
Genetic Algorithms

and

Fitness Variance

with an

Application to the Automated Design

of Artificial Neural Networks

W. Michael Rudnick

Bachelor of Science - Mathematics

Portland State University

1972

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

April 1992

@ Copyright 1992 by W. Michael Rudnick

All Rights Reserved

The dissertation "Genetic Algorithms and Fitness Variance with an Application to

the Automated Design of Artificial Neural Networks" by W. Michael Rudnick has been

examined and approved by the following Examination Committee:

Robert G. Babb I1
Associate Professor
Thesis Research Co-Advisor

-.
David E. Goldberg I/
Associate Professor
University of Illinois a t Urbana-Champaign
Thesis Research Co-Advisor

Dan Hammerstrom
Associate Professor

 odd Leen
Assist ant Professor

-
Kent spahdman
Oregon Health Sciences University

iii

Acronyms

Acronym Meaning First Use

GA genetic algorithm 1
SNR signal-to-noise ratio 34
END evolutionary network design 66
ANN artificial neural network 66
GAND genetic algorithms for network design 66

Notation

Notation Meaning First Use

index variables
time
a genotype
i th most significant bit position
fitness of genotype x
arity of representation alphabet
length of genotype or representation
a schema
a schema template
wild card (don't care) schema template character
order of schema h
order of competition partition J
schema generated from schema template h
defining length of schema h
a competition partition
competition partition number
competition partition index set
number of copies of genotype x in population
schema h7s fitness
partition J 's fitness
proportion of population in schema h
population size
average (or expected) fitness of population
the search space, or space of all genotypes
proportion of population in schema h at time t
expectation of m
crossover probability

Notation Meaning First Use

P m
$j(x)
+,(h)

$j,k(h,
P (i)
W j

lhl or I J I
Jn(h)

X
S -
X

P (X >
v.4 1
(j , k)
J;2(h)

S(h, j , k)
Ji (h)
w :
a
t

P
k

A h)
S
a2
M

J;(J)
S(J)
C(J)
R(J)
a i
P
C

P:,
pss

mutation probability
Walsh function j of x
Walsh function j of schema h
two-dimensional Walsh function j, k of schema h
function converting *s to 0s
Walsh coefficient j
size of corresponding set
number of partition containing h
random variable
sample space of random variable
expected or average value of X
probability density function of X
variance function
index pair
Cartesian cross product of J;(h)
Walsh function summation
index set for nonzero terms in S(h, j, k)
order-one Walsh terms of equal value
significance level
standardized normal distribution random variable
mean
a schema's order
sample mean fitness of schema h
a sampling distribution
variance
twice schema's order
complement of set J;(J)
competition partition's signal
competition partition's noise
competition partition's signal-to-noise ratio
a constant
proportion of 1s at a locus in a population
number of loci in converged region
probability of mutation(s) in converged region
proportion of 1s at steady state

Notation Meaning First Use

proportion of tournaments available to be decided at locus i
expected proportion of tournaments decided at locus i
proportion of 1s at locus i
proportion of 1s at locus i a t time t
index set of order-one Walsh coefficients
signal index set for competition partition J
noise index set for competition partition J
weight vector
node output
number of input connections to a node
worst-case computational complexity
number of clumps of 1s in input field
threshold for number of clumps of 1s in input field
input vector
generalization performance (on test set)
performance on training set
hidden node receptive field size
sampling distribution of genotype fitnesses
number of independent trials
link-adjusted performance
number of links between input and hidden layers
average fitness of new population
average fitness of the genotype
growth ratio
proportion of the best genotype at time t
a constant fitness value
proportion of genotypes with fitness greater than f; at time t
net growth factor
schema disruption probability
fitness function's additive Gaussian noise
linear function's displacement
linear fitness function with Gaussian noise
noise-augmented sample mean fitness of h
ratio of fitness noise variance to Walsh magnitude
convergence level
instantaneous convergence rate
ifh order approximation to j
logistic function's exponential scaling factor

vii

Dedication

Dedicated to the pursuit of truth,
wherever it may be found.

viii

Acknowledgements

To be human is to be part of the group animal, which is simply to say that no one ever

does anything alone. So although the research presented here is my work (except, of

course, where noted in the text), it is really a joint accomplishment of a group of people.

It is with pleasure that I take this opportunity to express my debt and thanks to those

who, in ways large and small, have significantly contributed to both my growth and these

results.

First and foremost, I wish to thank Dave Goldberg. His time, trust, tolerance, and

financial support of both me and the research presented here have made this dissertation

possible. He taught me not only much about genetic algorithms and how to do theoretical

analysis, but also life skills such as writing and thinking. His demanding standards and

personal example st retched my capacities, resulting in considerable personal growth.

Second, I'd like to thank Dan Hammerstrom. As my advisor during my initial three

years at Oregon Graduate Institute (OGI), Dan taught me how to think, how to approach

a problem (often the most difficult part), and how to do research. Although my interests

eventually diverged from Dan's, I feel he is an outstanding advisor, genuine human

being, and exemplary manager. I'd also like to thank Dan for his research assistanceship

support during my first three years at OGI.

Third, I thank Robbie Babb, who served as my OGI advisor. His "yes, can do"

attitude and ever-present humor helped me when I was feeling overwhelmed by the

many potential obstacles in pursuing an 'outside' dissertation research path.

Each of these three people played a key role and were necessary to the successful

completion of my Ph.D. and this dissertation. I am in your debt. It reminds me of the

man stuck on the interstate with a flat tire and no jack - let's say a tad man with a

shaggy beard. After trying to flag down help for some time, someone finally stops and

loans him a jack. After the spare is in place and the jack returned, the erstwhile-stranded

man says, "I'd like to pay you something for the help," to which the Good Samaritan

responds, "Just pass it along." I intend to pass along the help you've all given me.

In addition to my three key helpers, I'd like to thank the others who have given me

significant help. Todd Leen gave me a new perspective on what mathematical analysis

is about, and worked with me during my difficult "searching for a dissertation subject"

period.

I especially thank my friends Kalyanmoy Deb, Dirk Thiersen, and Rob Smith, for

their keen insights during our lengthy technical discussions and for their emotional sup-

port. I also thank Rob Smith separately for his system administrative help at the

University of Alabama, Tuscaloosa. I thank my friends Andrew Horner and Andy Assad

for their friendship and emotional support during my stay in Illinois.

I thank Marie La Bonte, Kelly Atkinson, Jo Ann Binkerd, Karon Ticknor, Anita

Creche, Patty Stewart, Kelsey Milman, Dwight Todd, Sydney Cromwell, and Vince

Weatherill for their secretarial and administrative help and support. Phil Barrett also

helped me repeatedly in his capacity as OGI/CSE departmental administrative assistant.

Until I had the opportunity to experience technical libraries at other graduate schools,

I didn't understood how truly exceptional the Oregon Graduate Institute library staff

is. It is with considerable pleasure I acknowledge the extensive help I received from

OGI's library staff, and especially Maureen Sloan, Gretta Siegel, Julianne Williams,

Chris Lightcap, Kris Roley, and Mary Vatne.

Kevin Carmody, Nick Nafpliotis, Nick Horton, Marion Hakanson, Bruce Jerrick, John

Pochmara, Bob Shair, Ahmed Kassem, and Randy Cetin gave me various and substantial

systems administration help.

I thank Dick Kieburtz, Dan Hammerstrom, and the rest of the Oregon Graduate

Institute Computer Science and Engineering faculty, and especially Robbie Babb as

my OGI advisor, for giving me - despite some initial doubts and skepticism - their

permission, trust, and support (both financial and moral) to work with someone outside

the department when my interests led me into an area in which OGI didn't have in-

house expertise. I believe their willingness to experiment by allowing me t o pursue a

dissertation research path outside the customary route speaks well of their innovative

spirit.

I'd like to thank those upon whose work my work is based, especially Albert Bethke,

whose Walsh schema work established the foundation upon which I build. Every step

taken up the path of human progress is taken from the shoulders of those who have gone

before (who said this?). I also thank Scott Fahlmam for sharing his Quickprop code and

Terry Rieger for sharing his C version of Quickprop.

I acknowledge support from National Science Foundation grants CTS-8451610 and

ECS-9022007, U.S. Army Contract DASG60-90-C-0153, and departmental support from

Oregon Graduate Institute's Department of Computer Science and Engineering.

Last, and most importantly, I want to thank and acknowledge those closest to me

for their ever-constant, loving and emotional (and sometimes financial) support - my

parents, Bill and Janet; my sister, Linda; her husband and my good friend, Mike Free;

my sister Roberta; and finally, Emma Carter, my dearest friend.

Mike Rudnick

Portland, Oregon

January, 1992

Contents

Acronyms iv

Notation v

Dedication viii

Acknowledgements ix

Abstract xviii

1 Introduction 1

1.1 The Simple GA . 2
. 1.2 GA Theory Objects 7

1.3 Schema Theorem . 11
1.4 Walsh-Schema Transform . 12

1.5 A Note on GA Convergence . 16

2 Variance in Genetic Algorithms 17

2.1 Computing Schema Fitness Variance . 17

2.2 Applications and Extensions . 26
2.3 Fitness Variance Based Population Sizing 27

3 Signal Versus Noise 34

3.1 Overview of GA Signal and Noise . 34

3.2 Signal . 35

3.3 Noise . 38
. 3.4 Signal-to-Noise Ratio (SNR) 39

3.5 Discussion . 40

xii

4 Domino Convergence 42
. 4.1 Simulation 42

. 4.2 Analysis of Convergence Window Width 47

. 4.3 Analysis of Convergence Stall 52
. 4.3.1 Simple Model 52

. 4.3.2 Refined and Streamlined Models 55

. 4.4 Domino Convergence and the Signal-to-Noise Ratio 62
. 4.5 Mutation and Convergence Stall 65

5 Evolut ionary Network Design (END) 66
. 5.1 Artificial Neural Networks 67

. 5.2 Network Design Problem 72
. 5.3 Previous Work 74

. 5.3.1 Dress's Artificial Insect 75

. 5.3.2 Mjolsness's Recursive Network Definition 75
. 5.3.3 Hinton & Nowlan's Work 76
. 5.3.4 Miller's Connection Matrix 77

. 5.3.5 Harp's Area Blueprint 79
. 5.3.6 Kitano's Graph L-System 80

. 5.3.7 Other Related Work 80
. 5.4 GAND Overview 81

. 5.4.1 GAND Design 81
. 5.4.2 The Test Problem 84

. 5.4.3 Training and Testing Data Sets 86
. 5.4.4 Genotype Representation 87

. 5.5 GAND Results 92
. 5.5.1 Back-Propagation 95

. 5.5.2 Objective Function Noise 95
. 5.5.3 Initial Investigation of Population Size 99

. 5.5.4 Link Tax 101
. 5.5.5 Elitism 103

. 5.6 Population Sizing with Fitness Noise 109
. 5.7 END Discussion 111

. 5.7.1 Normal Forms 112
. 5.7.2 Future GAND Research 118

. 5.8 GAND Conclusion 121

6 Discussion 122
. 6.1 SNR. Schema Theorem. and GA Convergence 122

. 6.2 GA Decision-Making 124
. 6.3 Future Research 126

. 6.3.1 Fitness Variance and GA Convergence 127
. 6.3.2 Other Signal-to-Noise Ratio Extensions 129

. 6.3.3 Population Sizing 129
. 6.3.4 Domino Convergence 130

. 6.4 Conclusion 130

Appendices

A Characterizing Contiguity Problem

B Quickprop versus Back-propagation

xiv

List of Tables

. A simple GA run 5
. Schemata and competition partitions for I = 3 problems 9

. Walsh basis schema fitness sums for I = 3 problems 14

. Walsh variance component matrices 23
. Walsh variance component matrices for J (* f f) and J (f * f). 1 = 3 24

. Walsh variance component matrices for J (f f *). 1 = 3 25
. Normal deviates for various confidence levels 31

. Two locus selection analysis 50
. Tournament pairing probabilities 53

. Example signal. noise. and signal-to-noise ratio values 64

. Solla's generalization performance results 86

List of Figures

. 1.1 Simple GA run -- average population fitnesses 6

. 2.1 Fitness distributions for two schemata. hl and h2 27

2.2 Sampling distribution probability. p(f(hbeSt) - j(h2.dbest). versus stan-
. dardized t score 29

. Convergence for various mutation rates

Convergence standard deviations for various mutation rates
. Results from a single run

Loci converge vs time. 90% convergence. various mutation rates
. Context of locus i for simplified convergence stall analysis

Steady-state convergence level vs locus - empirical and simple model . . .
. Locus decision tree - combined model

. Locus decision tree - streamlined model

. 5.1 Generic artificial neural network node 69
. 5.2 GAND design 82

. 5.3 Connection matrix for a contiguity problem solution 85

5.4 General feedforward connection matrix representation 88
. 5.5 Single-layer connection matrix representation 89

. 5.6 Initial GAND run - generation vs generalization 91
. 5.7 GAND performance - baseline 94

. 5.8 Solla's vs GAND's back-propagation results 96

. 5.9 GAND performance - averaging out noise 98
. 5.10 GAND performance - population N = 150 100

. 5.11 GAND performance - link tax 102
. 5.12 GAND performance - elitism 105

. 5.13 Intermediate population showing elitist "better half" effect 106
. 5.14 Typical GAND solution networks 107

5.15 How two identical networks can produce non-viable offspring 113

xvi

. 5.16 Left-most normal form representation 114
. 5.17 Left-most largest normal form representation 116

. 5.18 Left-most single receptive field normal form 117

. B.l Performance differences -- Quickprop vs back.propagation 134

xvii

Abstract

Genetic Algorithms

and
Fitness Variance

with an

Application to the Automated Design
of Artificial Neural Networks

W. Michael Rudnick, Ph.D.
Oregon Graduate Institute of Science & Technology, 1992

Supervising Professor: Robert G. Babb I1

Existing genetic algorithm (GA) theory addresses how schema fitness serves as a measure

of the expected increase or decrease of schema representation within the population. The

work presented here considers how schema fitness variance affects schema representation

through GA decision-making.

It has long been known that the more significant bits of binary coded parameters

converge before bits of lesser significance. This phenomenon, called domino conuergence,

is explored using the identity problem, f (x) = x. Sometimes convergence stops prema-

turely (a phenomenon called convergence stall), depending upon the relative magnitude

of the mutation rate and the length of the encoding string. Analyses and models are

presented exploring various aspects of these phenomena.

GA convergence occurs in competition partitions. Each partition has an associated

xviii

signal (measure of the force tending towards correct decision-making within that par-

tition) and noise (measure of the force hindering correct decision-making). Which has

the upper hand within a particular partition determines if the GA chooses correctly

between competing schemata, which in turn determines convergence in the partition.

Signal, noise, and the signal-to-noise ratio (SNR) are each defined in terms of fitness

variance, with the SNR reconciling the conflicting effects of signal and noise. Formulas

for the flat-population schema fitness variance, signal, noise, and SNR are derived using

the Walsh basis. Both domino convergence and convergence stall are examined from the

signal versus noise perspective.

Designing an artificial neural network (ANN) for a specified problem can be difficult.

Since the design of biological neural networks is a result of evolution, evolutionary search

techniques may be well suited to network design. Back-propagation is known to gener-

alize well on the contiguity problem (counting the number of clumps of 1s in a binary

input field) when hidden layer receptive fields are narrow, but with high performance

variance (noise) due to local minima.

Evolutionary network design is used as a case study in applying GAS to a difficult,

noisy problem. A program called GAND, genetic algorithms for network design, is

described and tested on the contiguity problem. A number of techniques are presented

that allow GAND, starting with randomly generated network interconnections, to evolve

architectures rivaling the best produced by hand.

xix

Chapter 1

Introduction

The genetic algorithm (GA) is a population-based search technique abstracting the

paradigm of natural evolution (Holland, 1975b; Goldberg, 1989c; Davis, 1991; Brady,

1985; Casti & Karlqvist, 1986; Davis, 1987; Grefenstette, 1985; Grefenstette, 1987;

Schaffer, 1989; Holland, 1984). Thus, like artificial neural networks, GAS are biologically

motivated.

Building blocks, which are short-defining-length, low-order schemata of above-average

fitness containing optima or near-optima, are rightly recognized as one of the keys to

GA function. If the population is rich in building blocks, crossover can combine them to

produce good solutions. Holland's schema theorem (Holland, 1975b; Goldberg, 1989c)

provides a lower bound on the expected representation of each schema in the next gen-

eration's population based on its representation in the current population, and thereby

serves as a measure of when building blocks are likely to grow. However, the schema

theorem is only a result in expectation. Because of stochastic influences (Jong, 1975;

Goldberg & Segrest, 1987), even when its inequality is satisfied the schema theorem does

not guarantee a building block will grow. The present work addresses these stochastic

deviations by defining schema fitness variance and examining how it affects a schema's

increase or decrease in representation.

The dissertation is organized as follows. This chapter introduces the GA through a

simple example, establishes notational conventions and definitions, and reviews relevant

GA theory, including Walsh functions and the Walsh schema transform. Chapter 2

reviews the GA fitness variance literature and then derives an expression for schema

as with all search techniques, the match, or lack thereof, between the structure of the

search technique and the structure of the objective function determines the potential

effectiveness of the search (Ackley, 1987).

It is worth noting that from an algorithmic perspective the GA has near-perfect

parallelism in that the evaluation of each candidate solution can be performed in parallel.

It is thus an ideal candidate for execution on highly parallel computer architectures. This

is especially true when, as in the neural network design problem presented in Chapter 5,

the bulk of the computational burden results from the evaluation of each candidate

solution.

Using the GA is fairly simple. First, a representation for candidate solutions must

be defined, often a binary string encoding. Second, some comparison criteria must be

established to evaluate the relative 'goodness' of different candidate solutions. A fitness

function inducing a total order on candidate solutions is usually defined for this purpose.

Finally, the GA operators and parameters are selected. These include deciding what

kind of crossover, mutation, and selection to use; setting their associated parameters

such as crossover and mutation rates; and setting the value of other GA parameters such

as population size.

The operation of the GA is also simple. First, an initial population of candidate

solution strings, or genotypes, is generated, often by generating random strings. Then,

generation cycles are performed repeatedly until a stopping criteria is reached. Stop-

ping criteria are usually based on a fixed number of generations, a heuristic measure of

population status, or a measure of population diversity.

A generation cycle consists of selection, crossover, and mutation. During selection,

genotypes having above-average fitness are chosen to be parents. During crossover, the

strings for two selected genotypes are combined to produce offspring. During mutation,

with small probability each bit position of an offspring genotype is independently flipped.

In the remainder of this section, an easy binary integer problem will be used to illus-

trate the simple GA. The simple GA may be thought of as 'vanilla' GA - nothing fancy,

just good, everyday GA. The simple GA has none of the customized enhancements or

operators that are sometimes beneficial for tackling certain problems. For an introduc-

tory, yet fairly comprehensive treatment of the care and feeding of GAS, see Goldberg

(1989~).

The problem consists of using a binary string as a coding and then valuing the

goodness of a solution by interpreting a binary string as an integer. Thus, its fitness

function is

where xi denotes the value of the i th most significant bit position of genotype x and I is

the length of the representation in bits. A genotype string length of three and population

size of six will be used to keep this example short.

Table 1.1 shows the resulting GA run of 10 generations plus the initial population

of randomly generated genotypes. Column one shows the generation number, where

generation zero is the random population. Column two allows referring to individual

genotypes in the population by providing each with a number unique within the gener-

ation. Column three shows each genotype's fitness. Columns four, five, and six show

respectively, for each genotype, its number of mutations during the current generation,

its crossover partner (if it mated), and its parent in the preceding generation. Finally,

column seven shows each genotype as a binary string.

First examine generation zero, the random population. Since selection, crossover,

or mutation are not done on the seed population, the corresponding column entries

are empty. Note genotype three has the highest fitness in the initial population. We

were slightly unlucky in this, since for our simple, length-three problem, the probability

that a perfect individual (genotype 111 has the highest possible fitness for our three bit

problem) will occur in a randomly selected population of size six is 0.55. Figure 1.1

shows average population fitness at each generation. The expected average fitness for

a randomly generated population is 3.5; thus the 3.67 actually obtained is close to the

expected value.

Tournament selection is used. The idea is that candidate solutions in the current

5.5
fitness

5

3.5
0 2 4 6 8 10

generation

Figure 1.1: Generation number versus average population fitness.

population engage in tournaments with each other. The winner of each tournament is

the candidate solution with the higher fitness. Its genotype is copied into the next gener-

ation's population, where it undergoes crossover and mutation. Consider the population

at generation 1. From column 'p' we can see genotype numbers 0, 3, and 5 from the

previous generation each won two tournaments. Such a tournament selection outcome

is sensible, since they are the three best genotypes in the previous generation.

Two-point crossover occurs with probability 0.75. Two positions are selected at ran-

dom, and the string segments between them are exchanged. Again, consider generation 1.

For each member of the population, column 'c' shows the crossover partner's number

from the previous generation. From it we can see that genotype number 0 in generation

1 was the result of a crossover between genotypes 5 and 3 in generation 0. Genotype

number 1 in generation 1 is the other side of the same crossover. Similarly, genotype

numbers 3 and 0 in generation 0 were crossed to produce genotype numbers 2 and 3 in

generation 1'. No crossover occurred for genotype numbers 4 or 5 in generation 1.

'Because of where the crossovers occurred, the similarity between the genotypes crossed, and the fact
that the genotype length is so short, each crossover has the effect of swapping the two genotypes.

Mutation occurs with probability 0.1. For generation 1 from column 'm' we can see

that only genotype numbers 3, 4, and 5 had a mutation. Note that genotype number

4 in generation 1 is an optimal solution to the problem because it has the maximum

possible fitness value, 7. This happened because genotype number 0 from generation 0

was chosen as the parent, no crossover occurred, and the single O-bit in the string was

mutated into a l-bit.

The creation of each generation may be followed in a similar fashion. Note how the

optimal genotype gradually takes over, reducing genotypic variation in successive popu-

lations. As seen in both Table 1.1 and Figure 1.1, by generation 6 the GA has essentially

reached equilibrium, or converged (what constitutes GA convergence is discussed in Sec-

tion 1.5). Because there are a total of 18 bit positions in the population and the mutation

rate is 0.1, about two 0s are expected to be generated by mutation in an all-1s popula-

tion. In each generation after the GA has reached convergence, selection removes the 0s

created by mutation in the previous generation, and mutation in the current generation

creates new 0s. In effect, selection is "cleaning up" the population at each generation,

only to have mutation "dirty it up" again. Thus, it is only happenstance that generation

10 contains no Os, since it is only happenstance that no mutations occurred at generation

10.

1.2 GA Theory Objects

Conceptually, GAS may be thought of as searching the space of possible solutions by

combining partial solutions into complete solutions. A complete solution, or more pre-

cisely the specification of a complete solution, is known as a genotype. Although in

general a genotype may be variable length (for example, see Goldberg, Deb, and Korb

(1989; 1990)) or use a k-ary alphabet, for simplicity a genotype will here be limited to

length 1 binary strings. The space of all possible solutions, or the search space, is then

simply all binary strings of length 1.

Although the GA works directly only with a collection of complete solutions, the

population, each genotype is an exemplar of many partial solutions. A schema, h, is a

set of all complete solutions sharing a specific partial solution. The plural of schema is

schemata. Sharing a partial solution means fixing, or holding constant, the bit position

values specifying the partial solution in all members of the schema. All other bit positions

vary freely. Since it is the partial solution which all members of a schema have in

common, a schema will be referred to as a partial solution. Schemata may be specified

by a schema template, h, a string from the alphabet (0, 1, *). The + character is used

to denote a varying position, and a 0 or 1 is used at each fixed position. Thus, for

a length 1 = 3 binary coding, the schema template 0 * 1 denotes the schema s(0 *
1) = (001, O l l) , where s is a function taking a schema template and returning the

associated schema. Thus, ~ (100) = {loo), s(*1+) = (010,011,110, Ill), and s(* + *) =

{000,001,010,011,100,101,110,111). Note that the notation for schemata and schema

templates are distinguishable, since a boldface h denotes a schema, while a plain text

h denotes a schema t e m ~ l a t e . ~ Schema order, o(h), is the number of fixed positions in

a schema, thus o(s(0 t 1)) = 2. Finally, schema defining length, 6(h), is the distance

between the outermost fixed positions in the schema's schema template. Table 1.2 lists

the 3' = 27 unique schemata for any 1 = 3 binary alphabet encodings (it also lists

competition partitions, which will be dealt with shortly). Note that the size (number of

elements) of a schema is Ihl = 2'-0(~).

All schemata taken together may be thought of as forming a lattice, or hierarchy,

of schema with respect to the subset relation, C (Vose & Liepins, 1991). The greater

the order of the schema, the smaller it is, the more complete is the partial solution it

specifies, and the lower it is in the lattice. Thus for our I = 3 example, s(* * *) is at

the top of the lattice, since it contains every other schema, and s(000), s(001), s(010),

s(011), s(100), s(101), s(110), and ~ (111) occupy the bottom level of the lattice, since

'This distinction will be followed generally: a bold-faced character will be used to denote the mathe-
matical object, itself, while a non-bold-faced character will be used to denote a function returning such
an object or a representation for such an object. Thus, a competition partition is denoted by J while
the function given a schema and returning a competition partition is denoted by J .

Table 1.2: Schema templates, schemata, partitions, partition numbers, and partition
index sets for 1 = 3 problems.

J
0

1

2

4

3

5

6

7

J
((000,001,010,011,
100,101,110,111))

{{000,010,100,110),
{001,011,101, 111))
{{000,001,100,101),
(010,011,110, Ill}}
((000,001,010, O l l) ,
(100, 101,110, 111))

44000, <I loo),
{001,101),
{010,110),
(011,111))
{{000,010),
(001, O l l) ,
{100,110),
(101,111))
{{000,001),
(010, O l l) ,
{100,101),
(110,111))

{{OOO),
{OOl),
{OlO),
(Oil),
{loo),
(1011,
(1101,
(111))

h
* * *

. * * 0
* * 1
* 0 *
* 1 *
0 * *
1 * *
* o o
* 0 1
* 1 0
* 1 1
o * o
o * 1
1 * 0
1 * 1
OO*
0 1 *
l o *
l l *
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
111

Ji

(0)

(07 1)

{0,2)

(0, 4)

(0,1,2,3)

(0,1,4,5)

(0,2, 4,6)

(0,1,2,3,4,5,6,7)

h
(000,001,010,011,
100,101,110,111)

(000,010,100,110)
(001,011,101,111)
(000,001,100,101)
(010,011,110, I l l }
(000,001,010,011)
(100, 101,110, Ill}

(000,100)
(001,101)
(010,110)
(011,111)
(000,010)
(001,011)
(100,110)
(101,111)
{000,00 1)
(010,011)
(100,101)
(1 10,111)

(000)
{ O O l I
(010)
(011)
(100)
(101)
(110)
(1111

they contain no other ~ c h e m a . ~

A competition partition, denoted by J, is a set of non-intersecting schemata, or par-

tial solutions, fixing the same bit positions in their associated schema templates. For

example, J = J(s(l l*)) = {s(00+), s(01*), s(10*), s(l l*)) is the competition partition

containing all schemata fixing the two leftmost bit positions, or positions 1 - 1 and 1 - 2,

where binary stings are labeled xl-1, xl-2,. . . , xo. The order of a partition, o(J), is the

same as the order of the schemata it contains, or o(J) = o(h), h E J. Every complete

solution, for example, a genotype in a population, belongs to exactly one schema within

each partition. In effect, the partial solutions within a partition compete for repre-

sentation in the GA's population of complete solutions. Hence the name, competition

partition - a partition covering the search space in which the schemata in the parti-

tion compete with each other for representation in the GA's population. An assumption

underlying much of the work presented here is that competition partitions are the basic

unit in which GA convergence occurs. Column J of Table 1.2 shows the competition

partition for each of the schemata of 1 = 3 problems.

