu- 

lation is assumed. Thus, the necessity of dealing with population sampling error, which 

incidentally can be viewed merely as an additional source of variance, is avoided. Fur- 

ther, the fitness function is assumed to be deterministic, so that no variance derives from 



f itself. 

Variance is a statistical measure of dispersion (Ross, 1987; Beck & Arnold, 1977). 

Its definition is 

where the random variable x ranges over discrete sample space S with probability density 

function P(x) ,  and X denotes the expected value of x. Thus, the variance of fitness within 

schema h is 

where Ihl denotes the size of schema h. Expanding the quadratic and simplifying yields 

-2 
where the sample space over which x ranges in the expectations f2(x) and f (x )  is 

understood to  be h. The notation f2(h)  denotes the expectation of f 2 ,  and the notation 

fTi;j2 denotes the square of the expected value of f .  

As with the Walsh-schema transform presented in Section 1.4, both /02 and f2(x) 

will be derived in the Wa.lsh basis, then Equa,tion 2.3 will be rewritten substituting these 

expressions. 
- 

First, consider the equation for f (x) from equation (3.6) of Goldberg's (1989a) Walsh- 

schema paper, 

-2 
where Ji(h) is as defined in Section 1.2. Given Equation 2.4, f (x)  may be written as 

Recognizing that +j(h)+k(h) is simply the two-dimensional Walsh function, 



Finally, converting the summation index from independent indices to  index pairs, 

where J?(h) = J;(h) x Ji(h). 

Counting the number of quadratic terms is enlightening. There are I J(h)I2 = 220(h) 

possibly nonzero terms in the sum. As will soon be seen, it is interesting that this number 

is never more than the number of terms in f2(h). 

The Walsh-schema transform form of f2(x) is next derived. We start with the defi- 

substitute the Walsh expansion for f (x)  from Equation 1.13, 

expand the quadratic, 

move the sum over x in and the wj and wk terms out, 

1 21-1 21-1 

f2(X) = Ti;i C C wjwk C $j (x)h(x) ,  
J=O k = ~  x€h 

and finally, replace the product of Walsh functions with the 2-D Walsh function, 

Equation 2.12, along with Equation 2.7, may be substituted directly into Equation 2.3 

to produce 



a closed form expression for the fitness variance of h. However, as will next be shown, 

and depending upon which schema is being considered, many of the (i, j) index terms 

in the innermost summation of f2(x) may be zero, allowing further simplification of 

Equations 2.13 and 2.12. 

Consider the 2-D Walsh function summation 

which is analogous to S(h,  j )  in Goldberg's (1989a) Walsh-schema transform derivation. 

Each summand of Equation 2.14 is +1 or -1, since each is a 2-D Walsh function. Further, 

the sum is bounded by f J h J  since there are Jhl terms in the sum. In fact as will next be 

shown, each term of the sum will be one of + (h ( ,  -(hl, or 0. 

The Walsh function indices each correspond to the competition partition index num- 

bers J;(h) and q!~;,j(x) functions as a mask. Consider Equation 2.14 expressed using the 

product form definition of the 2-D Walsh function as defined in Equation 1.7, 

As was mentioned earlier, '$jYk(x) is simply the product of the bitwise exclusive-or be- 

tween each bit of x and the bitwise sum (no carry) of the two indices. Because h is a 

schema rather than just an arbitrary subset of the search space, it has structure. It is the 

structure of h interacting with the j and k indices which results in S(h,  j, k) exclusively 

assuming one of the values +Ihl, - Ihl, or 0. Whenever a * character at  some position i 

in the schema template of h matches a l-bit at position i in exactly one of the two indices 

( j  or k) in Equation 2.15, there will be an equal number of + terms and - terms in the 

sum and a zero sum results. That is to say, zero sums result whenever any *'d position 

in h occurs where the j and k indices differ. This happens because the * at position i 

in h results in an equal number of 0s and 1s at position i in the elements of s(h). Thus, 

half of the summands are +1 and half are -1. And when no don't-care (*'d) position in 

h matches a difference in the indices, nonzero sums will result.' 



Consider the j and k values for which S(h,  j, k) # 0. Nonzero values occur exactly 

when each schema template don't-care (*) character matches either 0s in both indices 

or 1s in both, which results in even exponents for the -1 in Equation 2.15 and 1s in 

the product (which 1ea.ve the product unchanged). Then, since fixed positions in h are 

fixed throughout all elements of h, all terms in Equation 2.15's sum are either +1 or all 

terms are -1, and since there are Ihl terms in the sum, the resulting sum is one o f f  Jhl. 

The sign is determined by the number of 1s in h matching 1s in index j, and likewise 

the number of 1s in h matching 1s in index k. If the sum of these two numbers is even, 

then the sum in Equation 2.15 is positive and equal to + ( h ( ;  if the sum of these two 

numbers is odd, Equation 2.15's sum is negative and equal to - 1  hJ .  Again, each term of 

S(h ,  j, k)'s sum simply performs a compound exclusive-or between each index and the 

schema's naming string. 

Let J&(h) be the set of index pairs corresponding to nonzero values of S(h,  j, k). 
1 

Then by recognizing that the - in Equation 2.12 is canceled out by the (hi resulting 
lhl 

from the nonzero terms of Equation 2.15, Equation 2.12 may be rewritten as 

Counting the number of terms in this sum is also enlightening. Thinking of the 

terms as being arrayed in a matrix with the j index naming rows and the k index 

naming columns, if we fix a row (if we fix j) there are at most I J;(h)l nonzero terms in 

the row. Each row has the same number of terms, because addition modulo-2 can do no 

more than translate each term to another position. Since there are 2' rows, there are a 

total of 2'1~;(h)l = possibly nonzero terms. This is never less than the number 

of terms in the fo2 sum, and as will soon be seen, the relationship is actually much 

closer. 

'Even though a nonzero sum results from Equation 2.15, if one of the associated Walsh coefficients 
in Equation 2.13 is zero the associated contribution to the sum of Equation 2.13 will be zero. 



Now Equation 2.3 may be rewritten using Equations 2.16 and 2.7, producing 

Noting the two summations are identical except for the summand indices, and that 

J$(h) _> J,?(h) for all h, yields 

where the minus sign in the summation index denotes set difference. In effect, a difference 

of summations has been converted to a set difference of index sets. 

Consider Tables 2.1, 2.2, and 2.3, where each row shows a diagrammatic represen- 

tation of the schema fitness variance computation for a length-three binary alphabet 

problem. The elements of each matrix dimension are indexed from 0 through 7, with 0 

being in the upper left-hand corner. The first column denotes the schema. The second 

column shows the two-dimensional Walsh function for each schema, as defined in Equa- 

tion 1.9. Each element is denoted by a plus or minus, which stand for l or -1. The 

third column shows the nonzero elements of the two-dimensional Walsh function sum 

of Equation 2.14. Each element is denoted by a plus, minus, or blank space, standing 

for 1, -1, and 0, respectively, and corresponding to the Walsh coefficient product pair 

adding, subtracting, or not participating in the sum. The fourth column shows the cross- 

product, J?(h), of the Walsh schema transform's index set, J;(h), from Equation 1.13 

and is defined in Section 1.2. J?(h) participates in the Walsh variance computation 

through a set difference, identifying elements of Jg(h) that do not participate. Thus, 

elements of J t ( h )  are denoted by o, indicating they are 'zeroed' from the index set. That 

these terms should not participate makes sense since they contribute to average schema 

fitness, and average fitness bears no relationship to fitness variance. Finally, the fifth 

column shows the Walsh product pairs participating in the schema variance sum using 

the notation of column three. 

For example from Table 2.1, var( f (s(* * *))) = w: + wi + w$ + wj + wi + w: + w; because 

J,$(s(* * *)) = ((0, O), (1, I), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)) and Ji(s(* * *)) = {O), 



Table 2.1: Walsh function, summation, exclusion, and variance matrices for order-zero 
and order-one competition partitions for length-three binary encoding. 



Table 2.2: Walsh function, summation, exclusion, and variance matrices for order-two 
competition partitions J(* f f) and J(f * f) for length-three binary encoding. 



h(l  1*) 

Table 2.3: Walsh function, summation, exclusion, and variance matrices for order-two 
competition partition J (  f f *) for length-three binary encoding. 



so only the index pair J!(s(* * *)) = ((0,O)) is excluded from the sum. Likewise from 

Table 2.3, Ji(s(lO*)) is aJ1 index pairs either both even or both odd, and J,(s(lO*)) = 

{0,2,4,6), so J,?(h) is d l  index pairs which are both even. Thus, the Wdsh schema 

fitness variance sum's index set, Ji(s(lO*)) - J!(h), is all index pairs which are both 

odd, resulting in a Walsh schema fitness variance of var(f(s(lO*))) = w: + 2wlw3 - 

2wlw5 - 2w1w7 + w$ - 2w3w5 - 2w3w;r + W E  + 2w5w7 + w;. The other 25 schema fitness 

variances for a length-three problem representation are similarly computed. 

Counting the number of possibly nonzero terms is once again useful. The total 

number of nonzero terms in the overall sum is 2 0 ( ~ ) f l  - 220(h) = 2 0 ( ~ )  2' - 2 0 ( ~ ) ) .  Of ( 
course when the schemata are genotypes themselves (when o(h) = I ) ,  the index set 

becomes nil and the sum vanishes, as it must, since the fitness function is assumed to 

be deterministic. Note also that the Walsh variance computation may require more or 

less computation than a direct calculation of variance using the binary basis. Of course, 

fitness variance may always be calculated directly using the binary basis if that is more 

convenient, but the insight gained by understanding the relationship between partitions 

is well worth the price of admission. 

2.2 Applications and Extensions 

Based on the Walsh schema fitness variance computation from the previous section and 

related to John Holland's (1973) bandit theory analysis of the optimal allocation of 

trials, Goldberg and Rudnick (1991) have presented several applications and extensions 

of fitness variance. They first consider how schema variance changes as one moves 

from more general (larger) to more specific (smaller) schemata, where the more specific 

schemata is a subset of the more general schemata. The resulting change in schema 

variance derives from two sources. The first is the removing of diagonal, or squared, 

terms in the summation; the second results from the addition or deletion of off-diagonal, 

or cross-product terms. 

They also show that refinement of a schema, or fixing one or more bits in the schema 



fitness 

Figure 2.1: Fitness distributions for two schemata, hl and h2. 

template, need not necessarily reduce the variance of the resulting schema, a possibly 

counter-intuitive result. Schema variance adjustments are also made to  the schema the- 

orem, eliminating the expectation operator on the left of the inequality by the use of 

confidence intervals based on schema fitness variance. Finally, they address the appli- 

cation of schema fitness variance to population sizing, which is presented in the next 

section and applied in Chapter 5. 

2.3 Fitness Variance Based Population Sizing 

Under the flat population assumption schema fitnesses do not vary. But when population 

size is small compared to the size of the search space, as is usually the case for GA 

runs, the actual schema fitnesses seen in randomly generated populations may vary 

considerably. In effect, generation of a, random population is a statistical event, resulting 

in a sampling distribution of fitness for each schema. 

Consider Figure 2.1. Hypothetical probability density functions for sampling dis- 

tributions of fitness for two schemata are shown for a randomly generated population, 



where the abscissa is schema fitness and the ordinate is probability. As can be seen, 

the expected fitness of hl is greater than that of h2, or E(f(hl)) > E(f(h2)). But 

because the schema fitness distributions overlap, for a particular population f (h l )  may 

be smaller than f(h2).  Say, for example, in a particular population the fitness of h2  is 

unusually high, as shown in Figure 2.1 by fi. There is then a certain probability that 

f (hl ) < f (hz) ,  shown as the highlighted area under the f (hl ) distribution. Whenever 

f (h l )  falls within this range the schema theorem shows that in expectation the GA will 

enrich the succeeding population in h2 more than in h l ,  despite the fact that hl's ex- 

pected (flat population) fitness is greater than h2's. Thus due to stochastic variation or 

error, the GA will, in expectation, choose the inferior schemata. 

The smaller the GA's population, the grea.ter the fitness variance, and the greater 

the chance the GA will selectively enrich an inferior schema. Conversely, the larger the 

population, the smaller the fitness variance, and the smaller the chance of improper 

enrichment. Goldberg (1989a) has considered population sizing from the standpoint of 

schema turnover rate, knowingly ignoring variance and its effects, but explicitly iden- 

tifying stochastic variation as a possibly important factor in determining appropriate 

population size. Because schema fitness varia,nce, var( f (h)), is a measure of stochastic 

variation, it may be used to select population size so as to minimize the probability 

that the sampled schema fitness ordering in a randomly generated population is wrong. 

Goldberg and Rudnick (1991) did just that,, deriving a static formula for population size 

accounting for schema fitness va.riance. Their derivation is reviewed below in preparation 

for adding adjustments for objective function noise in Section 2.3. 

Start by assuming that the fitness function for a maximization problem is linear or 

approximately linear and that all order-one terms in the Walsh expansion are equal to wi. 

Consider all pairwise comparisons of competing order-k schemata. Choose a population 

size, n, so the probability that the sample mean fitness of the best schema is inferior to 

the sample mean fitness of the second-best schema is less than a specified value, a, or 



Figure 2.2: Sampling distribution probability, p(f(hbe,t) - f(h2ndbest), versus standard- 
ized z score. 

where P denotes probability of an event and the hat is used t o  denote the sample mean. 

Posed in this way, the problem becomes a statistical decision theory problem. The 

statistic of concern is the sampling distribution of the difference of the schema means 

We want t o  know when S is non-positive, which will also be when the GA (in expectation, 

as per the schema theorem) mistakenly enriches the inferior schemata over the superior 

one; this is known as the critical region of a one-tailed test. The situation is as depicted 

in Figure 2.1, but we are now looking a t  the sampling distribution of the difference of 

the schema means, S, instead of the two schema fitness distributions fbeSt and jsndbest. 

Assuming each of the schema fitness distributions are normal, the sampling distribution 

of their difference will also be normal with mean ps and variance 02. The sampling 

distribution may then be converted t o  a standardized normal distribution (mean of 0 

and variance of 1) by 
s - P S  = -. 

US 



The situation is as depicted in Figure 2.2. The shaded area shows the critical region for 

a probability a = 0.05 that the inferior schemata is seen by the GA as superior in any 

particular sample. 

Assuming all variance is due to collateral noise, and assuming population sizes are 

large enough that the central limit theorem applies, the variance of the sample mean 

fitness of a single, order-b schema is 

The numerator is the variance of h for the flat population (which is why a static popula- 

tion sizing formula results), where ( E -  t) is the number of wi2 terms in the Walsh-variance 

computation; the denominator is the expected number of individuals from a population 

of size n belonging to an order-k schema, assuming a randomly generated population. 

The sample mean fitness of the best and second-best schemata have the same vari- 

ance, defined in Equation 2.22. Their sample fitness difference, the sampling distribution 

S, has variance 

where variance is denoted by a2, since the variance of a difference of independent random 

variables is the sum of the individual variances. Taking the square root of each side, 

noting that both variances on the right are identical and defined by Equation 2.22, the 

standard deviation of the difference in sample mean fitness values is obtained as 

Thus assuming independence between the schema fitness sampling distributions for 

hbest and hzndbeSt, the difference in sample mean fitness is 

where M is one of 2,4,. . . ,20(h) where h is hb,,t or h2ndbest (they are of equal order 

since they belong to the same competition partition). 



Table 2.4: Normal deviates and squared normal deviates for various levels of significance, 
a. 

U7e want to find the critical region in the S distribution where f(hse,t) < f(hZndbeSt). 

That occurs when S 5 0, so 

Substituting in the worst-case difference in sample mean fitness values from Equation 2.25 

and the standard deviation of S from Equation 2.24 yields 

Squaring Equation 2.27, substituting for as from Equation 2.24, and simplifying yields 

an expression for the population size, 

Note that the wi factors dropped out of Equation 2.28 when Equation 2.24 was sub- 

stituted into Equation 2.27; thus given the stated assumptions, population size is inde- 

pendent of the particular value for wi. By examining Table 1.3, the worst-case sample 

fitness difference for Equa.tion 2.28 is 2w{, since mean sample fitness difference is in- 

versely related to population size. Thus, a sufficient population size, irrespective of 

which schemata within the competition partition are considered, is 

Table 2.4 shows r and r2 values for the one-sided test corresponding to selected 

levels of significance, a. Each t value corresponds to the probability that the difference 



between the sample mean fitness of the best and second-best schema is negative is a. 

For example, considering k = 1 at a significance level of 0.1, the population sizing 

formula becomes n = 1.64(1 - 1). Many problems are run with strings of length 30 

to  100, for which the formula would suggest population sizes in the range 49 to 164. 

This range is not inconsistent standard GA p r a ~ t i c e . ~  Similar reasoning may be used to  

derive population sizing formulas if the building blocks are scaled nonuniformly or if the 

function is nonlinear. 

Note that the population sizing analysis presented applies only to the initial, ran- 

domly selected population; hence the descriptor static population sizing. To perform 

popula.tion sizing analysis after the initial generation, additional factors must be consid- 

ered. Some factors lead to an increased population size, while others lead to a decreased 

size. 

Since a > 0.5 for even extremely small popula.tions, the probability the correct 

choice will be made is never worse than 0.5, or no worse than a random walk. During 

GA operation, the least-fit individuals are quickly culled from the population. Thus the 

representation, or proportion, of more-fit schemata in a competition partition increases 

while the proportion of less-fit schemata decreases, a phenomena referred to here as 

schema. enrichment. As a result, the fitness varia.nces of the better schemata are reduced 

at the expense of increasing the fitness variance of the poorer schemata. Overall, the 

probability that the best schema will be selected over the second-best schema increases 

as schema enrichment progresses, but with the proviso that hitchhiking3 (Schaffer et al., 

1991) and genetic drift4 (Goldberg & Segrest, 1987) don't destroy the exemplars of the 

more-fit schemata before they can be used. Thus, a population smaller than dictated 

'For example, De Jong (1975) empirically tried population sizes of 50, 100, and 200 on his f l  prob- 
lem (minimization of a three-dimensional paraboloid), finding that the larger populations gave small 
improvements in off-line performance while actually increasing on-line performance over the observed 
number of evaluations. 

3Hitchhiking is a genotype linkage effect in which a passive allele (an allele not a t  the moment actively 
selected for) a t  a locus near another locus containing an actively selected allele 'hitchhikes' a ride into 
the  offspring. 

'Genetic drift is the tendency of a population not undergoing active selection pressure t o  nevertheless 
stray from its initial schemata distribution due to random walk effects. 



by the static sizing formula may produce satisfactory results. Schema enrichment sug- 

gests the use of larger populations during the early portions of a GA run and smaller 

populations during the later stages. 

Of course, there are factors that may serve to increase schemata fitness variance 

following the initial generation. These include stochastic effects resulting from the action 

of selection, genetic operators, linkage coupling and disruption effects, and variance in 

the fitness function (Section 5.5.2 and 5.6 each deal with the issue of population sizing in 

the presense of fitness function noise). Since all of these except fitness function variance 

are reduced as the GA population converges towards a single genotype, they too tend to 

suggest gradually decreasing population size during a GA run. These issues are left to 

future research. 



