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ABSTRACT

STABILITY OF COUPLED

SEMICONDUCTOR DIODE LASERS

David J. Bossert, Ph.D.

Oregon Graduate Institute, 1992

Supervising Professor: Richard K. DeFreez

This dissertation investigates the stability of self and mutually coupled

semiconductor diode lasers. Theoretical analysis is based on coupled rate equa-

tions which follow from time-dependent coupled mode theory, including com-

plex coupling coefficients describing optical interactions between the lasers.

Phase-locking conditions and small signal stability properties are analyzed for

the case of two mutually coupled lasers, including self-coupling. These are

found to be strongly influenced by both the linewidth enhancement parameter 0:

and the phase of the coupling coefficient. A wide locking bandwidth and large

mode suppression are shown to be incompatible due to a non-zero a. Two

different forms of stability are identified.

The model is applied to the cases of one and two diode lasers coupled at a

distance. Systematic experiments have been designed to study the stability of

xvi



these systems as a function of coupling magnitude and phase. Careful spectral

and coherence measurements are compared directly to numerical simulations

from the rate equation model, including nonlinear gain compression and spon-

taneous emission noise. Modes, mode selection and dynamic stability properties

are shown to be well accounted for by the rate equation approach. An accurate

comparison is enabled through independent measurements of the model parame-

ters for the experimental devices. Further, techniques to reliably determine the

level of optical coupling have been developed.

Three distinctive operating regimes are demonstrated with respect to the

coupling magnitude. At low coupling levels, mode selection is governed by

phase stability. While all oscillating modes are stable, phase-locking is found to

be limited by spontaneous emission noise throughout most of this regime.
.

These findings are corroborated through numerical integration of an approxi-

mate form of the rate equations. In contrast, at large coupling levels, mode

selection and dynamic stability are dominated by threshold gain considerations;

where the most stable mode minimizes the population inversion. Here, the

effect of 0: on the stability properties is minimal. Intermediate levels of cou-

piing are characterized by extreme dynamic instability, resulting in spectral

broadening and a near total loss of coherence in the coupled system. This

regime is interpreted as a transition between phase- and gain-dominated modes

of operation, initiated by the system's inability to damp relaxation oscillation<=:.

xvii



1. INTRODUCTION

In the last se~eral years, a great deal of research has been devoted toward

developing systems of optically coupled semiconductor lasers. Much of the

motivation for this effort has been supplied by applications involving coherent

communications. Here, transmission and detection schemes are based upon

coherence properties of the laser emission, offering potentially much larger opti-

cal bandwidths than available from amplitude modulated systems. With this

advantage comes stringent requirements on the linewidth and stability of the

optical source; requirements which are beyond the capability of conventional

Fabry-Perot semiconductor lasers. By properly coupling the output of a single

diode laser to another (possibly passive) resonator, however, a narrow

linewidth1, large side-mode suppression ratio2-7 and dynamic single longitudinal

mode operation8-11 can be achieved.

Optical coupling of semiconductor lasers has also been pursued to increase

output power. While the small size of diode lasers makes them attractive in a

number of applications, this same property limits the available output power

due to catastrophic facet damage12. One way to avoid this limitation is to

phase-lock multiple devices, so that they operate as a single, spatially extended

source. Mutual optical coupling of the individual elements is an attractive, con-

venient method to achieve the desired phase-locking. Numerous schemes have

1
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been attempted, including evanescent field overlap13-17, Y-branching18, 19,

diffraction20-22, leaky-waves23, 24, external cavities25, 26, gratings27, turning mir-

rors28, 29, and combinations thereof30-33. Although each technique has certain

advantages and disadvantages, the ultimate goal is the same: to operate the

array in its fundamental (in-phase) supermode, while insuring maximum

suppression of higher order modes. The result would be a useful single-lobed,

diffraction-limited far-field pattern.

Power outputs rivaling large gas or solid-state lasers are conceivable by

coupling large numbers of diode lasers. To date, over three watts of continuous

power have been obtained from two-dimensional surface-emitting arrays34,

although the overall coherence at such power levels is typically rather poor.

Diffraction-limited power from semiconductor laser arrays is presently sub-

watt35, with fundamental mode operation of only a few hundred milliwatts36.

The challenge of maintaining good coherence between large numbers of sem-

iconductor lasers is a formidable one and is a major impetus for the present

study.

Coupling oscillators for the purpose of spectral mode control, as well as

high power, has by no means been confined to semiconductor lasers. For exam-

ple, following the pioneering work of van der Po137, phase-locking of electrical

oscillators by externally applied signals has been studied heavily since World

War II for applications in microwave communication systems38-41. The

injection-locking technique was quickly applied to gas lasers42-46 shortly after

their invention, and eventually found use with semiconductor lasers47-59.

Injection-locking utilizes a frequency and mode stabilized master oscillator (MO)

to phase-lock one or more slaves. In doing so, the frequency spectrum and
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stability of the slave laser(s) are improved. The master, however, becomes

redundant if the lasers are allowed to mutually couple. In this way, critical opt-

ical isolation and stabilization of the MO can be avoided. Mutual interaction,

however, is found to profoundly affect the stability of phase-locking between

semiconductor lasers, as elucidated in this thesis.

Mutually coupled lasers were first considered theoretically by Spencer and

Lamb60. Stable pp.ase-Iocking was predicted by their semiclassical approach61

as long as the resonance frequencies of the individual lasers were tuned

sufficiently close. This was later experimentally verified62 using two coupled

C02 lasers. In contrast, recent experimental investigations of coherent semicon-

ductor laser arrays have revealed that a number of coupling schemes exhibit

dynamic instability in the nano- and picosecond temporal regimes63. Y-guided

arrays, for example, were found to exhibit severe periodic and quasiperiodic sus-

tained self-pulsations64,65 near the relaxation resonance frequency of the sem-

iconducting gain medium and its harmonics. Linear and two-dimensional

arrays employing evanescent coupling, on the other hand, have shown a variety

of effects from periodic to erratic, possibly chaotic behavior, with power spectra

extending well beyond the relaxation resonance frequency66-68. Such instability

could limit the usefulness of semiconductor laser arrays toward a number of

potential applications, such as free-space communications, where high bit rates

are desirable. In fact, only one instance of stable array operation, from a grat-

ing surface emitting (GSE) device69, has been reported to date. The array was

forced to operate in a single stable array mode, although at the expense of out-

put power, by careful adjustment of current to individual gain sections.
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Instability has also been observed in simpler systems of optically coupled

semiconductor lasers. It is well documented that an injection-locked diode laser

self-pulsates over a large part of its phase-locking bandwidth49,70-72. Further,

delayed self-coupling (or feedback) is known to induce intensity self-pulsations,

followed by an extreme spectral collapse, at moderate coupling levels73-75. In

both cases, instability has been linked to the carrier-dependent refractive index,

which is unique to semiconductor gain media and described by the a parame-

ter76.

Only recently has the stability of mutually coupled semiconductor lasers

been addressed theoretically. Numerical integration of coupled rate equations77,

similar to those of Spencer and Lamb60, has demonstrated that the individual

elements in a nearest-neighbor coupled array can exhibit undamped intensity

spiking, destabilizing the phase-lock. These simulations are in qualitative agree-

ment with some of the behaviors observed in the previously referenced experi-

mental temporal studies of arrays. By calculating a positive Lyapunov

exponent, the unstable time evolution of intensity, in the case of three coupled

lasers, has been identified as a manifestation of spatiotemporal optical

chaos78,79. Small signal analysis of the coupled rate equations80,81 further

predicts unstable operation at all but the weakest or strongest coupling levels.

Instability, in this work, was again associated with amplitude-phase coupling

through the a parameter.

Although a good deal of experimental evidence has been introduced sup-

porting the claim that semiconductor laser arrays are intrinsically unstable, no

direct verification of the coupled rate equation predictions has been accom-

plished. The main reason for this lack of correlation between theory and
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experiment is that observations have been limited to large, complicated array

structures. While dynamics in such structures can be quite interesting, theoreti-

cal simulation is made more difficult due to the large number of nonlinear cou-

pled rate equations to be numerically evaluated. This thesis theoretically and

experimentally examines the phase-locking properties of two mutually coupled

semiconductor lasers. In particular, regimes of stable phase-locking are

identified with respect to the strength and phase of the optical coupling. The

causes of instability are further analyzed. By emphasizing correlation between

theory and experiment, the applicability of the coupled rate equation approach

can also be determined.

The stability of self-coupling also constitutes a sizable portion of this

thesis. There are several reasons for its inclusion. First, self-coupling is an

inherent part of many mutual coupling schemes. Longitudinally coupled lasers,

for example, usually incorporate some sort of feedback, as well as cross-

coupling, mechanism. The effect of self-coupling has been ignored in previous

stability analyses. Further, in more general terms, self-coupling can be con-

sidered the simplest coupled system. Its study, therefore, offers many insights

helpful in understanding higher dimensional systems, as is the case in Chapters

3 and 4. On a very practical level, optical elements in experiments inevitably

feed back some amount of the laser emission to their source. This becomes

especially important in studies of array stability, where outside influences on the

array's operation are obviously undesirable. Characterizing low levels of optical

feedback is thus also in order.

The thesis is organized as follows: Chapter 2 contains a theoretical

development of self and mutually coupled semiconductor lasers based on time-
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dependent coupled mode theory. Coupled rate equations are derived which

include complex coupling coefficients governing optical interactions. Stationary

phase-locking conditions are then determined for two mutually coupled lasers.

Stability boundaries with respect to coupling strength and phase are obtained

from a small signal analysis, and regimes of optimum phase-locking and stabil-

ity are identified. Coupling coefficients for the specific case of longitudinally

coupled lasers separated by a distance are then derived for future use in numer-

ical simulations and comparison to experiment.

Chapters 3 and 4 present the experimental part of this thesis. The former

deals with delayed self-coupling, while the latter investigates two longitudinally

coupled semiconductor lasers. Spectral and coherence measurements are pri-

marily used to characterize the stability of the coupled systems. These are

directly compared to numerical simulations based on the coupled rate equations,

including spontaneous emission noise and nonlinear gain. Mode selection, in

particular, is investigated in both stable and unstable operating regimes. Quan-

tum noise, gain compression and the coupling level and phase are all shown to

have a significant impact on the stability properties of a self or mutually cou-

pled diode laser.

Chapter 5 sums up the main conclusions of this work.
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2. THEORY

This chapter ,introduces the theoretical model used to describe the opera-

tion of mutually coupled lasers throughout this thesis. Since stability of the

coupled system is of primary interest, a time-dependent analysis, based on rate

equations for the complex optical field and population inversion in the laser cav-

ity, is performed.

Rate equations govern the interaction between carriers and photons in a

resonant cavity through spontaneous and stimulated emission processes. In

their simplest form82,83, rate equations merely act as conservation equations for

the number of carriers and photons inside the laser. In this sense they are very

intuitive and can be immediately written in a heuristic manner. In coupled sys-

tems of lasers, however, the phase of the optical field is of the utmost impor-

tance. Derivation of the rate equations must then proceed from more funda-

mental principles. Ultimately, of course, Maxwell's equations will govern the

behavior of the field in the laser cavity. The second-order partial differential

wave equation which follows, however, does not lend itself to solution unless

simplifications can be made. This can be accomplished through a proper

representation of the optical field. Section 2.1 outlines this procedure, which

results in a first-order rate equation for the slowly varying part of the electric

field. The derivation is carried out in order to develop a theoretical framework



8

which can be referenced in later chapters, as well as to point out significant

approximations and assumptions inherent in the often used rate equation

approach.

Section 2.2 discusses approaches to modeling coupled lasers. Coupled rate

equations are shown to follow from the time-dependent wave equation by

expanding the field in terms of the actual eigenmodes of the coupled system of

lasers. Coupling ~oefficients are defined which account for the optical interac-

tion of the fields in each laser. Rate equations for two mutually coupled sem-

iconductor lasers directly follow.

Stationary solutions and phase-locking conditions for mutually coupled

diode lasers are examined in Section 2.3, while the stability of these equilibria is

subsequently analyzed in Section 2.4. The phase of the coupling coefficient is

found to significantly affect the locking range, power and stability of the lasers.

Those coupling phases which promote dynamical stability and optimum phase-

locking are determined. An alternate approach to defining coupling coefficients

for longitudinally coupled lasers is derived in Section 2.5. The coupled rate

equations are shown to progress naturally from a treatment of the coupling

junction as a two-port scattering network. Specific self and cross-coupling

coefficients are found from this analysis for the experimental cases examined in

Chapters 3 and 4.
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2.1 Rate Equations

The electric field E(r, t) in a laser resonator satisfies Maxwell's equations

through the time-dependent wave equation,

(J'e aE--
E c2 ato

(2.1.1)

.
Here P( r, t) is the induced macroscopic polarization of the medium, c is the

speed of light in vacuum, Eo is the permittivity of free-space, and (J'e is an

effective conductivity which accounts for material losses. This form implicitly

assumes that the electric field varies slowly in the transverse y and lateral x

directions, so that V.p = O. Further, scalar quantities are justified, as semicon-

ductor lasers tend to operate in TE modes linearly polarized in the x direction.

The electric field and polarization can be expanded in terms of the resona-

tor eigenmodes Um as

(2.1.2)

1 (- -iw t )P(r,t) = -L Pm(t)e ... um(z)w(x,y) + c.c. .
2 m

(2.1.3)

The key step in the above expansions is the assumption that the temporal and

spatial dependences of each resonator mode may be separated. In other words,

the modes of the laser cavity are treated as though their spatial profiles are

unaffected by the gain and loss mechanisms existing in the laser. Gain and loss

are presumed to influence only the time evolution of the amplitudes of the
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modes. Further, the time dependence is broken into a sinusoidal oscillation at

the optical frequency of the mode wm and a complex amplitude Em' which

varies little in an optical period. The laser is also considered to support only

the fundamental transverse and lateral modes given by the properly normalized

function w(x,y).

Consider a mode with electric field Em(r ,t) oscillating in the laser resona-

tor. Em will induee the coherent polarization field Pm(r,t) in the gain medium

which, in turn, acts as a driving source in the wave equation (2.1.1). The

interaction between Em and Pm is in general found by solving the quantum

mechanical density operator equations of motion for the gain medium. The

result is well established for an ensemble of two level transitions84, 85. Transi-

tions in semiconducting gain media, however, take place both between and

within energy bands, further complicating the analysis. It has been shown that

intraband transition times characterizing the decay of the polarization occur on

the order of 0.1 ps, whereas interband processes, such as radiative and nonradi-

ative recombination, are at least one order of magnitude slower86,87. The

response of the semiconductor can then be regarded as instantaneous and the

polarization adiabatically eliminated by the equilibrium relation

(2.1.4)

Substitution of the expansions (2.1.2) and (2.1.3) without complex conJu-

gates into (2.1.1), using (2.1.4), projecting onto un(z), and making use of the

slowly varying nature of Em(t) and Pm(t) results in85,87
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JLg is the group index associated with the refractive index JL. Both have been

considered to be approximately constant over the frequency separation of a few

longitudinal modes. A sinusoidal variation of the field profile in the z direction

is presumed83, satisfying

(2.1.6)

where r3m = JLmWm is the propagation constant of mode m and JLm is thec

effective modal index of refraction. A z-independent dielectric constant

(2.1.7)

has also been defined in deriving (2.1.5).

The physics of the interaction of the optical field and the semiconducting

gain medium are hidden in the dielectric constant E or the electric susceptibility

x. As discussed in Appendix A, the real part of the resonant electric suscepti-

bility describes dispersion (or refractive index change) in the medium, while the

imaginary part provides amplification (or gain) for the optical field. Informa-

tion about the wavegujde structure of the laser is also contained in E. In

steady-state, the transverse mode profile w(x, y) is assumed to satisfy

(2.1.8)

for an index guided waveguide structure87. Therefore r3mis interpreted as the

propagation constant of the m th waveguide mode at the lasing threshold.
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Variations in the modal dielectric constant about its threshold value are

expressed by AE, where E = EO+ AE.

The population inversion responsible for optical gain is provided, in a sem-

iconductor laser, by electron-hole pairs in the active layer. A relationship

between <AE> (spatially averaged) and the number of carrier pairs, N, can be

found from equations (A.5)-(A.7) and (A.11)

i mc ago AN(1 - iex),= - aNWm
(2.1.9)

assuming the linear modal gain

= agoAN + Ags,m + ext.aN (2.1.10)

Here, AN = N - Nth denotes the carrier number variation from threshold,

ago is the modal differential gain for the main mode, and ext is the total lossaN

per unit length as defined by (EA). Losses are taken to be the same for all

modes. Ags,m accounts for spectral gain roll-off, which is approximately para-

bolic in semiconductor lasers. The gain differential and mode index above are

evaluated at threshold.

Substituting (2.1.8) into (2.1.5), averaging over the transverse plane and

using (2.1.9) results in

= 1..v ago
2 9 aNAN(1 (2.1.11)

a rate equation governing the time evolution of the complex field amplitude in



13

the laser in terms of the carrier number. The refractive index, IJ., averaged over

the transverse plane, has been approximated as the effective mode index at

threshold.

The linear form of gain (2.1.10) used in the derivation of (2.1.11) is, of

course, not a valid model in all circumstances. Several phenomena have been

identified which contribute to gain nonlinearities. In deriving (2.1.5), for exam-

ple, the response ~ime of the medium was assumed instantaneous due to the

extremely short intraband scattering time (Tin -100 fs) typical of semiconduc-

tor lasers. At large circulating powers, however, nonlinear contributions to the

induced polarization may become significant. As a result, the gain of all modes

within a spectral hole of width lITin is reduced. This static, or spectral hole-

burning process is well known88-91 and leads to inhomogeneous gain saturation.

Other effects result from modulation of the inversion (population pulsations),

due to beating of lasing and nonlasing modes86' 92. The interaction of the dom-

inant mode with the modulated inversion causes an additional power depen-

dence of the gain. Further, when modes of the laser are equally spaced, four-

wave mixing86,93 can occur in the presence of population pulsations. Nonlinear

contributions to the real part of the electric susceptibility (refractive index), on

the other hand, are very small compared to the linear variation94 resulting from

(1. They are hereafter neglected.

Nonlinear gain plays an important role in the operation of semiconductor

lasers. In particular, gain nonlinearity is known to affect the power

distribution95-97 and mode suppression98-100 of a laser at high output power.

Further, damping of the relaxation resonance is enhanced, significantly affecting

the dynamic and modulation responses97,101-107. Nonlinear gain is often taken
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into account through a power-dependent gain compression term93, 97,103,

- 2
gNL,m = -gL,o~ ~mn IEn I ,

n
(2.1.12)

which specifies the reduction in gain at a given output power. The electric field

amplitude in (2.1.11) is considered to be normalized such that EmE~ gives the

total number of photons in mode m. This is related to the (total) power output

of the mode through 108

(2.1.13)

where the mirror loss per unit length ami, is given by (E.9). The dimensionless

gain suppression coefficients ~mn describe self and cross saturation of the gain,

due to the mechanisms described earlier. (2.1.12) has been shown to be theoreti-

cally based in the density matrix formalism93 and is valid for laser powers ~O

mW per facet94. The values of ~mn' however, depend on knowledge of the

intraband scattering time constants for the polarization, as well as for carriers

in the valence and conduction bands. These are not well-known or easily

measurable. The coefficients are better estimated by fitting to spectral measure-

ments97, modulation bandwidths103 or pulse response109. Reports vary widely.

A value of

1iw - 1W-1o ami, Vg

~oo
(2.1.14)

describing self-saturation of the main mode (in terms of the power output per

facet) has been considered a reasonable estimate for an AlGaAs laser109,110.
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InGaAsP values tend to be larger.

Nonlinear gain can be introduced into the rate equation (2.1.11) by

defining

(2.1.15)

aGo ago
as the modal rate of gain. Hence,with - == vg-,aN aN

(2.1.16)

1 = VgCXtis the total rate of loss, and defines the photon lifetime Tp in the
Tp

usual way.

The carrier number N was introduced as a dynamic variable in equation

(2.1.9). Its time dependence, although not explicit in (2.1.16), is related to the

pumping rate, field strength and recombination mechanisms through the rate

equation87

!!!iill =
dt (2.1.17)

m

J is the number of electron-hole pairs injected into the active region per second,

which may be time dependent. The sum accounts for stimulated transitions

over all the lasing modes. R (N) is the carrier recombination rate, which is

often written as N, with the carrier lifetime, T8' given by (E.lO). T8 accounts
T,

for all non-stimulated radiative and non-radiative recombination mechanisms.
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N is considered to be spatially averaged over the active volume, and carrier

diffusion has been neglected. This analysis is therefore most applicable to an

index-guided laser structure.

2.2 Coupled Rate Equations

Rate equations (2.1.16) and (2.1.17) constitute the basis for modeling the

static and dynamic operation of a single semiconductor diode laser. Coupled

lasers are now considered. There are two distinct approaches to model the

effect of optical coupling between lasers. In one theory, the lasing field in each

resonator is expanded in terms of the individual laser eigenmodes60, 111, as was

done in Section 2.1 for an isolated laser. With Uj,m(r) denoting the mth eigen-

mode of laser j, the appropriate expansion is

Ej(r,t) = ~L(Ej,m(t)uj,m(r) + c.c.).m
(2.2.1) .

The Uj,m form a complete, orthogonal set over laser cavity j and satisfy the

wave equation,

(2.2.2)

Ej,m denotes the complex modal dielectric consta~t in the /h laser. This

approach is equivalent to taking the electric field amplitude and phase in each

resonator as a dynamic variable10, 77,80. Coupling between the individual laser

resonators is then described in terms of a coefficient characterizing the strength
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and phase of the optical interaction.

The coupled system of lasers can also be modeled by considering it as a

whole112-116. The lasing field, in this case, is expanded in terms of the eigen-

modes of the composite resonator, vc,n(r), which are determined through solu-

tion of the resonator boundary value problem. The expansion is

Ec(r,t) = ~ ~ (Ec,n(t)vc,n(r)+ c.c.),. n
(2.2.3)

where the vc,n satisfy

(2.2.4)

En is the dielectric constant throughout the compound laser and is equal to Ej,n

in each laser. Here, the electric field amplitudes of the compound cavity modes,

as opposed to those of the individual lasers, become the dynamic variables. It is

again assumed that the spatial profiles of the composite resonator modes can be

treated independently from the temporal dependence. This simplification

becomes a bit more tenuous for extended coupling schemes, in which long time

delays and local inhomogeneities may become important.

In the latter approach, the lasers are automatically phase-locked in solving

for the composite resonator modes. Coupling coefficients become unnecessary.

Coupling between the modes may occur, however, through the nonlinear

processes described in the last section. The former theoretical approach is

adopted in this work, however, since phase-locking conditions and the stability

of the phase-lock are both key issues.
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One can proceed by substituting an expansion of the form (2.2.1) into the

time.-dependent wave equation (2.1.1), (one for each resonator j), as was done

in the case of an isolated laser. Boundary conditions, however, are also neces-

sary to relate the fields Ej(r,t) where they overlap. This may consist of requir-

ing continuity of the eigenmodes Uj,m or their derivatives. The boundary con-

ditions produce additional source terms in the wave equation of each laser

which depend on the field amplitudes in the other lasers. These terms can

eventually be defined in terms of coupling coefficients in the resulting rate equa-

tions. Unfortunately, the boundary conditions are specific to the particular cou-

pling configuration being considered.

It is desirable, therefore, to have a more general approach to describe cou-

pling coefficients. Two important q.uestions emerge: first, how do coupling

coefficients enter the rate equation description of laser operation? Further,

what is their form and what dependencies do they possess? These questions can

be answered by considering the wave equation for the composite laser resonator.

It is required that the decomposition of the field in terms of individual cavity

modes yield identical results to the actual field117. This implies that

(2.2.5)

in each cavity j. The complete set of modes for the individual cavities, how-

ever, may not constitute an adequate basis with which to describe the total field

when the lasers are coupled. This is an unavoidable short-coming of treating

the coupled system in terms of the individual laser modes. Validity of the

model is therefore limited to the case where optical coupling does not perturb

the field distribution of each laser resonator too greatly. This statement will be
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quantified later in Section 2.5. By substituting the expansions (2.2.1) and

(2.2.3) into (2.2.5), exploiting modal orthogonality, the expansion coefficients in

the composite resonator description can be written as

Ec,n(t) = ~~ Ek,m(t)f Ek,mUk,mVc,ndV.
m k VI:

(2.2.6)

Similarly, the coefficients from the expansion (2.2.1) are

(2.2.7)

The total lasing field in the compound cavity satisfies the wave equation,

(2.2.8)

Equation (2.2.8) follows from the general time-dependent wave equation (2.1.1)

where the equilibrium relation (2.1.4) between the field and induced polarization

was again assumed. Further, the dispersive nature of E and the conductivity of

the medium were neglected temporarily, since their inclusion is not crucial to

the following derivation.

The time evolution of the field in each laser resonator can now be intro-

duced using (2.2.5) and (2.2.1) on the right-hand side of (2.2.8). The composite

resonator expansion coefficient of the nth mode, on the left-hand side of the

equation, is replaced by (2.2.6). Projecting onto Uj,m(r) results in
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The time dependence of Ej,m is now broken up into a rapid sinusoidal variation

referenced to a convenient optical frequency wand a slowly varying amplitude,

Ej,m(t) = Ej,m(t)e-iwt. (2.2.1O)

Taking the second time derivative of (2.2.1O) and substituting into (2.2.9) gives

The second derivative of the slowly varying amplitude was dropped above.

Equation (2.2.11) describes the time evolution of the field in laser j, including

the influence of fields in the other lasers. It can be written in a simpler form by

replacing Ej,m on the right hand side using (2.2.7) and (2.2.6). The rate equa-

tion is then

dEj,m =
dt

. j k -
I LL Km',l Ek,l'

k I
(2.2.12)

where

K~',~ = L{w-wc,n)fEjUj,mvc,ndVfEkUk,IVc,ndV.
n vj V"

(2.2.13)

It was approximated that (w2-wj,m) = 2w{w-wj,m).

(2.2.12) shows that the fields from other lasers k affect the time rate of

change of the field in laser j through (cross) coupling coefficients Kj,k. When

j = k the coupling coefficient describes self-coupling. For the simplest case of

two coupled lasers, each consisting of a dominant single mode, the coupled rate
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equations are

iKj,j Ej(t) + iKj,k Ek(t)

j:l=k=1,2. (2.2.14)

In the general case, modes m and 1 of each laser are also allowed to self and

cross couple. The coupling coefficients are found to involve overlap integrals

between the m th mode profile in laser j and the Ith mode of the coupled field,

with the actual modes of the composite laser. In the limit of no coupling, the

spatial profiles of the compound cavity modes approach those of the individual

cavities, and all but the self-coupling terms vanish.

Note that since e is generally complex, gain and loss for laser j has been

incorporated into the self-coupling coefficient. Gain and loss can be explicitly

included through the dielectric constant, as was illustrated in Section 2.1. For

coupled lasers, the first term of (2.1.5) is replaced by the right-hand side of

(2.2.9). Carrying out the remaining manipulation of the previous section results

in rate equations of the form

1

(

1. aG.

]

- - .
"2 Gj- Tpj -10: a~ ~Nj Ej(t) + KjjEj(t) + KjkEk(t)e -t(w""-W,,j)t

j:l=k=1,2 (2.2.15)

for two single-mode coupled semiconductor lasers. In Section 2.5, it is shown

that the factor of i in (2.2.12) is conveniently incorporated into the definition of

the coupling coefficient for longitudinally coupled lasers. Further, this has

become standard notation for describing external cavity lasers and cleaved-

coupled-cavity (C3) lasers10,118-120. Since the experimental portion of this
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thesis involves study of axially coupled lasers, the above notation is adopted. In

this way, future comparisons between theory and experiment will not be con-

fused by an additional phase shift. In equation (2.2.15), Kjj denotes the self-

coupling coefficient, while cross-coupling is governed by Kjk' The exponential

term arises because the amplitudes in this equation and hereafter are referenced

to the oscillation frequency of each laser operating in isolation, Woj,ok'

The concept of modeling the dynamic operation of optically coupled reso-

nators using an isolated rate equation modified by additive coupling terms

involving the coupled fields is very appealing. Unfortunately, the coupling

coefficients (2.2.13) are not always easily obtained, since the composite resonator

eigenmodes are often difficult, if not impossible, to obtain analytically. Further,

physical interpretation of the coupling coefficients is unclear from this perspec-

tive, and depends on the particular coupling scheme employed. Based on the

stationary analysis of Section 2.3, however, the coupling coefficients are readily

related to observable quantities, as discussed in Appendix B. For the time

being, evaluation and interpretation of the coupling coefficients is left

unresolved; they are treated as a parameter characterizing the coupled system.

Later, in Section 2.5, coupling coefficients are derived for the specific case of

longitudinally coupled lasers, which is investigated experimentally in Chapters 3

and 4.

The complex rate equations (2.2.15) can each be separated into two equa-

tions; one for the magnitude of the slowly varying electric field amplitude and

one for its phase. With the coupling coefficient defined as

(2.2.16)
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and the electric field amplitude given by

(2.2.17)

separation of (2.2.15) into real and imaginary parts results in

(2.2.18)

d<l>j(t) =
dt

1 aGo
-0: 1 A

2 j aN '-J.Nj

(2.2.19)

j=Fk=1,2.

Here Ej(t), <l>j(t)and I:1Nj(t) are real valued dynamic variables, with E denot-

ing the square root of the total number of photons in the lasing mode. Previ-

ously defined parameters are subscripted with a j or k to denote the laser to

which they belong. The following definition was also incorporated into equa-

tions (2.2.18) and (2.2.19) to simplify notation

(2.2.20)

R,pj has been added phenomenologically to account for the spontaneous genera-

tion of photons 110. It is normalized so that its value gives the average number

of spontaneously emitted photons per unit time added to the lasing mode.

Equation (2.1.17), describing the time rate of change in the carrier number,
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remains essentially unchanged in the coupled situation. However, it will become

useful to describe the carrier number relative to threshold. Recalling that

t1Nj = Nj - Nthj for laser j, (2.1.17) can also be written as

(2.2.21)

The term t1Jj(t) = Jj(t) - Jthj denotes the pumping rate with respect to

threshold, where the threshold pumping of an isolated laser j is easily shown to

be Jthj = Nthj. Rate equations (2.2.18), (2.2.19) and (2.2.21) are the starting
T~j

point for the investigation of phase-locking and stability properties of mutually

coupled semiconductor lasers.

2.3 Stationary Solutions

The stationary solutions for field amplitude, phase and carrier number in

each laser are found by solving rate equations (2.2.18),(2.2.19) and (2.2.21) with

time derivatives set equal to zero. This will result in a set of coupled nonlinear

equations which in general need to be solved numerically. To facilitate numeri-

cal solutions, as well as to simplify notation, the rate equations are first rewrit-

ten in a dimensionless form by defining the following reduced variables121:

(2.3.1)
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1 aG
An .(t ) == -T -AN. (t )J 2 P oN J (2.3.2)

(2.3.3)

(2.3.4)

T,
(2.3.5)a=

It is assumed that the lasers are identical in their material and structural

related parameters, including a G, T" Tp' ex and R,p. This is the case ofoN

interest, since it is usually desirable to couple similar lasers. Semiconductor

lasers, in fact, are most often coupled monolithic ally where the above parame-

ters are indeed nearly identical. In equations (2.3.1)-(2.3.5), ej(t) is the reduced

field amplitude in laser ;", while Anj(t) and Apj(t) are the reduced carrier

number and pumping variation from threshold, respectively. A normalized

time 1 == ...L is utilized. All time derivatives are taken with respect to the nor-
Tp

malized time. Substituting these definitions into equations (2.2.18),(2.2.19) and

(2.2.21) results in the following set of six reduced rate equations:

ej(l) = ~ ((2Anj(l) + 1)Gpj - 1) ej(l)

A r,p+ T}" e .(t ) costfl .. +
11 J 11 2ej(t)

+ T}jkek(l) cos[TpAwojt + <bk(t) - <bj(t) + tJljk] (2.3.6)
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(2.3.7)

(2.3.8)

j :1=k = 1,2.

!::t.Woj= Wok-Woj is the uncoupled frequency detuning between the two lasers,

referenced to laser j. The dimensionless term GPj accounts for gain compres-

sion, and is given by

GPj = 1 - 2(3!0 ~(t )-eJ 'aG
T, aN

(2.3.9)

where (3to is the self saturation coefficient of the lasing mode in laser j. A

dimensionless spontaneous emission rate into the lasing mode has also been

defined as

(2.3.1O)

Equations (2.3.6)-{2.3.8) form the basis for the analytical and numerical model-

ing to be presented in this work.

In phase-locked, steady-state operation, the system will oscillate at a single

frequency WL, with the phase difference between the lasers remaining constant

in time. Here, the steady-state phase of laser j in reduced form is given by

(2.3.11)
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Recalling definition (2.2.20), the locked phase difference ~<f>Ljbetween the lasers

can be straightforwardly derived as

~<f>Lj == <f>Lk-<f>Lj = ~j(t)

= 7p~wojl + <f>k(t) - <f>j(l). (2.3.12)

Let the stationary values of field amplitude ej' carrier number variation

from threshold Knj and pumping parameter 3:Pj for laser j be defined as listed,

with a bar signifying time independence. Substitution of these, along with

(2.3.12), into the reduced rate equations (2.3.6)-(2.3.8) results in the following

stationary equations

(2.3.13)

(2.3.14)

-2 _e. -1
KDp .-Kn.J 1

1 + 2Knj
(2.3.15)

j :;: k = 1,2.

The coupling junction has been assumed to be symmetrical in the following

This is the case in most important coupling schemes. Further, spontaneous

emission and gain compression have both been neglected in (2.3.13)-(2.3.15),

since they play a negligible role in determining equilibria for a laser operating
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CW at moderate output powers.