Each competition partition may be identified by its partition number, J. The parti-

tion number may be generated by starting with the schema template of the schema in

the partition whose fixed positions are all Is, replacing each + in the schema template

by 0, and interpreting the resulting binary string as an integer. Column J in Table 1.2

lists partition numbers.

Each competition partition also has an associated partition index set, J;, which will

be used shortly in the Walsh schema transform. The elements of a partition's index

set may be generated by taking the schema template of each schemata in the partition,

replacing each t in the template by 0, and interpreting the resulting binary string as an

integer. Column J; in Table 1.2 shows partition index sets.

--

3Actually, the null set may be sensibly viewed as occupying the bottom of the lattice with the order-1
schema occupying the next higher level of the lattice.

1.3 Schema Theorem

Now that basis terms have been defined, the main theoretical result about whether or

not any particular partial solution will thrive is reviewed.

Schema fitness, f (h), the average fitness of the members of the population belonging

where f (x) is the genotype fitness function and N(x) is the number of copies of genotype

x in the population. Similarly, each partition has a partition fitness, f (J) , the average

fitness of its elements, that is to sa.y, the average of its schema fitnesses. Partial solutions

within each partition will, in general, have a spread in their fitnesses, which can be

thought of as the partition's convergence signal. As will be shown in Chapter 3, a

partition's signal is related to how much convergence occurs within that partition.

Schema fitness is central to determining whether the proportion of a population

belonging to a schema will grow or shrink in the succeeding generation. The proportion

of a population belonging to schema h is

where N (x) is the number of copies of genotype x in the population and n is the size of

the population. Define 7 as the average fitness of the population, or

where G is the search space. When no crossover or mutation is performed, the ex-

pected proportion of h in the population, E(P(h)), will grow or shrink as f (h) > f or

f(h) < f, respectively. These notions have been generalized by Holland (1975b). He

proved a lower bound, widely known as the schema theorem, on the expected proportion

of schema elements in the successor population based on the current proportion, the

relative magnitude of the current schema fitness to the current population fitness, and

the expected maximum disruption due to crossover and mutation. The schema theorem

may be stated mathematically as

where E is expectation, P(h, t) is the proportion of the population a t time t belonging

to schema h, p, is crossover probability, p, is mutation probability. It is both a powerful

theoretical tool and useful in practical applications. However, it also has limitations

both because it is a bound and because it is an expectation.

1.4 Walsh-Schema Transform

Although genotype fitness is usually expressed in the binary basis, there is no intrinsic

reason for doing so. As was first pointed out by Bethke4 (1980), Walsh functions have

advantages for use as a basis for expressing schema average fitness. Walsh functions may

be defined as

where x is a binary string, and xi and j; denote bit i of the binary representation of each

integer. Continuing our three-bit example, $Jo(OOO) = 1, $o(O1l) = 1, $1(011) = -1,

$3(011) = 1, $J5(011) = -1, $7(011) = 1, and $7(111) = -1. In effect, the value of Walsh

function j is the product of a bitwise exclusive-or between the binary representation of

j and the binary representation of the function's argument. Likewise, a two-dimensional

Walsh function may be defined (for later use) as

Likewise, +j(h) and +j,k(h) may be defined as

' ~ ~ ~ a r e n t l ~ working from a suggestion by Andy Barto.

and

where p converts characters in the schema template associated with h into bits by

replacing *s with 0s.

Walsh functions provide a basis for real valued functions with integer domains ex-

pressed as binary strings. Thus, any real fitness function over binary strings, or integers,

may be replaced by a linear combination of the Walsh functions,

in effect simply rewriting the fitness function in the Walsh basis, where the Walsh coef-

ficients may be expressed as
1-1

Schema average fitness is conventionally expressed as

where lhl is the size of h. Since schema average fitness is a real function with binary

domain, it may be expressed in the Walsh basis. Bethke (1980) has done this, and

Goldberg (1989a) reviews and extends Bethke's work. The main result states that,

under the flat population assumption, the fitness of a schema may be expressed as

where the partition index set J i (h) is the index set of the competition partition containing

h. In effect, the index set contains those terms that "make up" schema average fitness in

the sense that associated Walsh functions determine parity within the fixed positions of

the schema. The pat population assumption says tha.t the population being considered

is the complete search space, or equivalently in this case, that Equation 1.13 gives the

expected fitness of a schema for a randomly generated population of genotypes. As will

Table 1.3: Walsh basis schema fitnesses for I = 3 problems.

be seen later, the elements of the index set are identical for every schema in any particular

competition partition. Thus, a schema's average fitness may be calculated as a partial,

signed sum of the Walsh coefficients, where the sign of each coefficient is determined by

the parity of the schema template at the positions fixed by the particular Walsh term's

index.

To make this concrete, consider once again our three-bit example. Table 1.3 shows

the Walsh coefficients, including the sign produced by the associated Walsh function, in

the Walsh basis schema fitness sum for all possible three-bit schemata and J,(h) is the

number of the partition containing h. Note that Table 1.3 is applicable to all three-bit

problems, regardless of coding and fitness function used, since all the coding and fitness

function information is captured by the Walsh coefficients in Equation 1.13.

For example, the expected fitness of the schema s (t1 t) may be figured as follows.

First as can be seen from Table 1.3, the index set for the summation in Equation 1.13 is

J ; (t l+) = {0,2); thus there are two terms in the sum, ~ ~ + ~ (h) and w2&(h). Because

the parity of any schema over no fixed positions (associated with $0) is even, $o(*l*) = 1;

and because parity of *I* over bit position 2 2 (associated with +2) is odd, +2(*1*) = -1.

Thus, the Walsh basis schema fitness sum is f (+ l+) = wo - w2. Similarly, the expected

fitness of schemata t10 and 110 are f(t10) = wo + wl - w2 - w3 and f(110) = wo + wl -
wz - wg - wq - wg + w6 + w,, respectively.

So why use the Walsh basis? There are two main reasons. The first is computational.

For GAS to work, the population must become rich in building blocks, so that these small

partial solutions may be combined into larger partial solutions. For this enrichment to

happen, the building block's fitness must be greater than that of the population as a

whole. The Walsh basis sum for schema fitness contains 2 0 (~) terms. The binary basis

expression for schema fitness, Equation 1.12, contains 2 ' - 0 (~) terms. Thus when o(h) is

small relative to I , as it is for building blocks, the Walsh basis expression has fewer terms.

The second reason has to do with structure of the Walsh basis, schemata, and competition

partitions. The Walsh basis schema fitness sum for the each schemata in a competition

partition all contain the same Walsh coefficients, only the sign of the coefficients change

according to the placement of l-bits among the schema's fixed positions. The structure

of the Walsh basis matches the structure of the competition partitions and schemata

- the Walsh basis respects competition partitions. Thus, the Walsh basis is used to

calculate the variance of schema fitness in the next chapter.

1.5 A Note on GA Convergence

Although it is not the purpose of the present work to analyze or even attempt to for-

mally define GA convergence, it is worthwhile to characterize what is meant by GA

convergence. Because the GA is a population-based search technique, convergence may

be conceptualized as the reduction of diversity in the population over time (generations).

It is relatively easy to tell when there is little diversity left in the population, and hence,

when convergence has occurred. Usually the more important question is, can we deter-

mine how good is the solution to which the GA converged? The issues of convergence,

computational complexity, and quality of solution are often formally dealt with in a con-

vergence proof - a formal proof characterizing both the nature of convergence and the

quality of the solution to be found by the search technique. Although some progress has

been made towards a formal GA convergence proof (Goldberg & Segrest, 1987; Eiben

et a]., 1990; Goldberg, 1990b; Davis & Principe, 1991; Nix & Vose, year unknown), no

one has yet established a convergence proof for the simple GA.

Several heuristic convergence measures relating to lack of population genotype di-

versity have been defined; they are often used as GA stopping criteria. De Jong (1975)

used alleles lost as the basis for a convergence measure. Goldberg (1983) has used com-

parison of average fitness to maximum fitness for convergence determination and has

explicitly computed the fitness variance (Goldberg, 1991a). Wilson (1987) has used an

entropy-based measure of diversity for the modification of control parameters . Both a

normalized measure of the average proportion of 0s versus 1s at each genotype position

and average fitness have been used as convergence indicators in the evolutionary network

design work presented in Chapter 5. Chapter 4 also uses the proportion of 1s versus 0s at

each genotype position to indicate the relative convergence of each position. Generally

speaking, when these measures become stationary, convergence is said to have occurred.

Chapter 2

Variance in Genetic Algorithms

As shown by the schema theorem, the expected fitness of a building block is an important

quantity because it indicates whether, in a particular problem, the GA will be able to find

optimal or near-optimal points through recombination of building blocks. On the other

hand, because most GAS depend upon statistical sampling, knowing expected schema

average fitness is not enough; the statistical variation, or distribution, of fitness must also

be considered to determine the amount of sampling required to reliably accept or reject

a building block with respect to one of its competitors (Holland, 1973; Holland, 1975a;

Jong, 1975; Goldberg & Segrest, 1987; Goldberg et al., 1989; Davidor, 1991). Towards

this end, it is desirable to calculate the variance of schema average fitness, or collateral

noise, and for the reasons cited in Section 1.4 it is useful to do so in the Walsh basis. In

the remainder of this chapter and following the work of Goldberg and Rudnick (1990),

an expression for schema fitness variance in the Mralsh basis is derived. The derivation

is followed by a brief overview of several applica.tions and extensions in Section 2.2, and

a detailed derivation of a population size using fitness variance in Section 2.3.

2.1 Computing Schema Fitness Variance

As in the Walsh schema transform computation of schema average fitness, a flat popu-

lation is assumed. Thus, the necessity of dealing with population sampling error, which

incidentally can be viewed merely as an additional source of variance, is avoided. Fur-

ther, the fitness function is assumed to be deterministic, so that no variance derives from

f itself.

Variance is a statistical measure of dispersion (Ross, 1987; Beck & Arnold, 1977).

Its definition is

where the random variable x ranges over discrete sample space S with probability density

function P(x) , and X denotes the expected value of x. Thus, the variance of fitness within

schema h is

where Ihl denotes the size of schema h. Expanding the quadratic and simplifying yields

-2
where the sample space over which x ranges in the expectations f2(x) and f (x) is

understood to be h. The notation f2(h) denotes the expectation of f 2 , and the notation

fTi;j2 denotes the square of the expected value of f .

As with the Walsh-schema transform presented in Section 1.4, both /02 and f2(x)

will be derived in the Wa.lsh basis, then Equa,tion 2.3 will be rewritten substituting these

expressions.
-

First, consider the equation for f (x) from equation (3.6) of Goldberg's (1989a) Walsh-

schema paper,

-2
where Ji(h) is as defined in Section 1.2. Given Equation 2.4, f (x) may be written as

Recognizing that +j(h)+k(h) is simply the two-dimensional Walsh function,

Finally, converting the summation index from independent indices to index pairs,

where J?(h) = J;(h) x Ji(h).

Counting the number of quadratic terms is enlightening. There are I J(h)I2 = 220(h)

possibly nonzero terms in the sum. As will soon be seen, it is interesting that this number

is never more than the number of terms in f2(h).

The Walsh-schema transform form of f2(x) is next derived. We start with the defi-

substitute the Walsh expansion for f (x) from Equation 1.13,

expand the quadratic,

move the sum over x in and the wj and wk terms out,

1 21-1 21-1

f2(X) = Ti;i C C wjwk C $j (x)h(x) ,
J=O k = ~ x€h

and finally, replace the product of Walsh functions with the 2-D Walsh function,

Equation 2.12, along with Equation 2.7, may be substituted directly into Equation 2.3

to produce

a closed form expression for the fitness variance of h. However, as will next be shown,

and depending upon which schema is being considered, many of the (i, j) index terms

in the innermost summation of f2(x) may be zero, allowing further simplification of

Equations 2.13 and 2.12.

Consider the 2-D Walsh function summation

which is analogous to S(h, j) in Goldberg's (1989a) Walsh-schema transform derivation.

Each summand of Equation 2.14 is +1 or -1, since each is a 2-D Walsh function. Further,

the sum is bounded by f J h J since there are Jhl terms in the sum. In fact as will next be

shown, each term of the sum will be one of + (h (, -(hl, or 0.

The Walsh function indices each correspond to the competition partition index num-

bers J;(h) and q!~;,j(x) functions as a mask. Consider Equation 2.14 expressed using the

product form definition of the 2-D Walsh function as defined in Equation 1.7,

As was mentioned earlier, '$jYk(x) is simply the product of the bitwise exclusive-or be-

tween each bit of x and the bitwise sum (no carry) of the two indices. Because h is a

schema rather than just an arbitrary subset of the search space, it has structure. It is the

structure of h interacting with the j and k indices which results in S(h, j, k) exclusively

assuming one of the values +Ihl, - Ihl, or 0. Whenever a * character at some position i

in the schema template of h matches a l-bit at position i in exactly one of the two indices

(j or k) in Equation 2.15, there will be an equal number of + terms and - terms in the

sum and a zero sum results. That is to say, zero sums result whenever any *'d position

in h occurs where the j and k indices differ. This happens because the * at position i

in h results in an equal number of 0s and 1s at position i in the elements of s(h). Thus,

half of the summands are +1 and half are -1. And when no don't-care (*'d) position in

h matches a difference in the indices, nonzero sums will result.'

Consider the j and k values for which S(h, j, k) # 0. Nonzero values occur exactly

when each schema template don't-care (*) character matches either 0s in both indices

or 1s in both, which results in even exponents for the -1 in Equation 2.15 and 1s in

the product (which 1ea.ve the product unchanged). Then, since fixed positions in h are

fixed throughout all elements of h, all terms in Equation 2.15's sum are either +1 or all

terms are -1, and since there are Ihl terms in the sum, the resulting sum is one o f f Jhl.

The sign is determined by the number of 1s in h matching 1s in index j, and likewise

the number of 1s in h matching 1s in index k. If the sum of these two numbers is even,

then the sum in Equation 2.15 is positive and equal to + (h (; if the sum of these two

numbers is odd, Equation 2.15's sum is negative and equal to - 1 hJ . Again, each term of

S(h , j, k)'s sum simply performs a compound exclusive-or between each index and the

schema's naming string.

Let J&(h) be the set of index pairs corresponding to nonzero values of S(h, j, k).
1

Then by recognizing that the - in Equation 2.12 is canceled out by the (hi resulting
lhl

from the nonzero terms of Equation 2.15, Equation 2.12 may be rewritten as

Counting the number of terms in this sum is also enlightening. Thinking of the

terms as being arrayed in a matrix with the j index naming rows and the k index

naming columns, if we fix a row (if we fix j) there are at most I J;(h)l nonzero terms in

the row. Each row has the same number of terms, because addition modulo-2 can do no

more than translate each term to another position. Since there are 2' rows, there are a

total of 2'1~;(h)l = possibly nonzero terms. This is never less than the number

of terms in the fo2 sum, and as will soon be seen, the relationship is actually much

closer.

'Even though a nonzero sum results from Equation 2.15, if one of the associated Walsh coefficients
in Equation 2.13 is zero the associated contribution to the sum of Equation 2.13 will be zero.

Now Equation 2.3 may be rewritten using Equations 2.16 and 2.7, producing

Noting the two summations are identical except for the summand indices, and that

J$(h) _> J,?(h) for all h, yields

where the minus sign in the summation index denotes set difference. In effect, a difference

of summations has been converted to a set difference of index sets.

Consider Tables 2.1, 2.2, and 2.3, where each row shows a diagrammatic represen-

tation of the schema fitness variance computation for a length-three binary alphabet

problem. The elements of each matrix dimension are indexed from 0 through 7, with 0

being in the upper left-hand corner. The first column denotes the schema. The second

column shows the two-dimensional Walsh function for each schema, as defined in Equa-

tion 1.9. Each element is denoted by a plus or minus, which stand for l or -1. The

third column shows the nonzero elements of the two-dimensional Walsh function sum

of Equation 2.14. Each element is denoted by a plus, minus, or blank space, standing

for 1, -1, and 0, respectively, and corresponding to the Walsh coefficient product pair

adding, subtracting, or not participating in the sum. The fourth column shows the cross-

product, J?(h), of the Walsh schema transform's index set, J;(h), from Equation 1.13

and is defined in Section 1.2. J?(h) participates in the Walsh variance computation

through a set difference, identifying elements of Jg(h) that do not participate. Thus,

elements of J t (h) are denoted by o, indicating they are 'zeroed' from the index set. That

these terms should not participate makes sense since they contribute to average schema

fitness, and average fitness bears no relationship to fitness variance. Finally, the fifth

column shows the Walsh product pairs participating in the schema variance sum using

the notation of column three.

For example from Table 2.1, var(f (s(* * *))) = w: + wi + w$ + wj + wi + w: + w; because

J,$(s(* * *)) = ((0, O), (1, I), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7)) and Ji(s(* * *)) = {O),

Table 2.1: Walsh function, summation, exclusion, and variance matrices for order-zero
and order-one competition partitions for length-three binary encoding.

Table 2.2: Walsh function, summation, exclusion, and variance matrices for order-two
competition partitions J(* f f) and J(f * f) for length-three binary encoding.

h(l 1*)

Table 2.3: Walsh function, summation, exclusion, and variance matrices for order-two
competition partition J (f f *) for length-three binary encoding.

so only the index pair J!(s(* * *)) = ((0,O)) is excluded from the sum. Likewise from

Table 2.3, Ji(s(lO*)) is aJ1 index pairs either both even or both odd, and J,(s(lO*)) =

{0,2,4,6), so J,?(h) is d l index pairs which are both even. Thus, the Wdsh schema

fitness variance sum's index set, Ji(s(lO*)) - J!(h), is all index pairs which are both

odd, resulting in a Walsh schema fitness variance of var(f(s(lO*))) = w: + 2wlw3 -

2wlw5 - 2w1w7 + w$ - 2w3w5 - 2w3w;r + W E + 2w5w7 + w;. The other 25 schema fitness

variances for a length-three problem representation are similarly computed.

Counting the number of possibly nonzero terms is once again useful. The total

number of nonzero terms in the overall sum is 2 0 (~) f l - 220(h) = 2 0 (~) 2' - 2 0 (~)) . Of (
course when the schemata are genotypes themselves (when o(h) = I) , the index set

becomes nil and the sum vanishes, as it must, since the fitness function is assumed to

be deterministic. Note also that the Walsh variance computation may require more or

less computation than a direct calculation of variance using the binary basis. Of course,

fitness variance may always be calculated directly using the binary basis if that is more

convenient, but the insight gained by understanding the relationship between partitions

is well worth the price of admission.

2.2 Applications and Extensions

Based on the Walsh schema fitness variance computation from the previous section and

related to John Holland's (1973) bandit theory analysis of the optimal allocation of

trials, Goldberg and Rudnick (1991) have presented several applications and extensions

of fitness variance. They first consider how schema variance changes as one moves

from more general (larger) to more specific (smaller) schemata, where the more specific

schemata is a subset of the more general schemata. The resulting change in schema

variance derives from two sources. The first is the removing of diagonal, or squared,

terms in the summation; the second results from the addition or deletion of off-diagonal,

or cross-product terms.

They also show that refinement of a schema, or fixing one or more bits in the schema

fitness

Figure 2.1: Fitness distributions for two schemata, hl and h2.

template, need not necessarily reduce the variance of the resulting schema, a possibly

counter-intuitive result. Schema variance adjustments are also made to the schema the-

orem, eliminating the expectation operator on the left of the inequality by the use of

confidence intervals based on schema fitness variance. Finally, they address the appli-

cation of schema fitness variance to population sizing, which is presented in the next

section and applied in Chapter 5.

2.3 Fitness Variance Based Population Sizing

Under the flat population assumption schema fitnesses do not vary. But when population

size is small compared to the size of the search space, as is usually the case for GA

runs, the actual schema fitnesses seen in randomly generated populations may vary

considerably. In effect, generation of a, random population is a statistical event, resulting

in a sampling distribution of fitness for each schema.

Consider Figure 2.1. Hypothetical probability density functions for sampling dis-

tributions of fitness for two schemata are shown for a randomly generated population,

where the abscissa is schema fitness and the ordinate is probability. As can be seen,

the expected fitness of hl is greater than that of h2, or E(f(hl)) > E(f(h2)). But

because the schema fitness distributions overlap, for a particular population f (h l) may

be smaller than f(h2). Say, for example, in a particular population the fitness of h2 is

unusually high, as shown in Figure 2.1 by fi. There is then a certain probability that

f (hl) < f (hz) , shown as the highlighted area under the f (hl) distribution. Whenever

f (h l) falls within this range the schema theorem shows that in expectation the GA will

enrich the succeeding population in h2 more than in h l , despite the fact that hl's ex-

pected (flat population) fitness is greater than h2's. Thus due to stochastic variation or

error, the GA will, in expectation, choose the inferior schemata.

The smaller the GA's population, the grea.ter the fitness variance, and the greater

the chance the GA will selectively enrich an inferior schema. Conversely, the larger the

population, the smaller the fitness variance, and the smaller the chance of improper

enrichment. Goldberg (1989a) has considered population sizing from the standpoint of

schema turnover rate, knowingly ignoring variance and its effects, but explicitly iden-

tifying stochastic variation as a possibly important factor in determining appropriate

population size. Because schema fitness varia,nce, var(f (h)), is a measure of stochastic

variation, it may be used to select population size so as to minimize the probability

that the sampled schema fitness ordering in a randomly generated population is wrong.

Goldberg and Rudnick (1991) did just that,, deriving a static formula for population size

accounting for schema fitness va.riance. Their derivation is reviewed below in preparation

for adding adjustments for objective function noise in Section 2.3.

Start by assuming that the fitness function for a maximization problem is linear or

approximately linear and that all order-one terms in the Walsh expansion are equal to wi.

Consider all pairwise comparisons of competing order-k schemata. Choose a population

size, n, so the probability that the sample mean fitness of the best schema is inferior to

the sample mean fitness of the second-best schema is less than a specified value, a, or

Figure 2.2: Sampling distribution probability, p(f(hbe,t) - f(h2ndbest), versus standard-
ized z score.

where P denotes probability of an event and the hat is used t o denote the sample mean.

Posed in this way, the problem becomes a statistical decision theory problem. The

statistic of concern is the sampling distribution of the difference of the schema means

We want t o know when S is non-positive, which will also be when the GA (in expectation,

as per the schema theorem) mistakenly enriches the inferior schemata over the superior

one; this is known as the critical region of a one-tailed test. The situation is as depicted

in Figure 2.1, but we are now looking a t the sampling distribution of the difference of

the schema means, S, instead of the two schema fitness distributions fbeSt and jsndbest.

Assuming each of the schema fitness distributions are normal, the sampling distribution

of their difference will also be normal with mean ps and variance 02. The sampling

distribution may then be converted t o a standardized normal distribution (mean of 0

and variance of 1) by
s - P S = -.

US

The situation is as depicted in Figure 2.2. The shaded area shows the critical region for

a probability a = 0.05 that the inferior schemata is seen by the GA as superior in any

particular sample.

Assuming all variance is due to collateral noise, and assuming population sizes are

large enough that the central limit theorem applies, the variance of the sample mean

fitness of a single, order-b schema is

The numerator is the variance of h for the flat population (which is why a static popula-

tion sizing formula results), where (E - t) is the number of wi2 terms in the Walsh-variance

computation; the denominator is the expected number of individuals from a population

of size n belonging to an order-k schema, assuming a randomly generated population.

The sample mean fitness of the best and second-best schemata have the same vari-

ance, defined in Equation 2.22. Their sample fitness difference, the sampling distribution

S, has variance

where variance is denoted by a2, since the variance of a difference of independent random

variables is the sum of the individual variances. Taking the square root of each side,

noting that both variances on the right are identical and defined by Equation 2.22, the

standard deviation of the difference in sample mean fitness values is obtained as

Thus assuming independence between the schema fitness sampling distributions for

hbest and hzndbeSt, the difference in sample mean fitness is

where M is one of 2,4,. . . ,20(h) where h is hb,,t or h2ndbest (they are of equal order

since they belong to the same competition partition).

Table 2.4: Normal deviates and squared normal deviates for various levels of significance,
a.

U7e want to find the critical region in the S distribution where f(hse,t) < f(hZndbeSt).

That occurs when S 5 0, so

Substituting in the worst-case difference in sample mean fitness values from Equation 2.25

and the standard deviation of S from Equation 2.24 yields

Squaring Equation 2.27, substituting for as from Equation 2.24, and simplifying yields

an expression for the population size,

Note that the wi factors dropped out of Equation 2.28 when Equation 2.24 was sub-

stituted into Equation 2.27; thus given the stated assumptions, population size is inde-

pendent of the particular value for wi. By examining Table 1.3, the worst-case sample

fitness difference for Equa.tion 2.28 is 2w{, since mean sample fitness difference is in-

versely related to population size. Thus, a sufficient population size, irrespective of

which schemata within the competition partition are considered, is

Table 2.4 shows r and r2 values for the one-sided test corresponding to selected

levels of significance, a. Each t value corresponds to the probability that the difference

between the sample mean fitness of the best and second-best schema is negative is a.

For example, considering k = 1 at a significance level of 0.1, the population sizing

formula becomes n = 1.64(1 - 1). Many problems are run with strings of length 30

to 100, for which the formula would suggest population sizes in the range 49 to 164.

This range is not inconsistent standard GA p r a ~ t i c e . ~ Similar reasoning may be used to

derive population sizing formulas if the building blocks are scaled nonuniformly or if the

function is nonlinear.

Note that the population sizing analysis presented applies only to the initial, ran-

domly selected population; hence the descriptor static population sizing. To perform

popula.tion sizing analysis after the initial generation, additional factors must be consid-

ered. Some factors lead to an increased population size, while others lead to a decreased

size.

