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ABSTRACT

Finite Element Simulation and Mechanical Characterization

of Composite Insulators

Anurag Bansal

Supervising Professor: Dr.M. Kumosa

Composite Insulators are required to fulfill long-term structural roles in power

transmission and substation applications. These insulators consist of a glass reinforced

polymer (GRP) composite rod, with two metal end-fittings either mechanically crimped or

adhesively bonded to the ends of the rod during assembly. In comparison with their porce-

lain counterparts, composite insulators offer significant advantages such as a high

mechanical strength-to-weight ratio, improved damage tolerance, flexibility, and ease of

installation. However, since they are a relatively new product, their design is still in an

evolutionary stage, and their structural integrity and expected life to failure is a subject of

great interest to both utilities and manufacturers.

The objective of this study was to evaluate the short-term structural integrity of

composite insulators subjected to externally applied multi-axial loads, in conjunction with

the residual radial compression applied to the GRP rod during crimping. In order to

achieve this goal, comprehensive axisymmetric- and three-dimensional finite element

models have been developed in this study. The models assumed either a perfectly bonded

interface, or an imperfect interface between the GRP rod and metal end-fittings. The inter-
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nal stresses in the GRP rod of 115kV substation insulators, caused by radial compression

applied during crimping, and seven different cases of expected multi-axial loads were ana-

lyzed. In addition, destructive and non-destructive tests were performed on five substation

insulators in order to determine their mechanical strengths under three different modes of

external loading, and to measure the extent of radial compression applied to the insulators

during crimping. Furthermore, the finite element models were used to perform a paramet-

ric study of the influence of design variables such as the radius of the GRP rod, the magni-

tude and shape of radial compression applied during crimping, and the coefficient of

friction at the GRP-metal interface, on the axial loading capacity and the internal stresses

in the GRP rod of both substation and suspension insulators. In addition, a methodology

employing the biaxial Iosipescu fixture was suggested for measuring the biaxial failure

strength, in particular, the resistance to axial splitting (or debonding), of unidirectional

composites used in insulators.

Results obtained from this study indicate that the magnitude and shape of the

radial compression profile of the GRP rod, and the mechanical performance under external

loads, can be significantly different among insulators intended for the same application.

The perfect interface models were inappropriate for computing the maximum internal

stresses, since they assume a linear mechanical behavior and predict singular stresses at

the GRP-metal interface comer. On the other hand, the imperfect interface models could

accurately predict the structural non-linearity of insulators, and were in good agreement

with experimental results obtained under three different modes of external loading. From

the parametric design analysis, the effects of several variables were evaluated, and semi-

empirical relationships were derived to extrapolate the numerical data within a well

defined range of the design variables. It was shown that the biaxial Iosipescu test is a reli-

able technique for measuring the resistance of unidirectional composites to intralaminar

splitting under biaxial loading conditions.
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Chapter 1

Introduction

Electrical insulators are required to fulfill long-term structural roles in power

transmissionand substationapplications.The primaryobjectiveof these insulatorsis to

provide mechanical support to a high-voltage overhead line by transferring the conductor

load to a tower, while providing electrical insulation between the tower and conductor.

Due to the prohibitive costs involved in line maintenance, utilities desire that insulators

fulfill this objective continuously for a period of at least fifty years. These insulators have

traditionally been manufactured from toughened porcelain or tempered glass. In fact, in

most countries, porcelain or glass insulators are still in service.

The history of polymeric insulators began in the 1940s when organic materials were

used to manufacture high voltage indoor electrical insulators from epoxy resins. 1 These

insulators were made feasible for outdoor use in the 1950s with the discovery that

alumina trihydrate fillers can improve the tracking and erosion resistance of the polymer

material. In the late 1960s and early 1970s, manufacturers in Germany, England, France,

Italy, and the United States started introducing a glass fiber reinforced composite rod to

serve as the principal load bearing component of insulators, leading to the first generation

of composite transmission line insulators.1,2 Since then, composite insulators have

rapidly replaced the traditional ceramic insulators in outdoor transmission and distribu-

tion lines, as well as substations. A study published in 1991 has reported that composite

insulators have already captured 20% of the transmission line market in the United

States, and the market share is expected to increase rapidly.1 In comparison with their

1



2

brittle ceramic counterparts, composite insulators offer significant advantages such as a

high mechanical strength-to-weight ratio, improved damage tolerance, flexibility, impact

resistance, and ease of installation.3 However, since these insulators are a relatively new

product, their design is still in an evolutionary stage. Furthermore, due to insufficient

field experience, their structural integrity and expected life is a subject of great interest to

both utilities and manufacturers.3-5

1.1. INSULATOR DESIGN

Composite insulators rely on a unidirectional glass reinforced polymer (ORP) composite

rod as the principal load bearing component. The rods are manufactured by pultrusion,

and the constituents are either polyester, modified vinyl-ester, or epoxy resins, reinforced

with E-glass or ECR-glass fibers. The fibers are axially aligned and constitute 60 to 70

percent of the rod by volume. The ends of the GRP-rod are supported by two metal end-

fittings made of either aluminum, forged steel, or galvanized cast iron. The primary func-

tion of the end-fittings is to provide a mechanical link and to transfer loads from the

high-voltage conductor to the GRP rod (at the line-end), and from the GRP rod to the

tower (at the tower-end). The end-fittings for suspension insulators traditionally had the

epoxy cone design, wherein the ends of the rod were chemically bonded to epoxy resins

injected in a cone-shaped metal shell (see fig. 1.1 a). However, due to a lower cost of pro-

duction, insulator manufacturers have recently shifted to the crimped end-fitting design

(see fig. 1.1 b). In the crimped design, the end-fittings are radially compressed on to the

ends of the GRP rod until the onset of plastic deformation in the end-fittings. Unlike the

epoxy-cone design, the bond achieved between the rod and crimped end-fittings is purely

mechanical in nature. 6
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The GRP-rod is covered by a rubber sheath with several disk-shaped weathersheds.

This layer is made of either ethylene-propylene (EP), ethylene-propylene diene monomer

(EPDM), or si1conerubber compounds. The primary function of the rubber sheath is to

protect the composite rod from moisture ingress and electrical leakage currents. The

weathersheds are used to provide a longer leakage path between the high-voltage conduc-

tor and transmission-line tower to prevent electrical failures of insulators (also known as

flashover). Since the GRP composite is susceptible to stress-corrosion cracking due to

moisture ingress and internal partial discharge, the physical and chemical properties of

the rubber layer have been the subject of several investigations. 2 Under service condi-

tions, the rubber layer is required to exhibit good hydrophobicity, good tracking or

corona-cutting resistance, and superior wear resistance. For insulators to be used in very

high voltage applications (up to to 735 kV), the number of weathersheds and the overall

length of the insulator is increased in order to maintain a sufficiently large leakage dis-

tance. In some insulators, the interface between the rubber sheath and GRP rod is chemi-

cally bonded with an epoxy resin, while in others it is coated with silicone grease without

any adhesive bonding.

1.2. LOADING CRITERIA

Based upon their intended applications, composite insulators can be categorized as

suspension, substation, and line-post insulators. Figures 1.2 (a) and (b) show suspension

insulators loaded in overhead transmission lines in the I-string and V-string

configurations, respectively. A typical line-post composite insulator is shown in figure

1.3. Figure 1.4 (a) shows the traditional porcelain substation insulators loaded in service,

and figure 1.4 (b) shows a typical 115 kV substation composite insulator. The following
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sections describe the applications and loading conditions for these insulators.

(a) Suspension Insulators:

Suspension insulators are used in overhead transmission lines with line voltages in the

range of 69 kV to 735 kV. During service, they are most frequently loaded in the I-string

configuration (see figure 1.2 a) such that the dominant loading mode is axial tension. In

some areas where the line-loads are expected to be higher due to wind-gusts, suspension

insulators may be loaded in the V-string configuration (see figure 1.2 b). This

configuration employs two insulators instead of one, thereby reducing the axial tensile

load experienced by each insulator. The V-string configuration is however less popular

due to the higher overall cost of the transmission line. The mechanical rating of com-

mercially available suspension insulators can range from 40 kN to 600 kN. While the

design of the insulators remains the same, the radius of the GRP rod is used to manipu-

late the maximum permissible load to be applied in service. At present, insulators rated at

40 to 60 kN typically have a rod radius of 8 mm, while insulators rated at 60 to 111 kN

have a rod radius of 11 mm. Furthermore, the number of weathersheds and the overall

length of the insulator is used to manipulate the specific leakage distance, and therefore

the applicable line voltage. Suspension insulators used in 345 kV lines are typically

longer, and have more weathersheds, than insulators in 69 kV lines.

(b) Line-Post Insulators:

The design of line-post insulators is similar to that of suspension insulators. The radius

of the GRP-rod is approximately 20mm. During service, these insulators are loaded hor-

izontally on transmission and distribution line poles, with the other end supporting the
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high-voltage conductor. The dominant loading mode is bending for these insulators (see

figure 1.3).

(c) Substation Insulators :

These insulators are used in electrical substations. The 115 kV substation insulators are

approximately 1140 mm in length, with a rod radius of approximately 31 mm. The

crimped end-fittings in these insulators have a flat base which acts like a flange. During

service, two or three substation insulators may be axially stacked on top of each other to

serve as a support pillar (see figure 1.4 a). The top-most insulator carries the high-voltage

conductor, the lower-most insulator is supported to the ground, and the intermediate

insulator(s) serve as pillars to transfer the load from the conductor to the ground.

In addition to the most dominant loading modes expected for the insulators ( i.e.,

axial tension for suspension insulators, bending for line-post insulators, and axial

compression for substation insulators), there are usually several other sources of static

and cyclic loading during service. All of the above insulators are subjected to torsional

forces either during normal service conditions, or during line maintenance and installa-

tion. Furthermore, natural causes such as ice-deposition during winters, extreme winds,

and earth-quakes are factors that are taken into account. The overall loading conditions

for all of the above insulators are therefore multi-axial in nature.

Composite suspension insulators represent 2 to 5 percent of the cost of a transmis-

sion line. During service, mechanical failure of a single insulator may instantly increase

the load on adjacent insulators, thereby creating a possibility for a series of cascading

failures along several miles of a transmission line. This situation can be further aggra-

vated by the fact that composite insulators have been known to loose their strength with
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time.7 Due to these concerns, the design of transmission lines is governed by stringent

loading criteria in order to minimize the chances of insulator failures. In fact, the design

philosophy of some utilities is to prefer failure of transmission line towers prior to insula-

tor failure. There are two approaches currently being used in line design.

(i) Working Load Design

The working load design (WLD) is a reliability based approach which employs

empirical methods to determine normal working loads, and probabilistic methods to

evaluate the chances of insulator failure.8 In this approach, safety factors ranging

from 1.5 to 4.0 are used to separate the normal working loads from the strength of

an insulator. These factors are determined from the bare-wire loads, and possible

deviations in the average strength of an insulator. The main objective of the WLD

approach is to prevent failure at design loads, without considering occasional over-

loads caused by wing gusts or seismic activity. This method is most frequently

recommended by safety codes such as the National Electric Safety Code (NESC).

(ii) Ultimate Load Design

Unlike the WLD, the ultimate load design (ULD) is based upon actual failure loads

of an insulator, instead of probabilistic predictions. The method considers extreme

overloads which are likely to be encountered once in 25 to 50 years. A major advan-

tage of the ULD is that it permits utility engineers to design for failure ( e.g., tower

versus insulator) by providing a lower stress reduction factor to one component than

to another.8

In practice, it is found that neither of the above approaches are sufficient alone.

Furthermore, in order to apply either the WLD or the ULD and thereby limit the
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anticipated loads experienced by an insulator in service, prior knowledge of several

parameters is necessary. The following parameters are determined by several considera-

tions relevant to the performance of insulators.

(i) Bare Wire Load: This is the load of a conductor assuming no ice deposition or wind

loading. A suspension insulator must support 1.5 times this load continuously

throughout its life of approximately fifty years. In addition, some utilities expect

that an insulator should support five times this load for at least one minute without

failure.

(ii) Rigging or Stringing Load: This load is larger than the bare wire load, and is

encountered during line maintenance. For instance, if one insulator is unloaded for

inspection, the vertical loads would increase 1.5 times on the adjacent insulators.

Furthermore, since human safety is involved, safety factors between 1.5 to 4.0 are

attached to the stringing loads.

(iii) Fatigue Loads: These loads occur due to wind and aeolian vibrations in the con-

ductor and tower.

(iv) Maximum Ice and Wind Load: This load is calculated from wind gusts ranging

from 50 to 100 mph, and radial ice deposition on the conductor ranging from 24 to

45 mm in thickness. Design engineers require that an insulator should be capable of

supporting this load continuously for one week without failure, at any time during

its expected life.

In addition to the above parameters, dynamic load amplifications caused by seismic

activity are frequently taken into consideration. To account for variations in insulator
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strengths, and the reduction in insulator strength with time, most utilities presently use

stress reduction factors of = 0.5 for axial tensile or compressive loads, and = 0.4 for can-

tilever (bending) loads.8

1.3. INSULA TOR RA TINGS

Insulator ratings describe the maximum load that should be applied to an insulator in ser-

vice. Rating tests are performed by either insulator manufacturers or utilities. These tests

can be categorized as design tests, sample tests, and routine tests. Design tests are per-

formed when design or material changes are introduced by a manufacturer, sample tests

are performed on one insulator produced from each lot of a manufacturing schedule, and

routine tests (or proof tests) are performed on each insulator. The methods to be used in

rating insulators have been standardized by organizations such as the American National

Standards Institute (ANSI), the International Electrotechnical Commission (lEC), the

Institute of Electrical and Electronics Engineers (IEEE), and the Canadian Electrical

Association (CEA). However, most of these standards require tests to be performed under

static axial tensile loads only, while in service, composite insulators are subjected to

multi-axial loads which include axial tension/compression, bending, and torsion. Further-

more, the loads applied in service are frequently cyclic in nature.

Since polymer matrix composites materials are microscopically heterogeneous

materials, the strengths of composite insulators exhibit significant deviations. Therefore,

utilities rely on statistical methods to evaluate the possibility of failures below the
-

specified mechanical rating. This approach assumes that the standard deviations (0') of

the strengths of insulators follow a Gaussian distribution about the mean strength (X)

obtained from several tests. Figure 1.5 shows a probability density function obtained
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from this assumption. The area under any section of the curve represents the probability

of a composite insulator failing at a load above or below that range of standard deviations

(a) from the mean strength (X).The total area under the curve is 1.0. The probability of

insulator failures in the range :x:t 1a is 68%, while the probability of failures in the

range :x:t 3 a is almost 100 %. Using this approach, in conjunction with experimental

data provided by manufacturers, utility engineers can assess the reliability of a transmis-

sion line. For example, if sample tests show that n insulators in a batch of N are under the
-

mean strength (X)rated at :x- 2 a, then the probabilityof failure of a transmissionline

with M insulators can be obtained as follows:

Probability of an insulator failing below :x=.!!:....N

Probability of an insulator not failing below :x=1- ~

Probability that any insulator on the line will not fail =( 1- ~ )M

Therefore, probability of transmission line failure =1- ( 1-~ )M

The mechanical rating of composite insulators consists of three components,

namely; specified mechanical load tests, time-load tests, and routine tests.

1.3.1. Specified Mechanical Load Tests

The specified mechanical load (SML) test is a sample test performed on one insulator

from each lot of a manufacturing schedule. At present, the SML rating is an ambiguous

term since most manufacturers follow different methods to define the SML.

The standard procedure described by ANSI C29.11 9 dictates that in order for a load
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to be tenned as the SML load, an insulator should be able to withstand 75% of this load

for 90 seconds without failure, and on further loading to 100% of the load, the insulator

should fail instantly. 9 The main disadvantage associated with the ANSI definition of

SML is that it does not specify the number of insulators to be tested, thereby ruling out a

probabilistic analysis of failure. Furthennore, instead of the onset of intralaminar split-

ting in the composite rod, the tenn "failure" in the ANSI tests is usually considered as the

macroscopic separation of the insulator into two or more pieces.

The IEC standard 10definition of the SML rating is essentially the same. However,

it does specify the number of insulators to be tested. For instance, in a manufacturing lot

ranging from 300 to 2000 insulators, lEe recommends that SML tests be perfonned on at

least 4 insulators. While this standard is more widely used, it does not require the

manufacturers to report the mean strength (X)and the standard deviations (cr)associated

with the SML tests.

There are several inadequacies which render the SML rating as an insufficient index

to characterize the in-service capabilities of an insulator. Some of the problems associ-

ated with the SML rating are :

. Instead of testing complete insulator units with the end-fittings attached, some
manufacturers report SML ratings obtained from the bare GRP rod. Since failure of
the interface between the rod and end-fittings has been widely reported as a mode of
failure,6 results obtained from bare GRP rods may be misleading.

. Some manufacturers report the SML as the mean failure load (X), while others
include their own safety factors by reporting the SML as the mean failure load
minus two or three standard deviations.

. The SML tests can characterize only short-tenn strengths of insulators. Unlike their
porcelain counteroarts, composite insulators have been known to loose their
strength with time7, 11
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. The SML tests rate the performance of an insulator only in axial tension. In service,
suspension insulators are also subjected to bending and torsional loads in both static
and cyclic conditions. Furthermore, it appears that substation insulators are also
rated by SML tests (performed under axial tension), whereas during service they are
subjected mainly to axial compressive loads.

1.3.2. Load. Time Tests

Composite suspension insulators can fail at 50% of their SML rating if the load persists

for several years, and 10% of their SML rating if the GRP rod is exposed to acid-rain and

electrical partial discharge.12,13 The strength of the GRP rod has been reported to

degrade linearly as a function of the logarithm of time.?' 11In order to provide an indica-

tion of the long-term strengths of insulators, manufacturers perform load-time tests on

the GRP rod. Since the strength of an insulator after 50 years is of interest to utilities, the

load-time tests are usually performed to determine the strength after 96 hours, and the

data is extrapolated to 50 years by assuming a linear reduction in strength with the loga-

rithm of time (see figure 1.6).

The ANSI C29.11 standard9 requires three insulators to be continuously loaded at

60% of their SML rating for a period of 96 hours. If there are no failures, then the results

can be interpreted as an 87.5% probability that the strengths of all insulators will exceed

60% of the SML after 96 hours. The IEC specification10of the load-time characteristics

is essentially the same, with the exception that it requires the three insulators to be loaded

at 70% of the SML for 96 hours. The rationale for this specification is that if the insulator

strength versus log. time behavior is assumed to be linear, then the IEC specification

ensures that the slope of the straight line is less than 8% of the SML.

Figure 1.6 shows that if the strength of the insulator is 60% of the SML after 96

hours (4 days), then by extrapolation, it is determined that the strength at the end of 50
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years will be 40% of the SML. Therefore, most utilities design transmission lines such

that the typical working load of an insulator is less than 40% of the SML, and the worst

case of load amplification ( e.g., due to wind gusts, ice deposition, and seismic activity)

will never exceed 60% of the SML rating. In spite of these precautions, composite insula-

tors have been reported to fail in service. Some of the main problems associated with the

load-time tests are :

. The tests are frequently performed on bare GRP rods, without the attached end-
fittings. Since failure of the end-fittings and the rod-metal interfaces are likely to be
time dependent phenomena, the test results can be misleading.

. The tests are performed under pure uniaxial tension, without considering the effects
of axial compression (for substation insulators), bending (especially for line-post
insulators), and torsion.

. The slope of the load-time line can be significantly larger in the presence of cyclic
loads, corrosive environments, and internal partial discharge.

1.3.3. Proof or RTL Tests

Proof or routine test load (RTL) tests are performed on every insulator manufactured.

The present practice is to apply an axial tensile load equivalent to 50% of the SML for a

period of three seconds. This is simply a quality assurance test and does not provide any

indication of the long-term performance of an insulator. In fact, the RTL test does not

guarantee that an insulator can withstand the same load of 50% of SML again. In some

cases, when RTL tests are repeated, insulators have been reported to fail at a load below

50% of the SML rating.8
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1.4. FAILURE MODES

In the previous section, it was seen that there are several inadequacies in the methods

presently being used to rate the mechanical performance of insulators. In the past decade,

utilities have reported several "brittle failures" in composite suspension insulators. These

failures, in conjunction with the lack of sufficient field experience, have significantly

retarded the growth of the composite insulator market. In this section, some of the possi-

ble failure modes for composite insulators are described. It should be mentioned that

electrical failures resulting in flashover of the insulators have also been widely reported.

However, only mechanical failure modes will be described.

(i) Stress-Corrosion Cracking

The so-called "brittlefracture" mechanism of composite suspension insulators has been

extensively studied by Kumosa and Qiu.12,13These failures were reported to occur in

suspension insulators based on the epoxy-cone design of end-fittings, at mechanical loads

as low as 10% of the SML rating of the insulators. Kumosa et al. 12reproduced the frac-

ture surface morphology of the field-failed insulators in laboratory GRP specimens sub-

jected to acidic environments, electrical discharge, and low tensile loads. Based on these

studies, it was concluded that the brittle fracture process is essentially a stress-corrosion

cracking (See) mechanism caused by moisture (or acid rain) ingress into the end-

fittings.12,13In this process, stress-corrosion cracks propagate perpendicular to the fibers

by causing individual fiber failures. Since the crack-growth rate is extremely slow with

very low mechanical loads involved, the fracture surface of the see failed GRP-rod is

very smooth. Eventually, the remaining cross-sectional area of the GRP rod becomes too

small, and results in brittle fracture with a brush-like fracture surface.
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(ii) Intralaminar Failure of GRP rod

As mentioned earlier, composite suspension, line-post, and substation insulators can be

subjected to bending and torsional loads during service. According to the beam theory of

linear elastic bodies,14 if the composite rod is subjected to bending loads, then one edge

of the rod will experience axial tensile stresses, the opposite edge will experience axial

compressive stresses, and the central axis of the rod will experience intralaminar shear

stresses. If the external bending loads are excessive, then intralaminar shear failure of the

rod can occur, resulting in axial splits within the rod. These splits will be very difficult to

detect, and further loading of the insulator can result in brittle fracture.

Similarly, under torsional loads, the shear stresses will be maximum on the surface

of the rod. 14Under excessive torsional loading, intralaminar axial splits will develop on

the external surface of the rod.

(iii) Crimping Damage

In the crimped end-fittings presently being use, large magnitudes of radial compression

are applied to the rod via the end-fittings. In some cases wherein the SML rating of the

insulator is required to be very large, and the radius of the GRP-rod is not sufficiently

large, the crimping process can generate intralaminar compressive damage in the rod.

This damage will exist in the form of multiple cracks in the compressed GRP-rod. When

loaded in service, insulators with this type of internal damage might encounter failure

either due to end-fitting slippage, propagation of the micro-cracks, or electrical discharge

within the micro-cracks.15,16

(iv) End-fitting Slippage

As mentioned above, excessive radial compression during crimping can result in internal
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damage to the GRP rod. On the other hand, if the radial compression applied during

crimping is not sufficiently large, then the axial tensile or compressive forces applied

during service can result in internal sliding of the rod withing the end-fittings. In suspen-

sion insulators, this type of failure at the GRP-metal interface can result in complete

separation of the end-fittings from the rod. This situation is further aggravated by the fact

that composite insulators are expected to be in service for a long period of time (=50

years).

1.5. OBJECTIVE OF THIS STUDY

This study addresses the possibility of short-term mechanical failures of composite insu-

lators. The goal of this study is to evaluate the maximum load bearing capacity of insula-

tors subjected to a wide variety of multi-axial loads, and to evaluate the present design of

crimped end-fittings in composite insulators.

In order to achieve this goal, comprehensive two- and three dimensional finite ele-

ment analyses have been performed for composite insulators subjected to several cases of

multi-axial loading conditions which are likely to be encountered in service, in conjunc-

tion with the residual compressive stresses generated due to crimping. Destructive

mechanical tests have been performed to verify the finite element models under different

modes of loading.

To evaluate the design of crimped end-fittings, compression profiles have been

determined experimentally, and simulated using finite element models. Several design

variables have been considered in order to optimize the internal stresses and axial loading

capacity of composite insulators.
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Since the GRP composite rod of insulators is subjected to a wide range of multi-

axial loads during service, the intralaminar failure and fracture properties of unidirec-

tional polymer matrix composite materials have been studied under a wide range of

multi-axial loading conditions. These studies are based on experimental data and finite

element simulations of the biaxial Iosipescu test method.

1.6. OUTLINE

Chapter 2 presents a detailed description of the analytical and experimental techniques

employed in subsequent parts of this study. The experimental characterization of compo-

site insulators is described in chapter 3. This includes non-destructive ultrasonic evalua-

tion of the radial compression applied to the GRP rods, and the destructive mechanical

tests perfonned on five substation insulators under axial compression, bending, and tor-

sionalloads. The axisymmetric and three-dimensional finite element models, the multi-

axial loading conditions, and the experimental verification of the models is presented in

chapter 4. Chapter 5 focuses on the application of the biaxial Iosipescu test method for

characterizing the intralaminar failure and fracture properties of unidirectional composite

materials, including the GRP composite used in insulator rods. An overall discussion of

the computed internal stresses in the GRP rods is presented in chapter 6. Based upon the

computed stresses and the experimental characterizations perfonned in chapters 3 and 5,

the possible failure modes of insulators have also been outlined. In addition, a systematic

parametric study is presented which evaluates the effects of the radius of the GRP rod,

the magnitude of radial compression applied to an insulator rod during crimping, the

shape of the radial compression profile, and the frictional properties of the GRP-metal

interface, on the axial load bearing capacity and internal stresses of the GRP rods of insu-

lators.
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(a)

(b)

Figure 1.1 : End-fitting designs in composite suspension insulators;
(a) Epoxy cone design, and (b) Crimped design.
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(a)

(b)

-

Figure 1.2 : Loading configurations of suspension insulators;
(a) I-string configuration, and (b) V-string configuration.
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Figure 1.3 : Line-post composite insulator loaded in service.
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(a)

----
(b)

Figure 1.4: Substation insulators; (a) Porcelain insulators in service,
and (1))TyPiCal1]5 kV composite substation insulator.
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Chapter 2

Background Infonnation

This chapter describes the background, theory, and procedures for all the experimental

and analytical techniques employed in subsequent chapters of this study. Since composite

insulators rely on a unidirectional E-glass/epoxy composite rod as the primary structural

component, a brief description of polymer matrix composites has been given, along with

some presently available theories for estimating the elastic moduli and strengths of these

materials. Since the GRP rod of the insulators is subjected to multi-axial loads during

service, the biaxial Iosipescu test has been described as a means to experimentally meas-

ure the intralaminar failure strength of the GRP material. In addition, the application of

the principles of linear fracture mechanics to unidirectional composites, and the currently

available methods for evaluating the crack-tip fracture parameters are presented. Accord-

ing to the theory of linear elasticity, the stresses at the interface comer between the GRP

rod and metal end-fittings may be singular in nature. Therefore, numerical techniques are

described to evaluate the presence of singular stress fields. Finally, analytical and numer-

ical methods are presented for the solution of general contact problems such as the

mechanical contact between the GRP rod and end-fittings of composite insulators.

2.1. POLYMER MATRIX COMPOSITES

Polymer matrix composite (PMC) materials are a synergetic combination of a high stiff-

ness reinforcing material with a ductile matrix, which leads to a high specific strength

and stiffness in comparison with the unreinforced monolithic material. In the past two
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decades, the emphasis on light-weight structural materials has lead to a dramatic rise in

the use of polymer matrix composite materials in the industry, particularly for aerospace,

automobile, sporting goods, and electrical transmission applications. The impetus on the

growth of structural PMCs has been complemented by the development of high-modulus

and -strength fibers (e.g. graphite, glass, aramid, boron) which may be used to reinforce

either thermosetting or thermoplastic resins. Thermosetting resins (e.g. epoxy, polyes-

ter, polyamides, phenolic) have a cross-linked molecular structure for high-temperature

stability and strength. On the other hand, thermoplastic resins (e.g. polypropylene,

nylon, polysulphone, polycarbonate, and polyether-ether-ketone) consist of monomer

units which result in a high ductility and large creep relaxations at room temperature.

Depending upon their geometry, fiber reinforced composite structures consist of either

flat laminates, or are filament wound (for cylindrical structures e.g., tubes, shafts, and

pipes). Flat laminates consist of layers of laminae stacked in a predetermined sequence to

achieve optimum properties and performance in service. The fibers within each lamina

may be unidirectionally aligned, woven, or randomly distributed in two or three dimen-

sions.!7,18

Due to the heterogeneity of their microstructure, polymer matrix composites are

highly susceptible to premature failures by the initiation and propagation of intralaminar

and interlaminar crack-like flaws. Intralaminar flaws exist within a lamina in the form of

multiple microscopic debondings and matrix cracks. On the other hand, interlaminar

flaws occur as delaminations along the free surface between adjacent laminae. In both

cases, the micro-flaws can generate macroscopic splits under relatively low loads, result-

ing in a drastic reduction in the stiffness and strength of the material. Final catastrophic

fracture of the composite structure occurs by the unstable growth of these splits under the
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combined influence of transverse tensile (mode I), in-plane shear (mode II), and anti-

plane shear (mode III) stresses. Figure 2.1 shows the three fundamental modes of crack

extension in composite laminae.

2.1.1. Constitutive Relations

In the generalized form, Hooke's law can be expressed as 17

6

<5j=L CijEj (i,j =1, 2, 6)
j=1

(2-1)

where, <5jare the stress components, Ej are the strain components, and Cij denotes the

stiffness matrix. It can be shown that Cjj =Cjj.17In thinplateswherea plane stresscon-

dition can be assumed ( i.e., <53= 't23= 't31),equation 2-1 can be simplified to

(2-2)

For unidirectional composite laminae, due to the orthotropy (or transverse isotropy) the

compliance matrix [Aij] requires only four material constants (E u, E 22, V12,and G 12)

with17,19

au =lIEu; a22 =l1E22; a12 =-v12IEu =-V21IE22;

a66 = 1/GI2; and a16 = a26 = 0

(2-3)

It is customary to denote the direction parallel to the fibers as the 11 - direction, while the

directions 22 and 33 are perpendicular to the fibers ( i.e., E 11> E 22)'

For isotropic materials, determination of the matrix Ajj requires only three constants

(E, v, and G), and only two of these are independent with
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all =a22= lIE; al2 =-vlE;

a66=2(au -al2)= IIG; anda16=a26 =0

(2-4)

for plane stress conditions.17,19

2.1.2. Stiffness of Unidirectional Laminae

This section presents some simplistic analytical models that may be used to predict the

elastic properties of unidirectional fiber reinforced composite laminae. These methods

estimate the composite properties from the elastic properties of the constituent fibers and

the matrix, the volume fraction (Vf) of fibers, and in some cases, the packing geometry of

fibers.

(a) Rule of Mixtures:

The rule of mixtures assumes a perfect bond between fibers and the resin matrix. This

assumption implies that the fibers and the matrix undergo the same amount of strain in

the longitudinal direction (ll-direction parallel to fibers), and they encounter the same

stress in the transverse direction (22-direction perpendicular to fibers). The composite

elastic moduli are given by

(2-5a)

(2-5b)

and

(2-5c)

where, E and v are elastic properties of the constituents with subscripts f and m referring
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to the fiber and matrix respectively, and Vf is the volume fraction of fibers in the compo-

site material. 17,19

(b) Halpin-Tsai Equations:

This method is more complex than the simple relationships of the rule of mixtures. In

reference 19 a modified version of the Halpin-Tsai equations is given as

(2-6a)

where,

(2-6b)

M represents E22, G12, and V23 for the composite, and Mf and Mm represent the

corresponding elastic property of the fibers and matrix, respectively. ~is an empirical

parameter that depends on the extent of fiber reinforcement, packing geometry, and load-

ing conditions, and 'V is a parameter that accounts for the maximum packing possible.

The following expression is used to determine the value of 'V:19

[
1- Vf,m~

]
Vf

'V =1 + (Vf,mwJ
(2-6c)

where, Vf,max is the theoretically maximum possible volume fraction of fibers. For a

parallel hexagonal packing of fibers, Vf,maxis estimated to be 0.907. 19Note that equa-

tion (2-6a) will be equivalent to the original Ha1pin-Tsai equation when 'V is taken as

unity .

The main difficulty in using equations (2-6 a,b) is the appropriate choice of the

value of ~.Hull 17suggests that a value of ~=0.2 will lead to accurate results in fibrous
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glass/polyester composites with a fiber volume fraction (VI) of 50%. Whereas, both

Krishnamachari 19 and Jones 20 state that; =2 is a good choice for the estimation of E 22

(assuming circular fibers in a square array), while for the estimation of G12 of compo-

sites with a fiber volume fraction greater than 50%, the parameter; may be determined

from: 20

(2-6d)

2.1.3. Strength of Unidirectional Laminae

Since the 1960s, several failure theories have been developed in the form of simple

mathematical functions of the stresses and strengths. In order to accurately predict the

strength of a composite structure, these mathematical functions must represent the onset

of failures under all stress conditions. Most failure theories applied to polymer matrix

composites (PMCs) are extensions of those developed for homogeneous isotropic materi-

als.

