
COMPUTATIONAL LOGIC

Maria H. Napierala

M.S. in Computer Science, Technical University of Wmclaw, Poland, 1983

A dissertation submitted to the faculty of the

Oregon Graduate Institute of Science & Technology

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

July 1992

The dissertation "Computational Logic" by Maria H. Napierala has been examined and

approved by the following Examination Committee:

~ i c - B. Kieburtz
- .

Professor, Dissertation Advisor
[

Oregon Graduate Institute

F Z E f e s s o r
, regon Graduate Institute

-
David B. MacQueen
AT&T Bell Laboratories

David G. ~ o & k / ---
Assistant Professor
Oregon Graduate Institute

ABSTRACT

COMPUTATIONAL LOGIC

Maria H. Napierala, Ph.D.

Oregon Graduate Institute 1992

Supervising Professor: Richard B . Kieburtz

This thesis resulted from the research on relating classical and constructive proofs. It is well

known that constructive type theories constitute formal systems for constructive mathematics.

In these theories the constructivity is implicit in the restriction to intuitionistic logic. This

means that restrictions are placed both on the objects studied and on the methods of proofs

which may be applied. Hence, not all logical laws (e.g., law of excluded middle, proof by

contradiction) can be used in the proofs of consistency of logical specifications. Thus,

constructive type theories are reasoning systems only for purely functional programs. Even

though functional programming is mathematically elegant, it lacks expressiveness gained by

using classically founded non-local reasoning (e.g., escapes and coroutines). Yet, the

constructive type theories possess a desirable property that a mathematical sentence can be

interpreted as a program specification, and a constructive proof of such a sentence as a

program which meets the specification. It is also well-known that many classical theories do

not have this property. Kreisel and Friedrnan showed that for certain classes of sentences

@IS), the classical theories conservatively extend their constructive counterparts.

In this thesis, we show how to construct well-typed programs with nonfunctional operations.

We discuss the connections we have discovered between the second-order encodings

(operational interpretation) of logical connectives and the continuation-passing-style (CPS)

translation on the data-valued expressions. It is well-known that the operational interpretation

of the logical connectives yields the proof methods provided by those connectives.

Correspondingly, CPS translation of data yields type-correct programming schemas. To

obtain the actual instead of encoded operational interpretation, and consequently the actual

classical programs, we remove the impredicativity of second-order definitions of logical

connectives by considering only the toplevel contexts of programs. By toplevel contexts, we

mean those that expect values of basic types or data-suuctured types, excluding contexts of

function-typed values. We present the top-level, operational interpretation of logical

connectives as a way of extracting the computational content from classical proofs. We

introduce a classical program development system, Computational Type Theory (CTT),

formalizing this interpretation. CTT is in fact a classical type theory. We demonstrate that the

toplevel operational interpretation of absurdity cornsponds to the algorithmic content of the

only constructively problematic rule of classical logic, the rule of double-negation elimination.

This algorithmic content is the nonlocal operation resultis which abandons the normal

evaluation of a program and resumes computation in the existing, top-level context. We

demonstrate that CTT formalizes the computational extract of classical n! sentences. We

extend this result to arithmetical ll! sentences, and show how to extend it to class n$ of any

finite classical theory.

Our work uncovers the connections and differences between classical and constructive logic

much more precisely than those derived from double-negation embeddings of classical into

intuitionistic logic. It provides a first-order semantic account of classical reasoning. It is a

step towards intergrating nonlocal operators into a type-theoretic explanation of computation.

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1

CHAPTER 2

CHAPTER 3

... INTRODUCTION

... 1.1 Constructive Type Theories

......................... 1.2 Natural Deduction and Sequent Calculus

... 1.2.1 Sequent Calculus

................. 1.3 Continuations. CPS Translation. and Escapes

1.4 Double-Negation Translation.

... Friedrnan A-translation

........................ 1.5 The Research Contribution of This Work

1.6 Motivation ...
1.7 Overview of the Thesis ..

CALCULUS OF IMPREDICATIVE

... DERIVATIONS

............................. 2.1 Assumption of Logical Completeness

2.2 Impredicative Quantification ..
2.3 Examples of Basic Types ...

......... 2.4 Impredicative Definitions of Provable Propositions

... 2.5 Convertibility

............................ COMPUTATIONAL TYPE THEORY-

DEPENDENT FUNCTION TYPE

... 3.1 Prawitz+ Encoding

3.2 Data Types vs . Types.

Values vs . Continuations ...
3.3 Dependent Function Type ..

iii

CHAPTER 4

CHAPTER 5

................... CLASSICAL LOGIC AS A TYPE THEORY

4.1 Single Existential Witness Type
4.2 Left- and Right-Disjunct Types
4.3 Left- and Right-Conjunct Types
4.4 Classical Types ..

4.4.1 Disjunction Type ...
.. 4.4.2 Conjunction Type

... 4.4.3 Existential Witness Type

... 4.4.4 Classical Absurdity Type

............................. 4.5 Classical Logic as Specification Logic

CLASSICAL THEORIES AS

PROGRAMMING LOGICS ...
5.1 Identity ...
5.2 Booleans ..

.. 5.3 Natural Numbers

... 5.3.1 Natural Iteration

5.3.2 Primitive Recursion Operator
................ 5.3.3 Primitive Recursive Computation Schema

............... 5.3.4 Peano Arithmetic as a Programming Logic

................................. 5.3.5 Terminating General Recursion

.................. 5.3.5.1 Generalized Natural Function Iterator

5.3.5.2 Terminating General Recursion Operator
5.3.5.3 Terminating General Recursion

... Computation Schema

5.4 Binary Trees ..
.. 5.4.1 Binary Tree Iteration

5.4.2 Binary Tree Recursion Operator
5.4.3 Binary Tree-Based Primitive Recursive

Computation Schema ..

CHAPTER 6 IMPLEMENTATION OF RECURSIVE

.. FUNCTIONS

6.1 Primitive Recursive Programs ...
6.1.1 Predecessor and Subtracting One
6.1.2 Subtraction ...
6.1.3 Addition and Multiplication

... 6.1.4 Factorial

6.1.5 Fibonacci ...
............... 6.2 Simple Example with a Proof by Contradiction

6.3 Terminating General Recursion . Division

... by Repeated Subtraction

6.4 Beyond Primitive Recursion-

Ackemann's Function ..
6.5 List Recursion ..

............. 6.5.1 The Smallest Element of a Non-Empty List

.. CHAPTER 7 CONCLUSION 127

BIBLIOGRAPHY ... 133

vii

CHAPTER 1

INTRODUCTION

Computer Science has become a field which posed some very important theoretical problems

concerning the relation of intuitionistic and classical logic. Automated program development

is benefiting greatly from studies in this area. It is through exploring connections between

logic, mathematics, and computer programming that advances can be made. "Computational

Logic" has grown from the efforts of relating constructive and classical proofs. This thesis

resulted from work on relating intuitionistic and classical formal systems for constructive

mathematics.

The creation and study of formal systems for constructive mathematics has become one of the

most active areas in logic, the philosophy of mathematics, and computer science. In

"constructive mathematics" one proves the existence of an entity having certain desired

properties by showing how to find it. A formal system is a calculus for manipulating the

symbols of an artificial language. The construction of a formal system and the demonstration

that it is consistent is a general paradigm used in mathematical logic. The goal of formal

systems has been to reduce reasoning to calculation.

The growing interest in constructive formal systems from the point of view of the foundations

of mathematics stems from a disagreement about the relationship of logic to mathematics.

The discussion has centered on the question of whether logic and mathematics can be

developed solely as a system of symbols, or whether they necessarily involve an interpretation

of the symbols. As a result, three main schools of the foundations of mathematics have arisen:

(1) Formalism, in which mathematics is a symbolic construction that becomes meaningfbl

only when interpreted in ordinary language; (2) Logistics, in which mathematics describes an

ideal reality that is independent of knowledge; (3) Intuitionism, where mathematics is a mental

activity.

There is an increasing realization that none of these positions may be fully satisfactory.

Formalism is unsatisfactory because many concepts of pure mathematics do not have any

physical interpretation (e.g., the continuum). Intuitionism and logistics both invoke

mathematical intuition ("intuitive" mathematical proof and "intended models" of mathematical

structures, respectively) as the ultimate guarantees of consistency. However, they fail to

provide a connection between either kind of mathematical intuition and the truth of

mathematical statements.

The introduction of computers has brought about a fundamental change in the field of

constructive mathematics, by making possible the creation of working formal systems in

which one can actually write mathematical proofs. As the computer performs more and more

complicated tasks, the necessity for it to "explain its reasons" becomes crucial. This requires

the development of systems that combine programming languages and logical languages. As

a consequence, algorithms and proofs become closely related, and the logic built into such

systems should be constructive.

In fact, computer scientists have become interested in logic for its application to mechanical

theorem-proving in order to automate the design of computer programs and to verify their

consistency with logical specifications. Recently, formal systems for constructive

mathematics have been seen in computer science as a basis for a systematic methodology to

develop provably correct programs. Constructive type theories axe accepted as sound logical

foundations for developing correct functional programs. Types have become an important

aspect of programming language design. They constitute a way of incorporating a logic of

program specifications into the programming language itself. Thus, types provide a context

for the logical development of programs and a framework for their verification. These features

are crucial in software reliability and maintainability. Even though functional programming is

mathematically elegant, it lacks expressiveness gained by using classically founded non-local

reasoning (e.g., escapes and coroutines). In fact, many natural programming methodologies

do not fit well into the functional programming framework. Yet, the constructive type theories

possess a desirable property that a mathematical sentence can be interpreted as a program

specification, and a constructive proof of such a sentence as a program which meets the

specification. It is also well-known that many classical theories do not have this property.

Kreisel and Friedman showed that for certain classes of sentences <nq), the classical theories

conservatively extend their constructive counterparts.

This thesis proposes a solution to the problem of relating classical and intuitionistic logic in

program development. It demonstrates that certain nonfunctional programming language

features correspond to direct reasoning in classical formal systems. Our work shows how to

construct well-typed programs with these nonfunctional operations. It presents a system that

formalizes the computational content of classical predicate logic and shows how to extend

such a formalization to any finite first-order classical theory. The system distinguishes

termination problem and lemmata on data types which are not relevant to computation from

the parts of constructive proofs that are relevant to computation. By separating termination

from program correctness, the system allows the introduction of general recursion operator

without destroying the property that all well-typed programs terminate.

At its core, this thesis deals with the problem of a valid way of expressing and of reasoning

about computation. The need for expressive reasoning systems and expressive programming

systems is widely recognized. The fact that all computation is expressible using Turing

machines and that number theory is sufficient for almost all reasoning about computation is

here of little help. As a result of our research, we found that programs extracted from a

specific, well-defined class of proofs in classical finite theories are provably correct. We built

a system for constructing such programs.

To develop a calculus for defining totally correct programs (compwational logic), it is not

sufficient to formally construct only formulas or deductions. One has to construct derivations

or proofs. In a logistic system (Russell, Frege, Whitehead), one can define formulas that are

true but not provable (Giidel incompleteness theorem). Such a system is concerned with

classical validity, i.e., truth in all models. On the other hand, in a system that constructs

deductions (Gentzen), one can define formulas that are provable but whose proofs may not

provide evidence in a constructive sense. More precisely, a constructive proof always

provides a way to construct an object which is proven to exist. This property of constructive

proofs is referred to informally as the evidence property. Such evidence is possible only in a

system that constructs derivations (proofs). According to the Godel incompleteness theorem,

all methods of proofs (recognized as correct) can never be formalized in a single formal

system. But the operational content of deduction (i.e., of truth "modulo hypotheses") can be

interpreted in the second-order h-calculus or Girard's system F [Girard70]. Such an

interpretation &fines the operations that one performs to convince oneself of the truth of

proposition A "modulo" hypotheses H. These operations have been shown to terminate

[Girard70]. They are the building blocks for constructing proofs.

Terms justifying propositional quantifications (exhibiting the reasons for which those formulas

are true) program deductions. For example, if $ is an arbitrary formula, then x: $ + x : + is a

method of justifying the truth of I$ 3 4 which is expressed by the following propositional

quantification:

W X:prop.X*X

A Greek letter $ was used to represent formulas in order to distinguish the deduction x:+ +
x:$ from its interpretation. The A-term AX:prop.hx:X.x of type tlX:prop.X*X is an

identity algorithm. It represents one of the methods of justifying the truth modulo hypotheses,

namely when a derived formula is the only hypothesis.

Since all data are functions in system F, the distinction between computation rules isn't so

clear as it is in a language that has constants of basic types. System F identifies propositions,

data types, and control stxuctures. This means that algorithms are coded in terms of typed data

objects. The ambiguity of meaning of the second-order universal quantification is known to

be algorithmically consistent [Girard70]. Its negative side is that the algorithms are evaluated

"by-values" only, that is, functions decompose their arguments completely according to the

primitive structural induction. This is not economical and very bad for a programmer who

wants to have an actual not a coded algorithm.

We will introduce classical type theories with a clear distinction between different

computation rules. In these theories, data types will be distinguished from control structures

in order to allow the introduction of actual programs. However, before introducing specific

basic types (like integers, lists, uees, etc.), or more precisely, the theories associated with

them, logic has to be formalized. A system called Compufational Type Theory will be

introduced to interpret predicate logic and propositional connectives. To internalize the

logical connectives, it is not necessary to preserve the purely functional framework by

extending the polymorphic X-calculus, as it is done in the calculus of constructions. In fact,

the correctness of proofs of existential quantification, conjunction, and disjunction should not

be verified through type-checking in a functional calculus since this implies that the logic is

restricted to be intuitionistic. Instead, proofs can be defined as terms in a predicative type

theory that internalizes the operational interpretation of logic at the top-level of proofs. This

interpretation is in agreement with the semantics of constructive evidence [Constable851 but

does not restrict the logic to be intuitionistic.

The research contribution of this thesis is twofold. It gives a sound explanation of

classically-founded computation. Namely, it introduces a type theory suitable for

programming with non-local control. Moreover, our work answers the objections to the

translation techniques used to replace nonlocal control with the functional versions of them.

Such translations (double-negation translations on proofs and continuation-passing-style

translations on programs) often yield hard to understand and prove correct programs. We

show how to construct direct& programs with nonlocal control and show that the reasoning

system for such programs is classical.

This chapter selves as a general introduction to the problem we wish to address. That is,

before we begin with the technical material, the background and the context in which this

thesis can be understood need to be presented. In the next four subsections we introduce the

taxonomy of logics and type theories, we introduce the concepts of continuation and

continuation-passing-style translation, and, finally, we survey the results relating intuitionistic

and classical logic.

1.1 Constructive Type Theories

There are two kinds of constructive type theories: predicative and impredicative constructive

type theories. The former differs from the latter in significant ways. Yet, understanding the

distinction between predicativity and impredicativity in the study of constructive mathematics

has not been settled. The notion of predicative type theory comes form Russell who

introduced it to avoid paradoxes. His vicious-circle principle: "No totality can contain

members defined in terms of themselves" is a rejection of impredicative definitions, i.e.,

definitions which in defining an object refer to some totality to which the object being defined

belongs. This self-reference was eliminated in Russell's type theory by arranging sets in a

hierarchy of levels or types, and forbidding propositional expressions of order "i" to contain

variables ranging over a type of level greater than "i."

In general, a predicative type theory is one in which the objects of discourse must be defined

before they can be used. In contrast, when proving the propositional universal quantification

wX:prop.X=X in the system F, we are extending the definition of prop as we are in the

p m s s of quantifying over it. This self-reference is the essence of the impredicative system F.

An instance of predicative type theory is Martin-Liifs intuitionistic theory of types (ITT)

[Martin-Liif82J. In his theory, Martin-L6f attempted to reconstruct the foundations of

mathematics. His intuitionistic mathematics has become the theoretical basis of the system

Nuprl [Constable861 in which one develops provably comct functional programs. Predicative

as well as impredicative type theories can interpret first-, second-, and higher-order logics. For

example, Martin-Liif type theories without universes interpret first-order predicate logic.

When extended with a hierarchy of universes, they interpret second- and higher-order logics

[Martin-Liif841. A logically-founded impredicative higher-order system was developed by

Coquand as a calculus of conrtructions (CC) [Coquand86 CoqHu861. CC itself interprets not

only first-order logic but higher-order logic as well. In CC, however, there is a distinction

between propositions-as-types (terms of type Prop) and other types (terms of type Type). To

avoid paradoxes it is possible to quantify only propositions over all types but not other types.

The generalized calculus of constructions (GCC) [Coquand86] is an extension of CC with a

hierarchy of universes like in Martin-Liif s type system. What follows is a discussion of each

kind of theory, starting with IlT.

Martin-Liif s type theory, which is based on the intuitionistic philosophy of mathematics,

admits intuition as decisive in recognizing that a mathematical proof is convincing. Intuitive

evidence ensures the correctness of mathematical reasoning. An evident proof of a proposition

in an intuitionistic logic implies that the proof is noncircular and finite. Since the law of the

excluded middle is not intuitionistically valid, I lT, as a programming logic, is suitable only

for purely functional programs. The importance of Martin-L6f s intuitionistic theory of types

lies in the connection which it makes between computer programming and constructive

mathematics, namely that algorithms should naturally accompany existence proofs. However,

by identifying programs with proofs, this theory forces unwanted constructions into

synthesised programs. The solution adopted for this problem in I'lT causes lack of unicity of

types even in the fimt universe of ITT's hierarchy of types' and puts the underlying principle

of identifying programs with proof-objects in question. MOR specifically, an object a E A

that satisfies property B also becomes a member of a subset type a E {x E A I B(x)}, which

was introduced to remove computationally irrelevant details from programs [NoPe83].

The calculus of constructions (CC) is an extension of the polymorphic h-calculus (Girard's

system F) with a part that interprets first-order predicate logic, and a part that interprets

higher-order propositional logic to allow the binding of propositional schema. Here, the

consistency of proof is assured by encoding the intuitionistic semantics of propositional

connectives and existential quantification in second-order propositional calculus. The

universal quantifier is constructive. For example, Russell's encoding of the conjunction of

propositions P and Q (PA Q) is interpreted by the following quantification:

P & Q = WA.(P+Q+A)*A

Such an encoding formalizes the normalization of intuitive proof of conjunction. More

precisely, to prove the above universal quantification, one has to possess a cut-free proof of P

and a cut-free proof of Q, i.e., one has to have a cut-free proof of PA Q. Since a cut-free proof

corresponds to a deduction in a normal form [Prawitz70], the quantification P & Q encodes

the condition for (natural deduction) proofs of conjunction to be reducible to normal forms.

Normal proof of a conjunctive or disjunctive formula is coded as a proof method provided by

the formula. Such a proof method is expressed by making the intuitive evidence un#onn or

universal. For instance, the proposition PAQ is a method of proving any proposition C

provided one has a proof that C follows from both P and Q. This is accomplished by the use

of second-order universal quantification (universal type), which operates without any

information about the domain of quantification. Its objects - universal abstractions - are

functions defined for arbitrary types.

1. Unicity of types is also a prdem with respect to equality of types at higher universes.

One of the fundamental properties of CC is that all programs with legal types terminate and

are correct with respect to the specifications, i.e., they are totally correct. The same is uue of

Martin-Liif' s type theory in which a E A means that the program a terminates with a value in

A. In fact, to develop programs in the framework of any consuuctive type theory requires the

verification of termination of programs. Checking termination is done at the same time as

checking correctness. This check may either be an implicit restriction on the expressive power

of terms as in CC, or an explicit termination argument as in extensions to I'lT exploited in, for

example, [Nordstriim87]. Since a type theory is a finite formal system, not all computable

functions can be developed in a single type theory in which all programs terminate.

Martin-Liif's type theories [Martin-L6f84] and Coquand's calculus of constructions

[Coquand85] are examples of type theories with decidable judgements. One can add to the

taxonomy of type theories the distinction between type theories with decidable judgemenrs

and type theories with undecidable judgements. Type theories with decidable judgements

restrict expressive power of terms to primitive recursive functions. In such theories correctness

of programs is verified through type checking and the general recursion operator is not

available. In theories with undecidable judgements, it is no longer decidable whether an

object a is in type A, i.e., whether a:A. Hence, it is no longer possible to use automatic type

checking in the ordinary sense, where the compiler checks the type correctness of the program.

An example of such a theory is an extension of Martin-Liif's type theory with subset type

former {x:A I P(x)] [NoSm84], which was already mentioned above. Hence, a belongs to

two different types, that is, a:A and a: {x:A 1 P(x)]. In Martin-Liif type theory with

undecidable judgements, it is not even possible to check the program during execution since

the predicate P in {x:A I P(x)] does not have to be decidable. A restriction to decidable

predicates would seriously weaken the expressive power of the specifications. Instead, the

programmer must provide justification for the type correctness of the program. Such

justification can be formalized and even the formal proof can be constructed, as was shown in

[Petersson82]. In type theories with undecidable judgements is it possible to separate the

termination proof of the program from the proof of other properties. By separating types

(program specification) and propositions (e.g., P(x) in the subset type {x:A I P(x)]), a general

recursion operator can be introduced without destroying the property that all well-typed

programs terminate INordst.&m87].

Another feature of both the I'IT and CC theories is that they are based on the identification of

propositions, types, and specifications. Martin-Liif's type theory is basically a theory about

sets in which it is possible to interpret a logic. A proposition is identified with the set of its

proof objects and a specification is identified with the set of all programs satisfying the

specification. Similarly, in the calculus of constructions a proposition is identified with the

type of its proofs, and proofs are identified with elements of types (programs).

However, there are problems with looking at programs-as-proofs in constructive type theories.

For programs-as-proofs to be executed on a computer, they have to be completely formalized

including the proof of consistency of program specifications. In actual fact, such a degree of

formalization is too deep. Informal reasoning about programs will always be important.

Systems that identify programs with proofs in a type theoretic framework force unwanted

constructions into synthesised programs. More specifically, if a type (Cx E A) B(x) is used to

interpret an existential proposition, it must be shown that there exists a program of type A that

satisfies the property B. To do this in a type theory, one must construct a program a E A as

well as a proof-object b E B(a), showing that a satisfies the specification B. When the

existential statement is read as a specification of a program, only the program a and not the

particular proof-object b, is of interest.

Therefore, to make a distinction between proofs and programs, the computationally irrelevant

details (formal "comments") must be cut away from the formalized program specifications.

No constructive content should be assigned to the part of program development that deals with

the consistency of logical specifications: the goal is to be able to write an integer program

using the knowledge that its argument is positive without demanding an extra argument at

run-time to justify this fact. All the power of classical logic should be available in the

consistency proofs. To automatically eliminate unwanted proofs from programs, an

understanding of the contexts in which classical logic or intuitionistic logic are appropriate in

a program development system is necessary.

The other problem with the programs-as-proofs principle is related to the difference between

the repetitive constructs in programs and proofs. In programming languages such constructs

do not always terminate (e.g., while-loops, repeat-loops). The repetitive constructs in proofs,

on the other hand, are usually based on some principle of induction which by its very nature

always terminates. A typical example is mathematical induction. Thus, programmers often

have to provide a separate proof of termination for their programs, while mathematicians

usually justify the termination of proofs by refemng to the conectness of the induction

principle they use.

In constructive type theories with decidable judgements general recursion is not available but

only primitive recursion. From a theoretical point of view, this is not a problem. The

primitive recursion operator and higher-order functions together provide a way of expressing

all functions provably total in Peano Arithmetic. However, this forces a programmer to prove

termination of a program at the same time as the program is derived or restricts the

programmer to a small set of recursion schemes. The termination proof of a program should

be separated from the rest of the correctness proof. This can be accomplished by introducing a

rule of well-founded recursion, and hence not giving up the idea that all well-typed programs

terminate.

1.2 Natural Deduction and Sequent Calculus

Gentzen systems of natural deduction formalize the deductive role (or essential logical

content) of different logical constants. Gentzen discovered that these atomic deductive steps

are of two kinds, namely introductions and eliminations, standing in a certain symmetrical

relation to each other. Gentzen analysis may be understood as an attempt to characterize the

notion of proof.

In systems of natural deduction, proofs are represented as derivations written in a tree form.

The top formulas of the tree are the assumptions. Any other formula of the tree is to follow

from the one immediately above it by one of the inference rules. A formula written in square

brackets above a premiss is to indicate that it is discharged at the inference. An inference rule

is labeled with the logical constant it deals with, followed by "I" when it is an invoduction and

" E when it is an elimination. In an inference by an application of an "EM-rule, the premiss in

which the constant in question is exhibited is called the major premiss of the inference and the

other premiss(es) if any, is(are) called the minorpremiss(es).

A B
AVB A V B

[A1 [B l A V B
W)

C
C

We assume that the first-order languages contain a constant A for absurdity (or falsehood) and

that 4 is a shorthand for A 3 A. The introduction and elimination rules for negation are then

as follows:

The rules given above determine the system of natural deduction for first-order minimal logic,

abbreviated M . By adding the rule A, (intuitionistic absurdity rule)

where A is an atomic proposition different from A, we get the system of natural deduction for

first-order inmitionistic logic 0.

The system of natural deduction for first-order classical logic (C) is obtained by adding to the

rules of M the rule Ac (classical absurdity rule)

where A is atomic and different from A.

The sense of the symmetry between introduction and elimination rules is that the conclusion

obtained by an elimination does not state anything more than what must have already been

obtained if the major premiss of the elimination was inferred by an introduction. In other

words, a proof of the conclusion of an elimination is already "contained" in the proofs of the

premisses when the major premiss is inferred by introduction. This correspondence between

introduction and elimination rules is referred to as the inversion principle. Since nothing new

is gained by an elimination immediately following an introduction, it suggests that such

sequences of inference can be eliminated. A formula occurrence in a derivation that stands at

the same time as the conclusion of an introduction and as the major premiss of an elimination

is called a marimurn formula. The inversion principle implies that a maximum formula is an

unnecessary detour in a derivation and can be removed. A derivation is defined as normal or

said to be in normal form when it contains no maximum formula. The normalization

theorem states that every derivation in M, I, or C reduces to normal form. The strong

normalization theorem states that every derivation ll in M, I, or C reduces to a unique

normal derivation ll ' and every reduction sequence starting from ll terminates (in ll ').

There is a close correspondence between the constructive meaning of a logical connective and

its introduction rule. For instance, implication A 3 B is constructively understood as the

assertion of the existence of a construction of B from A. Natural deduction systems allow the

inference of A 3 B given a proof of B from A. However, a proof of B from A is not the same

as a construction of B from A. It is rather a special kind of it, namely a unifonn construction

transforming constructions of A to constructions of B. Thus, there isn't a complete agreement

but a close correspondence between the constructive meaning of logical constants and the

introduction rules.

As remarked above, Gentzen's operational interpretation of implication, which is based on an

introduction rule, is much stronger than the usual constructive interpretation. The same holds

for universal quantification. As a consequence the interpretation of the axioms of first order

arithmetic fails under Gentzen's interpretation. More precisely, the mathematical induction is

not valid under such an interpretation. Since the introductions and eliminations are inverses of

each other, Gentzen's idea to justify the eliminations by the meaning given to the logical

constants by the invoductions may be reversed [Prawitz70]. Instead of interpreting the

constants as asserting the existence of certain constructions that build up formulas with these

constants, one may interpret them as stating the performability of certain operations. That is,

the eliminations become the definitions of logical constants and the introductions are justified

according to these definitions. This is what we may call the extensional definition of logical

constants. Such a definition yields the usual constructive meanings of implication and

universal quantification. We note that the interpretation of logical connectives in second-order

logic is in agreement with this extensional interpretation. The second-order propositions

"pmgram" the constructive meanings of logical connectives.

1.2.1 Sequent Calculus

Gentzen's sequent calculus is an alternative formulation of natural deduction. Instead of

r
deductions .

A

one considers sequents r I- A. More generally, sequents have the form r I- A, where

r (=A , . . . , A,) and A (= B , . . . , B,) are finite sequences of formulas. The intended

meaning of r I- A is that

A l and andA, imply B 1 or . . - . o r B,.