Since a > 0.5 for even extremely small popula.tions, the probability the correct

choice will be made is never worse than 0.5, or no worse than a random walk. During

GA operation, the least-fit individuals are quickly culled from the population. Thus the

representation, or proportion, of more-fit schemata in a competition partition increases

while the proportion of less-fit schemata decreases, a phenomena referred to here as

schema. enrichment. As a result, the fitness varia.nces of the better schemata are reduced

at the expense of increasing the fitness variance of the poorer schemata. Overall, the

probability that the best schema will be selected over the second-best schema increases

as schema enrichment progresses, but with the proviso that hitchhiking3 (Schaffer et al.,

1991) and genetic drift4 (Goldberg & Segrest, 1987) don't destroy the exemplars of the

more-fit schemata before they can be used. Thus, a population smaller than dictated

'For example, De Jong (1975) empirically tried population sizes of 50, 100, and 200 on his f l prob-
lem (minimization of a three-dimensional paraboloid), finding that the larger populations gave small
improvements in off-line performance while actually increasing on-line performance over the observed
number of evaluations.

3Hitchhiking is a genotype linkage effect in which a passive allele (an allele not a t the moment actively
selected for) a t a locus near another locus containing an actively selected allele 'hitchhikes' a ride into
the offspring.

'Genetic drift is the tendency of a population not undergoing active selection pressure t o nevertheless
stray from its initial schemata distribution due to random walk effects.

by the static sizing formula may produce satisfactory results. Schema enrichment sug-

gests the use of larger populations during the early portions of a GA run and smaller

populations during the later stages.

Of course, there are factors that may serve to increase schemata fitness variance

following the initial generation. These include stochastic effects resulting from the action

of selection, genetic operators, linkage coupling and disruption effects, and variance in

the fitness function (Section 5.5.2 and 5.6 each deal with the issue of population sizing in

the presense of fitness function noise). Since all of these except fitness function variance

are reduced as the GA population converges towards a single genotype, they too tend to

suggest gradually decreasing population size during a GA run. These issues are left to

future research.

Chapter 3

Signal Versus Noise

Most GAS function by sampling schema fitness. Because populations of modest size are

generally used, schema fitness variance is a primary source of stochastic noise which can

hamper correct evaluation of building blocks.

In Chapter 2 a Walsh basis expression for static schema fitness variance is derived.

It is then used to control the probability of one source of incorrect evaluation of build-

ing blocks; for two schemata, the schema fitness difference (signal) and schema fitness

variance (noise) are juxtaposed as a basis for static population sizing.

In the present chapter these notions of signal and noise are generalized from two

schemata to competition partitions. Section 3.1 presents an overview of the roles of

signal and noise. Rigorous definitions of signal, noise, and the signal-to-noise (SNR)

ratio are given in Sections 3.2,3.3, and 3.4. For each, a Walsh basis expression is derived

under the flat population assumption. Finally, the relevance of the SNR to the quality

of GA decision-making is then discussed in Section 3.5.

3.1 Overview of GA Signal and Noise

Each schema may be viewed as a partial solution defined by its fixed positions. Schemata

are organized into competition partitions - competing partial solutions, or sets of

schemata fixing the same bit positions. Thus, every complete solution, such as a member

of a GA's population, belongs to exactly one schema within each competition partition.

In effect, the partial solutions within a competition partition compete for representation

in the GA's population of complete solutions.

Each schema has as its schema filness, f(h), the average fitness of its elements. The

partial solutions (schemata) within each partition will, in generd, have a spread in their

fitnesses, which can be thought of as the parti tion's selection pressure, or convergence

signal. The greater the fitness spread among the partition's schemata (partial solutions),

the greater the partition's signal strength, and the greater will be the convergence oc-

curring within the partition. It is this spread in fitness which enables the GA to select

better partial solutions in the partition.

The GA continually operates to enrich succeeding populations with respect to the

fitness of the partial solutions represented within the population. It does this by pref-

erentially selecting individual solutions having above-average fitness with respect to the

current population. When some partitions have strong signals while other partitions

have weak signals, the GA pays attention (through the mechanism of selection) to the

strong signals at the expense of the weaker signals. In effect, the GA has only so much

selection attention to distribute among the various competition partitions.

Thus from the point of view of a particular partition, signals from all other partitions

contribute to noise competing with its signal. The net effect is that the 'signal' from

partitions with weak signals is lost among the loud 'noise' from partitions with strong

signals. This happens when the difference between the strong and weak partition signals

is large relative to the size of the population and results in poor-quality GA decisions

being ma.de in the weak partition.

3.2 Signal

We define the measure of the force tending toward convergence within a competition

partition as the square root of the variance of the schema fitnesses of the schemata

within the partition, and call it the partition signal strength, S(J), or in mathematical

form,

s ~ (J) = var(f(J)). (3.1)

The reason for the squaring is that variance is itself a squared measure. Note that signal

may be computed directly from any GA population (Bridges & Goldberg, 1991) by using

a proportion-based definition of variance,

where P (h) is the proportion of the population in schema h, f(h) is now the average

fitness of that part of the population in h, and 7 is the average fitness of the population.

Next, an expression for a partition's static signal strength in the Walsh basis is

derived. Restating Equation 3.1 in terms of the variance expression given in Equation 2.3,

where h varies over the schemata in J. Tackling the first term in Equation 3.3,

from the definition of the mean, where JJJ is the number of schemata in J. Substituting

the expression for f (h) from the Walsh-schema transform, Equation 1.13, yields

Expanding the quadratic yields

Note tha,t all schemata within a single partition share the same index set, i.e., Ji(hj) =

Ji(hk) for all hj, hk E J. Thus, the same Walsh coefficient products occur JJI times in

the outer summation, but with possibly different signs due to the action of qjtk(h). In

fact, because of the orthogonality of the Walsh basis and because each partition covers

the entire search space, when j # k an equal number of plus and minus terms occur for

each Walsh product pair, wjwk, resulting in the elimination of all off-diagonal products.

Thus, Equation 3.6 reduces to

where J , (I) has been substituted for Ji(h) by noting that all schemata in a partition

share the same index set.

The last term of Equation 3.3 can be expanded analogous to Equations 3.4, 3.5, and

3.6, resulting in

Likewise, because J covers the space of all possible genotypes and Walsh functions are

orthogonal, Equation 3.8 simplifies to

as it must since the average of the averages of equal-sized partition elements is simply

the average of the underlying space, which for the entire search space is wo.

A Walsh expression for a partition's squared signal, S 2 (~) , may now be formed by
- 2

substituting the Walsh basis expressions for f2(h) and f (h) from Equations 3.7 and

3.9, respectively, into Equation 3.3, producing

Since wo is in every Ji(J), the effect of subtracting wa is to remove it from the equation

altogether, which is equivalent to removing zero from the index set, and Equation 3.10

may be restated as

where the minus sign in the index expression denotes set difference. As an example, the

squared sjgnal of partition J = f f * is S2(f f *) = w; + wj + wi. Equation 3.11 is a

remarkably simple expression - a. partition's squared signal strength is just the sum of

the squares of the Walsh coefficients of order-one or greater in the partition's index set.

Further, the expression is general, in the sense that nothing has been assumed about the

form of the fitness function. Its role in GA decision-making is discussed in Section 3.5.

3.3 Noise

Signals from other partitions contribute to noise competing with the signal of the parti-

tion under consideration for the control of the GA's selection process. We define partition

root-mean-squared noise, C(J) , as the square root of the average of the collateral noise

values for each schema in the competition partition under consideration, or

1
C2(J) = var(f (h)) = - var(f(h)),

I J I heJ

where var(f (h)) is the average collateral noise a.mong the schemata in the partition. No-

tice that, as with signal, noise ma.y also be directly computed given a specific population

by using the proportion-based definition of variance, Equation 3.2.

Next, an expression for a pa,rtition's sta,tic root-mean-squared noise in the Walsh basis

is derived. Substituting the definition of var(f (h)) from Equation 2.18 into Equation 3.12

yields

As with Equaiion 3.6, and for the same rea.son, the off-diagonal product terms are zero

and can thus be elimina.ted from the index set. Note that the remaining (diagonal)

entries in the inner summation's index set are exactly the elements which are not in

J;(J). Thus, the index set is J;(J), the complement of J;(J). As in Equation 3.6 the

outer summation ca.ncels against the l /JJJ term because each term is added 1JI times,

and Equation 3.13 simplifies to

Continuing the previous example, the squa.red noise of partition J = f f * is C2(f f*) =

wl" + w; + w; + w;.

Note that signal plus noise equals a constant determined by the particular fitness

function used, or

Thus signal and noise can each be expressed in terms of the other, as in

and

Next the equations for signal and noise are combined to give a measure of which has

the upper hand in a particular situation.

3.4 Signal-to-Noise Ratio (SNR)

The signal-to-noise ratio (SNR), R(J), is a measure reconciling the opposing effects of

signal strength and noise. It is defined as

Substituting in the expressions for squared signal and squared noise from Equations 3.11

and 3.14 gives

1
Completing the ongoing example for partition J = f f *,

Note the way in which ea.ch Wa.lsh coefficient other than wo occurs exactly once in

Equation 3.19, contributing to either squared signal (the numerator) or squared noise

(the denominator). That wo, the average fitness over the entire search space, does

not participate in S , C, or R, makes sense since both signal and noise are composed

exclusively of combinations of variances, which plays no part in the search space's average

fitness. That Equation 3.19 is so simple is yet another demonstration of how the Walsh

basis respects competition partitions.

Finally, note that R(J) is undefined for the competition partition containing order-l

schemata, since its noise is zero. Likewise, R(J) for the competition partition whose

single element is the order-zero schema is zero, since S(J) = 0.

3.5 Discussion

The definitions of a competition partition's signal, noise, and SNR are general, in the

sense that they assume nothing about the form of the fitness function. Likewise, the

definitions do not require the flat population assumption; signal, noise, and the SNR may

each be computed for arbitrary popula.tions by using the proportion-based definition of

variance, Equation 3.2. However, since the Walsh expression for schema fitness variance,

Equation 2.18, requires the uniform population assumption, the Walsh expressions for

signal, noise, and SNR are static.

Of what relevance is the SNR? Holland (1973) used a statistical decision theory ap-

proach to develop his bandit theory analyses of the GA's exploration versus exploitation

behavior. A partition's signal, noise, and SNR each induce a total order on competition

partitions. That is to say, each n1a.y be used to rank competition partitions into a linear

sequence in which ties are possible. From a statistical decision theory perspective, the

SNR is a measure appropriate to reconciling the opposing effects of signal and noise with

respect to GA decision-making. It effectively establishes which partition's convergence

has first call on the control of selection events, and thus establishes a convergence priority

queue among competition partitions.

R(J) generalizes the statistical-decision-theory-based population size analysis of Sec-

tion 2.3. There it was shown how stochastic varia.tion can result in the schema with the

best expected fitness having a sample fitness in a randomly generated population less

than that of an inferior schema. The schema theorem then shows how such variation

can result in the GA mistakenly enriching an inferior schema.

The static population sizing calculation used the sampling distribution of the fitness

difference of two schemata to establish probabilistic bounds on making such a sampling

error as a function of population size. That calculation used a ratio of the mean of

the sampling distribution of the fitness difference of the two schemata t o its variance,

computing the critical region of the standardized z distribution in Equation 2.27. Taking

that equation, setting 111 = 2 (see Equation 2.25) for an order-one partition, using the

flat population variance instead of the sampling distribution variance, replacing z by z'

t o distinguish the two distributions, and simplifying yields

Equation 3.21 is also the value of the SNR under the a.ssumptions made by Equation 2.27,

or

Thus, the SNR may be thought of as generalizing the statistical decision theory based

population sizing computa.tion of Section 2.3 from competition partitions of size two

to arbitrary competition partitions a.nd removing some of the simplifying assumptions.

The numerator of Equa.tion 2.26 is generalized to the root-mean-squared error of the

partition's schema fitnesses, and the denominator is generalized to the root of the average

schema variance in the partition. Note that although Equation 3.22 assumes the flat

population, the definition of the SNR makes no such assumption (only the Walsh basis

expression derivations require the uniform population assumption) and may therefore be

computed for arbitrary populations by using the proportion-based definition of variance,

Equation 3.2. Thus, the SNR functions to measure the search-space dependent likelihood

that the fitness spread among the competing schemata of any particular partition is

sufficient to control selection events a.mongst all the other partitions vying for control.

Chapter 4

Domino Convergence

It has long been known that the more significant bits of binary-coded GAS converge

more rapidly than bits of lesser significance (Schraudolph & Belew, 1990, for example),

a phenomena here called domino convergence. The intuitive explanation is that there

is more convergence pressure on the more significant bits. A closely related phenomena

sometimes occurs when convergence stops prematurely, a phenomenon dubbed conver-

gence stall. Several analyses and models are presented exploriilg various aspects of these

phenomena.

The cha.pter is organized as follows. Section 4.1 presents a simple problem demon-

strating both domino convergence and convergence stall. Section 4.2 presents an analysis

of expected initial convergence window width. Section 4.3 presents analysis of conver-

gence stall point using first a simple model and then a more refined model. Section 4.4

presents a signal-to-noise ratio ba.sed analysis. Finally, Section 4.5 discusses the role of

mutation in the light of convergence stall.

4.1 Simulation

The identity problem, f (x) = x, is chosen to demonstrate domino convergence and

convergence stall, where x is interpreted as the binary fraction .x1x2.. . xl. Since the

problem is linear, it may be stated in the binary basis as

where a , = 1 /2~ . The problem is tackled with a simple GA using tournament selection,

single-point crossover, and mutation. A 53-bit1 genotype is used, with population of size

100 randomly initialized, and crossover rate of 0.5. A series of runs were made for muta-

tion rates of 0.0025,0.005, 0.01, 0.02,0.04, and 0.08.2 In all cases 300 generations were

used. In order to wash out stochastic deviations, 1000 simulation runs3 were averaged

for each mutation rate.

Figure 4.1 shows plots of the proportion of 1s in the population at each loci versus

generation number for mutation rates of 0.0025,0.005,0.01,0.02,0.04, and 0.08. In each

plot the abscissa is time in generations and runs from time zero, the randomized initial

generation, through generation 240 in steps of three generations. Each ordinate encodes

locus (bit position in the genotype) and runs from locus 53, the least significant bit, to

locus one, the most significant binary digit. The 2, or vertical, axis shows convergence

level for each locus as a proportion of 1s in the current population, and runs from 0.5 at

the bottom to 1.0 at the top. The flat, upper plateaus for a mutation rates of 0.0025,

0.005, and 0.01 are areas of nearly full convergence. The seas, or lower plateaus, represent

areas of no convergence, where the number of 0s and 1s in the population a t each locus

as averaged over the 1000 runs are approximately equal. The intermediate Z values on

the slopes represent areas of good skiing4

The relatively large amount of variation among the individual runs can be seen both

from Figure 4.3, which shows a single GA run with a mutation rate of 0.01, and from

the plots of Figure 4.2, which show the standard deviation of convergence proportion for

each of the six runs shown in Figure 4.1. In Figure 4.2 the ordinate axis is reversed so

that the slopes "behind the mountains" are not hidden.

Figure 4.4 shows loci converged versus time in generations for each of the different

'This value was determined by the number of bits of precision available in double-precision floating-
point numeric representation.

'These values were chosen to bracket the crossover point, falling between 0.01 and 0.02, between fully
converged runs and stalled runs (mentioned later in this section).

3The number of simulation runs to be included in each average was determined by how many runs
could be performed in a reasonable period of time, rather than on the basis of a statistical test of
significance based on the amount of variance present in the distribution of runs.

'Actually, they represent areas of partial convergence.

Locus convergence for mutation - 0.0025 ' Locus convergence for mutation = 0.005

Locus convergence for mutation L 0.01 1 Locus convergence for mutation = 0.02

Locus convergence for mutation = 0.04 ~ Locus convergence for mutation = 0.08

Figure 4.1: Convergence levels for mutation rates: first row, 0.0025 and 0.005; second
row, 0.01 and 0.02; third row, 0.04 and 0.08.

StdDev for mutation = 0.0025 StdDev for mutat~on = 0.005

StdDev for mutation = 0.01 StdDev for mutatlon = 0.02

StdDev for mutation = 0.04 StdDev for mutat~on = 0.08

Figure 4.2: Staltdard deviatiol~s of convergence for ~ i ~ u t a t i o n riites: first row, 0.0025 and
0.005; second ro~v. 0.01 and 0.02: tliird row, 0.04 aiid 0.08.

mutation values, where convergence is defined as a proportion of at least 0.9 1s. Both

Figure 4.4 and the perspective plots show how convergence quickly "stalls outn in runs

with higher mutation rates.

Despite the fact that tournament selection exerts more convergence pressure than

many other forms of selection (Goldberg & Deb, 1991), the runs sometimes took over

200 generations to reach a steady-state (all positions constant on the convergence plots of

Figure 4.1) on this simple problem. The main factor causing such slow convergence is that

no convergence is occurring in the less significant loci until the more significant loci have

converged. In other words, the convergence of the more significant loci allow loci of lesser

significance to converge, not unlike a row of dominos falling over in succession - hence

the name, domino convergence. From a signal versus noise perspect i~e,~ the large signal

from non-converged, higher-significance bits is con trolling selection events; this effectively

precludes the relatively weak signals of the low-significance bits from controlling any

selection events, and results in no convergence taking place among the low-significance

bits until the higher-significance bits have converged. Domino convergence is a general

phenomena in GA convergence, not limited to binary coded parameters.

The net result is that a convergence window exists in which convergence actively

occurs; outside the window little or no convergence occurs. The situation is depicted in

Figure 4.5, which shows locus position on the abscissa with the most significant loci to

the left, versus convergence (proportion of 1s) at each locus along the ordinate. At the

start of a simulation run, the convergence window is at the left edge of the abscissa and

contains only the most significant loci. As the simulation proceeds, the window slides to

the right. In effect, three distinct convergence regimes exist, each with its own invariant

conditions. Loci to the left of the window are already fully converged; loci to the right

of the window have undergone no convergence; only loci within the window are actively

converging.

From the signal versus noise perspective, the signal level of each locus is ranked

- --

'See Section 4.4 for a uniform-population derivation of expressions for signal, noise, and the signal-
to-noise ratio for each bit position.

from highest to lowest. For the initial, random population in expectation, the most

significant bit's locus has the highest signal, while the least significant bit's locus has

the lowest signal. At any particular time the loci whose signals are above the current

noise level are actively controlling selection events, while those below the current noise

level are either already converged and are in the converged region (for example, a fully

converged partition has a signal of zero), or have undergone no convergence and are in the

unconverged region. As the loci in the convergence window become fully convergenced,

they move into the converged region and their contribution to the noise level is eliminated.

The resulting lowering of the noise level eventually allows the signal of the locus in the

unconverged region next to the convergence window to be heard so that it begins to

affect selection events; thus, its partition begins to converge. The net effect is that as

convergence proceeds the convergence window slides to the right.

Note that with fixed nonzero mutation rates and sufficient bits in the genotype,

the window's movement to the right will eventually slow and stop. The window stops

when the increase in convergence due to selection is exactly offset by the reduction in

convergence due to mutation among already converged loci, or from the signal versus

noise perspective, when the reduction in noise due to selection is exactly offset by the

increa.se in noise due to mutation a.mong the already converged loci. Thus, a steady-state

"stalling out" of convergence, or convergence stall, results, as can be clearly seen in the

later generations of the plots for mutation rates 0.02, 0.04, and 0.08 in Figure 4.1.

4.2 Analysis of Convergence Window Width

In this section convergence window width is analyzed for the demonstration problem,

resulting in a model of expected convergence window width a t the start of a run.

For the f(x) = x problem, what factors determine convergence window width? To

answer this question first consider how binary tournament selection works. Since tourna-

ment selection is a rank-based selection method, only the ordering of fitness values of the

genotypes in the popula.tion matter - other than this, the actual fitness values do not

Most 1
Significant Bit

Single Run Convergence, Pm = 0.01

Figure 4.3: Results from a single run.

I I I I I I
0 20 40 60 80 100

generation

Figure 4.4: Loci converged versus time for 90% convergence for various mutation rates.
Plot lines, from bottom to top, correspond to GA runs with mutation rates of 0.08,0.04,
0.02, 0.01, 0.005, and 0.0025.

Table 4.1: Enumeration of tournament selection events controlled by each of the 16
possible two-locus tournament pairings. The first four columns give the values of the
four alleles at the two most significant genotype positions of the two parents. The last
three columns use 'r ' to show where the tournament is decided.

matter at all. Interpreting the genotype as a binary fraction as was done in Section 4.1,

parent 1

the rank of a genotype's fitness is identical to the rank of the genotype itself. This is true

locus 1
0
0
0
0
0
0
0
0
1
1

not only for the demonstration problem, but for any monotone fitness function. Thus,

locus 2
0
0
0
0
1
1
1
1
0
0

parent 2

the relative ranking of two individuals paired in a tournament depends entirely upon

their allele values at the first locus at which they differ, and further, loci at which the

decided by
locus 1

r

r

r

r

1
1
1
1
1
1

locus 1
0
0
1
1
0
0
1
1
0
0

parent individuals have identical alleles play no part in determining relative ranking.

Given a random population, an expression may be derived for the expected proportion

r

locus 2
0
1
0
1
0
1
0
1
0
1

of tournament pairings decided at each locus. The four possible pairings of locus one's

alleles among two parents are (0,0), (0,1), (1,0), and (1,l). In the (0,O) and (1,l) pairings,

allele fitness contributions are irrelevant because the tournament will be decided at a less-

significant locus. But in the (0,l) and (1,O) pairings, the relative allele fitness determines

the outcome and the child will have a 1 at locus one. Thus in expectation, half the time

r

decided by
locus 2

r

r

0 --
0

decided
elsewhere

r

1
1
1
1

0
0
1
1

0
1
0
1

r

relative allele fitness at locus one determines the outcome of the tournament. Similarly

in considering which tournaments are decided at locus two, only the loci of the first

and second alleles are relevant. As shown in Table 4.1, there are 16 possible pairings

covering all possible genotype combinations of two alleles in each parent. In 114 of

these 16 possible pairings, the fitness contribution of the locus-two alleles determine the

outcome of the tournament.

In general for locus i, 1/2j proportion of the time the values of locus i's alleles

determine the outcome of the tournament. Thus for a population of size n, the expected

number of individuals selected on the basis of the values of the alleles at locus i will be

n/2< Notice that the number of individuals selected at each locus must be integral, since

only whole individuals can be selected. Thus for the population of size 100 used in the

domino convergence simulation suite, locus six should control 10012~ = 1.56 selection

events, or about one or two individuals, while locus seven should control 100/27 = 0.78,

or about 0 or 1 individuals. Therefore, the expected width of the initial convergence

window should be six or seven loci. Checking against the simulation runs shown in

Figure 4.1 reveals an increase in the average proportion of 1s in generation three (the

next generation shown after the initial, random, generation zero) for only the first seven,

eight, or nine loci, a good match to the width predicted by the initial convergence window

width model.

In general and after the initial generation, either a fully or partially converged region

will exist among the most significant loci, and the random population assumption of the

initial convergence window width model will be violated. The analysis can be extended

to times beyond the initial generation by deriving expressions for the proportions of each

allele at each locus in the converged and partially converged regions. Approximations

for these expressions are derived in the next section.

proportion
of 1s in

population

convergence
window

converged (converging) unconverged

\

most
significant

locus

locus
least

significant
locus

Figure 4.5: Context of locus i for simplified convergence stall analysis.

4.3 Analysis of Convergence Stall

In this section two analyses of convergence stall are given. First, a simplified model

derived by Goldberg (1991b) is defined and compared to empirical results, then a more

refined model is considered.

4.3.1 Simple Model

Consider again the context for the simplified steady-state analysis of convergence

stall as shown in Figure 4.5. From left to right, the three convergence regions are shown.

First, the most significant loci comprise the converged region; note that in the initial

Table 4.2: Possible tournament pairings a t locus i and their probabilities of occurrence.

competing alleles
1 vs 1

window width analysis of the previous section, the size of the converged region was

zero. Second, the next most significant loci comprise the partially converged region in

which convergence is actively taking place, the convergence window. Third, loci of lesser

significance comprise the unconverged region.

Consider locus i, the most significant locus in the convergence window. The outcome

probability part of the initial window width model of Section 4.2 is generalized to allow

an arbitrary proportion of 1 alleles a t locus i. Locus one of the previous model now

corresponds t o locus i in Figure 4.5, the first position within the convergence window.

As in the previous model, the 1 alleles are assumed to have higher fitness than the 0

alleles. If all of the more significant loci in the converged region were to remain fully

converged (no mutations occurred among them during previous generations), then locus

i would be the first t o have a shot a t affecting the selection between the genotypes

engaged in a tournament. As shown in Table 4.2, either a 1 or a 0 allele may result a t

locus i from such a tournament. A 1 results in three ways having combined probability

of 2Pt - P,2, where Pt represents the proportion of 1s in the population at locus 2 . A 0

results with probability (1 - Pt)2, only when both individuals have a 0 at position i.

The possibility that a mutation either occurred in the converged region during the

previous generation (so that it now prevents the alleles a t locus i from determining the

outcome of the tournament) or occurs a t locus i during this generation is accounted for

as follows. The probability that a mutation occurs a t a locus is p,, so the probability

that no mutation occurs is 1 - p,. The probability that no mutations occurred in the

converged region or will occur a t mutation i is (1 - P ,) ~ + ' , where c is the number of

loci in the converged region. Thus, the probability that one or more mutations either

outcome (child)
1

probability

p,2

occurred in the converged region or occurs at locus i is

Finally, the probability that no such mutation occurred is 1 - p;. Incorporating this

into the group probabilities derived from Table 4.2 yields the probability that a 1 results

from a tournament pairing as

Pt+l is the proportion of 1s produced in the next generation. This will be called the

simple model. That Equation 4.3 is an approximation may easily be seen by considering

the decision tree shown in Figure 4.7, a complete model for the context presented in

Figure 4.5. This full model will be explored in detail in Section 4.3.2. Note that there

are four leaves which produce 1s in the next generation, while Equation 4.3 employs only

the single term which corresponds roughly to the leftmost leaf of the decision tree. Thus

the proportion of 1s at succeeding generations is underestimated, and a corresponding

underestimate of the convergence stall point is to be expected.

To estimate the convergence stall point based on the model of Equation 4.3, we set

Pt+l = Pt, which results in

where P,, is the fixed point of the equation, the proportion of 1s at locus i at steady-

state. We arbitrarily define 'converged' to mean 90% or more Is, substituting P,, = 0.9

into Equation 4.4, and solving for pL yields

Substituting 0.091 for pk in Equation 4.2 and solving for c yields

Figure 4.6 shows the 90% convergence stall points from the simulation runs presented

in Section 4.1 (denoted by triangles), those predicted by the simple model (denoted by

octagons), and the streamlined model presented in Section 4.3.2 (denoted by squares).

As expected, the simple model underestimates the stall points. To try to get a better

analytical estimate, a more refined analytical model is next considered.