Chapter 3 

Signal Versus Noise 

Most GAS function by sampling schema fitness. Because populations of modest size are 

generally used, schema fitness variance is a primary source of stochastic noise which can 

hamper correct evaluation of building blocks. 

In Chapter 2 a Walsh basis expression for static schema fitness variance is derived. 

It is then used to control the probability of one source of incorrect evaluation of build- 

ing blocks; for two schemata, the schema fitness difference (signal) and schema fitness 

variance (noise) are juxtaposed as a basis for static population sizing. 

In the present chapter these notions of signal and noise are generalized from two 

schemata to competition partitions. Section 3.1 presents an overview of the roles of 

signal and noise. Rigorous definitions of signal, noise, and the signal-to-noise (SNR) 

ratio are given in Sections 3.2,3.3, and 3.4. For each, a Walsh basis expression is derived 

under the flat population assumption. Finally, the relevance of the SNR to the quality 

of GA decision-making is then discussed in Section 3.5. 

3.1 Overview of GA Signal and Noise 

Each schema may be viewed as a partial solution defined by its fixed positions. Schemata 

are organized into competition partitions - competing partial solutions, or sets of 

schemata fixing the same bit positions. Thus, every complete solution, such as a member 

of a GA's population, belongs to exactly one schema within each competition partition. 

In effect, the partial solutions within a competition partition compete for representation 



in the GA's population of complete solutions. 

Each schema has as its schema filness, f(h),  the average fitness of its elements. The 

partial solutions (schemata) within each partition will, in generd, have a spread in their 

fitnesses, which can be thought of as the parti tion's selection pressure, or convergence 

signal. The greater the fitness spread among the partition's schemata (partial solutions), 

the greater the partition's signal strength, and the greater will be the convergence oc- 

curring within the partition. It is this spread in fitness which enables the GA to select 

better partial solutions in the partition. 

The GA continually operates to enrich succeeding populations with respect to the 

fitness of the partial solutions represented within the population. It does this by pref- 

erentially selecting individual solutions having above-average fitness with respect to the 

current population. When some partitions have strong signals while other partitions 

have weak signals, the GA pays attention (through the mechanism of selection) to the 

strong signals at  the expense of the weaker signals. In effect, the GA has only so much 

selection attention to distribute among the various competition partitions. 

Thus from the point of view of a particular partition, signals from all other partitions 

contribute to noise competing with its signal. The net effect is that the 'signal' from 

partitions with weak signals is lost among the loud 'noise' from partitions with strong 

signals. This happens when the difference between the strong and weak partition signals 

is large relative to the size of the population and results in poor-quality GA decisions 

being ma.de in the weak partition. 

3.2 Signal 

We define the measure of the force tending toward convergence within a competition 

partition as the square root of the variance of the schema fitnesses of the schemata 

within the partition, and call it the partition signal strength, S(J), or in mathematical 

form, 

s ~ ( J )  = var(f(J)). (3.1) 



The reason for the squaring is that variance is itself a squared measure. Note that signal 

may be computed directly from any GA population (Bridges & Goldberg, 1991) by using 

a proportion-based definition of variance, 

where P (h )  is the proportion of the population in schema h, f(h) is now the average 

fitness of that part of the population in h,  and 7 is the average fitness of the population. 

Next, an expression for a partition's static signal strength in the Walsh basis is 

derived. Restating Equation 3.1 in terms of the variance expression given in Equation 2.3, 

where h varies over the schemata in J. Tackling the first term in Equation 3.3, 

from the definition of the mean, where JJJ is the number of schemata in J.  Substituting 

the expression for f (h)  from the Walsh-schema transform, Equation 1.13, yields 

Expanding the quadratic yields 

Note tha,t all schemata within a single partition share the same index set, i.e., Ji(hj) = 

Ji(hk)  for all hj,  hk E J. Thus, the same Walsh coefficient products occur JJI times in 

the outer summation, but with possibly different signs due to the action of qjtk(h). In 

fact, because of the orthogonality of the Walsh basis and because each partition covers 

the entire search space, when j # k an equal number of plus and minus terms occur for 

each Walsh product pair, wjwk, resulting in the elimination of all off-diagonal products. 

Thus, Equation 3.6 reduces to 



where J , ( I )  has been substituted for Ji(h) by noting that all schemata in a partition 

share the same index set. 

The last term of Equation 3.3 can be expanded analogous to Equations 3.4, 3.5, and 

3.6, resulting in 

Likewise, because J covers the space of all possible genotypes and Walsh functions are 

orthogonal, Equation 3.8 simplifies to 

as it must since the average of the averages of equal-sized partition elements is simply 

the average of the underlying space, which for the entire search space is wo. 

A Walsh expression for a partition's squared signal, S 2 ( ~ ) ,  may now be formed by 
- 2 

substituting the Walsh basis expressions for f2(h) and f (h)  from Equations 3.7 and 

3.9, respectively, into Equation 3.3, producing 

Since wo is in every Ji(J), the effect of subtracting wa is to remove it from the equation 

altogether, which is equivalent to removing zero from the index set, and Equation 3.10 

may be restated as 

where the minus sign in the index expression denotes set difference. As an example, the 

squared sjgnal of partition J = f f * is S2(f f *) = w; + wj + wi. Equation 3.11 is a 

remarkably simple expression - a. partition's squared signal strength is just the sum of 

the squares of the Walsh coefficients of order-one or greater in the partition's index set. 

Further, the expression is general, in the sense that nothing has been assumed about the 

form of the fitness function. Its role in GA decision-making is discussed in Section 3.5. 



3.3 Noise 

Signals from other partitions contribute to noise competing with the signal of the parti- 

tion under consideration for the control of the GA's selection process. We define partition 

root-mean-squared noise, C(J) ,  as the square root of the average of the collateral noise 

values for each schema in the competition partition under consideration, or 

1 
C2(J)  = var( f (h)) = - var( f(h)), 

I J I  heJ 

where var( f (h)) is the average collateral noise a.mong the schemata in the partition. No- 

tice that, as with signal, noise ma.y also be directly computed given a specific population 

by using the proportion-based definition of variance, Equation 3.2. 

Next, an expression for a pa,rtition's sta,tic root-mean-squared noise in the Walsh basis 

is derived. Substituting the definition of var( f (h))  from Equation 2.18 into Equation 3.12 

yields 

As with Equaiion 3.6, and for the same rea.son, the off-diagonal product terms are zero 

and can thus be elimina.ted from the index set. Note that the remaining (diagonal) 

entries in the inner summation's index set are exactly the elements which are not in 

J;(J). Thus, the index set is J;(J), the complement of J;(J). As in Equation 3.6 the 

outer summation ca.ncels against the l /JJJ term because each term is added 1JI times, 

and Equation 3.13 simplifies to 

Continuing the previous example, the squa.red noise of partition J = f f * is C2( f f*) = 

wl" + w; + w; + w;. 

Note that signal plus noise equals a constant determined by the particular fitness 

function used, or 



Thus signal and noise can each be expressed in terms of the other, as in 

and 

Next the equations for signal and noise are combined to  give a measure of which has 

the upper hand in a particular situation. 

3.4 Signal-to-Noise Ratio (SNR) 

The signal-to-noise ratio (SNR), R(J), is a measure reconciling the opposing effects of 

signal strength and noise. It is defined as 

Substituting in the expressions for squared signal and squared noise from Equations 3.11 

and 3.14 gives 

1 
Completing the ongoing example for partition J = f f *, 

Note the way in which ea.ch Wa.lsh coefficient other than wo occurs exactly once in 

Equation 3.19, contributing to either squared signal (the numerator) or squared noise 

(the denominator). That wo, the average fitness over the entire search space, does 

not participate in S ,  C,  or R, makes sense since both signal and noise are composed 

exclusively of combinations of variances, which plays no part in the search space's average 

fitness. That Equation 3.19 is so simple is yet another demonstration of how the Walsh 

basis respects competition partitions. 



Finally, note that R(J) is undefined for the competition partition containing order-l 

schemata, since its noise is zero. Likewise, R(J) for the competition partition whose 

single element is the order-zero schema is zero, since S(J)  = 0. 

3.5 Discussion 

The definitions of a competition partition's signal, noise, and SNR are general, in the 

sense that they assume nothing about the form of the fitness function. Likewise, the 

definitions do not require the flat population assumption; signal, noise, and the SNR may 

each be computed for arbitrary popula.tions by using the proportion-based definition of 

variance, Equation 3.2. However, since the Walsh expression for schema fitness variance, 

Equation 2.18, requires the uniform population assumption, the Walsh expressions for 

signal, noise, and SNR are static. 

Of what relevance is the SNR? Holland (1973) used a statistical decision theory ap- 

proach to develop his bandit theory analyses of the GA's exploration versus exploitation 

behavior. A partition's signal, noise, and SNR each induce a total order on competition 

partitions. That is to say, each n1a.y be used to rank competition partitions into a linear 

sequence in which ties are possible. From a statistical decision theory perspective, the 

SNR is a measure appropriate to reconciling the opposing effects of signal and noise with 

respect to GA decision-making. It effectively establishes which partition's convergence 

has first call on the control of selection events, and thus establishes a convergence priority 

queue among competition partitions. 

R(J) generalizes the statistical-decision-theory-based population size analysis of Sec- 

tion 2.3. There it was shown how stochastic varia.tion can result in the schema with the 

best expected fitness having a sample fitness in a randomly generated population less 

than that of an inferior schema. The schema theorem then shows how such variation 

can result in the GA mistakenly enriching an inferior schema. 

The static population sizing calculation used the sampling distribution of the fitness 

difference of two schemata to establish probabilistic bounds on making such a sampling 



error as a function of population size. That calculation used a ratio of the mean of 

the sampling distribution of the fitness difference of the two schemata t o  its variance, 

computing the critical region of the standardized z distribution in Equation 2.27. Taking 

that equation, setting 111 = 2 (see Equation 2.25) for an order-one partition, using the 

flat population variance instead of the sampling distribution variance, replacing z by z' 

t o  distinguish the two distributions, and simplifying yields 

Equation 3.21 is also the value of the SNR under the a.ssumptions made by Equation 2.27, 

or 

Thus, the SNR may be thought of as generalizing the statistical decision theory based 

population sizing computa.tion of Section 2.3 from competition partitions of size two 

to  arbitrary competition partitions a.nd removing some of the simplifying assumptions. 

The numerator of Equa.tion 2.26 is generalized to the root-mean-squared error of the 

partition's schema fitnesses, and the denominator is generalized to  the root of the average 

schema variance in the partition. Note that although Equation 3.22 assumes the flat 

population, the definition of the SNR makes no such assumption (only the Walsh basis 

expression derivations require the uniform population assumption) and may therefore be 

computed for arbitrary populations by using the proportion-based definition of variance, 

Equation 3.2. Thus, the SNR functions to  measure the search-space dependent likelihood 

that the fitness spread among the competing schemata of any particular partition is 

sufficient to  control selection events a.mongst all the other partitions vying for control. 



Chapter 4 

Domino Convergence 

It has long been known that the more significant bits of binary-coded GAS converge 

more rapidly than bits of lesser significance (Schraudolph & Belew, 1990, for example), 

a phenomena here called domino convergence. The intuitive explanation is that there 

is more convergence pressure on the more significant bits. A closely related phenomena 

sometimes occurs when convergence stops prematurely, a phenomenon dubbed conver- 

gence stall. Several analyses and models are presented exploriilg various aspects of these 

phenomena. 

The cha.pter is organized as follows. Section 4.1 presents a simple problem demon- 

strating both domino convergence and convergence stall. Section 4.2 presents an analysis 

of expected initial convergence window width. Section 4.3 presents analysis of conver- 

gence stall point using first a simple model and then a more refined model. Section 4.4 

presents a signal-to-noise ratio ba.sed analysis. Finally, Section 4.5 discusses the role of 

mutation in the light of convergence stall. 

4.1 Simulation 

The identity problem, f ( x )  = x, is chosen to demonstrate domino convergence and 

convergence stall, where x is interpreted as the binary fraction .x1x2.. . xl. Since the 

problem is linear, it may be stated in the binary basis as 



where a ,  = 1 /2~ .  The problem is tackled with a simple GA using tournament selection, 

single-point crossover, and mutation. A 53-bit1 genotype is used, with population of size 

100 randomly initialized, and crossover rate of 0.5. A series of runs were made for muta- 

tion rates of 0.0025,0.005, 0.01, 0.02,0.04, and 0.08.2 In all cases 300 generations were 

used. In order to wash out stochastic deviations, 1000 simulation runs3 were averaged 

for each mutation rate. 

Figure 4.1 shows plots of the proportion of 1s in the population at each loci versus 

generation number for mutation rates of 0.0025,0.005,0.01,0.02,0.04, and 0.08. In each 

plot the abscissa is time in generations and runs from time zero, the randomized initial 

generation, through generation 240 in steps of three generations. Each ordinate encodes 

locus (bit position in the genotype) and runs from locus 53, the least significant bit, to 

locus one, the most significant binary digit. The 2, or vertical, axis shows convergence 

level for each locus as a proportion of 1s in the current population, and runs from 0.5 at  

the bottom to 1.0 at the top. The flat, upper plateaus for a mutation rates of 0.0025, 

0.005, and 0.01 are areas of nearly full convergence. The seas, or lower plateaus, represent 

areas of no convergence, where the number of 0s and 1s in the population a t  each locus 

as averaged over the 1000 runs are approximately equal. The intermediate Z values on 

the slopes represent areas of good skiing4 

The relatively large amount of variation among the individual runs can be seen both 

from Figure 4.3, which shows a single GA run with a mutation rate of 0.01, and from 

the plots of Figure 4.2, which show the standard deviation of convergence proportion for 

each of the six runs shown in Figure 4.1. In Figure 4.2 the ordinate axis is reversed so 

that the slopes "behind the mountains" are not hidden. 

Figure 4.4 shows loci converged versus time in generations for each of the different 

'This value was determined by the number of bits of precision available in double-precision floating- 
point numeric representation. 

'These values were chosen to bracket the crossover point, falling between 0.01 and 0.02, between fully 
converged runs and stalled runs (mentioned later in this section). 

3The number of simulation runs to be included in each average was determined by how many runs 
could be performed in a reasonable period of time, rather than on the basis of a statistical test of 
significance based on the amount of variance present in the distribution of runs. 

'Actually, they represent areas of partial convergence. 



Locus convergence for mutation - 0.0025 ' Locus convergence for mutation = 0.005 

Locus convergence for mutation L 0.01 1 Locus convergence for mutation = 0.02 

Locus convergence for mutation = 0.04 ~ Locus convergence for mutation = 0.08 

Figure 4.1: Convergence levels for mutation rates: first row, 0.0025 and 0.005; second 
row, 0.01 and 0.02; third row, 0.04 and 0.08. 



StdDev for mutation = 0.0025 StdDev for mutat~on = 0.005 

StdDev for mutation = 0.01 StdDev for mutatlon = 0.02 

StdDev for mutation = 0.04 StdDev for mutat~on = 0.08 

Figure 4.2: Staltdard deviatiol~s of convergence for ~ i ~ u t a t i o n  riites: first row, 0.0025 and 
0.005; second ro~v.  0.01 and 0.02: tliird row, 0.04 aiid 0.08. 



mutation values, where convergence is defined as a proportion of at  least 0.9 1s. Both 

Figure 4.4 and the perspective plots show how convergence quickly "stalls outn in runs 

with higher mutation rates. 

Despite the fact that tournament selection exerts more convergence pressure than 

many other forms of selection (Goldberg & Deb, 1991), the runs sometimes took over 

200 generations to reach a steady-state (all positions constant on the convergence plots of 

Figure 4.1) on this simple problem. The main factor causing such slow convergence is that 

no convergence is occurring in the less significant loci until the more significant loci have 

converged. In other words, the convergence of the more significant loci allow loci of lesser 

significance to  converge, not unlike a row of dominos falling over in succession - hence 

the name, domino convergence. From a signal versus noise perspect i~e,~ the large signal 

from non-converged, higher-significance bits is con trolling selection events; this effectively 

precludes the relatively weak signals of the low-significance bits from controlling any 

selection events, and results in no convergence taking place among the low-significance 

bits until the higher-significance bits have converged. Domino convergence is a general 

phenomena in GA convergence, not limited to binary coded parameters. 

The net result is that a convergence window exists in which convergence actively 

occurs; outside the window little or no convergence occurs. The situation is depicted in 

Figure 4.5, which shows locus position on the abscissa with the most significant loci to 

the left, versus convergence (proportion of 1s) at each locus along the ordinate. At the 

start of a simulation run, the convergence window is at the left edge of the abscissa and 

contains only the most significant loci. As the simulation proceeds, the window slides to 

the right. In effect, three distinct convergence regimes exist, each with its own invariant 

conditions. Loci to  the left of the window are already fully converged; loci to the right 

of the window have undergone no convergence; only loci within the window are actively 

converging. 

From the signal versus noise perspective, the signal level of each locus is ranked 

- -- 

'See Section 4.4 for a uniform-population derivation of expressions for signal, noise, and the signal- 
to-noise ratio for each bit position. 



from highest to lowest. For the initial, random population in expectation, the most 

significant bit's locus has the highest signal, while the least significant bit's locus has 

the lowest signal. At any particular time the loci whose signals are above the current 

noise level are actively controlling selection events, while those below the current noise 

level are either already converged and are in the converged region (for example, a fully 

converged partition has a signal of zero), or have undergone no convergence and are in the 

unconverged region. As the loci in the convergence window become fully convergenced, 

they move into the converged region and their contribution to the noise level is eliminated. 

The resulting lowering of the noise level eventually allows the signal of the locus in the 

unconverged region next to the convergence window to be heard so that it begins to 

affect selection events; thus, its partition begins to converge. The net effect is that as 

convergence proceeds the convergence window slides to the right. 

Note that with fixed nonzero mutation rates and sufficient bits in the genotype, 

the window's movement to the right will eventually slow and stop. The window stops 

when the increase in convergence due to selection is exactly offset by the reduction in 

convergence due to  mutation among already converged loci, or from the signal versus 

noise perspective, when the reduction in noise due to selection is exactly offset by the 

increa.se in noise due to mutation a.mong the already converged loci. Thus, a steady-state 

"stalling out" of convergence, or convergence stall, results, as can be clearly seen in the 

later generations of the plots for mutation rates 0.02, 0.04, and 0.08 in Figure 4.1. 

4.2 Analysis of Convergence Window Width 

In this section convergence window width is analyzed for the demonstration problem, 

resulting in a model of expected convergence window width a t  the start of a run. 

For the f(x) = x problem, what factors determine convergence window width? To 

answer this question first consider how binary tournament selection works. Since tourna- 

ment selection is a rank-based selection method, only the ordering of fitness values of the 

genotypes in the popula.tion matter - other than this, the actual fitness values do not 
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Figure 4.4: Loci converged versus time for 90% convergence for various mutation rates. 
Plot lines, from bottom to top, correspond to GA runs with mutation rates of 0.08,0.04, 
0.02, 0.01, 0.005, and 0.0025. 



