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Abstract

Logic Programming-a Functional Approach

Borislav Agapiev, Ph.D.

Oregon Graduate Institute of Science & Technology, 1992

Supervising Professor: Richard Kieburtz

This dissertation presents a new way to evaluate logic programs by translation to an

equivalent equational presentation. A logic program is translated to a set of equations

that can be viewed as a functional program. The equations have solutions that coincide

with answer substitutions that satisfy the corresponding logic program. An essential

feature is that the bindings for variables are defined by sets of mutually recursive data

definitions. The corresponding solutions are not least, in the sense of domain theory, but

they can be found in a straightforward way. An immediate consequence of our strategy

is that unification is replaced by pattern matching. This translation does not lead to a

functional interpreter of logic programming but to a functional program equivalent to

the translated logic program. The approach is inspired by attribute grammars and their

implementation in lazy functional languages.
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Chapter 1

Introduction

Since the earliest days of computing one of the fundamental problems has been how to

make the process of creating computer programs more effective. This problem motivated

research in the area of programming languages. The first means of programming were

entering the machine instructions directly into the memory. It was realized very quickly

that this method was very unsatisfactory way to program a computer; it was very slow

and exceedingly tedious for a programmer. What was needed was a more abstract way

to express programming concepts. The first answer was provided by development of

assemblers; they enabled programmers to enter machine instructions in symbolic form

rather than using direct machine addresses. The next important milestone was develop-

ment of FORTRAN which can be viewed as the first of the new class of programming

languages-high level languages. FORTRAN was a huge step forward; it revolutionized

programming by freeing programmers from a maze of inessential details they had to fight

previously. It provided a whole new level of abstraction in programming. Soon, there

were many successors to FORTRAN~.g. Algol60, COBOL, PL/l, and more recently,

PASCAL, C, Ada, Modula-2 etc. Most of these languages-including FORTRAN are in

widespread use today.

However, beginning in early seventies, it started to became increasingly clear that

there were some problems with these languages. The rate of progress in the improvements

of capabilities of hardware increased tremendously, but this rate was not matched by

improvements in the process of producing software. As the requirements for complexity

of software systems started to rapidly increase, the need for fast and reliable ways of

1
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delivering software became more crucial. One of the answers to this problem was offered

in the form of declarative programming.

It should be mentioned that the programming language LISP was designed at about

the same time as FORTRAN. LISP can be viewed as the precursor of declarative pro-

gramming languages-it was originally developed as a symbol processing language with

a simple set of powerful primitives. It adopted use of ~ notation for functions and strong

emphasis was placed on composition of functions as means of building more complex

functions from simple pieces. However, in the subsequent development of the language,

more emphasis was placed on features related to imperative languages and less on declar-

ative aspects of the language.

1.1 Declarative versus imperative programming

The main idea in declarative programming is that programs should not express how

a result is to be computed but instead what is to be computed. The focus is on the

properties of the result, Le., on the question how to characterize the result of a program.

This point of view is taken in mathematics. This is in sharp contrast to the usual

approach taken in imperative programming, where a program can be viewed simply as

a sequence of steps to be executed on a computer. Indeed, this was exactly what the

very first programs in machine code were--exact descriptions of machine instructions to

be executed to get a solution. Modern imperative languages still follow this approach in

part-the difference is that the description of an imaginary machine on which a program

in particular language operates is more abstract. For instance, machine locations are

replaced by variables, machine storage configurations are described by data structures,

sequences of instructions are replaced by programming constructs such as loops, etc.

The emphasis is on the notions of store as aggregate of machine locations and control as

means of expressing ways to sequence instructions. Imperative programs contain many

details that are not connected with the result but are needed to ensure that the execution

of the program is carried out correctly. As the size of a program increases, these details
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quickly become overwhelming and seriously impair the ability of programmers to grasp

behavior of programs.

Declarative programming offers a solution to this problem by including in programs

only the information that is essential to specifying results.

1.2 The thesis question

The question this dissertation tries to answer is whether it is possible to translate logic

programs directly to functional programs. The trivial answer to this question is affirma-

tive as demonstrated by proposals for implementations of logic languages in functional

languages [FeI85, Car84]. However these kinds of implementations are really not what

we are after; in these approaches, as well as in the proposals for integrating functional

and logic languages, an additional level of interpretation is introduced in functional solu-

tions in order to accommodate the effects of logical variables in logic languages. Roughly

speaking, one can say that a logic program is translated to an interpreter for logic pro-

grams implemented in a functional language. The consequence of this kind of approach

is a completely different notion of variables in functional and logic languages. By trans-

lation of logic programs to functional programs we mean translating a logic program to a

functional program without any additional interpretation. In particular we do not want

to introduce interpretation of variables.

Another way to state the question is whether it is possible to achieve effects of logical

variables in functional programs.

The main contribution of this research is to show that the answer to the question is affir-

mative. This objective is accomplished by exhibiting a translation with desired proper-

ties. We believe that our approach presents a new way of looking at logic languages-a

point of view inspired by functional languages. The main contributions can be summa-

rized as follows:
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. We present an algorithm for translation of logic programs to sets of equations that

can be viewed as functional programs; the equations produced by the translation

have solutions that correspond to solutions of logic programs.

. We define a semantics for the functional programs produced by the translation;

this approach defines a new semantics for logic languages.

· We show how to implement the functional language that is the target of the trans-

lation.

The rest of the dissertation is organized as follows:

· The rest of the Chapter 1 consists of an introduction to functional and logic pro-

gramming and a comprehensive example.

. Chapter 2 describes the translation algorithm.

· Chapter 3 presents a semantics for programs produced by the translation.

. Chapter 4 presents an operational semantics based on traversals of cyclic graphs.

. Chapter 5 shows a code generation algorithm.

· Chapter 6 presents some new ideas on translation of logic languages to functional

languages.

· Finally, Chapter 7 contains conclusion and directions for future research.

1.3 Functional and logic programming

We focus our attention on two prominent classes of declarative programming languages:

. Functional programming languages

. Logicprogramming languages
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These two classes are based on completely different principles; they represent distinct

approaches to achieving the goal of declarative programming. However, we will see in the

subsequent chapters that there are also some similarities between the two approaches.

1.3.1 Logic programming

This section gives a brief introduction to logic programming. Our presentation follows

closely Apt [Apt90]. The account is not intended to be comprehensive; for additional

treatment on this subject the reader is referred to literature [MW88, Apt90, 11087].

Logic programming, as its name suggests, is closely related to Mathematical Logic.

Logic programs can be viewed simply as sets of logical formulae of a first order language.

In order to define the formulae we first introduce several definitions.

Definition 1 (Alphabet) An alphabet for a first order language consists of:

. a denumerable set of variables

. constructor symbols; with each constructor symbol we associate a nonnegative in-

teger called its arity

. predicate symbols; with each predicate symbol we associate a nonnegative integer,

which is also called its arity

. the propositionalconstants, true and false

. the connectives:

negation ...,

disjunction V

conjunction A

implication =>

. quantifiers3 (there exists) and 'V(for all)
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We need to define the set of well formed formulae of the language. The formulae involve

terms, which denote elements of the domain of discourse.

Definition 2 (Term) The set of terms is defined inductively as the least set satisfying:

. a variable is a term

. if c is a constructor symbol with arity n and t},..., tn are terms, then c(t},..., tn)

is a term.

Constants are viewed as constructors with arity O.

Definition 3 (Formula) The set of well formed formulae is defined as follows:

. if p is a predicate symbol of arity nand t}, . . . , tn are terms, then p(t}, . . ., tn) is a

formula. These formulae are called atoms

. if F is a formula, so is -.F

. if F and G are formulae, so are F V G, F 1\ G

. if x is a variable and F is a formula, 3xF and 'VxF are formulae

To avoid extraneous parentheses, a precedence is imposed on connectives and quantifiers.

Here is the list of binding powers, in decreasing order:

. -.,3, 'V

. V

. 1\

We assume V and 1\ associate to the right. For the sake of brevity, if F is a formula with

X},...,Xk as free variables, then "IF and 3F stand for 'Vx}...'VxkF and 3x}...3xkF,

respectively.

An atom will be also called a positive literal while a negated atom will be called

negative literal. Atomic formulae can be understood as propositions. Intuitively, we can

think of them as expressing either truth or falsity of some assertions. This association

is reflected in the interpretation which assigns either truth or falsity to propositions.
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Logic programs

Logic programs can be viewed as sets of formulae in a distinguished form, called clauses.

Definition 4 (Clauses) Let L1, . . . , Ln be literals. A formulaof the form VL1V. . .VLn

is called a clause. Clauses will be written in a special form. Let M1, . . ., Mk be a list of

the positive literals in the clause above and N1, .. .,Nl be a list of the negative literals

(without their negation symbols). Then the clause will be written as M},..., Mk ~

N},. .., Nl. Also we will use the symbol: - instead of ~.

The above two ways of expressing clauses are equivalent as can be immediately seen

from the tautology p ~ q {:} p V-'q. Intuitively, we can think of a clause M},..., Mk ~

N}, . .., Nl asserting M1 or ... or Mk if N1 and... and Nl. We will focus our attention

on special form of clauses, called Horn clauses.

Definition 5 (Horn Clauses) A clause with at most one positive literal will be called

a Horn clause. We distinguish several kinds of Horn clauses:

. a clause with exactly one positive literal will be called a definite clause

. among definite clauses, clauses with no negative literals will be called unit clauses

or facts

. a Horn clause with no positive literals will be called goal clause

The empty clause, denoted 0, plays an important role; it can be viewed as contradiction.

Unification

We need to introduce the concept of substitution.

Definition 6 (Substitution) A substitution is a finite mapping from variables to terms.

Substitutions will be written as (j = {tt! x}, .. ., in/ xn}. It is assumed that all Xi are

distinct and Vi Xi f; ti.
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The substitutions can be applied to various expressions in the language. Let t be a term

and u be a substitution u = {tl/Xt,...,tn/xn}. Then the imageoft under u, written

as ut is defined as follows:

. if t is a variable Y, then if Y = Xi, then ut = ti, else Y is different from ill variables

in u and ut =y

. t has the form c(tt, . . ., tm), then ut = c(utt,. . ., utn)

Applications of substitutions can be generalized to literals, clauses and sets of clauses.

Substitutions can be composed; given substitutions u = {tt! Xt, . . ., tn/ xn} and (J =

{rl/Yl"", rm/Ym} the composition u(J is defined as

where ill pairs Xj/(Jtj such that Xj =(Jtj are removed as well as ill pairs Yj/rj such that

3i Yj = Xi. In words, substitutions u and (Jare composed simply by applying (J to ill

terms ti in u, adding mappings for ill variables in (Jand making sure that the result is

a valid substitution. It is easily seen that, given a term t, u(J(t) = (J(u( t)). We say u is

more general than () if there exists a substitution 1] such that () = U1]. We are now ready

to define the concept of unification.

Definition 7 (Most General Unifier) Given two terms tl and t2, their most general

unifier is a substitution u such that utl =ut2' Furthermore, u is the most general such

substitution, Le., for any other 1]such that 1]tl= 1]t2,Uis more general than 1].

The concept of unification was introduced by Robinson [Rob65]. It is the fundamental

concept in the theory and practice of logic programming.

Resolution

Let G = : -Lt, . . ., Ln be a goal clause in which ill literals are ground, Le. contain no

variables. Let M = B :-Db' . ., Dm be a ground clausesuch that 3i, 1 ~ i ~ n, B = Li.

Then a goal clause
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obtained from G by replacing B by D1, . . . , Dm is ca.lledthe resolventof G and M. B is

ca.lled the selected atom and Mis ca.lledthe input clause. The computation step described

above is ca.lled a resolution step. The process of computation in logic programming

consists of repeated application of the resolution step until either the empty clause is

derived or it is not possible to perform the resolution step any more (because there are

no atoms to be selected). The sequence of resolution steps is ca.lled a derivation. If a

derivation ends with the empty clause, it is ca.lled a refutation.

A refutation can be understood as a derivation of a contradiction from a logic program

represented by a set of clauses and a goal. A goa.l : -L1, . . ., Ln stands for -.L1 V . . . V

-.Ln (reca.ll that goa.l is a clause with no positive literals). This form is equiva.lent to

-.(L1/1 /I.Ln). The logic program together with the goa.limply a contradiction, so the

refutation can be understood as a proof of L1 /I.. . ./1.Ln.

The entire process of repeating resolution steps is ca.lled resolution theorem prov-

ing. We are going to focus our attention on particular kind of resolution, ca.lled SLD-

resolution.

In the presence of variables, the resolution step described above can be genera.lized

to handle clauses with variables. Assume there is a goa.lG =: -L1, . . ., Ln and a clause

C = B : -D},..., Dm such that there is Li which can be unified with B, with the the

unifier u, Le., ULi = uB. Then the resolvent is

It is obtained by substituting the body of C for Li in G and applying u to the rest of

the goa.l clause. We have to be careful to avoid name clashes so C cannot contain any

variables in common with G. If necessary, variables in C have to be renamed.

Given a logic program P with a goa.l G let Go, G},. .. be a sequence of goa.ls where

G = Go and let Co,C1,.. . be a sequence of instances of clauses from P. We ca.llthis

sequence an SLD-derivation if the following conditions are satisfied:

. Vi Gi+1 is the resolvent of Gi and Ci

· Vi Ci has no variables in common with G, Co, C},.. ., Ci-l
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An SLD-derivation in which the sequence of goals ends with the empty clause is called

an SLD-refutation. An SLD-derivation that cannot be completed to an SLD-refutation

because there are no choices for the next resolvent after the last resolution step is failed.

The substitution 'Y= (1n ...(11obtained by composing all substitutions produced at each

resolution step in an SLD-refutation is called an answer substitution. Finally, we need

to introduce the concept of a proof tree. A proof tree is simply a tree that reflects the

structure of an SLD-refutation since it is comprised of clauses in the refutation. The

abbreviation SLD stands for Selection rule-driven Linear resolution of Definite clauses.

Without going into too much detail, the selection rule is a rule which specifies the selected

atom at the each resolution step.

Definition 8 Let t be a tree with nodes labeled by clauses and leaves labeled by facts

and let S = Co,CI, . .. be the sequence of nodes obtained by the leftmost pre-order

traversal of t (Le. the interior nodes are traversed before their children and the children

are traversed from left to right). We call t a derivation tree if S is the sequence of input

clauses in an SLD-derivation. We call t a proof tree if S is the sequence of input clauses

in an SLD-refutation.

Example 1 Consider the logic program

p(X, Z) :-q(X, Y), r(Y, Z).

q(X, X).

r(X,X).

and the goal

:-p(X,a).

The following sequence of goals is an SLD-refutation for the program above (the input

clause used at each resolution step is shown next to a goal)
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The corresponding proof tree is shown in the Figure 1.1:

Figure 1.1: An example of a proof tree

Ind uction principle

We will be using extensively the principle of structural induction for proof trees. This

principle is an instance of the general principle of well-ordered induction. For more

information on well-orderings the reader is referred to any of standard text books on set

theory, e.g. [Hal68].

Go :-p(X,a). C1 p(Xt, Zl) : -q(X1, Y1),r(Y1, Zl).

G1 : -q(Xt, Yd, r(Yt,a). C2 q(X2, X2).

G2 : -r(Yt, a). C3 r(X3, X3).

G3 0
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Definition 9 (Initial Segment) Given a partially ordered set S and an element xES,

the initial segment of x, designated s(x) is the set of all elements smaller than x, Le.,

s(x)=bIYES,y<x}

Definition 10 (Well-ordering) A partially ordered set is well-ordered if every non-

empty subset of S has a least element.

Definition 11 (Well-ordering Induction) Assume P is an inductive property of a

well-ordered set S. If for an arbitrary element xES it is always the case that P( x)

holds whenever P( y) holds for every y E s(x) then P holds for all elements in S.

It is clear that proof trees are inductively defined, with base cases represented by facts

and inductive steps by clauses. To apply the principle of well-ordered induction, we need

to observe that given a proof tree t corresponding to a clause, the initial segment s(t) is

just the set of all proof trees corresponding to the literals in the body of the clause.

1.3.2 Functional programming

As its name suggests, functional programming is about computations with functions.

The foundation of functional programming is provided by the A-calculus, which is a

formalism invented by Alonzo Church [Chu41].

Consider the expression x + 5 where x is a variable. This expression has different

values depending on the value of the variable x. From this point of view we can think of

it as a function which maps the value of the variable to the value of the whole expression.

In mathematical notation, this function can be expressed as the mapping x 1-+ x + 5. In

A-calculus this function is expressed as

AX.x+ 5

So a A-term Ax.M, where M is a expression in which x might occur, represents a function

which maps a value to the result of substituting that value in place of x in M (this

informal definition is slightly imprecise but it will suffice for our purposes here). A A-term
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of the form Ax.M is called an abstraction. Abstractions can be applied to expressions;

applying an abstraction to an expression consists simply of performing the substitution

of the argument expression for all occurrences of the parameter variable in the body of

the abstraction. We make these concepts more precise.

Definition 12 (A-terms) The set of A-terms is defined as follows:

. A variable is a A-term. Variables will be denoted by lowercase letters such as

x,y,z.. .

. If x is a variable and M is a A-term,then Ax.M is a A-term.

. If M and N are A-terms then M N is a A-term.

We will use uppercase letters such as M, N, P, Q, R. . . for A-terms.

Definition 13 (Free and bound variables) The set of free variables of a A-term M,

written FV(M), is defined as follows:

. FV(x) = {x}

. FV(AX.M) =FV(M) - {x}

. FV(M N) = FV(M) U FV(N)

A variable is bound in A-term M if it has no free occurrences in M.

We will use the notation M[Njx] for the A-term obtained by substituting N for all free

occurrences of x in M. We have to be careful to avoid any free variables of N becoming

bound. If necessary, bound variables must be renamed. We implicitly assume Ax.M and

Ay.(M[yjx)) to be equivalent.

The process of applying an abstraction to an argument which we informally described

is expressed in A-calculus by a conversion axiom.

Definition 14 (a-conversion) The axiom of l3-conversion is defined by:

(Ax.M) N =M[Njx]
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This axiom is the principal axiom for conversion of terms in the A-calculus. There is

another axiom, of 1]-conversion:

Ax.M x =M

assuming x is not free in M. This axiom will be of less importance to us. A A-term in

the form (Ax.M) N or (Ax.M) x (x not free in M) is called a redex. We say M reduces

in one step to N if M has a subterm which is a redex and N is obtained by performing

the conversion of the redex. The reflexive and transitive closure of this relation is called

reduction, written M -+ N.

A A-term is said to be in normal form if it contains no redexes. Not every A-term has

a normal form. A term can have several redexes; the question is which one we choose for

reduction? Will the result depend on which redex is chosen? The answer to the latter

question is provided by one of the fundamental theorems of the A-calculus:

Theorem 1 (Church-Rosser) Assume there are A-terms M,N},N2 such that M -+

Nt and M -+ N2. Then there is a term P such that Nt -+ P and N2 -+ P.

The direct corollary of the theorem is that if a A-term has a normal form, then the

normal form is unique.

The concept of reduction is the fundamental concept in functional programming.

Functional programs can be viewed simply as unreduced A-terms and the process of

computation consists of reducing them to normal forms, which can be understood as the

final results of programs. The emphasis is on values, i.e., the normal forms of expressions.

Pattern matching

Most modern functional languages (e.g. Hope [BMS80], LML [Joh87b, Aug87], SML

[MTH90], CAML [Wei90], Haskell [HJW91], Miranda [Tur85] etc.) use pattern match-

ing as a control construct. Patterns are built from values of a distinguished collection

of types, which have several names in the literature-"structured types" or "algebraic

types" or "free data types". These notions refer to the same concept. As an example,
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consider a type of lists:

List a =Nil + Cons(a x List a)

This is an example of a recursive type definition; a is a type variable meaning it can

stand for any type. In words, the above definition can be described as:

. Nil is a list of type List a

. if t is a list oftype List a and his oftype a, then Cons(h, t) is a list oftype List a

This definition is an instance of a more general scheme-structured types. In general,

the definition is in the form of sum of products. It can be represented as

where Ci are called constructors. Each constructor has arity that specifies the number of

the components in the argument tuple. The arity can be zero, in which case constructors

are constants (such as Nil in the definition of List). Tij are types, some of which can be

T since the definition may be recursive. Patterns are simply terms with variables. Many

languages put restriction on patterns by requiring them to be linear-meaning there are

no multiple occurrences of variables.

An important example of use of patterns is in defining functions. A function F of n

arguments can be defined by a set of equations with patterns:

F pn ... PI n = el

II F P2I ... P2n= e2

II F PmI ... Pmn= em

The function is defined by several equations. Given a sequence VI, . . .Vn of n arguments,

each equation is matched against the arguments by attempting to match every element of

the argument sequence with the corresponding pattern. By matching a pattern p against
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an argument v, we mean finding a substitution u such that up = v, i.e., a substitution

for variables in the pattern which makes the pattern equal to the value. ITall matches in

an argument sequence succeed for a particular equation, then the resulting substitution,

which gives bindings to all variables in the patterns, is applied to the right hand side of

the equation, and the result is returned as the result of the application.

It might be possible that several equations match. In that case a criterion is estab-

lished as the part of the definition of the language that specifies which equations will

be used. Usually, for simplicity of implementation, the equations are tried in order in

which they are listed. But there are more elegant solutions, e.g., imposing restrictions

on equations so at most one equation can match. It might be the case that none of the

equation matches. We say that equations are exhaustive if there is at least one pattern

matching each value of the argument type.

The choice of considering a single equation has to be made since we are considering

only deterministic languages. In a non-deterministic language, the criterion of deter-

mining which equation to use is not present since semantics specifies that an arbitrary

equation can be used.

The equations defined by patterns can contain guards. A guard is simply a condition

that has to be satisfied in order for the equation in a definition to match. Guards can

be in various forms; a rather general one is adopted in LML where a guard can be any

boolean-valued expression. The expression is evaluated and if the result is true, the

guard is satisfied. Guards can be used to simulate nonlinear patterns, for instance:

F x x ==F x y & (x =y)

The expression after & is a guard that specifies that bindings for variables x and y should

be equal.

An essential point about equations in functional programs is that they are directed.

The usual convention is that the variables appear on the left hand side of equations; the

variable then stands for the value of the term on the right hand side. For instance, the
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informal meaning of a definition such as

let x =M in N

is that all occurrences of the variable x in N are replaced by M. Other variables can

appear in M; their bindings have to be provided by other definitions. It is also possible

to have ground terms in the left hand side of equations, as we have seen for pattern

matching. For instance, a definition such as

let 5 =x in N

means that the value of the variable x should be evaluated and matched against the

constant 5. Note that this definition does NOT mean that 5 should be substituted

for all occurrences of x as we would expect in case the equation in the definition was

undirected. There are also equations in which identifiers occur in both left and right

hand side of an equation; in this case the values of variables are defined recursively. For

instance, a definition

rec ones = 1.ones

defines infinite lists of ones. Directedness of functional equations is a fundamental prop-

erty of functional programs. It ensures that the process of reduction is clearly defined

since at each step we know the direction in which substitution for variables is performed.