While the main purpose of systems of natural deduction was to define the notion of proof,

sequent calculus is a system of derived rules about proofs. Thus, sequent calculus is intended

for studying the properties of proofs. Every proof in sequent calculus induces a unique natural

deduction, and conversely, every natural deduction comes from sequent calculus proof, but the

latter is not unique.

Sequent calculus is divided into three groups of rules: identity, structural, and logical. The

three standard structural rules (exchange, weakening, contraction) are all of the form

We will not introduce the rules of sequent calculus in the thesis. They can be found in many

textbooks on mathematical logic and proof theory, e.g.. [Szabo69, Kleene52, GirLa891. We

will only describe their meaning.

The exchange rule allows permutation of formulas on either side of the symbol " I-". The

weakening rules allows replacement of a sequent by a weaker one. The contraction rule

expresses the idempotence of conjunction and disjunction.

The logical rules introduce the logical connectives: conjunction, disjunction, negation,

implication, univenal and existential quantifications. However, instead of elimination rules,

logical rules include the rules for operating on the formulas to the left of the deduction sign

k. In fact, the rule of sequent calculus are more or less complex combinations of rules of

natural deductions. More precisely, the logical rules on the "right" correspond to

introductions, and those on the "left" to eliminations.

The identity group has two rules: the identity axiom C F C and the cut rule

The identity axiom is necessary to start off proofs. The cut rule is another way of expressing

the identity. It is a dual or symmetric aspect of identity which can be eliminated from a proof.

This cut elimination process has the same content as the normalization theorem for natural

deduction systems; they only differ in the syntactic presentation. That is, a cut-free proof

gives a normal deduction.

The cut-eliminatrnatron theorem (Hauptsatz) of Gentzen [Szabo69]

Theorem (Gentzen, 1934). The cut rule is redundant in sequent calculus.

for sequent calculus corresponds to the normalization theorem for natural deduction. The

former is technically more complicated than the latter because of lesser purity of syntax. The

aim is to eliminate cuts of the special form

where the left premiss is the right logical rule and the right premiss is the left logical rule, so

that both introduce the main formula C.

1.3 Continuations, CPS Translation, and Escapes

Continuation semantics has become a standard method of specifying program semantics. It is

based on the denotational approach to program semantics [MS76] pioneered by Dana Scott. A

continuation in denotational semantics is a function that can be applied to a value and/or store

to yield a result of the entire computation Program fragments are seen as continuation

transformers, which take continuations as arguments and return other continuations.

Continuation semantics is well suited for nonfunctional languages, since a nonlocal exit from

a program context, e.g., "goto r', can be described as using a continuation stored under the

label 1 instead of using the sequential continuation.

The use of continuations in compilation was extended further by Fischer [Fis72], who showed

a translation from a lambda-calculus back into itself such that the resulting program contains

as explicit representation of continuations. Such a translation is called a continuation passing

style transformation, or simply CPS transformation. CPS transforms mimic the operational

semantics of evaluation of the original term. A CPS transform Z of a lambda-expression e is

defined as follows [Griffin90]:

Z = Xk.kx
-
~ X . M = hk.k(hx.M)

* = hk.M(hm.i(hn.mnk))

Felleisen and others [FFED86] used this translation to convert programs with nonlocal control

operations into purely hctional programs. To allow the programmer to access the current

continuation, the nonfunctional control operator C (pronounced control) was invented. The

evaluation of C(M) abandons the current continuation (control context) and applies M to a

procedural abstraction of this context. This allows M, when it finishes its evaluation, to either

resume execution at the original evaluation context, or resume at another evaluation context, if

it is available. In order to express the CPS translation of C(M), additional control operator A

(abort) is introduced. The evaluation of A(M) throws away the cumnt continuation and

continues with the evaluation of M at the top-level (i.e., empty) context. The CPS transform

for C is defined as follows:

C(M) = hk.M(hm.rn(hz. hd. kz) h x . ~ (x))

The C operator is a relative of Scheme's call/cc2 [RC86] that provides access to the current

control context. This operator provides Scheme with labels and jumps to express nonlocal

exits, allowing programs that are more efficient than functional programs when executed on a

von Neumann style computer.

Griffin [Griffin901 observed that, in the typed setting, one could assign the operator control

(C) a type -.ll(P) 3 P. He observed that control is the computational content of the double-

negation elimination rule. Griffin also showed that that CPS-translation was a translation from

classical propositional logic into a constructive propositional logic.

Often it is efficient to abort computation or exit a program instead of evaluating the whole

program, only to discard its result. Tree search is a very natural candidate for using non-local

continuations. For example, we want to write a program that sums up the values associated

with nodes in a binary tree, but which returns zero if any particular node contained zero for its

value. The most efficient implementation would be to exit the program when the first zero is

detected. The operation of aborting a computation is not expressible in purely functional

languages. A pure functional program would compute out the sums of all the subtrees, only to

discard them.

These nonfunctional operations are in fact nonlocal control operations. Examples of nonlocal

control operations in command-based languages are nonlocal goto's (the most typical explicit

control), and escaping primitives with names like "exit", "return", or "break." Examples of

nonlocal control in expression-based languages are Scheme's calllcc, LISP's catch/thmw,

Reynolds' escape [Reynolds72].

In general, a nonlocal escape may result in a type error caused by "escaping" from deep within

expression to the toplevel of the program. This means that the reduction-rule reasoning

cannot be applied to a program that escapes, since the type of the program may not be

preserved by the reduction. For example, consider a program for every boolean function

f :Nat+{O, 1) (where 0 < 1) to attain a minimum [Murthy<)l]. The specification for the

program is the following proposition:

3 n E Nat.Wm E Nut. f (n) Sf (m)

Intuitively, the program will make a "guess" that N=O is the desired minimum. Then, given a

number m, it will check if f(O)Sf(m). If so, then it will report success. If not, then

f (m) c f (0) which means that f (m)=O. So the program will unwind the context back to that

before it chose 0, and instead it will choose m. That is, the program escapes from deep within

the expression to the top-level. Hence, it is not decidable whether a term (program fragment)

is evidence for the proposition Wm E Nut. f (N) l f (m). As a consequence, an escaping term

cannot be assigned the proposition Wm E Nut. f (m) l f (N) as its type. Such a tern is not

type-correct.

1.4 Double-Negation Translations and Friedman A-translation

The double-negation translations address the problem of exactly which classical logics can be

embedded into their intuitionistic counterparts. The Godel-translation [Godel651 solves this

problem for predicate logic, and in fact for number theory. That is, the Godel-translation is an

embedding of classical number theory into constructive number theory. If we denote the

translation by (-)O, then what Gijdel proved is that

if kpA@ then +HA@0

where FpA is a deduction in Peano Arithmetic and +HA is a deduction in Heyting

Arithmetic. The Godel translation is as follows:

(A V B) ~ + -(AOVBO)

(A&B)O + AO&BO

- (3 ~ E A.B)O + -(3x E A.BO)

(WX E A.B)O wx E A.BO

(A 3 B)O + AO 3 BO

2. Call/cc abbreviates call-withcurrent-continuation.

PO r, -(P) (Pprime)

Another double-negation translation is the Kolmogorov translation [Kolmogorov67], which in

contrast with G d e l translation, double-negates every propositional symbol. This makes it

easier to work with. If we denote the Kolmogorov translation by (-), then it is defined as

follows:
- -

(AVB) -(AVB)

P -(P) (Pprime)

The double-negation embedding result for Kolmogorov translation is the following theorem:

Theorem (Double-Negation Embedding) If Wc @, then I-, 5
where I--= is a deduction in classical logic and t-[is a deduction in intuitionistic logic.

This theorem tells us that the Kolmogorov translation converts a classically provable sentence

into a constructively provable sentence, but it does not tell us what form the constructive proof

will take. In other words, once we have a constructive proof of the double-negation-translated

sentence, we need to recover a proof of the original sentence. This problem was solved by

Friedman [Friedman781 and the solution is described below.

A constructive proof always provides a way to commct an object which is proven to exist. In

other words, in constructive systems the notions of existence and computability are identified.

This is not true about classical systems. A classical proof of an existential sentence does not

in general constructs the witness. So one might think that classical reasoning is not suitable

for reasoning about computation. In 1977, though, Harvey Friedrnan [Friedman781 showed by

a simple syntactic argument called A-translation, that a classical proof of a ll! sentence indeed

gave a constructive proof. More precisely, he discovered that one could replace instances of

falsehood (A) with an arbitrary proposition, in particular @. Friedrnan A-translation is based

on the observation that there is a simple mapping from intuitionistic theories to their minimal

counterparts. We recall that a minimal logic is one in which there is no rule of the form:

A I-A

where A is arbitrary and A is the absurdity. This means that A is treated as an uninterpreted

propositional symbol and, hence, it can be replaced with a new one, A.

Theorem (Friedman A-Translation) If FpA a , where (O is c!, i.e., it is A - h ,

then kHA5[(O/h].

Friedman then showed:

Theorem (Conservative Extension) If we have a proof kpA (O, where is I$, then we can

construct a proof of kHA (O.

The conservative extension result for IIS sentences follows by considering free variables.

This is one of the most interesting metarnathematical results connected with constructivity. It

simply says that every Turing machine program that, provably in Peano Arithmetic, converges

at all arguments, also terminates provably in Heyting Arithmetic.

Friedman showed how to translate the classical proof in a straightforward manner into a

constructive proof of the same sentence. A-translation replaced uses of the double-negation

elimination rule with constructive reasoning. Yet, often, the proofs obtained through this

translation were hard to read and understand. It was even more difficult to extract programs

from these opaque constructions.

As an attempt to address these objections, Murthy [Murthy90] showed that Friedman's result

is a proof-theoretic version of CPS-translation from a non-functional programming language

(with the "control" C) to a functional programming language. He discovered that one could

assign programs to classical proofs in a direct manner, by giving the rule of classical absurdity

an algorithmic meaning. Muxthy proved that the rule of double-negation elimination is the

proof-theoretic form of the (nonlocal control) operator C. He showed that every classical

proof can be regarded as a computation; however, as he demonstrated, only sometimes are

these computations correct. They are correct only for sentences for which Friedman's

translation succeeds, namely, for sentences belonging to IIg class.

1.5 The Research Contribution of This Work

This thesis has a similar aim as Murthy's work, namely, to demonstrate the algorithmic nature

of classical reasoning. However, our work is not based on double-negation embedding but on

the operational interpretation of propositional connectives, existential witness, and the lack of

existential witness. Such an interpretation is formalizable in the second-order propositional

logic or Girard's system F. The operational interpretation, which consists in performability of

certain operations, is in agreement with the intuitionistic semantics of the logical connectives

but it is equally applicable to constructive as well as classical logic. In other words, the

second-order encodings of logical connectives formalize the constructive interpretation of

existence in a manner applicable to classical logic. It should be clear that even though

algorithms do not always accompany classical existence proofs, this doesn't mean that

classical formal systems are incapable of reasoning about computation. It is rather that in

constructive systems the notions of existence and computability are identified, and that there

are certain practical and mathematical advantages to such an identification. But, again, the

identification of proofs with programs is not necessary for proofs to possess the evidence

Property.

The double-negation tramlatiom convert classically provable sentences into constructively

provable sentences, while the second-order encoding of the logical connectives represents

sentences formed by those connectives operationally. That is, the double-negation

translations don't distinguish between sentences formed from different logical constants.

They are all translated in the same manner, i.e., simply double-negated. On the other hand,

the operational interpretation depends on a logical connective that forms a sentence. There is

a fundamental difference between the two approaches. The double-negation/A-translation

yields a programming language which is inherently higher-order and semantically complex.

Such a language doesn't distinguish between continuations and functions. More precisely, the

semantic complexity of nonlocal control operator C completely hides the nature of

continuations. A continuation is here simply a "normal" function that will perform a jump

when applied. In other words, a continuation is introduced as an "imperative" add-on to a

"declarative" language. In contrast, the analysis of classical computation based on the

second-order end ings of the logical connectives treats continuations as a purely declarative

concept.

One would like to have a language where explicit access to continuations is a central

"declarative" concept. The language yielded by the operational semantics exploited in this

thesis is such a language. We will have a separated syntax for discarding the current

continuation and making the continuation of a program module accessible for escaping. Our

research yields a structured and statically-scoped framework for non-local exists. It lies a

foundation for a practical language where a non-local continuation would be considered just as

natural, simple, and declarative as a non-local value. One of the consequences of a declarative

treatment of continuations is that non-termination can be viewed as a special case of escaping:

from the point of call it makes no difference whether the called function is looping forever or

has jumped somewhere else. Hence, no new facility is needed to express terminating general

recursion.

The consequences of treating continuations as imperative functions may run deep. In principle,

a non-local control operator C is powem enough to express any function definable in our

type theory. However, in practice the translation may not be obvious and may generate hard

to read programs, especially when the general recursion is involved. CPS translation replaced

nonlocal control operations with their functional programming versions. In addressing the

objections to such a translation, namely that they generate hard to understand programs,

Murthy's work settles on replacing nonlocal control with imperative functions. Hence,

Murthy's work doesn't quite answer the objections that translations can render programs and

proofs unintelligible.

The double-negation/A-translation doesn't provide direct classical methods of proof for

translated sentences. The second-order definitions, on the other hand, encode operations

which are the building blocks for constructing computational proofs. Friedman's A-translation

tells only how to recover the proof of the original sentence after translation On the other

hand, by applying the "toplevel" analysis to the second-order encodings of logical

connectives, we can construct the computational content of proofs of classical sentences

directly.

This thesis offers a new and somewhat unconventional approach to type theory and to

understanding existing language constructs and concepts. This approach is as naturally

dictated by classical reasoning as the approach to Martin-Liif's intuitionistic type theories was

dictated by constructive reasoning.

1.6 Motivation

The double-negation translations, such as those of Godel and Kolmogorov, translate classical

formulas into intuitionistic formulas. The computational significance of this result was not

exploited until recently [Murthy90], as was mentioned in the previous section. Similarly, it is

well-known that second-order propositional logic encodes propositional connectives into their

intuitionistic semantics [Prawitz65]. Definition of the existential witness is also possible in

this logic. Even though implicit in this interpretation, its computational content has not been

investigated. It is exploited in this thesis.

Another well-known result is that all functions provably total in the second-order Peano

arithmetic, PA^, are representable in the system F [Girard70], a formal system of typed terms

that encodes the proof theory of second-order propositional logic. The power of system F

comes from the operation of abstraction on types. For example, if a predecessor function,

defined by the following equations

pred(0) = 0 pred(Sx) =x

(where S is a successor function) is programmed in F, the second equation will only be

satisfied when x is a numeral Z. This means that the program decomposes the argument x

completely to SSS ... SO (with n occurrences of S), then reconstructs it leaving out the last

symbol S [GLT89]. Of course we would like to remove the first S instead. This would not

change the result of computation and it would make it economical. If it were required that x

always evaluates to a numeral, the second equation would be satisfied by a computation that

subtracts 1 from its argument.

The universal abstraction makes the programs expressible in system F decompose their

arguments completely. We shall call such computations "by-valuen. This is characteristic of

primitive structural induction as contrasted with more general recursion schemas.

Computation "by values only" is a defect of the system F, a price paid for its power.

As another example let us consider factorial which is inductively defined by the following

equations:

fact(0) = 1, fact(Sx) = (Sx)*fact(x)

The program for this function in system F decomposes x to a numeral ii, then computes a new

integer by multiplying together a l l integers (where i = l ,..,n) obtained during the

reconstruction of ?i, except that it takes 1 as a factor instead of 0. If it were required that x

ahvays computes to a numeral, then the following definition would be equivalent to the given

above

fact(0) = 1, fact(x) = x* fact(x- 1)

For x+O, fact invokes itself at x - 1 and the result of this invocation is multiplied by x. If we

assume a language with a recursion operator rec, then factorial can be expressed in that

language as a recursive functional closure (a recursive value from the function space):

rec fact = Xx.3 x=O then 1 eke x*fact(x-1)

However, the recursion operator introduces a possibility of nontermination. Let us recall from

the section 1.3 that in continuation semantics [Starwad741 a term is evaluated in a context

which represents "the rest of the computation". In continuation semantics, a function of type

A+B can be seen as a continuation accepting a pair that consists of a value of type A and a

B-accepting continuation. Assuming that our hypothetical language has a pairing operation

(-,-), factorial can be defined as a recursive continuation as follows:

rec fact = h(xtc).if x=O then c t 1 efse f a c t t (x - 1 , ~ ') where c' = Xk.ct(x*k)

where the left mow " c t r " designates that the result r is sent to continuation c. This notation

is introduced to distinguish the accepting of a value by a continuation from a function

application. If x =0, factorial immediately sends a result to continuation c which will carry on

when the computation of factorial is completed. When x#O, factorial invokes itself at x- 1

with a freshly created continuation c' which multiplies the result it receives by x before

passing it on to c. If the computation of factorial is the result of the entire computation, then c

in the above definition is the initial (or top-level) continuation defined by Xy.y. The only

(non-trivial) continuation left is c' which is generated by fact when a subcomputation occurs.

A continuation accepting a pair of an argument value and a continuation is called a context-

typed continuation, as such a pair is the context of a function application [Fil89]. In the above

definition of factorial, we have used k-abstraction to designate the context-typed continuation.

A context-typed continuation is in fact the (continuation) semantics of a function typed

expression. We would like to distinguish between top-level (or empty) context-typed

continuation, which is the application context of the entire computation, and non-toplevel

(local) context-typed continuations, generated when subcomputations occur. The reason for

such a distinction is that we want to prevent a classical subcomputation from being accessible

for escaping, as such an escape may result in a non-type-correct program (cf section 1.3). Our

work will demonstrate that in a classical setting, an expression of a functional type

corresponds to a value of a function space only when it is "outside" of any recursion. In order

to construct a classical type theory, we must (temporarily) abandon the h-calculus

amalgamation of functions and values and distinguish sharply between these two different

syntactical classes. The syntactical abstraction notation

x. e

will be used for the expression obtained from e by symbolizing its empty holes (requests for

data) with the variable x. The only purpose of the prefix "x." is to show what variable is used

as the placeholder. The difference between k-abstraction kx.e and the abstraction x.e is that

the former denotes a function space object while the latter describes a function as an

expression with holes in it. In other words, a h-abstraction denotes a value of functional type

while a syntactical abstraction is used to designate a fundamental notion of a function. This

conceptual distinction will allow us to reserve the h-notation for expressions denoting entire

programs or program modules (i.e., computations accessible for escaping) and use the

syntactical abstraction to express subcomputation.

So, assuming a primitive recursion operator natrec, the factorial can be defined by

hn E Nat.natrec(n, 1 ,(x,y).x*y)

the operator natrec being applied to the variable n of type natural numbers, the number 1, and

the syntactical abstraction (x,y).x*y. The last expression is a local context-typed continuation

generated by (the definition of) factorial. The result or nonlocal continuation is assumed here

to be empty, i.e., the factorial is the result of the entire computation. The expression

(x,y).x*y multiplies the subresult it receives in y by an number stored in the hole designated

by x.

In order that the expression natrec(en, 1 ,(x,y).x*y) evaluates to a number, its first argument,

the expression en, must also be computable to a number. The operational interpretation of the

operator natrec is given by a purely mechanical procedure of finding its value when it is

applied to all arguments. This procedure is as follows:

if the value of n is 0 then the value of natrec(n,b,e) is the value of b;

if the value of n is k # 0 then the value of natrec(n,b,e) is the value of

e(k- 1 ,natrec(k- l,b,e)).

We want to distinguish types whose values cannot contain unevaluated computations. We

want to derive a system of typed terms and reduction rules. such that the reduction process

always terminates in an explicit data value. Since we are not restricted to intuitionistic logic,

the programs will represent those classical proofs of sentences which provide evidence in a

constructive sense [Constable85]. The class of such sentences will be determined by the types

of programs which will be derived. We shall see that the computed values are not only

integers but include all other usual data types used in computer science, like lists of values,

pairs and sums of values, trees, etc. The notion of a value is extended to functions that when

given a value, return a value.

1.7 Overview of the Thesis

This thesis consists of seven Chapters. Chapter 2 formalizes the operational content of

deduction. The rules of such a formalization constitute an inference system, the Calculus of

Impredicative Derivations (COID), for second-order propositional logic. COID is essentially

Girard's system F [Girard70]. The propositions of COID represent the algorithmic content of

data types. Chapter 3 introduces a distinction between data types and "types" in

Computational Type Theory (CTT), i.e., between explicit values and continuations. The

dependent function type (n-type) is introduced into CTT in order to formalize classical types.

In Chapter 4, classical predicate logic is interpreted in CTT. The types of existential witness,

disjunction, conjunction, and the lack of existential witness are introduced to CTT. These

types formalize the operational semantics of the logical connectives at the top-level of proofs.

In Chapter 5, CTT is extended to the type theories with booleans, natural numbers, and binary

trees. The control operators and program schemas associated with these theories are

introduced. Most importantly, CTT extended with the natural number type, i.e., CTT+Nat

formalizes the operational interpretation of arithmetical sentences. Chapter 6 contains

examples of computable functions on natural numbers expressed in CTT+Nat. finally, in

Chapter 7 we present conclusions, comparison with other work, and directions for future

research.

CHAPTER 2

CALCULUS OF IMPREDICATIVE DERIVATIONS

Many methods have been proposed for investigating the consistency of logical and

mathematical theories. All these methods belong to mathematical logic. Their major

characteristic is that they are formalistic methods (calculi), i.e., they abstract from the meaning

of words or symbols. The essence of formalism is that logical validity does not depend on the

interpretation of the symbols but on the laws of their combination. However, the

understanding and the scope of formalization is different in different methods. Frege, Russell

and Whitehead retain in their logistic methods the usual meanings of all logical symbols.

Hilbert, in his metamathematics, takes a more formalistic point of view by considering all the

symbols of the deductive system under study as meaningless. Thus, Hilbert treats formulas

with strict formalism but the methods of inference and deduction are interpreted. Gentzen, in

his formal systems of natural deduction, separated two roles of the symbol of implication: its

role in deductions (usually symbolized by ' + ') and its role as a component symbol of a

formula to be proved (symbolized by ' 3 '). While the former role of implication is treated

informally by Hilbert (i.e., it is interpreted), Gentzen introduced a new formal symbol for the

role of implication in deductions. He extended the formalism to deduction The premises and

conclusions of inference rules in Gentzen's systems are not formulas but formal deductions.

The aim of Hilbert's method is to study provability in the formal system, while Gentzen

attempts to define the notion of proof by isolating the essential deductive operations. In

particular, under Gentzen's interpretation A 3 B means that there exists a uniform procedure

for transforming proofs of A to proofs of B.

Gentzen's formal system corresponds closely to the "intuitive meanings" of logical constants

but is not in complete agreement. According to the "intuitive explanation", A 2 B is

not in complete agreement. According to the "intuitive explanation", A 3 B is interpreted as

asserting the existence of a construction by which any given proof of A can be transformed to a

proof of B. This is weaker than Gentzen's derivation of B from A as a hypothesis

(where H is a set of formulas) which is just a special case of such a construction. For

example, let N be a one-place predicate constant (for the property of being natural number)

defined by the rules

NO

where 0 is an individual constant (denoting zero) and ' is a 1-place operational constant

(denoting the successor function). Although valid derivations of A(0) and of

vx(A(x) 3 A(x')) guarantee the existence of a derivation of Nt 3 A(t), valid for every

numeral t, there may be no uniformly valid derivation of Na 3 A(a), where a is a parameter,

as required by Gentzen's interpretation of implication. The same holds for universal

quantification. For example, consider mathematical induction: although valid derivations of

A(0) and of vx(A(x) 3 A(x')) guarantee the existence of a derivation of A (t), valid for every

numeral t, there may be no uniformly valid derivation of A(a), where a is a parameter, as

required by Gentzen's interpretation of universal quantification:

This is an indication that the essential constructive deductive operations have not been

isolated.

By "marking" proofs and hypotheses in Gentzen's natural deduction systems, one can exhibit

the reason for which a formula is true, namely in the form of a X-term. For example, the

reason for the truth of the formula A 3 A is represented by the X-tern hx:A.x. The calculus

that JUSTIFIES the truth of formulas consists of expressions of the from

M I- t:A

where A is a formula, t is a X-term and M is a list of marked hypotheses

xl :A 1 , x2 :A *, . . . , X, :A, [Coquand88]. According to the analogy between formulas in

natural deduction systems and types in a functional calculus [CunyFeys58, Howard801, one

29

can demonstrate the consistency of the inference

If A t- A then t- A::>A (ld)

by showing that the tenn AX:A.x is strongly nonnalizable. Explicit consideration of the

justification of a fonnula leads to a more refined study of the notion of truth modulo

hypotheses [Coquand88]. For example, the decidability of such a notion of truth reduces to

the nonnalization of A-tenns.

Our ultimate goal is to develop a computational logic - a calculus for reasoning about totally

correct programs. A program will correspond to a constructive proof (of its specification) that

computes evidence in a constructive sense [Constable85] for the specification. A program will

be a functional tenn that codes a deductive method used in the proof. Thus, to develop

computational logic it is not sufficient to justify fonnulas, but one has also to code deduction.

What follows is the introduction of a system which defines the operational content of

deduction, Le., that defines the methods used in the operations perfonned to convince oneself

of the truth modulo hypotheses. All variables (including propositional variables) in such a

system will be bound and will have types. The tenns that code the deduction methods are the

tenns of the second-order A-calculus (or equivalently, tenns of Girard's system F [Girard72]

or Reynold's polymorphicA-calculus[Reynolds84]).The type languagefor polymorphicA-

calculus is a second-order propositional logic. Thus, the tenns justifying the truth of second-

order fonnulas fonnalize the deduction methods. Among the methods defined by the tenns of

polymorphic A-calculusare the methods used in the operations perfonned to justify the truth

of propositional quantifications themselves. This means that the "universal abstractions", Le.,

the tenns of the polymorphic A-calculus,are impredicativite.

2.1 Assumption of Logical Completeness

A system that codes deductionconstitutesa calculusof fonnally constructedproofs. In a

systemwhereproofsor derivationsare fonnallyconstructed,a fonnula is trueonly whenit is

provable,Le.,the systemis intuitionistic.Hence,to build a systemof fonnally constructed

derivationsis to identifytruthwith provability(Le.,to defineconstructivetruth). The notion

of constructivetruth is fonnalizedby translatinginto functionaltenns the operationsthat one

perfonns to convince oneself of the validity of the assumptionof logical completeness,

namely that every true proposition is logically provable. In this way, one obtains a system

with a purely syntactical notion of truth, i.e., where the types of derivations are identified with

true formulas.

Let us call the system of justification of derivations the Calculus of Impredicative Derivations

(COID). We shall justify this name shortly. The calculus COID is essentially Girard's system

F [Girard70]. We use a different name, however, as we give an intuitive interpretation to

derivations in F.

If the term prop is a constant of the calculus and ' I- ' is a formal symbol (a mark) of

intuitionistic deduction, then the expression

I- Prop (0)

means that prop is a type of propositions. This interpretation is extraneous to the presentation

of the formal system being constructed. However, it guides one in achieving the ultimate

goal, which is the formal construction of proofs. From the point of view of the formal system,

the expression (0) is a construction of an empty context. A context is a sequence of bindings

of propositional and proof variables. Contexts are constructive versions of assumptions.

To justify the assumption of logical completeness, first the validity of an assumption of truth

of a proposition has to be justified. Let the symbol ':' designate the typing of a variable, i.e.,

"marking" a variable with its type. Then, if x is a propositional variable, the expression

'x:prop' designates a (free) variable of type prop. Let the symbol '[-:-I' designate a

universal quantifier. Then the expression '[x:prop]' designates the "binding" of a variable x.'

The assumption of truth of a proposition is justified by a binding of a propositional variable in

the context:

[x:prop] I- prop (context?