Table 4.1: Enumeration of tournament selection events controlled by each of the 16 
possible two-locus tournament pairings. The first four columns give the values of the 
four alleles at  the two most significant genotype positions of the two parents. The last 
three columns use 'r ' to show where the tournament is decided. 

matter at  all. Interpreting the genotype as a binary fraction as was done in Section 4.1, 

parent 1 

the rank of a genotype's fitness is identical to the rank of the genotype itself. This is true 

locus 1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

not only for the demonstration problem, but for any monotone fitness function. Thus, 

locus 2 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 

parent 2 

the relative ranking of two individuals paired in a tournament depends entirely upon 

their allele values at the first locus at  which they differ, and further, loci at  which the 

decided by 
locus 1 

r 

r 

r 

r 

1 
1 
1 
1 
1 
1 

locus 1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 

parent individuals have identical alleles play no part in determining relative ranking. 

Given a random population, an expression may be derived for the expected proportion 

--- 
r 

locus 2 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

of tournament pairings decided at each locus. The four possible pairings of locus one's 

alleles among two parents are (0,0), (0,1), (1,0), and (1,l). In the (0,O) and (1,l) pairings, 

allele fitness contributions are irrelevant because the tournament will be decided at a less- 

significant locus. But in the (0,l)  and (1,O) pairings, the relative allele fitness determines 

the outcome and the child will have a 1 at locus one. Thus in expectation, half the time 

r 

decided by 
locus 2 

r 

r 

0 -- 
0 

decided 
elsewhere 

r 

1 
1 
1 
1 

0 
0 
1 
1 

0 
1 
0 
1 

r 



relative allele fitness at  locus one determines the outcome of the tournament. Similarly 

in considering which tournaments are decided at locus two, only the loci of the first 

and second alleles are relevant. As shown in Table 4.1, there are 16 possible pairings 

covering all possible genotype combinations of two alleles in each parent. In 114 of 

these 16 possible pairings, the fitness contribution of the locus-two alleles determine the 

outcome of the tournament. 

In general for locus i, 1/2j proportion of the time the values of locus i's alleles 

determine the outcome of the tournament. Thus for a population of size n, the expected 

number of individuals selected on the basis of the values of the alleles at  locus i will be 

n/2< Notice that the number of individuals selected at each locus must be integral, since 

only whole individuals can be selected. Thus for the population of size 100 used in the 

domino convergence simulation suite, locus six should control 10012~ = 1.56 selection 

events, or about one or two individuals, while locus seven should control 100/27 = 0.78, 

or about 0 or 1 individuals. Therefore, the expected width of the initial convergence 

window should be six or seven loci. Checking against the simulation runs shown in 

Figure 4.1 reveals an increase in the average proportion of 1s in generation three (the 

next generation shown after the initial, random, generation zero) for only the first seven, 

eight, or nine loci, a good match to the width predicted by the initial convergence window 

width model. 

In general and after the initial generation, either a fully or partially converged region 

will exist among the most significant loci, and the random population assumption of the 

initial convergence window width model will be violated. The analysis can be extended 

to times beyond the initial generation by deriving expressions for the proportions of each 

allele at  each locus in the converged and partially converged regions. Approximations 

for these expressions are derived in the next section. 
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Figure 4.5: Context of locus i for simplified convergence stall analysis. 

4.3 Analysis of Convergence Stall 

In this section two analyses of convergence stall are given. First, a simplified model 

derived by Goldberg (1991b) is defined and compared to empirical results, then a more 

refined model is considered. 

4.3.1 Simple Model 

Consider again the context for the simplified steady-state analysis of convergence 

stall as shown in Figure 4.5. From left to right, the three convergence regions are shown. 

First, the most significant loci comprise the converged region; note that in the initial 



Table 4.2: Possible tournament pairings a t  locus i and their probabilities of occurrence. 

competing alleles 
1 vs 1 

window width analysis of the previous section, the size of the converged region was 

zero. Second, the next most significant loci comprise the partially converged region in 

which convergence is actively taking place, the convergence window. Third, loci of lesser 

significance comprise the unconverged region. 

Consider locus i, the most significant locus in the convergence window. The outcome 

probability part of the initial window width model of Section 4.2 is generalized to  allow 

an arbitrary proportion of 1 alleles a t  locus i. Locus one of the previous model now 

corresponds t o  locus i in Figure 4.5, the first position within the convergence window. 

As in the previous model, the 1 alleles are assumed to have higher fitness than the 0 

alleles. If all of the more significant loci in the converged region were to  remain fully 

converged (no mutations occurred among them during previous generations), then locus 

i would be the first t o  have a shot a t  affecting the selection between the genotypes 

engaged in a tournament. As shown in Table 4.2, either a 1 or a 0 allele may result a t  

locus i from such a tournament. A 1 results in three ways having combined probability 

of 2Pt - P,2, where Pt represents the proportion of 1s in the population at locus 2 .  A 0 

results with probability (1 - Pt)2,  only when both individuals have a 0 at  position i. 

The possibility that  a mutation either occurred in the converged region during the 

previous generation (so that  it now prevents the alleles a t  locus i from determining the 

outcome of the tournament) or occurs a t  locus i during this generation is accounted for 

as follows. The probability that  a mutation occurs a t  a locus is p,, so the probability 

that  no mutation occurs is 1 - p,. The probability that  no mutations occurred in the 

converged region or will occur a t  mutation i is (1  - P , ) ~ + ' ,  where c is the number of 

loci in the converged region. Thus, the probability that one or more mutations either 

outcome (child) 
1 

probability 

p,2 



occurred in the converged region or occurs at locus i is 

Finally, the probability that no such mutation occurred is 1 - p;. Incorporating this 

into the group probabilities derived from Table 4.2 yields the probability that a 1 results 

from a tournament pairing as 

Pt+l is the proportion of 1s produced in the next generation. This will be called the 

simple model. That Equation 4.3 is an approximation may easily be seen by considering 

the decision tree shown in Figure 4.7, a complete model for the context presented in 

Figure 4.5. This full model will be explored in detail in Section 4.3.2. Note that there 

are four leaves which produce 1s in the next generation, while Equation 4.3 employs only 

the single term which corresponds roughly to the leftmost leaf of the decision tree. Thus 

the proportion of 1s at  succeeding generations is underestimated, and a corresponding 

underestimate of the convergence stall point is to be expected. 

To estimate the convergence stall point based on the model of Equation 4.3, we set 

Pt+l = Pt,  which results in 

where P,, is the fixed point of the equation, the proportion of 1s at  locus i at steady- 

state. We arbitrarily define 'converged' to  mean 90% or more Is, substituting P,, = 0.9 

into Equation 4.4, and solving for pL yields 

Substituting 0.091 for pk in Equation 4.2 and solving for c yields 

Figure 4.6 shows the 90% convergence stall points from the simulation runs presented 

in Section 4.1 (denoted by triangles), those predicted by the simple model (denoted by 



octagons), and the streamlined model presented in Section 4.3.2 (denoted by squares). 

As expected, the simple model underestimates the stall points. To try to get a better 

analytical estimate, a more refined analytical model is next considered. 

4.3.2 Refined and Streamlined Models 

The simple model presented in the preceding section significantly underestimates the 

90% convergence stall points because several of the sources of 1 alleles shown in the 

decision tree of Figure 4.7 are ignored. To improve the stall point estimate, a set of 

recurrence equations are defined modeling the proportion of tournaments available to 

be decided at locus i. The recurrence equations are then simplified to the convergence 

context depicted in Figure 4.5 and incorporated into a more refined model. The model 

is then compared to both the empirical simulation results and to the predictions of the 

simplified model. 

A fairly general set of recurrence equations may be written defining D;, the proportion 

of tournaments available to be decided at locus i (i.e., not already decided at more 

significant loci) , and di, the expected proportion of tournaments decided at locus 2 .  For 

locus i = 1, 

Dl = 1, (4.7) 

since all tournaments are available to be decided at locus 1, and with PI the proportion 

of 1s at locus i, 

dl = 2P1(1 - PI), (4.8) 

since the tournament will be decided at locus one when the allele pairs are either (0,l) 

or (1,0), each of which occurs with probability P,( l -  P;), where P; is the proportion of 

1 alleles at position i. For locus 1. = 2 the respective equations are 

since all tournaments are available to be decided at locus two except those already 

decided at locus one, and 



Convergence Stall, simple model vs runs 

Figure 4.6: Steady-state convergence level versus last-converged locus for empirical sim- 
ulations (triangles), simple model (octagon), and streamlined model (squares). The 
definition of convergence used requires 90% or more 1s at  each locus from the most 
significant position to the last-converged position. Mutation rates (P, 's) of 0.01, 0.02, 
0.04, and 0.08 are shown on a linear scale. Note that the 0.0025 and 0.005 mutation 
rates are not shown, since the performance of the simulation runs is clipped due to the 
limited precision of double precision floating point representation. 



since there are D 2  tournaments available to  be decided a t  locus two, and 2P2(1 - P2) of 

those will be decided a t  locus two. Substituting for Dl  and dl from Equations 4.7 and 

4.8 into Equations 4.9 and 4.10 yields 

In general, 
1-1 

Di = Di-] - di-l = rJ [l - 2Pj(1 - P j ) ]  (4.13) 
j=1 

and 
i-l 

di = 2P,(1 - Pi)Di = 2Pi(1 - Pi) n [I - 2Pj(1 - Pj)] .  (4.14) 
j=1 

Equations 4.13 and 4.14 are a general model for the expected proportion of tournaments 

decided a t  locus i, and assume only that the fitness functiorl is strictly monotone, mono- 

tonically increasing as opposed to  simply non-decreasing, and the proportion of 1 alleles 

a t  each locus is known. The model applies to all three convergence regimes shown in 

Figure 4.5 - the converged area to the left of the convergence window, the area of active 

convergence within the convergence window, and the area of nonconvergence to  the right 

of the window. 

The model given in Equations 4.13 and 4.14 may be combined with a probabilistic 

model for the allelic value resulting a t  locus i from a tournament pairing. The combined 

model is shown as a decision tree in Figure 4.7. Where present, node labels indicate 

the value of the resulting child's locus i allele a t  that point in the process. Each branch 

is labeled with both the action the bra.nch represent,s and the probability with which 

that  action occurs. Levels in the tree proceed from left to  right. The first level of the 

tree determines whether or not the tournament is decided above locus i. If not (lower 

branch at level one), the second level determines whether a 0 or 1 allele results from the 

tournament. If the tournament was decided above locus i (top branch a t  level one), the 

second level determines whether a 0 or 1 allele hitchhikes a t  locus 1:. Finally in all cases, 

level three determines if a mutatioil occurs a t  locus i to change the resulting allele. Each 



leaf represents a possible outcome with the associated probability being the product of 

the probabilities along the path leading to  the leaf. Four of the outcomes (leaves) result 

in 1 alleles a t  locus i in the resulting child and four result in 0 alleles. Together the 

leaves cover all possible outcomes. 

Combining the model of Equations 4.13 and 4.14 with the decision tree probability 

model from Figure 4.7, the expected proportion of 1s a t  locus i in the next generation is 

Making substitutions for D;,t from Equation 4.13 yields 

Equation 4.16 is a fully general model a.pplicable to  all three convergence regimes and 

will be called the refined model. It assumes only that all loci are independent, as is the 

case with a bitwise linear fitness function or when uniform crossover is used by the GA, 

an assumption required by the hitchl~iking branch leaving the upper level one node of 

the decision tree. The model could be programmed and run iteratively to  produce a 

trajectory, in expectation, of the proportion of each allele a t  each location. It can then 

be used to  investigate the steady-state behavior of the modeled GA,  although this has 

not been done here. Explicit solution of Equation 4.16 for the steady-state stall points 

appears impractical. 

To make further progress, the refined model of Equation 4.16 is simplified by restrict- 

ing the locus under consideration to  be the leftmost, or most converged, position in the 

active convergence window as depicted in Figure 4.5. Further, any mutations occurring 

in the converged region are assumed to  be completely corrected by selection in each 

generation, so that  no mutations accumu1at.e from generation t o  generation. The new 

model will be called the streamlined model. 
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Figure 4.7: Locus decisioli tree - combined model. 
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Figure 4.8: Locus decision tree - streamlined model. 



Figure 4.8 shows the decision tree for the streamlined model. The main difference is 

that  the probabilities D;,t and 1 - DiPt a t  the first level of the tree have been simplified 

t o  (1  -pm)" and 1 - (1  -pm)", where p, is the bitwise mutation probability and x is the 

number of bits in the converged region. The resulting difference equation for proportion 

of 1s a t  locus i in the succeeding generation is obtained by adding the probabilities for 

the 1 leaves from Figure 4.8, producing 

Note that  the i subscript has been dropped since that aspect is now fully captured by 

x in the streamlined model. By setting Pt+l to  Pt and solving the resulting quadratic, 

the expected steady-state, or fixed point, proportion of 1s becomes parameterized by p ,  

and x. Figure 4.6 shows the steady-state convergence level versus mutation rate for the 

streamlined model by the line denoted by squares, as compared t o  the simulation runs 

of Section 4.1 denoted by triangles, and the simplified model of Section 4.3.1 denoted by 

octagons. It can be seen that  the streamlined model generally predicts convergence stall 

will occur a t  higher positions than are observed empirically. For example, the pm = 0.02 

run shown in Figure 4.1 clearly shows convergence in the GA simulation runs stalling 

out around locus 30, while the streamlined model predicts stall should not occur until 

position 80 or so. A possible source for the discrepancy may be the assumption, made by 

both the simple and streamlined models, that no mutations accumulate in the converged 

region from generation to  generation. Such an oversimplification would underestimate 

the number of mutations in the converged region and therefore overestimate the con- 

vergence stall position. It may be possible to  adjust Equation 4.17 for such mutation 

accumulation, but that  has been left as future research. 

The GA convergence models presented are all limited t o  nlonotone fitness functions. 

In the next section, the more general signal versus noise model defined in Chapter 3 is 

applied t o  domino convergence. 



4.4 Domino Convergence and the Signal-to-Noise Ratio 

In tournament selection with strictly monotone fitness, a mutant allele in the converged 

region takes precedence over all alleles of lower significance. From the signal versus noise 

perspective, mutation acts to constantly inject collateral noise into the converged region, 

just as it does in the other regions. But the mutations occurring in the converged region 

are of special significance, since they generate a relatively higher level of noise. This noise 

serves to lower the signal-to-noise ratio (SNR) of the loci of lesser significance, effectively 

competing with the fitness discrimination signals of the loci in the convergence window. 

When the amount of mutation noise injected into the converged region becomes large 

enough, convergence stall results. As the mutation rate or the size of the converged region 

is increased, the noise eventually overwhelms the signal. In this section, the f(x) = x 

domino convergence demonstra.tion problem of Section 4.1 is emmined from the signal 

versus noise perspective. 

As shown by Goldberg (1989a), any linear fitness function ma.y be stated in terms of 

its Walsh basis as 

where the Walsh coefficient w2, denotes the indices of the order-one Walsh coefficients, 

and the values of the Walsh coefficients are 

Because f (x) is linear, only the order-zero and order-one Walsh coefficients are nonzero. 

Throughout this section the competition pa.rtitions considered will be limited to those 

of order-one or less, since all other Walsh coefficients are zero. 



Thus for linear fitness functions, the Walsh basis expression for squared signal, Equa- 

tion 3.1 l, becomes 

where J s ( J )  = J ; (J )  - (01, the usual partition signal index set used in Equation 3.11, 

and Wl is the set of indices for the order-one Walsh coefficients. In effect, the usual 

partition signal sum is used, but restricted to  order-one Walsh coefficients. Each order- 

one competition partition has exactly one coefficient satisfying these constraints, namely, 

the order-one coefficient corresponding to  the locus partition J fixes, or makes constant. 

In similar fashion, the Walsh basis expression for squared noise, Equation 3.14, sim- 

plifies t o  

where J c ( J )  = J i ( J ) ,  the usual partition noise index set used in Equation 3.14. Again, 

the usual partition noise sulll is used, but restricted to  order-one Walsh coefficieilts 

because the higher-order coefficients are all zero. 

Finally, the SNR M'alsh basis expression, Equation 3.19, becomes 

Note that  Equations 4.20, 4.21, and 4.22 apply to  any linear fitness function. Since for 

linear fitness functions the number of nonzero Walsh coefficients is linear in the length of 

the genotype, actually performing these computations becomes attractive as compared 

t o  the case of the general fitness function, where the number of potentially nonzero Walsh 

coefficients is exponential in the length of the g e n ~ t y p e . ~  

Consider again the identity function, f (x)  = x, used in Chapter 4, Equation 4.1, as 

the domino convergence demonstration probleill fitness function. Since f(x) is a linear 

"f course, computing R(J) for nonlinear fitness functions can also be done, but the number of 
potentially nonzero Walsh coefficients becomes large very fast since it is exponential in the length of the 
genotype. This, of course, is no different from most Walsh basis computations. 



Table 4.3: Signal, noise, and SNR by locus for the identity problem. 

locus 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

function, it may be expressed in the Walsh basis as shown by Equations 4.18 and 4.19. 

Doing so results in the first-order Walsh coefficients taking the values 

1 

Substituting these values for the Walsh coefficients in Equations 4.20 and 4.21 produces 

S(J)  
0.5000 
0.2500 
0.1250 
0.0625 
0.0312 
0.0156 
0.0078 
0.0039 
0.0019 
0.0009 

and 

for squared signal and squared noise, respectively, where j is the locus fixed (held con- 

stant,) by partition J and may range from 1 to  1. Finally, the resulting expression for the 

SNR for the domino convergence demonstration problem is 

C(J)  
0.2886 
0.5204 
0.5636 
0.5739 
0.5765 
0.5771 
0.5772 
0.5773 
0.5773 
0.5773 

Table 4.3 shows the resulting values of signal, noise, and SNR for the 10 most signif- 

icant loci, j = 1, . . . , l o .  As can be seen, signal strength and SNR drop off exponentially 

with locus position, while the noise level rises asymptotically t o  a constant. 

It is tempting t o  view R(J)  as the expected proportion of selection events decided 

by the value of the allele a t  the locus fixed by J (as was done in the initial convergence 

R(J) 
1.7320 
0.4803 
0.2217 
0.1088 
0.0542 
0.0270 
0.0135 
0.0067 
0.0033 
0.0016 



window width analysis of Section 4.2), so that the first seven loci are likely to show 

some convergence during generation 1. This would be a good match to observed domino 

convergence as shown in the 0.01 mutation rate run of Figure 4.1, and these results would 

be in reasonably close agreement with both the earlier analysis of initial convergence 

window width and the empirical data. However, the SNR is not a direct measure of 

expected net convergence, as can be seen by the fact that its value for locus one is 

greater than 1. 

It will be argued in Chapter 6 that the SNR is, in fa.ct, closely related to GA conver- 

gence, though establishing its exact connection to expected convergence is left to future 

research. 

4.5 Mutation and Convergence Stall 

GA simulation runs are generally performed using a. mutation rate that does not change 

over time. However, both from the previous analyses and from the empirical runs it. 

is clear that convergence stall cannot be avoided whenever a nonzero mutation rate is 

used on a monotone problem possessing a sufficient number of loci. Thus, the common 

practice of using fixed mutation rates generally leads to convergence stall. Further, any 

rigorous GA convergence proof must treat this fact. 

