
A Model for

Fine-Grained Asynchronous Concurrency

Through Parallel Graph Reduction

Barton E. Schaefer
B.S.S., Cornell College, 1984

A dissertation submitted to the faculty
of the Oregon Graduate Institute

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

September, 1990

The dissertation "A Model for Fine-Grained Asynchronous Concurrency Through Parallel

Graph Reduction" by Barton Evan Schaefer has been examined and approved by the

following Examination Committee:

Richard B. Kieburtz 1
Professor, Thesis Advisor
Oregon Graduate Institute

- -
~ i & a e l Wolfe

u-v y
Associate Professor
Oregon Graduate Institute

bna than %alpob
Assistant Professor
Oregon Graduate Institute

William L. Bain
I

Adjunct Professor
Oregon Graduate Institute

Dedication

To my wife Maija, for patience in spite of uncertainty,

And to my mom, who convinced me

that graduate school might be a good idea.

Acknowledgements

I wish t o acknowledge the faculty, students, and staff of the Computer Science and

Engineering Department of the Oregon Graduate Institute for providing an ideal

environment for learning and for research. They made my time at OGI more enjoyable and

instructive than I would previously have thought possible. I would especially like t o thank

my advisor, Dr. Richard Kieburtz, for providing me with steady guidance while still allowing

me freedom t o complete this work in my own way. I would also like t o thank my friend and

office-mate, Boris Agapiev, for numerous discussions in which he listened t o my complaints

and helped me t o crystallize my ideas. Finally, I would like t o thank my committee

members for their detailed and helpful commentary, without which this thesis would have

been completely incomprehensible.

iii

Table of Contents

1 . Introduction and Motivations ..

2 . Taxonomy of Parallel Reduction Systems ..

3 . A Message-Driven Abstract Model ..

... 4 . Speculative Computation and Priorities

5 . Mapping Virtual Processors to Physical Processors ...

6 . Preliminary Research in Diffusion Scheduling ..

............................ 7 . Experiments in Speculative Evaluation with Priority Scheduling

8 . MPCR Simulator Reduction System ...

.. 9 . Conclusions and Directions for Future Research

.. References

Appendices:

A . Simulation Parameters ..

B . The Lambda Compiler ...

C . Simulator Data Structures ..

Table of Illustrations

... Figure 1 .I, example of combinator reduction

Table 3.1. reactions of nodes t o messages ..

Figure 3.1. symbols for node types and reactions ..

.. Figure 3.2, marking transformation

Figure 3.3, packetization transformation ...

Figure 3.4, reaction of Marker t o Demand ...

Figure 3.5, update transformation ..

Figure 3.6, evaluation transformation ..

Figure 3.7, sharing of reference rights ..

Figure 3.8, demanding a remote reference ..

Figure 3.9, use of Marked Applications ..

Figure 3.10, pseudo-code for packetize algorithm ...

Figure 4.1, evaluation transformation in speculative model ...

Figure 5.1, effect of dependencies on masking latency ..

Figure 6.1, diffusion scheduling run-time system design ..

Figure 6.2, diffusion scheduling simulator design ...

Figure 6.3, pseudo-code for weight computations ..

Figure 6.4, focusing of packets ..

Figure 6.5, distribution and cyclic neighbor selection ...

Figure 6.6, mass acceptances ...

Figure 6.7. orbiting of packets ...

v

Figure 6.8, load a t a slow node ...

... Figure 6.9, messages received a t a slow node

Figure 6.10, messages received a t a slow node ...

.. Figure 6.1 1, messages received after broadcast limit

... Figure 6.12, load at formerly slow node

... Figure 6.13, speedup

... Figure 6.14, overhead

Figure 7.1, W C R simulator design ..

Figure 7.2, e-cube routing ..

.. Figure 7.3, estimated optimal queue lengths

Figure 7.4, program graph for sum program ...

Figure 7.5, completion times for Mapsquares ...

Figure 7.6, reductions performed for Mapsquares ..

.................................... . Figure 7.7, reductions vs remote dereferences for Mapsquares

Figure 7.8, completion times for Parallel Sum ...

Figure 7.9, reductions performed for Parallel Sum ..

Table 7.1, summary of other useless work, Parallel Sum ..

Figure 7.10, per-processor pressure for Parallel Sum ..

Figure 7.11, completion times for Towers of Hanoi ...