Functional languages can be divided into two classes:

. strict functional languages

. lazy functional languages

The difference between the two classes is in the order of evaluation. In particular, the

important issue is the order of evaluation of arguments of applications. In strict languages

the arguments are evaluated before a function is invoked while in lazy languages the

evaluation of arguments is delayed until the arguments are actually needed. In general,

it is possible to talk about strictness or laziness of various construct in a language, e.g.

constructors or pattern matching.
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Example 2 Consider the expression

rec ones = 1.ones

We have seen that this expression defines an infinite list of ones. Such a definition does

not make sense in a strict language since in strict languages all values are fully evaluated

and an attempt to fully evaluate the expression above would result in nontermination. In

contrast, in lazy languages evaluation is performed only when needed so the expression

above makes perfect sense because we might be interested only in a finite part of it in

which case the computation terminates.
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1.4 An example

Consider an example which will help us understand better the issues involved in the

relationship between functional and logic programming. This example is based on a

similar example [Red86] where it was called the address translation problem.

Suppose we have a list of elements such that each one is either in the form DEF(a) or

USE( a). These forms can be thought of as abstractions of definitions and uses of various

symbols in programs, e.g., symbols for procedures, variables etc.. The goal is to translate

this list to a new list such that each occurrence of USE(a) is replaced by REF(n) where n

is a unique number; this number is assigned to the corresponding DEF(a) entry. We will

assume that the numbers are assigned to DEF entries in the order in which the entries

are listed. The numbers can be thought of as abstractions of symbol table references.

The translation is to be accomplished in a single pass by a sequential evaluator. For

example, the list

[DEF(a), USE(a), USE(b), DEF(b)]

should be translated to

[REF(I), REF(2)]

Numbers 1 and 2 are assigned to the occurrences of DEF(a) and DEF(b), respectively.

The problem is simple if all occurrences of USE(a) in the input list are preceded

by the corresponding occurrences of DEF(a). A symbol table is introduced to record

associations of symbols and numbers assigned to them. Every time an occurrence of

USE(a) is encountered, the symbol table is consulted for the number assigned to the

symbol a and the resulting REF(n) is put in the output list. This kind ofsolution can be

implemented in a straightforward way either in an imperative language, logic language or

functional language. But things get more complicated by having occurrences of USE(a)
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precede the corresponding occurrence of DEF(a). This situation is supposed to model

cases where symbols are used before they are declared. Now a functional solution does

not appear to be obvious any more. The problem is in the symbol table. In order to

translate the occurrences of USE(a) correctly, the corresponding entry in the symbol table

has to be already present when an occurrence of USE(a) is encountered, but this implies

that the translation cannot be done before the entire symbol table is constructed. It

takes a complete pass just to gather this information; the translation takes an additional

pass over the input list. Thus it seems that two passes are required for the functional

solution.

The problem can be solved in a single pass in a logic language. Here is a solution in

Prolog-like syntax by Reddy [Red86]:

translate(Jnlist, Out/ist) :- map(Inlist, Out/ist, Table, 1).

map([ ], [ ], [ ], _).

map([def(A) I Inlist], Out/ist, Table, N) :-

member(assign(A, N), Table), map(Inlist, Out/ist, Table, N+1).

map([use(A) I lnlist], [ref(Addr) I Outlist], Table, N) :-

member(assign(A, Addr), Table), map(lnlist, Out/ist, Table, N).

member(A, [A I X]).

member(A, [B I X]) :- member(A, X).

We use lowercase letters for DEF, USE, ASSIGN and REF because of Prolog convention

that symbols starting with uppercase letters denote variables. The predicate translate

represents the top level invocation. It is assumed that the variable lnlist is always bound

to a ground list, Le., a list with no logical variables. Further, if all symbols appearing in

USE(x) elements of the input list have corresponding DEF(x) elements in the list, the

output list Out/ist will be ground as well. In order to satisfy predicate translate, predicate
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map has to be satisfied. Map has two additional arguments. The third argument is the

symbol table; it records the associations between symbols and numbers assigned to them.

The last argument is the initial "seed" for the numbers assigned to symbols. There are

three clauses for the map predicate. The first one specifies the translation of definitions

in the input. The corresponding entry is placed in the table by the predicate member. It

is presumed that there is no entry for this symbol in the table (Le., there are no multiple

DEFs of the same symbol). Member will go through the table until it reaches the end

of it, which is always a logical variable. It will instantiate this variable as a new list

which has ASSIGN entry as head and a new logical variable as tail. The second clause

handles the translation of USE elements. When USE(a) is encountered, the symbol table

is looked up by member. If the corresponding DEF entry has been already processed,

the number associated with the symbol will be instantiated in the output list. On the

other hand, if the corresponding DEF entry has not been processed yet, an ASSIGN

entry will be placed in the symbol table, with a logical variable as the address for the

symbol. This variable will be instantiated when DEF is encountered.

An interesting thing to note is the information about the modes of variables in the

program above, in particular of the predicate map. By modes of logical variables we

mean the information specifying whether a logical variable is used as:

. an input parameterin which case we say the variable is in the in mode.

. an output parameterin which case we say the variable is in the out mode.

. both an input and an output parameter; in this case the binding for the variable

contains unbound logical variables. Some calls use it for input and some for output.

We say the variable is in "don't know" mode.

There has been substantial amount of research on determining modes of variables in

logic programs; for more information the reader is referred to literature [Deb89, DW88,

Smo84, BLM83, Bru82]. In our logic program solution, variables Inlist, A and N are in

in mode whereas Outlist is in out mode. Table is in "don't know" mode because it can

be bound to a partially instantiated structure that contains unbound logical variables.
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The key point is that number parts of ASSIGN entries that describe mappings of

symbols are represented by unique logical variables. Each occurrence of a USE is replaced

by a REF which refers to the number from the corresponding ASSIGN entry, which might

be a logical variable. The logical variables in the entries for different symbols will be

different even if they are not instantiated. When the corresponding DEF entry is later

encountered, the logical variable is instantiated and its binding will become immediately

transparent to all REF occurrences since they all share the same variable.

This point has been used as an example of an effect which can be easily achieved in

logic languages but apparently cannot be achieved in functional languages [Red86]. The

claim was that logic languages have more expressive power than first order functional

languages because of presence of such effects.

1.4.1 A functional solution

The argument from the preceding section does have a certain intuitive appeal in that

indeed it is not obvious how to obtain a functional solution which solves the problem

in a single pass. However, there is a functional solution to this problem. Not very

surprisingly, it involves lazy evaluation, which is known to be one of the most powerful

features of functional programming. There are several possible directions from which

this problem can be approached. Functional programs sometimes can contain repeated

traversals of data structures that are unnecessary; this results in a loss of efficiency. There

are known methods for elimination of multiple passes over data in functional programs

by use of mutually recursive definitions [Bir84]. The basic idea is to define values by sets

of equations so that the values define not only the output values but in effect the values

obtained after intermediate passes. The essential point is that the values obtained as

results of intermediate passes serve both as output, namely of the passes that produced

them, and as input, namely to the subsequent passes in the computation. This means

that these values will serve both as input and output which is why they have to be

recursively defined. Using this strategy, it is possible to eliminate multiple passes from

functional programs.
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Another point of view is provided by Attribute Grammars. It is possible to construct

an attribute grammar that solves the problem. The traversal of the input list can be

viewed from this point of view as a kind of parsing pass. The result of the translation

can be considered as an annotated abstract syntax tree. By annotated it is meant that

this tree contains additional information about the translations of the elements in the

list. Before proceeding further, we are going to give a brief introduction to attribute

grammars.

Attribute grammars

We assume the reader is already familiar with Context Free Grammars (CFG). We will

provide just a brief overview here.

Definition 15 (Context Free Grammars) A context free grammar (N, T, P, S) is a

quadruple consisting of:

. the set of nonterminal symbols (nonterminals) N

. the set of terminal symbols (terminals) T

. the set of productions P

. the starting symbol S E N

All sets in the above definition are finite. Each production pEP is of the form p : Xo -+

Xl" .Xnp where Xo is a nonterminal and Xl" .Xnp is (possibly empty) sequence of

terminals and nonterminals.

Definition 16 (d-trees) A d-tree is an ordered tree with nodes labeled with the pro-

ductions of a context free grammar. If p : Xo -+ Xl" .Xnp is a node in a d-tree, then

its children are productions for nonterminals in Xl" .Xnp' Its root is labeled with a

production for the starting symbol of the grammar. The leaves of a d-tree are labeled

by terminals.
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Each d-tree is associated with a string, i.e., a sequence of nonterminals. This sequence

can be derived from productions of the grammar by listing the leaves of a d-tree in

left-to-right order. The tree records how the string can be derived.

An attribute grammar is obtained from a context free grammar by associating with

each nonterminal symbol a set of attributes. Attributes are simply values from some

domain. There are two kinds of attributes:

. inherited attributes

. synthesized attributes

Distinct occurrences of a nonterminal symbol in a production have distinct occurrences

of attributes associated with them. Distinct occurrences of attributes are called attribute

occurrences or attribute positions. Given a nonterminal symbol X EN, the sets of its

synthesized and inherited attributes will be designated Syn(X) and Inh(X), respectively.

With each production p : Xo -+ Xl" .Xnp a set of rules called semantic rules is

associated that defines the values ofthe set Syn(Xo) of synthesized attributes of Xo and

the set Inh(Xi) of inherited attributes of Xi for all nonterminal symbols Xi 1 ~ i ~ np.

Each rule is in the form

where p is a production, and either i = 0 and a E Syn(Xo), or 1 ~ i ~ np and

a E Inh(Xd. Symbols aj(ij) are attribute positions for attributes of nonterminals in

the right hand side of a production. Attribute positions are indexed by positions of

nonterminal symbols in the production.

We can think of synthesized attributes as performing the bottom-up propagation of

information in d-trees; inherited attributes perform the top-down propagation of infor-

mation. Consider a production p: Xo -+ Xl" .Xnp' The inherited attributes of Xo and

synthesized attributes of Xi, 1 ~ i ~ np can be considered as input positions; inherited

positions of Xo are inputs from the top part of the d-tree, while synthesized attribute

positions are inputs from the bottom of the d-tree. Dually, the synthesized attribute
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positions of Xo and inherited attribute positions of nonterminals in the right hand side

can be viewed as outputs. Synthesized attributes of Xo are outputs to the top of the

d-tree and inherited positions for Xi, 1 ~ i ~ np are outputs to the bottom of the d-tree.

Definition 17 An annotated d-tree for an attribute grammar G is obtained from a d-

tree for the underlying context free grammar by assigning values to all attribute positions

of the nonterminals such that all rules are satisfied.

From now on, the term d-tree will refer to annotated d-trees. The main problem in

Attribute Grammars is to compute the values of all attributes in an annotated d-tree.

In order to solve this problem, a notion on evaluation order is introduced; this order

is a total order on attribute positions specifying in what order to compute them. This

problem has been heavily studied in literature on Attribute Grammars; for our purposes

it suffices to assume that the evaluation order always exists. Indeed, we will see that this

order is implicitly determined by the underlying functional implementation of attribute

grammars.

The connection between attribute grammars and functional programming was demon-

strated [Joh87a]. The motivation for our example is to show that this paradigm is related

to logic programming as well.

An attribute grammar solution

The address translation problem can be solved using attribute grammars. In a way, the

pass over the input list can be considered as parsing of the input list, and the resulting

list can be viewed as an annotated d-tree. The translation process can be performed by

propagation of attributes. The following grammar solves the problem

Ltop -+ L :

Lltransl = Ljtab

L!n = 0
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Ltopi ouUist = Li ouUist

L -+ DEF( a).Lmt :

LiouUist = LmtiouUist

Litab = ASSIGN(a,L!n).Lmtitab

Lre"t!transl = L!transl

Lre"tln= (L!n)+l

L -+ USE(a).Lmt :

Li ouUist = REF( lookupa L! transl).Lre"ti ouUist

Litab = Lmtitab

Lmtltransl = L!transl

Lmtln = L!n

L -+ [] :

LiouUist = []

Litab = [ ]

Regarding the notation, productions have I:' at the end; the subsequent equations

are the semantic equations (rules) for the production; inherited attributes of a nonter-

minal are designated by ! and the synthesized by i. The symbols Lmt and L are used

for instances of the nonterminal symbol for the list to be parsed, Le., they can be viewed

as different instances of the same symbol. The more conventional way is to distinguish

different occurrences by numerical indices, but we adopt this notation for the sake of

clarity and to emphasize the connection to functional style of presentation [Joh87a]. The

sets of inherited and synthesized attributes for each nonterminal are shown below

Inh(Ltop) = {}

Syn(Ltop) = {outJist}
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Inh(L) = Inh(Lresd = {transl,n}

Syn(L) = Syn(Lrest) = {tab,outJist}

Let us see how this grammar solves the problem. The starting symbol is Ltop. Syn-

thesized attribute ouUist is the resulting list. The synthesized attribute tab represents

the symbol table as it is being built. As we can see in the second production, a new

ASSIGN entry is entered into the symbol table whenever a DEF element is encountered.

ITwe look at the third production, we can see that this attribute is simply passed from

the nonterminal at the right hand side to the nonterminal at the left hand side. This

corresponds to "bottom-up" flow of information. In other words, as the list is being

traversed, Le., "parsed", the symbol table is built and passed upwards in the tree. IT

we examine all productions, we can notice that this passing will continue all the way up

to the starting production. On the other hand, if we examine third production, we can

see that the symbol table that is consulted to find the number assigned to the symbol is

passed by the inherited attribute transl, which is passed from the nonterminal at the left

hand side. Obviously, this corresponds to "top-down" flow of information. It is essential

to realize that the symbol table used for lookup is obtained from a different attribute

than the symbol table used for inserting of definitions. Let us call these tables the lookup

table and the insert table, respectively. The lookup table is represented by the inher-

ited attribute transl and the insert table is represented by the synthesized attribute tab.

The lookup table is used for lookup because we want it to have complete information,

in other words to contain all definitions. The lookup table should be the same as the

table produced after the first pass in the two-pass functional program. In contrast to

this, the insert table is passed by a different attribute. As definitions are processed, the

corresponding ASSIGN entries are entered into the insert table which is being passed

upwards by the synthesized attribute tab. If we look at the starting production, we can

see that the symbol table obtained from the attribute tab from the inside of the tree is

simply passed back by the attribute transl. This point is essential. At the root of the

tree, we know that the entire list has been seen, Le., no more definitions will be found.
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That is why we can pass the table from the tab attribute to the transl attribute. We

know that the table from tab is now complete! It is clear that this solution takes only

a single pass, because the parsing is done in a single pass. However still it might not

be clear that these attributes can be evaluated in a single pass, in other words during

parsing. A good way to further clarify that this solution works is to consider a functional

program implementing this attribute grammar. This program is going to be a single pass

functional solution.

Here is a functional program which performs the task. This program has been created

using the algorithm described in [Joh87a]. The algorithm describes how to translate an

attribute grammar to a functional program. Here is the program:

rec

Ltop I =

let rec (LouU ist, Uab) = L I Ln Ura nsl

and L_ouUist = LouUist

and Uransl = Ltab

and Ln =0

in

and

L ((DEF c). rest) L_n L_transl =
let (resLouUist, resUab) =

L rest resLn resLtransl

and L_ouLlist = resLouUist

and L_tab = ASSIGN(c,L_n).resLtab

and resLn =L_n + 1

and resLtransl =L_transl

in

(L_ouUist, L.lab)
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II

L ((USE c).rest) L_n L_transl =

let (resLoutJist, resUab) =

L rest resLn resLtransl

and L_ouLlist =

REF(lookup c L_transl).resLoutJist

and L_tab = resLtab

and resLn = L_n

and resLtransl =L_transl

in

(L_ouUist, L.Jab)

II

([ ], [ ])

and

lookup c (ASSIGN(d, n).rest) =

if c = d then n else lookup c rest end

We are going to consider a simple example in order to gain better understanding of the

functional solution. Since there is a close correspondence between the functional solution

and the attribute grammar, the example will illustrate the attribute grammar solution

as well. Consider input list

USE(a).DEF(a).DEF(b).[ ]

The translation is performed by the top-level function Ltop. The result expression after

a few simple reduction steps is shownbelow(the symbol => is used to indicate reduction

steps)
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Ltop (USE(a).DEF(a).DEF(b).[]) =>

let rec (LoutJist,Uransl) = L (USE(a).DEF(a).DEF(b).[]) 0 Uransl in LoutJist

=>

let rec (LoutJist, Uransl) =

let (resLoutJist, resUab) = L (DEF( a).DEF(b ).[ ]) 0 Uransl

in (REF(lookup a Uransl).resLoutJist), resUab
in LoutJist

=>

let rec (LoutJist, Uransl) =

let (resLoutJist, resUab) =

let (resLoutJist},resUabd = L (DEF(b).[]) 1 Uransl

in (resLoutJist}, (ASSIGN(a,O».resUabd

in (REF(lookup a Uransl).resLoutJist), resUab
in l_outJist

Looking at the equations we can see that Ltransl is equal to resUab which is in turn

equal to ASSIGN(a, O).resUabl. The result of lookup a Ltransl will be 0 because of

the ASSIGN entry in the table. Note that the result will be 0 regardless of the value

of resLtabJ since the evaluation is demand driven and the demand is satisfied when the

ASSIGN entry for the desired symbol is found. Finally, the output list LouUist will be

equal to REF(O).resLouLlistJ. Since the output is printed incrementally, the REF entry

will be printed before evaluating the rest of the output list. In particular, the demand

for USE(a) did not need to look at the list past DEF(a). In principle, we could have even

omitted the equation for the case for the empty list which is supposed to terminate the

computation. The output would still have been printed and the evaluator would have

suspended waiting for further input.

There are several important points in the functional solution which should be em-

phasized:

. The translation process is relatively straightforward. For each nonterminal in the
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grammar, there is a function corresponding to it. This function takes as argu-

ments inherited attributes of the nonterminal, and returns as the result a tuple

composed of the values of synthesized attributes. Each production is translated to

an equation that defines the function associated with the nonterminal at the left

hand side of the production. Clearly, there might be several equations for the same

function reflecting the fact that there might be several productions with the same

nonterminal at the left hand side.

. The equations defining values of attributes can be recursive. In this example, this

is the case with the variables Uransl and Uab in the equation for Ltop. The values

of these variables have to be defined recursively because Uransl has to be supplied

to the call to L as inherited attribute, but Uransl is obtained from Uab which is

in turn obtained from the call to L! The need for recursive definitions is not very

surprising since the semantic equations in attribute grammars can be mutually

recursive.

By examining the equations we can see that the program demands the computation of

the rest of the list when the corresponding definition is not in the symbol table. The

demand for a REF entry will be satisfied precisely when the corresponding DEF entry is

encountered. The corresponding ASSIGN entry will be put in the symbol table. In the

case when definitions are preceding uses, all lookups will find corresponding ASSIGN

entries and they will return happily with the results. In the case when a use precedes

the corresponding definition, the program will traverse the input list until it finds the

definition for the use which is being processed. Of course, during the traversal, the other

elements of the list will be processed in the same manner.

The entire example demonstrates that it is possible to have functional programs

which exhibit effects similar to logical variables. The key is that the value of the symbol

table is recursively defined. These effects rely on the use of lazy evaluation and mutually

recursive data definitions. If we look at the example again, it is quite clear how the

information about the modes is included in the attribute grammar and the corresponding



32

functional program. All variables which have either in or out mode in the logic program

have corresponding attributes in the attribute grammar. What about variables which

are neither in in or out mode? Table is such a variable. The essential point is that there

is a pair of attributes associated with it, namely tab and transl. This is in contrast to

the variables that have either input or output mode for which there is only one attribute

associated with them, either inherited or synthesized depending on the mode. Indeed if

we go back and look at how the functional program works, we can see that it is precisely

through the interaction of the two attributes associated with Table that the program

achieves the effect of indefinite mode. To recall briefly, the idea is to pass the value of

the symbol table as it is being constructed from the DEF entries up in the d-tree and

at the top of it pass it back down the tree knowing that it contains all definitions. This

top-down propagation is achieved through inherited attribute trans/.

At this point we can see the idea that is basically at the heart of this research and

was the inspiration for it. In concise terms, the idea is that if it is possible to achieve in

a functional program the effect of indefinite mode of logic variable Table that is in "don't

know" mode, then why not apply the same technique to all logicalvariables in a program?

This technique would be the basis for an implementation oflogic programs in a functional

language, via attribute grammars. In fact, attribute grammars can be considered only

as a conceptual tool that help us to understand better the process of translation. It

would not be necessary to use attribute grammars in order to, say, give semantics to

the resulting functional program. The functional solution can be analyzed in its own

light using functional programming methodology. Of course, this does not imply by any

means that the attribute grammar point of view should not be used, instead it simply

notes that it is not necessary to do so. It might very well be possible to use some of the

results from the attribute grammars that deal with optimal evaluation of attributes to

optimize the functional program. But the main focus of this research is on analysis of

the translated logic programs as functional programs. This analysis has several facets;

it deals with issues such semantics of resulting functional programs, methods for their

execution, comparison with the more traditional logic programming point of view and



33

others. A concise way to express the goal of this analysis is to investigate what can be

learned about logic programming from the functional point of view.



Chapter 2

Translation

This chapter presents an algorithm that translates logic programs to functional programs.

The algorithm is simple and straightforward. To illustrate it, we first consider a small

example.

2.1 An example

Consider the logic program:

p(X, Z): -q(X, Y), r(Y, Z).

q(X,X).

r(X, X).

: -p(X,a).

There are three binary predicates p,q,r. Uppercase letters designate logical variables

while lowercase letters designate constants. We want to translate this logic program to

a functional program. For every predicate of arity n in the logic program, a function is

created. This function takes n arguments and returns n-tuples as results. Intuitively, we

can associate with every argument position of a predicate two values:

. an argument position of the function corresponding to the predicate

. a component of the output (tuple)

34
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The argument position can be thought of as the input binding and the corresponding

component of the output tuple can be thought of as output binding. At this step, no

consideration has been given to repeated occurrences of variables; if a variable occurs

repeatedly, there are distinct identifiers associated with every occurrence. Obviously, we

would like to specify that the values corresponding to different occurrences are equal.

For this reason equations are generated that correspond to the constraints imposed by

the repeated occurrences of logical variables. Note that the equality in the equations is

the usual (strict) equality function on the type of values the variable can assume. More

precisely, the equality here is the function that checks if its arguments are equal, and

if they are it returns their (common) value. Otherwise the equality test fails. In this

example this means that we are interested in a single solution only. If any of the equality

tests in a program fail, so does the whole program.