The preceding set of six nonlinear algebraic equations constitutes the neces-

sary formulae to describe the steady-state operation of mutually coupled sem-

iconductor lasers. There are six unknowns: the field amplitudes fj,,, and carrier

numbers Knj," in each laser along with the locked frequency of oscillation WL

and locked phase difference ~<f>L . Their values are dependent upon a number

of parameters, including the self and cross-coupling coefficients and the free-

running oscillation frequencies of each laser. Absolute frequencies, however, are

difficult to obtain precisely. Frequency differences, on the other hand, are

readily measured. Therefore, equations (2.3.14) (one for each laser j,k) can be

rewritten in a more usable form. Subtracting the equations leaves

[

- -

]

e" e. -1
TpAwo = Tlcc y 1+ 0:2 -=- + ~ sin~<f>Lcos(~cc - tan 0:)

ej e"

[

- -

]

e" e. -1
+ TlccY1+0:2 -=- - ~ cos~<f>Lsin(~cc - tan 0:).

ej e"
(2.3.16)

The locked phase difference with respect to laser k was eliminated above m

favor of A<f>L== A<f>Lj = -~<f>L/c. Similarly, the detuning is defined as

Awo = ~Woj. Note that the explicit self-coupling influence has dropped out,

due to the assumption of symmetrical coupling. The trigonometric identity

sinO:to:cosO = Y1+0:2 sin(O:ttan-10:) has also been llsed to simplify (2.3.16).

Further, it is preferable to define the locked frequency of oscillation wL

with respect to the average free-running frequency (00

(2.3.17)
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or

(2.3.18)

Substitution of equations (2.3.14) into (2.3.18) then results in an expression for

the locked frequency deviation from Wo

- tan -la). (2.3.19)

The term ~W8C = 1l8c Y1+a2sin(l/18c - tan-Ia)/Tp is defined as the angular fre-

quency excursion an exclusively self-coupled laser would experience. (2.3.19)

shows that self-coupling manifests as an offset to the locked frequency of oscilla-

tion. The direction and magnitude of the frequency shift is determined by the

amplitude and phase of the self-coupling coefficient.

The stationary equations can be further simplified by inverting (2.3.15) for

Knj. Substituting into (2.3.13) leaves

A- -2~ p . - e.J J

1 + 2el

-
_ ek

= - Re[1l8C] - llcc-=-COS(~<f>Lj+l/1cc),e.J
j*k=1,2.

(2.3.20)

By considering the locked frequency with respect to the average uncoupled

value and making the above substitution, simultaneous solution of only two

equations, (2.3.16) and (2.3.20) for ~<f>Land ej,k' is necessary. The locked fre-

quency deviation ~WL and carrier number Knj can be found after the fact from
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equations (2.3.19) and (2.3.15) if desired. These are considered in detail

through comparisons to experiment in Chapters 3 and 4.

Numerical solutions of (2.3.16) and (2.3.20) are shown in Figures 2.1 and

2.2. The locked phase difference and field amplitudes are plotted as a function

of detuning ~wo for Tlcc = 0.1 at several coupling phases. This coupling mag-

nitude can be considered representative of steady-state operation for Tlcc ::: 0.1.

The system supp~rts two modes: a symmetric (even) mode with a principal

value (-11"<~<I>L:S11")of ~<t>Lin the range (-11"/2,11"/2),and an asymmetric

(odd) mode with ~<I>Lelsewhere. Note that the "symmetry" of a mode refers to

the phase difference between the field in each laser, and does not pertain in any

way to its intensity profile.

Stationary phase locked operation of the mutually coupled system occurs

only when the free-running oscillation frequencies of the individual lasers are

sufficiently close. AB shown in Figure 2.1 a), ~<t>L changes to compensate for the

frequency difference when the lasers are detuned. This can only continue up to

a point, however. When ~<t>L reaches (2m + 1)~, the maximum allowable2

detuning is reached, after which no stationary solutions exist. The phase

difference between the lasers then increases indefinitely. The region of parame-

ter space comprising stationary solutions is termed the lockband. Its maximum

width with respect to frequency detuning is denoted hereafter as ~w LB. Similar

behavior is well known in the operation of injection-locked oscillators39, 46.

For mutual coupling, however, the size of the lockband is in part deter-

mined by the cross-coupling phase, \jJcc. This fact has been ignored in previous

analyses60, 61,122. Figures 2.1 and 2.2 illustrate this dependence. The
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maximum locking range occurs at \!lee=m 1T+ tan -1a. This location is a conse-

quence of the carrier-dependent refractive index property characteristic of sem-

iconductor lasers (see Appendix A). The a parameter effectively shifts the cou-

pling phase from \!lee by -tan -la as is evident in equation (2.3.16). This

phenomenon is crucial to the operation of coupled diode lasers and will appear

many times during the course of this study. The minimum lockband, on the

other hand, occurs at \!lee = (2m + 1)1T/2+tan-la. Examination of equation

(2.3.16) reveals that the lockband would vanish here if not for an imbalance in

the field amplitudes with detuning. Figure 2.2 c) displays the locking charac-

teristics at \!lee = -0.34, which is close to \!lee= tan-la-1T/2. The lockband is

over an order of magnitude smaller than at \!lee = tan -la.

Optical coupling generally creates a difference in amplitudes (or power)

between the lasers as they are detuned, as evidenced in Figures 2.1 and 2.2.

This power imbalance is greatest at \!lee = j: 1T/2, whereas the amplitudes in

each laser are identical for any detuning only at \!lee = 0,1T. (Coupling phases

separated by 1T merely have the roles of even and odd modes reversed). The

variation in power with detuning relates to a change in threshold gain according

to equations (2.3.13) and (2.3.20). Note that for \!lee= 0,1T, in Figure 2.1 b),

the difference in gain between the even and odd modes is maximized. Experi-

mentally, this will be reflected in the mode suppression ratio. Mode suppres-

sion, on the other hand, is zero at \!lee= j: 1T/2.

An approximate analytical expression for the lockband can be found for

the case where ej = eA;' This is exactly applicable when Wee=0,1T and is an

excellent approximation for 1')ees:0.1. The locking range is then given from
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(2.3.16) as

(2.3.21)

The lockband is therefore directly proportional to the cross-coupling magnitude

and depends heavily on its phase as well. For semiconductor lasers, the locking

range is increased by a factor of V1+0:2 over lasers with 0:=0. The maximum

locking range, with \jJcc=tan-1cx, is simply

~ 11cc .. r---;wLB,ma%= 2- V 1+cx2T .P
(2.3.22)

Given a typical semiconductor laser photon lifetime of 1 ps, locking ranges of

several hundred GHz are expected at strong coupling levels, where 11cc - 0.1.
It is also notable that the lockband size is very weakly affected by the presence

of symmetrical self-coupling; the real part of the self-coupling coefficient,

Re[iJ8C]' merely serves to modify the mode suppression ratio through its pres-

ence in equation (2.3.20). The shift in the locked frequency due to self-

coupling, mentioned earlier, is of no co~sequence to the lockband.

Obviously, a large lockband is beneficial for coupling lasers optically so

that drift, nonuniformities, etc. can be accommodated without adversely

affecting the phase-lock. The coupled system should additionally operate in a

single mode with adequate side mode suppression. In the interest of beam com-

bining, the symmetric mode, with nearly equal power levels oscillating in each

laser, is preferable. The latter conditions are all met for a coupling phase of

\jJcc = O. The maximum locking range, however, occurs elsewhere at
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tJlee = tan -la. Since a is often much larger than one for semiconductor lasers,

tan -la approaches 1T/2making the lockband at tJlee=0 small. Minimizing a, on

the other hand, results in a smaller lockband according to (2.3.22). This

behavior is demonstrated in Figure 2.3. The locking range has been plotted for

both the even and odd modes as a function of coupling phase with Tlee = 0.1.

For a = 0 the lockband is smallest at tJlee= :t1T/2,whereas for a = 3 it nearly

vanishes at tJlee--: 0.91T,0.11T. While an enhanced lockband (by a factor of

VI + (2) is beneficial in semiconductor lasers possessing large a parameters, a

large locking range and good mode suppression appear to be incompatible

objectives.

At coupling magnitudes where Tlee> 0.1, the lockband was found to no

longer be limited by the condition sinA<t>L:5 1, except for tJleenear 0 or 1T.

Rather, stationary solutions exist for all values of detuning. Stability of the

equilibria must then be addressed to determine the locking range60. The case in

which a = 0 and tJlee = -1T/2, in the present notation, has been previously con-

sidered61,62 in connection with coupled C02 lasers separated by a common cou-

pling mirror. The lockband was found to be linearly dependent on the coupling

magnitude, albeit at the expense of a large power imbalance between the lasers.

In fact, a large locking range in this circumstance was only possible because of

the unequal intensities122. The threshold gain difference between the even and

odd modes, in this situation, is extremely small (zero when the lasers are

resonantly tuned). This is due to an absence of supermode selective losses in

the compound resonator, which is generally not the case in coupled systems.
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Figure 2.3 Locking bandwidth versus coupling phase for
two mutually coupled semiconductor lasers. 11= 0.1, ~ = 0.67.
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2.4 Stability Analysis

The phase-locked solutions encountered in Section 2.3 do not necessarily

represent dynamically stable states. The usable locking range may therefore be

smaller than expected. The stability of a stationary solution can be determined

by examining the system's response to infinitesimal fluctuations from the

steady-state. In this way, the rate equations (2.3.6)-(2.3.8) are greatly reduced

in complexity through linearization. Standard linear systems techniques can

then be applied to test stability. Denoting small deviations in field amplitude

8ej(t), phase 8<1>j(t) and carrier number 8nj(l) as such, the dynamic variables

can be written with respect to their stationary values as

(2.4.1)

(2.4.2)

(2.4.3)

<l>j== ch(l) - cf>j(l) has been introduced since the phase difference between

the lasers is the quantity of interest for phase-locking. Additionally, the

number of rate equations is reduced from six to five.

Substitution of these expressions (2.4.1)-(2.4.3) into equations (2.3.6)-

(2.3.8), retaining terms only to first-order in the deviations, results in the fol-

lowing set of five linearized rate equations:

(2.4.4 )
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(2.4.5)

(2.4.6)

j:f:k=1,2.

The stationary solutions (2.3.13)-(2.3.15) and the assumption of small fluctua-

tion terms were used to simplify above. Gain compression and spontaneous

emission terms were also neglected in this small signal analysis. The latter was

found to have a negligible effect on stability boundaries with the lasers biased

well above threshold. Gain compression, on the other hand, is later shown to

significantly affect the stability properties of a coupled system, and will be

incorporated through an effective damping rate. It at first appears that all

self-coupling terms have vanished. Note, however, that the real part of each

self-coupling coefficient is retained implicitly in the stationary carrier number

deviation from threshold "Knj,k present in (2.4.6).

Equations (2.4.4)-(2.4.6) describe the time evolution of the system to

infinitesimal fluctuations about a stationary solution. Since they are linear and

homogeneous in the fluctuations &ej,b &<1>j and &nj,b solutions proportional to

exp( sf) can be sought, where s is a complex number describing the rate and fre-

quency of damping for each solution. Substitution of this form into the above
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equations results in a system of algebraic equations which can be written as

[A - sI] 8xo = O. (2.4.7)

A is a (Jacobian) matrix containing the coefficientsof the fluctuation terms

evaluated at the stationary solution, while 8xo is a column vector of the

fluctuations evaluated at time zero. For non-trivial solutions to exist, it is

required that the secular determinant

D(s) =det[A - sI] = O. (2.4.8)

Analytical solutions are, however, only realizable when additional symmetry is

introduced. Once again, symmetric coupling is assumed where i)jk = i)kj and

i)jj = i)kk' Further, the problem must be restricted to equal pumping and no

detuning, resulting in a completely symmetric system. While the general case

can be solved numerically, a great deal of insight is achieved by examining the

parameter dependence analytically.

Stationary solutions in the symmetric case are greatly simplified. The field

amplitudes ej,k and carrier numbers Anj,k in each laser are equal, as deter-

mined in Section 2.3. They are denoted e and An hereafter in this section.

The locked phase difference ~<I>L betweenthe lasers will assume a value of m 1T,

with even multiples of 1Tcorresponding to the in-phase mode and odd multiples

the out-of-phase mode. Equation (2.4.7) becomes

-a12-s al2 a13 au 0

-al2-s 0 8ejo
al2 -a13 a14 8eko

a31 -a31 -2al2-s -a35 a36 8<1>jo I

=
0, (2.4.9)

a41 0 0 a44-S 0 8njo
8nko

0 a41 0 0 a44-s
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with elements

a 13 = - 11cc esin\jJ cccos~<t> L

(2.4.10)

11cc is the magnitude of the cross-coupling coefficient and \jJcc is its phase.

Expression (2.4.8) then results in a characteristic equation which can be fac-

tored into quadratic and cubic terms

Substituting matrix elements (2.4.10) into the second-order term in equa-

tion (2.4.11) gives

~ -2

82 + 1+2e 8 + ~(1+2K7i) = O.
(J' (J'

(2.4.12)



41

This is merely the equation of a damped harmonic oscillator. Eigenvalues are

found from the quadratic equation as

(2.4.13)

where

"/=
1+2f2

2<T

2f2
O~ = -(1+2~).

<T (2.4.14)

In the limit that the coupling magnitude goes to zero, e=eo and ~ =O. The
o

terms .::L and ~ can then be identified with the damping rate and the well-
Tp Tp

known relaxation resonance frequencyl08 of an isolated laser. Equation (2.4.12)

therefore describes the response associated with the coupled lasers acting as a

whole. It differs from a single laser only in that the damping and relaxation

resonance are changed due to coupling.

Stability requires that the real part of the eigenvalue s be negative, or that

"/ >0, so that perturbations damp exponentially back to equilibrium. In reality,

this condition is always met, since the field amplitude cannot be negative.

However, recalling the stationary solution (2.3.15) for field amplitude, stability

is violated whenever ~ > -1/2 or

(2.4.1.5)

(2.4.15) is nearly always met except for strong, in-phase coupling (for d<l>L = 0,

or out-of-phase where d<l>L = 'iT). AB An approaches -1/2, the coupled fields

are able to offset the total rate of loss in the lasers, effectively reducing the
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threshold gain to zero. Therefore, the field amplitude is allowed to grow

unbounded, through (2.3.15). This non-physical behavior represents a limita-

tion to the present theoretical approach, which treats the lasers as individual

entities. When the limit (2.4.15) is neared, the coupled fields can clearly no

longer be considered a perturbation to the circulating field of the isolated laser.

A similar problem exists when Kn >~.

It is importa~t to note that the same characteristic equation (2.4.12) is

obtained in the case of a strictly self-coupled laser (Le. by dropping all cross-

coupling terms). Stability is then expected for this configuration over the whole

parameter space spanned by the complex coupling coefficient.

The most interesting stability information is contained in the cubic term of

equation (2.4.11), which can also be wJ:itten

The sign of each eigenvalue's real part can be determined, without actually

solving for the roots of (2.4.16), by employing the Lienard and Chipart stability

test. 123For a third order polynomial,

(2.4.17)

the minimum requirement for stability is that the coefficients al>O, a3>O and

that the second order Hurwitz determinant
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~2 = (2.4.18)

It turns out that the coefficient a2 is always greater than zero when condition

(2.4.15) is met. Therefore, the stability criterion al>O is always contained

within (2.4.18). a3 > 0 requires that

(2.4.19)

while (2.4.18) results in a complicated expression restricting the coupling magni-

tude and phase to the region

(2.4.20)

+ 1leeCOS~(h (8"(2cosWee+ilkY1+<x2COS(Wee-tan-l<x)) + "(ilk> o.

Figures 2.4 and 2.5 display the stability regions (2.4.19) and (2.4.20) as a

function of coupling magnitude and phase. The thick dashed line denotes the

limiting case of (2.4.19), whereas the solid line is the boundary of (2.4.20). The

radial coordinate in the polar plots gives 1lee on a log scale, while the coupling

phase Wee is the azimuthal coordinate. Concentric dashed circles therefore

denote contours of constant coupling magnitude. Regions of unstable operation,

where one or both conditions are unsatisfied, have been shaded. In order to

avoid confusion, only the symmetric mode ~<I>L=0 has been presented, as boun-

daries for the asymmetric solution are easily obtained by rotating the plot 1800

about the origin. Very few parameters, including (J', KP and <x, must be

specified to evaluate stability in the present model. Boundaries were found to



~2= 0, eq. (2.4.18)

- - - - - a3=0, eq.(2.4.19)

Figure 2.4 Stabilityboundaries for the symmetric mode of
two mutuallycoupled lasers. a = 0, cr = 1500,~p = 0.67.
Dynamicallyunstable regions are shaded.
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L\2= 0, eq. (2.4.18)

- - - - - a3= 0, eq. (2.4.19)

Figure 2.5 Stability boundaries for the symmetric mode of
two mutually coupled lasers. a = 3, 0" = 1500, L\p = 0.67.
Dynamically unstable regions are shaded.
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be insensitive to relatively large changes in the former two parameters. These

merely affect slight changes to OR and 'Y through the equilibrium carrier

number and field amplitude. Typical values of 0'= 1500 and Aj)=0.67 were

chosen for graphical presentation. Self-coupling, for the same reason, also plays

a minor role where TI,e :;: lQ-I and is therefore neglected in the following.

The ex parameter, on the other hand, substantially changes the stability

properties of the ,mutually coupled system. Figure 2.4 first shows the case

where ex=O. The complex plane is divided nearly in half, with the symmetric

mode stable where Re[;;eel > 0 and the asymmetric mode (not shown) stable

for Re[;;eeI < O. Therefore, the mutually coupled system operates stably, in

one mode or the other, throughout the entire ;;ee plane. With exnon-zero, how-

ever, the regions of stability become more complicated. Figure 2.5 displays the

boundaries for ex=3. The ;;ee plane remains roughly divided in half by condi-

tion (2.4.19), although the dividing line has rotated by tan-lex about the origin.

In the limit of large ex,this boundary approaches the real axis, causing the sym-

metric mode to be stable for Im{;;eel>O and the asymmetric mode elsewhere.

The condition (2.4.20) is also highly dependent on ex. Stable operation is

predicted for both the symmetric and asymmetric modes at low coupling levels,

independent of the coupling phase. The limiting Tleewhere instability first sets

in can be found from (2.4.20). For Tlec:;:10-2, the boundary is given by

A,I.. ~ ( _ -I ) _ _
TIcc COSLl-VL 1+ex cos \f1cc tan q - 'Y0 . (2.4.21)

Terms greater than first order in 1')ccand 'Y were dropped and 'Y was approxi-

mated as 'Yo = (l+2e02)/20', the reduced damping rate of the isolated laser, in
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deriving (2.4.21). The above expression divides the iiee plane into stable and

unstable halves. In the latter case, fluctuations couple positively, which can

offset the inherent damping afforded by gain saturation above a critical coupling

level given by

1'1erit (2.4.22)

In other words, undamped fluctuations may only occur when the coupling rate

1'IeeV1+0:21Tp exceeds the intrinsic damping rate 'Yo/Tp. It is important that

for 1'Iee210-2, stability boundaries approach the 0:=0 condition in Figure 2.5.

Overall stability is decided by the intersection of (2.4.19) and (2.4.20).

This is graphically pictured as the unshaded areas in Figure 2.5, for the sym-

metric mode. These areas do not overlap with the stable operating regions of

the asymmetric mode, indicating an absence of bistablity, although both solu-

tions are unstable over much of the complex 1'Ieeplane. With the exception of

~ee near 0 (for the even mode) or 'iT(odd mode), stable phase-locked operation

is expected to be interrupted at coupling magnitudes of about 1'Iee- 10-3. At

large coupling levels, stability returns; behavior is that encountered when 0:=O.

Although regions of stable and unstable operation have been identified, it

remains to determine where the system should operate for maximum stability.

To this end, the three eigenvalues of (2.4.16) were numerically calculated. The

limit of stable operation is reached when an eigenvalue s crosses the imaginary

axis. It is easily shown that condition (2.4.19) corresponds to a single eigen-

value with Im[s] =0. Except at very large values of 1'Iee'this boundary divides

the iiee plane in half, with stability confined to the half where interference
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between the lasing fields is constructive. In the case a=O, this is the right

half-plane (for the even mode), as shown in Figure 2.4. When a is non-zero,

however, the dividing line rotates by tan -la, due to the change in refractive

index which accompanies a shift in gain or carrier number. The real part of the

eigenvalue associated with (2.4.19) is plotted in Figure 2.6 at selected coupling

phases which satisfy the stability criterion for the symmetric mode. For

T)cc 5: 10-2, the best damped mode is at \!1cc= tan -la (not shown), where the

lockband is maximum. At larger coupling magnitudes, this location shifts to

\!1cc=0, where Kn is a minimum, even though the stability boundary approaches

the real axis for large a. Damping therefore falls off rapidly for \!1ccslightly

negative, as evidenced by Figure 2.6 e).

The remaining eigenvalues are complex conjugates, and correspond to the

stability criterion (2.4.20). Figure 2.7 displays the real and imaginary parts of

the eigenvalue with Im[s ]>0, normalized to the free-running condition

(-y0 ,WR'Tp)' Radial slices through Figure 2.5 at constant \!1cc were selected in the

right half plane for the even mode. The trajectory of the eigenvalue along each

slice as a function of coupling magnitude is plotted in Figure 2.7. Symbols

identify three specific coupling levels for reference.

Note that the optical coupling has little effect on the frequency or damping

of the eigenvalues where T)cc5: 10-4. They remain near the values WR'Tp' 'Yo

(solid dot) regardless of the coupling phase. A zero of D(s) first crosses the

imaginary axis at Im[ s ]ITp = WR' Hence, instability will initially appear in the

optical and intensity spectra as a peak at the relaxation resonance frequency of

the isolated laser. Physically, this "undamping" of the relaxation resonance can
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Figure 2.6 Roots of D(s) with Im[s]=O at selected coupling phases.
a) 'llce= 0, b) 'llce=7t/4, c) 'llce= 1t/2, d) 'lice= 37t/4, e) 'llce= -1t/20.
Symmetric mode, a = 3, cr = 1500, ~ = 0.67.
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Symmetric mode, a = 3, cr = 1500, ~p = 0.67.
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be explained as follows: In a solitary laser, relaxation oscillations are well-

damped as a result of gain saturation; i.e., an increase in intensity is accom-

panied by a reduction in inversion, below the lasing threshold, due to the excess

simulated emission. This, in turn, reduces the rate of increase in the intensity,

and the laser undergoes a series of relaxation oscillations in returning to

steady-state. The larger the intensity spike, the greater the deviation in gain

from threshold and therefore damping. In a coupled system, however, the

threshold gain is not a constant, as evidenced by equation (2.3.13). Therefore, a

transient will induce a shift in threshold gain from the steady-state condition,

as well as a change in carrier number. If the threshold shift is in a direction

which increases the deviation in unsaturated carrier number from threshold,

gain saturation is enhanced and relaxation oscillations are better damped. Oth-

erwise, intensity self-pulsations at WR may result.

Depending on the value of tJlcc' the laser can be "biased" to operate in

stable or unstable regions. When a =0, for example, maximum damping occurs

at the coupling phase promoting the lowest equilibrium carrier number, or

threshold gain, in the laser. This is at "'cc=0 for the even mode and 1Tfor the

odd. When a is non-zero, however, an additional mechanism contributes to

relaxation oscillation damping. Here, the refractive index change associated with

a transient carrier fluctuation can also influence the instantaneous threshold

gain. The coupling phase promoting maximum relaxation oscillation damping

in this case shifts from the a=O location by -tan-Ia. This effect is known to

cause self-pulsation over much of the locking range of an injection-locked sem-

iconductor laser71. The a contribution to damping is dominant at weak cou-

pling levels, Tlcc:;: 10-3, as evidenced in Figure 2.5. At larger coupling
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magnitudes, the two effects compete with each other, with the former determin-

ing the stability properties above Tlee= 10-2.

To summarize, the stability of two mutually coupled semiconductor lasers

is characterized by three distinct regimes. At very weak Tlee' the optical cou-

pling has little effect on the damping properties of lasers afforded by gain

saturation, and stable operation in the even or odd mode is predicted, regardless

of the coupling phase. This may be a preferred region of operation when the

coupling phase is not easily controlled. Except near Wee=0,1T, stable operation

is interrupted at moderate coupling levels. Instability will result in intensity

self-pulsations near the relaxation resonance frequency of the isolated lasers.

For large coupling magnitudes, damping in the coupled system becomes

independent of 0:. Relaxation oscillations are best damped at Wee which minim-

ize the equilibrium carrier number. Hence, the symmetric mode is most stable

for Wee=0, while the asymmetric mode prefers Wee=1T. As discussed in the last

section, these states also offer balanced output powers and the best mode

suppression of the non-lasing mode. A trade-off must be made, however, as the

lockband may be very small, especially for large 0:. While large regions have

been identified in the complex Tleeplane which are unstable for both modes, the

opposite is not true; bistability is not expected. Finally, self-coupling was found

to have a minor influence on the stability of the mutually coupled system.

Large signal response of the coupled rate equations is considered separately

in Chapters 3 and 4, and compared to experiment.
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2.5 Coupling Coefficients

To this point, generalized rate equations have been presented which include

complex coupling coefficients to account for optical interaction of the lasers.

The magnitude and phase of these coefficients were shown to have a significant

impact on the steady-state phase-locking and stability properties of mutually

coupled lasers. T~ determine the value of a coupling coefficient, however, one

must generally solve for the individual and compound cavity eigenmodes and

their frequencies, performing a number of overlap integrals which are subse-

quently summed. This is often difficult; numerical techniques may prove neces-

sary.

A13will be discussed in the introduction to Chapter 4, there are several

advantages in a study of phase-locking such as this to consider longitudinally

coupled lasers. Here, the fields from the individual lasers overlap in localized

regions of space, allowing the coupling coefficients to be more readily deter-

mined. A simple, yet general derivation of self and cross-coupling coefficients

for two longitudinally coupled semiconductor lasers immediately follows this

introduction. In Section 2.5.1 these coupling coefficients are evaluated for the

specific case in which the coupling region consists of a passive gap of variable

length with a fixed optical loss. Coupling delays are also taken into account.

This situation is chosen for future comparison to the experimental portion of

this dissertation presented in Chapters 3 and 4.

Consider a system of two axially coupled lasers which each support a sin-

gle, dominant mode. The eigenmode of each individual laser will overlap in a
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region hereafter referred to as the coupling junction. The transfer of energy

between the field in each laser can be described, without specifying precisely

what the coupling mechanism is, by treating the junction as a two-port scatter-

ing network. This approach has been used extensively4, 6,124 to model the

mode suppression and modulation properties of cleaved-coupled-cavity (C3)

lasers. Since one cavity in a C3 laser is often operated below threshold, the

effect of optical coupling has usually been treated as a perturbation to the dom-

inant laser and included in a frequency dependent loss term8. In what follows,

however, scattering terms are written in a form suggestive of a coupling

coefficient.

The relationship between the incident Ej,E,I; and exited E/ ,E,I;' traveling

waves at the coupling junction is given. by the linear system,

[:< ]
=

[
~if ~j,l;

]
[: j ]

.
,I; Skj Skk k

(2.5.1)

The self-coupling scattering elements 8if,kk and cross-coupling elements 8j,l;,,I;j

describe the proper linear combination of the input amplitudes Ej,k comprising

an output Ej,k' from the coupling junction. In this sense, there is a definite

connection to the role of the self and cross-coupling coefficients from the cou-

pled mode theory of Section 2.2. Physically, 8jj,kk is the effective reflection

coefficient of the junction with respect to laser j,k, while 8jk,kj is the effective

transmission coefficient from cavity k to j and vice versa.

The outgoing field in laser j is expressed, from equation (2.5.1), as
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(2.5.2)

Therefore, in a round-trip of laser j, the steady-state (threshold) condition

requires that

(2.5.3)

Here, S;; is the sel,f-coupling coefficient of laser j operating in isolation. gm,j is

the modal gain per unit length, CXim,jis the internal loss per unit length, r3m,j is

the modal propagation constant and LDj denotes the physical length of the

resonator for laser j. From equation (E.4), the internal loss can be written in

terms of the photon lifetime as

1 1
(2.5.4),

Tmir,j

where Tmir,j is the rate of optical loss from laser j due to outcoupling. Taking

the natural log of both sides of (2.5.3) then results in

The mode index, which is hidden in the propagation constant r3m=r30f.L, was

assumed to be a linear function of carrier density about threshold, as in equa-

tion (A.9). Therefore, the cxparameter could be introduced using (A.ll). The

remaining constant round trip phase accrual 2ir3oj fLth,j was absorbed into the

phase of complex field amplitude E j'

The outcoupling can be identified in terms of the isolated self-coupling
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coefficient Sh through87

(2.5.6)

TDi is the round trip time in laser j. Hence, with a little manipulation, (2.5.5)

can finally be written,

1

(

1 aGi

]

-
+ - G ia.-!:r.N E. = O.

2 J T. J aN JPJ

(2.5.7)

It was assumed that the coupling terms were small enough in magnitude to

make the approximation In(1+ x) = x valid. This imposes the following restric-

tions on the scattering elements

SH
I

--0
- - 1 «1, and I8iJ:I «I 8ii I.
S~.1)

(2.5.8)

These conditions generally place an upper limit to the level of optical coupling,

as will become more clear later in this section. (2.5.7) can be directly compared

to the stationary solution of the coupled rate equations (2.2.15) to define the

coupling coefficients

(2.5.9)

(2.5.10)
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This formulation allows a wide range of coupling scenarios to be adequately

modeled simply by determining the appropriate scattering matrix that describes

the coupling junction. The coupling junction may be active or passive. It might

consist of a gap, as in the case of C3 lasers, a grating, waveguide, etc., or even

include intervening optics, as in the following description.

In the remainder of this section, scattering elements and coupling

coefficients are de~ived to model the experiments of Chapters 3 and 4. Since

the lasers are physically separated by many centimeters, the electric field ampli-

tudes and phases cannot be assumed constant during time delays accrued in the

coupling junction. Although not explicitly shown in the derivation leading up

to (2.5.9) and (2.5.1O), coupling delays may be incorporated into time-dependent

coupling coefficients, for a passive coupling junction. This avoids the necessity

to solve an additional coupled rate equation for the field in the coupling junc-

tion. Delay-differential equations result which are analyzed in later chapters.

2.5.1 Self-Coupling

The experimental study of Chapter 3 employs a self-coupling configuration,

as shown in Figure 2.8 a). Here, the coupling junction consists of a gap of width

Le:zt between the output facet of a laser and an external reflector with power

reflectance, R 2k' This scenario is useful for studying external cavity lasers, or

the effects of inadvertent optical feedback from an external reflector. The com-

plex field Er (t) returned to laser j from its inner facet (with power reflectance

R 2;) and the coupling junction at time t is given by
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Ek(t)

LASERk

Figure 2.8 Schematic representations of a) self, and b) cross
coupling for a passive, lossy gap.
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Er(t) = ~Ej(t) + (1-R2j)~E~~Ej(t-'T)

+ (1-R2j)R2k~Et~Ej(t-2'T) + ... (2.5.11)

'T is the round trip delay time of the passive cavity. A:Dy losses accrued in the

gap are included in a power transmission coefficient E~, while amplitude cou-

pling losses to the guided mode of laser j are described by a separate parameter

~. Ignoring cross-coupling,(2.5.1) gives

(2.5.12)

in the time dependent case. Then in comparison to (2.5.11),

+ ... (2.5.13)

The definition A<t>j(t,n'T) = <t>j(t) - <t>j(t-n'T) has been incorporated above.

Sjj(t) represents the ratio of returned amplitude to that incident on facet R2j

inside laser j, and describes the total self-coupling behavior of the facet and

coupling junction combined. Substituting equation (2.5.13) into expression

(2.5.9) for the coupling coefficient gives

(2.5.14)
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For weak coupling (ie. small e f), all but the first order terms in ef can be

neglected. One finds that the rate of coupling simplifies to the form

(2.5.15)

This is essentially the form of the feedback coefficient used in previous work to

describe optical feedback119. It is clear that if the time delay T goes to zero, the

coupling coefficient becomes time-independent.

2.5.2 Cross-Coupling

.
A similar approach can -be taken to determine the form of the cross-

coupling coefficient Kjk(t), for the situation depicted in Figure 2.8 b). Consider

the total transmitted field Et (t) at time t coupled to laser j from laser k

Edt) = Y1-R2ky'1-R2jeT~Ek(t-T)

+ Y1-R2k Y1-R2j ~~e~~Ek(t-3T)

+ Y1-R2k Y1-R2jR2jR2ke~~Ek(t-5T) + ... (2.5.16)

Note that here the coupling time delay T is for a single pass of the coupling gap,

while in Section 2.5.1 it was measured in a round trip. From (2.5.1), the above

expression can once again be written in the form

(2.5.17)
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With Sjk{t) given by (2.5.16) and (2.5.17), substitution into (2.5.10) defines the

cross-coupling coefficient as

+ ... (2.5.18)

For ET « 1, (2.5.18)becomes

1 VI-R2j Ek(t-T) ei[WOiT+I1<bi(t,T)I.(2.5.19)K- (
t) = -YI-R2k Vii:::; ErE E (t)1k TDi R21 k

2.5.3 Power Coupling Ratio

Coupling coefficients describing self and mutual coupling for the experi-

mental arrangements indicated in Figure 2.8 have now been derived. Their

magnitudes squared are a measure of the power transmitted or returned to laser

j relative to the circulating power, and depend on a number of parameters

involving both the laser and the coupling junction. In practice, however, it is

much more convenient to define the coupling level in terms of only those

parameters dependent on the coupling junction. These include the one-way

power transmission of the junction E}, the fraction of power coupling into the

guided mode of the laser E2 and, in the case of self-coupling, the external

reflector power reflectivity. E2 is included with the junction, since the modal
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overlap between the lasing mode and the returned mode depends upon optical

elements and/or diffraction in the junction.

The product of these parameters defines the power coupling ratio, which

measures the power transmission or reflection of the coupling junction. For

self-coupling,

(2.5.20)

while for cross-coupling,

(2.5.21)

These numbers are referred to in Chapters 3 and 4 to quantify the level of opti-

cal coupling, rather than citing values for the coupling coefficients. Techniques

to measure the power coupling ratios are discussed in Appendix B.