As has been noted by others (Sirag SL Weisser, 1987; Wilson, 1987; Schraudolph & 

Belew, 1990; Belew et al., 1990), a solution to this problem is to allow the mutation rate 

to decay in over time, as is often done with artificial neural network model parameters 

(for example, Iiohonen's (1988) topological map model) and simulated annealing (Kirk- 

patrick et al., 1983). Mutation decay would gradually reduce the disturbance within the 

converged region, either as a function of time or some measure of population diversity, 

thereby extending the stall point. In the limit as the mutation rate approaches zero, the 

convergence stall point approaches infinity and ceases to be a problem. 



Chapter 5 

Evolutionary Network Design (END) 

Faced with a particular problem to  be solved using an artificial neural network (ANN), 

the practitioner seeks t o  choose an optimal or near-optimal ANN architecture. Finding 

such an architecture will be called the network design problem. Although a number 

of approaches providing partial solutions to  the network design problem are available, 

especially for the more popular ANN models, which architectures are optimal and how 

t o  find them is generally an open question. Since nature used evolution to  design brains, 

using evolutionary search t o  design network architectures seems an obvious approach to 

explore - evolutionary network design (END). 

Experience gained using GAS to  evolve networks solving the contiguity problem is 

presented, both to  illustrate how the fitness variance population sizing calculation of 

Section 2.3 may be adapted t o  handle the fitness function noise resulting from nonde- 

terministic fitness functions and as an interesting GA application in its own right. The 

fundamental thesis underlying the work presented is that GAS can search the space of 

network architectures effectively. 

Section 5.1 presents a prototypical ANN model and then reviews the aspects of 

model architectures of relevance to END. Section 5.2 considers some aspects of the net- 

work design problem ANN practitioners face. Section 5.3 reviews previous END work. 

Section 5.4.1 introduces a program called GAND, genetic algorithms for network design, 

giving an overview of GAND's design, data structures, and algorithms. Section 5.4.2 

defines the contiguity problem and why it was chosen as an END test problem. Sec- 

tion 5.4.3 describes the training and testing data sets used, while Section 5.4.4 presents 



the coding used by GAND. Section 5.5 presents a series of GAND runs performed in 

attempting to  solve the test problem. Section 5.6 extends the population sizing work 

of Section 2.3 to  include fitness function noise. Finally, Section 5.7 discusses the END 

work, with Section 5.7.1 considering what normal form representations can be useful and 

Section 5.7.2 discusing opportunities for additional END reseasrch. 

5.1 Artificial Neural Networks 

Artificial neural networks (ANNs) may be viewed as distributed computational systems 

based on highly abstracted models of biological neural networks. Most ANNs have 

nodes and connections corresponding to the neurons and synapses of biological neural 

nets. Usually some of the nodes are designated as inputs and others as outputs. ANNs 

may be thought of as performing a transformation by taking an input, or series of 

inputs, and producing an output, or series of outputs. They may also be viewed as a 

class of biologically inspired artificial intelligence capable of classifying and manipulating 

patterns. 

The field of artificial neural networks, also known by the terms connectionism and 

parallel distributed processing, has a history stretching back to  the middle of this century 

(McCulloch & Pitts, 1943; von Neumann, 1987). During the last decade, however, an 

ANN renaissance has occurred, resulting in dozens of distinct ANN models (Williams, 

1987; Torras i Genis, 1986; Tesauro, 1986; Sun et al., 1988; Rumelhart et al., 1985; 

Rumelhart &. Zipser, 1985; Carpenter & Grossberg, 1986; Hestenes, 1986; Barto et al., 

1983; Fukushima, 1981; Fukushima et al., 1983; Hecht-Nielsen, 1987; Hinton et al., 

1984; Hopfield, 1982; Kosko, 1987b; Kosko, 1987a; Linsker, 1988; Granger et al., 1989; 

Pearlmutter & Hinton, 1986; Pellionisz & Llinas, 1982; Pineda, 1987; Daugman, 1988; 

Kohonen, 1988; Moody & Darken, 1988; Foldiak, 1989; Plumbley & Fallside, 1988; Klopf, 

1987; Reeke & Edelman, 1987; Specht, 1988; Scofield, 1988; Peterson & Anderson, 1987; 

Chua & Yang, 1988; Marks I1 et al., 1987; Lansner & Ekeberg, 1989). Some of these 

models closely follow the biology of nervous systems while others do not. However, all 



of the models share a few unifying characteristics. For example, all of the models share 

some notion of node and connection. A node may be thought of as either an agent per- 

forming a (usually simple) computation or the place where the computation is performed. 

Generally, nodes produce an output, usually a single scalar value. Nodes are linked by 

connections, channels over which information may pass between nodes. Connections are 

unidirectional, with bidirectional connections implemented as a pair of unidirectional 

connections. In addition to the basic ideas of node and connection, most models share 

some notion of a scalar model parameter associated with each connection. Such connec- 

tion weights usually serve to scale, or weight, values passing along the connection. A 

collection of all connection weights for connection to a particular node may be viewed 

as a vector, w. Figure 5.1 shows a node from the resulting generic model. Often the 

computation performed by the node is the inner product of the node's weight vector, 

w ,  and the node's input values, x, followed by a non-increasing, bounded, nonlinear 

transformation, f ,  so that the node's output is 

where n is the number of input connections to the node. 

A network architecture is both a description of how many nodes there are, what com- 

putational model each node employs, and how the nodes are interconnected, including 

which nodes are network inputs and which are outputs, and the adjective denoting such 

a network. A commonly used network architecture is the layered feedforward network. It 

consists of layers of nodes ordered from input to output, with adjacent layers completely 

connected from the layer nearer the input to the layer nearer the output. Architectures 

which possess feedback connections are recurrent networks. Another dimension along 

which network architectures may be characterized is their degree of modularity. For 

example, a feedforward network may be viewed as a connected feedforward sequence of 

single-layer network modules. Alternately, smaller networks may be connected to form 

larger networks, as described by Waibel (Waibel et al., 1988; Waibel, 1989) and Leen 

(Leen et al., 1990). Yet another classification dimension might be degree of regularity. 



Figure 5.1: Generic artificial neural network node. 

For example, although it has a large amount of randomness in the details of its struc- 

ture, the Lynch-Granger pyriform cortex model (Granger et al., 1989; Lynch et al., year 

unknown; Granger et al., 1987) also has a high degree of regularity. 

The degree of homogeneity of the model is still another network characterization di- 

mension. Networks containing only a single kind of node will be calIed homonets, while 

networks containing more than one kind of node will be called heteronets. For example, 

Hopfield networks (Hopfield, 1982) and back-propagation networks (Rumelhart et al., 

1985) are both homonets, but a back-propagation network whose outputs are connected 

t o  portions of a Hopfield network is a heteronet. Heteronets may be viewed as a col- 

lection of interconnected homonet modules. Only a very few combinations of network 

models have been tried. Examples include principal component networks used t o  perform 

da ta  compression as a preprocessing step t o  using a standard back-propagation classifier 

network (Sanger, 1989a; Sanger, 1989b; Sanger, 1990; Leen et al., 1990), among others 



(Ritter, 1989; Holdaway, 1989, for example). Waibel's time-delayed neural network mod- 

ules (Waibel et al., 1988; Waibel et al., 1989) might be considered a heteronet example, 

since although only feedforward back-propagation modules are used, the output nodes 

are manually configured to  compute an average (they do not learn) and thus constitute 

a second kind of node. Of course, not all heteronet combinations make sense, since some 

models are fundamentally incompatible with most other models. For example, models 

using spike trains to pass information between nodes (Dress, 1987b) or models using 

hysteresis to  code information (Hoffmann & Benson, 1986) are not directly compatible 

with models passing scalar outputs.' However, since most kinds of model neurons output 

a single scalar value, incompatible models are rather the exception. 

In addition to  their architecture, ANN models may vary in a number of other re- 

spects, including their treatment of time (for example, discrete versus continuous), de- 

gree of precision used or required, locality of information used by each node, and learning 

mechanism. With respect to time, each node may function synchronously (for example, 

traditional feedforward nets (Rumelha.rt & McClelland, 1986)) or asynchronously (for 

example, Hopfield nets (Hopfield, 1982)). With respect to precision, many researchers 

use full 64-bit floating point arithmetic for network calculations, although use of integer 

arithmetic to increase simulation speed has become more common. Baker and others 

have empirically demonstrated that different models have different precision require- 

ments. For example, the Lynch-Granger pyriform cortex model requires only 4 to 6 

bits of (Means, 1989; Hammerstrom, 1989) while back-propagation typically 

requires 12 to  16 bits (Baker, 1990; Baker & Hammerstrom, 1989a; Baker & Hammer- 

strom, 1989b; Hammerstrom, 1989; Personnaz & Dreyfus, 1988). Finally, some models 

are Boolean, effectively using one-bit precision. 

Most ANN models require that the computations performed use only information 

locally available to  the nodes. This is an especially important design constraint for 

'Of course, ANN models converting from one modality to another may be possible, effectively inter- 
facing otherwise incompatible models. 



VLSI implementations because VLSI has limited interconnect capability (Bailey & Ham- 

merstrom, 1986; Hammerstrom et al., 1989; Bailey & Hammerstrom, 1988; Rudnick & 

Hammerstrom, 1988a; Rudnick & Hammerstrom, 1988b; Hammerstrom, 1986; Hammer- 

strom, 1988; Rudnick et al., 1987; Hammerstrom et al., 1987) and is usually considered 

a requirement for biologically plausible learning rules. Nevertheless, some models do 

make use of global information. For example, performing a winner-take-all computation 

among a collection of nodes is global to that c~l lect ion,~ although local implementations 

are possible. 

A N N  models can use a variety of learning mechanisms. Learning rules may be 

grouped into two broad classes: unsupervised and supervised. In unsupervised learning, 

the network is presented input exemplars without any feedback or guidance as to the 

merit of its resulting output (Rumelhart & Zipser, 1985; Kohonen, 1988; Sanger, 1989b; 

Pearlmutter & Hinton, 1986; Plumbley & Fallside, 1988). In supervised learning, some 

form of feedback is provided. Two kinds of supervised learning may be distinguished: 

reinforcement and target. In reinforcement learning, a scalar feedback signal is provided 

indicating the degree to which the automaton's output is 'good' or 'bad' (Williams, 1987; 

Barto, 1985). In target learning, the auto~naton's desired output is provided as feedback. 

The classic example here is the error back-propagation 1ea.rning rule (Rumelhart et al., 

1985; Rumelhart et al., 1986). 

Other learning models abound. In the original Hopfield spin-glass model (Hopfield, 

1982) an outer product was used to pre-compute static weights which were then loaded 

into the network. This is an example of a static, non-learning network with fixed, 

pre-computed weights. The weights can also be learned using a Hebbian learning rule 

(Linsker, 1988; Leen et al., 1990) in which each weight is incrementally moved toward the 

product of the pre-synaptic and post-synaptic activities. Hebbian learning is biologically 

'Even with global computations, relatively efficient mechanisms may still be available to perform the 
computation. For example, Lazzaro has an O(n) technique for performing the winner-take-all compu- 
tation in VLSI (Lazzaro et al., year unknown). Further, each implementation technology has its own 
individual set of constraints; for example, many of the interconnect problems of planar VLSI may not 
be problems for optical implementations. 



plausible and is an example of unsupervised learning. 

5.2 Network Design Problem 

Because artificial neural networks are both diverse and complex, a practitioner wishing 

t o  solve a particular problem using ANN technology is immediately faced with a bewil- 

dering choice of possible architectures, especially when considering heteronets. Back- 

propagation will serve as a case study. Back-propagation has as advantages that it tends 

t o  be both simple and robust. Even so, many architectural and algorithmic questions 

must be answered: How many hidden layers should be used?3 How many nodes should be 

in each of the hidden layers? Should interconnections be limited and if so how? Should 

feed-through connections jumping over intermediate layers be used? Should learning 

algorithm enhancements be used, and if so what kinds - for example, momentum; var- 

ious forms of learning rate adaptation; fast weights; gradient estimation by full training 

set batch weight updates or by partial training set weight updates, and if partial, how 

many exemp1a.r~ should be used per weight upda.te; conjugate gra.dient descent (Barnard 

& Cole, 1989); etc.? How should the various non-weight parameters be set or varied? 

Hidden among all these choices and parameters are likely to  be problem-specific net- 

works of superior p e r f ~ r m a n c e . ~  Finding which are the superior networks will be called 

the network design problem; it includes all aspects of determining a completed network 

except setting the weights. 

Each network design decision has consequences in terms of learning speed, perfor- 

mance (meaning how good an answer is provided), generalization ability, feedforward 

execution speed, and ease of implementation. The choices made can interact in complex 

and poorly understood ways. As a. consequence many A N N  practitioners simply use a 

standard back-propagation model - one hidden layer, full inter-layer interconnect, no 

30fcourse, it is known that a single hidden layer in a non-linear, feedforward network can approximate 
virtually all functions arbitrarily well (Hornik et al., 1990). Nevertheless, engineering practice has shown 
multiple layers may be desirable (Waibel et al., 1988; Waibel et al., 1989; Waibel, 1989, for example,). 

What constitutes superior performance is generally user defined and will vary both from user to user 
and from problem to problem. 



feed-through connections, static momentum, static learning rate, no fast weights, single 

exemplar gradient estimation, and no conjugate gradient techniques. The momentum 

and learning rate terms are either set to  nominal values (guessed a t )  or set by trial 

and error during a few simulation runs. The latter often amounts to  doing a manual 

line search. Again, the number of hidden nodes is usually determined by similar trial 

and error methods. All told there is no assurance the resulting solution is particularly 

good in terms of the space of all possible back-propagation networks. Essentially, a 

trial-and-error search is performed over the space of back-propagation architectures. 

In addition, of course, there are now many dozens of different ANN models in the 

literature, often having significa.nt followings and useful applications. Most of these 

models, like back-propaga.tion, have their own version of the network design problem. 

And since each model's design space is usually multidimensional, the space of binary 

heteronets (heteronets consisting of two homonets) is the Cartesian product of all these 

models. Likewise, heteronets containing many different, possibly fine-grained homonets 

are also possible. All in all, this is a large space of network architectures to  be searched 

when seeking an ANN solution for a problem. It's no wonder only a small portion of 

heteronet space has been explored. 

The network design question then, is: "Given a specific problem to  be solved and 

criteria for measuring success, what ANN models and architectures provide superior 

solutions?" One general approach is to  search the space of network architectures, prefer- 

ably in a systematic way that can handle all dimensions of network design space, both 

continuous and discrete, both homonets and heteronets. The approach taken here is to  

use genetic algorithms to  search the spa.ce of ANN architectures - evolutionary network 

design (END). In the next section previous END work is surveyed. 



5.3 Previous Work 

A number of techniques have been proposed t o  tackle various aspects of the network 

design p r ~ b l e m . ~  Most of the techniques address optimizing homogeneous back-propa- 

gation networks. These include additive techniques where nodes or other components 

are added t o  an existing back-propagation network (Honavar & Uhr, 1989; Waibel, 1989; 

Fahlman & Lebiere, 1990; Gutierrez e t  al., 1989; Ash, 1989) and subtractive techniques 

where nodes or other components are removed from an existing back-propagation net- 

work (Rumelhart et al., 1986; Hinton, 1987; Fahlman, 1989a; Wieland and Leighton, 

1988; Rumelhart, 1988; Kruschke, 1989; Baum et al., 1988; Keeler, 1986; Mozer & 

Smolensky, 1989; Le Cun et al., 1990a; Le Cun et al., 1990b). However, none of these 

techniques provide a mechanism able to select the better networks from among the broad 

range of possible networks. Each places considerable limitations upon the range of net- 

works considered, usually because the potential solutions considered have been limited 

in advance t o  a narrow class of models or architectures. 

Evolutionary search techniques, and genetic algorithms in particular, need not be 

limited in advance t o  a particular class of models or architectures. They are capable, in 

principle, of handling homonets, heteronets, and the various model parameters associated 

with many ANN architectures. Any network architecture which can be specified in the 

genetic representation can be included in the search domain. Thus, GAS are a network 

architecture optimization technique of general applicability. 

Only recently has work begun exploring evolutionary network design (END) (Rud- 

nick, 1990). As will become apparent, a comprehensive, unifying treatment providing a 

foundation for END and illuminating fundamental issues is needed. The primary works 

motivating and using END are surveyed below. 

'For example, at the 1989 Neural Information Processing Conference, three workshops touched on 
various aspects of the problem - Scott Fahlman's "Neural Network Learning: Moving from Black Art 
to a Practical Technology," Peterson and Snyder's "Neurd Networks and Optimization Problems," and 
Davis and Rudnick's "Neural Networks and Genetic Algorithmsn. 



5.3.1 Dress's Artificial Insect 

Most of the work reported in the literature has appeared during the last two years. A 

notable exception is the work of Bill Dress (Dress & Knisley, 1987; Dress, 1987a). Dress 

used a 50-dimensional genetic code to specify an 'insect,' including rudimentary sensory 

channels and nervous system. Using a standard genetic algorithm, he searched the 50- 

dimensional search space to find phenotypes performing well in the artificial environment. 

For example, touching a 'predator' with its feelers was penalized by reducing the fitness 

of the artificial animal. An indication of the potential power of the GA design technique 

occurred when insects evolved which moved backwards, thereby avoiding the "predator 

touched with feelers" penalty. That automata might evolve which backed up to predators 

was a complete surprise to Dress and represents a fitness function design oversight. The 

anecdote provides, however, an effective demonstration of how END might overcome 

biases implicit in human ANN design. 

Dress appears to be the first to use evolutionary search for ANN design. But since 

sensory apparatus, morphological attributes, and an interactive environment were in- 

cluded in addition to the ANN, Dress's work may be more properly classified as an early 

example of artificial life. 

5.3.2 Mjolsness's Recursive Network Definition 

A much different approach to network architecture specification has been taken by Eric 

Mjolsness et al. (Mjolsness et al., 1988a; Mjolsness et al., 1988b; Mjolsness et al., 1988~;  

Mjolsness et al., 1987). A set of growth rules are first defined using a recursion relation 

having a fixed number of coefficients. Each possible recursion relation defines a family 

of successively larger neural networks. Each weight of an ANN so generated is specified 

through the recurrence relations and is ultimately derived from a combination of the 

weights in the original progenitor net and the parameters of the recurrence relations. 

Training a family of such networks is accomplished by using simulated annealing to 

optimize (over the space of recursion relation parameters) the performance of the family's 



smaller members. 

The continuous code problem was used as a test problem. The input is a unary 

number. The desired output is a compressed coding, or representation, of the input 

arranged so that  similar inputs map to  similar outputs where Hamming distance is used 

as the similarity metric. Although perhaps a rather simple problem, Mjolsness showed 

that  recursively defined networks more than two orders of magnitude larger than the 

small, trained networks still performed well on the task. 

Mjolsness7s approach may have the potential t o  be more generally applicable. First, 

it must be shown that  most potential ANN solutions can be cast using a recursive 

definition approach. Second, it must be shown that  Mjolsness's genetic neural networks 

will work for most other problems. Although Mjolsness continues this work, its present 

applicability appears limited. 