The values of a variable x:prop are formulas of COID. From the point of view of a formal

I. A variable is free if the value of a proposition depends on it; otherwise it is bound.

system, the expression (context') is a construction of the context [x:prop].

The justification of the assumption of provability of a proposition is expressed by the

following rule in COID:

[x:prop] I- prop
[x:prop] [y :XI t- prop

(context")

We represent a proof of a true proposition x by introducing a bound variable y with a type x.

The expression "[x:prop] [y : x] I- prop" asserts logical completeness.

If the Greek letters r , A denote finite juxtapositions of bindings of variables, then the

following rule is the generalization of the rule (context")

r [x :prop]A t- prop (context 1)
r[x:prop] A [y : X I I- prop

2.2 Impredicative Quantification

In this section the assumption of logical completeness will be internalized as an object of type

prop. The expression "[x:prop][y:x] I- prop" asserts that y is a proof of a proposition x.

We can infer from it that x is a proposition:

The derivation (Var9) generalizes to an introduction of a bound variable of type M, where M is

prop or M is of type prop:

r [x : M] A t- prop
T [x : M] A I- x: M War)

The expression [x:prop] [y :x] I- x:prop is a derivation of a proposition. We can internalize

this construction as an object of type prop. Let '=>' be a sign of constructive conditional.

Then the following inference rule introduces a constructive impticarion:

[x:prop][y:x] I- x: prop
[x:prop] I- x+x: prop

If M:prop, then the above rule generalizes as follows

r I- M:prop, r I- N:prop
r I- M a N : prop

The following is the formation rule for second-order constructive universal quantifications:

r[x:prop] I- N: prop
r t- [x:prop]N: prop

(Univ)

The expression N:prop above may have free occurrences of the variable x.

The justification of the assumption of provability of a proposition M:prop is expressed by the

following rule:

r I- M:prop
T[x:M] I- prop

Let the symbol 'A' designate constructive inference. The following rule introduces

constructive derivations:

(Abstr)

If M is of type prop in (Abstr), then [x:M] N reduces to the implication M-N.

An argument by constructive inference is represented by juxtaposition of the expression for

the inference and the expression for its premise. In other words, the expression representing

the argument is an application in second-order A-calculus:

r I- P: [x:M]N, r I- Q: M
r t- PQ: N[Qlx]

N[Qlx] denotes the expression obtained by substituting Q for the variable x in N. This

operation is formally definable [deBmijn72]. We shall also write N(Q) instead of N[Qlx].

Let 'red' denote the relation between an application of a constructive inference to an argument

and the value which is constructively derived from that argument. This relation corresponds

to &reduction in second-order A-calculus:

T[x:M] I- P: N, r I- Q: M
r I- (Ax:M.P)Q red P[Q/x]

2.3 Examples of Basic Types

Constructions of atomic propositions represent the usual data structures @ooleans, integers,

lists, trees, etc.). Since all terns of COID are functional objects, there is no distinction

between data structure and control structure (e.g., booleans implement conditionals, integers

implement loops, etc.).

For example, the quantification

id 3 [x:prop]x*x

where '=' denoted definitional equality, constitutes the formalization of the concept of

'identity'. There is only one canonical (i.e., irreducible) object of type id:

self i hx:prop.Xe:x.e

Another formal construction

boo1 [x:prop] x+ (xax)

expresses a concept of a 'boolean'. There are two canonical objects of boo1

true = hx:prop. ht:x.hf :x.t

false I hx:prop. ht:x.k f :x. f

which implement conditional.

The following is the type of polymorphic iterators

nut s [x:prop] (x*x) *x*x

whose objects are encodings of numbers.

The following quantification

tree = [x:prop] (x=x*x) *X*X

represents the logical hction of disjunctive conditional. An example of a proof of the

proposition tree, which constitutes the presentations of the instances of the concept

'binary tree', is a construction of an empty m:
null = hx:prop.hb:x*-x.hn:x.n

2.4 Impredicative Definitions of Provable Propositions

The calculus COID, defined in the previous sections, does not introduce constructions of

predicates and relations. In this calculus, predicates (and relations) are represented by

constructive, not computational, implications. For example, let '+' be a symbol of

implication, then the system can be extended with the following formation rule for types of

predicates on natural numbers:

[x:nat] + prop
I- nat+prop

(Natqredicate)

If the Greek letters r, A denote finite juxtapositions of constructions of bound variables, and

letters M, N denote constructive predicates, relations, etc., then we can generalize the rules

(Natqredicate) and (context"), respectively, to the following:

r[x:M] t- prop

(predicate)

The language for the operations in the system containing rules (predicate) and (context3) is

an extension of second-order h-calculus to a higher-order h-calculus with dependent types

[Coquand85, CoqHu861. The dependent types add extra logical information about terms

which may be useless for computation. For example, the following expression represents

mathematical induction:

NAT r [P:nat+prop][[m:nat] Pm*P(succ m)] *Pzero*[n:nat] Pn

where

zero = hx:prop.hs:x=sx.hz:x.z

succ a Xn:nat. Xx:prop. hs:x=sx. hz:x.nxsz

There is no term of type NAT because the objects of type nat+prop are not computational.

For the purpose of the development of programs, the system without the rules (predicate) and

(context3) is sufficient. It constitutes the first step in the process of defining a computational

logic, i.e., a calculus for constructing correct programs. In this first step, the basic types are

introduced. They constitute the basis for the second step in the process which is to extend the

second-order h-calculus with only such logical content as is useful for computation (in

contrast with [Coquand85]). Such an extension is equivalent to the introduction of

computational definitions of logical constants. We should note that the second-order h-

calculus can express all programs representing functions provably total in second-order Peano

arithmetic, but it is not a language of correct programs since its terns lack the logical part that

assures the correctness.

2.5 Convertibility

With the notion of &reduction, 'red', is associated the notion of convertibility 'conv'. What

follows are the rules of inference representing reflexivity, symmetry, transitivity and

substitutivity of the convertibility relation:

Reflexivity.

r I- prop
r t- prop conv prop

r t- M:N
r I- M conv M

Symmetry.

r t- M conv N
r I- N conv M

Transitivity.

r I- M conv N r I- N conv P
r t- M conv P

(Trans)

rl- P 1 c o n v P 2 r [x :P l] t- M1convM2
(SubCond) r t- [x:Pl]Ml conv [x:P2]M2

Substitution -in-abstraction.

r t- P1 conv P2 r[x:P1] t- M1 conv M2 r[x:P1] t- M1: N
(Sub Abs) r I- hx:P1 .M1 conv hx:P2.M2

r I - M I N l : P r + M 1 c o n v M 2 r + N 1 c o n v N 2
r t- MINl conv M2N2 (Sub App)

The rule (B) has the following rule of conversion as its counterpart:

r[x:M] t- P: N, r I- Q: M
r I- (kx:M.P) Q conv P[Qlx]

The relation of convertibility is used in a crucial way in the argument of the fonn:

If a is an instance of the expression A and A conv B, then a is also an instance of B

We shall add this argument as the following conversion rule:

2. The argument is a version of Martin-Li5f s principle of "equality of ": if a is an object of type A
and A a debitionally equal to type 8, then a is an object of type B [%n-~f72].

CHAPTER 3

COMPUTATIONAL TYPE THEORY

DEPENDENT FUNCTION TYPE

The derivations in the system F constitute the formalizations of the operational content of

deduction. The propositions provable in the system F have their proofs identijed with their

algorithmic content, i.e, with the deduction methods provided by the propositional

quantifications. These deduction methods correspond to the operational interpretation of data

types. Such an interpretation is in agreement with intuitionistic semantics of data types but it

is equally applicable to classical logic. This means that proofs of the universal propositional

quantifications represent the results of classical programs. Hence, the second-order lambda-

calculus or system F provide a basis for the connection between logic and computation

without constraining the specification logic of computation to be intuitionistic.

The proofs of impredicative universal quantifications are functions defined for arbitrary types,

i.e., they are universal abstractions [Girard89]. A function of universal type must be

"uniform", i.e., do the same thing on all types. Such uniform functions operate without any

information about their arguments. Hence, function and data are ident@ed. Since all data are

functions in the system F, the distinction between computation rules isn't so clear as it is in a

language that has constants of basic types. In the system F the algorithms are coded in terms

of the data type objects. For example, the natural iteration is confused with natural numbers.

The ambiguity of the meaning of the second-order universal quantification is known to be

algorithmically consistent.' Its negative side is that coded algorithms are different from the

original ones.

We will introduce classical type theories with a clear distinction between different

computation rules. In these theories, data types will be distinguished from control structures

in order to allow the introduction of actual programs. The separation of control structures

from data types will be accomplished by forgetting the internal structure of the normal

(irreducible) derivations in system F. In this way, the atomic types will be obtained.

However, before introducing specific basic types (like integers, lists, trees, etc.), or more

precisely, the type theories associated with them, logic has to be formalized. In Chapter 4,

classical predicate logic is interpreted in a total-correctness type theory. We call this theory a

Computational Type Theory or CTT for short. We will introduce in CTT the classical

conjunction and disjunction types, the existential witness type (operational content of

existential quantification), and the lack of existential witness type or classical absurdity type.

These types will express the operational interpretation of logical connectives. The

interpretation of the universal quantification is obtained as simple extension by allowing free

atomic variables. However, in order to formalize the operational interpretation of logical

connectives, the introduction of a dependent function type is necessary. It will be introduced in

this chapter.

Type theory CTT is similar to a declarative programming language with the classical

absurdity type for abandoning the normal evaluation and resuming computation in the context

of an entire program. We will demonstrate that this kind of "escape" is admissible in a total-

correctness framework. All programs expressible in CTT extended to a theory of natural

numbers (i.e., CTT+Nat) and other inductive data types are correct and terminate. We will

demonstrate that the programs expressible in CTT+Nat are terminating, general recursive

programs. But a theory with CTT logic is more than just a programming language with

1. The proof of &ong normalization of the second-order X-calculus is due to [Girard70].

clearly defined operational semantics. Since all the computation rules expressible in CTT will

be logically justified, it is possible to develop in it provable correct programs. Thus,

CTT+Nat, for instance, should not be compared with a programming language but with a

formalized programming logic.

The symbol prop in the system F played the role of a type of propositions. The constant data

will be the corresponding type of data types in CTT. Then, there is a judgement in CTT that

data is a type:

data type

The judgement "A E data" is rendered in words "A is a data-type". The constant data is a set

of all data-types of computer science. By a data-type we mean a type whose values (but not

expressions) do not contain any unevaluated computations, i.e., its values are explicit.

Expressions of such types can be always computed to explicit values. More precisely, values

are integers, booleans, trees, lists, etc. An integer expression, for instance, even if it contains

an unevaluated computations, can always be "computed out" to a numeral. The notion of a

value is extended to pairs of values, injections of values, and functions from values to values.

We will call simple data types (like booleans, identity, etc) and inductive data types (like

integers, trees, lists, etc.) ground types to distinguish them from structured data types (binary

product, binary sum, existential wirness type, functional type).

3.1 Prawitz+ Encoding

The following propositional quantification formalizes the condition for existential results over

A to be witnessed by explicit solutions without restricting the logic to be intuitionistic:

(Exists A) I [C:prop](A*C)=sC

The proposition schema (Exists A) encodes the operational interpretation of any data type A.

Its objects encode implicit values of type A since in order to prove (Exists A), we have to

possess a closed term of type A. For example, if nut is the type of natural numbers in the

system F

nat = [x:prop] (x+x) 3 x * x

then (Exists mt) is the type of implicit integers. That is, to prove the proposition

(Exists nat), we have to have a closed term of type nut. Such a term reduces to a numeral

AX:prop.lz:X. hs:X*X.s(s(s ... (sz) ...))

with n occurrences of s.

This encoding can be extended to structured types (i.e., pairs, sums). The following

proposition schemas encode the operational interpretation of conjunction and disjunction:

P & Q = [C:prop](P*Q*C)*C

P or Q .I [C:prop](P=>C)*(Q=sC)*C

The proofs of P & Q and PorQ encode implicit binary pairs and binary injections, respectively.

Similarly, the following proposition schema is an example of an inductive type schema, a list

of objects of type A:

(List A) = [C:prop](A*C*C) *C*C

The second-order definitions of data types and data type schemas are the types of implicit

values. We shall refer to the second-order definitions of the propositional connectives,

extended with the definitions of the existential witness and with inductive type schemas as

"Prawitz+ encoding".

3.2 Data-Types vs. Types, Values vs. Continuations

The propositional schemas (Exists A), (P or Q), and (P & Q) define the proof methods

provided by existential witness, disjunction, and conjunction, respectively. Such pmof

methods are simple, abstract operations: "recover the same," "recover either of two," "recover

both." These simple operations are the building blocks for formalizing the full notion of a

classically-founded computation. When combined with the operational semantics of ground

objects, simple operations will produce new complex abstract operations. For instance, by

combining disjunction with the inductive definition of natural numbers, the natural iteration

will be introduced in Chapter 5. Similarly, by combining abstract recursion operator

expressed by conjunction with the intuitionistic interpretation of natural numbers, the

primitive recursion operator and the terminating, general recursion operator will be defined in

Chapter 5. The recursion operators associated with the inductive types of binary tnxs and lists

will be also introduced. We will refer to such constructs as abstract, mechanical operations.

The recursion operators will be implemented by the totally-correct, classically-founded

program schema. We will show that total, recursive functions correspond to classical proofs

of the sentences belonging to class ll$. We will demonstrate that the notion of a total.

mechanical operation corresponds to the notion of a total, recursive function.

As we mentioned before, all data, including pairs and injections, are functions in system F.

As a consequence, there is no clear distinction between different logical connectives as well as

between different computation rules. CTT will separate pairs and injections from the

algorithmic content of conjunction and disjunction, respectively. This algorithmic content

corresponds to the operational semantics of the logical connectives at the top-level of proofs.

By toglevel contexts of proofs, we mean those that expect atomic types, a disjunction of

atomic types, or a conjunction of atomic types. Similarly, CTT will separate atomic data from

their operational interpretation, i.e., from control structures.

To formalize the separation of data from their operational interpretation, CTT distinguishes

between data-types, i.e., members of data, and what we shall call "types". Data-types are

types of requests for explicit ground data. "Types" are the types of structured data value-

expecting continuations. A data value-expecting continuation is the context of an entire

computation. We will refer to such continuations as the "toplevel" continuations. If A is a

data-type, then

a € A

expresses in CTT that

a is a request for a datum of a ground type A

If A is a "type", on the other hand, then

a € A

expresses that

a is a request for a structured data value of type A

In other words, the objects of CTT represent "top-level" continuations of structured types and

requests for ground data. A top-level continuation of a structured type, and most importantly,

of the type of the existential quantification 3 x E A.P(x) expresses a program for computing a

witness a E A. Hence, the distinction between "types" and data-types is the distinction

between programs and "plain" data.

The judgement "A type" is rendered in words A is a set. Not just any set can be a "type" but

only a "completely presented set", i.e., a set whose members cany the necessary "witnessing

data" by means of the mechanical operation of their membership [Beeson80]. In other words,

a "type" is what is meant by "type" in the intuitionistic type theories (e.g., Martin-Liif s type

theories) except that the meaning of the "mechanical operation" is different. In intuitionistic

type theories, a mechanical operation is identified with a function. Hence, a function is an

intensional function. i.e., the function given together with a description or a rule. In contrast,

we will make a clear distinction between functions ("functional graphs") and operations (i.e.,

toplevel continuations).

The semantics of proofs in intuitionistic type theories can be summarized by the slogan

proofs as programs

This identification of proofs and programs dictates that the programs use only local reasoning

(i.e., they are purely functional) and that the classical laws cannot be used in the proofs. Since

the paradigm "proofs as functions" is clearly deficient, we propose a different paradigm,

namely

proofs as reqlresrs for programs

As we stated above, the judgement a E A, where A is a "type" A, expresses that a is a request

for a data value of a structured type A. If "type" A is thought of as a proposition, then the

judgement a E A expresses that

a is a request for a proof of the proposition A

A request for a proof is represented by an object of a constructive system. Hence, only when a

proof provides a wimess, that wimess is the computational content of the proof. Such an

interpretation of propositions is applicable to classical logic since the concepts of proof and

witness (program) are not identified. Hence, by adopting the "propositions-as-types"

paradigm (known as Curry-Howard correspondence) but interpreting propositions

operationally, we can extend the Curry-Howard interpretation of computation to include

nonlocal programming constructs and classical laws. As a consequence, we can reason about

programs using such constructs in a totally-correct manner.

Since the top-level continuations are defined in a constructive system, they are presented by

constructive objects. Yet, such a treatment of the toplevel continuations does not imply that

the underlying logic of computation is intuitionistic. Unlike expressions which may not

denote values because they escape, every syntactic continuation also denotes a semantic

continuation. However. only first-order continuations can be presented in a constructive

system without loosing the applicability to classical logic. The reason is that a context-typed

continuation (cf. Introduction) is the operational semantics of a function typed expression.

Hence, allowing the construction of higher-order continuations would be equivalent to treating

functions as first-class objects, i.e., allowing values of functional types. Thus, if the setting is

consuuctive, functions would also be constructive. CTT doesn't need to introduce higher-

order constructive functions since the toplevel operational interpretation of disjunction,

conjunction, and existential quantification is formalized by the first-order constructions.

The operational semantics of the underlying language of Computational Type Theory is

defined by a set of reduction or evaluation rules. Each type has terms of two categories:

canonical and noncanonical. In CTT the canonical (irreducible) objects of a "type" represent

implicit values, i.e., the top-level continuations of structured types. If propositions are

interpreted as types, the implicit values correspond to requests for proofs. A request for a

proof of a proposition P is formalized in a constructive system, namely in CTT. Hence, if the

request is satisfied, i.e., a proof is constructed, that proof is a program (a witness) of type P.

This thesis will demonstrate that the computational extracts of the proofs that provide the

evidence for propositions in a constructive sense represent total recursive functions. The

noncanonical terms in CTT represent the operational content of the top-level contexts of

structured types, i.e., they express the implicit mechanical operations. When CTT is extended

to a particular, first-order theory the canonical terms become explicit values like integers,

trees, lists, pairs of integers, injections of integers, total functions from integers to integers,

etc. The noncanonical terms become the actual programs.

Disambiguating the Prawitz+ encoding is a three-step process. First, the types referred to as

the single existential witness, the left- and the right-disjunct, and the left- and the right-

conjunct will be introduced. Those types provide the building blocks for formalizing full

operational semantics of the existential quantification, disjunction, and conjunction. Next,

these building blocks are used to define the classical types of conjunction, disjunction, and

existential quantification. Finally, in the third step, the classically-founded control structures

and program schemas will be introduced and some programming examples will be shown.

3.3 Dependent Function Type

To formalize classical types in CTT, a dependent function type is necessary. The following

hypothetical judgement is used to introduce the dependent function types:

B(x) type [x E A1

This judgement means that for an arbitrary object a of data type A, B(a) is a type. Let 'll' be

the dependent function type constructor. The following is a formation rule for dependent

function types:

A E data, B(x) type [x E A]
n x E A.B(X) typel

The typing of a ll-type as "type 1 " instead of "type" prevents the construction of higher-order

functional tens . The possibility of constructing higher-order functions would have identified

the notion of a mechanical operation with an intensional function and, hence, restricted the

interpreted logic to be intuitionistic.

If B doesn't depend on A, then l lx E A. B (x) reduces to A B with "B type" or B E data. An

object of a dependent function type represents a function whose values are implicit. The

objects of a n-type are introduced by the rule:

(ll-intro)

The expression a x E A.b(x) is filly evaluated in ClT. More precisely, an expression is

"fully" or "completely" evaluated in ClT when it is in canonical form and all its binding-free

intermediate subtems are fully evaluated. Hence, b (x) in Ax E A.b(x) is not to be evaluated

since doing so would have been like trying to execute a program which expects an input but

the input data is not provided.

The noncanonical constant for the IT-type is the application represented by the juxtaposition

of an object of a l l x E A. B(x)-type and an object of A:

The evaluation rule associated with the IT-type is defined by the following one-step (j l)

reduction rule:

b (x) E B(x) [X E A], a E A
(a x E A. b (x)) a + 1 b [a l x]

CHAPTER 4

CLASSICAL LOGIC AS A TYPE THEORY

Our goal is to find type theories based on classical logic that can be viewed as total correctness

specification logics, much like c o m c t i v e type theories (e.g., HA, Martin-L6fs type

theories). When classical systems are viewed as type theories, not every proof normalizes to a

tern of the type suggested by the propositions-as-types correspondence. Some proofs do not

compute evidence, i.e., they "escape" in an incorrect manner (cfhtroduction). We are looking

for classical types (formulas) whose terms (proofs) do not escape within the deep of the

expression to the top level. Such escapes mean either type emrs (resulting from reliance on

classical negation) or nontermination. As a consequence, either the program is not correct with

respect to its specification or it contains infmite recursion. Yet, certain applications of the

classical laws are correct and compute evidence. We will isolate such applications.

To carry out this task, we use the second-order propositional logic to express the encoding of

classical logic into intuitionistic logic. Other techniques for embedding classical logic into

intuitionistic logic include the double-negation translations of Godel [Giidel65] and

Kolmogorov [Kolmogorov67] (c f . Introduction). As we already pointed out in the

Introduction, there is a fundamental difference between the double-negation translation of

classical sentences and the second-order encoding of the logical connectives. The double-

negation translations don't distinguish between sentences formed from different logical

constants. They are all translated in the same manner, i.e., simply double-negated. On the

other hand, the operational interpretation depends on a logical connective that forms a

sentence. In other words, the operational interpretation discussed in this thesis provides a

structured analysis of the classically-founded computation

In the second-order logic, the correctness of proofs of conjunction, disjunction, and existential

quantification is assured by "coding" or "programming" their intuitionistic semantics (cf.

Introduction). The "programmed" intuitionistic interpretation encodes the operational use of

(i.e., a proof method provided by) conjunctive, disjunctive, and existentially quantified

propositions. For instance, a conjunction PAQ is a method for proving any proposition A,

provided one has a proof that A follows from P and Q. This operational interpretation of the

logical constants is in agreement with their intuitionistic semantics but it is equally applicable

to both classical and intuitionistic logic. The second-order encoding of logical connectives is

a continuation-passing-style (CPS) translation applied only to the data-type terms. In other

words, only the computationally relevant part of a proof is being analyzed. The universality of

the second-order abstractions for the "programmed" logical connectives encodes a condition

that the proofs of formulas formed by the connectives are reducible to cut-free forms in all

contexts. The computational counterpart of this condition would be that the corresponding

programs are totally correct in all contexts. We cannot hope to arrive at a semantics of

evidence for classical proofs in arbitmy contexts. But what we really want is to assure that

the elimination of the applications of the cut rule preserves the constructive evidence at the

top-level of proofs. Similarly for programs, reduction should preserve typing exactly at the

top-level of a program. By the toplevel of a proof we mean a context consisting of axioms

and/or hypotheses whose proofs provide evidence in a constructive sense. Similarly, a top-

level context of a program is either empty (a counterpart of axioms) or it is a data value-

expecting. Proofs of axioms are collapsed to a unit type which cannot be computationally

analyzed.

In this chapter, we will formalize the operational interpretation of existential witness,

conjunction, and disjunction in a manner that preserves evidence at the top-level of proofs.

The top-level analysis of a proof depends on the structure of the formula to be proved. First,

the types specifying the components of the structured contexts in which programs always

evaluate to pairs of values, injections of values, and ground values are introduced into CTT.

Second, these types are used as building blocks in formalizing the full operational semantics

of logical connectives. In this chapter we will also intmduce into CTT the classical absurdity

type and a nonlocal control operator of that type to obtain a classical programming logic. We

will show that CTT expresses the operational interpretation of lT; sentences. We will prove

the smng normalization of CTT.

4.1 Single Existential Witness Type

The quantifier "3" can be interpreted in the second-order predicate logic [Prawitz65] as

follows:

Sig(R,Q) = W~X.(WX:R.Q(X) 3 X) 3 X.

But the operational interpretation of a witness of the existential quantification can be

formalized in the second-order propositional logic, namely by the quantification

(Exists P) = [C:prop](P*C) *C. (El

The quantification (Exists P) encodes the condition for the existential results to be wimessed

by explicit solutions. The explicit solutions to existential formulas imply that all application

of the cut rule can be eliminated from their proofs. When we have a cut-free proof of " +A,"

then the last rule applied in the deduction must be a logical rule (vs. structural rule in sequent

calculus). This has immediate consequences, e.g., if A is 3 y B, then B(t) has been proved for

some t, and similarly for the other logical connectives [Girard89]. In other words, a cut-free

proof of a formula provides the evidence for that formula in a constructive sense. Thus, a

normal proof of the quantification (Exists P) encodes the constructive meaning of the

existential quantification even when the logic includes the classical rules for negation and

disjunction.

The definition of the existential witness in F is based on the elimination rule (3E) for the

existential quantification rather than on its introduction rule (3 I) presented in Chapter 1. That

is, the proposition schema (E) encodes the elimination rule of the existential wimess.

Existential quantification is interpreted as stating the perfomability of celtain operation

instead of asserting the existence of a value for which certain property holds. The

interpretation of the existential witness based on the elimination rule is in agreement with the

intuitionistic semantics but it is equally applicable to classical logic. This is the operational

interpretation of the existential quantification.

The following deduction in system F represents the introduction rule for (Exists P):

[P:prop] [x:P] I- AC:prop.Xu:P*C. (u x) (Wit)

We note that if P represents a data type then the formula (Exists P) is a continuation-passing-

style (CPS) translation of that type [Mur&hy90]. The implication P a C is the type of a

continuation-representing function u of a program that evaluates to type P in any context C.

However, we cannot anive at a semantics of evidence in arbitrary contexts. Hence, instead of

an hitrary context, we would like to explicitly specify that there is a meaningful

continuation. We can accomplish this by making u return a data-typed result, since an

evaluated computation does not contain control side-effects. This also means that as a

function, u will always return.

Since CTT distinguishes between data-types and types (like n-type), we can express in it the

requirement that the type variable C in (Exists P) ranges over (non-empty) data-types. A

continuation-representing function u: P*C that always returns with an arbitrary data-typed

result, is represented in CTT as an inference rule that ignores its premise. Such a rule contains

no information. Only when the type of the result of u becomes a specific data-type, does the

corresponding rule carry information We cannot yet, however, make C specific since (E) is

not a proposition, but a proposition schema - a macro of the meta-language expanding into a

proposition. This means that C and P are expressed on different levels of notation: P is

introduced on the meta-level while C is expressed in the object language (i.e., in the second-

order A-calculus). First, we need to internalize in CTT the proposition schema (E) before C

can be made specific.

The context (i.e., the sequence of bindings on the left-hand side of the deduction sign) of the

deduction (Wit) describes what is needed to prove the proposition (Exists P), namely a

witness to which the proof of the existential quantification evaluated. The proposition schema

(Wit) is represented in the formalism of CTT as a type schema specifying the kind of context

in which proofs of existential quantification always reduce to cut-free forms. We will refer to

such a context as a "toplevel context" since it is a context in which a proof reducible to a cut-

free form concluded. Computationally, such a context corresponds to the context of an entire

computation. A cut-free proof concluded in a toplevel context is a "toplevel proof'. In other

words, a top-level context is the operational interpretation of a top-level proof. This

operational analysis of the toplevel proofs is canied out in this thesis.

Let the data type Id be a "unit" type which has a unique value a. The following are the

formation and the introduction rules for Id in CTT:

Id E data (Id-jonn)

The data type Id formalizes in CTT the notion of "classical" evidence, i.e., of "classical"

constructive truth. It can represent any proposition whose proofs provide evidence in the data

value-expecting contexts. Let A be a CTT variable corresponding to P and a E A be a

witness. Let 'C*' be the symbol of the type schema in question The following rules

intemalize the schema (Wit) into the formalism of CTT:

A E data, a € A

C* type

CE data, CE C
[CICE C* (~ d , a)

C E data, ~ E C * (A , ~)
splitc (d) E C

C E data, C E C
splitc([cIc) + 1 c

The z*-type schema only internalizes the fonn of a context in which proofs of the existential

quantification are always reducible to cut-free forms, namely it tells us that this context is

expecting a data-type object. It does not intemalize, however, the witness of the existential

quantification. It only says that when a proof of a sentence provides a witness, then in any

data type-expecting context, that sentence can be represented by the type Id. Hence. the

notions of proof and evidence are not identified, making the C*-type schema applicable to

classical logic.