The coupling coefficients can be further simplified by introducing the cold-

cavity half bandwidth 108

11v cc _ -.L_(1-R)
TD 2-rrvIi (2.5.22)

of a Fabry-Perot etalon with power reflectivities R at each interface. With

(2.3.11), the steady-state, self-coupling coefficient (2.5.15) is then

(2.5.23)

while the cross-coupling coefficient (2.5.19) becomes

(2.5.24)
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assuming that the lasers have identical front facet reflectivities. Hence, the

magnitude and phase of the coupling coefficients, referred to throughout Sec-

tions 2.3 and 2.4, relate to very simple and intuitive physical mechanisms in the

present case. Clearly, the coupled power determines the magnitude, while the

phase is that accrued in traversing the coupling junction.

Before proceeding, it is necessary to clarify what is meant by "weak" and

"strong" coupling.. Recall the approximations (2.5.8) which were made in writ-

ing the rate equation in the "weak" coupling form of (2.2.15).

represents the fraction of power returned to laser j operating in isolation.

Therefore, the conditions (2.5.8) are equivalent to stating that the coupled

power must be much smaller than the power fed back with the laser operating

in isolation. In other words, the coupled field can be treated as a perturbation

to the isolated steady-state.

Equations (2.5.8) can be rewritten in terms of the coupling coefficients as

Kjj,j/cTDj « 1, or 'Y'I T'
.Ijj,;/c « J!L

TDj.
(2.5.25)

As an example, the cross-coupling coefficient (2.5.18) can be summed in the

steady-state, leaving

(2..5.26)

Maximum coupling occurs when WLT= m7T. Condition (2.5.25) is then

(2.5.27)
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For a typical diode laser, facet reflectivities and ~are on the order of.1. Hence,

(2.5.27) requires Er «1. Intuitively, it is also clear that "strong" coupling is

characterized by a power coupling ratio approaching one. It is easily shown

that significant deviation of (2.5.24) from (2.5.26) occurs only for Er :2 0.2, jus-

tifying the neglect of higher order terms in (2.5.14) and (2.5.18) in the present

theoretical framework.
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3. SELF-COUPLING (FEEDBACK)

This chapter investigates the operation of a semiconductor laser with a

portion of its optical output fed back after a delay time T. Recall that in

Chapter 2, the self-coupling phase \!I,Cwas treated as a constant. Its influence

on the stationary operation, phase-locking properties and stability of two mutu-

ally coupled lasers was theoretically found to be minor, manifesting mainly in

an additional contribution to ~he system's threshold gain. In general, however,

the self-coupling phase is a function of both the time delay and the oscillating

frequency of the coupled system. Multiple longitudinal modes may then result,

associated with the cavity formed by the laser and external retro-reflector.

Long coupling delays are shown to profoundly impact the spectral and stability

properties of a semiconductor laser. For this reason, it is an important problem

in the field of optical communications, and has recently become a favored topic

of research.

This chapter is mainly experimental. Detailed spectral measurements are

presented which include power coupling ratios from -80 dB to as high as -10 dB,

while encompassing the full 21Trange of coupling phase. The data can be con-

sidered an extension of the work of Tkach and Chraplyvy125 who defined vari-

ous "regimes" of effects with respect to coupling strength. Section 3.1 intro-

duces useful formulae describing delayed self-coupling. Numerical simulations
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based on these results, including spontaneous emission noise, are used exten-

sively in the remainder of the chapter. The experimental arrangement

employed for this work is detailed in Section 3.2. Sections 3.3 and 3.4 examine

the stationary operation of a self-coupled laser in single and multimode regions.

Stability issues associated with mode selection126 are then discussed. Finally,

Section 3.7 provides and investigation of the dynamic instability known as

"coherence collapse."

3.1 Delayed Self-Coupling

Rate equations describing the operation of a self-coupled semiconductor

laser can be obtained from (2.3.6) and (2.3.7). Substitution of the coupling

coefficient (2.5.15), dropping cross-coupling terms, results in

e (l) = ~ ((2~n(l) + 1)Gp - 1)e(l)

(3.1.1)

(3.1.2)

for the electric field amplitude and its phase. Equations (3.1.1) and (3.1.2) ~He

of the form originally introduced by Lang and Kobayashi127. The use of the

self-coupling coefficient (2.5.15) is valid in the following analysis, since the lasers

used were not AR-coated, and the maximum power coupling ratio expected was

on the order of 10%. The accompanying carrier number rate equation appears
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unchanged, as written in equation (2.3.8). Subscripts denoting the laser have

been dropped for clarity. T=Th p denotes the normalized round trip coupling

delay time, while" is to be interpreted as the steady-state self-coupling magni-

tude throughout this chapter. Langevin noise sources Fx(t) associated with the

dynamic variable x have been introduced for future numerical simulations (see

Appendix D). Noise is an essential factor in describing processes such as mode

hopping, linewidth and mode selection.

3.1.1 Steady-State Operation

The stationary behavior of a self-coupled laser easily follows from (3.1.1)

and (3.1.2). Steady-state solution of the field rate equation gives

Kn = - Re[ii]. (3.1.3)

Since the carrier number is directly related to the threshold gain by (B.1), equa-

tion (3.1.3) shows again that the real part of the coupling coefficient imposes a

threshold gain variation in the laser. Stationary solution of the phase rate

equation (3.1.2) results in127

(3.1.4)

Recalling that ii = TpK, and WL = wo+AwL, expression (3.1.4) can also be

written as

(3.1.5)



68

a transcendental equation for the shift in oscillation frequency from the free-

running condition.

Although the stationary solutions describing a self-coupled laser fall quite

easily out of the rate equation approach, the physical reasoning for the thres-

hold gain and frequency variations due to the coupling can be best understood

pictorially, using a phasor representation. Let Ec(t), in Figure 3.1 a), be the

circulating electric, field in the laser cavity measured at a plane just inside the

output facet, traveling inward. After a round trip in the laser, this phasor

becomes Ej(t), just inside the facet. Further, let Er(t) denote the time-delayed

reinjected field, which is dependent on Ej (t) through the steady-state self-

coupling coefficient (2.5.23). The three fields are related by

(3.1.6)

It is required that Ec replicate itself every round trip of the compound cavity.

In other words, an oscillating mode must satisfy gain=loss and round-trip 2'TT

phase conditions. This might be accomplished as shown in Figure 3.1 b). The

difference between phasors Ec and Ej is made up by the reinjected field, Er,

whose length and phase are determined by the magnitude and phase of the

self-coup ling coefficient. If IS In the range

- (2m + 1)'TT/2<ooL T «2m + 1)'TT/2,constructive interference lowers the threshold

gain of the laser. Elsewhere, as evident in equation (3.1.3), the opposite is true.

Interference, which is necessary to satisfy the phase condition, manifests in

a shift in oscillation frequency, given by the first term on the right-hand side of

(3.1.4). The subsequent gain change, however, additionally contributes a fre-
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diagram for stationary operation.
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quency shift due to the carrier-dependent refractive index, described by a. ~

the coupling phase is rotated through a 21Trange, (in practice this is accom-

plished by pistoning the position of the external retro-reHector on the order of a

wavelength), the system of phasors trace out the dashed circle indicated in Fig-

ure 3.1 b). The maximum shift in oscillation frequency depends on the size of

this circle, or in other words, on the magnitude of the coupling coefficient.

From (3.1.5), this shift is found to be proportional to the square root of the

power coupling ratio,

(3.1.7)

and occurs at a coupling-dependent external cavity length where

(3.1.8)

This "piston" location is equivalent to maintaining a relative phase difference

between the lasing and reinjected fields of (2m + 1)~ -tan -la. Hence, for large2

values of a the tuning extremes nearly correspond to extremes in carrier

number as well. Lower frequency modes are expected to possess a lower thres-

hold gain.

Upon closer examination of (3.1.5), one finds that multiple solutions ma.y

exist whenever128

(3.1.9)

Most importantly, the allowed longitudinal modes associated with the external

cavity have the same mode number. Multiple frequencies can therefore
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oscillate, at a given WoT, corresponding to the same number of wavelengths in

the diode cavity. There is still, however, only one mode possible at a unique

coupling phase WLT. Note that multimode operation can easily be achieved at

extremely low coupling levels for long coupling delays, a fact which makes inad-

vertent feedback from external optics so detrimental to stable, single mode

operation. The coupling level necessary to attain multimode operation goes up

linearly with a de~rease in the coupling delay, making it less of a problem for

short time delays. Numerical solutions to equations (3.1.3) and (3.1.5) are

presented and compared to experiment in Sections 3.3 and 3.4, in connection

with mode selection and stability.

3.1.2 Linewidth

The results of the previous section demonstrate that self-coupling is a

powerful technique for spectral mode control in lasers. The frequency and

threshold gain of longitudinal modes can be varied, through interference, by

adjusting the coupling magnitude and phase. In doing so, however, the

linewidth of the system is also affected. Simply put, interference between the

circulating and reinjected fields effectively changes the rate of optical loss lITp'

or equivalently the cavity Q, in the laser. By considering the laser oscillator 38

a regenerative noise amplifier, the gain-bandwidth product relationship there-

fore requires a variation in linewidth according to the modified Schawlow-

Townes formula129,130.
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The linewidth of a semiconductor diode laser operating in an external cav-

ity has been theoretically determined from the power spectrum of small signal

linearized rate equations131. It is worthwhile, however, to consider an alternate

approach based on the approximate phase rate equation derived in Appendix F.

In the present case, with coupling coefficient (2.5.15), equation (F .2) reduces to

The Langevin source F (t) is the same form as the reduced version (F.3). Con-

sider small fluctuations &<1>(t) in the phase about the steady-state operating con-

dition,

<I>(t)= ~wLt + <1>0+ &<I>(t). (3.1.11)

The derivation relies on the assumption that phase deviations &<1>remain small

during a coupling delay time, T. The phase fluctuation difference after one

round trip can therefore be expanded to first order such that

&<I>(t)- &<I>(t-T) = &<b(t)T. (3.1.12)

Note that this difference will be zero without Langevin noise sources driving the

phase away from steady-state. Substituting (3.1.11) and (3.1.12) into (3.1.10)

gives

(3.1.13)
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The Langevin source F(t) is the same form as the reduced version of (F.3).

Identifying the steady-state solution (3.1.5) above and rearranging leaves

8<i>(t) =
1 + KT

. FW
1+a2cos(woT+ ~wLT + tan-Ia) .

(3.1.14)

A comparison can now be made to equation (D.16), describing the phase of an

isolated laser. It is clear that the Langevin noise source driving the phase

fluctuations in a self-coupled laser is modified from the free-running case by the

denominator of (3.1.14). This is the linewidth reduction factor, or F factor

referred to in several other works131,132. It was shown in Appendix D that the

linewidth goes as the mean square of the fluctuations in phase. This saine argu-

ment could be followed through in the present case, resulting in131,133-135

(3.1.15)

The linewidth is seen to periodically reduce and broaden with external cavity

length piston WoT. The maximum linewidth reduction at a given feedback level

is for WLT = -tan -la. From equation (3.1.5), this condition is found to occur

at the oscillation frequency of the isolated laser, ~wL T=O. The broadest

linewidth also occurs at WL=Wo' where WoT=1T-tan-la. Note that the low

linewidth and low threshold gain conditions are not at the same external cavity

length, but are shifted from each other by tan -la. This is due to the non-zero

value of a, and will become important when investigating mode selection and

stability in later sections.

The use of external cavities for linewidth reduction of semiconductor lasers
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has been attempted extensively in the past several years136-145toward develop-

ment of narrow band sources for optical communications. Extremely narrow

linewidths on the order of 10 kHz have been achieved by AR-coating one facet

of the semiconductor laser, thereby allowing strong coupling to an external mir-

ror146, fiber147-149or grating150-154. Similar linewidths can be obtained by cou-

pling the laser to an external, high-finesse resonator155-159 which is more akin,

however, to injection-locking than self-coupling.

3.2 Experiment

Two types of commercially available semiconductor laser diodes were used

as sources in the experiments investigating time-delayed self-coupling: The

Hitachi HLP1400 channeled-substrate-planar160-162 (CSP) and the Mitsubishi

ML5101a transverse-junction-stripe163-166 (TJS) lasers. Both lasers incorporate

index guided structures and sufficiently short cavities to allow single longitudi-

nal diode mode operation, thereby satisfying the single mode assumption of the

theory developed in Chapter 2. They are of AIG~/GaA1; composition, result-

ing in an operating wavelength of about 0.8 ~m. Operating parameters of these

common lasers relevant to the theoretical modeling in this dissertation are

measured in Appendix E, while other characteristics can easil~v be !oca ted ill

manufacturer documentation.

The optical portion of the experiment was arranged as shown in Figure 3.2.

The output of the semiconductor diode laser (DL) was collimated by an AR-

coated lens (f,LSl) and retro-reflected from a high-reflectivity mirror (HRl),
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thereby forming an external cavity. Lens J.LS2, together with HRl, form a

cat - eye retro-reflector, which is very insensitive to a tilt in HRl. This made

optical alignment more forgiving. The position of HRl at the focal plane of J.LS2

was insured by checking the collimation of the returning light using a shear-

plate interferometer. This also allowed accurate collimation of the diode's out-

put. Due to the mechanical mounting of the commercial lasers, light could only

be collected from one end of the devices. Therefore, the portion of the output

used for diagnostics had to be taken from the external cavity. This was accom-

plished at beam splitter BSl.

Spectral analysis was performed using a variable free spectral range (FSR)

planar Fabry-Perot interferometer (PFP) and a 300 MHz FSR confocal Fabry-

Perot (CFP). This combination allowed observation of spectral detail from

about 1 MHz to hundreds of GHz in extent. A 0.75 m spectrometer was also

used to determine if the laser was operating in a single longitudinal diode mode.

The interferometer outputs were measured with photodiodes (PD1,2).

Since non-resonant light incident on a high-finesse etalon is nearly all

reflected, it is clear that the scanning Fabry-Perots used in these experiments

fed back considerable power during the majority of their scan range. In fact,

the magnitude of this reflection could be larger than that returned from the

external cavity. Furthermore, scattering and Fresnel reflections from the other

optics also contributed unacceptable levels of spurious feedback. It was there-

fore important to optically isolate the diagnostic arm of the experiment, and to

eliminate unwanted reflections from optics in the external cavity. Two Faraday

isolators (IS01,2), with about 30 dB of isolation each, were located preceding

the diagnostic optics, as shown in Figure 3.2. A half-wave plate (HWP) was
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used to maximize transmission through the isolators. Fabry-Perot reflections

were avoided by tilting the interferometer slightly such that the reflection was

clipped at the pin hole (PH) of the spatial filter. In doing so, a small amount of

finesse was sacrificed. All other optics were tilted sufficiently so that Fresnel

reflections were clipped. With these precautions, levels of undesired feedback

were reduced below about -80 dB relative to the laser's output power (estimated

as described in Appendix B).

The self-coupling level was controlled by inserting crossed Glan- Talyor

type calcite crystal polarizers (XTAL POLS) in the external cavity. The polar-

izer nearest the diode was oriented with its pass axis in the plane of Figure 3.2

to match the predominantly TE output polarization of the laser. The second

was mounted in a motorized rotation stage so that the polarizer's angle could be

repositioned very accurately. A neutral density filter (NDF) was occasionally

used to provide an additional fixed level of attenuation. Coupling to the guided

mode of the laser was maximized by maintaining a collapsed spectrum (see Sec-

tion 3.7) while adjusting the the position and angle of the retro mirror (HRl) as

the transmission of the polarizers was steadily reduced. In this way, a given

angle of the polarizers could be reliably associated with a specific coupling level

to within a dB. Absolute determination of the power coupling ratio was

obtained from spectral detail, as discussed in Appendix B.

Although the optics in the external cavity were mounted in the most com-

pact method possible,t external cavity lengths could not be made shorter than

:j: In order to achieve shorter lengths, the laser should be pedestal mounted, with the
external cavity on one side of the laser and diagnostics on the other. This configuration
was not attempted in this work, since pedestal mounted lasers were not available.
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about 20 em. The cavity length, however, could be extended to over a meter.

Since the phase of the reinjected light is critical in determining the behavior of

the system, mirror HRl was mounted on a piezo electric transducer (PZT),

shown in Figure 3.2. This allowed the length of the external cavity to be varied

in small steps, or pistoned, over a range of several wavelengths. Further, the

entire cat eye retro-reflector assembly was movable in order to change the gross

length of the cavity.

The diode laser was pumped with an ultrastable battery power supply. It

was found that even extremely small 60-cycle or higher frequency ripple present

on a good quality AC power supply was unacceptable, as linewidth broadening

was easily observed with the confocal Fabry-Perot. Temperature drift of the

lasing frequency was also a problem. Semiconductor lasers can be temperature

stabilized with thermoelectric coolers quite nicely, as was done in the mutual

coupling experiment (Chapter 4). However, in this experiment the laser was

stabilized at room temperature by continuously flowing water through the laser

mounting block from a large thermal reservoir (a bucket of water). This proved

more than adequate.

Data acquisition consisted of digitizing the output of each Fabry-Perot as it

was ramped. The LeCroy transient digitizer used had a maximum digitization

rate of 5 Msamplesfsec and was interfaced to a microcomputer through a

CAMAC GPIB bus. It was desired to digitize one Fabry-Perot scan, covering

one FSR, for each external cavity length step over a range of a wavelength or

two. This was accomplished as depicted in Figure 3.3. The acquisition elec-

tronics were timed to the Fabry-Perot ramp through the Burleigh RC-42

controller's trigger output. Preceding every ramp, the voltage applied to the
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piezoelectric translator was stair cased to a new level, using a counter and 8-bit

DAC combination. The photodiode output was continuously digitized, includ-

ing the ramp retrace. Appropriate portions of the signal were then extracted

from the digitized stream after the fact, by computer. In order to determine the

amount of frequency pulling due to the self-coupling, it was important to know

the oscillation frequency of the isolated laser. The electronic shutter (ESH) in

Figure 3.2 was therefore added in the external cavity. It was closed just before

the last Fabry-Perot scan was digitized. In this way, the uncoupled spectrum

could be stored without encountering drift problems. Experimental spectral

data recorded with the above optical and electrical setup is presented in the

next section in conjunction with theoretical comparisons and simulations.

3.3 Single Mode Operation

The experimental arrangement used to investigate the spectral behavior of

a self-coupled semiconductor laser has been detailed; experimental results are

now presented and compared to the theory developed in Section 3.1. To be

methodical in approach, operation of the laser at weak coupling levels is first

examined, proceeding in turn to successively higher levels. The bulk of the data

described in this section was collected using a single, arbitrarily chosen

HLP1400 CSP laser as source. However, similar behavior was observed in T JS

lasers, and was reproduced with other CSP devices. Distributed feedback125

and Bragg-reflecting167 lasers have also been shown to demonstrate some of the

following behaviors. The modeling approach should be valid for any weakly



81

self-coupled semiconductor laser as long as the variation in operating parame-

ters132 is accounted for and an appropriate coupling coefficient determined.

Figure 3.4 depicts the optical spectrum of the CSP laser operating in a 40

cm external cavity with a 10 mW output power, well above (1.7 times) thres-

hold, at a power coupling ratio of -67 dB. The 40 cm cavity length is shown

consistently throughout this section, as it is an intermediate length in the range

available with thi~ experimental arrangement, and turns out to be representa-

tive of cavities longer than a few centimeters. Vertically, each trace represents

a specific piston position of the external cavity mirror that is separated from its

predecessor by about 1/25 of a wavelength. The full 300 MHz FSR of the con-

focal Fabry-Perot, used to record the spectrum, is displayed on the x-axis. The

final scan in each case is taken with the external cavity blocked by the shutter,

shown in Figure 3.2. The lasing mode is observed to tune periodically about

the uncoupled frequency and to vary in linewidth, with a monotonically

decreasing cavity length. With every half-wavelength of piston (a full

wavelength round trip) a cycle is completed, and an additional wave is removed

from the external cavity. Note that both the narrowest and broadest linewidths

occur near the free-running frequency and are separated from each other by a

half cycle. The -67 dB power coupling ratio, as defined in Section 2.5, includes

coupling losses to the guided mode of the laser. Its magnitude was determined

as outlined in Appendix B. This coupling level corresponds to

(3.3.1)

indicating, based on equation (3.1.9), that the self-coupled laser is operating in

the single longitudinal mode region.
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Figures 3.5 a),b) and c) show numerical solutions to the transcendental

equation (3.1.5) for the oscillation frequencies, equation (3.1.3) denoting the

threshold gain change, and equation (3.1.15) giving the lasing mode's linewidth,

respectively. Parameters used in the calculation were those measured for the

HLP1400 CSP laser listed in Table E.1. There is clear agreement between the

predicted mode frequencies and the experimental data. The lasing mode follows

a qualitatively similar tuning trajectory in Figure 3.5 a) as the experiment,

while the maximum tuning excursion of 33 MHz, given by equation (3.1.7),

occurs at the expected relative piston location.

The threshold gain of the laser is predicted to vary with piston as well.

Figure 3.5 b) shows Kn normalized to the reduced coupling magnitude. Power

variations due to the maximum change in threshold gain are small at this cou-

piing level and therefore go unnoticed in Figure 3.4. Lower threshold gain

modes are seen to exist exclusively at oscillating frequencies smaller than that of

the isolated laser. This is consistent with the expected increase in refractive

index in the active region of the laser diode resulting from a decrease in the car-

rier density. Figure 3.5 c) predicts that the lasing linewidth narrows to 0.41

times its free-running value, while broadening to a maximum of about 5.4 times

natural. This is approximately the case in Figure 3.4. Interestingly, both

extremes occur at the isolated lasing frequency. Note that the Iinewidth

minimum and the low threshold gain locations are shifted from each other in

phase, as discussed in Section 3.1.2.

Figure 3.6 shows the numerical solution of the stochastic phase equation

(3.1.10) for the same parameters used in Figures 3.5 a), b) and c). The result is

to be compared to Figure 3.4. Each trace again corresponds to a small decrease
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in the external cavity length over a total of one-half wavelength. & discussed

in Appendix D, the noise source included in the numerical integration was

chosen to result in the correct natural linewidth, which is displayed in the last

trace with no coupling. The time series of the phase was calculated using

Heun's method168 (a simple predictor-corrector integrater; note that the phase

equation (3.1.10) is no longer stiff, as it was when coupled to the field equation).

An FFT routine then transformed the complex field amplitude to the frequency

domain, whose time-averaged magnitude squared is plotted in Figure 3.6. This

figure, along with similar plots presented later, simulates the output of the con-

focal Fabry-Perot used in the experiments by accounting for the

interferometer's finite resolution in the FFT routine. The good agreement with

experiment justifies the use of (3.1.10) to describe very weak coupling. Recall

that relaxation oscillations were approximated as well-damped, which is indeed

the case, judging from their absence in Figure 3.4.

3.4 Multimode Operation

& the coupling level is increased from the -67 dB level employed in Figure

3.3, the system makes a transition to a regime where multiple external cavity

modes are available. Figures 3.7 and 3.8 display this behavior experimentall~.

at power coupling ratios of -58 dB and -53 dB, respectively. Again, the lasing

mode tunes symmetrically about the free-running frequency, increasing in fre-

quency as the cavity length decreases. Mode hopping is most obvious in Figures

3.7 and 3.8, in contrast to the continuous tuning behavior in Figure 3.3. Mode
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hops occur every half wavelength of cavity piston, while the hop frequency

separation steadily increases with coupling. Note that the linewidth of the las-

ing emission in these figures has narrowed considerably. Furthermore, in Figure

3.8, the linewidth is narrowed for all cavity lengths.

Although the self-coupled laser in Figures 3.7 and 3.8 is theoretically

operating in the region of multiple solutions to equation (3.1.5), multimode

behavior is not a~parent in examining the figures. Two distinct peaks in the

Fabry-Perot spectra were observed experimentally, however, when the cavity

length was pistoned precisely to the mode hop boundary. Numerical solutions to

equation (3.1.10) are offered in Figure 3.9 to demonstrate this behavior. These

results were obtained in an identical manner as that illustrated in Figure 3.6,

with w0 7 = 1T- tan -la. The broadened mode at -67 dB, similar to the sixth

trace in Figure 3.3, transitions to two peaks as the power coupling ratio is

increased. This transition from single to multiple mode operation has been

described as ftmode splittingft by Tkach and Chraplyvy169, probably after previ-

ous work regarding Doppler-broadened lasers170. In the latter work, multiple

frequencies associated with the same mode number were shown to stem from

index dispersion in the wings of a high gain resonance, whereas in the present

situation they are due strictly to the influence of the external cavity. Unfor-

tunately, the term ftmode splittingft implies that a single resonance is being

somehow split in two. In actuality, two separate modes appear as a single. dou-

ble peaked mode due to their large linewidths. The frequency separation of

these modes is observed to approach that of the external cavity with large cou-

piing, but are pulled from this value at low coupling levels. The dependence of

the frequency separation of the two external cavity modes on coupling level can
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be very useful in calibrating the power coupling ratio, as described in Appendix

B.

Numerical solutions for the modes, their threshold gains and linewidths in

the multimode region are given in Figure 3.10 as a function of external cavity

length. The power coupling ratio is -53 dB, corresponding to the experimental

case in Figure 3.8, while other parameters used in the calculation are those of

the HLP1400 CS~ laser listed in Table E.!. For cavity lengths within the

shaded regions of the figure, three longitudinal modes are available to the sys-

tem. However, the central roots in Figure 3.10 a), denoted by solid dots, are

later shown to be dynamically unstable. The system is therefore bistable in the

multimode regions, and the double peaks which develop in Figure 3:9 at the

larger coupling levels must then correspond to the outer two modes in Figure

3.10 a). Since the mode hop in Figure 3.8 is symmetric about the free-running

oscillation frequency, a direct comparison to Figure 3.10 a) shows that the mode

hops occur about WoT= (2m + 1}rr-tan-1a. It is apparent that a large number

of the available roots do not show up experimentally.

As shown in Figure 3.10 b), the threshold gain varies about the uncoupled

threshold value with external cavity piston due to interference, as described pre-

viously. A study of the experimental spectra in Figures 3.7 and 3.8 reveals that

the mode with the lowest threshold gain in the multimode region does not

necessarily lase, as has been assumed in the past171-174. In fact, there are cases

in which the highest threshold mode runs. This is most counterintuitive and

contradicts the commonly assumed criterion that low threshold gain determines

the lasing mode. Mode selection is considered in more detail in Section 3.6.
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The minimum linewidth (0.07 cdot LlvO), predicted in Figure 3.10 c), still

occurs at the free-running frequency of the laser. This is consistent with the

experimental data of Figure 3.8, recalling that the theoretical linewidth is

approaching the resolution limit of the confocal Fabry-Perot used to take the

measurements. The maximum linewidth, as measured from Figure 3.8, has a

FWHM of a few MHz and is located at a cavity piston just at the mode hop

boundary. Again, it is clear that several of the predicted modes are not seen

experimentally, even though they are dynamically stable.

Figure 3.11 displays the numerical integration of the phase equation

(3.1.10) for a power coupling ratio of -58 dB, comparable to the experimental

results of Figure 3.7. A natural linewidth of 12 MHz was assumed, while other

parameters were identical to those in Figures 3.10. The mode frequencies, tun-

ing extremes and linewidths are in striking agreement with the experimental

results, and the laser's behavior at the mode hop boundary is clearly duplicated.

3.5 Modal Stability

It was mentioned previously that many of the possible modes of the self-

coupled system do not represent dynamically stable states. This is in sharp

contrast to the stability analysis performed in Section 2.4, where coupling

delays were neglected. It is not necessary, at this point, to return to the full set

of rate equations (3.1.1) and (3.1.2) to determine which modes are stable, how-

ever. Dynamic stability can also be analyzed, when relaxation oscillations play

a minor role, from the phase equation (3.1.10). Consider the phase with respect
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to the steady-state given by (3.1.11), where 8<1>(t)again denotes the small

fluctuations in phase about the steady-state due to perturbations from noise

sources such as spontaneous emission. Direct substitution of (3.1.11) into equa-

tion (3.1.10), invoking that 8<1>(t)is small, leaves

To test the dynamic stability of a mode, a solution of the form 8<1>(t) - exp( st)

is assumed. Substitution gives

(3.5.2)

where x = ST and

(3.5.3)

Graphically, the roots x of equation (3.5.2) lie at the intersection of a line

of slope unity and the exponential factor on the right-hand side of the equation,

as shown in Figure 3.12 a). The piston location of the external cavity, WoT,is

used as a free parameter, allowing the value of the coefficient C to vary over

the range

(3.5.4)

The requirement for a stable solution is that S <0, or x <0, so that the solution

damps exponentially under a perturbation from steady-state. Therefore, stable

solutions lie in the left half-plane of Figure 3.12 a). It is clear that if no roots

are to fall in the right half-plane, the slope of the exponential function
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Figure 3.12 Graphical representations of the stability
criterion (3.5.6) for a self-coupled semiconductor laser.
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evaluated at the origin must be less than one. Mathematically,

(3.5.5)

Performing the differentiation and substituting for C, the following stability cri-

terion127, 128,175is derived:

(3.5.6)

When written in the form

(3.5.7)

the consequences of (3.5.6) are easily interpreted from Figure 3.12 b). In the

single mode regime, where KTVI + ex2 < 1, solutions are stable for all cavity

lengths. However, as the coupling level is increased into the multimode region,

solutions near piston values of w0 T = m 11"- tan -lex become unstable, as shown

in the figure. These short-lived modes, indicated by solid dots in Figures 3.10,

are not seen experimentally. In the phasor representation of Figure 3.1, the

unstable regions correspond to coupling phases which force destructive interfer-

ence between the circulating and reinjected fields. The size of the unstable

region grows with increasing coupling, cavity length and ex parameter, asymp-

totically encompassing half of the possible coupling phases. (3.5.6) is therefore

the self-coupling equivalent of stability criterion (2.4.19) for mutually coupled

lasers.

Notice that the left-hand side of the stability criterion in equation (3.5.6) is

the same factor determining t~e linewidth given by (3.1.15). This is perhaps



98

not surprising, recalling that the linewidth merely represents fluctuations due to

phase noise. By introducing the external cavity, the stability of the laser

against phase perturbations can be changed, resulting in a change in linewidth.

A closer examination of (3.1.15) shows that the predicted linewidth diverges at

the boundaries of the unstable region. The approximations behind (3.1.15) are,

of course, invalid when the solution is dynamically unstable. By eliminating

unstable modes, line-narrowing almost exclusively occurs in the multimode

region, as was evident in the experimental spectra.

Differentiating equation (3.1.5) with respect to the free-running oscillation

frequency wo, results in the expression

(3.5.8)

Therefore, the stability criterion (3.5.6) can also be written as

(3.5.9)

In words, an increase in the isolated oscillation frequency of the laser must be

associated with a corresponding increase in the coupled lasing frequency, and

dv
At the stability limit173, ~ = O. Therefore, the stability boun-

dVL
vice versa.

daries are located where the slope of the tuning trajectory, as in Figure 3.10 a).

goes to zero.

The transition to multimode operation illustrated by Figure 3.9 represents

a pitchfork bifurcation176 of a single, stable solution into three new states, one
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of which is unstable. Such a transition is by no means unique to a self-coupled

laser. Interesting analogies, for example, can be made to the first-order phase

transition of an ideal van der Waals gas177. Isotherms in the PV plane are

similar in appearance to the piston versus frequency plots of Figures 3.5 a) and

3.10 a). With a reduction in temperature, multiple states are allowed for a given

pressure. However, the central portion of the isotherm violates the stability cri-

terion

[

8P

]
< O.

8V T
(3.5.10)

As the pressure is monotonically varied through the multi-stable region, the sys-

tem "hops" (undergoes a phase transition) between the two extreme states in

volume, governed by the lever rule.

3.6 Mode Selection

To this point it has been demonstrated how dynamic stability reduces the

number of allowed modes in a self-coupled system. Although numerical simula-

tions have been shown to predict the observed spectral behavior, it is still

unclear why the system chooses to lase in the modes it does. As mentioned ear-

lier, it is evident in Figure 3.10 b) that the lowest threshold gain mode of the

system is not always the one that runs. The lasing mode hops from lower to

higher threshold gain or vice-versa, depending upon the direction in which the

external cavity is pistoned.
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To determine the reason for this behavior, the time evolution of the system

was investigated for piston locations near the mode hop boundary. Experimen-

tal data was collected using the planar Fabry-Perot interferometer shown in

Figure 3.2 as a tuned filter. The spectral resolution of the instrument was

increased to about 40 MHz by shortening the mirror separation. This

bandwidth was chosen as a compromise, so that the entire linewidth of one

mode could be collected over a range of power coupling ratios, while insuring

rejection of the other. The Fabry-Perot was arbitrarily tuned to the mode with

the higher frequency, and the external cavity simultaneously pistoned to the

center of a multimode region. The center, located at WoT= 11"-tan -la, could

be found accurately by balancing the spectral brightness of the two competing

modes. Holding the system at that point, however, was non-trivial. Electrical

noise, mechanical vibrations, thermal variations, etc., all made this measure-

ment difficult. The precautions discussed in Section 3.2 were instituted to help

stabilize the measurement. Throughput of the Fabry-Perot filter was digitized,

collecting various length records of power versus time located in the higher fre-

quency mode. Each time series, in essence, gives a time-resolved spectrum,

since there are only two possible states in which the system may operate. Fine

positioning of the cavity length from the center of the multiple mode region was

attained by electronically stepping the voltage to the piezo translator of Figure

3.2 just before data was digitized. In this way, long term drifts could hE'

avoided.