4.3.2 Refined and Streamlined Models

The simple model presented in the preceding section significantly underestimates the

90% convergence stall points because several of the sources of 1 alleles shown in the

decision tree of Figure 4.7 are ignored. To improve the stall point estimate, a set of

recurrence equations are defined modeling the proportion of tournaments available to

be decided at locus i. The recurrence equations are then simplified to the convergence

context depicted in Figure 4.5 and incorporated into a more refined model. The model

is then compared to both the empirical simulation results and to the predictions of the

simplified model.

A fairly general set of recurrence equations may be written defining D;, the proportion

of tournaments available to be decided at locus i (i.e., not already decided at more

significant loci) , and di, the expected proportion of tournaments decided at locus 2 . For

locus i = 1,

Dl = 1, (4.7)

since all tournaments are available to be decided at locus 1, and with PI the proportion

of 1s at locus i,

dl = 2P1(1 - PI), (4.8)

since the tournament will be decided at locus one when the allele pairs are either (0,l)

or (1,0), each of which occurs with probability P,(l - P;), where P; is the proportion of

1 alleles at position i. For locus 1. = 2 the respective equations are

since all tournaments are available to be decided at locus two except those already

decided at locus one, and

Convergence Stall, simple model vs runs

Figure 4.6: Steady-state convergence level versus last-converged locus for empirical sim-
ulations (triangles), simple model (octagon), and streamlined model (squares). The
definition of convergence used requires 90% or more 1s at each locus from the most
significant position to the last-converged position. Mutation rates (P, 's) of 0.01, 0.02,
0.04, and 0.08 are shown on a linear scale. Note that the 0.0025 and 0.005 mutation
rates are not shown, since the performance of the simulation runs is clipped due to the
limited precision of double precision floating point representation.

since there are D 2 tournaments available to be decided a t locus two, and 2P2(1 - P2) of

those will be decided a t locus two. Substituting for Dl and dl from Equations 4.7 and

4.8 into Equations 4.9 and 4.10 yields

In general,
1-1

Di = Di-] - di-l = rJ [l - 2Pj(1 - P j)] (4.13)
j=1

and
i-l

di = 2P,(1 - Pi)Di = 2Pi(1 - Pi) n [I - 2Pj(1 - Pj)] . (4.14)
j=1

Equations 4.13 and 4.14 are a general model for the expected proportion of tournaments

decided a t locus i, and assume only that the fitness functiorl is strictly monotone, mono-

tonically increasing as opposed to simply non-decreasing, and the proportion of 1 alleles

a t each locus is known. The model applies to all three convergence regimes shown in

Figure 4.5 - the converged area to the left of the convergence window, the area of active

convergence within the convergence window, and the area of nonconvergence to the right

of the window.

The model given in Equations 4.13 and 4.14 may be combined with a probabilistic

model for the allelic value resulting a t locus i from a tournament pairing. The combined

model is shown as a decision tree in Figure 4.7. Where present, node labels indicate

the value of the resulting child's locus i allele a t that point in the process. Each branch

is labeled with both the action the bra.nch represent,s and the probability with which

that action occurs. Levels in the tree proceed from left to right. The first level of the

tree determines whether or not the tournament is decided above locus i. If not (lower

branch at level one), the second level determines whether a 0 or 1 allele results from the

tournament. If the tournament was decided above locus i (top branch a t level one), the

second level determines whether a 0 or 1 allele hitchhikes a t locus 1:. Finally in all cases,

level three determines if a mutatioil occurs a t locus i to change the resulting allele. Each

leaf represents a possible outcome with the associated probability being the product of

the probabilities along the path leading to the leaf. Four of the outcomes (leaves) result

in 1 alleles a t locus i in the resulting child and four result in 0 alleles. Together the

leaves cover all possible outcomes.

Combining the model of Equations 4.13 and 4.14 with the decision tree probability

model from Figure 4.7, the expected proportion of 1s a t locus i in the next generation is

Making substitutions for D;,t from Equation 4.13 yields

Equation 4.16 is a fully general model a.pplicable to all three convergence regimes and

will be called the refined model. It assumes only that all loci are independent, as is the

case with a bitwise linear fitness function or when uniform crossover is used by the GA,

an assumption required by the hitchl~iking branch leaving the upper level one node of

the decision tree. The model could be programmed and run iteratively to produce a

trajectory, in expectation, of the proportion of each allele a t each location. It can then

be used to investigate the steady-state behavior of the modeled GA, although this has

not been done here. Explicit solution of Equation 4.16 for the steady-state stall points

appears impractical.

To make further progress, the refined model of Equation 4.16 is simplified by restrict-

ing the locus under consideration to be the leftmost, or most converged, position in the

active convergence window as depicted in Figure 4.5. Further, any mutations occurring

in the converged region are assumed to be completely corrected by selection in each

generation, so that no mutations accumu1at.e from generation t o generation. The new

model will be called the streamlined model.

mutation

mutation
a t locus i

tournament
not decided

before
locus i

. . \ mutation A 0)
I results w

from pm
tournament \1-pm

110 mutation-

Figure 4.7: Locus decisioli tree - combined model.

mutation

mutation

tournament

tournament

Figure 4.8: Locus decision tree - streamlined model.

Figure 4.8 shows the decision tree for the streamlined model. The main difference is

that the probabilities D;,t and 1 - DiPt a t the first level of the tree have been simplified

t o (1 -pm)" and 1 - (1 -pm)", where p, is the bitwise mutation probability and x is the

number of bits in the converged region. The resulting difference equation for proportion

of 1s a t locus i in the succeeding generation is obtained by adding the probabilities for

the 1 leaves from Figure 4.8, producing

Note that the i subscript has been dropped since that aspect is now fully captured by

x in the streamlined model. By setting Pt+l to Pt and solving the resulting quadratic,

the expected steady-state, or fixed point, proportion of 1s becomes parameterized by p ,

and x. Figure 4.6 shows the steady-state convergence level versus mutation rate for the

streamlined model by the line denoted by squares, as compared t o the simulation runs

of Section 4.1 denoted by triangles, and the simplified model of Section 4.3.1 denoted by

octagons. It can be seen that the streamlined model generally predicts convergence stall

will occur a t higher positions than are observed empirically. For example, the pm = 0.02

run shown in Figure 4.1 clearly shows convergence in the GA simulation runs stalling

out around locus 30, while the streamlined model predicts stall should not occur until

position 80 or so. A possible source for the discrepancy may be the assumption, made by

both the simple and streamlined models, that no mutations accumulate in the converged

region from generation to generation. Such an oversimplification would underestimate

the number of mutations in the converged region and therefore overestimate the con-

vergence stall position. It may be possible to adjust Equation 4.17 for such mutation

accumulation, but that has been left as future research.

The GA convergence models presented are all limited t o nlonotone fitness functions.

In the next section, the more general signal versus noise model defined in Chapter 3 is

applied t o domino convergence.

4.4 Domino Convergence and the Signal-to-Noise Ratio

In tournament selection with strictly monotone fitness, a mutant allele in the converged

region takes precedence over all alleles of lower significance. From the signal versus noise

perspective, mutation acts to constantly inject collateral noise into the converged region,

just as it does in the other regions. But the mutations occurring in the converged region

are of special significance, since they generate a relatively higher level of noise. This noise

serves to lower the signal-to-noise ratio (SNR) of the loci of lesser significance, effectively

competing with the fitness discrimination signals of the loci in the convergence window.

When the amount of mutation noise injected into the converged region becomes large

enough, convergence stall results. As the mutation rate or the size of the converged region

is increased, the noise eventually overwhelms the signal. In this section, the f(x) = x

domino convergence demonstra.tion problem of Section 4.1 is emmined from the signal

versus noise perspective.

As shown by Goldberg (1989a), any linear fitness function ma.y be stated in terms of

its Walsh basis as

where the Walsh coefficient w2, denotes the indices of the order-one Walsh coefficients,

and the values of the Walsh coefficients are

Because f (x) is linear, only the order-zero and order-one Walsh coefficients are nonzero.

Throughout this section the competition pa.rtitions considered will be limited to those

of order-one or less, since all other Walsh coefficients are zero.

Thus for linear fitness functions, the Walsh basis expression for squared signal, Equa-

tion 3.1 l, becomes

where J s (J) = J ; (J) - (01, the usual partition signal index set used in Equation 3.11,

and Wl is the set of indices for the order-one Walsh coefficients. In effect, the usual

partition signal sum is used, but restricted to order-one Walsh coefficients. Each order-

one competition partition has exactly one coefficient satisfying these constraints, namely,

the order-one coefficient corresponding to the locus partition J fixes, or makes constant.

In similar fashion, the Walsh basis expression for squared noise, Equation 3.14, sim-

plifies t o

where J c (J) = J i (J) , the usual partition noise index set used in Equation 3.14. Again,

the usual partition noise sulll is used, but restricted to order-one Walsh coefficieilts

because the higher-order coefficients are all zero.

Finally, the SNR M'alsh basis expression, Equation 3.19, becomes

Note that Equations 4.20, 4.21, and 4.22 apply to any linear fitness function. Since for

linear fitness functions the number of nonzero Walsh coefficients is linear in the length of

the genotype, actually performing these computations becomes attractive as compared

t o the case of the general fitness function, where the number of potentially nonzero Walsh

coefficients is exponential in the length of the g e n ~ t y p e . ~

Consider again the identity function, f (x) = x, used in Chapter 4, Equation 4.1, as

the domino convergence demonstration probleill fitness function. Since f(x) is a linear

"f course, computing R(J) for nonlinear fitness functions can also be done, but the number of
potentially nonzero Walsh coefficients becomes large very fast since it is exponential in the length of the
genotype. This, of course, is no different from most Walsh basis computations.

Table 4.3: Signal, noise, and SNR by locus for the identity problem.

locus
1
2
3
4
5
6
7
8
9
10

function, it may be expressed in the Walsh basis as shown by Equations 4.18 and 4.19.

Doing so results in the first-order Walsh coefficients taking the values

1

Substituting these values for the Walsh coefficients in Equations 4.20 and 4.21 produces

S(J)
0.5000
0.2500
0.1250
0.0625
0.0312
0.0156
0.0078
0.0039
0.0019
0.0009

and

for squared signal and squared noise, respectively, where j is the locus fixed (held con-

stant,) by partition J and may range from 1 to 1. Finally, the resulting expression for the

SNR for the domino convergence demonstration problem is

C(J)
0.2886
0.5204
0.5636
0.5739
0.5765
0.5771
0.5772
0.5773
0.5773
0.5773

Table 4.3 shows the resulting values of signal, noise, and SNR for the 10 most signif-

icant loci, j = 1, . . . , l o . As can be seen, signal strength and SNR drop off exponentially

with locus position, while the noise level rises asymptotically t o a constant.

It is tempting t o view R(J) as the expected proportion of selection events decided

by the value of the allele a t the locus fixed by J (as was done in the initial convergence

R(J)
1.7320
0.4803
0.2217
0.1088
0.0542
0.0270
0.0135
0.0067
0.0033
0.0016

window width analysis of Section 4.2), so that the first seven loci are likely to show

some convergence during generation 1. This would be a good match to observed domino

convergence as shown in the 0.01 mutation rate run of Figure 4.1, and these results would

be in reasonably close agreement with both the earlier analysis of initial convergence

window width and the empirical data. However, the SNR is not a direct measure of

expected net convergence, as can be seen by the fact that its value for locus one is

greater than 1.

It will be argued in Chapter 6 that the SNR is, in fa.ct, closely related to GA conver-

gence, though establishing its exact connection to expected convergence is left to future

research.

4.5 Mutation and Convergence Stall

GA simulation runs are generally performed using a. mutation rate that does not change

over time. However, both from the previous analyses and from the empirical runs it.

is clear that convergence stall cannot be avoided whenever a nonzero mutation rate is

used on a monotone problem possessing a sufficient number of loci. Thus, the common

practice of using fixed mutation rates generally leads to convergence stall. Further, any

rigorous GA convergence proof must treat this fact.

As has been noted by others (Sirag SL Weisser, 1987; Wilson, 1987; Schraudolph &

Belew, 1990; Belew et al., 1990), a solution to this problem is to allow the mutation rate

to decay in over time, as is often done with artificial neural network model parameters

(for example, Iiohonen's (1988) topological map model) and simulated annealing (Kirk-

patrick et al., 1983). Mutation decay would gradually reduce the disturbance within the

converged region, either as a function of time or some measure of population diversity,

thereby extending the stall point. In the limit as the mutation rate approaches zero, the

convergence stall point approaches infinity and ceases to be a problem.

Chapter 5

Evolutionary Network Design (END)

Faced with a particular problem to be solved using an artificial neural network (ANN),

the practitioner seeks t o choose an optimal or near-optimal ANN architecture. Finding

such an architecture will be called the network design problem. Although a number

of approaches providing partial solutions to the network design problem are available,

especially for the more popular ANN models, which architectures are optimal and how

t o find them is generally an open question. Since nature used evolution to design brains,

using evolutionary search t o design network architectures seems an obvious approach to

explore - evolutionary network design (END).

Experience gained using GAS to evolve networks solving the contiguity problem is

presented, both to illustrate how the fitness variance population sizing calculation of

Section 2.3 may be adapted t o handle the fitness function noise resulting from nonde-

terministic fitness functions and as an interesting GA application in its own right. The

fundamental thesis underlying the work presented is that GAS can search the space of

network architectures effectively.

Section 5.1 presents a prototypical ANN model and then reviews the aspects of

model architectures of relevance to END. Section 5.2 considers some aspects of the net-

work design problem ANN practitioners face. Section 5.3 reviews previous END work.

Section 5.4.1 introduces a program called GAND, genetic algorithms for network design,

giving an overview of GAND's design, data structures, and algorithms. Section 5.4.2

defines the contiguity problem and why it was chosen as an END test problem. Sec-

tion 5.4.3 describes the training and testing data sets used, while Section 5.4.4 presents

the coding used by GAND. Section 5.5 presents a series of GAND runs performed in

attempting to solve the test problem. Section 5.6 extends the population sizing work

of Section 2.3 to include fitness function noise. Finally, Section 5.7 discusses the END

work, with Section 5.7.1 considering what normal form representations can be useful and

Section 5.7.2 discusing opportunities for additional END reseasrch.

5.1 Artificial Neural Networks

Artificial neural networks (ANNs) may be viewed as distributed computational systems

based on highly abstracted models of biological neural networks. Most ANNs have

nodes and connections corresponding to the neurons and synapses of biological neural

nets. Usually some of the nodes are designated as inputs and others as outputs. ANNs

may be thought of as performing a transformation by taking an input, or series of

inputs, and producing an output, or series of outputs. They may also be viewed as a

class of biologically inspired artificial intelligence capable of classifying and manipulating

patterns.

The field of artificial neural networks, also known by the terms connectionism and

parallel distributed processing, has a history stretching back to the middle of this century

(McCulloch & Pitts, 1943; von Neumann, 1987). During the last decade, however, an

ANN renaissance has occurred, resulting in dozens of distinct ANN models (Williams,

1987; Torras i Genis, 1986; Tesauro, 1986; Sun et al., 1988; Rumelhart et al., 1985;

Rumelhart &. Zipser, 1985; Carpenter & Grossberg, 1986; Hestenes, 1986; Barto et al.,

1983; Fukushima, 1981; Fukushima et al., 1983; Hecht-Nielsen, 1987; Hinton et al.,

1984; Hopfield, 1982; Kosko, 1987b; Kosko, 1987a; Linsker, 1988; Granger et al., 1989;

Pearlmutter & Hinton, 1986; Pellionisz & Llinas, 1982; Pineda, 1987; Daugman, 1988;

Kohonen, 1988; Moody & Darken, 1988; Foldiak, 1989; Plumbley & Fallside, 1988; Klopf,

1987; Reeke & Edelman, 1987; Specht, 1988; Scofield, 1988; Peterson & Anderson, 1987;

Chua & Yang, 1988; Marks I1 et al., 1987; Lansner & Ekeberg, 1989). Some of these

models closely follow the biology of nervous systems while others do not. However, all

of the models share a few unifying characteristics. For example, all of the models share

some notion of node and connection. A node may be thought of as either an agent per-

forming a (usually simple) computation or the place where the computation is performed.

Generally, nodes produce an output, usually a single scalar value. Nodes are linked by

connections, channels over which information may pass between nodes. Connections are

unidirectional, with bidirectional connections implemented as a pair of unidirectional

connections. In addition to the basic ideas of node and connection, most models share

some notion of a scalar model parameter associated with each connection. Such connec-

tion weights usually serve to scale, or weight, values passing along the connection. A

collection of all connection weights for connection to a particular node may be viewed

as a vector, w. Figure 5.1 shows a node from the resulting generic model. Often the

computation performed by the node is the inner product of the node's weight vector,

w , and the node's input values, x, followed by a non-increasing, bounded, nonlinear

transformation, f , so that the node's output is

where n is the number of input connections to the node.

A network architecture is both a description of how many nodes there are, what com-

putational model each node employs, and how the nodes are interconnected, including

which nodes are network inputs and which are outputs, and the adjective denoting such

a network. A commonly used network architecture is the layered feedforward network. It

consists of layers of nodes ordered from input to output, with adjacent layers completely

connected from the layer nearer the input to the layer nearer the output. Architectures

which possess feedback connections are recurrent networks. Another dimension along

which network architectures may be characterized is their degree of modularity. For

example, a feedforward network may be viewed as a connected feedforward sequence of

single-layer network modules. Alternately, smaller networks may be connected to form

larger networks, as described by Waibel (Waibel et al., 1988; Waibel, 1989) and Leen

(Leen et al., 1990). Yet another classification dimension might be degree of regularity.

Figure 5.1: Generic artificial neural network node.

For example, although it has a large amount of randomness in the details of its struc-

ture, the Lynch-Granger pyriform cortex model (Granger et al., 1989; Lynch et al., year

unknown; Granger et al., 1987) also has a high degree of regularity.

The degree of homogeneity of the model is still another network characterization di-

mension. Networks containing only a single kind of node will be calIed homonets, while

networks containing more than one kind of node will be called heteronets. For example,

Hopfield networks (Hopfield, 1982) and back-propagation networks (Rumelhart et al.,

1985) are both homonets, but a back-propagation network whose outputs are connected

t o portions of a Hopfield network is a heteronet. Heteronets may be viewed as a col-

lection of interconnected homonet modules. Only a very few combinations of network

models have been tried. Examples include principal component networks used t o perform

da ta compression as a preprocessing step t o using a standard back-propagation classifier

network (Sanger, 1989a; Sanger, 1989b; Sanger, 1990; Leen et al., 1990), among others

(Ritter, 1989; Holdaway, 1989, for example). Waibel's time-delayed neural network mod-

ules (Waibel et al., 1988; Waibel et al., 1989) might be considered a heteronet example,

since although only feedforward back-propagation modules are used, the output nodes

are manually configured to compute an average (they do not learn) and thus constitute

a second kind of node. Of course, not all heteronet combinations make sense, since some

models are fundamentally incompatible with most other models. For example, models

using spike trains to pass information between nodes (Dress, 1987b) or models using

hysteresis to code information (Hoffmann & Benson, 1986) are not directly compatible

with models passing scalar outputs.' However, since most kinds of model neurons output

a single scalar value, incompatible models are rather the exception.

In addition to their architecture, ANN models may vary in a number of other re-

spects, including their treatment of time (for example, discrete versus continuous), de-

gree of precision used or required, locality of information used by each node, and learning

mechanism. With respect to time, each node may function synchronously (for example,

traditional feedforward nets (Rumelha.rt & McClelland, 1986)) or asynchronously (for

example, Hopfield nets (Hopfield, 1982)). With respect to precision, many researchers

use full 64-bit floating point arithmetic for network calculations, although use of integer

arithmetic to increase simulation speed has become more common. Baker and others

have empirically demonstrated that different models have different precision require-

ments. For example, the Lynch-Granger pyriform cortex model requires only 4 to 6

bits of (Means, 1989; Hammerstrom, 1989) while back-propagation typically

requires 12 to 16 bits (Baker, 1990; Baker & Hammerstrom, 1989a; Baker & Hammer-

strom, 1989b; Hammerstrom, 1989; Personnaz & Dreyfus, 1988). Finally, some models

are Boolean, effectively using one-bit precision.

Most ANN models require that the computations performed use only information

locally available to the nodes. This is an especially important design constraint for

'Of course, ANN models converting from one modality to another may be possible, effectively inter-
facing otherwise incompatible models.

VLSI implementations because VLSI has limited interconnect capability (Bailey & Ham-

merstrom, 1986; Hammerstrom et al., 1989; Bailey & Hammerstrom, 1988; Rudnick &

Hammerstrom, 1988a; Rudnick & Hammerstrom, 1988b; Hammerstrom, 1986; Hammer-

strom, 1988; Rudnick et al., 1987; Hammerstrom et al., 1987) and is usually considered

a requirement for biologically plausible learning rules. Nevertheless, some models do

make use of global information. For example, performing a winner-take-all computation

among a collection of nodes is global to that c~l lect ion,~ although local implementations

are possible.

A N N models can use a variety of learning mechanisms. Learning rules may be

grouped into two broad classes: unsupervised and supervised. In unsupervised learning,

the network is presented input exemplars without any feedback or guidance as to the

merit of its resulting output (Rumelhart & Zipser, 1985; Kohonen, 1988; Sanger, 1989b;

Pearlmutter & Hinton, 1986; Plumbley & Fallside, 1988). In supervised learning, some

form of feedback is provided. Two kinds of supervised learning may be distinguished:

reinforcement and target. In reinforcement learning, a scalar feedback signal is provided

indicating the degree to which the automaton's output is 'good' or 'bad' (Williams, 1987;

Barto, 1985). In target learning, the auto~naton's desired output is provided as feedback.

The classic example here is the error back-propagation 1ea.rning rule (Rumelhart et al.,

1985; Rumelhart et al., 1986).

Other learning models abound. In the original Hopfield spin-glass model (Hopfield,

1982) an outer product was used to pre-compute static weights which were then loaded

into the network. This is an example of a static, non-learning network with fixed,

pre-computed weights. The weights can also be learned using a Hebbian learning rule

(Linsker, 1988; Leen et al., 1990) in which each weight is incrementally moved toward the

product of the pre-synaptic and post-synaptic activities. Hebbian learning is biologically

'Even with global computations, relatively efficient mechanisms may still be available to perform the
computation. For example, Lazzaro has an O(n) technique for performing the winner-take-all compu-
tation in VLSI (Lazzaro et al., year unknown). Further, each implementation technology has its own
individual set of constraints; for example, many of the interconnect problems of planar VLSI may not
be problems for optical implementations.

plausible and is an example of unsupervised learning.

5.2 Network Design Problem

Because artificial neural networks are both diverse and complex, a practitioner wishing

t o solve a particular problem using ANN technology is immediately faced with a bewil-

dering choice of possible architectures, especially when considering heteronets. Back-

propagation will serve as a case study. Back-propagation has as advantages that it tends

t o be both simple and robust. Even so, many architectural and algorithmic questions

must be answered: How many hidden layers should be used?3 How many nodes should be

in each of the hidden layers? Should interconnections be limited and if so how? Should

feed-through connections jumping over intermediate layers be used? Should learning

algorithm enhancements be used, and if so what kinds - for example, momentum; var-

ious forms of learning rate adaptation; fast weights; gradient estimation by full training

set batch weight updates or by partial training set weight updates, and if partial, how

many exemp1a.r~ should be used per weight upda.te; conjugate gra.dient descent (Barnard

& Cole, 1989); etc.? How should the various non-weight parameters be set or varied?

Hidden among all these choices and parameters are likely to be problem-specific net-

works of superior p e r f ~ r m a n c e . ~ Finding which are the superior networks will be called

the network design problem; it includes all aspects of determining a completed network

except setting the weights.

Each network design decision has consequences in terms of learning speed, perfor-

mance (meaning how good an answer is provided), generalization ability, feedforward

execution speed, and ease of implementation. The choices made can interact in complex

and poorly understood ways. As a. consequence many A N N practitioners simply use a

standard back-propagation model - one hidden layer, full inter-layer interconnect, no

30fcourse, it is known that a single hidden layer in a non-linear, feedforward network can approximate
virtually all functions arbitrarily well (Hornik et al., 1990). Nevertheless, engineering practice has shown
multiple layers may be desirable (Waibel et al., 1988; Waibel et al., 1989; Waibel, 1989, for example,).

What constitutes superior performance is generally user defined and will vary both from user to user
and from problem to problem.

feed-through connections, static momentum, static learning rate, no fast weights, single

exemplar gradient estimation, and no conjugate gradient techniques. The momentum

and learning rate terms are either set to nominal values (guessed a t) or set by trial

and error during a few simulation runs. The latter often amounts to doing a manual

line search. Again, the number of hidden nodes is usually determined by similar trial

and error methods. All told there is no assurance the resulting solution is particularly

good in terms of the space of all possible back-propagation networks. Essentially, a

trial-and-error search is performed over the space of back-propagation architectures.

In addition, of course, there are now many dozens of different ANN models in the

literature, often having significa.nt followings and useful applications. Most of these

models, like back-propaga.tion, have their own version of the network design problem.

And since each model's design space is usually multidimensional, the space of binary

heteronets (heteronets consisting of two homonets) is the Cartesian product of all these

models. Likewise, heteronets containing many different, possibly fine-grained homonets

are also possible. All in all, this is a large space of network architectures to be searched

when seeking an ANN solution for a problem. It's no wonder only a small portion of

heteronet space has been explored.

The network design question then, is: "Given a specific problem to be solved and

criteria for measuring success, what ANN models and architectures provide superior

solutions?" One general approach is to search the space of network architectures, prefer-

ably in a systematic way that can handle all dimensions of network design space, both

continuous and discrete, both homonets and heteronets. The approach taken here is to

use genetic algorithms to search the spa.ce of ANN architectures - evolutionary network

design (END). In the next section previous END work is surveyed.

5.3 Previous Work

A number of techniques have been proposed t o tackle various aspects of the network

design p r ~ b l e m . ~ Most of the techniques address optimizing homogeneous back-propa-

gation networks. These include additive techniques where nodes or other components

are added t o an existing back-propagation network (Honavar & Uhr, 1989; Waibel, 1989;

Fahlman & Lebiere, 1990; Gutierrez e t al., 1989; Ash, 1989) and subtractive techniques

where nodes or other components are removed from an existing back-propagation net-

work (Rumelhart et al., 1986; Hinton, 1987; Fahlman, 1989a; Wieland and Leighton,

1988; Rumelhart, 1988; Kruschke, 1989; Baum et al., 1988; Keeler, 1986; Mozer &

Smolensky, 1989; Le Cun et al., 1990a; Le Cun et al., 1990b). However, none of these

techniques provide a mechanism able to select the better networks from among the broad

range of possible networks. Each places considerable limitations upon the range of net-

works considered, usually because the potential solutions considered have been limited

in advance t o a narrow class of models or architectures.

