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Abstract 

A Model for 

Fine-Grained Asynchronous Concurrency 

Through Parallel Graph Reduction 

Barton E. Schaefer 

Oregon Graduate Institute, 1990 

Supervising Professor: Richard B. Kieburtz 

This thesis explores techniques for massively parallel computation on MlMD computers 

executing fine-grained computational tasks asynchronously. I t  presents a model for 

evaluating expressions by concurrent graph reduction. The nodes of a computation graph 

are represented in the memories of a network of identical computing modules. The thesis 

presents experimental studies of the behavior of a dynamic scheduling algorithm for 

distributing workload over the modules of a network. Called diffusion scheduling, i t  uses a 

measure of workload a s  the analog of pressure t o  direct tasks t o  modules where they are 

most likely t o  receive prompt service. A second series of experiments investigates the 

effectiveness of speeulative evaluation in stimulating concurrent activity when the more 

commonly employed approaches of da ta  or control parallelism fail. Parameters of network 

dimension, message passing characteristics, and da t a  dependencies within programs are 

considered in development of a heuristic method for creating and distributing speculative 

work. 
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CHAPTER 1 

Introduction and Motivations 

Significant advances have been made in the exploitation of fine-grained, synchronous 

concurrency, as  demonstrated by massively parallel SIMD systems like the Connection 

Machine [Hi181,Hi185]. Synchronous concurrency has also been called data parallelism, and 

refers t o  the simultaneous application of a series of identical operations t o  a large number 

of da t a  items. Algorithms tha t  repetitively perform a computation can often be reformu- 

lated t o  exploit this type of concurrency, which is well suited t o  the single instruction 

stream, multiple da t a  stream (SIMD) model. However, success has been limited in the effort 

t o  exploit the fine-grained asynchronous concurrency tha t  is found in many other types of 

algorithms. 

Asynchronous concurrency arises when two or  more different series of operations can 

be performed independently. The operations need not be completely independent for some 

parallelism t o  be achieved. This type of concurrency is better suited t o  the multiple instruc- 

tion stream, multiple da t a  stream (MIMD) style of computation. Unfortunately, the over- 

heads of current MIMD machines, especially in communications, and the relatively small 

numbers of processors available in these machines, make them most appropriate for 

medium- t o  large-grained concurrency. New hardware technology such as  Dally's message- 

driven processor pa1861 and the MIT Monsoon processor [PaCSO] promise massively parallel, 

low-overhead MIMD systems in the near future. 

As advancing technology provides MIMD systems with increasingly large numbers of 

processors, new techniques are  needed t o  extract concurrent tasks from programs and t o  



control the behavior of those tasks. Existing systems rely on program notation and/or com- 

piler analysis for this purpose. However, program notations are  not appropriate for express- 

ing parallelism a t  the level of detail required t o  effectively utilize thousands of processors. 

Compiler technology holds more promise, but will always be limited by the inability of 

static analysis t o  account for dynamic run-time behaviors. I t  is therefore essential tha t  a t  

least some identification and control of concurrent tasks be performed without dependence 

on language notations or  compilers. Dataflow and reduction systems have provided ma,ny 

insights and advances towards these goals, but are  still plagued by a number of practical 

problems. 

Another significant problem for asynchronous computation is how to  mask the rela- 

tively long communication latencies of most distributed-memory MIMD machines. Technol- 

ogy is improving in this area as  well, but methods for keeping processors busy during com- 

munications and other delays must still be considered. Dataflow architectures mask latency 

by feeding each processor from a pool of very small tasks. The particular task tha t  is com- 

municating must wait for the message cycle t o  complete, but the processor is kept busy 

working on other tasks. A similar technique, using fast, fine-grain multiplexing, could be 

used on general MIMD architectures. However, operations in pure dataflow are sequenced 

only by the availability of data .  Di5erent computations performed in the same program 

loop may proceed at a different rates, so tha t  some operations may have da t a  available 

simultaneously from different loop iterations. Without additional synchronization, this may 

cause the order of accesses t o  shared da ta  structures t o  become confused. If structures were 

distributed in a MIMD environment, problems of this sort would be worse. 

In search of solutions to these problems, this thesis explores a technique based on com- 

binator graph reduction [Tur79]. The concepts of combinators and graph reduction will be 



described later in more detail. Stated briefly, the mathematical properties of graph reduc- 

tion permit simple detection of subgraphs tha t  may be evaluated in parallel, to  generate 

large numbers of asynchronous concurrent tasks. Neither program annotations nor "omnis- 

cient" compilers are required. These properties also guarantee tha t  the order in which 

reductions are performed do not affect the result of the computation, which is essential for 

concurrent execution. In addition, combinator reduction provides granularity similar to  

t ha t  of dataflow, permitting fast multiplexing of tasks. The combinators themselves 

describe da ta  access, so synchronization is not a problem. 

This thesis presents a model and experimental implementation of the Massively Paral- 

lel Combinator Reducer (MPCR). The term maaaively parallel refers both to  the number of 

processors the model is designed t o  support and t o  the number of concurrent tasks it is 

intended t o  generate. Massively parallel computation is attractive not because i t  promises 

nearly linear speedups in execution time, but because i t  allows very large problems to  be 

solved tha t  cannot be solved in reasonable time on less parallel machines. However, the 

individual processors in a massively parallel system may be of limited power. I t  is therefore 

important t o  keep the individual tasks simple, even if the overhead compared to  the size of 

each task is high. 

To  help generate these large numbers of tasks, the MPCR employs speculative evalua- 

tion [Bur85]. If the only tasks executed by a parallel system are those whose results are 

known t o  be useful in the future, the system is said t o  exploit eonaeruative parallelism. In 

some cases, however, a large amount of parallelism is found in tasks whose results may or 

may not be useful. One example is the problem space search employed in artificial intelli- 

gence programs. Several alternative solutions may be tried in parallel and only the first or 

best one t o  complete is selected. This type of parallelism is called speculative parallelism, 



because the system is speculating tha t  the results will be useful. 

Speculative evaluation has been employed successfully in the field of distributed simu- 

lation, where i t  is called optimiutie execution. The message-driven Time Warp system 

[JBW87] controls optimistic execution by use of a technique called virtual time [Jef85]. 

Tasks in the Time Warp system proceed without regard for synchronization until they 

receive a message with a time stamp earlier than their current virtual time. At  tha t  point, 

the task is rolled back t o  a time before the stamp of the message, from which time i t  

proceeds forward once more. Rolling back a task has considerable overheads, and may pro- 

pagate t o  other tasks, even causing termination of tasks started during the optimistic execu- 

tion. The Time Warp experiments are encouraging, because they show tha t  optimistic exe- 

cution can achieve speedups in spite of high overheads. 

Useful tasks are never rolled back in the MPCR speculative evaluation scheme. How- 

ever, dynamic task control is still important, because some of the alternatives selected for 

speculative evaluation may be non-terminating. Furthermore, speculative parallelism can 

produce an  overabundance of work even in cases where the results of a terminating compu- 

tation are useful. The difficulty lies both in preventing computations whose results will 

never be used from interfering with useful computation, and in preventing other work that  

is not immediately useful from flooding the system. Finding a means t o  limit speculation 

and control non-terminating computations, without sacrificing too much concurrency, is one 

subject of this research. 

From a practical standpoint, MIMD parallel machines with thousands of processors 

are  just beginning t o  become available. It may be several years before asynchronous con- 

currency is available on the scale tha t  the 64,000-processor Connection Machine [Hi1851 pro- 

vides for SIMD computation. If such tremendously parallel machines are t o  be taken advan- 



tage of when they finally become available, computation systems tha t  are  able t o  support 

extremely large numbers of concurrent tasks must be developed. The MPCR is intended t o  

model such a system, using a message-driven computational model t o  support large numbers 

of tasks. However, implementing a system to  control thousands of tasks on machines with 

only tens or  hundreds of processors requires mapping of tasks t o  processors in a reasonably 

efficient manner. Such mappings can be performed either statically before the program 

begins t o  execute, or dynamically during the execution of the program. Assignment of tasks 

t o  processors is thus analogous t o  static or dynamic memory allocation in compilation and 

execution of sequential programs. Each method has advantages and disadvantages for cer- 

tain classes of computation. 

The applications most effectively handled with dynamic scheduling are those where the 

size and number of tasks is difficult or  impossible t o  determine in advance. These include 

real-time systems, symbolic computation, some kinds of matrix calculations, quad-trees, and 

numerous others. Many of these computations will have dependencies referring t o  other 

parts of the computation. If references are thought of a s  arcs of a graph, and da t a  struc- 

tures as  the nodes of the graph, then these computations can be viewed as  graph manipula- 

tions. Computation modeled in this way is suitable for both shared and distributed memory 

multiprocessors, provided tha t  the implementation of references in a distributed system 

models access requests across memory boundaries. 

Not surprisingly, this view of computations as  graph manipulations is exactly the 

model for graph reduction. This suggests t ha t  dynamic scheduling is most appropriate for 

the MPCR. Furthermore, the number of tasks alone makes static mapping a daunting pros- 

pect. Combined with the dynamic behavior of speculative computation, static mapping 

becomes impossible. A dynamic algorithm called diflusion scheduling was selected because it  



is distributed and scalable, has relatively low overhead, and can be implemented in the 

same message-driven style a s  the MPCR graph computation. In addition, the load- 

balancing information employed by the scheduler can also be used in heuristics for specula- 

tive task control. This will be discussed more fully in Chapter 5. 

T o  summarize, the contributions of this thesis t o  the fields of parallel computation and 

graph reduction are: 

1. Detailed development of a fully message-driven model for graph reduction. Although 

presented as  a combinator reduction model, i t  is in fact extensible t o  programmed 

super-combinator reduction, including the spineless variation [BPR88,Pey88]. 

2. Extension of the message-driven model t o  include creation and control of speculative 

tasks. This includes heuristics for determining when t o  create additional tasks as  well 

a s  a method for assigning priorities t o  reduce the interference of speculative tasks with 

conservative work. 

3. Development of a task deletion strategy, and integration of tha t  strategy with a 

storage management algorithm to  recover resources from useless speculative tasks. 

4. Experimental evaluation of priority scheduling and task deletion as  means of control- 

ling speculative evaluation. 

5. Algorithm development and experimental evaluation of diffusion scheduling for 

dynamic assignment of tasks t o  processors. 

The remainder of this chapter covers some of the background tha t  inspired this work. Brief 

introductions t o  dataflow processing, graph reduction, and combinator reduction will also 

introduce the reader to some of the terminology used in later discussions. The last section 

summarizes the organization of the thesis, and briefly outlines the topics of each chapter. 



1.1. Dataflow 

Dataflow refers t o  a computation system in which operations are triggered by the avai- 

lability of their inputs (arguments). The thesis research borrows only a few ideas from 

dataflow, so specific dataflow projects will not be discussed. Instead, this section presents an 

overview of the general concepts of dataflow. More detailed discussions of dataflow archi- 

tectures, including some specific projects, are presented by Treleaven (TBH821 and Arvind 

(ArC861. 

In most dataflow systems, each operation is equivalent to a single machine instruction. 

Logically, each instruction is allocated a computing element which waits for the arguments 

t o  arrive and then executes that  instruction. No other restriction is imposed on the order- 

ing of instruction executions. This computation organization is referred to  as  data driven 

[TBH82] because operations occur exactly when their associated data is present, and have 

no explicit temporal relationship to other operations. Dataflow systems thus have a high 

degree of inherent, fine-grained parallelism. 

A dataflow program can be described in terms of a directed graph. The arcs of the 

graph describe the movement of data from producer t o  eoncrumer operations. Each arc 

corresponds to  a reference used by the producer t o  pass a result t o  the consumer. Data is 

transferred via data tokens, which may contain tags and a variety of other information in 

addition to  the data. Execution of an  operation causes one token to be removed from each 

of its input arcs and a new set of tokens to be released on its output arcs. The input tokens 

are "used up" by the operation, and are not available t o  any other operations. 

Dataflow systems are generally implemented by either of two synchronization schemes, 

both based on packet communications. In the first, called token storage [TBH82], data 

tokens are stored directly into the instructions that  will execute them. Programs executed 



under this scheme are in a sense self-modifying, and thus cannot make use of reentrant code 

or  recursion. For this reason, the token storage scheme is also referred t o  as static dataflow. 

The second scheme, called token matching (TBH821, is able t o  support recursive and 

reentrant programs. Data  tokens are tagged t o  identify the operation tha t  will consume 

them and the level of recursion or iteration a t  which they will be consumed. A special 

matching mechanism collects the tokens and assembles them into sets. When the complete 

token set for a particular operation has been assembled, i t  is made available t o  the opera- 

tion, which then executes. This scheme, also known as  dynamic dataflow, is more versatile 

than static dataflow but requires larger token packets and has higher overhead. 

A number of disadvantages of dataflow have been identified. The most significant for 

our purposes are: 

1. Sequencing of access t o  shared da ta  structures is difficult, forcing either task synchron- 

ization or the use of redundant copies of the structures. 

2. Programs can produce non-terminating computations in less-than-obvious ways, 

because all inputs t o  any operation must be evaluated even if the result depends only 

on a subset of the inputs. 

Tagged-token dataflow systems solve both problems by using sequence [ArI85] or iteration 

level [GKW85] tags t o  track iterations and recursion depth. These tags allow da t a  accesses 

to be ordered properly, and can be used t o  prevent computations from "running ahead" too 

far. Other techniques also exist t o  simplify synchronization for da t a  access. However, given 

the added complexity of a distributed memory environment, the more inherent synchroniza- 

tions of graph reduction make it  more attractive. 

In spite of their drawbacks, dataflow systems have demonstrated tha t  a pool of small 

tasks can be effectively pipelined t o  limit processor idle times induced by latency 



[GKW85,Pap87]. These results were an  important factor leading t o  the decision t o  use 

fine-grained tasks in the experimental implementation of the Massively Parallel Combinator 

Reducer. By supplying each processor with a pool of fine-grained reduction tasks, the 

MPCR masks communication latency in the same manner as do dataflow machines. 

1.2. Graph Reduction 

Reduction is the process of evaluating an  expression by successive transformations, 

under a set of rewrite rules, until no further transformations can be applied. The result is 

said t o  be the normal form of the expression, and is the value attributed t o  the original 

expression. An expression not in normal form is referred t o  as  a reducible ezpreeeion or 

redez (plural redieea). 

A reduction system can be used t o  evaluate functional language programs if i t  is con- 

sistent with the mathematical semantics of applicative expressions, and if i t  has the 

Church-Rosser property, i .c.,  the normal form of any expression is unique regardless of the 

reduction sequence tha t  produced it. This property is important for parallel evaluation, 

because i t  permits subexpressions t o  be evaluated in any order without affecting the correct- 

ness of the result. Two well-known examples of reduction systems tha t  have this property 

are  Church's lambda calculus [Chull] and Curry's cornbinatory calculus [CuF58]. 

Although order of evaluation does not affect the correctness of reduction, i t  may affect 

completeness. An important aspect of reduction systems, therefore, is the choice of the com- 

putation rule [TBHSS] t ha t  will order expression evaluation. Under the innermost reduction 

rule, also known as  eager or applicativc-order reduction, all arguments of a n  application 

must be evaluated before the expression can be evaluated. The outermost rule, also called 

l a w  or normal-order reduction, stipulates tha t  arguments shall not be evaluated until they 

are needed t o  complete evaluation of the outermost application. The innermost rule 



provides more opportunities for parallelism than does the outermost. However, computa- 

tions tha t  terminate when evaluated lazily may be non-terminating when eager evaluation 

is used. 

Graph reduction refers t o  a reduction process in which expressions are represented as 

graphs. Other systems perform reduction by string rewriting (TBH821. A graph representa- 

tion has the advantage of allowing subexpressions t o  be shared, via multiple arcs incident 

upon the root of a subgraph. String reduction systems, in contrast, represent subexpressions 

by value, i .e . ,  by textual expressions. Graph reduction systems can thus be more efficient, 

because copying and redundant re-evaluation can be avoided (a t  the cost of some limits on 

parallel evaluation). Shared references are also ideal for use with normal-order reduction, 

allowing arbitrary objects t o  be manipulated without being evaluated. 

In computational terms, reduction systems can be classified on the basis of their con- 

trol structure. Dynamic selection of the next reduction step from the form of the expression 

a t  each stage has been termed pure reduction, and is contrasted with programmed reduction, 

in which control is derived from the original expression by static analysis (compilation). 

This derived control can be represented by an  instruction stream, and is thus easily imple- 

mented on conventional von Neumann architectures (Kie851. 

In programmed graph reduction, the function symbol in the graph representing an 

applicative expression can be any defined function, and the number of arguments accepted 

by the function is not limited. Other graph reduction systems restrict the function symbol 

to be one of a predefined set, such as  the S, K, and I combinators, with fixed numbers of 

arguments. T o  reduce the application of a function, a programmed graph reducer executes 

the program generated when the function definition was compiled. Thus, there may be con- 

siderable work involved in a single programmed reduction step. 



Reduction systems (and functional language systems in general) have been criticized 

for their lack of array-like shared da ta  structures. For distributed evaluation, however, we 

consider this t o  be an  advantage, because there are no synchronization problems such as 

those found in dataflow. I t  has also been pointed out (e.g., by Treleaven (TBH821) tha t  

normal-order reduction is wasteful for operators tha t  are stn'ct in all arguments. Strictness 

is the property of an  operation tha t  requires tha t  an  argument expression be in normal form 

before the operation can be performed; arithmetic operations, for example, have this pro- 

perty. On  the other hand, applicative-order evaluation of non-strict arguments can lead t o  

non-termination, as in the case of eagerly evaluating a function tha t  will generate an  

infinite list. Computations which fail t o  terminate for this reason are referred t o  as  diver- 

gent, because the reduction does not converge on a normal form. 

Advances in strictness analysis [BHA86,HuY86,WaH87] have made it  possible t o  

extract additional parallelism without giving up the termination properties of normal-order 

evaluation. This is called conservative evaluation, because it identifies and evaluates subex- 

pressions whose values are  certain t o  be needed. These techniques, however, still fall short 

of finding a11 the parallel opportunities exploited by applicative-order evaluation. Further- 

more, some language constructs provide for parallel evaluation of a set of alternatives, only 

some of which a re  eventually used. The use of controlled speculative evaluation offers a solu- 

tion t o  both of these difficulties. Techniques for this style of evaluation are a subject of the 

research presented in this thesis. 

1.3. Combinator Reduction 

This section provides a brief summary of the concepts of the combinatory calculus and 

its uses in graph reduction computation. I t  is intended t o  be a basis for concepts and termi- 

nology used in later discussions, rather than a tutorial. A more complete introduction t o  



combinators is presented by Stenlund (Ste721. 

The combinatory calculus is a calculus of intcneional functions. This means tha t  the 

functions are defined in terms of rewrite rules such that ,  when given an  object as  an  argu- 

ment, they produce another object a s  a value. The only primitive operation in such a cal- 

culus is application of a function t o  its argument, usually written f z .  Application associ- 

ates t o  the left, so j zl z2 means t o  apply j to  z ,  and then t o  apply the result t o  z2. 

One purpose of the development of the combinatory calculus was t o  avoid the use of 

variables when expressing logical properties. All the formulas of the calculus can be defined 

in terms of two primitive functions, S  and K :  

S / o z = f  z ( g z )  

K z y = z  

S is thus a "composition function" and K is a "constant function." The calculus explicitly 

permits self-application, tha t  is, expressions of the form f f ,  so S and K can be applied t o  

each other and t o  themselves in arbitrary ways t o  describe other functions. The identity 

combinator I is frequently added t o  the set of primitive functions; i t  is most simply defined 

in terms of S and K  by: 

Z = S K K  

I z = S K K z = K z ( K z ) = z  

Other combinators can also be defined, including structure constructors and even arithmetic 

operations. The set used in this research defines eighteen primitive operations, including S, 

K, and I. Most are defined a t  a more abstract level for reasons of efficiency and ease of 

notation, but i t  is important t o  remember tha t  all could be defined in terms of combinations 

of S  and K .  This set will be presented in a later chapter. 



The usual method for evaluating expressions in the combinatory calculus is by term 

rewriting. Function definitions can be treated as reduction rules if read from left t o  right. 

For this reason, the definitions are often written with an  arrow, 

S f  g --+ f ( 9  2) 

t o  show the "direction" of rewriting. Any expression tha t  contains a term matching the left 

side of the definition of a primitive function is a redez. Any expression that  does not con- 

tain such a term is a normal form. 

Expressions are reduced, or evaluated, by repeatedly replacing terms tha t  match the 

left side of a primitive definition with the right side of tha t  definition, until the expression is 

in normal form. The normal form of any combinatory expression is provably unique (see 

Stenlund [Ste72]), and the calculus thus satisfies the requirements for use in evaluation of 

functional programs. 

A combinator-based system for the implementation of functional languages was first 

proposed by Turner [Tur79]. He first described how variables could be removed by abstrac- 

tion from a program written in a functional language t o  produce an  equivalent combinatory 

expression. Turner then described a graphical da ta  structure t o  represent the combinatory 

expression, and proposed a model of computation based on manipulations of the graph. 

In Turner's da t a  structure, every node of the graph represents an  application in the 

combinatory calculus. Each node contains two cells, the left cell representing the function 

and the right cell representing its argument. The contents of a cell may be either a value or 

a pointer t o  another node. Reduction is performed by walking the graph in a left preorder 

fashion, using a stack t o  store pointers t o  the expression currently being evaluated. As long 

as  the top of the stack points to a n  application, i ts left subtree is pushed. When a combina- 

tor reaches the top of the stack, the reduction rule for the combinator is applied, using the 



pointers in the stack t o  access the arguments. If the stack depth is less than the number of 

arguments the combinator requires, then the expression graph is in normal form and no 

reduction takes place. An example of this type of stack-based graph reduction is shown in 

Figure 1.1. This model can be extended t o  include basic values other than combinators 

Stack __.-. ._ ..-.- - ........ _____._ 
.... -.._. 

Before .-.. 
1. 

-..__ .._. 

Stack 
After 

Stack 
After 

Figure 1.1 - One step of reduction of the graph of S I (K 2) ( K  I), resulting in the graph 
of I (K 1) ( (K  2) ( K  I)). The upper diagram shows the state before reduction, with dashed 
lines t o  indicate new nodes and updated nodes following the reduction. This diagram is 
adapted from Tur79. The lower diagram shows the s tate  after reduction with nodes rear- 
ranged t o  make relationship t o  the expression more obvious. The I node after reduction is 
a n  indirection. 



(e.g., integers in machine representation) and operations on those values (e.g., machine 

arithmetic). 

Whenever a reduction rule is used, the application node t o  which the rule is applied is 

overwritten with the result. This is referred t o  in more recent literature as an  update of the 

node. This has the desirable effect of preserving sharing, which means tha t  all other nodes 

tha t  contain pointers t o  the original application will contain pointers t o  the result. The 

same application never needs t o  be evaluated more than once. 

Occasionally, i t  is necessary t o  update a node with a single pointer or value, as  in the 

K reduction K z y -+ 2. In this case, a n  indirection is created by introducing an I combi- 

nator as  the left cell of the node, and placing the actual value in the right cell. In effect, 

the reduction becomes K z y -+ I z .  The term boxed value has been used to differentiate 

a n  "indirection" node whose right cell is a value from a "real" indirection, whose right cell 

is a pointer t o  a subtree. 

Combinator graphs provide many opportunities for concurrent evaluation. Many 

applications will form redices because of the simplicity of the functions. As mentioned in 

the more general discussion of graph reduction, the properties of the reduction system allow 

redices t o  be evaluated in any order, or simultaneously. The simplicity of combinator 

reduction and its great opportunities for parallelism were primary reasons for its use in the 

experimental system described in this thesis. 

1.4. Plan of Thesie 

This chapter has presented a n  introduction t o  the goals of this research and has given 

some background on the techniques employed t o  meet those goals. Chapter 2 establishes a 

conceptual framework for this work by describing other systems tha t  have explored similar 

problems. The relationships among these systems are presented as  a taxonomy, and the 



position of the Massively Parallel Combinator Reducer in this taxonomy is discussed. 

Chapter 3 presents a n  abstract model for conservative message-driven graph reduc- 

tion. Several theorems are proven t o  demonstrate the completeness and correctness of the 

model. The chapter concludes with a discussion of some implementation ideas and proves 

tha t  these ideas are  faithful t o  the model. The addition of speculative computation is then 

discussed in Chapter 4, including proofs tha t  the speculative model remains correct. 

Techniques for mapping the abstract model t o  a physical machine are covered in 

Chapter 5. Two aspects of the mapping are  discussed. One is the assignment of tasks to  

processors by dynamic diffusion scheduling. Chapter 6 presents preliminary research related 

t o  this technique. The second aspect discussed in Chapter 5 is estimation of processor 

activity t o  decide whether t o  create speculative tasks. 

Experiments performed t o  evaluate the techniques for speculative parallelism are 

presented in Chapter 7. The programs run in simulation are described and results of the 

runs are discussed. Chapter 8 provides additional details of the simulator used t o  perform 

the experiments. Finally, conclusions and some ideas for future research in this area are 

given in Chapter 9. 



CHAPTER 2 

Taxonomy of Parallel Reduction Systems 

Since the introduction of combinatory graph reduction as  a technique for functional 

language evaluation, a variety of parallel reduction systems have been designed. To  provide 

a context for the discussion of the system described in this thesis, i t  is useful t o  examine a 

taxonomy of other parallel reduction systems. Such systems generally fall into one of two 

broad categories, although there is some overlap. The categories are packet-based reduction 

and pure-graph reduction. Pure-graph here refers t o  the representation of the graph, not the 

derivation of control, and should be distinguished from pure reduction, which was introduced 

earlier. It is possible for a pure-graph system t o  use programmed reduction, or for a 

packet-based system t o  use pure reduction. 

Packet-based systems are  mainly derived from standard sequential reduction models. 

These sequential models include Turner's combinator model [Tur79] and its auper-combinator 

variation [Hug82], and also more modern models such as  the G-machine [Kie85] and its 

enhancements [Pey88]. The modern models employ programmed reduction and therefore 

have a larger average task size. Pure-graph systems are  much less numerous and have been 

derived either from Turner's model or from a data-parallel combinator reduction algorithm 

[HiS86, HiS87j. 

In packetbased reduction, a reducible subgraph is collected into a da t a  structure 

called a packet before i t  is evaluated. Each packet thus represents a task, a sequential unit 

of work which can be executed concurrently with other tasks. Packetization has the advan- 

tage t ha t  most of the da t a  tha t  will be referenced by the evaluation is immediately 



available t o  the processor t o  which the task is assigned, but pays a price in overhead for 

formation and, depending on the execution model, disassembly of the packet. Pure-graph 

reducers, by contrast, manipulate the graph directly, often by use of a stack as described in 

Tur79. This has the advantage tha t  there is no delay in making available the result of an 

evaluated subexpression, but as will be seen, i t  may involve other overheads. Not surpris- 

ingly, pure-graph reducers are designed with abstract models tha t  have a globally- 

addressable memory space, whereas packet-based reducers usually assume either distributed, 

locally-addressable memories or a combination of locally and globally addressable spaces. 

Variations among the abstract models of the packet-based systems are reflected in 

their representations of task packets, program graph, and program code. Packets may be 

either fixed or variable in size, depending on the extent t o  which nested subgraphs are con- 

sidered part  of a larger expression. Individual nodes of the program graph may also be vari- 

able in size. Some models store the packets as  nodes of the program graph a t  least par t  of 

the time, but others make a strong distinction between graph nodes and packets. Most of 

the systems tha t  will be discussed here chose variably-sized packets t ha t  can be stored as 

graph nodes. The program code referenced by a packet may also be stored with the packet, 

but more commonly is available t o  all processors either through shared code space or by dis- 

tributing the code before computation begins. The complexity of the functions represented 

by the code for each task also varies, and is the primary determinant of task granularity. 

Granularity refers t o  the size of each task in terms of its resource requirements. Tasks 

which represent complete programs or large parts of a program are usually referred t o  as  

large-grained. Medium-grained tasks are those representing a single function on the source 

Ianguage level. Super-combinators are  compiled from source functions, and are  thus 

medium-grained tasks. Finally, fine-grained tasks a re  those representing simple components 



of functions, down t o  the level of machine instructions. Obviously, these categories are 

rather vague, especially the medium-grained classification. However, none of the systems 

tha t  will be discussed here, whether packet-based or pure-graph, is designed to employ 

large-grained tasks. 

An important characteristic shared by all packet-based reduction systems is their 

model of communication among tasks. They all employ what could be termed Demand- 

Reaponae communication. Communication among tasks is always initiated by a demand for 

da t a  (usually the value of a subexpression), and is completed by the response tha t  carries 

the required data .  Sometimes the demand will trigger creation of a new task, rather than 

requesting information from an  existing task, but the effect is the same. Demand-Response 

communication is common because i t  is the natural way to  express, in parallel terms, the 

operations of the sequential models from which packet-based systems are derived. 

A very different approach is taken in pure-graph reducers derived from Hillis and 

Steele's data-parallel reduction algorithm. These systems are based on an architectural 

model similar t o  the Connection Machine (Hi1851, having a large number of small, simple 

processors. The only variation is tha t  a single instruction stream is not always assumed. 

There is no conventional memory in this model; processors are the only available resource. 

For this reason, fixed-sized graph nodes are allocated one per processor, and packets are not 

used. Communication in this model must therefore include not only queries and responses, 

but also information about how t o  manipulate the graph. The complete information needed 

to perform a graph transformation is never collected in a single processor as  i t  is in a 

packet-based system. Each processor knows only what i t  must do with its own graph node. 

Pure-graph systems not based on the data-parallel algorithm access a globally 

addressable memory, so inter-task communication is limited t o  synchronization of access t o  



the graph. This fits loosely into the Demand-Response communication model. 

The remainder of this chapter will discuss several reduction systems in each of the 

pure-graph and packet-based categories. Systems tha t  have characteristics of both 

categories have been classified with those they most closely resemble. Within each category, 

particular attention should be paid t o  the approach each system has taken t o  answering 

three crucial design questions: 

How are tasks t o  be identified? 

Which of the possible tasks are useful? 

How are resources t o  be managed? 

Identifying a task can be as  simple as  recognizing a reducible expression, and in most paral- 

lel reduction systems tha t  is the only determination. However, tasks can also be formed 

from collections of subexpressions, more than one of which may be reducible. Even a non- 

reducible subexpression can be a task, though such a task doesn't do much work. 