Time series for a small region of cavity length about W0 T = 11"- tan -1 a are

shown in Figure 3.13 at a power coupling ratio of -52 dB. The modes at this

coupling level are essentially the same as in Figure 3.10 a), with slightly larger
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multimode regions with respect to WoT. Although not obvious in the experi-

mental data of Figures 3.7 and 3.8, no definite hop boundary between the two

stable branches of Figure 3.10 a) exists. These branches are in a highly dynamic

mode competition where competing modes alternately run. The dwell time in

each mode is a sensitive function of T. As the external cavity is pistoned in a

direction favorable to one branch, the dwell time of that mode increases at the

expense of the unfavored mode. The longer dwell time shows up as a larger

average intensity178,179. Note also that the piston range covered in Figure 3.13

is a fraction of the complete multimode range.

Assuming that mode hops in this figure are initiated by amplified spon-

taneous emission (ASE) noise in the laser, the stability of the allowed modes

against phase perturbations induced by this noise must then be changing as a

function of T. Near WoT = 1T-tan-1a, the dwell times in each mode are about

equal. Yet when pistoned off slightly, a mode is either more or less likely to be

perturbed from that state. Mode selection is therefore determined by phase sta-

bility, not threshold gain. This conclusion is further substantiated by a close

examination of Figure 3.10 c), which reveals that the lowest linewidth mode

predominates in bistable regions125.

As the coupling level is further increased, the character of the emission

spectrum changes dramatically. Figures 3.14 and 3.15 show typical spectra-
versus external cavity length for power coupling ratios of -46 dB and -44 dB.

respectively. Operating conditions in these figures are identical, other than the

coupling level, to those in Figures 3.3, 3.7 and 3.8. The spectra were taken

with the planar Fabry-Perot in Figure 3.2, at a FSR of 2 GHz. Therefore, nar-

rowed linewidths are not resolvable. The external cavity length was first
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Figure 3.15 Experimentaloptical spectra showinghysteretic
mode tuning for a se1fcoupled HLP1400CSP laser at a power
couplingratio of -44 dB, in an external cavity of length 40 cm.
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decreased by about two wavelengths in (twenty) small steps, whereupon its

direction of motion was immediately reversed, returning the cavity to its origi-

nal length. The first and last traces in the figures are of the uncoupled lasing

line. Mode hops have ceased to be symmetric about the free-running oscillation

frequency. Further, the tuning trajectory is hysteretic. When the external cav-

ity length is decreased, hops occur entirely on the high frequency side of the iso-

lated frequency, while the opposite is true when the cavity length is increased.

It is interesting that when the piston direction is reversed, the laser is able to

tune more than 211"of piston without hopping.

Equation (3.1.5) is once again solved numerically, in Figure 3.16, to deter-

mine the available modes of the system at a coupling level of -46 dB. Modes

which violate the stability criterion (3.5.6) have been eliminated for clarity. By

comparing the experimental data with the allowed states of the system, the tun-

ing trajectory can easily be superimposed on Figure 3.16. Thin lines indicate

the path taken as the cavity length is decreased, while thicker lines depict the

subsequent return of the cavity to its initial length. Note that there are multi-

pIe modes available for all cavity lengths at this coupling level. Mode hops are

observed to occur only when the system reaches the tuning extremes given by

(3.1.7). It is evident from the figure that any stable mode of the system can be

accessed by using the proper trajectory.

Mode hopping behavior was further examined with respect to the power

coupling ratio, as shown in Figure 3.17. Each trace was taken at the hop boun-

dary WoT = 11"- tan-Ia. Hence, dwell times in each mode are approximately

equal. Hop rates clearly slow with an increase in power coupling. This implies

that the system is becoming more stable against phase perturbations at larger
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coupling levels. Hence, spontaneous emission noise becomes insufficient to per-

turb the system from its current state, explaining the hysteretic tuning charac-

teristics in Figures 3.14 and 3.15. Similar hysteretic behavior has been observed

in the output power of the self-coupled laser180 due to variations in threshold

gain throughout the tuning trajectory. In this early work, however, the effect

was incorrectly attributed to spectrally asymmetric gain suppression.

For shorter external cavities, multi mode operation occurs at much larger

coupling levels, where quantum noise cannot induce mode hops. In this case,

hysteresis is to be expected throughout the multimode regime, and has indeed

been observed with changes in injection current in a 4.5 mm cavity127. Only

when gain differences between neighboring modes become sufficiently large, such

as in the case of frequency selective feedback181, is the low threshold gain mode

expected to dominate.

Figure 3.17 illustrates the stabilizing effect of the reinjected signal on the

phase noise in the laser, which manifests as a reduced linewidth and reduced

mode hopping at larger coupling levels. This induced stability can be likened to

injection-Iocking182. The Adler equation183 describing the phase of the slave

laser can be written as

(3.6.1)

The sinusoidal term on the right hand side of (3.6.1) acts as a restoring force,

keeping the phase of the slave <Ps confined. If the slave is well-locked, the

phase tracks that of the master oscillator <PM'which is assumed to be highly

stabilized. In the case of self-coupling, the Adler-like phase equation (3.1.10),
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written with respect to the steady-state, becomes

(3.6.2)

Here, a similar restoring force is present. When &<1>(t) - &<1>(t - T) becomes non-

zero, the sinusoid acts to minimize this difference. The strength of the restoring

force depends on the magnitude of the coupling coefficient; hence, the reduced

hop rates at larger, coupling levels. An analogy can be made to a potential well

problem. The depth of the well is determined by the coupling level, and its

width gives the linewidth of the mode. A mode hop, then, is analogous to the

particle obtaining a large enough kick from spontaneous emission events to

escape the well, landing in the potential well of the next mode. The deeper the

potential well, the harder it is to get out of the well. This approach has been

recently used to theoretically predict the reduction in hopping frequency with

increasing coupling179,184. It is important to realize that the effect of seIf-

coupling is not to reduce the noise amplitude, for the noise is independent of

the coupling level, but to reduce the diffusion in phase resulting from the noise.

3.7 Coherence Collapse

Thus far, the stability of a self-coupled laser at weak coupling levels, ,,;here

the power coupling ratio is below about -40 dB has been examined. The system

was in general multimode, and mode selection was determined by phase stabil-

ity. The stability of the self-coupled laser was shown to improve with increas-

ing coupling level. This trend, however, does not continue indefinitely. At
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higher feedback levels, the lasing line has been observed to broaden to a width

of tens of GHz125,185,186. This enormous broadening results in a corresponding

decrease in the temporal coherence length of the laser, and thus was originally

termed "coherence collapse" by Lenstra et al.187 in 1985. The loss of coherence

was verified through visibility measurements; however, its origin was not

explained. Since that time, a great deal of effort has been devoted to its under-

standing, primarily to determine the usefulness of diode lasers for sources in

coherent optical communications applications. This section investigates the

behavior of delayed self-coupling, for a semiconductor laser operating in the

coherence collapse regime. Experimental optical and intensity noise spectra are

presented and compared to numerical simulations of the full nonlinear rate

equations.

Before proceeding, it is necessary to distinguish two domains of instability

encountered at moderate self-coupling levels, resulting in decidedly different

behaviors, which are sometimes both referred to as coherence collapse132. It

was first observed by Fujiwara et al.188 that the light versus current charac-

teristic of a strongly self-coupled laser displays a kink just above threshold.

This occurs typically at about 1.1 - 1.2 times the lasing threshold with feed-

back, which, for strong enough coupling, can be below the free-running laser

threshold189. This kink was linked to previous observations190,191 of low fre-

quency fluctuations (LFF) in the 1-100 MHz range. Further studies192.193

revealed that the optical power displayed abrupt drops followed by a periodic

buildup of power in steps194 corresponding to the inverse of the external cavity

mode spacing. The total recovery time of about 10-15 steps is responsible for

the LFF frequency. The power dropouts were explained174 as a second-order
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instability due to the carrier-dependent refractive index and initiated by spon-

taneous emission which dislodges the laser from its stable operating state.

Other studiesl95-197 have proposed that noise is not necessary to explain the

persistence of the LFFs once initiated, while experimental evidence also

existsI89,198-200 demonstrating a possible route to optical chaos. Above the

kink in the light versus current characteristic, the LFF disappear201, and the

low frequency noise level returns to that of the free-running laser. This study is

concerned with the stability of the self-coupled laser above the kink, where it

operates well above threshold at reasonable output power levels. The character

of the progressive instability with respect to coupling level and phase, rather

than current, is investigated. This is the situation which was originally referred

to as coherence collapse by Lenstra, et al..

Figures 3.18 - 3.20 experimentally show the transition from the extremely

stable operation achieved in Section 3.6 to the coherence collapsed state. Figures

3.18 and 3.19 are a continuation of the survey of Sections 3.3 through 3.6,

incorporating the same CSP laser operating at 1.7 [tn in an external cavity of 40

em. At -43 dB (a power coupling ratio slightly higher than in Figure 3.16)

secondary peaks are observed in the Fabry-Perot spectrum separated from the

carrier by the relaxation oscillation frequency and its second harmonic. Their

presence indicates intensity self-pulsations in the time domain. The FSR is 2

GHz in the figure; hence, the sidebands have been wrapped around from

another order of the Fabry-Perot. A hysteretic tuning trajectory still persists,

while tuning extremes have increased, as predicted by equation (3.1.7). The

damping of the oscillations is seen to be dependent upon the coupling phase,

where lower frequency modes appear to be better damped. This observation is
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consistent with the discussion of damping in Section 2.4, noting that the low

frequency and low threshold gain modes nearly coincide for large (X.

Figure 3.19 shows the spectrum of the same laser at a power coupling ratio

of about -38 dB, with the FSR increased to 10 GHz in order to avoid confusion

due to wrap-around. The relaxation sidebands barely fit inside this FSR, and

are slightly distorted due to a nonlinearity of the Fabry-Perot voltage ramp.

Nevertheless, it is. clear that the very stable single longitudinal mode behavior

just prior to the appearance of relaxation oscillations has degraded. Several

external cavity modes are found to run depending upon the cavity length pis-

ton, while the magnitude of the relaxation sidebands have now become rela-

tively insensitive to w0 T at this coupling level.

At larger coupling levels, the spectra become more and more complicated,

with external cavity modes and relaxation sidebands filling in the entire FSR.

It is therefore necessary to go to a larger FSR. Figure 3.20 shows the spectral

collapse of the CSP laser with a FSR of 115 GHz. The relaxation sidebands

and their harmonics are more clearly seen in this case. As the power coupling is

increased, the self-pulsation of the system becomes more violent, as indicated by

larger sidebands. The subsequent operation of many external cavity modes

begins to fill in the spectrum and broaden it to over 20 GHz. This broadening

corresponds to over 1000 times the naturallinewidth of the laser. The center of

the spectral envelope is observed to shift to lower frequencies well into the

coherence collapse regime. The spectral collapse shown in Figure 3.20 was typi-

cal of all the lasers looked at, and further, was virtually unchanged for cavity

lengths Lezt ranging from 10-100 em.
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Figure 3.21 displays a numerical simulation of the optical spectrum during

coherence collapse corresponding to the experimental data of Figure 3.20.

Numerical integration of the rate equations was performed using a variable-

order, variable-step Gear method designed to handle systems of nonlinear, stiff,

first order differential equations. The step size was chosen to be 10 ps, much

smaller than the inverse of the highest expected frequency. Langevin noise

sources were modeled as outlined in Appendix D. The dynamic variables were

initially set to their stationary values. Integration then proceeded for several

round trips of the external cavity (-10 ns) to insure all transients had died out

before -200 ns time series were collected of the electric field amplitude and

phase. The spectral density function of the complex electric field amplitude was

then obtained by a fast Fourier transformation (FFT). So that a direct com-

parison to the Fabry-Perot data of Figure 3.20 could be made, the spectral den-

sity was then convolved with a Lorentzian instrument function with FWHM

corresponding to the first trace in Figure 3.20. The excellent agreement is clear.

All important features observed in the experiment are recreated. Relaxation

oscillations become undamped at approximately the expected power coupling

ratio. Further, their relative peak heights match the experiment well.

The spectral asymmetry to the low frequency side, evident in the experi-

mental data near -30 dB, is also duplicated. This asymmetry has also been seen

in free-running semiconductor lasers202 and was explained as correlated ampli-

tude and phase noise fluctuations from spontaneous emission noise due to the

carrier dependence of the refractive index. This implies that the reinjected

light is becoming less coherent with the circulating field as dynamic instability

worsens. The coherence collapsed state can therefore be likened to a laser
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operating under the influence of an extremely large noise source. The partially

coherent feedback viewpoint has been advocated by Olesen, et al. 173to explain

differences between their numerical simulations based on small signal versus full

nonlinear forms of the self-coupled rate equations. A similar, though more

extreme, approach has been usedl87, 203,204 to describe coherence collapse for

the case in which the coherence time, corresponding to the overall spectral

width lIdv, is much shorter than the round trip delay T. The optical feedback

is considered completely incoherent, and the delayed reinjected field is replaced

by an external noise source with Gaussian correlation properties. This descrip-

tion does not address the origin of the coherence collapse, but simply assumes

that the state already exists. Numerical simulations based on this theory have

also nicely modeled gross spectral features, similar to those shown in Figure

3.20, between about -40 and -20 dB power coupling ratio205. The strong pulling

of the spectrum to lower frequencies above -20 dB, however, is not predicted in

this model. It is later shown that the pulling behavior is related to a partial

recovery of coherence as the system transitions to a decidedly different operat-

ing regime.

A closer examination of the numerical simulations in Figure 3.21, without

convolving with the instrument function, reveals that the spectral envelopes

actually consist of a large number of external cavity modes separated, for the 40

cm cavity, by 375 :MHz. Figure 3.22 shows relative intensity noise (RIN) spec-

tra, defined by132

2Ll v S SP ( w )

RIN(w) = <p >2
(3.7.1)



119

-80
a) -40 dB

-1600 246

Frequency (GHz)

8

Figure 3.22 Numerical simulations of relative intensity
noise during coherence collapse for a HLP1400 CSP laser
in a 40 cm external cavity.

.-....
N
:r: -160"-
CD -80
-c'-"'"

Q)
en.-
0

Z

-160.:!::
en -80c
Q) c) -29 dB+-oJ
c-
Q)
>.-
"E-

-160Q)
a: -80



120

as a function of power coupling ratio during collapse. Here,

P(t) = <P> + 8P(t) is the time-varying optical power output of the laser,

<P > is its average value, and S8P (w) is the spectral density function of the

power fluctuations 8P( t). External cavity modes are readily apparent in Figure

3.22 a) and b). .ABthe coupling level is increased, however, the noise baseline

rises, eventually engulfing all substructure at a power coupling -ratio of about

-30 dB. At this point, an incoherent injection model of the self-coupled laser is

truly valid. Surprisingly, the noise level reduces above this point, revealing a

broad spectrum of peaks separated by c/2Le%t,as shown in Figure 3.22 d). The

coherence time corresponding to each external cavity mode is in fact longer

than the coupling delay, indicating that the feedback is indeed coherent, even

well into collapse. Similar external cavity mode substructure in the optical

spectrum was reported in an early work206 for what appears to be a coherence

collapsed state with an external fiber cavity of 7.5 km in length, clearly outside

of the coherence length of the isolated laser, even with no feedback. It is evi-

dent that the coherent rate equation approach is valid well into the coherence

collapse regime.

While it is difficult to experimentally resolve the external cavity modes in

the optical spectra well into coherence collapse, their behavior is readily

observed in the intensity power spectrum. Figure 3.23 displays experimental

measurements of the intensity power spectrum at various power coupling ratios

in the collapsed state. The external cavity is 25 cm in this case. Clearly, the

signal level is too weak to see the entire noise spectrum shown in Figures 3.22.

A sufficiently wide-band preamplifier was not available for the experiment. The

noise baseline of the photodiode/spectrum analyzer combination therefore
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corresponds to a RIN of approximately -110 dB/Hz in Figure 3.22. Neverthe-

less, progressive spectral broadening and noise baseline increase is evident in the

3 GHz range shown about the relaxation resonance frequency.

Quite similar spectra were observed at a number of other cavity lengths,

ranging from 20 to 100 cm. In contrast to the numerical simulations, the spec-

tral filling continued past -30 dB, eventually resulting in a flat, noisy spectrum.

This behavior was, found to occur at nearly the same power coupling ratio for

all cavity lengths investigated. Further examination proved the spectral

broadening to be due to a rapid decrease in the mode suppression of the longi-

tudinal diode modes. The longitudinal diode mode spectrum in the coherence

collapse regime as a function of power coupling ratio is later shown in Figure

3.25 b) for a 40 cm cavity. The possibility of multiple diode mode operation

was not accounted for in the single mode rate equation simulations.

An effort was made to study the intensity spectrum of the self-coupled

laser during coherence collapse with a streak camera, which affords a much

larger bandwidth than a typical spectrum analyzer. The signal-to-noise ratio at

the experimentally available light levels, however, was insufficient to follow the

laser's temporal dynamics. The dynamic operation of the undamped diode

longitudinal modes, on the other hand, was found to occur on a much longer

time scale, and was able to be studied in the time domain using the streak cam-

era and spectrometer combination shown in Figure 3.24. The exit slit of the

spectrometer was imaged onto the entrance slit of the streak camera by lens

(L2). A cylindrical lens (CL) was used to increase the light throughput to the

streak camera by compressing the image perpendicular to the slit. The external

cavity setup remained unchanged. Modes were found to hop on a relatively
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long (- J.t.s)time scale. A typical hopping pattern is displayed in Figure 3.25

for a -26 dB power coupling ratio and 40 em cavity length. It is likely that the

external cavity modes within each diode mode are also hopping during collapse.

This would also account for the lack of a strong beat note at the fundamental

cavity mode spacing frequency.

In Section 2.4, it was shown that the small signal stability properties of a

self-coupled laser ~ith little or no coupling delay are nearly identical to an iso-

lated laser. The coupling merely shifts the frequency and damping rate of

relaxation oscillations. Based on the preceding experimental data and numeri-

cal simulations, however, a coupling delay appears to radically change this pre-

viously stable operation. Small signal stability can be extended to include time

delays by proceeding, in the same fashion as Section 2.4, from equations (3.1.1),

(3.1.2) and (2.3.8)172,207. The secular equation (2.4.8), in this case, is given by

where OR and 'Yare defined by (2.4.14). Coupling delays are plainly incor-

porated in the exponential terms of (3.7.2). When ofgoes to zero, the charac-

teristic equation simplifies to (2.4.12), indicating unconditionally stable opera-

tion.

Unfortunately, stability boundaries cannot be determined from the Hurwitz

criterion, since equation (3.7.2) is not a polynomial in 8 as a result of the cou-
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pling delay. Furthermore, the delay terms make numerical evaluation of the

eigenvalues s impossible using standard QL or QR algorithms168. Some under-

standing of the stability properties, however, can be acquired for small "1. By

definition, the stability limit is reached when s crosses into the right half of the

complex plane. Therefore, at a given coupling delay f, the stability boundaries

can be located by substituting s = iO into (3.7.2). Neglecting terms second

order in "1and 'Y,the imaginary part of (3.7.2) leads to

(3.7.3)

which is valid for "1 ~ 10-2. (3.7.3) is an expression for the resonant frequency

o of an unstable root, given a coupling delay T. This frequency is near the

relaxation resonance OR =WRTp' and is independent of the coupling phase, as

was the case in Figure 2.7.

o is plotted as a function of Lext in Figure 3.26 using parameters measured

for the experimental CSP laser diode, listed in Table E.!. Note that an infinite

number of solutions exist at a given T. Dark solid lines indicate the resonances

closest to the relaxation oscillation frequency, which are the first to become

undamped with increasing power coupling. Physically, for a given coupling

delay, this undamping will appear as an intensity self-pulsation in the output of

the laser at the indicated frequency. Dashed lines indicate the resonance fre-

quencies of the external cavity, Nc/2Lezt' Although advocated in the past208, it

is clear that the resonant frequency of the system does not lock to a multiple of

the external cavity, but attempts to maintain a value of OR' In fact, for long

external cavities, 0 is approximately equal to OR at all T.
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The critical coupling level where a mode of the system becomes unstable

can be determined from the real part of the secular equation {3.7.2},knowing fl

from {3.7.3}. Figure 3.27 displays stability boundaries in the ij plane at four dis-

tinct coupling delay times, T. Also depicted {dashed} is the fl:# 0 stability boun-

dary for the even mode of a mutually coupled CSP laser, similar to that shown

in Figure 2.5. The boundary b}, where TVR = 1, is observed to follow the

former quite closely, within the approximation on 1']. An examination of {3.7.2}

reveals that these boundaries are identical whenever the inverse coupling delay

lIT is an odd multiple of the relaxation resonance frequency vR , and are

approximately the same for TVR products larger than one. To the contrary, as

T approaches zero, {cases c} and d} in Figure 3.27} the region of stable operation

is observed to grow rapidly, eventually encompassing the entire ij plane. Based

on the results of Section 2.4, stability is expected to improve in the right-half ij

plane for 1']> 10-2, due to an increase in damping rate encountered there.

The limiting case of stability criterion {3.7.6} is also plotted in Figure 3.27

e} for of = 27T/flR. Unstable operation exists in the region below this boundary

in the figure. Since this instability boundary corresponds to fl= 0, modes

located in this region do not represent oscillating states of the self-coupled laser.

The boundary moves outward from the origin as T approaches zero, while for

large T, it effectively cuts the ij plane into stable and unstable halves. A cross-

ing of this boundary with increasing 1'] indicates the onset of multiple mode

operation at a given w 0 T.

It is clear from Figure 3.27 that the self-coupled laser will operate stably,

regardless of the coupling phase, for sufficiently small 1']. When 1']becomes too

large, however, the system may develop self-sustained relaxation oscillations.
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The critical coupling level where this occurs depends not only on the values of T

and WoT, but on the mode in which the system is currently operating. Note

that anyone (or more) of the available modes may penetrate the instability

boundary at a given WoT. The location of these modes in the i) plane will be

discussed in Section 4.5. Figure 3.28 plots the lowest possible 11 where self-

pulsation may occur versus the distance between the laser and retroreflector. It

is notable that f~r long coupling delays the critical power coupling ratio is

nearly independent of T and is given approximately by (2.4.22). This result also

approximately predicts the onset of coherence collapse209 measured in the

preceding experiments. The coherence collapse instability is therefore initiated

when a mode of the self-coupled system penetrates a stability boundary

corresponding to undamped self-pulsation. Hence, relaxation oscillations

observed experimentally at the start of coherence collapse appear to be the

cause of, rather than a product of, the dynamic instability. Recall, for example,

Figure 3.18, where relaxation oscillations were found to interrupt the extremely

stable, narrow linewidth operation at a -45 dB power coupling ratio.

Expression (2.4.22) actually underestimates the coupling level for the onset

of coherence collapse. In fact, a value of 'Y = 6.6x 10-3 (about four times

larger than that indicated by the parameters in Table E.1) was used to generate

Figure 3.28, to match the -40 dB critical power coupling ratio observed experi-

mentally. The discrepancy is attributable to gain compression, which was

neglected in the small signal analysis. Gain compression significantly enhances

the damping of relaxation oscillations, moving outward the stability boundaries

a)-d) in Figure 3.27. Comparison between experiment and numerical integration

of the full nonlinear rate equations (3.1.1) and (3.1.2) including gain
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compression was used to estimate the self-saturation coefficient. A value of

~oo = 1.3X10-8 was found to be appropriate. Given the measured parameters

in Table E.1, this corresponds to a value of O.6W-1 with respect to the power

output from the front facet, slightly lower than the 1W-1 (or larger)178 value

typically used in numerical studies.

Figure 3.28 also shows that at small T, where flRT «1T, extremely high

coupling levels are, required to undamp the relaxation resonance of the laser. It

is not surprising, then, that numerical studies of short external cavity lasers

have demonstrated that for cavity lengths below a few millimeters the system

operates stably, without any coherence collapse210,211. Indeed, semiconductor

lasers are often coupled to very short external cavities to achieve dynamic single

longitudinal mode stabilization212-215.

Physically, intensity self-pulsation is enabled by the proximity of the relax-

ation resonance frequency WR to a multiple of the fundamental external cavity

mode frequency lIT. Its existence, however, is not sufficient to explain the

severity of the instability. Coherence collapse is a large signal phenomenon,

requiring the full nonlinear rate equations for its theoretical description.

Schunk and Petermann178 have performed a quite exhaustive numerical survey

of the parameter dependencies of coherence collapse. Of particular interest is

the absence of coherence collapse when a=O, although equation (2.4.22) shows

that the small signal instability boundary corresponding to sustained self-

pulsation may still be exceeded, albeit at a higher coupling level. Other numer-

ical simulations of the coherence collapse instability, with the isolated laser

operating well above threshold, have indicated an extreme sensitivity of the rate

equations to initial conditions216 and abrupt transitions from stable to unstable
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operation173 in which noise was found to play no important role, prime indica-

tors of chaos.

Judging from the routes to chaos identified in the previously referenced

studies of LFFs, with the isolated laser operating very near or below its thres-

hold, it is probable that the coherence collapse instability is also a form of opti-

cal chaos. However, while the optical and intensity spectra in Figures 3.18 -
3.23 indeed becam~ complicated as the coupling level was increased, no route to

chaos could be determined. This was true of all cavity lengths considered.

Similar intensity noise spectra have been reported for DBR lasers217. Recently,

a quasiperiodic route was demonstrated218,219 in the specific case where the

resonance frequency of the laser was an integer multiple of the external cavity

fundamental frequency. Here, two system resonances, shown in Figure 3.26, are

equidistant from vR and therefore have equal amplitudes. Competition between

these modes was regarded as the mechanism leading to chaos. This is by no

means generally true, however, since most often a single relaxation resonance

peak is dominant.
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4. MUTUAL COUPLING

This chapter ~xperimentally analyzes the operation of a mutually coupled

pair of semiconductor diode lasers. In Chapter 2, it was demonstrated that,

given a set of material constants characterizing a specific gain medium, the pri-

mary parameter governing the stability properties of two coupled lasers is the

cross-coupling coefficient. It is therefore desirable to exercise precise control

over the magnitude and phase of the coupling coefficient experimentally, so that

stable and unstable regions of operation predicted by theory can be verified.

This can be a difficult, if not impossible, proposition employing the coupling

techniques referred to in the introduction220. In the present case, however,

mutual coupling is accomplished axially between two individual Fabry-Perot

diode lasers, via conventional optics. Such a scheme has been considered previ-

ously221,222, and incorporates several advantages.

The magnitude of the optical interaction, in this configuration, is con-

trolled simply by introducing attenuation between the lasers, while the coupling

phase is controlled by varying the separation of the lasers in fractions of the

emitting wavelength. Both parameters are therefore continuously variable, but

more importantly, can be adjusted independently. As discussed in Appendix B,

this allows for quite accurate quantification of the coupling coefficient for com-

parison to theory.
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By coupling at a distance, however, additional longitudinal modes are

introduced into the system, associated with the cavity formed between the

lasers. Oscillators coupled at a distance have been treated theoretically by

Dente et. aP22, based on a steady-state spectral domain model. Multiple longi-

tudinal mode operation was identified as the mechanism responsible for a degra-

dation of phase-locking observed experimentally above a limiting coupling

strength in semiconductor lasers. Coupling delays have also been cited in a

microwave system of mutually coupled relativistic magnetrons223 as a source of

instability. Since coupling paths many wavelengths long are often unavoidable,

the associated delay could represent a potential limitation of phase-locking.

This phenomenon certainly deserves further investigation.

This chapter is divided into four parts. Section 4.1 develops the theoretical

framework necessary to model the experiment. These results follow directly

from Chapter 2. The experimental arrangement is discussed in Section 4.2.

Spectral and coherence measurements are then presented for resonant and non-

resonant lasers and compared to theory in Sections 4.3 and 4.4, respectively.

Finally, dynamic instability is shown to develop at moderate coupling levels.

Its origins and parameter dependencies are studied via numerical simulations

from the coupled rate equations.

4.1 Delayed Mutual Coupling

In modeling the experimental results which follow, rate equations (2.3.6)-

(2.3.7) describing mutual coupling, with cross-coupling coefficient (2.5.19),



136

become

(4.1.1)

<i>;(l)= a~n;(l) + F~;(l)

ek(l-f) A A A

- 11 A sin(TpWokf+ Tp~Wokt + <t>;(t)-<t>k(t-f))
e;(t)

(4.1.2)

i:r!:k=1,2.

Rate equations (2.3.8), for ~ in each laser, remain appropriate as written.

Single-pass cross-coupling, assumed in the derivation of (2.5.19), is also suitable

here since experimentally the maximum power transmission through the cou-

pling junction was Ef - 0.1, much less than one. Self-coupling is therefore at

least one order of magnitude smaller than cross-coupling, as it requires two

passes of the junction, and has been neglected above. 11is to be interpreted as

the cross-coupling coefficient throughout this chapter, while the normalized cou-

pling delay f = TITp now reflects the time accrued in a single pass between the

lasers. Coupling is taken to be symmetric, il;k = ilk; = il, as nearly identical

lasers were used in the experiments. Reduced Langevin sources Fxj(t), assod-

ated with the dynamic variable x, were added in (4.1.1) and (4.1.2) to model the

effect of spontaneous emission noise.
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4.1.1 Steady-State Operation

With (2.5.24), the stationary equations (2.3.20), (2.3.16) and (2.3.19) respec-

tively become

- -2Ap . - e.
J J =

1 + 2et
(4.1.3)

j=Fk =1,2.

(4.1.4)

(4.1.5)

Recall that A<t»Lj = - A<t»Lk == A<t»L, and that the locked frequency shift AooL is

referenced to the average uncoupled frequency through (2.3.17). As shown in

Section 2.3, the preceding equations generally require numerical solution to

obtain ej,k' AooL and A<t»Lgiven the parameters 'TI,Aooo, ex, Tp and T. In the

present case, however, their solution has become more complicated due to the

frequency dependence of the coupling phase. This results in a possibility for
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additional longitudinal modes associated with both the symmetric and asym-

metric solutions.

(4.1.3)-(4.1.5) can be simplified, for 1'1~ 0.1, by approximating that

ej ::= eA:' This implicitly assumes that the lasers are equally pumped. All infor-

mation about phase-locking is therefore contained in the two equations

(4.1.6)

(4.1.7)

where K = i}1TP' These equations can be simultaneously solved for the unk-

nowns AooL and Act>L' Numerical solutions are pursued later in comparison to

experiment.

When the lasers are resonantly tuned, (Le. their free-running oscillation

frequencies are identical so that Aooo = 0), the locked phase differencebetween

the lasers Act>Lmust assume a value of 0 or 1Tso that (4.1.6) is satisfied at all T.

These values correspond to the even and odd modes discussed in Section 2.3.

Modes are then found from

(4.1.8)

which is nearly identical in form to the frequency determining equation (3.1..5)

for self-coupling. The (-) sign denotes symmetric solutions, while (+) is for

asymmetric. As in the self-coupled case, multiple modes associated with both

the even and odd solutions may occur, at a given WoT,for K satisfying (3.1.9).

It is important to note the distinction between the cross-coupling phase
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\)Ice = -ooLT and the phase "piston" term rooT,which is determined by the cou-

pling delay. Although multiple roots can exist at a given ro 0 T, each root is asso-

dated with a unique coupling phase \)Ice. This is later shown to have a

significant impact on the stability properties and mode selection of the mutually

coupled system.

As the lasers are detuned, the locked phase difference compensates up to a

point which defines the lockband, as described in Section 2.3. The locking

range in the delayed coupling case, however, is a complicated function of the

coupling delay, T. Further, it depends on which mode the system occupies.

The maximum allowable detuning, on the other hand, is clearly

(4.1.9)

from (4.1.6), in agreement with (2.3.22).

4.1.2 Stability

There are at least two solutions to equations (4.1.6) and (4.1.7) at a given

coupling delay time T, with the possibility for several more when the KTproduct

becomes much larger than one. Many of these modes, however, can be ignored

since they do not represent dynamically stable states. It is therefore desirable to

obtain a stability criterion, similar to (3.5.6), for two mutually coupled lasers.

Stability can be addressed, where relaxation oscillations are well damped, from

the Adler-like phase equation (F.2). In the present case, using (2.5.19) and

neglecting self-coupling, (F .2) becomes
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where again ej = eA: is assumed. Writing the phase of laser i with respect to

the phase-locked steady-state given by (2.3.11)

(4.1.11)

equation (4.1.10) can be rewritten as

It has been assumed that the phase fluctuations 8ct>j,A:(t),due to spontaneous

emission noise, are much smaller than 11'. Note that there are two equations

above, one for each laser j ,k. Defining the coefficients

(4.1.13)

the equations (4.1.12) are

(4.1.14)

(4.1.15)

To test stability, solutions of the form

(4.1.16)

are assumed. Substituting into equations (4.1.14) and (4.1.15) leaves

(4.1.17)

(4.1.18)



141

This system of linear simultaneous equations can be solved for non-trivial values

of S by requiring that the determinant of the coefficients of 8<1>jo,ko is zero.

This results in the characteristic equation

(4.1.19)

where :t == ST. Stability requires that :t <0, so that perturbations damp

exponentially. :t=0 is always a root. In general, a mode can be evaluated for

stability by first solving equations (4.1.6) and (4.1.7) for the locked frequency

and phase difference at a given WoT,coupling level K and detuning 4000, This

fixes the values of Cj,k' Equation (4.1.19) can then be solved numerically for

the eigenvalue s, and stability checked. This procedure was used in the simula-

tions which follow.

An important case is where the lasers are resonant, 4000=0. Here, equa-

tion (4.1.19) can be rewritten as

(4.1.20)

where Cj,/c == C. The left (solid line) and right-hand (dashed) sides of (4.1.20)

are plotted in Figure 4.1. The coefficient C can be positive or negative; both

cases are displayed in the figure. It is clear that no root can exist in the right

half plane for C >0, while the opposite is true for C <0. The stability criterion

is therefore

(4.1.21)

where 4<1>L can assume the values 0 or 1T,for the even and odd modes, respec-

tively. (4.1.21) is an approximate formulation of the stability criterion (2.4.19),
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developed for no coupling delay. It divides the i1 plane into complimentary

stable and unstable halves for the even and odd modes, as did (2.4.19), but

doesn't predict the narrow, stable areas at very large "l shown in Figure 2.5.