The object [c] ~ represents an implicit value of an arbitrary data-type C. The evaluation of

~ p l i t ~ ([c] ~) to c represents an arbitrary computation which recovers an arbitrary value c to

which a program evaluated.

Under the operational interpretation provided by the second-order encodings of the logical

connectives, the type of the toplevel context of a proof depends on the structure of the

formula we are proving. In the case of the existential quantification, the construction of the

toplevel, operational interpretation of the existential wimess is composed of value-tagged

constructions, each handling one of the witnesses. Thus, a type has to be introduced that

formalizes this basic component of the toplevel interpretation of existential wimess. We will

call this type a single existential witness type. It corresponds to the propositional universal

quantification (Exists P) being instantiated to P. The following rules define a single

existential witness type in CTT:

A E data. a E A
W , a) type

The type C(A,a) is tagged with a data value a, a wimess of 3 x E A.P(x), to assure that the

last rule applied in the proof of 3 x E A.P(x) is the introduction (3 I) which has an immediate

consequence that P(a) was proved. Yet, such a definition of the existential witness type is

applicable to classical logic since the concepts of proof and wimess are not identified. Rather,

only when a proof provides a wimess, that wimess is the computational content of the proof.

The type C(A,a) expresses the construction of the computational content of the toplevel cut-

free proofs of the existential quantification for the single wimess a. The type C(A,a) is

necessary to start off the construction of the operational interpretation of classical proofs.

The canonical object [a] of type C(A,a) represents an implicit value of data-type A. For

instance, if A is the type of natural numbers Nut, [0] is an implicit integer from which the

explicit value 0 is simply "read off'. The evaluation of split([O]) to 0 represents an empty

computation which simply movers the same value to which a program evaluated. The

reduction rule for Ctype expresses the primitive operation of identity, i.e., of "recovering the

same".

4.2 Left- and Right-Disjunct Types

The impredicative construction of the operational interpretation of disjunction is as follows:

P or Q = [C:prop](P*C)*(Q*C)*C (or)

This definition of disjunction is based on the elimination rule O/E) rather than on the

introduction rules OJI) for disjunction introduced in Chapter 1. That is, disjunction is

interpreted as stating the performability of certain operations instead of asserting the existence

of certain constructions. The latter is the usual way a disjunction and other logical constants

are interpreted. The interpretation of disjunction based on the elimination rule is in agreement

with its intuitionistic semantics but it is equally applicable to classical logic. It constitutes a

method for infemng certain formulas, namely the proposition P V Q is a method of proving

any proposition C provided one has either a proof that C follows from P or a proof that C

follows from Q . This is the operational interpretation of disjunction. The following

deductions of the system F introduce disjunction:

[P:prop] [Q:prop] [x :P] t- AC:prop.Xu:P*C.Xv:Q*C.(u x) : (P or Q) (In0

[P:prop] [Q:prop] [y : Q] I- AC:prop. hu:P*C. hv:Q*C.(v y) : (P or Q) (Inr)

The type schema (P or Q) encodes the method of construction of cut-free proofs of

disjunction from cut-free proofs of P and Q'.

We note that if P and Q represent data types then the formula (P or Q) is a CPS-translation of

a binary sum of P and Q. The implications P*C and Q-C are the types of continuation-

representing functions u and v of a program that evaluates to either a p of type P or a q of type

Q in any context C. Both u and v return results of the sume type. This means that either of the

parts of the program computing the two disjuncts will return to the same place of call,

provided that at least one part returns. The universal quantification in the formula (or) assures

that such a program is type-correct and terminates. Such a program corresponds to a proof

that provides evidence in a constructive sense for a disjunctive formula.

As in the case of the existential witness, we will restrict the context C in the definition of

disjunction to be a data value-expecting. We will skip the case of disjunction schema, where

the context is an arbitrary non-empty data type. This case would have corresponded to, what

we may call, the arbitrary sum injections. Instead, we will restrict the context C to be either P

or Q and obtain two components of the toplevel interpretation of disjunction.

Since the type of the toplevel context of a proof depends on the structure of the formula being

proved, two types have to be introduced in CTT to deline disjunction. They formalize two

components of the toplevel interpretation of disjunction. Two tagged types are necessary to

handle each of the disjuncts, i.e., to specify whether the evidence of (P or Q) comes from the

evidence of the left disjunct P or the right disjunct Q. We will refer to these component types

as left- and right-disjunct types. These types on their own are not sufficient to express

disjunction. They will be used as building blocks in defining the full toplevel, operational

semantics of disjunction. Their introduction is necessary in order that disjunction type be

applicable to classical logic. More precisely, they prevent the general identification of proofs

of disjunction with sum injections. Rather, only when a proof of one of two disjuncts

1. When we have a cut-free proof of + AVB then the last rule applied in the deduction must be a
logical rule. This has immediate con uence, namely that A has-been proved or that B has been "4h proved, and that there is a tag telling us w ich hsjunct we were gemg evidence for.

provides a witness, the injection of that witness is the evidence for the proof. Hence, we need

a type tagged not only with a witness but also with the information what disjunct it is a

witness for.

Let '\IL' and 'VRS be the symbols of "left" and "right" disjunct types, respectively. Let A and

B be the data-type variables in CTT corresponding to P and Q. The following rules define the

components of the operational interpretation of disjunction type in CTT:

A ~ d a t a , B ~ d a t a , a f A
VL(A,B,a) type

A E data, B E data, b~ B
\ /R(A,B,~) type

The type VL(A,B,~) expresses the construction of a cut-free proof of the left disjunct in the

context of that disjunct. Such a construction assures that the last rule applied in a proof is the

left of the two intmductions in O/I) which has an immediate consequence that A has been

proved and that there is a tag telling us that it is the left disjunct we were getting evidence for.

Similarly, the type VR (A, B.6) expresses the construction of a cut-free proof of the right

disjunct in the context of that disjunct. The types VL (A ,B ,a) and V (A, B, b) provide the

building blocks for the construction of cut-free proofs of full disjunction. More precisely, one

has a toplevel cut-free proof of AVB constructed from cut-free proofs of either A or B, if

either

AVB * A
A

Z B B [Bl -
AVB B B

since the derivations nL and nR reduce to axioms A and B, respectively. Z A and ZB above

denote finite sequences of derivations of A and B, respectively. We note that in nL the proof

of A\/B from B may not be reducible to a cut-free form since the proof of B may not be cut-

free. Similarly, for the derivation n R . The types V (A ,B,a) and \IR (A,B, b) define the

components of a primitive, abstract operation expressed by disjunction of recovering either a

value of data-type A or a value of data-type B.

4.3 Left- and Right-Conjunct Types

The following second-order propositional quantification expresses the operational

interpretation of conjunction:

P & Q = [C:prop](P*(Q*C))*C (&)

This procedural interpretation of conjunction is in agreement with its intuitionistic semantics.

The proposition P A Q is a method of proving any proposition C provided one has a p m f

that C follows from P and Q. The proposition schema (P & Q) encodes the condition for

proofs of conjunction to be reducible to a cut-free form2.

The following deduction in the system F represents the introduction rule for conjunction:

[P:prop] [Q:prop] [x :P] [y : Q] + AC:prop.hh:P*Q*C.(h x y) : (P & Q) (Pair)

We note again that if P and Q qresent data types then the formula (P or Q) is a CPS-

vanslation of a binary product of P and Q. The implication P*Q*C is the type of a

continuation-representing function h of a program that evaluates to a pair of values of types P

and Q in any context C. The uniformity of second-order quantifications assures that such a

program does not contain control sideeffects (i.e., it is type-corn and terminates). Such a

program corresponds to a proof that provides evidence for a conjunctive formula in a

constructive sense. The program computes the pair sequentially. That is, first, it computes one

of the conjuncts in the initial context, and then it computes the other conjunct in the context of

the first computation. We can choose either the left or the right conjunct to be computed first.

This specifies the evaluation order for pairs, i.e., whether they are evaluated from left-to-right

or fmm right-to-left.

We want to define classical type of conjunction directly, not through second-order encoding.

We note that the continuation-representing function h:P*(Q*C) is higher-order, i.e., it

returns a function of type Q a C . In other words, the computation of type Q is not at the t o p

level of the program of type of conjunction of P and Q, and if it escapes, the program may not

be type correct. Thus, in order that a program for computing a value of type P in the context

of the computation of a value q of type Q always returns, the computation of q cannot escape.

To assure this, the type of the context of the computation of q has to be Q, that is, q represents

an evaluated computation. As a consequence, with each value of type Q there is associated a

value p of type P, assuming the evaluation from left-to-right. The same is true when the

right-to-left order of evaluation is assumed, where with each value of type P there is

2. When we have a cut-free proof of F AA B then the last rule applied in the deduction must be a
logical rule, and this has immediate consequence, namely that A has been proved and that B has been
proved.

associated a value of type Q.

The direct method of construction of cut-free proofs of conjunction (P or Q) requires that the

initial context is of data type P or of data type Q. This corresponds to instantiating the

propositional universal quantification in (P & Q) to either P or Q. When (P & Q) is

instanciated to P, then the continuation-representing function h:P*(Q=sP) ignores its

second argument and returns its first argument. Similarly, when (P & Q) is instanciated to Q,

then the continuation-representing function h:P*(Q*Q) ignores its first argument and

returns the second. This corresponds to introducing the first and the second projections of a

pair. In other words. the definition of conjunction is based here on the elimination rules (AE)

rather than on the introduction rule (AI) introduced in Chapter 1. Conjunction is interpreted as

stating the performability of certain operation instead of asserting the existence of a certain

construction.

As we have already pointed out, the type of the top-level context of a proof depends on the

structure of the formula we are proving. To internalize the schema (&) into the formalism of

CTT, two types have to be introduced which formalize two components of the top-level,

operational interpretation of conjunction. Two tagged types are necessary to handle each of

the conjuncts, i.e., to specify whether the top-level context of the proof of (P&Q) is that of the

left conjunct P or the right conjunct Q. We will refer to these component types as the lef- and

the right-conjunct types. These types specify the components of a structured context in which

proofs of conjunction always reduce to cut-free forms. As in the disjunctive case, the left- and

right-conjunct types will not be able to express conjunction directly but will be used

subsequently to do so in later sections of this chapter. The introduction of the left- and the

right-conjunct types is necessary to define a full classical conjunction type. The left- and the

right-conjunct types prevent the general identification of proofs of conjunction with pairs.

Such an identification restricts the underlying logic to be intuitionistic. Rather, only when

there are two proofs, obtained in a sequence, each providing a witness for one of the conjuncts,

a pair of these witnesses is the evidence for the proof. Whichever proof is the first in the

sequence, it has to retum to its initial context in order that the second witness can be

computed. Yet, in classical logic a proof can "escape" as the result of the application of the

rule of double-negation elimination. At this stage of construction of CTT, we can only

formalize the fact that either one of the two witnesses was obtained. Hence, we need a type

tagged not only with a witness but also with the information what conjunct it is a witness for.

Let A L and A R be the symbols of the "left" and the "right" conjunct types, respectively. The

subscripts specify whether the initial context is of a type of the left or of the right conjunct. If

the initial context is of a type of the left conjunct A (a type variable in CTT corresponding to

P), then the program for the second component of the pair can escape. Similarly, if the result

of h is of type of the right conjunct B (a type variable in CTT corresponding to Q), the

program for the first component of the pair may not be totally correct. In either case, on the

logical side. the proofs of conjunction may contain irreducible applications of the cut rule, i.e.,

they may not provide the evidence for conjunction in a constructive sense.

The following rules define the left- and right- conjunct types:

A E data. B E data. b~ B. a~ A

A E data, B E data, b E B, a E A
A R(A,B,a,b)

We recall that the one-element type Id can represent in CTT an arbitrary non-empty data-type.

The type I \ L (A ,Id,a, o) formalizes the introduction of the first witness for conjunction and

merely the existence of a witness for the second conjunct. In other words, the computation of

the second witness may escape. This means that the proof of the second conjunct may be by

contradiction, in which case it is not of type B. Similarly, the type /\ (Id,B, o,b) formalizes

the introduction of the second wimess and the existence of a wimess for the first conjunct. In

this case, the first wimess may not be of type A.

The A,- and AR-types formalize only the operations of "reading off' either the first or the

second component of a pair. The operation of "reading off' both values has not yet been

completely formalized. The type I\ L(A,Id,a,tr) is a "suspended type" in the value of the

second component. Similarly, the I \ R-type defines a pair that "is suspended" (lazy) in its first

component. This means, that a program returning just one component of a pair may delay the

evaluation of the other component. If this other component, say c, is never requested, the

entire program is still correct even when the evaluation of c would never terminate. One can

easily see that this reflects the technique used to obtain call-by-name behaviour in a call-by-

value language by delaying evaluation [Plotkin75].

The types A L and A R express the construction of two cut-free components of toplevel cut-

free proofs of conjunction. The left component is constructed in the context of the left

conjunct. Similarly, the right component is conmcted in the context of the right conjunct.

This assures that the last rule applied in a proof of conjunction contains the introduction of the

left or of the right conjunct which has an immediate consequence that either A has been proved

or that B has been proved, and that there is a tag telling us which conjunct we were getting

evidence for. The types A L (A, B , a , b) and I \ R (A, B , a , b) provide the building blocks for the

construction of cut-free proofs of full conjunction. More precisely, one has a toplevel (but

not necessarily yet cut-free) proof of A/\ B constructed from cut-free proofs of either A or B, if

either

AAB
A

AAB

since the derivations IIL and rI reduce to axioms A and B, respectively. As before, CA and

C B above denote finite sequences of derivations of A and B, respectively. We note that in the

derivations l l L the proof of AA B may not be reducible to a cut-free form since the proof of B

may not be cut-free. Similarly, for the derivation ll where the proof of A may not be cut-free.

4.4 Classical Types

In the previous section of this chapter, we have introduced the second-order encodings of the

methods of construction of cut-free proofs of conjunction, disjunction, and existential

quantification. These encodings constituted the CPS-uanslation of the binary sum, the binary

product, and the existential witness types. The second-order h-abstraction required that the

proofs of conjunction, disjunction, and existential quantification be reducible to a cut-free

form in an arbitrary context. As we pointed out before, we cannot hope to anive at a

semantics of evidence for classical proofs in such an arbitrary setting. We can only assure that

the applications of the cut rule preserve the constructive evidence at the toplevel of proofs. In

order to apply the toplevel evaluation strategy to the operational interpretation of the logical

connectives, we have invoduced in the previous section left- and right-conjunct types, left-

and rightdisjunct types, and single existential wimess type. These types specify the

components of the stmctured toplevel contexts in which proofs of formulas constructed of

these logical connectives always reduce to cut-free forms. They provide the building blocks

for program schemas implementing the full operational semantics of these connectives. In this

section we will use these building blocks to define classical disjunction, conjunction, and

existential witness types. These types will express the full operational interpretation of

classical connectives in a manner that preserves the constructive evidence at the toplevel of

proofs. The type universal quantification results as a simple extension of allowing free data-

typed variables in the interpretation of existential quantification.

We will also introduce the type for the double-negation elimination rule applied in an atomic

fonnula-expecting context. This is the classical absurdity type. We will show that the

computational content of the classical absurdity type is the abandoning a normal evaluation of

a program and resuming computation at a ground-value expecting context. We will introduce

a programming construct "resultis" for abandoning the current path of evaluation and

installing new final result of a program.

4.4.1 Disjunction Type

In this section we will introduce a type for classical disjunction in a manner that preserves the

constructive evidence at the toplevel of proofs. This new type will be constructed from the

left- and rightdisjunct types, each handling the top-level construction of one of the disjuncts.

Let "+" be the symbol of the type of disjunction. Its definition is as follows:

A+cB type

Disjunction type is the type of toplevel proofs of disjunction. The functions f and g in

(+-intro) represent the component parts of the top-level contexts for disjunction. These

functions are constructive (i.e., they are objects of constructive +-type) in order to assure that

the proofs of disjunction are reducible to cut-free fonns, i.e., that the witnesses of the left- and

the right-disjunct are quested in a data value-expecting context. The data type C plays the

role of this context. C is distributed over a pair of types, each handling one of the disjuncts.

The construction c f ,g > rep~sents a structured, toplevel context for disjunction. In other

words, CTT provides a structured framework for the toplevel contexts of classical programs.

In contrast, the treatment of the toplevel contexts for classical types in [Murthy90] is

powerful but unstructured. There, continuations are presented as "normal" functions while

CTT conceptually distinguishes between contexts (represented by constructive functions) and

classical functions.

From the point of view of proof theory, the type A +c B expresses the construction of cut-free

proofs of disjunction in the context C. As we pointed out before, the definition of disjunction

(and other logical connectives) in CTT is based on the elimination rather than on the

introduction rule of natural deduction. More precisely, one has a cut-free proof of AVB

constructed from cut-free proofs of A or B in the context of an atomic proposition C, if

[A1 [Bl
AVB C C

C

since nc reduces to a normal derivation [:I. The definition of +-type assures that the proofs

of A and B are reducible to a cut-free form since the subterms outl(fc) and outr(gc) have to

reduce to atomic objects a and b respectively. The proofs of A and B are implicit which is

expressed by the fact that the terms kc E C.outl(fc) and Xc E C.outr(gc) are N l y evaluated

in CTT.

When C is A in A +c B then the specialized type A +L B is obtained and is defined as follows:

A E data, B E data
A+LB type

From an operational point of view, the type A +L B internalizes the operations of duplicating a

data type A-expecting continuation and of requesting the normal result of a program of type B

which is evaluated in the context of type A. The first operation is represented by the term of

type n a E A.VL(A,B,a), the second is a term of type A+VR(A,B,b). Duplication of a

context implies preserving a state of computation that can be reset in case an escape occurs.

Hence, if the computation in B escapes it can resume at the preserved context of type A.

From a categorical point of view, a term of type A +LB yields an iterated function of type

A +B by mapping a continuation of type A either to itself or to a continuation of type B. If the

result is of type A, it can be applied again, etc., until it yields an object in B. This corresponds

to the categorical notion of iteration. In CTT which interprets pure predicate logic every term

represents a continuation There are no classical, i.e., explicit values in CTT. Categorical

iteration by itself doesn't yet compute any value. It is an abstract operation which can operate

on values (if they are provided) as well as on continuations. Here, iteration operates on

continuations. Nothing yet distinguishes consecutive iteration steps (i.e., reapplication of a

continuation of type A) except that during those reapplications classical reasoning is not

allowed. Hence, the context stays local (escape-free) until a context, in which a result is

requested in b, is reached. This context is the toplevel context of an entire computation.

Since operationally a local context corresponds to an unchanged context, the operation on a

local context is an identity. In CTT, nothing yet is known about computation. CTT provides

only a type-theoretic framework of the distinction between a toplevel and local continuation,

i.e., between a toplevel computation and a subcomputation. A toplevel computation yields

the result of an entire program. In general, a type-correct subcomputation cannot be

abandoned, that is, it is only based on local or constructive reasoning. A toplevel

computation, on the other hand, can be abandoned and an evaluation of a program can resume

at an existing, data value-expecting context. In other words, a computation may use non-local

or classically-founded reasoning at its top-level. The type A +L B delimits classical reasoning.

It formalizes a general schema for isolating the instances of correct applications of classical

laws. In CTT, the notion of computation is still in an embryonic stage. Yet, the introduction

of CTT is necessary to start off the introduction of actual, classical programs.

The type A +L B expresses the construction of cut-free proofs of disjunction in the context of

the first disjunct. Similarly, a type A +R B can be defined to express the construction of cut-

free proofs of disjunction in the context of the second disjunct. More precisely, one has a cut-

free proof of A\IB constructed from cut-free proofs of A or B in the context A, if

x [A1 [B l
AVB A A

since l l r reduces to a normal derivation [:I. Here, the proof of A in the context A is an

axiom.

4.4.2 Conjunction Type

In this section, we will formalize classical conjunction in a manner that preserves the

constructive evidence at the toplevel of proofs. This new type will be constructed from either

the left- or right-conjunct type. The definition of the conjunction type requires that the context

in which cut-free proofs of conjunction are being constructed is not an arbitrary non-empty

data type but the left or the right conjunct. This is the only way we can assure that if the cut-

free proof of the first (in sequence) conjunct is obtained, the proof of the second conjunct

doesn't escape. The delinition of conjunction type and its symbol depend on whether the

context in which cut-free proofs of conjunction are being constructed is the left or the right

conjunct. If the left conjunct is this initial context, then " x is the symbol of conjunction

type. The tag "LR" denotes the order of reduction from left-to-right for pairs of proofs. The

definition of x m-type is as follows:

A ~ d a t a . B ~ d a t a

Conjunction type is the type of the operational content of the toplevel, classical proofs of

conjunction The constructive function h in (xLR-imo) assures that the computation of a

witness of the right-conjunct B in a data value a-expecting context uses only local reasoning.

The construction x(h) represents a structured, top-level context of the classical conjunction

type.

From an operational point of view, the type A x LR B internalizes the operations of duplicating

a data value-expecting continuation represented by a and of requesting the normal result of a

program of type B which is evaluated in the context a. As we pointed out before, duplication

of a context implies preserving a state of computation that can be reset in case an escape

occurs. Hence, if the computation in B escapes it will resume at the preserved context a. The

operational difference between the type of conjunction and the type of disjunction A +L B is

that the latter allows the computation in B to resume evaluation in an arbitrary data value-

expecting context while the former allows it to resume only in the preserved context of its

normal evaluation.

From the categorical point of view, a term of type A x , B maps an object (a continuation) of

type A both to itself and to an object (a continuation) of type B. One seeks an operation

f E A+B defining only b in terms of a by mapping an object of type A to itself and to an

object of type B. The continuation of type A can be applied again, etc., until a continuation of

type B is reached. This defines a categorical repetition operation known as recursion. As in

the case of categorical iteration, categorical recursion by itself doesn't yet compute any value.

The difference between iteration defined in the section 4.4.1 and recursion is that the latter

preserves the context of type A when the result of type B is requested while the former doesn't

From the point of view of proof theory, the type A x LR B expresses the construction of cut-

free proofs of conjunction in the context of the first conjunct. More precisely, one has a cut-

free proof of At\ B constructed from cut-free proofs of A and B in the context A, if

A B
AAB

since nA reduces to axiom A. The definition of xLR-type assures that the proofs of B axe cut-

free since the subterm snd(ha) has to reduce to a data value b. The proofs of B are implicit

which is expressed by the fact that the term ha E A.snd(ha) is fully evaluated in CTT.

4.43 Existential Witness Type

In this section we will formalize the existential witness type in a manner that preserves the

constructive evidence at the top-level of proofs. This new type will be constructed from a

single existential witness type introduced in the section 4.1. Let '{ } * be the symbol of the

type in question. Its definition is as follows:

A E data, B E data
{A) B type

Existential witness type is the type of computational content of toplevel proofs of the

existential quantification. The constructive function h assures that the computation of a

witness a in a data type B-expecting context uses only local reasoning, i.e., that it is a normal

computation. This, in turn, assures that proofs of existential quantification axe reducible to

cut-free forms and the corresponding programs are totally-correct. The type B is distributed

over every construction, each handling one of the witnesses a E A. The construction p(h)

represents a structured, toplevel context for classical existential quantification.

{A} B is the type of the evidence of cut-free proofs of the existential quantification carried out

in the context of data type B. More precisely, one has a (computational content of) cut-free

proof of the existential quantification over A in an atomic context B, if

since lIe reduces to a normal derivation [As1. The definition of ()-type assures that the proofs

of existential quantification are reducible to cut-free fonns since the subtenn split(hb) has to

reduce to an atomic object a. An existential witness a of data-type A is implicit since the

expression hb E B.split(hb) is fuily evaluated in CTT.

4.4.4 Classical Absurdity Type

The following universal quantification expresses the operational content of a lack of an

existential witness:

(NExists A) = nC:prop. ((A=sEmpty)=sC) *C

where Empty = WX:prop.X. The implication AaEmpty is a type of a function that never

returns to a point of call, i.e., it escapes. The fact that a continuation-representing function of

type AaEmpty never returns to place of call implies that there is no meaningful continuation

(or context) in which a value of type A can be computed.

We want to assure that a program that escapes preserves its type. In order to assure that

escapes in a program of type A preserve typing, we must take A as the context of the program.

Hence, the type variable C in (NExists A) has to be instanciated to A. The resulting type is

the type of call/cc which was shown to be the algorithmic content of double-negation

elimination rule (the classical absurdity rule) [GrifPO]:

If C in (NExists A) were instanciated to some other data type than A, this would have left

open the possibility for a program of type A to escape to a context in which it might have

computed a result of a different type from A. The logical counterpart of such a program is a

proof which uses the rule of absurdity elimination A kc B since it is the type of ahitrary

escapes. It is known that the sentences that do not contain applications of absurdity

elimination (are A-free) belong to the class lit.

The proposition (NExists A) is the type of a continuation of a program of type A that fails to

compute a value in any context. When instanciated to A, it is a type of a continuation of a

program of type A that abandons its normal evaluation and requests a new final result of type

A.

We will introduce in CTT a type expressing the toplevel, operational interpretation of the

constant for absurdity or falsehood. The absurdity type whose formation rule in CTT is as

follows:

V E data (V-fonn)

formalizes the notion of falsehood in CTT. It represents any proposition whose proofs do not

provide evidence in a constructive sense. Its operational interpretation, i.e., its elimination

rule, corresponds to abandoning a proof entirely in any context. Its top-level operational

interpretation corresponds to abandoning an entire derivation and resuming a proof at the t o p

level. This interpretation corresponds the compltational content of the double-negation

elimination rule applied in the context of an entire proof. The toplevel operational

interpretation of absurdity is characterized by a unique function Result&(a) E (A+ V) +A:

The rule (V'q - elim) represents the rule of absurdity elimination applied only at the toplevel

of proofs. The type (A+V) +A is the classical absurdity type. We note that the type

(A+V)+A does not have noncanonical terms, i.e., its terms occur only in normal forms.

Hence, it is an atomic or a data type in CTT, namely for any A E data, (A+V) +A E data.

The construct Resultis(a) formalizes abandoning the current path of evaluation in a program of

type A and returning a new final result requested in a E A. In order to assure classical type-

soundness, namely that reduction preserves typing, the classical absurdity has to preserve the

operational semantics of terms. This is expressed by the following one-step reduction rule

representing the operational interpretation of Resulfk:

A E data, a E A, f E ((A + V) -+A)+A (~'Op-re~,
f (Resultk(a)) + 1 a

The rules (Vtop-elim) and (Vtq-red) formalize the computational content of absurdity at the

toplevel of proofs. CTT with the rules for classical absurdity is a classical programming

logic. In other words, it interprets classical predicate logic as a totalcorrectness type theory.

A type-preserving escape in a program whose normal execution results in a value of type A, is

formalized as Resultis(a) E (A + V) +A.

We will introduce a programming construct resultis to implement Resultis, i.e., to implement

the operational interpretation of the classical absurdity type. The consmct Resultis is defined

on atomic objects "a" of CTT that represent continuations. The tern resultis, on the other

hand, is defined on (expressions that reduce to) constants "caw (e.g., numerals) that stand for

explicit data. If a resultis expression is ever evaluated, the value of its argument will become

the final result of the program. In a program p, whose normal execution results in a value of

type A, the type of the argument of any application of resultis in p has to be A as well. This is

required in order that p be well-typed.