Once a potential task has been identified, its usefulness must be determined. A t  one 

extreme, a task could be deemed useful only if its result has been demanded by some other 

task. This is the conaeruatiue evaluation model tha t  has already been discussed. I t  guaran- 

tees t ha t  no work will be done tha t  does not contribute t o  the final result of the whole com- 

putation, but i t  may not take full advantage of opportunities for parallelism. A t  the other 

extreme, any task tha t  is able t o  run could be considered useful and given an  equal chance 

t o  execute. Such uncontrolled speculatiuc evaluation will often result in the consumption of 

resources by tasks whose results are not required. Most systems employ techniques tha t  aim 

for a point somewhere between the two extremes. The choice of useful tasks has a 

significant effect on resource management. 



Processor time is the most important resource in any computer system, with memory 

space a close second. Few of the issues of resource management are specific t o  reduction 

systems, but there are special factors t o  consider. In particular, the recovery of resources 

from tasks tha t  are no longer useful can be more important in speculative reduction systems 

than in other computation models. 

The chapter concludes by examining how the work described in this thesis fits into this 

taxonomy, with attention t o  how these questions are answered. 

2.1. Pure-graph Systems 

Pure-graph systems are less common than packet-based systems, but a few examples 

have been designed. The most recent pure-graph systems have been derived from a data- 

parallel algorithm described by Hillis and Steele (His861 and implemented by Kuszmaul 

[Kus86]. This is a combinator reducer designed for the Connection Machine. As mentioned 

above, the program graph is distributed one node per processor, and is the "multiple data" 

on which the instruction stream acts. The instructions cycle through reductions of each of a 

small set of fixed combinators, first performing all possible S reductions, then all K, all I, 

and so on. 

Processors t o  which application nodes have been assigned perform the manipulations 

tha t  reduce the graph. Each queries the processor referenced on the left of its application 

t o  determine what function the application represents and the position of the application in 

the graph spine. This information is used t o  transform the graph during the appropriate 

phase of the instruction cycle. Other processors only report the values of their graph nodes, 

and are inactive during most of the cycle. As graph nodes are created, processors are allo- 

cated from a pool, t o  which they return when the nodes are no longer needed. 



This model has the potential for tremendous parallelism because all redices present in 

the graph at the beginning of an  instruction cycle are evaluated during tha t  cycle. This 

generates new redices tha t  will be evaluated on the next cycle. Every graph node is a task, 

and no decision is attempted regarding usefulness. This may result in quite a few unneces- 

sary reductions being performed. The rationale is tha t  a s  long a s  every node has t o  be allo- 

cated t o  a processor anyway, tha t  processor might a s  well be doing something. This only 

becomes a problem if the graph grows so large t ha t  all the available processors are con- 

sumed. 

Hudak and Mohr [HuMSS] note tha t  the set of combinators chosen in such a system 

limits i t  in two ways: 

1. A small set of combinators leads t o  a large, inefficient graph. In terms of the design 

questions, this means tha t  task identification is suboptimal. 

2. A large set of combinators requires a long instruction cycle. This is poor resource 

management, because each processor is idle during the parts of the cycle tha t  do not 

apply t o  the node it  represents. 

Hudak and Mohr propose graphinators as  a solution t o  both of these problems. Graphina- 

tors describe graph transformations a t  an  even lower level than Turner's combinators. Pro- 

grams can thus be compiled into relatively small graphs using a more extensive combinator 

set, and the combinators then can be executed via a small set of graphinators t o  keep the 

instruction cycle short. 

In addition, Hudak and Mohr propose switching from completely eager reduction t o  a 

policy called prudent evaluation. This scheme evaluates anything tha t  is not a recursive call 

in the eager fashion of the combinator system, but evaluates recursion only when it  is 

demanded. This significantly reduces the number of unnecessary reductions, but also limits 



parallelism in programs tha t  depend heavily on recursion. 

Even a t  the graphinator level, SIMD parallelism is limited because the phases of the 

reduction cycle must proceed in sequential order. Truve [Tru89] proposes to  avoid this 

problem by using MIMD evaluation in the MPG-machine. This system uses the same overall 

model as  the SIMD systems, allocating one processor per graph node. However, the proces- 

sors operate independently, rather than working from a single instruction cycle. This allows 

evaluation of any compiled super-combinator, rather than a restricted set. The MPG- 

machine system is still in the design phase, and several problems are unsolved. Most 

significantly, the system is designed t o  use controlled speculative parallelism, rather than 

evaluating all possible redices, but currently lacks any means t o  delete speculative tasks if 

resources begin t o  run out. 

The most recent example of a pure-graph system not based on data  parallelism is the 

Distributed Applicative Processing System (DAPS) [HuG84]. Functions in DAPS are simple 

fixed combinators, but applications of these combinators tha t  do not form reducible expres- 

sions (partial applications) are noted during compilation and formed into immutable vertices. 

These nonreducible subgraphs represent functions larger than the combinators from which 

they are composed. The graph is represented by a combination of these immutable vertices, 

copied into the local store of every procesior, and of the remaining mutable part of the 

graph. The mutable graph is placed in a globally addressable memory and manipulated 

there. 

Evaluation in DAPS is demand-driven, so no unnecessary work is done. Tasks are 

application nodes in the mutable graph, which reference the immutable vertices as  func- 

tions. There is no notion of a packet, but DAPS represents an interesting halfway point, its 

immutable vertices reflecting something of the way packets are stored in the graph in other 



systems. This scheme also combines features of both programmed and pure control, though 

primarily the latter. 

DAPS shares another characteristic with several packet-based systems, that  is, its use 

of diffusion scheduling to  assign tasks to  processors. Diffusion scheduling will be discussed in 

detail in Chapters 5 and 6. One of the interesting results of the DAPS experiments was 

that  a simple diffusion heuristic based only on the length of the task queue a t  each processor 

performs nearly as  well as  a more complex heuristic that  takes data locality into account. 

2.2. PacketiBased Reduction Systems 

Most of the parallel reduction systems designed to date are packet-based. All are 

derived by some path from Turner's combinator reduction model, with the main difference 

being how far they followed the path of sequential reduction technology before branching 

into parallelism. Although the boundaries are not well defined, for convenience this discus- 

sion will classify the systems as either traditional eombinator style or G-machine atyle reduc- 

ers. "Traditional" here means that  the system closely follows Turner's model, except that  

the combinators used may be derived by compilation. Some control is still determined 

dynamically by the form of the expression. In contrast, G-machine style systems derive con- 

trol entirely by compilation, and often use additional optimizations such as avoiding 

unnecessary updates or condensing the left "spine" of the application tree. 

2.2.1. Traditional Combinator Style Systems 

The first system designed to  employ packetbased reduction was ALICE [DaR81]. In 

this system, the program graph is represented a s  a pool of variably-sized packets. ALICE is 

unique among the packetbased systems in that  i t  stores the entire graph as packets in this 

pool. Space in the pool is managed by reference-counting the packets, and processor alloca- 



tion is managed by having available processors take ready packets from the pool. 

A packet consists of a (pointer t o  a)  function, which represents a super-combinator, 

plus an argument list. A packet is ready for execution when the function and all necessary 

arguments are present. I t  is otherwise tagged as suspended. The primary evaluation stra- 

tegy is thus data-driven and eager, but some decisions are made regarding the usefulness of 

tasks. In cases in which i t  is not possible t o  determine the usefulness of a task, as  in select- 

ing the correct branch of a conditional, all of the alternatives are tagged as suspended even 

if all their arguments are present. When the outcome of the conditional is known, the task 

representing the conditional removes the suspended tag from the chosen alternative. This is 

referred to  by the ALICE designers a s  constrained eager evaluation. 

Another system that  employs a data-driven evaluation strategy is Flagship 

[WWW86,WaW87b], which is a descendant of the ALICE system. The program graph in 

Flagship is a collection of variably-sized nodes. As in ALICE, no distinction is made 

between graph nodes and packets in terms of form or content, but in this case the graph is 

not explicitly stored in a task pool. Packets contain a pointer t o  code for a super- 

combinator function, and a list of arguments. Elements of the argument list may be tagged 

as strict, requiring that  they be fully evaluated before the function is applied. A feature 

unique to  Flagship is that  i t  stores the code referenced by each packet directly in the graph, 

rather than in a separate code store. It  is thus the only system that  dynamically distributes 

code as well as data. 

Flagship improves on the ALICE model by avoiding the creation of tasks that will be 

suspended awaiting arguments. A packet that  has all arguments available, though not 

necessarily fully evaluated, is examined and any strict arguments are demanded. (The sys- 

tem is thus not completely data-driven.) When all strict arguments are evaluated, the 



packet is activated and its super-combinator code is executed. If, in the course of executing 

the code, further evaluation of a nonstrict argument is required, t ha t  evaluation is 

demanded and the packet suspends until the result is returned. Rather than feeding proces- 

sors from a pool, packets in Flagship are distributed by a dynamic load-balancing scheme 

similar t o  t ha t  devised for the Rediflow system (KeL84,KLT84]. 

Rediflow was the first system to  employ diffusion scheduling for dynamic load balanc- 

ing?, and is the only system tha t  uses fixed-sized packets. Packets in Rediflow contain a 

pointer t o  function code and either a single argument or a pointer t o  a structure of argu- 

ments. They are distributed as  they are created, but may not lodge permanently a t  the 

first processor t o  accept them. Each processor has a queue of migrable [sic] tasks, which 

may be moved t o  another processor, and a queue of local tasks. Migrable tasks may be 

moved when the load changes, but if the load at all processors exceeds a certain level, no 

migration occurs. The local tasks represent work tha t  is considered inappropriate for execu- 

tion elsewhere because of da t a  locality or similar considerations. 

Both data-driven and demand-driven computation are supported by Rediflow, but the 

distinction is much clearer than in Flagship. Subsets of the Rediflow system support 

dataflow or  reduction processing and can be used together or independently. 

The three systems discussed so far use super-combinator tasks with code compiled 

from source-language functions. The Alfalfa system [GoH87,Go188] is slightly different in 

t ha t  i t  relies on compilation t o  identify serial eombinatora [HuG85a,HuG85b]. Serial combi- 

nators represent the largest functions within which no opportunities for parallelism exist. 

This is theoretically advantageous because no parallelism is lost as  long as processors are 

Note that diffusion scheduling is not restricted t o  graph reduction. A general discussion of diffusion 
scheduling can be found in Chspter 5. 



available t o  execute new serial combinator tasks. The granularity of a serial combinator 

may range from slightly larger than a source function down t o  tha t  of a complex machine 

instruction, and is thus a mixture of fine and medium granularities. 

Alfalfa is a direct descendant of DAPS, and continues t o  employ diffusion scheduling 

t o  allocate tasks t o  processors in a balanced manner. However, new source language nota- 

tions and compiler techniques have permitted Alfalfa t o  take better advantage of parallel- 

ism. For example, Alfalfa programs can create vectors and select their elements a t  the 

language level rather than constructing and traversing lists. Evaluation is still conserva- 

tive, but better use can be made of strict operations. 

2.2.2. G-machine Style Systems 

Several parallel reduction systems have been based on the G-machine sequential model 

or its more efficient derivatives. These systems share the medium-grain parallelism provided 

by programmed reduction, but differ widely in their approaches t o  parallelizing the model. 

All seek to combine the most efficient aspects-of sequential evaluation with the benefits of 

concurrent execution. 

The Shared Memory Parallel G-machine /Bur881 and the HDG-machine [KLB89] are 

shared and distributed memory variations of the same system. In these two systems, based 

on the spineless G-machine [BPR88], tasks are represented by variably-sized graph nodes 

which in turn represent the entire left spine of a subgrapht. Packets and graph nodes share 

this representation, but not every graph node is a packet. The distributed memory HDG- 

machine adds a special case for non-local pointers, which are accessed through an extra 

level of indirection. Remote processors are given a pointer t o  the indirection, which has a 

t The term "spineless" comer from the replacement of the spine with these variably-sized nodes. 



fixed address in the local store. The indirection then points t o  the actual node, which can 

be relocated. This permits memory t o  be managed through a combination of reference 

counting for non-local pointers with semi-space allocation and copying garbage collection for 

local storage. 

Although evaluation in these systems is conservative (demand-driven), a model of com- 

putation called evaluation transformers is used t o  improve parallelism. In effect, the amount 

of evaluation required for each argument t o  a function is encoded a t  the time of its compila- 

tion. This allows some subexpressions whose value will eventually be required t o  be eparked 

for parallel evaluation. Two types of sparking are employed, one of which demands tha t  

evaluation occur immediately. The other type of spark may be ignored if resources for the 

evaluation are  not available. 

In the HDG-machine, tasks are maintained in both local and migratable pools. This is 

similar t o  the Rediflow organization. Instead of relying on diffusion scheduling, however, 

processors with no work t o  do must request tasks from other processors. Tasks are  taken 

first from the local pool, then from the migratable pool, and finally are requested from other 

processors' migratable pools. The Shared Memory G-machine uses a single shared pool, with 

synchronization t o  assure tha t  two processors do not attempt t o  evaluate the same subex- 

pression. 

The GRIP machine [Pey89] is also based on the spineless G-machine but has incor- 

porated ideas from the tagless variant [Pey88]. Packets in GRIP are variably-sized graph 

nodes, similar t o  those in the HDG-machine. However, GRIP currently supports only con- 

servative demand-driven evaluation. The program graph is initially loaded into the local 

store of one processor, where evaluation begins. The local store serves both a s  a heap and 

as a local task pool. Tasks are exported from the local pool only when the system load is 



low. Whenever a processor decides t o  offload a task, the entire subgraph accessible from the 

packet is shifted from the local memory of the processor tha t  created the task into a glo- 

bally addressable store. GRIP thus maintains both local and global task pools, but does not 

explicitly classify tasks as  migratable or otherwise. Processors keep themselves busy by 

drawing tasks first from their local pools and then, if the local pool is empty, from the glo- 

bal pool. When a task is taken from the global store t o  begin executing, the necessary parts 

of the graph are  fetched t o  the local memory of the processor. GRIP also imposes the 

requirement tha t  a completed task must return the entire subgraph representing its results 

t o  global memory. There, the results can be accessed by any task tha t  needs them. These 

two restrictions allow garbage collection of local and global stores t o  be performed indepen- 

dently. 

The reduction system of the Parallel Graph Reduction project a t  the Oregon Gradu- 

a t e  Institute shares some aspects of both the HDG-machine and GRIP, although i t  was 

developed independently. I t  is also similar t o  Alfalfa and Rediflow in tha t  i t  employs 

diffusion scheduling to balance processor loads. No other G-machine based system does so. 

The P G R  system has a number of other unique characteristics. 

Execution in the PGR system begins in the local store of a single processor, as  in 

GRIP. However, no global store is provided in the PGR model. Instead, when a subexpres- 

sion is demanded, the complete subgraph below the application is Battened into a contiguous 

space. Such a flattened graph forms a packet, which is passed t o  the diffusion scheduler t o  

be assigned t o  a processor. The diffusion scheduling algorithm will be discussed in detail in 

the next chapter. Once a processor has been selected, the packet is unfiottened into a 

workspace reserved for tha t  evaluation task in the processor's local memory. 



The workspace contains both heap and stack memory for the task. Non-local pointers 

are managed with extra indirections within workspaces in the same way tha t  the HDG- 

machine manages non-local pointers. Within its workspace, a task proceeds as  a sequential 

process until another subexpression is demanded. The system is thus a hybrid of packet- 

based and pure-graph reduction, using packets t o  distribute work but pure-graph methods 

for evaluation. This arrangement serves several purposes. First, the tasks can be compiled 

almost exactly as  they would be for a sequential machine, and then embedded in a run-time 

system tha t  handles the remote da ta  accesses and task distribution. The system can thus 

be recreated easily on any network of general-purpose processors. Second, the size of any 

individual task does not affect the efficiency of a context switch when a task must wait for a 

remote da t a  access or evaluation. Currently, the PGR system uses program notations t o  

control which subexpressions are  t o  be evaluated as  parallel tasks, so large tasks with many 

sequentiaIIy-executed subexpressions are possible. Third, improvements of the sequential 

reduction process can be made easily without affecting the distributed run-time system. 

The P G R  system model will be discussed in more detail in Chapter 6. 

2.3. How the MPCR Fits In 

The Massively Parallel Combinator Reducer model developed in this thesis is a 

packet-based, fine-grained system. Although i t  is designed t o  be executed in an  asynchr* 

nous MIMD fashion, its implementation was inspired by Hillis and Steele's data-parallel 

reduction algorithm. The MPCR thus places much greater significance on speculative 

evaluation than do most of the other MIMD systems tha t  have been discussed here. Despite 

the packet-based evaluation strategy, speculative evaluations are dynamically selected 

based on the form of the graph. Some pure-graph features are  therefore present. 



A packet in the MPCR is a fragment of the stack described in the discussion of 

Turner's combinator graph reduction model. These packets can be stored directly in the 

program graph, as  in the HDG-machine, but the MPCR model is not completely spineless. 

Only the combinator a t  the "top" of the stack and the arguments required by tha t  function 

are placed in the packet. This design is intended t o  keep packets small, reducing message 

size and permitting evaluation t o  occur on simple processors with little local memory. How- 

ever, the size of a packet is not significant t o  the abstract model. As long as the combina- 

tor correctly handles all arguments stored in the packet, any portion of the spine could be 

packetized. 

A significant feature of the MPCR model is tha t  i t  can be implemented in a com- 

pletely message-driven manner. Rather than employing a globally addressable memory 

space, the MPCR represents a reference by identifying a computing module and a local 

address a t  tha t  module. Packets and nodes in the graph are treated as virtual processors 

which respond t o  messages. The simulations described later in this thesis have used a mix- 

ture of message-driven and traditional computation. However, both messages and ready 

packets are  placed in the same task queue, so tha t  each entry in the queue represents one 

operation of a virtual processor. 

Graph nodes tha t  do not form ready packets, or packets representing strict functions 

tha t  must await evaluation of an  argument, are assigned t o  a processor but are not placed 

in the task queue. Messages must be directed t o  a specific graph node and hence must be 

placed in the queue a t  the processor where tha t  node is assigned. T o  maintain relatively 

balanced Ioads, ready packets are distributed t o  task queues by diffusion scheduling. A p r e  

cessor t ha t  handles many messages will thus be assigned fewer packets. This will be 

described further in Chapter 5. 



Another feature of the MPCR is tha t  i t  uses priority scheduling t o  ensure t ha t  conser- 

vative tasks will be evaluated before speculative ones. The task queue at each processor is 

maintained in priority order, with conservative tasks having the highest priority. The 

assignment of priorities t o  speculative tasks is detailed in Chapter 4. After the reduction 

rule for the function part  of a packet is applied, the packet it8elf is updated (overwritten) 

with the result of the reduction. If the updated packet represents a normal form, i t  is 

returned t o  the graph as the value of the application. If the updated packet represents a 

new application node, i t  will be repacketized and scheduled a s  a new task. 

Multiplexing among virtual processors in the MPCR therefore consists of returning a 

previously executed packet t o  the task queue in priority order and removing the next task 

from tha t  queue. Maintenance of the priority queue is the only context switch overhead, 

and efficient algorithms for this purpose are well known [AHU74]. In future implementa- 

tions, hardware support for message-driven computation [Da186] could reduce or  even elim- 

inate context switches, in addition t o  reducing other message processing overheads. 



CHAPTER 3 

A Message-Driven Abstract Model 

This chapter presents the basic abstract machine tha t  describes the Massively Parallel 

Combinator Reducer. As defined here, the model supports only conservative parallelism. 

This simplifies the presentation of the model, as  well as  reducing the complexity of some 

proofs of i ts properties. The next chapter expands the abstract machine t o  include specula- 

tive computation. 

Computation in the MPCR abstract machine is message-driven. The connectivity of 

the program graph determines how messages are  sent. Conceptually, messages are sent by 

the nodes of the graph, and travel along the arcs. When computation begins, messages can 

be sent only downwards, from expressions t o  their subexpressions. However, almost all mes- 

sages carry information t o  allow a reply t o  be sent upwards, thus introducing additional 

arcs. 

When a node receives a message, i t  reacts t o  the message. The reacting node may 

transform itself, produce new nodes, and/or produce new messages. The transition is thus 

described by Node x Message -., Node List x Message List. Once the reaction triggered 

by receipt of a message is begun, i t  cannot be interrupted. New messages are  therefore 

queued at the receiving node and delivered one a t  a time. Computation is initiated by send- 

ing a Demand message, as  described below, t o  the node representing the leftmost outermost 

reducible application of the graph. 

The first section of this chapter will describe the nodes and messages tha t  fully define 

the abstract machine. The second section covers proofs of theorems concerning the 



correctness of the machine. Garbage collection is not explicitly considered in these sections; 

for the base model, it is assumed that the machine "knows" when a node has no arcs 

incident upon it ,  and re-uses the resources committed to tha t  node. A garbage collector 

suitable for use with the abstract model is described in the third section, and the chapter 

concludes with a discussion of some other implementation considerations. 

3.1. Nodes and Messages 

A program graph consists of five types of nodes: Application, Marker, Combinator, 

Packet, and Indirection. Application and Indirection nodes correspond to  those in Turner's 

model. The purposes of the other nodes will be explained when each type is described. 

Each node in a program graph is assigned to  a virtual proeesaor which will receive messages 

directed to  the node. Virtual processors implement a logical sharing of the computing 

resources in a system, in the same way that  virtual memory locations implement sharing of 

the storage resources. Each virtual processor could be mapped onto a single physical p r e  

cessor, but there will often be many virtual processors assigned to each real processor. 

There are four message types: Delete, Demand, Combinator, and Packet. Delete and 

Demand messages are primarily for control, whereas Combinator and Packet messages 

transmit data. All nodes react in the same way to  Delete messages. A node tha t  receives a 

Delete message removes itself from the graph and frees its virtual processor for use by the 

next new node. Combinator and Packet messages have exactly the same structure as that  of 

the corresponding nodes, and are always sent in response t o  a Demand message. However, 

there may be several intervening messages between the demand and the response. 

A Demand message contains only a redez address. The redex address of a Demand 

message is a reference to  which the value of the demanded node should be sent. Every node 

type also has a redex address field, in addition to  the formats described below. The field is 



called a redcz address because by chaining together a series of references through this field, 

i t  is possible t o  trace the paths of successive Demand messages backward t o  the root of the 

original reducible expression of the graph. The term is also used t o  differentiate from return 

address, which has the connotation of a n  instruction location rather than a da ta  location. 

The redex address of the initial Demand message is undefined. Unless otherwise specified in 

the descriptions below, any other Demand message carries a redex address referring t o  the 

node tha t  sent the message. The redex address of a node is usually undefined, but may be 

set during the reaction t o  a Demand message. 

The format of each of the node types is detailed in the following paragraphs. Follow- 

ing these descriptions, the reactions of each node type to the various message types are 

explained. The reaction of each type of node t o  each type of message (except Delete mes- 

sages) is also summarized in Table 3.1. Any message reaction not described in the table is 

considered a run-time error and should never occur during evaluation, unless the combinator 

program being evaluated contains an  error. 

3.1.1. Node Formats 

Application Node 

Application nodes have two fields, both of which are references t o  other nodes: a left 

function and a right argument. As the name implies, the node represents the application of 

the function t o  the argument. The initial graph representing any combinator program con- 

sists entirely of Application nodes and Combinator nodes. 



Table 3.1, Reactions of Nodes to  Messages. Node types are listed along the left side of the 
table, message types across the top. The body of the table lists for each type of node the 
change in redex address, node type, and other fields, upon receipt of each type of message. 

ment t o  argument ment t o  argument 

of message to 

of message t o  

Combinator Node 

Combinator nodes have a single field which is the name of one of the built-in functions 

of the machine. Although i t  is not essential t o  the model, for purposes of this discussion 

these built-in functions are assumed t o  implement the rewrite rules of a simple combinator 
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set. I t  would be possible with some minor modifications t o  employ compiled super- 

combinators instead. These nodes react only t o  Demand messages, by sending copies of 

themselves as messages t o  the redex address of the Demand. 

In Turner's reduction model, combinators are stored directly in Application nodes. 

However, for clarity in describing the reactions of Application nodes t o  the various message 

types, i t  is helpful if the fields of Application nodes always contain references. Combinator 

nodes are therefore introduced t o  serve as  the leaf nodes of the tree of Applications tha t  

make up the graph. However, there is no reason tha t  an  implementation of this model 

could not make use of Turner's representation t o  avoid a special Combinator node type. 

Marker Node 

Marker nodes have two fields, a task field and a notifier list. The term task indicates a 

node which has been sent a Demand message, but which has not yet sent a response to  the 

redex address of tha t  message. The notifier list may have several subfields, each of which is 

a reference t o  a node. 

A Marker node serves as  a synchronization point between the tasks tha t  need t o  

obtain the value of a subexpression and the task tha t  is producing tha t  value. T o  the con- 

sumer tasks, a Marker indicates tha t  evaluation is in progress so tha t  the consumers must 

wait. T o  the producer, i t  represents a location where the value can be delivered, and from 

which i t  will be redistributed t o  all the consumers. 

Packet Node 

Packet nodes have two fields, the first of which is the descriptor, which must contain 

the name of a built-in function. As mentioned above, the function is assumed t o  implement 

any one of a set of combinators. The other argument list field of a Packet node will have 



one or more subfields, which are filled in with the arguments to the function. The number 

of entries in the list can never be greater than the number of arguments accepted by the 

function. This number is called the arity of the function. 

If the length of the argument list is less than the arity of the function, the Packet is 

said to  be incomplete or partial. Such a Packet represents a weak head normal form [Pey87]. 

A combinator expression f 2, z2 - - - x,, where n 2 0, is in weak head normal form 

(WHNF) if and only if: 

Either f is a data object (not a combinator) 

or j is a combinator and j zl z2 . . . x, is not a redex for any m < n.  

The latter condition can be understood to  state that  the arity of j is a t  least n + l .  Thus, 

S g is a weak head normal form, because the expression has only one argument (g) ,  and S 

forms a redex only when applied to three arguments. 

If the arity is equal t o  the length of the argument list, the Packet is said to be com- 

plete. A complete packet represents a redex, and is able to invoke the rewrite rules for its 

function. When this function is invoked, the packet undergoes an  evaluation transformation, 

described below. 

Packet nodes may be thought of a s  variably-sized Applications, representing the appli- 

cation of a function t o  more than a single argument. In terms of Turner's reduction model, 

they encapsulate a portion of the stack. The purpose of a Packet node is to collect the 

essential elements of a reduction ao that  they may be transmitted as  a unit t o  another pro- 

cessor for evaluation. 



Indirection Node 

Indirection nodes have a single field which is a reference t o  another node. Indirection 

nodes may be introduced during the evaluation transformation, described below. 

The following sections will describe the reactions of nodes t o  messages. Symbols used 

t o  diagram the reactions are summarized in Figure 3.1. 

3.1.2. Application Node Reactions 

Application nodes recognize only Demand, Combinator, and Packet messages. Other 

messages received by Application nodes generate run-time errors. 

Demand message 

Demand messages direct an  Application node t o  begin the process of evaluating the 

reduction represented by the node. The Application is transformed into a Marker, t o  

manage the receipt of additional Demands during the evaluation. However, the original 

s ta te  of the graph must be preserved so tha t  the argument stored in the right field of the 

Application 

Indirection 

Marker 

Packet 

- - - -  
/ 

/ 

/ * 
Message Send 

Figure 3.1 -Symbols for Node Types and Reactions. 



Application can be accessed. Therefore, the Application is copied before i t  is transformed 

(see Figure 3.2). 

1. The Application node makes a new node which is a copy of itself. 

2. The redex address of the copy is set to a reference to the original Application node. 

3. A new Demand message is sent t o  the left function of the Application node. The redex 

address of this message is a reference to  the new Application. 

4. The Application node transforms itself into a Marker node. This is referred to as  the 

marking tranajormation. Its task field is a reference to the new copy of the Application 

node, and its notifier list contains the redex address from the Demand message. If the 

new Marker node's redex address is a valid reference (not undefined), i t  is added to the 

notifier list, and the Marker's redex address field is erased. 

list 

Figure 3.2 - Reaction of Application node to  Demand message. This is called the marking 
tranajormation. Uppercase letters (A, B, C, . . .) are used as node identifiers. The prime 
symbol (e.g., A') is used to denote nodes that  are created by copying other nodes. 



Note t ha t  following the transformation from Application t o  Marker in step (4), the only arc 

(reference) in the graph which is incident on the new Application node is the task field of 

the Marker. This guarantees t ha t  additional Demand messages will be received only by the 

Marker, not by the Application. 

Combinator or Packet message 

Combinator or  Packet messages transmit data.  Receipt of such a message means tha t  

evaluation of the subexpression referenced through the Application's left function field has 

been completed. A Combinator message is the function itself, and a Packet message is the 

function encapsulated with a subset of its arguments. The Application node responds by 

forming new Packet,  adding its right argument field t o  the list of arguments of the function 

(see Figure 3.3). 

( Demand I 
A 

Figure 3.3 - Reaction of Application node t o  Packet message. The reaction to a Combina- 
tor message is the same. This is called the packetitation transformation. 



1. The Application transforms itself into a Packet node. This is called the packetiration 

transformation. The redex address of the node is not changed by this transformation, 

but the left function reference is implicitly released. 

2a. If the message is a Combinator message, the descriptor field of the new Packet is the 

name of the function specified by the Combinator message. The new Packet has one 

subfield in its argument list field, containing the right argument field of the Applica- 

tion. 

2b. If the message is a Packet message, the descriptor and argument list of the new 

Packet are identical t o  those of the message, with the addition of one new argument 

list subfield. This additional subfield contains the right argument field of the Applica- 

tion. 

3. The redex address of the newly transformed Packet node is copied t o  the redex 

address of a new Demand message. The redex address of the new Packet is then 

erased, and the Packet sends the Demand message t o  itself. 

3.1.3. Marker Node Reactions 

Demand mesaage 

The Marker node adds the redex address of the Demand message t o  its notifier list (see 

Figure 3.4). Recall tha t  several expressions may share references t o  the same subexpression. 

This operation synchronizes multiple demands for the subexpression, and arranges for later 

distribution of its value t o  all expressions t ha t  require it. 



Figure 3.4 - Reaction of Marker node to Demand message. 

- 
notifier list 

Combinator and Packet messages 

These messages represent normal forms (data), and cause the Marker t o  undergo a n  

update transformation (see Figure 3.5). Receipt of such a message means t ha t  evaluation of 

the expression referenced through the Marker's task field has been completed. The 

corresponding operation in Turner's model is update of the redex with the value computed 

by applying the function at the top of the stack. 