Under multi-axial loads, the failure criteria are represented by a surface in six-

dimensional space ( i.e., 3 normal- and 3 shear-strength axes). Azzi and Tsai21have pro-

posed a generic failure theory which is applicable to unidirectional laminae, as well as

laminates once the strengths of the individual laminae have been established. Tsai and

Wu22 subsequently developed a tensor-polynomial criterion which accounts for positive

and negative stress components. For transversely isotropic thin shells loaded in plane-

stress, the failure theory is represented by an ellipsoidal surface in three dimensional

space by 21,22

(2-7a)
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where, crh is the longitudinal tensile strength of the unidirectional composite, cr~ is the

transverse tensile strength, and t~ is the shear strength in the 1-2 plane. Note that for

highly orthotropic laminae with crh » cr~, equation (2-7) reduces to an ellipse in two

dimensional space. 17

(2-7b)

This criterion will henceforth be referred to as the Tsai-Hill criterion. Owen et a1.23and

Found 24have reviewed and extensively verified the existing failure criteria.

2.2. BIAXIAL TESTS FOR UNIDIRECTIONAL PMCs

In most engineering applications, unidirectional PMCs are subjected to multi-axial loads.

Therefore, the need to obtain mechanical properties and failure envelopes under multi-

axial stress conditions is evident. In the domain of biaxial stress states, the case of pure

shear is the most difficult to generate. As a result, most of the presently available biaxial

test methods are modifications of an existing shear test.

The application of a pure, uniform shear-stress state to unidirectional composite

materials poses considerable difficulty due to the coupling between shear and normal

loads at off-axis angles. Currently existing shear-test methods which may be applicable

to unidirectional composites include 25

(i) The torsion test of hoop-wound tubes, 23,25-27

(ii) The 10° Off-axis tension test, 28and

(iii) The Iosipescu test. 29
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Other less popular shear test methods include the picture-frame test, the rail-shear test, 30

the :t45° Off-axis test, 28the cross-beam sandwich test, and the slotted-tension test. How-

ever, most of these methods suffer from certain disadvantages ranging from a non-

uniform shear stress distribution in the specimen gauge section, to difficulty and expense

of specimen fabrication. 31The rail-shear specimens have large shear-stress concentra-

tions at the free edges. 30The 100 Off-axis specimens suffer from end-constraint effects

and out-of-plane bending. 28,32 The torsion test of hoop-wound tubes is a reliable

method, however, it requires cylindrical hoop-wound specimens and a complex testing

rig. In an extensive evaluation of the existing shear-test methods, Lee and Munro 31

employed a decision analysis technique and rated the Iosipescu, and :t45° tests, to be

most suitable for the in-plane shear characterization of unidirectional composites. Figure

2.2 schematically illustrates the specimen geometries and loading conditions of some of

these tests.

Commonly used biaxial tests which are applicable to unidirectional composite

materials include the off-axis tension test, 28 the cruciform test, the Arcan test, 33-35the

combined axial, radial, and torsional loading of thin-walled hoop-wound tubes, 23,25and

the compact tension-shear test. 36

Most of these methods suffer from the same limitations as their pure-shear counter-

parts. The off-axis tests are simple to conduct, but end-constraint effects, out-of-plane

bending, and fiber misalignments can give inaccurate results. Arcan specimens have a

complex geometry, and premature failure often occurs at the specimen-adherend inter-

face. The cruciform and hoop-wound tubes are capable of generating reliable results, but

specimen fabrication and testing are expensive. Furthermore, the filament winding tech-

nique required for fabrication of hoop-wound tubes could alter the material behavior in
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comparison with flat laminae.

An ideal shear or biaxial test for composite materials should employ small, easily

fabricated specimens. It should impose a uniform stress field in the gauge-section, and

should be applicable to unidirectional laminae, cross-ply or woven laminates, and sheet-

molding compounds (SMCs). The losipescu shear test appears to meet most of these

requirements. The method was originally proposed in 1967 for measuring shear proper-

ties of (isotropic) metals. 29 Adams and Walrath 37-41have subsequently designed a

modified fixture for shear testing of composite materials. Since then, a number of other

investigators have used the method for testing a wide variety of materials ranging from

unidirectionally reinforced fibrous composites, wood, and SMCs. 32,42-52Finite element

methods have been employed to analyze the specimen with respect to the notch-angle,

39,53-55the notch-radius, 39,56 and loading-conditions 39,51,52Notably, Sukumar and

Kumosa 53,54have employed the Finite Element Iterative Method to evaluate the notch-

tip asymptotic singular fields as a function of the notch angle and orthotropy ratio. Ho

and co-workers 52performed non-linear analysis of the losipescu specimen by consider-

ing frictional sliding at the specimen-fixture interface, and a non-linear material behavior.

Specimen fabrication techniques and test procedures have been optimized by Lee and

Munro 48 in order to minimize experimental eITOfS.In addition, Adams et al. 38 and

Ifju57 have independently developed modified shear-strain gauges for directly measuring

the average shear strains in the specimen gauge-section.

Based on the losipescu test, a number of modified versions have also evolved. The

antisYmmetricfour point bend test 58employs similar specimens with a modified loading

scheme, and has often been compared with the losipescu test 42,43,46

The losipescu shear test essentially consists of a double edge-notched beam speci-
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men with two counteracting force couples applied such that the net bending moment at

the specimen midlength is zero, and an almost pure uniform shear stress field is expected

in the mid-section of the specimen (see figure 2.3). 29 Although the test method is

currently most popular for shear characterization of composites, some drawbacks have

been identified:

(i) Linear elastic finite element analyses performed by a number of research-

ers39,51,56,59have shown that the stress distribution in the gauge-section of highly

orthotropic specimens is not uniform. The shear stress distribution is dependent on

the orthotropy ratio (E 11IE 22)' fiber orientation, notch geometry, and loading boun-

dary conditions. 59 Unidirectional composite specimens with fibers oriented along

the specimen length (0° specimens) have the maximum shear stresses at the notch

tips and minimum shear stresses at the specimen center, while specimens with fibers

oriented parallel to the notch-root axis (90° specimens) have the maximum shear

stress at the center and minimum shear stress at the notch tips. It is therefore neces-

sary to apply correction factors to the measured shear modulus in order to account

for the non-uniformity of stresses. 32Sukumar and Kumosa53,54employed the Fin-

ite Element Iterative Method (FEIM) to demonstrate that the stresses at the tip of a

perfectly sharp notch in 0° losipescu specimens are actually singular in nature.

However, non-linear finite element analyses 52 indicate that at sufficiently large

loads, the shear strains become concentrated at the notch tips, while the stresses are

more or less uniform along the entire gauge length.

(ii) Unidirectional composite specimens with fibers aligned parallel to the notch-root

axis (90° specimens) have been shown to encounter premature failures away from

the gauge-section. 44,56The 90° specimens therefore indicate a significantly lower
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shear

strength in comparison with the 0° specimens. Barnes et al. 44 have shown that this

behavior results from the fact that 0° losipescu shear specimens also have a

significant component of transverse tensile stresses (axx) in addition to the in-plane

shear stresses (txy) along the notch-root axis.

(iii) Out-of-plane twisting of the specimen can lead to inaccurate results. 48

2.2.1. Biaxial Iosipescu Test

The biaxial losipescu test (BIT) fixture was developed at the University of Cambridge by

Broughton, Kumosa, and Hull. 25,27The fixture design is based upon the original losi-

pescu shear test 29and the Arcan in-plane stress method. 33Figure 2.4 shows the univer-

sally adaptable fixture which is a modified version of the fixture originally designed at

Cambridge. 25,27 It is capable of testing losipescu specimens in either pure shear or a

combination of shear and transverse tensile or compressive stresses under either static or

cyclic loads. Shear tests are performed under externally applied compressive loads Po

normal to the longitudinal axis of the specimen like in the traditional test. For in-plane

biaxial tests, the specimen is rotated in either a clockwise or counter-clockwise direction

such that the compressive load P a is applied at various angles exto the normal (see figure

2.5). Clockwise rotation of the specimen leads to a combination of shear and transverse

tensile stresses along the notch-root axis, while counter-clockwise rotation leads to a

combination of shear and transverse compressive stresses. As a convention, the loading

angle exis taken to be negative for clockwise rotations (shear & tension) and positive for

counter-clockwise rotations (shear & compression). From simple force and moment bal-
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ance equations, the force couples P 1 and P 2 can be evaluated as 55,56

and
Pa

P 2 = r a + h tana _ I
b -h tana

(2-8)

where P a is the externally applied compressive load, h is the specimen width, a is the

distance between outer load components P 2, b is the distance between inner load com-

ponents PI, and a is the loading angle. Additional details of the fixture can be found in

the author's recent publications.56,60

Broughton employed the BIT fixture for testing (isotropic) polycarbonate and uni-

directional carbon/epoxy and carbon/PEEK specimens under various load orientations. 25

The failure modes observed in the biaxial tests were reported to be identical to the

failures observed earlier in the traditional Iosipescu shear tests. Brittle isotropic materi-

als fail by crack initiation at the notch tips, and propagation along the plane of the princi-

pal tensile stress (45° for the shear test). 0° specimens have been known to fail due to

development of axial cracks nucleating at the notch tips, and propagating along the long

axis of the specimen away from the nearest loading position. The axial splitting

phenomenon was first reported by Adams et at, 38 who suggested that the development

of axial cracks was, in fact, an effective way of relieving stress concentrations at the

notch roots. Kumosa and HuU59 and Sukumar and Kumosa 61performed numerical ana-

lyses of the propagation of axial cracks in the 0° specimens. They showed that the splits

nucleate due to shear stress concentrations close to the notch tip and propagate under

mixed modes (I and ll), with mode I playing the dominant role for short crack lengths.

Furthermore, it was shown that the 0° specimens are more prone to failure under com-

bined shear and tension, than under shear-compression loadings. Unidirectional compo-
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site specimens with 90° fibers invariably fail along the notch-root axis.

2.3. FRACTURE MECHANICS OF UNIDIRECTIONAL PMCs

Fracture mechanics is the study of failure phenomena of materials by stable or unstable

crack extension. The theory of linear elastic fracture mechanics (LEFM) depends on

crack tip parameters such as the stress intensity factors (SIPs) denoted by Kj, the strain

energy release rates (SERRs) denoted by Gj, and the path independent I-integral 62 to

predict the "equilibrium" of cracks at the onset of extension. Williams 63 has developed

the stress and displacement solutions in the vicinity of a crack tip in isotropic bodies,

wherein the stress intensity factors (Kj) can be used to describe the details of the near

field variables. The crack-tip strain energy release rate (Gj) is however more commonly

endorsed in fracture tests since it is a physically well defined quantity that can be meas-

ured experimentally. Irwin64 has computed the elastic strain-energy release rates (Gj)

associated with the three fundamental modes (i =I, II, III, see figure 2.1) of crack exten-

sion and related them to the stress intensity factors (Kj). For isotropic bodies

(2-9)

where 1C=1 for plane stress, and 1C=1/(I - v2) for plane stress. Corresponding relations

have been developed by Sih, Paris, and Irwin 64 for homogeneous orthotropic materials

with cracks along the principal material directions
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The principles of LEFM are based on the following assumptions which hold for

homogeneous isotropic materials: 65

(a) Crack extension is always self-similar.

(b) Crack-face displacements can be separated into three fundamental modes (I, II, and

III) as shown in figure 2.1.

(c) The crack-tip stress distribution is independent of material properties, and exhibits a

singularity of the order r-1/2.

(d) Application of purely symmetric stresses results in pure mode I displacements. The

same can be stated for mode II and III displacements.

Since unidirectional PMCs appear as macroscopically orthotropic and microscopi-

cally heterogeneous materials, great care is needed in extending LEFM to the fracture

analysis of composites. 64-66The elastic stress distribution in the vicinity of a crack tip

for rectilinearly anisotropic bodies have been shown to exhibit a stress singularity of the

order r-1/2 by Sih et al.64However, unlike the isotropic case, these stresses are a function

of the crack orientation (with respect to principal material directions) and material pro-

perties, and both crack-opening and -sliding displacements occur under pure mode I type

loads. Furthermore, an arbitrarily inclined crack in unidirectional composites will always

propagate along the fiber direction. These deviations limit the general application of

LEFM to cracked anisotropic structures. However, Parhizgar and co-workers 65 have

shown that in the special case of a crack aligned parallel to the fibers in a unidirectional

composite material, the aligned fibers ensure macroscopically self-similar crack exten-

sion since the fracture toughness is lowest in this direction. In addition, the stresses are

independent of the principal material directions, and the equations of Sih et al.64indicate

that the crack-face displacements are not mixed-mode in nature under a single
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fundamental mode of loading. It has therefore been concluded that LEFM is applicable to

unidirectional PMCs for the special case of cracks along the fiber direction. 64-66From a

practical standpoint, this particular case holds greatest relevance since unidirectional

PMCs are highly susceptible to intralaminar flaws created either during manufacturing or

in service.

2.3.1. Evaluation of Fracture Parameters

Currently available techniques for extracting fracture parameters (Gi) and (Ki) in uni-

directional PMCs can be broadly classified into three categories.

2.3.1.1. Analytical Methods

Closed-form analytical expressions are the most preferred approach for crack-tip fracture

parameter measurement. For instance, the beam-theory solutions proposed by J. G. Willi-

ams 67-69can predict crack-tip strain energy release rates (G) in cracked orthotropic

beams. The approach has frequently been applied to popular mode I, mode II, and

mixed-mode problems. For instance, Williams 67-69has applied the method to cracked

double cantilever beam (DCB) specimens, Sukumar and Kumosa 61 used the approach

for evaluating G values in biaxially loaded 0° Iosipescu specimens with axial splits, and

Gillespie et alJO applied the beam solutions to mode ITend-notched flexure (ENF) speci-

mens. However, most existing analytical solutions tend to make highly simplistic

assumptions and are not easily available for orthotropic materials, complex domains, and

combined loads.
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2.3.1.2.Experimental Compliance Calibration

The compliance calibration method is the most widely used experimental technique for

determining the total energy release rate (G). By definition

G =~
[

de]

2B daJ
(2-11)

where, P is the external load applied to a specimen, B is the thickness of the cracked

gauge-section, C is the load-point compliance of the specimen, and a is the crack length.

The test procedure involves mechanical loading of specimens with a growing crack to

determine the compliance as a function of the crack length. The critical energy release

rate (Gc) is subsequently determined from equation (2-11). Slepetz and Carlson 71 have

used this method for measuring the mode I fracture toughness of S-glass/epoxy and

graphite/epoxy compact tension specimens. Williams and Birch 72have used compliance

calibration for evaluating mixed-mode fracture properties (K],l])in wood specimens. In

some studies, the finite element method has also been employed to determine the compli-

ance numerically.70,71,73 The main disadvantage of the compliance calibration method

is that it is highly prone to experimental errors caused by fiber bridging between the

crack faces 71 and large deformation of the specimen. Furthermore, equation (2-11) can-

not be used to partition the energy release rates into mode I and mode II components.

2.3.1.3. Finite Element Methods

In the past two decades, the finite element method has become an important tool in frac-

ture mechanics. Although numerical results are usually more difficult to interpret, the

method imposes fewer limitations on the complexity of the problem (regarding boundary

conditions, specimen geometry, and anisotropy). Various direct and indirect numerical
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schemes employing distorted singular crack-tip elements (e.g. isoparametric elements

with mid-side nodes moved to the quarter position), 74,75 or conventional non-singular

elements have been proposed for extracting the fracture parameters. 76-84Direct methods

are used to extract SIFs by extrapolation of a displacement or stress parameter to the

crack tip, 76 while indirect methods are used to compute energy parameters like strain

energy release rates (Gj),77-82,85,86 J-integrals, 62 which can be related to the stress

intensity factor. In the following subsections, the principles and important equations of

the displacement correlation, displacement extrapolation, and virtual crack closure tech-

niques have been outlined.

2.3.1.3.1. Displacement Correlation Method

With reference to figure 2.6, using singular isoparametric elements with mid-side nodes

moved to the quarter position, 74,75displacements along the crack face (ABC) are given

by

(2-12a)

and

(2-12b)

Shih et a1.83have computed SIPs K1,1lby correlating the -Wterm of equations (2-12

a,b) with the crack-field displacement solution along the crack face (8 =1t)given by Wil-

liams 63for isotropic bodies. Saouma & Sikiotis 87and Boone et al. 88have subsequently

extended this correlation approach to two- and three dimensional orthotropic fracture

analysis. The displacement eigenfunction expansions for cracked orthotropic structures

have been given by Sih, Paris, and Irwin.64 If we consider cracks parallel to a principal
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material direction, on correlating the .y; term of the expansion with equations (2-12 a,b),

the equations for the mode I and II stress intensity factors are obtained as55,59,61,87,88

(2-13a)

and

(2-13b)

where III and 112are imaginary roots of the characteristic equation,64 and always occur in

conjugate pairs as Ill, Ill, 112,and 112:

(2-14)

aij are the anisotropic compliances which can be calculated from the elastic properties of

the orthotropic material (refer Section 2.1.1). In equation (2-13 a,b), UBy,xand UCy,xare

the relative opening and sliding displacements at nodes B and C with respect to the crack

tip node (see figure 2.6).

2.3.1.3.2.Displacement Extrapolation Method

Chan et al.76 have suggested the method of displacement/stress extrapolation which is

conceptually similar to the displacement correlation scheme. Quarter-point elements

74,75 are preferred at the crack tip. Crack-opening and -sliding displacements are

extracted for nodes along the crack face ( e =1t, found to yield most accurate results by

Chan et al.76). These displacements are scaled by a factor of r-Il, and a linear regression

analysis is performed from the crack-tip element comer node to a distance (r), beyond

which the crack-face displacement solutions are invalid. The best fit straight line, extra-
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po1ated to the crack tip (r=O),yields the displacement parameters u; and u; associated

with the crack-opening and -sliding profiles respectively. Finally, by substituting the

terms 4UBy- Ucy/-{iand 4UBx- uexrfi in equations(2-13a,b)by u; and u; respec-

tive1y,KI,If and thereafter energy release rates GI,IIcan be computed.

2.3.1.3.3. Virtual Crack Closure Method

The Virtual Crack Closure (VCC) scheme is based upon Irwin's contention that the work

required to open a crack by an infinitesimal length is equal to the work required to close

the crack back to its original length.64 Referring to the notation in figure 2.7 for a crack

extending from a length of a to a + L\a, the crack opening (or closure) work, and subse-

quently the crack tip energy release rates were obtained in the integral form as 64

x=~a

Gf(a) = lim 2 ~ f <Ty(r=x,8=0, a) Uy(r=L\a-x,8=1t,a+L\a)dx, (2-15a)
~a-70 oa x=O

and

x=~a

Gn(a) = lim 2 ~ f 'txy(r=x, 8=0, a) ux(r=L\a-x, 8=1t,a+L\a) dx, (2-15b)
~-70 oa x=O

where, <Tyand 'txyare the normal and shear stresses ahead of the tip of the original crack,

and Uy,xare relative opening and sliding displacements behind the tip of the extended

crack.

Rybicki and Kanninen 80proposed a finite element idealization of equations (2-15

a,b) employing 4-noded quadrilateral elements. Subsequently, the approach has been

extended to higher order singular and non-singular elements. 73,81,82,84,85,89-91Accord-

ing to O'Brien 91using ordinary non-singular linear strain elements at the crack tip (refer

figures 2.8 a,b), the equations (2-15 a,b) may be represented as
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G[(a) = 211 [FY,i(a) I1Uy,j-2 (a+l1a) + Fy,i+l (a) I1Uy,j-l (a+l1a)] (2-16a)

and

Gn(a) = 2~ 1 [Fx,i(a) I1Ux,j-2 (a+l1a) + Fx,i+l (a) I1Ux,j-l (a+l1a)] (2-16b)

where, Fx,y represent the nodal reaction forces, i, j represent the node locations as indi-

cated in figures2.8 (a,b),and 1is the thicknessof the specimen.This method,henceforth

referred to as the VCC-2c method, requires two calculations to be performed for crack

lengths a and a+l1ain order to extract energy release rates G[,n(a).

In order to avoid the disadvantage of two finite element computations, the following

formulae proposed for the non-singular linear strain element discretization (refer figure

2.8 a) require a single analysis to extract the G-values:81,82,85,89,90

G[(a) = lim _2 1
[

Fy i(a) 11U.'i-2 (a)+F y i+l(a)I1U y i-l (a)
]&2--70 L 1 ,--y, , ,

(2-17a)

and

G[[(a)= lim .-L
[

FXi(a)I1U X,i-2 (a) +Fx i+l(a) I1Uxi-l (a)
]da--70 2Ll ' "

(2-17b)

This scheme is henceforth referred to as the modified crack closure integral

(MCCI), or the VCC-lc method. It should be noted that as opposed to the VCC-2c

scheme (equations 2-16), the above formulation is exact only for infinitesimal crack

extensions ( i.e., lim l1a~O). In the case of conventional constant strain elements, the

above equations are simplified to 82

(2-18a)

and

G[[(a) = lim _21
[

FXi(a)l1uxi-l (a)
]&2--70 Ll' ,

(2-18b)
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In comparison with other indirect methods, 62,77-79the VCC methods are particu-

larly attractive since they permit calculation of individual mode partitions GI and GII in

mixed-mode problems. Furthermore, excessive mesh refinement and the use of singular

crack-tip elements is not required to obtain accurate results.

2.3.2. Mixed-mode Fracture Criteria

For a given intralaminar defect in a unidirectional composite, crack extension may be

accomplished in pure mode I (opening), mode II (shearing), mode III (tearing), and

mixed-mode conditions. It is therefore necessary to develop fracture criteria and test

methods for measuring the critical fracture parameters which describe the single and

mixed-mode fracture behavior. The mixed-mode fracture criteria are developed in the

form of mathematical functions of the stress intensity factors and fractures toughnesses

under a combination of the fundamental modes of loading.

A number of generic mixed-mode fracture criteria have been proposed to describe

the influence of loading modes (I and II) on the intralaminar and interlaminar fracture of

composites. Wu performed mixed-mode fracture experiments on balsa-wood and

glass/epoxy composites to determine an empirical criterion of the form 66

[ J [ J

2
K1 KII- + - -1
KJc KIIc

This criterion was later verified by McKinney92from tests conducted on unidirectional

(2-19)

graphite/epoxy composites. Jurf et al.93and Russell et al. 94were however in agreement

on the criterion

[ J

2

[ J

2
KI KII- + - -1
KJc KIIc

(2-20)
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The most general mixed-mode fracture criterion was proposed by Hahn. 95This cri-

terion was derived from the energy balance principle which states that fracture occurs

when the crack tip energy release rate reaches a critical value (i.e., Gtotal=Gc). If

macroscopicself-similarcrackextensionis assured,andthe conditionsfor applicationof

LEFM hold, then Gtotalcan be calculated from the elasticity theory. Microscopically,

however, the critical fracture energy Gc depends very much on the localized morphology

of fracture, which in turn depends critically on the mode of loading (KI and Kn). 96 The

following criterion describing the dependence of Gc on KI and KI/ was obtained by Hahn

95

(2-21)

where, g =G1c/GI/c'Note that if the fracture energy is independent of the loading mode,

i.e., G/c =GI/c, then equation (2-21) reduces to equation (2-20). Whereas, if G/c «Gnc,

then equation (2-21) reduces to equation (2-19).

2.4. ANALYSIS OF SINGULAR STRESSES

Within the framework of linear elastic fracture mechanics (LEFM), several studies have

demonstrated that the stress field in the vicinity of abrupt geometric discontinuities ( e.g.,

cracks, sharp notches, re-entrant comers) and abrupt material discontinuities ( e.g., bima-

terial interface comers of perfectly bonded dissimilar elastic bodies) could be singular in

nature. 97-99The following sections briefly outline three approaches for evaluating singu-

lar stress fields.
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2.4.1. Airy Stress Function Approach

Williams proposed the Airy stress function solution for the stress singularities in the

vicinity of a sharp notch embedded in an isotropic body under extension.97 Hein and

Erdogan, 100Bogy and Wang,98,99and more recently Ding et al.10l,102have employed

the Airy stress function formulation to obtain closed-form analytical solutions for the

interface comer singularity in isotropic-isotropic bimaterial wedge comers.

The approach consists of selecting an Airy stress function (",) which satisfies the

biharmonic equation in polar coordinates 97

(2-22)

where,

The stresses can be written in terms of the Airy stress function by the relations given by

(2-23a)

(2-23b)

and

-1. a2", 1- ~
'tr9 - , a,as+ ,2 as

Using these equations in conjunction with the appropriate boundary conditions,

(2-23c)

solutions for isotropic sharp notches, 53,97 and isotropic-isotropic bimaterial wedge

comers 98-102are available in the literature. Unfortunate~y,such closed-form solutions

are not easily available for orthotropic notches subjected to mixed-mode loads, and
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isotropic-orthotropic bimaterial wedge problems. Therefore, numerical solutions using

the Finite Element Method, and the Finite Element Iterative Method must be sought.

2.4.2. Finite Element Method

Raju and Crews 103have used the conventional finite element method (FEM) to evaluate

singularities at the free edge in cross-ply composite laminates. Ding and Kumosa 101

have employed the method to analyze adhesive interface comers. The stress along a

radial line from the origin of the singularity (r =0) can be expressed as 97

(2-24)

where, r is the radial distance from the singularity, A 1 is a constant, A. is the power of the

singular field, and O(r-1.+1) represents terms of the order r-1.+1 and higher. In the vicin-

ity of the singular zone, the higher order terms may be neglected and equation (2-24)

may be expressed as 103

log (jij =(-A.)log r + logA 1 (2-25)

hence, a log (jij versus log r plot is obtained from the finite element analysis in order to

compute the singular power (A.). This method is, however, highly mesh sensitive. It

requires a very dense mesh near the expected origin of the singularity, and can give only

approximate values for the power of the singular field. 101

2.4.3. Finite Element Iterative Method

The Finite Element Iterative Method (FEIM) was developed by R. S. Barsoum 104-108to

evaluate asymptotic singular stress fields in elastic media, by making use of general pur-
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pose finite element codes. This approach has been adopted by researchers to analyze

singular stress fields arising in cracks and sharp notches, 53,55 bimaterial interface

corners, 101,102and interfacial cracks, 106in both isotropic and anisotropic elastic media.

Barsoum and Chen 108have also extended the approach to three dimensional interface

surface cracks. Reference 105 discusses the theoretical basis and convergence of the

FEIM procedure.

The following steps are involved in the iterative solution procedure:

(i) A fan shaped mesh is constructed around the origin of the singularity as shown in

figure2.9. Sincethe powerof the singularfield (A.) is not knowna priori, ordinary

eight-noded quadrilateral and six-noded triangular isoparametric elements are used.

The mesh is made incrementally dense near the origin of the singularity, with

several rings of elements in the radial (r) direction, and several rays in the tangential

(8) direction.

(ii) Displacement vectors Ux/Oj and Uy/Oj are prescribed at nodes along the outer ring

(Rout)for the initial iteration. Recent studies have shown that the value of the singu-

lar power is independent of the far-field boundary conditions Ux/Oj and Uy/Oj. 55

Therefore, the displacement vectors may be arbitrary, provided that they simulate

the appropriate mode ofloading ( i.e., pure mode I, pure mode II, or mixed-mode).

(iii) A finite element analysis is performed. For a particular ray (8), the singular power is

obtained by a linear regression analysis of the relationship

(jij =K r-J..Jij (8) (2-26)

plotted on a log-logscale.Moststudiesconsiderthe von-Misesequivalentstressfor
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the analysis, 53,55,101,102and the value of Ais computed independently from each

ray of the fan-shaped mesh.

(iv) In order to eliminate rigid body displacements, the displacement obtained at the ori-

gin of singularity (U/Oj) is subtracted from the displacement vector obtained at the

inner ring (Rin). For the next iteration, this displacement vector is prescribed at the

outer ring (Rout)after scaling it up according to

UR {lj =AfOj . (Ufo1 - UfOj ) (2-27),out R,m 0

where, AfOj is a scalar multiplier for normalizing the inner-ring displacements. Bar-

soum has suggested that the scalar multiplier be evaluated as 104

(2-28)

(v) The steps (iii) and (iv) are repeated several times until the value of A, along all rays

in the fan-shaped mesh, converge in accordance with a predefined criterion. Usu-

ally, the convergence is set in the range 53,101

IA.fm+1j - A.fmj I
I I I IS;10-5 to 10-4 (2-29)
I A/m+lj I

where, m indicates the iteration number, and i indicates the ray number ( i =1, 2,

...25 in figure 2.9).

A more detailed description of the theory of the FEIM and its application can be

found elsewhere. 55, 101, 102,105
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2.5. GENERAL CONTACT ANALYSIS

The term contact analysis refers to analytical or numerical solutions for the size and

geometry of the area of contact, the stresses, and the displacements involved when two or

more deformable bodies contact each other under the influence of external tractions. This

section outlines some of the analytical and numerical methods available for such ana-

lyses.

2.5.1. Analytical Solutions

The most widely used analytical solutions for contact of elastic bodies is based on the

solution of Hertz given by Timoshenko et al.14 and Johnson. 109The solution is applica-

ble for contact of non-conforming spherical elastic bodies. The essential assumptions of

the analysis are that the area of contact is either circular or elliptical, with an effective

radius (R) which is much smaller in comparison with the radii of the contacting bodies.

Furthermore, the analysis assumes frictionless contact

Figure 2.10 shows two spheres of radii (R 1 and R 2) much larger than the radius (a)

of the circular contact patch created under a normal traction of P. The Hertz theory

predicts the size of the contact patch as 14,109

(2-30)

where,

1

E
and

1 1 1-=-+-
R Rl R2
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The maximum contact pressure (Po)is given by

(2-31)

Another approach is based on the potential functions of Boussinesq and Cerruti

given by Love. 110This solution can be used to determine stresses and displacements in

an elastic half-space bounded by a plane surface, with or without tangential tractions

caused by friction at the plane surface. The main disadvantage of the Boussinesq and

Cerruti methods is that it requires the surface normal and tangential tractions, and the

precise area of the contact patch to be known a priori. Furthermore, it assumes that the

surface of contact is completely planar.

In summary, it appears that the analytical solutions presently available in the litera-

ture may not be applicable to general contact problems, where the shape and size of the

contact area, and the tractions acting at the contact interface are not known in advance. In

addition, most of the existing analytical solutions are not applicable to the analysis of

anisotropic elastic bodies with interface friction, and without any restrictions on the

shape and size of the contact area. For such cases, numerical solutions can be obtained by

using the Finite Element Method.

2.5.2. Finite Element Method

The degrees of freedom of ordinary constant strain or linear strain elements used in finite

element analysis can only be constrained explicitly in the model. Much of the difficulty

in applying the Finite Element Method to general contact problems stems from the fact

that the precise nodes of contact are not known a priori, thereby requiring special numer-

ical algorithms to prevent geometric incompatibilities such as the interpenetration of one
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body into another. In the past two decades, several numerical algorithms have been pro-

posed to solve such problems.111-118Wilson et al., 111proposed the method of differen-

tial displacements for frictionless contact problems, while Chan et aI.,112,113and Bathe

and Chaudhary 116proposed the most general iterative solution procedure for contact

problems with consideration of Coulomb friction.

The general contact analysis in the ANSYS finite element code 119is structurally

nonlinear, and therefore requires an iterative solution procedure based either on the full-

or partial Newton-Raphson method. The nonlinearity stems from the fact that the algo-

rithm assumes no prior knowledge of the area of contact, and the local contact conditions

( i.e., sticking, sliding, or open gap conditions). The capabilities of the general surface to

surface contact elements (CONTAC48 and CONTAC49) available in ANSYS include

static or dynamic analyses, frictional or frictionless contact, and flexible-flexible or

rigid-flexible contact problems with large pennissible sliding between the contacting

bodies. The procedure requires one body to be defined as the target body (preferably sta-

tionary) and the other body to be defined as the contact body (preferably moving towards

the target surface).