.. Figure 7.12, per-processor pressure for Towers of Hanoi

.. Figure 7.13, reductions performed for Towers of Hanoi

... Figure 7.14, comparison of two runs. Towers of Hanoi

Figure 8.1, symbols used in diagrams ..

vi

Figure 8.2. formation of a reduction packet ..

Figure 8.3. first reduction packet of the sum program ..

Figure 8.4. suspension of an application graph ..

Figure 8.5. suspension of a partially evaluated task ...

Figure 8.6. suspension of additional demands ..

Figure 8.7. repeated suspension of an application ...

Figure 8.8. suspension of markers ..

Figure 8.9, update transformation ..

Figure 8.10. awakening suspended tasks ...

Figure 8.1 1. awakening (continued) ..

Figure 8.12. awakening the updated node ..

Figure 8.13. rescheduling a speculative task ..

Figure 8.14. notification of task exit ...

... Figure 8.15, notification of exit (continued)

Figure 8.16. propagation of exit ..

Table A.1. simulation parameters ...

... Figure B.1, syntax of the Lambda language

.. Figure C.1, format of a graph node

... Figure C.2, format of a memory cell

Figure (3.3. format of a reference ..

Figure C.4. format of a boxed value ...

Figure C.5, format of an indirection ...

.................................. Figure C.6. format of a reduction packet :

vii

Abstract

A Model for

Fine-Grained Asynchronous Concurrency

Through Parallel Graph Reduction

Barton E. Schaefer

Oregon Graduate Institute, 1990

Supervising Professor: Richard B. Kieburtz

This thesis explores techniques for massively parallel computation on MlMD computers

executing fine-grained computational tasks asynchronously. I t presents a model for

evaluating expressions by concurrent graph reduction. The nodes of a computation graph

are represented in the memories of a network of identical computing modules. The thesis

presents experimental studies of the behavior of a dynamic scheduling algorithm for

distributing workload over the modules of a network. Called diffusion scheduling, i t uses a

measure of workload a s the analog of pressure t o direct tasks t o modules where they are

most likely t o receive prompt service. A second series of experiments investigates the

effectiveness of speeulative evaluation in stimulating concurrent activity when the more

commonly employed approaches of da ta or control parallelism fail. Parameters of network

dimension, message passing characteristics, and da t a dependencies within programs are

considered in development of a heuristic method for creating and distributing speculative

work.

viii

CHAPTER 1

Introduction and Motivations

Significant advances have been made in the exploitation of fine-grained, synchronous

concurrency, as demonstrated by massively parallel SIMD systems like the Connection

Machine [Hi181,Hi185]. Synchronous concurrency has also been called data parallelism, and

refers t o the simultaneous application of a series of identical operations t o a large number

of da t a items. Algorithms tha t repetitively perform a computation can often be reformu-

lated t o exploit this type of concurrency, which is well suited t o the single instruction

stream, multiple da t a stream (SIMD) model. However, success has been limited in the effort

t o exploit the fine-grained asynchronous concurrency tha t is found in many other types of

algorithms.

Asynchronous concurrency arises when two or more different series of operations can

be performed independently. The operations need not be completely independent for some

parallelism t o be achieved. This type of concurrency is better suited t o the multiple instruc-

tion stream, multiple da t a stream (MIMD) style of computation. Unfortunately, the over-

heads of current MIMD machines, especially in communications, and the relatively small

numbers of processors available in these machines, make them most appropriate for

medium- t o large-grained concurrency. New hardware technology such as Dally's message-

driven processor pa1861 and the MIT Monsoon processor [PaCSO] promise massively parallel,

low-overhead MIMD systems in the near future.

As advancing technology provides MIMD systems with increasingly large numbers of

processors, new techniques are needed t o extract concurrent tasks from programs and t o

control the behavior of those tasks. Existing systems rely on program notation and/or com-

piler analysis for this purpose. However, program notations are not appropriate for express-

ing parallelism a t the level of detail required t o effectively utilize thousands of processors.

Compiler technology holds more promise, but will always be limited by the inability of

static analysis t o account for dynamic run-time behaviors. I t is therefore essential tha t a t

least some identification and control of concurrent tasks be performed without dependence

on language notations or compilers. Dataflow and reduction systems have provided ma,ny

insights and advances towards these goals, but are still plagued by a number of practical

problems.