1. A Delete message is sent t o  the node referenced by the Marker's task field. 

2. For each reference in the Marker's notifier list, a Demand message is generated whose 

redex address is tha t  reference. These messages are not immediately sent. 

3. The Marker node transforms itself into a node whose type is the same a s  the type of 

the message. The redex address of the transformed Marker remains unchanged. All 

other fields of the message are transferred from the message t o  the node. 

4. The Demand messages generated in step (2) are sent by the transformed node, t o  

itself. 



4' 
Delete I 

A' f 

Figure 3.5 - Reaction of Marker node to  Packet message. The reaction t o  a Combinator 
message is the same. This is called the update transformation. 

3.1.4. Packet Node Reactiona 

Demand message 

As always, receipt of a Demand message is a request for a value. The Packet node 

must either evaluate its function, when all arguments are present, or return as  data the 

function and arguments that  have been encapsulated so far, so that  additional arguments 

can be added to the list. 

la. The Packet node checks the number of entries in its argument list against the arity of 

the function in its descriptor field. If the Packet is partial, the Packet sends a copy of 

itself as a message to the redex address of the Demand message. Steps (2) and (3) are 

skipped in this case. 



Demand L 

Figure 3.6 - Reaction of complete Packet node t o  Demand message. This is called the 
evaluation transformation. The evaluation of the S combinator is shown as  an  example; the 
actual reaction depends on the specific combinator in the Packet's descriptor field. During 
evaluation of the combinator, the redex address of the Demand message is stored in the 
redex address of the Packet, then used t o  generate a new Demand when the transformation 
is complete. 

lb.  If the Packet is complete, the redex address of the Demand message is transferred t o  

the redex address of the Packet. This is done t o  save the redex address until evalua- 

tion has completed. 

2. The node invokes the function named in its descriptor field, providing i t  the arguments 

in the subfields of its argument list. The result of this function overwrites (updates) 

the Packet node. This is called an  evaluation transformation (see Figure 3.6). The 

function may transform the node into either a new Application node or  a Combinator 

node, as determined by the rewrite rule for the combinator the function represents. 

The function may remove arcs (references) or  create new arcs and nodes, also as deter- 



mined by its definition. 

3. The redex address field is copied into the redex address of a newly generated Demand 

message. The redex address of the evaluated Packet is then erased. This Demand 

message is sent by the transformed node, t o  itself. 

3.1.6. Combinator Node Reactions 

Combinator nodes react only t o  Demand messages. The reaction is tha t  the combina- 

tor sends itself as  a message t o  the redex address of the Demand. 

3.1.6. Indirection Node Reactions 

Indirection nodes react t o  all messages by forwarding the same message t o  their refer- 

ence field. In the case of a Delete message, the indirection removes itself from the graph 

after forwarding the message. 

3.2. Proofs for the Abstract Model 

This section presents proofs of several theorems tha t  assert the completeness and 

correctness of the abstract model. 

The following theorem guarantees tha t  nontermination occurs only as  a result of the 

combinator program represented by the graph, not as  a result of the message-driven 

abstract model. 

Theorem 3.1 

In the absence of evaluation transformations, a Marker node will receive at least one 

message representing either a Combinator or a partial Packet. 

Proof 

Recall tha t  when an  Application node A receives a Demand, i t  creates a new Applica- 



tion A'  as a copy of itself, and sets the redex address of A' t o  refer back to A .  A then 

sends a Demand to its left function F, where the redex address of the Demand refers 

t o  A'. Finally, A transforms t o  a Marker node whose task field refers t o  A'. This is 

the only way in which a Marker node is created. Recall also tha t  redex addresses are 

initialized only by this process or by transfer of the redex address of a Demand mes- 

sage. 

Proceed by induction on the structure of the message-driven computation. Let 

A be an  Application node t ha t  has received a Demand message. A copies itself and 

transforms t o  a Marker. Let A' be the copy of Application A ,  referred t o  by the task 

field of Marker A .  

It is helpful t o  first state the following Lemma: 

Lemma 9.2 

Upon receiving a Combinator or Packet message, A' will either: 

1. send a Combinator or a partial Packet t o  A ,  or 

2. send a Demand message t o  a complete Packet, resulting in a n  evaluation 

transformation. 

Proof of Lemma 3.2 is trivial from the definition of the abstract machine. 

Proof (Theorem 3.1) 

Consider cases for each of the node types for the left function F of A 

Combinator node: 

Combinator nodes are already in normal form. When sent a Demand message by 

A ,  F will send a Cornbinator message t o  A'. By Lemma 3.2, this either sends 

the required message t o  A or results in an  evaluation transformation. 



Packet node: 

If F is a partial Packet, i t  will send a Packet message t o  A'. Again, the theorem 

holds by Lemma 3.2. If F is a complete packet, an  evaluation transformation 

immediately occurs. 

Application node: 

Upon receiving the Demand, F will transform to  a Marker. By the inductive 

hypothesis, either F is replaced by a normal form, or an  evaluation transforma- 

tion occurs. If F is replaced by a normal form, the theorem holds by Lemma 3.2. 

Theorem 3.1 asserts the completeness of the model under the assumption tha t  the 

evaluation transformations correctly implement the rewrite rules of the combinators. The 

following theorems assert the correctness of the model by showing tha t  i t  fulfills these 

requirements: 

1. Marker nodes are updated only by the normal forms of the subgraph they represent. 

2. Marker nodes are  always updated if the program graph represents a combinator 

expression having a normal form. 

Theorem 3.3 

A Marker is updated only by a message representing the node referenced by tha t  

Marker's task field. 

Pro 0 j 

Let A be a Marker node. A is therefore a transformed Application. Let FA be the 

node referenced by the left function of tha t  Application, before the marking transfor- 

mation. Let A' be the node referenced by the task field of A .  



A can be updated only by a Combinator or Packet message. Let N be the node 

which sends the Combinator or Packet message to  A .  By the definition of the 

abstract model, N must be of the same type as the message, and must have received a 

Demand message whose redex address refers t o  A .  Consider the cases in which such a 

Demand could be sent. 

I. A sent the Demand to  N. By definition, A sends Demands only to  A' and to FA.  

If N=FA, the Combinator or Packet message will be sent t o  A', not A .  If N=Ar, 

the theorem holds trivially. 

2. Another node B sent a Demand with a redex address that  refers t o  A .  There 

are four cases in which the redex address of a Demand does not refer t o  the node 

that  sent the message. 

a. B is undergoing the marking transformation. In this case, the Demand is 

sent t o  FB, the left function of B .  The redex address of the Demand is 

defined to  refer t o  B', the task field of B following the transformation. B' 

must therefore be an Application node. A is a Marker, so B' # A ,  and 

therefore FB # N. 

b. B sent the demand to  itself, transferring its own redex address t o  the 

Demand. By definition of the initialization of redex addresses, one of the 

following must hold: 

1. N=B=A', so the theorem holds trivially. 

2. Node A originally sent the demand to  B ,  so the theorem holds by 

induction. 

c. B is undergoing the update transformation. In this case, B sent the 

demand t o  itself, transferring a redex address from its notifier list t o  the 



Demand. By definition of the marking transformation and Theorem 3.1, if 

3 is referenced by the task field of any Marker M ,  then one of the entries 

in the notifier list of B must refer t o  M. Furthermore, by definition such a 

B can receive Demand messages only from M or from itself. There must 

therefore be ezactly one entry M in its notifier list. If M=A,  then B=A1 

and Theorem 3.3 holds. 

Jf B is not referred t o  by the task field of any M, then B must be the 

left function of one or more other Application nodes. This is true by 

definition of the cases in which Demand messages are sent. If B is a left 

function, then the entries in its notifier list must refer t o  Application nodes, 

not Markers. Therefore B # N, so A is not updated. 

Theorem 3.4 

Under the assumption tha t  the evaluation transformation correctly implements the 

rewrite rules for the combinator set, the execution of the abstract model will reduce a 

program graph t o  normal form if the combinator expression represented by the graph 

has a normal form. 

Proof 

By Theorem 3.1 and Theorem 3.3, Marker nodes are correctly updated if no evaluation 

transformations occur. If an evaluation transformation does occur, i t  overwrites a 

node with either an  Application or  a normal form, which then Demands itself. 

Proceed by induction on the two cases: 

1. If the transformation results in a normal form, Theorem 3.1 and the definition of 

the evaluation transformation guarantees tha t  the Marker created by the initial 



Demand will be updated. 

2. If the transformation results in an Application, the Demand will transform it  t o  

a Marker. By the inductive hypothesis, this Marker must also be updated by a 

normal form if the combinator expression i t  represents has one. 

5.3. Garbage Collection 

The Delete message handles explicit deletion of graph nodes during update transforma- 

tions. However, arcs can also be removed during the evaluation and packetization transfor- 

mations. For example, recall the rewrite rule for the K  combinator: 

K z y + z  

An arc (reference) t o  subexpression y is removed in this evaluation. In the packetization 

transformation, the arc t o  the left function is implicitly removed. Garbage collection must 

be done t o  recover subgraphs when the last arc incident upon tha t  graph is removed. 

Collection in a distributed-memory MIMD environment is a difficult problem. 

Although the specific garbage collection algorithm used is not significant t o  the abstract 

model, i t  is desirable t o  select a strategy tha t  can be implemented in a message-driven 

manner. Furthermore, for purposes of simulating the machine, a straightforward technique 

t ha t  could be quickly implemented was sought. A reference counting scheme devised by 

Watsont, which has been used in other research a t  OGI, was the most appropriate choice. 

The count associated with each pointer in this scheme is referred t o  as  the reference rights 

held by the reference. 

f Probable reference is WaW87a. The technique used in the MPCR is based on an informal discussion which 
preceded publication of that paper, and may not be identical. 



When a graph node is allocated, a predefined count of rights is assigned t o  the pointer. 

This value is also stored in the new node as  the node's reference count. If a t  any time such 

a pointer is t o  be duplicated, the original rights are  reduced by some amount, and tha t  

amount is assigned t o  the new reference as  its initial rights value. This is called sharing the 

rights. For purposes of this discussion, i t  will be assumed tha t  rights are shared by dividing 

the amount evenly between the new reference and the original. In the abstract model, 

whenever a node makes a copy of itself, rights t o  all references t ha t  i t  holds are shared 

between the original and the copy. 

The initial reference count of a node-and hence the total rights held by all pointers 

t o  it-never increases. Instead, if a pointer tha t  holds the minimum allowable number of 

Figure 3.7 - Sharing of Reference Rights. Assume the original count of rights is 16, and 
the minimum is 2. Application A wishes t o  make a copy of itself. The right argument of A 
contains a reference with the minimum number of rights, too few to  share. Therefore A 
creates a n  indirection with the original 2 rights, and divides the 16 rights t o  the Indirection 
when creating the copy. The other reference held by A (arrow not shown) has enough rights 
t o  be divided without creating an indirection. 



rights must be shared, a new Indirection node is allocated, and the original pointer is copied 

into the Indirection. The rights t o  the Indirection are then divided between the original 

task and the new reference it wishes t o  create. This avoids race conditions among incre- 

ments and decrements of reference counts, which is important in a distributed concurrent 

system. 

Whenever a pointer is deleted, the reference rights i t  holds are deducted from the 

node's reference count. When a node's count reaches zero, i t  is deallocated. This is added 

t o  the MPCR abstract model by extending the Delete message t o  include a count of the 

rights released. Receipt of a Delete message thus need not result in the immediate removal 

of the node from the graph. Several Deletes may be required. 

Other message types also carry references. Rights are traneferred from a message t o  a 

node when the entire message is copied or  when a reference carried in a message is copied. 

For example, rights are  transferred in the update transformation of a Marker. Reference 

rights sent in a message are  therefore given up by the sending node. Creating a message 

must involve either a transfer or a division (sharing) of rights. Furthermore, every message 

must carry a reference and rights t o  its target node, so tha t  the node cannot be collected 

before the message is delivered. 

Rights carried by any message are released when tha t  message is delivered, except for 

Demand messages received by Marker nodes. Rights carried by these messages are  released 

only when the response is sent, following a n  update transformation. This means that  the 

notifier list of a Marker must actually store the entire Demand message, and these messages 

therefore need not be recreated during the update transformation. If a Demand message is 

not entered in the notifier list because its redex address already appears, rights are immedi- 

ately released because no response is needed. 



Forwarding of messages by Indirection nodes is a special case, because the rights held 

by an Indirection can be divided only a finite number of times. Delete messages are not a 

problem, because they are  not forwarded until the last rights t o  the Indirection itself are 

released. In t ha t  event, all of the Indirection's rights are sent in a Delete message, so no 

division is necessary. Combinator and Packet messages will never be sent through Indirec- 

tions, because they are always sent directly t o  the demanding node through the redex 

address of the Demand message. Forwarding of Demand messages still poses a problem, but 

this can be remedied by a remote reference scheme. This is discussed in the next section. 

Other specific cases where rights are shared are: 

o Initialization of the redex address of a n  Application node, in step (2) of the 

marking transformation. 

o Creation of the Demand message in step (3) of the marking transformation. 

o Initialization of the task field of the Marker node in step (4) of marking transfor- 

mation. 

o Creation of the Demand message in step (1) of a Marker node's reaction t o  a 

Demand message. 

Specific cases where rights are transferred are: 

o Inclusion of a redex address in a notifier list, in step (4) of the marking transfor- 

mation, and in step (2) of the reaction of a Marker t o  a Demand. 

o Initialization of a subfield of an  argument list, in the packetization transforma- 

tion. 

o Creation of a Delete message sent t o  the task field reference during the update 

transformation. 



o Creation of a Demand message, as  the final step of the evaluation transforma- 

tion. 

Like any reference counting collector, the reference rights algorithm is sufficient pro- 

vided tha t  no cyclic structures are introduced. The rewrite rules implemented by the 

evaluation transformation are  assumed t o  comply with this restriction. However, the refer- 

ences supplied as redex addresses are  by definition cyclic. They point t o  a node which must 

have a reference t o  the node it  has demanded. Thus a true cycle is introduced in the mark- 

ing transformation, from the task field of the Marker to the copy of the Application and 

back through the redex address of the copy. A similar cycle is created whenever a Demand 

message is stored in the notifier list of a Marker. These cycles are not a problem because 

they are always broken by the update transformation. 

3.4. Implementation Considerations 

3.6. Remote References 

An important consideration when using recursion t o  descend the left spine is the need 

t o  differentiate local references from remote references. A local reference is one t ha t  can be 

followed within memory tha t  is directly addressable by the local processor. A remote refer- 

ence is one t ha t  can be accessed only indirectly, i.e. one t ha t  is local t o  some other proces- 

sor. Remote references force the machine t o  revert in par t  t o  the message-driven model. 

Remote references can be treated as  Application nodes whose left function knows how 

t o  retrieve the node referenced by its right argument. In the pure message-driven model, if 

such a node received a Demand message, the series of messages triggered by reaction to the 

Demand would transform the Application into a Marker and evaluate the function t o  

retrieve the reference. In the recursive variant, the processor can be made to recognize the 



reference as  remote, create the Marker, and send a request for the referenced node (see Fig- 

ure 3.8). I t  then continues a s  if a complete Packet had been formed, leaving a Demand mes- 

sage in the notifier list of the new Marker. This is discussed in detail in the chapter that  

describes the simulator. 

Another application of this technique is in dealing with Indirection nodes whose rights 

have been reduced to  the minimum allowable value. If such an  Indirection receives a 

Demand message, it can be treated a s  a remote reference as follows: 

1. The Indirection is transformed to a Marker, with an empty task field, and with the 

Demand tha t  i t  received stored in its notifier list. 

2. The new Marker sends a Demand to the reference i t  held as an  Indirection. All 

remaining rights of the reference are carried by this message. 

Demand P T i I  

remote C 
remote C 
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list 
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Figure 3.8 - Demanding a Remote Reference. The indirection representing the remote 
reference is transformed into a Marker. This is necessary only when the indirection has run 
out of reference rights to share or when the remote reference is found in the argument list of 
a strict function (see below). 
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When the response t o  the "forwarded" Demand is returned, i t  updates the Marker. The ori- 

ginal Demand is then re-sent. 

3.6. Pre-Formed Packets 

One additional simplification tha t  does not directly affect the model is the formation 

of all possible complete or partial Packets a t  compile time. This reduces the number of 

Demand messages tha t  must be sent early in the computation. In a system tha t  is simulat- 

ing many virtual processors on each real processor, this pre-Packetization also makes it  

easier t o  distribute the graph and encourages locality of reference. This simplification has 

been adopted for the MPCR simulator, described in Chapter 8. 

3.7. Constructor Nodes and Bseic Values 

Most reduction systems support several primitive da ta  types, such as integers, and 

constructed da t a  types, such as  lists. In the combinatory calculus, such da t a  types are  

represented by application expressions tha t  cannot be reduced, i.e. by the application of a 

combinator t o  too few arguments. This corresponds precisely t o  partial Packet nodes in the 

MPCR abstract model. I t  is therefore possible t o  implement da t a  structures directly as 

Conatruetor nodes. A constructor node is a WHNF. 

If Constructor nodes are  included, they must either be introduced before computation 

begins or  be introduced during evaluation transformations. Constructors are  treated as  par- 

tial Packets for purposes of the message-driven computation. However, a Constructor can 

never be the left function of a n  Application, in a correct program. Instead, other functions 

must be provided t ha t  implement the interface to each type of Constructor. These func- 

tions employ a set of Selector messages tha t  can be sent t o  the Constructor. 



For example, the implementation of a List node might include the functions (combina- 

tors) head and tail. When the evaluation transformation invokes these functions, a 

corresponding Selector message is sent t o  the List node. The List node reacts by returning 

the appropriate par t  of its structure. Of course, i t  is also possible t o  allow the evaluation 

transformations for head and tail t o  access the List node directly, if the nodes reside on the 

same physical processor. 

A complication of the inclusion of functions t o  manipulate Constructor nodes is tha t  

those functions must be strict. Tha t  is, the argument of such a function must be evaluated 

t o  Constructor form before the function can be applied. Selector messages must therefore 

include an implicit Demand, so tha t ,  if they are received by an Application or  Marker node 

rather than by a Constructor, appropriate action can be taken. It is thus possible for the 

evaluation transformation t o  become blocked until the response to a Selector message 

arrives. 

When a Selector message is received by an  Application or Marker, i t  is treated as a 

Demand and placed in the notifier list. The type of the Selector is included in the notifier 

entry, so tha t  when the message is re-sent a t  the end of the update transformation, the 

correct response is made. An evaluating Packet tha t  has sent a Selector message becomes 

suspended until i t  receives a response. I t  will receive no other messages during this time, 

because i t  is "protected" from Demands by its Marker. 

3.8. Shortening Marker Chains 

I t  is clear tha t  the Application node t o  Marker node transformation tha t  follows 

receipt of a Demand message could result in chains of Marker nodes. As each Marker in the 

chain is updated by a Combinator or  Packet message, i t  re-sends a t  least one Demand t o  

itself. This Demand then results in the update in the next Marker in the chain, and so on. 



The topmost Marker of any such chain represents the demanded subexpression, as seen 

by any tasks evaluating the surrounding expression. The lowest Marker in the chain 

represents the currently-evaluating redex. At any time, then, these two Markers suffice to 

represent the chain from the viewpoint of the rest of the graph, and the intermediate Mark- 

ers need not be created. It  would be sufficient t o  introduce Markers only for the topmost 

Application, and for any Application that  will be transformed into a complete Packet. 

T o  permit two Markers to represent the chain, a few modifications are made to the 

abstract model. First, the reaction of Application and Marker nodes to Demand messages is 

altered, and a Query message is introduced. When an  Application node receives a Demand 

message, it sends a Query message to  its left function, rather than another Demand. It  then 

transforms to  a Marker a s  usual. Similarly, when in the original model a Marker node 

would send a Demand to  the node referenced in its task field, in this altered model i t  

instead sends a Query. The redex address of a Query is always a reference to the node that  

sends it. 

A Query message is treated identically t o  a Demand message by all nodes except 

Application nodes. An Application node reacts by copying the redex address of the Query 

message into its own redex address. A run-time error occurs if the Application's redex is 

already defined and is not the same a s  the redex address of the Query. (For garbage collec- 

tion purposes, if the redex addresses are duplicates, their reference rights are combined in 

the redex address of the Application,) The Application then sends a Query message to  its 

left function, and transforms itself into a new node type called a Marked Application node. 

Marked Application nodes are identical t o  Application nodes in all respects but one. 

Upon receiving a Packet message which requires only one more argument t o  complete the 

argument list field, the Marked Application node reacts as  follows: 



Figure 3.9 - Substituting Marked Applications (right graph) for Application-Marker chains 
(left graph). Instead of a chain that looks like 

Packet  4 Markero + Applicationl -+ Markerl 4 Applicationz + . . - -+ Marker, 

the chain is 

Packet  + Markero -, Marked Applicationl 4 . . . -+ Application, + Marker, 

1. The Marked Application node makes a copy of itself. This copy is transformed into a 

new Application node whose redex address is a reference to  the Marked Application. 

2. The Marked Application forwards the Packet message to  the new Application. 

3. The Marked Application transforms itself into a Marker node. The task field of the 

new Marker is set to  a reference to  the new Application created in step (1). The redex 

address of the Marked Application is transferred to  the notifier list and the redex 



address is erased. 

The effect of this is t o  remove one level of indirection for every Application in the chain (see 

Figure 3.9). 

An obvious drawback of this scheme is tha t  i t  introduces a number of cyclic refer- 

ences. These references will all be removed by successive update and packetization transfor- 

mations, but i t  would be preferable t o  avoid them entirely. If a purely message-driven 

implementation is not required, a recursive packet formation algorithm can produce the 

same effect without introducing as many cycles. 

3.9. Recursive Formation of Packet Nod- 

Combinator and Packet messages and their handling by Application (or Marked 

Application) nodes are  essential t o  the fully message-driven abstract model. However, in a n  

implementation where the number of processors is too few t o  allocate a real processor to 

each node, the entire left spine of a subexpression may be available t o  a single processor. In 

this case i t  is simpler to  let the processor descend the spine recursively until i t  encounters a 

Combinator node, and then build a Packet as  i t  returns towards the upper application. 

This is essentially the same as  performing a stack-based evaluation. 

Such a recursive technique eliminates the need for a number of node type transforma- 

tions, and also replaces some Evaluate and Demand messages sent as  the result of Packet 

messages. Aside from efficiency issues, elimination of these messages is useful for garbage 

collection purposes. Reference rights would normally need t o  be shared in order t o  send the 

messages. The drawback is tha t  the recursive examination must be suspended whenever 

there a re  more Application nodes in the spine than are needed to fill the argument list of 

one Packet. 



Fortunately, in such a case the processor has references both to  the topmost Applica- 

tion and t o  the Marker representing the completed packet. Rather than construct the chain 

of Marked Application nodes described above, the topmost Marker can be formed and a 

Demand message for that  Marker can be placed in the notifier list of the Marker represent- 

ing the Packet. Then, when the lower Marker is updated, the Demand message is sent and 

the recursive Packet formation will be restarted from the top. The following recursive a l p  

rithm describes this process more formally. 

Algorithm 3.5 

Input: 

References to the demanded node T, the root node R, and the demanding node N. For 

the first call t o  the algorithm, T=R. 

Output: 

One of: 

MESSAGE(Z) 

The node z in message form, where z must be a Combinator or partial Packet. 

SUSPENDED(Z) 

A reference to node z,  tagged so i t  can be identified as  a Marker node where 

Packet formation suspended. 

DEMANDED(Z) 

A reference to  node z,  tagged so i t  can be identified as  a Packet node that  has 

been demanded. 

Algorithm: 

Apply the function paeketize as defined in Figure 3.10. If the return is MESSAGE, 

deliver the message to N. Otherwise, computation is in progress and R will send a 



message to IV a t  some later time. The following theorem asserts the correctness of this 

algorithm. 

Theorem 3.6: Extension of Theorem 3.4 

The recursive Packet formation algorithm demands the subexpression rooted a t  R in a 

manner equivalent t o  sending a Demand message t o  R in the pure message-driven 

abstract model. 

Proof 

The proof will make use of the following lemma: 

L e m m a  3.7 

If packetize returns SUSPENDED(z), then either z must be a Marker whose notifier list 

contains a Demand for R, o r  z=R. 

Proof (3.7) 

By induction on the recursive definition of paeketize. The returns on lines (7), (14) and 

(19) satisfy the condition trivially. On lines (8) and (16) the value of a recursive call 

t o  paeketize is being returned, so if tha t  value is SUSPENDED i t  must refer t o  such a 

Marker. 

0 

P r o o j  (Theorem 3.6) 

Assume tha t  the combinator program represented by the graph has a normal form. 

Let D, R, and N be defined as in Figure 3.10. 

Base case: 

Lines (I?), (21) and (23) are  equivalent t o  direct delivery of a Demand message. 

Case 1: 

On line (13), a Demand for the root R is placed in the notifier list of D. By 



definition of the DEMANDED return, on line (14), and the inductive hypothesis, D 

will be updated. This will send the Demand from the notifier list t o  R. 

Case 2: 

Again, on line (18) a Demand for the root R is placed in the notifier list of D. 

By the inductive hypothesis and Theorem 3.4, the task field of D has been 

demanded, so i t  will update D. R will therefore be sent the Demand from the 

notifier list. 

Case 3: 

By the inductive hypothesis, if the recursive calls on line (1) returns MESSAGE, 

then delivery of tha t  messages on line (15) will correctly update D. The recur- 

sive calls on line (16), whose value is being returned, must therefore produce 

either MESSAGE or  DEMANDED, correct by another appeal t o  induction. 

Case 4: 

By 3.7, if the call on line (1) returned SUSPEIVDED(z), then z must have a 

Demand for R in its notifier list. By the inductive hypothesis and Theorem 3.4, 

z will be updated, so R will receive a Demand. 



packetize(D, R, N) 
CASE D .type IN 
Application: 

(I) CASE packetfro ( D  . function, R, N )  IN 
SUSPENDED (2) : 

IF D-R THEN 
(2) copy D to Dt 
(3) sot Dt . redex-D 
(4) change D .typo to Marker 
(5) set D . task-D' 
(6) set D .count-1 
[TI return SUSPENDED (D) 

ELSE 
(8) return SUSPENDED (2) 

FI 
DEMANDED (2 )  : 

(9) lot f =D . function 
(10) change type of D to Marker 
(11) set D.task-f 
(12) set D . count-1 
(13) place DM.nd(R for N) in D .notifier-list 
(14) roturn SUSPENDED (D) 

XESSACE (2) : 
(15) deliver MESSAGE (2) to D 
(16) return packetize(D, R, h') 

ESAC 
Combinator : 

(17) return MESSAGE (D) 
Marker : 

(18) place Demand (R for N) in D .notifier-list 
(19) return SUSPENDED (D) 

Packet : 

(20) IF D.argum8nt-list is complete T W N  
(21) deliver Demand(D for N) to D 
(22) return DEMANDED (D) 

ELSE 
(23) rmturn XESSACE (D) 

PI 
ESAC 

END (packetire) 

Figure 3.10 - Pseudecode detailing the recursive packet formation algorithm. D is the 
demanded node, R is the root of the expression, and N is the node that demanded the ex- 
pression. The initial call is packetize (D, D ,  N). 



CHAPTER 4 

Speculative Computation and Priorities 

An important goal of this research is t o  explore ways to automatically discover paral- 

lelism in programs, without introducing explicit parallel constructs into the source language. 

Parallel constructs are useful, but are difficult t o  apply to  programs that  will run in a mas- 

sively parallel environment because the number of tasks is very large and the execution 

dynamics may be uncertain. To discover parallelism, the MPCR execution mechanism per- 

forms speculative evaluation, that  is, attempts evaluation of subexpressions without knowing 

whether the values are needed. 

Other techniques to detect parallelism, such as strictness analysis [BHASG], depend on 

static analysis of programs. These techniques are improving, but are still unable t o  detect 

all available concurrency in the general case. Speculative evaluation is able t o  uncover this 

parallelism automatically and dynamically, allowing the system t o  adapt to run-time varia- 

tions in program behavior. A drawback to this approach, however, is tha t  a speculatively 

evaluated subexpression may represent a nonterminating, or divergent, computation. Some 

mechanism is therefore required to control these computations. 

4.1. Creating and Controlling Speculative Tasks 

The MPCR controls divergence by a combination of two methods. The first is an  

adaptation of the dataflow iteration level tagging scheme, and the second is based on known 

properties of combinators. For purposes of the discussion which follows, we will consider 

only the S, K, and I combinators, but these techniques can be generalized to any fixed 



combinator. t 

The problem with beginning computations tha t  may diverge is that  they steal CPU 

cycles and memory from more useful work. I t  is the goal of the first method t o  control com- 

putational divergence by limiting the CPU resources applied t o  tasks whose results are not 

immediately required. An effect of this limitation is to  control memory divergence, tha t  is, 

divergent computations tha t  consume memory needed for useful work. Computational and 

memory divergence are closely linked in combinator reduction, because the only source of 

nonterminating computation is recursion. 

The first strategy is t o  tag  redices with an evaluation priority, and t o  schedule reduc- 

tions according t o  this priority. Sub-expressions whose values are known t o  be required are 

given higher priority than those whose value may not be needed. Using priorities to  control 

speculative evaluation was first proposed by Burton [Bur85]. Burton's scheme assigns priori- 

ties explicitly, by program annotation. However, it is possible t o  automatically derive prior- 

ities for speculative evaluations from the forms of combinator expressions. 

Priorities are  assigned t o  subexpressions by comparison with the priority of the outer 

expression. For example, the usual reduction rule for the S combinator is 

S f  g z  -+ f z ( g z )  

Representing priorities by superscripts, reduction of an S combinator expression with priori- 

t y  i follows the transformation 

(s j j  g k  zl)i ( f m u ( i , j )  ( g m u ( i - l , k )  2 )  1 i-1 1 i 

Note t ha t  this transformation does not change the priority of subexpression z, and as- 

signs new priority i-1 t o  the new subexpression g z .  Such priority assignments are a p  

t Compiled super-combinatora alr the Gmachine (Kie8S) are another matter. It is possible that a compiler 
might be able t o  classify them, in which case this technique could be extended t o  programmed graph reduction. 



propriate for normal-order reduction of the expression. To approximate applicative-order 

(eager) reduction, the transformation might become 

(s j j  gk z l ) i  + ( j m u ( i , j )  zmaz(i, l)  mm(i,k) zmaz(i, l)  i i 
( 0  1)  

Here, the priorities of j and z would be increased if necessary, and the new subexpression 

g z given a priority a t  least equal t o  that  of the application in which it is used. 