With reference to figure 2.11, precise kinematic tracking of the contact node K (on

the surface of the contact body) is required to establish the contact conditions with

respect to a segment U (on the target surface). Over each iteration, the nonnal gap (g)

and the tangential projection (s *) is computed. If g > 0, then an open-gap condition is

assumed and the contact surface is set traction free. On the other hand, g ::;;0 implies an

interpenetration of the contacting surfaces. Since this is a violation of geometric compati-

bility, nonnal contact forces in are developed at the node K, with equal and opposite con-

tact forces acting on the segment U. This force in will simply minimize the interpenetra-
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tion to an acceptable numerical value. Using a penalty method, 119the contact forces are

prescribed as:

_

{

Kng if g::;;O (contact penetration)

In - 0 if g > 0 (open gap)
(2-32)

where, Kn is a user-defined normal stiffness of the contact elements. In addition, tangen-

tial forces (fs) are prescribed, in accordance with Coulombs law of friction, to simulate

frictional forces which oppose the relative tangential displacement between the contact

node (K) and the target segment (IJ). Figures 2.12 (a,b) show the two models for deter-

mining Is.The Elastic Coulomb Friction model considers both sticking and sliding con-

ditions, and the tangential forces are given by

(for frictionless contact)
(for sticking contact)

(for sliding contact)

(2-33)

where, ~s and ~d denote the coefficients of static- and dynamic- friction respectively, Kt

is the tangential contact stiffness, and u/e} is the elastic component of the relative

tangential displacement between the contacting bodies. Note that the sticking region is

reversible (and is therefore sometimes referred to as the elastic contact region), while the

sliding region is not (also referred to as the inelastic contact region). The need for an

iterative solution procedure is apparent from equations (2-32) and (2-33) since the algo-

rithm assumes no prior knowledge of the status of the contact nodes, their direction of

relative motion, and the frictional resistance encountered. The other approach is the

Rigid Coulomb Friction model, wherein the two surfaces are assumed to be always in

sliding contact. The tangential contact forces in this model are simply defined as

(2-34)
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as shown in figure 2.12 (b).

One of the main difficulties in applying the above method lies in selecting the

appropriate values for the normal contact stiffness (Kn) and the tangential contact stiff-

ness (Kt). From equations (2-32) and (2-33), it is evident that the larger the value of Kn,

the more accurate the solution will be since the interpenetration (g) will be smaller. How-

ever, a very large value normally leads to convergence difficulties and an ill-conditioned

stiffness matrix which may result in large round-off errors. Similarly, if Kt is very large,

convergence difficulties may be caused by a very small sticking zone.
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TENSILE MODE
(MODE I)

SHEAR MODE
(MODE ll)

TEARING MODE
(MODE Ill)

Figure 2.1 : Three fundamental modes of crack extension.
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Figure 2.2 : Shear and biaxial tests; (a) Off-axis tension, (b) Cruciform,

(c) Arcan, (d) Hoop-wound tubes, and (e) Compact tension-shear.
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Figure 2.3 : Iosipescu shear test; (a) Force Diagram, (b) Shear diagram,

and (c) Moment diagram.
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Figure 2.4 : Biaxial Iosipescu test fixture.
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Figure 2.5 : In-plane biaxial loading of Iosipescu specimen.
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Figure 2.6 : Singular isoparametric elements at the crack-tip with nodal

lettering convention.
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Figure 2.8 : Virtual crack closure method with isoparametric elements;

(a) Original crack, and (b) After extension.
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Figure 2.10 : Hertz analysis for elastic spheres in contact.
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Figure 2.11 : Kinematic tracking of contact node with respect to target.
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(a)
sticking sliding

(b)

sliding

sliding

Figure 2.12 : Frictional contact models; (a) Elastic Coulomb friction. and

(b) Rigid Coulomb friction.
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Chapter 3

Characterization of Composite Insulators

3.1. INTRODUCTION

As mentioned in chapter I, the composite (GRP) rods of insulators with the crimped

end-fitting design are subjected to both, residual stresses generated during assembly and

stresses caused by external loading of the insulator during service. The internal residual

stresses are generated during the crimping process, where bonding between the GRP rod

and metal end-fittings is achieved by radially compressing the end-fittings on to the rod.

The magnitude of radial compression that must be applied to an insulator such that it may

be able to withstand the service loads is a subject of great interest to design engineers.

Clearly, excessive radial compression applied to the GRP-rod during crimping can lead

to radial stresses large enough to initiate intralaminar debondings and fiber failures in the

GRP-rod. On the other hand, a low value of radial compression during crimping, cou-

pled with large axial loads applied during service, can cause internal sliding failures in

the crimped end-fitting design. In the past, field failures of crimped suspension insulators

have been blamed on both of these mechanisms. In an earlier study, Maza and co-

workers 6 performed destructive axial tensile tests on suspension insulators with crimped

end-fittings. They reported that at a low temperature of -25°C, the insulator failed due to

sliding of the rod from the end-fitting, while at room temperature and elevated tempera-

tures of 45°C, longitudinal tensile failure of the rod occurred by intralaminar splitting.6 It

is therefore important to be able to control the levels of radial compression applied to

insulators during assembly. This information may then be correlated with the extent of
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internal compressive damage generated in the GRP rods of insulators subjected to exces-

sive crimping, and the axial strength of crimped end-fittings.

In this chapter, five 115 kV substation insulators from five different manufacturers

have been characterized with respect to the extent of internal radial deformation of the

GRP rod, the extent of internal damage of the rods compressed during crimping, and the

axial strength of the insulator ends. These five insulators are henceforth referred to as

insulators A, B, C, D, and E.

3.2. RADIAL COMPRESSION DURING CRIMPING

3.2.1. Ultrasonic Pulse-echo Tests

In this section, a new ultrasonic technique has been described to measure the magnitude

of radial compressive displacements applied to the GRP-rods of all five insulators during

crimping. This technique is capable of determining the magnitude and shape of the radial

compression function with an accuracy of :t 0.1 mm, provided that the GRP-metal inter-

face is smooth with no interfacial voids.

The ends of all insulators (A, B, C, D, and E) were sectioned off as shown in figure

3.1, the rubber weathersheds were removed, and the external surfaces of the end-fittings

were machined smooth in order to impart a uniform radius. The machining was per-

formed by clamping the GRP rod, thereby ensuring that the axes of the rod and end-

fitting were concentric. The machined external surface was subsequently discretized into

24 lines along the circumference (8), and 10 lines in the axial direction (z). This resulted

in a measurement grid of 240 equi-spaced points on the surface of the end-fitting. Hor-

izontal linearity was established by sweep calibration on three steps of different
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thicknesses machined on the base of the end-fittings. A Panametrics 26DL PLUS digital

thickness meter with an internal data logger was used in conjunction with a 10 MHz

(model no. D793, 5.08mm diameter) dual element transducer. The interface depth (x)

was measured with an accuracy of :to.1 mm, and the internal radius of the compressed

GRP-rod was determined as :

(3-la)

where ref is the measured external radius of the end-fitting. From the outer radius of the

uncompressed GRP-rod (rout),the extent of radial compression (Ur) of the GRP-rod was

determined as :

(3-1b)

Figure 3.2 schematically illustrates the measurement procedure.

The three dimensional radial compression profiles Ur(6, z) of insulators A, B, C, D,

and E are presented in figures 3.3 (a to e). It is evident that the compression profiles are

highly dependent on the design of individual end-fittings, and the technique of crimping

employed by the manufacturers. The following sub-sections describe the observations.

(a) INSULATOR A :

From figure 3.3 (a), it is evident that at any particular angle (6) along the circumference,

the magnitude of radial compression in insulator A is more or less uniform, with the

maximum compression occurring at the midlength of the end-fitting (between z 1 and z 2)'

Furthermore, at any particular length in the axial direction (z), the compression profile

has six distinct and equi-spaced maxima and minima separated by 300 along the cir-

cumference. It should be mentioned that the external surface of the aluminum end-fittings
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of this insulator exhibited well defined flats prior to the machining. These flats were most

likely created due to plastic deformation of the aluminum during crimping. The wave-

like compression profile, and the flats on the end-fitting surface, strongly suggest that a

hexagonal die was used to crimp the end-fittings on to the GRP rod.

(b) INSULATOR B :

Figure 3.3 (b) shows the three-dimensional radial compression profile of insulator B.

During machining of the external end-fitting surface, the sectioned insulator end was

inadvertently clamped from the end-fitting flange, instead of the GRP rod end. This

resulted in a mismatch between the axes of rotation of the end-fitting and the GRP-rod.

Therefore, radial compression measurements (which assume that the axes are coincident)

would lead to erroneous results. To solve this problem, the data in figure 3.3 (b) is

presented in terms of the diametric compression (divided by two) along twelve equi-

spaced lines in the tangential (8) direction. It can be seen that the compression profile of

insulator B is more uniform in nature than for insulator A.

(c) INSULATOR C:

The end-fitting of insulator C was much longer than the other insulators, and was there-

fore discretized into 16 lines in the axial direction (z). Unlike insulator A, the radial

compression profile of this insulator (see figure 3.3 c) shows four maxima and four

minima, separated by 90° along the circumference. This indicates that a square dye may

have been used during the crimping process.
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(d) INSUIATOR D :

The compression profile of insulator D (figure 3.3 d) indicates that most of the internal

surface of the GRP-rod had a negative radial compression. This seems erroneous because

the internal radius of the GRP-rod (rin in equation 3-1b) should never be greater than the

external radius (rout)if any mechanical bonding is to be achieved. However, since ultra-

sonic waves are reflected back by an abrupt change in the density of the medium, a void

between the internal surface of the end-fitting and the external surface of the GRP-rod

could cause rin to appear to be greater than rout.To verify these results, ultrasonic meas-

urements were performed on another end-fitting of insulator D, and similar results were

obtained. This effect will be further examined in a later section of this chapter.

(e) INSUIATOR E :

The radial compression in insulator E was found to be highly uniform, and significantly

lower in magnitude than in insulators A, B, and C. The magnitude of radial compression

was found to vary between 0 mm to 0.18 mm (see figure 3.3 e).

3.2.2. Analytical Model for Radial Compression

From the ultrasonic compression data, it is evident that the radial compression along the

surface can be highly non-uniform in some insulators. This non-uniformity occurs in both

the axial (z) and tangential (8) directions in insulators A and C. In order to have a better

understanding of the compression profiles, and also to simulate these profiles in a finite

element model, there is a need for generic mathematical functions which can closely

simulate both the shape and magnitude of the compression profiles observed in figures
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3.3 (a to e). This section presents the definition of some of the key parameters. and the

generic form of the mathematical functions. that have been used in the finite element

models described in the next chapter. In order to simplify the analysis from three dimen-

sians to two dimensions. the axial and tangential non-uniformities of the compression.

profiles have been treated separately. In other words. we shall assume that an axially

non-uniform compression profile will be uniform in the tangential direction. and vice-

versa.

If the three-dimensional mdial compression profile Ur (e. z) of an insulator is

known. then the total magnitude of radial compression (}..1r)can be defined as the sur-

face integral

'221t

MT= f fUr(e,z).de.dz
'. 0

where, the locationsz1 andZ2are indicatedin figure3.2. Theaverage magnitude (M)

(3-2a)

will now be defined as

(3-2b)

Using this approach. the average magnitUdes of radial compression (M) are presented in

table 3.1 for insulators A, B, C. D, and E.

(a) Axially Non-uniform Compression

If a radial compression profile is non-uniform only in the z-direction and uniform in the

a-direction, then the problem is axisymmetric. Therefore, in the axisymmetric finite ele-

ment models developed in the next chapter. radial compression due to crimping is

prescribed according to a tWo-dimensionalSth order polynomial defined as
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(3-3a)

where, the coefficients Co, C 1, C5 can be easily determined by non-linear regression

of the axial radial compression data of any of the insulators (figures 3.3). From the

regressed radial compression function Po(z), the average magnitude (M) of radial

compression will become

Z2

JPo(z). dz
ZI

M = (3-3b)
(z2 - Z1)

From equations (3-3 a,b), it is evident that the average magnitude of applied radial

compression (M) can be changed in the axisymmetric models if the coefficients Co,

C 1, C 5 are multiplied by a constant factor. The shape of the compression profile will

however remain the same. This will facilitate the simulation of axially non-uniform

compression profiles with different values of M, while maintaining the same shape.

Similar to the polynomial Po(z), we can define general 5th order polynomials of the

form

(3-4a)

where a and b are unknown constants defining the shape of the polynomial. In order to

maintain the same measured average magnitude of radial compression (M), we can

impose the condition

Z2

Jpo(z). dz

= ZI =M
(z 2 - Z 1)

(j = 1, 2, ... ) (3-4b)

Using equations (3-4 a,b), we can now simulate several shapes of radial compres-
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sion along the axial direction, while keeping the same average magnitude (M). This is

done by calculating the values of b at some assumed values of a. Note that if a =1, then

from equation (3-4b) we find that b = 1, and the polynomialP/z) becomesthe same as

Po(z).

For the analysis of insulator A for instance, figure 3.4 shows the experimentally

determined average radial compression data in the axial direction. Using equations (3-2

a,b), the average magnitude MA was calculated to be 0.176318 mm (see table 3.1). A fifth

order non-linear regression analysis was subsequently performed to determine the

coefficients Co, C 1, C5 of the actual experimentally measured polynomial PA(z). Fig-

ure 3.5 shows the original PA(z) and three new polynomials; P2(z) at a =0.25, P3(z) at a

= 0, and P4(Z) at a =-1, which have the same magnitude (MA =0.176318 mm) and dif-

ferent shapes.

(b) Tangentially Non-uniform Compression

In figures 3.3 (a to e), it was seen that insulator A had six well defined peaks of maxima

and minima along the tangential direction (8), insulator C had four peaks, and insulator E

had a uniform compression profile. This wave-like non-uniform compression profile can

be simulated in the form of a sinusoidal wave function by assuming that the compression

is uniform along the axial (z) direction. In a three dimensional finite element model, the

radial compression due to crimping can be applied as

I

[

n 8

J

I
Ur = -A Isin - I (0 ::;;8 :Q1t)

I 2 I
(3-5)

where, A is the amplitude of radial compression defining the maxima of the wave-like

compression profile, n defines the number of peaks of the compression function, and8
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defines a point on the end-fitting surface from 0 to 21tin radians. Figures 3.6 (a,b) show

the radial compression profiles that would be simulated by equation (3-5) by keeping the

same amplitude (A) and changing the number of peaks (figure 3.6 a), and by keeping the

same number of peaks (n) and changing the amplitudes (A). This wave function will be

used in the finite element models described later in this study. From our previous

definition (equations 3-2 a,b), we find that the average magnitude of the tangentially

non-uniform radial compression will be given by

M= 2A
1t

It is interesting to note that by using the sinusoidal wave-function, the average mag-

(3-6)

nitude (M) is linearly dependent on the amplitude (A), and completely independent of the

number of peaks (n). This implies that we can simulate crimping profiles where M and A

are held as constant parameters, while the number of peaks are allowed to change. For

insulator A, which has an average magnitude (MA) of 0.176318 mm, if we assume that

the radial compression profile can be represented by equation (3-5), then from equation

(3-6) the amplitude of radial compression AA is 0.277 mm.

3.3. ROD PUSH-OUT TESTS

During service, composite substation and suspension insulators are subjected to axial

compressive and tensile loads, respectively. As mentioned in chapter 1, the present

design practice is to ensure that the maximum axial load should never exceed 60 percent

of the specified mechanical load (SML) rating of an insulator throughout its expected life

of 50 years. However, the fact that the SML rating tests are frequently performed on bare

insulator rods (without the attached end-fittings) makes them quite questionable. The
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bonding between the GRP-rod and metal end-fittings is purely due to residual compres-

sive stresses, with no adhesive at the interlace. Therefore, if the mechanical bonding of

the rod and end-fittings is weak, under sufficiently large axial loads, the insulators may

encounter failure due to internal sliding of the GRP rod within the end-fittings. On the

other hand, if the crimped joints are strong, the GRP rod can encounter intralaminar

compressive damage accumulation leading to failure. In this section, destructive "push-

out" tests have been perlormed on the end-fittings of insulators A, B, C, D, and E under

externally applied axial compression. The purpose of these tests was :

(i) to establish the mode of failure and maximum loading capacity of the insulators

under externally applied axial compression,

(ii) to verify the finite element models developed in a later part of this study, and

(iii) to evaluate the frictional properties of the GRP-metal interlace in conjunction with

finite element models.

3.3.1. Procedure

In order to perlorm the push-out tests, one end of each insulator had to be sectioned off

(as shown in figure 3.1), and the flange (base of the end-fitting) was also sectioned off

such that the two ends of the GRP rod were now exposed, while the central region was

still encased by the end-fitting due to the residual radial compression. The sectioned

assembly was mounted on a hollow cylindrical fixture made of steel, whose internal wall

diameter was 5 mm larger than the diameter of the GRP rod. The fixture was loaded on

an Instron universal testing machine with a load capacity of 450 kN, and an axial

compressive load was applied on the GRP rod at a displacement rate of 0.254
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mm/second. During the test, acoustic emission (AE) was monitored from the surface of

the GRP rod in order to monitor the onset of sliding, or the accumulation of internal dam-

age in the rod. A piezoelectric transducer (AC 375L) with a resonant frequency of 375

kHz, and a sensitivity better than -70dB referred to IV (J.1barr1,was attached to the the

surface of the GRP rod and connected to the AET 5500 system mainframe via a

preamplifier with a fixed gain of 60dB.120The complete experimental set up is schemati-

cally illustrated in figure 3.7.

3.3.2. Results

Figure 3.8 shows the experimental load versus displacement curve and acoustic emission

obtained from insulator A. It is evident that the structural response was fairly linear ini-

tially. At a load of approximately 310 kN, a well defined kink (accompanied by large AE

signals) was observed on the load-displacement curve. This kink marked to the onset of

internal sliding of the rod within the end-fitting. The load subsequently exhibited

significant non-linearity, and after reaching a maximum of 387 kN, free sliding of the rod

was detected. This caused a steady drop in the load with large axial displacements. After

unloading the sectioned insulator end, the GRP rod was found to have emerged from the

base of the end-fitting shell by about 12 mm, and no visible damage was detected on the

surface of the rod.

Experimental load-displacement curves for insulators B, C, D, and E, are presented

in figure 3.9. All the other insulators exhibited the same mode of failure. Although, insu-

lator C showed a significant load drop after the onset of internal sliding. It is interesting

to note that insulators D and E produced a wave-like response in the non-linear (sliding)

regime. This phenomenon will be discussed in the next section. The following important

inferences can be made from the push-out test results:
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(a) Substation insulators subjected to excessive axial compression will encounter

failure due to internal sliding of the GRP rod within the metal end-fittings. In all

five insulator ends examined in this study, there was an 8 to 10 mm long gap

between the inner base of the end-fitting flange and the end of the GRP rod. This

implies that under excessive axial compression, the GRP rods can experience a total

of 16 to 20 mm of internal sliding at both ends.

(b) This type of failure of the GRP-metal interface seems to occur at loads well below

the load required to cause longitudinal compressive failures of the GRP composite.

(c) Based upon the estimated in-service loads given for 115 kV substation insulators in

service, 121 it can be stated that the load at the onset of interfacial sliding is

significantly larger than the estimated maximum axial compressive load applied to

substation insulators. The worst case of axial compression is expected to be 1.34

kN, which results in factors of safety of 231, 108,206, 84 and 48, for insulators A,

B, C, D, and E respectively.

Table 3.1 lists the measured loads at the onset of sliding (Pf) for all insulators. It

seems evident that the insulators with large magnitudes of radial compression (M) are

less susceptible to interfacial sliding at the GRP-metal interface.

3.4. BENDING TESTS

Apart from axial loads, composite insulators (especially line-post type) are subjected to

cantilever bending loads in service. In this section, insulators A, C, and D were subjected

to horizontal bending loads. These tests were performed by C. Ek at the Bonneville

Power Administration, 122and are being presented in this section in order to verify some
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of the numerical predictions of this study. The main objective of these tests was to deter-

mine the mode of failure and the ultimate strength of the insulators in bending, and also

to verify the finite element models presented in the next chapter of this study.

3.4.1. Procedure

The lower end-fitting of the insulators was constrained to the ground by bolts. One edge

of the upper end-fitting was subjected to horizontal bending loads by a steel cable con-

nected to a hydraulic machine via a load cell. The opposite edge of the upper end-fitting

was attached to a displacement transducer. Figure 3.10 (a) shows one of the insulators

loaded in bending. The composite substation insulators (A, C, and D) have a rated capa-

city of 8 kN (1800 lbs) under bending. Therefore, the first stage of tests involved proof

testing, wherein the insulators were slowly loaded to 8 kN and held for five minutes

before unloading. Four acoustic emission sensors were attached to the lower end-fitting

in order to determine the onset of internal sliding or intralaminar failures in the GRP rod.

In the next stage, the insulators were loaded to ultimate failure.

3.4.2. Results

In all three insulators, the load versus displacement response was fairly linear upto

failure. During the proof tests, the acoustic emission signals did not indicate any accumu-

lation of damage in the insulators. Furthermore, the mechanical behavior of the three

insulators A, C, and D, was very similar as indicated by the slopes of the load-

displacement curves, the loads at ultimate failure (Pbend),and the maximum horizontal

displacements at the onset of failure (Ubend)'Table 3.2 lists the maximum loads and dis-

placements for the three insulators. Clearly, the composite insulators could undergo very

large deformations(::::0.3 meters,alsosee figure3.10a) priorto failure.The flexibilityof
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porcelain insulators will certainly be much lower in comparison.

Failure of all three insulators occurred close to the interface corner of the lower

end-fitting and the GRP rod. This was expected since the maximum stress concentrations

under bending is expected to occur near the interface corner of the lower end-fitting and

the GRP rod. Figure 3.10 (b) shows the fracture surface of the GRP-rod. The morphology

of the surface is clearly consistent with the predictions of the theory of elasticity. 14The

brush-like fracture surface with extensive fiber pull-out on one half of the rod's cross-

section (towards the loading direction) demonstrates a longitudinal tensile mode of

failure, 17 while the flat crushed features on the other half demonstrate compressive

failure. The central region of the surface, separating the tensile and compressive parts,

encountered intralaminar shear failure as evidenced by a wedge inclined at 45° with

respect to the rest of the fracture surface.

3.5. TORSION TESTS

The torsional performance of composite substation insulators insulators will be important

for switchgear applications. This section presents the results of destructive torsion tests

performed by C. Ek, at the Bonneville Power Administration, 122on insulator brands A,

B, C, D, and E.

3.5.1. Procedure

Figure 3.11 shows the experimental setup for the torsion tests. Torsional loads were

applied to both ends of the insulator by means of end plates which served as lever arms.

The load was applied by a steel cable attached to a hydraulic machine via a load cell.

Similar to the bending tests, one arm of each end plate was attached to a displacement
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transducer. By applying equal torsion to each end, the effects of axial loading and cantil-

ever loading were negligible. The applied torsional load, the end rotation, and acoustic

emission of the insulator were monitored during the test.

The torsional load was applied at a fixed displacement rate in four steps as follows:

(i) Preload insulator to 556 N and hold.

(ii) Monotonic load to 2372 Nm and hold for a few seconds.

(iii) Monotonic load to 3616 Nm and hold for a few seconds.

(iv) Monotonic load to 3954 Nm, hold for a few seconds and unload.

3.5.2. Results

During the tests, large acoustic emission signals, accompanied with a drop in the applied

load and a sudden increase in the rotational displacements, were used to identify the

onset of either intralaminar shear failure of the GRP rod, or internal sliding of the rod

within the end-fittings. Figure 3.12 (a) shows the torsional load versus rotational dis-

placement response of insulator A. The mechanical response of insulators B, C, and D

was almost identical. These insulators failed at torsional loads in the range of 3000 to

3700 Nm (::::32,000 lb.in), with rotational displacements of about 50° (see table 3.3). The

failure was not catastrophic, and was most probably caused by the initiation of intralam-

inar splits in the GRP rod which generated large acoustic emission signals. In contrast to

these insulators, the failure load for insulator E was significantly lower. Figure 3.12 (b)

shows the torsional load versus displacement diagram for insulator E. This insulator

failed due to internal sliding of the rod at a load of 903 Nm (8000 lb.in), as indicated by
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the sharp drop in the applied load followed by large rotational displacements (upto 140°).

Referring back to the ultrasonic radial compression data presented in section 3.2,

the observed torsional failure modes can be explained. The average magnitudes of radial

compression (M) for insulators A, B, and C, were significantly larger than for insulator

E. Clearly, this resulted in insulator E being much more susceptible to internal sliding.

The above results demonstrate that if the average magnitude of radial compression

applied during crimping is sufficiently large, then failure under torsional loads will occur

by the initiation of intralaminar splits in the GRP composite. On the other hand, if the

value of M is very low (as in insulator E) and the coefficient of friction (~) in the tangen-

tial direction is also low, then the GRP rod will encounter internal sliding prior to

intralaminar failure.

3.6. OPTICAL MICROSCOPY

In this section, the end-fittings the five substation insulators were further sectioned to per-

form optical microscopic examinations of the GRP-rod and the GRP-metal interface. It is

important to mention that these end-fittings had been subjected to the rod push-out tests

reported in the previous section.

3.6.1. Procedure

The end-fittings were sectioned along two planes. The first section was along the

midlength of the end-fitting perpendicular to the axial direction ( i.e., between z 1 and z 2).

This exposed the plane of the GRP rod along which the extent of radial compression was

expected to be maximum. The second section was parallel to the axial direction through

the central axis of the GRP rod. Figure 3.13 shows the two sectioning planes which
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resulted in four semi-cylindrical pieces of the end-fitting. An optical stereo microscope

was used to characterize the quality of the GRP-metal interface in one semi-cylindrical

specimen with the GRP rod still attached to the end-fitting. From another semi-

cylindrical specimen, the GRP composite was carefully separated from the end-fitting.

The internal surface of the end-fitting was observed, and the GRP specimen was polished

to 800 grit using silicon carbide emery paper. Note that the polishing was done until all

the external asperities (created during sectioning) were removed. Microscopic examina-

tions were perfonned to detect any internal damage in the GRP-rod extracted from all

five insulators.

3.6.2. Results

The following subsections describe the observed characteristics.

(a) Insulator A

The internal surface of the end-fitting was very smooth, indicating a low coefficient

of friction. There were no voids detected at the interface, and the overall mechanical

bonding appeared to be good. Figure 3.14 (a) shows an axial view of the GRP-metal

interface at a magnification of 10x. The polished GRP rod specimen however had a

network of circumferential cracks spanning approximately 90° of the circumference

along the plane where the radial compression was maximum (midlength of z 1 and

Z2). Figure 3.14 (b) shows an axial view of these cracks at a magnification of 75x.

(b) Insulator B

The internal surface of the end-fitting was very smooth, and the quality of interfa-

cial bonding appeared to be good, with no voids between the GRP-rod and end-

fitting. Figure 3.15 (a) shows an axial view of the GRP-metal interface at a
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magnification of 15 x. The GRP-rod was mostly free from internal damage.

Although, looking at the central region of the GRP-rod, an array of very small

microscopic cracks were found along the central axis of the rod (see figure 3.15 b).

These cracks could have been generated during the manufacturing of the GRP rod.

(c) Insulator C

The internal surface of the end-fitting was very smooth. The quality of interfacial

bonding was once again very good, with no evidence of voids (see figure 3.16 a).

The GRP-rod however showed strong evidence of internal cracking. Looking at the

midplane (midlength of Zl and zz) from the axial direction, two cracks were

detected. One crack started from the circumference and traversed to the center

(labeled as crack P in figure 3.16 b), while the other crack was smaller in size and

was located at the center of the circular cross-section (crack Q in figure 3.16 c).

(d) Insulator D

The internal surface of the end-fitting consisted of a series of large u-shaped

grooves. Looking at the interface from the axial direction, a large void was found

between the GRP rod and end-fitting. This void was most probably seen because the

lateral sectioning plane happened to coincide with a valley of the u-shaped grooves

(see figure 3.17 a). However, looking from front, the geometry of these grooves

becomes clearly apparent (see figure 3.17 b). It is important to note that the u-

shaped grooves were so wide that the effective area of contact between the end-

fitting and the GRP rod seems to have reduced significantly. Similar to insulator A,

the circumference of the GRP rod exhibited a network of microscopic cracks. These

cracks were smaller in size, and the total damaged area was more localized (span-
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ning approximately 20°) in comparison with the extent of damage found in insulator

A (figure 3.18 a). Furthermore, the entire external surface of the GRP rod showed

lines of circumferential damage created by the peaks of the grooved surface of the

end-fitting. This was expected since a smooth end-fitting surface would transfer the

radial crimping stresses more uniformly to the GRP rod than a a grooved surface,

where the peaks act like notches embedded in the rod and cause large stress concen-

trations. Figure 3.18 (b) shows that the peaks on the grooved surface of the end-

fitting got embedded in the composite, resulting in fiber fractures and resin crack-

ing.

(e) Insulator E

The quality of interfacial bonding between the rod and end-fitting was good. No

voids were observed at the interface (see figure 3.19). Similar to insulator D, the

internal surface of the end-fitting was grooved. However, these grooves were much

finer than the coarse grooves seen in insulator D. There was no evidence of any

internal damage in the GRP-rod.

Figure 3.20 schematically illustrates the the size and location of internal defects

found in the GRP rods from all five insulators. Since these specimens had been subjected

to the push-out tests described earlier, the actual cause of some of the defects remains

uncertain. The network of circumferential microcracks observed in insulators A and D,

and the straight cracks in insulator C, could have been created either during the crimping

process, or during the push-out tests. Certainly, the damage zones observed on the sur-

face of the GRP rod of insulator D were created during the crimping process.

The quality of interfacial bonding, and the roughness of the internal surface of the
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end-fitting, can be used to explain some of the previous experimental observations. In

section 3.2, it was seen that the radial compression data for insulator D indicated predom-

inantly negative compression values. This is because we had assumed that the GRP rod

was in perfect contact with the end-fitting surface. However, the u-shaped grooved end-

fitting surface of insulator D significantly reduces the effective area of contact, with a

series of large voids at the interface. During radial compression measurements, the ultra-

sonic transducer actually measured the depth (x in equation 3-1 a) of the metal-void

interface, thus making the internal rod radius (rjn) to appear to be greater than the exter-

nal radius of the uncompressed part of the GRP rod (rout). This problem did not arise in

insulator E because the grooves of the end-fitting surface were extremely fine, and proper

rod-metal contact had been achieved during crimping.

In section 3.3, the rod push-out test results exhibited a wave-like response for insu-

lators D and E in the non-linear ( i.e., sliding) regime, while the curves were smooth for

insulators A, B, and C. Furthermore, the fact that the "wave-lengths" were much larger in

insulator D than in insulator E, can be explained by the internal surface morphology of

the end-fittings. The onset of sliding occurs at a critical load (Pf) which marks the transi-

tion from linear to non-linear response. Now, if the internal surface of the end-fitting is

grooved, then the peaks of the grooved surface offer resistance to unrestricted sliding of

the GRP rod. Therefore, a small load increment (AI') is required to overcome the resis-

tance due to the peaks. When sliding commences again, the external load gets relaxed

back to (Pf) until the next peak of the grooved surface is encountered. This process will

lead to the wave-like mechanical response observed in figure 3.9. It is evident that the so

called wave-length will be directly proportional to the coarseness of the grooved surface

of the end-fittings.



83

Table 3.1 : Ultrasonic radial compression and rod push-out test

results for the five substation insulators.

t IncoITectvalue

Table 3.2 : Bending test results for insulators A, C, and D.122

INSULATOR M Pf

(mm) (kN)

A 0.176318 310.0

B 0.234103t 145.0

C 0.107347 277.0

D 0.005609t 112.0

E 0.030533 64.5

Max. Load Max. DispL

INSULATOR Pbend Ubend

(kN) (mm)

A 18.68 297.2

C 18.73 312.4

D 16.39 281.9



Table 3.3 : Torsion test results for the five substation insulators.122

84

INSULATOR Max. Rotation Probable

Torque Failure

(Nm) (degrees) Mode

A 3672 46° Intralaminar
Dama2e

B 3050 46° Intralaminar
Dama2e

C 3615 52° Intralaminar
Dama2e

D 3559 57° Intralaminar
Dama2e

E 903 7° Internal
Slidin2
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Figure 3.1 : Sectioned insulator end for radial compression measurement.
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rout

.o

Figure 3.2 : Schematic of ultrasonic pulse-echo measurement technique.
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Figure 3.3 (a) : Three dimensional radial compression profile for insulator A.
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Figure 3.3 (b) : Three dimensional radial compression profile for insulator B.
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Figure 3.4 : Regression polynomial PA(z) for axially non-uniform

compression in insulator A.
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Figure 3.5 : Polynomials with different shapes and average

magnitude of insulator A.
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Figure 3.6 : Tangentially non-uniform radial compression; (a) A = I and n = 2, 4, and 6,

and (b) n = 4 and A = 1,2, and 3.
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Experimental Load-Displacement

Figure 3.8 : Load-displacement and acoustic emission from push-out
test of insulator A.
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Figure 3.9 : Rod push-out test results for all insulators.

400

350 I- /

_/
300

250P-t'-"

0

200
.-

"'0
CI)
.- 150Q.0..
<

100



(a)

(b)

96

Figure 3.10 : Bending tests of composite substation insulators;

(a) An insulator being loaded, and

(b) Fracture surface of GRP rod.
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Figure 3.11 Torsional loading of a composite substation insulator.
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Figure 3.12 : Torsional load versus rotational displacement;

(a) For insulator A, and (b) For insulator E.
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Figure 3.13 : Sectioning planes for optical microscopy of end-fittings.
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(a)

(b)

Figure 3.14 : Observations of Insulator A;

(a) Axial view of GRP-metal interface (10 x),

and (b) Network of circumferential micro-cracks in GRP-rod (75 x).
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(a)

(b)
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Figure 3.15 : Observations of Insulator B;

(a) Axial view of GRP-metal interface (15 x),

and (b) Micro-cracks at the center of the GRP-rod (20 x).
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(c)

Figure 3.16 : Observations of Insulator C;

(a) Axial view of GRP-metal interface (10 x),

(b) Axial view of crack P from circumference towards center (60 x),

and (c) Front view of crack Q (60 x).
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(b)

--- . - --- - ... ...-----.