In our example, functions Fp, Fq,Fr are created to correspond to predicates p, q, T

respectively. Fp takes two arguments, say Xin and Zin. It returns a pair of values as a

result. But what should these values be? We assume that Fp gets the output values from

applications of Fq and Fr. So Fp returns a pair of values corresponding to the values

of logical variables X and Z, which are the arguments of predicate p. The binding for

X is obtained as the first component of the pair returned by Fq. Similarly the binding

for Z is obtained as the second component of tl1e pair returned by Fr. What should be

the value passed to Fq and Fr as the binding for the logical variable Y? Let us call this

value Y and assume it is defined for a moment. We have now a definition of Fp:

Fp Xin Zin = let rec Xout, Youtq = Fq Xin Y

and Youtr, Zout = Fr Y Zin

in Xout, Zout

The value denoted by Y has not been defined in the equation above. Furthermore, since

the logical variable Y appears only in the body of the clause defining predicate p in

the logic program, it is not clear how its binding should be defined. Let us look at this
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problem more closely. We know that the only sources of bindings for Y are occurrences

of predicates q and r. So we would expect that the bindings for Yare returned as the

corresponding components of tuples returned by Fq and Fr, namely the second compo-

nent of the result of Fq and the first component of the result of Fr. The bindings are

defined in this way is because of the positions at which Y occurs in q and r. We expect

these bindings to agree since they correspond to the same logical variable, so we impose

a restriction expressing that they are equal. The function eqc corresponds to the usual

equality predicate for non-functional types in functional languages in that it compares

its arguments for equality. It is strict in both of its arguments. There is also a difference,

however, since eqc does not return the boolean value representing the result of the test

but instead in case the arguments are equal it returns their common value; otherwise it

fails. Here is its definition:

eqc x y = if x = y then x else fail

We can define value y, which is undefined in the above equations, to be the result of

comparison of the corresponding output components of Fq and Fr. We obtain the fol-

lowing set of equations:

Fp Xin Zin = let rec Xout, Youtq

and Youtr, Zout = Fr Y Zin

and Y = eqc YoutqYoutr

in x out, Zout

We can see that all values are defined in the set of equations above. In addition, every

identifier appears exactly once on the left hand side of an equation. This requirement

needs to be satisfied so there are no multiple definitions of values for identifiers. It is

important to note that the value y, which was undefined in the first version of the pro-

gram, is now defined by a mutually recursive definition because it occurs both on the
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right and left hand sides of equations.

The definitions of Fq and Fr follow the same pattern. Since they both have repeated oc-

currences of the same variable, the corresponding input values are equated and returned

as results:

Fq Xinl Xinf = let Xout = eqc Xinl Xinf in Xout, Xout

Fr Xinl Xinf = let Xout = eqc Xinl Xinf in Xout, Xout

Finally, we are left with the definition of the goal. For the goal we have the same situ-

ation for logical variables as for the variable Y in the definition of Pi namely, there are

no input values to be passed as arguments to Fp. But we can adopt the same solution

by creating a set of equations defining a recursive data definition. Here is the equation

corresponding to the goal:

let rec x, a = Fp x a in x

Now we have the complete translation of our example. Note that the set of equations we

have represents a syntactically valid functional program. We can submit it as a program

to an evaluator for lazy functional language, such as LML.

2.1.1 Discussion

We would like to try to execute our simple program. Unfortunately, if we execute this

program, it will loop. Does this mean that the set of equations specifying our program

does not have solutions? The answer to this question is no. There is an obvious solution

(in which all variables are equal to constant a). To see this, let us simplify by reduction

the top-level expression using the reduction rules:
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let rec x, a = Fp x a in x

let rec x, a = let rec Xout,Youtq= Fq x Y

and Youtr,Zout= Fr Y a

and Y = eqc Youtq Youtr

in Xout, Zout

in x

let rec x, a = let rec XouhYoutq= eqc x Y,eqc x Y

and Youtr, Zout = eqc Y a, eqc Y a

and Y = eqc Youtq Youtr

in x out, Zout

in x

let rec x, a = eqc x Y,eqc Y a

and Y = eqc (eqc x y) (eqc Y a)

in x

It is quite clear that the above set of equations has a solution, x = Y = a, since this

substitution satisfies all equations. However, from the functional programming point of

view, the solution ofthe above set is .1 (.1 denotes nontermination). The reason is that

eqc is strict and even after the first iteration of solving the fixpoint equations the ap-

proximations for values still remain .1. This situation can be also illustrated in a simpler

example. Consider the equation

let rec v =eqc v 5 in v

This equation recursively defines a value of type Int (the type of integers). The recursive

definitions of values of non-functional type are allowed in lazy functional languages. The
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Figure 2.1: Graph representation of a recursive equation

equation above is a valid expression in LML. But the meaning of v according to the

least fixpoint semantics of LML is .1. Indeed, if we use 1.. as the initial approximation

for v, then the right hand side of the definition above is equal to eqc 1.. 5 = 1..,and the

new approximation for v is still 1... However, it is clear that the equation has another

solution, namely v = 5. We would like this to be the solution to the equation above

instead of 1...

To get an idea how to solve this kind of equation, we can look at the operational rep-

resentation of such equations in a lazy functional language. A simple way to handle

recursive definitions of non-functional type is by cyclic graphs. In the example above,

v is represented by a cyclic graph, shown in Figure 2.1. Application nodes are repre-

sented by @. The evaluation starts at the redex; since the graph is not evaluated the
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left spine is traversed to find the function node. The arguments are stacked along the

way. After the node representing eqc is reached, it is determined that there are enough

arguments to proceed with reduction and the code for eqc is entered. Since eqc is strict,

the very first thing it does is to evaluate its arguments. But its first argument is the

starting redex itself and the whole process is repeated indefinitely, i.e., the program

loops. Could we somehow prevent this looping? The answer to this question is positive

and the solution is quite simple. It is necessary to prevent re-evaluation of a node that is

currently being evaluated. In our case this node is the top redex. Every time a reduction

is attempted, the redex is marked with a special tag indicating that its reduction is in

progress. This way, every redex is checked before its evaluation to see if it is marked; if

it is the evaluation is not performed.

2.2 The translation algorithm

As we have seen in the example from Section 2.1, the main idea is to translate a predicate

to a function that accepts tuples corresponding to input bindings and returns tuples

corresponding to output values. This approach is in the spirit offunctional programming,

where the emphasis is placed on values and equations over them. The general translation

algorithm does not differ from the one outlined in the example; most of the essential

features are there. In this section we present the complete translation algorithm. First

we give an informal presentation with the emphasis on giving the main points behind it

and then we provide a more formal definition.

2.2.1 An informal presentation of the translation algorithm

The set of terms consists of terms built from the constructors in the logic program. For

simplicity, we consider only a single sort of terms. However, it is straightforward to

generalize this approach to multiple sorts. There are several observations on which the

algorithm relies:
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. The terms in the logic program are translated to constructor terms in the functional

program. The terms in the head of the clause are translated to to a pattern

consisting of these terms. We assume that our functional language has pattern

matching. A head of a clause such

p( c(.. .), .. .)

is translated to a definition of a corresponding function

Fp (C (. . .), . . .)

The argument terms of the head literal are translated as patterns.

. The head literal can contain several occurrences of the same variable. The se-

man tics of the logic program specifies that all these occurrences have the same

binding. In the case of pattern matching, nonlinear patterns are usually not al-

lowed, although there are languages in which similar effects can be achieved by

using guards. We assume that only linear patterns are allowed. All variables in the

head literal are translated to different variables in the pattern. We have to make

sure that variables corresponding to distinct occurrences of the same variable have

the same binding. This check is performed using the function eqc, which is es-

sentially the same as in the example in Section 2.1. A head literal with repeated

occurrences of a variable such as

p( . . . , Y, . . . , Y, . . .)

is translated to
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F" (. .. iy1 ... iy2...) = let rec ...

and iy = eqc iY1 iY2

The equality function eqc returns the common value in case its arguments are equal

and fails otherwise. The equality function is binary; for the cases in which there

are more than two occurrences, we use nested application of eqc in an obvious way

(eqcn is n-ary equality function)

. The repeated occurrences of variables in the body of the clause are treated in a

similar way. The n-tuples of values returned by the applications of functions from

the body are bound to distinct identifiers; the identifiers corresponding to distinct

occurrences of the same variable are compared against each other using eqc. The

resulting values are returned as final bindings. A body literal with two occurrences

of the logical variable X

p(. . . , X, .. .) : - . . . , q(. .. , X, . . . , X, . . .), . . .

is translated to

F" (.. . ,iz, .. .) = let rec ...

and ...,Szl,...,Sz2,...= Fq(...,iz,...,iz,...)

and Sz = eqc Szl Sz2

Identifiers Sd and Sz2 are bound to the components of a tuple returned by Fq,
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corresponding to two occurrences of variable X. They are compared against each

other by eqc. The result of the comparison Sx will be returned as a component

of the tuple returned by Fp. Of course, the position at which Sx will appear in

the result corresponds exactly to the position of the logical variable X in the head

literal p.

. The logical variables that occur only in the body of a clause playa special role. We

call these variables existential variables. The difference in treatment of existential

variables comes from the fact that there are no input bindings obtained as the

arguments of the function corresponding to the translation of the predicate. The

reason for the lack of bindings is because there are no occurrences of existential

variables in the head. We define the values of these variable by a recursive data

definition

p(...) : -q(..., Y,.. .),...

is translated to

Fp ... = let rec .. .

and ...,y,...= Fq (...,y,...)

The repeated occurrences of existential variables are handled in the same way as

repeated occurrences of all variables. A clause such as

p(.. .) : - . .., q(.. ., Y, .. ., Y,.. .), .. .

is translated to
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Fp ... = let rec .. .

and ...,yl,...,y2,... = Fq (...,y,...,y,...)
and y = eqc yl y2

The definition of y is again recursive, as in the previous case; repeated occurrences

are handled in the usual way, by eqc.

. Alternate clauses for a predicate are translated to alternate equations in the defi-

nition of the corresponding function. A set of clauses Rl ... Rn is translated to

El II ... II En where Ei is the translation of clause Ri.

We should mention a minor point. We have seen that recursive definitions are used for

existential variables only. For clauses in which there are no existential variables, we do

not need let rec and let can be used instead. This situation is easily detectable by the

translator, which can issue let rec or let accordingly. Most high quality compilers (e.g.

LML [Joh87b, Aug87]) perform this transformation automatically, by replacing let rec

with let whenever possible.

Putting everything together, we obtain the algorithm for translation of clauses. A defi-

nite clause

is translated to
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and Stml,' . ., stmnm = Fqm (itml,"" itmnm)

and iV1= eqck1 iV1I ... tV1 k1

and iv, = eqck, iv,l ... tv,k,

and SUI = eqcr1 SUII ... SUI rl

and sU. = eqcr. Su) 1 ... SUjr)) J

and YI = eqc Yl1 ... Ylel

in

stl, . . . ,stn

The arguments tl,"', tn of the head literal p are translated to argument patterns

it1,"', itn of the function Fp. The patterns are all linear, and different identifiers are

used for different occurrences of a variable in a literal. In the translation above, the

variables in the head literal are designated by VI, . . ., VI. The identifiers assigned to oc-

currences of these variables are designated ivjk; ivjk is a variable corresponding to the

k-th occurrence of a variable Vj. All occurrences corresponding to the same variable are

compared against each other by eqc, and the result of the comparison is designated iVj'

These values are passed as inherited attributes to the functions Fq, corresponding to

the literals in the body. The tuples returned by Fq, represent the output bindings and

can be thought of as synthesized attributes. Pattern matching is used for binding the

components of the result to identifiers corresponding to occurrences of variables in the
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body. These variables are designated Ut,. . ., Uj. The identifiers corresponding to differ-

ent occurrences are designated SUjk. Again, these patterns are linear, and checks have

to be performed to assure that all occurrences of the same variable are consistent. The

resulting values are designated by SUI" . . ,SUj' They are used in the result st1, . . . , stn

where each occurrence of a variable v in tt, . . ., tn is replaced by SV'

The translation of facts is, as we expect, a special case of the translation of clauses since

facts are just clauses with empty bodies. A fact

is translated to

in

Since there is no body, the values ivI,"', iVI obtained from inherited attributes are

used to construct the result st 1, . . .,stnby replacing every occurrence of a variable v in

tt, . . ., tn with iv.

To completely describe the translation algorithm, the translation of the goal clause must

be specified. The goal clause can be regarded as a regular clause with an empty head.

This fact has important consequences, since it means that all variables in the goal are

existential. But we have seen how to handle existential variables, by recursive definitions

of bindings. A goal
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is translated to

let rec ..., Yll, . . . , Ylel , . . . = Fq1 (..., Yl, . . . , Yl, . . .)

and Yl = eqce1 Yn ... Ylel

in

Yl,.. .,Yn

We can clearly see that values of all variables are recursively defined and are used to

define the resulting tuple Yl, . . ., Yn'

Remark One might believe that there is significant difference in translations of clauses

and goals because the translations have been defined separately. In fact, the translations

of goals and clauses are practically the same, and the reason for the difference is that

goals are clauses with empty heads, so they cannot be translated to function definitions.

They are translated instead to expressions in which the bindings for variables are defined

recursively. A good example of the relationship between translations of goals and clauses

is given by considering a clause such that all variables in its body are existential. The

translation of the body of such a clause is the same as if the body has been considered

as a goal by itself.

Note that even in translations of clauses in which not all variables are existential, there

is a very simple relationship between the translation of a clause and the translation of its

body considered as a goal. The translation of the body considered as a goal is obtained

from the translation of the clause by deleting the left hand side of the equation in the

function definition. The right hand side is considered as an expression and for each
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variable, the variables corresponding to input and output bindings are replaced by the

same variable.

Example 3 Consider a very simple example; given a clause

p(X) : -q(X)

its translation is

If we replace occurrences of Sx and ix in the right hand side of the equation above by a

new variable x, we get

let rec x = Fq x in x

The resulting expression is exactly the same as the translation of the body: -q(X).

considered as a goal.

2.2.2 A more formal presentation of the translation algorithm

We introduce some new notation that will be helpful in the presentation of the translation

algorithm.

Following Huet, we define an occurrence to be a list of integers. Occurrences are used

for positioning subparts of terms. We will be interested only in positions of variables in

terms. Given an occurrence 0 of a subterm of a term t, the subterm is extracted by the

function subt defined as follows:
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subt 0 t = t

subt p.rest C(tb' .., tp," ., tn) = subt rest tp

subt _ _ =wrong

wrong is a special value that indicates there is no subterm of t corresponding to 0 since

the occurrence is not proper for the term.

Example 4 Consider a term co(X, Cl(X, C2))' There are two occurrences of variable X

in this term. The first one is [1] and the second one is [2,1].

Given a term t, the set of all variables in t will be designated Vars(t). We will use the

same notation for the set of variables in a clause, i.e., the set of variables of a clause C

will be designated Vars( C). Given a clause C

the set of variables in C is divided into two sets:

. Hvar(C)-the set of variables which appear in the head of C, i.e.,
n

Hvar( C) = U Vars( ti)
i=l

. Evar(C)-the set of variablesappearing only in the body of C. Clearly

Evar( C) = Vars( C) - Hvar( C)

These variables will be called existential variables.

Given a term t let Occurrences(t) be the set of occurrences of all subterms of t. The set

of all occurrences of variable v in t will be designated Occ(v, t), i.e.,

Occ(v, t) = {o I 0 E Occurrences(t), v E Vars(t), subt 0 t = v}

The set of occurrences of a variable v in a clause C is defined analogously. We will

need to order sets of occurrences of variables; we introduce positions of occurrences of
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variables in clauses. An easy way to define positions is to consider the set Occ( v, C)

of all occurrences of a variable v in a clause C as a list; this list will be designated

Occ_pos( v, C). The elements of the set Occ(v, C) can be listed in any order-all we

are interested in is to assign a unique number n, n ~ IOcc(v, C)I to every occurrence

in Occ( v, C). For a set S, ISI is the number of elements in S. We assume there is a

function pos which gives the position of an occurrence in the list of occurrences. Two

sets of new variables are associated with each variable v E Hvar( C) that occurs in the

head in a clause C head,

. the set of inherited position variablesIPV( v, C).

. the set of synthesizedposition variablesSPV( v, C).

The variables in IPV( v, C) and SPV( v, C) are associated with occurrences of v in

C, i.e., IIPV(v, C)I = ISPV(v, C)I = IOcc(v, C) I. There are bijections between each of

IPV( v, C) and SPV( v, C) and Occ(v, C) assigning a variable to each occurrence. We

designate these mappings ivp and its inverse ipv for inherited position variables and svp

and its inverse spv for synthesized position variables. All sets of (both inherited and

synthesized) position variables are mutually disjoint.

We also associate with each variable v E Hvar( C) within a clause two new distinct

variables called inherited and synthesized variables for v, designated iv( v) and sv( v),

respectively. These two variables are distinct from all other (inherited and synthesized)

position variables.

With each existential variable v E Evar( C) in a clause C, a set of new variables

EPV( v, C) called existential position variables is associated. The variables in this set

are associated with occurrences of existential variables in C. The corresponding bijection

with Occ( v, C) will be designated epv and its inverse evp. Also, we associate with v

a variable called existential variable for v written ev(v). As before, these variables are

distinct from all other inherited and synthesized position variables, as well as from all

other inherited and synthesized variables.
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Definition 18 (Renamings) Given two terms t and s, s is a renaming of t if there

exists a substitution u such that t =us and u has the form

u = {x j y I x, yare variables}

The renaming substitution has to be injective on variables, i.e.,

Renamings are generalized to sequences of terms.

Definition 19 (Linear renamings) Given a term t, a linear renaming of t is a term

s obtained from t as follows:

. for each variable x in t, the set of distinct occurrences of x is identified; for each

of these distinct occurrences a new variable is created (we assume none of the

new variables are present in t). The new variables will be designated Yb"', Yn

assuming there are n occurrences of x in t.

. for each variable z such that there is only a single occurrence of z in t, z is replaced

by a new variable w.

It is clear that if s is a linear renaming of t, then t is a renaming of s. Occasionally,

we will explicitly provide the renaming substitution u, which will have either the form

{xjy I 0 E Occ_pos(x, C), Y = ivp(o)} or {x/y I 0 E Occpos(x, C), y = svp(o)}.

The translation algorithm can be understood as the process of generating a set of

directed equations for each clause of a logic program, including the goal clause. Given

a logic program P let Cp be the set of clauses of P excluding the goal clause, and let G

be the goal clause for P. A clause has the form:

For each clause C E Cp, a set of equations E is generated; E is the union ofthree disjoint

subsets-E =Eh U Eb U Ee. The subsets Eh, Eb and Ee are defined as follows:
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. Eh consists of a single equation

where stl, . . . ,stn is a renamingoftl, . . ., tn and itl, . . . , itn is a linear renaming of

tl, . . . ,tn. The variables used in renamings are from the corresponding inherited

and synthesized position variable sets

(subt 0 iti = ivp( 0)) 1\ (subt 0 sti =sv( v)) 1\ (subt 0 ti = v)

There is a small point regarding variables occurring only in the head of the clause.

Let HOvar( C) be the set of all such variables in a clause C = P : -Ql, . . ., Qn.

Le., HOvar(C) = Vars(P) - Ui=J Vars( Qi). Then for every such variable v, we

pick the same variable for the synthesized and inherited variable for v, Le.,

'Vv E HOvar( C) sv( v) ==iv( v)

Note that instead we could add equations sv( v) = iv( v) to the equations generated

for the clause, but we adopt this approach since this substitution can be done at

compile time.

. Eb consists of equations, one per each literal % 1 :$ i :$ m in the body

stil, . . . ,stini = Fqi (itil,"', itini)

where stil,"', stini is a linear renaming of til, . . . , tini and itil,..', itini is a re-

naming of til, . . . , tini' The variables in the renamings are:

- from the inherited and synthesized position variable sets in case the corre-

sponding variable in the body appears in the head

(subt 0 itij = iv( v)) 1\ (subt 0 stij = svp( 0)) 1\(subt 0 tij = v)
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- from existential position variable sets in case the corresponding variable is

existential

(subt 0 itij = ev( v)) !\ (subt 0 Stij = evp( 0)) !\ (subt 0 tij =V)

. Ee consists of three sets of equations

- Equations generated for the variables in the head literal p that have more

than one occurrence; there is one equation for each such variable v

v E Hvar(C) iv = iv(v) nv = IOcc_pos(v,p)1> 1

Vj 1 :Sj :S nv iVj = ivp(pos j Occ_pos(v,p))

- Equations generated for the variables in the body literals qi that also occur

in the head; there is one equation for each such variable v that has more than

one occurrence in all the literals in the body. This number is designated mv.

m

V E Hvar(C) Sv = sv(v) mv = L IOcc_pOS(V,qi)1 > 1
i=1

m

Vj 1 :Sj :S mv SVj= svp(pos j UOcc_pos(v, qi))
i=1

- Equations generated for existential variables that have more than one occur-

rence in the body

m

V E Evar(C) ev = ev(v) kv = LIOcc-poS(V,qi)1 > 1
i=1

m

Vj 1 :Sj :S kv eVj = evp(pos j UOcc_pos(v, qi))
i=1
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Since facts are clauses with empty bodies, the translation of facts is a special case of

translation of clauses. Given a fact F, a set of equations E generated from it is the union

of two sets- E = Eh U Ee, which are defined in the same way as for clauses. Note the

absence of Eb since in the translation of clauses it corresponds to equations generated

for the literals in the body, which is empty for facts. Also, Ee consists only of equations

generated for variables which have multiple occurrences in the head, Le.,

v E Hvar(F)= Vars(F) i" = iv(v) n" = IOcc_pos(v,p)1> 1

Note that all variables in a fact appear by definition only in the head since the body is

empty.

A goal clause can be viewed as a clause with no head; naturally this fact has con-

sequences for the translation algorithm. The most important one is that all variables

in the goal are by definition existential. Since there is no head, the set of equations E

generated for the goal clause is the union of two sets-E = Eb U Ee. Note the absence

of Eh. Because there are no variables other than existential ones, there are no inherited

and synthesized variable position sets. Also, Ee consists only of equations generated for

existential variables with more than one occurrence in the goal, i.e.,

m

V E Evar(C) e" = ev(v) k" = L IOcc_pOS(V,qi)1 > 1
i=l

m

"Ij 1 $ j $ k" e"j = evp(pos j UOcc_pos(v, qi))
i=l

2.3 Correctness of the translation

We have seen how to translate a logic program to a set of equations. But we certainly

want the equations produced by the translation to be sensible with respect to the original
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logic program. More precisely, we want the solutions of the equations to agree with the

solution of the logic program. The solution of a logic program consists of the answer

substitution, which makes all conjuncts in the goal satisfiable. The solution of a set

of equations consists of a set of values which satisfies all equations. It is important to

emphasize that we are looking for values since we are taking the functional point of view.