As we have already mentioned in the Introduction, another way of interpreting classical proofs

as programs was introduced by Chetan Murthy in his thesis [Mu1thy90]. Murthy used the

double-negation/A-translation to extract program content of classical proofs. He proved that

the rule of double-negation elimination is the proof-theoretic form of the (nonlocal conuol)

operator C. The difference between the operator C (a relative of Scheme's call/cc) and resultis

lies in semantical complexity. Let us recall the type of the operator C:

((A -+ B) +A) +A

There are two key features of C: the duplication of the continuation at the point where cWcc

is called (which can be a subexpression of a program) and discarding of the current

continuation. The construct resultis doesn't have the duplication aspect since we always

restart with the initial continuation. That is, resultis always returns its argument as a final

result of a program. Its introduction is necessary to start things off. First, we have to define

classical program fragments whose execution can be abandoned without destroying well-

typeness. Only having defined the correct programming schema, the scope of resultis can be

limited so it can specify the result of a subexpression and not necessarily the whole program.

This will introduce a language with a block structure. The delimited version of resultis could

be obtain with two constructs:

block b is e

resultof b is e

Here b is a continuation of a block (a "label"). The expression in a block is evaluated

normally. However, inside that expression we can use the construct "resultof b is e" to

abandon execution of the block expression and return alternate result. That is, after we

encounter a resultof, we want to reactivate the continuation of the block. But first, we have to

know how such a block expression is formed without destroying the well-typeness of the

program, which is an endevour taken by the thesis.

4.5 Classical Logic as Specification Logic

Let us summarize the preceding sections of this chapter. We rn only concerned with the

computationally relevant parts of classical proofs. We already know that conjunction,

disjunction, existential wimess, and lack of existential witness are definable in the

intuitionistic second-order propositional logic. Since absurdity is also definable by the

second-order propositional quantification, there is no distinction between minimal and

intuitionistic second-order logic. These second-order definitions encode operational semantics

of conjunction, disjunction, and existential quantification, which is in agmment with their

intuitionistic interpretation but equally applicable to classical logic. CTT results from the

toplevel analysis of the second-order end ings of logical connectives. It is a formalization

of the top-level operational interpretation of classical logic. It formalizes (the computational

extracts of) those classical proofs that provide evidence for formulas in a constructive sense.

Friedman A-translation establishes the following pmvability result (cf Introduction):

if r kI Q, then rA kI aA
where x A is A-translation of X and I--[denotes provability in intuitionistic logic. As we

have seen in the previous section, the toplevel operational interpretation of absurdity is

definable in CTT and corresponds to A-translation of double-negation elimination rule. A-

translation is safely applicable only to formulas that do not contain applications of the

absurdity elimination rule. This implies that only the proofs of formulas that do not contain

applications of absurdity elimination rule are representable in CTT. Such formulas belong to

class c:. Below, we will show that CTT expresses the operational interpretation of C:

sentences:

Theorem 1 (CTT Interpretation of I$ Sentences) If we have a proof kc $, where kc

denotes provability in classical logic, and $ is Cy, and if we have a decision procedure for

propositional sentences, then we can express the operational interpretation of the proof of $ in

CTT.

Proof: Every C: sentence can be written in the form $ = 3 y E B.P(y), where P is a

computable predicate and B is a data type. There are two possible cases, depending on

whether a proof of $ is direct or by a counter-example. If a proof is direct, then the operational

interpretation of a classical proof of $ is represented in CTT by a term T of type {AJB.

According to ({ }-intro), the term T is definitionally equal to p(h), where h E B+C(A,a).

According to ({ J-red), the following one step reduction is the operational content of the

construct p (h):

(~ (h)) ~ I kx E B.split(hx)

where kx E B.split(hx) E B+A. Provided b E B that has property P, the type {A)*

requires that (kx E B.split(hx)) b evaluates to a.

If a proof of $ is by a counter-example, then the top-level operational interpretation of a

classical proof of $ is represented in CTT by a term T of type {A} (A+v)+A. According to

({ J-intro), T is definitionally equal to p(h) where h E ((A+V)+A) +C(A,a). According

to (f }-red),

(~ (h)) ~ + 1 hg E (A+V)+A .split(hg)

where hg E (A+V) +A.split(hg) E ((A+V) +V) +A. The type {A) (A+v)+A

formalizes the case when b rz B does not have the property P and requires that

(kg E (A+V) +A.split(hg)) Resultis(a,) reduces to a new value a, E A.

The similar theorem can be stated for the nf sentences and it is as a corollary of the previous

theorem, where free variables on atomic types are allowed:

Corollary 1 (CTT Interpretation of ll? Sentences) If we have a proof g, where

denotes provability in classical logic, and + is n!, and if we have a decision procedure for

propositional sentences, then we can express the operational interpretation of the proof of 4 in

CTT.

For the systems, where the type symbols and the terms are generated separately from each

other (e.g., Gael's theory T, Girard's system F), the method used in the proof of smng

normalization consists of two stages. First, the abstract notion of reducibility or of

reducibility candidate is defined by induction on the construction of a type symbol, and,

second, the reducibility of a term is proved by induction on its construction. More precisely,

the strong normalization proof for simply typed h-calculus (which easily extends to smng

normalization proof for Godel's theory T of primitive recursive functionals of finite types)

uses the method of reducibility due to [Tait67]. Reducibility is an abstract notion used to

formulate a strong induction hypothesis to make the proof work. A method to prove smng

normalization of an impredicative system uses even more abstract notion, reducibility

candidate, which is an extension of Tait's method. This proof was discovered by Girard

[Girard70] to prove strong normalization of system F. In CTT, however, the definition of the

notion of reducibility and the proof that an ahitrary term is reducible can no longer be

separated because the type symbols and the terms are generated simultaneously. If a term t

converts (reduces in one step) to t', then t is called the redex and t * the contractum. The types

in CTT are defined in such a way that the contractum of the redex of a particular type is a part

of the formation of that type. Moreover, such redeces are always objects of atomic types

whose normalization is immediate. In other words, CTT is constructed in such a way that its

terms are reducible to normal forms by their definitions. The strong normalization theorem for

CTT is stated and proved as follows:

Theorem 2 (Strong Normalization of CTT) Every derivation in CTT reduces to a unique

normal form.

Proof: Each of C, A i, and \Ii (where i =L,R) is tagged with an atomic object(s) to which its

noncanonical objects reduce in one-step of reduction. That is, the normalization and

uniqueness of terms of those types are parts of their definitions. In particular, the term

split([a]) is strongly normalizable since it converts to an atomic object a. There is no other

possibility: split([u]) cannot convert to split([u']) with u' one step from u since there are no

introduction, elimination, or reduction rules for data types in CTT. For the similar reasons,

the only possible conversions for redeces of left- and rightconjunct types and left- and right-

disjunct types are as follows:

fst(ca,n>) + l a

snd(< ~ , b >) + 1 b

outl(inl(a)) + 1 a

outr(inr(b)) + 1 b

The types { }, +i, and x i, (where i, j= L, R and i+ j] are formed of the particular instances of

IT-type in such a way that the antecedent is always a data type, say D, and consequent is

always one of the C. Vi, or A i types, respectively. Except the type of classical absurdity, these

are the only instances of a IT-type used in CTT derivations. A noncanonical term t of any of

the types formed from { }, +i, and x i, is reducible in one-step of reduction to an

abstraction(s) t ' such that t ' is one of the following:

1. An identity hx E D.x.

2. A term hx E D.OUP(fx) or a term Ax E D.outl(gx), where f and g are variables of

types ITx E D.VR(D,A,a) and ITx E D.VL(A,D,a), respectively.

3. A term Ax E D.sll(l(gx) or a term Ax E D. fst(fx), where g and f are variables of types

IIx E D.AR(D,A,x ,a)andnx~ D.AL(A,D,a,x),respectively.

Terms fx and gx above in normal forms since they are not redeces: f and g are not of the

form hx E D.v. Similarly, terms outr(fx), outl(gx), snd(gx), and fst(fx) are in normal

forms since they are not redeces: fx is not of the form inr(u) or < u,at> and gx is not of the

form inl(v) or <#,v >. In other words, t' is in normal form. There are no other possibilities

since the term < f ,g >' (where i =O, 1) cannot convert to < f ',g >', with f ' one step from f (or

< f ,g'>', with g' one step from g). Such a conversion would have implied thatf, for instance,

is a redex of the from (hy E E.Rx E D.u)e with e a member of some data type E and

u E \lj(D,A,a) (where j= L,R). But there are no rules for constructing higher-order functional

terms (except the absurdity type) in CTT. For the similar reasons, the only possible

conversions for redeces of conjunction and existential witness types are those listed above.

The only other functional type used in CTT derivations whose normalization has to be shown,

is the classical absurdity type. We note that the type (D+ V) + D does not have noncanonical

terms, i.e., its terms occur only in normal forms. The terms of the antecedent are constant

functions Resultis(d), where d is a data value of type D. A redex t associated with the

classical absurdity type is of the type ((D+V) +D) +D. A term t is defined in such a way

that for any d E D, (t Resultis(d)) converts to d. There are no other possibilities, for

(t Resuftis(d)) cannot convert to (t' Resultis(d)). Such a conversion would have implied

that t = (Ry E E. u) e with e a member of some data type E and u E ((D + V) + D) +D.

However, there are no rules for constructing higher-order functional terms in CTT other than

the absurdity type itself.

CHAPTER 5

CLASSICAL THEORIES AS PROGRAMMING LOGICS

In Chapter 4, we have introduced the classical types of disjunction, conjunction, existential

quantification, and absurdity. These types constitute the purely logical part of any classical

type theory. In this chapter we will show how to extend CTT to a first-order theory. We will

extend C l T to first-order theories with natural numbers, booleans, and binary trees. CTT

extended to a first-order theory of natural numbers, ClT+Nat, for instance, is a programming

logic for classical arithmetic. It provides toplevel operational semantics of numerical

functions. CTT+Nat is a programming logic for Peano Arithmetic in the same manner as

Martin-Liif's type theories are programming logics for Heyting ~rithmetic' and other

constructive reasoning systems. In fact, CTT+Nat interprets Peano Arithmetic.

The purpose of this thesis is to find computations that can be safely abandoned and resumed in

a total-correctness, type-theoretic framework. In other words, we are looking for programs for

which resetting an existing context or "escaping at the toplevel" is type-correct. This "safety

check" is done in a total-correctness framewok provided by ClT. In fact, CTT formalizes a

classically-founded computation in an embryonic stage.

Before, we proceed further to derive concrete classical programming schemas, we need to

clarify the meaning given to the word 'escape' in this thesis. More precisely, in the thesis the

word 'escape' is used as a generic word for resetting an existing top-level context rather than

1. Constructive or Heytin Arithmetic (HA) [DT89] is essentially Peano Arithmetic (PA), without an
axiom of excluded m d e .

for abandoning a computation entirely. The latter is the usual meaning given to the word

'escape' in the literature on programming languages and continuation semantics. We want to

sharply distinguish our general meaning of the word 'escape' from the other commonly used

meaning. Also, in most of the work on continuations, a top-level context (i.e., the context of

an entire program) cannot be analyzed. In other words, it is assumed to be expecting always

an atomic value. This thesis demonstrates that a toplevel context can be structured. The most

refined, structured toplevel context is that of the existential wimess type since it is a context

of the most basic, entire computation. In this context, a program may either evaluate normally

or may abandon its normal evaluation and resume its computation at the existing, data value-

preserving context. We will refer to the resumed computation as an "escaped" computation.

An "escaped" computation is of the classical absurdity type introduced and it is implemented

by the resultis construct invoduced in Chapter 4. Hence, the top-level context of the

existential witness type has two components. One component represent the context of a

normal (i.e., local) evaluation of a program, the other represents an alternative toplevel

context which is the context of the "escaped computation. In other words, both contexts are

available but only one of them will be used. It is an exact analogue of the computer

instruction "IF ... THEN ... ELSE ..." where the parts "THEN ..." and "ELSE ..." are both

available but only one of them will be executed. In fact, we will demonstrate in this chapter

that conditional (a control s tructu~ associated with a two-element type) implements the

operational semantics of the classical disjunction type.

We emphasize that in this thesis a phrase "an escape at the toplevel of a program" means

continuing a computation by resuming in an existing, data value-expecting context. In other

words, a normal evaluation of a program is abandoned at its toplevel and the program

resumes its evaluation in the existing top-level context which is the context of an "escaped"

computation. In contrast, the commonly given meaning to this phrase in the literature is that a

computation is abandoned and concluded.

The type A +L B introduced in Chapter 4 formalizes a general schema for isolating the

instances of correct applications of classical laws. In this chapter we will introduce several

classically-founded, local control operators. By choosing a data-value expecting context A in

the type A +LA to be a particular ground type, classically-founded local control operators can

be defined. We will also define local control operators associated with types of identity,

booleans, natural numbers, and binary trees. Similarly, we will introduce classically-founded

recursion operators by specializing a data-value expecting context in classical conjunction type

A x B to natural number and binary tree types.

The recursion operators will be implemented by classical program schemas. We will define

totally-correct classical program schemas associated with natural numbers and binary trees.

These are primitive recursion computation schema, terminating general recursion computation

schema, and binary tree primitive recursion computation schema. We will identify ll$ as the

class of sentences of Peano Arithmetic (PA) whose classical proofs provide evidence in a

constructive sense, and we will show how to extend this result to other theories.

We will prove the m n g normalization of CTT+Nat. We will show CTT+Nat formalizes the

operational interpretation the arithmetical class ll$.

Constructive type systems identi& proofs of conjunction, disjunction and existential

quantification with algorithms computing pairs of values, injections of values, and ground

values, respectively. This identification dictates that one must verify that a (functional)

program terminates through type-checking, and hence many terminating functions may be

"missed". Checking termination is usually the hardest part of program verification and should

be distinguished from others. We will demonstrate that by separating proofs from programs, it

is possible to express in CTT+Nat all functions provably total in PA.

The system F identijies data objects with their operational interpretation. The price paid for

identifying data types with control structures is that there is no clear distinction between

different computation rules. In this chapter, we will separate data objects from control

structures for several classes of objects. Such a separation is accomplished by forgetting the

internal structure of a derivation of a data type in F and preserving only its intuitionistic

interpretation. In this way an atomic type is obtained. An extension of CTT with an atomic

type A and with the rules for reasoning about its objects corresponds to the operational

interpretation of a classical theory of objects of this type. Such an extension is a classical type

theory CTT+A. In this chapter, we will extend C l T to several type theories interpreting

classical, first-order theories of booleans, natural numbers, and binary trees.

The schemata for introducing basic types is as follows: let I- M: T be provable in the system

F and let a normal term M cornspond to a data object of a particular data-type T. Forgetting

the derivation of T and M in F is expressed by naming the constructions M and T. If ' ' is a

map from terns in the system F to strings, then let "ml'='M' and "t"='T'. Introducing

constants a and A to ClT+A, such that

a m "m"

A = "t"
yields a fundamental form of a judgement (a "naturally" correct mathematical assertion) in

CTT+A:

namely, that an object a is of type A. The epsilon (E) notation represents the relation between

an object and its type.

5.1 Identity

As we recall from Chapter 4, we have used the unit type Id to define toplevel operational

semantics of propositional connectives. We have used this atomic type to represent the truth

in ClT. In this section we will formalize the computational content of a theory associated

with the unit, i.e., we will introduce a control structure associated with the unit type. The

identity type has the following impredicative construction:

self = [X:prop][x:X]x : id

where

id = [X:prop]X=>X.

The data type "identity" can be distinguished from the algorithm associated with it by

forgetting its derivation in F:

Id n 'id'

8 = ' s e r

In Chapter 4, we have introduced the formation and the introduction rules for Id. A control

structure associated with the type Id is a construction of the computational content of a

classical axiom, i.e., of a cut-free proof of an arbitrary formula with that formula as

hypothesis. The proof can be direct or by contradiction. The control structure in question

yields a classical program that given a data value a it evaluates to a. Yet, the normal

evaluation of the program can be abandoned at its toplevel and the program will resume its

("escaped") computation in the existing, data value-expecting context. The abandoning the

normal computation at the toplevel corresponds to abandoning the request for its normal

result. In other words, if the identity program "escapes" it "escapes" always at the context of

its normal evaluation. As we have already pointed out in the beginning of this chapter, the

meaning given to the word 'escape' in this thesis is more general than the commonly used

meaning. By 'escaping' we mean resuming computation at the existing, data value-expecting

context.

We want to define a conmctive translation, i.e., the operational semantics of a classical

identity proof. In order that a request for a normal computation be safely abandoned in a

total-correctness framework, the toplevel context of the normal computation has to be

duplicated. Duplication of a context implies preserving a state of computation that can be

reset in case an escape occurs. We will refer to the preserved context as being accessible for

escqing. As we recall from Chapter 4, the specialized disjunction type B +LA formalizes the

notions of duplicating a context as well as of requesting the normal result of a program. Since

a classical identity proof corresponds to an arbitrary computation, we can represent its top

level context by an object of the unit type Id. The unit type interprets the truth in CTT, i.e., it

represents any nonempty classical type. Its unique object a can represent a toplevel context

of an aditrary computation. Hence, we can define the operational translation of classical

identity proof by choosing the type B in B +'A* to be Id. The resulting type, Id +A (we don't

need to the use the subscript L) will allow us to duplicate the toplevel context of an arbitrary

computation as well as request its normal result.

According to (+L-elim), the rule of type Id+A is defined from d E Id +A. By (+L -intro),

d = < f ,g > where

f E l l i E Id.VL(Id,A,i)

g E Id+VR (Id,A,a)

According to (+L -elirn), in order for the proofs of disjunction to be reducible to a cut-free

from, the following one-step reductions have to take place:

~ f , ~ > ' - 1 X i ~ 1 d . i ~

c f ,g >' + 1 Xi E Id.outr(gi)

When the assumption [i E Id] is discharged by taking i =at, two things happen: a is duplicated

and the following 1 -step reduction takes place

outr(g9t) a

Any value requested in a E A is computed normally. However, the duplication of a preserves

the context of a normal evaluation (i.e., a toplevel context) of an arbitrary program. In other

words, at is the name of the context in which any computation in a data value-expecting

context can resume evaluation after abandoning the request for the normal result. Thus, for

any data type A, we can represent a E A as being the request for normal result of a program

through a unique h E Id+ A, such that:

h9t a

We can introduce the following local control operator into CTT+ld:

A E data, a E A
{aJA E Id+A

The rule of identity is defined by the following rule of one-step reduction:

A E data, a E A

2. Equivalently, we could take A to be Id in B +RA.

In the system F all data are functions, i.e., (universal) X-abstractions. In CTT extended with a

data domain Id there is a distinction between a data type Id and a conml structure associated

with that type, namely the rule Id. In other words, in CTT extended with atomic types, the

notion of computation, which is obscured in the system F, becomes clearer and its top-level

context "accessible for escaping."

5.2 Booleans

In this section we formalize the computational content of a classical theory associated with the

"boolean" reasoning, i.e., we will introduce a control structure called the conditional. We will

give a predicative definition of conditional whose impredicative construction was the second-

order quantification bool:

boo1 .I [X:prop]X*X=>X

The data type "boolean" and the algorithm associated with it, i.e, a conditional, are separated

by forgetting its derivation in F:

Boolo 'bool'

true = T'
false sa 'F*

The following judgements are introduced in CTT+Bool, i.e., CTT extended to the theory of

booleans:

Bool E data (Bool-form)

true E Boo1 (Bool-introl)

false E Boo1 (Bool-intro2)

A control structure associated with the type Boo1 is a construction of either a cut-free proof of

one arbitrary formula with that formula being a hypothesis or a cut-free p m f of another

arbitrary formula, again with itself as hypothesis. Such a proof can be either direct or by

contradiction. It corresponds to a classical program that evaluates to either of two values v 1 or

v Yet, the normal evaluation of either v 1 or V * can be abandoned at their toplevels and the

evaluation can resume its computation in an existing, data valueexpecting context. This

context is either the toplevel context of the computation resulting in v, or the toplevel

context of the computation resulting in vz. In other words, we will construct a conditional

which may have non-local, type-correct jumps.

We want to define an operational interpretation of a classical conditional proof. To assure that

if the computation requested in a or b escapes it escapes always at the toplevel, we have to

preserve the context of the normal computation requested in a or the context of the normal

computation requested in b. Since a classical conditional proof corresponds to a sum of two

arbitrary computations, we can represent its top-level contexts by objects of type Bool. The

"boolean" type has two distinct, unique objects which can represent the toplevel contexts of

two disjoint arbitrary computations. We can define the operational interpretation of

conditional proof by taking the type B in B + L ~ 3 to be Bool as this type will allow us to

duplicate the top-level context as well as request a normal result of a program, whether the

result is a value requested in a or a value requested in b.

According to (+L-elim), the rule of type Bool-+A is defined from d E Bool +A. We know

thatd = <f ,g> where

f E nb E BOOZ.V~(BOOL,A,~)

g E Bool+VR(B~l,A,a)

According to (+L - elim), the following one-step reductions have to take place:

<f ,g>O +1 Lb E Boo1.b.

< f ,g >' Ab E Bool.outr(gb)

When the assumption [b E Bool] is discharged by taking b to be either true or false, two

things happen: b is duplicated and the following 1-step reductions take place

outr(g true) + 1 a 1

outr(gfalre) + I a2,

3. See footnote 2 in this chapter.

that is, a =a 1 for b = fake and a =a2 for b =true. When the normal evaluation of a program

results in a value requested in a E A, the duplication of its toplevel context "true" implies

that this context is preserved. That is, if the request a 1 for the normal result is abandoned, the

program will resume its evaluation at the context "true." Similarly, the duplication of the

context 'yalse" of a normal computation whose result is requested in a2 will allow to reset this

top-level context in case an escape occurs. In other words, there are two possible toplevel

computations but only one will be carried out. Correspondingly, there are two top-level

contexts available but only one will be used. Thus, for any data type A, we can represent

either a1 E A or a2 E A as requesting the final result of a program through a unique

h E Boo1 +A, such that :

h t r u e + l a1

h false + 1 a2

We introduce a new control operator [,] into CTT+Bool associated with "boolean"

reasoning:

(Cond)

We refer to the control operator [,] as conditional. In fact, the conditional implements the

top-level, operational interpretation of classical disjunction type. The conditional is defined

by the following one-step reductions:

A E data, a1 E A, a2 E A

A E data, a l E A , a2 E A

5.3 Natural Numbers

In this section we will introduce a type theory, CTT+Nat, that formalizes the computational

content of classical arithmetic. We will define a control structure associated with arithmetical

reasoning (natural iteration). We will inVoduce the primitive recursion operator and

terminating general recursion operator. All these constructions will be defined in a manner

applicable to classical reasoning. Finally, we will implement primitive and general recursion

operators by programming schemas with a clear and direct operational semantics. These

schemas will provide a top-level, operational semantics of numerical, primitive and general

recursive functions. We begin with the invoduction of natural numbers to CTT+Nat.

The second-order quantification

nut n [X:prop] (XaX) *X*X

is an impredicative construction of type of natural numbers. It confuses the data type of

natural numbers with iteration. We shall introduce the predicative construction of numbers:

Nat r 'nut'

We introduce the following rule of formation for natural numbers to CTT+Nat:

Nut E data (Nat-form)

The constants k, will be introduced in CTT extended with natural numbers to represent non-

negative integers n:

k, r 'AX:prop.kz:X.ks:X*X.s(s(s ...(sz) ...)) '

with n applications of s. The integer 0 = 'zero' is the only number equal to the constant ko

by definition.

The methods for defining totally-correct numerical functions are definitions by induction.

These definitions are based on an inductive definition of the class of natural numbers, i.e., on a

class of objects generated from one primitive object 0 by means of one primitive operation

"successor" or "+I". Such a definition of natural numbers is in agreement with their

intuitionistic semantics. We have to preserve this inductive interpretation of natural numbers

in order to formalize their operational interpretation. The successor function is represented in

F by the following construction:

succ 3 kn: [X:prop](X+X)+X+X. AY:prop. As: Y*Y. Az: Y.s(nYsz)

of type -nut. The term succ, the natural iterator, when applied to a (representation of)

natural number n, reduces to a universal abstraction representing the number n + 1. The

successor in CTT+Nat is the function constant S such that S(k,) - 'succ N', where N E nut

represents n in F. Since (succ N) red M, where M E nut represents the number n + 1 in F,

the constant S is defined in CTT+Nat by the following one-step reduction:

S (k n) - 1 k n + l (S- red)

5.3.1 Natural Iteration

A control structure associated with the type Nut is an abstract construction of a cut-free proof

of an arbitrary formula obtained after a finite number of steps of reduction The proof can be

direct or by contradiction. It corresponds to an arbitrary computation that evaluates to a data

value after some finite number n of steps of computation. Yet, the normal evaluation of the

program can be abandoned at its toplevel and the program will resume its computation in the

existing, data value-expecting context. Such an escape is well-typed if the toplevel context is

presewed.

We want to define an abstract, operational interpretation of a classical, arithmetical proof. We

want to allow an n-step computation to "escape" at a data value-expecting context of its

normal evaluation In other words, a request for the normal result of an n-step computation

can be abandoned and the program can resume its computation in the existing, data value-

expecting context. To accomplish this, we have to duplicate this top-level context so it can be

reset when an escape occurs. Since a classical proof of an arbitrary formula whose cut-free

form is reached in an n-step reduction corresponds to an arbitrary n-step computation, we can

represent its top-level context by an object n E Nut. The only distinction among arbitrary,

numerical computations is the number of evaluation steps needed to reach the toplevel of a

computation. We will construct the toplevel operational interpretation of an arithmetical

proof by taking the type B in B + L ~ 4 to be Nut. The resulting type Nut +A will allow us to

duplicate the toplevel context as well as request a normal result of a program obtained after a

finite number of computation steps.

According to (+L -elim), the rule of type Nat+A is delined from d E Nut +A. We know that

d = cf,g>where

f E n n E Nat.VL(Nar,A,n)

g E E Nat+VR(Nat,A,a)

According to (+L -elim), in order for the proofs of disjunction to be reducible to cut-free

froms, the following one-step reductions have to take place:

~ f , ~ > ' +1 X ~ E Nat.n

cf , g> l + I Xn E Nat.outr(gn)

When the assumption [n E Nar] is discharged by a natural number N, two things happen: N is

duplicated and the following N-step reduction takes place

om(gN) +N a

Every value requested in a E A, obtained after some finite number N of computation steps, is

computed normally. However, the duplication of the context N of the normal evaluation

implies that the context N is prese~ed. In other words, each N is the name of a top-level

context at which an arbitrary N-step evaluation may escape in a well-typed manner. Thus, for

any data type A, we can represent an a E A as being a request for a normal result of a finite

number of steps computation through a unique h E Nat+A such that :

hO + I ao, h(n + 1) +1 k(h(n)),

assuming the constant a0 E A and the function constant k E A+A. We shall introduce a new

local control operator I, the natural iterator, into CTT+Nat:

A E data, a0 E A, & E A+A

The natural iterator I is defined by the following rules of one-step reduction:

4. See footnote 2 in this chapter.

A E data, a0 E A, k~ A+A, n E Nut

A E data, a0 E A, k E A+A

The normal form of the term IAao km is reached in m steps of reduction, namely

IAaokm +, kk . kuo

with a finite number m of applications of k. The function constant k is a consuuctive function

since it formalizes the request for a normal (i.e., local) computation. In other words, k

represents the operational content of a part of an arbitrary arithmetical proof where classical

rules are disallowed. That is, we do not have access to the internal structure of k. Hence, the

contracturn kk - . . kao (with m applications of k) is the normal form of the redex IAao km.

The construction (IAaokn) is operationally equal to the following "for-loop":

z:= a. ; for i=O to n-1 do z:=kz.