5.3.3 Hinton & Nowlan's Work 

Hinton and Nowlan (1986; 1987) performed a simulation supporting the notion that 

learning by an individual can synergistically aid evolutionary learning (Baldwin, 1896; 

Smith, 1987; Waddington, 1942). They defined a 20-bit binary string problem in which 

each bit must be correctly specified to  solve the problem. Their genetic code consisted 

of strings of 20 ternary digits in the alphabet (0, I ,?) .  Digits 0 and 1 are hard-coded 

in the phenotype and digit '?' is settable. Learning during the lifetime of an individual 

phenotype consists of randomly setting the '?' bits of the genotype with each individual 

having a fixed number of such trials. If evolutionary search alone was used, the fitness 

function would be zero everywhere except a t  the exact solution point - the needle in the 

haystack problem. But when learning by the individual is added, the fitness function is 

modified; it still peaks a t  the solution point, but has Gaussian-like tails trailing away as 

Hamming distance from the solution increases. As pointed out by Belew (1989), who has 

carried this work further, the effect is to  add a basin of attraction around the solution 

point. 

Although the particular example problem used is simple and somewhat contrived, 



and although END is not directly touched upon, this work illustrates an important inter- 

action between evolutiona.ry sea,rch and individual 1ea.rning. It looks through the END 

telescope the other way around, viewing learning by the individual as aiding evolution 

instead of the usual END view of evolution aiding learning in the individual. It suggests 

the potential for rich interactions between evolutionary population learning and neural 

network learning in individuals. 

5.3.4 Miller's Coililectioil Matrix 

Miller, Todd, and Hegde (Miller et  al., 1989; Todd, 198s) combined Grefenstette's GEN- 

ESIS (Grefenstette, year unknown) genetic algorithm C program with Ru~nelhart and 

McClelland's (1988) back-propagation program. Their genetic representation consists of 

a binary string encoding the network's connection matrix, where the network contains 

a fixed number of nodes. Each connection is represented by a 1-bit; absent connections 

are represented by a 0-bit. Thus for n nodes, an  n2-bit binary string specifies a network. 

Although recurrent connections are possible in such a representation. all recurrent con- 

nection specifications are ignored so that  a simple back-propagation learning rule may 

be used. Also, note that  nodes having no connections are in effect not present. 

Their END system was tested on three problems: exclusive-or, four-quadrant, and 

pattern copying. For exclusive-or, a five-by-five i~lt~erconnection matris  representation 

was used. Thus, all feedforward networks having five or fewer nodes were included in 

the search space. Two nodes were designated as network inputs and one as output. 

The four-quadrant problem consists of dividing the region of 3?2 bounded by (0,O) 

and (1, l)  into four equal-sized quadrants. Given a real-valued two-dimensional input 

vector, the task is t o  classify the vector as to  whether it falls into an even quadrant 

or an  odd quadrant. Thus, the four-quadrant problem may be viewed as a real-valued 

generalization of the exclusive-or problem. For the four-quadrant problem, a seven-by- 

seven interconnection matrix representation was used, with two nodes dedicated as inputs 

and one node as output. Thus the search space consisted of all feedforward networks 

having two inputs and one output. 



The pattern-copying problem is simply the identity mapping over binary strings. 

Although not explicitly stated in their paper, 20 units were apparently provided for in 

the interconnection matrix genetic code, with 10 designated as inputs and 10 as outputs. 

For all three problems starting with randomly generated networks, architectures solv- 

ing each problem were evolved within a few generations, while the entire population 

performed well within 5 or 10 generations. 

Any work using END must deal with the issue of developmental specificity, a term 

coined by Miller et al. t o  characterize whether the genotype maps directly to  the phe- 

notype or a significant developmental mechanism is present. They used the strongest 

possible developmental specificity for their genetic codes - a connection matrix where 

the presense or a.bsence of each connection is explicitly expressed in the genotype. In 

their words (Miller et al., 1989, pages 380-381): 

Weak specification representatioil schemes use relatively abstract genetic 

'blueprints' that  nlust he translated through some 'developmental machinery' 

t o  yield a network phenotype, e.g., (Harp et al., 1989a). Such schemes may 

be good a t  capturing the architectural regularities of large networks rather 

efficiently. However, they 1iecessa.rily involve either severe constraints on the 

network search space, or stocllastic specification of individual connections. 

For example, a weak specification scheme could represent whole network 

layers in single genes, facilitating the recombination and evaluation of large, 

highly regular networks, but precluding detailed connection design. 

Strong specification schemes, whicli interpret genes more directly as in- 

dividual connections, are good a t  capturing the connectivity patterns within 

smaller networks very precisely and deterministically. Such a scheme could 

facilitate the rapid evolution of finely optimized, compact architectures. A 

variety of moderate specification schemes are possible. 

We chose a strong specification scheme to  gain greater resistance to human 

design biases for crisply articulated network layers, localist representations, 



and easily interpretable processing strategies, all of which can creep into weak 

specification schemes. A strong specification scheme may facilitate the rapid 

generation and optimization of tightly pruned, interesting designs that  no 

one has hit upon before. We hope that  the inspection of such streamlined 

designs will hone our intuitions about what weak specification schemes might 

work well for larger network designs. 

In Section 5.7.1 we will return to  consideration of representational issues. 

5.3.5 Harp's Area Blueprint 

Nearer the weak end of Miller's developmental specificity spectrum is the GENESYS 

program used by Harp, Samad, and Guha (1989a; 1989b; 1990). Here again, only 

feedforward networks trained by the error back-propagation learning rule were allowed. 

Their search space is restricted t o  networks expressible in terms of generalized layers 

called areas. Each area appears in the genetic representation as a fixed length area pa- 

rameter specification (-4PS) along with associated projection specificatioii fields (PSFs). 

APSs contain parameters specifying number of nodes in the area, dimensionality of the 

area, and relative size of each dimension. Each APS may have one or more PSFs defining 

projections to  other areas. Each PSF contains parameters for connection density, initial 

learning rate, rate of exponential decay of the learning rate, target address, addressing 

mode (absolute or relative), and X,  Y, and Z radius parameters allowing for local recep- 

tive fields in up to  three dimensions. Many of the numerical parameters are coded log2, 

allowing a small number of values to  span a large region of the search space a t  a cost 

in the graininess of the representation. Gray coding is generally used so that  adjacent 

values are represented by adjacent codes, presumably to  avoid Hamming cliffs in the 

search space (Caruana & Schaffer, 1988). 

In their original work, back-propagation network architectures were designed for two 

problems, exclusive-or and a four-by-eight-pixel font digit recognition problem. Starting 

with random networks, in each case GENESYS produced solution networks. 



For very small networks, the size of Harp's weakly specified, coarse-grained genetic 

representation will be larger than Miller's strongly specified, fine-grained representa.tion; 

thus Harp's search spa.ce will be larger than Miller's. However, a t  sollie point as the 

number of nodes in the network grows, and provided the desired networks can be ex- 

pressed in Ha.rp's representation, Harp's search spa.ce becomes smaller than Miller's, and 

thus may lead to  a more efficient search. 

5.3.6 Kitano's Graph L-System 

The only work other than Harp's area blueprint to  use a developmental genotype-to- 

phenotype map of significance is Kitano's (1990) graph L-system work. He coded a 

graph grammar in the genotype and then used its production rules to  grow a network 

architecture from the grammar's start symbol. An L-system (Lindenmayer, 1968; Lin- 

denmayer, 1971) was used as the graph grammar. Kitallo used the encoder-decoder 

problem as his test problem, evolving a variety of both four-by-four and eight-by-eight 

netlvorks. He compared the direct, or connectivity matrix, representation and graph 

L-system representation, concluding that graph L-system encoding scaled better. Hotv- 

ever, it is hard to  interpret the significance of these results since only 10 trailling epochs 

were used, the number of hidden nodes was always a t  least twice the number of input or 

output nodes, and generalizatioii was never tested. 

5.3.7 Other Related Work 

Several others have done work either directly or indirectly related to END. Schaffer 

and Caruana (Schaffer et al., 1990) used a fine-grained. strong developmental speci- 

ficity genetic code similar t o  that  of Miller, et al. Wilson (1990) has successfully used 

evolutionary search for design of the sparsely connected conjunctive detector nodes in 

Rosenblat's (1962) classic perceptron. Also, Peter Hancock (1990) has successfully used 

END on a face recognitio~i task. 

Dodd (1989; 1991) used END to code for spread nets on a Dolphin vocalization 

recognition task similar to those used by LeCun (Le Cull et al.. 1990a; Le Cull et al., 



1990b) for handwritten chara.cter recognition. Dodd's networks were relatively large 

compared to  all the other END work cited. Thus it provides an important example 

suggesting that  END can scale t o  larger problems. Of course, a large network size alone 

is not sufficient t o  base scaling conclusioiis upon, since the problem could potentially 

be solved using a much smaller network. Dodd used a relatively coarse-grained, weak 

developmental specificity in his genetic code, which presumably allowed his EKD to  

search a spa,ce of large networks efficiently by using a compa.ct genetic code having a 

smaller search spa.ce. 

5.4 GAND Overview 

In this section GAND (genetic algoritli~ns for network design), a C program for do- 

ing END, is introduced. GAND has been used to evolve networks solving the contiguity 

problem. Section 5.4.1 presents the design of the GAND program. Section 5.4.2 presents 

the contiguity problem and discusses why it was used as a G A N D  test problem. Sec- 

tion 5.4.3 presents a description of the training and testing data sets used during GELKD 

evaluatioil of genotype fitness. Finally, Section .5.4.4 presents the genetic representation 

used by GAND. 

5.4.1 GAND Design 

The GAND program which has been implemented is really several independent programs 

fused together. Conceptually GAKD includes a simple (2.4 program and one or more 

ANN simulation programs. The logical design is shown in Figure 5.2. The top level 

GAND module implements the user and system interfaces. initialization, and overall 

control functions. It calls the GA module to  perform each GA generation. The GA 

module, in its turn, calls the evaluation module to evaluate each genotype (the genotype 

specifies the A N N  architecture). The evaluation routine calls three modules: a network 

construction module. a training and test data set generation module, and then the 

appropriate ANN ~llodel module to  train and test the network. 
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In keeping with sound software engineering practices, a modular design philosophy 

was employed to  allow easy maintenance, modification, and addition of independent 

modules. Readily modifiable components include the network construction mechanism, 

the functional details of each ANN model, which ANN models are available, and the 

particulars of the GA, such as the kinds of selection, crossover, and mutation employed. 

The GA module implements the simple GA described in Section 1.1. A single gener- 

ation consists of the GA processing the old population into a new population (the next 

generation) by repeatedly selecting a pair of parents, performing crossover and mutation 

operations, and then evaluating the resulting genotype by a call to  the evaluation module. 

The GA module currently employs tourna.ment selection, a two-point crossover operator, 

a bitwise muta.tion operator, and a fixed-length, haploid6 binary string genotype. 

The genotype-to-network (GTN) module converts a genotypic code into an initialized 

ANN da ta  structure suitable to  be trained by the module implementing the selected net- 

work model. In the current GAND implementation, the GTN module has a separate code 

segment, and uses different data  structures, for each network model supported. This is 

largely a result of the fact tha t  pre-existing ANN network simula.tion programs employ- 

ing incompatible data  structures were ca.nnibalized for the two ANN models currently 

supported. 

Currently back-propagation (Rumelhart et al., 1985) a.nd Scott Fahlman's Quickprop 

(1989b) ANN algorithms are implemented in GAND. The back-propagation module was 

adapted from McClelland and Rumelhart (1988). The Quickprop module was adapted 

from Terry Regier's (1990) C language version of Scott Fahlrnan's Quickprop lisp pro- 

gram. Each of the two network modules currently in place have their own set of data 

structures. 

An input file specifies the more frequently modified GA pa,rameters, the ANN models, 

and overall GAND control. Other parameters exist, such as the GA population size and 

'Most living things have their chromosomes organized as pairs. During the meiosis stage of sexual 
reproduction, the diploid pairs of chromosomes present in somatic cells are separated into the haploid 
sets of nonpaired chromosomes present in mature germ cells. In a genetic algorithm context, haploid 
simply means unpaired chromosome. 



which pseudo-random number generator is to  be used, that  are not included in the GAND 

input file and thus require recompilation to  modify. Finally, because repeated creation, 

training, and testing of ANNs is computationally time consu~ning ,~  a checkpoint and 

restart facility has been added, allowing the GA to  be continued from any previous 

checkpoint. 

5.4.2 The Test Problem 

The contiguity problem was select,ed a.s the GAND test. problem. It consists of learning 

the binary function f : (0, 1)111 - {O,l), 

where k is the number of clumps (independent, continuous runs) of 1s in the binary vector 

I. The constant. ko,  functions to  threshold f on the number of clumps of 1s in I; tha.t is. 

it determines whether the value of f is 0 or 1, based on whether the number of clumps 

of 1s in I is above or below the threshold. For example if ko = 2, vector I = 110001 1001 

has three clulnps of 1s and would result in f = 1, while vector I = 0011101000 has only 

two clumps and would produce f = 0. 

The contiguity problem has several advantages suggesting its use as a GAND test 

problem. First, it is simple enough to  be computationally mamgeable. Of equal impor- 

tance? Solla (1988) ha,s c11ara.cterized an aspect of single hidden layer back-propaga.tion 

network archit.ect,ures for the contiguit,y problem which strongly relates to  the network's 

generalization ability. Thus, network generalization performance makes an excellent 

criteria for network architecture optimization by END. 

Figure 5.3 shows the input to  hidden node connections of a network designed by hand 

by Solla t o  solve the contiguity problem. Both connection and associated weight is set 

manually. All hidden nodes connect to a single output node with + 1  weights. Hidden 

'The GAND program takes about, two days to do a typical run, such as those of Section 5.5.1,  on an 
IBM RS-6000/320. 



Figure 5.3: An inter-layer connection matris representation of the first connection layer 
of a feedforward network solving the contiguity problem. First row codes connections to  
first hidden node from 10 inputs; second row codes inputs to  second hidden node from 
the same 10 inputs; and so forth. A + means the connection is present and the associated 
weight is $1. A - means the connection is present and the associated weight is - 1. -4 
'.' means connection is absent. The hidden layer to output connectiolls (not shown) 
consists of each hidden node connecting to a single output node with a $1 connection 
weight. The bias weights (from a unit with constant activation of +1) are -0.5 to each 
hidden node and - ( k o  + 0.5) t o  the output node. 
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nodes have -0.5 biases, and the output node has a bias of - ( k o  + 0.5). The network 
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works by counting the number of clumps of Is  in the input field by decoding each clump's 

left-hand edge. 

Using a problem size of ( I \  = 10, Solla showed that  narrower hidden node receptive 

fields yield better network generalization performance up until the lietwork can no longer 

learn the training set. Table 5.1 shows test data. set performance, %G (generalization), 

as hidden node receptive field size, s, varies from 10 to  3 for successful training runs 

(%L = 100, meaning all training exemplars were successfully learned). The greater the 

receptive field size, the greater the receptive field overlap for each hidden node, until in 

the extreme (receptive field size of 10) all hidden nodes share the entire input string as 

their common receptive field - the fully collllected layer's structure commonly used in 

back-propagation networks. 

As a preliminary step toward using the contiguity problem as a GAND test problem, 



Table 5.1: sol la.'^ test da ta  set results, %G, with varying receptive field sizes, s, averaged 
over successful tra.ining runs ( % L  = 100). 

Solla's empirical results were replicated. Appendix A details that  work, showing similar 

results but with minor variations. 

For computational efficiency, Scott Fahlman's (1989b) Quickprop was used for the 

initial GAPU'D runs instead of back-propagation. But upon investigation, Quickprop 

was discovered to  provide the GA with a tveaker fitness function receptive field width 

discrimination signal on the contiguity problem, an illterestiiig observation but possi- 

bly problematical for the GA. Thus after the initial runs, ba.ck-propagation was used 

exclusively. Appendix B details the Quickprop versus back-propagation investigations. 

5.4.3 Training and Testing Data Sets 

There are 1024 possible 10-bit binary input vectors. To make these results comparable 

t o  Solla7s results, only input vectors containing either two or three clumps of Is  were 

used, a total of 792 vectors. For each network created, trained, and tested by GAND, 

100 of these 792 vectors were randomly selected for use as training exemplars and the 

remaining 692 were used as testing exemplars. Each input vector was paired with an 

output target value (a  vector in general, but since there was only one output node a 

single value results). Output target values of 0.9 and 0.1 were used as the above and 

below threshold output values, respectively. 



5.4.4 Genotype Represei~tatio~l 

The choice of genetic code is one of the more important facing a GA practitioner. As 

pointed out by Liepins and Vose (1990), the choice of genotype representation can 

make the difference between a problem being fully deceptive, partially deceptive, or 

n ~ n d e c e p t i v e . ~  Goldberg (1989c, pages 80-82) rela.tes GA coding choices to  underlying 

theoretical analytical motiva.tions, presenting two principles. 

1. Principle of meaningful building blocks: The user should select a coding so 

that  short, low-order schemata are relevant to  the underlying problem and rela- 

tively unrelated t o  schemata over other fixed positions. 

2. Principle of minimal alphabets: The user should select the smallest alphabet 

tha.t permits a natural expression of the problem. 

Initially, a general feedforward representation using the feedforward portion of a full 

interconnect matrix representation was employed. A binary coding was used, with a 1 

indicating the corresponding link was present and a 0 showing its absence. Such a code 

admirably adheres t o  Goldberg's second coding principle, but it violates the "relatively 

unrelated t o  schemata over other fixed positions" portion of his first coding principle 

because of the normal forms problem discussed in Section 5.7.1. This problem, intrinsic 

to  all connection matrix based representations of bad-propagation networks, is left to 

future research. 

The genetic code was capable of representing any feedforward architecture possessing 

10 input nodes, 10 hidden nodes, and a single output node. All hidden nodes had links 

t o  the output node. Thus, up to  10 hidden layers were logically possible, although 

each would consist of only one node. Figure 5.4 shows the coding for a network having 

a uniform hidden node receptive field size of two and no connections between hidden 

'A problem and representation are deceptive if they violate the building block hypothesis. Building 
blocks are short, low-order schemata of above-average fitness. The schema theorem shows that the 
representation of building blocks in the population tends to grow over time. When building blocks do 
not contain the global optima, deception is present - the GA is misled. If sufficient deception is present 
the GA is prevented from finding the global optima. 



Figure 5.4: Representation for a general feedforward architecture showing uniform hidden 
node receptive field size of two, where feedforward inter-hidden-node connections a.re 
allowed (but not present in the network specifica.tio11 shown). 1  codes for the presence 
of a connection and '.' codes for its absence. First row codes for presence of connections 
to  first hidden node from 10 inputs; second row codes for the presence of con~lections to 
second hidden node from 10 inputs and first hidden node; and the last row codes for the 
presence of connections to the last hidden node from the 10 input nodes and the previous 
nine hidden nodes. The binary genotype string would consist of the concatenation of all 
rows, with '.'s replaced by Os, and would therefore have a, length of 145 bits. 
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Figure 5.5: The same network as shown in Figure 5.4, but using a representation dis- 
allowing hidden nodes connecting to  other hidden nodes, so that only input nodes may 
connect to  hidden nodes. Thus, the representation consists of only the "Input Nodes" 
portion of Figure 5.4. This representation is only capable of coding the conventional, 
layer-oriented network architecture. As in Figure 5.4, each row codes for the connections 
t o  a single hidden node, with 1 denoting the presence of a connection and '.' denoting 
the absence of a connection. The binary genotype string would, again, consist of the 
concatenation of all rows with '.'s replaced by 0s and would have a length of 100 bits. 
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nodes. The actual genotype depicted in Figure 5.4 may be formed by replacing '.'s with 

0s and concateilating the rows. 