Eager evaluation and lazy evaluation are equivalent for K and 1, so in either case 

their transformations would be 

(K zi y k ) i  .-+ z m u ( i 9 i )  

( I  % j ) i  + zm- ( i , j )  

It  should be noted that  the priority of subexpression f in the S reduction and z in the 

K and I reductions may increase even in the normal-order priority formulation. When f is 

a weak head normal form this priority change has no effect. The subexpressions of WHNFs 

are given a priority only when they are accessed, for example by supplying additional argu- 

ments t o  make the expression reducible or by using a special combinator t o  select an ele- 

ment of a Constructor node. If f is a redex and has not yet been evaluated, the new priori- 

ty  is assigned before evaluation beginst. However, if j has already begun evaluating specu- 

latively and the result of that  evaluation has not yet been returned, the priority of the task 

representing j must be increased. If priority is not increased, the task tha t  originally 

demanded evaluation of the subexpression will be delayed, perhaps indefinitely. The tech- 

nique used to increase priorities will be described completely in the next section. 

The second technique also addresses the problem of memory-divergent computations. 

We classify all combinators as either c z p a n s i v c  or c o n t r a c t i v e  depending upon the effects of 

t A remote reference may be considered an unevaluated redex for purposes o f  assigning new priorities. 



their application. Ezpansive combinators cause additional nodes t o  be added t o  the p r e  

gram graph, and an  ezpansivc rcdcz is an  expression whose reduction involves application of 

a n  expansive combinator. Contractive combinators remove nodes, and are applied when 

evaluating a contractive redcz. Neutral combinators, which do not change the number of 

nodes in the graph, may be considered contractive for purposes of this discussion. When 

eagerly evaluated, expansive redices provide new opportunities for parallelism, whereas con- 

tractive redices normally do not. (However, strict combinators, which require their argu- 

ments t o  be fully evaluated, can be contractive and still provide opportunities for parallel- 

ism.) 

The reduction of too many expansive combinators leads t o  memory divergence. 

Evaluation of contractive redices, however, a t  worst maintains the current memory usage 

and generally will decrease memory occupancy. When high memory occupancy is detected, 

the run-time system attempts t o  reduce only contractive combinators until a sufficient 

amount of memory has been made available. Even if some expansive combinators must be 

reduced, new speculative evaluations can be avoided, thus greatly slowing the expansion. 

Another possible use of the expansive/contractive classification strategy is t o  speed the 

creation of new work. When too little work is available, the system could eagerly reduce ex- 

pansive combinators t o  increase the number of tasks. This is impractical for simple, fine- 

grained combinators, because contractive combinators appear too frequently. This strategy 

has therefore not been used in the MPCR simulations. However, i t  may be useful for super- 

combinator reduction. 

When the resources a t  any node begin t o  near saturation, speculative evaluations 

must be sacrificed. The details of task deletion in the abstract model a re  discussed below. 

The technique is simply t o  select a low-priority speculative task and terminate it. A mes- 



sage is sent t o  the task's redex address so that  other tasks awaiting the deleted task can be 

dealt with. Other reference rights held by the task are then released, and the task is deall- 

cated. 

4.2. Speculation in the Abstract Model 

The abstract model a s  described in the previous chapter supports only eonee rvative 

evaluation. Speculative evaluation can be added to the model with a few changes. One im- 

portant modification is to record the priorities of each evaluation. In addition to  the for- 

mats already described, every node type is given a priority field. Demand messages are also 

supplied with a priority field. The priority of any node is initially undefined, but will record 

the priority at which i t  was demanded. The priority field of a Demand message gives the 

priority a t  which the demand is t o  be satisfied. The initial Demand message therefore car- 

ries the highest possible priority. Unless otherwise noted, any other Demand message carries 

the priority of the node which sent it .  No node may ever send a Demand with higher priori- 

t y  than its own. 

Priorities assigned to  subexpressions by the method described above can never increase 

above tha t  of the outermost expression. For simplicity, then, zero (0) will be used as the 

highest priority, and all lower priorities will be represented by negative integers. 

4.2.1. Creation of Speculative Taaka 

Speculative tasks are created only during the evaluation transformation. When a 

function evaluating a complete Packet wishes to  create a speculative task, i t  sends to the 

selected subexpression a Demand message with priority one less than than that  of the Pack- 

et  i t  is evaluating. The redex address of this Demand message is undefined, because it is not 

yet known which node is interested in the value of the subexpression. In fact, i t  is inherent 



in the definition of speculative evaluation that  no node may be interested in the value. 

These reduced-priority Demand messages, having no redex address, will be referred to  as  

Speculate messages. If a Demand message has either a redex address or a priority of zero, it 

is not a Speculate message. 

Speculate messages are normally sent only t o  Application nodes, but as  they are for 

all other purposes Demand messages, they can be sent to any node type. Combinator nodes 

and partial Packet nodes ignore Speculate messages, because they are already in normal 

form. An Application, Marker, or complete Packet node either may react to a Speculate 

message as if i t  were a regular Demand message, or may ignore the message. The decision 

to ignore the message is implementation specific, but in principle, i t  is made when no virtual 

processors are available to handle the new nodes that  the marking or evaluation transfor- 

mations may create. 

The lack of a redex address in a Speculate message means tha t  a t  least one "real" 

Demand message must be sent t o  obtain the value of a speculative evaluation. Further- 

more, the priority of a speculative subexpression may need to be increased. This is handled 

by sending either a Demand or another Speculate message with higher priority than the ori- 

ginal message. Any speculatively evaluated subexpression will thus receive two or more 

Demand messages. 

One final change is necessary to  support multiple Demands. Combinator and partial 

Packet nodes must react t o  messages representing normal forms. In the conservative model, 

such messages would be a run-time error. However, the speculative model may evaluate any 

subexpression several times. Combinator and partial Packet nodes therefore ignore mes- 

sages tha t  have identical type and content t o  the node that  receives them. 



4.2.1.1. Changing the Priority of a Task 

Fortunately, the abstract model already supports delivery of multiple Demand mes- 

sages through the introduction of Marker nodes. New nodes created during the marking 

transformation are referenced only through the task field of the Marker. The Marker thus 

receives each Demand or Speculate message, and may determine whether i t  is necessary to 

increase the priority of the task node. In addition, t o  support task deletion, a task count  is 

added to  each Marker to record the number of evaluations represented by that  Marker 

node. This will be explained more fully in the next sections. The Marker's task count is ini- 

tially one (1). 

When a Marker node receives a Demand message, it checks its task count and com- 

pares its priority to that  of the message. If the Demand priority is lower than the Marker's 

priority and the task count is greater than zero, nothing needs t o  be done. Otherwise, the 

priority of both the Marker node and the task node must be increased. The Marker node 

also checks the references in its notifier list. If none of them is the same as the redex ad- 

dress of the Demand message, that  redex address is added to the list. If any one of them is 

the same, the one with higher priority is retained in the notifier list, and the other is re- 

turned t o  its redex address as an Exited message. This new message type will be described 

later. With the exception of this new first step, the reaction of a Marker t o  a Demand mes- 

sage remains unchanged. 

The most straightforward way to  increase the priority of the task node would be to  

send i t  a message informing i t  of its new priority. This introduces a few complications: 

1. If the task node is an Application, i t  must propagate the increased priority t o  its left 

function node. 



2. If the task node is a Marker, the increase in priority must be treated as a new 

Demand. 

3. If the task node is a complete Packet and an evaluation transformation is in progress, 

its priority must be increased immediately. 

4. Any subexpression demanded during an evaluation in progress should also have its 

priority increased. To accomplish this, the evaluation might have to  be restarted, a t  

least from the point where i t  issued the Demands to  its subexpression(s). 

The fourth complication is quite serious. For a strict combinator, i t  may not be possible to 

complete the evaluation without obtaining the value of a subexpression. If the priorities of 

subexpressions are not increased, an evaluation which should have high priority may instead 

be delayed indefinitely. 

Direct increase of priorities requires that  a Marker node must be able t o  communicate 

directly with the task node. In a system with no global address space, such a reference can 

be provided in any of several ways. The task node may be allocated to  the same physical 

processor as  the Marker, but this permits no concurrent evaluation, defeating the purpose in 

creating a new task. It  could be allocated to a specific processor (as in Alfalfa), but selec- 

tion of the processor may be limited by the global scheduling algorithm, causing a poor 

choice to  be made. Or the task could be tracked by use of messages, either by leaving for- 

warding pointers or by returning an extra message when a processor is selected. The latter 

requires additional space or message-passing overhead and may introduce still other delays 

for high-priority tasks. For these reasons, a different tactic was adopted. 

The task node created during the marking transformation is required to be allocated 

on the same physical processor as the Marker, but that  node is never evaluated directly. In- 

stead, the reaction of a Packet to a Demand message is altered, and a new message type is 



introduced. The new message is the Evaluate message, which carries no other information 

than its type. These messages are  understood only by Packet nodes. The evaluation 

transformation, t ha t  is, steps (2) and (3) of the reaction of a Packet t o  a Demand, is now 

assigned as the reaction t o  the Evaluate message. 

The reaction of a Packet t o  a Demand is unchanged if the Packet is partial, lacking 

one or more argument list subfieIds. In this case, the Packet returns itself as usual. Every 

complete Packet t ha t  receives a Demand message reacts by creating a new copy of itself. 

The redex address of the Demand is transferred t o  the new copy, not t o  the original Packet. 

The new copy of the Packet is then sent an Evaluate message, t o  complete the evaluation 

transformation. This revised transformation is shown in Figure 4.1. 

If a Marker needs t o  increase the priority of i ts task, a new Demand message is sent t o  

the Marker's task field reference. The redex address of the new Demand message is a refer- 

ence t o  the Marker. This may result in nodes other than Markers receiving multiple 

Demand &I 

Figure 4.1 - Reaction of complete Packet node t o  Demand message. This is the initializa- 
tion step of the evaluation transformation. In the conservative model, the Packet is not 
copied before evaluation. 



Demands, but, with the exception of Markers, all Demands to  the same node will have the 

same redex address. If the task field refers to a complete Packet, each such Demand will 

create a new task with a new priority. In order t o  count the number of tasks its Demands 

have created, a Marker node must "know" whether its task field refers t o  a complete Pack- 

et. In a purely message-driven model, this information is not available. However, with the 

restriction tha t  the task field must refer t o  a node on the same physical processor, a com- 

plete Packet may use its redex address reference to increment the task count of its Marker 

whenever a new evaluation is begun. 

From this point forward, the term task will be redefined t o  refer t o  a complete Packet 

which has received an Evaluate message. Evaluate messages are a special case for garbage 

collection, because they carry aN rights t o  the node to  which they are sent. The original 

Packet does not maintain a copy of the reference (in fact, it cannot, having no field in 

which t o  store it). For this reason, rights carried by an  Evaluate message are not released 

immediately when i t  is received. Instead, they are transferred to  the Demand message in 

the final step of the evaluation transformation. The independence of these new tasks from 

the rest of the graph has two important side-effects: 

1. A new task need not retain any specific spatial relationship to  the node which created 

it. This is important for processor mappings. If the global load distribution in the 

system has changed, the new task has a chance to migrate to a less-loaded processor. 

2. Speculative computation can be controlled simply by deleting Packets with priority 

less than zero. Another copy of the task will be created if i t  is ever demanded again. 

The price paid for restarting work in this way is some duplication of effort. However, res- 

tarting the task does not cause a loss of sharing. Any work tha t  has already been complet- 

ed by a previously created task will be accessible t o  the new task. In the worst case, the en- 



tire subexpression could be recomputed once for each priority a t  which i t  is (re)scheduled. 

The worst case occurs when values are demanded more quickly than they can be com- 

puted. In this case, a higher-priority task will be created before a previously created, 

lower-priority task is able to  return its results. If there are sufficient processor cycles avail- 

able, two or more tasks may be created for every component of the expression, and every set 

of these tasks may successfully compute and return a value. This multiplication of efiort 

can only occur when there is not enough highest-priority work t o  keep all processors busy. 

However, if processors would have been idle without the lower-priority work, the evaluation 

would have completed no more quickly even if the duplicate effort had been avoided. This 

technique trades the overhead of performing duplicate work for the overhead of tracing 

each task in order t o  be able t o  increase its priority. 

A consequence of starting duplicate tasks to  increase priorities is t ha t  multiple copies 

may be simultaneously active. This does not pose a problem for updates, because a t  most 

one Combinator or Packet message can update a given Marker. Once the update transfor- 

mation has occurred, the node simply ignores any Combinator or Packet messages tha t  the 

extra copies may send. However, for purposes of cleaning up these multiple copies should 

the speculative evaluations prove unnecessary, i t  is useful t o  maintain a count of the dupli- 

cate tasks. The count is also necessary for making the decision t o  s tar t  another new copy. 

4.2.1.2. Proofs 

This section presents theorems to show tha t  the addition of speculative computation, 

by the changes described here, does not affect the correctness and completeness results of 

the previous chapter. 

Lemma 4.8 

Copying a Packet node and evaluating the copy is equivalent t o  evaluating the origi- 



nal Packet directly. 

Proof 

Let A be a Packet node. When A receives a Demand message, i t  creates new node A' 

as  a copy of itself. A then transfers the redex address of the message to the redex ad- 

dress of A', and sends an  Evaluate message t o  A'. This Evaluate message represents 

the only reference t o  A', so A' will not receive any Demand messages (except those 

sent t o  itself). As the final step of the evaluation transformation, A' sends itself a 

Demand message, using its own redex address as  tha t  of the Demand message. This 

redex address is the same as tha t  of the original Demand message, sent t o  A .  There- 

fore any response made by A' t o  this Demand will be returned t o  the node t ha t  sent 

the original Demand. 

QED. 

Lemma 4.9 

Multiple Demand messages sent t o  the task field of a Marker will not cause the Mark- 

er to be incorrectly updated. 

Proof 

Let A be the Marker and A' be the node referenced by the task field of A .  Consider 

cases on the type of A' when A receives a Demand: 

Combinator or  partial Packet: 

The first Demand will result in the update of A .  By definition, normal forms ig- 

nore subsequent, equivalent messages. By Theorem 3.3, only the node referenced 

in the task field or an  equivalent node can send such a message, so the computa- 

tion is unaffected. 



Application: 

The first Demand will transform A' t o  a Marker. By the inductive hypothesis, 

A' will be correctly updated. Therefore A will be correctly updated. 

Marker: 

Demands of increasing priority will cause new Demands to  be sent t o  the task 

field of A'. By the inductive hypothesis, this has no effect on correctness. 

Demands of equal or lesser priority will be ignored. 

Complete Packet: 

By Lemma 4.8, all copies will send equivalent Combinator or Packet messages to 

the Marker. By definition, only the first of these is recognized, and will update 

the Marker. Correctness is not affected. 

0 

Theorem 4.10 

A Demand message sent to any node always creates a node which has priority equal to 

the Demand and which is not also a Marker, or a node that  has equal or greater prior- 

ity and is not a Marker must already exist. 

Proof 

The only case in which a Demand message does not immediately create such a node is 

when tha t  Demand is received by a Marker. Let the Demand have priority P, and the 

Marker have priority PM. 

1 If M is a Marker with priority PM 2 P, then by definition the task field M' of M 

also refers t o  a node with priority PM 2 M. If M' is not a Marker, the theorem 

holds trivially. If MI is a Marker, the theorem holds by induction. 



2. If M is a Marker with priority PM < P, M must by definition send a Demand to 

its task field MI. By Lemma 4.9, this does not affect the correctness of the com- 

putation. Again, if M' is not a Marker, the priorities of M and M' will be set t o  

P and the theorem holds. If MI is a Marker, the theorem hoIds by induction. 

4.2.2. Deletion of Speculative Tasks 

Certain tasks (demanded subexpressions) that  have priority less than zero may be 

deleted to  make a virtual processor available t o  a higher-priority task. For purposes of this 

discussion, i t  is assumed that  a task whose priority is equal t o  the lowest of any task in the 

machine can be selected. As long as the priority of the deleted task is less than zero, how- 

ever, the absolute priority is not significant. The selected task is terminated, in effect by 

obtaining the reference rights from its Evaluate message and sending them in a Delete mes- 

sage instead. 

Only complete Packet nodes that  have a valid redex address field and tha t  have re- 

ceived an Evaluate message are candidates for this type of deletion. This may seem t o  be a 

rather small subset of all nodes, but remember that  every reducible expression in the graph 

must a t  some time have this form. When the correspondence of real to virtual processors is 

not one-teone, low priority evaluations may spend considerable time in this state. 

When a Packet of this type is terminated, i t  first sends an  Ezited message to its redex 

address, and erases the redex address field. If the node receiving this Exited message is an 

Application, the message is forwarded through the redex address of tha t  node. Combinator 

and Packet nodes ignore Exited messages. When a Marker receives an  Exited message, it 

decrements its task count by one. If the task count is zero, Exited messages are also sent t o  

every reference in the Marker's notifier list, and the list is emptied. In this way, every 



Marker affected by the deletion of the task is notified. 

The behavior already described for Marker nodes that  receive Demand messages 

guarantees that  priority zero computations will continue in spite of such deletions. 

Theorem 4.11 

Deletion of Packets whose priority is less than zero (the highest) does not affect 

correctness of a computation. 

Proof 

Recall that  only Packets which have received an  Evaluate message can be deleted. 

Such Packets by definition must be copies of another Packet. 

Speculate messages are sent only during the evaluation transformation. 

Demands sent in all other cases carry both a redex address and a priority. By 

definition, the priority of the Demand is the same as that  of the node tha t  sent the 

demand. Also by definition, an evaluation transformation can occur only after a com- 

plete Packet has been formed. Since the initial Demand has priority 0, either no com- 

plete Packet is ever formed or the first complete Packet formed must be a node with 

priority 0. Call this node T. For purposes of this proof, the equivalence from Lemma 

4.8 is used to  ignore the fact that  T is copied before evaluation. 

By definition of the evaluation transformation, a Demand is sent by T to  itself. 

If T is an Application, another priority 0 Demand is sent t o  its left function FT. By 

Theorem 4.10, this must result in another non-Marker with priority 0.  By consequence 

of Theorem 3.1, and the definition of Demand messages, this non-Marker with priority 

0 must update a Marker. By Lemma 4.9 and consequence of Theorem 3.4, the compu- 

tation must be correct. 



4.2.3. Summary of Changes to the Absfract Model 

Priority Fields 

Nodes and messages have an additional field for priorities. Priorities are initially 

undefined, and are propagated by Demand messages. The initial Demand has highest priori- 

ty. All other Demands have priority equal t o  or less than that  of the node which sent the 

Demand. In particular, note that  remote reference requests are also Demand messages, and 

are given the same priority as  the node which originated the request. 

Application and Marker nodes reset their priority t o  the highest received via Demand 

messages so far. Complete Packets set their priority t o  that  of the most recently received 

Demand. Note that  this will never result in a decrease in priority unless all other copies of 

the Packet have been terminated, because by definition a Marker will never send a new 

Demand to  its task field unless the priority has increased or the Marker's task count is zero. 

Normal forms (Combinators and partial Packets) do not change their priority when they re- 

ceive a Demand, because they respond immediately regardless of priority. 

Speculate Messages 

Demand messages with reduced priority and undefined redex address are called Specu- 

late messages. They are sent during the evaluation transformation to  s tar t  a speculative 

evaluation. They are treated as Demand messages, except that  they may be ignored if the 

receiving node so chooses. 

Marker nodes cooperate with the nodes referenced through their task field to maintain 

task counts. If the task field refers t o  a complete Packet, the task count is incremented 

each time a new copy of the Packet is created. The task count is decremented each time an 



Exited message is received by the Marker. 

Evaluate Metmag- 

T o  support multiple Demands for the same complete Packet at different priorities, the 

evaluation transformation has been split into two parts. Upon receiving a Demand, a com- 

plete Packet makes a copy of itself and sends the copy an  Evaluate message. The copy 

then undergoes the evaluation transformation. 

Exited Messages 

The creation of tasks that  may or may not be needed, or of multiple copies of the 

same task, may eventually strain the limits of various resources. To free these resources for 

more important tasks, low-priority tasks may be deleted. When a task is deleted, it sends 

an Exited message to  its redex address. 

Exited messages are also sent t o  every redex address in the notifier list of a Marker, 

when tha t  Marker's task count reaches zero. This propagates the information tha t  a task 

has been terminated t o  all the other tasks awaiting it. It also permits garbage collection of 

Marker nodes that  represent useless work. 



CHAPTER 5 

Mapping Virtual Processors to Physical Processors 

Up t o  this point, the discussion of massively parallel reduction has remained on a 

mostly abstract level. Implementation considerations have been mentioned only in passing. 

One important par t  of the implementation of an  abstract model tha t  allocates large 

numbers of virtual processors is the mapping of those virtual processors t o  the physical pro- 

cessors tha t  are  available in a real machine. 

For the case of the MPCR, there are two decisions t o  be made in making the virtual- 

t-physical mapping. The first, common t o  all multitasking systems, is the choice of the 

best processor on which to  execute a given task. A wide variety of techniques exist for mak- 

ing this choice. Rather than attempt t o  detail the possibilities, the first section of this 

chapter will introduce the technique tha t  was chosen for the simulations described in later 

chapters. The reasons for this choice will also be discussed. 

The second decision is related t o  the model of speculative computations, and is the 

choice of whether t o  s tar t  a given speculative task a t  all. The most naive answer is t o  con- 

tinue creating speculative tasks until some resource is exhausted. This leaves the question 

of which resource t o  monitor and how t o  determine tha t  i t  is used up. Full memory occu- 

pancy can easily be determined, but in a system employing extremely fine-grained tasks, 

processor cycles are a n  equally important resource. 

One measure of the availability of processor cycles is t o  keep track of the processor 

idle time. However, this measure may be inaccurate in the presence of speculative tasks. 

The processor may be busy, but i t  may be performing useless speculative work. The priority 



scheme already described will limit this effect, but there may not be enough high-priority 

work to keep the processor active. The goal is t o  create enough speculative work t o  occupy 

otherwise idle cycles, without allowing the overheads of maintaining the priority queue t o  

become excessive. The second section of this chapter presents a technique t o  estimate the 

number of tasks tha t  will acheive this goal. 

6.1. Distributing Workload 

The goal of any scheduling algorithm is t o  distribute tasks among processors in a 

manner tha t  will produce the best performance, though the notion of what is "best" depends 

on the nature of the tasks and the processors. In heterogeneous systems, wherein different 

processors may have different characteristics, some tasks may need t o  be assigned t o  a par- 

ticular processor. If tasks have known time limits within which they must complete, as in 

real-time systems, a task may be assigned t o  any processor tha t  is able t o  guarantee its 

completion before the deadline, even if the task might finish slightly sooner elsewhere. For 

this research, however, a homogeneous system with no deadlines is assumed, so an  algorithm 

which produces balanced workloads among the processors is sufficient. Remember tha t  in 

the fine-grained model, all operations including memory accesses are treated as  par t  of the 

workload. Load-balancing cannot entirely compensate for nonuniform accesses, but should 

perform as well as  any other scheme in terms of directing other work away from processors 

tha t  must sewice many da t a  requests. 

Diflusion scheduling is a n  heuristic method for dynamic distribution of workload in a 

multiprocessor system, with the goal of achieving nearly equal loads at all processor nodes. 

I t  differs from other distributed scheduling algorithms in tha t  communication takes place 

only between directly connected processing nodes in a network with less than  complete con- 

nectivity. Diffusion scheduling thus scales well a s  the number of processors increases, which 



is important in a system with potentially thousands of processors. 

The name difluaion scheduling is drawn from an analogy t o  gas diffusion physics, 

which describes the tendency of molecules to migrate from areas of greater density or pres- 

sure to  areas of lesser density. This flow across a pressure gradient is modeled by computing 

workloads a t  each processor and sharing this information with neighboring processors. 

Tasks are then transferred from processors with high loads to those with lower loads. This 

method was introduced in the Rediflow system [KeL84] and DAPS [HuG84]. A summary of 

other dynamic scheduling techniques can be found in WaM85. 

Control of scheduling is distributed among all the participating nodes, rather than 

residing a t  some central location. This is advantageous because the overheads of the 

scheduling process are divided among the processors. In any load-balancing scheme with 

distributed control, each node periodically examines its workload and decides whether some 

portion of the work should be offloaded to  another processor. How often this examination is 

undertaken depends on the particular scheduling algorithm. The decision of when to  offload 

work is called the tranafer policy VLZ86). I t  is usually based on some measure of the 

current workload a t  a subset of the processors [GoH87, Go188, HuG84,LiK86, LiK87, Sta84]. 

However, other system state information may be used. Systems with several different pr+ 

cessor types or nonuniform connectivity [LiK87] may scale loads for more powerful proces- 

sors or use a cost function for communications. Systems executing several different types of 

tasks [NiH85] may vary the perceived pressure depending on the task type. 

If the decision to shift workload is to be based on information about other processors, 

then this information must somehow be communicated to each node. The information policy 

[BaS85,LiM82] determines which processors will share information, how often, and what in- 

formation they will share. In a completely connected system, each node may receive infor- 



mation about the load from every other node, and may send work to any other node. How- 

ever, in a system with lesser connectivity, such as a hypercube or a mesh, i t  is often far 

more efficient t o  have each node communicate only with its directly-connected (nearest) 

neighbors. Distribution decisions are thus based on regional, or neighborhood, load informa- 

tion. This avoids the potential bottleneck of maintaining all load information in a central 

location. To overcome local load maxima or minima, the information provided by each 

node to its nearest neighbors can be modified in some way to  reflect its knowledge of the 

neighborhood load [LiK86,LiK87]. The experiments described in this thesis have used an 

average of the local load plus the load values received from all neighbors t o  compute the 

load value that  is exchanged. 

Once a decision to  offload work has been made, the location policy [ELZ86] determines 

where the work will be sent. This determination may employ much of the same information 

as the transfer policy, but may also use additional information such as locality of references 

[GoH87,Go188,HuG84]. Some algorithms use predetermined criteria such as round-robin 

selection [GoH87,Go188] or a set of probabilities [ChA82,HsL86]. The latter are usually 

used when no state information is exchanged among nodes. In diffusion scheduling, tasks are 

always sent t o  nearest neighbors first. Depending on the particular algorithm, those tasks 

may or may not later be allowed to  move to  a more distant node. The algorithm used in 

this thesis research permits tasks to migrate until they are accepted by a processor, but 

once accepted, tasks do not migrate further. 

One difficulty with dinusion scheduling is the possibility of processor thrashing 

prF81,ELZ86,NXG85]. This refers t o  a state in which all nodes spend all their time 

transferring tasks. Conditions under which this occurs are algorithm dependent, but i t  is 

usually associated with uniformly high loads. The research described in Chapter 6 has given 



some insights on controlling processor thrashing, and has also provided a great deal of 

understanding about the dynamic interactions among the information, location, and 

transfer policies. 

There are two other advantages of diffusion scheduling tha t  have particular 

significance for implementation of the MPCR model. First, the amount of information tha t  

is carried a s  a single load message is quite small. In a message-driven system such as the 

MPCR, processors exchange messages frequently in the course of a computation. I t  is there- 

fore possible t o  "piggyback" the load information on other messages, without greatly in- 

creasing the size of any individual message. This avoids the need for neighborhood-wide 

broadcasts and reduces scheduling overheads. Second, the neighborhood load information 

tha t  is exchanged can be used in determining whether speculative evaluation is appropriate. 

This is described in the next two sections. 

5.2. Deciding to Speculate 

The decision t o  create speculative work should depend on the s tate  of both the 

memory and processor resources of the machine. Free memory space can be measured 

directly, but measuring processor availability is a more difficult question. In a system with 

fine-grained tasks, a measure of current processor utilization may almost immediately be- 

come inaccurate, because each task completes very quickly. An estimate of current and fu- 

ture processor utilization is needed. 

Three factors contribute t o  the time required t o  perform a computation: task execu- 

tion, overhead, and latency. Task execution represents work t ha t  contributes directly t o  

completing the computation, and overhead includes all other work t ha t  utilizes the same 

processor. Conversely, latency refers t o  the time required t o  perform some operation tha t  

does not directly involve the processor, such as accessing a disk drive or  exchanging mes- 



sages with another processor. Thus, the processor is active when dealing with tasks and 

overhead, but is idle during latency. The goal is t o  minimize the time spent in overheads 

and t o  eliminate idle cycles caused by latency. 

Overhead has the effect of "slowing downn each processor. Each can spend only a por- 

tion of its time executing tasks, so the result is the same as  if the time required t o  execute a 

task were increased. In a parallel system, overhead includes context switching, local and 

global task scheduling, and possibly some message pre- and post-processing. The reason 

t ha t  the diffusion scheduler is designed t o  make decisions at each processor, using a subset 

of the complete system load information, is tha t  we desire t o  distribute this overhead equit- 

ably among all processors, as well as  distributing the computation tasks. Use of fine-grained 

tasks also minimizes the overhead of context switches. 

Latency, on the other hand, has the effect of "slowing down" taaka, rather than proces- 

sors. For example, a task which requires data  from another processor must wait for mes- 

sages to be exchanged, and possibly for the time t o  compute the da ta  as  well. Multiprocess- 

ing, in the sense of executing one task on each of many processors, cannot directly compen- 

sate for latency. However, the basis for speedup in multiprogramming is interleaving execu- 

tion of tasks which do not depend on one another in this way. When dependencies exist, the 

processor executing the dependent task should not be allowed t o  become idle. If the proces- 

sor is quickly provided with another task tha t  can execute while the dependent task is wait- 

ing, the latency of the dependent task has been masked, and has not slowed down the sys- 

tem. The combination of multiprocessing and multiprogramming permits some overheads, 

which cannot be masked, t o  be replaced with latency tha t  can be. I t  is therefore important 

to generate enough work t o  mask latency, without generating so much work tha t  the over- 

head of multiprogramming itself becomes unmanageable. 



In addition t o  reducing the overhead of individual context switches, one goal in choos- 

ing a fine task granularity is t o  use multiplexing t o  mask latency. This idea is borrowed 

from dataflow, in which many small operations keep the processor(s) busy during memory 

accesses and other delays. Local task scheduling is viewed as  an  instruction pipeline. Some 

tasks may be waiting for communications t o  complete, but these tasks are not allowed to  

block the pipeline. Instead, they are  placed in a pool, returning t o  the queue of ready tasks 

only when they have received the awaited communication. In a system where the same pro- 

cessor responsible for task execution is also responsible for some message processing, i t  is not 

possible t o  absorb the entire communication latency. However, as long a s  a significant par t  

of the communication can occur concurrently with task execution, and there are  sufficiently 

many ready tasks t o  keep the pipeline full, performance will not suffer a s  a result of com- 

munication delays. 