Note that Im[8]=0 here, so that trajectories in phase space in the vicinity of an

unstable equilibrium are directed outward radially. Therefore, these modes will

never appear experimentally. AB in self-coupling, modes which do not meet the

stability criterion (4.1.21) have coupling phases which force destructive interfer-

ence between the two lasing fields in order to meet the round trip 211'phase con-

dition in the compound cavity.

4.2 Experiment

The semiconductor lasers used to investigate mutual coupling at a distance

were the same types described in the self-coupling experiments of Section 3.2.

Again, the reader is referred to Appendix E for information regarding the

operating characteristics of the devices. In order for phase-locking to occur, it

is required that the free-running oscillation frequencies of the lasers match to

within the locking range given by (2.3.22). Furthermore, it was desired to arbi-

trarily adjust the initial detuning while maintaining approximately constant

output powers. Therefore, some mechanism for individually tuning the lasers

was necessary.

Fortunately, the operating frequency of a semiconductor laser above thres-

hold can be tuned through the temperature dependence of the refractive

index224,225. This is accomplished in two ways. First, the temperature in the
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active layer of the diode laser could be changed several degrees by heating or

cooling the entire laser, heatsink and submount. Since typical tuning rates of

-0.5ArC were observed in these lasers, initial wavelength differences of no

more than about one longitudinal mode spacing (-31) could be tolerated. At a

given output power, however, the variation in operating frequency of a batch of

CSP and TJS lasers was found to extend over a range several times larger.

Acquiring two suitable semiconductor lasers proved difficult for this reason.

Fine adjustment of the lasing frequency could also be induced through

small variations of the injection current, changing the local temperature near

the active region, primarily due to ohmic heating. Another contributing

mechanism might be changes in temperature associated with optical absorption

and scattering, since the circulating power is linearly dependent on the injection

current. A typical -6.5 GHz/mA tuning rate was experimentally measured for

the 300 fJ-mlong ML5101a T JS lasers. Tuning with injection current proved to

be advantageous for varying the relative detuning between the lasers within the

lockband. For changes in current of -1 mA, the output power variations were

small.

Temperature tuning and frequency stability were accomplished using ther-

moelectric coolers sandwiched between brass heat sinks, on one of which the

laser was mounted. This mechanical arrangement is shown in Figure 4.2. A

thermistor was attached very near the laser to sense temperature variations. Its

resistance was compared to a standard in a bridge configuration, where op-amp

circuitry and power drivers controlled the current directed to the thermoelectric

elements. The experimental setup was heavily insulated to reduce thermal vari-

ations, especially in the heat sinks upon which the lasers were attached. Time
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Figure 4.2 E~rimenta1 arrangement employedto control the
temperature of the semiconductorlaser diodes.
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constants associated with "cycling" of the temperature control circuitry were

thereby reduced in amplitude and lengthened in period to approximately one

minute. This allowed an adequate window over which data could be taken

without large frequency drift. Maximum frequency drift over long periods of

time was measured at about :!:25 MHz. The heatsink temperature, using this

scheme, was variable by approximately :!:10° C about room temperature. A

fairly large temperature difference between the lasers could then be maintained

if one was heated above room temperature and the other was cooled. However,

room temperature variations then affected each laser in the opposite sense,

enhancing drifts. Cooling or heating both lasers by different amounts was the

preferred method of temperature tuning.

The optical experimental arrangement for mutual coupling is shown in Fig-

ure 4.3. Mter a lengthy search, a few usable pairs of diode lasers (DL1,2) were

found. The lasers were pumped via battery power supplies for the same reasons

discussed in Section 3.2. AR-coated collimation lenses (,...Sl,2) formed the cou-

pling junction between the lasers. Since the lasers were not pedestal mounted,

diagnostic light had to be collected from within the coupling junction, limiting

the minimum cavity length to about 20 cm. The beam splitters (BS1,2) sam-

pled light directed from a single laser. Secondary radiation from the opposite

laser which traversed the attenuators, a beam splitter, reflected from a laser

facet and was finally partially reflected to the diagnostics, was orders of magni-

tude smaller in power than the primary laser output. A similar argument could

be given to justify the theoretical neglect of self-coupling.

The magnitude of coupling was determined by a set of three crossed Glan-

Taylor type calcite polarizers (XTAL POLS). The outer two were oriented such
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Figure 4.3 Experimentaloptical setup for mutual coupling.
Abbreviations explained in text.
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that the pass axes matched the TE polarization of the diode emission. The

center polarizer was mounted in a motorized rotation stage, and its angle deter-

mined the amount of power transmission. One-way power transmissions from

zero to -12 dB could be addressed from one end of the coupling junction to the

other, as measured with a power meter. To enable the phase of coupling to be

adjusted, the cavity was folded by 90° where the folding mirror (HR.1) was

mounted on a piezo electric transducer (PZT). Movement of the mirror also

induced small movements of the collimated beams. However, the cat-eye assem-

bly of the collimation optics focused the spot to the same point on the laser

facet regardless of a slight displacement of the incoming beam, maintaining a

constant coupling level.

Mutual coupling between the lasers in this experiment was insured by

using the experimental setup indicated in Figure 4.4. Lens L1 imaged the near

field of laser A, with a large magnification, onto the CCD array. Laser A was

operated below threshold for this alignment so as not to saturate the camera.

The attenuator was set so that an adequate amount of power from laser B was

transmitted and imaged onto the facet of laser A. Its reflection was in turn

imaged onto the CCD array by lens Ll. The two spots were then overlapped

by moving laser A perpendicular to the optic axis. Assuming that the laser

mounts were built with the optic axis normal to the plane of the laser output

facet, this alignment alone guaranteed mutual coupling. As a check, the same

procedure was repeated from the other beam splitter (BSl,2) in Figure 4.3, indi-

cating the mounts were indeed square. The procedure was conducted before

each data set was taken.
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Figure 4.4 Experimental method to insure mutual coupling
between the lasers.
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The collimated laser outputs to be analyzed were sent through two optical

Faraday isolators (ISO) per path. This eliminated the feedback problems from

diagnostic optics discussed in Chapter 3. The half wave plates (HWP) were

included to insure maximum transmission through the isolators. The HR folding

mirrors (HR1,2) shown in Figure 4.3 were aligned to direct the beams parallel to

each other a few mm apart. A weak lens (Ll) was then used to slowly converge

the beams, overlapping them to produce interference fringes. These fringes

were used to assess the quality of phase-locking, as described in Appendix C.

The power of the lens and the distance between the beams determined the angle

at which they converged and consequently the number of fringes. Too fast a

convergence resulted in great difficulty getting light through the pinhole (PH)

without large reflections. A compromise was made that produced several

fringes yet still coupled ample power to the Fabry-Perot (FP). A later version

of the optical setup put the Fabry-Perot's beam splitter (BS3) before lens Ll

and worked much better. The microscope objective (fJ.S4) imaged the interfer-

ence plane onto a CCD array with a large magnification, for observation and

digitization. Crossed polarizing beam splitters (PBS) were employed to avoid

saturation of the CCD camera.

Gross tuning of the individual lasers, to put them within the lockband, was

performed with a .75 m grating spectrometer. This instrument further allowed

multiple longitudinal mode operation to be observed. The beam splitter (BS4),

in Figure 4.3, picked off a portion of the two converging beams, which were

then separated to a reasonable distance by a prism (PR) and sent to the spec-

trometer via fiber optic bundles (FOB). It was found that roughly collimated

light coupled best to the bundles. Two linear CCD arrays were used at the exit
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slit of the spectrometer to observe the spectra. Their output was displayed on

an oscilloscope and recorded with a scope camera.

Much finer detail was needed to tune the lasers within the lockband. The

Fabry-Perot interferometer (FP) was used for this purpose. The mutually cou-

pled mode spectrum versus laser separation was recorded with this instrument.

.As in the self-coupling experiment, a spatial filter was used to clean up the

beam. It consiste~ of a microscope objective (J.LS3),25 J.Lmpinhole (PH) and

collimation lens (L2). Two parallel beams entered the Fabry-Perot aperture

separated by about 3 cm. Therefore, the interferometer had to be aligned

extremely well so that parallelism of its mirrors was maintained throughout the

entire scan range. If not, the identical frequency of the two laser beams, when

phase-locked, would be passed at different points in the voltage ramp to the

Fabry-Perot. This would appear as two frequencies in the spectral output.

Proper alignment of the Fabry-Perot could therefore be attained only when the

lasers were phase-locked.

Simultaneous measurement of the optical spectrum and interference fringes

was desired as a function of coupling level and cavity length piston. A program

was written to control all data acquisition through a GPffi. Figure 4.5

schematically illustrates the manner in which this was done. At the request of

the operator, the laser separation was pistoned by staircasing the voltage

delivered to the piezoelectric translator, using a DAC and a high-voltage

amplifier. A transient digitizer subsequently recorded and transferred to com-

puter the next available Fabry-Perot scan from the photodiode (PD) in Figure

4.3, initiated by a trigger output supplied by the Fabry-Perot controller. The

interference image on the CCD array was then frame-grabbed, whereupon a few
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Figure 4.5 An overall view of the automated data acquisition and
control setup used in the mutual coupling experiment
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lines through the fringe data were saved in computer memory. This process

was repeated any number of times without stopping to process the data. In this

way, the entirety of data could be recorded in the minimum time so thermally

induced drift was not a problem. Approximately one piston position per second

could be recorded with this arrangement. Mter the desired number of piston

levels had been recorded, the computer sorted out the data and saved it to disk.

The electronic shutters (ESH1,2) indicated in Figure 4.3 were used to block the

appropriate beams to collect background data, uncoupled spectral and interfer-

ence data, and to check for drift. Shutters were actuated by computer at the

start and end of each data set. Another electronic shutter, not shown in Figure

4.3, was placed between the beam splitters BSI and BS2 to turn off the cou-

pling. It was manually closed before a data set was taken to set the desired

amount of detuning. It should be pointed out that all the diagnostic equipment

which needed to be altered during the course of an experimental session could

be accessed from outside of the enclosed optical table. Power supplies and the

Fabry-Perot controller were also located outside the table's hood. A stable lock

could then be maintained for tens of minutes by minimizing outs~de influences

such as air currents and vibrations.

4.3 Resonant Locking

The experimental data reported in this section describes the operation of

two diode lasers whose isolated oscillation frequencies are nearly resonant. The

length of the coupling junction in each case was 45 cm, including the extra opt-
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ical pathlength associated with transmission through glass. The following

behavior, however, is representative of all laser separations investigated, ranging

from 20 to 80 em. Two ML5101a T JS laser diodes were used as optical sources,

operating CW at 1.7It/p with power outputs of about 7 mW. Results are

presented in the order of ascending power coupling ratio.

The spectral and coherence measurements displayed in Figure 4.6 were

taken at a power ,coupling ratio of -70 dB. Part a) shows the coupled optical

spectrum obtained with the 2 GHz FSR Fabry-Perot interferometer shown in

Figure 4.3, while part b) displays slices through the simultaneously recorded

interference fringe patterns (taken perpendicular to the fringes). Each trace

vertically represents a different laser separation increased in steps of about

1/20th of a wavelength, thereby representing a specific value of WoT. The aver-

age uncoupled oscillation frequency is indicated by a dashed line in the figure.

The spectra of the lasers, when coupled, lock to a single frequency which is nar-

rower than the isolated linewidths and tunes to lower frequencies with an

increase in the laser separation. Further, mode hops are observed to occur with

every ~ added to the cavity, as in the case of self-coupling, with two modes

operating for a range of laser separations near the hop. The frequency separa-

tion (-90 MHz) of the modes at the hop boundary was used to determine the

coupling level by the method outlined in Appendix B.

Although the spectral data indicates that the coupled lasers appear to

operate at the same frequency, whether or not they are phase-locked can only

be ascertained from the interference data in Figure 4.6 b). Visibilities for each

fringe profile were determined as described in Appendix C and are labeled just
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above each trace. The appreciable visibilities obtained for most diode separa-

tions indicate that a substantial degree of coherence has been established

between the lasers even at such a weak coupling level. Visibility falls off

dramatically in the vicinity of a mode hop. Fringe peaks move with respect to

a piston in diode separation due to the location of the piezoelectric translator in

the optical path of one laser (see Figure 4.3). As a result, every additional

wavelength added to the cavity shifted the fringes by 211'. This coupling

configuration was chosen to allow the shortest possible coupling delay by

minimizing the number of required optical elements between the lasers.

It is apparent in Figure 4.6 b) that the mode hop initiates a 11'phase shift

in the fringes, or equivalently, in the locked phase difference between the lasers.

This is not attributable to the 90 MHz change in the coupled frequency due to

the mode hop. Pathlengths to the interference plane were matched sufficiently

so that changes in the coupled oscillation frequency (.< 10 GHz) produced a

negligible contribution to fringe movement.

Stationary solutions predicted by equation (4.1.8) are displayed in Figure

4.7 a) at a power coupling ratio of -70 dB, using parameters measured for the

ML5101a TJS laser listed in Table E.1. Note that there are two modes avail-

able to the system at any cavity length, a symmetric (square) and asymmetric

(circle) mode, where ~<f>L=0,11' respectively. Not all the allowed modes are

stable, however. Modes which do not meet the stability criterion (4.1.21) have

been indicated by solid dots. A direct comparison to Figure 4.6 a) shows that

the symmetric and asymmetric modes alternately run over half wavelength

ranges of laser separation. The unstable roots, as expected, do not show up

experimen tally.
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In contrast to the stability analysis of Section 2.4, bistable regions exist

about rooT= (2m + 1)1T/2-tan -10: due to the coupling delay. The width of

these multimode regions increases with increasing coupling level. It is clear that

a mode hop must be initiated as the laser separation is monotonically pistoned

through one of these regions, since the operating mode ceases to be stable. The

mode hop occurs from the symmetric to asymmetric mode or vice-versa, in

agreement with the experimental observation that the fringes shift by 1Tupon

hopping. A further discussion of behavior at the mode hop boundary is

presented later.

Figure 4.7 b) displays a simulation of mode tuning at the -70 dB power

coupling ratio, obtained by integrating the noise-driven phase equation (4.1.10).

The separation of 90 MHz at the hop point agrees with the stationary solutions

of Figure 4.7 a) and experimental data of Figure 4.6 a), while the tuning tra-

jectory discussed above is duplicated. The linewidth has narrowed from the

experimentally measured value of 18 MHz, which was also used in the simula-

tion to determine the level of spontaneous emission noise. The maximum line

narrowing cannot be resolved in the data of Figure 4.6 a), however.

Figures 4.8 and 4.9 display the behavior of the mutually coupled lasers

with increasing power coupling. Better locks are found to occur at higher cou-

pling levels, as evidenced by the fringe data. Visibilities approaching 80% are

obtained at the moderate power coupling ratio of -51 dB. The interference

fringes are once again observed to shift by 1Tabout the mode hop boundary,

indicating a shift from symmetric to asymmetric mode operation or vice-versa.

Note that the frequency separation of the two involved modes has increased.

As outlined in Appendix B, this dependence on K was exploited to determine
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the power coupling magnitudes listed throughout this section.

The noisy "drop outs" in the spectrum of Figure 4.8 a) at -55 dB are a

clear indication of mode hopping. The reduction in visibility about the hop

point, however, is becoming less severe at higher coupling levels, resulting in

good locks at nearly all coupling phases. Hop rates were generally observed to

slow with increasing power coupling ratio, as in the case of self-coupling. Hence,

the lack of obvio~s mode hopping in Figure 4.6 a), where hop rates are too

rapid to be resolved. Conversely, mode hops have become less likely at -51 dB,

allowing the spectrum to maintain a single mode over more than 'A/2 of added

laser separation. The mode hop here is obviously not centered about the iso-

lated lasing frequencies. Hysteretic tuning trajectories, similar to those shown in

Figure 3.14, were indeed observed experimentally for power coupling ratios

above about -53 dB.

Many more roots are allowed by equation (4.1.8) at higher coupling levels.

Figure 4.10 a) shows the static solutions at a power coupling ratio of -55 dB.

Once again, symmetric roots are indicated as squares and asymmetric modes as

circles. The maximum deviation from the uncoupled frequency has increased,

while as many as four roots are found to exist at a given laser separation. Solu-

tions denoted by solid dots were determined to be dynamically unstable, from

(4.1.12). Note that all of these roots correspond to the same longitudinal mode

number, or in other words, to the same number of waves in the composite laser

cavity. Through direct comparison to the data of Figure 4.8 a), the mode tun-

ing trajectory of the mutually coupled system has been indicated by a dark line

in Figure 4.10 a). Although a mode hop has been indicated precisely at

WoT = (2m + 1)-tr/2-tan -la, hopping is evident for a range of laser separations
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about this location in the experiment. Further evidence of the indicated trajec-

tory is provided by numerical integration of the phase equation (4.1.10) for a

-55 dB power coupling ratio, as displayed in Figure 4.10 b). A mode hop occurs

at the expected piston location with a mode spacing of - 250 MHz, which

agrees with both the stationary solutions and experiment. Note the consider-

able line narrowing of the locked mode.

Based on the ,discussion of mode selection in Section 3.6 for a self-coupled

laser, it is likely that the mutually coupled system also oscillates in the mode

possessing the greatest phase stability, rather that with the lowest threshold

gain. This inference can be proved by considering equation (4.1.12) describing

small phase fluctuations in laser j about the steady-state condition. Note that

there is a similar expression for the phase in laser k, found by interchanging the

indexes. One can define the instantaneous difference in the phases as

8<1>(t)== 8<f>J:(t) - 8<1>;(t). (4.3.1)

Assuming the phase fluctuations 8<1>;,k are small, the difference terms in equa-

tion (4.1.12) can be approximated to first order as

8<1>k (t - 'T) - 8<1> ; ( t) = 8~ t )T , (4.3.2)

(4.3.3)

Substitution of equations (4.3.2) and (4.3.3) into equation (4.1.12), recalling that

~<I>L;= -~<I>Lk==~<I>L'results in

8~ t) =
1 + 2K'T

ffi) ,
1+ a2cos~<I> L cos( WL 'T + tan -la)

(4.3.4)
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where F(t) == Fk(t) - Fj(t). This gives an expression governing fluctuations

from steady-state in the phase difference between the lasers, due to quantum

noise associated with spontaneous emission. Note that with no coupling

8c1J(t)=F(t); the phase difference then executes Brownian motion, driven by the

difference of the noise sources. The denominator of (4.3.4) therefore describes a

reduction (or increase, depending on the coupling phase) in fluctuations of the

locked phase difference due to the influence of mutual coupling. As discussed in

Appendix D, the frequency excursion goes as the square of the phase fluctua-

tions such that

(4.3.5)

Note that (4.3.5) does not give the linewidth of the coupled system, as it did in

self-coupling. It is actually the Fourier transform of the mutual-coherence func-

tion226 between the lasers. As such, it is a measure of the stability of the

phase-lock in the spectral domain, analogous to the role of visibility in the spa-

tial domain.

Figure 4.11 shows the numerical evaluation of equation (4.3.5) for the

power coupling ratio of -55 dB. The experimentally observed tuning trajectory

is superimposed on the solutions as a solid black line, and can be directly com-

pared to that given in Figure 4.10 a). It is clear that the lasing mode alter-

nately hops from symmetric to asymmetric solutions every 1T change in w 0 T,

maintaining the solution with the smallest ~v, or the most stable locked phase

difference. Therefore, mode selection is again determined by phase stability, not

threshold gain, at the present coupling level. ~v is generally found to decrease
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Figure 4.11 Width of the spectral density function describing fluctuations
in the phase difference between two mutually coupled TJS lasers at a
-55 dB power coupling ratio, 45 em laser separation. The experimentally
observed tuning trajectory is indicated by a solid line.
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with increasing coupling, in agreement with the increase in visibility with cou-

pling level observed experimentally, while it becomes nearly independent of rooT

at moderate coupling levels. Therefore good quality locks are expected at

nearly all coupling phases for power coupling ratios above about -50 dB, as

found in Figure 4.9 b). The best phase-locks are predicted to exist at rooTpro-

ducts half way between mode hops. This is generally the case observed experi-

mentally (seeFigures 4.6 b) and 4.8 b)) below the onset of hysteresis.

The slight decrease in stability of the mutually coupled system near a

mode hop boundary, however, is insufficient to explain the significant reduction

in visibility depicted in Figure 4.8 b). It becomes necessary to examine the

dynamic operation of the phase difference. Where the relaxation resonance is

well damped, numerical integration of the approximate phase equation (4.1.10)

for mutually coupled lasers gives quite satisfactory results. Figures 4.12 a) and

b) display the temporal evolution of the individual phases and phase difference

between the lasers at a -64 dB power coupling ratio, with rooT= 2r.-tan-la.2

Parameters used in the calculation were those measured for a ML5101 T JS

laser. The phases in each laser were initially set to zero and then computed

versus time under the influence of stochastic noise sources, with magnitudes

corresponding to the measured linewidth of 18 MHz.

Mode hops are indicated by a sign change in the slope of the phase versus

time plots in Figure 4.12 a), where the slope gives the angular frequency devia-

tion of the phase-locked mode from the average uncoupled frequency. When a

perturbation induces a mode hop, the phase difference shifts by some odd multi-

pIe of 11'in making a transition from the even to odd mode or vice-versa. Note



-
~

3201t

-3201t
31t

-121t
o

167

a)

o

25
Time (Jis)

Figure 4.12 Nwnerical simulation of mode hopping for two mutually
coupled TJS lasers at a -64 dB power coupling ratio.



168

that due to the time delay in coupling, the phase difference slips until a new

lock can be acquired after several round trip times of the coupling junction.

Although the lasers are well locked most of the time, poor visibilities are still

expected, since the system spends about equal time with ~(h(t) equal to 2m1T

and (2m+l)1T. A visibility of only 0.078 was calculated for Figure 4.12 b) by

the method described in Appendix C. Only when mode hops become extremely

unlikely in the hysteretic regime of coupling are substantial visibilities obtained

at the hop boundary.

Figure 4.13 displays the visibility of the two mutually coupled TJS lasers

as a function of the power coupling ratio. Crosses locate theoretical visibilities,

which were calculated from time series similar to those shown in Figure 4.13.

recorded at laser separations half way between mode hops. The theory has

been adjusted for spontaneous emission background using (C.12), while the

experimental data was compensated, in a similar fashion, for the effectively

incoherent contribution of secondary longitudinal diode modes (see Appendix

C).

Visibility is observed to fall off rapidly below approximately -70 dB. This

is attributable to the small power exchange between the lasers. At -80 dB, for

example, a fractional number of photons

(4.3.6)

Here, however, the laser separation was assumed to be such that

Wo" = -tan -la, where the best phase locks were obtained in Figure 4.11.

Experimentally measured values, denoted by squares in Figure 4.13, were
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are coupled in a single round trip of a laser. In contrast, it was shown in

Appendix D that on average - 10 spontaneously emitted photons are added to

the lasing mode in the same time interval. The phase noise associated with the

dominant spontaneous emission makes it difficult for one laser to acquire the

phase of the other. Phase locks are consequently poor.

Visibility climbs with increasing power coupling, asymptotically approach-

ing one. Experim~ntally, however, the coherence drops sharply at -45 dB, due

to the onset of dynamic instability, which will be discussed in Section 4.5. This

leaves a small - 10 dB "window," centered at a -50 dB power coupling ratio,

where quality phase-locking can be achieved. Degradation of the phase-lock

due to quantum noise in general becomes less of a factor at large coupling lev-

els.

4.4 Non-Resonant Locking

This section expands the experimental analysis of stationary mutual cou-

pling to the case where the semiconductor lasers have different free-running

oscillation frequencies. Experimental data presented here was taken under

identical operating conditions as in resonant locking, except for the detuning

and coupling level.

The series of Figures 4.14 - 4.17 depicts the operation of the coupled TJS

lasers as a function of the detuning between their isolated oscillation frequen-

cies, at a power coupling ratio of -53 dB. In each case, part a) displays the opt-

ical spectrum measured with a Fabry-Perot interferometer at a 2 GHz FSR,
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while part b) shows the simultaneously recorded interference fringe pattern of

the two laser outputs. As before, each trace vertically represents a steadily

increasing separation of the lasers in about 1/20th wavelength steps.

In Figures 4.14 a) and b) the lasers are nearly resonant. The spectral tun-

ing trajectory at the present coupling level borders on the hysteretic regime of

operation, as evidenced by the asymmetric appearance of mode hops with

respect to the av~rage uncoupled oscillation frequency. Figure 4.14 b) shows

that good quality phase locks are obtained, independent of the coupling phase,

at -53 dB power coupling. When detuned, according to Figures 4.15 and 4.16,

the lasers continue to display phase-locked operation. Peak visibilities are

observed to remain roughly unchanged from the resonant case to detunings of

over 450 MHz, after which visibilities gradually reduced to zero. .Any power

imbalance, which was found to accompany detuning in Section 2.3, should con-

tribute negligibly to the measured visibility. The lasers appear to be almost

completely unlocked in Figure 4.17 at a detuning of 623 MHz, with appreciable

visibilities confined to laser separations farthest from hop boundaries. The opti-

cal spectrum in this case has become very complicated.

Interestingly, the hysteretic tuning behavior encountered in the resonant

case ceases as the lasers are detuned. Spontaneous emission noise is then able

to initiate hops between the even and odd modes (note the 'iT phase shift in

fringes) with every half wavelength of added laser separation, as it did at lower

coupling levels among resonantly tuned lasers. Mode hopping is obvious in the

spectral data of Figure 4.15 a), and undoubtedly contributes to the reduction in

visibility encountered there. The increase in hop rates with detuning indicates

that modes near the hop boundary are becoming less stable.
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Stationary solutions to equations (4.1.6) and (4.1.7) are displayed in Figure

4.18 for a power coupling ratio and values of detuning corresponding to the

four experimental cases. Parameters used in the numerical calculations were

those listed in Table E.1 for the ML5101a TJS diode laser. Only dynamically

stable roots have been plotted for clarity, as a number of unstable equilibria, in

addition to those shown in Figure 4.10 a), are possible for non-zero detuning.

Stability was determined by numerical solution of the transcendental equation

(4.1.19). Open squares in the figure denote symmetric roots with

(2m -1/2)1T < .:1<1>L< (2m + 1I2)1T,while dark squares are for asymmetric solu-

tions having (2m + 1I2)1T< .:1<1>L < (2m + 3/2)1T.

A comparison of Figure 4.18 a) with the experimental spectra of Figure

4.14 a) reveals that the maximum excursion of the locked frequency predicted

theoretically is much larger than that observed experimentally. This is again a

consequence of phase stability. Modes with relatively large values of .:100L are

less stable than those near .:1ooL=0, allowing spontaneous emission noise to ini-

tiate mode hops to more stable states. The tuning trajectory therefore never

"sees" the outermost modes at this coupling level. These modes correspond to a

principal value of the cross-coupling phase near \!lee = ~1tl2 + tan-1a.

It is also evident in Figure 4.18 that stationary solutions with the largest

.:1ooLare lost as the detuning is increased. Note, however, that the solutions are

not lost due to a failure to meet the stability criterion, as implied by the

observed increase in hopping rates. Stable as well as unstable modes have sim-

ply ceased to be solutions of equations (4.1.6) and (4.1.7), since the lockband

has been exceeded at that \!lee. Recall the discussion of Section 2.3 where the
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lockband was shown to be a function of the coupling phase through equation

(2.3.21). Because several modes with different \flee are available at a given laser

separation, phase-locking is not limited in the experiment until the detuning

reaches approximately 500 MHz. As shown in Figure 4.18 d), regions of laser

separation near oooT= (2m + 1)1T/2-tan-Ia have no phase-locked equilibria,

since the lockband has been exceeded at those particular coupling phases.

Alternately, phase-locked operation is confined to laser separations near

oooT= m1T-tan-la. At the maximum locking range of 677 MHz, given by

(2.3.22), locked modes exist only at 000,

The experimental spectra in Figures 4.14 - 4.17 a) can be well simulated by

integrating equations (4.1.10) for the phases in each laser versus time. Figures

4.19 a)-d) display the results of numerical calculations carried out at a power

coupling ratio of -55 dB and a laser separation of 45 cm. This coupling level

was chosen since an impractical amount of computer time was required at -53

dB to model the less frequent mode hopping. Still, agreement with experiment

is evident. Figure 4.19 a), representing the resonant case, is identical to Figure

4.10 b). As the lasers are detuned, the experimentally observed tuning trajec-

tories are duplicated. Recognize that without noise in the model, the trajectory

would look much different (hysteretic). Modes near the hop boundary in Fig-

ures 4.19 b) and c) display broadened linewidths indicating reduced phase sta-

bility and resulting in a greater probability of mode hops. Figure 4.19 d) was

calculated for a detuning of 600 MHz and is thus well outside the 540 MHz

lockband given by equation (2.3.22). Yet some influence of coupling still exists.

The individual laser resonances are pulled from their isolated locations to within

500 MHz, depending on the coupling phase. Frequency pulling was found to
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reduce at larger detunings. Similar pulling behavior outside the lockband is

well known in master-slave injection-locking configurationsl29, 183. The tuning

and hopping behavior simulates well the experimental spectra shown in Figure

4.17 a), although in that case the lasers are still partially locked at some laser

separations.

It is apparent from the data presented in Figures 4.14 - 4.17, as well as

other experimental, observations not shown here, that there is no distinct transi-

tion from locked to unlocked behavior. Furthermore, phase-locked operation

always is limited to detunings much smaller than the theoretical locking range

given by (2.3.22). The expected lockband corresponding to the experimental

data in Figures 4.14 - 4.17 at -53 dB, for example, is 677 MHz. Yet a com-

parison to Figure 4.17 b) shows that at a detuning of 623 MHz, still well within

the lockband, peak visibilities are just over 0.3. For laser separations near

rooT= (2m + I)-IT/2-tan -la, this can be attributed to either mode hopping or

to the absence of a stationary locked solution, as described earlier. However,

when rooT= m1T-tan-la, these arguments do not hold.

Figure 4.20 displays time series of the phase difference between the lasers

and their optical spectra for three values of detuning near the lockband edge, at

a power coupling ratio of -53 dB. The simulations were obtained from numeri-

cal integration of (4.1.10). Flat portions of the time series indicate phase-locked

operation, while the slope of other regions corresponds to the pulled beat fre-

quency of the (unlocked) lasers. In Figure 4.20 a), for Avo = 500 MHz, the

phase lock begins to break randomly in response to noise perturbations. The

system then slips multiple 21Tbefore reattaining a locked state. This random

slipping of the locked phase, due to the presence of spontaneous emission noise,
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manifests in reduced visibility. Further detuning results in a greater fraction of

time spent in an unlocked state. The optical spectrum then consists of three

peaks: a locked mode and the two individual frequency-pulled laser resonances,

as shown in Figure 4.20 b). This spectrum is similar to the experimental illus-

trated in Figure 4.17 a) for laser separations where rooT= m1T-tan -la. At a

detuning of 650 MHz, displayed in Figure 4.20 c), the lasers are running almost

exclusively in an unlocked condition. It is important to note that this happens

inside the 677 MHz lockband given by equation (2.3.22).

The range of detuning permitting high visibility phase-locks is therefore

smaller than that predicted in a noiseless environment. The phase transition

from locked to unlocked operation is not sharp. Rather, the system is able to

spend less time in a locked state near the lockband edge, resulting in a softer

transition. Figure 4.21 displays visibility data for. power coupling ratios of -63

dB and -53 dB. Crosses represent the average of three visibilities calculated

from 20 s time series, similar to those in Figure 4.20, by the method described

in Appendix C. These numbers were corrected for spontaneous emission back-

ground via equation C.12. Lines are drawn from point to point as a visual aide,

and are not curve fit. A value of ro0 T = - tan -la was employed, since the best

visibilities were found experimentally at this laser separation. The "softened"

lockband edge is easily seen. The visibility falls off well inside the theoretical

lockband, indicated in the figure by vertical lines. When noise is turned off,

however, near perfect locks are obtained for detuning values all the way to the

lockband edge. Phase-locks near fj.wLB are therefore less stable and much more

easily perturbed than those close to fj.w0 = o.
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Squares in Figure 4.21 represent experimentally measured visibilities, also

taken at WoT= -tan-1a. These values have all been compensated for the

presence of secondary longitudinal diode modes, as discussed in Appendix C.

Nevertheless, there is a reasonable agreement with experiment. When the lasers

are unlocked, visibilities still appear relatively large in both experiment and

numerical simulations. Further, they do not abruptly drop to zero outside the

lockband. This is a result of "slipping" 129,183,227,a well known quasi-periodic

increase in the phase difference of unlocked coupled oscillators just outside and

very near to the lockband edge. The usage here is not to be confused with slips

in the locked phase due to spontaneous emission noise discussed previously.

The maximum locking range was experimentally determined to increase

approximately as the square root of the power coupling ratio, as predicted by

equation (2.3.22), for coupling levels:::: -50 dB. Maintaining the same longitudi-

nal diode mode with a detuning larger than a few GHz, however, was sometimes

difficult. The lasers would often seek out an alternate diode mode possessing a

lower threshold gain, due to a coincidence of secondary modes in the lasers, as

is well known for C3 lasers.

4.5 Overcoupling

The very stable operation encountered in Section 4.3 degrades as the cou-

pling level is further increased. The rapid fall-off in visibility with power cou-

piing ratio, shown in Figure 4.13, was first observed experimentally by Dente et

al.222 and referred to as overcoupling. In their steady-state model, the
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phenomenon was attributed to a second longitudinal mode of the compound

laser cavity which was able to come above threshold at a critical coupling level,

beating with the lasing mode and inciting dynamic instability. Spectral

broadening with increasing optical coupling was also referred to by Salathe-221

in a much earlier study, without explanation. Since the multiple longitudinal

modes are associated with the coupling delay, a critical delay time may be cal-

culated under which overcoupling does not pose a problem. This section inves-

tigates this problem more fully, offering an alternative explanation of the insta-

bility based on the preceding time-dependent theoretical framework.