5.3.2 Primitive Recursion Operator

A method for defining totally-correct number-theoretic functions corresponds to a construction

schema of a classical cut-free proof of an arbitrary formula obtained after a finite number of

steps of reduction. Such a proof corresponds to a classical program that evaluates to a data

value after some finite number n of steps of computation and such that if it abandons its

normal evaluation and resumes another, it does so always at the toplevel context. For such an

"escape" to be type-comct, the toplevel context has to be preserved. When the request for

the normal result is abandoned, the program will resume its evaluation at the preserved

context. The primitive recursion operator will preserve the toplevel context as a part of a

normal evaluation of a numerical program. In contrast, the duplication of a toplevel context

of numerical program in not formalized as a part of the definition of the natural iterator.

The methods for defining totally-correct numerical functions are definitions by induction (also

called recursive &jnitiom). These recursive definitions are based on an inductive definition

of the class of natural numbers, i.e., on a class of objects generated from one primitive object 0

by means of one primitive operation "+I1'. Such a definition of natural numbers is in

agreement with their intuitionistic semantics. In this section we will derive an elementary

inductive method of defining total numeric functions, i.e., primitive recursion. Primitive

recursion operator will be defined by combining product-based operator, i.e., recursion with

the intuitionistic interpretation of natural numbers.

We want to formalize in CTT+Nat the operational interpretation of an elementary classical

arithmetical proof method. We want to formalize as a part of a request for the normal result of

a numerical program the duplication of the context of its normal evaluation. We can

accomplish this by taking type B in B x to be Nat as this type will presewe a top-level

context of a numerical program as a part of its normal computation.

According to (x ,-elim), the rule of type Nat-+A is defined from d E Nat x A. We know

that d = ~ (h) where i

h E n n E Nat.A,(Nat,A,n,a)

According to the x , - elim, in order for the proofs of conjunction to be reducible to cut-free

froms, the following one-step reductions have to take place:

~ (h) ~ 4 1 hn E Nat.n

x(h) 1 + 1 hn E Nat. snd(hn)

When the assumption [n E Nut] is discharged by a natural number N, two things happen: N is

duplicated and made accessible to the normal evaluation process, and the following N-step

reduction takes place

snd(hn) +N a

Every value requested in a E A, obtained after some finite number N of computation steps, is

computed normally. A "copy" of a toplevel context N is preserved in conjunction with a

5. '@is is assumin left-to-right o@er of evaluation. Similarly, we could take A = Nat in B x RLA when
nght-to-left ev$[muaon strategy IS employed.

request for a normally computed value. Hence, the preserved context is internalized as a part

of a normal (i.e., local) computation. Thus, for any data type A, we can represent an a E A as

being a Rquest for a normal result of the entire n-step computation through a unique

evaluation rule k E Nat+A such that :

We will introduce a new local control operator R, the primitive recursion operator, into

CTT+Nat:

A E data, an E A, f E Nat+A+A

The operational semantics of primitive recursion operator R is defined by the following one-

step reduction rules:

A E data, a0 E A, f E Nat+A+A, n~ Nut
(Re-redl)

M a o f (n + 1) + 1 fn(Waofn)

The normal form of the term M a o fm is reached in m steps of reduction, namely

RAaofm +, fmf(m-1) - . . fOao

with a finite number m of applications of f . The function constant f E Nat+A+A is

constructive since it formalizes the processing of a request for a normal (i.e., escape-free)

computation. In other words, f formalizes the operational content of a part of arithmetical

proof where classical rules are disallowed. That is, Nat+A+A is treated as an atomic type.

The contractwn fmf(m - 1) . . fOao (with m applications of j) is the normal form of the

redex RAao fm.

(M a o fn) is operationally equal to the following "for-loop" in a programming language:

z:= a sub 0 ; for i=O to n-1 do z:=fli,z);

which, in contrast to iteration, makes an explicit use of an implicit value of i.

5.33 Primitive Recursive ~ o m ~ u i a t i o n Schema

A "classical" program that computes to a value of type A is of type the {A} c of the existential

witness over A. A value of type A can be just "read o f ' when a tern of the existential witness

over A is supplied with a concrete value c E C. In this section we will derive the primitive

recursive program schema.

In CTT+Nat, according to { } - intro, a canonical term d E {A} is defined as p (h) where

h E Nat+Z(A,a)

According to { } - red,

p(h)* + 1 hn E Nat.split(hn)

When the assumption [n E Nut] is discharged by a natural number n, the following n-step

reduction has to take place

split(hn) -+, a

Every value requested in a E A, obtained after some finite number n of computation steps, is

computed normally. Here. however, a toplevel context represented by n E Nat is not

preserved as a part attached to a purely local computation. That is, a toplevel continuation is

no longer treated as an "imperative" add-on to a declarative language as it was implied by the

definition of the primitive recursion operator R. It is treated as a central declarative concept,

not a parenthesis in the language definition. Correspondingly, an application of the classical

absurdity rule at the toplevel of a proof is not a classical add-on to (a parenthesis in) a

constructive system. Such an application has a direct constructive content. More precisely, the

type {A} requires that an n-step computation of a witness requested in a E A always

returns at its toplevel context after n steps of evaluation, provided that the toplevel context

represented by n is not preserved. In order that an n-step computation, whose toplevel

context is not preserved, is based only on the local reasoning, the computation requested in n

itsercannot escape. The only way to assure that, is to require that a computation requested in

n E Nat evaluates to an integer since an evaluated computation does not escape. Hence, we

will require that terms representing toplevel contexts of numerical programs are integer terms,

i.e., t m s computable to numerals k i (i=0,1,2, ...). We will introduce a special notation nD for

integer terms. Then, a computation requested in a E A whose normal evaluation context is

represented by n can be expressed as a top-level, recursive context-typed continuation (cf

Introduction). Such a continuation is the operational interpretation of a function that

componds to an entire, totally-correct program. The following data-valued expression

representing the toplevel application context of a numerical function is introduced into

CTT+Nat to implement R:

~ t r e c (n ~ ; a ~ ; i ~ , ~ . f(iD,y)) (natrec)

where i,y. f (i,y) is the notation for syntactical abstraction introduced in Chapter 1. If a0 is an

integer expression, then natrec itself becomes an integer expression.

A value of a function space is known as a functional closure. Yet, in order to formalize a

classical, total-comcmess type theory, we' had to abandon the general amalgamation of

functions and values. In continuation semantics, a context-typed continuation is the

operational semantics of any value of a function space (cf Introduction), whether it denotes a

total function or not. On the other hand, a top-level, recursive context-typed continuation

provides the operational interpretation of the classically-founded, totally-correct programs. It

uses the separation of functions and values to distinguish between the local and the toplevel

contexts. A local, context-typed continuation is expressed by a syntactical abstraction (i.e., an

expression with holes in it) which represents only local reasoning. In other words, a local,

context-typed continuation is represented by a fundamental notion of a function. A local,

context-typed continuation by itself doesn't yet denote a functional value. An integer term nD

in natrec is the name of the top-level (non-local) context of an entire computation. Since

natrec is assumed here to express the whole program, the result continuation is not specified.

The operational semantics of the normal evaluation of a numerical program can be expressed

in terms of the following reduction rules:

natrec(0;ao ;xD ,y.f (xD ,y)) + 1 a0 (natrec-redl)

The expression natrec distinguishes between toplevel and local contexts in a declarative

manner. Only a toplevel numerical computation can be abandoned and an evaluation can

resume in an existing, data-value expecting context. For example, the following expression

represents a numerical program that either evaluates normally or abandons its normal

computation and mumes an "escaped" computation:

natrec(case(b;nD ;resultis(a,)) ;ao;xD ,y. f (xD ,y))

The expression case implements the control structure associated with the type Bool, namely

the conditional [, 1, which is defined by the following one-step reductions:

[a , b l ~ true + I a

[a , b l ~ false + 1 b

where a,b E A. The corresponding programming construct case is defined on constants c,

representing explicit data rather than on CTT objects a of an atomic type A. Its operational

semantics is given in terms of the following one-step reductions:

case(true;ca;cb) + 1 C,

caseCfalse;c,;cb) + I cb

If the value of a boolean expression b in case(b;nD;resultis(ar)) is false, a program will

abandon a request for its normal evaluation and will request a data value result a , of an

"escaped" computation. As we discussed before, the values of the type Bool can represent the

top-level contexts of two disjoint arbitrary computations. Here, we are dealing with the

concrete first-order classical theory, namely Peano Arithmetic and the computations are the

primitive recursive numerical programs. The conditional "[, 1" is an abstract control operator

manipulating on the atomic objects of CTT that represent data valueexpecting continuations.

On the other hand, the programming construct "case" operates on the explicit data. The two

possible values of its first argument are here the names of two disjoint toplevel contexts of a

primitive recursive, numerical program. One value is the name of the context of a normal

evaluation of the program and the other value is the name of the context of its "escaped

computation. In fact, the construct "case" implements the operational semantics of the

classical disjunction type. In other words, the programming construct "case" can be used in

the implementation of the toplevel context of the existential witness. In the case of the natural

existential witness. "case" is used to implement a structured, toplevel context of any primitive

recursive computation that may perform a well-typed jump. We want to point out that in the

above example of the natrec expression, we have arbitrarily chosen "true" as the name of the

context of a normal evaluation and "false" as the name of the context of an "escaped"

evaluation. We might have as well reversed this choice.

The expression schema natrec is an example of an explicit programming schema generated by

the type {A}N,, of existential witness. Yet, by allowing free integer variables, the class of

primitive recursive functions is obtained as an example of evidence provided by the classical

p m f s of universal quantifications over natural numbers. Hence, the derived schema natrec

provides the top-level, operational semantics of primitive recursive functions.

5.3.4 Peano Arithmetic as a Programming Logic

In the previous section, by assuming a domain of positive integers we have derived a classical,

type-correct programming schema for primitive recursion. We obtained an extension

CTT+Nat of CTT which includes in addition to CTT rules, the following rules, constants and

expressions: (Nat-fonn), k,, S, (S -red), (Iter), (Iter-redl), (Iter-re&). (Rec), (Rec-redl),

(Rec-red), (natrec), (nanec-redl), (natrec-red). In this section, we will extend the results

proved in Chapter 4 for CTT to CTT+Nat.

CTT+Nat is strongly normalizable as shown by the following theorem:

Theorem 3 (Strong Normalization of ClT+Nat) Every derivation in CTT+Nat reduces to a

unique normal form.

Proof By Theorem 2 we know that CTT is strongly normalizing. We need to show the

normalization of the new terms introduced to CTT+Nat. The normalization of numerals is

immediate. The normal form of s(eD) is reached in n + 1-steps of reduction, where n is the

number of steps in which eD reduces to a numeral k,. In the previous sections, we have

already demonstrated that the terms RAaofn and lAaofn are normalizable by n-step

reductions. The normalization of the term natrec(eD ; a0 ; i ,y. f (i ,y)) can be proved by

induction on one-step reduction "+ ". Assume the following

(1) eD -+K kn

(2) a0 is reducible to a data-valued constant c, in M-step reduction

(3) f(ki,ca) (where c, is a data-valued constant for a E A) is reducible in Lsteps to a data-

valued constant.

For n =0,

natrec(eD;ao;iD,y. f(iD,y)) +1 a0

That is, for n = O the normal form of nurrec(eD;ao;iD ,y. f(iD ,y)) is reached in K +M + 1

steps.

Assume now that natrec(k, ; ca ; iD ,y. f (iD ,y)) is normalizable. We want to show that

natrec(k, + 1 ; c, ; i ,y. f (i ,y)) is normalizable. By the definition of natrec,

~ t r e c (k , + ~ ;ca;xDy. f(xD ,y)) + 1 f(k,+l , ~ n e c (k , ; c , ; x ~ ,y.f(xD ,y)))

By induction hypothesis, we know that natrec(k, ; c, ; iD ,y. f (iD ,y)) is nomalizable, i.e.,

reducible to a data-valued constant in K + M +(L*m) steps. Then, from the assumption (3),

f (km+l ,natrec(krn;ca ;xD ,y.f(xD 9)')))

also reduces to a data-valued constant in K +M +(L*(m + 1))-steps. Thus, we can conclude

that for any n, nafrec(kR ;ao;iD ,y. f (iD ,y)) reduces to normal form.

The operational interpretation result for the arithmetical Zy sentences is stated and proved as

follows:

Theorem 4 (CTT+Nat Interpretation of Arithmetical Sentences) If we have a proof

I- pA +, where t- pA denotes provability in Peano Arithmetic, and + is Zy, then we can

represent the operational interpretation of that proof by a term in CTT+Nat.

Proof: We can easily show that Peano Axioms can be interpreted in CTT+Nat More

precisely, we have five Peano Axioms to cover. The following three are immediate:

(1) 0 is interpreted by ko

(2) successor Succ is interpreted by the function constant S defined on integer terms

(3) fifth Peano Axiom

where A is any formula of PA, is interpreted by the expression natrec. The formula A(0) is

interpreted by a data-valued term and Wn(A(n) 2 A(Succ(n))) is interpreted by a local

context of a function application.

What is left is the third and forth Peano Axioms, namely

UnWm(Succ(n) = Succ(m)) 3 (n = m) (Peano3)

Peano3 is interpreted in ClT+Nat by (S-red). More precisely, s(eD) reduces to a numeral

k,+, only if eD reduces to k,. Hence, if ~ (8) and s(&) reduce to the same numeral, also

ef and & reduce to the same numeral as well.

Peano4 can be interpreted in ClT+Nat by the following instance of natrec expression using

the "escaping" constxuct resultis:

natrec(resultis(xD) ; o ; ~ ~ ,z.z)

There are many programs for Peano Fourth Axiom and the above expression is just one of

them. What is common to all programs for Peano4 is that their normal computation is

abandoned and that they resume evaluation at the existing, integer-expecting context. Such a

computation corresponds to an arbitrary arithmetical proof by contradiction, i.e., to an

arithmetical axiom.

Every arithmetical Z? sentence can be written in the form $ n 3 y E Nut. f (y)=O, where f is

primitive mursive. There are two possible cases, depending on whether a proof of $ is direct

or by a counterexample. If a proof is direct, then the operational interpretation of a classical

proof of 4 is represented in ClT+Nat by a term T of type {A}Na. According to ({ }-intro),

the term T is definitionally equal to p(h), where h E Nat+X(A,a). According to ({ }-red),

the following one step reduction is the operational content of the construct p(h):

(p(h))* + 1 kn E Nut. splir(hn)

where An E B.split(hn) E Nat+A. To represent the operational content of the d imt proof

proof of 4, the type {A}Nd has to require that f(n)=O only if a is evaluated in n-steps of

computation.

If a proof of (O is by a counter-example, then f (n) # 0 only if a new value a, E A is return as

a final result of a program.

Hence, the operational interpretation of a proof of an arithmetical C? sentence can be

repcesented in CTT+Nat by the expression schema

~trec(case(b;n~;resul t i s (a ,)) ;ao;xD ,y. f (xD,y))

The characteristic function f is represented in CTT+Nat by a boolean-valued expression b. If

the value of b in case(b;nD;resultis(ar)) is false, a program will abandon a request for its

normal evaluation and will return a, as a final result of the program. This represents the

operational content of a proof of $ when it is the proof by contradiction. If the value of b in

case(b;nD ;resultis(a,)) is true, a program will evaluate normally. This represents the

operational content of a direct proof of $.

By a simple generalization to free variables, the result of the above theorem extends to l3S

sentences. In this way we have identified II! as a class of sentences of Peano Arithmetic all of

whose proofs provide evidence in a constructive sense.

Corollary 2 (ClT+Nat Interpretation of Arithmetical Sentences) If we have a proof

+ pA $ and (O is ll!, then we can represent the operational interpretation of that proof by a

term in ClT+Nat.

An arithmetical formula of the class IIS can be written vx E Nat.3 y E at. f (x,y) =06, where

6. Or equivalently, it can be written as v E Nar .3~ E Nar.R(x,), such that f x y) is a chapcteristic

form:
L funcuon of a computable relation R(x,y). We note that the runcum f can presented m normal

f (x,y)=n = 3 u E Nat.R'(x.y.0.u)
where R' $ a itive recursive relation. It follows that by combining the variables y and u into a P"" z, 112 onnula can be written as vx E Nat.3 z. f '(x,t)=O with f ' primitive recursive
Gnegorczyk741. P"

f is a computable function. An expression of this type is a function F with domain Nat, such

that F(n) computes evidence of type 3 y E Nat. f (n,y)=O. We can assume that F is of the

form k x E Nar. M. When F is applied to n E Nut, F(n) has type 3 y E Nut. f (n ,y)= 0 (a C?

sentence), and hence F(n) will compute evidence for this type. The intuitive reason why F

has the type tlx E N a t . 3 ~ E Nat. f(x,y)=O is that when F is applied to a concrete datum, it

returns a concrete datum without any embedded function closures or (equivalently) without

any unevaluated computations. Every unevaluated computation represents a potential escape

in a program.

The "strength" of ClT+Nat, i.e., a class of algorithms which are representable in it, can be

easily shown.

Theorem 5 (Representation in ClT+Nat) The functions representable in ClT+Nat are

exactly those which are provably total in PA.

Proof: Iff is a closed CTT+Nat-term from integers to integers, it gives rise to a function I f 1
from N to N (where N is a set of integers) by

f(kn) + k (n)

where k is some finite number of reduction steps.

We note that to prove normalization of any fixed tern in ClT+Nat, we need to be able to

express a finite number of finite number-steps reductions and (in the case when the term is a

natrec expression) to reason about them by mathematical induction, which can be done in PA.

Since the normalization off is provable in arithmetic, we say that I f I is provably total in PA.

We need to show also the converse: if F is a recursive function, provably total in PA, then

there is a term f from integers to integers in ClT+Nat. such that F(n) = I f I (n) for all n. A

recursive function f which is provably total from N to N is called provably total in a system of

arithmetic, here PA, if PA proves the formula which expresses :"for all n, the program e with

input n, terminates and returns an integer" for some algorithm e representing5 The precise

formulation depends how we write programs formally in PA. For example, with Kleene

notation:

PA proves W n3 m Tl(e,n,m)

where Tl(e,n,m) means that the program e terminates with output m if given input n.

Tl(e.n,m) may itself be expressed as 3 m' P(n,m,m') where P is a primitive recursive

predicate and m' is the "transcript" of the computation. The two quantifiers 3 m3 m' can be

replaced by a single one 3p using some (primitive recursive) coding of pairs. Hence, the

termination is expressed as l l g formula. Now, by Theorem 4 (and Corollary 2), we know that

ng are the formulas whose computational content is expressible in CTT+Nat. Let t be the

term that represents the computational content of termination formula. Then, t(k,) reduces to

a pair (k, ,k,-) such that f (n) = m.

5.33 Terminating General Recursion

The primitive recursion computation schema nattec invoduced in the section 5.5.5 defines

programs for the computable functions that are primitive recursive. A program for a primitive

recursive function always terminates. Yet, nontennination can be viewed as a special case of

escaping: from the point of call it makes no difference whether the called function is looping

forever or it has jumped somewhere else and never returned. Based on this observation, we

will introduce and implement in this section the terminating, general recursion operator.

This operator will be used to express totally-correct, general recursive programs.

An arithmetical method of proof which is not based on the inductive definition of the number

class but on the fact that this class expresses a well-founded relation, is called complete

induction. Its computational content is the terminating, general recursion.

In order to formalize the general recursion operator, the new judgement fonns are introduced

into CTT. In a constructive type theory, a proof of a dependent function type nx E A.B(x)

(interpreting universal quantification) is a function which, when given a value a E A, returns a

value in B[alx]. In a classical type theory, i.e., in a classical logic viewed as a typed

programming language, a proof of a V-type is a witness for a lack of counterexamples for the

truth of that type, which is a much weaker statement. Hence, one would like to distinguish

between the classical, universally quantified propositions and the dependent function type.

This can be done by introducing a new form of a judgement to CST, namely

A Prop

to distinguish propositions from data types. To internalize the universal quantification in a

type theory, the following hypothetical judgement is used:

B(x) prop [x E A I
It yields the following judgement for the universally quantified propositions:

Wx E A.B(x) prop

A proposition can be judged to be true or false. We will introduce the following new

judgement form to CTT+V, i.e., CTT extended with an atomic data type V:

R(vl ,vz) true,

where vi E V (i=1,2) and R is a decidable, well-founded relation. The relation R has to be

well-founded in order to preserve termination. It has to be decidable in order to be effectively

presentable. For example, if V = Nut, R is a well-founded relation "less than" ("c"), which is

the usual order on natural numbers.

53.5.1 Generalized Natural Function Iterator

In this section, we will introduce a new, natural iterator based on a total recursive function g

such that gn < n, for any n E Nut, rather than on the natural predecessor. Such a function is a

new, generalized "predecessor" for recursion.

We want to define an abstract operational interpretation of a classical arithmetical p m f based

on a total recursive function g E Nat+Nat instead of an intuitionistic interpretation of the

class of natural numbers. We will allow a gn-step computation (with an n E Nat) to escape or

not terminate at the toplevel of a program. In order for such an escape to be type-correct, the

toplevel context has to be preserved so that when the escape takes place the the toplevel

context can be reset. We can define the interpretation in question by taking the type B in

B + L ~ 7 to be Nat, as this type will allow us to duplicate the top-level context as well as

request a normal result of the program obtained after a finite number of computation steps.

According to (+L -elim), the rule of type Nat+A is defined from d E Nat +A. We know that

d = cgl,g2>where

g l E n n E Nat.VL(Nat,A,n)

g2 E Nat+VR(Nat,A,a)

According to (+L -elim), in order for the proofs of disjunction to be reducible to cut-free

forms, the following one-step reductions have to take place:

<g1,g2>0 +1 Nat.n

cgl ,g2 >' + I An E Nat.ouzr(g2n)

When the assumption [n E Nat] is discharged by a natural number M, two things happen: M

is duplicated and the following K-step reduction takes place:

oup(g2M) --)K a,

where K is the number of applications of g to M that reaches 0. Every value requested in

a E A, obtained after some finite number K of computation steps, is computed normally.

Hence, in order to preserve total correctness, g has to be such that it allows 0 to be reached

after some finite number of applications. In other words, the trace of g has to be a well-

founded sequence of natural numbers, i.e., for any n E Nut, gn < n. The duplication of M

preserves the top-level context of a K-step evaluation. Hence, if an escape occurs or if a

termination condition is not satisfied, the top-level context can be reset and the computation

can resume its evaluation. Let N E Nut be a number such that for any nlN, gn returns 0.

That is, numbers from 0 to N constitute an initial (or base) segment which doesn't have a

(generalized) "predecessor". Thus, for any data type A, we can represent an a E A as a request

for the normal result of the entire K-step computation, through a unique h#at+A such that:

h n + l a o , h (n + N + l) + l f (h (g (n + N + l))) ,

assuming a0 E A and f E A+A. We introduce below a new, local control operator IG into

CTT+Nat called the generalized natural iterator. which is as an abstract definition of h:

Wns Nar.(gn<n) m e , A E data, a s A, f E A+A, N E Nut
IGAgafN E Nat+A

The operational interpretation of I is given by the following rules of one-step reduction:

V n s Nat.(gncn) m e , A E data, a~ A, f E A+A, ,N E Nut, n~ Nut
l ~ A g a f N (n + N + 1) + I f (l~AgafiV(g(n + N + 1)))

53.5.2 Terminating General Recursion Operator

We want to formalize in CTT+Nat the operational interpretation of a classical, arithmetical

proof method based on a total recursive function g s Nat+Nat instead of a natural

predecessor. Such a proof corresponds to a classical program that evaluates to a datum after

some finite number gn of steps of computation and such that if it escapes or doesn't terminate,

it does so only in the top-level context. Since an escape or nontermination at the toplevel

mean resuming computation at the existing, data value-expecting context, they are are type-

correct. We will internalize a toplevel context as a part of a normal evaluation of a numerical

Program.

We can define the operational interpretation in question by taking type B in B x L R ~ 8 to be

Nar as this type will make the toplevel context accessible to the normal evaluation of the

Program.

According to (x LR-elim), the rule of type Nat+A is defined from d E Nut x A. We know

that d = n(h) where

h E n n E Nar.AA(Nat,A,n,a)

According to the x - efim, in order for the proofs of conjunction to be reducible to cut-free

7. See footnote 2 in this chapter.
8. See foomote 5 in this chapter.

forms, the following one-step reductions have to take place:

~ (h) ~ + 1 hn E Nat.n

~ (h) 1 + 1 Xn E Nat.snd(hn)

When the assumption [n E Nut] is discharged by a natural number M, two things happen: M

is duplicated and made accessible to the normal evaluation process, and the following K-step

reduction takes place

snd(hA4) +K a

where K is the number of applications of g to M that reaches 0. Every value requested in

a E A, obtained after some finite number K of computation steps, is evaluated normally. That

is, g has to be such that it allows 0 to be reached after some finite number of steps of

applications. In other words, the trace of g has to be a well-founded sequence of natural

numbers, i.e., for any n E Nut, gn e n in order to preserve termination Let N E Nut be a

number such that for any n lN, gn returns 0. That is, numbers from 0 to N constitute an initial

(or base) segment which doesn't have a (generalized) "predecessor". Thus, for any data type

A, we can represent an a E A as being a request for the final result of the entire K-step

computation through a unique evaluation rule k E Nut-+A, such that :

hn +1 ao. h (n + N + l) + I f (n+N+l) (h(g(n+N+l)))

The corresponding local conml operator is the terminating general recursion operator G and

it is defined as follows:

Vn E Nat.(gn<n) true, A E data, a E A, f E Nat+A+A, N E Nut
GAgafN E Nat+A (GRec)

The operational interpretation of the operator G is given in terms of the following rules of

one-step reduction:

Vn E Nat.(gn<n) true, A E data, a~ A, f E Nat+A+A, N E Nut, n~ Nut
GAgafN(n+N+l) -1 f(n+N+l)(GAgafN(g(n+N+l)))

Wn~Nat . (gn<n) true, A ~ d a t a , USA, f EA+A, NENat, n ~ N a t , (nlN)true
GAgafNn + I a

53.53 Terminating General Recursive Computation Schema

In the section 5.3.4 we have defined the primitive recursive computation schema natrec. In

this section we will define terminating, general recursive computation schema.

According to { } - intro, the canonical d E {A} N, is defined as p(h) where

h E Nat+C(A,a)

According to { } - red,

~ (h) ~ + 1 An E Nat.split(hn)

When the assumption [n E Nut] is discharged by a natural number N, the following K-step

reduction has to take place

split(hN) +K a,

where K is the number of applications of a function g to N that reaches 0. Every value

requested in a E A, obtained after a finite number K of computation steps, is computed

normally. The same analysis used to derive narrec also applies here. That is, the terms

n E Nut representing top-level contexts of numerical programs have to be integer terms. This

implies that the generalized predecessor function g has to be such that given an integer it

returns an integer. We will use the notation f D to denote a function f E Nat+Nat from

numerals (i.e., the terms k,) to numerals. However, additionally, the normal, general

recursive evaluation requires that for any n E Nut, gn < n. If this is not the case, i.e., gnzn,

for some n E Nut, then the program will not evaluate normally. Rather, it will not terminate.

Yet, such a toplevel nontexmination can be represented as a type-preserving escape. Namely,

a program will resume an "escaped" computation at the toplevel.

A computation based on a total recursive function can be expressed as a recursive, numerical

context-typed continuation. Yet, in order to define the relevant computation schema, let us

assume that we have a program is-less(mD,nD) that checks whether m is less than n, and

such that it returns true if m <n and false otherwise. Provided such a construction, the

following data-valued expression can be introduced into CTT+Bool+Nat to implement G:

D D gnatrec~D(case(is-less(g (n), nD);nD;resultis(a,));ao;xD,y.f(xD,y)) (gnatrec)

As natrec, the expression gnatrec distinguishes between local and toplevel contexts. Only a

toplevel context of a numerical program is made accessible for nontermination or escaping. If

the function denoted by gD doesn't satisfy the termination condition, a general recursive

program will abandon a request for its normal, non-terminating evaluation and will request a

data-valued result a, of an "escaped" computation. As we discussed before, the values of the

type Boo1 can represent the top-level contexts of two disjoint arbitrary computations. Here,

we are dealing with a concrete fim-order classical theory, namely Peano Arithmetic, and the

computations are the general recursive, numerical programs. The two possible values of the

first argument of the case expression in gnatrec are the names of two disjoint toplevel

contexts. One value is the name of the context of an evaluation of a program for which the

termination condition is satisfied. The other value is the name of the context of an "escaped"

computation caused by violated termination condition. As we pointed out before, a

computation which is resumed when a program doesn't terminate at the top-level is just a

special case of an "escaped" computation. In other words, the programming construct "case"

can implement a structured, top-level context of any total, classical computation. In the

definition of gnatrec given above, we have arbitrarily chosen "true" as the name of the context

of a normally terminating evaluation and "false" as the name of the context of an "escaped"

evaluation. Equally, we might have reversed this choice.