The direct consequence is that we will be considering only ground answer substitutions,

that is, substitutions that map variables to terms with no variables. What about answer

substitutions that are not ground? The correspondence should still hold; we want an

arbitrary instantiation of variables in a non-ground answer substitution to correspond

to a solution of equations obtained by the translation.

Let us look at a simple example that is supposed to illustrate nature of solutions of

equations we are interested in. Consider an equation

rec v = if v = 5 then 5 else fail

It defines recursively a value v. The equation has more than one fixpoint. According

to the usual fixpoint semantics given to such definitions (in lazy functional languages ),

this equation has 1. as its solution. But this solution is least and it is adopted as the

solution in lazy functional languages. In our case we are really not interested in this

(trivial) solution, but in a solution that is ground, i.e., is a proper value. In the example,

the desired solution is clearly 5. It is a solution because substituting 5 for v satisfies the

equation.

2.3.1 An example of reduction

There is exact correspondence between resolution and reduction steps. To illustrate this

correspondence consider a simple example

p(X) : -q(X), r(X).

q(X).

q(a).
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r(b).

rea).

Let the goal be

: -p(Y).

A proof tree for this program is shown in Figure 2.2. This proof tree corresponds to the

Figure 2.2: A proof tree

following SLD-derivation

: -p(Y).

: -q(Y), r(Y).

:-r(Y).
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The answer substitution binds Y to b. The translation of the program is

II Fq a =a

Fr b= b

II Fra=a

The translation of the goal is

let rec y = Fp y

The equation above has a solution assigning constant b to y. To verify this solution,

we need to exhibit a reduction sequence demonstrating that the equation is satisfied.

Clearly, the first reduction step is the reduction of the application Fp y. Since we

are demonstrating that b is the solution, we need to reduce Fp b. The reduction of

the application of Fp corresponds to the resolution step with the resolvent p(Y). We

have seen that each clause is translated to an equation. The reduction and resolution

sequences mirror each other in that at each step, the equation used in reduction is the

translation of the clause used in resolution. Reducing Fp b according to the definition of

Fp, we obtain

Fp ix = let Sxl = Fq ix

and Sx2 = Fr ix

and Sx = eqc Sxl Sx2

in Sx

let Sxl = Fq b

and Sx2 = Fr b

and Sx = eqc Sxl Sx2

in Sx
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There are applications of Fq and Fr in the expression above. They correspond to the

occurrences of literals q(Y) and r(Y) at the second step of the SLD-derivation. The

proof tree indicates the clauses (facts) for q and r used in the derivation. The choices

for facts indicate the equations used to reduce applications of Fq and Fr. In particular,

we use the first equation in the definition of Fq

to reduce Fq b. We use also the first equation in the definition of Fr

Fr b= b

to reduce Fr b. Now it is clear that all equations are satisfied and that the reduction

sequence mirrors the sequence of resolution steps.

2.3.2 Relating solutions and answer substitutions

We want the solution of the set of equations to correspond to the answer substitution

for the logic program. But how do we know that this is indeed the case? The answer is

provided by the next theorem:

Theorem 2 Given a logic program P with a goal G, let E = T(P u G) be the set of

equations obtained by translating PuG using the translation algorithm. Then there

is a ground answer substitution (7 which is a solution of PuG if and only if there is a

solution of E. Moreover, these solutions correspond to each other, so the bindings for

every variable in the goal in (7are equal to the values for corresponding identifiers in the

solution vector for E.

Proof The proof in the only if direction is by structural induction and in the if direction

the proof is by well-ordering induction:
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only if There exists an answer substitution er that satisfies the goal clause. We need to

show that all equations in the translation are also satisfied. We use induction on

the structure of the proof tree corresponding to the answer substitution.

(i) Base case-the proof tree consists of (a node labeled by) a fact. Let the goal

literal G be q(t}, . .., tn) and the fact F in the proof tree be q(p},..., Pn).

Then since er is an answer substitution, er(t},..., tn) = er(pI,... ,Pn). The

proof can be decomposed into two parts:

Consider the equations in the translation of the goal; the equation in Eb

has the form

h,..., In is a linear renaming of tI,..., tn in which all occurrences of

variables are replaced by new variables from the set of existential posi-

tion variables; T}, . . ., Tn is a renaming of t}, . . ., tn in which each variable

v is replaced by the corresponding existential variable evev). It is clear

that there exist assignments a} and a2 of ground terms to variables such

that a} (h, . . . ,In)= a2(TI,. .., Tn)= er(t},.. ., tn). Theyare givenby

al = {Vl ~ t I v E Vars(G), Vl = evp(Occ_pos(v, G», t = er(v)}

at! = {Vl ~ t I v E Vars(G), Vl = evev), t = er(v)}

We use symbol ~ to distinguish between assignments, which map iden-

tifiers in functional programs to their bindings, and substitutions, which

map variables in logic programs to their bindings. These assignments sat-

isfy all equations in Ee since for each variable in the goal, all identifiers

in the existential position variable set associated with the variable get

assigned the same value, Le.,

'<IvE Vars(G) '<IpE Occ_pos(v,G) (al(evp(p» = at!(ev(v» = er(v)= t)
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We are left to show that Fq (O'(tI'...' tn» = O'(tI,..., tn).

To demonstrate this, consider the equations in the tra.nslation of the fact;

the sole equation in Eh has the form

where SPI, . . ., sPn is a renaming of PI, . . ., Pn and iPI, . . ., ipn is a linear

renaming of p},... ,Pn. Since O'(PI,... ,Pn) = O'(t},..., tn), it follows that

there exists an assignment (31of ground terms to identifiers such that

(31(ip}, .. ., ipn) = 0'(t}, .. ., tn). It is given by

(31= {V1 1-+ t I v E Vars(F), p E Occ_pos(v, F), V1= ivp(p), t = 0'(v)}

It follows that there is a match in the definition of Fq. All equations in

Ee are also satisfied because for every variable in F, all identifiers in the

inherited position variable set associated with the variable are assigned

the same term i.e.,

"Iv E Vars(F) Vp E Occ_pos(v,F) «(31(ivp(p» = O'(v) = t)

It further follows that the term assigned to the inherited variable associ-

ated with each variable is equal to the term assigned to all variables in

the inherited position variable set, i.e., there exists an assignment (32such

that

"Iv E Vars(F) Vp E Occ_pos(v,F) «(31(ivp(p» = (3.f(iv(v» = O'(v) = t)

This assignmemnt is given by

(3.f = {V1 1-+ t I v E Vars(F), V1= iv(v), t = O'(v)}

Since SPI,..., SPn is a renaming of PI,. . . , Pn and the variables in the

renaming are exactly the variables in (32it follows that (32(SPI, . . ., sPn)=

O'(PI,... ,Pn) as required.
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(ii) Induction case-the root of the proof tree is labeled with a clause C. Assume

C has the form

Let G be the goal literal and assume it has the form q(tI,"', tn). The struc-

ture of the proof is similar to the base case; we need to show that all equations

in the translations of the goal and the clause are satisfied:

Looking at the translation of the goal, Eb consists of the equations of the

form

As in the base case, since It, . . ., In is a linear renaming of tt, . . ., tn and

Tt, . . . , Tn is a renaming of tt, . . . , tn it is clear there are assignments at

and a2 such that at(l},..., In) = a2(T},..., Tn) = O'(tt,..., tn). All equa-

tions in Ee (for the goal) are satisfied because all identifiers associated

with distinct occurrences of a variable in the goal get assigned the same

value, namely the binding for the variable in the answer substitution. We

need to show that Fq (O'(t}, . . ., tn» = O'(t},. . ., tn).

Consider the equation in Eh for the clause

where, as before, SPt, . . ., SPnis a renaming of pI, . . . ,Pn and iPb' . ., ipn

is a linear renaming ofpt,...,Pn' Because O'(Pt,...,Pn) = O'(t},...,tn),

it follows that there exists an assignment {3tof ground terms to identifiers

such that (3t(iPb''', ipn) = O'(tI,..., tn). The assignment is given by

{31 = {Vl 1-+ t I v E Hvar(C), p E Occ_pos(v,F), Vl = ivp(p),t = O'(v)}

It follows the pattern in the definition of Fq (Le., the pattern in Eh)

matches the argument in the application of Fq.
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Next we show that all equations in Eb in the translation of C are satisfied.

The equations have the form (1 :5 i:5 m)

SPil,...,SPin; = Fr; (ipil,...,iPin;)

where SPib . . ., SPin;and iPib . . ., iPin;are, respectively, a linear renaming

and a renaming of Pil, . . . ,Pin;'Recall that renamings are defined in the

following way (Ri stands for Ti(Pil, . . ., Pin;))

\:Iv E Hvar(Rd \:Ip E Occ_pos(v,Rd

(subt P ri( SPiJ, .. ., SPinJ = SVp(p)) !\

(subt P ri(iPiJ,"" iPinj) = iv( V))

By the inductive hypothesis, for each of Ri, given an answer substitution

a, the equational translation is also satisfied with corresponding bindings.

Since we are given a by hypothesis, it also satisfies each of the Ri. The

equational translation for each of Ri differs from the equations in Eb in

that all variables in Ri, considered as a goal, are existential. This situation

does not necessarily hold for the equations in Eb because some variables

might appear in the head. These are exactly the variables in the above

renaming. The consequence of this is that for each head variable v, the

synthesized and inherited variable for v have equal bindings, namely a( v)

(d. the remark at the end of Section 2.2.1). Expressed formally

\:IvE Hvar(Rd (,8J(sv(v)) =,8J(iv(v)) = a(v))

By the inductive hypothesis all equations in Eb as well as the equations

in Ee are satisfied.

Finally we observe that the resulting tuple SPl,' . . , SPn is a renaming of

PI, .. . ,Pn; also iPI, .. . , iPn is a linear renaming of PI, .. . ,Pn. It follows

that (Q stands for q(Pb . . ., Pn)) there exist assignments 0'1 and 0'2 such
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that

'TIvE Vars( Q) 'TIpE Occ_pos( v, Q)

(subt p q( SPl , .. . , SPn) = SV(V)) 1\ (a 1(sv( v)) = subt P O'(p1, . . . , Pn))

(subt p q( ip1, .. . , ipn) = ivp(p)) 1\ (a 1( ivp(p )) = subt p O'(p 1 , .. . ,Pn))

This concludesthe proof since Fq (O'(Pb'''' Pn)) = O'(Pb.. . ,Pn).

if The proof is by well-ordered induction on the lengths of sequences of reductions

that demonstrate the satisfiability of equations. Let us call the goal literal G.

(i) Base case-the reduction sequence consists of a single reduction; the equation

used in the translation must be the translation of a fact. Let us call this fact

F. Let F have the form q(Pl,' .. ,Pn) and let G be q(tb' .., tn). The equation

in Eb in the translation of the goal G has the form

11,. . . , In is a linear renaming of t1, . . . , tn with variables from sets of exis-

tential position variables; Tl, . . ., Tnis a renamingof tb. . ., tn in whichevery

variable is replaced by the corresponding existential variable. The single re-

duction in the reduction sequence is the reduction of Fq (Tb"" Tn). By the

hypothesis there exist assignments a1 and a2 of ground terms to variables

such that a1 (II, .. ., In) = a2(Tb . .., Tn). But then it followsthere also exists

substitution 0'1such that

It is given by

0'1 = {tjv I v E VaTS(G),Vl = ev(v),t = a2(V1)}

Consider the translation of Fq; the equation in Eh has the form
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Since the reduction is successful, there has to be a match between 0'1(tl, . . ., tn)

(the argument of Fq) and ipl,. . ., ipn. It follows there is a substitution

w = {tJVl I v E Vars(F),pE Occ..pos(V,F),Vl= ivp(p),

t = subt P (O'I(q(tt,...,tn)))}

such that w( iPl, . . . , iPn) = 0'1(tt, . . . , tn). All equations in Ee are also satisfied

so the following is also true

"IvE Vars(F) Vp E Occ_pos(v,F) ivp(p) = iv(v)

Le., for every variable in F, the bindings for all variables in the correspond-

ing set of inherited position variables are equal. It follows that there is a

substitution 0'2

such that 0'2(iPt,. . ., ipn) = 0'1(q(tt, . . ., tn)). Finally, the answer substitution

(ii) Induction case--Eb in the translation of the goal consists of an equation

By the hypothesis the equation is satisfied. Reasoning similarly to the base

case we conclude there has to be a substitution 0'1such that

The reduction sequence for Fq (rl,"', rn) contains more than one reduction

step, so the equation used has to correspond to a clause. Let us call this

clause C and assume it has the form

There has to be a match between 0'1(tl, . . . , tn) and iPl,"', ipn in the defi-

nition of Fq. Consideringthe fact that all equations in Ee for variables with
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multiple occurrences are satisfied, we conclude that there exists CTsuch that

CT(t},..., tn) = CT(PI,... ,Pn). We need to show that CTalso satisfies the literals

in the body. By the hypothesis there has to be an assignment a3 of ground

values to identifiers in C. It is clear that

"Iv E Hvar( C) 'Vp E Occ_pos( v, C)

a3(iv(v» = a3(ivp(p» = as(sv(v»

The first part of the equality ('Vv,p as(iv(v» = as(ivp(p») is satisfied be-

cause all equations in Ee are satisfied; the second part('Vv, p as (ivp(p» = as( sv( v»)

is satisfied because

(ipI, . . ., ipn and SPI,..., SPn are, respectively, a linear renaming and a re-

naming of PI, . . . , Pn). It follows the bindings in CTfor the head variables in C

are defined by

"IvE Hvar(C) CT(V)= as(sv(v» = as(iv(v»

By the inductive hypothesis, CTsatisfies all literals in the body.

I

2.4 Matching versus unification

The process of matching and of unification are instances of the same process. There

is, however, a very important difference between them. Matching is used in functional

programs, in pattern matching. The basic idea in pattern matching is that a term is

compared to a pattern; the term is a ground value, i.e., it has no variables. On the

other hand, the pattern may contain variables. The process of matching consists of

finding a substitution of variables in the pattern that makes the pattern equal to the

term. The direction of the flow of information is clearly determined; the data flows from
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the term to the pattern. In unification, we again have a term that is to be matched

against a pattern. However, in this case, there is no real difference between the term

and the pattern. There can be variables in both. Unification consists of finding the

substitution, for both the variables in the term and the pattern, such that applying the

substitution to both the term and the pattern makes them equal. This difference has

very important consequences. Since in the case of matching there can be no variables in

the term, there is no need to have distinguished representation of program variables. The

variables in the pattern simply serve as placeholders for the actual values in the term.

When matching takes place during the execution of a functional program, values are

substituted for variables. In contrast, we have seen that in the case of unification there

can be variables in both the term and the pattern. Since variables can be present in the

term, we have to allow for variables to have a distinguished representation, in the form

of logical variables. In addition, logical variables in different instances of a clause have

to be renamed so they are distinct. Indeed, the presence of variables in the term seems

to indicate that we cannot use matching. The most important question is: if we are to

use matching instead of unification, what are the values used for variables in the term?

We have seen that the idea in our approach is to define these values as aggregates of all

bindings that are compared for equality against variables in the program. The aggregate

values are defined by rec expressions. Their evaluation proceeds incrementally, and is

driven by the demand propagation during the evaluations of applications of predicate

functions. The evaluation of function applications can be viewed as being analogous to

the traversal of derivation trees in logic programs.



Chapter 3

Semantics

The goal of semantics for a programming language is to give meanings to well formed

phrases of the language. Meanings are elements of some mathematical domain. There

can be many ways of giving a semantics to a language; semantics can focus on different

aspects of a language. Logic programming is a good example for this. There are two

different semantics which are widely adopted:

. declarative semantics given by Herbrand interpretations

. operational semantics given by jixpoints of certain mappings

Our approach is different from either approach above. The spirit of our research has

been to provide a functional point of view of logic programming. It is not surprising that

our semantics of logic programming will be based on semantics of functional languages.

An important class of models for functional languages is provided by denotational

semantics. In denotational semantics, each phrase in a program is assigned a denotation,

which is an element of a mathematical domain.

Our approach relies on the translation of logic programs to sets of equations; these

sets of equations can be viewed as programs in a functional language. We are going to

give a non-deterministic semantics to this functional language that together with the

translation algorithm will give us, indirectly, semantics for logic programs.

67
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3.1 Target language

In this section we define the target language of the translation. The language is quite

similar to functionallanguagesj as a matter offact we can view it as a functional language

with a special recursive construct. The syntax is essentially the same as in conventional

functional languages and we will see that the semantics is derived by adding a distin-

guished value into the domain.

3.1.1 Syntax

The syntax of the language is defined by the following grammar:

Prog - Expr

Expr - Constdd

Id

Expr , Expr

\Pat. Expr {II \Pat.Expr}*

Expr Expr

let Eq in Expr

Eq- Pat = Expr

Eq and Eq

rec Eq

lrec Eq

Pat - Constr Jd

Constdd(Pat{ ,Pat }*)

Id

Pat & Eq
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There are a couple of points regarding the notation. The language definition does not

contain the conditional expression if-then-else. There is no loss in expressive power

since conditionals can be represented by patterns, i.e., if El then E2 else E3 can be

viewed as syntactic sugar for (\ true.E2 II \false.E3) El. Similarly, function definitions

such as f p = e can be viewed as syntactic sugar for f = \p.e.
A program consists of an expression. There are five kinds of expressions:

. constants

. identifiers

. A-abstractions

. applications

. let expressions

The language features pattern matching; A-abstractions can have patterns as well as

left hand sides of equations in let expressions. Patterns are built from variables and

constructors; they can contain guards, which are in the form of equations.

3.1.2 Domains

In this section we present the domains. They are essentially the same as in conventional

functional languages [Aug87]. The only difference is the presence of a distinguished value

sw.

E ={sw} + C + E -- E + E X E + {Fail}

C = Co + .. . + CdE x .. . x E) + . . .
.".. J
,

Env = (Id -- E) + {Fail}

E is the domain of values. It is built from constructors C, the function space E -- E

and two distinguished values: SW and Fail. Each constructor has arity associated
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with it, which is the number of argument components; constants are viewed as nullary

constructors (with arity zero). Intuitively, we can think of SW as a "match all" value,

Le., an attempt to match it against anything succeeds. Fail denotes a failure detected

during pattern matching. Env is the domain of environments, which are mappings from

identifiers to expressions.

3.1.3 Semantic functions

We present the semantic functions. Again we follow the spirit offunctional programming

in the presentation. We assume -+ is right associative.

£:Expr -+ Env -+ E

V : Eq -+ Env -+ Env

B : Pat -+ E -+ Env -+ Env

There are three semantic functions:

. £, which gives meanings to expressions

. V, which gives meanings to equations

. B, which gives meanings of patterns

£ gives meaning to expressions using environments for identifiers. V takes an equation

and an environment, and produces an environment with bindings for identifiers in the

left-hand side of the equation; a check has to be made to ensure that the meaning of the

right-hand side expression conforms to the pattern in the left-hand side. If the value does

not conform to the pattern, the result is a failure that is represented by Fail injected into

environments. Checking of patterns is performed by B. It takes a pattern, a value to be

matched against the pattern and an environment; in case matching succeeds it produces

an environment with the bindings for the variables in the pattern, otherwise the result

is failure. In addition to the form p = e, equations can be formed in additional ways:
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. they can be combined by and

. they can be recursive; there are two recursive constructs-rec and lrec

We use conventional notation for environments [Aug87]. Given a variable x, a value v

and an environment p, p[x 1-+ v] denotes a new environment that has the same mappings

for all variables in p except that it maps x to v. The operator V is the usual one for

concatenating environments; it is Fail-strict i.e., FailV p = pV Fail = Fail.

£[c]p= c

£[x]p = p X

£[API.MI II... II APn.Mn]P =

AV. B [PI] v p i: Fail- £[MI](B [PI] v p)

B [Pn]V P i: Fail - £[Mn](B [PI] v p)

Fail

£[M N]p = £[M]p (£[N]p)

£[let D in N]p = £[N](V[D]p)

V[p = M]p = B[P](£[M]p)p

V[DI and D2]p = (V[DI]p) V (V[D2]p)

V[rec D]p = fix(APr.V[D]Pr)

V[lrec D]p = lfix(APr.V[D]Pr)

lfix p = Jim pi Po "IxE Popo(x) = SW, if the limit exists'-00

.1 otherwise

B[Ci(Pb.. .,Pi)] v p =

v = .1 - P V (B[PI] .1p) V... V (B[Pi] .1p)
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v =sw -+ p V (BIIPI]SW p) V... V (BIIPi] SW p)

v = Ci(Vt,. ..,Vi) -+ P V (BIIPI]VIp) V...V (BIIPi]Vip)

Fail

B[x] V p =p[x t-+ v]

BlIP & e] V p = p V (BlIP]v p) V ('D[e]p)

The semantic function [; gives meaning to expressions. The meaning of a constant is the

corresponding constant in the domain. The meaning of a variable is obtained by looking

up the environment. Functions are defined by A-abstractions with patterns. Function

definitions can have several equations that are combined by the II operator. The meaning

of such a definition is defined by non-deterministically choosing a meaning of one of

constituent equations. The meanings of equations are defined as follows: the argument

value is checked against the pattern in the equation using the B scheme; if the match

is successful, the result is the body of the abstraction evaluated in the environment

supplemented with the identifiers in the pattern. The meaning of a let expression is

equal to the meaning of the body evaluated in the environment produced from the

equation. Environments produced from equations joined by and are combined together

by including identifiers in the components; it is assumed that there are no common

identifiers in the component environments. The meanings of recursive equations are

defined by recursive environments. There are two kinds of recursive equations:

. rec equations whose denotations are defined by fixpoints starting from 1..

. lrec equations whose denotations are defined similarly by fixpoints; the fixpoints

are not least and the initial environments map identifiers to SW. Note that the

meaning is defined by a limit, which does not always exist. But we will see in

subsequent sections that the limit does exist for the translations of logic programs

for which the target language is intended.

The semantics of the language is based on the semantics for functional languages [Aug87,

Joh87b, PJ87]. There is an essential addition-the construct lrec.
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We define an ordering ~ of terms as follows:

. "It .1.~ t

. "It # 1. SW ~ t

SW can be thought of as denoting an "unbound" value.

We have seen in the Section 2.2 that values of existential variables were recursively

defined. They are actually defined by lree. The usual ree is used for recursive definitions

of functions corresponding to predicates.

The limits defining the semantics of lree expressions that are translations of logic

programs always exist (it should be said that the limits are always reached after a finite

number of steps, provided the corresponding derivation tree is finite). In the general

case, the limits do not exist. To see what goes wrong, consider a program

let ree Fp 5 = 6

II Fp 6 =5

in

let lree s = Fp s in s

The sequence of approximations for s is 6,5,6,5, . . . and the limit does not exist. However

we will see that in the case we are interested in, the translation of logic programs, the

limits do exist.