A few trial runs were performed using the general feedforward representation, but 

they showed an increase over randomly generated networks of no more than 4 percentage 

points during the first 20 generations in the generalization performance measure (%G) 

used by Solla.. Although any improvement is helpful, 4% is not enough to  make GAND 

a useful network design tool. To further simplify GAND's task, the general feedforward 

genotype representation was replaced by an inter-layer connection matrix representation 

coding for all possible links between the 10-input-node layer and a 10-hidden-node layer; 

as before, only the feedforward portion was actually used and all hidden nodes connected 

t o  the single output node. Figure 5.5 shows how the net,work of Figure 5.4 looks when 

represented using the inter-layer connection matrix representation. Note how the inter- 

layer connection matrix reduces the length of the coding from 1 = 14.5 bits to only 100 

bits. Such a reduction in search space size can have a significant effect 011 G A  performance 

(for example, see Section 5.5..5). All GAND results reported in the following section 

employed the in ter-layer connection matrix represen tation. 

The inter-layer connection matrix representa,tion is not a normal form, which simply 

means that  a. single network may have multiple codings when using the represents.- 

tion. For example, any permutation of hidden node order of a particular genotype will 

yield identical iletworks with respect to  the back-propagation training algorithm. Back- 

propagation has no notion of node order within a layer, so whether or not two hidden 

nodes are adjacent does not change back-propagation's behavior. However, permuting 

hidden node order in a genotype string results in a very different genotype from the GA's 

perspective. Multiple genotype codes for the same network results in symmetries in the 

search space. The question of normal forms is left to  Section 5.7.1. 



Figure 5.6: Generation number versus percent generalization performance on best initial 
GAND run. The horizontal line just above 63% is the performaace of the randomly 
generated networks of generation zero. 



5.5 GAND Results 

Having now set the context for GAND on the contiguity problem, this section presents 

empirical performance results. A number of GAND esperiments have been performed. 

In each case time histograms of average performance across the population are used to  

compare different experiments. It is important t o  realize that ,  in most cases, some indi- 

viduals in the populatioil performed considerably above or below the mean performance. 

Thus, the best individuals found by GAND during a simulation run often performed a t  

a considerably higher level than the mean population performance. 

The initial GAND runs were ~ n a d e  on IBM RTs using Quickprop and a population 

size of 20. Figure 5.6 shows one of these runs relative to the performance of the randomly 

generated networks of generation zero ( the  horizontal line a t  the bottom of the graph). 

The maximum increase of 10 percentage points in the population's average generalization 

performance measure, a 17% irnprovernent over randomly generated networks, is note- 

worthy, since it was obtained using a simple GA, a blind, reinforcement search technique 

given no problem-specific information whatsoever other than the scalar fitness signal. 

Notice that  randomly generated networks using Quickprop performed a t  the 63% 

level. a level noticeably higher than the fully connected networks. which performed a t  

only a 55% level (see Appendix B for additional details). Upon reflection this is not 

particularly surprising. Decoding edges plays an important role in solving the contiguity 

problem, and random connectivity makes for many randomly placed, relatively narrow 

hidden node receptive fields which are good a t  detecting edges. 

Despite the improvements in performance, these results are still marginal in terms of 

GAND being an effective tool for network design. In trying t o  understand why GAND 

did not find near-optimal networks, five hypotheses were considered. Each is a candidate 

problem that ,  when fixed, could result in GAND finding the high-performing networks. 

First, Quickprop's shallow discrimination slope as compared to  back-propagation's steep- 

er slope could be a problem (see Appendix B). Second, nondeterminism, or noise, in 

the objective function could seriously degrade the ability of the GA to  shepherd its 



population into near-optimal regions of the search space. Third, the population size 

selected may not have been large enough. Fourth, the GA may need a better objective 

function, such as might be obtained by incorporating a "link tax" t o  conserve allocation 

of links. And fifth, the poor performance may simply be due to too high a disruption 

by crossover - in effect, the schema theorem may not be satisfied. In addition each 

candidate probleill may be acting simultaneously, so that  several of them may together 

result in the mediocre performance observed. Of course, it is also possible that  the END 

approach simply does not work for network designs more difficult than the relatively 

simple problems tackled by researchers thus far. However, such a possibility seems 

unlikely since nature offers existence proof after proof that  evolutionary search solves 

tough design problems. Even so. there is no guarantee that the solution of any particular 

problem will be con~putationally tractable. 

The remaining sections present a series of siniulatioils designed t o  empirically char- 

acterize each of the candidate problems that  may be affecting GAND performance. Sec- 

tion 5.5.1 presents GAND runs using the back-propagation training algorithm instead of 

the Quickprop algorithm. It serves to  characterize GAND baseline performance. 111 each 

of the following sections. a single factor is varied from the baseline run's performance, 

allowing a direct test of each candidate problem's effect upon GAND performance. In 

Section 5.5.2 the effect of fitness function llolldeter1lliilis1l1. or noise. on GAND perfor- 

mance is explored by replacing the default fitness function with fitness averaged over 

three independent training trials, effectually reducing the fitness function's noise level. 

In Section 5.5.4 an alternate fitness fullction is tested by adding a connection cost, or 

"link tax," component to  the fitness function. In Section 5.5.3 population size is trebled 

to  check for too small a population size. In Section 5.5.5 elitist selection is used to check 

for excessive disruption. 



Figure 5.7: Baseline GAND back-propagation performance. 



5.5.1 Back-Propagation 

The first thing done was to  switch from using Quickprop back to  using back-propagation. 

As noted earlier, Quickprop provides a smaller discrimination slope than does back- 

propagation. Because of this, the succeeding runs were all performed using back-propa- 

gation. Also, these and all following runs were executed on IBM RS6000/320s because 

they are faster than IBM RTs. 

Figure 5.7 shows the time trajectory of average generalization performance for 41 

independent GAND runs, each started from a different pseudo-random number generator 

seed. For these runs and all succeeding runs (unless otherwise noted), a population size 

of 50 was used. Maximum GAND performance averaged a,cross all runs is about 73% or 

74%, 12 percentage points higher than randomly generated networks in the population's 

average generalization performance measure and a 20% improvement. Thus, using back- 

propagation instead of Quickprop does not provide significant improvement,. 

Each of the following sections present a series of GAND runs. In each case only a 

single factor is varied from the baseline back-propagation runs presented here, allowing a 

direct and meaningful empirical comparison of that factor's effect on GAND performance. 

Identical scales are used in the following graphs so that  the performance plots can be 

compared easily. 

5.5.2 Objective Fullctioil Noise 

Perhaps the most obvious potential problem is noise in the objective function. Call 

the initial weight vector used during a back-propagation training run the weight seed. 

Consider the performance landscape over the space of all possible weight configura- 

tions, and call it the weight space. When a feedforwa.rd network is trained using the 

back-propagation learning algorithm, the network starts a t  the initial weight seed and 

follows a generally downhill trajectory in weight space until1 it reaches a performance 

minimum. Provided the learning rate and momentuln parameters are appropriate to 

the objective function landscape being traversed (so that  'ridges' are not jumped), the 
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Figure 5.8: Solla's back-propagation versus the back-propagation GAND used: Hid- 
den node receptive field size versus percent generalization performance (%G) for back- 
propagation learning, 5,000 training epochs. The lighter line shows the average of the 
individual runs, each shown by a diamond. Also plotted using the heavy line are Solla's 
results. 

network's weights will converge to  the minimum within the basin containing the weight 

seed. When the same network is repeatedly retrained starting from a different randomly 

selected weight seed, a different basin ma.y be encountered, and a different local minimum 

may be obtained from each basin. 

Thus from GAND's point of view, when the same network is repeatedly retrained 

starting from different randomly selected weight seeds, a variance in the fitness of a single 

network results. Figure 5.8 shows hidden layer node receptive field size versus percent 

generalization performance (%G). Each receptive field size (each column in Figure 5.8) 

corresponds t o  one of nine unique network interconnect architectures. Each of these nine 

networks was run 30 times starting from different random weight seeds. The performance 

on the test da ta  set for each run is shown by a diamond. Thus, each column shows the 

performance spread resulting when a single network of specified receptive field size is 



repeatedly trained. The vertical spread may be viewed as variance, or noise, in the 

objective function value of the network architecture. The variance of each receptive field 

network's fitness was computed, and then the average of these variances was computed, 

yielding an overall average variance of 95.7, and a corresponding standard deviation of 

9.8. Obviously, considerable noise is present. 

A number of empirical studies have suggested that  GAS are good a t  optimization in 

the presence of noise (Jong, 1975; Schaffer, 1984; Fitzpatrick et al., 1984; Grefenstette 

& Fitzpatrick, 1985; Fitzpatrick & Grefenstette, 1988). However, no comprehensive 

analytical treatment of how much noise GAS can tolerate has been performed, nor has a 

rigorous definition of wha,t constitutes noise from the GA's perspective been proposed. 

The definition of noise developed in Chapter 3 will be applied to  GAND population 

sizing in Section 5.6. An empirical test of how fitness noise affects GAND performance 

is presented in Figure 5.9. The GAND runs depicted are identical to  those in Figure 5.7, 

except the fitness used t o  evaluate a genotype was the avera.ge performance of three 

independent back-propagation training sessions on the same network architecture, each 

started from a different random weight seed. Averaging independently obtained objective 

function performance figures for a single network architecture reduces the variance of the 

sampling distribution of means to  

where a$ is the variance of the sampling distribution of genotype fitness means, X ;  01 
is the variance of the genotype fitness population; and n is the number of independent 

1 
trials averaged, 3 in this case. Thus, the fitness variance seen by the GA should be - 

3 
of the variance of the objective function, or reduced from the 95.7 value obtained from 

Figure 5.8 t o  31.9. The reduction can be seen visually as the narrower vertical cross- 

section a t  generation zero in Figure 5.9 as compared t o  the baseline runs in Figure 5.7. 

More import an tly, although both runs started out with randomly generated genotypes 

performing a t  about the 61% fitness level, the reduced variance runs quickly rose to  a 

78% performance level while the baseline runs reached only 74%, an improvement of 



Figure 5.9: GAND performance using average of three independent evaluations of each 
network architecture. 



4 percentage points. Thus, averaging three independent evaluations t o  reduce fitness 

function noise resulted in a performance 17 percentage points higher than the randomly 

generated networks as measured in the population's average generalization performance 

measure, a 28% improvement over the random nets. Reducing fitness noise improves 

GAND performance, but it's still not optimal. 

5.5.3 Initial Investigation of Population Size 

I t  is important to  realize that  the reduction in fitness noise from the previous section is 

obtained a t  considerable computational cost - three times each genotype is translated 

into a network, trained, and t e ~ t e d . ~  Since training the network dominates computational 

time, this is computationally equivalent to  using a GA population three times as large, 

but training ea.ch network only once. Further, increasing population size is one of the 

factors identified that  may improve G AND performance. 

Does increasing population size improve GAND performance as much as reducing 

fitness noise by averaging multiple training sessions? To find out,  a series of GAND runs 

were performed using a population size of 150, three times the population size used in 

the baseline runs, and resulting in the same number of network evaluations as performed 

in the noise reduction runs of Figure 5.9. The resulting performance levels are shown 

in Figure 5.10. As can be seen, the additional computational resources produce GAND 

performance gains virtually identical to those using noise reduction, and for the same 

increase in computational cost. 

Section 5.6 presents an analysis of GA population sizing when noise is present in 

the fitness function. A statistical decision theoretic bound on useful population size for 

GAND on the contiguity problem is derived in Equation 5.17. Given a population size 

of 150 and working backwards from Equation 5.17 gives a z value of 0.77, corresponding 

t o  a 78% confidence level. In similar fashion, the baseline GAND population size of 50 

'Rebuilding the network from scratch for each independent evaluation is not strictly necessary; it is 
an idiosyncrasy of the GAND implementation. However, since building the network is cornputationally 
trivial compared to training the network, so little harm is done. 



Figure 5.10: GAND performance - population N = 150. 



corresponds to a 2 value of 0.44 and a confidence level of 67%. Thus, correct decisions are 

likely to  be made 78% and 67% of the time, respectively, with population sizes of 150 and 

50. Because of the various simplifying assumptions made at various stages of the analysis, 

both confidence level figures are probably higher than they are in reality. Nevertheless, 

both are considerably better than chance - 50%. As is empirically demonstrated in 

Section 5.5.5, the baseline population size is adequate, provided the schema theorem is 

satisfied, for good GAND performance on the contiguity problem. 

5.5.4 Link Tax 

In artificial neural network models, a price must be paid for each link, either in hardware 

for a parallel processing implementation, or in computation time for a serial implementa- 

tion. Each link also has an associated weight, or model parameter. Generally speaking, 

the fewer model parameters needed to adequately learn the data, the better the gener- 

alization performance. For both these reasons, it is natural to consider including a link 

tax as a component of genotype fitness. For the contiguity problem, however, including 

a link tax may be cheating, since it is known that a particular kind of sparse intercon- 

nect between the input and hidden layers yields superior generalization performance, 

and a link tax favors sparse interconnect. Despite this, there are compelling reasons for 

including a link tax independent of any a priori knowledge of the superior solutions. 

Does including a link tax improve GAND performance? To answer this question a 

series of GAND runs was performed using the fitness function 

where x is the genotype, f(x) is the unmodified fitness function from Section 5.5.1, nr, 

is the total number of links between the input and the hidden layers, and fL(x)  is the 

link-adjusted performance. Since the maximum possible number of links is 100, the effect 

is that fitness is scaled by the proportion of unused links, varying between 0% for full 

connectivity, to 100% when no connections are present.1° 

''Of course, when no connections are present the input is not connected t.o the output, and f(x) = 0. 



Figure 5.11: GAND performance - link tax. 



The resulting performance is shown in Figure 5.11. Note that although link-adjusted 

fitness, fL(x),  was used in these runs, the ordinate is the usual fitness, f (x), so as to allow 

direct comparison of these results with other GAND runs. The link-adjusted fitness runs 

begin with the usual 61% performance level obtained by randomly generated networks at  

generation zero. However, as compared to  the GAND baseline runs of Figure 5.7, there 

are several differences noticeable as the runs progress. First, the overall shape of the 

link tax performance curve is that of an 'S', while the baseline runs are an exponential 

increasing asymptotically to a constant. Second, the spread, or variance, of the link tax 

curve is noticeably larger than the baseline's. Finally, the maximum link tax population 

fitness is about 77 or 78%, as compared to  only 73 or 74% for the baseline runs, an 

improvement of 4 percentage points - similar to the improvement obtained by reducing 

fitness noise. Thus another candidate solution to GAND's mediocre performance, that 

of employing a link tax, bites the dust. 

5.5.5 Elitism 

Given that GAND is being asked to not only evolve good solutions to the contiguity 

problem, but to also settle upon a single, population-wide coding (as discussed in Sec- 

tion 5.4.4), perhaps the solution to GAND's mediocre performance is to use a selection 

scheme such as elitism (Grefenstette, 1986; Whitley, 1989; Eshelman, 1991; Schaffer 

et al., 1991). Elitism permits outstanding individuals within the GA population to 

increase their effect upon the gene pool by letting parents, without modification, to 

compete with children for positions in the succeeding generation. Thus, an exceptional 

individual may bypass crossover and mutation disruption while still contributing children 

to successive generations. 

Each GAND successor population was produced using Eshelman's (1991) population- 

elitist selection algorithm, which works as follows: 

1. A temporary population is generated by the usual binary tournament method used 

in the baseline GAND runs. 



2. The temporary population and the current population (the parents) are combined 

into a 2n intermediate population. 

3. The n genotypes having highest fitness in the intermediate population are included 

in the successor population. 

Thus the parents included in the successor population undergo no further mutation or 

crossover. 

Because the fitness function used by GAND on the contiguity problem is noisy, a 

'lucky,' or outlier, fitness evaluation could result in an average, or even below average, 

parent living indefinitely. To prevent this, each parent to be selected during step three 

undergoes an additional fitness evaluation which is averaged with its previous evaluations. 

If the parent, based on this new averaged fitness, is among the n best genotypes in the 

intermediate population, then it is included in the successor generation. Over a number 

of generations, this procedure reduces the fitness noise of the parent's evaluations. 

Figure 5.12 shows a series of GAND runs using elitist selection. The only thing 

changed between this series of runs and baseline runs of Figure 5.7 is that elitism has 

been added. Although the improvement in GAND performance is striking, the results of 

Figure 5.12 are not quite as good as they seem because elitism and the nondeterministic 

fitness function interact to  produce a "better half" effect. Consider an entire population 

consisting of a single genotype where the fitness function is noisy and no mutation is 

used. Under elitism the 2n intermediate population of step two will consist of identical 

genotypes, but since the fitness function is noise they will have a range of fitnesses, as 

shown in Figure 5.13. Only the "best halfn of the 2n population, the shaded area of 

Figure 5.13, will be included in the successor population. Thus, the average fitness of 

the new population, fa,, in the figure, is higher than the average performance of the 

genotype, fg in the figure. 

Elitism brings GAND performance up to the best levels obtained in any of the explicit 

human designs shown in Table 5.1. This is particularly good news for the evolutionary 

approach to ANN design, because elitism is a general purpose GA technique that is in 



Figure 5.12: GAND performance - elitism. 



number  

fitness 
Figure 5.13: Intermediate 2n population. Shaded area becomes successor population. 

no way specialized for the contiguity problem. Thus, there is reason to  hope elitism will 

be useful in other END tasks. 

Figure 5.14 shows two typical networks evolved to solve the contiguity problem from 

two different GAND elitist runs. Relatively narrow independent hidden node receptive 

fields (mostly of the  near-optimal widths of 3 ,4 ,  or 5 as shown in Appendix A) span the 

input vector, allowing the network t o  easily learn to  count the number of clump edges 

in the input. The network also has the 'dirty' appearance of extraneous connections 

common t o  networks evolved using END. 

Why is GAND's elitist selection performance so good? There appear to be two 

relevant factors, each related t o  the schema theorem. First, elitist selection has a higher 

selection pressure than binary tournament selection. Second, parents carried forward to  

successive generations undergo no disruption from mutation and crossover. An analysis 

of these two factors is now performed. 

Goldberg and Deb (1991) developed a context from which the relative strengths of 

various selection algorithms can be evaluated. They define the growth ratio a t  generation 



Solution Network 1  

Figure 5.14: Typical networks produced by GAND elitist runs. Each solves the contiguity 
problem. 
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where P; is the proportion of the best genotype in the population at time t. The 

proportion of genotypes with fitness greater than f; at  time t for binary tournament 

selection is 

Thus, the growth factor for binary tournament selection is 4i = 1 - Pi,t. 

For GAND's elitist selection Equation 5.6 becomes 

with the proviso that Pi,t+l can grow no larger than 1, resulting in an aggregate growth 

ratio of 

91 = 3 - pi,* (5.8) 

during the early phase of selection when Pi is not yet near 1. 