Figure 3.17 : Observations of Insulator D;

(a) Axial view of GRP-metal interface shows large separation (10 x),

and (b) Front view of GRP-metal interface shows u-shaped grooves (7.5 x).
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Figure 3.18 : Observations ofInsulator D;

(a) Network of circumferential micro-cracks near GRP-metal interface (75 x),

and (b) External surface of the GRP-rod shows damage zones (45 x).
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Figure 3.19 : Axial view of GRP-metal interface in insulator E (7.5 x).
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(a) INSULATOR A (b) INSULATOR B

(d) INSULATOR D

(c) INSULATOR C

(c) INSULATOR E

Figure 3.20 : Schematic of observed damage in GRP rods of all insulators.
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Chapter 4

Finite Element Analysis of Composite Insulators

4.1. INTRODUCTION

Depending upon the type of application, composite insulators can be subjected to a wide

variety of multi-axial loading conditions. As mentioned in chapter 1, suspension insula-

tors are predominantly subjected to axial tension, with significant contributions from hor-

izontal bending loads (caused by ice deposition and wind gusts) and torsional loads (see

figure 1.2). Line post insulators are predominantly loaded in bending (see figure 1.3), and

substation insulators are subjected to axial compression with very strong contributions of

bending (figure 1.4).121In addition to the external multi-axial loads applied during ser-

vice, the composite GRP rod is subjected to radial compression during the crimping pro-

cess. In this chapter, detailed two- and three dimensional finite element models have been

developed for analyzing the internal stresses and overall deformations of composite subs-

tation insulators subjected to several cases of multi-axial loads in service. In chapter 3, it

was seen that the mechanical behavior of insulators A and E were significantly different

under axial compression (section 3.3) and torsional loads (section 3.5). This was caused

mainly due to the fact that their radial compression profiles were very different. The

average magnitude of radial compression of insulator A (MA = 0.176318 mm) was

significantly larger than the average magnitude of radial compression of insulator E (ME

=0.030533 mm). Therefore, in this chapter, particular attention has been given to insula-

tors A and E for the finite element analysis. In chapter 6, these finite element models will

be modified to simulate composite suspension insulators. Figure 4.1 shows the
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dimensions and loading components of a typical 115 kV substation insulator loaded in

service.

In order to develop an accurate finite element model, the elastic properties of the

GRP rod and metal end-fittings were required. In chapter 2 (section 2.1.1), the rule of

mixtures and Halpin-Tsai equations were presented as a convenient analytical approach

for estimating the elastic properties of unidirectional composite laminae. 17,19,20These

equations were therefore used to evaluate the complete set of elastic properties of the

GRP material (see Appendix C). However, since these analytical tools are highly simplis-

tic in nature, and since they cannot be used to estimate the strength properties, mechani-

cal tests were required. In reference 121 the real elastic and strength properties were

obtained by performing experiments on GRP composite specimens extracted from the

GRP rod of insulator A. Tensile coupons were used to determine the longitudinal (E 11),

and transverse Youngs moduli (E22 or E33), and the Poisson's ratio (V12)in accordance

with ASTM D 3039 - 76. The shear modulus (G12) and the intralaminar shear strength

('t{2) were determined from the Iosipescu shear test.121The analytically estimated and

experimentally measured elastic properties of the GRP composite of insulator A are com-

pared in Appendix C. Clearly, there was considerable disagreement between the two

approaches. For the finite element models developed in this chapter, the experimentally

measured set of properties were used.

The finite element analyses of crimped joints, wherein interfacial bonding is purely

due to mechanical compression, can be highly sensitive to the interface characteristics

assumed in the model. The analyses have therefore been performed by assuming both, a

perfectly bonded interface, and an imperfect interface, between the GRP rod and the

end-fitting. The perfectly bonded interface is modeled as an abrupt material discontinuity
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which requires continuity of displacements across the interface. The imperfect interface,

on the other hand, is a general contact problem with Coulomb friction and permissible

internal sliding of the GRP rod within the end-fittings. All computations have been per-

formed on an ffiM RS 6000 workstation using the ANSYS finite element software (ver-

sions 5.0 and 5.1). 119

4.2. AXISYMMETRIC ANALYSIS

In this section, axisymmetric finite element models are developed for analyzing substa-

tion insulators subjected to axisymmetric radial compression profiles ( i.e., only axially

non-uniform radial compression), and only axial loads acting externally.

4.2.1. Perfect Interface Model

The perfectly bonded GRP-metal interface was modeled by nodal connectivity to ensure

continuity of displacements across the interface. Figure 4.2 (a) shows the axisymmetric

finite element mesh of one half of the insulator with the appropriate boundary conditions.

The mesh consists of 1726 eight-noded isoparametric quadrilateral- and collapsed tri-

angular elements with axisymmetric properties. Since the maximum stresses are expected

to occur close to the lower end-fitting, the fillet radius (p) at the GRP-metal interface

comer could have a significant influence on the computed stress concentration factors. 56

The perfect interface analyses were therefore performed for several edge-radii (p) rang-

ing from 0 (perfectly sharp comer) to 3.5 mm (round comer). The elements close to the

edge comer were 10% of the size of finite elements in other non-critical locations (see

figures 4.2 a,b).
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The base of the axisymmetric mesh was constrained against translation in the radial

(r) and axial (z) directions, and the central axis of the rod was constrained in the radial

direction. A state of uniform axial compression was applied from the mid-plane in the

form of nodal displacements (Uz =-lmm). In addition, radial compression due to crimp-

ing was prescribed in the form of compressive radial displacements on the surface (z1 -

z 2) of the end-fitting. Since the analysis is axisymmetric, the tangential non-uniformity

caused by the wave-like radial compression of insulator A could not be simulated (see

figure 3.3 a). Only the axial non-uniformity was simulated by applying the fifth-order

polynomial (PA(z» as described in section 3.2.2.

Figure 4.3 (a) shows the von-Mises equivalent stress (aeqv) along the path ABC per-

pendicular to the GRP-metal interface. It is obvious that the stresses are highly concen-

trated at the interface comer (point B), and bounded elsewhere in the GRP-rod. As would

be expected, the magnitude of stress concentration is highly dependent on the fillet radius

(p). Figure 4.3 (b) shows the magnitude of the maximum equivalent stress at the inter-

face comer as a function of the fillet radius (p). The stresses are clearly highest for a per-

fectly sharp comer (p =0), and progressively decrease as the comer radius is increased.

Furthermore, for the case of a perfectly sharp comer, a mesh sensitivity analysis was per-

formed to evaluate the influence of the degree of mesh refinement on the stress concen-

tration factors. Figure 4.3 (b) clearly demonstrates that the calculated stresses increase

asymptotically with a decreasing size of finite elements (~) at the interface comer. This

trend indicates that the numerically obtained stresses at the interface comer may be

misleading since the exact solutions, conforming to the theory of linear elasticity, will be

approached only when the size of finite elements is made infinitesimally small (~-7 0).

From figures 4.3 (a,b) it seems very likely that the actual stress field at the interface
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corner is either singular, or severely concentrated. In the next section, the finite element

iterative method (FEIM) is used to evaluate the presence of the singular field.

4.2.2. Finite Element Iterative Analysis

Within the framework of linear elastic fracture mechanics (LEFM), several studies have

demonstrated that the stress field at the interface comer of two perfectly bonded dissimi-

lar elastic bodies could be singular in nature. 98-102Since closed-form analytical solu-

tions based on William's Airy stress function approach 97 are not presently available for

isotropic-orthotropic material combinations, the finite element iterative method (FEIM)

104-108,123was used to solve the eigenvalue problem at a perfectly bonded GRP-

Aluminum interface corner.

The FEIM algorithm was implemented by using the ANSYS parametric design

language (APDL) 119in order to compute the power of the corner singularity. Due to the

highly localized domain of the singular zone, a generalized plane-strain condition was

assumed for the linear-elastic analysis.

Figure 4.4 shows the fan shaped mesh constructed around the GRP-Al interface

corner. The GRP rod was modeled as a homogeneous orthotropic medium which spans a

wedge angle of 1800. The isotropic aluminum end-fitting spanned an angle of 900. Ordi-

nary eight-noded quadrilateral and six-noded triangular isoparametric elements were

used. Considering the interface corner as the local origin of a polar coordinate system,

the mesh shown in figure 4.4 consists of 69 rings of elements in the radial (r) direction,

and 25 rays of nodes in the tangential (8) direction. The radii of these rings followed an

r2 refinement. The outer-most ring had a radius (Rout)of 100. For the initial iteration,

displacements Ux/Oj and Uy/Oj were prescribed at nodes along the outer ring (Rout).
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Since the value of the singular power is independent of the magnitude of the far-field

boundary conditions, 53for a node (i) located at (r, e), where r =Routand e variesfrom0

to 2700, we prescribed

Ux(O} =0.01 cose (4-la)
and

Uy(O} =0.01 sine (4-lb)

This ensured a mixed-mode situation at the interface comer due to the combined pres-

ence of symmetric (mode I) and skew-symmetric (mode II) displacements. The iterative

solution procedure was subsequently implemented as outlined in chapter 2 (section

2.4.3). Convergence was achieved when the value of the singular power (A),along all 25

rays shown in figure 4.4, converged according to

IA.fm+1} - A.fm} I
I I I I~ 10-5 (4-2)
I A/m+l} I

where, m indicates the iteration number, and i indicates the ray number (i =1,2, ...25).

The analysis was performed to evaluate value of Aas a function of the fiber volume

fraction (Vi) of the E-glasslepoxy composite material. This was done by providing the

value of Vi as an input parameter to calculate the elastic properties Ell, E22, G12, and

V12.Considering the unidirectional composite as a homogeneous orthotropic material,

the rule of mixtures and Halpin-Tsai equations 17,19,20were used for Vi values in the

range 1% to 99 %. The calculated elastic properties were subsequently supplied as input

parameters to the generalized FEIM macro (created using APDL) which calculated the

singular power.

In order to validate the FEIM algorithm for the GRP-aluminum interface comer, the

singular power was first computed for the aluminum-aluminum material combination.
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This case corresponds to a notch in isotropic media with a vertex angle of 2700, which

has been solved analytically by Williams. 97 Results presented in table 4.1 indicate that

the numerical solution is in excellent agreement with the analytical solution. Two addi-

tional calculations were performed where the ratio of elastic moduli of the two isotropic

materials (E(1)fE(2» were 0.1 and 5. This case has been solved analytically by Hein and

Erdogan. 100Table 4.1 shows that these results were also in good agreement with the

analytical solutions for an isotropic-isotropic bimaterial wedge. It can therefore be con-

cluded that singulars powers (A.) computed for the isotropic-orthotropic material combi-

nations will also be accurate.

Figure4.5 showsthe computedvaluesof A. as a functionof the volumefractionof

E-glass fibers for our case of a perfectly bonded GRP-Al interface comer. The stresses

are clearly singular in nature. The power of the singular field is only slightly lower than

the classical square-root singularity, and seems to increase with the fiber volume-

fraction, at least within the domain of structural composites (VI =40 to 80 %). For a GRP

composite with a fiber volume fraction of 62 % (used in substation insulators), the com-

putedvalueof A. was0.4924.

The number of iterations required to achieve convergence was found to decrease

with increasing fiber volume fractions (VI) of the GRP-material. At VI =99%, conver-

gence was achieved in 10 iterations, whereas, at VI =1%, up to 102 iterations were

required for convergence. This was probably due to the stringent convergence criterion

defined in equation (4-2). However, at the point of convergence, the singular powers

obtained from all 25 rays were identical to the fourth decimal place.

From these results, it is clear that the assumption of perfect bonding ( i.e., continuity

of displacements and no relative sliding) will lead to singular stress fields at the perfectly
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sharp interlace comer. Even if the edge comer is assigned a finite fillet radius (p), on a

micro scale, this condition will be equivalent to an interlace crack which has been shown

to exhibit a singular field at the crack tip. 106,108Further discussion of the singular

behavior and the shape of the singularity dominated region is beyond the scope of this

work.

4.2.3. Imperfect Interface Model

An imperlectly bonded interlace will be simulated if the rod and end-fitting are treated as

separate entities which exhibit discontinuous stresses and displacements across the inter-

face, and, at sufficiently high loads, are capable of undergoing large relative sliding with

frictional resistance. In this section, these conditions are satisfied by employing general

axisymmetric point-to-surlace contact elements at the bimaterial interlace.

Unlike the linearized perlect interlace solutions presented in section 4.2.1, a general

contact analysis is significantly more expensive since the problem is structurally non-

linear and requires an iterative solution procedure. The nonlinearity stems from the fact

that we assume no prior information about the local contact conditions (ie, sticking, slid-

ing, or open-gap). Such solutions are frequently sought in the analysis of assembled

components joined together by pure mechanical compression,113,116where the classical

Hertz solutions 14,109are not necessarily applicable.

Figure 4.6 (a) shows the modified axisymmetric finite element mesh of the compo-

site substation insulator. The interlace between the GRP rod and metal end-fitting was

meshed with general surlace-to-surlace contact elements (CONTAC48 in ANSYS 5.0).

A detailed description of the general contact algorithm was given in chapter 2 (section

2.5.2). Since the two bodies ( i.e., GRP rod and end-fitting) are expected to be in constant
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contact, and since they both have the same radius of curvature, the relative definition of

the contact and target bodies was not very clear. Therefore, symmetric contact conditions.
were applied, 119wherein one set of contact elements were generated by considering the

GRP rod as the contact body and the metal end-fitting as the target body, and another set

of elements by reversing the definition of the contact and target bodies. It should also be

mentioned that the general contact elements could not be used with the eight-noded iso-

parametric elements employed in the perfect interface model. Therefore, the GRP rod

and end-fitting had to be re-meshed with four-noded constant strain quadrilateral ele-

ments. Furthermore, since both sticking and sliding contact conditions must be con-

sidered, the elastic Coulomb friction model was adopted for the analysis. The mesh

shown in figure 4.6 (a) consists of 78 contact elements and 240 four-noded quadrilateral

elements.

The central axis of the rod was once again constrained in the radial direction, and

the base of the end-fitting was constrained in all directions. The axially non-uniform

radial compression function of insulator A (PA(z)) was prescribed on the surface z 1- Z 2

of the end-fitting. A full Newton-Raphson iteration scheme was employed to obtain solu-

tions with axial compression prescribed as displacements in 12 load-steps :

Uz =0, -0.1, -0.5, -1.0, -1.5, -2, -3, -4, -6, -8, -11, and -15 mm.

The first load-step (Uz =0) corresponds to the case of pure radial compression applied to

the insulator during the crimping process, whereas subsequent load-steps simulate the

residual radial compression in conjunction with quasi-statically incremented axial

compression applied during service. For the present analysis, the coefficient of static fric-

tion was assumed to be equal to the coeffiCientof dynamic friction ( i.e., J.1s= J.1d). This
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assumption is reasonable because during service, the onset of relative sliding between the

GRP rod and the metal end-fitting will constitute failure of the substation insulator. Our

main interest, therefore, lies in computing the internal stress distribution within the elas-

tic (sticking) contact regime. Subsequent kinematics of sliding governed by the value of

~d are relatively unimportant

The non-linear problem was solved for several values of ~ in the range 0.2 to 1.0.

For the case of ~ =0.3, figure 4.6 (b) shows a zoomed-in view of the original finite ele-

ment mesh superimposed with the deformed structure after the lOth load-step

(Uz =-8 mm). It is clear that the rod has experienced significant sliding into the end-

fitting socket. The extent of relative sliding for all 12 load-steps (Uz =0 to -15 mm) is

graphically illustrated in figure 4.7. For all values of ~ considered, sliding is minimal up

to approximately 2 mm of applied axial displacement. Depending upon the friction

coefficient, as the applied axial displacement is further increased, the extent of relative

sliding will increase quite rapidly. Figure 4.8 shows the von-Mises equivalent stress dis-

tribution along the path ABC perpendicular to the GRP-Al interface for three load-steps.

In contrast with the perfect interface solutions presented in section 4.2.1 (compare with

figure 4.3), it is immediately apparent that the stresses are finite and discontinuous at the

GRP-Al interface comer (point B). Figure 4.9 shows the individual stress components

along the plane PQR (mid-plane of z 1 and z 2) where the extent of radial compression is

expected to be highest. The non-linearity of the problem is evident since the internal

stressesdo not increaselinearlyas the appliedaxialdisplacement(Uz) is increasedfrom

-1 mm (in the linear sticking regime) to -8 mm (in the non-linear sliding regime). All the

normal stresses (CJpCJ9,and CJz)are compressive in the GRP rod, and the ~agnitude of

the radial (CJr)and tangential stress (CJ9)is almost identical in the rod.
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4.2.4. Discussion

From the results presented so far, it is clear that the computed stress distribution strongly

depends on the interface characteristics assumed in the finite element models. The perfect

interface model shows large stress concentrations in the vicinity of the GRP-Al interface

comer, with the magnitude of stress concentration rapidly decreasing with increasing

fillet radii (p). However, from figure 4.3(b) it is apparent that the actual magnitudes of

the comer stresses tend to increase exponentially with a decrease in the size of elements

(~) employed in the finite element mesh close to the GRP-Al interface comer. Using the

finite element iterative approach, it is found that the results obtained from a perfect inter-

face model are misleading since the linear elastic solutions of a perfectly bonded GRP-Al

interface result in a singularity at the interface comer.

The imperfect interface model employed general axisymmetric surface-to-surface

contact elements to simulate relative motion, discontinuous stresses and displacements,

and Coulomb friction at the interface. The non-linear problem required an iterative solu-

tion procedure for several load-steps with progressively increasing axial compressive dis-

placement (Uz). Unlike the perfect interface solutions, the stresses at the GRP-Al inter-

face comer were found to be bounded for all load steps considered. This is because rela-

tive sliding is initiated as soon as the applied axial load locally exceeds the limiting fric-

tional force (-Ilsfn) defined by Coulombs law (section 2.5.2). The interfacial contact

stresses are consequently relaxed, and the development of a singular zone is prevented at

the interface comer. Table 4.2 summarizes the principal differences arising between the

perfect interface and the imperfect interface models.
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4.3. THREE DIMENSIONAL ANALYSIS

4.3.1. Introduction

In section 4.2. axisymmetric finite element analyses were performed for substation insu-

lators subjected to externally applied axial compression. in conjunction with axially

non-uniform internal radial compression. Since these insulators are subjected to com-

bined multi-axial loads during service. three-dimensional finite element models will be

required to analyze the multi-axial load cases. Seven different cases of multi-axial static

loading were provided by the Bonneville Power Administration. 121

(i) Fault Current Forces:

This condition represents the normal working load of a vertically mounted 115 kV

substation insulator.

(ii) Extreme Fault Current Forces:

This represents the occasional overloading of an insulator without considering

environmental factors.

(ill) Extreme Wind Forces:

This condition represents the normal working load of an insulator under extreme

wind conditions (e.g., hurricanes etc.). The forces have been estimated by assuming

a wind speed of 160 km/hour. with a gust factor of 1.2.

(iv) Wind with Glaze Ice:

Extremely low temperatures cause a layer of ice to be deposited on the conductor.
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resulting in a higher static axial load on the insulator. The forces for this condition

were estimated by considering 90 kmlhour winds, with radial deposition of a 25.4

mm thick layer of glaze ice. The density of glaze ice is 910 kg1m3.

(v) Wind with Rime Ice:

This condition represents a relatively less severe environment than case (iv). The

wind speed is assumed to be 64 kmlhour, with a 5 mm thick radial layer of rime ice

which has a density of 240 kg1m3.

(vi) Seismic Condition:

Substation insulators are required to be in service for approximately 50 years. This

condition simulates the dynamic load amplification caused by earth-quakes. The

forces were estimated by considering a downward thrust, resulting in an accelera-

tion due to gravity of 3.92 mlsecond2 (0.4 g), with 5 percent damping.

(vii) Switch Torsional Force:

At present, composite substation insulators are not being used in switch-gear appli-

cations since their torsional strength is uncertain. This condition was required to

evaluate the possibility of switch-gear applications. A torque of 2480 Nm is the

estimated load required to rupture a thin layer of ice deposited at one end of the

insulator.

The above multi-axial load cases are combinations of uniaxial loads which include;

axial compression (FA)' bending forces (FB), insulator weight (Fe), wind forces (FD),

and torsional loads (MT). Figure 4.10 (a) schematically illustrates the location and direc-

tion of these forces, and table 4.3 lists their individual values for all load cases. It may be
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noted that forces FA, FB, and MT are active on the flange of the upper end-fitting, FD acts

along the entire length of the insulator, and Fe acts at the center of gravity. The follow-

ing sub-sections describe the three-dimensional models developed in this study.

4.3.2. Global Insulator Model

A three dimensional global finite element mesh of composite substation insulators was

constructed with the dimensions indicated in figure 4.1. The mesh shown in figure 4.10

(b) consists of 1200 eight-noded constant strain hexahedral elements. Since this model is

significantly more computer intensive than the axisymmetric models described in section

4.2, the following assumptions were made:

(a) The GRP rod is perfectly bonded to the end-fitting ( i.e., continuous

stresses/displacements, and no relative sliding).

(b) The GRP rod is a homogeneous orthotropic structure with higher stiffness (E 11) in

the axial (z) direction, and equal stiffnesses (E22 =E 33) in the x- and y-directions

perpendicular to the axis of the rod.

(c) The interface comer between the GRP rod and end-fitting is perfectly sharp (p =0).

(d) The rubber weathersheds covering the GRP rod, and the bolt holes in the flanges of

the end-fittings, have a negligible contribution on the overall deformation and stress

distribution of insulators.

(e) All loads applied to the insulator are static in nature.

Similar to the axisymmetric models, the flange of the lower end-fitting was con-

strained against translation in the radial (r), tangential (8), and axial (z) directions. The

axial compressive load (FA) was applied as a uniform external pressure acting into the
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surface of the upper end-fitting. The bending load (FB) was prescribed along the +y

direction. The value of FB was divided by the number of nodes on the top-most surface

of the upper end-fitting, and uniformly applied to all nodes on the surface. The insulator

weight (Fc) had to be applied such that the top-most part of the insulator was unstressed,

with the axial load increasing linearly in the downward direction. The lower-most end of

the insulator should experience the complete weight (Fe) of the insulator. Clearly, this

type of distribution cannot be obtained by prescribing a vertical point force (Fe) at the

center of gravity. Therefore, an indirect approach had to be employed. A hypothetical

density of the GRP rod was determined as

Fe

Density = g x volume of GRP rod
(4-3)

This value of density was specified as a material property for the GRP rod, and an

acceleration due to gravity (g =9.8 m/s2) was applied to the model in the upward (+z)

direction. This resulted in nodal reaction forces which simulated the linear distribution of

axial forces caused by the weight of the insulator. It should however be noted that this

approach assumes that the entire weight of the insulator is due to the GRP rod, and the

end-fittings are weightless. The wind forces (FD) could act in any direction along the xy-

plane. However, the worst case would be simulated by applying FD in the +y direction,

thereby complementing the applied bending forces (FB). The total force due to FD was

uniformly applied in the +y direction on a surface of the GRP rod, which spanned the

entire exposed length of the rod and subtended an angle of 60° towards the central axis of

the rod. The torsional load (MT) was applied along the circumference of the top surface

of the end-fitting. This was accomplished by applying tangential forces (FT) to all twelve

nodes along the circumference given by
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MT =12FTX r (4-4)

where, r is the radius of the end-fitting flange.

It should be noted that in addition to the external loads applied during service (table

4.3), internal radial compression due to crimping had to be simulated. For the axisym-

metric analysis described in section 4.2, an average radial compression polynomial PA(Z)

was used since the tangential non-uniformity of the radial compression profile of insula-

tor A could not be simulated. However, in the present three-dimensional model, the

applied radial compression profile was both axially and tangentially non-uniform. The

wave-like profile of insulator A (see figure 3.3 a) was simulated by alternately applying

the averaged displacement functions of the maxima (PA,max(z)) and the minima

(PA,min(Z)),separated by 30° along the circumference of the end-fitting. This generated

the "wave-like" profile of insulator A, with six maxima and six minima. Furthermore, the

polynomials PA,max(Z)and PA,min(z)were selected such that the average magnitude of

radial compression applied to the GRP rod in the model was equal to the experimentally

determined value for insulator A (MA = 0.176318). Unfortunately, these radial displace-

ments could only be applied to the external surface of the lower end-fitting. This is

because displacements are the primary degrees of freedom in the finite element model.

Therefore, radial displacements Ur(8, z) applied to the upper end-fitting would act as

constraints against further deformation of the insulator caused by the external loads.

However, the fact that radial compression due to crimping was applied only to the lower

end-fitting should have a negligible effect on the overall displacement of the insulator

model, and the internal stresses (near the lower end-fitting). The global three-

dimensional model was solved for all seven cases of multi-axial loading conditions.

From the boundary conditions applied, it is evident that the maximum displacements are
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expected to occur at the upper end of the insulator, while the maximum stresses will

occur near the lower end which is constrained.

4.3.3. Non-linear Sub-model of End-fitting

The global insulator model described in the previous section was linear, since it assumed

that the GRP rod is perfectly bonded to the end-fitting ( i.e., no relative sliding). In addi-

tion, it assumed that the interface comer between the rod and end-fittings is perfectly

sharp (p =0). As demonstrated in section 4.2, these assumptions will lead to inaccurate

stress results in the vicinity of the GRP-Al interface comers, since the true stresses

predicted by the theory of linear elasticity are singular in nature. Therefore, the global

three-dimensional model can only be used to compute the overall deformation of an insu-

lator under various loading conditions. In order to obtain the accurate stress distribution

near the end-fittings, a three-dimensional structurally non-linear model, with an imper-

fect interface between the rod and end-fittings, will be required. In this section, a three-

dimensional non-linear sub-model was developed with an imperfect interface. The sub-

model was created in order to avoid the computational expense of a full non-linear insu-

lator model. Only the region close to the lower end-fitting was considered since the max-

imum internal stresses are expected to occur near this end. Furthermore, the mesh was

refined (in comparison with the global model) in the tangential direction.

The sub-modeling scheme is based upon Saint Venant' s principle 14 which states

that if an actual distribution of forces or displacements applied to a structure is replaced

by a statically equivalent system, then the distribution of internal stresses or strains is

altered only near the region of load application. Figures 4.11 (a,b) show the finite ele-

ment mesh of the submodel, which consists of 816 conventional eight-noded hexahedral
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elements with 288 three-dimensional surface-to-surface contact elements (CONTAC49

in ANSYS 5.0119) at the interface. These elements are the three-dimensional counterpart

of the contact elements used in section 4.2.3. They can be used to simulate Coulomb fric-

tion and internal sliding of the GRP rod in the axial (z) as well as tangential (S) direc-

tions. For the present analysis of the seven multi-axial load cases, the coefficient of fric-

tion (11)was assumed to be 0.3. The following step-wise procedure was employed for all

loading conditions.119

Step 1 : For each load case, the linear global insulator model was created, external

forces and constraints were applied, and the model was solved.

Step 2 : The finite element mesh of the non -linear submodel was created with three-

dimensional general surface-to-surface contact elements at the GRP-Al inter-

face.

Step 3 : The top surface of the GRP rod in the sub-model was defined as the "cut-

boundary". This was done by writing the node numbers on the surface, and

their locations (r, S, z), to a file called submodel.node.

Step 4 : The database of the global insulator model was resumed, and the file

submodel.node was read. Based upon the nodal locations stored in this file,

the displacement solutions of the global model (ur, u(), uz) were obtained at

each location and saved in a file called global.cbdo. Note that the nodalloca-

tions in submodel.node did not have to coincide with nodes in the global

model since the displacement solutions can be obtained at any location from

the element shape functions.
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Step 5 : The database for the sub-model was resumed. The base of the end-fitting was

constrained in all directions, and radial displacements due to crimping (6

maxima and 6 minima of insulator A) were prescribed on the external surface

of the end-fitting. The file global.cbdo was read in order to apply the displace-

ments from the global model, along the cut-boundary plane, as displacement

boundary conditions to the sub-model. The sub-model was subsequently

solved to obtain internal stresses near the lower end-fitting.

Figure 4.12 schematically illustrates the transfer of displacements from the global

model to the sub-model. Since the sub-model is non-linear, the iterative solution pro-

cedure adopted was the same as for the axisymmetric imperfect interface model (section

4.2.3). For each loading condition approximately 12 to 15 iterations were required for

convergence.

4.4. VERIFICATION OF MODELS

In this section, an attempt is made to verify the axisymmetric and three-dimensional

finite element models with experimental results obtained under axial compression, bend-

ing, and torsional loads.

4.4.1. Under Axial Compression

In section 4.2, the axially non-uniform average radial compression polynomial PA(z) was

applied to the end-fitting of the axisymmetric models in conjunction with axial loads.

Figure 4.13 (a) compares the experimental rod push-out test result of insulator A with the

load-displacement curves computed from the axisymmetric perfect- and imperfect inter-
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face models. The assumption of a perfect interface is clearly inappropriate since the true

response is structurally non-linear due to sliding of the GRP rod within the end-fitting.

Furthermore, the slope of the linear response from the perfect interface model is found to

depend on the fillet radius (p) employed in the finite element mesh. The imperfect inter-

face model, on the other hand, is capable of simulating the contact non-linearity. At a

friction coefficient of Jl=0.3, the computed load-displacement curve is found to be in

excellent agreement with experimental results. It may be noted that the coefficient of

static friction between the GRP rod and the internal surface of the AI end-fitting was

experimentally estimated to be 0.32.

In section 4.3.3, a three-dimensional sub-model was developed with an imperfect

interface. In this case, radial compression was applied in the form of six maxima

(PA,max(Z))and six minima (PA,min(Z))to simulate the axially and tangentially non-

uniform profile of insulator A. In order to verify this three-dimensional simulation, axial

compression was applied to the sub-model in twelve load-steps. Figure 4.13 (a) shows

that the load-displacement response of the three-dimensional imperfect interface model is

also in good agreement with the rod push-out test results for insulator A.

The same approach was now applied to insulator E. In chapter 3, it was seen that

insulator E has the lowest radial compression (ME =0.030533 mm), and consequently

the lowest axial load at the onset of sliding (Pf =64.5 kN). Since the radial compression

profile was almost completely uniform, a uniform radial compression was applied to the

axisymmetric imperfect interface model with an average magnitude of ME' Figure 4.13

(b) shows the experimental rod push-out test results of insulator E with load-

displacement curves calculated at Jl = 0.3, 0.7, 0.75, and 0.8. It is apparent that at a

coefficient of friction of 0.75, the experimental and computed results are in good agree-
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ment. Since the magnitude of radial compression was very low, if the GRP-metal inter-

face had a friction coefficient of ~ =0.3 (as in insulator A), then failure due to internal

sliding would have occurred at only 10 kN. In other words, the high frictional resistance

in insulator E was primarily responsible for sustaining an axial load of 63 kN prior to

internal sliding. Such a large value of ~ seems reasonable since the internal surface of the

end-fitting was found to be grooved in chapter 3 (section 3.6).

From these results, it can be concluded that the structural non-linearity of insulators,

and the axial loads at the onset of internal sliding (Pj), can be accurately computed by

using either the axisymmetric or three-dimensional imperfect interface models, provided

that the average magnitude of radial compression (M) and the coefficient of friction (~)

assumed in the model are accurate.

4.4.2. Under Bending Loads

In chapter 3 (section 3.4), mechanical tests were described for insulators A, C, and D

loaded in bending.I22 In order to verify the linear three-dimensional global insulator

model, the model was solved under a pure bending load (FB)' with all other forces (FA,

Fe, FD, and MT) set to zero (see figure 4.14 a). Figure 4.14 (b) shows that the computed

load-displacement response is in excellent agreement with the experimental results of

insulators A, C, and D up to a load of 8 kN. It can therefore be concluded that the global

three-dimensional insulator model (with a perfect interface) can be used to accurately

determine the overall displacements of an insulator for all other cases of multi-axial load-

ing conditions.
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4.4.3. Under Torsional Loads

In order to verify the three-dimensional global and sub-models under torsion, the models

were solved under a pure torsional load (MT), with all other forces (FA, FB, Fe, and FD)

set to zero. The maximum torsional rotation (in degrees) was obtained from the global

insulator model, and the maximum shear stress (tez) was obtained from the non-linear

sub-model.