3.1.4 Translating logic programs to the target language

We can exhibit now the actual translation to the target language; the translation al-

gorithm from Section 2.2 used sets of equations in functional style as the target of the

translation. Now we have a language that can be used as the target of the translation.
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The principal difference between the target language and equations from the trans-

lation algorithm is the presence of guards in the language. In the translation algorithm

from Section 2.2 we proved that a solution of equations obtained by translation exists

if and only if there is an answer substitution for the logic program. The solution was

declarative since we did not specify an evaluation order that would determine how to

search for solutions. The semantics presented in this chapter is also declarative since we

are assuming that equations in function definitions are chosen non-deterministically. An

actual implementation would of course need to specify a particular search strategy. We

could adopt either:

. Depth-first search, which is more efficient but results in lack of completeness-a

solution may not be found even if one exists.

. Breadth-first search strategy, which is complete but less efficient.

Translation of clauses

To recall from Section 2.2, a clause

was translated to
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and (Stm1,"', stmnm) = Fqm (itm1"'" itmnm)

and iV1 = eqck1 tv11 ... tV1 k1

and iVI = eqck, iVj1 ... tv,kj

and SUI = eqcT1 SUl1 ... SUITl

and SUj = eqcTj SUj1 ... SUjTj

and ..., Yll, . . . , Y1el, . . . = Fqj ..., Yb . . . , Y1, . . .

and Y1= eqc Yll ... Y1el

in

st1, . . . , stn

The actual translation using the language is:
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and (Stmb...' stmnm) = Fqm (itmb...' itmnm)

and iV1 = eqck1 iV11 ... ~V1 k1

and iVI = eqCkI iVj1 ... ~vlkl

and SU1 = eqcr1 SU11 ... SU1 r1

= st1, . . . , stn

and SUj = eqcrj SUj1 ... SUjrj

and ..., Y1b . . ., Yle1'. . . = Fql ..., Yb . . ., Yb . . .

and Yl = eqc Yn ... Y1e1

The values of existential variables are defined by lrec. All equations are within a guard;

in case any of the equations fails, an alternate equation is tried. If all equations are

satisfied, a tuple containing the bindings for variables in the head (of the corresponding

clause) is returned as the result.

Translation of goals

A goal

is translated to
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and YI = eqce1 Yll ... Ylel

and Yn = eqcen Yll ... Ylen

in

YI,.. .,Yn

As expected, the bindings for all variables in the goal are defined recursively by lrec.

Note that the goal expression consists of a tuple of bindings for all variables in the goal.

The same information is also contained in the environment produced by evaluating all

equations in the goal. In effect, what we are looking for is the environment p which is

the solution of

p = V[EG]p

where EG is the translation of the goal. From now on, by evaluating the goal expression

we will mean evaluating the goal environment containing bindings for all variables.

3.2 Computing solutions

In Section 2.3 we saw that (ground) answer substitutions correspond to (ground) so-

lutions of sets of equations; we did not say anything about how to compute answer

substitutions. The semantics presented in this chapter specifies that the solutions are

computed as fixpoints starting from SW. We need to show that values defined by se-

mantic equations are indeed solutions of the equations. To establish this fact, we need

to look at the aggregate of all values of recursively defined variables (defined by lrec) in

the set of equations obtained by translation. Let (j be an answer substitution for a logic

program P. Let t be the corresponding proof tree. For our purposes (j will contain bind-

ings for all existential variables in the proof tree. Looking at the translation algorithm,

existential variables correspond precisely to variables defined by lrec in the translated
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equations. The usual definitions of answer substitutions are concerned only with the

bindings for the goal; this is easily obtained from our notion by restriction to variables

in the goal. They are all existential by definition. The lrec construct defines the value

of each existential variable. The semantic equations specify that the values of Yl, . . ., Yn

are obtained from an environment p that is recursively defined. We will assume that p

defines bindings for all existential variables in the proof tree that will be associated with

an answer substitution.

Definition 20 (Evaluation trees) Given a derivation tree t, the evaluation tree €(t)

is defined by induction on the structure of t:

. Base case-the proof tree is (a node labeled by) a fact F; let EF be the translation

of F. The evaluation tree €(t) consists of a node labeled by EF.

. Induction case-the proof tree is a clause C, which has the form P : - Q 1, . . . , Qn.

Let €(td,..., €(tn) be evaluation trees for Qb"', Qn respectively. Let Ee be the

translation of C in which all identifiers corresponding to existential variables in

the body of C (Le., identifiers whose values are defined by lrec) are renamed to

fresh distinct variables. Then the resulting evaluation tree €(t) consists of a node

labeled by Ee which has n descendants-the evaluation trees €(td,..., €(tn).

Example 5 Consider the example from Section 2.1

Co: p(X, Z) : -q(X, Y), r(Y, Z).

Cl : q(X,X).

C2: r(X, X).

: -p(X,a).

The clauses are labeled Co,Cb C2. We have seen that the translation is
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eo :

(

lrec sx, eyl = Fq (ix, ey)

)
Fp (ix,iz) & and ey2,sz = Fr (ey,iz)

and ey = eqc eyl ey2

the translation of the goal is

lrec (ex, a) = Fp (ex, a)

A prooftree for this program is shown in Figure 3.1 (a), and the corresponding evaluation

tree is shown in Figure 3.1 (b).

(a) (b)

Figure 3.1: Proof and evaluation trees

It is important to emphasize that a.llidentifiers in an evaluation tree €(t) corresponding

to existential variables are distinct. Given a derivation tree t, let Ex(t) be the set of

a.ll existential variables in t (more precisely, a.ll existential variables in la.bels of nodes

of t). For each variable v E Ex(t) define two new distinct variables Vi and vI ca.lled
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pre-variable for v and post-variable for v respectively. We assume there are functions

pre and post such that Vi = pre(v) and vi = post(v). Now we define the concept of an

approximation tree. Given a derivation tree t, the approximation tree aCt) is obtained

from the evaluation tree £(t) by replacing the label of every node in £(t) by a new label

defined as follows: let E be the the equation that labels the node in £(t); the new equation

E' is defined by

E' = {it = rI Ie = (l = r), e E E, 11= TI(I), rI = Tr(r)}

TI = {post(v)jv I V E Ex(t)} Tr = {pre(v)jv I V E Ex(t)}

The same transformation is also applied to the goal. Intuitively, this transformations

changes lree equations to non-recursive equations; given an equation lree p = M, it is

changed to TI(p) = Tr(M).

Example 6 Consider the previous example. The translation of the clause Cois changed

to

The approximation tree is obtained from the evaluation tree in Figure 3.1 (b) by replacing

the root node eo with a node labeled ao. The remaining nodes are unchanged since there

are no existential variables in the labeled equations. The translation of the goal is

changed to

We can see that the occurrences of identifiers ey and e:z:, whose bindings are recursively

defined, have been changed to occurrences of Ypost, Ypre, xpost, xpre. More precisely,

(I

S:z:,eyI
=

F, (i., y",.,))
ao : Fp (i:z:, iz) & and ey2, Sz = Fr (Ypre, iz) = (s:z:,sz)

and Ypost = eqc eyl ey2
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the occurrences of ey and ex on the left hand side (of equations) have been changed to

occurrences of Ypostand xpost, respectively. The occurrences of ey and ex on the right

hand side have been changed to occurrences of Ypreand xpre, respectively.

Let P be an environment containing bindings for pre-existential variables. We will ca.ll

such environments pre-environments. Similarly, we will ca.ll environments containing

bindings for post-existential variables post-environments. Given an answer substitution

(7together with a proof tree t, the corresponding answer environment is defined as follows

a = {x .- t I v E Ex(t), x = ev(v), t = <1>«(7(v))}

where <1>is a function that replaces unbound variables with SW

<1>Var(x) =SW

<1>c( tt, . .. , tn) = c( <1>( td, .. . , <I>(tn»

So an answer environment is obtained from an answer substitution by replacing unbound

variables with SW.

Given a logic program P with a goal G,let (7 be an answer substitution for PuG and t

the corresponding proof tree. Let Eo be the translation of the goal in which occurrences

of existential variables on the right hand sides of equations are replaced by corresponding

pre-variables and occurrences on the left hand side by post-variables. All pre-existential

variables are free in the translation; given a pre-environment Po one can evaluate the

translation of the goal to obtain a post-environment Pj, i.e., PI = V[Eo]Po. The com-

putation of the meaning of the goal expression follows the structure of the approximation

tree since the predicate functions are in general non-deterministic. At each step of eval-

uation of an application of a predicate function, we use the equation which is the label

of the corresponding node of the approximation tree. Pre- and post-environments are

used for computation of approximations of recursively defined environments comprising
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values of identifiers defined by lrec.

Example 7 Consider Example 6. Let Po = {xpre 1-+SW, Ypre 1-+ SW}. We can

compute V[(xpost,a) = Fp (xpre,a)]po giving us the bindings for xpost and Ypost. We get

PI = {xpost 1-+SW, Ypost 1-+a}.

Lemma 3 Assume there is an answer substitution (1for a logic program P with a goal G.

Let a be the corresponding answer environment and Po be a pre-environment such that

Po ~ a. Then PI ~ a where PI is the corresponding post-environment. In particular,

PI # Fail.

Proof The proof is by induction on the structure of the proof tree.

. Base case-the proof tree consists of a fact q(tl, . . ., tnq). Let Fq be the translation

of the fact. Since Po ~ a, some of the bindings for pre-existential variables in Po

might be SW when they have ground bindings in a. Since the values in a satisfy

all matches, so will the values in Po because Po ~ a. It follows that the result is

not Fail. As a matter of fact, in this case PI = a since if a binding for a variable

is bound during unification of the fact q with the literal in the goal, this will be

reflected in the reduction sequence by a binding occurring in the output of the

application of Fq in the translation of the goal.

. Induction case-the proof tree corresponds to a clause. Let the goal G be q(Pb'" ,Pnq).

Let the clause be in the form

Its translation is
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and (Stml"", stmnrm) = Frm (itml"'" itmnrm)

and iV, = eqckl ivil ... tv1kl

and SUI = eqcr1 SUII ... SUI rl

and SUj = eqcrj Su]l ... SUjr]

and ".,YII,...,Ylel""= Frnl ...,Yil,...,Yil,'"

and Yfl = eqc Yn ... Ylel

Let Fq(PI' . . ., Pnq)be the application of Fq in the translation of the goal. Since Po ~

a, it follows that po((PI, . . ., Pnq)) ~ a( (PI, . . . ,Pnq)). The match in the application

of Fq will succeed and 'Vi 1 :$ i :$ 1, po(iv;) ~ a(iv;), where Vi, 1 :$ i :$ 1, are the

variables in the head q( tl, . . . , tnq)and iv], 1 :$ j :$ 1, are corresponding inherited

variables. The resulting bindings for the variables iVj under Po are not greater

than their bindings under a. This fact is also true for pre-existential variables

'Vj PO(Yij)~ a(Yij). It follows

By the inductive hypothesis,

Fina.lly,

and PI ~ a.
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I

Intuitively, if we start the computation from an environment below the answer, there

have to be some variables that are bound in the answer, but have value SW in the

starting environment. The process of reduction mirrors the structure of the proof tree.

For each node in the proof tree, which labels a clause used in the derivation, the corre-

sponding equation is chosen in the reduction sequence. This equation will match since

the values for variables are below the answer (for which the match still succeeds). After

all applications of functions corresponding to predicates have been reduced (this point

in the reduction sequence corresponds to a traversal of the entire proof tree), the result

is PI. It reflects new bindings found for some of the identifiers. Note that these bindings

are not propagated and shared since in evaluating them we are still using the initial

environment. In essence what we have done is evaluated right hand sides of recursive

equations to get a new approximation for the recursive environment. Because of possible

lack of sharing, PI might be below (1since bindings for some identifiers might be SW in

PI when they actually have some ground bindings in (1. However PI can never be above

(1.

Example 7 provides a nice illustration. The final environment PI binds variable Ypost

to a. Note that in the equation for Fp in the approximation tree (Example 6), Ypreoccurs

on the right hand sides of equations. The binding for Ypreis SW, regardless of the fact

that the value computed for Ypostis a. The binding for Ypreis used for computation of

expressions on the right hand side and not the binding for Ypost. In the translation, the

binding for Y is recursively defined and we have the same identifier appearing in place of

Ypost and Ypre.

Lemma 4 Let P be a logic program with a goal G. Let (1be an answer substitution for

it and let a be the corresponding answer environment. Let Po be a pre-environment such

that Po -< a and let PI be the corresponding post-environment obtained by evaluation

of values of post-existential variables. Then Po -<PI.

Proof The proof is by induction on the structure of the proof tree.
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. Base case-the proof tree consists of a fact q(t},..., tn). Since Po -< a, there has

to be an existential variable Y such that PO(Yi)-< a(y), Yi = pre(y). Looking at

the proof of the logic program, the binding for y had to be obtained from one of

the occurrences of y in q(t},..., tn). But the consequence is that the binding will

be reflected in the value of the post-variable Yi for y; it follows PO(Yi)-<a(Yi).

. Induction case-the root of the proof tree is labeled by a clause

Consider the conjuncts rj in the body of the clause as goals by themselves; let

(7j be the answer substitutions for them and let aj be the corresponding answer

environments. Because each literal qj is considered as a goal, if we consider their

translations the inherited variables play the role of pre-existential variables and

synthesized the role of post-variables. Let POj be the pre-environments for each

conjunct r j. There are two cases:

- 3k POk-< ak. By inductive hypothesis, POk-< Pik and since it is always the

case that POi:S Pii the claim follows.

- Vk POk = ak. In words, all variables in the translations of literals in the

body have the same binding as in the answer environment. There has to be a

variable v in the goal such that PO(v) -< a( v) and the binding for this variable

had to be obtained from a match with one of ti, 1 ~ nq. The corresponding

situation on the logic programming side is that there exists a variable in the

goal bound during the unification with the head of the clause and not during

the resolution of literals in the body.

I

Intuitively, if we start computation from an environment strictly below the answer, the

final environment in the reduction sequence will be strictly above the starting environ-

ment, reflecting the fact that even though shared bindings might not be propagated,

some identifiers will be bound.
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Theorem 5 Let P be a logic program with a goal Gj let (1 be an answer substitution for

it and let 0 be the answer environment. Let EG and Ep be the translations of the goal

and the program, respectively. Then T>[EG] ( = 0 where ( is the empty environment.

Proof There is a sequence of environments Po, PI, . . ., Pn,. . . such that every environment

in the sequence is the post-environment for the preceding member considered as a pre-

environment. The initial environment Po maps all identifiers to SW. By Lemma 3,

'i j Pj ~ o. By Lemma 4, it follows that Po,. . ., Pj is a strictly increasing sequence as

long as Pj ~ o. It follows that for a finite j, Pj = 0 since there can be no infinite strictly

increasing sequence bounded above by 0 (0 is finite). I

Example 8 Consider again Examples 6 and 7. The sequence of approximating envi-

ronments is

Po = {xpre 1-+SW, Ypre 1-+SW},

PI = {Xpre 1-+SW, Ypre 1-+a},

P2 = {xpre 1-+a, Ypre 1-+a}

The fixpoint P2 is reached after two iterations. We have seen in the Example 7 that the

value of variable x is equal to the value of y. After the first iteration, the value of Y,

i.e., the value of Ypost,is a, but the value of xpost has been computed using the initial

approximation SWfor Ypre' The consequence is that after the first iteration the value of

xpost is SW. It is only after the second iteration that the binding for Ypre, i.e., constant

a is propagated to xpost.

3.3 The equality function

Let us consider now the equality function eqc in more detail. We repeat its definition

from Section 2.1.

eqc x y = if x = y then x else Fail
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This definition is in essence syntactic. In this chapter we are interested in the (denota-

tional) semantics for the translation. We need to give a semantic definition of eqc that

accounts for all domain elements. First, it is clear that if both arguments of eqc are .1,

then the result is also .1. This information gives us the first equation in its definition:

eqc .1 .1 = .1

The next equation specifies that eqc is strict in its first argument, since it has to be

evaluated in order to perform the matching:

eqc .1 x = .1

We might expect a similar equation for the second argument but there is a difference in

this case. Clearly, we need to evaluate the second argument as well as first in order to

perform the matching, except in one case, when a failure has been detected during the

evaluation of the first argument. Obviously, it is pointless to evaluate the second argu-

ment in this case since the final result will be failure. We have the following equations:

eqc Fail x = Fail

eqc x .1 = .1

eqc x Fail = Fail

x ::/; Fail

x::/;.1

Note that we could have chosen to evaluate arguments in parallel, by adding the equation

eqc .1 Fail = Fail. However, we would need a mechanism for evaluating the arguments

in parallel, similar to the well known example of "parallel OR". The implementation of

such functions can be problematic and we choose not to adopt it. The next two equations

specify the result in case any of the arguments are unbound values:
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eqc SW x =x

eqc x SW =x

Clearly, if any of the arguments is an unbound value, the result is equal to the other

argument. Finally, we need to specify the result in case the arguments are ground:

eqc c(Xt,...,Xn) d(Yt,...,Yn) =

(c = d) - eqc Xl YI= .1 - .1

eqc Xl YI= Fail- Fail

eqc Xn Yn = .1 - .1

eqc Xn Yn = Fail - Fail

c( eqc Xl Yt,..., eqc Xn Yn)

Fail

Here is the complete definition of eqc:

eqc .1 X = .1

eqc Fail X = Fail

eqc X .1 = .1 X ::I Fail

eqc X Fail = Fail x::I.l

eqc SW x = x

eqc x SW = x



89

eqc c(Xt,...,Xn) d(Yt,...,Yn) =

(c = d) -- eqc Xl YI= .1 -- .1

eqc Xl YI= Fail -- Fail

eqc Xn Yn = .1 -- .1

eqc Xn Yn = Fail -- Fail

c(eqc Xl Yt,..., eqc Xn Yn)

Fail

3.4 Interpretation versus compilation

There have been numerous implementations of logic languages. Among the many propos-

als, the implementations of logic languages in functional languages [Car84] or functional-

like languages [Fel85] or treatments of operational and denotational semantics [JM84]

are particularly interesting in their relationship to our approach. The common point in

all these approaches is that variables are interpreted, i.e., there are distinguished run-

time representations of variables in programs. Of course, the particular representations

adopted vary:

. bindings for variables can be recorded in association lists and different occurrences

of a variable in different instances of a clause are distinguished by numerical indices

[Car84].

. variables can be represented by assignable ref cells [Fel85].

. representations of variables can be defined in the definition of a data type of terms

as unary constructors and numerical indices are used for renaming of variables to

prevent name clashes [JM84].

A closer analysis of the treatment of variables in these (and to author's knowledge, all the

other approaches) reveals that distinguished representations of variables are needed in

order to prevent name clashes between instances of the same variable in different copies of
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the same clause used during resolution. The problem with clashes becomes even clearer

if we consider the definition of resolution of Horn clauses with variables [Apt90]. At

every step of resolution we have to make sure that a different instance of a clause is used

in order to prevent name clashes. Apt calls different instances of clauses variants. This

definition of resolution shows that the requirement for renaming of different instances

of variables in logic programs is present at the declarative level and is not merely the

byproduct of a particular implementation.

The treatment of variables in logic programs presented here should be contrasted

with the treatment of variables in functional programs. The problem of name clashes

is also present in A-calculus. Renaming in A-calculus is performed by a-conversion.

The essential point is that in functional programs there is no need for distinguished

representations of variables-they merely serve as placeholders for terms that can be

viewed as values, i.e., terms with no variables. The occurrences of variables in functional

programs are handled during compilation; the compiler produces code that substitutes

a term for each occurrence of a variable in the body of a function definition. The term

is synthesized from arguments of a particular application of a function. When there

are several applications of the same function, the arguments of these applications are in

general different and the occurrences of the same variable in the function definition are

replaced by (different) argument terms.

Unification and pattern matching are two instances of a single problem-finding the

(most general) substitution that makes two terms equal. Let us emphasize again that the

difference between unification and pattern matching is that in unification both terms can

have variables, while in pattern matching only one of them (the pattern) can. One might

try to employ the strategy for handling variables in functional languages directly to logic

programs. However, there is a problem with this approach in that both the argument

term in the clause that is acting as the pattern and the target can have variables. The

consequence is that information can flow in the other direction, from the pattern to the

target term meaning some variables in the pattern might get identified with variables

in the target term. In particular, different instances of the same variable in different
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instances of a clause might inadvertently get identified. It is because of this fact that

variables in each new instance of a clause have to be renamed.

In our approach, we have seen that the functional strategy has been adopted for

all variables. The reason we have been able to do this is the fact that bindings for

(existential) variables are defined recursively. The binding for any other variable in a logic

program is either a constant or it depends on the binding of some existential variable.

Note that it is crucial that these bindings are values that are passed as arguments to the

functions corresponding to predicates.

The treatment of variables is one of the principal reasons we believe our approach is

inherently different from previous attempts to implement logic languages in functional

languages. In all of the other approaches, a logic program is translated to an interpreter

in a functional language. The degree of interpretation in the resulting functional program

can vary. For instance, the search for clauses matching a predicate can be replaced by

calls to an appropriate function. It is possible to replace some calls to the unification

routine by pattern matching since the shape of arguments of clauses is always known. In

this case, the result of translation is a kind of "customized interpreter" that reflects the

structure of the clauses in the logic program. But the end result is nonetheless always an

interpreter because it interprets the variables in logic programs and does not treat them

like variables in functional programs. In our approach, variables in logic programs are

translated to variables in functional programs directly. This treatment of variables is the

main reason we do not consider the result of translating a logic program to a functional

program to be an interpreter but a functional program equivalent to the original logic

program. They are equivalent in the sense that the solutions of the functional program

and answer substitutions for the logic program correspond to each other.

3.5 Least fixpoints are not enough

The essential feature of the translation algorithm is that bindings for existential variables

are defined recursively. We have seen that the bindings can be found as solutions to sets
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of recursive equations and that the solutions are iterations to fixpoints, starting from

SW. We believe that the equations produced by the translation present a nice example of

equations for which we are not looking for least fixpoints (which are trivial). One might

argue that in a way, fixpoints starting from SW are least since there is an ordering of

terms ~ with respect to which SW is below all proper values. We needed this ordering

in Section 3.2 to establish that the process of iteratively computing approximations

for existential environment eventually terminates producing the result corresponding to

the answer substitution. In other words, we might want to consider the set of values

excluding 1. as a domain itself. The crucial point is that 1. cannot be excluded from the

domain and we need both kinds of fixpoints:

. The least ones (starting from 1.) to give meanings to recursive functions corre-

sponding to predicates that can be mutually recursive and need not terminate.

. Fixpoints starting from SW to define bindings for existential variables. They are

expressed by the recursive construct lree. In essence, least fixpoints are needed to

handle nontermination; fixpoints from SW are needed for propagation of bindings

for variables.

The solutions to the recursive equations produced by the translation cannot be found

in the usual domain with only 1. and proper values. The reason is because the only

choice for starting the iterative computation for the fixpoint is 1. and that does not work

since matching is strict and each approximation is equal to 1.. Of course there are are

infinitely many other choices to start the iteration, namely the other elements of the

domain. Moreover, one of them will trivially produce the right answer since if we start

from the answer the recursive equation is immediately satisfied. But this information

does not tell us anything since we do not know the answer in advance.