In larger-grained parallel systems, the size and complexity of a task is used t o  mask 

latency. The complexity of the task contributes t o  masking because any task usually needs 

t o  wait for only part of the complete result computed by another task. Tha t  is, two larger 

tasks may need t o  synchronize a t  certain points in the course of their computations, but 

otherwise can continue independently. The latency of such tasks is reduced a s  compared t o  

their execution time. The size of the task also contributes t o  masking because the run time 

of any task is a significant portion of the message transmission time. Only one or a few 

tasks need t o  be ready t o  run t o  keep the processor busy throughout a communication. 

In fine-grained systems, two tasks with a direct dependency are rarely ready simul- 

taneously, because the operations are so simple tha t  the dependent task cannot even begin 

t o  execute before receiving da ta  from the depended-upon task. Furthermore, the run time 

of a fine-grained task is a smaller fraction of the communication time, and context switches 



are more frequent, so more tasks must be available t o  mask latency. Estimating this 

number of tasks and comparing the result t o  the current number of ready tasks provides the 

information on future processor utilization. If the current number of ready tasks appears 

too low, speculative work can be created t o  supply additional tasks. 

If T, is the time required t o  reduce a single combinator expression, and L is the laten- 

L cy, a given processor needs to perform - reductions t o  absorb tha t  latency. Computing 
T, 

accurate values of T, for various combinators is not difficult, because each reduction step is 

very simple. The value of L is more difficult t o  determine, because i t  must account for de- 

lays occurring because da t a  requested from another node may not be available, a s  well as  

for two-way transfer time, but a reasonable approximation can be made. Let 

T,,, be the average message transfer time between any two nodes; 

T, be the execution time for a task when i t  has all its data ,  as  adjusted for over- 

head; 

N,(z)be the length of the ready queue at processor z;  

Pjj be the probability tha t  i requires da t a  produced by another task j-that is, tha t  

i will demand a n  unresolved reference (either a remote reference or a reference 

t o  an unevaluated subexpression). 

We want t o  compute L ,  the average latency of any task from the time tha t  i t  is demanded 

t o  the time i t  completes execution. For simplicity, we assume tha t  no task i depends on 

more than one other task, though in reality this is determined by the strictness of each com- 

binator. We also assume tha t  task i does not execute on the same processor where i t  was 

demanded, because there is no maskable latency in the latter case. This also represents a 

worst-case scenario, in tha t  both communication and evaluation time are  included. First, 



define T,(z), the time for a task t o  reach the front of the ready queue a t  processor 2,  as  

T,(z) = Nr(z).  T, +Pij) (1) 

This represents the time for all tasks in the queue a t  z tha t  do not depend on other tasks t o  

complete, and assumes tha t  each task enters the queue a t  the rear. Equivalently, this is the 

time for a task i scheduled a t  processor z t o  reach the front of the ready queue. 

Upon reaching the front of the queue, task i may (with probability Pii) demand 

evaluation of another task j. If some j is demanded, i will wait for j t o  run on processor 

y,  then return t o  the ready queue and eventually execute. Otherwise i t  will execute im- 

mediately. To  account for this, the latency equation for a task a t  processor z can be writ- 

ten as 

L(z) = Pij . (Tr(z)+L(y)+Pij '  Tr(z)+ Te +2Tm) (2 )  

T, is of course the time for i t o  execute. The addition of 2Tm accounts for the message 

transfer time for task i t o  reach processor z and for the result t o  be returned. All of this is 

multiplied by PG, the probability tha t  the task will be demanded a t  all. 

T o  get a perfect picture of the latency, i t  would be necessary t o  consider fluctuations 

of T, with changes in overhead and fluctuations of Nr(z) for all z over changes in time. 

However, all tha t  is needed is an  approximation of the latency, so several simplifying as- 

sumptions can be made. 

The first assumption is tha t  the global scheduling process is in equilibrium. This 

should be the case except in the very early or  very late stages of the entire computation. 

Under this assumption, the overhead at all processors will be nearly equal, so (given a h o m e  

geneous processor network) T, can be taken as  constant. This assumption also allows N, to 

be treated as a constant independent of z and of time, because fluctuations in the lengths of 

the ready queues will be evenly distributed about the mean length, and the mean lengths of 



the queues will be nearly the same a t  all processors. I t  is then reasonable to take L t o  be 

the same for any two processors, and solve for L: 

P i i . ( ( l + P i j ) .  T r +  Te + 2 T m )  
L = 

1-Pij (3) 

The subexpression ( 1  + Pij) - T, + Te can be viewed as the time t o  complete this task, includ- 

ing the time t o  bring i through the queue a second time if i t  had to  wait while j was 

demanded. 1-Pij in the denominator is the fraction of tasks tha t  do not depend on any 

other task. The latency thus increases as the proportion of dependencies increases. The 

message transfer time also increases as  the proportion of dependencies increases, t o  account 

for the possibility tha t  j depends on another task, which may depend on yet another, and so 

on. Thus, as  expected, the total time from the demand for an  expression t o  the return of its 

value depends on the time to  complete tasks for i t  and for all its subexpressions. Note tha t  

a s  the proportion of dependencies goes t o  zero, the time to  complete a task becomes only the 

time t o  schedule and run tha t  single task; and as  the proportion of dependencies goes to  

one, the time to  complete becomes infinite. This corresponds precisely t o  intuition about 

terminating and divergent computations. 

L 
Recalling tha t  the number of reductions needed t o  mask this latency is given by -, 

Te 

we want t o  solve 

Which gives 



The intuition about this equation is less clear. T, +2T, represents the average time for a 

single task with no dependencies t o  execute on a remote processor. If every task on the lo- 

cal processor were guaranteed t o  have no dependencies, (T, +2T,,,)/T, tasks would mask 

t ha t  time. However, this guarantee cannot be made, so the estimate is adjusted by a factor 

of Pij. Equation (5) still has the expected behaviors a s  Pij varies from zero t o  one, i.e., 

when Pii = 0 no tasks are required (there is no latency t o  mask), and when Pij = 1 infinitely 

many tasks are required (no task ever completes). 

Another interesting thing t o  note about Equation (5) is tha t  i t  has reasonable values 

when Pij ranges as  high a s  approximately 50% t o  58%, independent of T,,, and T, (see Fig- 

ure 5.1). From 58% to  61%, N, rapidly becomes unmanageably large, and if Pij reaches 

62%, the result is ncgative-eflectively infinite, since negative values are meaningless in this 

case. This does not mean tha t  i t  is impossible t o  get parallel speedup when the proportion 

of dependencies exceeds e l%,  but i t  does indicate tha t  this level of dependencies represents 

a threshold of diminishing returns, beyond which latency cannot be entirely masked. 

All of these equations have explicitly ignored the possibility tha t  a task may depend 

on more than one other task. However, this corresponds t o  the situation in a large-grain 

system wherein two tasks with a dependency relation a re  able to be ready at the same time, 

because the dependent task incrementally consumes a stream of results produced by the 

depended-on task. For example, suppose tha t  task i depends on two tasks j and k. If j 

and k can run concurrently, i will be delayed only by the longer of T,(j)  and T,(k). Thus, 

i actually depends on only one of j and k, the one tha t  takes longer t o  complete. Further- 

more, unless there is a dependency relation between j and k, the effect is as if i depended 

on only part of the longer-running task, because the shorter-running task will "stand in" for 

i during part  of the delay. Therefore, multiple dependencies can be modeled by reducing Pij 



Figure 5.1 - The effect of dependencies on attempts t o  mask latency. As the proportion of 
dependencies increases, i t  becomes impossible t o  mask latency completely, regardless of the 
speed of processors or  of communications. 

as  the proportion of tasks with multiple dependencies increases. 

Other factors not considered here are speculative computation and priority; i t  has al- 

ways been assumed tha t  a task is unconditionally demanded and enters the ready queue at 

the rear. The most direct way t o  model these factors would be t o  compute L(p) for each 

priority p,  where N,(p)  depends on the proportion of all tasks tha t  have priority p or  

higher, and also on the proportion of tasks a t  each priority t ha t  are uaeleaa (never demand- 

ed). N, is then the sum of all the N,(p). It is easy t o  see t ha t  these equations quickly be- 

come too complex t o  be readily usable. As with multiple dependencies, however, speculative 

computation can be modeled indirectly. Note tha t  each useful speculative task tha t  com- 

pletes has the effect of eliminating a dependency. AIso, each useful speculative task in the 

queue reduces the number of nonspeculative tasks needed t o  mask latency. Both of these 



effects can be simulated by reducing Pij in Equations ( 1 )  and (2). Priorities serve only to  

ensure that  the latency of nonspeculative tasks will be small when compared t o  speculative 

tasks, and can be ignored in computing the overall average latency. 

Unfortunately, this still leaves the problem of determining the value of Pi, for any 

given program. This could probably be accomplished by applying standard complexity 

analysis t o  each operation within a program, combined with analysis of the behavior of the 

combinators in the expression compiled from the operation. Such analysis is a possible topic 

of future research, but for purposes of this research a more general estimate, likely to  be ap- 

plicable t o  a range of programs, is desired. Estimating Pii for the experiments in this thesis 

is discussed in Chapter 7. 

6.3. Combining the Strategies 

Although the heuristic described in the previous section can give clues about when i t  is 

desirable t o  speculate, a given processor may find itself unable t o  create speculative tasks. 

This can occur because only a subset of the combinators used in the system will have 

definitions suitable for speculative evaluation of subexpressions. A processor in this situa- 

tion must depend on other processors to  supply i t  with work. 

Fortunately, in a system that  employs diffusion scheduling, a processor need not rely 

only on its own load t o  decide whether speculation is worthwhile. The processor can exam- 

ine the neighborhood load average compiled from the reports of its neighboring processors. If 

the neighborhood load is less than N,, then some processors nearby must be in need of addi- 

tional work, even if no more tasks are needed locally. On the other hand, if the neighbor- 

hood load is greater than N,, then nearby processors will be attempting to offload work. In 

the former case, the processor can create speculative tasks to  send to its needy neighbors. 

In the latter, new speculative work can be avoided because additional tasks are expected to  



arrive from other processors. 

I t  is also possible for the diffusion scheduler t o  make use of the estimated optimal 

queue length in its decision t o  accept or reject a task. If T,,, is considered t o  be long rela- 

tive t o  T,, high priority tasks will sufler greater delay when rejected by a processor than 

they would in executing a t  a slightly more loaded processor. Furthermore, since a processor 

may become idle if its queue has fewer than N, tasks, i t  is advantageous t o  accept tasks un- 

til tha t  optimum is reached. 

A consideration in using this strategy is tha t  the equations for N, include only non- 

speculative tasks. More accurately, the best case is for every one of the N, tasks in a given 

ready queue t o  be uaeful, whether speculative or not. The approach needed in addressing 

this problem is t o  increase the proportion of useful tasks in each ready queue. The greater 

this proportion, the better the processor is able t o  mask latency. Increasing the estimate of 

N, would increase the number of useful tasks, but not necessarily in proportion to the in- 

crease in queue length. Lengthening the queue would only overload each processor with no 

clear gain in terms of the amount of useful work performed. 

T o  increase the proportion of highest-priority tasks a t  a given processor, the diffusion 

scheduler might be told t o  accept highest-priority packets preferentially. Only highest- 

priority tasks are known to be useful, so the best way to  increase the proportion of useful 

tasks is t o  increase the proportion of highest-priority tasks. However, building up a queue 

of entirely highest-priority tasks may reduce parallelism. Several tasks of the same priority 

queued a t  the same processor have an  artificially-introduced dependency on the tasks ahead 

of them in the queue, in the sense tha t  tasks later in the queue do not execute until those 

earlier in the queue have completed. 



The experiments described in Chapter 7 use a technique which attempts to balance 

these concerns. Optimal queue length is considered by the diffusion scheduler only if the 

priority of the task for which the decision is being made is greater than t ha t  of the highest 

priority task in the queue. This gives preference t o  highest-priority tasks without needlessly 

scheduling same-priority tasks on the same processor. 

The combination of speculation heuristics and shared load information makes task 

creation, distribution and control very flexible. The techniques can be adapted t o  a variety 

of hardware architectures because they account for both message transfer and processing 

time in determining the number of tasks needed t o  mask latency. Furthermore, the amount 

of speculative work attempted will scale with the number of processors available. This per- 

mits a system employing these techniques t o  be used with little change as  the size of MIMD 

computers continues t o  increase. 



CHAPTER 6 

Preliminary Research in Diffusion Scheduling 

This chapter discusses simulated diffusion scheduling experiments performed prior t o  

the development of the MPCR simulation. These experiments provided experience in design- 

ing and evaluating diffusion scheduling algorithms. Also, t o  make practical use of the 

results, the experiments evaluated a diffusion scheduler tha t  is designed t o  be used in the 

Parallel Graph Reduction system, another research project a t  OGI. The PGR system is a 

parallel implementation of the G-machine (Kie851 tha t  will run on the Intel iPSCI2, a 

hypercube-connected multiprocessor. 

The goals of these experiments were: 

1. T o  explore general considerations for the location policy for assigning tasks t o  proces- 

sors. 

2. T o  determine the effects of a specific architecture on the information policy for ex- 

changing pressure da ta ,  and t o  tune the policy for tha t  architecture. 

3. T o  estimate the performance of a real architecture using a diffusion scheduling alg* 

rithm derived from the location and information policies. 

The experiments were performed in simulation rather than on the real architecture because 

of the additional control tha t  could be maintained. Coarse tuning of the scheduling alg* 

rithm proved as  expected t o  be easier under simulation, because the behavior of the system 

could be observed and controlled while "computations" were in progress. 



6.1. System Modeled 

The run-time system for each processor node, shown in Figure 6.1, consists of two 

processes: the Task Scheduler, which provides the environment for the execution of tasks, 

and the Task Distributor, which is responsible for implementation of the diffusion scheduling 

algorithm. This division is intended to  allow a high volume of inter-processor communica- 

tion for dynamic scheduling, without requiring the task execution system to  support inter- 
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Figure 6.1 - Run-time System Design. The upper block is the Task Distributor, the lower 
block is the Task Scheduler. 



ruptions for messages. These processes run in alternation via the processor operating 

system's time-sharing mechanism, and each is conceptually divided into a number of sub- 

processes. 

8.1.1. Taek Distributor 

The Task Distributor is divided into the Pressure Manager and the Packet Handler. A 

packet is the encapsulated form of a task, constructed by a Task Scheduler and sent first t o  

the local Task Distributor; from there, a packet may be sent t o  the Task Distributor of any 

neighboring node. The Packet Handler receives incoming packets and decides whether their 

tasks should be executed locally or on another node. If the decision is for remote execution, 

the Packet Handler forwards the packet t o  the Task Distributor on t ha t  node for further 

distribution, otherwise i t  sends i t  t o  the local Task Scheduler. 

The Pressure Manager maintains estimates of load for the local node and its immedi- 

a te  neighbors by processing load messages from the local Task Scheduler and from neighbor 

Task Distributors. This load information is used by the Packet Handler t o  make distribu- 

tion decisions. The Pressure Manager is also responsible for periodically sending local load 

information t o  neighbor Task Distributors, so tha t  neighborhood load information is kept 

reasonably current. Load information consists of two values, the pressure, based on the 

number of ready and waiting tasks, and the memory occupancy, the percentage of total  

available memory tha t  is currently in use. 

6.1.2. T d  Scheduler 

Components of the Task Scheduler are  the Task Manager, the Memory Manager, and 

the Performance Monitor. The Task Manager controls the execution of tasks, including 

management of READY and WAIT queues; sends and receives da t a  messages on behalf of 



tasks; constructs new packets and sends them to the local Task Distributor; receives packets 

from the local Task Distributor; and sends local load information t o  the Task Distributor. 

Packets are unpacked as  they are received and the tasks are added t o  the READY queue. 

Tasks are  run in a non-preemptive manner, so no other Task Scheduler functions are  per- 

formed while a task is running. 

Although task workspaces a re  allocated, initialized, and reference-counted from within 

the Task Manager, they are  considered part of the Memory Manager. Similarly, much of 

the collection of various statistics is incorporated in the Task Manager and in the system 

calls available t o  tasks, but is considered part  of the Performance Monitor, which periodi- 

cally summarizes and reports this data .  Collection of statistics can be controlled for each 

task by a profiling flag. If no statistics have been collected for any task, no performance re- 

port is made. 

6.2. Diffiion Scheduling Task Simulator 

The simulator is structured t o  match the assumed architecture as nearly as  possible. 

All components of the architecture are present in the simulation, although the "memory 

manager" consists only of a counter. A simulation run consists of the simulated execution 

of a number of packets, starting with a single "seed" packet and expanding into a tree 

structure. Each simulated packet may cause a number of new packets t o  be created. In 

order t o  simulate completion of a computation, packet creation is bounded by limiting the 

depth of the tree, but this limitation is not inherent in the computation model. 

Each packet is assigned a size, an  evaluation time, and a branching factor. When a 

packet is accepted a t  a simulated processor, the memory manager increments its counter by 

the size of the packet, and the packet is placed in the READY queue as a task. Upon 

reaching the front of the queue, a task first creates as many child packets as indicated by 



its branching factor. I t  then "executes" for its evaluation time. A t  the end of t ha t  time, if 

the task has no children, a dummy da ta  message is sent t o  its parent. If the simulated task 

has children and has not received da ta  messages from all of them, i t  will become inactive 

(move t o  the WAIT queue). No simulated task sends its own da t a  message until i t  has re- 

ceived messages from all its children. After a task sends its da t a  massage, the memory 

counter is decremented by its size and the task is discarded. 
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Figure 6.2 - Simulator Design. Node OS routines enter context-switch delay when both the 
Task Scheduler and the Task Distributor for tha t  node have entered the local time-slice 
queue. When awakened by the Interwork scheduler, the NOS routine unblocks the next rou- 
tine from its time-slice queue. 



The simulator is written in C using Block Island Technologies' ~ntertuork~ [BaiSG] 

Concurrent Programming Toolkit. Interwork routines are created t o  represent the node 

operating system (NOS) on each processor node, the Task Scheduler on each node, and the 

Task Distributor on each node (see Figure 6.2). These routines are  lightweight tasks, imple- 

mented as  coroutines. An additional Interwork routine can be scheduled t o  run a t  regular 

intervals, t o  extract and report general performance statistics. 

Time in the simulation is kept in internal units which do not correspond directly to 

real time. The Interwork scheduler maintains a global "clock," which is used t o  maintain 

local clocks at each NOS routine in approximate synchronization. Interwork routines are 

scheduled in order of increasing "wake-up" time, and the global clock is advanced only 

when all routines are "sleeping." Time required for various Scheduler and Distributor opera- 

tions, context switching, and execution of tasks is simulated by causing the Interwork rou- 

tines t o  sleep for an  appropriate interval. The local clock is updated at this point, so that  

local and global clocks synchronize a t  the wake-up time, but the local clocks a re  rarely in 

sync with one another. 

The experiments performed assumed a hypercube connectivity among processors. 

Parameters of the simulation were taken from the Intel iPSC/l hypercube multiprocessor. 

The iPSC communication network is duplicated as nearly a s  possible in the simulator, in- 

cluding the routing algorithm used t o  determine the path tha t  a message traverses from one 

node t o  another. Times t o  perform various functions such as  message passing and context 

switching are also proportional t o  estimates of actual times for the same operations on the 

iPSC/l. 



6.2.1. Decision Algorithm 

Before discussing results, a description of the decision algorithm used at each node t o  

accept or reject packets may be helpful. The information policy used is t o  exchange pres- 

sure information among directly connected neighbors only. Two pieces of information are 

sent t o  each neighbor by a Task Distributor: an  average of the pressures i t  receives from all 

its neighbors and from the local Task Scheduler, and a memory usage indication expressed 

as a percentage of its total memory size. Pressure is a measure of workload, and in these 

experiments is defined t o  be the number of ready tasks a t  a given Task Scheduler plus a 

fraction of the number of waiting tasks a t  tha t  Scheduler. Waiting tasks are included t o  

account for the memory they occupy, as explained below. The location and transfer policies 

are implemented by the decision algorithm; the discussion which follows describes the 

development and refinement of this algorithm. 

Each time a new packet is received by the Packet Handler, a decision must be made 

t o  accept tha t  packet, tha t  is, t o  execute i t  locally, or t o  reject t ha t  packet and send i t  t o  

another processor node. The decision t o  accept or reject is based on a weight computed for 

the local node and each of its neighbor. The weight is computed from the perceived pres- 

sure for the node and the distance (in hops) between the node and the origin of the packet. 

Distance is included because each packet is assumed t o  represent a large task, which will 

transmit a significant amount of da t a  back t o  its origin processor. 

Also added for the neighbor nodes is a constant hop weight multiplied by the number 

of Task Distributors the packet has visited, including the current one. If the local node is 

the same as the origin of the packet, the hop weight is balanced by the addition of a con- 

s tant  launch weight to the weight of the local node. The launch weight is a tunable parame- 

ter  designed t o  encourage parallel execution. If one of the neighbor nodes is the same as the 



origin of the packet, a constant home weight is added t o  the weight for t h a t  node t o  

discourage packets from returning t o  a node tha t  has already rejected them. For the same 

reason, the neighbor from which the packet was received is never considered. 

Memory usage information is considered indirectly in two ways. The first is the inclu- 

sion in the pressure value of a fraction of the number of waiting tasks at a node. That  

fraction was chosen as 0.5 based on early observations. This is sufficient t o  prevent nodes 

with many waiting tasks but few ready ones from sending work t o  nodes with few waiting 

tasks and many ready ones. However, a node with many waiting tasks cannot continue t o  

accept work if its memory is full. Therefore, a very high weight is assigned t o  any node at 

which the memory usage exceeds a threshold fraction. This weight is computed by multiply- 

ing a large overflow pressure value by the fraction of memory used. If memory occupancy is 

above the threshold a t  all nodes, this will cause the node with the least memory occupancy 

t o  have the lowest weight. 

Once all computations have been done, the node with the lowest weight is selected. If 

this is the local node, the packet is accepted; otherwise, i t  is rejected and sent on t o  the in- 

dicated node. The weight comparison cycles through the list of neighbors, always beginning 

with the neighbor after the last neighbor t o  have been sent a packet; in case of equivalent 

weights, the first node encountered having tha t  weight is selected. The reason for this cyclic 

search will be explained in the discussion of the simulation results. The complete algorithm 

is given in Figure 6.3. 

6.3. Evaluation and Tuning of Scheduler Policies 

The goals of these first experiments were to study the interactions of the diffusion 

scheduling policies and the simulated architecture, and to adjust the algorithm as  necessary 

to distribute tasks in a uniform manner. Delay (latency) in exchanging load information 



IF memory percentage < maximum amwry parcentage THEN 
local weight = local pressure + distance(loca1 node, packet origin) 
IF local node = packet origin THEN 

local weight = local weight + home weight + launch weight 
F I 

ELSE 
local weight r overflow pressurr 4 fraction of memory used 

F I 

FOR each neighbor node DO 
IF neighbor memory percentage < maximum memory percentage THEN 

neighbor weight = neighbor pressure + 

diatance(neighbor node, packet origin) + 

hop weight 
IF neighbor node == packet origin THEN 

neighbor weight = neighbor weight + home weight 
F I 

ELSE 
neighbor weight = overflow pressure neighbor memory percentage 

F I 
DONE 

Figure 6.3 - Pseudecode showing weight computations of the decision algorithm for local 
and neighbor nodes. 

among different processor nodes was expected to produce some imbalance, though how that  

imbalance would appear was a subject of study. However, what had not been anticipated 

was the significant effect of latency in exchanging information between the components of 

the architecture within the same processor node. This proved serious enough that  the archi- 

tecture was modified slightly to  relieve the problem. 

The experiments simulated the architecture components as loaded on each node of a 

four-dimensional hypercube (16 nodes). Simulations were performed using packets with a 

range of sizes, evaluation times and branching factors. Certain simulations were also exam- 

ined via the monitor task to observe distribution of load and performance of individual 

nodes over the course of the simulation. 



6.3.1. Initial Behavioral Anomalies 

The first simulations were run with a very simple decision algorithm tha t  considered 

only the numbers of ready and waiting tasks, and which did not use the cyclic search of 

neighbors' weights. Load messages were sent by the Task Scheduler once per time slice, and 

were broadcast by the Task Distributor at most once per slice and a t  least whenever a 

change was detected. Furthermore, only the Task Distributor would surrender the processor 

if i t  ran out  of work before the end of its time slice. The Task Scheduler would busy-wait, 

checking for messages or for tasks t o  become ready a s  the result of receiving a da t a  mes- 

sage. These simulations used a small number of packets (tasks) with fixed evaluation times 

and fixed numbers of child tasks, and analysis of the da t a  concentrated on studying the load 

in the early stages of distribution. 

The results showed a tendency for a few nodes three t o  four hops from the root (node 

zero) t o  accept a disproportionate number of packets. Closer examination of the pattern in 

which packets were sent out and accepted revealed two unexpected behaviors: 

1) each node sent several packets in succession t o  a particular neighbor, and 

2) when these "bursts" of packets arrived a t  the neighbor, all packets were accepted. 

The expanding tree structure of the computation graph and the connectivity of the 

hypercube combined with these behaviors t o  "focus" packets from many nodes on a few oth- 

ers, which then accepted most of those packets. An example of focusing in shown in Figure 

6.4. Both behaviors are related t o  latency in transmission of load information; the first is 

due t o  latency in communicating load among nodes, and the second is due t o  latency in 

communicating load between the Task Scheduler and the Task Distributor on the same 

node. 



Figure 6.4 - Focusing of packets after introduction of cyclic selection, for a binary process 
tree on an  &node cube. Each dot represents a packet, and arrows are numbered with the 
depth of the process tree a t  the time the packet is created. Without cyclic selection, this 
effect is magnified, because each processor directs both branches at each level of the process 
tree t o  the dame neighbor processor. 

Three changes were made to  correct this problem. The first was t o  add the cyclic 

search of neighbors t o  the decision algorithm (see Figure 6.5). This causes packets to be dis- 

tributed more evenly in the beginning of the computation, when little or no load informa- 

tion is available and the rate of change in load is greatest. 
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Figure 6.5 - Distribution before and after cyclic selection. Diagram A shows four packets 
being passed from the Scheduler t o  the Distributor a t  processor 3, with neighboring procer 
sors 1 and 2 having equal loads. Diagram B shows the distribution of those packets without 
cyclic selection. Diagram C shows the more balanced distribution with cyclic selection. 

The second and third changes were an attempt t o  reduce latency in packet processing 

and in load communications. Communication between processes on the same node is limited 

mainly by the time tha t  each process is allocated as  its share of the processor, whereas com- 



munication among nodes is limited primarily by message transfer time. Before enough pack- 

ets have been generated t o  provide work for all nodes, the Task Schedulers have nothing t o  

do, and are essentially busy-waiting for their entire time slice. This contributes t o  mass ac- 

ceptance by increasing the delay between runs of the Task Distributor, allowing more 

unprocessed packets t o  accumulate. T o  reduce local communication latency (in this case, 

latency in processing and delivering packets), the Task Scheduler was caused t o  surrender 

the processor when it  had nothing t o  do, rather than busy-waiting. The Task Distributor 

also was modified t o  make a load broadcast whenever a significant number of packets had 

been accepted, thus reducing communication latency among Task Distributors on different 

nodes. 

These changes did not entirely solve the "burst acceptance" problem, but reduced i t  so 

much tha t  we a t  first felt them to  be sufficient. Later, however, simulations using packets 

with variable run times and variable numbers of children revealed t ha t  certain tree struc- 

tures could still produce large jumps in acceptances (and correspondingly, in load) a t  some 

nodes. Again, the problem was local communication latency. Several packets could arrive 

during the Task Distributor time slice, when the Task Scheduler was unable t o  send upto-  

date  load information. The Task Distributor used the same information for each accep  

tance decision, even though tha t  information became increasingly inaccurate with each ac- 

ceptance. Therefore, the Task Distributor was modified t o  estimate the increase in local 

pressure when a packet was accepted, anticipating the consequent increase in load tha t  

would be reported by the Task Scheduler. Figure 6.6 shows the effects of this change. Each 

ready task is represented as one unit of pressure, so the Task Distributor increments its 

record of the local pressure each time i t  accepts a task. 
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Figure 6.6 - Mass Acceptance. Diagram A shows the Distributor a t  lightly loaded proces- 
sor 3 receiving six packets. Diagram B shows the mass acceptance problem, as Distributor 3 
accepts all the packets. Diagram C shows a possible distribution if Distributor 3 estimates 
the load change from each acceptance (actual distribution depends on the order in which 
packets from each source are received). 
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either of the depth of the simulated process tree, the number of child packets created by 

each task, or both. Data from experiments with short packet evaluation times relative to 

the time slice of the run-time system processes showed that,  although the load was reason- 

ably well distributed among the nodes, packets were being rejected by an  average of more 

than three Task Distributors before finally being accepted. At least one rejection per pack- 

et  was expected, because the Task Distributors were given the launch and home weight 

biases against local packets, but three seemed excessive. Also, the packets were lodging a t  

nodes only one or two hops away from the nodes which created them. 

This seemed to indicate that  the packets were "orbiting" their origin node, failing to  

move to  more distant, possibly less loaded nodes because of the "pull" exerted by the dis- 

tance factor in the decision algorithm (see Figure 6.7). However, experiments using packets 

with longer evaluation times did not show multiple rejections of packets. This leads us to 

believe that  in computations where tasks have short individual run times, the repeated re- 

jections are a result of the high rate of new packet creation, which greatly exceeds the rate 

a t  which load broadcasts can be made. 

Interestingly, multiple rejections are related to the mass acceptance problem discussed 

in the last section. A t  the beginning of the computation, a Task Distributor tends to  accept 

too many packets because the local Task Scheduler cannot send load updates during the 

Task Distributor's time slice. Later in the computation, when local load messages have been 

transmitted, communication latency among nodes becomes dominant. Every Task Distribu- 

tor perceives the local load to  be higher than that  a t  neighbor nodes, so most packets are 

rejected. The orbiting effect is secondary, though the distance factor can have an effect 

when loads at different nodes are nearly identical. 