Figure 4.22 displays optical spectra along with simulta~eously recorded

interference fringe measurements for two mutually coupled diode lasers at a

power coupling ratio of -42 dB. The lasers and their operating conditions are

identical to those given in Section 4.3. The figure demonstrates a rapid spectral

broadening and reduction in visibility as the lasers are ftovercoupled ft. In Figure

4.22 a), taken at a FSR of 10 GHz, several modes associated with the resonant

cavity formed between the two output facets are observed to oscillate at a given

laser separation. The time-average power distribution among these modes is a

sensitive function of the phase WoT. Sidebands, separated from the dominant

mode by the relaxation resonance frequency of the isolated lasers, are apparent

as well. Their existence implies modulation of intensity and phase in the time

domain, and hence, dynamic instability. Relaxation resonance sidebands and

compound cavity modes were found to first appear at nearly the same power

coupling ratio. The visibility corresponding to each operating state is listed

above its interference fringe pattern in Figure 4.22 b). Coherence is quite poor

at this stage of overcoupling as a result of the dynamic instability, and depends
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on the phase WoT.

The optical spectrum broadens further at larger coupling levels. Figure

4.23 shows the numerically generated spectral density function of the lasers'

optical field as the overcoupling regime is entered. The traces were calculated

through Fourier transformation of time series obtained from numerical integra-

tion of the rate equations (4.1.1), (4.1.2) and (2.3.8). The result was also con-

volved with a 1 GHz FWHM Lorentzian, which smoothed out the spectra, to

mimic the output of a Fabry-Perot interferometer. In doing so, however, the

large number of composite cavity modes which comprised each spectrum was

hidden. Similarity to coherence-collapsed spectra of the self-coupled laser in

Figures 3.20 and 3.21 is clear, and the discussion in Section 3.7 can also be used

to elucidate the present behavior. Not surprisingly, the intensity spectra of the

mutually coupled lasers were also found to be comparable to the self-coupled

case in Figures 3.22 and 3.23, here with a compound cavity mode spacing of 333

MHz. It was found experimentally that the spectral progression shown in Fig-

ure 4.23 was virtually independent of WoT,as well as the gross coupling delay T,

for laser separations longer than 20 cm.

Figure 4.24 shows the visibility between the mutually coupled lasers as the

power coupling ratio is increased, continuing the results of Figure 4.13. Sym-

bols denote numerically calculated visibilities at several selected coupling phases

in the interval (0,21T). Each point represents a value calculated from 165 ns

time series for the field and phase of each laser, using the method described in

Appendix C. Other parameters used in integrating the rate equations were

those measured for the ML5101a T JS laser. Error bars are utilized in the figure.

to display the maximum and minimum visibilities measured experimentally at a
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given coupling level, as it became difficult, if not impossible, to relate the laser

separation to a specific value of WoTwell into the instability. Ideally, theoreti-

cal visibilities should fall within these bounds. So that a direct comparison

could be made, the numerical visibilities were compensated for the spontaneous

emission background of the TJS lasers using equation (C.12). Further, experi-

mental values were adjusted, as described in Appendix C, for the incoherent

contribution of secondary longitudinal diode modes due to pathlength

differences.

Figure 4.24 shows that high-visibility, quality phase locks can be obtained

at power coupling ratios ranging from -60 to -50 dB. As detailed in Section 4.3,

the system oscillates in a single, narrowed longitudinal mode here, with very lit-

tle dependence on the value of W0 T. At approximately -48 dB, however, a

dramatic drop-off in coherence is observed, accompanying the undamped relaxa-

tion oscillation sidebands and spectral filling, as shown in Figures 4.22 and 4.23.

This critical coupling level approximately corresponds to that given by equation

(2.4.22), after accounting for nonlinear gain. A self-saturation coefficient of

1300= 6.8X10-8 was used in the numerical simulations throughout this section

for the TJS lasers. In contrast to the operation below -48 dB, during the trans i-

tion from a state of high to low coherence, the visibility depends sensitivity on

WoT. Numerical values range from a few percent to over 90 percent at a given

power coupling ratio. This behavior is later shown to result from differing sta-

bility properties of the available modes at a specific coupling phase. Experi-

mentally measured visibilities do not exhibit quite as large a variation during

the transition, probably because the discrete laser separations addressed with

the piezoelectric translator in Figure 4.3 "stepped over" these very coherent
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states.

.As the power coupling ratio was further increased, the visibility continued

to reduce, and became relatively independent of WoT. At -30 dB, Figure 4.24

shows an almost total loss of coherence between the lasers. To this point the

figure demonstrates a reasonable agreement between the calculated and experi-

mentally measured values. Numerical simulations, however, show a partial

recovery in the vi~ibility above -30 dB which is not observed experimentally.

The discrepancy can be explained as a result of the emergence of additional

longitudinal diode modes, as shown in Figure 4.25. Part a) displays the isolated

optical spectra of each laser, one above the other, taken with ~ 0.75 m grating

spectrometer. The dominant single mode of each laser has been temperature

tuned to spectral coincidence. At a -42 dB power coupling ratio, shown in part

b), a second mode emerges. Evidently, the difference in gain between the modes

due to spectral gain roll-off is not sufficient to maintain mode suppression dur-

ing the highly dynamic instability. The converse is not true; instability is

already well-developed at this point and cannot be attributed to the emergence

of this mode.

The mode suppression further reduces at larger coupling levels,with

several modes oscillating at -32 dB, as shown in Figure 4.25 d). The diode

mode spectrum remained essentially unchanged with larger power coupling.

The width of the spectral envelope above -32 dB requires a path length

difference «1 00J.'-m, in order to avoid degradation of the interference fringes

due to the temporal coherence limitation. Experimentally, however, the optical

pathlengths to the interference plane were not matched to this tolerance.

Therefore, any rise in visibility beyond a -30 dB power coupling ratio that may
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have occurred would not appear in experimental measurements of Figure 4.24.

The numerical visibilities were calculated by assuming a zero pathlength

difference to the interference plane, and are furthermore based on single longi-

tudinal mode rate equations. It is not clear whether a partial recovery in coher-

ence would be observed experimentally at large coupling levels. One thing is

certain: the lasers do not return to stable, phase-locked operation.

It was also f~und that, although the coherence was poor during overcou-

piing, the lasers remained spectrally locked. By blocking the emission of one

laser before the Fabry-Perot interferometer, for example, the spectrum in Fig-

ure 4.22 was reduced uniformly in intensity while retaining the same overall

structure. This implies that the overcoupled lasers operated with identical spec-

tra, and is clearly the case in the diode mode spectra of Figure 4.25. Further-

more, when the current in one laser was adjusted slightly, thereby tuning its

spectrum, the other laser followed precisely. Spectral locking, however, does

not necessarily imply phase-locking, as the visibility measurements confirm.

The largely unstable behavior shown in Figure 4.24 for the two mutually

coupled semiconductor lasers differs from the small signal analysis investigated

in Section 2A for no coupling delays. In that case, large areas of ii space were

found to be dynamically stable, especially at strong coupling levels. Here, to

the contrary, stability is limited to weak coupling exclusively, and becomes vir-

tually independent of coupling phase. This difference is attributable to multis-

tability introduced by the coupling delay. Figure 4.26 displays the modes of the

mutually coupled TJS lasers during overcoupling, corresponding to the case of

Figure 4.24. Part b) shows them in terms of the phase WoT,while part a) fixes

their locations in the ii plane at an arbitrarily chosen piston location. Squares
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denote even modes, circles are odd and solid dots are modes which do not meet

the stability criterion (4.1.21). This criterion divides the 11 plane into two

halves separated by the dashed line in Figure 4.26 a), above which the odd

mode is unstable, and below which the even mode is unstable.

It is clear that several stable modes are available at a given ro 0 T, and are

spread throughout the 11 plane. Each mode therefore possesses a different cou-

pling phase and 4ifferent stability properties. The mode labeled "A" in the

figures, for example, has the lowest threshold gain, while mode "B" is the most

stable, as discussed earlier. This is in contrast to the results of Section 2.4,

where the two modes of the coupled system were never bistable. Since the

modes rotate on a constant 11contour in Figure 4.26 a) as rooTis changed, their

stability properties are also a function of rooT.

The rate equations (4.1.1) and (4.1.2), describing mutually delay-coupled

lasers, can be linearized in the same way as the self-coupled laser in Section 3.7.

Determining stability boundaries, on the other hand, becomes analytically

untractable, due to the necessity to retain all six equations. A number of infer-

ences regarding the effect of the time delay, however, can be made from the

results of Section 3.7. Recall that the modes of a self-coupled system are identi-

cal to those of the even mode shown in Figure 4.26. Based on the stability

boundaries displayed in Figure 3.27, it should then be possible to piston the

cavity to a point where a single mode is stable (mode "An in Figure 4.26, for

example). This was not the case experimentally, or in the numerical simula-

tions, as dynamic instability was found to exist independent of rooT. Hence,

although the small-signal linearized rate equations nicely predict the critical

coupling level for relaxation oscillation undamping, it appears that the full
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nonlinear rate equations are necessary to adequately describe the large signal

operation of the delay-coupled system in regimes of dynamic instability.

Numerical analysis of the full nonlinear rate equations is therefore relied on in

the remainder of this section. While more time-consuming, it does present a

complete description of the problem from which to infer parameter dependen-

cies and analyze dynamics.

Figure 4.27 s40ws numerically integrated time series depicting the dynamic

operation of the mutually coupled lasers during overcoupling. The laser separa-

tion is chosen as 45 cm to compare to Figure 4.24 and experiment, while the

power coupling ratio is -45 dB, just after the lasers began exhibiting self-

pulsations. The modes available to the system at the phase wo1'=tan-1a, used

in this example, are indicated in Figure 4.26. These (C,D,E) were identified

from the slope of their individual phase time series, which gives the oscillation

frequency deviation from the average isolated value. Abrupt transitions are

clearly evident in Figure 4.27. Hopping occurs between even and odd modes of

the compound laser, explaining the poor visibility in Figure 4.24. In the several

cases examined at this stage of overcoupling, it was found that the coupled

lasers prefer to oscillate in modes close to W0' rather than those of low threshold

gain. Note the short-lived mode "E" in Figure 4.27 b), for example. The sys-

tem will therefore dwell in these states for a longer time, which in the time-

average appears very much like the experimental case of Figure 4.22. The pres-

ence of several compound cavity modes in the spectra suggests that however

briefly, the system eventually samples all the states. Although spontaneous

emission noise is included in the simulation of Figure 4.27, the transitions can-

not be attributed to noise alone. Recall from Figure 4.13 that the noise was
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insufficient to cause mode hops above a power coupling ratio of about -50 dB.

Here, the system is continually sampling the different states of the system, while

performing large relaxation oscillations in field, phase and carrier number.

There are also strong oscillations at the mode spacing of the compound cavity.

The frequency of transitions increases as the power coupling ratio becomes

larger, shortening the dwell time in each state. Figure 4.28 shows the dynamic

operation of the c~upled TJS lasers at -30 dB. The phase difference between

the lasers appears to randomly fluctuate over many 11',resulting in the near zero

visibility of Figure 4.24. Although this behavior is reminiscent of phase-locking

at very low, noise dominated coupling levels, noise again cannot be designated

as the cause of the poor phase-locking. Amplitude variations no longer show

well-developed relaxation oscillations, but rather, spike violently. The coherence

between the lasers is naturally low at this stage of overcoupling, based on Fig-

ures 4.28. Coherence, however, improves beyond this point. Figure 4.29 shows

typical operation at a power coupling ratio of -15 dB. Mode hopping is clearly

indicated in part b). In contrast to Figure 4.27, transitions between states can

now be accompanied by large phase slips (note the larger vertical scales). The

states have distinctly different stability properties, with the amplitude display-

ing periods of low noise comparable to that of the isolated laser, followed by

violent noise bursts.

The individual phases were found to have large negative slopes, indicating

an oscillation frequency near the maximum negative excursion allowed by equa-

tion (3.1.7). This manifests in the pulled optical spectra described experimen-

tally and theoretically in Figures 3.20, 3.21 and 4.23 at large coupling levels.

The large slopes made it difficult to identify the exact operating states from the
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large number available, as was done in Figure 4.27. Nevertheless, it is impor-

tant that these lower frequency modes also possess the lowest threshold gains,

and provide the largest damping against relaxation oscillations at this coupling

level, according to the discussion in Section 2.4. The recovery in coherence is

therefore attributable to a transition from a regime where gain differences are

small and modes selected based on their phase stability, to one where stability

and mode selection is dominated by threshold gain.

It has been demonstrated how the coupling delay T is responsible for multi-

ple modes and multistability in the present coupling configuration, which leads

to very complicated dynamics above a critical coupling level. In the case of

self-coupling, the coupling delay was further found to have a significant impact

on the location of small signal stability boundaries. A resonance of the system

was pulled toward the nearest external cavity mode. Stability improved the

farther this frequency was from the relaxation oscillation frequency. This

separation can be increased by shortening the coupling delay. Figure 4.30

shows the visibility for two mutually coupled diode lasers as a function of the

coupling delay. Other than 0:, T JS parameters listed in Table E.1 were used in

the calculations. The fine-scale laser separation was assumed to give 000T = 0,

and.., was set to 5x 10-3, where instability was the most severe. The value of

0: in the lasers is shown to be of the utmost importance to their stability.

With 0:= 0, for instance, the lasers show no sign of instability for any cou-

pling delay. This is true even though, based on equation (4.1.8), multiple

modes still are available. Furthermore, the critical.., value given by (2.4.22)

has been exceeded in Figure 4.30. The coupling of amplitude and phase

fluctuations through the carrier number therefore appears to play the
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fundamental role in dynamic instability. This also implies that the overcou-

pling phenomenon is unique to semiconductor lasers, and does not explain insta-

bility in other types of coupled oscillators223. To the contrary, little or no

coherence is obtained at this coupling level for large T when a is non-zero. AB

expected, the visibility rises when the mode spacing is removed from the vicin-

ity of the relaxation oscillation frequency, approaching one as the delay goes to

zero. Stable operation, however, can also be limited by the onset of multiple

modes, which is the case for a=6 in the figure.

In the limit of zero coupling delay the number of allowed states in the sys-

tem is reduced to two, the even and odd modes of the compound cavity. Figure

4.31 displays the visibility of two mutually coupled TJS lasers with T=O, at

several different coupling phases. These were chosen to be representative of the

even mode; the odd mode exhibits identical behavior. The graph confirms the

stability boundaries shown in Figure 2.5. Note the reduction in visibility at low

coupling levels due to spontaneous emission noise. Here, the most stable mode

at tan -la has the largest visibility, while the smallest belongs to the mode with

lowest threshold gain. In contrast to the delay-coupled case, the system has no

choice but to oscillate in the only stable mode available at a given coupling

phase, regardless of its phase stability or threshold gain.

At intermediate coupling levels, except near \!lee=0,1T, the visibility reduces

to near zero, as was the case in Figure 4.24. Here, the optical spectrum was

found to progressively broaden in a fashion similar to that demonstrated in Fig-

ures 3.21 and 4.23. Dynamics, however, are somewhat different than the mode

hopping between stable states displayed in Figures 4.27 - 4.29. The system,

instead of being multistable, has only two roots available, both unstable. Mode
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hopping is therefore replaced by oscillations between these unstable states at the

relaxation resonance frequency. Stability recovers above an 1'1of 10-2. Unlike

the systems investigated in Chapters 3 and 4, however, recovery can be com-

plete at coupling phases promoting a low threshold gain. "Overcoupling" is

perhaps not a term appropriate to all mutually coupled systems of semiconduc-

tor lasers.
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5. CONCLUSIONS

This research ,effort has investigated the stability of self and mutually cou-

pled semiconductor diode lasers both theoretically and experimentally. The

theoretical treatment was developed from time-dependent coupled mode theory,

resulting in single-mode rate equations governing the time evolution of the opti-

cal field, phase and inversion in each laser. A carrier-dependent refractive

index, nonlinear gain and spontaneous emission noise were included in the

analysis, all of which were shown to have a significant impact on the stability

properties of the coupled system. Througout this dissertation, numerical simu-

lations based on the coupled, noise-driven rate equations were demonstrated to

give an adequate description of experimental results, justifying this approach.

Stationary solution of the rate equations revealed the importance of the cou-

piing phase and a parameter in determining phase-locking conditions for mutu-

ally coupled diode lasers. The locking bandwidth, for example, was shown to

be a strong function of the coupling coefficient's phase. Previous analyses have

been restricted to real coupling. Furthermore, due to a, the optimum lockband

size was found to be incompatible with a large mode suppression ratio and

power balance between the lasers.

Small signal stability properties of the coupled systems were also analyzed.

Two distinct stability criteria were identified. The first confines stability to



207

coupling phases promoting constructive interference between the circulating and

coupled fields in each laser. An unstable mode, in this case, corresponds to an

eigenvalue of the system determinant on the positive real axis. Therefore,

states not meeting this stability criterion do not represent oscillating modes of

the compound laser cavity. Due to a, maximum stability is not obtained at the

same phase which produces the lowest threshold gain. The second type of ins-

tability boundary is reached as a limit-cycle oscillation which, for 1'1~ 10-2, is

at or near the relaxation resonance frequency of the isolated laser diodes.

Damping of relaxation oscillations, in coupled systems, was shown to be a func-

tion of coupling phase. The maximum damping rate for strong coupling occurs

where the equilibrium carrier number is a minimum. Here, the location of sta-

bility boundaries was determined to be largely independent of a. For

1'1~ 10-2, on the other hand, the location is shifted in phase by -tan -la, due

to the carrier dependent refractive index.

These stability issues result in three distinctive operating regimes. First,

for coupling levels satisfying 1'1< 'Y/Y 1+a2, relaxation oscillations are well

damped regardless of the coupling phase as a result of the lasers' intrinsic gain

saturation. Therefore, stable operation is guaranteed in a mode of the coupled

system regardless of the coupling phase. Based on comparison to experiment,

however, it was concluded that this condition underestimates the critical value

of 1'1in real devices, due to the additional relaxation oscillation damping contri-

bution of nonlinear gain compression. Spontaneous emission noise also affects

the operation of the coupled system in this regime. Phase-locks and linewidths

were shown to be quantum-limited below power coupling ratios of about 10-6,

with the most stable solutions existing at '" = m 11'+ tan -la (which is also the
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location of the maximum lockband). This left a =10 dB nwindown of power

coupling ratios for the experimental devices where quality locks and very nar-

row linewidths could be attained. Mode selection was experimentally shown to

be determined by phase stability rather than the usual low threshold gain cri-

terion in this regime, with mode hops initiated by spontaneous emission noise.

When the critical coupling level given above is exceeded, the coupled sys-

tem may develop ~elf-pulsations near the relaxation resonance frequency of the

isolated laser. These oscillations drive very complicated dynamics, where the

system exhibits frequent transitions between its different states. It was shown,

however, that the coupled lasers still attempt to maintain the mode with the

greatest phase stability. Dynamics quickly lead to a rapid decrease in correla-

tion between the fields in each laser, reducing the coherence of the coupled sys-

tem and broadening the lasing linewidth. The loss of coherence can become so

severe that the lasers effectively look incoherent in the time average. At cou-

pling levels 11210-2, damping becomes large and dominant for coupling phases

promoting the lowest carrier number. This effect was found to lead to a partial

or even full recovery of stability at many coupling phases. Threshold gain, as

opposed to phase stability, was shown to be the dominant mechanism for mode

selection in this operating regime.

The dynamic instability described above does not occur when the a param-

eter is zero. In this case, the stability boundary relating to self-pulsation lies

entirely inside the 0=0 instability region, and the system is stable in one of the

compound cavity modes for any coupling phase. The overcoupling instability in

semiconductor lasers is therefore of a different nature than instabilities encoun-

tered in other types of coupled oscillators222. Another benefit of a zero a is
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that the mode with the lowest threshold gain also possesses the greatest stability

against phase perturbations and the maximum damping rate of relaxation oscil-

lations at all 11.

The coupled systems of diode lasers investigated experimentally incor-

porated non-negligible coupling delays, resulting in multiple compound cavity

modes. These modes were shown to be multistable, affecting mode selection in

the system. More, importantly, a multiple of the mode spacing was near the

relaxation resonance frequency of the individual lasers, which tended to drive

self-pulsations in the coupled system. As a rule, stability was found to improve

when t1vL »vR. This observation has severe consequences for the design of

large, monolithic structures where mode spacings are typically on the order. of

the relaxation resonance frequency and threshold gain differences between the

modes are small. However, even T = 0 does not guarantee stability for two

mutually coupled semiconductor lasers. A collapse in coherence, equally as

severe as in the delayed case, was shown to occur at moderate coupling levels.

This study has indicated mechanisms for instability in the two simplest

systems of coupled semiconductor lasers. Since similar effects are expected to

destabilize larger coupled arrays, the general problem of N coupled lasers begs

to be theoretically analyzed. Recent stability analyses referenced in Chapter 1

are inadequate for modeling real devices due to the neglect of complex coupling,

which has been shown to be of the utmost importance in this work. Another

weakness of current dynamical models is that they are based in time-dependent

coupled mode theory, limiting their applicability to weakly coupled systems. It

may therefore be necessary to approach the problem from the composite resona-

tor standpoint for some coupling schemes. Many real arrays also are
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complicated by saturable absorption, nonuniform pumping, etc., which have yet

to be addressed.

Future experimental research should focus on monolithic structures, where

there is still a lack of correlation with theory. Here, the coupling coefficient is

usually not controlable, at least not to the extent of the experiments in this

work. The proper dimensions and growth parameters which enhance stable

operation must b~ determined for specific structures, and verified experimen-

tally. Resonant optical waveguide (ROW) arrays, for example, are promising

candidates for exhibiting stable operation, and definitely deserve attention. On

the other hand, it should be possible to demonstrate, in a monolithic array, the

same spectral broadening and lack of coherence at moderate coupling levels

encountered in this work. Such a device would enable an interesting experi-

mental investigation of nonlinear dynamics and chaos in an optical system.

In closing, the author wishes to point out that while this dissertation has

heavily emphasized the instabilities associated with the a parameter in coupled

systems of semiconductor lasers, to say that these are "intrinsically unstable"228

is perhaps an overstatement. Large regions of ii space exhibit stable operation,

especially for strong, in-phase coupling. Here, visibilities near one and

linewidths many times smaller than natural can, and have been, achieved. In

the author's opinion, the factors affecting dynamic instability outlined in this

thesis may all be overcome in a properly designed resonator. The ongoing

development of low a gain media such as quantum-well and strained-layer

material certainly is of benefit. The main obstacles to the realization of high

power coupled arrays of semiconductor lasers may lie in much more practical

matters, such as material uniformity and thermal variations across the wafer.
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APPENDIX A

This appendi~ reviews the so-called linewidth enhancement factor, ex. Spe-

cial consideration is devoted to ex,due to its importance in the operation of cou-

pled systems of semiconductor lasers. In section A.1, the resonant electric sus-

ceptiblity in semiconductor lasers is contrasted to that of a two level atomic sys-

tern. The exparameter describing this phenomenon is then defined and reduced

to the form used throughout the body of this thesis. A brief discussion of exfol-

lows.

A.I Resonant Susceptibility

The response of a medium, consisting of a collection of oscillators or atoms,

to an electric field is governed by the electric susceptibility. In a linear, isotro-

pic dielectric medium under steady-state conditions, the macroscopic polariza-

tion is proportional to the inducing field

(A.I)

The proportionality factor, X, is generally complex and frequency-dependent,

due to dispersion in the medium.
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In describing a laser transition, it is convenient to express the polarization

as the sum of two terms: A resonant polarization P r associated with external

pumping, and a second contribution Po accounting for any background polari-

zation in the gain medium. The electric displacement can then be written

D = EoE + Po + P r

(A.2)

where E is the dielectric constant.

The resonant susceptibility, in the simplest case of a two-level atomic sys-

tern, typical of many gas or solid state lasers, can be found quantum

mechanically229-231 or by treating the atoms as a collection of classical oscilla-

tors232. In either case, the result in the resonance approximation (w:::::W0) has

the well known complex Lorentzian form,

(A.3a)

(A.3b)

where Xr = Xr' + iXr' I. Aw is the FWHM linewidth of the transition, while

Xro II is a constant giving the peak amplitude of the imaginary amplifying (or

absorbing) part of the susceptibility at midband (w=w0)' and depends upon the

population inversion density of the two-level system. The real susceptibility, on

the other hand, describes refractive index dispersion in the medium. The real

and imaginary susceptibilities are fundamentally related by through the



232

Kramers-Kronig dispersion relation233

xr'(oo) = ~p foo oo'Xr"(oo')'iT 0 ,..,2 - doo'.u.r -00
(AA)

Since the imaginary susceptibility given by (A.3b) is an even function about 000 ,

the symmetry properties of this (Hilbert) transform234 imply that the zero

dispersion point of the real susceptibility is centered at 000. Therefore, the

index of refraction at the resonance peak remains constant, independent of the

level of pumping, in a two-level laser.

Semiconductor lasers differ from gas or other solid state lasers in that radi-

ative transitions occur between energy bands, rather than between the discrete

levels of isolated atoms. The population inversion density at a given frequency

is then dependent on the deqsity of ~tates with direct transitions between the

conduction and valence bands in the semiconductor, where the occupation pro-

bability of the bands obeys Fermi-Dirac statistics. Consequently, the gain spec-

trum of a direct bandgap semiconductor is asymmetric about the gain peak

frequency235-237. It follows, from the Kramers-Kronig relation (AA), that the

real susceptibility must also be asymmetric. More importantly, however, the

index dispersion zero is no longer located at the gain peak frequency238. As the

bands fill with free carriers due to current injection, the dispersion zero is found

to shift to higher energies at a faster rate than the gain peak. An electric fipld

oscillating at 000 therefore experiences an index of refraction lower than that of

the unpumped medium. Further, an increase in carrier density is accompanied

by a decrease in refractive index at 000.
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Free carrier absorption also contributes to the refractive index change with

carrier injection in semiconductor lasers. Interaction of the optical field and the

free carriers produces a reduction in the index of refraction through the plasma

effect239. However, this reduction is an order of magnitude smaller than that

attributed to coupling between the real and imaginary parts of the resonant

susceptibility. 240,241

A.2 Definition of ex

Previously, the fundamental relationships between the real electric suscep-

tibility and index of refraction, and imaginary susceptibility and gain/loss have

been referred to. It is straightforward to derive these relationships by defining

the complex propagation constant as242

~ = ~0 Ii = ~0 J.L - ig/2 (A.5)

where J.Lis the real index of refraction, ~o is the free-space propagation con-

stant and g is the net gain of the medium. Recalling that Ii = Vi, equations

(A.2) and (A.5) result in

J.L = J.Lo + Re[XrI
2J.L0 '

(1-\.(;)

~o
I [

- -
Ig = -- m Xo + Xr .

J.Lo
(A.7)

J.Lois the refractive index in the absence of pumping. Two approximations
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have been made in deriving the above equations: First, the gain is considered to

be much smaller than the propagation constant in the medium, g «f3o' which

is true for typical gains near the lasing threshold. Further, the carrier-induced

index of refraction change is assumed to be much smaller than the refractive

index of the unpumped gain medium, which is equivalent to IRe[Xr] I « /-Lo.

Physically, the population inversion, and therefore optical gain, is reflected

in the number of ~lectron-hole pairs N in the active layer provided by an exter-

nal pump current. The gain peak amplitude is known to increase in an approx-

imately linear fashion for small carrier number variations in the vicinity of the

lasing threshold, and is often written236

g(N) = ag (N - No) =
(

ag
]

~N + g(Nth).
aN aN th

(A.8)

Here, ag is the differential gain and No is the carrier number required toaN

achieve transparency. Variations in carrier number from the theshold value,

Nth' are denoted by ~N == N - Nth' Similarly, the change in index of refrac-

tion in the active layer can be approximated as linear237,240,243

/-L(N) = /-Lo + ~ N = /-L +
(
~

]
~N.

aN aN th
(A.9)

/-L is the refractive index at threshold. It is useful to describe the coupling

between the real and imaginary parts of the electric susceptibility by a single

parameter238

a =_

1

a(Re[Xr])/aN

]

.
a(Im[Xr])/aN th

(A.10)
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evaluated at the lasing threshold. Using expressions (A.6) and (A.7) with their

associated linear approximations (A.8) and (A.9) in the above definition, excan

be written in an equivalent form,

ex= (A.11)

This is the form of ex used in the rate equations throughout the body of the

thesis. Note that exis positive, since iJJL/iJNis typically negative at semiconduc-

tor laser wavelengths.

A.3 Discussion

The concept of the exparameter is a phenomenological approach to describ-

ing optical gain in a semiconductor laser. It is based on the very successful

approximations that gain and refractive index vary almost linearly with carrier

density in a semiconductor laser about its threshold. Values of exfor semicon-

ductor lasers operating at the gain peak are typically in the range244 of 2 to 8.

Gas and solid-state lasers, in contrast, have ex = 0 at the gain peak and only

small non-zero values when detuned from line center.

Many of the properties unique to semiconductor lasers can be traced to t}1P

non-zero value of ex. Early recognition of the carrier-dependent refractive index

began with the observation of lasing filaments in broad-area devices245 as well

as self-focusing and "anti-guiding" effects in gain-guided stripe geometry

lasers246, 247. As is evident in the body of this thesis, the ex parameter greatly
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influences the stability and locking properties of slave, self and mutually cou-

pled semiconductor lasers. The 0: parameter is also of great importance in

determination of the linewidth and noise properties of a semiconductor laser248.

It shows up, for example, as chirp in AM (amplitude modulated) lasers249.

Most of the preceding effects can, and have, been used to estimate 0:244.

Although the 0: parameter is treated as a constant, it does carry a strong

dependence on frequency and carrier concentration238 and reduces with decreas-

ing temperature250. Furthermore, 0: is significantly dependent upon laser struc-

ture. In lasers with a low optical confinement laterally, such as gain-guided

lasers, 0: may be different from the bulk value244. Quantum well lasers also

have shown much lower values of 0: than conventional DH (double heterostruc-

ture) lasers, due to their differing density of states251,252. Therefore, the 0:

should be treated as a constant describing only a particular device with a given

band gap, structure, threshold current and operating condition. Measurement

of 0: for the experimental lasers used in this thesis is described in Appendix E.
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APPENDIX B

Methods to e~perimentally measure self and cross-coupling coefficients are

presented in this appendix. Sections B.2 and B.3, in particular, discuss the

means by which the power coupling ratios cited in Chapters 3 and 4 were cali-

brated.

B.1 Measurementof Coupling Coefficients

In Section 2.2, it was shown how coupling coefficients enter the rate equa-

tion model for optically coupled lasers. The coefficients were determined

through comparison to the composite resonator description of the coupled sys-

tem and their evaluation hinged on the ability to theoretically solve for the

modes of individual lasers as well as those of the compound resonator. Cou-

pling coefficients, on the other hand, can also be determined experimentally by

examining their influence on the stationary solutions of the rate equations

describing the coupled system. These solutions specify the equilibrium values of

the carrier number En and field amplitude e in each laser, the locked phase

difference A<t>L between the lasers and the locked frequency of oscillation of the

compound resonator, wL.
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The variation in carrier number of a mode from its free-running value, for

instance, is related to a change in threshold gain through equations (2.1.10),

(2.1.15) and (2.3.2) by

(B.1)

where /:1gis the change in modal gain per unit length. Since gain equals loss at

threshold, the coupling coefficients must therefore be determined, in part, by

supermode selective losses in the compound resonator. Changes in threshold

gain are perhaps most easily measured through the (total) power output of the

mode, given by equation (2.1.13), recalling that the carrier number variation

and field amplitude in each laser are linked via (2.3.15). Differences in thres-

hold gain between the modes of the coupled system will show up in the mode
-

suppression rati0242 between the supermodes. The MSR is often questionable as

a calibration tool, however, since nonlinear effects, such as spectral hole-burning

and population pulsations, are known253-255to have an important effect on the

relative strength of side modes in a semiconductor laser, especially away from

the gain peak.

Similarly, the coupling coefficients can be linked to details of the optical

spectrum. The locked frequency of oscillation of the coupled system is an excel-

lent observable for use in calibration due to its straightforward measurement

with a Fabry-Perot interferometer or spectrometer. Furthermore, it was shown

in Section 2.3 that the locked phase difference /:1<Pt between the constituent

lasers is a function of detuning. The maximum detuning corresponding to a

stationary solution, /:1wLB, was found to be profoundly influenced by the ampli-
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tude and phase of the coupling coefficient.

Since the stationary solutions follow from a coupled set of nonlinear equa-

tions, it may be difficult, if not impossible, to uniquely determine the coupling

coefficients from a given equilibrium. Some simplification might be necessary to

reduce the the degrees of freedom. For example, if the optical coupling can be

turned off momentarily, coupling coefficients can be found from changes in the

laser output from, its free-running condition. This technique has often been

used to infer the coupling level for external cavity devices256,257with relatively

large power coupling levels (-1O%) through a threshold current variation.

Often the coupling is symmetric and the lasers are equally pumped. Take,

for example, the two mutually coupled lasers considered in Section 2.3. When

the lasers are resonantly tuned, the carrier equation (2.3.13) is decoupled from

(2.3.14) and (2.3.15), as ej = ek' Equation (2.3.13) can then be written

(B.2)

where ~<I>L = O,1T. The change in carrier number of a mode from its isolated

threshold value, in this case, depends exclusively on the real part of the self and

mutual coupling coefficients. In other words, from (B.1), the real part of the

coupling coefficient is responsible for the threshold gain of the even and odd

modes. This fact has been previously pointed out in reference to evanes(,f>ntly

coupled semiconductor laser arrays258, although the role of real and imaginary

parts have been switched by convention in the definition of the coupling

coefficient. Knowing the real part of the coupling coefficient, it is then possible

to determine the imaginary contribution from the optical spectrum using equa-

tions (2.3.15) and (2.3.19).
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The remainder of this appendix concentrates on the specific longitudinal

coupling schemes employed in Chapters 3 and 4 for the study of self and

mutual coupling. Due to the flexibility in controlling the amplitude and phase

of the optical interaction in these experiments, calibration of coupling

coefficients simplifies greatly. It is shown how self and mutual coupling

coefficients were determined in these cases exclusively from measurements of the

optical spectrum.