Evolutionary search techniques, and genetic algorithms in particular, need not be

limited in advance t o a particular class of models or architectures. They are capable, in

principle, of handling homonets, heteronets, and the various model parameters associated

with many ANN architectures. Any network architecture which can be specified in the

genetic representation can be included in the search domain. Thus, GAS are a network

architecture optimization technique of general applicability.

Only recently has work begun exploring evolutionary network design (END) (Rud-

nick, 1990). As will become apparent, a comprehensive, unifying treatment providing a

foundation for END and illuminating fundamental issues is needed. The primary works

motivating and using END are surveyed below.

'For example, at the 1989 Neural Information Processing Conference, three workshops touched on
various aspects of the problem - Scott Fahlman's "Neural Network Learning: Moving from Black Art
to a Practical Technology," Peterson and Snyder's "Neurd Networks and Optimization Problems," and
Davis and Rudnick's "Neural Networks and Genetic Algorithmsn.

5.3.1 Dress's Artificial Insect

Most of the work reported in the literature has appeared during the last two years. A

notable exception is the work of Bill Dress (Dress & Knisley, 1987; Dress, 1987a). Dress

used a 50-dimensional genetic code to specify an 'insect,' including rudimentary sensory

channels and nervous system. Using a standard genetic algorithm, he searched the 50-

dimensional search space to find phenotypes performing well in the artificial environment.

For example, touching a 'predator' with its feelers was penalized by reducing the fitness

of the artificial animal. An indication of the potential power of the GA design technique

occurred when insects evolved which moved backwards, thereby avoiding the "predator

touched with feelers" penalty. That automata might evolve which backed up to predators

was a complete surprise to Dress and represents a fitness function design oversight. The

anecdote provides, however, an effective demonstration of how END might overcome

biases implicit in human ANN design.

Dress appears to be the first to use evolutionary search for ANN design. But since

sensory apparatus, morphological attributes, and an interactive environment were in-

cluded in addition to the ANN, Dress's work may be more properly classified as an early

example of artificial life.

5.3.2 Mjolsness's Recursive Network Definition

A much different approach to network architecture specification has been taken by Eric

Mjolsness et al. (Mjolsness et al., 1988a; Mjolsness et al., 1988b; Mjolsness et al., 1988~;

Mjolsness et al., 1987). A set of growth rules are first defined using a recursion relation

having a fixed number of coefficients. Each possible recursion relation defines a family

of successively larger neural networks. Each weight of an ANN so generated is specified

through the recurrence relations and is ultimately derived from a combination of the

weights in the original progenitor net and the parameters of the recurrence relations.

Training a family of such networks is accomplished by using simulated annealing to

optimize (over the space of recursion relation parameters) the performance of the family's

smaller members.

The continuous code problem was used as a test problem. The input is a unary

number. The desired output is a compressed coding, or representation, of the input

arranged so that similar inputs map to similar outputs where Hamming distance is used

as the similarity metric. Although perhaps a rather simple problem, Mjolsness showed

that recursively defined networks more than two orders of magnitude larger than the

small, trained networks still performed well on the task.

Mjolsness7s approach may have the potential t o be more generally applicable. First,

it must be shown that most potential ANN solutions can be cast using a recursive

definition approach. Second, it must be shown that Mjolsness's genetic neural networks

will work for most other problems. Although Mjolsness continues this work, its present

applicability appears limited.

5.3.3 Hinton & Nowlan's Work

Hinton and Nowlan (1986; 1987) performed a simulation supporting the notion that

learning by an individual can synergistically aid evolutionary learning (Baldwin, 1896;

Smith, 1987; Waddington, 1942). They defined a 20-bit binary string problem in which

each bit must be correctly specified to solve the problem. Their genetic code consisted

of strings of 20 ternary digits in the alphabet (0, I ,?) . Digits 0 and 1 are hard-coded

in the phenotype and digit '?' is settable. Learning during the lifetime of an individual

phenotype consists of randomly setting the '?' bits of the genotype with each individual

having a fixed number of such trials. If evolutionary search alone was used, the fitness

function would be zero everywhere except a t the exact solution point - the needle in the

haystack problem. But when learning by the individual is added, the fitness function is

modified; it still peaks a t the solution point, but has Gaussian-like tails trailing away as

Hamming distance from the solution increases. As pointed out by Belew (1989), who has

carried this work further, the effect is to add a basin of attraction around the solution

point.

Although the particular example problem used is simple and somewhat contrived,

and although END is not directly touched upon, this work illustrates an important inter-

action between evolutiona.ry sea,rch and individual 1ea.rning. It looks through the END

telescope the other way around, viewing learning by the individual as aiding evolution

instead of the usual END view of evolution aiding learning in the individual. It suggests

the potential for rich interactions between evolutionary population learning and neural

network learning in individuals.

5.3.4 Miller's Coililectioil Matrix

Miller, Todd, and Hegde (Miller et al., 1989; Todd, 198s) combined Grefenstette's GEN-

ESIS (Grefenstette, year unknown) genetic algorithm C program with Ru~nelhart and

McClelland's (1988) back-propagation program. Their genetic representation consists of

a binary string encoding the network's connection matrix, where the network contains

a fixed number of nodes. Each connection is represented by a 1-bit; absent connections

are represented by a 0-bit. Thus for n nodes, an n2-bit binary string specifies a network.

Although recurrent connections are possible in such a representation. all recurrent con-

nection specifications are ignored so that a simple back-propagation learning rule may

be used. Also, note that nodes having no connections are in effect not present.

Their END system was tested on three problems: exclusive-or, four-quadrant, and

pattern copying. For exclusive-or, a five-by-five i~lt~erconnection matris representation

was used. Thus, all feedforward networks having five or fewer nodes were included in

the search space. Two nodes were designated as network inputs and one as output.

The four-quadrant problem consists of dividing the region of 3?2 bounded by (0,O)

and (1, l) into four equal-sized quadrants. Given a real-valued two-dimensional input

vector, the task is t o classify the vector as to whether it falls into an even quadrant

or an odd quadrant. Thus, the four-quadrant problem may be viewed as a real-valued

generalization of the exclusive-or problem. For the four-quadrant problem, a seven-by-

seven interconnection matrix representation was used, with two nodes dedicated as inputs

and one node as output. Thus the search space consisted of all feedforward networks

having two inputs and one output.

The pattern-copying problem is simply the identity mapping over binary strings.

Although not explicitly stated in their paper, 20 units were apparently provided for in

the interconnection matrix genetic code, with 10 designated as inputs and 10 as outputs.

For all three problems starting with randomly generated networks, architectures solv-

ing each problem were evolved within a few generations, while the entire population

performed well within 5 or 10 generations.

Any work using END must deal with the issue of developmental specificity, a term

coined by Miller et al. t o characterize whether the genotype maps directly to the phe-

notype or a significant developmental mechanism is present. They used the strongest

possible developmental specificity for their genetic codes - a connection matrix where

the presense or a.bsence of each connection is explicitly expressed in the genotype. In

their words (Miller et al., 1989, pages 380-381):

Weak specification representatioil schemes use relatively abstract genetic

'blueprints' that nlust he translated through some 'developmental machinery'

t o yield a network phenotype, e.g., (Harp et al., 1989a). Such schemes may

be good a t capturing the architectural regularities of large networks rather

efficiently. However, they 1iecessa.rily involve either severe constraints on the

network search space, or stocllastic specification of individual connections.

For example, a weak specification scheme could represent whole network

layers in single genes, facilitating the recombination and evaluation of large,

highly regular networks, but precluding detailed connection design.

Strong specification schemes, whicli interpret genes more directly as in-

dividual connections, are good a t capturing the connectivity patterns within

smaller networks very precisely and deterministically. Such a scheme could

facilitate the rapid evolution of finely optimized, compact architectures. A

variety of moderate specification schemes are possible.

We chose a strong specification scheme to gain greater resistance to human

design biases for crisply articulated network layers, localist representations,

and easily interpretable processing strategies, all of which can creep into weak

specification schemes. A strong specification scheme may facilitate the rapid

generation and optimization of tightly pruned, interesting designs that no

one has hit upon before. We hope that the inspection of such streamlined

designs will hone our intuitions about what weak specification schemes might

work well for larger network designs.

In Section 5.7.1 we will return to consideration of representational issues.

5.3.5 Harp's Area Blueprint

Nearer the weak end of Miller's developmental specificity spectrum is the GENESYS

program used by Harp, Samad, and Guha (1989a; 1989b; 1990). Here again, only

feedforward networks trained by the error back-propagation learning rule were allowed.

Their search space is restricted t o networks expressible in terms of generalized layers

called areas. Each area appears in the genetic representation as a fixed length area pa-

rameter specification (-4PS) along with associated projection specificatioii fields (PSFs).

APSs contain parameters specifying number of nodes in the area, dimensionality of the

area, and relative size of each dimension. Each APS may have one or more PSFs defining

projections to other areas. Each PSF contains parameters for connection density, initial

learning rate, rate of exponential decay of the learning rate, target address, addressing

mode (absolute or relative), and X, Y, and Z radius parameters allowing for local recep-

tive fields in up to three dimensions. Many of the numerical parameters are coded log2,

allowing a small number of values to span a large region of the search space a t a cost

in the graininess of the representation. Gray coding is generally used so that adjacent

values are represented by adjacent codes, presumably to avoid Hamming cliffs in the

search space (Caruana & Schaffer, 1988).

In their original work, back-propagation network architectures were designed for two

problems, exclusive-or and a four-by-eight-pixel font digit recognition problem. Starting

with random networks, in each case GENESYS produced solution networks.

For very small networks, the size of Harp's weakly specified, coarse-grained genetic

representation will be larger than Miller's strongly specified, fine-grained representa.tion;

thus Harp's search spa.ce will be larger than Miller's. However, a t sollie point as the

number of nodes in the network grows, and provided the desired networks can be ex-

pressed in Ha.rp's representation, Harp's search spa.ce becomes smaller than Miller's, and

thus may lead to a more efficient search.

5.3.6 Kitano's Graph L-System

The only work other than Harp's area blueprint to use a developmental genotype-to-

phenotype map of significance is Kitano's (1990) graph L-system work. He coded a

graph grammar in the genotype and then used its production rules to grow a network

architecture from the grammar's start symbol. An L-system (Lindenmayer, 1968; Lin-

denmayer, 1971) was used as the graph grammar. Kitallo used the encoder-decoder

problem as his test problem, evolving a variety of both four-by-four and eight-by-eight

netlvorks. He compared the direct, or connectivity matrix, representation and graph

L-system representation, concluding that graph L-system encoding scaled better. Hotv-

ever, it is hard to interpret the significance of these results since only 10 trailling epochs

were used, the number of hidden nodes was always a t least twice the number of input or

output nodes, and generalizatioii was never tested.

5.3.7 Other Related Work

Several others have done work either directly or indirectly related to END. Schaffer

and Caruana (Schaffer et al., 1990) used a fine-grained. strong developmental speci-

ficity genetic code similar t o that of Miller, et al. Wilson (1990) has successfully used

evolutionary search for design of the sparsely connected conjunctive detector nodes in

Rosenblat's (1962) classic perceptron. Also, Peter Hancock (1990) has successfully used

END on a face recognitio~i task.

Dodd (1989; 1991) used END to code for spread nets on a Dolphin vocalization

recognition task similar to those used by LeCun (Le Cull et al.. 1990a; Le Cull et al.,

1990b) for handwritten chara.cter recognition. Dodd's networks were relatively large

compared to all the other END work cited. Thus it provides an important example

suggesting that END can scale t o larger problems. Of course, a large network size alone

is not sufficient t o base scaling conclusioiis upon, since the problem could potentially

be solved using a much smaller network. Dodd used a relatively coarse-grained, weak

developmental specificity in his genetic code, which presumably allowed his EKD to

search a spa,ce of large networks efficiently by using a compa.ct genetic code having a

smaller search spa.ce.

5.4 GAND Overview

In this section GAND (genetic algoritli~ns for network design), a C program for do-

ing END, is introduced. GAND has been used to evolve networks solving the contiguity

problem. Section 5.4.1 presents the design of the GAND program. Section 5.4.2 presents

the contiguity problem and discusses why it was used as a G A N D test problem. Sec-

tion 5.4.3 presents a description of the training and testing data sets used during GELKD

evaluatioil of genotype fitness. Finally, Section .5.4.4 presents the genetic representation

used by GAND.

5.4.1 GAND Design

The GAND program which has been implemented is really several independent programs

fused together. Conceptually GAKD includes a simple (2.4 program and one or more

ANN simulation programs. The logical design is shown in Figure 5.2. The top level

GAND module implements the user and system interfaces. initialization, and overall

control functions. It calls the GA module to perform each GA generation. The GA

module, in its turn, calls the evaluation module to evaluate each genotype (the genotype

specifies the A N N architecture). The evaluation routine calls three modules: a network

construction module. a training and test data set generation module, and then the

appropriate ANN ~llodel module to train and test the network.

GAND

~ni t ia l izat ion and supervision +
genetic a lgor i thm +

evaluate funct ion I

generate t ra in and

test datasets

ANN model

back-progation

Figure 5.2: GAND design.

ANN model

quickprop 0 0 0
future ANN models

In keeping with sound software engineering practices, a modular design philosophy

was employed to allow easy maintenance, modification, and addition of independent

modules. Readily modifiable components include the network construction mechanism,

the functional details of each ANN model, which ANN models are available, and the

particulars of the GA, such as the kinds of selection, crossover, and mutation employed.

The GA module implements the simple GA described in Section 1.1. A single gener-

ation consists of the GA processing the old population into a new population (the next

generation) by repeatedly selecting a pair of parents, performing crossover and mutation

operations, and then evaluating the resulting genotype by a call to the evaluation module.

The GA module currently employs tourna.ment selection, a two-point crossover operator,

a bitwise muta.tion operator, and a fixed-length, haploid6 binary string genotype.

The genotype-to-network (GTN) module converts a genotypic code into an initialized

ANN da ta structure suitable to be trained by the module implementing the selected net-

work model. In the current GAND implementation, the GTN module has a separate code

segment, and uses different data structures, for each network model supported. This is

largely a result of the fact tha t pre-existing ANN network simula.tion programs employ-

ing incompatible data structures were ca.nnibalized for the two ANN models currently

supported.

Currently back-propagation (Rumelhart et al., 1985) a.nd Scott Fahlman's Quickprop

(1989b) ANN algorithms are implemented in GAND. The back-propagation module was

adapted from McClelland and Rumelhart (1988). The Quickprop module was adapted

from Terry Regier's (1990) C language version of Scott Fahlrnan's Quickprop lisp pro-

gram. Each of the two network modules currently in place have their own set of data

structures.

An input file specifies the more frequently modified GA pa,rameters, the ANN models,

and overall GAND control. Other parameters exist, such as the GA population size and

'Most living things have their chromosomes organized as pairs. During the meiosis stage of sexual
reproduction, the diploid pairs of chromosomes present in somatic cells are separated into the haploid
sets of nonpaired chromosomes present in mature germ cells. In a genetic algorithm context, haploid
simply means unpaired chromosome.

which pseudo-random number generator is to be used, that are not included in the GAND

input file and thus require recompilation to modify. Finally, because repeated creation,

training, and testing of ANNs is computationally time consu~ning ,~ a checkpoint and

restart facility has been added, allowing the GA to be continued from any previous

checkpoint.

5.4.2 The Test Problem

The contiguity problem was select,ed a.s the GAND test. problem. It consists of learning

the binary function f : (0, 1)111 - {O,l),

where k is the number of clumps (independent, continuous runs) of 1s in the binary vector

I. The constant. ko, functions to threshold f on the number of clumps of 1s in I; tha.t is.

it determines whether the value of f is 0 or 1, based on whether the number of clumps

of 1s in I is above or below the threshold. For example if ko = 2, vector I = 110001 1001

has three clulnps of 1s and would result in f = 1, while vector I = 0011101000 has only

two clumps and would produce f = 0.

The contiguity problem has several advantages suggesting its use as a GAND test

problem. First, it is simple enough to be computationally mamgeable. Of equal impor-

tance? Solla (1988) ha,s c11ara.cterized an aspect of single hidden layer back-propaga.tion

network archit.ect,ures for the contiguit,y problem which strongly relates to the network's

generalization ability. Thus, network generalization performance makes an excellent

criteria for network architecture optimization by END.

Figure 5.3 shows the input to hidden node connections of a network designed by hand

by Solla t o solve the contiguity problem. Both connection and associated weight is set

manually. All hidden nodes connect to a single output node with + 1 weights. Hidden

'The GAND program takes about, two days to do a typical run, such as those of Section 5.5.1, on an
IBM RS-6000/320.

Figure 5.3: An inter-layer connection matris representation of the first connection layer
of a feedforward network solving the contiguity problem. First row codes connections to
first hidden node from 10 inputs; second row codes inputs to second hidden node from
the same 10 inputs; and so forth. A + means the connection is present and the associated
weight is $1. A - means the connection is present and the associated weight is - 1. -4
'.' means connection is absent. The hidden layer to output connectiolls (not shown)
consists of each hidden node connecting to a single output node with a $1 connection
weight. The bias weights (from a unit with constant activation of +1) are -0.5 to each
hidden node and - (k o + 0.5) t o the output node.

Hidden
Node

1
2
3
4
5
6
7
8
9
10

nodes have -0.5 biases, and the output node has a bias of - (k o + 0.5). The network

Hidden Node Receptive Field
Input Nodes

1 2 3 4 5 6 7 8 9 1 0
+

. + -
. + -

. + -
. . . + -
. . . + - . . .
. + - . .
. + - .
. + - .
. + -

works by counting the number of clumps of Is in the input field by decoding each clump's

left-hand edge.

Using a problem size of (I \ = 10, Solla showed that narrower hidden node receptive

fields yield better network generalization performance up until the lietwork can no longer

learn the training set. Table 5.1 shows test data. set performance, %G (generalization),

as hidden node receptive field size, s, varies from 10 to 3 for successful training runs

(%L = 100, meaning all training exemplars were successfully learned). The greater the

receptive field size, the greater the receptive field overlap for each hidden node, until in

the extreme (receptive field size of 10) all hidden nodes share the entire input string as

their common receptive field - the fully collllected layer's structure commonly used in

back-propagation networks.

As a preliminary step toward using the contiguity problem as a GAND test problem,

Table 5.1: sol la.'^ test da ta set results, %G, with varying receptive field sizes, s, averaged
over successful tra.ining runs (% L = 100).

Solla's empirical results were replicated. Appendix A details that work, showing similar

results but with minor variations.

For computational efficiency, Scott Fahlman's (1989b) Quickprop was used for the

initial GAPU'D runs instead of back-propagation. But upon investigation, Quickprop

was discovered to provide the GA with a tveaker fitness function receptive field width

discrimination signal on the contiguity problem, an illterestiiig observation but possi-

bly problematical for the GA. Thus after the initial runs, ba.ck-propagation was used

exclusively. Appendix B details the Quickprop versus back-propagation investigations.

5.4.3 Training and Testing Data Sets

There are 1024 possible 10-bit binary input vectors. To make these results comparable

t o Solla7s results, only input vectors containing either two or three clumps of Is were

used, a total of 792 vectors. For each network created, trained, and tested by GAND,

100 of these 792 vectors were randomly selected for use as training exemplars and the

remaining 692 were used as testing exemplars. Each input vector was paired with an

output target value (a vector in general, but since there was only one output node a

single value results). Output target values of 0.9 and 0.1 were used as the above and

below threshold output values, respectively.

5.4.4 Genotype Represei~tatio~l

The choice of genetic code is one of the more important facing a GA practitioner. As

pointed out by Liepins and Vose (1990), the choice of genotype representation can

make the difference between a problem being fully deceptive, partially deceptive, or

n ~ n d e c e p t i v e . ~ Goldberg (1989c, pages 80-82) rela.tes GA coding choices to underlying

theoretical analytical motiva.tions, presenting two principles.

1. Principle of meaningful building blocks: The user should select a coding so

that short, low-order schemata are relevant to the underlying problem and rela-

tively unrelated t o schemata over other fixed positions.

2. Principle of minimal alphabets: The user should select the smallest alphabet

tha.t permits a natural expression of the problem.

Initially, a general feedforward representation using the feedforward portion of a full

interconnect matrix representation was employed. A binary coding was used, with a 1

indicating the corresponding link was present and a 0 showing its absence. Such a code

admirably adheres t o Goldberg's second coding principle, but it violates the "relatively

unrelated t o schemata over other fixed positions" portion of his first coding principle

because of the normal forms problem discussed in Section 5.7.1. This problem, intrinsic

to all connection matrix based representations of bad-propagation networks, is left to

future research.

The genetic code was capable of representing any feedforward architecture possessing

10 input nodes, 10 hidden nodes, and a single output node. All hidden nodes had links

t o the output node. Thus, up to 10 hidden layers were logically possible, although

each would consist of only one node. Figure 5.4 shows the coding for a network having

a uniform hidden node receptive field size of two and no connections between hidden

'A problem and representation are deceptive if they violate the building block hypothesis. Building
blocks are short, low-order schemata of above-average fitness. The schema theorem shows that the
representation of building blocks in the population tends to grow over time. When building blocks do
not contain the global optima, deception is present - the GA is misled. If sufficient deception is present
the GA is prevented from finding the global optima.

Figure 5.4: Representation for a general feedforward architecture showing uniform hidden
node receptive field size of two, where feedforward inter-hidden-node connections a.re
allowed (but not present in the network specifica.tio11 shown). 1 codes for the presence
of a connection and '.' codes for its absence. First row codes for presence of connections
to first hidden node from 10 inputs; second row codes for the presence of con~lections to
second hidden node from 10 inputs and first hidden node; and the last row codes for the
presence of connections to the last hidden node from the 10 input nodes and the previous
nine hidden nodes. The binary genotype string would consist of the concatenation of all
rows, with '.'s replaced by Os, and would therefore have a, length of 145 bits.

Hidden
Node

1
2
3
4
5
6
7
8
9
10

Hidden Node Receptive Field
Input Nodes

1 1
1 1 a

1 1
1 1
. 1 1 a

1 1 . .
. 1 1 . .
. 1 1 .
. 1 1
. 1 1

Hidden Nodes
1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 . 5 6 7 8 9 1 0

.
.
.
.
.

Figure 5.5: The same network as shown in Figure 5.4, but using a representation dis-
allowing hidden nodes connecting to other hidden nodes, so that only input nodes may
connect to hidden nodes. Thus, the representation consists of only the "Input Nodes"
portion of Figure 5.4. This representation is only capable of coding the conventional,
layer-oriented network architecture. As in Figure 5.4, each row codes for the connections
t o a single hidden node, with 1 denoting the presence of a connection and '.' denoting
the absence of a connection. The binary genotype string would, again, consist of the
concatenation of all rows with '.'s replaced by 0s and would have a length of 100 bits.

Hidden
Node

1
2
3
4
5
G
7
8
9
10

Hidden Node Receptive Field
Input Nodes

1 2 3 4 5 6 7 8 9 1 0
1 1 1
1 1 1
. I 1 1
. . I 1 1
. . . 1 1 1
. . . . 1 1 1 . . .
. 1 1 1 . .
. 1 1 1 .
. 1 1 1
. 1 1 1

nodes. The actual genotype depicted in Figure 5.4 may be formed by replacing '.'s with

0s and concateilating the rows.

A few trial runs were performed using the general feedforward representation, but

they showed an increase over randomly generated networks of no more than 4 percentage

points during the first 20 generations in the generalization performance measure (%G)

used by Solla.. Although any improvement is helpful, 4% is not enough to make GAND

a useful network design tool. To further simplify GAND's task, the general feedforward

genotype representation was replaced by an inter-layer connection matrix representation

coding for all possible links between the 10-input-node layer and a 10-hidden-node layer;

as before, only the feedforward portion was actually used and all hidden nodes connected

t o the single output node. Figure 5.5 shows how the net,work of Figure 5.4 looks when

represented using the inter-layer connection matrix representation. Note how the inter-

layer connection matrix reduces the length of the coding from 1 = 14.5 bits to only 100

bits. Such a reduction in search space size can have a significant effect 011 G A performance

(for example, see Section 5.5..5). All GAND results reported in the following section

employed the in ter-layer connection matrix represen tation.

The inter-layer connection matrix representa,tion is not a normal form, which simply

means that a. single network may have multiple codings when using the represents.-

tion. For example, any permutation of hidden node order of a particular genotype will

yield identical iletworks with respect to the back-propagation training algorithm. Back-

propagation has no notion of node order within a layer, so whether or not two hidden

nodes are adjacent does not change back-propagation's behavior. However, permuting

hidden node order in a genotype string results in a very different genotype from the GA's

perspective. Multiple genotype codes for the same network results in symmetries in the

search space. The question of normal forms is left to Section 5.7.1.

Figure 5.6: Generation number versus percent generalization performance on best initial
GAND run. The horizontal line just above 63% is the performaace of the randomly
generated networks of generation zero.

5.5 GAND Results

Having now set the context for GAND on the contiguity problem, this section presents

empirical performance results. A number of GAND esperiments have been performed.

In each case time histograms of average performance across the population are used to

compare different experiments. It is important t o realize that , in most cases, some indi-

viduals in the populatioil performed considerably above or below the mean performance.

Thus, the best individuals found by GAND during a simulation run often performed a t

a considerably higher level than the mean population performance.

The initial GAND runs were ~ n a d e on IBM RTs using Quickprop and a population

size of 20. Figure 5.6 shows one of these runs relative to the performance of the randomly

generated networks of generation zero (the horizontal line a t the bottom of the graph).

The maximum increase of 10 percentage points in the population's average generalization

performance measure, a 17% irnprovernent over randomly generated networks, is note-

worthy, since it was obtained using a simple GA, a blind, reinforcement search technique

given no problem-specific information whatsoever other than the scalar fitness signal.

Notice that randomly generated networks using Quickprop performed a t the 63%

level. a level noticeably higher than the fully connected networks. which performed a t

only a 55% level (see Appendix B for additional details). Upon reflection this is not

particularly surprising. Decoding edges plays an important role in solving the contiguity

problem, and random connectivity makes for many randomly placed, relatively narrow

hidden node receptive fields which are good a t detecting edges.

Despite the improvements in performance, these results are still marginal in terms of

GAND being an effective tool for network design. In trying t o understand why GAND

did not find near-optimal networks, five hypotheses were considered. Each is a candidate

problem that , when fixed, could result in GAND finding the high-performing networks.

First, Quickprop's shallow discrimination slope as compared to back-propagation's steep-

er slope could be a problem (see Appendix B). Second, nondeterminism, or noise, in

the objective function could seriously degrade the ability of the GA to shepherd its

population into near-optimal regions of the search space. Third, the population size

selected may not have been large enough. Fourth, the GA may need a better objective

function, such as might be obtained by incorporating a "link tax" t o conserve allocation

of links. And fifth, the poor performance may simply be due to too high a disruption

by crossover - in effect, the schema theorem may not be satisfied. In addition each

candidate probleill may be acting simultaneously, so that several of them may together

result in the mediocre performance observed. Of course, it is also possible that the END

approach simply does not work for network designs more difficult than the relatively

simple problems tackled by researchers thus far. However, such a possibility seems

unlikely since nature offers existence proof after proof that evolutionary search solves

tough design problems. Even so. there is no guarantee that the solution of any particular

problem will be con~putationally tractable.