Consider the growth of the best individual x in the population at time t under GAND 

elitist selection. When considering disruption of x due to genetic operators like mutation 

and crossover in elitism, it is useful to think of the growth ratio 4 as the sum of two 

components, a part due t o  the action of the elitist inclusion of parents in successor 

populations, 4E, and a part due to the action of binary tournament selection, &,-, or 

Since the parents included in successor populations do not undergo mutation or crossover, 

only the tournament selection growth factor component undergoes disruption. Thus 

define net growth factor at time t as 

where c may be thought of as the disruption probabilities at each generation from the 

schema theorem. For x to  grow requires yt > 1, or 



Noting q5E,t = 1 whenever < 3 for the best individual in the population, solving for 

disruption yields 

6 < 1. (5.12) 

Equation 5.12 says that  for the best genotype,ll when the probability of disruption 

is less than total, growth will occur. This makes sense for elitist selection, since a t  each 

generation both superior parents and any newly created superior children are included 

in the  successor generation. GAND's elitism is conservative in the sense that  when- 

ever superior genotypes are created by crossover and mutation, they don't die until the 

population average fitness rises, which effectively makes the genotype inferior. 

Thus, elitism as implemented in GAND works well both because it has higher selec- 

tion pressure than binary tournaments and because the best genotypes, once created, 

are able t o  avoid the disruptive effects of crossover and mutation. 

5.6 Population Sizing with Fitness Noise 

The static population sizing equation derived in Section 2.3 assumes the fitness function, 

f (x ) ,  is deterministic and so makes no contribution to  schema fitness variance. But for 

GAND's contiguity problem the fitness function is nondeterministic, or noisy, because of 

the local minima encountered by back-propagation. In this section, the static population 

sizing equation, Equation 2.29, is a.djusted for fitness function noise. 

Fitness function noise may be modeled as ergodic, zero mean, additive, Gaussian 

noise, denoted by up. All the other assumptions from Section 2.3 are used here. In 

particular, the fitness function is still assumed to  be linea.r, so it may now be modeled 

where g ( o f )  is zero mean Gaussian noise having variance u2. Adding the sample variance 

" T h e  analysis presented applies to  only the best genotype, but may be extended t o  any genotype o f  
above-average fitness provided the population does not saturate. 



"' t o  Equation 2.22 yields a noise-augmented equation for the of the Gaussian noise, - 
n/2k ' 

variance of the sample mean fitness of a single, order-k schema, 

since the variance of a sampling distribution of a sum of random variables is the sum of 

the variances of the independent random variables. Working through to  the population 

sizing formula of Equation 2.29 as was done in Section 2.3 yields 

where 

Note that  the only difference between the function-noise augmented Equation 5.15 and 

Equation 2.29 is the p term in the 1 - k + p factor. Thus, function noise serves to  

increase, normalized by Walsh coefficient magnitude, the effective code length of the 

representation used, or I' = 1 + p. 

For GAND, the code length is 1 = 100, a.nd the schema. order is set to  k = 2, since this 

is the minimum possible relevant schema. size for the contiguity problem. To make further 

progress the two components of p must be estimated. To estimate 03, 100 genotypes 

were randomly generated. Each was then independently evaluated 50 times, with each 

evaluation starting from a different pseudo-random number generator seed, to  generate 

a reasonably accurate estimate of each network's mean performance and variance. The 

fitness variance of each of these 100 pseudo-random gellotypes was then averaged to give 

an estimated value of 03 = 21.8. Note that this estimate should be reasonably accurate 

for the random starting population since it is based on randomly generated genotypes, 

but the value of a; may change as the population evolves. 

To estimate the value of wi2, one bit in each of the 100 pseudo-random genotypes 

used in the 0; estimate was flipped so that  each genotype had a different bit flipped. 

The modified genotypes were then each evaluated 50 times, again each starting from 



a different pseudo-random number generator seed, to generate an estimate of the aver- 

age performance of each modified individual. The magnitude of the difference between 

the average performance of each pair of (modified and unmodified) genotypes was then 

averaged across all the individuals to obtain an estimated value of wi = 0.88. 

Using the estimated values of oj and w i 2  produced estimated value of p = 28.4. 

Substituting for I ,  k, and p in Equation 5.15 yields 

Equation 5.17 is a decision-theoretic population size estimate for GAND on the contiguity 

problem. Choosing a confidence interval of 90% yields a, value of z2 = 1.64 from Table 2.4 

and a population size of ~z = 415. The comparable population size for a deterministic 

fitness function is n = 321. Thus for the contiguity problem and GAND coding used, 

fitness function noise should have a noticeable but minor effect, a result consistent with 

the empirical results of Section 5.5.2. 

As with Equation 2.29, Equation 5.17 is based on the assumption that it makes a 

linear approximation of the fitness function. Likewise, Equation 5.17 applies only to the 

initial, randomly generated population, both because the population sizing equation of 

Section 2.3 only applies to the initial population, and because the estimates of up and 

wi2 were based on randomly generated genotypes. Thus as mentioned in Section 2.3, the 

large population sizes derived for GAND on the contiguity problem should be viewed as 

an approximation. Further, as the GA runs and the number of genotypes in the superior 

schemata increases, their associated fitness variance will decrease and a smaller popu- 

lation size may be sufficient to choose among competing schemata, as was empirically 

observed in Section 5.5.2. 

5.7 END Discussion 

The GAND work presented here tackled an architectural space containing systematic, 

non- t rivial, connectivity features having a significant impact on network generalization 

performance. Of the variety of GAND improvements examined, elitist selection worked 



best, producing near-optimal architectures having performance similar t o  the best hand- 

designed architectures. 

But as pointed out in Section 5.4.4, the inter-layer connection matrix representation 

used by GAND on the contiguity problem suffers on two counts. First, it is not a compact 

representation. Second, it is not a normal form with respect to back-propagation - a 

single network may have multiple codings. Both of these reasons contribute to the 

possibility that GAND using a connection matrix representation may scale up poorly. 

In Section 5.7.1, possible normal form representations are considered. In Section 5.7.2, 

other GAND future research directions are discussed. As concluding remarks, Section 5.8 

presents an overview of the relevance of END in the endeavor to use massively parallel 

computational resources to solve difficult problems. 

5.7.1 Normal Forms 

When using a connection matrix style representation, any ANN model, such as back- 

propagation, which does not respect node order within a layer will have multiple genotype 

codes for the same network. This can be a problem for GAND both because it increases 

the size of the search space without increa.sing the expressiveness of the representation, 

and because two identical networks having different representations can produce non- 

viable offspring. In a normal form representation each network architecture is coded by 

only a single genotype, eliminating both difficulties. 

For a specific example of how multiple codes can pose difficulty for GAND, consider 

genotypes A and B in Figure 5.15, two network specifications coded using the inter-layer 

connection matrix representation. These two genotypes represent one and the same 

network from back-propagation's perspective, a network which happens to perform well 

on the contiguity problem. But from the GA's perspective they are entirely different 

networks. In fact when they are bred by the GA, their offspring are likely to perform 

very poorly. For example, if a single crossover point'2 fell exactly in the middle of the 

I2Note that the same kind of problem also arises with multi-point crossover operators. 



Genotype A Genotype B 

Child 1 Child 2 

Figure 5.15: How twoidentical networks can produce non-viable offspring. Four genotype 
network specifications are shown. Each is a connection matrix showing the input-to- 
hidden-layer connections as in Figures 5.5 and 5.14. Genotypes A and B are identical 
networks from back-propagation's perspective, but have very different codings. Child 1 
and 2 result from a midpoint crossover of genotypes A and B. Note that  child 1 has no 
connections from the right side of the input field and child 2 has none from the left; thus, 
each child has poor performance on the contiguity problem. 



Genotype C Genotype D 

Child 3 Child 4 

Figure 5.16: Left-most normal form representation. Although superior to  the standard 
connection matrix representation shown in Figure 5.15, left-most normal form can still 
produce non-viable offspring from superior networks. Genotypes C and D are each net- 
works, shown in left-most normal form, that cover the input field with narrow receptive 
fields. Child 3 and 4 are the offspring resulting from a midpoint crossover of genotypes 
C and D. Note that  each child is missing edge detection coverage from nearly half of 
the input field, since isolated connections (receptive fields of width one) cannot decode 
edges; thus, each child is non-viable. 



genotype (between the fifth and sixth rows), child 1 and 2 in Figure 5.15 would result. 

Each of these networks will perform poorly, since each has no connection t o  nearly half the 

input layer, while having duplicate connections t o  the other half of the input layer. Thus, 

GAND is required t o  not only optimize nondeterministic network performance, but must 

also settle upon a single genotypic sub-code across the GA's population from among the 

many possible, semantically equivalent representations allowed by the connection matrix 

form of representation. 

For the contiguity problem a 100-bit genotype was used, so the space being searched 

is of size 21°0. However, this space is larger than required because of search space 

symmetries; the space of unique network architectures for the contiguity problem is 

considerably smaller. The situaiion is much as though the GA were required t o  search 

the space formed by the Cartesian product of the network space intrinsic to  the contiguity 

problem crossed against a large number of different representations. This will be called 

the multiple codes problem. 

Thus a normal form representation is desirable, provided it does not introduce a 

nonlinearity worse than the multiple codes problem. One possible normal form repre- 

sentation is t o  order each hidden node's position in the 100-bit, 10-hidden-node genomic 

code by first left-most connection, with ties being recursively broken by next left-most 

connection. However, for the contiguity problem, a first left-most normal form represen- 

tation doesn't seem to  fit the semantics of what is important in the network architecture 

t o  solving the problem, namely, the location of size two (or larger) receptive fields. To 

see this clearly, consider genotypes C and D shown in Figure 5.16; each is in left-most 

normal form. When these two individuals are bred with a crossover occurring in the 

middle of the genotype, the same problem occurs as was shown in Figure 5.15 - child 

3 has no functional receptive fields (having size two or greater) on the right side of the 

input field, while child 4 has no functional receptive fields on the left side of the input. 

So it is not simply that  a normal form is needed, but rather, a normal form is needed 

which respects relevant network structure. 

Since what is relevant in the network structure is likely t o  be problem dependent, 



Genotype C' Genotype D' 

Child 3' Child 4' 

Figure 5.17: Left-most largest normal form representation. Genotypes C' and D' are 
the same two networks as gentoypes C and D shown in Figure 5.16, but are here shown 
in left-most largest receptive field normal form. Now, when they undergo a midpoint 
crossover, the children are each viable. 



Genotype A' ' 

receptive field 

Figure 5.18: Left-most single receptive field normal form. Network genotypes A and B, 
from Figure 5.15, are shown here in left-most single receptive field normal form. Note 
that  the two identical networks now have identical genotypes, as there is only one way 
t o  represent a network. 
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contiguity problem, a left-most largest receptive field normal form seems sensible. Fig- 

ure 5.17 shows genotypes C and D from Figure 5.16, but converted t o  left-most largest 

receptive field normal form. Note that when C' and D' are bred, and no matter where 
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the crossover point occurs, relatively viable offspring will be produced. This is a big 

improvement over the kind of result shown in Figure 5.16. Now in some sense, use of 

a normal form tailored to  respect receptive field position on the contiguity problem is 

cheating, since it is known beforehand that narrow receptive fields are advantageous. 

However, t o  the extent that  receptive fields prove to  be generally useful on a variety of 

problems, using left-most largest receptive field as a generic norinal form is a sensible 

thing t o  try. But, of course, when multiple layers are coded, problems arise. 

A yet more restrictive normal form may be obtained by using the first left-most nor- 

mal form, but allowing only a single receptive field per hidden node instead of arbitrary 

inter-layer interconnect - first left-most single receptive field normal form. Each hidden 

node's interconnect could then be coded using only two parameters, starting position and 



width of the receptive field. Figure 5.18 shows the networks A and B from Figure 5.15, 

but now in first left-most single receptive field normal form, in which identical networks 

have identical genotypes. 

5.7.2 Future GAND Research 

END is still very much an infant discipline. The GAND work presented here demon- 

strates END can find superior architectures for a challenging problem. However, much 

work remains and many areas still need to  be addressed. In this section, some of the 

options for further research are outlined. 

Elitist selection performance was far superior to  the other GAND runs. The analysis 

of Section 5.5.5 showed two possible reasons for the improved performance - higher 

selection pressure and protection of genotypes from disruption (the elitist part of the 

selection scheme). But exactly how much of the improvement is due to  each factor? 

As a first step towards an answer, a non-elitist, ternary tournament selection GAND 

run should be performed since it has a selection pressure similar to  the elitist selection 

used, especia.11~ in the early stages of the run. The difference in performance between 

the ternary tournament selection runs and the elitist runs will then be partly due to  the 

elitist protection of existing genotypes from disruption. 

How much elitism is helpful? For example, the 100% elitism used by the GAND elitist 

runs (all genotypes compete for positions in the successor population) may be counter- 

productive by excessively reducing exploration when a majority of the new population 

are elitist parents. For example, some elitist selection schemes include only the single 

best genotype in the successor generation. To answer this question, a series of GAND 

runs can be performed varying the proportion of genotypes competing for positions in 

the successor generation. 

GAND has used back-propagation training algorithms in which weights were updated 

after each epoch (complete presentation of the training data  set). The number of training 

exemplars needed t o  adequately characterize the gradient should be explored. An easy, 

adaptive way to  do this is to  include number of training exemplars per weight update 



in the genotype as a parameter to be optimized by the GA. At the same time GAND's 

stopping criteria must be changed from a fixed number of epochs to a fixed number of 

training exemplar presentations. 

An empirical study would be useful which constrasts the performance of the three 

normal forms of Section 5.7.1 - left-most first connection receptive field, left-most largest 

receptive field, and left-most single receptive field - with the connection matrix repre- 

sentation used in the GAND results presented in Section 5.5. 

The use of a multidimensional genotype and crossover operator (McMahon & Fox, 

1991) should be tested in place of the customary one-dimensional genotype and crossover. 

Multidimensionality allows the receptive field work being done by the GA on one hidden 

node to be local, or adjacent, to multiple other hidden units with respect to crossover. It 

may well be the non-locality (with respect to  crossover) between hidden node represen- 

tations that makes the contiguity problem particularly difficult for the non-elitist, simple 

GA. Note that the mutation operator need not change when using a multidimensional 

genotype. 

As discussed in Appendix B, Quickprop provides a reduced discrimination signal 

for narrow receptive fields on the contiguity problem as compared to  back-propagation. 

Because of this, all but the first exploratory GAND runs were performed using back- 

propagation. Now that elitism has been used to minimize disruption (essentially, getting 

the schema theorem right), an additional set of runs using Quickprop should be used to 

explore the performance of GAND on the contiguity problem using Quickprop's reduced 

narrow-receptive-field discrimination signal. 

GAND was only run on the contiguity problem. Although the contiguity problem is a 

particularly good END test problem, other problems should also be tried. For example, 

the X-OR problem could be run on GAND to verify that the results are comparable 

to  those obtained by others. It is especially important for END to  tackle more difficult 

problems and ANN models, especially where good architectures are currently not known. 

Hebbian network architectures would seem particularly promising in this respect because 

of their biological plausibility. 



Related t o  the symmetry and normal form issues is developmental specification - 

how much and what kind of developmental translation should be performed in converting 

a genotype into a phenotype. Motivation for developmental specification is twofold. 

First, a more compact network specification usually results, reducing the size of the 

search space. But of course, a t  least a portion of the superior network architectures must 

be able t o  be expressed. Second, biology does this. For example, there is considerable 

evidence suggesting the number of genes coding for the human brain is substantially 

smaller tha.n the number of neuron connections in the ma.t,ure brad11 (Gierer, 1988). The 

present GAND work used a connection matrix representation with no developmental 

mechanism. A developmental mechanism should be incorporated into GAND, perhaps 

a graph L-system grammar as was done by Kitano (see Section 5.3.6). 

A related issue is the interplay occurring in natural nervous systems between develop- 

ment and learning. For example, in humans a t  around eight years of age, a massive die-off 

of synapses occurs, effectively pruning neural connectivity. Although various architec- 

ture modifying mechanisms have been developed for ANNs (as mentioned in Section 5.3), 

they have yet to  be combined with END. Such work should be undertaken. 

Finally, the various parameters common to  ANN models are also candidates for op- 

timization by inclusion in the genotype, including the connection weights themselves 

- for example, see Whitley et  al. (1989). Belew, McInerney, and Schraudolph (1990) 

have empirically shown that  solving the symmetry problem by optimizing learning rate, 

momentum, and a coursely coded initial weight vector using a GA is similar in total 

computational time t o  running a single back-propagation network on the same problem 

using conventional settings for these parameters. This counter-intuitive result is appar- 

ently attainable because for certain initial weight vector regions, very high learning rate 

and momentum values become feasible. 



5.8 GAND Conclusion 

Because of fundamental physical limitations of computational implementation technolo- 

gies (especially the speed of light) the future speedup of serial, uniprocessor computer 

architectures is strictly limited. Thus, massively parallel computer architectures are be- 

ing actively investigated as an alternative means of bringing additional computational 

resources t o  bear upon difficult problems. However, writing large, complex programs 

on uniprocessors taxes programming technology. Explicitly dealing with parallelism is 

known t o  dramatically increase programming difficulty. A number of approaches to pro- 

gramming parallel processors are actively under investigation and may eventually become 

economically attractive. 

Of course some algorithms, such as artificial neural networks,13 are intrinsically par- 

allel, and thus may be more easily implemented on parallel hardware. They effectively 

up-level the difficult parallel programming problem to  one of choosing an ANN model, 

architecture, and training regime. As relatively cheap, massively parallel neurocom- 

puters become available, the issues surrounding network design will continue to  gain in 

economic and intellectual importance. 

Given a specific problem to  be solved, the task of choosing superior A N N  architec- 

tures has been characterized here as the network design problem. Evolutionary network 

design has been demonstrated as a candidate solution for the network design problem. 

It can provide a systematic way t o  handle all aspects of the network design problem. It 

can also make good use of massively pa.ralle1 computa.tiona1 hardware, both a t  the ANN 

architecture and in the fitness evaluation portion of END. Thus, evolutionary network 

design has a potentially important role to  play in bringing massively parallel computa- 

tional hardware to  bea.r on difficult problems susceptible to  solution by artificial neural 

networks. 

13For that matter, genetic algorithms are also highly parallel in the fitness evaluation of each genotype, 
the time-consuming part of END. 



Chapter 6 

Discussion 

In this chapter the present work is discussed and opportunities for further research are 

assessed. The present work is related to  the schema theorem in Section 6.1. The relevance 

of the signal-to-noise ra.tio (SNR) to  GA decision-ma.king is discussed in Section 6.2. 

Opportunities for extending the current work are outlined in Section 6.3. Finally, the 

conclusions of this work are summarized in Section 6.4. 

6.1 SNR, Schema Theorem, and GA Convergence 

Despite its simplicity, the genetic algorithm is a highly complex dynamical system capa- 

ble of solving difficult problems through use of a scalar reinforcement signal. Although 

considerable theoretical progress has been made in understanding GA function, and the 

fact that  GAS do converge has been well established empirically, exactly how they con- 

verge continues to  resist a complete analytic treatment. An analytic treatment of GA 

convergence is important. A GA convergence proof would provide a more detailed un- 

derstanding of how GAS work, which should, in turn, aid the applica.tion of GAS t o  

difficult problems. It may also provide additional insight into when the GA will and will 

not converge to  a globally optimal solution. 