B.2 Self-Coupling Calibration

The coupling coefficient describing the self-coupling experiment of Figure

3.2 is given in the steady-state by equation (2.5.23). Here, the cold cavity

bandwidth (2.5.22) is found from the diode's longitudinal mode spacing and

output mirror reflectivity. Therefore, the magnitude of the coupling coefficient

is known upon determination of the power coupling ratio PCR" given by

(2.5.20). The phase of the coupling coefficient, on the other hand, requires pre-

cise knowledge of WL and T. Since it is impractical to measure these values

experimentally, an indirect method was found to determine ~cc. By using a

piezo translator behind the retro-reflecting mirror, as shown in Figure 3.2, to

control the coupling delay on a fine scale, the coupling phase was made yari-

able, independent of the coupling magnitude. Recording the optical spectrum

over a full 21Trange of phase, ~cc could then be implied through direct com-

parison to theory.
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In the self-coupling experiment depicted by Figure 3.2, two crossed calcite

polarizers, fixed absorption filters and other intervening optics contribute to the

attenuation of incident power. The one-way transmission through the external

cavity was measured by replacing the retro assembly with a power meter and

ratioing to the known power output of the laser. The round-trip power return

ratio Et, was then estimated by doubling this value (in dB). The result, how-

ever, gives only a relative measure of the power coupling ratio, as it does not

include coupling losses ~to the guided mode of the semiconductor laser. This is

in practice a difficult number to determine. Fortunately, assuming that the

coupling losses are independent of polarizer angle,* the losses need only be

found at a single coupling level, thereby anchoring the calibration.

The oscillation frequency of a self-coupled laser was found, from (3.1.5), to

periodically tune about the isolated value with changes in coupling delay. The

extreme deviation in frequency, from equations (3.1.7) and (2.5.20), is

(B.3)

where R2k was taken as unity. The power coupling ratio, Et~2 can then be

determined by measuring either the maximum deviation in frequency from the

free-running location or the total width of the tuning range, knowing the values

of ~ vcc and ex from independent measurements. The difference between the

measured power return of the coupling junction and the predicted po,'..er r01l-

pling ratio from frequency extreme measurements gives an estimate of the cou-

:j: The polarizers used had parallelism between entrance and exit faces to within 5 arc
seconds. This guaranteed that the returned spot did not walk around on the laser facet
as the polarizer was rotated, changing the overlap with the active area.
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pling loss to the guided mode of the laser. Even very weak returned signals

-10-7 times the lasing output can be accurately calibrated using this method.

This is important for locating inadvertent optical feedback sources in many

experiments.

The preceding calibration technique may not be useful when the coupling

level is sufficiently high to allow multimode operation, yet below the level

corresponding to ~ysteretic tuning behavior (see Chapter 3). In this case the

frequency extremes will never be observed experimentally due to noise-induced

mode hops. The frequency separation between the modes involved in a hop can

be related to the coupling magnitude. This separation is found from equation

(3.1.5), which reduces to

(BA)

at the mode hop boundary. Graphically, solutions of (BA) can be represented

by the intersection of the line ~vL/~vmax with the sinusoidal term, as shown in

the inset of Figure B.1. The root at ~VL = 0 was shown to be dynamically

unstable in Chapter 3. Therefore, the mode hops occur between the two outer

roots. The frequency separation of these roots is

c
2 - - 2xLext '

(R.c))

which, assuming x « ~, from simple geometrical arguments is straight-
4Lext

forwardly derived as
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Figure B.1 Power coupling calibration curves for a self
coupled CSP laser. Solid lines are theoretical, symbols
experimental. The inset depicts the graphical solution of (B.4).
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2AvL ~

c
(B.6)

Recalling from (B.3) that Avmax is a function of the power coupling ratio, an

approximate relation between the hop separation and coupling magnitude has

been derived. Again, the difference between the measured power return and

that predicted theoretically gives the coupling loss to the lasing mode.

Note that for large coupling levels the mode separation approaches the

external cavity resonance spacing, ~. Written in the form (B.6), the mode
2Lezt

spacing obviously decreases at lower coupling levels due to an effectively longer

laser cavity length. Figure B.l displays numerically generated coupling calibra-

tion curves, along with experimentafIy measured values for external cavity

lengths of 20, 40 and 60 cm respectively. The tuning extreme and mode hop

spacing calibration methods merge smoothly together in the transition region

from single to multimode behavior. A power coupling loss of ~2 = -3dB was

assumed in each case. Experimental data shows excellent agreement with

theory.

Data above about - 43 dB, however, could not be collected, due to the

onset of dynamic instability. Here, calibration of the self-coupling coefficient by

means of fine-scale spectral measurements becomes virtually impossible due to

spectral broadening. In this regime, attenuator transmission measurements were

relied on to determine the coupling magnitude. By anchoring ~at a lower cou-

pIing level, the relative change in power coupling ratio could be inferred from

the cos2e dependence of the attenuator. All of the above techniques were used
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to determine the power coupling ratios listed in Chapter 3.

B.3 Mutual Coupling Calibration

Similar techniques can be employed for mutually coupled semiconductor

lasers. In this cas~, however, multiple modes exist at all c~upling levels. Thus,

below the onset of hysteretic tuning behavior, calibration of the coupling level

was exclusively obtained from mode hops. In Section 4.3, mode hops were

shown to occur between the symmetric and asymmetric modes with every half

wavelength change in laser separation. The frequency spacing at the mode hop

boundary can be found by numerically solving equations (4.1.6) and (4.1.7) at

WoT = (2m+1)1T/2 - tan-lex. The mode spacing is found to vary in a fashion

similar to Figure B.1, approaching the resonance separation of the cavity

formed between the laser output facets at large power coupling ratios. Note

that it is sufficient to determine PCRcc in the resonant case, since the coupling

magnitude is not expected to change as the lasers are detuned.

When hysteretic tuning was experimentally observed at moderate coupling

levels, the maximum deviation in locked frequency from the average isolated

value was again used to estimate PCRcc. This value is nearly the same as self-

coupling

with the power coupling ratio now given by (2.5.21). Power transmission

through the coupling junction Ef, which shows up in the cross-coupling



246

coefficient (2.5.19), was measured by inserting a power meter in place of one

diode laser and ratioing the result by the known output of the operating laser.

Coupling losses to the guided mode of each laser was then estimated by com-

parison to theory. Knowledge of~ allowed calibration curves characterizing the

attenuation of the coupling junction to again be used at higher coupling levels,

where dynamic instability obscured detailed spectral measurement.

The power c~upling ratio, for mutually coupled lasers, can also be found

from the maximum locking range of the lasers through equation (4.1.9). This

technique proved to be less accurate, however, due to the softness of the lock-

band edge discussed in Section 4.4.
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APPENDIX C

This appendi~ deals with the measurement of coherence between mutually

coupled lasers. After a brief background, the methodology used in determining

visibility from the interference fringe data presented in Chapter 4 is outlined.

Several effects present in the experiment which apparently reduce the visibility

are analyzed, and methods to separate the actual visibility are introduced.

Finally, a derivation is given which allows the visibility to be theoretically cal-

culated from integrated time series of the rate equations.

c.! Visibility

A single light source is not perfectly coherent, due to its finite bandwidth

and finite spatial extent. When attempting to phase-lock a number of oscilla-

tors into a spatially coherent extended source, however, the coherence properties

of the whole are dependent upon the constancy of the locked phase difference

~<t>L between the individual oscillators. For lasers, spatial coherence effects gen-

erally dominate the coherence properties, since the extended source often has a

very narrow bandwidth. Fluctuations in the locked phase difference may

change with the coupling level, its phase, and the frequency detuning of the
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lasers, all of which are allowed to vary in the present experiments. Spontaneous

emission and other noise sources also independently contribute to a degradation

of the coherence. It is therefore important to have a means to measure the

quality of the lock. This can be accomplished experimentally by interfering the

laser outputs, thereby generating interference fringes. The (time-averaged)

depth of modulation of the fringes gives a measure of the correlation between

the sources, or their degree of coherence. The visibility259

v = Imax- lmin
Imax + lmin'

(C.1)

was defined by Michelson as a measure of the modulation depth, where Imaxand

lmin are the intensities of a maximum and adjacent minimum, respectively, of

an interference pattern. In coherence theory, the visibility corresponds to the

modulus of the complex degree of coherence260.

C.2 Measuring Visibility

Several factors can contribute to an erroneous measurement of the visibil-

ity from interference fringe data. Expression (C.t), for example, assumes a uni-

form intensity distribution of the incident wavefronts over the region to 1)('

evaluated. This approximation can only be made if the spacing of fringes is

much smaller than the distance over which an appreciable change in intensity

across the wavefront exists. This situation was not easily attained in the exper-

iments of Chapter 4, due to considerations concerning alignment of the diagnos-
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tic optics in the setup. At most, several fringes were visible across the entire

laser spot, which must be taken into account when quantifying the visibility.

When measuring Imax at the peak of a roughly Gaussian-shaped intensity

envelope, the apparent value of lmin at the next fringe minimum will be too

small, since there is an overall reduction in the intensity of the envelope at that

point as well. The following technique was developed to deal with this compli-

cation.

Figure C.! is offered to illustrate the computation of visibility for a typical

interference fringe data set. The solid curve in part a) of the figure displays the

raw fringe data minus any DC background. The background light was

recorded independently, with the interfering beams blocked, directly after each

data set was taken. The Fourier transform of the resulting fringe pattern is

displayed by the solid curve in Figure C.! b). Two sizable components are

present in the transform: the low frequency intensity envelope and a higher fre-

quency peak corresponding to the interference fringes. Due to the sufficiently

large difference in spatial frequency between the two components, the fringes

and overall envelope are easily separated in frequency space. These are denoted

in part c) by dashed and dot-dashed lines. The absolute-valued inverse

transform of each portion is given in Figure C.! a) by the same line style. Note

that a (vector) sum of the parts returns the original fringe pattern, neglecting

high frequencies.

It is easily seen that

(C.2)

where Ilmaz is the intensity recorded at the maximum fringe and 12maz is the
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intensity of the envelope at the same location. If the fringe data was shifted by

11"before recombining, however, a minimum would be located at a previous

maximum and vice versa. Here, at the same point where Imax was determined,

Imin can be obtained as

(C.3)

The maximum an~ minimum intensities needed for the visibility (C.1) are then

found at the same point on the envelope, eliminating the problem of non-

uniform intensity on the interfering wavefronts. Note that these values need not

be measured at the location of the largest fringe maximum; any fringe will do.

In reality, this method accomplishes numerically what could also be done exper-

imentally by altering the optical pathlength of one of the interfering beams by a

half wavelength in between measurements of Imax and Imin'

Substitution of equations (C.2) and (C.3) into the visibility expression (C.l)

gives

(CA)

In the example of Figure C.l, the "raw" visibility was determined to be

.808. This value may underestimate the true visibility, however, due to an

imbalance in intensity between the two interfering wavefronts at the point

where the visibility is evaluated. Assuming two perfectly coherent sources, the

intensity of a fringe maximum can be written as

(C.5)
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and a fringe minimum as

(C.6)

where II and 12 are evaluated at the point where the visibility is measured.

Substitution into (C.l) and a few lines of algebra leads to

(C.7)

This is the apparent visibility due to non-equal intensities. Note that when

II =12, the visibility goes to 1 as expected. Experimentally, the interfering wave-

fronts were individually recorded by opening and closing the appropriate elec-

tronic shutters indicated in the optical setup of Figure 4.3. By applying for-

mula (C.7) at the same location where the visibility was measured, the correc-

tion factor, in the example of Figure C.l, was found to be negligible at .999.

Division of the apparent visibility by this factor thus left its value virtually

unchanged.

The contribution of a fraction of incoherent power in the interfering

beams, spontaneous emission for example, also reduces visibility. While there is

no such thing as truly incoherent radiation, the bandwidth of spontaneous emis-

sion in a semiconductor laser is large enough to be considered so in these experi-

ments. The few hundred Again width of a semiconductor laser corresponds f ()

a coherence length -lOl-Lm. In practice, spontaneous emission represents an

unavoidable limitation to the coherence of an extended source. In this sense,

the measured visibility, including incoherent power, is the important number.

In a stability study such as this, however, it is important to distinguish a
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reduction in visibility due to spontaneous emission from that caused by poor

phase-locking.

The interfering beams in the mutual coupling experiment of Chapter 4 are

taken from different locations in the coupling region which were a few cm

apart. Further, the spontaneous emission events originate independently in the

two laser diodes and are therefore uncorrelated. This power will then create a

non-zero baseline fpr the fringes and reduce the visibility. Consider the calcula-

tion of visibility for two interfering wavetrains where the total intensity of each

beam is divided into coherent (where path differences are smaller than the

coherence length) and incoherent parts (where the opposite is true)

I = leoh + lineoh. (C.8)

Then the intensity of the fringe maximums and minimums are given by

(C.9)

(C.1D)

The visibility is found from equation (C.l) to be

(C.ll)

For equal interfering intensities the above expression can be rewritten as

v= 1
I.

1 + mcoh
leoh

(C.12)
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The reduction in visibility depends upon the fraction of incoherent power in the

interfering sources. With Iincoh = 0, the visibility clearly goes to 1. The frac-

tion of spontaneous emission power present in a laser's output can be found

from its light versus current characteristic. Since the population inversion

clamps at threshold, so must the spontaneous emission rate. For the semicon-

ductor lasers used in the experiments of Chapter 4, spontaneous emission was

determined to account for about 3% of the output power - resulting in a max-

imum visibility of 0.97. Not all of the highly divergent spontaneous emission

from the diode laser is collected by the collimation lenses in Figure 4.3, how-

ever, slightly increasing this number.

In the course of examining the fringe data, it was found that visibilities

exceeding about .9 were seldom seen, regardless of the coupling configuration.

For this visibility, equation (C.12) predicts that an incoherent power of -10%

is necessary. The small fraction of spontaneous emission definitely could not

account for it. To deduce whether this visibility was truly the limit, or merely

an artifact of the optical setup, the mutual coupling experimental arrangement

was modified so that a single laser could be interfered in an amplitude-splitting

interferometer. This was accomplished by setting the attenuating polarizers for

maximum transmission and rotating a single beam-splitter by 90°. Power bal-

ance between the two paths was carefully adjusted before generating fringes.

The extremely small emitting aperture and narrow frequency band'width of ;)

single stripe semiconductor laser was expected to produce fringes with visibility

much in excess of 90%. This was not the case experimentally.

Figures C.2 a) and b) show the visibility of self-interference fringes of a

single T JS and CSP laser respectively, versus injection current. It is evident
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that visibility is poor just above threshold and approaches the same 90% mark

measured in the mutual coupling setup. Near threshold the visibility is

expected to be low, since several longitudinal diode modes oscillated with a

mode suppression ratio of about 3 at best. The -3A mode separation of these

modes corresponds to a coherence length of only a few millimeters. Since path-

lengths were not matched to within this tolerance, the contribution of power to

the fringes from the modes looked effectively incoherent. Furthermore, spon-

taneous emission made up a larger fraction of the total output power there.

When biased well above threshold, the lasers exhibited primarily single longitu-

dinal mode operation, as measured in Figure 4.24 a), with mode suppression

ratios in excess of 50. Figure C.2, however, indicates that the nonlasing modes

still comprised a sizable fraction of the total output power. Mter correcting for

spontaneous emission background, equation (C.12) predicts about 6.5 percent of

the total power was contained in secondary modes, resulting in a considerable

influence on the maximum fringe visibility.

Unfortunately, interfering paths from each laser in the mutual coupling

experimental setup were matched only to within s: 1 em, insuring that the

coherence length would not be exceeded for spectral features within a 30 GHz

bandwidth. Secondary longitudinal modes therefore contributed incoherently to

the fringe pattern, resulting in a reduced visibility. In retrospect, a path length

difference of about 100J,1.mshould have been employed to guarantee an accurnl.('

visibility measurement. Values approaching 97% would have then been meas-

ured near the central area of the fringe patterns for optimum coupling.:;: A

:;: This assumes that, in addition to the main mode, secondary longitudinal modes of
the coupled lasers are also phase-locked.
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correction factor for the incoherent addition of secondary longitudinal modes

can be obtained from (C.12) and Figure C.2. Caution must be exercised, how-

ever, since the power content of the secondary modes depends sensitively on the

injection current well above threshold, as evidenced in Figure C.2. This is due

to competition and mode hopping between diode modes, resulting in longitudi-

nal mode distributions with slightly different mode suppression. The correction

was not introduced in the experimental results presented in this thesis, unless

otherwise stated.

0.3 Visibility From Time Series

Theoretical modeling of phase locking between coupled lasers proceeds

from numerical evaluation of noise driven rate equations introduced in Chapter

2 and Appendix D. The numerical simulations result in time series of field

amplitude and phase for each laser. To determine the degree to which the

lasers are coherent, a relationship must be established between the time series

and the time-averaged visibility. This can be accomplished in the following

way261. Consider the intensity measured by a small detector over some finite

time interval much longer than the coherence time, located in a plane where

two waves are interfering

(C.13)

where the total field is given by
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(C.14)

In this thought experiment, optical pathlengths are considered identical, and a

variable phase delay e has been incorporated into the optical path of laser 2 to

move fringes across the detector. From expressions (C.13) and (C.14), the

intensity can be written

T

1- f[EI(t )E2.(t)e -i9 + Et(t )E2(t)ei9]dt.
To

(C.15)

To compute the visibility, the maximum and minimum time-average intensities

are needed. These are moved onto the detector at some e found from

(C.16)

Simplification leads to expressions for e in terms of the incident fields

(C.17)

Substitution into equation (C.15) then gives the maximum and minimum inten-

sities

(C.18)

(C.19)

II and 12 are the intensities of the individual interfering waves. The above can
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be substituted into the definition of visibility (C.1), giving

(C.20)

Finally, if the complex field amplitudes are written as

(C.21)

it is easily derived that

(C.22)

where

(C.23)

(C.24)

The general expression for the visibility as calculated from time averages of the

numerical time series for field and phase can then be written

(C.25)
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APPENDIX D

This appendix discusses the application of Langevin noise sources in the

stochastic rate equations. To begin, a brief background of the use and proper-

ties of Langevin noise terms is presented. A procedure is outlined to numerically

simulate the noise forces arising from spontaneous emission. In section D.2,

phase noise is independently considered. A noise source is derived for use in

numerical integration of the phase equation (F .2). Numerical simulations of

Brownian motion are presented to substantiate that the Langevin noise source

does indeed give the desired linewidth.

D.l Stochastic Rate Equations

The single-mode rate equations for an isolated semiconductor laser may be

written in a stochastic form262,263 by including Langevin noise sources to

account for the incoherent addition of many random fluctuations due to SpOlJ-

taneous emission events (FE,F <1»'and shot noise (FN) associated with the

discrete nature of carriers

E(t) = 1- ae ~N(t)E(t) + R'() + FE(t)2 aN 2E t (D.l)
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<b(t) = 1-cy'iQ~N(t) + FcP(t) (D.2)2 iJN

R,p is the average rate of spontaneously emitted photons entering the lasing

mode. The field amplitude E (t) is normalized such that its square gives the

photon number in the cavity. The deterministic part of the Langevin equa-

tions, where Fj (t) = 0, describes completely the time evolution of the system

given a set of three initial conditions X( t =0) for the dynamic variables. Each

Fj (t) is a random, rapidly varying force with a zero ensemble average,

(D.4)

It is assumed that the Langevin sources portraying spontaneous emission super-

impose incoherently, implying that the correlation times of the forces are much

shorter than the smallest response time of the deterministic equation. In this

case, delta function correlations may be employed

<Fj(t)Fj(t'» = 2Djj8(t-t'), (D.5)

corresponding to a white noise source. This is the so-called Markoffian assump-

tion264. The Di;'s are constants expressing the magnitude of the fluctuating

forces. They can, in general, be related to the second moments of a Fokker-

Planck equation264,265 describing the time evolution of the probability density

for the dynamic variables in equations (D.1)-(D.3). The second moment is

responsible for the diffusion or spreading of the distribution in time; hence the
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name diffusion coefficient for Djj. The most important ones are given by248,262

R8p= -,4 (D.6)

Carrier fluctuations due to shot noise, described by the Langevin source FN(t ),

produce a negligible effect on phase noise266and therefore may be ignored. The

strength of the fluctuating forces depend on the photon number and, of course,

the spontaneous emission rate.

The Langevin forces arising from spontaneous emission can also be written

as a sum of all spontaneous events occurring at a time t 248

FE(t) = L: cos6j8(t-td
J

(D.7)

(D.8)

where 6j is the phase angle of the ith spontaneous photon. For the purpose of

numerical integration of the rate equations, it is necessary to determine a form

for FE and F<I>within an integration step t1t. Let there be k spontaneous emis-

sion events in an interval t1t. The total changes t1E in field amplitude and t1<f>

in phase are then

k

t1E = L cosei
i=l

(D.9)

and

(D .10)
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On average there will be <k> = R,p~t spontaneously emitted photons in the

interval ~t. The average spontaneous emission rate R,p at the lasing frequency

is related to the stimulated emissionrate through267

(D.11)

where n,p is the inversion factor. Since G(N) = liTp in steady-state above

threshold, an esti~ate of the spontaneous emission rate can be determined from

n
R,p = --!L. With n,p~2.5 268, there are typically ~25 photons emitted in a 10

Tp

ps integration step. If k is assumed to be Poisson distributed, it has been

shown269 that for <k> » 1, the probability distributions for ~E and ~<I>are

approximately Gaussian with zero mean and standard deviations

Therefore, the Langevin terms can be numerically simulated in each time inter-

val as

F = ~E
(

R

]

1/2

E - = sp~t 2~t X,
(D.14)

~<I>

F<b= 6t ( ]

1/2
Rsp 1- - -y

- 2~t Eo.
(D.15)

( k r- < > (D.12)
{1I:.E - 2

and

{1I:.<I> = {1I:.E1Eo. (D.13)
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X and Yare Gaussian random variables with standard deviations of one.

The above procedure to numerically simulate the Langevin terms associ-

ated with spontaneous emission is dependent upon knowledge of R,p, which is

difficult to accurately determine. Its value was set by numerically integrating

the rate equations (D.1)-(D.3), requiring that the FWHM of the central peak in

the field power spectrum match the experimentally observed lasing linewidth.

It was found, for ~xample, that a spontaneous emission rate R,p = 3X 10128-1

is appropriate to produce the 12 MHz linewidth of the HLP1400 CSP laser.

Spontaneous emission is often described in terms of the so-called spontaneous

emission factor j3,p242. For the CSP parameters indicated in Table E.1, the

above spontaneous recombination rate is equivalent to j3,p = 9.2X 10-8. Very

long time series were necessary to obtain adequate resolution and to average out

the noisy spectrum for this parameter fit.

D.2 Numerical Simulation of Phase Noise

Appendix F derives an approximate phase equation (F .2), which was used

extensively in Chapters 3 and 4. The noise source (F .3) which accompanies this

equation might also be modeled using the procedure outlined in Section D.1.

However, the phase noise can also be analytically related to the natural laser

linewidth. In the absence of optical coupling, (F .2) is simply

<b(t)= F(t). (D.16)

This is the equation for Brownian motion (or a Wiener process) of the phase
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<t>(t). When ej = eo, where eo is the isolated field amplitude, (F .3) can be

taken as the Langevin source responsible for the natural linewidth of the laser.

Note that the last term in (F.3), arising from the average spontaneous emission

rate r,p' merely produces a constant frequency shift in the lasing field, and is

unimportant for the remainder of this discussion.

Consider the spectral density function .}(w) of the complex field amplitude,

(D.17)

since this is what is measured in the Fabry-Perot spectral data of Chapters 3

and 4. The Wiener-Khintchine theorem264 states that SE(w) is given by the

Fourier transform of the field autocorrelation

00

SJw) = JR(T)e-iwTdT,
-00

(D .18)

where R(T) = <E(t)E(t+T». Using (D.17), the autocorrelation is straightfor-

wardly shown to be235

(D.19)

keeping only slowly varying terms and assuming the field amplitude is constant

as was done in deriving equation (F .2). The expectation value

x

(D.20)
-x

where p(~<t» is the density function of the random variable
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~<t>(t,T) == <t>(t) - <t>(t+T). The phase fluctuations due to spontaneous emission

execute a Brownian motion assuming any value between (O,21T)with equal pro-

bability. In the limit of a large number of spontaneous emission events the den-

sity function of ~<t>(t,T) will be normally distributed264 with zero mean and

variance «~<t»2 > such that

(D.21)

Equation (D.20) can be expanded as

(D.22)

Since ~<t>will be positive as often as negative, its ensemble average < ~<t>> =O.

Futhermore, all the odd moments will be zero, since their density (D.21) is an

even function. The even moments of a Gaussian distributed random variable

are given by

(D.23)

Evaluation of the expectations in equation (D.22) then results in

(D.24)

The field spectral density (D.18) can now be evaluated after specifying

«~<t»2 >. Returning to equation (D.16), its discrete form can be written
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. ~=F(t).hm At.1t-0
(D.25)

After a time T = NAt, keeping in mind the limit in (D.25), the total phase vari-

ation is the sum of N contributions

A<t>(t,T)=
N

~ F(kAt)At.
k=l

(D.26)

The mean squared' variation in the phase difference is then

N N

«A<t»2> = ~ ~ F(kAt)F(k'At)(At)2.
k=1k'=l

(D.27)

The discrete form of the autocorrelation of a Langevin source, given by equa-

tion (D.5) is

<F(kAt)F(k'At» = 2D8k,k" (D.28)

This is only valid, in light of the limit imposed in equation (D.25), if the corre-

lation time of the noise source is much shorter than the time step At. This is

the case under the Markoffian assumption. Therefore, equation (D.27) reduces

to

N

«A<t»2> = ~ 2D(At)2= 2DTAt.
k=l

(D.29)

The above merely states that the mean squared coordinate of a system undergo-

ing Brownian motion increases linearly with total elapsed time T. Equation

(D.29) can now be substituted into (D.19) and the Fourier integral transform

(D.18) evaluated. The spectral field density is found to be a simple Lorentzian
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centered on the angular frequency Wo with a FWHM ~wo = 2D~t. Therefore,

the coefficient

D= (D.3l)

So the diffusion coefficient of the overall Langevin noise source F (t), not

surprisingly, is directly related to the linewidth of the lasing mode. This allows

a very accurate determination of the noise level from an experimentally meas-

ured linewidth. By inspection, F (t) can finally be defined as

1
.

(

2;~vo

]
2 X(t),F(t) = ~t (D.32)

in which the random variable X( t) is normally distributed and describes a sto-

chastic process where

<X(t)X(t'» = B(t-t'). (D.33)

Figure D.l displays the Fourier transform of the complex field amplitude given

by equation (D.l7), where E(t) is assumed constant and fluctuations in phase

<f>(t)are supplied through numerical integration of equation (D.16) using (n.:1L)

as the Langevin source. The line shapes appear Lorentzian with full width at

half maximums closely matching the specified values.

The Gaussian distributed random variables, necessary to numerically han-

dIe the stochastic noise sources in the laser rate equations, can be derived in
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terms of uniformly distributed random variables in the following way. Consider

two jointly normal random variables x,y and the transformations

(D.34)

6 = tan-Ill..
x (D.35)

Note that z is confined to the range (0,1) and 6 ranges over (0,2'n'). Under the

inverse transformations, the normal random variables are then given by

(D.36)

(D.37)

It will be shown that z and 6 are uniformly distributed. The joint density

function of z and 6 is given by264

(D.38)

where the Jacobian of the transformation is given by

J(x,y) =

I ~)xI-
18z

18yI-
18z

,-I
8x I
86 I
8y 1
-I
8e 1

= Z

2 .
(J'

(D.39)

The joint density function is then

1
f zfj = 27T' (D.40)
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a constant. Hence, z,e are jointly uniformly distributed over their respective

intervals. If x,y are independent random variables, then so are z,e. So (D.36)

and (D.37) give two independent, normally distributed random variables given

two uniformly distributed random variables over (0,1) and (0,21T). This pro-

cedure was used to generate the numerical results in Figure D.l.
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APPENDIX E

This appendi~ discusses the measurement of parameters needed for numeri-

cal modeling of the rate equations for self and mutual coupling. Experiments to

determine the necessary parameters are explained for the two experimental sem-

iconductor lasers used in Chapters 3 and 4.

E.! Parameter Measurements

Measurement of parameters is important so that a reasonably accurate

comparison between computer modeling, based on the coherent rate equations,

and the experimental results can be presented. An exhaustive survey need not

be undertaken, however, as the number of necessary parameters in the reduced

form of the rate equations is quite small (AvD,a, ae ,Tp and T,). This is possi-aN

ble since the rate equations are written in terms of photon and carrier 11tIHIb('rs .

rather than densities, per optical mode, so that the active volume and

confinement factor are unnecessary. The four different experiments carried out

to determine the parameters are now described.
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Longitudinal mode spectra: The values of several important device charac-

teristics can be determined from the longitudinal mode spectra of a semiconduc-

tor laser both above and below threshold. For example, a standard technique

for experimentally determining the value of a in a given laser is through the

simultaneous measurement of wavelength shift and modal gain change with

injection current below threshold270-272. This can be seen by writing expression

(A.H) in terms of quantities which are directly measurable from the emission

spectrum. Below threshold, a change in the index of refraction of the active

layer, d J.I.,can be determined from the wavelength shift of a longitudinal mode

with current through273,274

d - J.l.gdA,
J.I.- fA (E.1)

where J.l.gis the effective group index. Further, the material gain g at a given

carrier density can be found in terms of the modal gain gm==f g, by measuring

the intensity modulation of the spontaneous emission spectrum below threshold

as275

1

[

rl/2 - 1

]
gm = -L In 1/2 + at.

D r + 1
(E.2)

r IS the ratio of an intensity maximum to the intensity of the adjacent

minimum at a particular wavelength in the spontaneous spectrum. OCtis the

total loss per unit length in the cavity. Substitution of (E.1) and (E.2) into

equation (A.H), eliminating the carrier number N in favor of current, gives

a= 2'JT dA/dI

All d(gmLD)/dI'
(E.3)
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!::,.'A = L is the longitudinal mode spacing of the resonator.
2IJ.gLD

The longitudinal mode spectra were measured on a 1.25 m SPEX spec-

trometer as a function of current. The entire exit plane of the spectrometer

was imaged onto a CCD array and subsequently digitized for analysis. An IR

polarizer was inserted in front of the lasers to discriminate against sizable TM

mode contributions to the spontaneous spectrum below threshold, as this would

lead to an underestimate of the modal gain in equation (E.2). Operating near

1.5 ItI~at room temperature, the lasing wavelength of the Hitachi HLP1400 CSP

laser was 831 nm, while the Mitsubishi ML5101a lased at 818 nm. Their longi-

tudinal mode spacings above threshold were 2.82 A (123GHz)and 2.58A (116

GHz) respectively.

The sub-threshold wavelength and gain shift measurements were carried

out CW, as an accurate assessment of the pulsed injection current was not real-

izable with the available equipment, due to the relatively low thresholds of

these devices. Figures E.l and E.2 display the resulting variations of d'A and

dgmLD with current in each device. The wavelength is observed to shift to

shorter values in an approximately linear fashion with increasing current, due

to a decreasing index of refraction in the active region with increasing carrier

density. Upon reaching threshold, the carrier density clamps and the resonator

modes return to longer wavelengths due to heating. The shift above thre'3holr1

is also very linear with respect to current. Therefore, the reduction in the slope

d'A/dI below threshold can be corrected for thermal effects using the slope above

threshold276. The corrected d'A/dI for the CSP laser was -0.19 A / rnA while

the TJS data resulted in -0.31 A / rnA. With dgmLD/dI values of 0.14 (CSP)
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Figure E.1 Modal a) gain change and b) wavelengthshift
of a HLP1400 CSP laser diode versus injection current
below and just above threshold.
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Figure E.2 Modal a) gain change and b) wavelength shift
of a ML5101a TJS laser diode versus injection current
below and just above threshold.
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and 0.28 (TJS) measured in Figures E.1 a) and E.2 a), a parameter values of

3.0:!:0.3 for the CSP and 2.7:!:0.3 for the T JS laser were calculated. There

have been several past reports of a measurements on AIGaAs CSP lasers using

a variety of techniques271,277-279. Typical values range from 2.5 to 4. Even

less of a consensus has been reached in the relatively few reports for AIGaAs

T JS lasers250,279,280,with results scattered from 3.8 to 8.3.

Light versus current characteristics: The single stripe, index guided lasers

used in the experiments of Chapters 3 and 4 could provide power outputs in

excess of 10 mW CW when driven to about 2 times threshold. Figure E.3

displays the light-current characteristics of both lasers. The threshold of the

HLP1400 laser was about 52 mA with dPldI = .21WIA, whereas the ML5101a

had a much lower threshold of 22 mA with a slope dP IdI = .47 WIA. An

important parameter which can be determined from this data is the photon life-

time TP in the laser resonator. The photon lifetime is defined as

(E.4)

where amir is the loss out of the resonator due to finite facet power reflectivities

R 1 and R 2' while aim is the loss from internal scattering, absorption, etc. The

total loss, at, can be related to the external differential quantum efficiency

through 242

amir =
lld = lli~

(E.5)

However, this efficiency is also directly proportional to the (measurable) slope
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experimental semiconductor diode lasers.
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efficiency242

q dP
TJd = TJi ,hv dI'

(E.6)

with268

(E.7)

accounting for the fraction of power emitted from the front facet. (E.5) and

(E.6) together give an expression for the photon lifetime in terms of measur-

abIes

q dP-'-
Ctmirvg'h v dI'

(E.8)

The mirror loss/group velocity product is given by

(E.9)

where AVD is the longitudinal Fabry-Perot mode spacing of the diode laser.