The operational semantics of a normal evaluation of a general recursive program can be

expressed in terms of the following one-step reductions:
D D g?IUtre~gD (C C ? S ~ (~ S _ ~ ~ S S (~ ~ (~ ~ - ~) , k ~ - ~) ;kNen ; ~ ~ s u ~ z ~ (Q ,)) : o ; x ,Y. f (X ,Y))

+I a (gnatrec-redl)

We have extended the class of classical programs providing the evidence in a constructive

sense from primitive to general recursive. Of course, this does not change the result that only

for l l g formulas it is always decidable whether their proofs are normalizable.

5.4 Binary Trees

In this section, we will introduce a type theory, ClT+Tree, that formalizes the computational

content of a classical theory of the binary trees. We will define a control structure associated

with the binary tree reasoning which is the binary tree iteration. We will introduce the

primitive recursion operator associated with the binary tree reasoning. These constructions

will be defined in a manner applicable to classical reasoning. Finally, we will implement

binary tree-based, primitive recursion operator by an expression schema with a clear and direct

operational semantics. We begin with the introduction of the binary trees to ClT+Tree.

The second-order quantification

tree = [x: prop] (x*x*x) + ~ x

is an impredicative construction of the concept of a binary tree. What follows is the

predicative construction of that concept. We separate the binary tree data type fmm the

contml structure associated with it by forgetting its derivation in F:

Tree = 'tree'

We introduce the following rule of formation for binary trees to CTT+Tree, i.e., CTT

extended with binary uees:

Tree E data (Tree-fonn)

The constants 1, will be introduced to ClT+Tree to represent binary ~ e e s t E Tree:

1, = AX:prop. hb:X+X*X.hn:X.b (...(bnn)...) (...(bnn)...)

The empty tree Null = ' rut11 ', where

null r AX:prop. hb:X*X*X. hn :X. n

is the only tree definitionally equal to the constant lNdl.

The branch function is represented in F by the following construction:

branch I hleft: nee. hright: tree. AX:prop. hb :X=sX*X.

hn:x.(b (left x b n) (right x b n))

of type tree*tree==+tree. The term branch, when applied to a (representation of) binary tree t

and binary tree s, reduces to a universal abstraction representing the tree t&s. The branching

function in CTT+Tree is the function constant Branch such that

Branch(1, , ls) = 'branch T S', where T E tree and S E tree represent trees t and s in F.

Since (branch T S) red V, where V E tree represents the tree t&s in F, the constant Branch

is defined in CTT+Tree by the following one-step reduction:

Branch(1, ,Is) + 1 Itas (Branch-red)

The rest of this chapter is devoted to the toplevel, operational interpretation of the binary

tree-based reasoning. We will define the binary tree iterator and the binary tree primitive

recumion operator. We will implement the latter as a toplevel, context-typed continuation

schema. The process of formalization of the binary tree reasoning is analogous to the

formalization of the arithmetical reasoning. Hence, the definitions introduced in the following

sections are not going to be explained in as much detail as it was done for arithmetical

reasoning in the previous sections.

5.4.1 Binary Tree Iteration

In order to define a control structure associated with the type Tree, one has to show how to

construct a cut-free proof of an arbitrary formula about binary u'ees. In other words, a rule

k E Tree+A will be defined for any A E data. We will show below that the type Tree +A

yields a control operator which completely characterizes the reasoning about binary trees.

According to (+L-elim), the rule of type Tree+A is defined from d E Tree +A. We know

thatd = cf,g>where

f E l l t E Tree.VL (Tree,A ,t)

g E Tree+VR (Tree,A,a)

According to (+ - elim),

< f ,g>O + I i t E Tree.t,

cf ,g> l + 1 Xt E Tree.outr(gt)

By discharging the assumption [t E Tree], the following reduction has to take place:

outr(gt) +, a

where m is the depth of the tree t, and t is duplicated. According to (+L- red), the evaluation

rule k E Tree+A for the right inject of the type Tree +A is defined as follows:

kNull +1 ao, k(u&v) - 1 r(ku)(kv),

assuming a constant a0 E A and a function constant r E A+A+A. We shall introduce a

local control operator T into CTT+Tree:

A E data, a0 E A, r E A+A+A

The tree iterator T is defined by the following rules of the one-step reduction:

A E data, a0 E A, r E A+A+A, s E Tree, t E Tree
(Titer-redl)

TAaor(s& t) + 1 r(TAaors)(TAao rt)

A E data, a0 E A, r E A+A+A
(TIter-re&)

TAaor(NuN) + I a0

5.4.2 Binary Tree Recursion Operator

In this section we shall derive a binary tree recursion operator by specializing a data-value

expecting context in the classical conjunction type A x LR B to the type Tree.

We take the type B in B x to be Tree. According to (x rn-inrro), the rule of type

Tree+A is defined from d E Tree x A. We know that d = x (h) where

h E n t E T~ee.I\~(Tree,A,t,a)

According to the x - elim, the following one-step reductions have to take place:

x(h)o +1 h t E Tree.t

x (h) 1 + 1 h t E Tree.snd(ht)

B y discharging the assumption [t E Tree], the following m-step reduction has to take place,

where m is the depth of the tree t:

We introduce a new local control operator B into CTT+Tree:

A E data, a0 E A , f E Tree+A+Tree+A+A

BAao f E Tree +A rn=)

The operational semantics of the binary tree recursion operator B is defined by the following

one-step reduction rules:

A E data, a0 E A , f E Tree+A+Tree+A+A, t E Tree, s E Tree
(TRec-red)

BAao f(t&s) + 1 ft(BAao ft)s(BAao fs)

A E data, a0 E A, f E Tree+A+Tree+A+A
(TRec-re4

BAao f(Null) + l a0

5.43 Binary Tree-Based Primitive Recursive Computation Schema

In this section, we will derive a primitive recursive programming schema associated with the

classically-founded, binary tree reasoning. This schema will constitute the top-level,

operational semantics of primitive recursive functions on binary trees.

In CTT+Tree, according to {) - inno, the canonical d E {A) T~~~ is defined as p(h) where

h E Tree+C(A,a)

According to { } - red,

~ (h) ~ + I ht E Tree.split(ht)

When the assumption [t E Tree] is discharged by a binary tree T, the following N-step

reduction, where N is the depth of T, has to take place

split(hT) +N a

Every value requested in a E A, obtained after some finite number N of computation steps, is

computed normally. Here, the tree T is not duplicated. Hence, the toplevel context

represented by T is not prese~ved. If we require that a term representing a toplevel context of

a program on binary m s is a data-valued term, then the program will always conclude its

normal evaluation at the top-level context. We introduce a special notation tT for the binary

tree terms, i.e., t e n s computable to constants 1, (t E Tree). Hence, the following data-valued

expression can be introduced into CTT+Tree to implement B:
T T T T treerec(tT;a;xl ,XZ ,YI ,YZ .f (XI ,XZ ,Y I ,YZ)) (treerec)

If a0 is a binary tree expression, then treerec itself becomes a binary tree exp~ssion.

The operational interpretation of treerec is given in terns of the following reduction rules:
T T T T treerec(Null;a;xl ,x2 ,y 1 ,y2. f (xl ,x2 ,y 1 ,y2)) + 1 a (treerec-redl)

One could easily extend the operational interpretation result shown for Peano Arithmetic in

the section 5.3.4 to a classical theory of binary trees. As a consequence, not only Peano

Arithmetic but other finite, classical theories can serve as programming logics. In other

words, there are other data types besides that of natural numbers whose expressions have no

control side-effects. These are lists of' integers, booleans, streams, etc., with endless

possibilities.

CHAPTER 6

IMPLEMENTATION OF RECURSIVE FUNCTIONS

This chapter consists of two major parts. In the first part, we will introduce examples of

computable functions on natural numbers. We will show how to implement in CTT+Nat

some typical primitive recursive functions like subtraction, addition, factorial, Fibonacci, etc.

First, we will express these functions in terms of the natural iterator and pairing. This

corresponds to the "by-value-only" computation. Such definitions are also possible in the

second-order A-calculus. Then, we will implement these primitive recursive functions using

classical, programming schema natrec. We will also show a simple example of a program for

a proof by contradiction. This program will either evaluate normally or it will abandon its

normal evaluation and resume its computation at the top-level returning a new, final result.

We will give an example of a terminating, general recursive function - division by repeated

subtraction. A program for this function is an instance of the terminating, general recursive

schema gnatrec. We will also implement the Ackermann's function which is not primitive

recursive but it is constructed by the simultaneous induction on two variables. The

Ackermann's function is a generalization of the schema gnatrec since the simultaneous

induction on two variables corresponds a finite iteration of some reasonable function

corresponding to the generalized natural predecessor.

In the second part of this chapter, we will extend CTT with the type of lists of natural

numbers. We will introduce a recursive computation scheme associated with lists. We will

also illustrate program implementation in CTT extended with lists of natural numbers, i.e., in

CTT+ListNat. The example which we present is a program that computes the smallest

element in a list of positive integers. The program illustrates the use of resdtis expression to

handle run-time error when trying to compute the smallest element of an empty list.

6.1 Primitive Recursive Programs

Any primitive recursive function is defined using composition of functions and the following

schemata:

f (~ 1 , - - ,xn,O) = d(xl , .. ,xn)

f(x1. ,x,,x+ 1) = e(xl, . ,xn,x,f(xl, . . ,x,,x))

This schemata is implemented in CTT+Nat by the expression schema natrec. Actually,

nutrec itself has only one variable, the one which is inducted upon. Yet, allowing other not

inducted upon integer variables 8, .. , $ will not change the correctness of natrec. The

expression schema tuztrec with additional free integer variables is defined as follows:

natrec(nD;a($, . - - ,xD,);xD ,y.f($, . . ,e ,xD))

In the following subsections, we will consider several examples of the primitive recursive

functions. Each function will be expressed first in tenns of the natural iterator and pairing.

This is "by-values-only" computation where functions decompose their arguments completely

according to the primitive structural induction. Subsequently, we will implement each

function using the classical, programming schema natrec.

6.1.1 Predecessor and Subtracting One

Let us define an algorithm for predecessor computed "by-values-only":

pred(0) = 0, pred(n + 1) = n

We will express pred in terns of the natural iterator I. Let the function

p E (NatxNat) +(Natx Nat) be defined by the following one-step reduction:

p(n,m) + I (n + l ,n)

Then, i I I(NatxNat)(O,O)p E Nat+(Natx Nut) is an iterator for NatxNat. The

predecessor computed "by values only" is defined as follows:

Pred n = snd(in)

In order to implement subtracting one from an integer in terms of natrec, we need the

predecessor constant function P defined on numerals, such that

P(kn+l) + l kn

The following &-abstraction is the definition of the predecessor in the system F:

pred = Xn E nut. (n(namnut)(Xz E nut*nat. < add (succ zero)(z zero) ,(z zero) >)

c zero ,zero > (succ zero))

where add is the addition

add = &n:nat.&m:nat.AX:prop.hf :X*X.Xx:X.(nXf)(rnXfx)

and < , > is pairing

< a , b > = Ls:nat.(s nut (&z:nat.a) b)

We introduce the function constant P to ClT+Nat such that if

(pred N) red M

in F, then

P(kn) + l kn-1

in ClT+Nat, where N represents the natural number n and M represents n-1 in F. If

N = zero, then also M = zero, and PO -+ 1 0.

Provided P as defined above, we can define in CTT+Nat a program for subtracting one from

an integer, i.e., for "n - I", as follows:

nD -kl I nutrec(nD;0;xD ,y .~(xD))

If n +0, then

natrec(nD;O;xD J .P (x~)) + 1 p(nD)

6.1.2 Subtraction

In this section, we will implement the subtraction Sub E Nar+Nat+Nar, defined by the

following equations:

Sub(m,O) = m, Sub(m,n+ 1) = Sub(m- 1,n)

We will first implement subtraction as "by-values-only" computation. Let one-step function

s E (Natx Nut) +(NatxNat) be defined as follows:

~(1.k) + I (1+ 1,k- 1)

Then, i = I(Natx Nat)(O,m) s E Nat+(NatxNar) is an iterator for Natx Nut. The subtraction

computed "by-values-only" is expressed in terms of the natural iterator and pairing as follows:

sub m n = snd(in)

The actual program for subtraction is represented in CTT+Nat by the following instance of

the programming schema w e c :
D D mD-nD = natrec(nD;m ;x ,y .y -k l)

We will use the notation sub: for a one argument function from integers to integers such that

sub!(mD) r m D -nD

6.1.3 Addition and Multiplication

In this section, we will implement addition and multiplication. Addition is defined informally

by the following equations:

Add(m.0) = m, Add(m,n+l) = Add(m,n)+l

Let the one-step function a E (Nut x Nut) +(Nut x Nut) be defined by the following reduction:

a(k, l) - 1 (k + l , l + l)

Then i = I(NatxNat)(O,m) f E Nut+(NatxNat) is an iterator for NatxNat. We can

implement addition terms of the natural iterator as follows:

add m n = snd(in)

If the arguments n and m for addition Add(m,n) always compute to numerals k, and k,, then

the program for addition is expressed in CTT+Nat as follows:
D D mD +nD = natrec(nD;m ;x ,y.S(y))

Multiplication is expressed informally by the following equations:

Mult(m.0) = 0, Mult(m,n + 1) = Add(m,Mult(m,n))

To implement Mult as an algorithm computed "by-values-only", we will introduce a one-step

function u E (NatxNat) +(Natx Nut) defined as follows:

u(k.1) + I (k + l , addm I)

Then i n I(Natx Nat)(O,O) u E Nat+(Natx Nut) is an iterator for NatxNat. Multiplication

computed "by-values-only" is implemented by

mult m n = snd(in)

If the arguments n and m for addition Mult(m,n) always compute to numerals k , and k,, then

the program for multiplication is expressed in CTT+Nat as follows:

6.1.4 Factorial

The factorial function is defined informally by the following equations:

Fact(0) = 1, Fact(n + 1) = (n + 1) *Fact(n)

Let the function f E (NatxNat) +(Natxnat), be defined by the following one-step reduction:

f(n,m) +1 (n+1 , mult (n + l) m)

Then i = I (NatxNat)(O, 1) f E Nat+(Natx Nut) is an iterator for Natx Nut. Factorial is

expressed in terns of the natural iterator and pairing as snd(in).

If it is required that the argument n of factorial always computes to a numeral k,, factorial can

be implemented in CTT+Nat by the following instance of the expression schema natrec:

natrec(nD; 1 ;xD ,y.xD*y)

6.1.5 Fibonacci

The recursive scheme Fibonacci is defined by the following equations:

Fib(0) = a, Fib(1) = b, Fib(n +2) = F(Fib(n) ,Fib(n + 1))

We will expressed Fib in terms of the natural iterator and pairing. Let us assume that

~ E A , b e A , FEA+A+A

Let the one-step function f E (A X A) + (A x A) be defined as follows:

f (c ,d) + 1 (d,Fcd)

Then, the following expression is an iterator for Ax A:

i = I (A x A) (a , a) (h x ~ AxA.I(AxA)(a,b) f(Pred n)) E Nat+AxA

We can express Fib (n) by snd(in).

In the case of the standard Fibonacci function, Fib,, being an instance of Nat+Nat, we take

F = +, a = 1 and b = 1. Then, the one-step function f, E (NatxNat) +(NatxNat) needed

to implement Fibonacci in terms of the natural iterator is defined as follows:

f,(n,m) + I (m,add n m)

The iterator for Natx Nut used to implement Fibonacci is defined by

i s = I (NatxNat) (l , l) (hx~ NatxNat. I(NatxNat)(l,l)f,(Pred n)) E Nat+NatxNat

We can express Fib, n in terms of the natural iterator by snd(i, n).

The actual program for the standard Fibonacci function can be expressed as the following

instance of the programming schema natrec:

natrec(nD;kl ;~~,z.natrec(x~;l;~~,w.z+w))

6.2 Simple Example with a Proof by Contradiction

We will illustrate in the section the use of the programming construct resultis which is the

operational content of the classical rule of the double-negation elimination. Let us consider

the formula

(O a 3 n E Nat.prime(n) A n c 100

Clearly, there are many proofs of this sentence, and, hence, many realizing programs. We will

introduce one such program, namely

natrec(res~ltis(case(isgrime(k~~) ;case(is-less(klW ,kloo);kla;resultis(k2)) ;

resultis(k3))) ;O;xD.y.xD) k2

where kgrime(k,) is a p r o m which reurns true when n is prime and false otherwise.

The program is-less checks whether one integer is smaller than the other. It is defined by the

following one-step reductions:

is - less(k,,k,) +1 true i f m c n is-less(k,,k,) 4 1 false i fmln

By allowing free integer variables, the formula (O becomes a l l g sentence and its realizing

program is as follows:

narrec(care(isgrime(nD) ;case(is-less(nD, klm) ;nD ; resultis(k2)) ;resultis(k3)) ;

0;xD .y.xD)

If the above program is supplied with a prime integer less than 100, then the program

evaluates normally and reams that integer as the final result. If the program is supplied with a

nonprime integer, then the normal execution of the program is abandoned and the program

returns the integer 3 as the final result. Finally, if the program is supplied with a prime integer

but greater or equal than 100, then again, the program abandons its normal execution and

returns with the result being the integer 2.

6.3 Terminating General Recursion - Division by Repeated
Subtraction

In this section we introduce an algorithm for the division by repeated subtraction as an

illustration of a terminating, general recursion program. Division by repeated subtraction is an

example of an induction based upon a primitive recursive function instead of the natural

predecessor. The division function

div E Nut+ Nat+Nat

is defined informally as follows:

div(n,m) = if n <m then 0

eke if m=n then 1

else div (n - m ,m) + 1

We begin with an implementation of the division in terms of the iteration based on the

generalized predecessor being the subtraction sub. In order to define the division by repeated

subtraction, we need an algorithm for the function "less than" le E Nat+Nat+Bool which is

defined informally as follows:

le(m , n) = if m < n then true else false

Let the one-step function g E (Natx (Boo1 x Bool)) + (Nutx (Boolx Bool)) be defined as

follows:

g (n ,(false, a)) + 1 (Pred 1 , (1 Bool true (Xx. false)(Pred n) ,a))

g(n,(true,a)) + 1 (n,(trw,true))

Then i a I(Natx (Boolx Bool))(m, (true, true)) g is an iterator for Natx (Bool x Bool). The

function "less than" is defined as follows:

le m n t snd(snd(in))

Provided the above definition of the "less thann function, the one-step function

d E (NatxNat) +(NatxNat) needed to express the division by repeated subtraction in terms

of the generalized iteration and pairing is defined as follows:

d(n,k) + I (sub n m , [k , k+l] l e m n)

where [,] is the control structure associated with the type Boo1 which was introduced in

Chapter 5, and sub is the subtraction expressed in terns of the natural iterator, introduced in

the section 6.1.2. We can express the division by repeated subtraction in terns of the

generalized iterator I as follows:

diVp n m = snd(IG(NatxNar)sub(n,O)dm)

The division by repeated subtraction is not based on the natural predecessor but its

construction constitutes the computational content of a proof by the method of complete

induction. We can prove for any natural numbers n, m such that n > m > 0, that n - m < n. In

the rule of the general recursive computation scheme gnatrec, based on a total function gD

instead of the natural predecessor, we will take gD to be the subtraction s&, which was

defined in the section 6.1.2. Let the program is-less(m,n) check whether m is less than n:

is-less(nD,mD) e natrec(nD -mD;true;xD,y.false).

The actual program for division by repeated subtraction is expressed by the following instance

of the general recursive programming schema gnatrec:

gnatrecS*'(case(is - lcss(nD,mD);O;nD);O;xD,y.y+kl)

6.4 Beyond Primitive Recursion - Ackermann9s Function

The Ackermann's function is the classical example of a recursive function which is not

primitive recursive. It is a double-recursive function that majorizes' all primitive recursive

functions. Ackernann's function is defined by iterating iteration. More precisely, the proof of

its computability uses a technique of double induction:

1. The proposition A (0,n) is proved for all n by induction on n: first A(0,O) is proved, and

then assuming A(0.n) one shows that A(0.n + 1) follows.

1. A function g maprizes a function f if f is computable in time bounded by g.

2. It is assumed that A(m,n) holds for all n (the induction step form). Then A(m + 1 ,n) is

proved by induction on n: first A(m + 1,O) is proved, and then assuming A(m + 1 ,n)

(the induction step for n), one proves A (m + 1 , n + 1).

This is simply a qeated use of a single induction. This exercise will show how to express the

Ackennann's function in CTT+Nat.

Let us consider the following definitions:

fo = y + x

f l = x*y

f 2 XY = ~trec(y;l;x',z.x*z)

f3 = xTTy = natrec(y; 1 ;x',z.xZ).

These functions are the first in the series of functions f 1 , f 2 ,... where f n + , (x,y) is the result

of

fn(x, . . f,(x,x) • . 1) ify>O

where f n is applied y- 1 times. The function Ack(n,x,y) = fn(x,y) is the Ackemann's

function.

The definition of Ackemann's function, A c k ~ Nat+Nat+Nat+Nat starts by giving as a

primary basis for induction the equations when the first argument is zero :

(1) Ack(O,x,O) = x (2) Ack(O,x,y + 1) = Ack(O,x,y)+ 1

A secondary basis specifies the function for al l values of its first argument when the third

argument is held at zero:

(3) Ack(1,x.O) = 0 (4) Ack(n+2,x,O) = 1

The definition is completed by the dyadic recursion equation:

(5) Ack(n + 1 ,x,y + 1) = Ack(n,x,Ack(n + 1 ,x,y))

The first two equalities define fo(x,y) = x +y and the fifth equality defines f a + 1 in terms of

f a .

First, we will define Ackemann's function as "by-values-only" computed algorithm. Let the

one-step function F E (Natx (Nat-Nat)) +(Natx (Nut+ Nut)) specifying f, + 1 in terms of

f,, be defined as follows:

F (n , f) (n + l , X y ~ Nat. I N u t (l N a t O (X m ~ N a t . l) n) f y)

The innermost iteration INatO(hm E Nut. 1) n on the right-hand side of the above reduction

defines the third and fourth Ackennann's equations.

The one-step function F defined above yields the following iterator for the type

Nat x (Nat+Nat):

h x I (Na tx (Nat+Nat))(O,(add x)) F

We define the Ackermann's function in tenns of the nested application of the natural iterator

as follows:

Ack n x y = (s n d (h n)) y .

Using this algorithm, we will compute below the Ackennann's function for several different

values of its arguments. For clarity, we omit C=Natx(Nat+Nat) in the definition ICaf of

the natural iterator in the following examples:

A c k O x O = & x O = x

Ack 0 x (S y) = add x (S y)

Ack (SO) x 0 = (snd(F(I(O,& x) F0)))O = (snd(F(0,add x)))O =

(snd((S0 , h y E Nat. I(IO(h n E Nat. (SO))O)(add x) y)))O =

(X y E Nat.IO(add x)y)O = IO(add x)O = 0

x + 1 =Ack (SSO) x O= (snd(FF(0,add x)))O= (snd(F(S0,hy E Nut. IO(add x)y))O=

Xy E Nut. I (IO(Xn E Nat. (SO))(SO))(SO)(Xy E Nat.IO(add x) y) y) O =

IO(5n E Nat.(SO))SO = SO

2 *x = Ack (SO) x (SSO) = (snd(F(I(0,add x) FO)))(SSO) =

(snd(F(O,& x))) (SSO) = (snd ((S0 , Xy E Nut. I (lO(Xn E Nut. (SO))O)(add x) y))(SSO)

(X y E Nat.IO(add x)y)(SSO)=add x (add x (IO(add x)O))=add x (add x O)=add x x

x2 = Ack (SSO) x (SSO) = (snd(FF(0,add x)))(SSO) =

(snd(F(S0,Xy E Nut. l o (& x)y))) (SSO) =

(hy E Nut.1 (IO(Xn E Nut. (SO))(SO))(hy E Nut. IO(add x) y) y)(SSO) =

(hy E Nat.I(SO)(hy E Nut. lo(& x) y) y)(SSO) =

(hy E Nat.IO(add x)y)(hy E Nat.iO(add x)y)(SO) = IO(add x)x

We have defined the Ackennann's function Ack(n,x,y) by values only, i.e., for each n

separately. More precisely, the Ackennann's function is computed by decomposing its

argument n completely to SS ... SO (with n occurrences of S) and evaluating the result while

reconstructing n. If it is required that n always computes to a numeral, an actual program for

computing the Ackemann's function can be defined as it is shown below.

Let us recall from Chapter 5 the control structure associated with the type Boo1 (a type with

two objects true and false), namely the conditional [,] defined by the following one-step

reductions :

[a,bIA true + 1 a

[a , b l ~ false + I b

where a ,b E A. We will intmduce a corresponding programming construct defined on

constants c, (e.g., numerals k,) rather than on values a E A. This new construct is the term

case(b; c 1 ; c2) defined as follows:

case(true;ca;cb) + I C,

caseCfabe;c,;cb) + I cb

For example, if A is Nat and n,m E Nut, then case(b; k, ; k,) is defined as follows:

case(true; k, ;k,) + 1 k,

case(false;k,; k,) + 1 k,

We also need a boolean-valued program for checking whether a number is zero:

eqzero = I Nut true g

where g is defined by the following one-step reduction:

gb + 1 fake

The function eqzero E Nat+Bool is implemented by the following term in CTT+Nat+Bool:

is - zero(nD) 3 natrec(n ; true;xD ,y. false)

We also have to define a boolean-valued program for checking whether a number is greater

than zero:

gtzero = I Nat false h

where h is defined by

hb + 1 true

The function gtzero E Nut+ Boo1 is implemented as follows:

grt - than - zero(nD) z ruatrec(nD ; fake;xD ,y.true)

We note that the first two Ackermann's equalities are defined by the following single equality:

Ack(O,x,y) = x +y

Similarly, the third and fourth equalities can be implemented using the terms case and

is-zero. More precisely, Ack(n + 1 ,x,O) is implemented by

case(is-zero(k,) ;O;kl)

In order to implement the fifth Ackermann's equation, we define n applications of fxx as

do - app (n, f ,x) and implement it as
D D n a t r e ~ (n ~ ; x ~ ; ~ ~ , z . f (x ,z))

provided that f is a function from integers to integers. This is expressed by marking the term f

with a superscript D which is the notation for numerical terms. Then the fifth Ackermann's

equation is defined as follows:

Ack(n + 1 ,x,y + 1) = do-app(y,hy E Nar. hz E Nat.Ack(n,y,z) ,x)

Putting it all together, the function

f (n) E hx E Nut. hy E Nat.Ack(n,x,y)

is defined by the following equations:

f(0) = A X E Nat.hy E Nat.x+y

f (n + 1) = hx E Nat. hy E Nat. [do-app(y - 1, f (n) ,x) , [0, 1 J(eqzero n)] (gtzero y)

We note that f(0) is a function from integers to integers. We can easily show by induction

that if f(n) is from integers to integers, then a finite number of applications off (n) gives a

function from integers to integers as well. We introduce, in sequence, the following notation

for the functional terns from numerals to numerals and for the pairs of integers:

hxD .eD

(nD,mD)

The Ackermann's function Ack(n,x,y) is implemented by the nested application of the

programming schema natrec as follows:

(natrec(nD; h($,yy).x4) + f l ; v D ,z.(h($,yf).~ase(~rt-than-zero(#) ;
D D natrec(8 - 1;$;wD,r.z(x4),r));case(k-zero(vD) ;O;l)))))(x ,y).