Another significant problem for asynchronous computation is how to mask the rela-

tively long communication latencies of most distributed-memory MIMD machines. Technol-

ogy is improving in this area as well, but methods for keeping processors busy during com-

munications and other delays must still be considered. Dataflow architectures mask latency

by feeding each processor from a pool of very small tasks. The particular task tha t is com-

municating must wait for the message cycle t o complete, but the processor is kept busy

working on other tasks. A similar technique, using fast, fine-grain multiplexing, could be

used on general MIMD architectures. However, operations in pure dataflow are sequenced

only by the availability of data . Di5erent computations performed in the same program

loop may proceed at a different rates, so tha t some operations may have da t a available

simultaneously from different loop iterations. Without additional synchronization, this may

cause the order of accesses t o shared da ta structures t o become confused. If structures were

distributed in a MIMD environment, problems of this sort would be worse.

In search of solutions to these problems, this thesis explores a technique based on com-

binator graph reduction [Tur79]. The concepts of combinators and graph reduction will be

described later in more detail. Stated briefly, the mathematical properties of graph reduc-

tion permit simple detection of subgraphs tha t may be evaluated in parallel, to generate

large numbers of asynchronous concurrent tasks. Neither program annotations nor "omnis-

cient" compilers are required. These properties also guarantee tha t the order in which

reductions are performed do not affect the result of the computation, which is essential for

concurrent execution. In addition, combinator reduction provides granularity similar to

t ha t of dataflow, permitting fast multiplexing of tasks. The combinators themselves

describe da ta access, so synchronization is not a problem.

This thesis presents a model and experimental implementation of the Massively Paral-

lel Combinator Reducer (MPCR). The term maaaively parallel refers both to the number of

processors the model is designed t o support and t o the number of concurrent tasks it is

intended t o generate. Massively parallel computation is attractive not because i t promises

nearly linear speedups in execution time, but because i t allows very large problems to be

solved tha t cannot be solved in reasonable time on less parallel machines. However, the

individual processors in a massively parallel system may be of limited power. I t is therefore

important t o keep the individual tasks simple, even if the overhead compared to the size of

each task is high.

To help generate these large numbers of tasks, the MPCR employs speculative evalua-

tion [Bur85]. If the only tasks executed by a parallel system are those whose results are

known t o be useful in the future, the system is said t o exploit eonaeruative parallelism. In

some cases, however, a large amount of parallelism is found in tasks whose results may or

may not be useful. One example is the problem space search employed in artificial intelli-

gence programs. Several alternative solutions may be tried in parallel and only the first or

best one t o complete is selected. This type of parallelism is called speculative parallelism,

because the system is speculating tha t the results will be useful.

Speculative evaluation has been employed successfully in the field of distributed simu-

lation, where i t is called optimiutie execution. The message-driven Time Warp system

[JBW87] controls optimistic execution by use of a technique called virtual time [Jef85].

Tasks in the Time Warp system proceed without regard for synchronization until they

receive a message with a time stamp earlier than their current virtual time. At tha t point,

the task is rolled back t o a time before the stamp of the message, from which time i t

proceeds forward once more. Rolling back a task has considerable overheads, and may pro-

pagate t o other tasks, even causing termination of tasks started during the optimistic execu-

tion. The Time Warp experiments are encouraging, because they show tha t optimistic exe-

cution can achieve speedups in spite of high overheads.

Useful tasks are never rolled back in the MPCR speculative evaluation scheme. How-

ever, dynamic task control is still important, because some of the alternatives selected for

speculative evaluation may be non-terminating. Furthermore, speculative parallelism can

produce an overabundance of work even in cases where the results of a terminating compu-

tation are useful. The difficulty lies both in preventing computations whose results will

never be used from interfering with useful computation, and in preventing other work that

is not immediately useful from flooding the system. Finding a means t o limit speculation

and control non-terminating computations, without sacrificing too much concurrency, is one

subject of this research.