Chapter 4

Operational semantics

In Section 3.2 we have seen that the solutions of the equations obtained by translation

of logic programs can be computed as certain fixpoints. We can implement computation

of these fixpoints in a straightforward way, by iterative computation. In essence, the

approach is to find a solution of the equation

Pe = F Pe

where Pe is the existential environment consisting of all existential variables and F is the

appropriate function obtained from the translation. The initial approximation Po for Pe

binds all variables to SW. Assuming a solution (7exists, Le., the computation does not

diverge nor ends in failure, we can obtain (7by iterating F on Po, Le., (7 = limi-+oo Fi Po.

However, even though perfectly valid, this strategy would not be an efficient way to

compute solutions because of a large amount of recomputation. We want a better way

to find the answer. The subsequent sections are intended to show how to compute

solutions efficiently.

4.1 Graph reduction

Graph reduction is a well known technique for implementation of lazy functional lan-

guages [Joh87b, PJ87]. It was first proposed by Wadsworth [Wad71] for implementing

A-calculus. The main idea behind graph reduction is that program expressions are rep-

resented by (directed) graphs. The advantage of using graphs, as opposed to trees, is

that it is possible to implement sharing.

93
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A graph is a pair (V, E) where

. V is the set of verticesor nodes

. E is the set of directed edges; each edge is a pair (no, nl) where no is the source

node and nl is the destination node

To each expression in the language a graph is assigned. We also define an auxiliary

function r that assigns a designated node, called the root node, to each graph produced

by translating an expression. Nodes in graphs belong to one of following classes:

. CONSTR c-a node corresponding to a constructor c

. APP-nodes corresponding to function applications

. PAIRk-a node corresponding to a k-tuple; it has k children representing the

components of the tuple

. FUN I-a node corresponding to a function; in the rest of the presentation FUN

will be omitted since it will be alwayspossible to determine from the graph that a

node is a FUN node

. EQC-a node corresponding to equality test

We simultaneously define two functions: g, that assigns graphs to expressions; r, assign-

ing nodes to graphs.

9 [x] Pe = (Pe(x), {})

r(G) = Pe(x)

9 [c(xt,.. .,Xk)] Pe= ({m: CONSTRc}UVI U... U Vk,Ext U... U Exk} where

'Vi 1 ~ i ~ k Xi = (Vi,Ei) = 9 [Xi]Pe, Exi = Ei U {(m, r(Xi))}

r( G) = m
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9 [(Xl,,,, ,Xk)] Pe = ({m: PAIRk C}U VI U... UVk,Exl U... U Exk} where

Vi 1 ::; i ::;k Xi = (Vi,Ei) = 9 [Xi]Pe, Exi = Ei U {(m, r(Xi))}

r( G) = m

9 [eqc Xl X2] Pe = ({ n : EQC} U VI U V2, Exl U Ex2} where

'Vi1 ::; i ::;2 Xi = (Vi,Ei) = 9 [Xi] Pe, Exi = Ei U{(n, r(Xi))}

r(G) = n

9 [I X] Pe= ({n: APP,nj: FUN J} UVx,ExU {(n,nj),(n,r(Gx))} where

Gx = (Vx,Ex) = 9 [x] Pe

r(G) = n

9 [lrec X = E] Pe= 9 [E] Pe[x~ n]

r(G) = r(E) = n

In the definition above, r( G) = n means that n is the root node of the graph produced by

9 by translating the argument expression. Also, all nodes that are explicitly mentioned

are assumed to be new nodes distinct from other nodes. The translation function 9 takes

an environment argument that is used for keeping track of nodes assigned to identifiers.

Note that applications of eqc are represented by EQC nodes. In essence EQC is a binary

constructor. There is no equation for let expressions; it is not necessary since programs

with let expressions can be transformed to programs without them

let X =M in N ==(Ax.N) M

The pattern matching on pairs in let expressions can also be removed

let Xt,"',Xn = M in N ==let p= M in NI
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where Nl = o-(N), 0-= {1I"lpix},..., 1I"nplxn}. Function 1I"iis the i-th projection, Le.,

It is important to note that the graphs produced from expressions can be cyclic; In

particular the translation of an lree expression introduces a cycle into the graph. The

process of reduction is represented by transformation of graphs. The most important

rule of reduction is the ,B-reduction rule; given a redex (.xx .M) N, the graph for the result

is constructed by creating a copy of the graph for M in which all (free) occurrences of

x are replaced by the graph for N. Translations of constructors, tuples, eqc-checks and

applications are illustrated in Figure 4.1 (a), (b), (c) and (d), respectively.

Figure 4.1: Graph translations

Example 9 Consider the expression

lree x = eqc Co(Fp x) in x

CONSTR c PAIRk

/ '" / '"
r(Xd .. . r(Xk) r(Xl) .. . r(Xk)

(a) (b)

EQC APP

/ '" / '"
r(Xl) r(X2) FUN f r( Gx)

(c) (d)
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The corresponding graph is shown in Figure 4.2. The root of the graph is the EQC node.

EQC

/~
CO APP

/
Fp

Figure 4.2: An example of a graph

4.2 Traversal of cyclic graphs

We consider first a subset of logic programs, ca.lled Datalog programs [MW88]. The

restriction is that the only constructors a.llowedare nullary, Le., constants. We pay par-

ticular attention to eqc-nodes, since it is possible to reduce expressions in the translation

to a form in which there are only applications of the equality function eqc. The trans-

lation algorithm is slightly changed. Since we are considering only Datalog terms, each

term is either a variable or a constant. Variables are handled the same way as before; for

constants, pattern matching is replaced by applications of eqc. For instance if a constant
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a appears in the head of a clause

p(. . . , a, .. .) : - . ..

its translation is

Fp (. . . , x, . . .) . .. = (..., eqc x a, . . .)

If a constant appears in the body of a clause, it is simply passed as an argument in the

corresponding applications of Fq where q is the literal in the body in which the constant

appears. We can view this in an informal way as a kind of "lazy" pattern matching.

Consider a goal

We have seen in Section 3.1.4 that its translation is

lrec ..., YII, . . . , Ylel, . . . = Fql (..., YI, . . . , YI, . . .)

and YI = eqcel Yn ... Ylel

and Vn= eqcenVn ... VIen

in

VI , . . . , Yn

We can perform reductions of applications of the Fq;. For any derivation tree the goal

expression can be reduced to a form in which there are no applications of predicate

functions Fr. We are going to call expressions in this form to be in eqc-normal form.

Proposition 6 (eqc-normal forms) Assume a logic program P with a goal G. Let E

be their translation using the algorithm for translation of Datalog programs. Then for

any finite derivation tree, either successful or failed, the corresponding goal expression

can be reduced to eqc-normal form.
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Proof The proof is by induction on the structure of the derivation. Since the derivation

is finite, we can always reduce applications of Fp for every literal p in the derivation. I

Example 10 Consider a goal: -p(Y, b,Y) and a fact p( a, X, X). The translation of the

goal is

lree Yb b, Y2= Fp (y, b, y)

and Y = eqc Yl Y2

in Y

The translation of the fact is

Fp (in}, in2, in3) = let x = eqc in2 in3 in

(eqc a in},x,x)

After reduction of the application of Fp in the goal we get

lree ybb,Y2 = let x = eqc b Y in (eqc a y,x,x)

and Y = eqc Yl Y2

in Y

This expression is in eqc-normal form. Intuitively, the resulting expression corresponds

to an aggregate of all equality tests which have to be satisfied in the derivation. The

bindings for existential variables are defined recursively, by lree.

4.3 Traversal algorithm

The solutions of equations in eqc-normal form are of course the solutions of original

equations. The solutions consist of bindings for existential variables; the fact that the

equations are in eqc-normal form emphasizes that the only possible (non trivial) bindings

are manifest constants appearing in expressions defining the bindings. In other words,
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suppose we have an lrec expression in eqc-normal form, lrec x = N. Then if any subex-

pression of N is a constant, the solution x is either that constant or failure, assuming

the computation does not diverge. Failure occurs when different constants appear in N.

This observation forms a basis for an algorithm that searches for a solution by traversing

the graph representations of expressions and looking for constants. Since the graph is,

in general, cyclic, we need to employ a mechanism for traversing cyclic structures. A

simple marking of nodes will suffice. The traversal algorithm is defined as follows:

procedure traverse(root);

if marked(root) then return;

if root = const(a) then

if result = SW then result := const(a)

else if result =const(b) then

if a = b then return else Fail

else if root = EQC(gl,g2) then mark(root); traverse(gl); traverse(g2);

procedure tr(graph);

result := SW;

traverse (graph);

ret urn result;

The algorithm is imperative; result is a global variable which is assigned SW initially.

Intuitively, SW indicates that no constant has been found during the traversal. When-

ever a constant is found, result is assigned the value of the constant if its previous value

was SW. If result is already set to some constant, then a check is performed between

the value of result and the constant upon consideration. If they are different, the result

of the whole traversal is failure; otherwise the constants are equal and the computation

proceeds. If an EQC node is encountered during the traversal, it is first marked; then its

descendants are traversed. The very first thing in the algorithm is to check if the node
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under consideration is marked. In case it is, we return without performing anything, to

prevent infinite looping due to cycles in the graph.

4.4 Correctness of the traversal algorithm

The expressions in eqc-norma.l forms can be viewed in two ways:

. As sets of recursive equations; EQC terms are interpreted by equa.lity functions.

. As cyclic graphs; EQC terms are interpreted as nodes in a graph.

The solutions of recursive equations can be computed as fixpoints in iterative way. On

the other hand, viewing the expressions a.s graphs, solutions can be found in a single

pass, by traversa.l of the graph. Note that the reduction to eqc-norma.l form can be

done during the traversa.l, so a separate pass is not needed. Intuitively, the traversa.l

of the graph agrees well with our understanding of unification; by traversing a graph

corresponding to an existentia.l variable, we expect a.l1constants or other variables which

are unified with it during the process of computation to be "reachable" from the root.

The structure of the graph reflects unifications with constants as well as sharing of unified

variables. It should be mentioned that whenever the term "unification" is used, it refers

to unifications in the logic program under consideration.

This relationship will be made more precise by the next theorem. First let us intro-

duce some notation to clarify the presentation.

Assume we are given a logic program P with a goa.l G and an answer substitution (J

for it. Let EG be the translation of G and let rG be the graph assigned to (Section 4.1)

the eqc-norma.l form of EG. For any variable v in G, there is a corresponding variable

Yv in EG; we have seen in Section 2.2.2 that Yv = ev( v). Let us identify the node in

r G corresponding to Yv and ca.l1 it the designated node for Yv. We will use notation

dn(yv) for the designated node for v (Le., for Yv, but there is no confusion since there

is one-to-one correspondence between them). More precisely, reca.l1that variables in the
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goal are translated to lrec expressions. Let

Yv= E

be the definition of the binding for Yv in Ea. The designated node dn( v) is defined to

be r(9(E)), i.e., the root node of the (cyclical) graph representing the binding for Yv.

Theorem 7 Given a logic program P with a goal G let q be an answer substitution for

it. Then for every variable v in the goal the following is true:

. if v has a ground binding c, then tr( dn( v)) = c

. if v is unbound in q, then tr(dn(v)) = SW

Proof The proof is by induction on the structure of the proof tree. There are two cases:

. The proof tree is a fact. Let the goal literal G be q(t1, .. ., tn) and its translation

Yb. . ., Yn= lrec..., Yn, . .. , Y1ep. . . = Fq (..., Yb . . ., Yb . . .)

and Y1= eqce1Yn ... Y1el

and Yn = eqcen Yn ... Y1en

In

Y1,..., Yn

Consider the fact in the proof tree; it has the form

Its translation is

F, (iPt,...,ipn) & (
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Since we are dealing with translation of Datalog terms, the argument terms iPi are

(distinct) variables, and each result term sPi is either

- SUI' if variable U/ is in the corresponding position

- eqc Ci iPi, if a constant Ci appears in the corresponding position

Now consider an (existential) variable y and a term it is unified with during the

unification of literal in the goal and the corresponding fact. There are two possi-

bilities:

The variable is unified with a constant c; then in the eqc-normal form of the

translation y will be defined by

lree y = eqc y c

It is clear that tr(y) = c since the corresponding graph is cyclic and the

traversal routine will mark the redex.

The variable is unified with another variable, say w. Then it is clear that

tr(y) = tr( w). Whenever a variable is unified with another variable, the

corresponding graph for this variable will be traversed as well. Clearly, this

process cannot proceed indefinitely since there are only a finite number of

variables in the goal. Eventually, if there is a constant binding for any of

the variables that are unified together, it will be found; otherwise the value

of result will be SW. The multiple occurrences of variables either in the

fact or in the goal literal are covered by traversal since each argument of the

corresponding EQC node will be traversed.

. The inductive case-the proof tree is a clause

Consider each of the conjuncts ri in the body of the clause as goals by themselves;

since there is an answer substitution for the whole program, there has to be an
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answer substitution for each of Ti. The translations of Ti as goals are recursive

lree expressions; the corresponding graphs GTri are cyclic. The translation of the

original goal literal q which the clause is resolved with is

lree ..., Yn, .. . , Ylep.. . = Fq (..., YI,. . . , YI,. ..)

and YI= eqce]Yn ... Yle]

and Yn = eqcen Yn ... Ylen

in

YI,.. ',Yn

The translation of the clause is

and (Stml, . . . , stmnrm) = Frm (itml'" . , itmnrm)

and iv] = eqck] iV11 ... 1VI kl

and iv, = eqck, iv,l ... 1v,k,

and SUI = eqcrl SUII ... SUI rl

and SUj = eqcrj SUjl ... SUjr]

and ..., Wn, . . . , Wlel, . . . = Frnl ..., WI,. . . , WI,. . .

and WI = eqc Wn ... Wle]

Note that we have to make sure that the identifiers for bindings of existential

variables in the body of the clause are appropriately renamed so there are no name
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clashes with identifiers for other existential variables. Reducing the application of

Fq according to the translation of the clause, we get a new lrec expressionj this

expression has a corresponding graph, which we will ca.llGrq. The essential point

is that this graph can be built from the graphs Grrj corresponding to conjuncts

ri viewed as subgoals. Each of GrrJ is cyclic. By the induction hypothesis, the

theorem holds for each of Grrj j we need to show that it follows that the result

holds also for the composite graph Grq. Consider an arbitrary variable v in an

arbitrary literal rj in the body. We can identify a node corresponding to v in Grrjj

the eqc-normal form for the translation of rj has the form

lrec Yv= E

The root node is r(g(E)). There are edges in the graph that point back to the

root-they correspond to occurrences of Yv in E. The graph is illustrated in Figure

4.3 (the root node is designated by r and a back edge to the root is designated

ev)' The new graph Grq is composed of subgraphs Grrj, with edges ev to the

root removed. These edges are not present in Grq since the binding for v is not

recursively definedj it is defined by the equation

where E{iv/yv} is E with a.ll free occurrences of Yv substituted by iv. Reca.ll that

Sv is the synthesized variable for v and iv is the inherited variable for v. There are

several cases on how the composite graph Gr q is built, depending on the number

of occurrences of v in the head literal q:

- There is a single occurrence, say OJthere are two subcases depending on what

is in the goal G in the same position, Le., what is o(G) (o(G) stands for

subt 0 G):

* o(G) is a constant Cjin this case Grq is equal to Grrj in which a.llthe back

edges ev to the root are replaced by edges to a constant node containing c.

The result of traversal in this case clearly has to be c because the traversal
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. . .

Figure 4.3: Cyclic graph for rj

of GrrJ will produce either SW, in case v is unbound in rj considered as

a goal, or c in case v is bound to c. In both cases the traversal of the

modified graph will also produce c.

* o(G) is a variable w; there are two subcases depending on the number of

occurrences of win G:

there is a single occurrence; in this case Grq is identical to Grrj

there is more than one occurrence; Grq is built from several compo-

nent subgraphs corresponding to occurrences of win G. A new EQC

node is created which becomes the root of Grq; the edges from the

root point to the roots of the component subgraphs corresponding to

occurrences of w. Finally in the components graphs back edges to

their roots are replaced by edges to the new root of Grq. Clearly, the

result of traversal of the composite graph will be either a constant c, in

case the traversal of one or more of component subgraphs is the same
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constant, or SW, in case there are no constants in the component

subgraphs. This situation is illustrated in Figure 4.4. Clearly, the

. . .

Gr~

Figure 4.4: The composite graph

result of traversal of the composite graph will be either a constant c

in case the traversal of one or more of the component subgraphs is the

same constant or SW in case there are no constants in the component

subgraphs.

there is more than one occurrence of v in q. Then the composite graph

assigned to iv has at its root an EQC node; this node corresponds to equality

checks for inherited position variables for v, i.e., variables corresponding to

different occurrences of v in q. The edges from the root EQC node point to

subgraphs corresponding to subgraphs (i.e., their roots) for inherited position

variables. Each of the subgraphs is built essentia.lly in the same way as in

the previous case (when there is only a single occurrence of v in q)-given an

occurrence 0 for an inherited position variable ivj, we need to consider what

is the term in the corresponding position in the goal, i.e., what is o(G). The

result follows by reasoning similarly. This situation is illustrated in Figure 4.5
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Figure 4.5: The composite graph for q

4.5 General programs

I

We have considered in the preceding sections Datalog programs, which are a restricted

form of logic programs. The difference is that only nullary constructors, Le., constants

are included. In the general case the basic properties still hold. The principal difference

is in the translation of terms, which can have constructors of arbitrary arity. In Section

4.2 we have seen that an occurrence of a constant a in the head of a clause is translated

to

Fp (. . ., x, . . .) .. . = (. . ., eqc x a,. ..)
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A new variable x is created and it is equated to a in the resulting tuple by returning

eqc x a as the corresponding component. In the general case, a term c(. . ., Xl, . . ., X2, . . .)

can appear in the argument position; assume Xl and X2 appear as i-th and j-th argument

of c, respectively. The translation is

Fp (. . . , X, . ..) . . . = (. .. , eqc X c(. .. , 11"iX, .. . , 11"j X, . . .), . ..)

The occurrences of variables are replaced in the output term by applications of projection

functions 1I"kto the variable corresponding to the argument term.

4.5.1 Traversing graphs with arbitrary constructors

We have seen that in the case of Datalog programs, the bindings for variables can be

found by traversing cyclic graphs consisting of EQC nodes. In case there corresponding

variable has a (ground) binding, there will be a constant in the graph. In case of general

programs, the situation is actually the same; if there is a ground binding for an existential

variable, it will be reflected in the corresponding graph. The main difference, which

complicates things a little bit, is that since constructors can be of arbitrary arity, the

constant nodes can have descendants as well as EQC nodes. In essence if an existential

variable has a ground binding, each subcomponent has to be in the subgraph of the

graph corresponding to the binding.

4.6 A functional version of the traversal algorithm

An imperative algorithm for traversing graphs representing the bindings for variables

has been described in Section 4.3. In this section we specify a functional version of the

traversal algorithm. This version is intended for call-by-need evaluation strategy. The

algorithm is still not purely functional since it marks its redex with SW after initiating

the evaluation. The algorithm is presented by two mutually recursive functions. They

are defined equationally using pattern matching. The set of values is defined as

v = sw + EQC(V x V) + Co + . . . + Ci (V x . . . x V) + . . .~ ~ ~
,
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The definition includes

. A distinguished value SW, which corresponds to a cyclical graph containing no

ground terms.

. Terms of the form EQC( vI, v2) that correspond to the result of comparing two

argument terms.

. A set of ground values, which are represented as constructors applied to arguments.

The intuition behind the algorithm is straightforward. In essence, we want to traverse

the graph, making sure that all nodes have been visited. We have to be careful to avoid

possible cycles in the graph which might cause looping. This problem is handled by

marking each redex before it is examined. First we present the Datalog version. The

algorithm is defined as follows:

tr : V -+ V -+ V

selt : V -+ V -+ V -+ V

rec

tr SW c = c

II tr EQC(a,b) c = selt a b c

II tr x _ = x

and

selt SW a c = tr a c

II selt a SW c =tr a c

II selt EQC(a, b) d c = selt (selt a b (tr de)) d c

II selt a EQC(b,d) e = selt a (selt b d (tr a e)) e

II selt a b _ =if a = b then a else fail

The signatures of tr and selt are given in the top two lines. The function tr is used

for traversal of expressions. We have seen that the expressions can be represented as
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graphs and that the key point in traversals of graphs is to ensure that entire graphs are

always traversed. Function tT takes two arguments; the first argument is the expression

to be traversed and the second one can be intuitively thought of as the remaining part

of the expression of which the current argument is part. The reason the rest of the

expression is represented by an argument is because at any point during the traversal the

computation can get stuck because there are no constants in the current subexpression.

But the current redex should not be left as it is since there may be constants in the

rest of the expression. Since the evaluation strategy is call-by-need, the current redex

has to be updated with the final value obtained after traversing the entire expression.

If the the argument of tT is SW, the traversal continues with the remaining part of the

structure. Function selt is used for comparison of arguments of EQC nodes. It traverses

its arguments and checks if they are equal; in case they are, the common value (equal to

both) is returned as result and in case the arguments are unequal, the whole traversal

fails. We can think of this function as selecting the argument from which the result

binding is going to come, hence its name (selt for select-traverse).

Let us describe the algorithm in more detail. The first equation for tT specifies the

case in which the part of the graph that is being traversed is marked; in this case, the

traversal of the current argument is abandoned and the result will be the value obtained

from the rest of the graph. If the current value is an EQC node, then selt is invoked on

arguments of the EQC node in order to find their values and check that they are equal.

If the current graph is neither a SW nor an EQC node, then it is a ground value, and

it is returned as the result.

The first two equations for selt handle the cases in which either of the arguments is SW.

In this case, the result is obtained by traversing the other argument. In case either of

the arguments is an EQC node, selt is applied to the arguments of the EQC node as we

would expect. But in addition, the third argument is equal to the other argument of the

top selt. The reason is that if the EQC node does not denote a ground value, the result
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is denoted by the other argument (and the remainder of the graph). Finally, if none of

the above cases applies, the arguments must be ground terms, which are compared for

equality.

In case of general terms with arbitrary constructors, the algorithm is slightly changed:

rec

tr SW e = e

II tr EQC(a,b) e = selt a be

II tr Co - = Co

II tr Ci(X},...,Xi) e= Ci(tr Xl (11"1e),...,tr Xi (1I"ie))

and

se1t SW a e = tr a e

II se1t a SW e = tr a e

II se1t EQC(a, b) d e = se1t (se1ta b (tr de)) de

II se1t a EQC(b,d) e = selt a (se1t b d (tr a e» e

II se1t Co Co - = Co

II se1t Ci(X},...,Xi) Ci(Y},...,Yi) e = Ci(selt Xl Yl (11"1e),...,se1t Xi Yi (1I"ie))

Since constructors can have arguments, it is necessary to traverse the graph representing

a constructor as well as the subgraphs corresponding to the arguments; the traversal of

each subcomponent might fail to produce a ground binding. Therefore the corresponding

component of the third argument is passed so that the traversal can proceed.