The Ackermann's function is a generalization of the schema gnatrec where the generalized

natural predecessor is defined by a finite iteration

6.5 List Recursion

We can easily extend the result for natural numbers as a domain of quantification for classical

sentences to encompass other inductive types like lists, trees, etc. The terms of such types

have no control side-effects.

In this section, we will extend CTT with lists. The impredicative definition of the type of lists

of elements of a data type P is the following propositional schema:

(list P) = UX: Prop.X*(P*X=sX) *X

Its constructors nil (empty list constructor) and cons (non-empty list constructor) are defined

as follows:

nil = AX:Prop.Xn:X.kc:P*X*X.n

(cons e 1) = AX:Prop.hn:X.Xc:P*X+X.(c e (1 X n c))

The impredicative definition of lists identifies list objects with their operational interpretation.

We want to separate lists from their operational interpretation, i.e., form the control structure

associated with lists. We can accomplish this by forgetting the derivations of list constructs

(listP), nil, and (cons e 1) in F and only preserving their intuitionistic interpretation. As a

consequence, the following rule of formation for lists is innoduced to CTT+ListA:

A E &ta
ListA E data

(List-form)

where A is a data type variable in CTT corresponding to P in (list P). The constants jl will be

introduced to CT+ListA to represent lists 1 E ListA. The empty list Nil = 'nil' is the only

list equal to the constant jNil by definition

The constructor cons, when applied to a representation of a value h of type A and the

representation of a list 1 of values of type A, reduces to a universal abstraction representing the

list h. 1. The list constructor in CIT+ListA is the function constant Cons such that

Cons(ch , j r) i 'cons H R'

where R: (list P) and H : P represent a list r and an object h of type A in F, and ch is a

constant in CTT+A representing h E A. Provided the following reduction in the system F

(cons H R) red L

where L: (l t t P) represents in F a list h.r, the constant function Cons is defined in

CIT+ListA by the following one-step reduction:

Cons(chs j r) + I jar (Cons-red)

We will not present in this thesis the actual derivation of the computation schema for lists.

The process of formalization of reasoning with lists is analogous to the formalization of

arithmetical reasoning. We will only invoduce the schema itself. The following expression

schema represents the computation schema associated with the reasoning with lists:
L A L A l istrec(lL;a;x ,y , z . f (x ,y , z))

where superscripts L and A annotate terms that represent data.

The operational interpretation of listrec is defined by the following one-step reductions:
L A L A listrec(Ni1;a;x ,y ,I . f (x ,y , z)) + 1 a

L A L A L A l i ~ t r e c (j ~ , , ; a ; x ~ , ~ ~ , z . f (x ,y ,z)) + I f (ch , j r , l i s t r ec (j r ;a ;x ,y , z . f (x ,y , z)))

Next section presents an example of a program being an instance of the schema lisrrec.

6.5.1 The Smallest Element of a Non-Empty List

As an example of a recursive function on lists, we will implement the function to search for

the smallest element in a non-empty list of natural numbers. The specification for the program

is given by the following instructions based on the value of the input:

Nil: If the list is empty, the normal execution of the program is abandoned, and the result of

the program is the number 100.

n.Nil: If the list contains one element n, the value returned as a result of the entire program is

that element.

n.m.rest: If the list contains more than one element, the following primitive operation is

iterated: either m or n is chosen depending on whether m l n or whether n < m.

Several operations have to be introduced in order to define the program. There are two

primitive operations defined on list constants:

Wjh.,) + I ch tI(jh.,) + I j,

which recover the first element of a list and a list without its first element respectively.

Let us assume that we have an operation less that returns the smaller of two integers, namely

less(k, ,k,) k, if m < n less(k,,k,) + 1 k, if m2n.

Finally, we need a program that checks whether a list is empty. This program is defined as an

instance of the listrec computation schema as follows:
L L i s - ~ i l (l ~) I listrec(lL ; true;x ,y ,z. false).

Provided the above programming constructs, the program for searching for a minimum

element in a list of integers is defined as follows:

~i~(l~)=lisnec(care(ir_~il(l~);resultis(k~~);tl(l~)) ;M(lL);xD ,yL,z.less(xD ,z))

The computation of the program ~ i n L (1 ~) is based on the following three kinds of

conversion:

(1)
D L listrec(case(is - Nil(Nil);resultis(kloo);tl(Nil));M(Nil);x ,y .z.less(xD,z))

+ 1 resultis(klm) +1 kloo

When the argument of the program M i d is the empty list, the program will abandon its

normal execution and it will return the integer 100 as the final result. This "escaped"

computation is expressed in the definition of M i d using the resultis construct and its

interpretation is given in terms of the conversion (1) above. If its argument is a list consisting

of one integer, then MinL will return this integer as the final result. This is expressed by the

conversion (2). Finally, the conversion (3) expresses the recursive execution of a primitive

operation of choosing between two given integers.

CHAPTER 7

CONCLUSION

This thesis has been about the toplevel operational semantics of logical connectives and its

significance in program development. We have argued that so called constructive type

theories unnecessarily restrict reasoning in program development to be intuitionistic. As a

consequence of this restriction, only purely functional programs can be developed in these

theories. Even though functional programming is mathematically elegant, it lacks

expressiveness gained by using escapes, coroutines, and other explicit control operations. In

this thesis, we have shown how to construct well-typed programs with nonfunctional

operations presented as purely declarative constructs.

To cany out this endeavour, we have turned to the "program" content bf second-order

encodings of logical connectives, and shown that it corresponds to an encoded CPS-translation

on data-valued expressions of both structured and ground types. In other words, the

operational interpretation of types induces a CPS-translation on data-valued expressions. The

operational interpretation of logical connectives yields the proof methods provided by those

connectives. Correspondingly, a CPS-translation on data yields programming methods.

Hence, the operational interpretation of logical connectives yields direct operational semantics

for pairs, injections, integer expressions, list expressions, functions from integers to integers,

etc. It actually defines the language of classical proofs.

The problem with the second-order definitions of logical constants is that they are merely the

encodings of their operational semantics. As a consequence, there isn't a clear distinction

between different computations rules. To obtain the actual operational interpretation, and

consequently the acnurl programs, we have removed the impredicativity of definitions of

logical connectives by considering only the top-level contexts of proofs. We have presented

the top-level operational interpretation of logical connectives as a way of extracting the

computational content of classical proofs. We have introduced a classical program

development system, Computational Type Theory, formalizing this interpretation. We have

demonstrated the equivalence between CTT and the computational extract of the class of

classical llg sentences by showing that CTT formalizes the operational interpretation of llg

sentences. We have extended this result to Peano Arithmetic by specializing CTT to a first-

order theory, CTT+Nat, about natural numbers. We have defined several programming

examples in classical type theories with booleans, natural numbers, and with the lists of

natural numbers.

As we have already mentioned in the Introduction, another way of interpreting classical proofs

as programs was intmduced by Chetan Murthy in his thesis [Mu1thy90]. Murthy used the

double-negation/A-translation to extract the program content of classical proofs. He showed

that A-translation corresponds exactly to a continuation-passing-style translation on classical

program extractions. This method of extraction is inherently higher-order and semantically

complex. It does not distinguish between continuations and functions. It presents the

continuation as a "nonnal" function that may perform a jump when applied. In other words, a

continuation is introduced as an "imperative" add-on to a "declarative" language. In contrast,

CTT distinguishes between functions and continuations. There is a separate syntax for local

continuations, namely the syntactical abstraction facility, and the "resultis" construct for

implementing non-local continuations, i.e., escapes. These constructs are purely declarative.

In other words, in CTT continuations are given a sound declarative meaning as opposed to

treating continuations as a powerful but unstructured control primitive, as it is done in

[Murthy90]. Our extraction procedure is not an extension of the standard extraction p m d u r e

for constructive proofs [Murthy90]. The language of classical proofs is not "guessed and

then verified through translation, but derived from Prawitz+ encodings by applying to it a

"top-level" analysis. Friedman's A-translation converts a classical proof of a sentence into

a constructive proof that computes evidence for that sentence, but it does not gives us a direct

algorithmic content of classical rules.

Several systems have been built for automatic generation of purely functional programs.

There is (1) Nuprl [Const86], already mentioned in the introduction of this dissertation, which

is based on Martin-Liif s intuitionistic theory of types; (2) the calculus of constructions with

realizations (CCR) [Coquand85, Mohring891 which extends second-order h-calculus with

dependent types; and (3) system PX [HayNak88] which extracts computationally meaningful

parts of proofs as LISP programs. Hayashi's PX uses logics of pam'al t e r n to obtain

computational completeness (i.e., a general recursion operator). The use of a logic of partial

terms is necessary since the usual formulations of predicate logic do not permit the formation

of terms that do not always denote semantic values. As a consequence of this computational

completeness, termination of programs cannot be proved by the proof-checker of PX. A proof

that respects the separation of the termination condition from the rest of program verification

without preserving termination of all well-formed programs, is not a mathematically "good

proof': the process of extraction of an algorithm from a constructive proof is not checked for

correctness in a logical framework.

The difference between Nuprl and PX is that the latter uses a ftamework of logic and the

former uses a framework of a type theory to express computational meanings of constructive

proofs. The calculus of constructions with realizations (CCR) [Mohring89] provides a logical

framework for PX definitions of the notions of computationally uninformative or "type zero"

propositions, extraction and realizability. Some of PX logical rules, like replacement, are

coded and proved sound for program extraction in CCR.

As we pointed out before, Nuprl, PX, and CCR are systems for extracting purely functional

programs. Constructive mathematics that uses the propositions-as-types principle restricts

both the objects studied and the methods of proofs which may be applied. In systems like PX

or CCR the constructivity is implicit in the restriction to intuitionistic logic. Hence, not all

logical laws (e.g., the law of excluded middle, the proof by contradiction) can be used in the

proofs of consistency of logical specifications, even when applied to welldetermined

concepts1. This, in turn, means that nonlocal control operations cannot be expressed in the

corresponding languages.

The computational logic of this thesis, in contrast with Nuprl, PX and CCR, does not follow

the constructivist philosophy as to the nature of mathematics. In CTT the restrictions are

placed only on the objects studied (e.g., functions, sets), but in such a way that all results have

direct computational significance. C l T does not restrict the means of reasoning employed.

For example, the concept of natural number is well-determined so that the application of laws

of classical logic is justified (e.g., the law of excluded middle and consequently the proof by

contradiction). The minimal requirement for constructivity is that all objects considered must

be capable of being presented (e.g., functions are presented by rules, sets are presented by

defining properties). The minimal requirement for a formal system of constructive

mathematics is that existential assertions are witnessed by explicit solutions. CTT fulfills

these requirements by considering only completely presented sets, formalized in CTT by the

type of existential witness {A)B. A set is completely presented when the evidence of its

membership is canied by the members themselves: the evidence or witnessing data can be

"read off' from the construction of the member [Feferman79]. That is, the completeness of the

presentation assures explicit solutions to existential assertions. In ClT, the algorithms

f (y) E A, where y E B, compute the evidence for the membership in the set defined by the

property P in 3 x E A.P(x,y). This "works", i.e., f(y) is the evidence for 3 x E A.P(x,y),

since the type {A] B assures that f (y) computes a concrete datum. More precisely, we have

shown that f (y) has to be a total, recursive operation.

Since programs can be "read off' from completely presented sets, the realizability

interpretation is not required to extract the computational meaning from proofs. From the

program development perspective, no consuuctive content is assigned to the part that deals

1. I.e., conce who? definitions do not involve an implicit assumption of a completed totality of al l
objects. % sue&ons of truth mncmmg such conceprs are recognized as meanmgful and definite
(natural numbers, finlte graphs, etc.) Fefertnan841.

with the consistency of logical specifications: the goal is to be able to write an integer program

using the knowledge that its argument is positive without demanding an extra argument at

run-time justifying this fact.

CTT separates data types, types, and propositions. Such a separation was already used to

extract programs from proofs in the Calculus of Constructions [Mohringgg]. However, there is

a fundamental difference in the generated program extractions in CTT and CCR, and it should

be pointed out. There are t h e kinds of types in the Calculus of Constructions with

Realizations (CCR): the type Data of data types, the type Spec of specifications, and the type

Prop of propositions. The separation of Data from Prop allows to add one "exceptional"

element in each data type without getting an inconsistent proof system. In other words, CCR

extended each value domain with a bottom element. The problem with this solution is that it

is not always clear if, e.g., the domain nut already includes a bottom element, or if we must

add it ourselves. The problem becomes worse if we want to recover from run-time errors,

instead of abandoning execution completely. For example, let the expression

try e l else e2

have the following semantics: first, e 1 is evaluated. If everything goes well, the value of e 1

will be the result of try expression, but if evaluation of e l fails, ez is evaluated instead. For

example, the expression:

try (100 div x) else 99

would evaluate to [100/x] if x is not zero, and 99 otherwise. Such a valuation procedure is not

monotonic and may cause problems when recursion is invoduced to the language. The

problem with CCR is simply that one has not (and could not, since the logic is intuitionistic)

formalized from the start the fact that a program can fail (escape) and how to deal with it.

In summary, we have seen how to extract directly computational evidence from classical

proofs. Extracted programs may return values of structured types, i.e., pair, sums, and

functions from values to values. Our research has shown that the toplevel operational

interpretation of logical connectives provides a first-order account of the operational semantics

of "classical" programs. It yields a language with explicit syntax for continuations, including

an explicit nonlocal control operator. From a program specification perspective, CTT is a

classically founded program development system - a total-correctness reasoning system for

non-functional programs. In comparison with [Murthy90], we have extended the result for

Peano Arithmetic to other classical theories, e.g., to finite sequences of integers, trees.

In future work, CTT can be extended with a hierarchy of universes to allow introduction of

proofs for sentences of classes higher than ll:. As was pointed out in the Introduction, we

cannot hope in general to extract the computational content of classically provable C:

sentences. These are the sentences of the form 3x.Wy.R(x,y). The reason, as we have

discussed, lies in the use of classical reasoning to prove the proposition Vy.R(x,y). If one

could prevent this, then the proof of that proposition would be purely functional. The

introduction of universes will allow to treat functional types as ground types and hence

disallow to analyze their internal structure. The first-order natural iteration, for example, does

not yield all computable functions that might be constructed on natural numbers. This applies

also to computation schemas associated with other first-order theories. Yet such constructions

must count as a part of reasoning about numbers, lists, trees, etc.

To sum up, this thesis is a first step towards understanding total-correctness reasoning about

programs with explicit c o m l operators. The type-theoretic treatment of this subject in the

thesis could be developed to useful programming languages. Another interesting task is to

investigate the new logics which arise out of such an endeavour.

BIBLIOGRAPHY

Aristotle, Metaphysics, Oxford TransIation, ed. by W.D. Ross, Vol VIII,

Oxford, 28.

Beeson, M.J., FoundQtions of Constructive Mathematics,

Metarnathematical Studies, Springer-Verlag, 1985.

Benacerraf, P., Mathematical Truth, The Journal of Philosophy, 70,47-73.

Bocherlski, J. M., A Precis of Mathematical Logic, D. Reidel Publishing

Company, Dordrecht-Holland (1959).

Bocherlski, J. M., A History of Formal Logic, University of Notre Dame

PIES, (1961).

Boehner, P., Medieval Logic, The University of Chicago Press, Chicago

1952.

Brouwer, L.E.J., Historical background, principles and methods of

intuitionism, South African Journal of Science, 49, 139-46.

de Bruijn, N. G., Lambda-Calculus Notation with Nameless Dummies, a

Tool for Automatic Formula Manipulation, with Application to the

Church-Rosser Theorem, Indag. Math., 343, (1972), 381-392.

Carnap, R., The Logical Syntax of Language, Routledge & Kegan Paul

Ltd, London, 1937.

Constable, R., The semantics of evidence, Tech. Report. TR 85-684,

Comell University, Dept, of Computer Science, Ithaca, NY, 1985.

Constable, R. et al., Implementing Mathematics in the NuPrl System,

Prentice-Hall, Englewood Cliffs, N.J., 1986.

Coquand, Th., Une Thebrie des Constructions, these de 3eme cycle, Paris

VII (1985).

Coquand, Th., An analysis of Girard's paradox, First IEEE Symposium on

Logic in Computer Science, Boston (June 1986). 227-236.

Coquand, Th., Huet, G., The Calculus of Constructions, Infomation and

Control, 76, 1988.

Coquand, Th., Huet, G., Constructions: A Higher Order Proof System for

Mechanizing Mathematics, EUROCAL85, Linz, Springer-Verlag LNCS

203 (1985).

Dummett, M., Truth, in [Dummett78], 1-24. Originally published in

Proceedings of the Aristotelian Society, Vol. LIV.

Dummett, M., The Philosophical Basis of Intuitionistic Logic, in

[Dumrnett78]. Originally published in Logic Colloquium '73, eds. Rose,

Shepherdson, Bristol, July 1973.5-40.

Dummett, M., Elements of Intuitionism. Clarendon Press, Oxford 1977.

Dummett, M., Truth and Other Enigmas, Harvard University Press,

Cambridge, Mass., 1978.

Dummett, M., The Interpretation of Frege's Philosophy, Harvard

University Press, Cambridge, Mass., 1981.

Fefeman, S., Arithmetization of metamathematics in a general setting,

Fundamenfa Mathernacicae, 49,35-92.

Fefeman, S., Constructive theories of functions and classes, Logic

Colbqium 78, North-Holland, Amsterdam, 159-224.

Fefeman, S., Between Constructive and Classical Mathematics, Logic

Colbqium 78, Aachen 1983, LNCS, Springer-Verlag, 143- 162.

Felleisen, M., Friedman, D., Kohlbecker, E., Duba, B., Reasoning with

continuations, in Proceedings of the First Annual ACM Symposium on

Principles of Programming Languages, 180- 190, 1986.

[Gentzen35]

[Gi5&147]

[Grif fin901

Felleisen, M., The Calculi of \ - CS conversion: A Syntactic Theory of

Control and State in Imperative Higher-Order Programming Languages,

PhD Thesis, Indiana University, 1987.

Field, H., Tarski's Theory of Truth, The Journal of Philosophy 69,347-75.

Filinski, A., Declarative Continuations and Categorical Duality, Ms.

Thesis, Dept. of Computer Science, University of Copenhagen, 1989.

Fischer, M. J., Lambda-calculus schemata, in Proceedings of the ACM

Conference on Proving Assertions about Programs, vol. 7 of Sigplan

Notices, pp. 104-109, 1972.

Friedman, H., Classically and intuitionistically provable recursive

functions, in Higher Set Theory (Scott, D. S. and Muller, G. H., ed.), vol.

699, Lecture Notes in Mathematics, 21-28, Springer-Verlag, 1978.

Girard, J.Y., Lafont, Y., Taylor, P., Proofs and Types, Cambridge

University Press, 1989.

Girard, J.Y., Une extension de l'interpretation de Giidel a l'analyse, et son

application a l'elimination des coupures dans l'analyse et la theorie des

types, Proceedings of the Second Scandinavian Logic Symposium, Ed. J.E.

Fenstad, North Holland, 1970.

Gentzen, G., Untersuchungen uber das logische Schliessen, Mathematische

Zeitschrjft, 39,176-2 10,405-431

Gadel, K., What is Cantor's Continuum Problem?, American

Mathematical Monthly 54.5 15-25.

Griffin, T. G., A formulae-as-types notion of control, in Conference

Record of the 17th Annual ACM Symposuim on Principles of

Programming Languages, 1990.

Hayashi, S., Nakano. H., PX: A computational logic. Preprint RIMS-573,

Research Institute for Mathematical Sciences, Kyoto University; MIT

Press, Cambridge, Mass., 1988.

Heyting, A., Intuitionism: an Introduction, North-Holland, Amsterdam,

1971.

Huet, G., Induction hinciples Formalized in the Calculus of

Constructions, TAPSOFT87, Springer-Verlag, Pisa. LNCS 249,276-286.

Huet, G. (ed.), Logical Foundations of Functional Programming,

Addison- Wesley, 1990.

The Material Logic of John of St.Thomas, Y.R. Simon, J.J. Glanville, G.D.

Hollenhorst (trans.), The University of Chicago Press, 1955.

Kleene, S.C., Introduction to Metamathematics, Van Nostrand, Princeton,

1952.

Kleene, S.C., Mathematical Logic, John Wiley & Sons, 1967.

Kolmogorov, A. N., On the principle of excluded middle, in From Frege

to Godel: A Source Book in Mathematical Logic, 1879-1931 (J. van

Heijenoort, ed.), pp. 414-437, Cambridge, Mass., Harvard Univerisy Press,

1967.

Kleene, S.C., Mathematical Logic, John Wiey & Sons, 1967.

Kolmogorov, A. N., On the principle of excluded middle, in From Frege

to Godel: A Source Book in Mathematical Logic, 1879-1931 (J. van

Heijenoort, ed.), pp. 414-437, Cambridge, Mass., Harvard Univerisy Press,

1967.

Kotarbixbki, T., Spdr o desygnat (A Controversy Concerning the Concept

of Designalum). Prace Filozofczne XVIII (1963). 1.

Kreisel, G., Mathematical logic, in: Lectures on modern mathematics, vol.

III, ed., Saaty (N.Y., 1965) 95-195.

Kreisel, G., A survey of proof theory 11, Proceedings of the Second

Scandinavian Logic Symposium, University of Oslo, 1970.

[Martin- Laf721

[Martin -Lijf 821

Kreisel, G., Perspective in the Philosophy of Pure Mathematics, in Logic,

Methodology and Philosophy of Science IV, eds. Suppes, Henkin, Moisil,

1971.

Kreisel, G., Krivine, J.L., Elements ofMathematica1 Logic, North-Holland,

Amsterdam, 1971.

Kreisel, G., Mathematical Logic: Tool and Object Lesson for Science,

Synthese 62, 139-5 1.

Mac Lane, S., Categories for Working Mathematician, Springer-Verlag

(1971).

Milne, G., J., Strachey, C., A Theory of Programming Language

Semantics, Chapman and Hall, 1976.

Murthy, C., Extracting Constructive Content h m Classical Proofs, PhD

Thesis, Comell University, Dept. of Computer Science, Ithaca, NY, 1990.

Murthy, C., An Evaluation Semantics for Classical Proofs, Tech. Report,

TR 91-1213, Comell University, Dept. of Computer Science, Ithaca, NY,

1991.

Martin-Liif, P., About Models for Intuitionistic Type Theories and the

Notion of Definitional Equality, paper read at the Orldans Logic

Conference, September 1972.

Martin-Liif, P., Constructive Mathematics and Computer Programming,

Proc. Sixth International Congress for Logic, Methodology and

Philosophy of Science, North-Holland, Amsterdam, 1982,153-175.

Martin-Liif, P., Truth of a Proposition, Evidence of a Judgement, Validity

of a Proof, talk given at the workshop Theories of Meaning organized by

Centm Fiorentino di Storia e Filosofia della Scienza at the Villa di

Mondeggi near Florence, June 1985.

[Martin -Liif85 a] Martin-Liif, P., On the Meanings of Logical Constants and the

Justifications of the Logical Laws, Scuola di Specializzazione in Logica

Matematica, Dipartimento di Matematica, Technical Report 2., Universita

di Siena 1985.

Mendelson, E., Introduction ro Mathematical Logic, ed. D.Van Nostrand

Company, Litton Ed. Pub.. 1979.

Moody, E.A., Truth and Consequence in Mediaeval Logic, North-Holland,

Amsterdam, 1953.

Paulin-Mohring, C., Extracting Fa's Programs from Proofs in the Calculus

of Constructions, The Proceedings of the 16th Symposium on

Programming Languages, Austin, Texas, 1989.

Mycielski, J., The Meaning of Pure Mathematics, Journal of Philosophical

Logic 18, pp. 3 15-320, 1989.

Nordstriim, B., Terminating General Recursion, Dept. of Computer

Science, University of GoteborglChalmers, Sweden, 1987.

Nordstriim, B., Petersson, K., Types and specifications, in Proceedings of

IFIP 83, pp. 915-920, R.E.A. Mason (ed.), Elsevier Science Publishers

1983.

Nordstriim, B., Smith, J., Propositions, Types, and Specifications in

Martin-Liiof s Type Theory, BIT, 24(3), 288-301, October 1984.

Nordstriim, B., Terminating General Recursion, Dept. of Computer

Science, University of GoteborgfChalmers, Sweden, 1987.

Nordstriim, B., Petersson, K., Types and specifications, in Proceedings of

IFIP 83, pp. 915-920, R.E.A. Mason (ed.), Elsevier Science Publishers

1983.

Nordsuiim, B., Smith, J., Propositions, Types, and Specifications in

Martin-Liiof s Type Theory, BIT, 24(3), 288-301, October 1984.

Petersson, K., A Programming System for Type Theory, PMG Memo 2 1,

Chalmers University of Technology, S 4 12 96 Goteborg, 1982.

Pelc, J., The place of the philosophy of language, Contemporary

Philosophy. A new survey., Martinus Nijhoff Publishers, Vol. 1, pp. 11-34.

Prawitz, D., Nutural Deduction, Almqvist and Wiksell, Stockholm, 1965.

Prawitz, D., Ideas and results in proof theory, Proceedings of the Second

Scandinavian Logic Symposium, ed. J.E. Fenstad, North Holland, 1970.

Rees, J., Clinger, W., The revised report on the algorithmic langugage

scheme, SIGPLAN Notices, vol. 21, no. 12,37-79, 1986.

Sintonen, M., Realism and Understanding, Synthese 52,347-78.

Statman, R., Number theoretic functions computable by polymorphic

programs, 22nd Symposium on Foundations of Computer Science, 279-

282, IEEE, 1981.

Starchey, C., Wadsworth, C.P., Continuations: a Mathematical Semantics

for Handling Full Jumps, Tech. Monograph PRG-11, Oxford University

Computing Laboratory, Programming Research Group, Oxford, England,

1974.

Sundholm, G., Constructions, Proofs and The Meanings of Logical

Constants, Journal of Philosophical Logic 12, 15 1-72.

Szabo, M.E., The Collected Papers of Gerhard Gentzen, North-Holland,

Amsterdam, 1969.

Tait, W.W., Intensional interpretation of functionals of finite type I, The

Journal ofsymbolic Logic 32 (1967). 198-212.

Tait, W.W., Against Intuitionism: Constructive Mathematics Is a Part of

Classical Mathematics, The Journal of Philosophy 12, 173- 195.

[Tait86] Tait, W.W., Truth and Proof: The Platonism of Mathematics, Synthese 69,

34 1-370.

[Tarski441 Tarski, A., The Semantic Conception of Truth, Philosophy and

Phemmenological Research, Vol. IV, March 1944,34 1-75.

[PM] Whitehead, A.N., Russell, B., Principia Mathematica, Cambridge

University Press, 191 1.

[Turnen61 Turner, D. A., SASL Language Manual, St. Andrews University Technical

Report, December 1976.

[Weinstein831 Weinstein, S., The Intended Interpretation of Intuitionistic Logic, Journal

of Philosophical Logic 12,261 -70.

I was born in Poland in 1959. I received my primary and secondary education in Wroclaw,

Poland. After the high school graduation I started my studies at the Technical University of

Wroclaw in the Institute of Information Systems. I graduated in 1983 with the Master's

degree in computer science. In 1984 I started the Ph.D program in the Department of

Computer Science and Engineering at the Oregon Graduate Institute in Beaverton, Oregon. I

received Ph.D. in computer science in 1992. My PhD. research concentrated on automated

program development and programming language design. Since 1989 I have been working as

a consultant for the AT&T Bell Laboratories. My job assignments have been connected with

the analysis of the digital networks and telecommunications software development.

	199207.napierala.maria to p. 60.pdf
	199207.napierala.maria to p. 140.pdf