Figure 6.7 - Orbit of radius < 2 around Node 0 in an %node cube. Distributors a t  proces- 
sors 3 and 5 may never send the packet to processor 7, even if i t  has a load lighter than 
processors 1 and 2, because the distance from origin processor 0 is greatest a t  processor 7. 
The home weight bias will discourage the return of the packet t o  processor 0, so i t  orbits un- 
til the hop weight becomes excessive. 

A t  present, there seems to  be no way t o  avoid multiple rejections except t o  ensure 

that  the packet creation rate is kept low relative to  the rate of load broadcasts. In an ac- 

tual computation, the creation rate is dependent on the structure of the compiled program, 

so i t  may be necessary to  adjust the run-time system to improve the performance of some 

programs. Nevertheless, t o  ensure that  packets were not being rejected solely on the basis 



of distance from their origin node, the hop  weight penalty was increased considerably, and 

the simulations rerun. The hop weight represents the time and effort required t o  send a 

packet t o  another node and t o  make the acceptance decision there, which is several times as 

great as the effort required t o  send a da ta  message one additional hop. For the packets 

with short run times, the average number of rejections fell t o  just over two when the hop 

weight was increased, but the number of rejections was essentially unchanged for packets 

with long evaluation times. This is consistent with our hypothesis tha t  a high rate  of new 

packet creation is the primary cause of multiple rejections. 

6.3.3. Final Refinement8 

The difficulties encountered in balancing the load in the early and middle stages of the 

computation stem from delays in the exchange of load information. As the computation 

nears completion, new tasks are no longer being created. A t  this stage, i t  is less important 

t o  balance the load than i t  is t o  complete the existing tasks. Recall t ha t  in our early simu- 

lations, only the Task Distributor was programmed t o  surrender the processor if there was 

no work t o  be done in its time slice; the Task Scheduler would use its entire slice whether or 

not i t  had any ready tasks t o  run. The better load distribution t ha t  resulted from correc- 

tion of the mass acceptance and multiple rejection problems, which included the elimination 

of busy-waiting from the Task Scheduler, was expected t o  improve the overall performance 

of the system; instead, we saw a slight degradation. 

Examination of the da ta  for individual nodes indicated tha t  the performance loss was 

due to a few nodes tha t  took significantly longer t o  complete their work than did the rest of 

the system. A comparison of the change in load over time for one such "slow" node with a 

'Lnormal" node showed that ,  as the computation neared completion, the loads fell quickly 

and a t  very nearly the same rate for both ezeep t  tha t  the normal node finished its last 
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Fi y r e  6.8 - Load ru. Time for a "slow" Node (Node 14) 

ready task when the slow node still had a few tasks to  run. Both nodes still had a number 

of tasks waiting for data. Those last few ready tasks on the slow node todr considerably 

longer to complete than an average task, i c . ,  a t  tha t  point the rate of change h load for 

the slow node dropped sharply (Figure 6.8). 
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Figure 6.9 - Messages Received va. Time a t  "slow" Node 14, with communications expen- 
sive in comparison to task evaluation time. Communication time for this figure is compar- 
able to iPSC/l timings. 

The only reasonable explanation for this behavior was an  unexpected increase in over- 

head a t  the slow nodes. Message processing is the primary source of overhead in the system, 

so we looked for an  increase in message traffic. As was to  be expected, there was a slight in- 

crease in the number of data messages from the completing tasks to their parents, but the 

timing of this increase did not correspond to that  of the change in task run times. Instead, 

we found an increase in the number of load messages from neighboring nodes being received 

at the slow nodes, which corresponded precisely to  the slowdown in task completions (Figure 

6.9). An increase from 6 to 8.4 messages per 1000 clock ticks does not seem significant, but 

a single node represents only one-sixteenth of the total message traffic in the system. Each 

load message received by a Distributor could result in that  Distributor making a broadcast 

of its own. Furthermore, the increase in load messages appeared to  be bounded only by the 
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Figure 6.10 - Messages Received va. Time at "slow" Node 14, with communications less 
costly in comparison t o  task evaluation time. Communication time in this figure is approxi- 
mately half tha t  of Figure 6.9, with average task evaluation time unchanged. 

relatively slow communication network. A much greater increase was seen in tests where 

the communication time was less (Figure 6.10). 

The increase in load messages was a result of the policy, implemented in the Task Dis- 

tributor, of making a load broadcast whenever a change in the local load was perceived. A t  

the normal nodes, the Task Schedulers received da ta  messages which allowed them t o  com- 

plete some waiting tasks; this resulted in a small change in load, which was immediately 

communicated t o  the Task Distributors. Then, finding no ready tasks, the Task Schedulers 

surrendered the processor; the Task Distributors, taking over, would detect the change in 

load, make a broadcast, and immediately switch back t o  the Task Schedulers. This cycle 

repeated so rapidly tha t  the slow nodes, where work was still being done by the Task 

Schedulers, were flooded with load messages. Their overhead soared, and the performance 



of the whole system was affected. 

This situation presented an  interesting problem. I t  is obviously necessary t o  restrict 

the rate  of load broadcasts in the later portion of the computation t o  avoid flooding nodes 

tha t  still have work t o  do. However, as the mass acceptance problem demonstrated, i t  is 

also necessary t o  make broadcasts fairly frequently in the early stages. Furthermore, since 

there is no way to  determine, a t  the individual nodes, how far the computation has pro- 

gressed, any scheme used t o  regulate broadcasts must be independent of the general state of 

the computation, though i t  can be modified t o  respond t o  short-term and local variations. 

To  find an  answer, we considered the maximum rate  of load broadcasts in t ha t  par t  of 

the computation when all nodes still have ready tasks t o  run, but the overall load is de- 

creasing and very few new packets are being created. There, load broadcasts are limited 

because the Task Schedulers are using their full time slices; only when some Schedulers ran 

out of ready tasks did the number of load broadcasts become excessive. The length of the 

time slice thus seems to  be a natural bound on the frequency of load broadcasts when the 

overall load is decreasing, although more frequent load broadcasts are needed when the load 

is increasing. 

The solution we adopted is t o  record the time tha t  a load broadcast is made, and not 

t o  send another until a full time slice has expired (regardless of how many context switches 

occur in t ha t  period). However, if a Task Distributor receives several packets in quick suc- 

cession, i t  can override the time limit and make load broadcasts more often. This provides 

the higher frequency of broadcasts needed as the computation s tar ts  up, but controls the 

rate  of broadcasts when quick completion of existing tasks becomes more important than 

scheduling new work. Once these changes had been made, message traffic became uniform 

(Figure 6.11) and the "tailing off' a t  slow nodes disappeared (Figure 6.12). 
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Figure 6.11 - Messages Received us. Time a t  formerly "slow" Node 14 after broadcast lim- 
it. The dotted lines show the previous behavior. 

Also note tha t  if the Task Distributor is to estimate load changes based on accepted 

packets, as  described earlier, some form of broadcast limitation must be in effect. Other- 

wise, the same explosion of load messages will occur a t  the beginning of the computation 



and continue until enough packets have been generated for nearly all wda to have some 

work. 
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Figure 6.12 - Load vr. Time at  formerly "slow'' Node 14 after broadcast limit. The dotted 
line shows previous behavior. The last ready task is completed 6.5% faster. 



6.4. Resulfe of Performance Evaluations 

Simulations discussed in this section were run with fixed packet memory usage, and 

with the number of subtasks per packet determined by its level in the computation tree. 

The only variable was the evaluation time of a packet, which was fixed for a given simula- 

tion but varied among simulations. The length of the time-slice for the Task Scheduler and 

Task Distributor on each node was set a t  500 internal clock ticks, corresponding t o  a 50 

millisecond time-slice on the iPSC, so one tick is approximately equivalent t o  100 mi- 

croseconds. 

Performance of the system as  a whole was evaluated in terms of speedup as compared 

t o  a uniprocessor system (both with and without considering overheads for communication 

and task scheduling). Figure 6.13 shows speedups from a series of simulations using a four- 

dimensional hypercube, with per-packet evaluation time varying from 25 to  2000 clock ticks. 

Evaluation time here refers t o  the minimum time to complete a task, not including over- 

head. Speedup is computed by 

Sequential ezecution time 
Paralfel ezecution time 

which is represented here in two ways. The first is 

Sum of task evaluation times 
Time to complete seed iaak 

where the time t o  complete the seed task is the time from the s ta r t  of the simulation until 

the final "result" da t a  message is received by the root task. The second representation 

defines the sequential time a s  the time t o  complete the seed task on a one-node ( ze r e  

dimension) network. The latter includes all overheads of the run-time system and diffusion 

scheduling. 



Figure 6.13 - Speedup us. Per-Packet Evaluation Time for a kdimensional (16 node) hyper- 
cube. 

For computations in which individual tasks have evaluation times of 1500 ticks or 

more, speedup averages 11 times the minimum sequential evaluation time, which translates 

fo an efficiency of 68 percent of the maximum possible speedup. Efficiency is computed by 

Obrewed Speedup 
Number oj Proeersors 



Speedup averages just over 14 when compared t o  the time t o  complete on a one-node net- 

work, which thus includes wait time and Scheduler overheads in the sequential time, for 88 

percent efficiency. This suggests tha t  the system is spending about 12 percent of its time in 

the Task Distributor, and about 20 percent in other overheads or waiting. 

Figure 6.14 shows fractional overhead a s  a function of per-packet evaluation time. 

Fractional overhead is computed by 

Observed time - Optimal time 
Obaerved time 

where the optimal time is given by 

Sum oj taak evaluation times 
Number of proeeasors 

and the observed time is the time t o  complete the seed task, as  before. The significantly 

greater speedups with longer per-packet evaluation times are a result of reduced overhead. 

Message processing is the only major source of overhead, and several factors contribute t o  a 

larger message workload (relative t o  the packet evaluation time) when evaluation times are 

short. The most obvious of these is tha t  the message transfer time is a larger fraction of 

the evaluation time, but the number of messages tha t  must be handled per unit time is also 

greater. 

Short evaluation times allow more tasks t o  be started and completed per time slice of 

each Task Scheduler, which in turn produces more new packets and more da ta  messages per 

time slice. A high rate of packet creation, a s  noted earlier, results in multiple rejections of 

packets; this increases the number of messages tha t  must be handled t o  get each task start-  

ed. Furthermore, in response t o  the rapid arrival of new work, the Task Distributors make 

load broadcasts more frequently t o  keep load information as  current a s  possible, and the 

Task Schedulers send more local load messages as well. 



Figure 6.14 - Overhead as Fraction of Per-Packet Evaluation Time for ddimensional (16 
node) Hypercube 

As evaluation times lengthen, all of these effects begin to disappear. One packet is 

enough to  keep a Task Scheduler busy for one or more time alices, so new packets, data, and 

local load mesaages are sent a t  a more leisurely rate. The Task Distributors respond by 

making fewer broadcasts, and multiple rejections are no longer a problem. However, over- 

head for context switches (from the Task Scheduler to the Task Distributor and back) may 



actually increase slightly, because there are more Scheduler/Distributor alternations during 

the execution of each task. 

6.4.1. Comparison with Alfalfa Results 

Diffusion scheduling experiments performed by Goldberg [GoH87,Go188] for the Alfalfa 

system also show encouraging results for this type of parallel evaluation. A direct comparis- 

on t o  Goldberg's results is impossible, due both t o  differences in the form of the experiments 

and t o  differences in the diffusion models used, but a number of similarities can be pointed 

out. 

The Alfalfa system was tested on an  iPSC/l hypercube, the same type of machine as  

tha t  from which our simulation parameters were drawn. Goldberg studied several informa- 

tion and transfer policies, including non-communicating algorithms. We studied only a com- 

municating policy, so this comparison will focus on the communicating algorithms. 

One significant difference between the diffusion model in this research and tha t  of the 

Alfalfa system is in restrictions placed on the location policy. In the Alfalfa diffusion model, 

the processor at which a task will execute is determined solely by application of the algo- 

rithm a t  the processor where the task originates. Once a processor has been selected, tha t  

processor is required t o  accept the task. By contrast, the model used in our research applies 

the decision algorithm a t  each node visited by a task. The Alfalfa model avoids the prob- 

lems of multiple rejections we have described, but i t  severely limits the system's ability t o  

react t o  rapid creation of tasks. 

Goldberg studied two communicating algorithms, referred t o  as  Simple Communicating 

DiDaion and Dependent Communicating Diflusion. Both use measures of the change in load 

t o  determine frequency of load broadcasts, and both select a neighbor processor to receive 

work if its load is less than the local load by some constant amount. They differ primarily 



in that  the Dependent algorithm factors the dimension of the network into the decisions. 

The information policy used in our experiments is most similar t o  Goldberg's Simple 

algorithm. However, our practice of exchanging average load values for the neighborhood 

accounts for network dimension in a way that  neither of Goldberg's policies can. Goldberg's 

policies do not include information from neighbors in the pressure reported by each proces 

sor node, so local maxima or minima can have a greater effect on the distribution of tasks. 

The Simple algorithm limits load broadcasts by establishing a threshold M which the load 

must exceed before broadcasts are considered. This appears t o  have an effect similar t o  our 

time-based broadcast limits. The threshold has the advantage of being independent of im- 

plementation considerations such as the Distributor/Scheduler dichotomy that  led to  our 

choice. However, i t  would appear t o  have the effect of sequentializing the final stages of 

any computation, by concealing load changes. 

Both the Simple and Dependent algorithms avoid load broadcasts unless the local load 

changes by more than a factor of two. This understandably dominates the M threshold 

most of the time, because the total load is much higher than M for most of the run time of 

a computation. Our experiments also require a minimum percentage change before a broad- 

cast is made, but percentages higher than 10% were not considered. This is because the 

possibility of multiple rejections makes our system much more sensitive to inaccurate pres- 

sure information. 

The transfer policies in all of the Alfalfa experiments differ from ours in one very im- 

portant respect. The Alfalfa algorithms tend to  prefer t o  retain tasks locally until the local 

pressure is fairly high. Our algorithm prefers t o  move work to other processors as quickly as  

possible. This difference may mean tha t  Alfalfa will perform better for small programs be- 

cause the expenses of communication will not be incurred until the number of concurrent 



tasks exceeds the M threshold. Our experiments with this model have assumed tha t  the 

complexity of each task is always sufficient t o  justify the communication required for paral- 

lel execution, so we have not simulated the small process trees where this would become nc+ 

ticeable. 

Five sample programs were used in the Alfalfa experiments: Parallel Factorial, Eight 

Queens (actually seven queens due t o  memory limitations), Adaptive Quadrature, Matriz 

Multiplication, and Quicksort. Of these, only the first three decompose in a tree structure 

comparable t o  our simulated process trees. Evaluation times for tasks in these programs 

are unavailable, but Parallel Factorial and Adaptive Quadrature have relatively small tasks 

as  compared t o  Queens. Factorial generated 3,998 tasks, Quadrature 5,567 tasks, and 

Queens 29,682 tasks. Our final experiments used randomly branching trees of on the order 

of 2,000 tasks, so a comparison with these programs is reasonable. 

Although Goldberg's results varied widely for suboptimal parameter choices of each of 

the communicating algorithms, the best-case results for each sample program were very 

similar. The communicating algorithms also performed a t  least as  well a s  the non- 

communicating algorithms in the best cases for all the programs. For 16 processors, Alfalfa 

achieved speedups of approximately 4 t o  4.5 for Parallel Factorial, 3.5 t o  4 for Adaptive Qua- 

drature, and 7 t o  7.5 for Queens. These figures are based on analysis of graphs presented in 

Goldberg's thesis [Go188]; exact da t a  are unavailable. The sequential time used t o  compute 

speedup is the completion time on a one-node network. 

The observed speedups for the Alfalfa system correspond t o  our results for tasks with 

less than 50 milliseconds (500 ticks) execution time. This seems reasonable for Parallel Fac- 

torial and Adaptive Quadrature, because those are tree-structured problems in which each 

task performs only a few arithmetic operations. However, the granularity of Queens is more 



difficult t o  determine. The parallel formulation of the Queens algorithm uses a number of 

Alfalfa operations not used in either of the other programs, so a n  estimate based on code 

comparisons is not sufficient. It may be the case tha t  tasks in Queens are not large enough 

to  reach the 100 or more millisecond times tha t  showed the best speedups in our experi- 

ments. It is also possible tha t  the very large number of tasks generated by Queens intro- 

duces overhead tha t  our simulations did not duplicate. 

6.6. Summary 

These experiments have provided insight into the problems encountered in developing 

an  effective diffusion scheduling algorithm. Related but subtly different scheduling problems 

were found in different stages of a computation, and in each case reasons were suggested for 

the problem behavior and solutions were explored. Finally, results in terms of speedups 

were presented for a set of simulations with varying task evaluation times, and sources of 

overhead were identified t o  explain the increasing efficiency of the system as task evaluation 

times lengthen. 

The problems identified include "burst acceptances" of packets (tasks) in the early 

stages of computation, "multiple rejections" in the middle stages, and "slow nodes" a t  the 

end. The first two are related to communication delays, and the third is caused by too 

much communication. Solutions include cyclic search of neighbors, t o  more evenly distribute 

load; early context switches, or  flicking, in the Task Scheduler and Task Distributor, t o  

reduce communication delay; estimation of load changes, t o  compensate for remaining de- 

lays; and limitations on load broadcast frequency, t o  prevent excessive communications 

when they are  not needed. 

The performance results confirm our expectations tha t  a system using fine-grained 

tasks will not produce linear speedups. However, some speedup was obtained even for tasks 



with short evaluation times. For the architecture studied in these simulations, i t  is irnpor- 

tant  to keep the unit of work large enough that  its run time exceeds the interval between 

load communications. Small units of work do not produce significant load imbalances, but 

do result in greater per-task overhead and, therefore, reduced performance. With longer- 

running tasks these overheads are amortized sufficiently that  considerable speedup can be 

attained, even in a system with relatively slow message processing. 



CHAPTER 7 

Experiments in Speculative Evaluation with Priority Scheduling 

7.1. The MPCR Simulator 

The Massively Parallel Combinator Reducer simulator emulates the mapping onto a 

parallel machine of the abstract model of Chapters 3 and 4. Most of the implenientation 

techniques discussed in those chapters were used, including reference rights garbage collec- 

tion and recursive packet formation. Diffusion scheduling and the speculation heuristics 

described in Chapter 5 were also used. 

The simulator differs in a number of ways from the diffusion scheduling simulation pro- 

totype, most of them related t o  the design differences in the simulated machine models. 

Both are  designed t o  support multiple simulated processors for each real processor of the 

machine on which they are run. One difference is tha t  the MPCR simulator implements a 

complete combinator reduction engine, capable of running real programs. The diffusion 

simulator used a randomly generated, simulated program. In addition, although the organi- 

zation on a per-processor basis is very similar t o  the diffusion simulator, the MPCR simula- 

tor utilizes a true multiprocessor machine. Each real processor runs independently, syn- 

chronized only by the constraints of message-passing among the simulated processors. This 

introduces nondeterminacy not present in any of the earlier diffusion scheduling simulations, 

and therefore provides a more accurate picture of the true behavior of the simulated 

machine. 



Mapping of simulated processors t o  real processors is done statically, because the 

number of simulated processors is known in advance. The overhead of supporting these 

simulated processors is considerable, but is intended t o  allow simulation of massively paral- 

lel machines on the somewhat less parallel architectures tha t  are currently available. Un- 

fortunately, memory limitations and the time required for each run made i t  impossible t o  

perform simulations on the scale tha t  was originally anticipated. Experiments using 1024 or 

2048 processors were planned, but the largest network tha t  i t  was possible t o  simulate was 

256 processors. 

Each simulated processor is represented by a da t a  structure and a set of coroutines. 

The da t a  structure for each simulated processor contains: 

A local copy of a system-wide clock used t o  synchronize operations among the simulat- 

ed processors. 

A counter to track the memory usage of the simulated processor. 

A table of channel identifier8 describing the connections of the simulated processor t o  

its neighbors. 

The message buffers used t o  pass messages between the primary CPU and the com- 

munication channels. 

m The statically allocated structures used by the run-time system, such as  the ready 

queue and pressure tables. 

The operation counts and timings collected in the course of the simulation. 

One coroutine simulates the primary CPU, which runs the MPCR run-time system. This 

run-time system is described in more detail in Chapter 8. The other coroutines act  as  m e s  

sage transmitters t o  simulate the communication channels linking the CPU with its neigh- 
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Figure 7.1 - MPCR Simulator Design. Each simulated processor consists of several Inter- 
work XI coroutines, representing the primary CPU and message passing coprocessors. 

boring processors. These channels are assumed to operate independently of the primary 

CPU when handling messages that neither originate from the CPU nor are destined for it. 

Figure 7.1 summarizes this design. 



Messages transmitted from (or through) a simulated processor A t o  a specific neighbor 

B always use the same receiving channel a t  B. However, any of the channels at A may con- 

nect t o  t ha t  channel. The channel used is determined by a deadlock-free routing algorithm 

(DaS871. The simulator is designed t o  accommodate different communication network 

configurations by replacing the module tha t  implements the routing functions. However, 

due t o  time constraints, all experiments described in this chapter were run using binary hy- 

percubes of varying sizes. The routing module therefore implements e-cube routing [SuB77], 

as  shown in Figure 7.2. 

Contention in passing messages through the transmitter coroutines is mediated by 

cut-through routing (I(eK791. That  is, the entire message may be buffered a t  each simulated 

processor before transmission t o  the next is begun. This is reasonable because all messages 

in the MPCR model are very small. A channel is active from the time i t  makes a connec- 

tion with a sending transmitter until transmission of the message to the next simulated pro- 

cessor in the e-cube route is completed. Until its channel becomes inactive, a transmitter 

will not accept a connection from a second sending transmitter. If two different 

transmitters a t  some simulated processor A simultaneously attempt t o  transmit messages t o  

neighbor B, one of the A transmitters will be blocked until the other finishes communicating 

with B. 

The MPCR simulator is implemented in C, using Block Island Technologies' Interwork 

11 parallel programming toolkit [Bai88]. Intework II provides coroutines, queuing mechan- 

isms, automated distribution of da t a  structures among physical processors, and a global 

namespace. This makes the MPCR simulation portable t o  uniprocessor machines and t o  

both shared and distributed memory multiprocessors. Initial implementation work was done 

on a DEC VAX 11/780 and later on a Sequent Symmetry S81. A t  the time the simulation 



Figure 7.2 - e-cube Routing. The route is generated by toggling the bits in the binary 
representation of the processor number, one by one, from right t o  left. Only the bits tha t  
differ between the source and destination numbers are toggled. The solid lines show the 
route from processor 4 (100) through processors 5 (101) and 7 (111) to  processor 3 (011). 
Note tha t  the "return" route from 3 t o  4 is not the same; i t  passes through 2 (010) and 0. 

In the simulator, each of the neighbors of a processor uses a different message 
transmitter (channel) to  pass messages t o  or  through tha t  processor. The transmitter used 
is always the same and is determined by the bit position of the sender's number tha t  must 
be toggled t o  generate the receiver's number. For example, processors 1, 2, and 7 can each 
connect t o  a transmitter a t  processor 3. Processor 1 uses transmitter 1, processor 2 uses 
transmitter 0, and processor 7 uses transmitter 2 (shown in the diagram at right). 

Any transmitter a t  the sending processor can connect t o  the transmitter at the receiv- 
ing processor, but only one such connection can be made a t  a time. For example, if proces- 
sors 5 and 6 simultaneously send messages t o  3, one of the two messages will be temporarily 
blocked, because the ecube routes t o  3 for both of these senders pass through 7. 

Each simulated processor has one additional transmitter (shown in Figure 7.1) t o  han- 
dle messages originating from tha t  processor. 

was designed, Interwork I1 did not yet support use of more than one processor on the 

Sequent. Tha t  version was therefore used for development, .because the determinacy of 



sequential execution simplifies debugging (errors are repeatable). The program was then 

ported unchanged (except for removal of some debugging code via the C preprocessor) t o  the 

Intel iPSC/2 hypercube multiprocessor t o  collect data. 

7.2. Diffusion Scheduling Policies 

7.2.1. Information Policy 

As in the diffusion scheduling experiments, information is exchanged only among 

directly connected processors. The pressures received from neighbors are averaged with the 

pressure computed locally to  obtain the value broadcast to  the neighborhood. The pressure 

value for each processor is the length of its ready queue. Most tasks pass through the ready 

queue very quickly, but speculative tasks executing a t  very low priority may remain either 

in the queue or in a suspended (waiting) state for a long time. In contrast t o  our assump- 

tions in the diffusion scheduling simulation, MPCR tasks occupy very little memory when 

suspended because of their extremely small size, and speculative tasks can be garbage- 

collected whenever memory usage becomes excessive. For these reasons, no direct account- 

ing for the number of suspended tasks is included in the pressure value. Including suspended 

tasks in the base pressure computation would misrepresent the resources available for 

higher-priority work. 

To simplify weight computations and reduce load message size, memory usage infor- 

mation is not treated as a separate component of the pressure. A fixed, very high pressure 

is still used t o  represent memory approaching its maximum capacity, but processors do not 

store memory statistics for their neighbors. When memory a t  a processor is nearly full, i t  

broadcasts the "memory full" pressure value and begins deleting speculative tasks from its 

ready queue. If i t  is unable to delete a sufficient number of tasks t o  reduce its memory 



usage, i t  will execute higher-priority tasks normally until the memory usage declines. No 

new load broadcast is made until memory occupancy has been reduced. 

The most recently computed pressure is "piggybacked" on a reduction packet when 

one is sent t o  a neighbor processor. The load value most recently sent t o  a neighbor by this 

method is stored. When a new pressure is computed, the percentage change between the 

new pressure and the last pressure sent t o  each node is compared t o  a threshold value. Ad- 

ditional load messages are sent only t o  those neighbors for which the difference exceeds the 

threshold. A load broadcast therefore need not include all neighbors. Pressure is not pig- 

gybacked on da t a  messages. Although a da t a  message must pass through the message 

coprocessors on one neighbor node, such a message is not examined by the run-time system. 

Unless otherwise noted, the load broadcast threshold was fixed a t  a 15% change in 

load for all the experiments described in this chapter. This value was determined empirical- 

ly from several early tests of the simulator and may not be optimal for all combinations of 

programs and numbers of processors used. In particular, programs which generate fewer 

tasks compared t o  the number of processors make more load broadcasts, because the aver- 

age loads from which the change is computed are small. 

7.2.2. Transfer Policy 

The decision t o  transfer is made for each complete reduction packet as  i t  is formed. If 

any neighboring processor has a lower pressure than the local processor, the packet is 

transferred. Otherwise the packet is placed in the local ready queue. The determination of 

whether a neighbor has lower pressure is made by the same method a s  is used in the loca- 

tion policy, discussed below. Once a packet has entered the ready queue of a processor, i t  

remains a t  t ha t  processor until i t  has completed its evaluation transformation. Tha t  is, a 

processor tha t  accepts a packet commits itself to performing one combinator step of the 



reduction of the subexpression represented by tha t  packet. If tha t  reduction step introduces 

a new redex, the subgraph is repacketized and the new packet may a t  t ha t  time be 

transferred t o  another processor. 

7.2.3. Location Policy 

The fine granularity of MPCR tasks also makes a significant difference with respect t o  

the location policy of the diffusion scheduler. Small tasks require tha t  diffusion scheduling 

decisions be made a s  quickly as possible. The weight computation described in Chapter 6 is 

complex enough tha t  the execution time of the average MPCR task would be much less than 

tha t  t o  decide where t o  schedule it. The decision is therefore reduced t o  three comparisons. 

A task may be accepted if any of the following conditions hold: 

1. The local pressure is less than the lowest neighbor pressure. 

2. The task has been rejected too often by other processors. This controls "thrashing," 

tha t  is, tasks are  never delayed indefinitely by the diffusion scheduler. 

3. The current number of ready tasks s less than the optimal queue length. 

Condition (3) is tested only for tasks tha t  have higher priority than the highest currently 

ready at the local processor, and have been rejected a t  least once by other processors. In 

the simulations described in Chapter 6, i t  is assumed tha t  task size is sufficient t o  always 

make parallel evaluation worthwhile. With very small tasks, the expenses of parallel 

evaluation are worthwhile only if there is already other work ready t o  execute locally. The 

optimal queue length for each processor is therefore estimated as described in Chapter 5. As 

long as  the ready queue length remains below this value, high-priority tasks arriving from 

other nodes are  automatically accepted. However, high-priority tasks tha t  have not yet 

been sent to a t  least one other processor are always allowed t o  migrate, t o  prevent the com- 



putation from becoming sequential. 

If none of the criteria require that  the packet be accepted, the task is rejected and 

sent t o  the neighbor with the lowest pressure. The Rome and launch weights described in 

Chapter 6 are not used when determining the leastloaded neighbor. In addition to speeding 

up decision-making by simplifying the weight computation, the goal of achieving optimal 

ready queue length makes use of a launch weight inappropriate. Transferring a task is ac- 

ceptable if a neighbor has a lower load, but there is no need to "encourage" parallel evalua- 

tion when the local processor has available resources. 

The distance from the origin processor is not considered when placing a packet. Each 

packet returns only a single value to  its origin node, so repeated communication between 

specific parent and child tasks does not occur. Furthermore, packets that  represent subex- 

pressions requiring several reductions to  reach normal form may migrate repeatedly. The 

notion of an  "origin" of the computation becomes unclear in such an  environment. Over- 

coming a distance bias is the purpose of the home weight, so i t  is not useful if distances are 

not computed. Eliminating distance from the computation will also prevent the orbiting 

effect described in Chapter 6. 

For similar reasons, the number of rejections of (hops traveled by) the packet is not in- 

cluded in the computation. Instead, the hop count is given an  upper bound, and if that  

bound is exceeded then the processor currently considering the packet must accept it. This 

controls thrashing by forcing tasks to eventually stop their migration. 

7.3. Optimal Queue Length 

Computation of an  optimal ready queue length requires an  estimate of the number of 

tasks which have dependencies on other tasks. This estimate is expressed as a probability 

Pij, the probability that  a task i depends on some other task j. Considering only reduction 



packets a s  tasks, strict combinators form packets with dependencies, and nonstrict combina- 

tors form packets with no dependencies. Test runs of several different programs, with specu- 

lative evaluation disabled, show tha t  strict combinators are the functors in about 15% of 

the total useful reductions performed. However, the true situation is more complex, because 

the formation of each packet from its corresponding application graph must also be con- 

sidered. 