For an isotropic cylindrical rod of length I and radius r subjected to pure torsional

loads, the angular displacement (ue) and the maximum shear stress (tez) can be obtained

from the theory of elasticity by14

(4-5a)

and

(4-5b)

where MT is the applied torsional load in Nm, and G is the shear modulus of the cylindri-

cal rod. Although these equations are valid only for a simple isotropic rod with no radial

compression induced by end-fittings, they may be used to approximately determine the

torsional behavior of composite insulators. Equations (4-5) are expected to be applicable

because the GRP composite rod is transversely isotropic (in the (r, 8) plane). Considering

the typical dimensions of the GRP rod in substation insulators (I =1.143m, r = 0.0316m

and G = G23 = 3.897 X 109N/m2), figure 4.15 shows that the numerical results agree

fairly well with the linear elastic solutions for an isotropic rod. Both the shear stress and

rotational displacement agree from the two approaches. In addition, upon converting the
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units, it can be seen that up to a torsional load of 2480 Nm, the rotations shown in figure

4.15 are in agreement with the experimental results obtained in chapter 3 (section 3.5) for

insulator A.

4.5. RESULTS AND DISCUSSION

From the results presented thus far, it is clear that a perfect interface model is inappropri-

ate for determining the maximum stresses in composite insulators, since these stresses

are theoretically singular if the GRP-metal interface is assumed to be perfectly bonded.

Furthermore, a perfect interface model predicts a linear structural response. On the other

hand, both the axisymmetric model and the three-dimensional sub-model are found to be

capable of simulating the structural non-linearity of insulators, caused by internal sliding

of the rod within the end-fitting. The maximum axial load (Pf) at the onset of internal

sliding can be accurately determined, provided that the magnitude of radial compression

and the coefficient of friction assumed in the model are accurate.

This section presents the internal stresses and overall deformations obtained from

the three-dimensional analysis of insulator A. The results are presented for pure crimping

forces (with no external loads), and the seven multi-axial load cases described in section

4.3.1. The internal stresses have been determined from the sub-model with an imperfect

interface, while the overall displacement results have been computed from the global

insulator model with a perfect interface. Furthermore, since failure of the metal end-

fittings due to stress concentrations are highly unlikely and have never been reported in

the literature (except due to fatigue), only the stresses within the GRP rod are described

in this section. The maximum deformation of the insulator, and the location of the nodes

encountering these displacements are presented in table 4.4. Table 4.5 lists the maximum
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and minimum values of the six stress components under al110adingconditions. In the fol-

lowing sub-sections, the computed stress components will frequently be compared to the

failure strengths of the E-g1ass/epoxy composite which are given in appendix C. It

should be noted that all the stress and displacement components conform to a cylindrical

coordinate system (r, e, z) with the origin at the geometric center of the GRP rod.

4.5.1. Crimping Forces

This load case includes the effects of radial compression caused by crimping only. Fig-

ures 4.16 (a, b, c, and d) show the iso-stress contours for the normal stresses ar (radial),

as (tangential), az (axial), and the shear stress 'tre respectively. It is evident that the

crimping applied to insulator A will cause large compressive radial and tangential

stresses in the GRP rod close to the interlace. In chapter 3 (section 3.6), optical micros-

copy of the GRP rod of insulator A showed internal micro-cracks near the GRP-Al inter-

face. However, since these cracks were observed after the rod had been subjected to the

push-out tests, their cause remained uncertain.

Since the axial stress (az) in the rod within the end-fitting is mostly tensile in nature,

and since the magnitude of az is very low in comparison with the axial tensile strength

(a{t), the stress state in the GRP rod is biaxial compression. The magnitude of ar (-176

MPa) is clearly larger than the transverse compressive strength of the composite (cf 22,C

=-140 MPa). However, this strength value found in the literature, 17 was obtained by

subjecting hoop-wound glass/epoxy composite tubes to axial compressive stresses. The

transverse compressive strength of -140 MPa is therefore applicable only under uniaxial

compression. Since the stress state of the GRP rod within the end-fitting is biaxial

compression, with very large radial and tangential compressive stresses, the strength of
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the composite is expected to be higher than the strength uniaxial transverse compression.

This is because unidirectional composite materials fail in a shear mode under uniaxial

transverse compression. 17Under biaxial compression, the material will be constrained in

both the radial and tangential directions, thereby resulting in a higher resistance to

failure. At this point, the biaxial compressive strength of the GRP material is not known,

and needs to be determined in future study. Despite the fact that the radial stresses (crr)

caused by crimping are as large as -176 MPa, it is not certain if these stresses are large

enough to generate compressive damage in the GRP rods of insulator A.

4.5.2. Fault-Current Forces

This load case involves mainly bending forces, with some contribution from axial

compression. The iso-stress contours of the normal stresses crr and cra, and also the three

shear stress components, were found to be almost completely identical to the case of pure

crimping presented above (refer table 4.5). However, due to the bending force (FB), the

values of axial stress (crz)were tensile along one edge of the rod and compressive at the

opposite edge (refer table 4.5). While the maximum and minimum values of crz occurred

in the GRP rod outside the end-fitting, their magnitudes were small in comparison with

the axial tensile and compressive strengths of the composite.

4.5.3. Extreme Fault-Current Forces

This load case is the most severe as far as bending forces are concerned (FB =9990 N).

Once again, the stress contours of crr, cra, and 'era, were found to be identical to the case

of pure crimping. Due to the severe bending, the axial stress crzoutside ~e end-fitting
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region was tensile at one edge (429 MPa) and compressive at the other (-384 MPa) as

shown in figure 4.17 (a). These stresses are below the axial tensile and compressive

strength of the composite. The bending also caused large shear stresses 'trz and 'taz at the

center of the rod (figure 4.17 b). These stresses are quite close to the intralaminar shear

strength ('t{z) of 60 MPa. Furthermore, the biaxial residual compressive stresses (crTand

cra)induced due to crimping, are quite large. The bending also causes a total deflection of

152 mm (see table 4.4). This load case may therefore require some caution. However,

since it represents the extreme load on an insulator (expected only once in a few years), it

appears that the insulator will withstand the load.

4.5.4. Extreme Wind Forces

The stress components crTand crawere once again identical to the case of pure crimping

forces. The axial stress (crz)and shear stress components were lower than the case of

extreme fault current forces (described above). Therefore, with the exception of the resi-

dual biaxial compressive stresses generated during crimping, the extemalload caused by

wind gusts will not initiate failure.

4.5.5. Wind With Glaze Ice

The total axial compression (FA) of 1740 N makes this loading case the most severe in

axial compression. However, since the GRP-rod is reinforced in the axial direction, the

axial stresses were found to be quite low in comparison with the expected axial compres-

sive strength of the GRP rod (see figure4.18).The stressescausedby crimping,crT and

cra, were still the same. All shear stress components were within safe limits.
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4.5.6. Wind with Rime Ice

This case of external loading did not seem to have any influence on the internal stress

distribution. All stress components in the GRP rod were similar to those generated during

cnmpmg.

4.5.7. Seismic Forces

For this condition, crimping was still the dominant factor. All stress components, except

<1z,were identical to the case of pure crimping. Due to the small bending forces, the axial

stress in the rod outside the end-fitting region (<1z)was tensile at one edge, and compres-

sive at the other. The magnitudes of all stress components, except the biaxial compres-

sive stresses due to crimping, were well below the strength values of the composite.

4.5.8. Switch Torsional Force

For this loading case, in addition to the crimping forces, a torsional load of 2480 Nm was

prescribed on the upper end-fitting. The maximum tangential displacement given in table

4.4 translates to a rotational displacement of 23.8°. In spite of the severe torsional twist-

ing of the rod (figure 4.19 a), all normal stresses <1p<10,and <1z,were identical to the case

of pure crimpingforces.The shearcomponents'tro and 't" werealso found to be identi-

cal to pure crimping. However, figure 4.19 (b) shows that the shear stress 'toz is very

significantly affected outside the end-fitting. The value of'taz is very low at the center of

the rod outside the end-fitting, and rapidly increases to approximately 48 MPa at the sur-

face. It may be noted that the shear strength of the GRP material in the transverse plane

(~23) is not available. Usually it is approximately 10% lower than the shear strength in
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the 1-2 and 1-3 planes ('t{2 =60 MPa in table C.1). Torsional loads of 2480 Nm can

therefore lead to the initiation of intralaminar splits on the surface of the rod. This situa-

tion is further aggravated by the fact that the large shear stresses occur outside the end-

fitting. Therefore, if these splits nucleate, they will be located outside the end-fitting, and

their propagation will be very likely when external bending loads are applied to the insu-

lator.

There is another note of caution. For the present analysis of insulator A, the average

magnitude of radial crimping (M) was very high, and the GRP-metal interface has a

coefficient of friction (~) of 0.3. In insulator E, the value of M is much lower, and the

coefficient of friction at the GRP-metal interface may be in the same range (or smaller) in

the tangential direction. This is because the circumferentially aligned grooves on the

internal surface of the end-fitting can only enhance the friction coefficient in the axial

direction (~ = 0.75 in axial direction, refer figure 4.13 b). In the tangential direction, the

value of ~ may be similar to that of a smooth end-fitting surface ( i.e., 0.3 or less). This

low value of~, coupled with a low magnitude of radial compression (ME =0.0305 mm),

could lead to interfacial sliding if torsional loads as large as 2480 Nm are active. In order

to demonstrate this effect, the sub-modeling procedure was repeated for insulator E.

Under a torsional load of 2480 Nm, figures 4.20 show the partial sliding of the rod within

the end-fitting for three values of the coefficient of friction. If the value of ~ is 0.3 in the

tangential direction, then 33% of the interface encounters sliding. This in turn tends to

relax the surface shear stresses to 42.5 MPa. If the value of ~ is 0.2 then 39% of the inter-

face will slide, and the maximum shear stress reduces to 41.3 MPa. Figure 4.20 (c) shows

the extreme case where the entire interface encounters sliding if the value of ~ is 0.1, and

the maximum shear stress is reduced to 39 MPa. Therefore, there will be two possible
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modes of failure under switch torsional forces:

(i) If the average magnitude of radial compression applied during crimping is large (as

in insulator A), large shear stresses may nucleate intralaminar splits on the surface

of the rod outside the end-fitting. These splits can propagate to cause brittle fracture

of the insulator.

(b) If the magnitude of crimping is low and the coefficient of friction in the tangential

direction is also low (as in insulator E), then the shear stresses will be relaxed, but

failure can occur due to sliding of the rod in the end-fitting.

In summary, is clear that the biaxial compressive stresses (crr and cro) caused by

crimping are very large in insulator A. The maximum radial compressive stress in the

GRP rod, generated by crimping, tends to exceed the uniaxial transverse compressive

strength of the material given in the literature.17 However, it is expected that the actual

strength of the material under a state of biaxial compression will be higher. Therefore,

the stresses generated by crimping of insulator A may, or may not, be large enough to

damage the GRP rod. Furthermore, under most of the multi-axial load cases analyzed

above, the stress contours are very similar. This implies that the internal stress field in the

GRP rod remains dominated by the residual stresses generated during the crimping pro-

cess. Since the average magnitudes of radial compression measured in other insulators

(C, D, and E) are significantly lower, it appears that the biaxial compressive stresses in

these insulators will be lower than in insulator A.

While most of the multi-axial load cases are safe, the cases of extreme fault current

forces and switch torsional forces can be identified as the ones which are closest to the

ultimate strength of the insulator. Under extreme fault current forces, the center of the
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GRP rod inside the lower end-fitting experiences shear stresses which are close to the

critical shear stress required to initiate intralaminar splitting in the rod. Under switch tor-

sional forces, there can be two independent modes of failure depending upon the magni-

tude of radial compression applied during crimping. If the value of M is large, the surface

of the GRP rod will develop shear stresses which are close to the shear strength of the

composite material. On the other hand, if the values of both M and ~ are low, the GRP

rod can encounter partial sliding within the end-fittings.



Table 4.1 : Comparison of numerical (FEIM) and analytical solutions

for isotropic-isotropic bimaterial wedges.

* From Hein and Erdogan,lOO t From Williams97

Table 4.2 : Comparison of perfect and imperfect interface models.

138

E(l)
Singular Power (A.)

y(l) =y(2) FEIM Analytical
E(2)

solution solution

0.1 0.20 0.2872 0.29*

1.0 0.31 0.4549 0.4555t

5.0 0.20 0.4961 0.5*

Perfect Imperfect
Interface Interface

. Nodal connectivity at interface . Nodes at interface connected by
point-to-surface contact elements

. Analysis is linear . Analysis is non-linear

. Stresses and displacements are . Stress and displacements are
continuous across interface discontinuous across interface

. Singular stresses at interface . Finite stresses at interface
comer comer
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Table 4.3 : Multi-axial loading components for composite substation insulators.

CASE LOADING FA FB Fe FD MT

No. CONDmON (N) (N) (N) (N) (Nm)

1 Fault Current Forces 445 2500 200 0 0

2 Extreme Fault Current Forces 445 9990 200 0 0

3 Extreme Wind Forces 445 1735 200 400 0

4 Wind with Glaze Ice 1340 580 400 110 0

5 Wind with Rime Ice 1020 400 310 67 0

6 Seismic Forces 445 710 200 200 0

7 Switch Torsional Force 0 0 0 0 2480
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Table 4.4 : Maximum displacements and their locations under multi-axial load cases.

RADIAL TANGENTIAL AXIAL

LOADING- (Ur)max Location (Ue)max Location (Uz)max Location
(r,e,z) (r,e,z) (r,e, z)

CONDmON (mm) (mm, deg, mm) (mm) (mm, deg, mm) (mm) (mm, deg, mm)

Crimping Forces -0.4506 (47.5,120,507.8) -0.0055 (19.7,30,494.6) 0.557 (31.6,60,535.3)

Fault-Current -38.040 (63.5,90,571.5) -38.040 (15.8,0,571.5) 4.541 (79.4,90,571.5)

Extreme-Fault -152.01 (63.5,90,571.5) -152.01 (15.8,0,571.5) 17.408 (79.4,90,571.5)

Extreme-Wind 28.097 (63.5,-90,571.5) -28.097 (15.8,0,571.5) 3.393 (79.4,90,571.5)

Wind wi Glaze-ice -9.292 (63.5,90,571.5) -9.292 (15.8,0,571.5) 1.288 (79.4,90,571.5)

Wind wi Rime-ice -6.371 (63.5,90,571.5) -6.371 (15.8,0,571.5) 0.961 (79.4,90,571.5)

Seismic Forces 11.652 (63.5,-90,571.5) -11.652 (15.8,0,571.5) 1.549 (79.4,90,571.5)

Switch Torsion 7.9 x 10-4 (31.6,-60,453.8) 33.026 (79.4,180,571.5) 2.1 x 10-3 (31.6,60,427.1)
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Table 4.5 : Maximum and minimum stresses in GRP rod of insulator A (in MPa)
under multi-axial load cases.

tLocated outside the end-fitting

err era erz 'tea 'trz 'taz
LOAD Max. Max. Max. Max. Max. Max. Max. Min. Max. Min. Max. Min.
CASE Tens. Campr. Tens. Compr. Tens. Compr.

CrimpingForces 82.3 -176.5 23.6 -113.6 65.4 -160.3 36.5 -36.5 13.5 -30.4 11.9 -11.9

FaultCurrent 83.3 -183.3 22.7 -114.7 126.5t -156.7 39.5 -34.1 17.0 -33.1 13.5 -13.5

Extreme-Fault 95.8 -210.9 30.7 -134.1 429.8t -384.2t 47.4 -37.1 40.2 -40.6 43.0 -41.8

ExtremeWind 82.2 -180.4 22.7 -114.3 107.1t -153.1 38.8 -34.2 16.9 -32.3 13.1 -13.2

Wind wI Gl. ice 81.2 -174.6 23.8 -113.7 70.4t -158.0 37.2 -35.3 14.7 -30.5 12.4 -12.4

Wind wI Rm. ice 81.2 -174.4 23.3 -113.7 67.4t -158.1 37.1 -36.0 14.3 -30.5 12.2 -12.2

Seismic Forces 80.9 -175.3 23.7 -113.8 74.7t -157.1 37.5 -35.0 15.0 -30.7 12.5 -12.5

SwitchTorsion 88.2 -179.6 32.3 -116.6 65.2 -171.0 36.3 -36.0 12.8 -29.3 47.9t -11.8t
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Figure 4.1 : A Typica1115kV composite substation insulator with service loads

(dimensions in mm).
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(b)

GRP Aluminum

Figure 4.2 : Axisymmetric finite element mesh with perfect interface;

(a) Full mesh, and (b) Zoomed-in view showing fillet radius (p).
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Figure 4.3 :Von-Misesequivalent stress from axisymmetric perfect interface model;
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Figure 4.4 : FEIM mesh of GRP-AI bimaterial interface comer.
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Figure 4.5 : Singular power (A.) versus volume fraction of E-glass fibers
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(b)

Uz

Figure 4.6 :Axisymmetric model with imperfect interface; (a) Finite element mesh, and

(b) Deformed mesh superimposedwith original mesh (UZ= -8mm,~ =0.3).
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Figure 4.7 : Relative sliding along interface (BD) as a function of applied

axial displacement (Uz).
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Figure 4.8 : Equivalent stress across interface (ABC) for different Uz (J.L= 0.3).
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Figure 4.9 : Stress distribution (axisymmetric) along plane PQR (~= 0.3).
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Figure 4.10 : 3-D Global insulator model; (a) Schematicofloads applied,

and (b) Finite elementmesh.
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(b)

Figure 4.11 : 3-D sub-model with imperfect interface;

(a) Full sub-model, and (b) Cross-sectionalview.
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Figure 4.12: Transfer of cut-boundary displacementsfrom global model to sub-model.
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Figure 4.14: Global insulator model under pure bending load;

(a) Deformed FE mesh, and (b) Comparison with experimental results.
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Figure 4.16: Stresses in GRP rod due to crimping of insulator A; (a) Radial stress (eTr),

(b) Tangential stress (eTa),(c) Axial stress (eTz),and (d) Shear stress ('tre).
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Figure 4.17 : Stresses in GRP rod of insulator A due to extreme fault current forces;

(a) Axial stress (<1z),and (b) Shear stress ('trz).
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Figure 4.18 :Axial stress (crz)in GRP rod of insulator A due to wind with glaze ice.
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Figure 4.19 : Insulator A subjected to switch torsional forces;

(a) Deformed mesh, and (b) Shear stress ('teJ.
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Figure 4.20 : Internal sliding of GRP rod of insulator E subjected to switch

torsional forces; (a) Jl= 0.3, (b) Jl= 0.2,and(c) Jl= 0.1.



161

Chapter 5

Intralaminar Strength of GRP Composite

5.1. INTRODUCTION

The glass/epoxy or glass/polyester rods of composite insulators are subjected to multi-

axial loads during service. In chapter 4, detailed three-dimensional finite element ana-

lyses of several load cases showed that the GRP rod is subjected to a complex state of

multi-axial stresses during service. Due to the crimping process, the part of the GRP rod

within the end-fittings is subjected to large biaxial compressive stresses irrespective of

the external loading conditions. When external bending loads are active, one edge of the

rod (opposite to the loading direction) is subjected to large axial tensile stresses (cr~),

while the other edge (towards the loading direction) is subjected to axial compressive

stresses. The center of the rod experiences large shear stresses (trz and taz). This implies

that approximately one half of the cross-section of the rod experiences some combination

of intralaminar shear and tension, while the other half experiences shear and compres-

sion. This situation is further complicated by the inherent anisotropy and heterogeneous

nature of unidirectional polymer-matrix composites. In these materials, the tensile

strength of the composite parallel to the fibers (cr{d is significantly greater than the

intralaminar shear strength in the 1-2 plane (t{2), which in turn is greater than the

transverse tensile strength (cr~).17 Clearly, in order to define the criticality of external

loads, and consequently the critical internal stresses required to initiate damage in the

GRP rod, the intralaminar strength of the unidirectional composite must be characterized

under uniaxial, as well as biaxial loading conditions ( i.e., combined shear and tension, or
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combined shear and compression). In addition, the dominant failure mechanisms for uni-

directional composites, and the appropriate failure criteria must be determined under

combined loads.

In addition to the "strength of materials" approach, one can apply the principles of

linear elastic fracture mechanics (LEFM) to determine the criticality of flaws in the com-

posite. In chapter 3 (section 3.6), circumferential micro-cracks were observed in the GRP

rod of insulator A. These flaws were detected inside the end-fitting, and were therefore

subjected to biaxial compressive stresses. On the other hand if internal cracks are gen-

erated under bending loads, they will be located outside the end-fitting and will be sub-

jected to either shear and tensile stresses (mixed-modes I and II), or shear and compres-

sive stresses (mode II with contact and friction between crack faces). If intralaminar

cracks are generated under torsional loads, they will most likely be located on the surface

of the rod and will be subjected to pure mode II type loads. Therefore, there is a recog-

nized need to determine the intralaminar fracture toughness (Kc or Gc) of the composite

under the three fundamental modes of loading (I, II, and ill), as well as the complete

range of mixed-mode loading conditions. This information, in conjunction with field data

of the size and location of internal cracks, can be used to minimize the occurrence of brit-

tle fractures in composite insulators.

In this chapter, the biaxial losipescu test method 25,27,56,124has been used to deter-

mine the biaxial failure strength of unidirectional composite materials, and an attempt

has been made to extend the approach for determining the mixed-mode fracture tough-

ness of the materials. While most of these studies have been performed on a unidirec-

tional carbon/epoxy composite system, the test results and conclusions are also applica-

ble to the glass/epoxy, glass/polyester, or glass/vinyl-ester composite materials used in
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insulators. This is because the intralaminar strength, and the mixed-mode fracture proper-

ties of these composites (used in insulators) are very similar to the properties of the uni-

directional carbon/epoxy composite material selected for these tests. The first phase of

this study involves application of the biaxial Iosipescu method for determining the biax-

ial failure strength of the composites, and the next phase involves the extension of the

Iosipescu test for evaluating the mixed-mode fracture properties. A detailed description

of the biaxial Iosipescu test (BIT) fixture was given in chapter 2 (section 2.2.1). Addi-

tional details of the numerical and experimental techniques are given in the author's

recent publications.56,60,124

5.2. BIAXIAL IOSIPESCU TESTS OF UNIDIRECTIONAL COMPOSITES

The biaxial Iosipescu test (BIT) fixture was first used by Broughton 25for testing (isotro-

pic) polycarbonate and unidirectional carbon/epoxy and carbonJPEEK specimens under

various loading angles (a).

5.2.1. Experimental Work

The materials tested in this study were; (a) unidirectional XAS 914 carbon/epoxy compo-

site (from Ciba-Geigy), and (b) teak wood. Teak was selected as a test material because

it is cheap, easily available, and is known to be among the stiffest variety of woods with

unidirectional continuous fibers. The mechanical behavior of teak is very similar to that

of a synthetic unidirectional composite material.

The teak specimens were machined to a length (1) of 80mm and a width (h) of

20mm (refer figure 2.5). The fibers were oriented either parallel to the long axis of the
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specimen (henceforth referred to as orientation A), or parallel to the notch-root axis

(referred to as orientation B). Two v-shaped notches were cut to a depth of 4 rom ( i.e.

20% of specimen width) at opposite edges of the specimen mid-length using a scalpel

edged blade such that minimal damage was introduced at the notch tips. The notch angle

was 90° and the notch-root radius (p) was measured to be approximately 40J.1m.The teak

specimens with fiber orientation B had a thickness (t) of 5 rom. In teak specimens with

fiber orientation A, the thickness was doubled to 10 rom in order to minimize the effects

oflocalized transverse crushing at the loading points. The XAS 914 carbon/epoxy speci-

mens were machined to the same length and width, with fiber orientations A and B.

These specimens had a thickness (t) of 5.2 rom in the "as-received" condition.

The biaxial Iosipescu test fixture was mounted on an Instron (1230-20) universal

testing machine with a load capacity of 89 kN (20,000 lb) by securing the base of the

fixture to the lower cross-head via an intermediate platform. The teak and carbon/epoxy

Iosipescu specimens were mounted in the fixture at a loading angle of a=00 (pure shear).

Mter ensuring proper centering of the notch-root axis with respect to the four loading

plates, the specimen was rotated to the requisite angle for the biaxial tests. Counter-

clockwise rotation of the specimen (ex>0°) was used for generating combined shear and

compressive stresses along the notch-root axis, and clockwise rotation (ex< 0°) was used

for generating combined shear and tensile stresses. A monotonic compressive load (P(X)

was applied at a cross-head displacement rate of 1.52 mmlminute.

The type of failure in the Iosipescu specimens was found to be highly dependent on

the fiber orientation and completely independent of the loading angle (ex).Furthermore,

the failure modes for both the teak and carbon/epoxy specimens were identical for the

same fiber orientation.
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(i) Orientation A

Figure 5.1 (a) shows the typical load versus displacement response of teak speci-

mens with fiber orientation A. The load-displacement curve of these specimens was

initially linear. The onset of non-linearity occurred at approximately 1 kN, and was

probably caused by plastic deformation and localized crushing at the loading points.

The non-linearity was less pronounced in carbon/epoxy specimens with fiber orien-

tation A. In both the carbon/epoxy and teak specimens, failure under a11loading

angles (ex)occurred due to the initiation of axial splits at the notch tips. This type of

failure has previously been reported in orientation A specimens subjected to the

traditional Iosipescu shear test (ex=0°).27,41 The initiation of the axial splits was

manifested by two successive drops on the load-displacement curve (see figure 5.1

a). The splits formed parallel to the fibers and propagated away from the nearest

loading point. The lengths of the axial splits in teak specimens were measured using

a traveling optical microscope. It was found that the splits were longer in specimens

loaded in shear and tension, and shorter in specimens loaded in shear and compres-

sion. The relationship between the average lengths of the splits and the loading

angle (ex)was almost linear.56

(ii) Orientation B

Teak and carbon/epoxy specimens (with fiber orientation B) failed catastrophica11y

in a mode which is characteristic of the shear test.27,44 For all loading angles,

cracks originated at either of the two notch tips and propagated in an unstable

manner parallel to the fibers. However, in some specimens, the crack initiation was

away from the notch root and farther from the nearest loading point. This offset in



166

the path of failure has been reported earlier in shear-test specimens with fiber orien-

tation B. 41,44The load displacement curves of both teak and carbon/epoxy speci-

mens were linear up to failure (see figure 5.1 b).

The loads at failure as a function of the loading angle for teak specimens with orien-

tations A and B are presented in figures 5.2 (a) and (b) respectively. Figures 5.3 (a) and

(b) show the loads at failure for carbon/epoxy specimens with fiber orientations A and B.

It is important to observe that irrespective of the fiber orientation, the failure load was in

general found to be maximum under pure shear ( i.e., a=(0), and seemed to decrease pro-

gressively as the loading angle a was increased in either direction. This observation is in

agreement with results obtained by Broughton 25 for isotropic (polycarbonate) and uni-

directional carbon/epoxy composite specimens.

The experimental results presented thus far have raised several questions pertaining

to the stress distribution in the vicinity of a round notch tip of the Iosipescu specimen

under biaxial loads. For instance, it is not clear why the loads at failure under positive

loading angles (a>Oo, applied shear and compression) were lower than the pure shear

case (a=00). In addition, the influence of the notch-root radius (p) on the stress concen-

tration needs to be understood. Since a reliable analytical expression to predict the stress

field in the biaxially loaded orthotropic Iosipescu specimens is not presently available,

finite element methods were used to study this problem.

5.2.2. Finite Element Analysis

The finite element code ANSYS 119 (version 4.4A) was employed in this study. A

linear-elastic analysis was perfonned to detennine the stress distribution in unidirectional

carbon/epoxy Iosipescu specimens resulting from the biaxial loading conditions. The
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analysis was performed only for fiber orientation A by assuming a homogeneous ortho-

tropic material ( i.e., Ell =Ex > E 22=Ey). Eight noded isoparametric quadrilateral and

collapsed triangular elements with isotropic as well as orthotropic elastic properties were

used. Figure 5.4 shows the finite element mesh consisting of 4112 elements and 9699

nodes with the appropriate boundary conditions. The mesh assumes 900 notches penetrat-

ing to a depth of 20% of the specimen width (h). The notch-root radius (p) and the

notch-root element size (;) were variable parameters in the mesh. For each loading

angle, two counteracting force-couples PI and P 2 were applied to the finite element

model in accordance with the force-equilibrium relationships given in chapter 2 (section

2.2.1). The elastic properties used in the model are given in table 5.1.

Iosipescu specimens with perfectly sharp notches have previously been subject to

extensive numerical analysis. 27,39,55,59However, perfectly sharp notches (p=O) are

practically unfeasible by conventional machining techniques. Therefore, the present

study considered notch-root radii (p) of 40 Jlmand 1.7 mm, with loading angles (a) of 00,

+300, and -300. In order to evaluate the shear stress concentrations at the notch-roots, all

stresses were normalized with respect to the average shear stress along the notch-root
-

axis under pure shear loading ('txy=P a/wt).

The normalized stress distribution along the notch-root axis (x =0) is presented in

figure 5.5 for carbon/epoxy specimens with p =40 Jlm.It is evident that the shear stresses

('txy)are not significantly affected by the loading angle (a). The notch-root radius, how-

ever, significantly alters the shear stress concentration at the notch-tips (see table 5.2).

For p =40 Jlm specimens, the shear stresses are highly concentrated at the notch-tip,

while for p =1.7mm specimens the shear stresses were found to be uniform along the

axis, and approached zero at the free surface.56 The normalized longitudinal stresses
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(Gx~J can be regarded as insignificant at the specimen center, and are highly concentrated

at the notch tips for both p considered (see figure 5.5 and table 5.2). As would be

expected, Gn are tensile under negative loading angles (a < 0°) and compressive under

positive loading angles (a> 0°). The transverse stresses (Gyy)exhibit a similar trend.

Further understanding of the stress state in the vicinity of the notch tips can be

obtained from figure 5.6, where the distributions of'txy and Gyyare plotted along the path

of the axial splits (y =w/2). It can be seen that for all loading angles, Gyyare tensile in

the region away from the nearest loading zone (OA), and compressive in the region

towards the nearest loading zone (OB).

5.2.3. Discussion

The stress distributions obtained from the finite element analysis can be used to explain

some of the experimental results obtained in section 5.2.1. Examination of the stress dis-

tribution (see figure 5.5) reveals shear stress concentrations in the vicinity of the notch

tip, which are mainly responsible for the onset of failure. The transverse normal stresses

(Gyy)are tensile along the path of the crack (along OA in figure 5.6), and therefore contri-

bute to crack growth in this direction. It is interesting to note that Gyyare tensile in this

region even under positive loading angles (a> 0°). This explains the experimentally

observed drop in failure loads for 0° carbon/epoxy and teak specimens when loaded in

shear and compression (a> 0°, see figures 5.2 b and 5.3 b). Clearly, the failure mode for

specimens loaded at a > 0° is essentially the same as when loaded in shear and tension

(a < 0°). It can therefore be concluded that for unidirectional composite specimens with

fiber orientation A, an actual intralaminar damage initiation and propagation under com-

bined shear and transverse compressive stresses cannot be achieved in the biaxially
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loaded Iosipescu specimen. Figure 5.6 also shows that both ayy and 'txyapproach zero at

a point along the path of the crack, thereby arresting it. The point of crack arrest is

expected to be farther for specimensloaded at a.=+30° than for specimens loaded at

a.= -30°. This explains the variations in the lengths of axial splits observed in section

5.2.1 for teak specimens.

Both teak and carbon/epoxy specimens, with fiber orientation B, failed along the

notch-root axis in a mode characteristic of the pure shear test. 41 The loads at failure for

these specimens were significantly lower than the failure loads of orientation A speci-

mens. This has also been previously observed in the pure shear test.25,41 Since the in-

plane shear strength should theoretically be identical for specimens with fiber orienta-

tions A and B, extensive finite element analysis have been performed in the literature to

explain the discrepancy. Barnes et al.44 showed that Iosipescu specimens with fiber

orientation B, loaded at a.=0°, experience a significant contribution of transverse tensile

stresses (axx) along the notch-root axis. These specimens therefore encounter premature

failures, and are not suitable for measuring the shear or biaxial strength of the composite.

Experimental failure loads obtained from the teak and carbon/epoxy specimens,

with fiber orientation A, can be used to obtain biaxial failure envelopes for the compo-

sites in a wide range of shear and transverse tensile stresses. However, in the absence of

a reliable analytical method, an accurate determination of the stress state at the notch tips

remains a problem. The finite element analysis performed in section 5.2.2 for

carbon/epoxy specimens was used in conjunction with the experimentally obtained

failure loads, to determine the notch-tip stresses at the onset of failure. 56 It was found

that failure stresses obtained from the numerical analysis were very significantly larger

than the failure stresses reported in the literature. 25 Furthermore, the magnitude of the
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notch-tip stresses was found to increase with a decrease in the notch radius (p) and the

size of finite elements used at the roots of the notches (~).56Clearly, this was because our

finite element model assumed a linear-elastic material behavior. It is a well documented

fact that in linear-elastic media, the stresses at the tip of a notch are either singular (for

perfectly sharp notches), 53,55 or severely concentrated (for round notches). However,

from an engineering standpoint, most materials tend to relieve singular (or concentrated)

stresses by undergoing localized damage or yielding. Therefore, the only way of accu-

rately predicting the notch-tip stresses at the onset of failure would be a finite element

model which accounts for material non-linearities.