From a practical standpoint, MIMD parallel machines with thousands of processors

are just beginning t o become available. It may be several years before asynchronous con-

currency is available on the scale tha t the 64,000-processor Connection Machine [Hi1851 pro-

vides for SIMD computation. If such tremendously parallel machines are t o be taken advan-

tage of when they finally become available, computation systems tha t are able t o support

extremely large numbers of concurrent tasks must be developed. The MPCR is intended t o

model such a system, using a message-driven computational model t o support large numbers

of tasks. However, implementing a system to control thousands of tasks on machines with

only tens or hundreds of processors requires mapping of tasks t o processors in a reasonably

efficient manner. Such mappings can be performed either statically before the program

begins t o execute, or dynamically during the execution of the program. Assignment of tasks

t o processors is thus analogous t o static or dynamic memory allocation in compilation and

execution of sequential programs. Each method has advantages and disadvantages for cer-

tain classes of computation.

The applications most effectively handled with dynamic scheduling are those where the

size and number of tasks is difficult or impossible t o determine in advance. These include

real-time systems, symbolic computation, some kinds of matrix calculations, quad-trees, and

numerous others. Many of these computations will have dependencies referring t o other

parts of the computation. If references are thought of a s arcs of a graph, and da t a struc-

tures as the nodes of the graph, then these computations can be viewed as graph manipula-

tions. Computation modeled in this way is suitable for both shared and distributed memory

multiprocessors, provided tha t the implementation of references in a distributed system

models access requests across memory boundaries.

Not surprisingly, this view of computations as graph manipulations is exactly the

model for graph reduction. This suggests t ha t dynamic scheduling is most appropriate for

the MPCR. Furthermore, the number of tasks alone makes static mapping a daunting pros-

pect. Combined with the dynamic behavior of speculative computation, static mapping

becomes impossible. A dynamic algorithm called diflusion scheduling was selected because it

is distributed and scalable, has relatively low overhead, and can be implemented in the

same message-driven style a s the MPCR graph computation. In addition, the load-

balancing information employed by the scheduler can also be used in heuristics for specula-

tive task control. This will be discussed more fully in Chapter 5.

T o summarize, the contributions of this thesis t o the fields of parallel computation and

graph reduction are:

1. Detailed development of a fully message-driven model for graph reduction. Although

presented as a combinator reduction model, i t is in fact extensible t o programmed

super-combinator reduction, including the spineless variation [BPR88,Pey88].

2. Extension of the message-driven model t o include creation and control of speculative

tasks. This includes heuristics for determining when t o create additional tasks as well

a s a method for assigning priorities t o reduce the interference of speculative tasks with

conservative work.

3. Development of a task deletion strategy, and integration of tha t strategy with a

storage management algorithm to recover resources from useless speculative tasks.

4. Experimental evaluation of priority scheduling and task deletion as means of control-

ling speculative evaluation.

5. Algorithm development and experimental evaluation of diffusion scheduling for

dynamic assignment of tasks t o processors.

The remainder of this chapter covers some of the background tha t inspired this work. Brief

introductions t o dataflow processing, graph reduction, and combinator reduction will also

introduce the reader to some of the terminology used in later discussions. The last section

summarizes the organization of the thesis, and briefly outlines the topics of each chapter.

1.1. Dataflow

Dataflow refers t o a computation system in which operations are triggered by the avai-

lability of their inputs (arguments). The thesis research borrows only a few ideas from

dataflow, so specific dataflow projects will not be discussed. Instead, this section presents an

overview of the general concepts of dataflow. More detailed discussions of dataflow archi-

tectures, including some specific projects, are presented by Treleaven (TBH821 and Arvind

(ArC861.

In most dataflow systems, each operation is equivalent to a single machine instruction.

Logically, each instruction is allocated a computing element which waits for the arguments

t o arrive and then executes that instruction. No other restriction is imposed on the order-

ing of instruction executions. This computation organization is referred to as data driven

[TBH82] because operations occur exactly when their associated data is present, and have

no explicit temporal relationship to other operations. Dataflow systems thus have a high

degree of inherent, fine-grained parallelism.

A dataflow program can be described in terms of a directed graph. The arcs of the

graph describe the movement of data from producer t o eoncrumer operations. Each arc

corresponds to a reference used by the producer t o pass a result t o the consumer. Data is

transferred via data tokens, which may contain tags and a variety of other information in

addition to the data. Execution of an operation causes one token to be removed from each

of its input arcs and a new set of tokens to be released on its output arcs. The input tokens

are "used up" by the operation, and are not available t o any other operations.

Dataflow systems are generally implemented by either of two synchronization schemes,

both based on packet communications. In the first, called token storage [TBH82], data

tokens are stored directly into the instructions that will execute them. Programs executed

under this scheme are in a sense self-modifying, and thus cannot make use of reentrant code

or recursion. For this reason, the token storage scheme is also referred t o as static dataflow.