In the test cases, approximately 5Wo to  75% of the useful reductions involve combina- 

tors tha t  introduce a new application (expansive combinators). Forming a reduction packet 

from a n  application node involves an  implicit dependency on the left function of the appli- 

cation. Considering packet formation t o  be a task, this indicates tha t  Pij for many prob- 

lems may be over 50%. This is discouraging, because it  means tha t  dependencies are ap- 

proaching the range in which it  is impossible to  mask latency. However, preliminary runs 

on small numbers of processors showed reduced performance when Pij was less than 50%, so 

i t  was set a t  50% for the experiments described here. 

Recall tha t  estimating the optimal queue length requires an  estimate of the average 

message-passing time between any two processors, called T,,, . In the experiments described 

here, the time for a message t o  travel between adjacent nodes, assuming t ha t  no collisions 

delay the message, is approximately the same a s  the time t o  form and execute a reduction 

packet. This means tha t  remote execution takes a t  least three times as  long as  local execu- 

tion, because messages must be sent in each direction. The estimate of average message- 

passing time is made by multiplying the one-hop transfer time by the average diameter of 

the communication network. This is based on the characteristics of the MPCR simulator's 

message-passing system, with the assumption tha t  every node exchanges messages with 

every other node with equal probability. Although processors are in direct communication 



only with their nearest neighbors, outgoing reduction packets may be considered and reject- 

ed several times. Also, the initial graph is distributed t o  a s  many nodes a s  possible, so re- 

mote dereferences frequently must travel several hops. For a hypercube configuration, the 

d average diameter is - where d is the dimension of the hypercube [Da186]. 
2 

This scaling model is pessimistic; real systems such a s  the iPSC/2 can exchange mes- 

sages between distant processors nearly as  quickly as  between adjacent ones [Ar188]. Furth- 

ermore, the simulator imposes delays on the primary CPU t o  transfer messages t o  the (simu- 

lated) transmitter coprocessors. Providing the coprocessors with direct memory access, as in 

the Transputer [Whi85], would eliminate this overhead. 

The estimate of T,, the average execution time, is based on the implementations of 

the combinators. Re-packetizing the result of an  evaluation transformation when a n  appli- 
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Figure 7.3 - Estimated Optimal Queue Lengths. 



cation node is created is treated as a separate task for purposes of making this estimate. 

Fortunately, the average time t o  assemble a packet is approximately the same as the aver- 

age time t o  evaluate one. The time spent in suspending tasks and returning them t o  the 

ready queue is not included in the estimate, because suspension is inexpensive (it requires 

only placing an entry in a notifier list) and affects only a subset of all tasks. This means 

tha t  the estimate used for T, is slightly less than the actual execution time for those tasks 

tha t  suspend. 

Estimated queue lengths for the network sizes tested are shown in Figure 7.3. 

7.4. Combinators 

This section describes the set of combinators implemented by the simulation. The 

code for the graph manipulations corresponding t o  these combinators is built into the run- 

time system, so any expression can be executed a t  any processor. Turner's basic set of com- 

binators [Tur79], extended by some arithmetic and comparisons, was chosen primarily be- 

cause of the fine granularity of its operations. However, this set also has the advantage of 

being very straightforward t o  implement, which allowed simulator design and implementa- 

tion t o  concentrate on the mechanisms to  support distributed speculative evaluation. Final- 

ly, Turner's set has a well-defined abstraction algorithm which simplified development of the 

Lambda compiler described in Appendix B. This compiler was used t o  produce combinator 

expressions from programs written in a simple lambda-calculus language. 

The reduction system implemented in the simulator uses the outermost-first reduction 

rule t o  avoid nonterminating computations. However, certain combinators were selected to  

be sources of speculative evaluation. The speculative subexpressions created by these com- 

binators are scheduled at reduced priority as  described in Chapter 5. Like all reduction 

tasks, speculative evaluations are distributed by the diffusion scheduler to the heuristically 



most appropriate processor. 

A listing of the set of combinators follows. The classification of each as expansive, 

contractive, neutral or strict is noted, and the reduction rule for each is described. If a 

combinator causes a subexpression to  be evaluated speculatively, this is also described. Fig- 

ure 7.4 shows the compilation of a simple program into this combinator set, and the 

corresponding program graph. 

C (C (C I 3) 4) 5 (B (B Add) Add) 

Figure 7.4 - Program graph for the compilation of the program 
sum 3 4 5 where sum = Xx.Xy.Xz. x + y + z 



B (expansive) 

B f g z -+ f (g z). The evaluation of g z is begun speculatively. 

C (neutral, considered expansive) 

C j g z .-, j z g. This combinator is treated as  expansive because it does not 

reduce the number of applications in the program graph and may initiate evaluation 

of the subexpression j. 

I (contractive) 

Identity: I z -+ z .  

K (contractive) 

K z y  --+ z.  

P (neutral, considered contractive) 

Construct cons/pair: P z y --, (z,y). This is implemented as  actual formation of a 

pair-tagged node, for ease of manipulation. Lists and pairs are not distinguished from 

one another, except tha t  the special element nil (or [ I )  is provided as  a canonical for 

lists. Note tha t  pair formation is fully lazy, i.e. the components of a pair are  not 

evaluated unless demanded. 

S (expansive) 

S f  g z -+ f z (g 2). As with B, the subexpression g z is evaluated speculatively. 

U (expansive) 

Disassemble conslpair: U f (z,y ) --, f z y 

Y (expansive) 

The standard fixpoint combinator for compiling recursive functions. Implemented as  

Y h -+ h (Y h) because of difficulties with reference counting cyclic structures. 

Turner presents an  optimized Y reduction which introduces a cycle, but the tradition- 



a1 equation introduces none, a t  the cost of some loss of sharing. Also, Turner's Y op- 

timization cannot be directly applied because of the way subexpressions are evaluated 

a s  new, independent tasks. 

Cond 

(strict contractive) 

A conditional test: 

Cond b z y -+ z when b is true;  
Cond b z y y when b is jalae 

The strict evaluation required of the first argument of Cond makes it difficult t o  classi- 

fy as contractive, because additional evaluation may be necessary before the contrac- 

tive effect occurs. It would be possible t o  speculatively evaluate z and y while await- 

ing the result of b, but in practice the boolean test b is usually a very simple opera- 

tion, so little is gained by speculating on both of the cases. 

Add, Sub, Mult, Div, Mod 

(strict contractive) 

Perform (integer) arithmetic operations. Again, strictness prevents these from being 

considered truly contractive. These operations, along with the boolean comparisons, 

are the only source of nonspeculative parallelism in the combinator set. Both argu- 

ments of an  arithmetic combinator can be evaluated simultaneously at the same prior- 

ity as the application of the combinator itself. 

Es, ' 3 1  L t  

(strict contractive) 

Boolean comparisons (on integers). Both arguments of a boolean combinator can be 

evaluated simultaneously a t  the same priority as  the application of the combinator it- 



self. 

Nil (strict contractive) 

Test whether a cons/pair structure is the nil list. This combinator is strict only up t o  

WHNF, t ha t  is, i t  does not force evaluation of the head or  tail of the list. 

7.5. Description of Experiments 

The initial graph for each program is distributed across the simulated processor net- 

work before computation begins. For simplicity, this distribution is done in a round-robin 

fashion by increasing processor number, with no consideration of referential locality. The 

structure of each program graph is different, and implementing a generalized static mapper 

t o  match graphs t o  networks is beyond the scope of this research. However, the initial 

graph is pre-processed t o  form all possible reduction packets, complete or partial, before the 

program is loaded. This preserves some locality, and assures t ha t  at least a few steps of 

computation can be performed without waiting for remote requests. Distributing the graph 

reduces the severity of "hot spots" pfN85] but can not entirely eliminate them. As used 

here, the term "hot spots" refers t o  processors which receive a large number of requests for 

da t a  and must therefore process many more messages than other processors in the network. 

Although the graph is distributed, execution is defined to begin a t  simulated processor 

number 0. T o  detect completion of the program, a finished normal form of the result is col- 

lected a t  tha t  processor. This means tha t  there may be a slight delay between actually 

finishing the computation (printing the last par t  of the result) and detecting t ha t  comple- 

tion. When processor 0 has received the entire normal form, i t  signals all other simulated 

processors t o  send their final statistics and shut down. The collected statistics are then out- 

put. Similar statistics are  collected by a checkpointing process (an Interwork I1 task) tha t  

runs a t  regular intervals throughout the course of the simulation. 



Values of Pij ,  T,, and T, are held constant across all programs. As has been noted, 

this probably leads t o  less than ideal behavior, but time constraints limited the number of 

trials tha t  could be made for each program. The available memory at each simulated pro- 

cessor and the ready queue length considered t o  constitute overflow is also fixed. The only 

variables are the input programs themselves and the dimension of the hypercube network of 

simulated processors. 

Simulated time does not have a direct relationship t o  real time, so the experimental 

runs can only be considered in comparison t o  one another. As base cases for the specula- 

tive, parallel runs, each program was also run with no speculative evaluation on a single 

simulated processor (a zero-dimensional network). These base runs were used t o  determine 

the minimum number of reductions required t o  complete each program, and the sequential 

time required t o  perform those reductions. 

I t  should be noted tha t  this testing method fails t o  exploit speedups predicted by 

Guatajaon's Law [Gus88a,Gus88b] (also called Molerla Law). This law states tha t  large 

numbers of processors achieve greater speedups when they are used t o  perform larger com- 

putations. For purposes of comparing the same programs across different network sizes, the 

experiments described here do not scale problem size as the number of processors increases. 

Speedups are therefore likely t o  be less than could be expected for larger problems. 

7.6. Programs Tested 

This section presents the results of running three simple programs on various sizes of 

simulated processor networks. Before the individual programs are described, however, some 

general comments should be made. First, although the simulator is designed t o  switch t o  

evaluation of contractive combinators when memory nears capacity, none of the programs 

tested generated sufficient work t o  evaluate the usefulness of this strategy. Experiments us- 



ing larger programs were planned t o  evaluate this, but were dropped due to time con- 

straints. 

Second, the selection of the S and B combinators as  the source of speculative evalua- 

tions makes the potential for speculation dependent on the form of the source program. 

This is because these two combinators perform the function of rearranging the graph so that  

function arguments are supplied to the correct subexpressions. It  is therefore possible t o  tell 

which types of programs have a chance of speedup, but difficult to  tell exactly how well they 

will do. 

This program was the simplest one tested. It  generates a list of integers and squares 

each of the integers t o  generate an output list. Although the mapping operation has much 

potential parallelism if implemented eagerly, list construction is fully lazy as  defined in our 

test combinator set. Furthermore, the computation is limited by generation of the list. 

Each element is created by adding one t o  the preceding element. Therefore, even with an 

eager mapping (that is, processing of the tail of the list begun concurrently with processing 

of the head), maximum speedup from function-level parallelism is approximately a factor of 

2. This would represent the squaring of one element happening concurrently with genera- 

tion of the next element. 

Throughout this chapter, test programs will be expressed in a simple lambda-calculus 

language, called Lambda. The syntax of this language is summarized in Appendix B. 



mapsq = An. map (Xx.x x) (to n) 
where rec 

map = Xf .Ax. 
if null x 
then nil 
else f (fst x ) ,  map f (snd x) 

where 
to = Ax. 

(range 1 x 
where rec 

range = Xb.Xe. 
i f b > e  
then nil 
else b, range (b+l) e 

The results summarized here show representative runs of mapsq 100 (generating and 

mapping over a IWelement list), on hypercubes of dimensions 4, 6, and 8. There were two 

reasons tha t  this experiment was performed. First, t o  determine whether the speculative 

evaluation mechanism could compensate for a sequential algorithm. Second, i t  was hoped 

tha t  the fine-grained evaluation strategy might uncover parallelism tha t  was not obvious 

from the definition of the program. However, mapaq does not show parallel speedup for any 

of the network sizes tested. In fact, there is a slight slowdown, as  shown in Figure 7.5. The 

sequentiality imposed by lazy list construction is probably the major factor here. 

None of the network sizes is able t o  achieve the loads approaching the estimated op- 

timal level, so speculative work is never curtailed. In the case of the &dimensional network, 

the computation is 60% complete before all processors in the network are simultaneously ac- 

tive. Before tha t  point, some processor is always idle. However, by the time the computa- 

tion completes, the total work performed by the busiest processor is not more than double 

tha t  done by the least-utilized one. 

These results show tha t  the heuristics for creating speculative work are working prop- 

erly, although for mapaq much of the effort is misguided. The extra work done does not ap- 

pear to interfere significantly with useful computation. Note t ha t  the number of remote 
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Figure 7.5 - Completion Times for Mapsquares. The dashed lines in the bar graph a t  di- 
mensions 6 and 8 show the earliest checkpoint a t  which all elements of the list had been 
printed. The apparently sharp "tailing off' in the rate of printing the final few elements is 
an artifact of the checkpointing process and the method used to detect program completion. 
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shown in the second graph of Figure 7.6, and in more detail in Figure 7.7. This indicates 
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tha t  some useful speculative work is successfully being used to mask latency. Recall that  
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Figure 7.6 - Reductions Performed for Mapsquares. Total reductions counts only those 
reduction packets tha t  completed their evaluation transformation. 

the introduction of a remote request a t  least triples the expected evaluation time of a 

reduction packet. If speculation were not masking the extra latency of exchanging mes- 

sages, the slowdowns would be much more pronounced. Further evidence of this is discussed 

in relation to the puum program. 
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7.6.2. Parallel Sum 

This is the well known divide-and-conquer algorithm for generating the sum of n con- 

secutive integers in a given range. sequentially, this requires O(n) time, but in parallel i t  

can potentially be done in O(log, n) time. This computation is actually better suited to  a 

data-parallel SIMD decomposition, where the n integers are multiple data. The algorithm 

used here generates the integers as  i t  adds them, which introduces additional work propor- 

tional t o  the number of integers summed. 

psum = Xlow.Xhigh. dsum low high 
where rec 

dsum = hlow.Xhigh. 
(if (low = high) 
then high 
else dsum low mid + dsum (mid+l) high 
where 

mid = (low+high)/2 
1 

This algorithm has the best potential for nonspeculative parallelism of the three pro- 

grams tested. It  also has the least potential for useless speculative computation. Not 

surprisingly, i t  shows the best speedups. The computation is tree-structured, very similar t o  

the simulated process trees used in the diffusion scheduling experiments described in Chapter 

6. I t  is encouraging to  note that  the speedup of paum on the 4dimensional (16-processor) 

hypercube corresponds t o  the results of Chapter 6 for test cases with a similar ratio of exe- 

cution time to  message passing time. 

Figure 7.8 summarizes completion times and speedups for runs of paum 1 1000 (sum in- 

tegers from 1 t o  1000) on 4 ,  &, and &dimensional hypercubes. The 4dimensional network 

quickly reached optimal queue lengths at all nodes, and spent the majority of the computa- 

tion time with loads considerably above optimal a t  all nodes. This is reflected in the rela- 

tively small number of excess reductions performed, as  shown in Figure 7.9 and Table 7.1. 
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Figure 7.8 - Completion Times for Parallel Sum. 

In contrast, the two larger networks never achieve a balanced, near-optimal load. Concen- 

tration of the work in a few nodes is probably the result of a combination of factors. In the 

Cdimensional network, all nodes have a portion of the initial graph, so remote reference re- 

quests help t o  distribute the work. Only a fraction of the nodes in the &dimensional net- 

work have parts of the initial graph. In addition, the diffusion criterion of accepting 

higher-priority tasks until the local queue is a t  optimal length may be concentrating work 

a t  a few nodes early in the computation. The latter is unlikely, however, because those 

queues tha t  exceed the optimal length grow very rapidly t o  the maximum, a s  shown in Fig- 

ure 7.10. 

- 

A more likely explanation is tha t  the queues are filling with remote reference requests. 

Recall tha t  these requests are  not handled by the diffusion scheduler, but instead must be 

scheduled at the node which holds the reference. As speculative work is created to try t o  fill 
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the large processor network, important subexpressions or "hot spots7' in the initial graph be- 

come the target of large numbers of low-priority remote requests. The scheduling of higher- 

priority tasks prevents many of these requests from ever reaching the front of the ready 

queue, and so the queue fills with them. This in turn causes the local n d e  to send any oth- 



The summary lists the number of packets tha t  were deleted, tha t  were left incomplete a t  
program termination, or tha t  returned a duplicate result. Deleted and unfinished tasks are 
not included in the bar graph in Figure 7.9, but duplicate work is included in tha t  graph. 
The percentage wasted reflects the sum of the first three columns as  compared t o  the total 
reductions completed. 

Table 7.1 - Summary of Other Excess Work 
Parallel Sum 

er reduction packets i t  generates t o  neighboring nodes. Those packets may in turn send re- 

mote requests, forcing still more work into the already overloaded queue. 

T o  make certain tha t  speculative computation was not unreasonably limiting speedups 

for the larger hypercubes, an  additional test was run. Using an  &dimensional network, and 

with speculative computation disabled, psum 1 1000 was run again. If nonspeculative paral- 

lelism in the arithmetic operations was entirely responsible for the speedups, the nonspecula- 

tive test should perform a t  least as well as the previous tests. Instead, i t  performs much 

worse, running about 3 times dower than single-processor nonspeculative execution. Not 

surprisingly, this is exactly the slowdown anticipated due t o  the speed (or rather, the lack of 

speed) of the message-passing system. The system's reliance on the outermost-first (lazy) 

reduction rule is the most likely reason tha t  more parallelism is not discovered. Recall tha t  

this reduction rule avoids following non-terminating paths, by stipulating t ha t  subexpres- 

sions (i.e., the arguments of a function application) are not evaluated until after the appli- 

cation itself has been evaluated. Thus, even though nonspeculative parallelism is present in 

the tree of additions, the evaluation order prevents the system from discovering it. This 
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Figure 7.10 - Average and Maximum Per-Processor Pressure for Parallel Sum. The max- 
imum pressure is that  for any processor, not necessarily the same one each time. However, 
note the apparent 'Lhot-spot" behavior for the 6- and &dimensional networks. The flat area 
a t  the top of the graphs is the maximum queue length, a t  which a processor begins to delete 
speculative tasks. 

In the &dimensional network, minimum pressure is never found to be above zero, but 
every processor perform at least a few reductions. The total work done a t  each processor 
in the &dimensional hypercube is much more even, although the load at any given check- 
point is not balanced. 



suggests tha t  speculative computation is essential in a concurrent evaluator t ha t  wishes t o  

take advantage outermost-first semantics, a t  least to  stimulate parallelism, if not to  mask 

message latency. 

7.8.3. Towers of Hanoi 

This algorithm produces a list of twedigit  integers. The digits represent one move of 

a disk from the tower numbered by the first digit t o  the tower numbered by the second. 

This is quite similar to parallel sum, except that  each branch of the recursion performs 

O(n) operations where n is the height of the towers. Note tha t  the operations in the 

branches of the tree are completely independent, so the only limitation on parallelism in this 

algorithm is the construction of the process tree. However, the process tree is joined by list 

construction, so this parallelism is uncovered only by speculative evaluation originating in 

other parts of the program. 

rec 
hanoi = if .Xs.Xt.Xn.Xr. 

i f n < t  
then move f s, r 
else hanoi f t s (n-1) (move f s, hanoi t s f (n-1) r) 

where 
move = Ax. Ay. 10 x + y 

Although this program shows only modest speedups, a s  seen in Figure 7.11, i t  provides 

the most insights of any of the tests. The load balancing behavior of the Cdimensional net- 

work is particularly satisfying (see Figure 7.12). The average pressure a t  each processor is 

maintained consistently near the optimal queue length throughout the computation. In con- 

trast,  the average load varies widely when tested on a &dimensional hypercube, and the & 

dimensional case never manages to  utilize all processors. 

As seen in Figure 7.13, a t  the &dimensional network size the system begins t o  com- 

plete reductions at a slightly higher rate than for the &dimensional hypercube, then experi- 
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Figure 7.11 - Completion Times for Towers of Hanoi. Dashed lines in bars show the earli- 
est checkpoint a t  which the full list of moves had been printed. Dotted lines show the earli- 
est checkpoint at which all moves had been computed. The "tail" artifacts mentioned in 
Figure 7.5 were so pronounced in this case that  they have been cut from the graph of total 
moves printed. 

ences a sharp drop in the rate of completions. This is so different from the linear behavior 

of the other two cases that  the experiment was repeated t o  be sure tha t  no transient error 
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Figure 7.12 - Average Per-Processor Pressure for Towers of Hanoi. 

was responsible. A comparison of two runs is shown in Figure 7.14. Although the second 

run shows considerably different behavior during the course of the computation, the comple- 

tion times of the two differ by only a few clocks. Also interesting was the series of jumps in 

the packet completion rate for the second test, corresponding to  large variations in the total 

pressure. 

This is most likely explained as an indirect effect of the "hot spot" behavior observed 

earlier for parallel sum. As the system attempts to generate enough work to load all proces- 

sors, a large number of speculative tasks are created. Most of these tasks are completed 

very quickly, but eventually the queues a t  a few processors fill up with remote requests. At 

this point those processors begin deleting speculative tasks, including some of those requests, 

t o  reduce their queue lengths to  a manageable level. In the case of psum (Figure 7.9 and 

Figure 7.10), there is plenty of nonspeculative parallelism t o  take up the slack as speculative 
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much clearer here. The behavior was considered odd enough that a second run was made 
for comparison. The dotted portion of the bar graph shows results of that  test. 
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By contrast, hanoi has almost exclusively speculative parallelism. When a ready queue 

a t  a "hot spot" processor fills up and tasks are deleted, parallel evaluation is sharply re- 

duced. The system then resumes creating speculative tasks, attempting t o  load all proces- 

sors. The result is a repeated rise and fall in the number of active tasks, as  seen in Figure 

7.14. 

If the nondeterministic effects of dynamic scheduling are considered, this hypothesis 

can also explain the behavior of the first test. In order for speculative computation t o  build 

t o  its former level after the first drop in pressure, high-priority tasks must take long enough 

to  complete that  some useful speculative tasks return their results first. The first test has a 

slightly higher rate of completion of nonspeculative work, as  seen by the rate a t  which 

moves are printed. This may be enough to  prevent a resurgence of speculative work until 

late in the computation. 

Despite the presence of some differences, the general similarity in the rate of printing 

moves for both cases and their nearly identical completion times are encouraging. The 

steady increase in the printing rate in the second test, in spite of wide fluctuations in the 

pressure, shows tha t  the priority system is successful in reducing or preventing interference 

from speculative tasks. Furthermore, this suggests tha t  elimination of "hot spots" may al- 

low much greater speedups even without improving the speed of message transmission. 

7.7. Summary 

These experiments indicate that ,  in general, reduced-priority speculative parallelism 

cannot completely replace strict parallelism. Slowing of computation in the mopaq test and 

only moderate speedups in hanoi demonstrate t ha t  speculation is insufficient to overcome a 

strongly sequentializing factor (c.g., lazy constructors). The most successful application of 

speculative computation appears t o  be in combination with a few operators t ha t  exhibit 



strict parallelism. 

However, even when a reasonable degree of strict parallelism is present, speculative 

computation was important to  overcome latencies. In the absence of strictness analysis, 

speculation appears to  be necessary in order for the outermost-first reduction rule t o  be ap- 

plied successfully in a parallel environment. Speculating within the S and B reductions, 

which implement function composition, causes speculation on the arguments of functions. 

This can t o  some extent take the place of pre-evaluating arguments tha t  are known t o  be 

required. 

The mast significant drawback of speculative evaluation is tha t  known problems of 

parallel computation are magnified. In particular, nondeterministic effects can significantly 

alter the behavior of the program, and "hot spots" tend to  become much hotter. Fortunate- 

ly, the priority scheme is generally successful in preventing this from interfering with impor- 

t an t  work, a t  least until resources begin t o  overflow. 

Although techniques such as  copying heavily-referenced parts of the initial graph t o  all 

processors could reduce or eliminate the effects of hot spots, further investigation is needed 

t o  discover ways t o  control nondeterminism. It is probable tha t  the strategy of restarting 

tasks t o  increase priorities contributes t o  nondeterminism, as  well as  t o  hot spots. A stra- 

tegy tha t  allows deleted tasks to  be restarted but also allows task priorities t o  be increased 

directly, might be worth the added complexity involved. 



CHAPTER 8 

MPCR Simulator Reduction System 

This chapter describes those mechanics of the parallel reduction system tha t  are not a 

direct implementation of the abstract model of Chapters 3 and 4. The graph manipulations 

needed t o  perform individual combinator reductions are not included, because they are obvi- 

ous from the evaluation rules for each combinator, and follow very closely the diagrams in 

Tur79. As implied by the re-sending of Demand messages in the abstract model, when a 

reduction is performed the reduction packet describing the reduction is updated with the 

result. The updated packet is then re-evaluated until i t  is found to  be in weak-head normal 

form (WHNF). These forms are  then sent back t o  the origin processor of the packet, which 

is determined from the redex address. When the WHNF reaches the origin processor, the I* 

cal access pointer in the redex address is consulted, and the indicated marker is updated, 

completing evaluation of the subexpression. 

Figure 8.1 summarizes the symbols used in the diagrams in the remainder of this 

chapter. References are represented as  either solid or  dotted arrows, depending on whether 

the object pointed t o  is significant t o  the diagram. Solid arrows tha t  do not point t o  graph 

node symbols indicate references tha t  are significant but tha t  may be non-local (remote). 

The current pointer indicates a reference which was taken either from the local ready queue 

or  from a message, and which therefore is not contained within the expression graph itself. 

All operations of the reduction system begin by dereferencing such a pointer; the initial 

current pointer is supplied by the run-time system of the root processor node, and is ob- 

tained by loading a program graph from external storage. All applications in this initial 
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Figure 8.1 - Symbols 

program graph are assigned the minimum poaaibic priority; higher priorities are  assigned as  

the graph is evaluated (see Packet Formation). Evaluation of the root of the graph then be- 

gins a t  the mazimum possible priority, and priorities propagate downward. 

8.1. Packet Formation 

Before any evaluation can occur, a reducible subexpression must be collapsed into a 

task description called a reduction packet. Packet formation is summarired in Figure 8.2. 

This corresponds t o  the recursive packetire algorithm given in Figure 3.10. The right cell of 

the marker is initially empty, but will be used t o  keep track of the notificr list of tasks tha t  
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Figure 8.2 - Formation of a reduction packet. The large dark arrows show progression of 
the subexpression graph through each of the four stages; two repetitions of step 3 are omit- 
ted. 

1. The left spine of application nodes in the subexpression is recursively descended until a 
combinator is found (node A). The combinator may be in the left cell of an  applica- 
tion node, as  a boxed value, or in a partially filled template; see step 2. 

2. The application node immediately above the combinator (node B) is overwritten by a 
reduction packet template. This template contains the combinator from the left cell of 
the application, the reference (or canonical value) from the right cell, and empty slots 
for the remaining arguments of the combinator (if any). Templates represent partial 
Packets from the abstract model. 

3. The application node immediately above the template (node C) is overwritten by a 
new copy of the template, with the next argument slot filled in by the right cell of the 
application. This step is repeated as  the recursion unwinds, until a template has been 
constructed with all argument slots filled (node D). 

4. A completed template is copied into a finished reduction packet (node Dl), and the 
template node is replaced by a marker. A specially tagged copy of the packet, called a 
marked packet, is made (node D2). 



should be resumed (in terms of the abstract model, sent a Demand) when the marker is up- 

dated. The marker also keeps track of the task count for the redex, which is initially set to  

one. Formation of a packet from a sample program graph is shown in Figure 8.3. 

Although it is not necessary for implementation of the abstract model, both the task 

field of the marker and the unevaluated copy of the packet are tagged for error-checking. 

The task field tag differentiates an  updatable marker from those used t o  implement the 

Figure 8.3 - First reduction packet of the sample sum program. 



notifier list, as described in the next section. The marked packet tag, or more accurately, its 

absence, is used t o  check tha t  only correctly copied packets are  scheduled for evaluation. 

After the reduction packet has been formed, i t  is passed t o  the diffusion scheduler for 

assignment t o  a processor. This corresponds t o  sending an  Evaluate message t o  the packet. 

The marker node remains in the expression graph until one of its associated reduction pack- 

ets has been fully evaluated, a t  which time the marker is updated by a weak-head normal 

form. 

Packets can be formed either a t  the priority of the task demanding the value or  a t  

speculative priority. As explained in Chapter 4, speculative evaluation occurs during the 

evaluation transformation of certain expansive combinators. Application nodes along the 

left spine which are folded into templates (partial packets) are not increased in priority un- 

til the template is filled. When the packet is complete, i t  is assigned the greater of the 

priority a t  which i t  was requested or the priority already recorded at t ha t  application node. 

This is the maz computation used in the prioritized reduction rules (Chapter 4). If packet 

formation does not consume the entire left spine of a redex, this maz priority assignment is 

also applied t o  all application nodes in the spine above the completed packet. This assures 

tha t  any future evaluations of the redex will take place a t  the highest priority ever assigned 

t o  the subexpression. 

8.2. Suspension 

The template created in the packet formation process has in its argument list one slot 

for each argument of the combinator in its descriptor field. If the left spine of the expression 

graph contains more than this number of arguments, packet formation will not consume the 

entire spine. When this occurs, a recursive call t o  paeketire returns DEMANDED. In this 

event, the current evaluation must suspend t o  await the return of the evaluated subexpres- 



sion. I t  is also possible for another evaluation, going on concurrently, t o  encounter a mark- 

er when descending the left spine of a subgraph. 

Figure 8.4 - Suspension of a n  Application Graph (Marking Tranaformation). T o  suspend an  
evaluation, a new graph node D l  is first created, into which the application D is copied. D l  
represents the continuation of the packet formation process and will be resumed when the 
marker A is updated ( that  is, when the demanded value is returned). A reference t o  D l  is 
placed in the task field of D. Finally, a reference t o  D l  is added t o  the notificr fiat of A. 
This reference represents the Demand message used in the packetire algorithm. Although 
the algorithm of Figure 3.10 would indicate tha t  the Demand message be sent t o  node Dl 
the reaction of D would be t o  propagate the Demand t o  Dl .  Since the redex address of D l  
already refers t o  D, an additional Demand message from D would carry no useful informa- 
tion. I t  is therefore slightly more efficient t o  resume packetization at Dl .  