The remaining sections present a series of siniulatioils designed t o empirically char-

acterize each of the candidate problems that may be affecting GAND performance. Sec-

tion 5.5.1 presents GAND runs using the back-propagation training algorithm instead of

the Quickprop algorithm. It serves to characterize GAND baseline performance. 111 each

of the following sections. a single factor is varied from the baseline run's performance,

allowing a direct test of each candidate problem's effect upon GAND performance. In

Section 5.5.2 the effect of fitness function llolldeter1lliilis1l1. or noise. on GAND perfor-

mance is explored by replacing the default fitness function with fitness averaged over

three independent training trials, effectually reducing the fitness function's noise level.

In Section 5.5.4 an alternate fitness fullction is tested by adding a connection cost, or

"link tax," component to the fitness function. In Section 5.5.3 population size is trebled

to check for too small a population size. In Section 5.5.5 elitist selection is used to check

for excessive disruption.

Figure 5.7: Baseline GAND back-propagation performance.

5.5.1 Back-Propagation

The first thing done was to switch from using Quickprop back to using back-propagation.

As noted earlier, Quickprop provides a smaller discrimination slope than does back-

propagation. Because of this, the succeeding runs were all performed using back-propa-

gation. Also, these and all following runs were executed on IBM RS6000/320s because

they are faster than IBM RTs.

Figure 5.7 shows the time trajectory of average generalization performance for 41

independent GAND runs, each started from a different pseudo-random number generator

seed. For these runs and all succeeding runs (unless otherwise noted), a population size

of 50 was used. Maximum GAND performance averaged a,cross all runs is about 73% or

74%, 12 percentage points higher than randomly generated networks in the population's

average generalization performance measure and a 20% improvement. Thus, using back-

propagation instead of Quickprop does not provide significant improvement,.

Each of the following sections present a series of GAND runs. In each case only a

single factor is varied from the baseline back-propagation runs presented here, allowing a

direct and meaningful empirical comparison of that factor's effect on GAND performance.

Identical scales are used in the following graphs so that the performance plots can be

compared easily.

5.5.2 Objective Fullctioil Noise

Perhaps the most obvious potential problem is noise in the objective function. Call

the initial weight vector used during a back-propagation training run the weight seed.

Consider the performance landscape over the space of all possible weight configura-

tions, and call it the weight space. When a feedforwa.rd network is trained using the

back-propagation learning algorithm, the network starts a t the initial weight seed and

follows a generally downhill trajectory in weight space until1 it reaches a performance

minimum. Provided the learning rate and momentuln parameters are appropriate to

the objective function landscape being traversed (so that 'ridges' are not jumped), the

A A
I 1 I

runs 0

40 I I I I I 1 I I
2 3 4 5 6 7 8 9 10

receptive field size

Figure 5.8: Solla's back-propagation versus the back-propagation GAND used: Hid-
den node receptive field size versus percent generalization performance (%G) for back-
propagation learning, 5,000 training epochs. The lighter line shows the average of the
individual runs, each shown by a diamond. Also plotted using the heavy line are Solla's
results.

network's weights will converge to the minimum within the basin containing the weight

seed. When the same network is repeatedly retrained starting from a different randomly

selected weight seed, a different basin ma.y be encountered, and a different local minimum

may be obtained from each basin.

Thus from GAND's point of view, when the same network is repeatedly retrained

starting from different randomly selected weight seeds, a variance in the fitness of a single

network results. Figure 5.8 shows hidden layer node receptive field size versus percent

generalization performance (%G). Each receptive field size (each column in Figure 5.8)

corresponds t o one of nine unique network interconnect architectures. Each of these nine

networks was run 30 times starting from different random weight seeds. The performance

on the test da ta set for each run is shown by a diamond. Thus, each column shows the

performance spread resulting when a single network of specified receptive field size is

repeatedly trained. The vertical spread may be viewed as variance, or noise, in the

objective function value of the network architecture. The variance of each receptive field

network's fitness was computed, and then the average of these variances was computed,

yielding an overall average variance of 95.7, and a corresponding standard deviation of

9.8. Obviously, considerable noise is present.

A number of empirical studies have suggested that GAS are good a t optimization in

the presence of noise (Jong, 1975; Schaffer, 1984; Fitzpatrick et al., 1984; Grefenstette

& Fitzpatrick, 1985; Fitzpatrick & Grefenstette, 1988). However, no comprehensive

analytical treatment of how much noise GAS can tolerate has been performed, nor has a

rigorous definition of wha,t constitutes noise from the GA's perspective been proposed.

The definition of noise developed in Chapter 3 will be applied to GAND population

sizing in Section 5.6. An empirical test of how fitness noise affects GAND performance

is presented in Figure 5.9. The GAND runs depicted are identical to those in Figure 5.7,

except the fitness used t o evaluate a genotype was the avera.ge performance of three

independent back-propagation training sessions on the same network architecture, each

started from a different random weight seed. Averaging independently obtained objective

function performance figures for a single network architecture reduces the variance of the

sampling distribution of means to

where a$ is the variance of the sampling distribution of genotype fitness means, X ; 01
is the variance of the genotype fitness population; and n is the number of independent

1
trials averaged, 3 in this case. Thus, the fitness variance seen by the GA should be -

3
of the variance of the objective function, or reduced from the 95.7 value obtained from

Figure 5.8 t o 31.9. The reduction can be seen visually as the narrower vertical cross-

section a t generation zero in Figure 5.9 as compared t o the baseline runs in Figure 5.7.

More import an tly, although both runs started out with randomly generated genotypes

performing a t about the 61% fitness level, the reduced variance runs quickly rose to a

78% performance level while the baseline runs reached only 74%, an improvement of

Figure 5.9: GAND performance using average of three independent evaluations of each
network architecture.

4 percentage points. Thus, averaging three independent evaluations t o reduce fitness

function noise resulted in a performance 17 percentage points higher than the randomly

generated networks as measured in the population's average generalization performance

measure, a 28% improvement over the random nets. Reducing fitness noise improves

GAND performance, but it's still not optimal.

5.5.3 Initial Investigation of Population Size

I t is important to realize that the reduction in fitness noise from the previous section is

obtained a t considerable computational cost - three times each genotype is translated

into a network, trained, and t e ~ t e d . ~ Since training the network dominates computational

time, this is computationally equivalent to using a GA population three times as large,

but training ea.ch network only once. Further, increasing population size is one of the

factors identified that may improve G AND performance.

Does increasing population size improve GAND performance as much as reducing

fitness noise by averaging multiple training sessions? To find out, a series of GAND runs

were performed using a population size of 150, three times the population size used in

the baseline runs, and resulting in the same number of network evaluations as performed

in the noise reduction runs of Figure 5.9. The resulting performance levels are shown

in Figure 5.10. As can be seen, the additional computational resources produce GAND

performance gains virtually identical to those using noise reduction, and for the same

increase in computational cost.

Section 5.6 presents an analysis of GA population sizing when noise is present in

the fitness function. A statistical decision theoretic bound on useful population size for

GAND on the contiguity problem is derived in Equation 5.17. Given a population size

of 150 and working backwards from Equation 5.17 gives a z value of 0.77, corresponding

t o a 78% confidence level. In similar fashion, the baseline GAND population size of 50

'Rebuilding the network from scratch for each independent evaluation is not strictly necessary; it is
an idiosyncrasy of the GAND implementation. However, since building the network is cornputationally
trivial compared to training the network, so little harm is done.

Figure 5.10: GAND performance - population N = 150.

corresponds to a 2 value of 0.44 and a confidence level of 67%. Thus, correct decisions are

likely to be made 78% and 67% of the time, respectively, with population sizes of 150 and

50. Because of the various simplifying assumptions made at various stages of the analysis,

both confidence level figures are probably higher than they are in reality. Nevertheless,

both are considerably better than chance - 50%. As is empirically demonstrated in

Section 5.5.5, the baseline population size is adequate, provided the schema theorem is

satisfied, for good GAND performance on the contiguity problem.

5.5.4 Link Tax

In artificial neural network models, a price must be paid for each link, either in hardware

for a parallel processing implementation, or in computation time for a serial implementa-

tion. Each link also has an associated weight, or model parameter. Generally speaking,

the fewer model parameters needed to adequately learn the data, the better the gener-

alization performance. For both these reasons, it is natural to consider including a link

tax as a component of genotype fitness. For the contiguity problem, however, including

a link tax may be cheating, since it is known that a particular kind of sparse intercon-

nect between the input and hidden layers yields superior generalization performance,

and a link tax favors sparse interconnect. Despite this, there are compelling reasons for

including a link tax independent of any a priori knowledge of the superior solutions.

Does including a link tax improve GAND performance? To answer this question a

series of GAND runs was performed using the fitness function

where x is the genotype, f(x) is the unmodified fitness function from Section 5.5.1, nr,

is the total number of links between the input and the hidden layers, and fL(x) is the

link-adjusted performance. Since the maximum possible number of links is 100, the effect

is that fitness is scaled by the proportion of unused links, varying between 0% for full

connectivity, to 100% when no connections are present.1°

''Of course, when no connections are present the input is not connected t.o the output, and f(x) = 0.

Figure 5.11: GAND performance - link tax.

The resulting performance is shown in Figure 5.11. Note that although link-adjusted

fitness, fL(x), was used in these runs, the ordinate is the usual fitness, f (x), so as to allow

direct comparison of these results with other GAND runs. The link-adjusted fitness runs

begin with the usual 61% performance level obtained by randomly generated networks at

generation zero. However, as compared to the GAND baseline runs of Figure 5.7, there

are several differences noticeable as the runs progress. First, the overall shape of the

link tax performance curve is that of an 'S', while the baseline runs are an exponential

increasing asymptotically to a constant. Second, the spread, or variance, of the link tax

curve is noticeably larger than the baseline's. Finally, the maximum link tax population

fitness is about 77 or 78%, as compared to only 73 or 74% for the baseline runs, an

improvement of 4 percentage points - similar to the improvement obtained by reducing

fitness noise. Thus another candidate solution to GAND's mediocre performance, that

of employing a link tax, bites the dust.

5.5.5 Elitism

Given that GAND is being asked to not only evolve good solutions to the contiguity

problem, but to also settle upon a single, population-wide coding (as discussed in Sec-

tion 5.4.4), perhaps the solution to GAND's mediocre performance is to use a selection

scheme such as elitism (Grefenstette, 1986; Whitley, 1989; Eshelman, 1991; Schaffer

et al., 1991). Elitism permits outstanding individuals within the GA population to

increase their effect upon the gene pool by letting parents, without modification, to

compete with children for positions in the succeeding generation. Thus, an exceptional

individual may bypass crossover and mutation disruption while still contributing children

to successive generations.

Each GAND successor population was produced using Eshelman's (1991) population-

elitist selection algorithm, which works as follows:

1. A temporary population is generated by the usual binary tournament method used

in the baseline GAND runs.

2. The temporary population and the current population (the parents) are combined

into a 2n intermediate population.

3. The n genotypes having highest fitness in the intermediate population are included

in the successor population.

Thus the parents included in the successor population undergo no further mutation or

crossover.

Because the fitness function used by GAND on the contiguity problem is noisy, a

'lucky,' or outlier, fitness evaluation could result in an average, or even below average,

parent living indefinitely. To prevent this, each parent to be selected during step three

undergoes an additional fitness evaluation which is averaged with its previous evaluations.

If the parent, based on this new averaged fitness, is among the n best genotypes in the

intermediate population, then it is included in the successor generation. Over a number

of generations, this procedure reduces the fitness noise of the parent's evaluations.

Figure 5.12 shows a series of GAND runs using elitist selection. The only thing

changed between this series of runs and baseline runs of Figure 5.7 is that elitism has

been added. Although the improvement in GAND performance is striking, the results of

Figure 5.12 are not quite as good as they seem because elitism and the nondeterministic

fitness function interact to produce a "better half" effect. Consider an entire population

consisting of a single genotype where the fitness function is noisy and no mutation is

used. Under elitism the 2n intermediate population of step two will consist of identical

genotypes, but since the fitness function is noise they will have a range of fitnesses, as

shown in Figure 5.13. Only the "best halfn of the 2n population, the shaded area of

Figure 5.13, will be included in the successor population. Thus, the average fitness of

the new population, fa,, in the figure, is higher than the average performance of the

genotype, fg in the figure.

Elitism brings GAND performance up to the best levels obtained in any of the explicit

human designs shown in Table 5.1. This is particularly good news for the evolutionary

approach to ANN design, because elitism is a general purpose GA technique that is in

Figure 5.12: GAND performance - elitism.

number

fitness
Figure 5.13: Intermediate 2n population. Shaded area becomes successor population.

no way specialized for the contiguity problem. Thus, there is reason to hope elitism will

be useful in other END tasks.

Figure 5.14 shows two typical networks evolved to solve the contiguity problem from

two different GAND elitist runs. Relatively narrow independent hidden node receptive

fields (mostly of the near-optimal widths of 3 ,4 , or 5 as shown in Appendix A) span the

input vector, allowing the network t o easily learn to count the number of clump edges

in the input. The network also has the 'dirty' appearance of extraneous connections

common t o networks evolved using END.

Why is GAND's elitist selection performance so good? There appear to be two

relevant factors, each related t o the schema theorem. First, elitist selection has a higher

selection pressure than binary tournament selection. Second, parents carried forward to

successive generations undergo no disruption from mutation and crossover. An analysis

of these two factors is now performed.

Goldberg and Deb (1991) developed a context from which the relative strengths of

various selection algorithms can be evaluated. They define the growth ratio a t generation

Solution Network 1

Figure 5.14: Typical networks produced by GAND elitist runs. Each solves the contiguity
problem.

Hidden
Node

1
2
3
4
5
6
7
8
9
10

Solution Network 2

Hidden Node Receptive Field
Input Nodes

1 2 3 4 5 6 7 8 9 1 0
. . I 1 1
. . . . 1 1 1 . . .
1 . 1 1 1
. 1 1
. 1 . . . 1 1 1 . .
. 1 . 1
1 . . . 1 1 1 . . 1
. 1 1 1 1 .
1 1 1 1 .
. 1 1 1 .

Hidden
Node

1
2
3
4
5
6
7
8
9
10

Hidden Node Receptive Field
Input Nodes

1 2 3 4 5 6 7 8 9 1 0
. . 1 . . . 1 1 1 1
. 1 1 1 . . 1 . . 1
. 1 1 1 . .
. 1 . 1 1 1
. . 1 1 1 . . 1 . .
1 1
. 1 1 1 1 .

. . . 1 . 1 1 1 . .
. . 1 1 1 1
. 1 1 1 . 1

where P; is the proportion of the best genotype in the population at time t. The

proportion of genotypes with fitness greater than f; at time t for binary tournament

selection is

Thus, the growth factor for binary tournament selection is 4i = 1 - Pi,t.

For GAND's elitist selection Equation 5.6 becomes

with the proviso that Pi,t+l can grow no larger than 1, resulting in an aggregate growth

ratio of

91 = 3 - pi,* (5.8)

during the early phase of selection when Pi is not yet near 1.

Consider the growth of the best individual x in the population at time t under GAND

elitist selection. When considering disruption of x due to genetic operators like mutation

and crossover in elitism, it is useful to think of the growth ratio 4 as the sum of two

components, a part due t o the action of the elitist inclusion of parents in successor

populations, 4E, and a part due to the action of binary tournament selection, &,-, or

Since the parents included in successor populations do not undergo mutation or crossover,

only the tournament selection growth factor component undergoes disruption. Thus

define net growth factor at time t as

where c may be thought of as the disruption probabilities at each generation from the

schema theorem. For x to grow requires yt > 1, or

Noting q5E,t = 1 whenever < 3 for the best individual in the population, solving for

disruption yields

6 < 1. (5.12)

Equation 5.12 says that for the best genotype,ll when the probability of disruption

is less than total, growth will occur. This makes sense for elitist selection, since a t each

generation both superior parents and any newly created superior children are included

in the successor generation. GAND's elitism is conservative in the sense that when-

ever superior genotypes are created by crossover and mutation, they don't die until the

population average fitness rises, which effectively makes the genotype inferior.

Thus, elitism as implemented in GAND works well both because it has higher selec-

tion pressure than binary tournaments and because the best genotypes, once created,

are able t o avoid the disruptive effects of crossover and mutation.

5.6 Population Sizing with Fitness Noise

The static population sizing equation derived in Section 2.3 assumes the fitness function,

f (x) , is deterministic and so makes no contribution to schema fitness variance. But for

GAND's contiguity problem the fitness function is nondeterministic, or noisy, because of

the local minima encountered by back-propagation. In this section, the static population

sizing equation, Equation 2.29, is a.djusted for fitness function noise.

Fitness function noise may be modeled as ergodic, zero mean, additive, Gaussian

noise, denoted by up. All the other assumptions from Section 2.3 are used here. In

particular, the fitness function is still assumed to be linea.r, so it may now be modeled

where g (o f) is zero mean Gaussian noise having variance u2. Adding the sample variance

" T h e analysis presented applies to only the best genotype, but may be extended t o any genotype o f
above-average fitness provided the population does not saturate.

"' t o Equation 2.22 yields a noise-augmented equation for the of the Gaussian noise, -
n/2k '

variance of the sample mean fitness of a single, order-k schema,

since the variance of a sampling distribution of a sum of random variables is the sum of

the variances of the independent random variables. Working through to the population

sizing formula of Equation 2.29 as was done in Section 2.3 yields

where

Note that the only difference between the function-noise augmented Equation 5.15 and

Equation 2.29 is the p term in the 1 - k + p factor. Thus, function noise serves to

increase, normalized by Walsh coefficient magnitude, the effective code length of the

representation used, or I' = 1 + p.

For GAND, the code length is 1 = 100, a.nd the schema. order is set to k = 2, since this

is the minimum possible relevant schema. size for the contiguity problem. To make further

progress the two components of p must be estimated. To estimate 03, 100 genotypes

were randomly generated. Each was then independently evaluated 50 times, with each

evaluation starting from a different pseudo-random number generator seed, to generate

a reasonably accurate estimate of each network's mean performance and variance. The

fitness variance of each of these 100 pseudo-random gellotypes was then averaged to give

an estimated value of 03 = 21.8. Note that this estimate should be reasonably accurate

for the random starting population since it is based on randomly generated genotypes,

but the value of a; may change as the population evolves.

To estimate the value of wi2, one bit in each of the 100 pseudo-random genotypes

used in the 0; estimate was flipped so that each genotype had a different bit flipped.

The modified genotypes were then each evaluated 50 times, again each starting from

a different pseudo-random number generator seed, to generate an estimate of the aver-

age performance of each modified individual. The magnitude of the difference between

the average performance of each pair of (modified and unmodified) genotypes was then

averaged across all the individuals to obtain an estimated value of wi = 0.88.

Using the estimated values of oj and w i 2 produced estimated value of p = 28.4.

Substituting for I , k, and p in Equation 5.15 yields

Equation 5.17 is a decision-theoretic population size estimate for GAND on the contiguity

problem. Choosing a confidence interval of 90% yields a, value of z2 = 1.64 from Table 2.4

and a population size of ~z = 415. The comparable population size for a deterministic

fitness function is n = 321. Thus for the contiguity problem and GAND coding used,

fitness function noise should have a noticeable but minor effect, a result consistent with

the empirical results of Section 5.5.2.

As with Equation 2.29, Equation 5.17 is based on the assumption that it makes a

linear approximation of the fitness function. Likewise, Equation 5.17 applies only to the

initial, randomly generated population, both because the population sizing equation of

Section 2.3 only applies to the initial population, and because the estimates of up and

wi2 were based on randomly generated genotypes. Thus as mentioned in Section 2.3, the

large population sizes derived for GAND on the contiguity problem should be viewed as

an approximation. Further, as the GA runs and the number of genotypes in the superior

schemata increases, their associated fitness variance will decrease and a smaller popu-

lation size may be sufficient to choose among competing schemata, as was empirically

observed in Section 5.5.2.

5.7 END Discussion

The GAND work presented here tackled an architectural space containing systematic,

non- t rivial, connectivity features having a significant impact on network generalization

performance. Of the variety of GAND improvements examined, elitist selection worked

best, producing near-optimal architectures having performance similar t o the best hand-

designed architectures.

But as pointed out in Section 5.4.4, the inter-layer connection matrix representation

used by GAND on the contiguity problem suffers on two counts. First, it is not a compact

representation. Second, it is not a normal form with respect to back-propagation - a

single network may have multiple codings. Both of these reasons contribute to the

possibility that GAND using a connection matrix representation may scale up poorly.

In Section 5.7.1, possible normal form representations are considered. In Section 5.7.2,

other GAND future research directions are discussed. As concluding remarks, Section 5.8

presents an overview of the relevance of END in the endeavor to use massively parallel

computational resources to solve difficult problems.

5.7.1 Normal Forms

When using a connection matrix style representation, any ANN model, such as back-

propagation, which does not respect node order within a layer will have multiple genotype

codes for the same network. This can be a problem for GAND both because it increases

the size of the search space without increa.sing the expressiveness of the representation,

and because two identical networks having different representations can produce non-

viable offspring. In a normal form representation each network architecture is coded by

only a single genotype, eliminating both difficulties.

For a specific example of how multiple codes can pose difficulty for GAND, consider

genotypes A and B in Figure 5.15, two network specifications coded using the inter-layer

connection matrix representation. These two genotypes represent one and the same

network from back-propagation's perspective, a network which happens to perform well

on the contiguity problem. But from the GA's perspective they are entirely different

networks. In fact when they are bred by the GA, their offspring are likely to perform

very poorly. For example, if a single crossover point'2 fell exactly in the middle of the

I2Note that the same kind of problem also arises with multi-point crossover operators.

Genotype A Genotype B

Child 1 Child 2

Figure 5.15: How twoidentical networks can produce non-viable offspring. Four genotype
network specifications are shown. Each is a connection matrix showing the input-to-
hidden-layer connections as in Figures 5.5 and 5.14. Genotypes A and B are identical
networks from back-propagation's perspective, but have very different codings. Child 1
and 2 result from a midpoint crossover of genotypes A and B. Note that child 1 has no
connections from the right side of the input field and child 2 has none from the left; thus,
each child has poor performance on the contiguity problem.

Genotype C Genotype D

Child 3 Child 4

Figure 5.16: Left-most normal form representation. Although superior to the standard
connection matrix representation shown in Figure 5.15, left-most normal form can still
produce non-viable offspring from superior networks. Genotypes C and D are each net-
works, shown in left-most normal form, that cover the input field with narrow receptive
fields. Child 3 and 4 are the offspring resulting from a midpoint crossover of genotypes
C and D. Note that each child is missing edge detection coverage from nearly half of
the input field, since isolated connections (receptive fields of width one) cannot decode
edges; thus, each child is non-viable.

genotype (between the fifth and sixth rows), child 1 and 2 in Figure 5.15 would result.

Each of these networks will perform poorly, since each has no connection t o nearly half the

input layer, while having duplicate connections t o the other half of the input layer. Thus,

GAND is required t o not only optimize nondeterministic network performance, but must

also settle upon a single genotypic sub-code across the GA's population from among the

many possible, semantically equivalent representations allowed by the connection matrix

form of representation.

For the contiguity problem a 100-bit genotype was used, so the space being searched

is of size 21°0. However, this space is larger than required because of search space

symmetries; the space of unique network architectures for the contiguity problem is

considerably smaller. The situaiion is much as though the GA were required t o search

the space formed by the Cartesian product of the network space intrinsic to the contiguity

problem crossed against a large number of different representations. This will be called

the multiple codes problem.

Thus a normal form representation is desirable, provided it does not introduce a

nonlinearity worse than the multiple codes problem. One possible normal form repre-

sentation is t o order each hidden node's position in the 100-bit, 10-hidden-node genomic

code by first left-most connection, with ties being recursively broken by next left-most

connection. However, for the contiguity problem, a first left-most normal form represen-

tation doesn't seem to fit the semantics of what is important in the network architecture

t o solving the problem, namely, the location of size two (or larger) receptive fields. To

see this clearly, consider genotypes C and D shown in Figure 5.16; each is in left-most

normal form. When these two individuals are bred with a crossover occurring in the

middle of the genotype, the same problem occurs as was shown in Figure 5.15 - child

3 has no functional receptive fields (having size two or greater) on the right side of the

input field, while child 4 has no functional receptive fields on the left side of the input.

So it is not simply that a normal form is needed, but rather, a normal form is needed

which respects relevant network structure.

Since what is relevant in the network structure is likely t o be problem dependent,

Genotype C' Genotype D'

Child 3' Child 4'

Figure 5.17: Left-most largest normal form representation. Genotypes C' and D' are
the same two networks as gentoypes C and D shown in Figure 5.16, but are here shown
in left-most largest receptive field normal form. Now, when they undergo a midpoint
crossover, the children are each viable.

Genotype A' '

receptive field

Figure 5.18: Left-most single receptive field normal form. Network genotypes A and B,
from Figure 5.15, are shown here in left-most single receptive field normal form. Note
that the two identical networks now have identical genotypes, as there is only one way
t o represent a network.

start
0
0
1
2
3
4
5
6
7
7

Genotype B'
receptive field

what constitutes a. good normal form is also likely to be problem dependent. For the

size
3
3
3
3
3
3
3
3
3
3

start
0
0
1
2
3
4
5
6
7
7

L

contiguity problem, a left-most largest receptive field normal form seems sensible. Fig-

ure 5.17 shows genotypes C and D from Figure 5.16, but converted t o left-most largest

receptive field normal form. Note that when C' and D' are bred, and no matter where

size
3
3
3
3
3
3
3
3
3
3

the crossover point occurs, relatively viable offspring will be produced. This is a big

improvement over the kind of result shown in Figure 5.16. Now in some sense, use of

a normal form tailored to respect receptive field position on the contiguity problem is

cheating, since it is known beforehand that narrow receptive fields are advantageous.

However, t o the extent that receptive fields prove to be generally useful on a variety of

problems, using left-most largest receptive field as a generic norinal form is a sensible

thing t o try. But, of course, when multiple layers are coded, problems arise.

A yet more restrictive normal form may be obtained by using the first left-most nor-

mal form, but allowing only a single receptive field per hidden node instead of arbitrary

inter-layer interconnect - first left-most single receptive field normal form. Each hidden

node's interconnect could then be coded using only two parameters, starting position and

width of the receptive field. Figure 5.18 shows the networks A and B from Figure 5.15,

but now in first left-most single receptive field normal form, in which identical networks

have identical genotypes.