4.7 Generating derivation trees

We have seen in Sections 4.3 and 4.6 two versions of a traversal algorithm. They rep-

resent the operational semantics for evaluation of bindings for (existential) variables.

However, the versions presented really deal with the case in which derivation trees and
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corresponding evaluation trees remain fixed during the evaluation of bindings. This case

is reflected in the proof of Theorem 7 in Section 4.4. In a particular evaluation tree, the

choices for equations defining the functions corresponding to predicates are fixed. In gen-

eral, a predicate may have several clauses; the corresponding functions consequently will

be defined by several equations. By taking different choices for the equations we obtain

different evaluation trees. What we have done is to present an algorithm for evaluation

of deterministic logic programs in which there is only one clause for each predicate. It is

clear that in the general nondeterministic case where there are multiple clauses for each

predicate, we need a search mechanism. This mechanism is of course an essential part

of every interpreter for logic languages. The goal is to consider multiple derivation trees

in some sequence so a proof tree will be found if it exists.

4.7.1 Choice points

The concept of choice points has been used extensively in implementations of interpreters

for logic programming and also in many other applications that involve backtracking

and nondeterministic search. The basic idea is that at a point in a program at which

a nondeterministic choice is to be made, an initial choice is made according to some

simple criterion (e.g., first equation in a list of equations). Since nothing ensures that

this particular choice is the right one, it is necessary to record somehow the information

about alternate choices. The computation proceeds according to the choice taken; there

are basica.lly three possibilities for possible outcomes of the computation:

. The computation terminates successfully; in this case if we are interested in the

first successful result, we are done.

. The computation terminates unsuccessfully; at that point it is necessary to examine

other choices which have not been considered when the latest decision was made.

The information about other choices is usua.lly saved in a data structure-the

choice point.

. The computation diverges.
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This strategy ensures that a solution will be found if it exists provided the computation

does not diverge; all choices will be tried. The exact format of choice points depends

on the particular implementation. It is clear however that choice points should contain

enough information to restore the state of computation to the same state as when (the

last) nondeterministic decision was made.

4.7.2 Choice points as alternate reductions

We have seen that a goal

is translated to

lree ..., Yll, . . . , Yle] , . . . = Fq] (..., Yl, . . . , Yb . . .)

and Yn = eqcen Yll ... Ylen

in

Yl,.. ',Yn

Literals in the goal qi are translated to applications of corresponding functions Fq;. At

each step of resolution, a literal is selected and a clause with the same head is chosen.

Naturally there can be several clauses that match. In some resolution strategies, a choice

among one of them is made and the computation proceeds. In our case, in the translated

programs there is an application of a function Fq;for each literal qi. The resolution step is

replaced by a reduction step of reducing the application of Fq;. The choice in a resolution

step is reflected in the translation as the choice which equation to use for reduction step.

It is clear that we would like to choose an equation out of all possible choices and
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perform reduction according to it. The result is the same as in the case of deterministic

logic programs. However it is also clear that we want to save the information about

the other available choices for equations to use in reduction in case they are needed

later. A simple way to think about the choices is to consider all possible equations for

a predicate function as a list of equations. We can adopt a simple criterion for choosing

the next equation for reduction by always taking the equation at the head of this list;

the other available choices are represented by the tail of the list. So the choice point

will contain the tail of the list of available equations and the head will be used for the

current reduction.

What other information do we need in a choice point? Most certainly we need

the arguments to the function since they are needed in order to perform the reduction

step. We are going to use call-by-need evaluation rule for reduction of applications of

predicate functions Fq;. It is not necessary to do so and we might use call-by-name

also. The call-by-need evaluation rule specifies that the representation of an application

f x of a function f to its argument x is overwritten with the representation of the

result. This evaluation rule facilitates sharing since there are no repeated computations

of applications.

To summarize, a choice point consists of:

. a list of functions representing alternate equations to be tried in reduction

. the argument tuple consisting of argument terms; the function chosen for the re-

duction step is applied to these terms

. the redex, Le., a representation of the application node; this application is over-

written by the result of the reduction

It should be clear from the preceding discussion that the choice points are created at

the points of reduction of application nodes (more specifically applications of functions

corresponding to predicates). Choice points are maintained in a data structure. A

simple solution is to put them in a list. We call this list the choice list. The choice
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list is in essence global since every reduction is supposed to have access to it. The goal

expression is repeatedly traversed; during the traversal checks are performed to make sure

no failure occurs. As the goal expression is being traversed, the reductions of functions

corresponding to predicates are performed; at each one of these reductions a new choice

point is created and added to the choice list (assuming there are new alternatives to be

tried). H there was a failure encountered during the traversal of the goal expression, a

check is made to ensure there are additional choices available in the choice list. If there

are not, the result of the program is failure; otherwise the goal expression is updated

with the information from the choice list (producing a new choice list) and the process

is repeated. This process can be expressed in the following algorithm:

repeaLtraverse goal choices =
let new_choices, new_goal, result = traverse_goal choices goal

in if result -#FAIL then new_goal

else if no_choices new_choices then fail" No more choices"

else let new_goal, new_choices =

update_choice new_choices new_goal

in repeaLtraverse new_goal new_choices

The function update_choice is not a pure function since it imperatively manipulates

the goal. It updates the goal in place according to the information from the list of

choice points. Traversal of the goal is performed by traverse_goal, which simply initiates

traversal of each binding for an argument of a predicate. We have seen this routine in

Section 4.6. It is important to note that the traversal routine is non-destructive-it is

supposed to leave its argument intact. If we use call-by-name evaluation, then the only

changes made by tr to its argument are the marks for detecting the cycles. It is easy to

make sure that tr leaves its argument intact by ensuring that all marks are erased after

evaluation. The argument can be preserved by having tr collect all redices it marks in a

list; after the evaluation the marks on all nodes in the list are deleted. A more elegant
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way to preserve graphs after traversals will be presented in the next chapter. It relies on

the fact that the points at which the cycles are introduced are known at compile time.

These points are exactly the occurrences of lrec expressions.

The search algorithm expressed by repeaUraverse specifies that the first successful

answer, i.e., an answer different from FAIL, is returned as the solution. It should be

clear that we can use very similar strategy if we wanted to collect multiple solutions.

The key is that the search mechanism provided by choice points can be used in gathering

multiple solutions. The main idea is that, after finding the first solution, there is nothing

preventing us from looking for subsequent ones, just as if we have failed looking for the

previous solution. So it would be very simple to modify the search algorithm to collect

multiple solutions. For instance, repeaUraverse can be changed so that when a solution

is found, it is stored by a side effect (e.g., printed on the output or stored in a separate

data structure) and the computation proceeds as if FAIL has been returned.

4.8 Cyclic graphs-an artifact of the implementation?

We have seen that the operational semantics for evaluation of programs is based on

traversal of cyclic graphs. A simple and natural way to traverse cyclic graphs is provided

by marking nodes as they are traversed. It would appear that this marking is an inherent

overhead of our evaluation strategy compared to implementations of logic programming

since there does not seem to be anything similar to the marking of nodes in them.

However, we believe that this is not the case. To substantiate our belief we are going to

consider an implementation of Prolog [MW88] that is a representative of contemporary

implementations.

One of the leading principles employed in this implementation is represented by the

"Procrastination principle". The idea is simple; one would like to delay as much work

as possible as long as possible during the evaluation in the hope that the delayed com-

putations will not have to be performed in case a failure is detected. An application of

this principle is represented by delaying composition of substitutions. The unification
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routine is called match. It takes as arguments terms to be unified and returns as a result

(the most general) substitution. The substitution is in the form of a list of replacements

for variables encountered during the traversals of argument terms. The list of replace-

ments is not necessarily in form of a valid substitution-there is additional processing

to be done. Of particular interest for us is the requirement that the list of replacements

should never have a replacement of the form X = X for any variable X. The reason

is because the dereferencing routine dereJ, which follows the chains of bound variables,

would get caught in the obvious cycle in this case. Because of the problem with cy-

cles, the matching routine on encountering a variable always checks if the image of the

variable in the current substitution is the variable itself; if it is, no action is performed.

This check, we believe, is analogous to the check for markings of nodes during traversals

in our evaluation strategy. The checks are not an artifact of our evaluation strategy

but they also exist in other implementations, presented in a different way. We can note

that in the example of logic programming implementations we considered, the checks

whether a variable is replaced by itself are performed on every match; in contrast, the

corresponding checks in our strategy are performed only when the nodes are needed,

Le., when the bindings for variables are demanded. The checks are performed for the

whole aggregate graph representing all bindings for a (existential) variable. In effect this

enables our strategy to delay the checks for markings as long as the other computations.

It should be mentioned that other cyclicity checks do appear in logic programming

in the form of the occurs check. The goal of the occurs check is to establish whether

a variable is unified with a term having the variable as a subterm. There is no finite

solution in the case this is true. Most implementations simply omit occurs check for the

sake of efficiency. The implementations that do include it usually produce a failure in

case the occurs check is true. However, there have been proposals in which unification

succeeds in case the occurs check is true; the solution is assumed to be an infinite term.



Chapter 5

Code generation

The principal idea behind the research presented in this dissertation has been to demon-

strate that logic programs can be translated to equations which can be viewed as func-

tional programs. In Chapter 2 we saw how to perform this translation. In Chapter 3 a

semantics for logic programs was presented in an indirect way by giving semantics to the

target language for the translation. We have seen that this semantics is strongly based

on the semantics for functional languages, in particular LML [Aug87].. We consider it

no surprise that the implementation of the evaluator is very strongly related to imple-

mentations of functional languages, and LML in particular. In fact, we will see that the

code generation is a simple modification of the code generation for LML. We think the

simplicity of the modification is further evidence to support the main idea that logic

programs can be viewed as functional programs.

5.1 Implementation

The implementation is based on Johnsson's and Augustsson's implementation of LML

[Joh87b, Aug87]. The underlying technique is called graph reduction. Expressions in

the language are represented by graphs, and the process of reduction is performed by

transforming the graphs. The transformations are performed by sequences of code for

an abstract machine, called the G-machine [Joh87b]. The G-machine was originally

developed by Thomas Johnssonj we use a modified version due to Kieburtz [Kie85].
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5.2 The G-machine

A state of the G-machine can be represented by a sextuple (C,P, V,G,E,D) where

. C is the code sequencethat is currently being executed.

. P is the stack holding pointers to the representations of graphs in the memory.

. V is the stack for holding basic values; in our case it is used only for intermediate

storage of constructor numbers.

. G is the graph consisting of all graphs built during the computation.

. E is the mapping of function names to function descriptors, which contain ad-

dresses of the code for the functions. In the G-machine, descriptors also contain

information about the arity of a function, but since all functions in translation are

unary, this information is not needed in our case.

. D is the dump stack which contains return addresses from function calls; elements

of D are pairs consisting of:

- a (pointer to a) code sequence; it can be viewed as the return address from a

function call

- a stack of node pointers; it can be viewed as the stack before the function call

5.2.1 G-machine nodes

G-machine nodes have one of the following forms:

. BASIC n-a node representing a basic constant n. Basic constants can be in-

tegers, booleans or characters; in our case integer nodes will suffice for machine

representation of constructors

. PR no nl-a node representing a pair of nodes

. PRI v n-a node representing a constructor; v is the constructor number and n is

a node representing arguments of the constructor
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. APP f x-a node representing a suspended application; f is the function descriptor

node (representing a function to be applied) and x is a node representing the

argument of the application

. HOLE-a freshly a.llocated node distinct from a.ll other nodes; this form is used

for construction of cyclic graphs used for representation of recursion constructs

5.3 Transition rules

The actions of G-machine instructions are specified by the state transition rules of the

abstract machine. Rules have the form

P=?N

where P is the machine state before the execution of a G-machine instruction and N is

the state after the instruction has been executed. The current instruction, the definition

of which is given by the transition rule, is at the beginning of the code sequence. The

rules for instructions in the compilation schemes are given below:
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(COPYPk.c,no .nk.r,V,G,E, D) => (c,nk.nO .nk.r,V,G,E, D)

(MOVEPk.c,no.nt .nk.nk+1.r,V,G,E, D) => (c,nt .nk.no.r,V,G,E, D)

(POP.c,n.r,V,G,E,D) => (c,r,V,G,E,D)

(ROTP k.c,no .nk_t.nk.nk+1.r,V,G,E, D) => (c,nk.nO .nk-t.nk+1.r,V,G,E,D)

(FST.c,n.r,V,G[n= PR no nt],E,D) => (c,no.r,V,G,E,D)

(SND.c,n.r,V,G[n= PR no nt],E, D) => (c,nt.r, V,G,E, D)

(MK-APP.c,no.nt.r,V,G,E,D) => (c,n.r,V,G[n= APP nt n2],E,D)

(MKJ>R.c,no.nt.r,V,G,E,D) => (c,n.r,V,G[n= PR nt n2],E,D)

(ALLOC.c,p,V,G,E,D) => (c,n.p,V,G[n= HOLE],E,D)

(MK_VLPR.c,no.r,m.v,G,E,D) => (c,n.r,v,G[n = PR1 m no],E,D)

(UPDATEk.c,no.nt .nk.r,V,G[no= No,nk = Nk],E, D)

=> (c,nt .nk.r,V,G[no= No,nk = No],E, D)

(PUSHCONSTn.c,P, V,G,E,D)

(GET-BYTEk.c,P, V,G,E,D)

=> (c,n.P,V,G,E,D)

=> (c,P,k.V,G,E,D)

(EVAL.c,n.r,V,G[n= APP f x],E[f = cJ],D) => (cJ,x.n.[],V,G,E,(c,r).D)
otherwise

(EVAL.c,P, V,G,E,D)

(RET.c,n.r, V,G,E,(Cr,p).D)

=> (c,P, V,G,E,D)

=> (cr,n.p,V,G,E,D)

The most important instruction of the machine is EVAL. It is used for evaluation of

nodes. The very first action of EVAL is to examine the node on the top of the stack.

There are two possible cases:

. A node is an APP node representing an application of a function. In this case

EVAL initiates a jump to the code for the function, with arguments on the top of

the stack. The current code address and the state of the stack are saved on the

dump stack.



123

. Otherwise, the node is already evaluated an no action is performed.

The return form the evaluation sequence is performed by RET. Of the remaining instruc-

tions, COPYP, MOVEP, ROTP, and POP are used for stack manipulations; ALLOC,

MK-APP, MK_PR and MK_VLPR are used for allocating and creating new nodes; FST

and SND are projections; PUSHCONST and GET-BYTE are used for pushing pointer

constants and numerical constants onto the P- and V-stacks, respectively. Finally, UP-

DATE is used for updating nodes.

5.4 Compilation schemes

The code sequences that transform graphs are compiled from expressions in the language.

The code generation algorithm for the language consists of several compilation schemes.

Each scheme has two arguments: the environment which is a mapping of variables to

numbers indicating their relative depths in the stack, and a number indicating the current

depth of the stack. There are three main schemes:

. E scheme-compiles code to evaluate an expression in graph form and leave the

result on top of the stack

. C scheme-compiles code to construct a graph for an expression and leave a pointer

to the graph on the top of the stack

. :Fscheme-compile a function definition

E scheme-evaluate expression:
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C scheme-construct graph:

£ [c] r n = PUSHCONST c

£ [J] r n = PUSHCONST f

£ [x] r n = COPYP (n - r(x»; EVAL

£ [C(tl,...,tk)] r n = C [tk] r n;

C [tk-l] r (n + 1); MK.J>R;

.

C [tl] r (n + 1); MK_PR;

GETJJYTE c; MK_V1.J>R

£ [(tl,...,tk)] r n = C [tk] r n;

C [tk-l] r (n + 1); MK.J>R;

C [tl] r (n + 1); MK_PR

£ [let D in M] r n = C'et[D] r n; £ [M] r' n';

MOVEP (n' - n - 1); POP (n' - n - 1)

where r', n' = X [D] r n

£ [lrec x = D in M] r n = C'rec[D] r n; £ [M] r' n';

MOVEP (n' - n - 1); POP (n' - n - 1)

where r', n' = X [D] r n

£ [M N] r n = C [M N] r n; EVAL
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C [c] r n

C [I] r n

C [x] r n

= PUSHCONST c

= PUSHCONST1

= COPYP(n - r(x»

C[C(tI,...,tk)]rn = C[tk]rnj

C [tk-l] r (n + l)j MK_PRj

C [tl] r (n + l)j MK_PRj

GET-BYTE Cj MK_VL.PR

C [(tI,...,tk)] r n = C [tk] r nj

C [tk-l] r (n + l)j MK-PRj

C [let D in M] r n = Clet [D] r nj C [M] r/ n/j

MOVEP (n/ - n - l)j POP (n/ - n - 1)

where r/, n/ = X [D] r n

C [lrec x = D in M] r n = Clrec [D] r nj C [M] r/ n/j

MOVEP (n/ - n - l)j POP (n/ - n - 1)

where r/,n/ = X [D] r n

C [M N] T n = C [M] r nj C [N] T (n + 1); MKAPP

:F scheme-function definition:

i-I

:F [1I"i] = SNDj .~.SND'j FST

:F [I x = el 11...11 x = ek] =
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L1: E [el] r 1; save (@,L2,x) in choices; UPDATE 1; RET

Lk: E [ek] r 1; save (@,Lk+bX) in choices; UPDATE 1; RET

Lk+1 : PUSHCONST FAIL; UPDATE 2; POP; RET

The tuples with arity greater than two are represented by nested pairs. The code se-

quence "save (@,Li, x)" in the F-scheme stands for the code to create a choice point

and put it in the front of the current list of choice points (called choices). Recall that a

choice point is a triple consisting of:

. a pointer to a redex (designated by @)

. a function corresponding to an equation in a function definition; this function is

represented by a code pointer Li

. the argument

The actual sequence is

PUSHCONST choices; ALLOC;

PUSHCONST choices; UPDATE 1; - create a new node for choices

COPYP 2; PUSHCONST Li; MK_PR;

COPYP 4; MKJ>R; - create a new choice point

MKJ>R; UPDATE 1; POP - update the new list and pop it

Miscellaneous schemes:
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X [Xl = el and.. .and Xk = ek] r n = (r[xI 1-+n + 1,...,Xk 1-+ n + k],n + k)

Clet [Xl = el and.. .and Xk = ek] r n = C[el] r n;.. .,C[ek] r (n + k -1)

k
~

Clrec [Xl = el and...and Xk = ek] r n = ALLOC;...;ALLOC;'

Ct[el] r n; UPDATE k. . .,

Ct[ek] r (n + k - 1); UPDATE 1

Ct [M] r n = PUSHCONST mark; C [M] r (n + 1); MK-APP

Of particular interest is the code compiled for lrec expressions; they are handled by the

auxiliary scheme Ct. Since lrec is a recursion construct, the representation of the value

recursively defined by this construct is a cyclic graph. This technique is the common way

of handling recursion constructs in functional languages [Joh87b, PJ87]. However, there

is an important difference. In our case the meaning of a value defined by lrec is not the

least fixpoint fix F = UFi(.l) but the fixpoint computed by starting the computation

from SW: lfix F = limi_ooFi(SW). The initialization of the starting value to SW

is performed by the pseudo-function mark; it is not a function because it performs the

initialization by a side effect. Consider a declaration of a recursively defined value x

lrec x =M

The code compiled is the same as the code produced for

rec X = mark M

When the code for mark is executed, it performs the following:

. update the redex to SW

. evaluate the argument, in this instance M

. after the argument has been evaluated, the redex is restored to its original form
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Since the redex is initialized to SW, the right hand expression M will be evaluated in

an environment in which x is bound to SW. This situation is exactly what we expect

according to the operational semantics. After the result has been returned, the redex

is restored to its original form. In case the result is a failure, the original graph is

updated according to the information in the most recent choice point and the expression

is reevaluated.

Definitions of pseudo-functions:

:F [markD = PUSHCONST SW; UPDATE 2;

COPYP 0; EVAL;

ROTP 1; PUSHCONST tr; MK-APP; UPDATE 2;

MOVEP 0; RET

:F [upd-cpD = MOVEP 2; MK-APP; UPDATE 1; RET

5.4.1 The basis for the code generation

We have seen in this chapter how to generate code for our language. The underlying

abstract machine is a conventional machine for execution of lazy functional languages.

However, the most important point is that the code generation algorithm has been

obtained by a simple modification of a well known algorithm for generating code for

lazy functional languages. Instead of the G-machine and LML, we could have used

another algorithm and the basic principles would be the same. The evaluation of the lree

recursive construct is performed by initializing the redex to SW during the evaluation

of lree expressions. The initialization step is very simple since it consists of updating a

single node with SW. We have also seen that additional code has been added for handling

of choice points. This code is needed for implementing the search strategy. The strategy

we have used is rather straightforward. It can be viewed as a simple adaptation of

standard concepts in implementations of search procedures. It is certainly possible to

adopt other alternatives. The point is that the main contribution of our approach is in
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the process of computing bindings for a given derivation tree.

There is another point that should be mentioned. In Chapter 4 we saw a traversal

algorithm that employs markings of nodes for detection of cycles. In the algorithm, every

EQC node had to be marked during the traversal. In the code generation algorithm

presented in this Chapter, the marking is performed by the pseudo-function mark. Its

applications are inserted by the compiler precisely at the occurrences of lree expressions.

Furthermore, the code is not only performing the marking but also the restoring of the

redexes after the evaluation. The benefit of this strategy is that there is no need for a

separate structure to keep track of marked nodes; the markings and restorings of redexes

are performed simultaneously with the evaluation.

In a way, it is possible to look at the process of computation from the object-oriented

point of view. Each lree expression can be viewed as an object that knows how to "pre-

pare" itself for evaluation, by initializing its redex to SW. The demand-driven evaluation

ensures that the objects are evaluated as needed.



Chapter 6

Propagatingbindings

This chapter considers a different problem that nevertheless illustrates issues in modeling

effects of logical variables in functional languages. We want to model the bidirectional

flow of information in logic programs. The goal is to make sure that potential bindings

for logical variables are propagated correctly without checking for their consistency. The

example we considered in Section 2.1 is a good illustration:

p(X, Z): -q(X, Y), r(Y, Z).

q(X,X).

r(X, X).