The notifier list is implemented in the simulation a s  a linked list of marker nodes. The 

right cell of each marker in the list holds a reference t o  the next marker in the list; no such 

Figure 8.5 - Optimization: Suspension of a Partially Evaluated Task. An opportunity for 
optimization arises when the root application of the expression t o  be suspended is the result 
of evaluating a reduction packet. (Recall tha t  when a reduction packet executes, i t  is 
transformed into a graph and then re-demanded until the expression is in weak-head normal 
form.) In this case, there is known to  be exactly one reference t o  the root application, so it 
is not necessary t o  replace tha t  application with a marker. Instead, the nonshared reference 
is placed directly in the notifier list. 



marker can ever hold a remote reference. Instead of placing a Demand message in the list, 

the left cell of each marker in the list holds the reference t o  the task t o  be notified. This is 

because all Demands are handled through packetize.  I t  is sufficient t o  know the node at 

Figure 8.6 - Suspension of Additional Demands for a Subexpression. Task E is the first t o  
suspend after demanding redex D. Dl is suspended on A by the packetize algorithm, as ex- 
plained in Figure 8.4. Later, task F suspends upon demanding redex A, and is inserted into 
the notifier list of A. 

The dashed arrows from E t o  D and from F t o  A indicate tha t  such a path must exist 
in the graph, although it may pass through the left cells of one or more intervening applica- 
tion nodes. 



which the next call t o  tha t  algorithm should begin. Suspension of a task and several optim- 

ized special cases are shown in Figures 8.4 through 8.8. 

As a detail, i t  should be mentioned how additional tasks are added t o  the notifier lists 

of markers. Concurrently executing evaluations which attempt t o  access existing markers 

are  inserted into the linked list of notifiers stackwise, at the front. Figure 8.6 shows such an 

insertion. The rightmost reference in the notifier list is always null. 

Figure 8.7 - Repeated Suspension of Application Graph. Another case of some interest oc- 
curs when two or more repeats of packet formation, evaluation, update, and re-packetizing 
a re  necessary in order t o  consume the entire left spine of a reducible graph. Here, the 
marking transformation has already been performed for node Dl and i t  is therefore unneces- 
sary t o  repeat i t  for Dl .  Note tha t  the end result is equivalent t o  tha t  of Figure 8.4. 



Figure 8.8 - Suspensions of Markers. The abstract model specifies tha t  the marking 
transformation should move the redex address of an  application into its notifier list. By 
definition, however, an  application must never have more than one redex address. The 
marking transformation can thus be optimized by leaving the redex address unchanged. 
The update transformation is then responsible for reactivating the evaluation (see below). 

If instead the redex address is found a t  an  indirection t o  the marker, as  in node B, this 
optimization is not possible. In this case a reference t o  the indirection B must be placed in 
the notifier list of the marker A. If this were not done, the update transformation would 
not have enough information t o  reactivate the task. 

8.3. Update and Awakening 

When an  evaluation task has reduced t o  a weak-head normal form, i t  is returned t o  

its processor of origin, where the marker node left a s  a place-holder for the value is updated. 

The several possible alternatives for performing this operation are  shown in Figures 8.9 

through 8.12. 



Figure 8.9 - Update Transformation, General Case. The most common update situation, 
task A1 returning a value to  update marker A. Five steps are followed to update a marker: 

1. The task field reference to  marked packet A2 is released. The reference to  the notifier 
list, in A's right cell, is saved for future use. 

2. The weak-head normal form in A1 is transferred into A. This transfer erases the con- 
tents of Al,  except for the redex address, which is not transferred because the redex 
address of A must not be overwritten. 

. The updated node A is checked for the presence of a redex address. If no redex ad- 
dress is found, the reference to  A (that is, the redex address of Al)  is released. The 
case when a redex address is present is described below. 

4. All useful information has now been removed from Al ,  so the current reference to  it is 
released. 

The final step is shown in Figure 8.10. 



Figure 8.10 - Awakening Tasks from Notifier List (update transformation, continued). 

5. The notifier list saved in step 2 is traversed. References found in the left cells of the 
linked markers in the list are placed in the ready queue a t  the local node, in priority 
order. This is referred t o  as  awakening the suspended evaluations. References to  the 
markers in the notifier list are released as  the tasks they point to are awakened. This 
frees the linked markers, because they can have no references from outside the list. 



Figure 8.11 - Awakened Tasks Enqueued (update transformation). The completion of the 
update transformation when updated node A had no redex address is shown. 



Figure 8.12 - Awakening the Updated Node (update transformation). When the updated 
marker A contains a redex address, A represents a suspended task which must be awakened. 
Recall tha t  the redex address of A represents a Demand message, which as an  optimization 
was not moved to  the notifier list. The abstract model specifies tha t  A should send this 
Demand t o  itself. T o  accomplish this, instead of releasing Al's redex address reference in 
step 3 of Figure 8.9, tha t  reference is placed in the ready queue. Other tasks (such as  E) in 
the notifier list of A are awakened as  usual. If A does not contain a redex address, it must 
represent either a speculative evaluation or  a strict parallel evaluation (such as  the second 
argument t o  a n  arithmetic combinator). 



8.4. Rescheduling Tasks 

As has been described, when a reducible graph is converted t o  a reduction packet for 

scheduling, a copy of the packet is left behind, referenced by the task field of the marker 

node. Each time a task is started t o  evaluate a particular redex, the priority of tha t  task is 

recorded and the task count is incremented. The priority information is stored in the copy 

of the packet. The counter is kept in the marker node where the value will return. New 

demands on the marker do not s ta r t  new tasks unless either (a) their priority is higher than 

tha t  stored in the copy, or  (b) the count of tasks associated with the marker is zero. The 

counter value may be zero because it  is decremented whenever one of the speculative tasks 

evaluating tha t  redex is deleted. 

However, the most common case of rescheduling occurs when the task field of the 

marker refers t o  an  application node. In this case, rescheduling must use the packetize func- 

tion t o  demand tha t  the subgraph be evaluated. This traverses the left spine of the sub- 

graph until i t  encounters a marker whose task field refers t o  a complete packet. A new 

copy of tha t  packet is then scheduled. Figure 8.13 details this operation. 

8.5. Forced Task Exit 

Another situation in which the notifier list must be traversed is when a speculative 

task has been terminated without being fully evaluated, as described in Chapter 4. When 

the run-time system a t  some processor detects that  its resources are  nearing their limits, i t  

examines the queue of ready tasks t o  find the Iowestpriority speculative task not already in 

normal form. When a suitable task has been selected, the processor forces the task t o  exit 

by first sending a n  Ezitcd message, containing the redex address from the killed task, t o  the 

processor where the reduction packet originated. This message carries the reference rights 

held by the deleted task t o  its marker. Once the En'tcd message has been sent, the rest of 



Demand I 

Figure 8.13 - Rescheduling a Speculative Task. Packet E, which is strict in its first argu- 
ment D, demands the evaluation of D. D was previously begun as  a speculative computa- 
tion, resulting in reduced-priority packet A1 (not shown) and its copy A2. When demanded 
again at higher priority, D invokes paeketire on its task field reference. This recursively des- 
cends the graph t o  marker A, which schedules a new copy A 3  of the packet A2. The same 
procedure is followed if A1 has ezi ied (see below) and the priority of E is equal t o  or less 
than tha t  previously assigned t o  A and D. 

Note t ha t  packet E will suspend on node D, a s  shown in Figure 8.6. The task count of 
marker A is incremented. The task count of D is incremented only if i t  was previously zero, 
because there is only a single application node whose redex address refers to D. The task 
count of each marker thus reflects the number of other nodes tha t  have the potential t o  up- 
date  t ha t  marker. 



the task's references are released, and the task is deleted. The rescheduling mechanism al- 

ready described guarantees tha t  if the task is ever again demanded, a higher-priority task 

can be scheduled t o  perform the computation. 

Figure 8.14 - Notification of Task Exit. The task count stored in the marker A is decre- 
mented, and if i t  has reached zero, the notifier list is traversed. All tasks in the list are 
forced t o  exit, because there is no way t o  guarantee tha t  the da t a  for which they are  wait- 
ing will ever become available. Note tha t  the task count cannot reach zero if there is any 
nonspeculative (highest priority) task associated with the marker. As with any deleted 
speculative task, the rescheduling mechanism ensures tha t  the results of any of these tasks 
can still be obtained. 



Figure 8.14 shows a graph a t  the time an Ezi ted  message is received a t  the origin p r e  

cessor, and Figures 8.15 and 8.16 show propagation of the exit notification. 

Figure 8.15 - Notification of Exit: Suspended Tasks Discarded. To discard a task from the 
notifier list, after an Ezi ted  message is sent t o  its redex address, the reference t o  the node is 
released and the linked marker which previously held that  reference is retagged as an  in- 
direction. Task E of Figure 8.14 has been discarded, and application Dl is receiving an Ez- 
i ted message. Once the notifier list has been emptied, the marker A is examined to see if it 
contains a redex address. If i t  does, i t  is also forced to exit. 



Figure 8.16 - Propagating Exit Through an  Application. Applications referenced by a 
marker's task field require some special handling. The redex address of the application must 
be shared (its reference rights divided) t o  create the Ezitcd message. This is due t o  the op- 
timizations described in Figure 8.4 and Figure 8.8, which require tha t  the redex address of 
such an  application is not released or  transferred until the task field of the associated mark- 
er is released. This does not introduce difficulties, because implementation of task counting 
requires the redex address of such an application t o  be a local reference. 

The termination of a speculative evaluation may be propagated all the way back t o  the ori- 

ginal node tha t  received the Speculate message. If no other references t o  the speculative 

task's marker remain, the entire speculative subexpression is deleted. Useless speculative 

computations can thus be completely removed. They are not eliminated a s  soon as  they be- 

come useless, but their reduced priority prevents them from delaying essential work in the 

meantime. 



8.6. Remote Reference Requests 

When the value of a remote reference is demanded, a remote reference request is gen- 

erated and sent t o  the processor where the referenced node is t o  be found. Generation of a 

remote request is shown in Figure 8.17. A t  the origin processor, the request packet is treat- 

ed as  a strict I combinator reduction. If the argument reference has not been evaluated, i t  

is demanded, and the request task suspends t o  await it. In the case tha t  the argument 

reference points t o  yet another remote reference, the evaluation is simplified whenever possi- 

ble by forwarding the original request packet without changing its redex address. The final 

value is thus returned directly t o  the marker a t  the processor where the reference was origi- 

nally demanded. 

Unlike other evaluation tasks, request packets cannot always be rescheduled. When 

the number of rights held by the argument reference reaches the minimum, no new copies of 

the request packet can be generated. This is because any attempt t o  share the argument 

reference would result in the introduction of a n  indirection, which is a local reference. Only 

when the demanding task has the highest priority is no new copy needed. This is therefore 

the only case in which remote requests are guaranteed t o  be sent. If i t  is not possible t o  

send a request, the demanding task is forced to exit, and notification is sent t o  i ts  redex ad- 

dress, as  has been described. This does not affect the completeness of the computation, be- 

cause normal-order tasks always have highest priority, but i t  may limit some speculative 

computations. 



Figure 8.17 - Remote Reference Request. This involves five steps: 

1. A request packet is created (At?), and the remote reference is transferred into its argu- 
ment vector. Request packets are scheduled like any other packet except tha t  the 
diffusion scheduler is not used t o  choose a processor. Instead, the request packet will 
be sent t o  the processor indicated by the remote reference, and tha t  processor is re- 
quired t o  accept and schedule it. 

2 A marker node t o  reserve space for Local  A is created, and the memory cell originally 
containing the remote reference is updated with a reference t o  Local  A. 

3. The reference t o  the marker is shared (copied with sharing of reference rights) into the 
redex address of the request packet. 

4. As with other evaluation tasks, a copy of the request packet is made and stored in the 
task field of the marker. 

5. The task count of the marker is initialized t o  one, and the request packet is sent. 

Once the remote reference request has been sent, the originally demanded application D is 
suspended in the usual way. 



CHAPTER 9 

Conclusions and Directions for Future Research 

9.1. Summary and Conclusions 

This thesis has explored some specific techniques for scheduling location and processor 

allocation t o  tasks in order t o  achieve massively parallel, asynchronous computation on 

MIMD computers. I t  emphasizes automatic, dynamic decomposition of a program into con- 

current tasks, in order t o  reduce the complexity of programming and t o  find parallelism 

tha t  static techniques overlook. Techniques for control of dynamic task generation were 

also investigated. Some control is necessary in order t o  assure tha t  important work is com- 

pleted first and tha t  resources are not swamped. Throughout these investigations i t  was 

crucial t o  understand the design and implementation considerations of a model tha t  would 

scale well with increasing machine size. 

Evaluation of expressions by concurrent graph reduction was chosen a s  the basic 

model of computation. Graph reduction has several characteristics t ha t  make i t  attractive 

for parallel evaluation. 

Opportunities for parallel evaluation can be discovered by direct examination of the 

form of the graph representing an  expression. 

The results of an evaluation are  deterministic, regardless of the order in which subex- 

pressions are evaluated. 

Synchronization is simplified, both because of the deterministic property and because 

the functions which operate on the graph make manifest their accesses t o  data .  



The granularity of reduction operations can be chosen t o  match the requirements of 

an  evaluation model and architecture. 

The experiments described in this thesis have focused on fine-grained combinator 

operations. Combinator graphs contain numerous, potentially concurrent subexpressions 

tha t  can provide work for the large number of processors available in a massively parallel 

machine. In addition, the individual tasks are small; tha t  is, they can be compactly 

represented a s  da ta  objects. This means tha t  their images are easily transmitted and col- 

lected into pools of work tha t  will keep processors busy while other tasks are suspended, 

awaiting data .  

The thesis makes contributions on three distinct topics. 

1. A detailed meehaniam for distributed graph reduction. A message-driven protocol 

for task distribution and scheduling on a non-shared memory multiprocessor has 

been described and correctness proofs given for its principal functions. This in- 

cludes a task deletion and garbage collection subsystem. The model treats the 

nodes of a program graph a s  virtual processors t ha t  exchange messages. This 

defines units of work tha t  may be mapped onto a physical machine of any size. 

2. Ezperimental  evaluation of a difluaion scheduling algorithm. To map a program 

onto a network of processor modules, a dynamic scheduling algorithm called 

diffusion scheduling has been suggested. I t  uses a measure of workload as  the 

analog of pressure t o  direct tasks t o  modules where they are most likely t o  re- 

ceive prompt service. collection of workload information and control of task dis- 

tribution are both managed in a decentralized manner, by exchange of messages. 

This makes diffusion scheduling a good match for the message-driven evaluation 

model, in terms of both operation and scalability. Experimental studies of this 



algorithm extend the existing body of work on distributed scheduling, and expose 

some of the pitfalls and dynamic behavior of these techniques. The simulation 

results indicate tha t  a diffusion scheduling algorithm, properly tuned t o  the ar- 

chitectural parameters of a system, can find placements for dynamically created 

tasks tha t  will effectively balance workload among multiple processing nodes. 

3. Analysis and experimental evaluation of apeculative evaluation. Speculative 

evaluation attempts the reduction of subexpressions whose values cannot be 

guaranteed t o  be useful, in order t o  stimulate concurrent activity. To  provide 

control, a priority scheme was used t o  schedule speculative tasks and t o  aid in 

garbage collection of excess tasks. Performance of a multiprocessor using specu- 

lative evaluation was measured by simulation, which allowed a significantly wid- 

er range of variation of the multiprocessor network size than was available in a 

physical system. 

This work has been concerned with studying the dynamics of the parallel evaluation 

model. This aspect of parallel systems has frequently been overlooked by other researchers. 

The experiments performed have provided insights into the behaviors of diffusion scheduling 

and speculative evaluation, and into the ways in which these two techniques can interact. 

By presenting a detailed model for massively parallel reduction, and by exploring the 

behaviors of this model and its attendant problems, this thesis has provided a basis on 

which future investigation in this area can be built. 

Although graph reduction provides a conceptual framework for the model, its imple- 

mentation required considerably more mechanism than was expected a t  the outset. New 

node types had t o  be added t o  the graph structures in order t o  account for s ta te  transitions 

induced by the receipt of messages. Priority scheduling required methods t o  modify priori- 



ties, so t ha t  a high-priority task would not be forced t o  wait should it be found to depend 

on the result of a lower-priority task. Furthermore, the use of priority a s  a criterion for 

deleting excess tasks required a means of propagating the deletion notice t o  dependent 

tasks. It  also required the system to  be made robust under uncertainty t ha t  a previously re- 

quested task would ever complete. Success in meeting these challenges has been demon- 

strated by informal but rigorous proofs that  the model behaves correctly. 

A new result of this research is an analytic estimate of the number of tasks required to  

successfully mask communication latency. This analysis reveals that  latency cannot be 

masked completely when the proportion of tasks that  are themselves dependent on commun- 

icated parameters is greater than 60 percent. This is an important result, because i t  pro- 

vides a measure tha t  can be used to  determine whether a given program or even a given 

computation model is appropriate for massively parallel asynchronous computation. Clear- 

ly, asynchronous parallelism thrives on independent tasks. Program analysis should seek to  

discover independent tasks and should report an estimate of the dependency parameter for 

the program. If a program shows a high degree of intertask dependency, i t  may require syn- 

chronous or systolic parallel evaluation t o  achieve speedup. 

Experiments investigating the effectiveness of the speculative evaluation strategies in- 

dicate tha t  progress has been made towards the goal of automatically discovering parallel- 

ism. Speculation is essential to achieve speedups by parallel evaluation of lazy functional 

programs if strictness analysis is not performed. This is the case even when the function- 

level parallelism of a program is high. However, the anticipated discovery of fine-grained 

parallelism within a program having little coarser-grained concurrency was not realized. 

The system also failed t o  produce significant speedups in programs whose parallelism lay 

primarily in speculative operations. 



Much of the failure t o  see better speedups is probably due t o  sequentiality imposed by 

the lazy list construction operation. Furthermore, use of Turner's combinator set imposes 

artificial dependencies in accessing the arguments of multi-argument functions. Architectur- 

al  aspects of the simulated system, such a s  a relatively inefficient message-passing system, 

may also be a factor in limiting speedups, but the da t a  do not clearly indicate whether this 

is the case. 

Efforts t o  control speculative computation have had mixed success with respect t o  per- 

formance. The priority scheme accomplishes the goal of completing useful work quickly, 

even when a large amount of useless speculation has been attempted. Throttling of specula- 

tion also prevents the overuse of system resources, but has a number of disadvantages. 

"Hot spot" behavior seems to  be exaggerated by speculative computation, especially when 

the number of processors begins t o  exceed the number of nodes in the initial program graph. 

Task deletion t o  eliminate excess work causes eccentric performance in some cases. How ra- 

pidly tasks should be allowed t o  spread across the network has also not been determined. 

The optimal solution depends upon characteristics specific t o  each program, and it  is 

difficult t o  find a policy tha t  behaves equally well in all cases. 

9.2. Directions for Future Work 

Although the results of speculative evaluation presented in Chapter 7 show some 

promise, i t  is clear tha t  the system is still greatly a t  the mercy of dynamic variations. Ex- 

cess speculative work, multiple evaluations, and especially task deletion, all add complexity 

and uncertainty of performance t o  the distributed evaluation model. Further work is neces 

sary t o  explore ways of reducing the occurrence of "hot spots" and t o  control nondeterminis 

tic performance. The few test cases tha t  i t  was possible t o  study do not provide a complete 

picture of the range of behaviors. More experimental da t a  is needed, especially for larger 



problem sizes. 

The drastic reduction in parallelism seen in the hanoi example suggests t ha t  task dele- 

tion may not be the best way to  control flooding of resources. Although the capability is 

useful in extreme situations, some programs perform badly under the deletion of speculative 

tasks. Alternatives tha t  avoid task deletion should also be explored. One possibility is to  

allow low-priority reduction packets t o  migrate again if high-priority work pushes them to  

the back of the ready queue. However, this may only flood the communication network in- 

stead of flooding processor resources. 

9.3. Other Applications 

This research has considered the application of speculative evaluation with priority 

scheduling t o  parallel execution of a single program. However, the use of global diffusion 

scheduling and local priority scheduling are not dependent on the evaluation of one graph 

at a time. Multiprogramming is used in the MPCR a t  the combinator level t o  supply each 

processor with a pool of tasks. The global system could be multiprogrammed as well, 

evaluating several disjoint graphs simultaneously. This would be best utilized when none of 

the programs being evaluated were of sufficient size t o  occupy the entire processor network. 

Associating a tag  with the priority field of each node or message would also provide for a 

different "highest" priority within each graph. This would allow different programs t o  be 

assigned different starting priorities, as  is common in multiprogramming operating systems. 

The tag  would be used t o  determine which "low priority" tasks are eligible for deletion, be- 

cause the speculative tasks of one graph might have the same priority as nonspeculative 

tasks of another. 

Finally, i t  should be noted tha t  these techniques are not restricted t o  graph reduction 

computations. Although graph reduction provides a convenient framework for identifying 



concurrent tasks and assigning priorities to  them, another method could easily be applied. 

The property of uniqueness of normal forms is also helpful when using speculative evalua- 

tion, because it means tha t  all copies of a task will produce the same results. However, this 

property is not required if tasks that  produce side-effects, such as  performing 110 or updat- 

ing a database, are never allowed t o  execute speculatively. That  is, such a task must not 

be started by another task unless tha t  task already has highest priority. Executing a task 

at highest priority is then equivalent t o  committing to  the operation. Any synchronization 

required to  order the side-effects can be built into the functions tha t  implement them. The 

MPCR simulator, in fact, makes use of this technique to  guarantee output ordering when 

printing lists. 
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APPENDIX A 

Simulation Parameters 

Table A.l summarizes the important parameters used in the MPCR simulator t o  

perform the experiments described in Chapter 7. Times were assigned based on a 

correspondence of one time unit (one Interwork II clock tick) t o  one reduction operation, 

where a reduction operation is a simple calculation plus an  update of one graph node. The 

simplest combinators thus execute in unit time. More complex combinators were assigned 

times based on the number of computations and updates they required. Time for other 

operations was then set by comparing the complexity of their implementations t o  those of 

the various combinators. 



Notes: 

Table A.l - Simulation Parameters 
Operation 

Perform reductions: 
B 
C 
I 
K 
P 
S 
U 
Y 
Cond 
Nil 
Arithmetic 
Comparison 
Remote Request 

Process messages: 
Pressure 
Data (Update) 
Evaluate (Packet) 
Delete 

Pass message between 
CPU and transmitter 
Pass message between 
adjacent transmitters 

1. Time for reduction of each combinator is based on the number of allocations and 
updates required t o  perform the graph manipulation. 

2. Arithmetic combinators are Add, Sub, Div, and Mult. 

3. Comparison combinators are  Eq, Gt,  and Lt. 

4. Time shown is for a simple remote request, where the requested graph node is already 
evaluated. Time varies if evaluation must be demanded (in which case the request 
suspends until i t  completes) or  if the request must be forwarded t o  another processor. 

Time 

3 
3 
1 
1 
1 
5 
3 
2 
1 
1 
1 
1 
2 

1 
2 
1 
1 
1 

2 

5. Base time for processing a da t a  message does not include awakening tasks from the 
notifier list. 

Notes 
1 

2 
3 
4 

5 
6 

7 

6. Evaluate messages are complete packets being distributed for execution. The time 
shown represents only the time to accept or reject the packet, and t o  add i t  to the 
ready queue if i t  is accepted. Additional overhead is required if the packet is rejected, 
because i t  must be reprocessed as  a n  outgoing message. 

7. This does not include block time caused by message routing collisions. 



APPENDIX B 

The Lambda Compiler 

Programs used in the experiments described in Chapter 7 were written in a simple 

untyped lambda calculus language. The syntax of this language is summarized in Figure 

B.1. A yacc-generated parser, called lamb, reads the Lambda program and translates i t  

into an intermediate expression language having only abstractions and applications. Each 

subexpression in this form is explicitly tagged as either application or abstraction. The 

transformations given by Turner [Tur79] are used to  perform this translation. 

The intermediate form can be defined directly in LML [AuJ88] as  a recursive data 

structure. An LML program, called ebe, creates such a structure from the yacc output, 

then translates the data structure into combinator expressions, again following Turner. The 

resulting expressions are loaded into C data structures by another yacc parser, and finally 

distributed to  the simulated processors for execution. 

As a check on the correctness of compilation and of the program output produced by 

the simulator, a different LML program, lbev, can replace ebe. This program performs the 

same translation as ebe, but instead of printing the finished combinator expression, i t  

transforms i t  into an LML application graph using functions defined for each of the 

combinators. The application graph is then executed directly a s  LML code to  produce the 

output specified by the original Lambda program. 



where-ezpr -+ where-ezpr where id = application-ezpr 
I where-ezpr where rec id = application-ezpr 
I application-ezpr 

application-ezpr -+ function-application 
I - application-ezpr 
I application-ezpr arithmetic-op application-ezpr 
I application-ezpr comparison-op application-ezpr 
I application-ezpr , application-ezpr 

arithmetic-op -+ I / I % I + I - 

comparison-op + = I < I > 

function-application -+ function-application simple-ezpr 
I simple-ezpr 

simple-ezpr -+ lambda-abstraction 
I conditional-ezpr 
I ( where-ezpr ) 
I identifier 
I integer 
I n i l  1 [I 
I n u l l  
I fst 
I snd 

conditional-ezpr -+ i f  application-ezpr then application-ezpr else application-ezpr 

lambda-abstraction + X identifier. application-ezpr 

Figure B.l - Syntax of the Lambda Language. Where the grammar is ambiguous, alterna- 
tives are given in order of decreasing precedence. Function application by juxtaposition of 
expressions has highest precedence. Arithmetic operators have the usual algebraic pre- 
cedence. 

The canonical empty list is named n i  1 (also [] ). The function nu1 1 tests whether 
its argument is an  empty list. Lambda programs are not type-checked, so the operator ", " 
(comma) is used for both list and pair construction. 



APPENDIX C 

Simulator Data Structures 

The first operation performed by the simulation is to  construct an initial graph from 

the input combinator expression. This initial graph consists entirely of application nodes. 

Some cons/pair nodes could have been constructed a t  compile time, but our objective is to  

study the behavior of the simulation, not t o  produce an optimally compiled graph. The 

basic structure of application nodes, which is shared by cons/pair nodes, is shown in Figure 

C.1. The node types are differentiated by their Toga. 

Each Memory Cell contains either a canonical, a combinator name (deecriptor), or a 

reference to  a graph node. Additional tags associated with each cell are used t o  identify the 

contents. The format of a memory cell is shown in Figure C.2. 

The Redez Addresa field of the application node is initially unused, and is in fact 

required only for a subset of node types. For simulation purposes, however, all nodes are 

given a redex address field so they may be handled orthogonally. The redex address is a 

Application, Cons, or Pair Node 

Figure C.l - Format of a Basic Graph Node 

Priority 1 Redex Address 
Memory Cell 

Reference Count I Tags 

Memory Cell 



Memory Cell 

I Tags 1 Reference, Canonical, Descriptor, or Special 1 

Figure C.2 - Format of a Memory Cell 

reference t o  a place-holder node which is t o  be updated when the node containing the 

address has been evaluated t o  weak-head normal form. Normally, this place-holder (or 

marker)  represents the root of a reducible expression; hence the term redez address. Due to  

the nature of reduction task distribution, redex addresses are always remote references. 

The Reference Count  field records the total number of reference righta held for the 

graph node, and is used in garbage collection. 

The Priori ty  of each node is also recorded. Priority is meaningless for nodes in weak- 

head normal form (boxed values or cons/pair nodes) but is required for application nodes. 

Reference 

Remote Reference 
A 

/ \ 

Origin ID I Rights Held I Local Access Pointer Current Access Pointer 
\ A / 

V V 

Local Reference Simulation Bookkeeping 

Figure C.3 - Format of a Reference 



The format of a reference is shown in Figure C.3. References contain a t  minimum a 

count of the rejerence rights they hold and a pointer for local access. Remote references 

must also contain a field tha t  identifies the processor node where the value of the referred-to 

graph node can be obtained. The Local Access Pointer of a reference is valid only a t  the 

origin processor node of the reference. For purposes of the simulation, a Current Access 

Pointer is also maintained; this is actually an address descriptor in the global namespace 

provided by Interwork 11, and must be used t o  obtain the local pointer. Also for simulation 

purposes, all references are treated as  remote, and the Origin ID field is checked on each 

reference t o  the current access pointer to  be sure tha t  the global namespace is not misused. 

Two additional node types can be formed during expression evaluation. These are  

boxed values and indirections. Indirections can also be formed t o  provide additional 

reference rights, as  described in the discussion of the reference rights garbage collector. The 

formats of boxed value and indirection nodes are  similar t o  the basic graph node format, 

and are summarized in Figure C.4 and Figure C.5. 

One additional type of graph node is created by the reduction system. This node type 

is called a reduction packet and represents the basic unit of work in the reduction engine. A 

reduction packet consists of a combinator name (descriptor), an argument count, and a 

Boxed Value 

Figure C.4 - Format of a Boxed Value 

Priority 1 Redex Address 
Unused 

Reference Count I Tags 

Canonical or Descriptor 



Indirection 

Figure C.5 - Format of a n  Indirection Node 

Priority I Redex Address 
Unused 

variable-sized argument list. The argument list is made up of memory cells and may be of 

Reference Count I Tags 
Reference 

any size, but for ease of manipulation and update the simulation limits i t  t o  a t  most three 

cells, the maximum number of arguments required by any of the chosen set of combinators. 

This limitation is also desirable because i t  keeps messages small. A packet thus contains 

exactly the information needed t o  perform a single reduction step. 

A reduction packet muat contain a redex address and a priority, but i ts reference 

rights may be omittedt, since there is guaranteed t o  be only a single reference t o  any 

reduction packet (see the discussion of packet formation, below). One bit in the reference 

rights field of the reference t o  a reduction packet is used t o  record the information t ha t  this 

is an exclusive, nonshared reference; i t  cannot be shared until the packet has executed and 

thereby been transformed back into an  expression graph, a t  which time the reference count 

information can be extracted from the reference itself and stored in the expression graph. 

Instead of a reference count, then, a reduction packet carries information t ha t  is examined 

and modified by the diffusion scheduler a t  each processor visited by the packet. This 

difiaion data is used by the heuristic algorithm tha t  decides whether the packet will be 

t The simulation actually does record the reference rights of reduction packets, and examines them for error 
detection. 



accepted at  any given node (see Chapter 5). The format of a reduction packet is shown in 

Figure C.6. 

Reduction Packet 

Figure C.6 - Format of a Reduction Packet 

Priority 
Descriptor 

Redex Address 1 Distribution Data I Arg Count 
Argument Vector (variable size) 
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