A key early insight was the notion that schemata are central to  the function of GAS. 

Based on that  insight, the schema theorem provides an analytical statement about how 

schema average fitness relates to  expected GA convergence. Two convergence regimes 



for schemata result - an early, exponential growth regime (or decay regime, depend- 

ing upon whether schema fitness is above or below population average fitness), and a 

later, asymptotic regime in which schema population proportions approach saturation 

(or extinction). 

Another key insight is the notion that competition partitions are central to  GA 

function. The competition partition is the locus of GA convergence - it's where GA 

convergence occurs. 

The present work explores the role of fitness variance in GA function. Fitness variance 

relates t o  GA convergence through GA decision-making. As will be discussed in the next 

section, schema fitness variance relates to  the quality of the GA decision-making taking 

place between competing schematain each partition. More specifically, the SNR provides 

a measure of the quality, or correctness, of the decisions the GA makes in each partition. 

To reach this conclusion, a number of steps were taken. 

First, a Walsh basis expression for schema fitness variance is derived. It is useful 

because the Walsh basis respects the wa.y competition paatitions structure the GA's 

search space. Signal, noise, and the SNR are defined, providing a relative measure of the 

quality of GA decision-making in each partition. Walsh basis expressions are derived for 

each, yielding a particularly lucid, fitness-function-independent expression (the effects 

of the fitness function are captured by the Walsh coefficients) for the SNR in the flat 

population. 

A simple GA demonstration problem is empirically examined and then analyzed, 

showing how the SNR relates t o  domino convergence and providing new insights into 

GA convergence and convergence stall. The SNR provides a rank ordering, or queue, of 

competition partitions with respect to  each partition's ability to  control selection events. 

In effect, the competition partition SNR is a step towards generalizing the schema fitness 

ratio used in the schema theorem from schemata t o  competition partitions. Just as 

the schema fitness ratio provides a measure of how selection drives individual schema 

growth and decay, so too the SNR provides a measure of how the GA allocates its limited 

selection events among competition partitions, which, as discussed in the next section, 



directly relates t o  partition convergence. Thus, a new analytical tool is available to  

explore and analyze GA convergence. 

A clear graphical demonstration of domino convergence and convergence stall is given 

by the simulation runs of Chapter 4. However, domino convergence is a general phe- 

nomenon not limited t o  monotone fitness functions or binary coded parameters. In 

fact, it may well be the rare fitness function, such as functions of unitation* (Goldberg, 

1990a), which do not undergo domino convergence. But even that  case can be viewed as 

a degenerate case of domino convergence, where all order-one partitions belong t o  the 

same equivalence class in the total order induced by the SNR. 

6.2 GA Decision-Making 

The signal versus noise perspective provides new insight, based on a statistical-decision- 

theory-motivated analysis, t o  the quality of decisions2 the GA makes in each competition 

partition. The simple version is obtained by assuming, as was done by Goldberg and 

Rudnick (1990), a bitwise linear problem (or approximation to  the problem) and consid- 

ering only order-one partitions. It results in a population sizing Equation, 2.29, providing 

a probabilistic bound on the GA choosing the second-best schemata, over the best in the 

first generation due to  stocha.stic sampling error in the population - a worst-case esti- 

mate in the sense that  choosing any other schema (for example, the third best) over the 

best will be no more likely. Although this is an explicit analysis, both the restriction t o  

order-one partitions and consideration of only the best two schemata in a partition are 

limitations. 

The SNR of Chapter 3 generalizes the population sizing equation to arbitrary parti- 

tions and times. It induces a total order over partitions with respect to  the correctness, 

'The unitation function is the number of Is in a binary string, and functions of unitation are functions 
of the number of 1s in the string. For example, the number of 0s in a fixed-length binary string is a 
function of unitation. 

'Quality of decisions, here, refers only to the aspect of decision-making concerning the adequacy of 
the GA population's sampling of the search space. The related but separate issue of deception leading 
the GA astray is not addressed. 



or quality, of the decisions the GA makes in arbitrary partitions. Each partition can 

be thought of as a hog trying t o  feed a t  the selection trough. A partition feeding cor- 

responds t o  controlling selection events. The SNR ranks each partition as t o  its ability 

t o  get t o  the trough - the higher a partition's SNR, the more control it has over the 

GA's selection events and the better are the resulting GA decisions, or choices, between 

that  partition's competing schemata. Partitions that  have a relatively low SNR don't 

get t o  feed a t  the trough - they don't control selection events. How much a partition 

feeds once it gets to  the selection trough depends on how hungry it is, which isn't directly 

measured by the SNR; the SNR only measures a partition's ability to  get t o  the selection 

trough. Thus, the SNR is directly related t o  how much additional convergence occurs 

in the partition, but is not a measure of the partition's expected convergence. Parti- 

tions with high SNRs but little diversity aren't very hungry - they're already mostly 

converged; they can get t o  the trough easily, but don't feed much once they are there. 

A good overall picture of how this works is provided by Chapter 4's domino con- 

vergence simulat,ions of the f (x) = x problem, Figure 4.1. Initially, only the high- 

significance bit positions get to  feed a t  the selection trough (control selection events), 

receive good GA decision-making, and converge. The low-significance bit positions can't 

get t o  the trough, resulting in essentially random GA decision-making in those partitions. 

The poor decision-making, combined with crossover to  mix the linkage between high- 

significance and low-significance positions, results in essentially3 no convergence at  the 

low-significance positions. However, as convergence proceeds, the high-significance bit 

positions converge, eventually resulting in a SNR of 0. This results, for the unconverged 

positions of lesser significance, in a lowering of external noise and an increase in their 

SNR, enabling them t o  feed a t  the selection trough, improve their GA decision-making, 

and move towards correct convergence. 

When the more-significant positions are mostly but not fully converged, they will 

3 0 f  course, this depends on population size. For population sizes of the order of the size of the search 
space and larger, some convergence would occur at all positions. However, for population sizes that are 
small relative to the size of the search space, essentially no convergence occurs at the low-significance 
positions. 



have high SNRs; they get first crack a t  the selection trough. But since they are already 

nearly fully converged, they aren't very hungry - they seldom differ a t  the partition's 

fixed positions, and thus seldom compete t o  control selection events. Because they aren't 

hungry, they feed little a t  the trough and seldom control selection events. This allows 

partitions with lower SNRs t o  feed. 

When the mutation rate is large with respect t o  genotype length, convergence stall 

occurs. In effect, the higher mutation rate makes each higher-significance position hun- 

grier, with the result that  each feeds more a t  the selection trough. By the time the 

low-significance positions get t o  the trough no food is left - they are starved out, con- 

trol few selection events, do not get good decision-making, and thus fail to  converge. 

We argue that  for any fitness function the SNR induces a. total order of partitions 

with respect to  the quality of the GA decision-making for the partition. For example, 

if the bit positions in the f (x) = x problem are ra.ndomly permuted, but each bit's 

contribution to  fitness remains unchanged, the GA's function is essentially ~ n c h a n g e d . ~  

Although the lucid plots of Figure 4.1 become scrambled, the SNR still orders partitions 

by quality of GA decision-making, and convergence order by pre-permutation bit position 

remains unchanged. 

6.3 Future Research 

This section explores possible extensions and additional research based on the current 

work. In Section 6.3.1 the relevance of schema fitness variance and the signal-to-noise 

ratio (SNR) t o  GA convergence is discussed. Suggestions are made to  extend the present 

work toward a general analytic model of GA convergence. Section 6.3.2 discusses other 

extensions of the SNR work. Section 6.3.3 suggests an extension to  the fitness variance 

based population sizing work. Section 6.3.4 discusses possible extensions and enhance- 

ments t o  the domino convergence work of Chapter 4. Finally, note that  the GAND 

'Of course, the linkage association, crossover mixing time, or how much hitchhiking occurs changes, 
but this can be eliminated by using uniform crossover. 



evolutionary network design work was discussed in Section 5.7, including areas for fur- 

ther work, and especially focusing on representational issues. 

6.3.1 Fitness Variance and GA Convergence 

Much additional work is needed to  make the connection between the SNR and GA 

convergence analytically explicit. First, a proper analytic definition of GA convergence 

is essential. Second, a proper analytic definition of selection pressure is also needed, 

since selection is the engine driving GA convergence. Finally, the convergence definition 

should be capable of being analytically related t o  both the SNR and selection pressure. 

A GA convergence measure should meet five criteria. 

1. It should be analytic. 

2. There are two different meanings of convergence. One is static, measuring how 

much convergence has occurred; it might be termed convergence level, C1. The 

other is dynamic, measuring how much convergence is currently taking place; it 

might be termed instaiztaneous convergence rate, C;. Both are functions of time. 

Convergence level should simply be cumulative instantaneous convergence since 

generation zero, or 
rT 

where T is the time of interest. 

3. In order to  allow a structural aspect to  the definition, convergence should include 

some notion of distance in the search space, or solution similarity. 

4. Since both domino convergence and the SNR work indica,te the structural unit in 

which convergence occurs is the competition partition, a definition of convergence 

should apply equally t o  populations and competition partitions. 

5.  A convergence measure should allow the fitness function's effect on convergence t o  

be ascertained. 



An information-theoretic definition of GA convergence (Wilson, 1987) seems promis- 

ing based on exploratory empirical GA simulations. It would be based on entropy, 

with the usual probabilities replaced by either genotype or partition schema population 

proportions, depending upon whether population or partition convergence is being mea- 

sured. Information redundancy would then serve as the measure of convergence. First, 

it is analytic. Second, it should be usable for both convergence level and instantaneous 

convergence. Third, it can be applied to  the similarity subsets of partitions, and thus 

incorporates a notion of distance, or simila.rity, in the solution space. Fourth, it can also 

be applied to  populations. And fifth, since the SNR can be stated in terms of the struc- 

ture of the fitness function by using the Walsh basis, an information theoretic definition 

of convergence has the potential to  relate the structure of the fitness function to  the 

GA's convergence behavior through the SNR. 

Goldberg and Deb's (1991) instantaneous growth ratio5, 4, might be used as a rigor- 

ous, analytic definition of selection pressure. Whether that  definition is appropriate for 

use in the SNR and convergence context must be determined. 

Given rigorous analytic definitions for selection pressure, convergence, and the SNR, 

the goal is t o  combine them t o  derive an analytic expression for instantaneous conver- 

gence as a function of selection pressure and competition partition. Doing this will bring 

a rigorous GA convergence proof a step closer. 

One specific issue in need of clarification is the role played by partition order. For 

example, preliminary GA simulations suggest the SNR is monotone in partition order. 

This makes sense, since the higher the partition's order the more squared Walsh coeffi- 

cients are in the numerator of R(J)  and t.he fewer are in the denominator. This might 

be interpreted as suggesting convergence rate increases with partition order, and thus 

the higher-order partitions should converge first, a patently counter-intuitive result. But 

entropy also appears t o  be monotone in partition order for both randomly generated 

populations and partially converged populations, and thus may balance out the SNR 

'See Section 5.5.5 



increase. 

Finally, the addition of noise t o  the fitness function should be explored, both as a 

means of controlling premature convergence and as a possible means of improving the 

quality of GA solutions. 

6.3.2 Other Signal-to-Noise Ratio Extensions 

In addition t o  the GA convergence work outlined in the previous section, several other 

extensions t o  the signal versus noise work of Chapter 3 are possible. First, a Walsh basis 

schema fitness variance expression for non-uniform populations can be derived along the 

lines Bridges and Goldberg (1991) ha.ve taken with the Wa.lsh schema transform and as 

suggested by Goldberg and Rudnick (1990). Using it, a non-uniform version of the Walsh 

basis SNR expressions can be derived. Second, an order-approximation for R(J)  can be 

derived similar t o  that  done by Goldberg (1989a) with f(')). And finally, an operator- 

adjusted version of the SNR might be derived along the lines taken by Goldberg with 

the operator-adjusted version of the schema theorem (Goldberg, 1989b). 

6.3.3 Population Sizing 

The static population sizing analysis presented in Section 2.3 might be improved by 

eliminating the assumptions about fitness function linearity and Walsh coefficient equal- 

ity. The full Walsh fitness variance formula, Equation 2.18, can be used, resulting in a 

more accurate specification of the population size needed to  achieve a specificed level of 

confidence on the initial decisions the GA makes between two competing schemata. 

Once a non-uniform version of the Walsh basis schema fitness variance expression is 

derived (see 6.3.2), it should be used to  derive a dynamic version of the population sizing 

formula. Such a formula could be used t o  place rigorous, statistical-decision-theory-based 

bounds on the probability of GA decision errors between two competing schemata, given 

a specific population. 



6.3.4 Domino Convergence 

There are several ways in which the various models of domino convergence for the f (x) = 

x problem may be enhanced or extended. First, the initial window width model of 

Section 4.2 may be generalized t o  times beyond the initial generation by replacing the 

random population assumption with the expressions, derived in Section 4.3, for the 

proportions of each allele in the fully and partially converged regions. 

Second, the refined model for the expected GA trajectory of Equation 4.16 (propor- 

tion of 1s in succeeding generations, Pi,t+l) can be coded and run on a computer to  

compare its predictions with actual simulation results. This would produce 2-d perspec- 

tive plots like those in Figure 4.1. It would also yield predictions of the steady-state 

behavior and stall points of the GA for various levels of mutation. 

Finally, attempts should be ma.de to a.djust the streamlined model of Equation 4.17 

for the accumulation of mutations across generations, allowing it to  more accurately 

predict the st.all point behavior observed in the empirical runs. 

6.4 Conclusion 

Domino convergence and convergence stall are fundamental t o  GA function. Although 

they are GA convergence phenomena, they result from the ability, or inability, of the GA 

t o  make correct decisions within competition partitions. Partition's whose schemata are 

adequately sampled converge; those not adequately sampled stall. 

Schema fitness variance relates to GA decision-making through statistical decision 

theory, 1ea.ding t o  a signal versus noise perspective relating schema fitness variance to 

GA decision-making. The resulting signal-to-noise ra.tio is a measure ordering compe- 

tition partitions with respect t o  the quality of GA decisions they may be expected t o  

experience. 



Appendix A 

Characterizing Contiguity Problem 

As a preliminary step toward using the contiguity problem as a test problem for GAND, 

Solla's reported empirical results were duplicated. In the process, a number of parameter 

values were set. Unless otherwise noted, all descriptions and specifications apply both 

t o  the duplication of Solla's work and to  the various GAND runs reported in Chapter 5. 

Solla used a da ta  set containing all 792 possible input vectors of size 10, containing 

either two or three clumps of 1s. This data  set was partitioned into a. training data  set 

of 100 exemplars and a testing data  set consisting of the remaining 692 exemplars. In 

the  present work for ea.ch independent network to  be trained, the 792 input exemplars 

were randomly partitioned into training and test data  sets so as to  avoid the possibility 

of a systematic bias being introduced due t o  a single fortuitous or adverse partitioning. 

Target vector values of 0.1 for negative output (occurring when the number of clumps of 

1s in the input field where less than or equal to 2) and 0.9 for positive output were used. 

The receptive fields of size s a.t the beginning a.nd end of the input vector are allowed 

t o  bump up against the edge of the input field, remaining width s rather than being 

truncated. This way the p = 10 width receptive fields correspond to  fully connected 

layers. 

A uniform distribution in the interval (-0.5,0.5) was used for setting initial random 

weights. This may be of relevance, since several people have shown that  back-propagation 

can be particularly sensitive t o  initial weight vectors (Belew et al., 1990). 

The values of X = 1 (the esponential scaling factor in the logistic function), a mo- 

mentum of 0.9, and a learning rate of 0.05 were used. A stopping epoch number for 



GAND runs of 2000 was used except as otherwise noted. Per-epoch weight updates were 

used throughout the present study. 

In order to  verify whether the GAND results are comparable to  those of Solla repro- 

duced in Table 5.1, a set of runs intended to  duplicate Solla's results were performed. 

The results are shown in Figure 5.8, which contrasts hidden node receptive field size ver- 

sus percent generalization performance, showing both the comparison runs and Solla's 

reported results. Each of 30 randomly initialized runs per receptive field size is shown by 

a diamond, the average for each receptive field size is shown by the lighter line, and the 

corresponding averages obtained by Solla (listed in Table 5.1) are shown by the heavy 

line. 

Several things can be seen here. First, there is considerable spread in performance 

(variance) for each network. Second, the comparison run's results and Solla's results 

are quite similar except for the mid-range receptive field sizes of p = 5 and 6, where 

the difference looks significant based upon the spread of the comparison runs (the dia- 

monds). Solla reported no variaace data to go with the reported averages; thus, level of 

confidence comparisons axe not directly possible. However, these results strongly suggest 

there is some difference between the network model used here and Solla's. Third, Solla 

reported all p = 3 simulations achieved 100 percent performance on the training set, 

while several of the 30 comparison back-propagation runs did not. All in all, however, 

these differences are rather minor since both curves representing average performance 

monotonically increase as receptive field size decreases from 10 to 3. 



Appendix B 

Quickprop versus Back-propagation 

Fahlman's Quickprop algorithm was implemented in GAND because it is much faster 

than back-propagation (nearly an order of magnitude on the contiguity problem). Such 

a speed improvement is fairly common (Regier, 1990; Fahlman, 1990; Fahlman, 1989b). 

The generalization performance of Quickprop is compared to  that  obtained from 

GAND's back-propagation in Figure B.1. Each of 30 randomly initialized, 1000 epoch 

Quickprop runs done for each receptive field size is shown by a diamond, the average 

performance is shown by the lighter line, and the corresponding averages obtained from 

back-propagation are shown by the heavier line. 

A considerable difference call be seen between Quickprop and back-propagation. The 

Quickprop solutions show much less difference in generalization performance as hidden 

node receptive field size varies: Back-propagation shows a 43% maximum difference 

in average generalization performance, while Quickprop shows only 21% - less than 

half the difference. Because of the relatively large variance in the performance of each 

network and because the slope of the Quickprop line is about half the slope of the 

back-propagation line, Quickprop provides GAND a much reduced discrimination signal 

relative t o  receptive field size. Thus, the likelihood of selecting the wider receptive 

field genotype (making the wrong choice) in a tournament between, say, a p = 5 and 

a p = 6 genotype is much larger for Quickprop than for back-propagation. In effect, 

the relatively small signal provided by Quickprop gets lost more easily in the noise of 

the fitness function. Thus, Quickproy n1a.y be a poor choice for guiding GAND to the 



40 I I I I I I I I 

2 3 4 5 6 7 8 9 10 
receptive field size 

Figure B.l: Quickprop versus back-propagation: Receptive field size versus percent gen- 
eralization performance (%G) for each of 30 Quickprop, 1000 trdning epoch runs (di- 
amonds). The Quicliprop average is shown by the Lighter line. The bacli-propagation 
average is shown by the heavy line for comparison. 



better regions of the search space, despite its order of magnitude speed gain over back- 

propagation. As a result, back-propagation was used for most of the GAND runs rather 

than Quickprop. 
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