The translation is

Fp Xin Zin = let rec Xout,Youtq = Fq Xin Y

and Youtr,Zout = Fr Y Zin

and Y = eqc YoutqYoutr

in Xout, Zout

Fq Xinl Xinf = let Xnt = eqc Xinl Xinf in Xout, Xout

Fr Xinl Xinf = let Xout = eqc Xinl Xinf in XouhXout

130
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Imagine that we want to try two different goals: either p(X,a) or p(a,X), where a is

some ground constant. Now, as we have seen in our example program, all logical vari-

ables are identified and consequently we expect that the answer substitution will bind

the logical variable X to the constant a in both cases. In other words, we expect that the

binding for X is correctly propagated in both cases. It is important to emphasize that

the set of equations corresponding to the program remains the same; the only change is

in the translation of the goal. What is interesting in this case is that we can exhibit a set

of equations that has a solution in the usual domains for functional languages. In other

words, we can submit it to a functional evaluator and it will perform the propagation of

bindings correctly. Note that there are no special functions used for traversal of cyclic

graphs in this case.

The basic idea is simple. We can consider the translation of predicates q and r, which,

in essence, specifies that their arguments should be unified. Consider the previous trans-

lation:

Fq Xinl Xinf = let Xout = eqc Xinl Xinf In Xout, Xout

Since we do not want to check for consistency of bindings but just want to make sure

their propagation is performed correctly, the arguments can simply be exchanged:

The arguments can be thought of as bindings for the variables. The (input) binding of

each variable is returned as the output binding of the other one. This way, if any of

the variables is given a binding in the program, it will be made available to the other

variable, with which it is to be unified. This "switching" is performed whenever two

variables are unified. Obviously, the function eqc is not needed any more. The transla-

tion of the program has changed slightly:
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The eqc test on two occurrences of the logical variable Y is no longer present. Instead,

the corresponding bindings are simply exchanged. Note that the bindings for the occur-

rences of Y (Youtqand Youtr) are still defined recursively. As for the goal, the translation

ofp(X,a) is:

let rec x, a = Fp x a in x

while p(a,X) is translated as:

let rec a, x = Fp a x in x

Again, note that bindings for all variables in the goal are recursively defined.

To see that this system of equations can be solved by the rewriting engine of a conven-

tionallazy functional evaluator, we can follow the sequence of rewritings specified by the

equations step by step. For instance if the goal is p(X, a) then its translation after the

reduction of Fp is:

let rec x, a =

let rec Xout, Youtq = Fq X Youtr

and Youtr, Zout = Fr Youtq a

in x out, Zout

in x

The equations containing applications of Fq and Fr can be further reduced according to

Fp Xin Zin = let rec Xout, Youtq = Fq Xin Youtr

and Youtr , Zout = Fr Youtq Zin

in x out, Zout
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their definitions. We arrive at the following set of equations:

let rec x, a =

let rec XouhYoutq = Youtr,x

and YoutnZout = a, Youtq

in x out, Zout

in x

This set of equations can be solved now. We are looking for the value of identifier x.

From the equations above, it is clear that x = Xout. Continuing, we have Xout = Youtr.

Fina.lly, Youtr = a and the solution is x = a. The important thing to realize here is

that this set of equations can be solved by a functional evaluator. Indeed, at every step,

reduction proceeds by simply replacing every identifier in the right hand side of an equa-

tion by its definition. In a similar way, we can verify that the equations can be solved

for the other goal p( a, X) as well. Note that the only thing which has changed is the

translation of the goal; the rest of the program is the same. Here is the translation of

the goal:

let rec a, x = Fp a x in x

After the reduction of Fp the result is:

let rec a, X =
let rec Xout,Youtq = Fq a Youtr

and Youtr,Zout = Fr YoutqX

in Xout, Zout

in x

Proceeding with the reductions the same way as before, we reduce applications of Fq

and Fr obtaining the following:
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let rec a,x =

let rec Xout,Youtq = Youtr,a

and YoutnZout = x, Youtq

in xout,Zout

in x

From these equations, we see that x = Zout. Reducing further, Zout = Youtq,and after

one more step Youtq= a. The solution is x = a.

The interesting point about the example above is that it shows that it is possible to

translate a logic program to a functional program that will work for different directions

of the flow of information. When the goal is p(X,a), it is clear that the first argument

of the predicate p is in output mode, since we are looking for a binding of the logical

variable X. The second argument is clearly in input mode. When the goal is p(a,X),

the roles are reversed. This property of logic programs, the possibility of different direc-

tions of the flow of information, is one of their essential features. Reddy and others have

claimed that this effect is not achievable in functional languages because in a functional

program there is a clear distinction between outputs and inputs [Red86]. However the

example above serves to illustrate that such effects are possible in functional languages.

In the examples considered, all variables in the final solution have ground bindings.

This situation is what we intuitively expect, since the logic program in essence unifies

all variables and the constant a is essentially propagated to all positions. But what if

there is no ground binding in the entire program? Looking at the equations more closely,

it is clear that the functional program will loop. Basically, as the reduction proceeds,

identifiers are being replaced with each other, but this process never terminates because

there are no ground bindings to terminate the reduction. In other words, informally

speaking, the meaning of an unbound logical variable in the final solution is divergence

(.1). If there is a ground binding, the equations ensure that corresponding identifiers

will be reduced to it, terminating the reduction.
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6.1 Checking consistency

The above example is limited in that it performs only the propagation of bindings and

it does not provide for any checks of their consistency. Clearly we would like to enhance

our method so it can perform the necessary checks as well. We can try our simple

example again to perhaps give us some insight into how to solve this problem. Consider

the goal p( a, b), where a and b are some constants. Intuitively, we know that the logic

program with this goal should fail since all variables are unified and an attempt to unify

a and b fails because they are different constants. The functional program produced by

translation does not check for consistency, but what if we run it anyway? The goal is

translated to:

If we reduce this program, the solution weobtain is 81= b,82 =a. Aninterestingthing

happens here. We can think of this program as specifying that a and b are passed as

input bindings for arguments of the predicate p. In the logic program we expect these

bindings to remain the same throughout the execution. But in the functional program

the bindings returned are different. In a way, the program still performed what we

wanted. It propagated each binding to all other positions. At this point an idea comes

naturally to mind. It can be easily checked in the translation of the goal if the bindings

returned agree with the bindings passed in. Obviously they always should. If they do

not, the program should fail. So the goal can be translated to:

let 8},82 = Fp a b in

if 81,82= a, b then a, b else fail
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6.1.1 Integrating propagation and checking of bindings

We have seen that, in essence, the idea is to perform the propagation of the bindings

to all positions in the program that are unified. After we are sure that all bindings

have propagated correctly, then we can perform the checks. This entire process can

be performed if we use two inherited and synthesized attributes per position instead of

a single one. Intuitively, one pair of inherited and synthesized attributes are used for

propagation. The second inherited attribute is used for propagation of final bindings.

It is important to emphasize this point; the second inherited attribute will always be

bound to a ground binding, provided one exists among all positions that are unified.

The consequence is that it will be safe to evaluate this position, so the corresponding

function will be strict in this position. The second synthesized attribute is used for the

final result, Le., the results of checking the final bindings for consistency.

6.1.2 An example

We are going to consider a simple example which illustrates the process described above.

Consider a simple logic program consisting of a single fact:

choose([XIT],X, T).

We present a function produced from it, following the description of the translation:

Fch (ill, i21) (i12, i22) (iI3, i23) =

(iI2.iI3, hl.tl), (hd in, hI)' (tl in, tl)

where hI, tl =

case i21 in

o : fail

II i2n.i212 : if (i2ll = i22) & (i212 = i23) then i22, i23 else fail

end
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Let us analyze this program more closely. First, the program is a definition of the

function Fch' The function takes three pairs as arguments. These pairs correspond to

inherited attributes. It returns a triple of pairs, each pair corresponding to a pair of

synthesized attributes. The first components of the pairs of inherited attributes (ill, i12

and i13) are used for propagating the bindings. Note that they are used for propagation

only. In particular, no checks are performed on them. The propagation is performed

in a way analogous to the process described in the previous section. Because there

are multiple occurrences of logical variables X and T, the corresponding positions are

unified. The consequence is that we need to switch the bindings between these positions.

This situation is reflected in the first component of the first pair in the output triple,

which is i12.i13. We can see that this value is a list, the head being obtained from the

inherited attribute corresponding to the other occurrence of variable X. Its tail is defined

similarly by a value from the other position of the logical variable T. It is clear now

that the values obtained from the first argument are passed to the second and third. In

particular, the head of the corresponding list is returned as the first synthesized attribute

for the second argument and the tail is returned as the first synthesized attribute for the

third attribute. Intuitively, we can think of this switching as making a binding available

to another occurrence of a logical variable.

The second components of input arguments (i217i22 and i23) correspond to the sec-

ond inherited attribute of the respective positions. It is safe to check these values for

consistency, since they represent the values obtained after possible bindings are propa-

gated to all positions. In the program above, this situation is reflected in the fact that

the code is strict in values i21, i22 and i23, i.e they are evaluated for checking. There are

three checks we need to perform:

. Verify that the first argument is indeed a non-empty list. not D.
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. If the first argument is a non-empty list, we need to check that its head is equal to

the second argument. The reason is because the same logical variable X occurs at

corresponding positions.

. Similarly, the tail of the first argument has to be equal to the third argument.

If any of these checks fail, the whole program fails. If they succeed, the corresponding

(common) values are returned as final results. Now let us look at an example of a goal:

: -choose([11[2]], 1,X).

Its translation is:

We see that the first and the second argument are in input mode and the third one is in

output mode. The first inherited attribute for the first argument of Fch is consequently

1.[2] and the first inherited attribute for the second argument is 1. The third argument

is in output mode and the value passed as the corresponding first inherited attribute is

831, which is recursively defined. The values for the second inherited position for the

first and the second argument of Fch are also recursively defined. Recall that the way

the program is supposed to work is that all possible bindings are propagated through the

first inherited and synthesized attributes. The values returned as the first synthesized

attributes by Fch (S11,821and S31) are then passed as second inherited attributes. The

second inherited attributes are supposed to have values equal to final bindings (after

the entire propagation). We know that at the level of the goal, the first synthesized

attributes will be equal to the result of the entire propagation, and these values are

simply passed in again as second inherited arguments. Finally the result of the entire

program is obtained from the second synthesized attributes returned by Fch.
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Using this translation, we can obtain translations of various goals. For instance, if

the goal is:

: -choose(X, 1, [2]).

The corresponding translation is:

It should be emphasized that these programs are purely functional programs that can be

solved by a (lazy) functional evaluator. They exhibit different directions of information

flow, since any of the arguments can be used in either input or output mode. The

essential point is that the translation of the fact representing the program is fixed. The

translations of the goal change as the goal changes.

6.1.3 Incompleteness of the translation

Unfortunately, the strategy described above does not work for a.lllogic programs. To see

what goes wrong, it is enough to consider a simple example:

p(X,X).

: -p(X,X).

The problem is that there are two unifications of the same variable. Focusing only on

the aspect of propagation of bindings, we expect the translation of the fact p(X, X) to

be:
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The translation of the goal is:

After one reduction step, we get that Xl = Xl and X2 = X2. We have two distinct values

Xl and X2, which is not what we expect. There should be only one value since the

variables in the logic program are unified. Note that we would get correct translation if

the switching of arguments is performed in either the translation of the goal or in the

translation of the fact but not in both. For instance if the goal is translated as:

In this case we get Xl = X2 and X2 = Xl. The values are clearly identified. The problem

really is in the fact that additional switching causes the break in the propagation of the

recursively defined bindings. It is essential that bindings are propagated to all positions.

They always will be in the case the switching is performed exactly once.

6.2 Relationship with Linear Logic

We have seen in the preceding sections that the essential problem is how to propagate

bindings to all occurrences of variables that are unified. The process of propagation

can be illustrated graphically. The propagation of output components is represented

by arrows directed bottom-up; the propagation of arguments is represented by arrows

directed top-down. Consider the following example:

p(Z, Z).

: -p(X, Y).

The process of propagation is illustrated in Figure 6.1. Note that variables X and Y

in the fact are unified because of occurrences of variable Y in the goal. In fact, all
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p( X , Y)

p(z , z )

~
Figure 6.1: A graphical illustration of propagation

variables are unified. ITwe follow the arrows in the Figure, it is easy to see that the path

specified by the arrows passes through every position in the tree. Had we had a constant

instead of X or Y, it would have been propagated to the other position. Also if we had

a fact p(X, X) instead of p(X, Y), the switching would have been performed twice and

the path would not pass through every position in the tree. We can see that the key

is that the switchings are performed so the paths created are of maximum length. The

intuition about the paths of maximum length is important for understanding of possible

generalizations of our scheme to programs with multiple (more than two) occurrences of

variables. In all of the previous discussions we considered only cases in which there can

be at most two occurrences of a variable. What about the example below?

p(Z, Z, Z).

: -p(X,X,X).

There are three occurrences of a variable, both in the fact and in the goal. The key again

is the intuition about paths of maximum lengths. We can consider initially a situation
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in which we view all variables as distinct, and no "switchings" are performed. Clearly,

there is no single paths of maximum length, since there are three disjoint paths. ITwe

start identifying variables, a pair at a time, the paths are going to be merged. It is

clear that there always exists a combination of "switchings" such that we get a path of

maximum length. The main problem is in determining which "switchings" should be

performed and which should not. It is interesting to note that the requirement for the

maximum lengths resembles very closely to the "long trip" condition for the "proof nets"

in Linear Logic of J. Y. Girard [Gir87]. Proof nets can be viewed as a generalization of

the formal notion of proof in Mathematical Logic. They are used for interpretation of

proofs in Linear Logic. The relationship to proof nets seems to be a promising topic for

further research.



Chapter 7

Related work and conclusion

7.1 Related work

The connection between attribute grammars and logic programming has been investi-

gated previously [DM85]. It has been shown there is a close relationship between the

two. This connection is not very surprising considering the similarities in structure of

Horn clauses in logic programs and productions in attribute grammars. One of the main

results is that for every logic program there is a semantically equivalent attribute gram-

mar and vice versa. However it is important to note that this equivalence is established

at the declarative level-the attribute grammar corresponding to a logic program has to

exist but it is constructed using the information that can be obtained only by running

the logic program. What is needed, in essence, is information about the direction of

propagation of bindings for logical variables in logic programs; it is necessary to know

which variables are in input mode and which are in output mode. This information

is needed to determine which attributes are synthesized and which are inherited. The

consequence of the fact that the relationship is established only at the declarative level

is that that we cannot use it as a basis for computation of logic programs. In case

some information about input-output splitting is known, it is possible to use attribute

grammar evaluators to evaluate logic programs [DM85, AFZ88]. But the common point

about these approaches is that attribute evaluators can be used only for a restricted

class of logic programs. Our approach is fundamentally different since it demonstrates

a translation of unrestricted logic programs to sets of equations that can be viewed as a
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functional program.

Our approach has been inspired by the work on implementation of attribute gram-

mars in lazy functional languages [Joh87a). One of the motivations in that work was to

present a technique for eliminating multiple traversals of data in functional programs in

a systematic way-it turned out that attribute grammars presented a very nice frame-

work for this problem. The techniques for eliminating multiple traversals from functional

programs were investigated previously [Bir84). However, those techniques were not pre-

sented in a systematic way-the transformations relied on programmer's intuition. The

most important feature in both approaches was the use of recursively defined data def-

initions. In Johnsson's work recursive definitions were used for definitions of attribute

values in top-level production. In our approach the values of existential variables are de-

fined recursively. However, no connection to logic programming was made in Johnsson's

approach. In fact, there is still a need to determine inputs and outputs in order to define

synthesized and inherited arguments. The idea that both inherited and synthesized at-

tributes should be provided for arguments which can be in arbitrary mode (either input

or output) is one of the principal inspirations for this research.

Fixpoints are standard means of giving (operational) semantics of logic languages

[KvE76). The essential idea is that the set of all facts implied by a logic program is a

fixpoint of the "immediate consequence" operator Tp. Each application of Tp adds to

the current set of facts all facts that can be shown to be implied by a resolution with

a single clause. Each application might add some new facts that are not present in the

current set; the set of all facts implied by the program is obtained by iterating Tp to

infinity. The result is a least fixpoint of Tp. There have been other applications of

fixpoints to semantics of logic programs [GGdM89). One way to view these approaches

is by looking at fixpoints as the semantics of mutually recursive predicates. In a logic

program, there are no restrictions on occurrences of predicates in bodies for their clauses

and bodies of clauses for other predicates. The consequence is that predicates are in

general mutually recursive. In our approach this situation is reflected in the fact that

functions Fp corresponding to predicates can be defined recursively. In consequence, the
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usual rec construct is needed in the target language. Our approach differs fundamentally

from the others in that fixpoints are used for computation of bindings for variables. In

this case, the solution is not obtained by least fixpoints but as a limit of iteration starting

from SW. In essence, the fixpoint semantics is used for interpreting sharing of bindings

between variables.

7.2 Conclusion

The main contribution of this dissertation is showing how to translate logic programs to

sets of equations that can be viewed as functional programs. The programs produced by

the translation do not contain any interpretation of variables-all variables are treated

functionally. This feature distinguishes our approach from the previous proposals in

a fundamental way. The main reason the variables have been interpreted is because

it is believed that such treatment is necessary to achieve effects of logical variables in

functional programs. We believe that this dissertation demonstrates that such effects

are achievable in functional languages.

Semantics of SLD-resolution plays a prominent role in logic programming [Apt90].

This semantics requires standardization apart, which is simply a process of renaming

different instances of program clauses with different variables. It is necessary to have

this requirement to prevent name clashes. Since the need for fresh variables is a part

of the resolution semantics for logic programs, this issue also plays a prominent role in

operational semantics as well. In ~act, most of the complexity involved in the implemen-

tation of logic programs is due exactly to ensuring that bindings for variables are handled

correctly. For instance, there are two basic mechanisms for generating new instances of

clauses [MW88]:

. copyon use-new instances are generated by creating new copies of clauses con-

taining fresh variables.

. structure sharing-a common template of a program clause is kept and new
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instances are generated by packaging this template with a substitution which re-

names variables in the clause to fresh ones; the benefit of this approach is that

templates can be shared across different instances.

But in both of these mechanisms there is a need to create new variables for each new

instance of a clause. In contrast to the treatment of variables in logic programs, the

treatment of variables in functional programs is completely different. The problem of

name clashes is also present in A-calculus. There are various solutions to this problem.

A particularly elegant one is provided by combinators, which does away with variables

in programs altogether. The common point of these approaches is that in functional

languages variables can be treated simply as placeholders for values, or, to be more

precise, terms without any variables themselves. This difference becomes clearer if we

compare unification and pattern matching; both are instances of the same problem. The

difference between them is that in pattern matching only one of the terms can have

variables. As a direct consequence, the mechanism for handling variables in functional

languages is simpler and more efficient. Indeed, most optimizations of logic programs

rely on replacing unification by pattern matching whenever possible. This analysis might

lead one to believe that there is an inherent difference in nature of variables in logic and

functional programming languages. To the author's knowledge, there have been no

attempts to approach the treatment of variables in logic programs from the point of

view of functional programming. In fact, there have been claims that effects achieved

by logical variables in logic programs are not achievable in functional programs and that

(first-order) functional programs are less expressive than logic programs [Red86]. Our

work shows that this is not the case by exhibiting a translation from logic programs to sets

of equations which can be viewed as functional programs. The important point is that in

the equations produced by the translation there are no notions of separate representations

of variables-there are only values. There is a need for a special recursive construct

(lrec), which nevertheless is used for definitions of values. The direct consequence of the

translation is that variables are treated in functional way.

The fact that the equations produced by the translation define values is the main
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reason they are considered functional programs. The equations are indeed syntactically

valid functional programs; they can be submitted to a lazy functional evaluator. How-

ever, we saw that the solutions we are interested in are not the least ones. They are

computed by fixpoint iteration from a new value SW in the domain. The fact that the

domain is modified by adding a single value is another reason why we view the equations

as functional programs. The semantics is still defined in terms of functions over values,

just like in conventional functional languages. The code generation algorithm provides

further evidence of the functional nature of the equations produced by the translation.

The algorithm is obtained by a very simple modification of a functional algorithm.

It should be said that the functional programs produced by the translation are first-

order. Use of higher-order functions is often considered to be an essential feature of

functional programming. One might ask what is the basic reason to view equations

produced by translation as functional programs. We have seen that the treatment of

variables is one feature that supports this view. But the fundamental reason is because

the equations are directed. In contrast, equations in unification are undirected. The

undirected nature of equations in unification is the source of its great expressive power-

it is possible to have effects exhibiting bidirectional flow of information. But we have

shown that these effects can also be achieved with directed equations by use of a recursive

construct.

The translation essentially does not affect completeness properties of logic programs.

It is well known that the completeness relies on the search strategy; there is a tradeoff

between depth-first strategy, which is incomplete but efficient, and breadth-first, which is

complete but less efficient. The same tradeoff exists for the functional programs produced

by the translation. It is possible to define search strategies corresponding to depth-first

and breadth-first.

We saw in Chapter 3 that a new distinguished value was added to the domain. There

are indications that this addition is not absolutely necessary; ideas how to approach the

problem in functional languages without changing the domain have been presented in

Chapter 6.
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Another point of interest is the recursive construct lrec itself; the semantics for it

exhibits a natural model for which least fixpoints are not adequate. To understand why,

we should realize that the least element 1. denotes nontermination. The least element

SW in the ordering of terms does not denote nontermination but simply lack of a ground

binding for a variable.

7.3 Future work

There are many interesting issues raised by this research that merit further investigation:

. Efficient implementation of logic languages-the idea is to use techniques

for efficient compilation of pattern matching from functional languages and apply

them to evaluators for logic languages. From this point view, we can implement

evaluators for logic languages by translating logic programs and evaluating the

translated programs by modified functional evaluators.

. Integration of logic and functional languages-it almost goes without saying

that we believe our work is relevant to languages that integrate logic and functions.

The integration can be achieved by translating the logic part and viewing the result

as a functional program.

. Achieving effects of logical variables in functional programs-in Chap-

ter 6 we have seen how certain effects achievable by use of logical variables in

logic programs can be realized in functional programs. These techniques can be

generalized and we can define a methodology for translation of logic programs to

functional programs. The effect of the most interest in this case is bidirectional

flow of information by the propagation of bindings.

. Relationship with Linear Logic-it would be interesting to further investigate

the connection to Linear Logic mentioned in Chapter 6.

. Partial evaluation-it is generally believed that, given a logic program, there

are several functional programs corresponding to the uses of logic program with
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different modes oflogical variables. It is not known what is the relationship between

these functional programs. We believe that our framework indicates a direction how

to solve this problem. The idea is that the different functional versions are produced

by partially evaluating the functional program produced by our translation.

. Semantical considerations-it would be interesting to further investigate the

domains such as the one presented in Chapter 3. For instance, one interesting

problem is the nature of limits involved in the definition of lfix. We demonstrated

that they always exist for translations of logic programs but in the general case

the question is open. In general, we would like to gain a better understanding of

ramifications of the introduction of SW into the domain.

. Relationship with the work on type theory-we think it is quite clear that

the work on type theory and type inference in functional languages is directly

applicable to our framework. The idea is rather straightforward-one would type

a logic program by translating it to a functional program that can be typed in

conventional ways.
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