In the original study conducted by Broughton, 25 a highly simplistic analytical

approach was used to resolve the stress state at the notch tips. This approach assumed a

uniform state of stress along the notch-root axis, such that from simple force-equilibrium

relationships

",I _ P IX sin a.
Un - wt

and ",I _ PIXcosa."xy- wt
(5-1)

Clearly, this approach does not take into account obvious parameters like the ortho-

tropy ratio, the fiber orientation, the notch geometry, and the non-linearities in the

material behavior. However, the biaxial failure envelope obtained from this approach has

been found to be in excellent agreement with the Tsai-Hill criterion for biaxial failure of

unidirectional composites (refer section 2.1.2). Furthermore, Broughton and co-workers

27 found that the shear strengths of carbon/epoxy and glass/polyester Iosipescu speci-

mens, obtained by using equations (5-1), are in excellent agreement with corresponding

data obtained from the torsion tests of hoop-wound tubes. Owing to the fact that stress

concentrations are non-existent in tubes, it can be concluded that the shear stress concen-

tration factor (Kt) at the notch-roots of the Iosipescu specimens approach unity at the
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onset of axial splitting. This was recently verified by Ho and co-workers, 52 who per-

formed a non-linear finite element analysis of carbon/epoxy Iosipescu specimens loaded

at a = 0°. They found that at loads large enough to initiate failure, the stress concentra-

tions at the notch-tips get relaxed, while the strains remain concentrated.

Using equations (5-1), figures 5.7 (a,b) show the biaxial failure envelopes obtained

for unidirectional carbon/epoxy and teak specimens, respectively. It is evident that the

experimental data is in good agreement with the Tsai-Hill criterion. 21A major limitation

of the biaxial Iosipescu fixture is its inability to obtain the transverse tensile strength.

Therefore,transversetensiletestswereperformedto determinecr?;,.As explainedearlier,

the failure envelopes for both carbon/epoxy and teak are approximately symmetric about

the a =0° axis, since specimens loaded in both (a>OO)and (a<OO) fail under the

influence of shear and transverse tensile stresses.

Subsequent to this study, the same approach was adopted by Balakrishnan125for

characterizing the biaxial failure properties of a Ti/SiC metal-matrix composite and an

E-glass/epoxy polYmer composite. The E-glass/epoxy composite specimens were

extracted from the GRP rod of insulator A. Figure 5.8 shows the biaxial failure envelope

of the GRP material. Comparing figures 5.7 (a) and 5.8, it is evident that the biaxial pro-

perties of the E-glass/epoxy composite are very similar to the properties of the XAS 914

carbon/epoxy composite. More recently, Balakrishnan et al.l26 have demonstrated that

the biaxial Iosipescu fixture can be used to obtain the transverse tensile strength of uni-

directional composites. This is possible by testing unidirectional composite specimens at

a =0° with fibers aligned at 45° with respect to the notch-root axis.
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5.3. APPLICATION TO MIXED-MODE FRACTURE

The GRP rod of composite insulators is susceptible to intralaminar cracking either during

assembly or in service. Wu 66 has shown that in unidirectional composites, the critical

fracture parameters K]c, KIIc, and KOle>associated with the three fundamental modes of

loading, are material constants. Therefore, an appropriate test methodology which simu-

lates various mixed mode fracture conditions in unidirectional composites can be used to

measure KJc and KIIc, and to investigate the interaction between K[ and Ko under

mixed-mode conditions. In the past, researchers have characterized mixed-mode fracture

properties by performing biaxial tests on cracked off-axis tension tests, 72,92 edge-

cracked Arcan tests, 93compact tension-shear (CTS) tests, 36,85and tension/torsion tests

of circumferentially cracked hoop-wound thin tubular specimens. 127-131

In this section, an attempt has been made use the biaxial Iosipescu test for determin-

ing the mixed-mode intralaminar fracture properties of unidirectional polymer-matrix

composites. Once again, the tests have been performed on the unidirectional XAS 914

carbon/epoxy composite, whose biaxial failure and mixed-mode fracture properties are

very similar to the E-glass/polymer composites used in insulators. The analysis considers

a center crack (CC) specimen geometry, wherein a crack is placed at the center of the

Iosipescu specimen along the notch-root axis, with fiber orientation B to ensure self-

similar crack extension (see figure 5.9 a). The finite element method was used to extract

the fracture parameters (KI,l[). These parameters have been correlated with experimen-

tally measured fracture loads in order to obtain the critical fracture parameters KJc,llc'and

the interaction between KJc and KIIc under combined symmetric and skew-symmetric

loads.
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5.3.1. Finite Element Analysis

A two-dimensional (plane stress) linear elastic analysis was performed for the

carbon/epoxy CC-specimens (fiber orientation B). Figure 5.9 (b) shows the finite element

mesh which consists of 2320 eight-noded isoparametric quadrilateral and collapsed tri-

angular elements. Four different crack lengths (2a) of 4mm, 6mm, 8mm, and IOmm were

considered. The maximum separation between the crack faces was assumed to be 1% of

the half crack length (a). A fan-shaped mesh of 12 extremely fine triangular elements

(element size L =0.05 mm) was constructed around the crack tip. Depending on the type

of numerical scheme being employed, both conventional non-singular and quarter-point

elements 74,75were used at the crack tips. The total externally applied compressive load

(P (X)was assumed to be 1 kN. For the four crack lengths considered, the two counteract-

ing force-couples (P 1 and P 2) were applied at angles of ex=0° (pure shear), and

-10°, -20°, -30°, and -40° (shear and tension). The case of counter-clockwise speci-

men rotations (ex> 0°) leading to combined shear and transverse compression along the

plane of the crack would involve crack-face contact and frictional effects. This case has

not been analyzed in this section.

Four different numerical schemes were used to extract the stress intensity factors

(SIFs) at the tips of the central crack, namely; the displacement correlation method, the

displacement extrapolation method, and the virtual crack closure (VCC) -lc and -2c

methods. A detailed description of these schemes was presented in chapter 2 (section

2.3.1.3).

Prior to the application of the four numerical schemes to our CC-specimens, the

algorithms had to be verified and numerical experimentation was required to identify the

appropriate crack-tip element size. The analytical solution of Kaya and Erdogan, 132for
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an edge-cracked boron/epoxy strip under uniaxial tension, was used as a simple bench-

mark for validation of the VCC-schemes. The analysis was carried out using crack-tip

element sizes (L) which were 10% and 1% of the original crack length (a). Results

presented in appendix A demonstrate that the use of a crack-tip element size of 1% of the

actual crack length generated accurate SIF values. In particular, the VCC-2c scheme was

found to yield errors within =2%. It was now considered safe to implement the numerical

schemes for the more complicated CC-specimen geometry.

The crack-tip energy release rates (G],II)obtained from the four numerical schemes

are listed in table 5.3. Clearly, all four numerical methods were in good agreement and

indicated similar variations in G/,/] values as a function of the loading angle (a.) and

crack length (a). It can be observed from that for a fixed crack length (a), the mode I

energy component (G]) is negligible at a.=00 and progressively increases as the angle a.

is increased in a clockwise sense, whereas the value of G]I progressively decreases. In

addition, if the loading angle (a.) is fixed, both mode partitions G] and GII increase with

the crack length. These trends are graphically illustrated in figures 5.10 (a,b). The results

clearly demonstrate that the biaxial losipescu method, employing CC-specimens, is

theoretically capable of generating a wide range of mixed-mode loading conditions

(ranging from pure mode II to mixed-modes I and II). It therefore appears to be a suitable

method for characterizing the mixed-mode fracture toughness of unidirectional compo-

sites. The fact that for any loading angle the total energy release rate (Gtotal=G] + GII)

increases monotonically with the length of the crack, predicts that intralaminar crack

growth in the carbon/epoxy specimens will be unstable in nature. Furthermore, the ratio

GII/G1 (see table 5.3) indicates that the that carbon/epoxy composite specimens with

longer cracks provide a wider range of mixed mode conditions at the crack tip. However,
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cracks longer than IOmm may not be advisable since the size of the ligament remaining

between the crack- and notch-tips will become too small.

5.3.2. Fracture Experiments

Unidirectional carbon/epoxy Iosipescu specimens with fiber orientation B were machined

to the standard dimensions shown in figure 2.5. Various machining techniques were tried

(e.g. C02 lasers, focussed water-jets, abrasive diamond wires, electrical discharge) in

order to create a central crack in the composite specimens. However, all these tech-

niques were unsuccessful in producing a through thickness central slot of the desired

geometry. A series of holes were therefore drilled mechanically, using carbide drills of

0.5 mm diameter. These holes were drilled adjacent to each other such that the net result

looked like a through-thickness elliptical slot 0.5 mm wide and 6 mm long. The two ends

of the elliptical slot were further extended by 1 mm each using a sharp scalpel blade (see

figure 5.11 a).

The biaxial Iosipescu tests were performed at a fixed displacement rate of 0.76

mm/min. A total of 15 specimens with a central precrack, and 9 specimens without any

precrack, were tested under loading angles of a =0°, -10°, -20°, -30°, and-40°. In

order to monitor the onset of crack-growth or debondings, acoustic emission (AE) from

the specimen was monitored during the test using the AET 5500 system. 120Due to lim-

ited access to the specimen surface, a 100 mm long aluminum wave-guide was

adhesively bonded to the specimen surface (3M DP-loo epoxy adhesive) approximately

5mm from the crack plane. The peizo-electric transducer was connected to the system

main-frame via a preamplifier with a fixed gain of 60dB. Total gain of the system was

94dB. A schematic of the complete experimental setup is presented in figure 5.11 (b).
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All specimens fractured catastrophically along the plane of the pre-crack. However,

prior to ultimate fracture, the AE signals did indicated some stable damage accumulation

which was most likely due to interfacial debondings at the tips of the precrack. The final

burst AE event cocresponded with ultimate unstable fracture, and cocresponded with a

sharp drop in the load sustained by the specimen. Similar to the test results of uncracked

carbon/epoxy specimens (section 5.2.1), the CC-specimens tested at ex=0° sustained

highest loads. As the loading angle increased, the loads at fracture dropped.

5.3.3. Discussion

The finite element model considered a perfectly sharp central crack (figure 5.9 b). How-

ever, due to practical difficulties, the actual specimens used for fracture experiments had

an elliptical central slot (figure 5.11 a). Since it is a well documented fact that SIF and G-

values are highly sensitive to the crack geometry, the finite element model described in

section 5.3.1 had to be modified to simulate the actual crack geometry. Figure 5.12 shows

the modified mesh consisting of a 6 mm long elliptical slot, with two 1 mm long splits

originating from the ends. A single crack length was analyzed for different loading

angles (ex),and the VCC-2c procedure was used to compute crack tip SIF and and G

values. Results obtained from the analysis are presented in table 5.4. The trends of the

computed Gl,II and Kl,II values are identical to the perfectly sharp crack geometry

modeled earlier, only the absolute values are different.

The numerically extracted Kl,II values, in conjunction with experimentally meas-

ured fracture loads (Pj), could now be used to determine KIIc in pure shear (ex=0°), and

the interaction between K1 and KII at the onset of intralaminar fracture in mixed modes

(-40° :::;ex< 0°). The FE model assumed a net applied load of P = 1000 N and a
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specimen thickness of 1mm (plane stress), whereas the actual specimens were 5 mm

thick. Therefore, the numerical K-values were appropriately scaled to arrive at KI.II

values which correspond to the catastrophic fracture of unidirectional carbon/epoxy

specimens (see table 5.4). Figure 5.13 shows the mixed-mode fracture envelope obtained

from this approach. Two edge-cracked carbon/epoxy plates, with the geometry described

in appendix A, were tested in tension to obtain the value of KJc. The average values of

KJc and KlIc were found to be 1.09MPa~ (from the edge-cracked tension test) and

2.81MPa~ (from the Iosipescu test at a =0°) respectively.The correspondingvalues

of GJcand GIIc were 93.7 Jlm2 and 165.1 Jlm2 respectively. Based on these KJc and

KlIc values, the mixed-mode fracture criteria (chapter 2, equations 2-19 to 2-21) are also

plotted in figure 5.13.

In spite of the obvious scatter in the data, the mixed-mode fracture envelope seems

to agree well with the fracture criteria. However, for highly orthotropic materials like

carbon/epoxy (E 11IE22=14.2), it is expected that the value of GIIc will be at least one

order of magnitude higher than G/c' For the intralaminar fracture of unidirectional

carbon/epoxy composites, GJcvalues quoted in the literature range from 79 to 190 Jim 2,

93,96whereas GlIc values span a much wider range of 570 to 8,690 Jim 2. 96,127The GJc

value of 93.7 Jim 2 obtained from the edge-cracked tension test seems to agree well with

the literature, however, the GIIcvalue of 165.1 Jlm2 obtained from the Iosipescu speci-

men clearly needs to be verified by another independent mode II test. Therefore, mode II

double cantilever beam (DCB) tests were performed in this study (see Appendix B). In

conjunction with the modified beam theory solutions, the value of GlIc from this test was

found to be 6670.3 :!:618 Jim 2. Since the mode II DCB test is a well established pro-

cedure, and since for a highly anisotropic material it is reasonable to expect GlIc » GJc,
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it is concluded that the KIIcvalue (at a=(0) and K/,II values (at -40°:::;a <0°) presented

in table 5.4 and figure 5.13 are erroneous. The failure process in the CC-specimens

clearly requires further examination.

Thus far, we have assumed that the instantaneous failure of the carbon/epoxy CC-

specimens occurred as a result of unstable extension of the central crack. Sukumar and

Kumosa 53 have demonstrated that the stresses are non-singular at the tip of a perfectly

sharp 90° notch under mode II loading, whereas, the tip of a sharp crack exhibits the

classical square-root singularity. It therefore seems reasonable to expect intralaminar

fracture to initiate from the tip of the central precrack. However, the instantaneous nature

of the fracture process makes it impossible to visually determine the mode of failure. Our

only recourse, therefore, is to compare the nominal stresses required to initiate failure in

the CC-specimens, and the ordinary uncracked specimens wherein biaxial failure always

initiates at the tips of the v-notches. This can be done by employing the simple formulae

employed by Broughton (equation 5-1), where the net width of the gauge section (w) is

12 mm for uncracked specimens, and 4 mm for cracked specimens. Results plotted in

figure 5.14 show that the nominal failure stresses for cracked specimens were in good

agreement with the uncracked specimens and the Tsai-Hill criterion 21 for

biaxial failure + from the tips of the v-notches. Moreover, considering GIc=93.7 Jim 2

and GIIc =6670.3 J1m2, the nominal stresses «(Jj,reqand'tj,req) required to initiate

mixed-mode fracture++ from the crack tip were calculatedsuch that the fracture cri-

terion (equation 2-20) was satisfied.

+ "biaxial failure" refers to shear-dominated failure of resin and interfaces when the

stresses locally exceed their sb'engthvalues (i.e. (lu ~ (<Jxx)cand 'txy~ ('txy)c).

++ "mixed-mode fracture" refers to instantaneous failure caused by extension of a
pre-existing crack when fracture parameters exceed critical values ( i.e.
f(Gh Gn) ~ Gc)'
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It is evident that the nominal stresses required to initiate mixed-mode fracture from

the tip of an 8 rom long elliptical central precrack are significantly higher than the

stresses required to initiate biaxial failure from the notch-tips. Therefore, although

numerical results were encouraging, the CC-specimens tested in this study encountered

premature failure due to applied stresses exceeding the biaxial failure strength of the

material. In order to ensure intralaminar failure due to mixed-mode fracture, a double

edge-crack (DEC) specimen geometry is proposed for future study. This geometry will

consist of orientation B composite losipescu specimens, with two identical edge-cracks

of length (a) emanating from the roots of the notches (see figure 5.15 a).

Figure 5.15 (b) shows a two-dimensional finite element mesh of the DEC-

specimens. The modified virtual crack closure (VCC-lc) method is being used to com-

pute the crack-tip SIPs. The crack-faces are meshed with surface-to-surface contact ele-

ments in order to extend the analysis to shear and compression loadings (+40° ~ a ~ 0°),

wherein crack-face contact and friction will be involved. It is important to note that

while the problem is structurally non-linear (due to contact and friction), the principles of

linear elastic fracture mechanics (LEFM) will be applicable if the material is assumed to

be linear elastic. However, the computed stress intensity factors may not be linearly

extrapolated to any magnitude of the external load (P). In the past, such solutions have

been sought for the analysis of mode II end-notched flexure (ENF) speci-

mens.73,86,133,134Preliminary numerical results indicate that the range of mixed-mode

loading conditions provided by the DEC-geometry is wider than that of the CC-

geometry. Pure mode II fracture can be obtained from long cracks (a =4 rom) loaded at

a =0°, whilealmostpuremodeI fracturecan be obtainedfromshortcracks (a=0.5 to 1

rom) loaded at a = -40°. Under shear and compression loadings, the cracks are subjected



180

to pure mode II conditions, with the value of GII decreasing with an increase in the fric-

tion coefficient (11)and the loading angle (ex).Experimental fracture testing of DEC

specimens is proposed for future study.
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Table 5.1 : Elastic properties for XAS 914 carbon/epoxy used in finite element analyses.

GPa

137.9 9.7 14.2 4.2 0.25

Table 5.2: Normalized stresses at the notch-tips and specimen center for
carbon/epoxy Iosipescu specimens (orientation A).

C At specimen center, r At notch-tip

Loading Angle Notch-Root Radius

P =40 IJIIl P =1.7 mm

axx 0.05c O.Olc
-o.2<Y 0.56r

a=Oo ayy -o.34c -o.29c
-o.04r O.01r

'txy 0.S3c 0.90c
2.3<Y 0.33r

axx -o.13c -o.17c
-S.5Sr -4.32r

a =+300 ayy -o.39c -o.34c
-o.72r -o.04r

'txy 0.70c O.77c
2.06r 0.29r

axx 0.I4c O.12c
10.06r 6.36r

a = -300 ayy -o.22c -o.17c
O.SIr 0.06r

'txy 0.73c 0.79c
1.91r 0.2Sr
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Table 5.3 : Mode partitions Chand On in CC carbon/epoxy specimens.

a a Displacement- Displacement- VCC - lc VCC-2c
Correlation Extrapolation

Ch On Ch On Ch ChI Ch ChI

(deg.) (mm) (kJ/m2) (kJ/m2) (kJ/m2) (kJ/m2) (kJ/m2) (kJ/m2) (kJ/m2) (kJ/m2)

2 0.0013 1.1287 0.0159 1.2478 0.0002 1.3629 0.0002 1.3809
0° 3 0.0022 1.8920 0.0218 2.1480 0.0002 2.2826 0.0002 2.3079

4 0.0034 3.1427 0.0282 3.5927 0.0002 3.8191 0.0002 3.8735
5 0.0066 6.2872 0.0582 7.0404 0.0002 7.6147 0.0001 7.7924

2 0.0407 1.1093 0.0643 1.2269 0.0387 1.3400 0.0394 1.3575
_10° 3 0.0792 1.8532 0.1088 2.1046 0.0755 2.2362 0.0769 2.2607

4 0.1626 3.0656 0.1974 3.5051 0.1556 3.7258 0.1587 3.7785
5 0.4172 6.1097 0.4793 6.8419 0.3987 7.3993 0.4114 7.5713

2 0.1534 1.0278 0.1885 1.1371 0.1488 1.2417 0.1514 1.2579
-20° 3 0.3004 1.7096 0.3412 1.9416 0.2917 2.0628 0.2969 2.0851

4 0.6213 2.8135 0.6646 3.2162 0.6033 3.4184 0.6153 3.4663
5 1.6021 5.5802 1.6634 6.2465 1.5486 6.7538 1.5980 6.9100

2 0.2913 0.8967 0.3442 0.9925 0.2833 1.0835 0.2885 1.0975
-30° 3 0.5859 1.4820 0.6438 1.6830 0.5705 1.7878 0.5811 1.8065

4 1.2522 2.4198 1.3069 2.7647 1.2183 2.9381 1.2437 2.9786
5 3.3313 4.7644 3.3875 5.3283 3.2248 5.7587 3.3301 5.8909

2 0.3301 0.7423 0.4291 0.8229 0.3206 0.8980 0.3273 0.9093
-400 3 0.7293 1.2101 0.8352 1.3754 0.7091 1.4605 0.7242 1.4750

4 1.7352 1.9433 1.8342 2.2198 1.6859 2.3586 1.7254 2.3899
5 5.0871 3.7669 5.1663 4.2075 4.9181 4.5440 5.0905 4.6465
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Table 5.4: Mixed-mode fracture parameters for carbon/epoxy specimens
with an elliptical central crack.

At the predicted load ( Pf )req

a. ( Pf )req Normal Stress Shear Stress

( Of )req ( 'tf )req [J [:J
(deg.) (N) (MPa) (MPa)

0° 8838.8 0.00 424.94 0.0083 0.9917

_10° 3560.2 29.72 168.56 0.8427 0.1573

-20° 1927.9 31.70 87.10 0.9576 0.0424

-30° 1376.2 33.08 57.30 0.9814 0.0186

-400 1182.1 36.53 43.54 0.9889 0.0111



Figure 5.1 : Load versus displacement curves for teak specimens;

(a) Orientation A, and (b) Orientation B.
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Figure 5.3 : Failure loads as a function of loading angle for carbon/epoxy

specimens; (a) Orientation A, and (b) Orientation B.
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Figure 5.4 : Finite element mesh of the Iosipescu specimen with a

finite notch-root radius (p = 1.7 mm).
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Figure 5.9 : Center cracked (CC) Iosipescu specimens; (a) Geometry and loading,

and (b) Finite element mesh.



(a)

(b)

193

--&- G1(Displ. Correlation)
--e-- G1(Displ. Extrapolation)
_G1(VCC-1C)
-0-- G1(VCC-2c)

_ Gn(Displ.Correlation)
Gn (Displ. Extrapolation)

Gn (VCC-1C)

__ Gn(VCC-2c)

8

o 0 -10 -20 - 30
Loading Angle (a), degrees

-40

o

--&- G1(Displ. Correlation) --+- Gn (Displ. Correlation)

--e-- G1(Displ. Ex1rapolation) Gn (Displ. Extrapolation)
-+- G1(VCC-1c) Gn (VCC-1c)

-tr- G1(VCC-2c) Gn (VCC-2c)- G =G1+ Gn (VCC-2c)

o 2 3
HalfCrackLength(a), mm

4 5

Figure 5.10 : Variation of GI, Gn in carbon/epoxy CC-specimens;

(a) As a function of loading angle, at 2a =10 mm, and

(b) As a function of half crack-length, at ex= -20°.

6

"'E"--,
4

........-
l.:)'-"

2

8

7

6

NE 5
.....
J

4

Q. 3

2



194

(a)

(b) p

Epoxy
Adhesive

Wave-Guide

AE

SENSOR

PREAMP. AET5500

(600B GAIN) MAINFRAME

Figure 5.11 : Fracture tests of CC-specimens; (a) An elliptical central slot in a

carbon/epoxy specimen,and (b) Schematicof experimental set up.
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Figure 5.12 : Modified finite element mesh of the elliptical crack geometry.
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Figure 5.13 :Apparent mixed-mode fracture envelope from CC carbon/epoxy specimens.
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Figure 5.15 : Double edge-cracked (DEC) Iosipescu specimens;

(a) Geometry and loading, and (b) Finite element mesh.
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Chapter 6

Discussions

This chapter presents a broad discussion of the experimental and numerical results

obtained in the previous chapters. In addition, a parametric study has been performed to

evaluate the design of composite insulators with crimped end-fittings.

In chapter 3, the mechanical behavior of five 115 kV substation insulators was

characterized by performing both destructive and non-destructive tests. A new ultrasonic

pulse-echo technique was used to determine the radial compression profiles of the five

substation insulators due to the crimping process. This simple and highly cost-effective

non-destructive technique can determine the three-dimensional radial deformation profile

of the GRP rod within :t 0.1 mm, and also the presence of internal voids at the GRP-

metal interface. In an earlier study, De Tourreil and co-workers 5 attempted to measure

the radial compression in suspension insulators by sectioning them through the axis of

the rod, and measuring the variation in the diameter of the rod in the axial direction. This

method is clearly less sophisticated since it can measure the radial compression profile

only along a single plane in the axial direction. The ultrasonic technique employed in this

study has demonstrated that the radial compression can vary significantly in the tangen-

tial direction. Furthermore, the method employed by De Tourreil et. al. 5 is destructive in

nature, and sectioning the end-fitting will significantly relax the tangential stresses and

therefore the internal deformation of the GRP rod.

Using the ultrasonic method, the results obtained from insulators A to E appear to

be accurate and reproducible. From figures 3.3 (a to e), it is evident that the radial
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compression profiles of insulators A and C were highly non-unifonn, with a wave-like

profile in the tangential direction. From the number of maxima (or minima) of the wave-

like profile, it appears that a hexagonal radial compression die was used for the crimping

of insulator A, and a square die may have been used for insulator C. In contrast, the

radial compression profile of insulator E was highly unifonn, and much lower in magni-

tude along the entire surface of the end-fitting. It can therefore be concluded that the

shape and magnitude of radial compression applied to the GRP rod of composite insula-

tors, with the same dimensions and mechanical ratings, is strongly dependent upon the

manufacturing technique.

From the rod push-out tests perfonned on the five substation insulators, it is evident

that under excessive axial compression, the insulators encounter failure due to internal

sliding of the GRP rod within the metal end-fittings. Similar to the radial compression

profiles, the maximum loads at the onset of internal sliding (PI) were found to be

significantly different for the five substation insulators. Insulator A had a large average

magnitude of radial compression (M) which resulted in a very large value of PI' while

insulator E had the lowest average magnitude of radial compression and therefore the

lowest strength under axial compression. Based upon the expected multi-axial loading

conditions of substation insulators during service (given in chapter 4), it can be con-

eluded that the axial loads at the onset of sliding (PI) of all five substation insulators

were significantly larger than the maximum axial compressive load (FA =1.34 kN under

wind with glaze-ice forces) expected during service. Furthennore, based upon the

expected axial compressive strength of the GRP composite (ofll,c in Table C.2), it can

be concluded that the axial sliding loads for all five substation insulators were

significantly lower than the axial compressive load required to initiate intralaminar
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failure of the GRP rod.

Similar to the axial compressive strength, the torsional strength of insulators seems

to be affected by the average magnitude of radial compression applied during crimping.

The relatively large values of M in insulators A, B, and C resulted in torsional failure due

to the initiation of intralaminar splits in the GRP rod of these insulators, with the tor-

sional strengths being very similar (= 3000 to 3700 Nm). 122In contrast, the significantly

lower value of M in insulator E seems to have caused torsional failure due to internal

sliding of the GRP rod within the end-fittings, at a load as low as 903 Nm. It is therefore

clear that the average magnitude of radial compression applied to an insulator during the

crimping process, and the frictional properties of the GRP-metal interface, can have a

very pronounced influence on the axial and torsional strengths of the insulators.

The test results obtained from insulators A, C, and D, subjected to bending, were

very similar in terms of the maximum displacements and the bending load at failure (=

18 kN). 122The flexibility of composite insulators, in comparison with their porcelain

counterparts, is evident from the fact that the GRP rod can undergo a horizontal displace-

ment of approximately 0.3 meters prior to intralaminar failure. Although the bending test

results are not presently available for insulator E, it is expected that its mode of failure,

strength, and overall displacement, will be very similar to the other insulators. This is

because the walls of the end-fittings will constrain the GRP rod against internal sliding,

thus making the value of M (applied during crimping) an insignificant parameter.

In chapter 4, axisymmetric and three-dimensional finite element models were

developed for composite insulators. In both cases, the interface between the GRP rod and

the end-fittings was assumed to be either perfectly bonded ( i.e., no relative sliding and

continuous displacements across the interface) or imperfectly bonded ( i.e., with fric-
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tional sliding and discontinuous stresses/displacements across the interface). The axisym-

metric models were used to simulate externally applied axial compression, in conjunction

with the residual (axially non-uniform) radial compression applied during crimping. It

was found that the assumption of a perfect interface between the GRP rod and the end-

fittings resulted in large stress concentrations in the vicinity of the bimaterial interface

comer, with the magnitude of the stress concentrations rapidly decreasing with increasing

fillet radii (p). However, by using the Finite Element Iterative Method (FEIM), it was

demonstrated that the actual stresses in the vicinity of a perfectly bonded GRP-Al inter-

face comer will be singular in nature. This lead to the conclusion that the apparent stress

concentrations obtained from a perfect interface model will be misleading. Furthermore,

the structural response computed from a perfect interface model was linear, whereas

from the rod push-out tests results it was evident that as a result of internal sliding of the

rod under axial compression, the true response of composite insulators was non-linear.

This difficulty was overcome by using the axisymmetric imperfect interface model, with

general surface-to-surface contact elements at the GRP-Al interface. In this model, the

stresses computed in the vicinity of the interface comer were bounded, and the structural

non-linearity caused by internal sliding of the rod could be simulated. Furthermore, it

was found that the axisymmetric imperfect interface model could accurately predict the

loads at the onset of internal sliding (Pf) for insulators A and E, provided that the

coefficient of friction (J.1),and the average magnitude of radial compression (M) assumed

in the model were accurate.

Since the actual in-service loads applied to composite substation insulators are

multi-axial in nature, a global three-dimensional perfect interface model was used to

determine the overall displacements of a substation insulator under the seven load cases
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described in chapter 4. Since this model could not be used to evaluate the internal

stresses near the lower end-fitting (due to the reasons explained above), and since a glo-

bal imperfect interface model would be computationally very expensive, a three-

dimensional sub-model was developed with an imperfect interface between the GRP rod

and end-fitting. Using this sub-model, the internal stresses were computed, and the partial

sliding of the GRP rod could be simulated under several multi-axial loading conditions.

The finite element models developed in chapter 4 were verified under three different

modes of uniaxial loading. Under axial compression (FA)' the load-displacement curves

computed from the axisymmetric imperfect interface model and the three-dimensional

sub-model were found to be in good agreement with the push-out test results of insulator

A (employing Jl =0.3 and M =MA), and insulator E (employing Jl=0.75 and M =ME).

Under bending loads (FB)' the linear load-displacement response computed from the glo-

bal perfect interface model was found to be in excellent agreement with bending test

results obtained from insulators A, C, and D, up to a load of approximately 8 kN.I22

Under torsional loads (MT), the maximum angular rotation of insulator A computed from

the global perfect interface model, and the maximum shear stress on the surface of the

GRP rod, were found to be in good agreement with the predictions of the closed-form

linear elastic solution for an isotropic rod subjected to pure torsional loads, and also with

the experimental torque versus rotation curves obtained from insulators A, B, C, and

D.I22 Based upon the intralaminar shear strength ('t{z) of 60 MPa determined from the

Iosipescu shear test, the finite element analysis predicted intralaminar failure at a nominal

torque (MT) of 3113 Nm, while the closed-form analytical formulae (equations 4-5)

predict failure at 2974 Nm. Experimentally, torsional failure of insulators A, B, C, and D

was observed at 3672 Nm, 3050 Nm, 3615 Nm, and 3559 Nm respectively.I22 It should
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be mentioned that although the analytical solution does not consider the effects of end-

fittings attached to the ends of the rod, it was expected to be approximately applicable to

composite insulators since the GRP rod of insulators is transversely isotropic (in the r-8

plane). Certainly, the analytical solution would not apply in the non-linear case of a GRP

rod encountering internal sliding due to excessive torsion. This situation was experimen-

tally observed during torsion tests of insulator E, and was numerically predicted by the

imperfect interface analysis of insulator E subjected to torsion. Based upon these com-

parisons, it can be concluded that the global perfect interface model can be used to accu-

rately predict the overall displacements, and the three-dimensional imperfect interface

sub-model can be used to determine the internal stresses in the GRP rods of insulators

under the seven multi-axial load cases described in chapter 4.

From the three-dimensional analysis of the crimping stresses in insulator A (section

4.5.1), it was seen that the residual biaxial compressive stresses (ar and ae) were quite

large in the GRP rod within the end-fitting. While the magnitude of the compressive

radial stress (ar =-176 MPa) was larger than the expected uniaxial transverse compres-

sive strength of the E-glass/epoxy composite material (af22,C =-140 MPa), it was not

clear if these stresses were sufficient to generate internal damage in the GRP rod. This is

because the transverse compressive strength of the composite material under a state of

biaxial compression is expected to be larger than the strength under uniaxial compres-

sion. At present, the biaxial compressive strength of the GRP composite is not known.