5.7.2 Future GAND Research

END is still very much an infant discipline. The GAND work presented here demon-

strates END can find superior architectures for a challenging problem. However, much

work remains and many areas still need to be addressed. In this section, some of the

options for further research are outlined.

Elitist selection performance was far superior to the other GAND runs. The analysis

of Section 5.5.5 showed two possible reasons for the improved performance - higher

selection pressure and protection of genotypes from disruption (the elitist part of the

selection scheme). But exactly how much of the improvement is due to each factor?

As a first step towards an answer, a non-elitist, ternary tournament selection GAND

run should be performed since it has a selection pressure similar to the elitist selection

used, especia.11~ in the early stages of the run. The difference in performance between

the ternary tournament selection runs and the elitist runs will then be partly due to the

elitist protection of existing genotypes from disruption.

How much elitism is helpful? For example, the 100% elitism used by the GAND elitist

runs (all genotypes compete for positions in the successor population) may be counter-

productive by excessively reducing exploration when a majority of the new population

are elitist parents. For example, some elitist selection schemes include only the single

best genotype in the successor generation. To answer this question, a series of GAND

runs can be performed varying the proportion of genotypes competing for positions in

the successor generation.

GAND has used back-propagation training algorithms in which weights were updated

after each epoch (complete presentation of the training data set). The number of training

exemplars needed t o adequately characterize the gradient should be explored. An easy,

adaptive way to do this is to include number of training exemplars per weight update

in the genotype as a parameter to be optimized by the GA. At the same time GAND's

stopping criteria must be changed from a fixed number of epochs to a fixed number of

training exemplar presentations.

An empirical study would be useful which constrasts the performance of the three

normal forms of Section 5.7.1 - left-most first connection receptive field, left-most largest

receptive field, and left-most single receptive field - with the connection matrix repre-

sentation used in the GAND results presented in Section 5.5.

The use of a multidimensional genotype and crossover operator (McMahon & Fox,

1991) should be tested in place of the customary one-dimensional genotype and crossover.

Multidimensionality allows the receptive field work being done by the GA on one hidden

node to be local, or adjacent, to multiple other hidden units with respect to crossover. It

may well be the non-locality (with respect to crossover) between hidden node represen-

tations that makes the contiguity problem particularly difficult for the non-elitist, simple

GA. Note that the mutation operator need not change when using a multidimensional

genotype.

As discussed in Appendix B, Quickprop provides a reduced discrimination signal

for narrow receptive fields on the contiguity problem as compared to back-propagation.

Because of this, all but the first exploratory GAND runs were performed using back-

propagation. Now that elitism has been used to minimize disruption (essentially, getting

the schema theorem right), an additional set of runs using Quickprop should be used to

explore the performance of GAND on the contiguity problem using Quickprop's reduced

narrow-receptive-field discrimination signal.

GAND was only run on the contiguity problem. Although the contiguity problem is a

particularly good END test problem, other problems should also be tried. For example,

the X-OR problem could be run on GAND to verify that the results are comparable

to those obtained by others. It is especially important for END to tackle more difficult

problems and ANN models, especially where good architectures are currently not known.

Hebbian network architectures would seem particularly promising in this respect because

of their biological plausibility.

Related t o the symmetry and normal form issues is developmental specification -

how much and what kind of developmental translation should be performed in converting

a genotype into a phenotype. Motivation for developmental specification is twofold.

First, a more compact network specification usually results, reducing the size of the

search space. But of course, a t least a portion of the superior network architectures must

be able t o be expressed. Second, biology does this. For example, there is considerable

evidence suggesting the number of genes coding for the human brain is substantially

smaller tha.n the number of neuron connections in the ma.t,ure brad11 (Gierer, 1988). The

present GAND work used a connection matrix representation with no developmental

mechanism. A developmental mechanism should be incorporated into GAND, perhaps

a graph L-system grammar as was done by Kitano (see Section 5.3.6).

A related issue is the interplay occurring in natural nervous systems between develop-

ment and learning. For example, in humans a t around eight years of age, a massive die-off

of synapses occurs, effectively pruning neural connectivity. Although various architec-

ture modifying mechanisms have been developed for ANNs (as mentioned in Section 5.3),

they have yet to be combined with END. Such work should be undertaken.

Finally, the various parameters common to ANN models are also candidates for op-

timization by inclusion in the genotype, including the connection weights themselves

- for example, see Whitley et al. (1989). Belew, McInerney, and Schraudolph (1990)

have empirically shown that solving the symmetry problem by optimizing learning rate,

momentum, and a coursely coded initial weight vector using a GA is similar in total

computational time t o running a single back-propagation network on the same problem

using conventional settings for these parameters. This counter-intuitive result is appar-

ently attainable because for certain initial weight vector regions, very high learning rate

and momentum values become feasible.

5.8 GAND Conclusion

Because of fundamental physical limitations of computational implementation technolo-

gies (especially the speed of light) the future speedup of serial, uniprocessor computer

architectures is strictly limited. Thus, massively parallel computer architectures are be-

ing actively investigated as an alternative means of bringing additional computational

resources t o bear upon difficult problems. However, writing large, complex programs

on uniprocessors taxes programming technology. Explicitly dealing with parallelism is

known t o dramatically increase programming difficulty. A number of approaches to pro-

gramming parallel processors are actively under investigation and may eventually become

economically attractive.

Of course some algorithms, such as artificial neural networks,13 are intrinsically par-

allel, and thus may be more easily implemented on parallel hardware. They effectively

up-level the difficult parallel programming problem to one of choosing an ANN model,

architecture, and training regime. As relatively cheap, massively parallel neurocom-

puters become available, the issues surrounding network design will continue to gain in

economic and intellectual importance.

Given a specific problem to be solved, the task of choosing superior A N N architec-

tures has been characterized here as the network design problem. Evolutionary network

design has been demonstrated as a candidate solution for the network design problem.

It can provide a systematic way t o handle all aspects of the network design problem. It

can also make good use of massively pa.ralle1 computa.tiona1 hardware, both a t the ANN

architecture and in the fitness evaluation portion of END. Thus, evolutionary network

design has a potentially important role to play in bringing massively parallel computa-

tional hardware to bea.r on difficult problems susceptible to solution by artificial neural

networks.

13For that matter, genetic algorithms are also highly parallel in the fitness evaluation of each genotype,
the time-consuming part of END.

Chapter 6

Discussion

In this chapter the present work is discussed and opportunities for further research are

assessed. The present work is related to the schema theorem in Section 6.1. The relevance

of the signal-to-noise ra.tio (SNR) to GA decision-ma.king is discussed in Section 6.2.

Opportunities for extending the current work are outlined in Section 6.3. Finally, the

conclusions of this work are summarized in Section 6.4.

6.1 SNR, Schema Theorem, and GA Convergence

Despite its simplicity, the genetic algorithm is a highly complex dynamical system capa-

ble of solving difficult problems through use of a scalar reinforcement signal. Although

considerable theoretical progress has been made in understanding GA function, and the

fact that GAS do converge has been well established empirically, exactly how they con-

verge continues to resist a complete analytic treatment. An analytic treatment of GA

convergence is important. A GA convergence proof would provide a more detailed un-

derstanding of how GAS work, which should, in turn, aid the applica.tion of GAS t o

difficult problems. It may also provide additional insight into when the GA will and will

not converge to a globally optimal solution.

A key early insight was the notion that schemata are central to the function of GAS.

Based on that insight, the schema theorem provides an analytical statement about how

schema average fitness relates to expected GA convergence. Two convergence regimes

for schemata result - an early, exponential growth regime (or decay regime, depend-

ing upon whether schema fitness is above or below population average fitness), and a

later, asymptotic regime in which schema population proportions approach saturation

(or extinction).

Another key insight is the notion that competition partitions are central to GA

function. The competition partition is the locus of GA convergence - it's where GA

convergence occurs.

The present work explores the role of fitness variance in GA function. Fitness variance

relates t o GA convergence through GA decision-making. As will be discussed in the next

section, schema fitness variance relates to the quality of the GA decision-making taking

place between competing schematain each partition. More specifically, the SNR provides

a measure of the quality, or correctness, of the decisions the GA makes in each partition.

To reach this conclusion, a number of steps were taken.

First, a Walsh basis expression for schema fitness variance is derived. It is useful

because the Walsh basis respects the wa.y competition paatitions structure the GA's

search space. Signal, noise, and the SNR are defined, providing a relative measure of the

quality of GA decision-making in each partition. Walsh basis expressions are derived for

each, yielding a particularly lucid, fitness-function-independent expression (the effects

of the fitness function are captured by the Walsh coefficients) for the SNR in the flat

population.

A simple GA demonstration problem is empirically examined and then analyzed,

showing how the SNR relates t o domino convergence and providing new insights into

GA convergence and convergence stall. The SNR provides a rank ordering, or queue, of

competition partitions with respect to each partition's ability to control selection events.

In effect, the competition partition SNR is a step towards generalizing the schema fitness

ratio used in the schema theorem from schemata t o competition partitions. Just as

the schema fitness ratio provides a measure of how selection drives individual schema

growth and decay, so too the SNR provides a measure of how the GA allocates its limited

selection events among competition partitions, which, as discussed in the next section,

directly relates t o partition convergence. Thus, a new analytical tool is available to

explore and analyze GA convergence.

A clear graphical demonstration of domino convergence and convergence stall is given

by the simulation runs of Chapter 4. However, domino convergence is a general phe-

nomenon not limited t o monotone fitness functions or binary coded parameters. In

fact, it may well be the rare fitness function, such as functions of unitation* (Goldberg,

1990a), which do not undergo domino convergence. But even that case can be viewed as

a degenerate case of domino convergence, where all order-one partitions belong t o the

same equivalence class in the total order induced by the SNR.

6.2 GA Decision-Making

The signal versus noise perspective provides new insight, based on a statistical-decision-

theory-motivated analysis, t o the quality of decisions2 the GA makes in each competition

partition. The simple version is obtained by assuming, as was done by Goldberg and

Rudnick (1990), a bitwise linear problem (or approximation to the problem) and consid-

ering only order-one partitions. It results in a population sizing Equation, 2.29, providing

a probabilistic bound on the GA choosing the second-best schemata, over the best in the

first generation due to stocha.stic sampling error in the population - a worst-case esti-

mate in the sense that choosing any other schema (for example, the third best) over the

best will be no more likely. Although this is an explicit analysis, both the restriction t o

order-one partitions and consideration of only the best two schemata in a partition are

limitations.

The SNR of Chapter 3 generalizes the population sizing equation to arbitrary parti-

tions and times. It induces a total order over partitions with respect to the correctness,

'The unitation function is the number of Is in a binary string, and functions of unitation are functions
of the number of 1s in the string. For example, the number of 0s in a fixed-length binary string is a
function of unitation.

'Quality of decisions, here, refers only to the aspect of decision-making concerning the adequacy of
the GA population's sampling of the search space. The related but separate issue of deception leading
the GA astray is not addressed.

or quality, of the decisions the GA makes in arbitrary partitions. Each partition can

be thought of as a hog trying t o feed a t the selection trough. A partition feeding cor-

responds t o controlling selection events. The SNR ranks each partition as t o its ability

t o get t o the trough - the higher a partition's SNR, the more control it has over the

GA's selection events and the better are the resulting GA decisions, or choices, between

that partition's competing schemata. Partitions that have a relatively low SNR don't

get t o feed a t the trough - they don't control selection events. How much a partition

feeds once it gets to the selection trough depends on how hungry it is, which isn't directly

measured by the SNR; the SNR only measures a partition's ability to get t o the selection

trough. Thus, the SNR is directly related t o how much additional convergence occurs

in the partition, but is not a measure of the partition's expected convergence. Parti-

tions with high SNRs but little diversity aren't very hungry - they're already mostly

converged; they can get t o the trough easily, but don't feed much once they are there.

A good overall picture of how this works is provided by Chapter 4's domino con-

vergence simulat,ions of the f (x) = x problem, Figure 4.1. Initially, only the high-

significance bit positions get to feed a t the selection trough (control selection events),

receive good GA decision-making, and converge. The low-significance bit positions can't

get t o the trough, resulting in essentially random GA decision-making in those partitions.

The poor decision-making, combined with crossover to mix the linkage between high-

significance and low-significance positions, results in essentially3 no convergence at the

low-significance positions. However, as convergence proceeds, the high-significance bit

positions converge, eventually resulting in a SNR of 0. This results, for the unconverged

positions of lesser significance, in a lowering of external noise and an increase in their

SNR, enabling them t o feed a t the selection trough, improve their GA decision-making,

and move towards correct convergence.

When the more-significant positions are mostly but not fully converged, they will

3 0 f course, this depends on population size. For population sizes of the order of the size of the search
space and larger, some convergence would occur at all positions. However, for population sizes that are
small relative to the size of the search space, essentially no convergence occurs at the low-significance
positions.

have high SNRs; they get first crack a t the selection trough. But since they are already

nearly fully converged, they aren't very hungry - they seldom differ a t the partition's

fixed positions, and thus seldom compete t o control selection events. Because they aren't

hungry, they feed little a t the trough and seldom control selection events. This allows

partitions with lower SNRs t o feed.

When the mutation rate is large with respect t o genotype length, convergence stall

occurs. In effect, the higher mutation rate makes each higher-significance position hun-

grier, with the result that each feeds more a t the selection trough. By the time the

low-significance positions get t o the trough no food is left - they are starved out, con-

trol few selection events, do not get good decision-making, and thus fail to converge.

We argue that for any fitness function the SNR induces a. total order of partitions

with respect to the quality of the GA decision-making for the partition. For example,

if the bit positions in the f (x) = x problem are ra.ndomly permuted, but each bit's

contribution to fitness remains unchanged, the GA's function is essentially ~ n c h a n g e d . ~

Although the lucid plots of Figure 4.1 become scrambled, the SNR still orders partitions

by quality of GA decision-making, and convergence order by pre-permutation bit position

remains unchanged.

6.3 Future Research

This section explores possible extensions and additional research based on the current

work. In Section 6.3.1 the relevance of schema fitness variance and the signal-to-noise

ratio (SNR) t o GA convergence is discussed. Suggestions are made to extend the present

work toward a general analytic model of GA convergence. Section 6.3.2 discusses other

extensions of the SNR work. Section 6.3.3 suggests an extension to the fitness variance

based population sizing work. Section 6.3.4 discusses possible extensions and enhance-

ments t o the domino convergence work of Chapter 4. Finally, note that the GAND

'Of course, the linkage association, crossover mixing time, or how much hitchhiking occurs changes,
but this can be eliminated by using uniform crossover.

evolutionary network design work was discussed in Section 5.7, including areas for fur-

ther work, and especially focusing on representational issues.

6.3.1 Fitness Variance and GA Convergence

Much additional work is needed to make the connection between the SNR and GA

convergence analytically explicit. First, a proper analytic definition of GA convergence

is essential. Second, a proper analytic definition of selection pressure is also needed,

since selection is the engine driving GA convergence. Finally, the convergence definition

should be capable of being analytically related t o both the SNR and selection pressure.

A GA convergence measure should meet five criteria.

1. It should be analytic.

2. There are two different meanings of convergence. One is static, measuring how

much convergence has occurred; it might be termed convergence level, C1. The

other is dynamic, measuring how much convergence is currently taking place; it

might be termed instaiztaneous convergence rate, C;. Both are functions of time.

Convergence level should simply be cumulative instantaneous convergence since

generation zero, or
rT

where T is the time of interest.

3. In order to allow a structural aspect to the definition, convergence should include

some notion of distance in the search space, or solution similarity.

4. Since both domino convergence and the SNR work indica,te the structural unit in

which convergence occurs is the competition partition, a definition of convergence

should apply equally t o populations and competition partitions.

5. A convergence measure should allow the fitness function's effect on convergence t o

be ascertained.

An information-theoretic definition of GA convergence (Wilson, 1987) seems promis-

ing based on exploratory empirical GA simulations. It would be based on entropy,

with the usual probabilities replaced by either genotype or partition schema population

proportions, depending upon whether population or partition convergence is being mea-

sured. Information redundancy would then serve as the measure of convergence. First,

it is analytic. Second, it should be usable for both convergence level and instantaneous

convergence. Third, it can be applied to the similarity subsets of partitions, and thus

incorporates a notion of distance, or simila.rity, in the solution space. Fourth, it can also

be applied to populations. And fifth, since the SNR can be stated in terms of the struc-

ture of the fitness function by using the Walsh basis, an information theoretic definition

of convergence has the potential to relate the structure of the fitness function to the

GA's convergence behavior through the SNR.

Goldberg and Deb's (1991) instantaneous growth ratio5, 4, might be used as a rigor-

ous, analytic definition of selection pressure. Whether that definition is appropriate for

use in the SNR and convergence context must be determined.

Given rigorous analytic definitions for selection pressure, convergence, and the SNR,

the goal is t o combine them t o derive an analytic expression for instantaneous conver-

gence as a function of selection pressure and competition partition. Doing this will bring

a rigorous GA convergence proof a step closer.

One specific issue in need of clarification is the role played by partition order. For

example, preliminary GA simulations suggest the SNR is monotone in partition order.

This makes sense, since the higher the partition's order the more squared Walsh coeffi-

cients are in the numerator of R(J) and t.he fewer are in the denominator. This might

be interpreted as suggesting convergence rate increases with partition order, and thus

the higher-order partitions should converge first, a patently counter-intuitive result. But

entropy also appears t o be monotone in partition order for both randomly generated

populations and partially converged populations, and thus may balance out the SNR

'See Section 5.5.5

increase.

Finally, the addition of noise t o the fitness function should be explored, both as a

means of controlling premature convergence and as a possible means of improving the

quality of GA solutions.

6.3.2 Other Signal-to-Noise Ratio Extensions

In addition t o the GA convergence work outlined in the previous section, several other

extensions t o the signal versus noise work of Chapter 3 are possible. First, a Walsh basis

schema fitness variance expression for non-uniform populations can be derived along the

lines Bridges and Goldberg (1991) ha.ve taken with the Wa.lsh schema transform and as

suggested by Goldberg and Rudnick (1990). Using it, a non-uniform version of the Walsh

basis SNR expressions can be derived. Second, an order-approximation for R(J) can be

derived similar t o that done by Goldberg (1989a) with f(')). And finally, an operator-

adjusted version of the SNR might be derived along the lines taken by Goldberg with

the operator-adjusted version of the schema theorem (Goldberg, 1989b).

6.3.3 Population Sizing

The static population sizing analysis presented in Section 2.3 might be improved by

eliminating the assumptions about fitness function linearity and Walsh coefficient equal-

ity. The full Walsh fitness variance formula, Equation 2.18, can be used, resulting in a

more accurate specification of the population size needed to achieve a specificed level of

confidence on the initial decisions the GA makes between two competing schemata.

Once a non-uniform version of the Walsh basis schema fitness variance expression is

derived (see 6.3.2), it should be used to derive a dynamic version of the population sizing

formula. Such a formula could be used t o place rigorous, statistical-decision-theory-based

bounds on the probability of GA decision errors between two competing schemata, given

a specific population.

6.3.4 Domino Convergence

There are several ways in which the various models of domino convergence for the f (x) =

x problem may be enhanced or extended. First, the initial window width model of

Section 4.2 may be generalized t o times beyond the initial generation by replacing the

random population assumption with the expressions, derived in Section 4.3, for the

proportions of each allele in the fully and partially converged regions.

Second, the refined model for the expected GA trajectory of Equation 4.16 (propor-

tion of 1s in succeeding generations, Pi,t+l) can be coded and run on a computer to

compare its predictions with actual simulation results. This would produce 2-d perspec-

tive plots like those in Figure 4.1. It would also yield predictions of the steady-state

behavior and stall points of the GA for various levels of mutation.

Finally, attempts should be ma.de to a.djust the streamlined model of Equation 4.17

for the accumulation of mutations across generations, allowing it to more accurately

predict the st.all point behavior observed in the empirical runs.

6.4 Conclusion

Domino convergence and convergence stall are fundamental t o GA function. Although

they are GA convergence phenomena, they result from the ability, or inability, of the GA

t o make correct decisions within competition partitions. Partition's whose schemata are

adequately sampled converge; those not adequately sampled stall.

Schema fitness variance relates to GA decision-making through statistical decision

theory, 1ea.ding t o a signal versus noise perspective relating schema fitness variance to

GA decision-making. The resulting signal-to-noise ra.tio is a measure ordering compe-

tition partitions with respect t o the quality of GA decisions they may be expected t o

experience.

Appendix A

Characterizing Contiguity Problem

As a preliminary step toward using the contiguity problem as a test problem for GAND,

Solla's reported empirical results were duplicated. In the process, a number of parameter

values were set. Unless otherwise noted, all descriptions and specifications apply both

t o the duplication of Solla's work and to the various GAND runs reported in Chapter 5.

Solla used a da ta set containing all 792 possible input vectors of size 10, containing

either two or three clumps of 1s. This data set was partitioned into a. training data set

of 100 exemplars and a testing data set consisting of the remaining 692 exemplars. In

the present work for ea.ch independent network to be trained, the 792 input exemplars

were randomly partitioned into training and test data sets so as to avoid the possibility

of a systematic bias being introduced due t o a single fortuitous or adverse partitioning.

Target vector values of 0.1 for negative output (occurring when the number of clumps of

1s in the input field where less than or equal to 2) and 0.9 for positive output were used.

The receptive fields of size s a.t the beginning a.nd end of the input vector are allowed

t o bump up against the edge of the input field, remaining width s rather than being

truncated. This way the p = 10 width receptive fields correspond to fully connected

layers.

A uniform distribution in the interval (-0.5,0.5) was used for setting initial random

weights. This may be of relevance, since several people have shown that back-propagation

can be particularly sensitive t o initial weight vectors (Belew et al., 1990).

The values of X = 1 (the esponential scaling factor in the logistic function), a mo-

mentum of 0.9, and a learning rate of 0.05 were used. A stopping epoch number for

GAND runs of 2000 was used except as otherwise noted. Per-epoch weight updates were

used throughout the present study.

In order to verify whether the GAND results are comparable to those of Solla repro-

duced in Table 5.1, a set of runs intended to duplicate Solla's results were performed.

The results are shown in Figure 5.8, which contrasts hidden node receptive field size ver-

sus percent generalization performance, showing both the comparison runs and Solla's

reported results. Each of 30 randomly initialized runs per receptive field size is shown by

a diamond, the average for each receptive field size is shown by the lighter line, and the

corresponding averages obtained by Solla (listed in Table 5.1) are shown by the heavy

line.

Several things can be seen here. First, there is considerable spread in performance

(variance) for each network. Second, the comparison run's results and Solla's results

are quite similar except for the mid-range receptive field sizes of p = 5 and 6, where

the difference looks significant based upon the spread of the comparison runs (the dia-

monds). Solla reported no variaace data to go with the reported averages; thus, level of

confidence comparisons axe not directly possible. However, these results strongly suggest

there is some difference between the network model used here and Solla's. Third, Solla

reported all p = 3 simulations achieved 100 percent performance on the training set,

while several of the 30 comparison back-propagation runs did not. All in all, however,

these differences are rather minor since both curves representing average performance

monotonically increase as receptive field size decreases from 10 to 3.

Appendix B

Quickprop versus Back-propagation

Fahlman's Quickprop algorithm was implemented in GAND because it is much faster

than back-propagation (nearly an order of magnitude on the contiguity problem). Such

a speed improvement is fairly common (Regier, 1990; Fahlman, 1990; Fahlman, 1989b).

The generalization performance of Quickprop is compared to that obtained from

GAND's back-propagation in Figure B.1. Each of 30 randomly initialized, 1000 epoch

Quickprop runs done for each receptive field size is shown by a diamond, the average

performance is shown by the lighter line, and the corresponding averages obtained from

back-propagation are shown by the heavier line.

A considerable difference call be seen between Quickprop and back-propagation. The

Quickprop solutions show much less difference in generalization performance as hidden

node receptive field size varies: Back-propagation shows a 43% maximum difference

in average generalization performance, while Quickprop shows only 21% - less than

half the difference. Because of the relatively large variance in the performance of each

network and because the slope of the Quickprop line is about half the slope of the

back-propagation line, Quickprop provides GAND a much reduced discrimination signal

relative t o receptive field size. Thus, the likelihood of selecting the wider receptive

field genotype (making the wrong choice) in a tournament between, say, a p = 5 and

a p = 6 genotype is much larger for Quickprop than for back-propagation. In effect,

the relatively small signal provided by Quickprop gets lost more easily in the noise of

the fitness function. Thus, Quickproy n1a.y be a poor choice for guiding GAND to the

40 I I I I I I I I

2 3 4 5 6 7 8 9 10
receptive field size

Figure B.l: Quickprop versus back-propagation: Receptive field size versus percent gen-
eralization performance (%G) for each of 30 Quickprop, 1000 trdning epoch runs (di-
amonds). The Quicliprop average is shown by the Lighter line. The bacli-propagation
average is shown by the heavy line for comparison.

better regions of the search space, despite its order of magnitude speed gain over back-

propagation. As a result, back-propagation was used for most of the GAND runs rather

than Quickprop.

Bibliography

Ackley, D. (1987). A connectionist machine for genetic hillclimbing. Kluwer Academic

Publishers.

Ash, T . (1989, February). Dynamic node creation in backpropagation networks (Tech.

Rep. Institute for Cognitive Science #8901). UC San Diego.

Bailey, J., & Hammerstrom, D. (1986, July). How to make a billion connections (Tech.

Rep. Tech. Report CS/E-8G-007). Department of Computer Science and Engi-

neering, Oregon Graduate Institute.

Bailey, J., & Hammerstrom, D. (1988, July). Why VLSI implementations of associative

VLCNs require connection multiplexing. In International Conference on Neural

Networks.

Baker, T. (1990). Implementation limits for artificial neural networks. Master's thesis,

Oregon Graduate Institute.

Baker, T., Sc Hammerstrom, D. (1989a). Characterization of artificial neural network

algorithms. In Proceedings ofthe 1989 IEEE International Symposium on Circuits

and Systems. Portland, OR.

Baker, T., & Hammerstrom, D. (1989b). Alodifications to artificial neural networks mod-

els for digital hardware implementation (Tech. Rep. CS/E 88-035). Department

of Computer Science and Engineering, Oregon Graduate Institute.

Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30, 441-451.

Barnard, E., 8z Cole, R. A. (1989, July). A neural-net training progranz based on

conjugate-gradient optimization (Tech. Rep. Technical Report No. CS/E 89-014).

Oregon Graduate Institute, Department of Computer Science and Engineering.

Barto, A. G. (1985, April). Learning by statistical cooperation of self-interested neuron-

like computing elements (Tech. Rep. Technical Report 85-11). COINS.

BIBLIOGRAPHY

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983, September/October). Neuron-

like adaptive elements that can solve difficult learning control problems. IEEE
Tmnsactions on Systems, Man, and Cybernetics, SMC- 19(5).

Baum, E. B., Moody, J., & Wilczek, F. (1988). Internal representations for associative

memory. Biological Cybernetics, 59, 217-228.