The facets of the HLP1400 laser were uncoated, other than passivation, whereas

the ML5101a device, according to the manufacturer, was coated to make R 1=.6

and R2='1. Substitution of the appropriate parameters results in photon lifp-

times of 1.0 ps and 1.1 ps, respectively.

Optical delay measurements: The carrier lifetime T$ can be determined

from the turn-on time delay of a pulsed semiconductor laser. 281,282 The carrier



280

lifetime is in general dependent upon the number of carriers. It can be modeled

as

(E.10)

where the coefficient A accounts for non-radiative recombination at defects or

traps, BN describes bimolecular recombination, and CN2 is the contribution

from Auger recombination. If T, is approximated as a constant, the carrier rate

equation may be integrated analytically, given a current step from a bias 10

below threshold to some 1 above threshold. The carrier number is found to

build up to its threshold value in a time241

(E.ll)

Thus, the carrier lifetime can be found experimentally by measuring the time

delay between a current pulse and the onset of lasing at various current levels.

An approximately 1 ns risetime current pulse was used to pulse the lasers

from zero bias, while the resulting optical pulse was detected with a fast PIN

photodiode. Figure E.4 displays the time delay, relative to an arbitrary time to'

versus the current pulse amplitude. The slopes of a linear fit to each data set

result in carrier lifetimes of 1.4 ns for the HLP1400 laser and 1.7 ns for t hp

ML5101a.

Relaxation resonance measurements: The well known relaxation resonance

between photons and carriers in a semiconductor laser can be written235



Figure EA Turn-on delay time versus injectioncurrent
for a) HLP1400CSP and b) ML5101aTJS diode lasers.
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(E.12)

from small signal analysis of the rate equations. However, the gain=loss condi-

tion above threshold requires that

(E.13)

Further, the threshold carrier density is

= T , ItJ~
qV '

(E.14)

where q is the electronic charge and V is the volume of the active region. Sub-

stituting (E.13) and (E.14) into (E.12), eliminating N in favor of current gives

(E.15)

So the relaxation resonance frequency at a specific current level can be related

to the previously measured carrier lifetime and differential modal gain with

respect to current. The length of each laser was measured in an SEM to be 300

J.Lm. From the longitudinal mode spacing, a group index ng of 4.1 was calcu-

lated for the HLP1400 and 4.3 for the ML5101a. These numbers give relaxat.ion

resonance frequencies of 4.8 GHz and 3.8 GHz, respectively. These values are in

reasonable agreement with the experimentally observed values of about 5.1 GHz

and 3.9 GHz, respectively. Any discrepancy must be attributed to either an

erroneous measurement of T, or dgm/dI, since the values used for vg, I and Itk

in equation (E.15) are beyond doubt due to their straightforward measurements.
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The carrier lifetime is the most suspect, since its measurement assumes the rise-

time of the current pulse is much shorter than T" and further, that the risetime

remains constant with pulse amplitude. Neither of these assumptions were pre-

cisely true in these experiments. A value of 1.3 ns was adopted for numerical

calculations involving the CSP laser to insure the relaxation resonance fre-

quency matched experiment so that direct comparisons could be made.

Table E.! is offered as a compilation of the above experimental measure-

ments for each laser. Only those parameters which are necessary for the

numerical model are given. Listed in the first half of the table are the directly

measurable quantities followed by useful, although redundant, parameters.



Parameter Symbol HLP1400 ML5101a Units

Table E.! Compilation of parameters characterizing
the experimental semiconductor lasers at an operating
bias of 1.71th'

284

Cavity length LD 300 300 J-Lm

Rear facet reflectivity RI 0.32 0.6

Front facet reflectivity R2 0.32 0.1

Lasing wavelength A 831 818 nm

Mode spacing AVD 123 116 GHz

Threshold current Ith 52 22 mA

Slope efficiency dPldI 0.21 0.47 W/A

Linewidth Avo 12 18 MHz

Resonance frequency vR 5 3.8 GHz

Modal gain derivative dgmldI 4.7X 106 9.3X 106 m-1A -I

Carrier lifetime T, 1.3 1.7 ns

Photon lifetime Tp 1.0 1.1 ps

Antiguiding parameter ex 3.0 2.7

Group velocity vg 7.4x 107 7.0X 107 m/s

Transparency carrier number No 2.0x 108 8.8x 107

Cold cavity bandwidth AVec 23.6 52.5 GHz
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APPENDIX F

This appendix derives an approximate form of the coupled rate equations

(2.3.6) and (2.3.7).

Consider a coupled system of lasers operating in a state where field ampli-

tude fluctuations can be ignored, ej(t) = ej' The field rate equation (2.3.6),

including noise, then reduces to

.!!L _
-2

2ej
- -

e.J

This expression can now be substituted into the phase rate equation (2.3.7),

leaving

-

+ Tfjk: Vl+(X2sin["Tp~wOjt+<I>k(t)-<I>j(l)+\f1jk-tan-l(X], (F.2)e.J

where
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F(l) = F «!>(l) - -
e.J

(F.3)

is defined as an overall Langevin noise source.

The assumption of constant field amplitude results in a neglect of carrier

dynamics, which are responsible for relaxation resonance sidebands present in

the field power spectrum266. Normally, an amplitude fluctuation contributes a

delayed phase fluctuation, through <x,and leads to damped relaxation oscilla-

tions. In the limit of large damping, however, the relaxations die out rapidly,

resulting in reduced sidebands. The response of carriers to fluctuations in the

intensity can then be considered instantaneous, and the temporal response of

the laser is well described by a constant field amplitude and a phase given by

equation (F.2).

An instantaneous response is equivalent to stating that only frequencies

W «wR contribute significantly to the power spectrum283, where WR is the

relaxation resonance frequency. This is the same approximation introduced by

Adler284 in his classic paper on injection locking of oscillators. The resulting

phase equation, in that work, is often referred to as the Adler equation. (F .2)

can then be considered an Adler-like equation for the phase in a mutually cou-

pled system. It is used heavily in Chapters 3 and 4 to model transient behavior.
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APPENDIX G

This appendi~ lists the source codes of several computer programs used for

numerical solutions throughout this dissertation.

The first, ocop.for solves the full nonlinear rate equations for two mutually

coupled diode lasers with arbitrary coupling delay. This program was used

heavily in Chapter 4 to simulate optical spectra and visibility during overcou-

piing. A very similar program was used to model coherence collapsed spectra in

Chapter 3.

Several spectral simulations for coupled operation below the onset of coher-

ence collapse or overcoupling were also compared to experiment in Chapters 3

and 4. Stationary solutions, in these chapters, were calculated with the pro-

gram detsols.for. Although written for two coupled lasers, steady-state solutions

for the self-coupled case were also obtained, as discussed in Section 4.1. Optical

spectra were generated with variations on the program hop.for, which integrates

the Adler-like phase equation (3.1.10).

The ,,-plane stability plots displayed in Chapter 2 were generated with the

program hurwitz.for.



c
c
c
c
c
c
c
c
c
c

program ocop
This program integrates the rate equations (2.3.8), (4.1.1)
and (4.1.2) describing the time evolution of two mutually
coupled lasers with an arbitrary time delay.
Integration is performed using the NAGroutine d02ebf,
a variable-order, variable-step Gear method.
The user must supply an input file ocop.prm containing
the necessary input parameters. Output consists of two files
x. .dat and y. .dat containing time series of the field amplitudes
and phases for lasers x and y, respectively.

integer iW,ifail,mped,ir,n
double precision w(3,21),y(3),x(3)
double precision tol,to, tmax, tstep, tstart, tstop, tval

c
character *7 suffx
character *60 charline
integer ndelay,i,l,nmax,nthrow, fskip,fout,sskip,sout
real z1 ,z2,z3,z4
double precision dnsp,q,spamp,rsp,eO,redkap,kapnl,detun
double precision c,db,dgdi,ld,lext,nO,pi,dnul,ith,tm
double precision r,taup,taus,xthresh,tau,eps,dvcc,vg
double precision xdelay,ydelay,eta,pstn,delrho,sigma,alpha
double precision omegar,frac,phsdiffO

c
common/blk 11xdelay(2, 1000), ydelay(2, 1000),

& z1,z2,z3,z4,spamp,rsp,eO
common/blk21 eta ,pstn,delrho ,sigma,aIpha,redkap,detun
common/blk31 ndelay
common/blk41 tstep,l,taup
common/blk51 nthrow,nskip,ncount
external fcnx,fcny,outdat,pedervx,pedervy

c
c * * * constants

c = 3.d8
q = 1.6e-19
pi = 3.1415927

c
c input parameters

open(1,file= 'ocop.prm',status = 'old')
read (1,*) charline,suffx I output file suffix
read (1,*) charline,alpha I alpha parameter
read (1,*) charline,db I coupling level, db
read (1,*) charline,detun I detuning, Hz
read (1,*) charline,dgdi I differential gain, m-1 mA-1
read (1,*) charline,dnsp I inversion factor
read (1,*) charline,dnul I mode spacing, Hz
read (1,*) charline,dpdi I slope efficiency, W/A
read (1,*) charline,ith I threshold current, A
read (1,*) charline,kapnl I nonlinear gain coef, W-1
read (1,*) charline,ld I diode laser length
read (1,*) charline,lext I laser separation, m
read (1,*) charline,nmax I number of iterations
read (1,*) charline,fskip I pts to skip between output
read (1,*) charline,sskip I pts to skip, screen output
read (1,*) charline,nthrow 1# pts to throw away at start
read (1,*) charline,pstn I piston phase, rads
read (1,*) charline,r I facet power reflectivity
read (1,*) charline,taup I photon lifetime, s
read (1,*) charline,taus I carrier lifetime, s
read (1,*) charline,tval I integration time step, s
read (1,*) charline,xthresh I bias times threshold
read (1,*) charline,phsdiffO I initial phase difference
close (1)

c
c * * * compute higherlevelparams

tstep = tval/taup
fout = nth row + 1
tmax = (nmax + nthrow)* tstep
sigma = taus/taup
vg = 2.*dnul*ld
nO = .5*(vg*taup*ith*dgdi-1.)
d~lrho = (.5+nO)*(xthresh-1.)
tau = lext/c

eps = 10**(db/20.)
dvcc = dnul* (1-rI/2./pi/dsqrt(r)
detun = detun * taup
eta = 2*pi*taup*dvcc*eps

t-:)
00
00



cc = eta/taup*tau*dsqrt(1 +alpha*alpha) c *** main integration loop
ndelay = int(1O*tau/(tstep*taup)+0.5)/1O. c *** output integrated values
spamp = dsqrt(vg*q*dgdi*dnsp/tstep)/2. c
rsp = vg*q*dgdi*dnsp/2. 199 it ((I .eq. tout) .and. (I .gt. nthrow)) then
eO = dsqrt(delrho) tm = sngl(tstop*taup*1.d9)
redkap = 2*kapnl/taup *dpdi/vg/dgdi write(1,1000) tm,sngl(y(1)),sngl(y(2))

c write(2,1000) tm,sngl(x(1)),sngl(x(2))
c initializerandom # generator tout = tout + tskip

call seed(9151 ) endit
c c
c * * * set up the integraterparameters c * * * output to screen

n = 3 it (I .eq. sout) then
tot = l.d-12 print *,tm,y(1 ),y(2)
ir = 0 sout = sout + sskip
mped = 1 endit
iw = 21 c
itail = 0 c * * * shift the delayedarray
1=0 do 200 i = ndelay,1 ,-1

c ydelay(1,i+ 1) = ydelay(1,
c * * * openoutput tiles ydelay(2,i + 1) = ydelay(2,

open(1,tile= 'y' /Isuffx/l' .dat') xdelay(1,i+ 1) = xdelay(1,
open(2, tile= 'x'/Isuffx/l' .dat') xdelay(2,i + 1) = xdelay(2,

c 200 continue
c *** initialvalues c

y(1) = eO c *** store the newest delayed data
y(2) = O. ydelay(1,1) = y(1)
y(3) = O. ydelay(2,1) = y(2)
x(1)=eO xdelay(1,1) = x(1)
x(2) = phsdiffO xdelay(2,1) = x(2)
x(3) = O. c

c c *** get tour gaussian distributed random numbers
c *** till delayed arrays c *** tor next time interval

do 100 i = 1,ndelay call gaus(z1 ,z2)
ydelay(1,j) = y(1) call gaus(z3,z4)
ydelay(2,j) = O. c
xdelay(1,i) = x(1) c * * * set the next output time
xdelay(2,j) = phsdiffO tstart = I*tstep

100 continue to = tstart 00
c I = I + 1 (Q



tstop = 1*tstep c *** evaluate reduced rate equations:
c c * * * field laser 1
c *** integrate laser y rate equations gnl = 1-redkap*y(1)*y(1)

call d02ebf(tO,tstop,n, y,tol,ir,fcny,mped,pedervy, yprime(1) = 112.*y(3)+ 1.)*gnl - 1.)*y(1)/2.
& outdat,w,iw,ifail) & + rsp/2./y(1) + spamp*z1

c & + eta*dcos(pstn + detun*t +y(2)-xdelay(2,ndelayll
c *** integrate laser x rate equations & *xdelay(1,ndelay)

to = tstart c
call d02ebf(tO,tstop,n,x, tol,ir,fcnx,mped,pedervx, c * * * phase laser 1

& outdat,w ,iw,ifail) yprime(2) = alpha*y(3) + spamp*z2/eO
c & -eta * dsin(pstn +detun *t + y(2)-xdelay(2,ndelayll

if (tstop .It. tmax) goto 199 & *xdelay(1,ndelay)/y(1)
close (1) c
close (2) c * * * carrierdensity laser 1

1000 format(1 x,f6.2, 1x,f5.3, 1x,f1 0.3) yprime(3) = (delrho-y(3)- (2*y(3) + 1)*gnl*y(1)*y(1II/sigma
stop c
end return

end
c *** function to output data

subroutine outdat(tstop,y) c * * * functionto evaluatedifeq
integer I subroutine fcnx(t,x,xprime)
double precision tstop,y(3),tstep,taup integer ndelay
common/blk4/ tstep,l,taup real z1 ,z2,z3,z4
tstop = tstop + tstep double precision t,x(3),xprime(3),spamp,rsp,eO,gnl,detun
return double precision xdelay,ydelay,eta,pstn,delrho
end double precision sigma,alpha,redkap

common/blk 1/ xdelay(2, 1000),ydelay(2, 1000),
c * * * functionto evaluatedifeq & z1,z2,z3,z4,spamp,rsp,eO

subroutine fcny(t,y,yprime) common/blk2/ eta, pstn,delrho ,sigma,alpha, redkap,detun
integer ndelay common/blk3/ ndelay
real z1,z2,z3,z4 c
double precision t,y(3),yprime(3),spamp,rsp,eO,gnl,detun c * * * evaluate reducedrate equations:
double precision xdelay,ydelay,eta,pstn c *** field laser 2
double precision delrho,sigma,alpha,redkap gnl = 1-redkap*x(1)*x(1)
common/blk1/ xdelay(2, 1000),ydelay(2, 1000), xprime(1) = 112.*x(3)+1.)*gnl-1.)*x(1)/2.

& z1,z2,z3,z4,spamp,rsp,eO & + rsp/2./x(1) + spamp*z3
common/blk2/ eta, pstn,delrho ,sigma, alpha,redkap,detun & + eta *dcos(pstn-detun *t + x(2)-ydelay(2,ndelayll
common/blk3/ ndelay & *ydelay(1,ndelay) (C)

c c 0



c * * * phase laser 2 pwy(3,3) = -1/sigma- 2*y(1)*y(1)/sigma
xprime(2) = alpha*x(3) + spamp*z4/eO & + 2. *redkap*ycube*y(1 )/sigma

& - eta *dsin(pstn-detun*t + x(2)-ydelay(2,ndelay)) c
& *ydelay( 1,ndelay)/x( 1) return

c end
c * * * carrierdensity laser 2

xprime(3)= (delrho-x(3)-(2*x(3) + 1)*gnl*x(1)*x(1))/sigma c *** Jacobian routine laser x
c subroutine pedervx(t,x,pwx)

return double precision t,x(3),pwx(3,3)
end integer ndelay

real z1,z2,z3,z4
c * * * Jacobian routinelasery double precision xdelay,ydelay,eta,pstn,delrho,xcube,detun

subroutine pedervy(t, y,pwy) double precision sigma,alpha,spamp,rsp,eO,redkap
double precision t,y(3),pwy(3,3) common/blk11 xdelay(2, 1000),ydelay(2, 1000),
integer ndelay & z1,z2,z3,z4,spamp,rsp,eO
real z1 ,z2,z3,z4 common/blk21 eta,pstn,delrho ,sigma,alpha, redkap,detun
double precision xdelay,ydelay,eta,pstn,delrho, ycube,detun common/blk31 ndelay
double precision sigma,alpha,spamp,rsp,eO,redkap
common/blk 11xdelay(2,1 000),ydelay(2,1 000), c * * * equationsof laser2

& z1,z2,z3,z4,spamp,rsp,eO xcube = x(1)*x(1)*x(1)
common/blk21 eta, pstn, delrho,sigma,alpha, redkap,detun pwx(1,1) = x(3) - 3.*redkap*x(3)*x(1)*x(1)
common/blk31 ndelay & - 3./2. *redkap*x(1 )*x(1) - rsp/2./x(1 )/x(1)

pwx(1,2) = -eta*dsin(pstn-detun*t +x(2)-ydelay(2,ndelay))
c *** equations of laser 1 & *ydelay(1,ndelay)

ycube =y(1 )*y(1 )*y(1) pwx(1,31 = x(1) - redkap*xcube
pwy(1,1) = y(3) - 3.*redkap*y(3)*y(1)*y(1) pwx(2,1) =eta*dsin(pstn-detun *t +x(2)-ydelay(2,ndelay))

& - 3./2.*redkap*y(1)*y(1) - rsp/2./y(1)/y(1) & *ydelay(1,ndelay)/x(1)/x(1)
pwy(1,2) = -eta*dsin(pstn+ detun*t + y(2)-xdelay(2,ndelay)) pwx(2,2) = -eta *dcos(pstn-detun* t + x(2)-ydelay(2,ndelay))

& *xdelay(1,ndelay) & *ydelay(1,ndelay)/x(1)
pwy(1,3) = y(1) -redkap*ycube pwx(2,3) = alpha
pwy(2,1) = eta*dsin(pstn + detun*t + y(2)-xdelay(2,ndelay)) pwx(3,1) = -4. *x(3)*x(1)/sigma

& *xdelay(1,ndelay)/y(1)/y(1) & + 8. *redkap*x(3)*xcube/sigma
pwy(2,2) = -eta *dcos(pstn + detun*t + y(2)-xdelay(2,ndelay)) & -2. *x(1)/sigma + 4. *redkap*xcube/sigma

& *xdelay(1,ndelay)/y(1 ) pwx(3,2) = 0
pwy(2,3) = alpha pwx(3,3) = -1/sigma - 2 *x(1)*x(1)/sigma
pwy(3,1) = -4. *y(3)*y(1 )/sigma & + 2. *redkap*xcube*x(1 )/sigma

& + 8. *redkap*y(3)*ycube/sigma c
& -2. *y(1)/sigma + 4. *redkap*ycube/sigma return t-:)

pwy(3,2) = 0 end .....



c
c
c

subroutine gaus(z1,z2)
This subroutine generates a gaussian distributed
random variable. (actually 2).

10
d = 6.283185307
call random(u1)
if (u1 .eq. 0.0) goto 10
call random(u2)
thb = d.u2
rb = sqrt(-2.. alog(u1 II
z1 = rb. sin(thb)
z2 = rb. cos(thb)
return
end

c
c
c
c
c
c
c
c
c
c

program detsols
This program solves equations (4.1.6) and (4.1.7) for the
modes of two identical, mutually coupled lasers with arbitrary
coupling delay and detuning. The NAG routine c05pbf, a
modified Powell hybrid method for solving N nonlinear equations
in N unknowns, is called. The user must supply the file det.lnp
containing the necessary input parameters. Output consists of
two files ctuns. .dat and ctunu. .dat containing the stable and
unstable mode frequencies versus piston, respectively. Stability
of the solutions is checked by solving the stability criterion
(4.1.19).

double precision tol,fvec(2),fjac(2,2),wa(15),x(2)
integer ifail,n,ldfjac,lwa
external fcn

character. 1 chnum
integer pp,f
logical stabcrit
double precision alpha,kappa,pstnO,db,cc,s
double precision detun,tau,dvcc,pcr,piston
double precision pstep,delfrq,lastroot,roots(10)
common !blk1! alpha,cc,piston,detun

pi = 3.1415927
pstep = pi!10.

c... readparameters
open(1,file = 'det.inp' ,status = 'old')
read(1, .) alpha,db,detun,dvcc, tau,phsdiffO
close(1 )

print · ,'enter set number'
read · ,chnum

c · .. calculate higher level parameters
pcr = 10..(dbI10.)
kappa = 2. pi. dvcc. sqrt(pcr)
cc = kappa.tau.sqrt(1 +alpha.alpha)

tI.:)
~
tI.:)



pstnO = pi/2.-datan(alpha)
detun = 2.*pi*detun*tau

c * * * open output files
open(1 ,file = 'ctuns'llchnumll' .dat')
open(2,file = 'ctunu'llchnumll' .dat')

c * * * nag setup
n = 2
ifail = 1
tol = 1.e-9
Idfjac = 2

c * * * loop through pistons
do 900 pp = 0,40
piston = pp * pstep + pstnO
numroots = 0

c * * * search freq dimension for roots
d0800f = -10,10

c * * * initial estimates
x(1) = phsdiffO
x(2) = f *cc/1 O.

c * * * find roots
ifail = 1
call c05pbflfcn,n,x,fvec,fjac,ldfjac,tol,wa,lwa,ifail)

c * * * check if root found
if (ifail .eq. 0) then
*** if no previous roots

if (numroots .eq. 0) then
roots(1) = x(2)
numroots = 1

*** evaluate stability
if (stabcrit(x)) then
write(2,999) x(2)/2./pi/tau*1.e-6,piston
else

c

c

write(1 ,999) x(2)/2./pi/tau*1.e-6,piston
endif

iflag = 1
goto 800
endif

c * * * compare to previous roots
do 500 i = 1,numroots

if (dabs(x(2)-roots(i)) .It. 1.e-4) goto 800
continue500

c
c

* * * if no match, output it
* * * check stability

if (stabcrit(x)) then
write(2,999) x(2)/2./pi/tau*1.e-6,piston

else
write(1 ,999) x(2)/2./pi/tau*1.e-6,piston

endif
iflag = 1
numroots = numroots +
roots(numroots) = x(2)

endif

800 continue
900 continue

close( 1)
close(2)

999 format(1x,e13.6,5x,e13.6)
stop
end

c *** subroutine to evaluate equations or jacobian
subroutine fcn(n,x, fvec, fjac,ldfjac,iflag)
integer iflag,ldfjac,n
double precision fjac(ldfjac,n),fvec(n),x(n)

double precision alpha,cc,piston,detun
common Iblk11alpha,cc,piston,detun

t-:)
<0
c."



c... evaluateequationsat currentx values
if (iflag .eq. 1) then

I

c
fvec(1) = detun-2.cc.dsin(x(111.dcos(x(2) c

& + piston +datan(alphall
fvec(2) = x(2)

& + cc. dcos(x(111.dsin(x(2) + piston + datan(alphall
endif

C... evaluatejacobian
if (iflag .eq. 2) then
fjac( 1,1) = -2 .cc.dcos(x(111.dcos(x(2) + piston + datan(alphall
fjac(1.2) = 2 .cc.dsin(x(1))*dsin(x(2) + piston +datan(alphall
fjac(2.1) = -cc.dsin(x(111.dsin(x(2) + piston +datan(alphall Ic
fjac(2.2) = 1 +cc.dcos(x(1 lI.dcos(x(2) + piston +datan(alphall
endif
return
end

100
c... subroutinetoevaluatestability I 200

logical function stabcrit(x)
double precision x(2)
double precision cj,ck.s.sO,diff
double precision alpha.piston.cc.detun.lhs.rhs
integer oldflag,newflag
common Iblk11alpha.cc.piston,detun

c
stabcrit = .false.
·.. initiallyevaluate equation (4.1 .19)
cj = cc. dcos(x(2) + piston-xl1) + datan(alphall
ck = cc.dcos(x(2) + piston + x(1) + datan(alpha))
csum = cj +ck
sO = -(csum)/2. + dsqrt(csum. csum + 4. dabs(cj. ck1l/2.
Ihs = -cj. ck. (1-dexp(-2. 5011
rhs = sO.sO+(cj+ck).sO
diff = Ihs-rhs
if (diff.It.0) then

oldflag = -1
else

oldflag = 1

endif·.. look for change of sign to indicate root in right half·.. of complex plane - unstablel
do 100 5 = 50.50/100..-50/100.

Ihs = -cj.ck.(1-dexp(-2.sl1
rhs = s.s+(cj+ck).s
diff = Ihs-rhs
if (diff .It. 0) then

newflag = -1
else

newflag = 1
endif·.. root has been found - unstable solution.

if (oldflag .ne. newflag) then
stabcrit = .true.
goto 200

endif
continue
return
end

tI:)
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program hurwltz

I

omegarO = 2* delrho/sigma
c This program locates stability boundaries in gammaO = (1. + 2. *delrhoI/2./sigma
c the plane of the complex coupling coefficient
c for two mutually coupled lasers with no coupling delay

Ic
* * * loop through 2 pi coupling phase

c using the hurwitz criterion and equation (2.4.16). do 900 phscc = 0,2*pi..01
c This produces three boundaries, which are
c output in files hur* .dat. The fourth criterion

I

cphscc = cos(phscc)
c (2.4.15) is also tested. cphssc = cos(phssc)

cphsalp = cos(phscc-atan(alpha))
character* 1 sufx

I

stab4 = .true.
logical stab 1old,stab 1new,stab20Id,stab2new origin = .true.
logical stab30ld,stab3new ,stab4 ,origin
real alpha ,phscc,sigma,delrho ,sqta Ip,omega rO c * * * search radially for a boundary, -60 db up
real gammaO ,cphscc,cphsalp,etacc,delnbar ,gamma do 500 mag = -6.,0...01
real etasc,phssc,cphssc etacc = 10. * * mag
real a 1,a2,a3,omegar,mag,magval
real stormag( 1OOO),storphs( 1000)

Ic
* * * evaluate (2.4.15)

integer mode,count delnbar = - etacc * cphscc * mode - etasc * cphssc
if (-delnbar .ge. 0.5) then

pi = 3.1415927
I

if (stab4) then
count = 0 magval = mag+6.

write(4,999) magval *cos(phscc),magval * sin(phscc)
c * * * parameters stab4 = .false.

alpha = 3. endif
mode = 1 c * * * if unstable, don't bother with other criteria
sigma = 1500. goto 500
delrho = 0.67 endif
etasc = O.
phssc = O. I gamma = gammaO/(1+ 2 * delnbar)

omegar = omegarO-2.*delnbar/sigma
print * ,'what file suffix? (one char)'
read * ,sufx c * * * hurwitz matrices
open(1 ,file = 'hur1'/Isufx/l' .dat') a1 = 4. *etacc*cphscc*mode + 2. *gamma
open(2,file = 'hur2'/Isufx/l' .dat') a2 = 4. * etacc * etacc
open(3, file = 'hur3' /Isufx/l' .dat') & + omegar + 8. *gamma * etacc * cphscc * mode
open(4, file = 'hur4 '/Isufx/l' .dat') a3 = 8. *gamma*etacc*etacc

& + 2. * omegar* etacc * mode* sqtalp * cphsalp
c * * * calculate higher level parameters

Ic
t.;)
co

sqtalp = sqrt(1 + alpha* alpha) * * * check stability -first condition CJt



stab1 new = .true.
if (a1 .It. 0.) stab 1new = .false.
if (origin)then

stab 1old = stab 1new
else

if (stab1old .neqv. stab1new) then
magval = mag + 6.
write( 1,999) magval*cos(phscc),magval* sin(phscc)
stab 1old = stab 1new

endif
endif

c * * * second condition
stab2new = .true.
if (a3 .It. 0.) stab2new = .false.
if (origin)then

stab20ld = stab2new
else

if (stab2old .neqv. stab2new) then
magval = mag+ 6.
write(2,999) magval*cos(phscc),magval* sin(phscc)
stab20ld = stab2new

endif
endif

c *** third condition
stab3new = .true.
if ((a1*a2-a3) .It. 0.) stab3new = .false.
if (origin)then

stab30ld = stab3new
origin = .false.

else
if (stab30ld .neqv. stab3new) then

magval = mag+ 6.
if (stab30Id) then
write(3,999) magval*cos(phscc),magval* sin(phscc)
else

stormag(count) = magval
storphs(count) = phscc

count = count + 1
endif
stab30ld = stab3new

endif
endif

500 continue
900 continue

999 format(1 x,f13.6,5x,f13.6)
close (1)
close (2)
close (3)
close (4)
end

t-:)
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c
c
c
c
c
c
c
c

program hop
This program integrates the approximate phase
equation (3.1.10) for a self-coupled laser with
arbitrary coupling delay. The user may select
to output the phase time series, the optical
spectrum or a spectrally-resolved time series
showing mode hops. Spontaneous emission
noise sources are included. The Cooley-Tukey FFT
subroutine four1 is called, but not included here.

dimension x(-1 00:20000),spec(-1 000: 1000)
complex freq(20000)
character basename* 4,cnum * 2
logical timflag,specflag,hopflag
integer pfb,nfft, nmax, next, n,i,cycle, uplimit,sgnfac
integer numffts,n1,n2,nstep,tens,ones,nlim
real alpha,pi,dvnat.dvcc, tau, fpres,dt,beta,pstn,normfac
real gam,ep2,calp,www,z1,z2,apodiz
real nmax2,denom, tmax, frqlim,hoptime

c * * * parameters& constants
pi = 3.1415927
alpha = 3.
dvnat = 12.e6
dvcc = 27.e9
tau = 2.666e-9
fpres = 1.e6
dt = .1e-9
tmax = 500.e-6
Iwfrq = 0.e6
hifrq = 200.e6
frqlim = 200.e6
pfb = -54.
timflag = .false.
specflag = .false.
hopflag = .true.
basename = "hopa"
nstep = 10

c

c

c

1 alpha parameter
1 natural linewidth

1 cold cavity HBW
1 coupling delay
1 resolution of Fabry-Perot
1 time step
1 total integration time
1 frequency window to
1 integrate over
1 max frequency output
1 power fb ratio, dB

c

c

c

beta = atan(alpha)
pstn = pi - beta
normfac = 2. *pi*dvcc
gam = sqrt(dvnat/(normfac *dvcc * dt))
nfft = int(-log(fpres*dt)/log(2.) +0.5)
fpres = 1/(2.. * nfft. dt)
nmax = 1/(fpres * dt)
next = int(tau/dt + 0.5)
numffts = int(tmax/(dt*nmax) + 0.5)
nmax2 = nmax*nmax
n1 = nmax/2 + nmax*dt*lwfrq
n2 = nmax/2 + nmax*dt*hifrq
nlim = nmax.dt.frqlim
ep2 = 10. U(pfb/20.)
calp = sqrt(1. +alpha*alpha)*ep2

· * * initialize random # generator
z1 =random(9151)

* *. open the output files
tens = int(-pfb/10.)
ones = -pfb-tens * 10
cnum = char(tens + 48)/Ichar(ones + 48)
if (timflag) open(1,file = basenamellcnumll'tim.dat')
if (specflag) open(2,file = basenamellcnumll'spec.dat')
if (hopflag) open(3,file = basename/lcnum/l' .dat')

10

· * * zero the phase and frequency arrays
do 10 i = -100,20000

x(i)=O.
continue
do 20 i = -1000,1000

spec(i) = O.
continue20

* * * integrate the time series of phase for one cycle length
do 500 cycle = 1,numffts

print .," cycle = ",cycle t.:)
q:)"'"



c

c

c

c

&
100

c

125

c

150

c

c

... Huen's method
uplimit= nmax-1
do 100 n = O,uplimit

www = (x(n)-x(n-nextll.normfac

· .. get a gaussian distributed random number
call gaus(z1 ,z2)

&

·.. initial approximation
x(n + 1) =-(calp. sin(www + pstn + beta)

+gam.z1 ).dt+x(n)

· .. integrated value
www = (x(n + 1I-x(n + 1-nextll. normfac
x(n + 1) = (x(n) +x(n + 111/2. -
(calp.sin(www +pstn + beta) +gam.z1 ).dt/2.

continue

· .. print out the time series
if (timflag) then

tstrt = (cycle-1). dt. nmax
do 125 i = 1,nmax,nstep
write(1,999) (tstrt + i.dtIl1.e-6,normfac .xli)
continue

endif

· .. fillthe FFTfreq array -shift and apodize
denom = float(nmax)
sgnfac = 1
do 150 i = 1,nmax

sgnfac=-sgnfac
apodiz = sinli.pi/denom)

freq(i) = cexp(cmplx(O.,-normfac .x(i))). sgnfac. apodiz
continue

· .. FFTthe data
call four1 (freq,nmax, 1)

·.. output the hop time series

200

c

&
250

c

300
500

c

550

999

if (hopflag) then
hoptime = O.
do 200 i = n1,n2
hoptime = freqli). conjg(freq(ill/nmax2 + hoptime
continue
write(3,999) cycle/fpres/1.e-6,hoptime
endif

... 'integrate' the frequency spectrum
if (specflag) then
do 250 i = -nlim,nlim

spec(i) =freq(nmax/2 + i)
· conjg(freq(nmax/2 + ill/nmax2 + spec(i)

continue
endif

·.. store time delayed data at start of phase array
x(O) = x(nmax)
do 300 i = 1,next

xl-i) = x(nmax-i)
continue

continue

·.. output the frequency spectrum
if (specflag) then

do 550 i = -nlim,nlim
write(2,999) i/float(nmaxlldt/1.e6,spec(i)
continue

endif

format(1x,e12.5, 1x,e12.5)
if (timflag) close(1)
if (specflag) close(2)
if (hopflag)close(3)
stop
end

t.:)
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