Indeed, in chapter 3 (section 3.6), optical microscopy of the GRP rod of insulator A

showed circumferential microcracks near the GRP-Al interface. However, these cracks

were observed after the insulator end had been subjected to the push-out test (section

3.3). It is therefore quite possible that the circumferential micro-cracks were, in fact, gen-
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erated during the push-out test. In order to investigate this possibility, the three-

dimensional imperfect interface sub-model was used to compute the magnification of the

biaxial compressive stresses (crr and cra) during the push-out test. Figure 6.1 shows the

values of crr and cra, along one quarter of the circumference of the rod, as a function of

the applied axial displacement (Uz). These stresses are plotted along the center of the

end-fitting (betweenZl andz2) where the circumferential cracks were found. Clearly, the

radial stress (crr) increases by only 5 % during the push-out test, while the tangential

stress (cra)increases by 25 %. It can therefore be concluded that even if the circumferen-

tial micro-cracks observed in insulator A were generated during the push-out test, the fact

that the magnification in the biaxial compressive stresses during this test is not very

significant, indicates that the magnitude of residual radial compression applied during

crimping of insulator A was, in fact, very close to the critical value required to generate

internal cracks in the GRP rod. Some isolated damage was also found in insulators C and

D. The damage in insulator D was certainly caused by the highly irregular internal sur-

face of the end-fitting. On the other hand, insulator E showed no signs of internal dam-

age. This was most likely due to the low average magnitude of radial compression (M),

which would result in lower biaxial compressive stresses in the GRP rod of this insulator.

6.1. PARAMETRIC DESIGN ANALYSIS

The finite element models presented thus far in this study have been applied to only 115

kV substation insulators such as the insulators A, B, C, D, and E. Since the results com-

puted from both the axisymmetric and the three-dimensional sub-model with an imper-

fect interface have agreed with the experimental results under axial compression, we may

now modify the models to evaluate the influence of some design variables on the
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performance of composite insulators subjected to externally applied axial loads, in con-

junction with the residual radial compression applied during crimping. This section con-

siders the effects of design variables such as the radius of the GRP rod (r), the type of

axial load applied ( i.e., tension or compression), the coefficient of friction (~) between

the GRP rod and end-fitting, the average magnitude (M) of radial compression, and the

shape of the radial compression profiles in both the axial (z) and tangential (9) directions.

The axisymmetric imperfect interface model has been used to compute axial load

versus displacement curves (multiple load-step analysis), while the internal stresses in the

GRP rod have been computed from the three-dimensional sub-model (single load-step

analysis Uz =0, with axially and tangentially non-uniform radial compression). Radial

compression in the axisymmetric models was simulated by using the fifth-order polyno-

mial (equation 3-3a), while the radial compression in the three-dimensional models was

simulated by the sinusoidal wave-function (equation 3-5). Figures 6.2 show the three-

dimensional finite element meshes with two different rod radii (r).

While the analyses are fairly generic in nature and can be applied to either substa-

tion or suspension insulators, some of the variables have been selected to represent the

current design of specific insulators. For instance, the cases of a rod radii (r) equal to 30

mm and 31.6 mm, loaded in axial compression, will represent 115 kV substation insula-

tors ( e.g., insulators A, B, C, D, and E). The case of r =8 mm, loaded in axial tension,

will represent the present design of suspension insulators with an SML rating of 40 to 60

kN, while the case of r =15 mm, loaded in axial tension, will represent suspension insu-

lators with an SML rating of 60 to 111 kN. The length of the GRP rod has not been con-

sidered as a variable since it will not have a significant effect on the axial strength and

internal stresses of an insulator. The length influences only the electrical leakage dis-



206

tance, and consequently the applicable voltage of an insulator on overhead transmission

lines (69 to 735 kV).

6.1.1. Effect of Radius of GRP Rod

Figure 6.3 shows the axial load versus displacement curves obtained from the axisym-

metric analysis of insulators with rod radii (r) of 10 mm, 15 mm, 20 mm, and 30 mm

loaded in axial compression; and 8 mm and 15 mm loaded in axial tension. In all cases,

the average magnitude of radial compression was assumed to be equal to that of insulator

A (MA =0.176318 mm), and the coefficient of friction (Il)was assumed to be 0.3. It can

be seen that the slope, and consequently the stiffness of the GRP rod in the axial direc-

tion, decreases with a decrease in the rod radius. This is expected because the axial stress

increases when the same axial force is applied to a rod of smaller radius. Since the

Youngs modulus remains the same, larger strains will be generated in rods with a smaller

radius. Figure 6.3 also shows that under axial compressive loads, the load at the onset of

sliding (Pf) increases with a reduction in the rod radius. However, this trend is reversed

under axial tension. It is believed that the value of Pf' according to Coulomb's law of

friction, should depend linearly on the compressive radial stress acting at the GRP-Al

interface. In addition, the value of Pf should also depend on the total contact area

between the GRP rod and end-fitting. Clearly, if the rod radius is decreased, the compres-

sive radial stress at the GRP-metal interface increases, while the total surface area of con-

tact decreases. It appears that in axial compression, the effect of larger radial compres-

sive stresses is dominant, leading to larger Pf. However, in axial tension, the influence of

a reduced surface area of contact plays the dominant role.
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Another interesting observation is that for the same insulator, the value of Pf is

found to be significantlylowerunderaxialtensionthanunderaxialcompression(see r =

15 mm in figure 6.3). This is expected because the radial compression due to crimping

causes the radius of the GRP rod within the end-fitting (rin) to be smaller than the radius

outside the end-fitting (roUl).Therefore, under axial compressive loads, additional elastic

strain energy is required to push the rod into the end-fitting.

Figures 6.4 (a, b) show the effect of the rod radius on the radial and tangential stress

distributions along the circumference of the rod at the midlength of the end-fitting ( i.e.,

between z 1 and z 2). These results were obtained by considering six peaks (n =6) in the

sinusoidal wave-function, with the value of M once again equal to that of insulator A.

Clearly, the resulting biaxial compressive stresses also have six maxima and six minima

along the circumference of the rod, and the peak stresses increase significantly if the rod

radius is decreased from 30 mm to 8 mm. As discussed earlier for insulator A, we expect

that the biaxial compressive stress state given by C1requal to -176 MPa, and C1eequal to

-113 MPa would represent a stress state which is very close to the critical values required

to generate compressive damage in the rods. These values have therefore been used to

indicate the expected regions of damage in figures 6.4 (a, b). The results demonstrate that

insulators with smaller rod radii should not be crimped to the same extent as insulators

with a rod radius of 30 mm.

6.1.2. Effect of Friction

Figure 6.5 (a) shows the axial load versus displacement curves computed from insulators

with different friction coefficients (~) at the GRP-Al interface. The substation insulators

(r =31.6 mm, M =MA, loaded in compression) have friction coefficients of 0.2, 0.3, and
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0.5; while the suspension insulators (r = 15 mm, M =MA, loaded in tension) have fl

values of 0.3, 0.5, and 0.7. It is evident that the load at the onset of sliding can be

significantly increased by increasing the friction coefficient at the GRP-metal interface.

Figure 6.5 (b) shows the von-Mises equivalent stress along the path ABC for the substa-

tion insulators. The internal stresses are clearly independent of the friction coefficient at

the interface. This implies that a large coefficient of friction can be used to significantly

improve the strength of crimped joints without increasing the internal stresses in the rod.

6.1.3. Effect of Magnitude of Radial Compression

As described in chapter 3, for the axisymmetric models, the average magnitude of radial

compression M could be changed in the axial direction such that the overall shape of the

radial compression function remained the same. Figure 6.6 shows the computed load-

displacement curves of substation insulators (r =31.6mm, fl =0.3, compression loading)

and suspension insulators (r =8mm, fl =0.3, tension loading), by considering the values

of M equal to that of insulator A (MA =0.176318 mm), twice of MA, and half of MA. In

the three-dimensional analysis, the value of M was varied by changing the amplitude of

radial compression (A) in the sinusoidal wave-function, while keeping the number of

peaks (n) equal to six. As would be expected, the load at the onset of interfacial sliding

can be significantly increased by applying larger magnitudes of radial compression dur-

ing crimping. However, figures 6.7 (a,b) show that unlike the effect of friction, the inter-

nal stresses will also increase, thereby increasing the risk of compressive intralaminar

damage in the GRP rod.
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6.1.4. Effect of Non-uniform Radial Compression

In chapter 3, it was seen that the radial compression profiles of insulators A and C were

non-uniform in both the axial (z) and tangential (8) directions, while the profile of insula-

tor E was highly uniform. In the tangential direction, the profile of insulator A had six

peaks of maxima and minima (n =6), while the profile of insulator C had four peaks (n =

4). In this section, the non-uniform shapes of the radial compression profiles were indivi-

dually simulated in the axial and tangential directions, while keeping the average magni-

tude of radial compression (M) constant.

6.1.4.1. Axially Non-uniform Compression

The axisymmetric imperfect interface model was used to study the effects of different

shapes of radial compression in the axial direction. According to equations (3-4), the

polynomials P2(Z) at a =0.25, P3(z) at a =0, and P4(Z) at a =-1 were applied. Figures

6.8 (a, b) show the load-displacement curves and the internal von-Mises equivalent stress

distributionfor substationinsulators(r = 31.6 rom, Jl= 0.3, loaded in compression).It

can be concluded that the load at the onset of sliding is independent of the shape of the

radial compression profile, provided that the average magnitude (M) of radial compres-

sion remains the same. However, the equivalent stress distribution is affected quite

significantly by the shape of the compression profile in the axial direction.

6.1.4.2. Tangentially Non-uniform Compression

For the three dimensional analysis, the shape of the radial compression profile was

changed in the tangential (8) direction by keeping the same values of M and A, while
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considering the number of peaks (n) equal to 3,4, and 6. These computations assumed a

rod radius of 30 mm, and a friction coefficient of 0.3. Figures 6.9 (a, b) show that the

radial and tangential stress distributions along the circumference of the GRP rod are quite

significantly affected by the number of peaks. The location of the maximum stresses are

different for the three cases, and the number of segments subjected to the maximum

stresses are equal to n. It is however interesting to note that the maximum and minimum

values of (1Tand (10 are not very different. This indicates that the amplitude (A) of radial

compression influences the magnitude of the maximum and minimum stresses in the rod,

while the number of peaks (n) determine the location and the number of peak-stress seg-

ments on the surface of the rod within the end-fitting.

6.1.5. Semi-Empirical Relationships

In chapter 4 (section 4.4.1), the axisymmetric imperfect interface model was used, in

conjunction with the rod push-out test results, to establish the values of the coefficients of

friction (~) at the GRP-AI interface as 0.3 and 0.75 for insulators A and E, respectively.

These values appeared to be reasonable since optical microscopic examinations, per-

formed in chapter 3 (section 3.6), revealed that the internal surface of the end-fitting was

smooth for insulator A, and grooved in insulator E. Since the internal surface of end-

fittings of insulators B and C were also found to be smooth, it seems reasonable to

assume that the coefficients of friction in these insulators will also be 0.3. Furthermore,

since the end-fitting surface of insulator D had large u-shaped grooves, we can assume

that the value of ~ at the GRP-Al interface will be approximately 0.8. Table 6.1 lists the

estimated coefficients of friction, the average magnitude of radial compression (M), and

the axial load at the onset of sliding (Pf) in the five 115 kV substation insulators
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examined in this study. In the previous sections, it was numerically demonstrated that

insulators with a large value of 1.1or M will require a larger load to initiate internal slid-

ing. A close examination of table 6.1 indicates a similar trend. In this section, simple

empirical relationships are presented which may be used to predict the loads (Pf) as a

function of the coefficient of friction at the GRP-Al interface, and the average magnitude

of radial compression applied to an insulator during crimping.

The general contact algorithm, employed in the imperfect interface models, makes

use of Coulomb's law of friction on a node-to-node basis. According to equation (2-33),

the externally applied axial force (Is) must exceed (Il.fn) in order to initiate sliding. On a

global scale, one may consider the average magnitude of radial compression (M) as a

parameter which influences the normal contact force, and the externally applied axial

load as a parameter representative of the tangential force. Figure 6.10 shows the values of

Pf computed from the axisymmetric imperfect interface model, by considering several

values of 1.1ranging from 0.2 to 0.7, and the values of M equal to MA, half of MA, and

twice of MA. In addition, four different shapes of the axially non-uniform radial compres-

sion function were considered, while the radius of the GRP rod (r) was kept constant at

31.6 mm. The results clearly indicate that Pf varies linearly with the product of 1.1and M.

The following semi-empirical equation was obtained by a linear regression analysis.

Pf= 9093.936 (JlM)- 66.54092 (6-1)

where, the value of Pf is given in kN, and M is in mm. From figure 6.10, it is evident that

the rod push-out test results of insulators A, C, and E are in agreement with equation (6-

I), while the results of insulators B and D disagree. This disagreement most likely

stemmed from the fact that the ultrasonic radial compression data obtained from insula-

tors B and D were inaccurate (as already discussed in section 3.2.1). Using equation (6-
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1), the maximum axial loading capacity of substation insulators can be determined from

the coefficient of friction, and the average magnitude of radial compression applied dur-

ing the crimping process. It is important to note that this equation is applicable only to

insulators with a GRP rod radius (r) in the range of 30 to 31.6 mm, subjected to axial

compressive loads (i.e., 115 kV substation insulators). It has already been seen that the

value of Pf will be significantly different in insulators with rod-radii smaller than 30 mm,

or insulators subjected to axial tension instead of axial compression. Furthermore, the

length of the end-fitting could be a significant parameter affecting the value of Pf' since it

affects the total surface area of contact between the GRP rod and end-fitting. However,

the numerical data presently available is insufficient to determine a generalized semi-

empirical relationship which will include all of these design variables to predict the axial

loading capacity of any insulator.

In addition to the axial load at sliding (Pf), it is important to evaluate the maximum

radial and tangential stresses in the GRP rod as a function of the design variables. In the

previous sections, it was seen that the maximum radial and tangential stresses will

increase if the radius of the GRP rod (r) is decreased, or the amplitude of radial compres-

sion (A) is increased. Furthermore, it was shown that the magnitude of the applied axial

load, the coefficient of friction at the GRP-Al interface (11),and the number of peaks (n)

of the sinusoidal wave-like compression profile will not have a significant effect on the

maximum radial stress «(jr,ma.~Jand the maximum tangential stress «(ja,max)in the GRP

rod. Using the three-dimensional imperfect interface model with rod radii (r) of 15 mm,

20 mm, and 30 mm, figures 6.11 (a, b) show the variations of (jr,maxand (ja,maxin the

GRP rod as a function of the applied amplitude of radial compression (A). Clearly, the

maximum biaxial compressive stresses are almost linearly dependent on the amplitude of
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radial compression applied during crimping. By performing a linear regression analysis,

the following semi-empirical equations were obtained:

For r =15 mm, C1r,max =-699.1172 (A) + 9.567293

C1a,max=-654.7625 (A) + 12.99094

(6-2a)

(6-2b)

For r =20 mm, C1r,max =-589.5175 (A) - 0.1514219

C1a,max =-539.8505 (A) + 15.84203

C1r,max=-497.7695 (A) - 0.3285568

C1a,max =-386.61 (A) + 8.130695

(6-3a)

(6-3b)

(6-4a)

(6-4b)

and For r =30 mm,

where, C1r,maxand C1a,maxare expressed in MPa, and A is in mm. Once again, these equa-

tions will hold good only for the specified rod-radii (r). The coefficient of friction (II), the

number of radial compression peaks (n), and the axial loading conditions should not have

any significant effect on these predictions.

Having established the empirical relationships, it should be possible to determine

the critical amplitude of radial compression (Acrit)that will generate damage in the GRP

rod. Since the biaxial compressive strength of the GRP rod in the r-e plane is not

presently available, based upon the computed internal stresses (section 4.5.1) and the

observation of internal circumferential cracks in the rod of insulator A, we can consider

C1r,maxequal to -176 MPa and C1a,maxequal to -113 MPa as the critical biaxial stress state.

Solving equations (6-2 to 6-4), the critical amplitudes of radial compression (Acrit)

required to initiate damage in the GRP rods are found to be 0.192 mm for r =15 mm,

0.239 mm for r =20 mm, and 0.313 mm for r =30 mm.

The parametric analysis shows that the axial load bearing capacity of the crimped

joint can be increased by;
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(a) increasing the average magnitude of radial compression (M), and consequently the

amplitude of radial compression (A) applied during crimping,

(b) increasing the coefficient of friction (11)at the GRP-metal interface, and

(c) decreasing the radius of the GRP rod (r) for insulators loaded under axial compres-

sion, and increasing the radius for insulators loaded under axial tension.

In addition, it is shown that the shape of the radial compression profile does not influence

the axial load at the onset of sliding, provided that the average magnitude of radial

compression remains the same. An increase in the values of M or A, or a reduction of the

radius (r), will increase the maximum radial and tangential stresses in the GRP rod,

thereby increasing the risk of compressive intralaminar damage in the rod. However, an

increase in the value of 11will not have any effect on the biaxial compressive stresses in

the rod. Clearly, a high coefficient of friction at the interface between the rod and end-

fitting should be recommended. From the results presented in chapters 3 and 4, it is evi-

dent that insulators A, B, and C were designed to have large radial compression while the

value of 11was relatively low. On the other hand, in insulator E, the grooved internal sur-

face of the end-fitting provided a high frictional resistance, while the average magnitude

of radial compression was very low.

6.2. POSSffiLE FAILURE MODES

From the rod push-out test results, it was seen that under excessive axial loads, the

crimped insulator end-fittings encounter failure due to internal sliding of the GRP rod.

However, these loads were significantly larger than the maximum expected axial

compressive load that will be applied to a substation insulator during service. In this

study, rod pull-out tests have not been performed on suspension insulators under axial
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tension. However, even in the suspension insulators, if the value of M is not sufficiently

large, sliding failures can occur resulting in separation of the GRP rod from the end-

fittings.

The three-dimensional analysis of the crimping stresses indicated that a large mag-

nitude of radial compression will result in higher biaxial compressive stresses in the GRP

rod. This can generate internal damage in the GRP rod, which is expected to occur in the

form of multiple microscopic cracks and debondings near the GRP-metal interface.

These micro-cracks may be mechanically stable since they will pe located within the

compressive stress field of the end-fitting (K[ =0). However, under long-term multi-axial

loads, especially if cyclic loads are involved, the damage accumulated inside the end-

fittings will eventually reduce the stiffness of the GRP composite, and consequently the

mechanical bond between the rod and end-fitting will become weak. This may

significantly reduce the resistance of the GRP rod to internal sliding under axial loads.

Furthermore, Fujimoto et. al. 15have performed electric field calculations by using the

finite element method. They showed that if axially aligned cracks are present within the

end-fittings of suspension insulators, the field intensity is severely concentrated at the tips

of the crack. This will cause internal partial discharge and subsequent degradation of the

GRP rod. Clearly, the value of M is a parameter which needs to be carefully optimized in

order to have a sufficiently large resistance to internal sliding (Pf), while maintaining the

internal compressive stresses below their critical limit. A high coefficient of friction at

the GRP-metal interface is recommended, since it can increase Pf without increasing

internal stresses in the rod.

The three-dimensional stress analysis of the seven multi-axial load cases indicated

that the residual biaxial compressive stresses in the GRP rod, near the lower end-fitting,
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were not affected by most of the external loading conditions. While most of the multi-

axial load cases are safe, the cases of extreme fault current forces and switch-torsional

forces can be identified as the ones which are closest to the ultimate strength of the insu-

lator. Under extreme fault current forces, the center of the GRP rod inside the lower

end-fitting experiences shear stresses which are close to the critical shear stress ('t{2=60

MPa) required to initiate intralaminar splits in the GRP rod. This mode of failure will be

very similar to the failure of Iosipescu specimens presented in chapter 5, with fiber orien-

tation A. The splits in both cases will initiate under shear stress concentrations. If the

splits initiate outside the end-fitting, then they will propagate under mixed-modes (I and

11).However, if the splits remain within the end-fittings, they may be stable due to the

biaxial compressive stress field.

Under switch torsional forces, there can be two independent modes of failure

depending upon the total magnitude of radial compression applied during crimping, and

the frictional properties of the GRP-metal interface.

(a) If the magnitude of radial compression is large (as in insulator A), the surface of the

GRP rod will developshear stressesof == 48 MPa, which are close to the critical

shear stress required to initiate intralaminar splits. These splits, generated on the

surface of the rod, will be located outside the end-fittings. If external bending loads

are also active, then the splits can propagate under mixed-modes (I and II). Once

again, this failure mode is similar to the failure of unidirectional composite Iosi-

pescu specimens with fiber orientation A.

(b) In insulators where the magnitude of radial compression is low (as in insulator E),

the surface shear stresses will be relaxed. However, the GRP-rod might encounter

partial sliding within the end-fittings if the coefficient of friction is not very large at
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the GRP-metal interlace.

It can therefore be concluded that torsional loads as large as 2480 Nm should be avoided

on the 115 kV substation insulators examined in this study.

In order to enhance the frictional resistance, the internal surlace of the end-fittings

in insulators D and E was grooved. While these grooves will successfully increase the

value of (J.1),they might lead to some problems. Firstly, a very coarse grooved surlace (as

in insulator D) has large peaks which can get embedded in the GRP rod during crimping.

This may lead to surlace damage in the form of broken fibers and crushing of the resin

matrix. In addition, the valleys of a coarse grooved surlace will result in internal voids

along the GRP-metal interlace. These voids will effectively reduce the total surlace area

of contact between the rod and end-fitting, and therefore the ultimate strength of the

crimped joint. Furthermore, circumferentially aligned grooves (as in both insulators D

and E), can enhance the friction coefficient only in the axial direction. In the tangential

direction, the value of J.1may still be similar to that of a smooth end-fitting surlace.

6.3. FUTURE WORK

This study addressed the possibility of short-term mechanical failures of composite insu-

lators. Comprehensive three-dimensional finite element analyses were perlormed to

evaluate the internal stresses and overall deformations of substation insulators subjected

to a wide variety of multi-axial loads. In addition, destructive and non-destructive

mechanical tests were perlormed to characterize the insulators and to complement the

finite element simulations. The recently developed biaxial Iosipescu method was studied

both experimentally and numerically, and the biaxial failure properties (under shear and

transverse tension) were determined for unidirectional composites. In addition, an
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attempt was made to extend the biaxial losipescu fixture for evaluating the mixed-mode

fracture properties of composites. The design of composite insulators is still in an evolu-

tionary stage. In this study, a parametric analysis was conducted in order to evaluate the

effects of several design variables on the axial load bearing capacity of insulators, and

the internal compressive stresses in the GRP rod.

Since composite insulators are required to be in service for a period of up to fifty

years, future work in this area should be focussed on their structural integrity under

long-tenn multi-axial loads. Dynamic effects such as fatigue loading, seismic activity,

and aeolian vibrations should also be taken into account. The biaxial losipescu test, used

in this study, was found to be inappropriate for detennining the transverse compressive

strength of unidirectional composites. Due to the internal stresses generated during the

crimping process, a biaxial compressive test method is required for characterizing the

transverse compressive strength of the GRP composite used in insulators. In addition, an

appropriate failure criterion is required in order to predict the onset of damage in the

GRP rods under biaxial compressive stress fields. Instead of complete structural failure,

the failure criterion should define the onset of damage as the initiation of microscopic

matrix cracks and debondings at the fiber-matrix interfaces. Furthennore, there is a

definite need for generic c1osed-fonn analytical solutions which can describe the

mechanical behavior of composite insulators by taking into account several design vari-

abIes such as the radius of the GRP rod, the elastic properties of the rod and end-fitting,

the magnitude and shape of the radial compression profile, the length of the end-fitting,

and the coefficient of friction at the GRP-metal interface. Composite insulators are fre-

quently subjected to torsional and bending loads during their installation. Since the per-

fonnance of these insulators can be significantly affected by occasional overloading,
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detailed guidelines should be set forth to prevent the mishandling of insulators during

installation and line maintenance.
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Table6.1 : Estimated coefficients of friction at GRP-metal interface, average mag-

nitudes of radial compression, and axial loads at onset of sliding for the

five 115kV substation insulators.

tIncorrect value

INSULATOR M PI

(mm) (kN)

A 0.30 0.176318 310.0

B = 0.3 0.234103 t 145.0

C = 0.3 0.107347 277.0

D =0.8 0.005609 t 112.0

E 0.75 0.030533 64.5
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Figure 6.1 : Radial and tangential stresses along circumference of GRP rod
as a function of applied axial displacement (Uz) during push-out tests.
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(a) (b)

" '

Figure 6.2 : Cross-sectional view of three-dimensional finite element mesh
with imperfect interface; (a) r = 10mm, and (b) r = 30 mm.
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Figure 6.3 : Axial load versus displacement curves computed for insulators
with different rod-radii (r) (Jl= 0.3,M = MA).
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Figure 6.11 : Relationship between applied amplitude of radial compression
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Chapter 7

Conclusions

The following conclusions can be drawn from the results presented in this study:

(1) The non-destructive ultrasonic pulse-echo method is a reliable and cost-effective

technique for determining the three-dimensional radial compression profiles of the

GRP-rod in composite insulators with crimped end-fittings.

(2) The shape and magnitude of the radial compression profile of the GRP rod is highly

dependent on the crimping technique employed during assembly of insulators, and

can vary significantly among insulators with the same dimensions and mechanical

rating.

(3) Under excessive axial compression, substation insulators (with a rod radius of 31.6

mm) will encounter failure due to internal sliding of the GRP rod within the end-

fittings. The same mode of failure is expected to occur in suspension insulators sub-

jected to excessive axial tensile loads. These loads, at the onset of internal sliding,

can be significantly different among insulators with the same dimensions and

mechanical rating.

(4) From rod push-out test results of the five substation insulators, it is concluded that

the axial loads at the onset of internal sliding are significantly larger than the max-

imum axial compressive load which is expected to be applied to a 115 kV substa-

tion insulator during service.
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(5) The axisymmetric perfect interface model is inappropriate for computing the struc-

tural response and maximum stresses of composite insulators, since the true

response of insulators is non-linear due to internal sliding, and the stresses at the

GRP-metaJ interface comer are theoretically singular in nature.

(6) The axisymmetric and three-dimensional imperfect interface models can accurately

predict the structural non-linearity of composite insulators and the maximum

stresses at the GRP-metaJ interface. Using these models, in conjunction with accu-

rate values for the average magnitude of radial compression applied during crimp-

ing and the coefficient of friction at the GRP-metaJ interface, the axial load at the

onset of sliding can be accurately determined.

(7) Since the actual loads applied to insulators during service are multi-axial in nature,

three-dimensional models are required to evaluate these cases. The global perfect

interface model, developed in this study, can accurately predict the overall deforma-

tions of substation insulators under various multi-axial loading conditions. The

three-dimensional sub-model with an imperfect interface can accurately predict the

maximum internal stresses developed in the GRP rod, and the onset of internal slid-

ing under multi-axial loading conditions.

(8) The biaxial Iosipescu test, employing specimens with fiber orientation A, is very

suitable for characterizing the biaxial failure properties of unidirectional composites

under combined shear and transverse tension loading conditions. Since composite

insulators are subjected to combined loads during service, this test is strongly

recommended for determining the biaxial failure strengths of GRP composites for

insulator applications. At present the biaxial Iosipescu test can not be used for
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characterizing biaxial failure properties under combined shear and transverse

compressive stresses.

(9) The centrally cracked Iosipescu specimens, with fiber orientation B, are not suitable

for characterizing mixed-mode fracture properties of unidirectional polYmericcom-

posites. These specimens encountered biaxial failure from the roots of the notches

prior to mixed-mode fracture from the tips of the central crack.

(10) The three-dimensional finite element analysis demonstrated that the crimping

stresses generated in the GRP rod of insulator A are close to the critical biaxial

compressive stresses required to develop internal damage in the rod. In conjunction

with optical microscopic examinations of the internal damage, it is concluded that a

biaxial compressive stress state given by (5r=-176 MPa and (59 =-113 MPa is close

to the critical limit.

(11) The three-dimensional stress analyses of the seven multi-axial load cases, expected

on substation insulators during service, demonstrated that five load cases are safe.

The cases of extreme fault current forces and switch-torsional forces can be

identified as the ones which are close to the ultimate shear strength of the insulator.

(12) Under extreme fault current forces, the center of the GRP rod inside the lower end-

fitting experiences shear stresses which are close to the intralaminar shear strength

of the GRP composite. This can result in the initiation of intralaminar splits in the

rod. If these splits are formed, they will be located inside the end-fittings, and may

not propagate due to the influence of biaxial compressive stress field of the end-

fitting.
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(13) Under switch torsional forces, there can be two different modes of failure depending

upon the total magnitude of radial compression applied during crimping, and the

frictional properties of the GRP-metal interface. If the magnitude of radial

compression is large, the surface of the GRP rod will develop shear stresses which

are close to the critical shear stress required to initiate intralaminar splits. The splits

will be located outside the end-fittings, and they may propagate to cause brittle frac-

ture of the insulator. In insulators where the magnitude of radial compression is low,

and the coefficient of friction is not very large in the tangential direction, the GRP-

rod can encounter partial sliding within the end-fittings. Torsional loads as large as

2480 Nm should therefore be avoided on all 115kV substation insulators.

(14) The parametric design analysis showed that the axial loads at the onset of sliding

can be increased by

decreasing the radius of the GRP rod for insulators loaded under axial
compression, and increasing the radius for insulators loaded under axial ten-
sion,

increasing the average magnitude of radial compression (M), and consequently
the amplitude of radial compression (A) applied during crimping, and

increasing the coefficient of friction (~) at the GRP-metal interface.

(15) The biaxial compressive stresses in the GRP rod will be increased by a decrease in

the radius of the GRP rod, and an increase in the average magnitude (and ampli-

tude) of radial compression. This will enhance the risk of compressive intralaminar

damage in the rod during crimping.

(16) An increase in the coefficient of friction at the GRP-metal interface will have no

influence on the stress state in the rod. Since friction will increase the resistance to
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the crimped joint to internal sliding without increasing the internal stresses, it is

strongly recommended as an alternative to large magnitudes of radial compression.

(17) A grooved internal surface of the end-fitting can be used to increase the coefficient

of friction. However, groove geometries should be carefully optimized. If the

grooves are too coarse, they will lead to voids at the rod-metal interface. In addition,

circumferentially aligned grooves can increase the resistance to sliding only in the

axial direction.

(18) The shape of the radial compression profile will not affect the axial load at the onset

of sliding, provided that the average magnitude of radial compression remains the

same.

(19) The shape of the radial compression profile can significantly affect the stress distri-

bution in the GRP rod. However, if the amplitude of radial compression applied

during crimping remains constant, the maximum values of the biaxial compressive

stresses in the rod will not be significantly affected. This applies to both axially and

tangentially non-uniform compression profiles.



237

References

1. J. F. Hall, R. S. Gorur, S. Grzybowski,and T. Orbeck,"History and Bibliography

of PolymerInsulatorsfor OutdoorApplications,"Reportof the IEEENonceramic

HistorylBibliographyTask Force,IEEETransmissionand DistributionCommittee,

(1991).

2. E. A. Cherney, "State-of-the-Art Review on Polymer Insulator Technology for

Transmission," Report No. ST - 275, Canadian Electrical Association R & D,

Montreal, Canada, (Sept. 1987).

3. J. Lanteigne and C. De Tourreil, "The mechanical performance of GRP used in

electrical suspension insulators," Computers and Mathematics with Applications,

vol. 11, no. 10, pp. 1007-1021, (1985).

4. D. Dumora and S. Wright, "Structural Aspects of Composite Insulators for

Transmission Systems," Report No. 9820, Sediver Inc. (R & D), Saint Yorre,

France.

5. C. De. Tourreil, P. Bourdon, 1. Lanteigne, and P. Nguyen-Duy,"Mechanical

evaluation of non-ceramic insulators," Report No. CEA 122 T356, Canadian

Electrical Association, Montreal, Canada, (Sept. 1988).

6. R. Mier-Maza, J. Lanteigne,and C. De Tourreil, "Failure analysis of synthetic

insulators with fiberglass rod submitted to mechanical loads," IEEE Trans. Power

Apparatus and Systems, vol. PAS-102, pp. 3123-3129, (1983).

7. L. Paris, L. Pargamin, D. Dumora, and R. Parraud, "Rating of composite suspen-

sion insulators related to the long term mechanical strength of rods," in Proceed-

ings of the 1994 IEEEIPES Winter Power Meeting, pp. 21-27, New York, NY, (Feb.



238

1994).

8. E. Bennett, in Short course on non-ceramic insulators (lecture notes), Oregon Gra-

duate Institute of Science and Technology, Portland, OR, (July 1995).

9. American National Standard for Composite Suspension Insulators for Overhead

Transmission Lines - Tests, American National Standards Institute, Inc., ANSI

C29 .11-1989, USA, (Aug. 1989).

10. Composite insulators for a.c. overhead lines with a nominal voltage greater than

1000 V, International Electrotechnical Commission, IEC 1109, Geneva, Switzer-

land, (1992).

11. D. De Decker and C. Lumb, "Mechanical strength of composite suspension insula-

tors," in Proceedings of the SEE International Workshop on Non-Ceramic Outdoor

Insulation" pp. 7-15, Paris, France, (April 1993).