Beck, J. V., & Arnold, K. J. (1977). Parameter estimation in engineering and science.

John Wiley & Sons.

Belew, R., McInerney, J., & Schraudolph, N. (1990, June). Evolving networks: Using the

genetic algorithm with connectionist learning (Tech. Rep. CS90-174). San Diego:

University of California, Computer Science and Engineering Department.

Belew, R. K. (1989, September). Evolzition, learning and culture: Computational

metaphors for adaptive search (Tech. Rep. CSE Technical Reoprt #CS89-156).

UC San Diego.

Bethke, A. D. (1980). Genetic algorithms as function optimizers. PhD thesis, Univer-

sity of Michigan. Dissertation Abstracts Internations, 41(9), 3503B. (University

Microfilms No. 8106101).

Brady, R. M. (1985, October). Optimization strategies gleaned from biological evolution.

Nature, 31 7.

Bridges, C. L., & Goldberg, D. E. (1991). The nonuniform Walsh-schema transformation.

In G. J. E. Rawlings (Ed.), Foundations of Genetic Algorithms, 13-22. Morgan

Kaufman.

Carpenter, G. A., & Grossberg, S. (1986, February). A massively parallel architecture for

a self-organizing neural pattern recognition machine. Computer Vision, Graphics,

and Image Processing.

Caruana, R. A., & Schaffer, J. D. (1988). Representation and hidden bias: Gray vs.

binary coding for genetic algorithms. In Proceedings of the 5th International

Conference on Machine Learning. Morgan Kaufman.

Casti, J. L., & Karlqvist, A. (Eds.) (1986). Complexity, language, and life: Mathematical

approaches. Springer-Verlag.

Chua, L. O., & Yang, L. (1988, October). Cellular neural networks: Theory and appli-

cations. IEEE Tmnsactions on Circuits and Systems, 35(10), 1257-1290.

BIBLIOGRAPHY

Daugman, J. G. (1988, July). Complete discrete 2-d Gabor transforms by neural networks

for image analysis and compression. IEEE Tmnsactions on Acoustics, Speech, and

Signal Processing, 36 (7).

Davidor, Y. (1991). Epistasis variance: A viewpoint on GA-hardness. In G. J . E.

Rawlings (Ed.), Foundations of Genetic Algorithms, 23-35. Morgan Kaufman.

Davis, L. (Ed.) (1987). Genetic algorithms and simulated annealing. Pitman: London.

Davis, L. (Ed.) (1991). Handbook of genetic algorithms. Van Nostrand - Reinhold.

Davis, T. E., & Principe, J. C. (1991). A simulated annealing like convergence theory for

the simple genetic algorithm. In R. K. Belew, & L. B. Booker (Eds.), Proceedings

of the Fourth International Conference on Genetic Algorithms, 174-181. Morgan

Kaufmann.

Dodd, N. (1989). Optimisation of network structure using genetic techniques. Pre-

sented a t NIPS89 Workshop: Genetic Algorithms and Artificial Neural Networks

(workshops not included in proceedings).

Dodd, N. (1991). Optimisation of network structure using genetic techniques. In G.

Rzevski, & R. A. Adey (Eds.), Applications of Artificial Intelligence in Engineer-

ing VI.

Dress, W. B. (1987a). Darwinian optimization of synthetic neural systems. In Proceedings

of the IEEE First Annual International Conference on Neural Networks.

Dress, W. B. (198713). Frequency-coded artificial neural networks: An approach t o

self-organizing systems. In Proceedings of the IEEE First Annual International

Conference on Neural Networks.

Dress, W. B., & Knisley, J . R. (1987, October). A Darwinian approach to artificial

neural systems. In 1987 IEEE Conference on Systems, Man, and Cybernetics.

Eiben, A. E., Aarts, E. H. L., & Hee, K. M. V. (1990). Global convergence of genetic

algorithms: On infinite Markov chain analysis. In First International Workshop
on Problem Solving from Nature.

Eshelman, L. J. (1991, July). The chc adaptive search algorithm: How to have safe

search when engaging in nontraditional genetic recombination. In G. J. E. Rawl-

ins (Ed.), Foundations of Genetic Algorithms, 265-283, Bloomington, Indiana.

Morgan Kaufmann.

BIBLIOGRAPHY 139

Fahlman, S. E. (1989a). Faster-learning variations on back-propagation: An empirical

study. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proceedings of the

1988 Connectionist Models Summer School, 38-51. Morgan Kaufmann.

Fahlman, S. E. (1989b). Faster-learning variations on back-propagation: An empirical

study. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proceedings of the

1988 Connectionist Models Summer School. Morgan Kaufmann.

Fahlman, S. E. (1990). Personal communication.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In

Advances in Neural Information Processing Systems 1.

Fitzpatrick, J. M., & Grefenstette, J. J. (1988). Genetic algorithms in noisy environ-

ments. Machine Learning, 3, 101-120.

Fitzpatrick, J. M., Grefenstette, J. J., & Van Gucht, D. (1984). Image registration by

genetic search. Proceedings of IEEE Southeast Conference, 460-464.

Foldiak, P. (1989). Adaptive net work for optimal linear feature extraction. In IJCNN

Proceedings.

Fukushima, K. (1981, January). Cognitron: A self-organizing multilayered neural net-

work model (Tech. Rep. Technical Monograph No. 30). NHK.

Fukushima, K., Miyake, S., & Ito, T. (1983, September/October). Neocognitron: A

neural network model for a mechanism of visual pattern recognition. IEEE Trans-

actions on Systems, Man, and Cybernetics, SMC-13(5), 826-834.

Gierer, A. (1988). Spatial organization and genetic information in brain development.

Biological Cybernetics, 59, 13-21.

Goldberg, D. E. (1983). Computer-aided gas pipeline operation using genetic algorithms

and rule learning (Doctoral dissertation, University of Michigan). Dissertation

Abstracts International, 44(10), 3174B. (University Microfilms No. 8402282).

Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: Part I, a gentle

introduction. Complex Systems, 3, 129-152.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part 11, deception

and its analysis. Complex Systems, 3, 153-171.

BIBLIOGRAPHY

Goldberg, D. E. (1989~) . Genetic algorithms in search, optimization, and machine learn-

ing. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1990a). Construction of higher-order deceptive functions using low-

order Walsh coeficients (Tech. Rep. Report Number 90002). IlliGAL: The Illinois

Genetic Algorithms Laboratory, Department of General Engineering, University

of Illinois at Urbana-Champaign.

Goldberg, D. E. (1990b). A note on Boltzmann tournament selection for genetic algo-

rithms and population-oriented simulated annealing (TCGA Report No. 90003).

Tuscaloosa: University of Alabama, The Clearinghouse for Genetic Algorithms.

Goldberg, D. E. (1991a). Personal communication.

Goldberg, D. E. (1991b). Personal communication.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used

in genetic algorithms. In G. J . E. Rawlings (Ed.), Foundations of Genetic Algo-

rithms, 69-93. Morgan Kaufman.

Goldberg, D. E., Deb, K., & Korb, B. (1990). An investigation of messy genetic al-

gorithms (TCGA Report No. 90005). Tuscaloosa: University of Alabama, The
Clearinghouse for Genetic Algorithms.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation,

analysis, and first results (TCGA Report No. 89003). Tuscaloosa: University of

Alabama, The Clearinghouse for Genetic Algorithms.

Goldberg, D. E., & Rudnick, M. (1990). Schema variance from Walsh-schema transforms

(Tech. Rep. OGI/CSE 90-011). Department of Computer Science and Engineer-

ing, Oregon Graduate Institute; and The Clearinghouse for Genetic Algorithms,

University of Alabama.

Goldberg, D. E., & Rudnick, M. (1991). Genetic algorithms and the variance of fitness.

Complex Systems, 265-278.

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms.

Proceedings of the Second International Conference on Genetic Algorithms, 1-8.

Granger, R., Ambros-Ingerson, J., Henry, H., & Lynch, G. (1987). Partitioning of sensory

data by a cortical network. In NIPS.

BIBLIOGRAPHY 141

Granger, R., Ambros-Ingerson, J., Staubli, U., & Lynch, G. (1989). Memorial operation

of mulitple, interacting simulated brain structures. In M. Gluck and D. Rumelhart

(Ed.), Neuroscience and Connectionist Models. L. Erlbaum Assoc.

Grefenstette, J . (Ed.) (1985). Proceedings of the First International Conference on Ge-
netic Algorithms and Their Applications. Lawrence Erlbaum Assoc.

Grefenstette, J. (Ed.) (1987). Genetic Algorithms and Their Applications: Proceedings of

the Sewnd International Conference on Genetic Algorithms. Lawrence Erlbaum

Assoc.

Grefenstette, J . (year unknown). A user's guide to genesis. Na.vy Center for Applied

Research in Artificial Intelligence, Naval Research Laboratory.

Grefenstette, J . J . (1986). Optimization of control parameters for genetic algorithms.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1), 122-128.

Grefenstette, J. J., & Fitzpatrick, J. M. (1985). Genetic search with approximate func-

tions. In J . Grefenstette (Ed.), Proceedings of the First International Conference

on Genetic Algorithms and Their Applications. Lawrence Erlbaum Assoc.

Gutierrez, M., Wang, J . , & Grondin, R. (1989). Estimating hidden unit number for

t wo-layer perceptrons. In IJCIVN Proceedings.

Hammerstrom, D. (1986, August). A connectivity analysis of recursive, auto-associative

connection networks (Tech. Rep. CS/E-86-009). Department of Computer Science

and Engineering, Oregon Graduate Institute.

Hammerstrom, D. (1988, November). The connectivity analysis of simple association -
or - how many connections do you need? In D. Anderson (Ed.), Advances an
Neural Information Processing Systenzs 1. American Institute of Physics.

Hammerstrom, D. (1989). Willamette Valley ACM Lecture; Portland, OR.

Hammerstrom, D., Bahr, C., Bailey, J., Baker, T., Beaver, G., Jagla, K., Mates, J.,

May, N., McCartor, H., & Rudnick, M. (1987). The OGC cognitive architecture
project . In Northcon 1988 Proceedings.

Hammerstrom, D., Bailey, J., Mates, J., & Rudnick, M. (1989). Silicon association

cortex. In S. F. Zornetzer, J. L. Davis, & C. Lau (Eds.), An Introduction to

Neural and Electronic Networks (307-316). Academic Press.

BIBLIOGRAPHY

Hancock, P. (1990, August). Gannet: Design of a neural net for face recognition by

genetic algorithm (Tech. Rep. CCCN-6). Centre for Cognitive and Computation

Neuroscience, Stirling University.

Harp, S. A., Samad, T., & Guha, A. (1989a). Genetic synthesis of neural networks (Tech.

Rep. CSDD-89-14852-2). Honeywell.

Harp, S. A., Samad, T., & Guha, A. (1989b). Towards the genetic synthesis of neural net-

works. In J. D. Schaffer (Ed.), Proceedings of the Third International Conference

on Genetic Algorithms, 360-369. Morgan Kaufmann.

Harp, S. A., Samad, T., & Guha, A. (1990, Novermber). Designing application-specific

neural networks using the genetic algorithm. In Advances in Neural Information

Processing Systems 2.

Hecht-Nielsen, R. (1987, December). Counterpropagation networks. Applied Optics,

26 (23).

Hestenes, D. (1986). How the brain works: the next great scientific revolution. In C. R.
Smith (Ed.), Maximum Entropy and Bayesian Spectral Analysis and Estimation

Problems. publisher unknown.

Hinton, G. (1987). Learning translation invariant recognition in a massively parallel

network. In Parle: Parallel Architectures iand Languages Europe (Vol. 258, 1-13).

S pringer-Verlag .

Hinton, G. E., & Nolan, S. J. (1986). How learning can guide evolution (Tech. Rep.

CMU-CS-86-128). CMU.

Hinton, G. E., & Nowlan, S. J . (1987). How learning can guide evolution. Complex

Systems, 495-502.

Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. (1984, May). Boltzmann machines:

Constraint satisfaction networks that learn.

Hoffmann, G. W., & Benson, M. W. (1986). Neurons with hysteresis form a network

that can learn without any changes in synaptic connection strengths. In Snowbird

1986 Proceedings.

Holdaway, R. M. (1989). Enhancing supervised learning algorithms via self-organization.

In IJCNN '89.

BIBLIOGRAPHY 143

Holland, J . H. (1973). Genetic algorithms and the optimal allocations of trials. SIAM

Journal of Computing, 2(2), 88-105.

Holland, J . H. (1975a). Adaptation in natural and artificial systems. Ann Arbor: The

University of Michigan Press.

Holland, J. H. (1975b). Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. University

of Michigan Press.

Holland, J. H. (1984). Genetic algorithms and adaptation. In 0. G. Selfridge, et al.

(Eds.), Adaptive control of ill defined systems. Plenum Press.

Honavar, V., & Uhr, L. (1989). A network of neuron-like units that learns t o perceive by

generation as well as reweighting of its links. In D. Touretzky, G. Hinton, & T.

Sejnowski (Eds.), Proceedings of the 1988 Connectionist Models Summer School,

472-484. Morgan Kaufmann.

Hopfield, J. J. (1982, April). Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci., 79, 2554-2558.

Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks. Neural

Networks, 551-560.

Jong, K. A. D. (1975). An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, University of Michigan.

Keeler, J. D. (1986). Basin of attraction of neural network models. In Snowbird Confer-

ence Proceedings, 259-264.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph gen-

eration system. Complex Systems, 461-476.

Klopf, A. H. (1987, October). A neuronal model of classical conditioning (Tech. Rep.

AFWAL-TR-87- 1139). AFWAL.

Kohonen, T. (1988). Self-organization and associative nzenzory. Springer Series in Infor-

mation Sciences. Springer-Verlag.

BIBLIOGRAPHY

Kosko, B. (1987a). Adaptive bidirectional associative memories. Applied Optics, 26(23),

4947-4960.

Kosko, B. (1987b). Constructing an associative memory. Byte.

Kruschke, J. K. (1989). Creating local and distributed bottlenecks in hidden layers of

back-propagation networks. In D. Touretzky, G . Hinton, & T. Sejnowski (Eds.),

Proceedings of the 1988 Connectionist Models Summer School, 38-51. Morgan

Kaufmann.

Lansner, A., & Ekeberg, 0. (1989). A one-layered feedback artificial neural network with

a Bayesian learning rule (Tech. Rep. TRITA-NA-P8910). Stockholm, Sweden:

Department of Numerical Analysis and Computing Science, Royal Institute of

Tecnology.

Lazzaro, J., Rychebusch, S., Mahowald, M. A., & Mead, C. A. (year unknown). Winner-

take-all networks of o(n) complexity.

Le Cun, Y., Denker, J., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D.
(1990a). Handwritten digit recognition with a back-propagation network. In

Advances in Neural and Information Processing Systems 2.

Le Cun, Y., Denker, J., Solla, S. A., Howard, R. E., & Jackel, L. D. (1990b). Optimal

brain damage. In Advances 492 Neural and Information Processing Systems 2.

Leen, T., Rudnick, M., & Hammerstrom, D. (1990). Hebbian feature discovery improves

classifier efficiency. In IJCNN-90, Sun Diego.

Liepins, G. E., & Vose, M. D. (1990). Representational issues in genetic optimization.

J. Exp. Theor. Artif. Intell.

Lindenmayer, A. (1968). Mathematical models for cellular interactions in development.

J. Theor. Biol., 280-299.

Lindenmayer, A. (1971). Development systems without cellular interactions, their lan-

guages and grammars. J. Theor. Biol., 455-484.

Linsker, R. (1988, March). Self-organization in a perceptual network. Computer.

Lynch, G., Granger, R., Larson, J., & Baudry, M. (year unknown). Cortical encoding

of memory: Hypotheses derived from analysis and simulation of physiological
learning rules in anatomical structures.

BIB LlO GRA PH Y 145

Marks 11, R. J., Oh, S., Atlas, L. E., & Ritcey, J. A. (1987). Alternating projection

neural networks (Tech. Rep. 11587). Interactive System Design Lab, University

of Washington.

McClelland, J. L., & Rumelhart, D. E. (Eds.) (1988). Explorations in parallel distributed

processing: A handbook of models, programs, and exercises, Vol. 3. MIT Press.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

McMahon, M. B., & Fox, B. (1991). Genetic operators for sequencing problems. In
G. J . E. Rawlings (Ed.), Foundations of Genetic Algorithms, 284-300. Morgan

Kaufman .

Means, E. (1989). Personal Communication.

Miller, G. F., Todd, P. M., & Hegde, S. U. (1989). Designing neural networks using

genetic algorithms. In J. D. Schaffer (Ed.), Proceedings of the Third International

Conference on Genetic Algorithms, 379-384. Morgan Kaufmann.

Mjolsness, E., Sharp, D. H., & Alpert, B. K. (1987, June). Recursively generated neural

networks. In I C W Proceedings. V3.

Mjolsness, E., Sharp, D. H., & Alpert, B. K. (1988a). Genetic parsimony in neural nets.
Snowbird Abstracts.

Mjolsness, E., Sharp, D. H., & Alpert, B. I(. (1988b). Scaling, machine learning, and

genetic neural nets (Tech. Rep. YALEU/DCS/TR-613). Yale.

Mjolsness, E., Sharp, D. H., & Alpert, B. K. (1988~). Scaling, machine learning, and

genetic neural nets (Tech. Rep. LA-UR-88-142). Los Alamos.

Moody, J., & Darken, C. (1988, September). Learning with localized receptive fields

(Tech. Rep. YALE/DCS/RR-649). Yale University.

Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the fat
from a network via relevance assessment (Tech. Rep. CU-CS-421-89). University

of Colorado a t Boulder, Department of Computer Science.

Nix, A. E., & Vose, M. D. (year unknown). Modeling genetic algorithms with Markov

chains. Submitted to Annals of Mathematics and Artificial Intelligence.

BIBLIOGRAPHY 146

Pearlmutter, B. A., & Hinton, G. E. (1986). G-maximization: An unsupervised learning

procedure for discovering regularities. Snowbird.

Pellionisz, A., & Llinas, R. (1982). Space-time representation in the brain: The cerebel-

lum as a predictive space-time metric tensor. Neuroscience, 7.

Personnaz, L., & Dreyfus, G. (1988). Investigations into the effect of numerical resolution

on the performance of back propagation. In Neural Networks from Models to

Applications, E.S. P. C. I., Fmnce.

Peterson, C., & Anderson, J. R. (1987, August). A mean field theory learning algorithm

for neural networks (Tech. Rep. EI-259-87). MCC.

Pineda, F. J. (1987, November). Generalization of back-propagation to recurrent neural

networks. Physical Review Letters, 59 (19).

Plumbley, M. D., & Fallside, F. (1988). An information-theoretic approach to unsuper-

vised connectionist models. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.),

Proceedings of the Connectionists Models Summer School. Morgan-Kaufmann.

Reeke, G. N., Jr., & Edelman, G. M. (1987, spring). Selective neural networks and their

implications for recognition automata. The International Journal of Supercom-
puter Applications, l (1) .

Regier, T. (1990). C language version of Quickprop. Personal communication.

Ritter, H. (1989). Combining self-organizing maps. In ZJCNN'89.

Rosenblat, F. (1962). Principles of neurodynamics. Spartan.

Ross, S. M. (1987). Introduction to probability and statistics for engineers and scientists.

John Wiley & Sons.

Rudnick, M. (1990). Bibliography of the intersection of genetic search and artificial neural
netowrks (Tech. Rep. CSE 90-001). Oregon Graduate Institute, Department of

Computer Science and Engineering.

Rudnick, M., Cadambi, S., & Hong, C. (1987). Micro-study for the TBH test chip

(Tech. Rep.). Oregon Graduate Institute, Department of Computer Science and

Engineering.

BIBLIOGRAPHY

Rudnick, M., & Hammerstrom, D. (1988a). An interconnect structure for wafer scale neu-

rocomputers. Neural Networks, 1. International Neural Network Society Meeting

Supplement; Boston, MA.

Rudnick, M., & Hammerstrom, D. (1988b). An interconnect structure for wafer scale

neurocomputers. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proceedings

of the 1988 Connectionists Models Summer School (498-512). Morgan Kaufmann.

Rumelhart, D. (1988). Weight Decay Lecture at 1988 Connectionist Models Summer

School.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985, September). Learning internal

representations by error propagation (Tech. Rep. ICS Report 8.506). ICS.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986, October 9). Learning repre-
sentations by back-propagating errors. Nature, 323, 533-536.

Rumelhart, D. E., & McClelland, J. L. (Eds.) (1986). Parallel distributed processing:

Explorations in the microstructure of cognition, Vol. 1 & 2. MIT Press.

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competitive learning.

Cognitive Science, 9, 75-1 12.

Sanger, T. (1989a). Optimal unsupervised learning in a single-layer linear feedforward

neural network. Neural Networks, 2(6), 459-473.

Sanger, T. (1989b). Optimal unsupervised learning in feedforward neural networks.

Master's thesis, MIT.

Sanger, T. (1990). An optimality principle for unsupervised learning. In D. S. Touretzky

(Ed.), Advances in Neural Information Processing Systems 2.

Schaffer, J. D. (1984). Some experiments in machine learning using vector evaluated

genetic algorithms. PhD thesis, Vanderbilt University.

Schaffer, J. D. (Ed.) (1989). Proceedings of the Third International Conference on Ge-
netic Algorithms. Morgan Kaufmann.

Schaffer, J. D., Caruana, R. A., & Eshelman, L. J. (1990). Using genetic search to exploit

the emergent behavior of neural networks. In S. Forest (Ed.), Proceedings of the

Emergent Computation 1989 Conference.

BIBLIOGRAPHY 148

Schaffer, J. D., Eshelman, L. J., & Offutt, D. (1991, July). Spurious correlations and pre-

mature convergence in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations

of Genetic Algorithms, 102-112, Bloomington, Indiana. Morgan Kaufmann.

Schraudolph, N., & Belew, R. (1990, July). Dynamic parameter encoding for genetic

algorithms (Tech. Rep. CS90-175). San Diego: University of California, Computer

Science and Engineering Department.

Scofield, C. L. (1988). Learning internal representations in the Coulomb energy network.

In ICNN '88 Proceedings.

Sirag, D. J . , & Weisser, P. T. (1987). Toward a unified theromody~~amic genetic operator.

In J. J . Grefenstette (Ed.), Proceedings of the Second International Conference

on Genetic Algorithms, 116-122. Lawrence Erlbaum Assoc.

Smith, J. M. (1987, October 29). When learning guides evolution. Nature, 329, 761-762.

Solla, S. A. (1988). Learning and generalization in layered neural networks: The conti-

guity problem.

Specht, D. F. (1988). Probabilistic neural networks for classification, mapping, or asso-

ciative memory. In ICNN '88 Proceedings.

Sun, G. Z., Chen, H. H., & Lee, Y. C. (1988, April). Parallelsequential induction network:

A new paradigm of neural network architecture (Tech. Rep. UMIACS-TR-88-26,

CS-TR-2013). University of Maryland.

Tesauro, G. (1986). Simple neural models of classical conditioning. Biol. Cybern., 55,

187-200.

Todd, P. (1988, March). Evolutionary methods for connectionist architectures. Psychol-

ogy Department, Stanford University. Unpublished.

Torras i Genis, C. (1986, September/October). Neural network model with rhythm-

assimilation capacity. IEEE Tmnsactions on Systems, Man, and Cybernetics,

SMC-16(5).

von Neumann, J. (1987). Papers of John won Neumann on computing and computer
theory, Vol. 12 of Charles Babbage Institute Reprint Series for the History of

Computing. MIT Press.

BIBLIOGRAPHY 149

Vose, M. D., & Liepins, G . E. (1991). Schema disruption. In R. K. Belew and L.

B. Booker (Ed.), Proceedings of the Fourth International Conference on Genetic

Algorithms, 237-243. Morgan Kaufmann.

Waddington, C. H. (1942). Canalization of development and the inheritance of acquired

characters. Nature, 150, 563-565.

Waibel, A. (1989). Connectionist glue: Modular design of neural speech systems. In D.
Touretzky, G . Hinton, & T. Sejnowski (Eds.), Proceedings of the 1988 Connec-

tionists Models Summer School. Morgan Kaufmann.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989, March).

Phoneme recognition using time-delay neural networks. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 37(3).

Waibel, A., Sawai, H., & Shikano, K. (1988, August). Modularity and scaling in large

phonemic neural networks (Tech. Rep. TR-1-0034). ATR Interpreting Telephony
Research Laboratories.

Whitley, D. (1989). The genitor algorithm and selection pressure: Why rank-based al-

location of reproductive trials is best. In J. D. Schaffer (Ed.), Proceedings of the

Third International Conference on Genetic Algorithms, 116-121. Morgan Kauf-

mann.

Whitley, D., Starkweather, T., & Bogart, C. (1989, November). Genetic algorithms and

neural networks: Optimizing connections and connectivity (Tech. Rep. (3-89-1 17

(subsumes CS-89-113 & CS-89-114)). Colorado State University.

Wieland and Leighton (1968). Shaping schedules as a method for accelerating learning.

Neuarl Networks, 1, Supplement 1, 231. Abstracts of the First Annual INNS

Meeting.

Williams, R. J. (1987, February). Reinforcement-learning connectionist systems (Tech.

Rep. NU-CCS-87-3). Institution unknown.

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 2,

199-228.

Wilson, S. W. (1990). Preceptron redux: Evolution of structure. In S. Forest (Ed.),

Proceedings of the Emergent Computation 1989 Conference.

Biographical Note

Mike Rudnick, a native Oregonian since his 1949 birth in Portland, graduated from

Tigard High School in 1967. After his graduation in mathematics from Portland State

University in 1972, he joined Tektronix, Inc., where he worked as a software engineer

until 1983, when he left to perform contract software engineering.

In 1986 he began his graduate career at the Oregon Graduate Institute (then called

Oregon Graduate Center) where he completed his Ph.D. in the Department of Computer

Science and Engineering in 1992. Throughout graduate school he performed research in

biologically inspired artificial intelligence, initially as a member of Dan Hammerstrom's

Cognitive Architecture Project. During the last two years he performed dissertation

research working with Dr. David E. Goldberg, first at The Clearinghouse for Genetic

Algorithms at the University of Alabama, and later at The Illinois Genetic Algorithms

Laboratory at the University of Illinois Urbana-Champaign.

The author attended the 1988 Connectionists Models Summer School a t Carnegie-

Mellon University and is co-inventor on a neurocomputing patent application. He also

created and currently administers the Neuro-evolution electronic forum, which is dedi-

cated to all aspects of the joint use of artificial neural networks and genetic algorithms,

and especially evolutionary network design.

Mike currently has a temporary faculty appointment a t Willamette University, Salem,

Oregon, and an adjunct faculty appointment at the Oregon Graduate Institute of Science

& Technology.

	199204.rudnick.w.michael to p. 50.pdf
	199204.rudnick.w.michael to p. 150.pdf