12. M. Kumosa, Q. Qiu, M. Ziomek-Moroz,A. Moroz, and J. M. Braun, "Micro-

fracture mechanisms in glass/polymer insulator materials under combined effects of

electrical, mechanical, environmental stresses,' , Report to Bonneville Power

Administration, Contract No. DE-AC79-92BP61873, Portland, OR, (June 1994).

13. M. Kumosa, Q. Qiu, E. Bennett, C. Ek, T. S. McQuarrie,and J. M.Braun, "Brit-

tie fracture of non-ceramic insulators," in Proceedings of Fracture Mechanics for

Hydroelectric Power Systems Symposium, pp. 235-254, CSFM and Powertech Labs,

Vancouver, Canada, (Sept. 1994).

14. S. P. Timoshenko and 1. N. Goodier, Theory of Elasticity, 3rd Edition, McGraw-

Hill, (1970).

15. N. Fujimoto, J. M. Braun, M. Kumosa, and C. Ek, "Critical fields in composite



239

insulators effect of voids and contaminants," 9th International Symposium on High

Voltage Engineering, Austria, (Aug. 1995).

16. E. A. Cherney, "Partial discharge - part V : PD in polymer-type line insulators,"

IEEEElectricalInsulationMagazine,vol. 7, no. 2, pp. 28-32,(1991).

17. D. Hull, An Introduction to Composite Materials, Cambridge University Press,

Cambridge, U.K., (1981).

18. M. Schwartz, Composite Materials Handbook (Second Edition), McGraw-Hill, Inc.,

(1992).

19. S. I. Krishnamachari, Applied Stress Analysis of Plastics, Van Nostrand Reinhold

Publishers, (1986).

20. R. M. Jones, Mechanics of Composite Materials, McGraw-Hill Book Company,

(1982).

21. V. D. Azzi and S. W. Tsai, "Anisotropicstrengthof composites," Experimental

Mechanics, vol. 5, pp. 283-288, (1965).

22. S. W. Tsai and E. M. Wu, "A general theory of strength for anisotropic materials,"

Journal of Composite Materials, vol. 5, pp. 58-80, (1971).

23. M. J. Owen and J. R. Griffiths, "Evaluation of biaxial stress failure surfaces for a

glass fabric reinforced polyester resin under static and fatigue loading," Journal of

Materials Science, vol. 13, pp. 1521-1537, (1978).

24. M. S. Found, "A review of the multiaxial fatigue testing of fiber reinforced plas-

tics," in Multiaxial Fatigue, ed. M. W. Brown, pp. 381-395, American Society for

Testing and Materials STP 853, Philadelphia, PA, (1985).



240

25. W. R. Broughton, "Shear propertiesof unidirectionalcarbon fiber composites,"

Ph.D. thesis, University of Cambridge, U.K., (1989).

26. N. J. Pagano and J. M. Whitney, "Geometric design of composite cylindrical char-

acterization specimens," Journal of Composite Materials, vol. 4, pp. 538-548,

(1970).

27. W. R. Broughton, M. Kumosa, and D. Hull, "Analysis of the Iosipescu shear test

as applied to unidirectional carbon-fiber reinforced composites," Composites Sci-

ence and Technology, vol. 38, pp. 299-325, (1990).

28. M. 1. Pindera and C. T. Herakovich,"Shear Characterizationof Unidirectional

Composites with the Off-Axis Tension Test," Experimental Mechanics, vol. 26, no.

1, pp. 103-112, (1986).

29. N. Iosipescu, "New accurate procedure for single shear testing of metals," Journal

of Materials, vol. 2, no. 1, pp. 537-566, (1967).

30. R. Garcia, T. W. Weisshaar, and R. R. McWithey, "An experimental and analyti-

cal investigation of the rail shear-test method as applied to composite materials,"

Experimental Mechanics, vol. 20, no. 8, pp. 273-279, (1980).

31. S. Lee and M. Munro, "Evaluation of in-plane shear test methods for advanced

composite materials by the decision analysis technique," Composites, vol. 17, no. 1,

pp. 11-22, (1986).

32. M. J. Pindera, G. Choski, J. S.Hidde,and C. T. Herakovich,"A methodologyfor

accurate shear characterization of unidirectional composites," Journal of Composite

Materials, vol. 21, pp. 1164-1184, (1978).

33. M. Arcan, Z. Hashin, and A. Voloshin, "A method to produce plane-stress states



241

with applications to fiber-reinforced materials," Experimental Mechanics, vol. 13,

no. 3, pp. 141-146, (1978).

34. A. Voloshin and M. Arcan, "Failure of unidirectional fiber-reinforced materials -

new methodology and results," Experimental Mechanics, vol. 20, no. 8, pp. 280-

284, (1980).

35. R. H. Marloff, "Finite element analysis of biaxial stress test specimen for

graphite/epoxy and glass fabric/epoxy composites," in Composite Materials: Test-

ing and Design (6th Conference), ed. I. M. Daniel, pp. 34-39, American Society for

Testing and Materials STP 787, Philadelphia, PA, (1982).

36. H. A. Richard and K. Benitz, "A Loading Device for the Creation of Mixed Mode

in Fracture Mechanics," International Journal of Fracture, vol. 22, no. 2, pp. R55-

R58, (1983).

37. D. F. Adams and D. E. Walrath, "Iosipescu shear properties of SMC composite

materials," in Composite Materials: Testing and Design (6th Conference), ed. I. M.

Daniel, pp. 19-33, American Society for Testing and Materials STP 787, Philadel-

phia, PA, (1982).

38. D. E. Walrath and D. F. Adams, "The Iosipescu shear test as applied to composite

materials," Experimental Mechanics, vol. 23, no. 1, pp. 105-110, (1983).

39. D. E. Walrath and D. F. Adams, "An analysis of the stress state in an Iosipescu

shear test specimen," Report UWME-DR-301-102-1, Department of Mechanical

Engineering, University of Wyoming, Wyoming, (June 1983).

40. D. E. Walrath and D. F. Adams, "Verification and application of the Iosipescu

shear test method," Report UWME-DR-401-103-1, Department of Mechanical



242

Engineering, University of Wyoming, Wyoming, (June 1984).

41. D. F. Adamsand D. E. Walrath,"Further developmentof the Iosipescushear test

method," ExperimentalMechanics,vol.27,no. 2, pp. 113-119,(1987).

42. J. L. Sullivan, B. G. Kao, and H. V. Oene, "Shear propertiesand stress analysis

obtained from vinyl-ester Iosipescu specimens," Experimental Mechanics, vol. 24,

no. 3, pp. 223-232, (1984).

43. B. S. Spigel, R. Prabhakaran, and J. W. Sawyer, "An investigation of the Iosipescu

and asymmetrical four-point bend tests," Experimental Mechanics, vol. 27, no. 1,

pp. 57-63, (1987).

44. J. A. Barnes, M. Kumosa, and D. Hull, "Theoretical and experimental evaluation

of the Iosipescu shear test," Composites Science and Technology, vol. 28, pp. 251-

268, (1987).

45. J. L. Sullivan, "The use of Iosipescu specimens (Discussion)," Experimental

Mechanics, vol. 28, no. 3, pp. 326-328, (1988).

46. M. G. Abdallah and H. E. Gascoigne, "The influence of test fixture design on the

Iosipescu shear test for fiber composite materials," in Test Methods and Design

AUowables for Fibrous Composites, ed. C. C. Chamis, vol. 2, pp. 231-260, Ameri-

can Society for Testing and Methods STP 1003,Philadelphia, PA, (1989).

47. M. J. Pindera, P. Ifju, and D. Post, "Iosipescu shear characterization of polymeric

and metal matrix composites," Experimental Mechanics, vol. 30, pp. 101-108,

(1990).

48. S. Lee and M. Munro, "Evaluation of testing techniques for the Iosipescu shear test

for advanced composite materials," Journal of Composite Materials, vol. 24, pp.



243

419-440, (1990).

49. H. Ho, M. Y. Tsai, 1. Morton, and G. L. Farley, "An experimental investigation of

losipescu specimen for composite materials," Experimental Mechanics, vol. 31, no.

4, pp. 328-336, (1991).

50. J. Morton, H. Ro, M. Y. Tsai, and G. L. Farley, "An evaluationof the losipescu

specimen for composite materials shear property measurement," Journal of Compo-

site Materials, vol. 26, no. 5, pp. 708-750, (1992).

51. H. Ho, M. Y. Tsai, 1. Morton, and G. L. Farley, "Numerical analysis of the losi-

pescu specimen for composite materials," Composites Science and Technology, vol.

46, pp. 115-128, (1993).

52. H. Ho, 1. Morton, and G. L. Farley, "Non-linear numerical analysis of the losi-

pescu specimen for composite materials," Composites Science and Technology, vol.

50, pp. 355-365, (1994).

53. N. Sukumar and M. Kumosa, "Application of the finite element iterative method to

cracks and sharp notches in orthotropic media," International Journal of Fracture,

vol. 58, pp. 177-192, (1992).

54. N. Sukumar and M. Kumosa, "Stress Singularities at Sharp Notches: Interpolation

Formulas," International Journal of Fracture, vol. 58, pp. R45-R49, (1992).

55. N. Sukumar, "Finite element analysis of mixed mode fracture and failure in losi-

pescu specimens," M.S. Thesis, Oregon Graduate Institute of Science & Technol-

ogy, Portland, Oregon, (1992).

56. A. Bansal and M. Kumosa, "Experimental and analytical studies of failure modes

in losipescu specimens under biaxial loadings," Journal of Composite Materials,



244

vol. 29, no. 3, pp. 334-358, (1995).

57. P. G. Ifju, The shear gauge: for reliable shear modulus measurements of composite

materials, Micro-Measurements Group, Inc. (Catalog), (1994).

58. J. M. Slepetz, T.F. Zageski, and R. Novello, "In-Plane Shear Test for Composite

Materials," Rep. AMMRC TR 78-30, Anny Materials and Mechanics Research

Center, Watertown, MA, (July 1978).

59. M. Kumosa and D. Hull, "Mixed-mode fracture of composites using the Iosipescu

shear test," International Journal of Fracture, vol. 35, pp. 83-102, (1987).

60. A. Bansal and M. Kumosa, "Application of the Biaxial Iosipescu Method to

Mixed-Mode Fracture of Unidirectional Composites,'~ International Journal of

Fracture, vol. 71, no. 2, pp. 131-150, (1995).

61. N. Sukumar and M. Kumosa, "Finite element analysis of axial splits in composite

Iosipescu specimens," International Journal of Fracture, vol. 62, no. 1, pp. 55-85,

(1993).

62. J. R. Rice, "A path independent integral and the approximate analysis of strain con-

centration by notches and cracks," Journal of Applied Mechanics, vol. 35, pp. 379-

386, (1968).

63. M. L. Williams, "On the stress distribution at the base of a stationary crack," Jour-

nal of Applied Mechanics, vol. 24, pp. 109-114, (1957).

64. G. C. Sih, P. C. Paris, and G. R. Irwin, "On cracks in rectilinearly anisotropic

bodies," International Journal of Fracture, vol. 1, pp. 189-203, (1965).

65. S. Parhizgar, L. W. Zachary, and C. T. Sun, "Application of the principles of

linear fracture mechanics to the composite materials," International Journal of



245

Fracture, vol. 20, pp. 247-256, (1982).

66. E. M. Wu, "Application of fracture mechanics to anisotropic plates," Journal of

Applied Mechanics, vol. 34, no. 4, pp. 967-974, (1967).

67. J. G. Williams, "Large displacement effects in the DCB test for interlaminar frac-

ture in modes I and II," 6th International Conference on Composite Materials, vol.

3, pp. 233-242, Elsevier Science Publishers Ltd., U.K., (1987).

68. J. G. Williams, "On the calculation of energy release rates for cracked laminates,"

International Journal of Fracture, vol. 36, pp. 101-119, (1988).

69. J. G. Williams, "End corrections for orthotropic DCB specimens," Composites Sci-

ence and Technology, vol. 35, pp. 367-376, (1989).

70. J. W. Gillespie, L. A. Carlsson,and R. B. Pipes, "Finite elementanalysisof end-

notched flexure specimen for measuring mode II fracture toughness," Composites

Science and Technology, vol. 27, pp. 177-197, (1986).

71. J. M. Slepetz and L. Carlson, "Fracture of composite compact tension specimens,"

in Fracture Mechanics of Composites, pp. 143-162, American Society for Testing

and Materials STP 593, Philadelphia, PA, (1975).

72. J. G. Williamsand M. W. Birch, "Mixed-modefracturein anisotropicmedia," in

Cracksand Fracture,pp. 125-137,AmericanSocietyfor Testingand MaterialsSTP

601, Philadelphia, PA, (1976).

73. S. A. Salpekar, I. S. Raju,and T. K. O'Brien, "Strain energyreleaserate analysis

of the end-notched flexure specimen using the finite element method," NASA

Technical Memorandum 100494, NASA Langley Research Center and AVSCOM,

(Nov. 1987).



246

74. R. S. Barsoum, "On the use of isoparametric finite elements in linear fracture

mechanics," International Journal for Numerical Methods in Engineering, vol. to,

pp. 25-37, (1976).

75. R. D. Henshell and K. G. Shaw, "Crack tip finite elements are unnecessary," Inter-

national Journal for Numerical Methods in Engineering, vol. 9, pp. 495-507,

(1975).

76. S. K. Chan, I. S. Tuba, and W. K. Wilson, "On the finite element method in linear

fracture mechanics," Engineering Fracture Mechanics, vol. 2, pp. 1-17, (1970).

77. D. M. Parks, "A stiffness derivative finite element technique for determination of

elastic crack tip stress intensity factors," International Journal of Fracture, vol. to,

pp. 487-502, (1974).

78. D. M. Parks, "The virtual crack extension method for nonlinear material behavior,"

Computer Methods in Applied Mechanics and Engineering, vol. 12, pp. 353-364,

(1977).

79. T. K. Hellen, "On the method of virtual crack extensions," International Journal

for Numerical Methods in Engineering, vol. 9, pp. 187-207, (1975).

80. E. F. Rybicki and M. F. Kanninen, "A finite element calculation of stress intensity

factors by a modified crack closure integral," Engineering Fracture Mechanics,

vol. 9, pp. 931-938, (1977).

81. F. G. Buchholzand M. F. Kanninen,"Fracture analysisby the improvedand gen-

eralizedmodifiedcrack closureintegral," Paperpresentedat 1st WorldCongress

on ComputationalMechanics,pp.931-938,Austin,Texas,(1986).

82. I. S. Raju, "Calculation of strain energy release rates with higher order and singular



247

finite elements," Engineering Fracture Mechanics, vol. 28, pp. 251-274, (1987).

83. C. F. Shih, H. G. deLorenzi,and M.D. German,"Crack extensionmodelingwith

singular quadratic isoparametric elements," International Journal of Fracture, vol.

12, no. 4, pp. 647-651, (1976).

84. E. R. Rybicki, D. W. Schmuesser,and J. Fox, "An energy releaserate approach

for stablecrackgrowthin the free-edgedelaminationproblem," Journalof Compo-

site Materials, vol. 11, pp. 470-487, (1977).

85. F. G. Buchholz, P. 1.M. Pirro, H. A. Richard,and K. H. Dreyer, "Numerical and

experimental mixed-mode analysis of a compact tension-shear specimen," in

Proceedings of Fourth International Conference on Numerical Methods in Fracture

Mechanics, pp. 641-656, San Antonio, Texas, (1987).

86. H. Wang, S. Ding, F. G. Buchholz, and R. Rikards, "Delamination analysis for

2D- and 3D-models of a cross-ply laminated three-point bending specimen,"

Localized Damage III: Computer Aided Assessment and Control, pp. 251-258,

Udine, Italy, (June 1994).

87. V. E. Saouma and E. S. Sikiotis, "Stress intensity factors in anisotropic bodies

using singular isoparametric elements," Engineering Fracture Mechanics, vol. 25,

no. 1, pp. 115-121, (1986).

88. T. J. Boone, P. A. Wawrzynek,and A. R. Ingraffea,"Finite elementmodelingof

fracture propagation in orthotropic materials," Engineering Fracture Mechanics,

vol. 26, no. 2, pp. 185-201, (1987).

89. R. Sethuraman and S. K. Maiti, "Finite element based computation of strain energy

release rate by modified crack closure integral," Engineering Fracture Mechanics,



248

vol. 30, no. 2, pp. 227-231, (1988).

90. K. Badrinarayana, B. Dattaguru, T. S. Ramamurthy, and K. Vijayakumar,

"Modifiedcrackclosureintegralusingsix-nodedisoparametricquadrilateralsingu-

lar elements,"EngineeringFractureMechanics,vol. 36,pp. 945-955,(1990).

91. T. K. O'Brien, "Characterization of delamination onset and growth in a composite

laminate," in Damage in Composite Materials, ed. K. L. Reifsnider, pp. 140-167,

American Society for Testing and Materials STP 775, Philadelphia, PA, (1982).

92. J. M. McKinney, "Mixed-mode fracture of unidirectional graphite/epoxy compo-

sites," Journal of CompositeMaterials, vol. 6, pp. 164-166, (1972).

93. R. A. Jurf and R. B. Pipes, "Interlaminar fracture of composite materials," Journal

of Composite Materials, vol. 16, pp. 386-394, (1982).

94. A. 1.Russell and K. N. Street, Moisture and temperature effects on the mixed-mode

delamination fracture of unidirectional graphite/epoxy, pp. 349-370, American

Society for Testing and Materials STP 976, Philadelphia, PA, (1985).

95. H. T. Hahn, "A mixed-mode fracture criterion for composite materials," Compo-

sites Technology Review, vol. 5, no. 1, pp. 26-29, (1983).

96. C. Corleto, W. Bradley, and M. Henriksen, "Correspondence between stress fields

and damage zones ahead of crack-tip of composites under mode I and mode IT

delamination," 6th International Conference on Composite Materials" vol. 3, pp.

378-387, Elsevier Science Publishers Ltd., U.K., (1987).

97. M. L. Williams, "Stress singularities resulting from various boundary conditions in

angular comers of plates in extension," Journal of Applied Mechanics, vol. 19, pp.

526-528, (1952).



249

98. D. B. Bogy, "Edge-bonded dissimilar orthogonal elastic wedges under normal and

shear loading," Journal of Applied Mechanics, vol. 35, pp. 460-466, (Sept. 1968).

99. D. B. Bogy and K. C. Wang, "Stress singularities at interface corners in bonded

dissimilar isotropic elastic materials," International Journal of Solids and Struc-

tures, vol. 7, pp. 993-1005, (1971).

100. V. L. Hein and F. Erdogan, "Stress singularities in a two-material wedge," Inter-

national Journal of Fracture Mechanics, vol. 7, no. 3, pp. 317-330, (1971).

101. S. Ding and M. Kumosa, "Singular stress behavior at an adhesive interface

corner," Engineering Fracture Mechanics, vol. 47, no. 4, pp. 503-519, (1994).

102. S. Ding, L. Meekisho, and M. Kumosa, "Analysis of stress singular fields at a

bimaterial wedge corner," Engineering Fracture Mechanics, vol. 49, no. 4, pp.

569-585, (1994).

103. I. S. Raju and J. H. Crews, Jr., "Interlaminar stress singularities at a straight free

edge in composite laminates," Computers and Structures, vol. 14, no. 1-2, pp. 21-

28, (1981).

104. R. S. Barsoum, "Cracks in anisotropic materials -an iterative solution of the eigen-

value problem," International Journal of Fracture, vol. 32, pp. 59-67, (1986).

105. R. S. Barsoum, "Theoretical basis of the finite element iterative method for the

eigenvalue problem in stationary cracks," International Journal for Numerical

Methods in Engineering, vol. 26, pp. 531-539, (1988).

106. R. S. Barsoum, "Application of the finite element iterative method to the eigen-

value problem of a crack between dissimilar media," International Journal for

Numerical Methods in Engineering, vol. 26, pp. 541-554, (1988).



250

107. R. S. Barsoum, "Asymptotic fields at interfaces using the finite element iterative

method," Computers and Structures, vol. 35, no. 4, pp. 285-292, (1990).

108. R. S. Barsoum and T. K. Chen, "Three-dimensional surface singularity of an inter-

face crack," International Journal of Fracture, vol. 50, pp. 221-237, (1991).

109. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K.,

(1985).

110. A. E. Love, A treatise on the mathematical theory of elasticity (Fourth edition),

Dover Publications, New York, USA, (1944).

111. E. A. Wilson and B. Parsons, "Finite element analysis of elastic contact problems

using differential displacements," International Journal for Numerical Methods in

Engineering, vol. 2, pp. 387-395, (1970).

112. S. K. Chan and I. S. Tuba, "A finite element method for contact problems of solid

bodies - part I. theory and validation," International Journal of Mechanical Sci-

ence, vol. 13, pp. 615-625, (1971).

113. S. K. Chan and I. S. Tuba, "A finite element method for contact problems of solid

bodies - part II. application to turbine blade fastenings," International Journal of

Mechanical Science, vol. 13, pp. 627-639, (1971).

114. A. Francavilla and O. C. Zienkiewicz, "A note on numerical computation of elastic

contact problems," International Journal for Numerical Methods in Engineering,

vol. 9, pp. 913-924, (1975).

115. N. Okamoto and M. Nakazawa, "Finite element incremental contact analysis with

various frictional conditions," International Journal for Numerical Methods in

Engineering, vol. 14, pp. 337-357, (1979).



251

116. K. J. Bathe and A. Chaudhary, "A solution method for planar and axisymmetric

contact problems," International Journal for Numerical Methods in Engineeringg,

vol. 21, pp. 65-88, (1985).

117.W. H. Chen and T. C. Chen, "Boundary element analysis for contact problems

with friction," ComputersandStructures,vol. 45,no. 3, pp.431-438,(1992).

118. J. A. Garrido, A. Foces, and F. Paris, "An incremental procedure for three-

dimensionalcontact problemswith friction," Computersand Structures,vol. 50,

no. 2, pp. 201-215, (1994).

119. in ANSYS User's Manual, vol. 4 (Theory), ed. P. Kohnke, Swanson Analysis Sys-

tems Inc., Houston, PA, (1992).

120. in Acoustic emission monitoring system AET 5500 (Operating Instructions), Hart-

ford Steam Boiler Inspection Technologies, Software Version D07, Sacramento,

CA, (Nov. 1990).

121. M. Kumosa, A. Bansal, A. Schubert,and M. V. Balakrishnan,"Experimentaland

analytical studies of substationNCls," Final Report, Contractno. 94 AC 08103,

BonnevillePowerAdministration,Portland,OR,(1994).

122. C. W. Ek, "Substation non-ceramic insulator torsion tests," Report no. TTL(M)

95-61, Bonneville Power Administration, Vancouver, WA, (May, 1995).

123. A. Bansal, A. Schubert, M. V. Balakrishnan, and M. Kumosa, "Finite Element

Analysis of Composite Substation Insulators," Composites Science and Technol-

ogy, (1995). in press

124. A. Bansal and M. Kumosa, "Mixed-mode failure of unidirectional composite

materials for electrical applications," in Proceedings of Fracture Mechanics for



252

Hydroelectric Power System5Symposium, pp. 255-267, CSFM and Powertech Labs,

Vancouver, Canada, (Sept. 1994).

125. M. V. Balakrishnan, "Application of the biaxial Iosipescu test fixture for the

mechanical characterization of unidirectional composites," M.S. Thesis, Oregon

Graduate Institute of Science & Technology, Portland, OR, (Sept., 1995).

126. M. V. Balakrishnan, A. Bansal, M. Kumosa, and Biaxial testing of unidirectional

carbon/epoxy composite using biaxial Iosipescu test fixture, Journal of Composite

Materials, (July 1995). Submitted for publication

127.G. S. Giare, A. Herold, V. Edwards,and R. R. Newcomb,"Fracture toughnessof

unidirectional graphite fiber reinforced/epoxy composite in mode II (forward shear),

using a thin tubular specimen," Engineering Fracture Mechanics, vol. 30, no. 4, pp.

531-545, (1988).

128. M. Kumosa and D. Hull, "Finite element analysis of a circumferentially cracked

cylindrical shell under uniform tensile loading," Engineering Fracture Mechanics,

vol. 31, no. 5, pp. 817-826, (1988).

129. M. Kumosa and D. Hull, "Finite element analysis of a circumferentially cracked

cylindrical shell loaded in torsion," Engineering Fracture Mechanics, vol. 32, no.

1, pp. 123-136, (1989).

130. M. Kumosa, "Bulging effects in circumferentially cracked orthotropic cylindrical

shells," Engineering Fracture Mechanics, vol. 38, no. 4/5, pp. 255-262, (1991).

131. X. N. Huang, "Mode I and mode II intralaminar fracture of unidirectional compo-

sites," Ph.D. Thesis, University of Cambridge, U.K., (1990).

132. A. C. Kaya and F. Erdogan, "Stress intensity factors and COD in an orthotropic



253

strip," International Journal of Fracture, vol. 16,no. 2, pp. 171-190, (1980).

133. S. Mall and N. K. Kochhar, "Finite element analysis of end-notched flexure speci-

mens," Journal of Composites Technology and Research, vol. 8, no. 2, pp. 54-57,

(1986).

134. F. G. Buchholz, H. Wang, S. Ding, and R. Rikards, "Delamination analysis for

cross-ply laminates under bending with consideration of crack face contact and fric-

tion," in Proc. of 10th Inti. Conference on Composite Materials, pp. 605-610,

Whistler, B.c., Canada, (Aug. 1995).



254

Appendix A

Benchmark Test For VCC Method

This appendix presents the numerical results obtained from the energy based virtual

crack closure (VCC -lc and -2c) methods described in chapter 2. The analytical solutions

of Kaya and Erdogan, 132 for on edge-cracked orthotropic boron/epoxy strip under

transverse tension, were used for the benchmark test.

Due to the symmetric boundary conditions, only one half of the strip was analyzed.

The analyses were carried out for crack-length to width (a/w) ratios ranging from 0.1 to

0.8. Moreover, in order to examine an adequate mesh density which yields sufficiently

accurate results, element sizes (L) of 10% and 1% of the total crack length (a) were used

at the crack tip.

Figure A.I shows a half-sYmmetrymesh of the orthotropic plate with a/w =0.4 and

the crack-tip element size L =O.la. Also indicated in figure A.I are the material proper-

ties used in the analyses. Table A.I compares the numerically determined K[ values with

the analytical solutions of Kaya and Erdogan. 132
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Table A.I : Comparison of numerical and reference solutions 132

for an edge-cracked orthotropic strip in tension.

Crack- Reference L=O.la L = O.Ola

Length Solution VCC-l c Method VCC-2c Method VCC-lc Method VCC-2cMethod

alw K/CJo& K/CJo& % K/CJo& % K/CJo& % K]/CJo& %

Error Error Error Error

0.1 1.1284 1.1180 0.86 1.1539 2.30 1.1218 0.58 1.1253 0.27

0.2 1.3172 1.3039 0.96 1.3614 3.40 1.3097 0.57 1.3153 0.15

0.3 1.6069 1.5884 1.12 1.6849 4.89 1.5977 0.57 1.6070 0.01

0.4 2.0421 2.0136 1.39 2.1813 6.80 2.0295 0.62 2.0453 0.16

0.5 2.7199 2.6724 1.71 2.9826 9.67 2.7017 0.67 2.7298 0.36

0.6 3.8590 3.7701 2.27 4.4069 14.22 3.8305 0.74 3.8857 0.69

0.7 6.0350 5.8342 3.33 7.4218 23.00 5.9845 0.84 6.1105 1.25

0.8 11.274 10.584 6.04 - - 11.1481 1.12 11.5346 2.31
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MATERIAL PROPERTIES
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Ey = 55160 MPa

Gxy= 4830 MPa

Vxy= 0.1114

w

Figure A.l : Finite element mesh of an edge-cracked orthotropic strip in tension.
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Appendix B

Mode II DCB Test

This appendix presents the mode II double cantilever beam (DCB) tests performed on

XAS 914 carbon/epoxy specimens to determine the value of GlIc.

Figure B.l shows the loading arrangement and dimensions of the mode II DCB

specimens. The critical energy release rate GIIc is related to the specimen compliance C

by

p2

[

dC

]

Gn =-L - (B-1)
HC 2 t da

where Pf is the critical load at the onset of fracture, t is the specimen thickness and a is

the length of the precrack. Four specimens with normalized precrack lengths (aIL) rang-

ing between 0.35 and 0.60 were tested under displacement control at a rate of 6 mm/min.

The load-displacement curve exhibited significant nonlinearity due to large deflection of

the DCB arms. Fracture was catastrophic from the tip of the pre-crack to the constrained

end of the specimen.

Assuming small deflection of the DCB arms, the following expression has been

derived by Williams67,68for the mode-II DCB configuration;

(B-2)

The effect of elastic foundation of the beam-root (section AB) has subsequently been

accounted for by an extra crack length (xh), 69

(B-3)
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(B-4)

(B-5)

and

10 (1 + V12)

K= l2+11v12
(B-6)

ajj and v12 represent the material elastic compliance coefficients and poissons ratio

respectively. For the present unidirectional graphite/epoxy composite, K =0.847,r =

10.275, and X = 1.6977.

In addition to the ligament elastic foundation; the effects of bending, and bending

induced shear deformation have been included. The following expression for the analyti-

cal specimen compliance has been determined by a modified beam analysis method 131

(B-7)

Results presented in table B.l show the GIlc values computed from the ordinary beam

analysis (equation B-2) and the modified beam analysis (equations B-1 and B-7)

methods. Values of GIlc,obare about 65% lower than GIlc,mbdue to large deflections

observed in the specimens.
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Table B.l : GI/cvalues from mode II DCB tests of

unidirectional carbon/epoxy specimens.

t Ordinary Beam Analysis, :tModified Beam Analysis

Crack - Fracture GI/c,obt GI/c,mb:t

Length Load, Pf

(aIL) (N) (Jim 2) (Jim 2)

0.37 2846.9 1884.4 6286.97

0.37 3158.2 2319.2 7737.46

0.48 2241.9 2494.5 6385.25

0.60 2135.1 2787.4 6271.58
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Figure B.t : Geometry and loading of mode II DCB specimens.
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Appendix C

Elastic Properties of E-glass/epoxy Composite

In this appendix, the elastic properties of the E-glasslepoxy (GRP) composite, used as the

core material of insulators, have been estimated from analytical micromechanics based

methods. In addition, the elastic properties determined experimentally from the GRP rod

of insulator A are given.

Assuming an E-glass fiber volume fraction (Vf) of 62 %, the rule of mixtures (equa-

tion 2-5) was used to evaluate E 11and V12from the constituent properties given in table

c.1. The modified Halpin-Tsai equations (equations 2-6) were used to estimate the

values for E 22,G 12,and V23'Assuming a parallel hexagonal packing of fibers (Vf,max=

0.90719 ), the value of 'I' was found to be 1.07 from equation (2-6c).

The main difficulty in using the modified Halpin-Tsai equations is the selection of

an appropriate value for the empirical parameter~. For the present case, we used 'I' =
1.07, ~ = 2, and 11= 0.867 for the estimation of E 22.For estimating G 12,the values of 11

=0.907 and ~=1.336 were obtained from equations (2-6b) and (2-6d) respectively. For

estimating V23,we used ~=2 and 11=-0.1939. Since the 1-2 and 1-3 planes are identi-

cal, and since the composite is transversely isotropic in the 2-3 plane, the shear modulus

in the 2-3 plane was determined by

[

E22

]G23 = 2( 1 +V23) (C-l)

The constituent elastic moduli, and the calculated composite moduli are presented in

table c.1.
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Since the analytical estimation of elastic properties is dependent on the value of

empirical parameters ~, 'V,and V/.max,experimental determination of some of the elastic

properties and strengths was essential. Therefore, the true elastic and strength properties

were measured by extracting GRP specimens from the rod of insulator A. 121Table C.2

shows the comparison of elastic properties determined experimentally and analytically.



Table C.t : Elastic properties for constituents and GRP composite

estimated from analytical equations.

263

E-Glass Epoxy GRP-Composite
Fiber Resin (62% V,)

E 11 =45.97 GPa

Ef= 72.00 GPa Em = 3.50 GPa E22 = 17.10 GPa
E33 = 17.10 GPa

G 12= 5.54 GPa
Gf=30.ooGPa Gm= 1.26 GPa G13 = 5.54 GPa

G23 = 6.77 GPa

V12= 0.270
Vf = 0.20 Vm= 0.39 V13 = 0.270

V23 = 0.262
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Table C.2 : Analytical and experimental properties of GRP composite used in insulator A.

tObtained from reference 5 1 from reference 17

Material Analytical Experimental Used in
Pronertv FE-model

E 11(GPa) 45.97 38.857 38.857

E22 (GPa) 17.10 10.085 10.085

GI2 (GPa) 5.54 3.819 3.819

G23(GPa) 6.77 - 3.897

Vl2 0.270 0.294 0.294

V23 0.262 - 0.294

a/ll.T (MPa) - 849.6 -

afll c (MPa) - 480-690t -

a/22.T (MPa) - 40.01 -

af22 c (MPa) - -140.01 -

'[II? (MFa) - 60.0 -
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