The second scheme, called token matching (TBH821, is able t o support recursive and

reentrant programs. Data tokens are tagged t o identify the operation tha t will consume

them and the level of recursion or iteration a t which they will be consumed. A special

matching mechanism collects the tokens and assembles them into sets. When the complete

token set for a particular operation has been assembled, i t is made available t o the opera-

tion, which then executes. This scheme, also known as dynamic dataflow, is more versatile

than static dataflow but requires larger token packets and has higher overhead.

A number of disadvantages of dataflow have been identified. The most significant for

our purposes are:

1. Sequencing of access t o shared da ta structures is difficult, forcing either task synchron-

ization or the use of redundant copies of the structures.

2. Programs can produce non-terminating computations in less-than-obvious ways,

because all inputs t o any operation must be evaluated even if the result depends only

on a subset of the inputs.

Tagged-token dataflow systems solve both problems by using sequence [ArI85] or iteration

level [GKW85] tags t o track iterations and recursion depth. These tags allow da t a accesses

to be ordered properly, and can be used t o prevent computations from "running ahead" too

far. Other techniques also exist t o simplify synchronization for da t a access. However, given

the added complexity of a distributed memory environment, the more inherent synchroniza-

tions of graph reduction make it more attractive.

In spite of their drawbacks, dataflow systems have demonstrated tha t a pool of small

tasks can be effectively pipelined t o limit processor idle times induced by latency

[GKW85,Pap87]. These results were an important factor leading t o the decision t o use

fine-grained tasks in the experimental implementation of the Massively Parallel Combinator

Reducer. By supplying each processor with a pool of fine-grained reduction tasks, the

MPCR masks communication latency in the same manner as do dataflow machines.

1.2. Graph Reduction

Reduction is the process of evaluating an expression by successive transformations,

under a set of rewrite rules, until no further transformations can be applied. The result is

said t o be the normal form of the expression, and is the value attributed t o the original

expression. An expression not in normal form is referred t o as a reducible ezpreeeion or

redez (plural redieea).

A reduction system can be used t o evaluate functional language programs if i t is con-

sistent with the mathematical semantics of applicative expressions, and if i t has the

Church-Rosser property, i .c., the normal form of any expression is unique regardless of the

reduction sequence tha t produced it. This property is important for parallel evaluation,

because i t permits subexpressions t o be evaluated in any order without affecting the correct-

ness of the result. Two well-known examples of reduction systems tha t have this property

are Church's lambda calculus [Chull] and Curry's cornbinatory calculus [CuF58].

Although order of evaluation does not affect the correctness of reduction, i t may affect

completeness. An important aspect of reduction systems, therefore, is the choice of the com-

putation rule [TBHSS] t ha t will order expression evaluation. Under the innermost reduction

rule, also known as eager or applicativc-order reduction, all arguments of a n application

must be evaluated before the expression can be evaluated. The outermost rule, also called

l a w or normal-order reduction, stipulates tha t arguments shall not be evaluated until they

are needed t o complete evaluation of the outermost application. The innermost rule

provides more opportunities for parallelism than does the outermost. However, computa-

tions tha t terminate when evaluated lazily may be non-terminating when eager evaluation

is used.

Graph reduction refers t o a reduction process in which expressions are represented as

graphs. Other systems perform reduction by string rewriting (TBH821. A graph representa-

tion has the advantage of allowing subexpressions t o be shared, via multiple arcs incident

upon the root of a subgraph. String reduction systems, in contrast, represent subexpressions

by value, i .e . , by textual expressions. Graph reduction systems can thus be more efficient,

because copying and redundant re-evaluation can be avoided (a t the cost of some limits on

parallel evaluation). Shared references are also ideal for use with normal-order reduction,

allowing arbitrary objects t o be manipulated without being evaluated.

In computational terms, reduction systems can be classified on the basis of their con-

trol structure. Dynamic selection of the next reduction step from the form of the expression

a t each stage has been termed pure reduction, and is contrasted with programmed reduction,

in which control is derived from the original expression by static analysis (compilation).

This derived control can be represented by an instruction stream, and is thus easily imple-

mented on conventional von Neumann architectures (Kie851.

In programmed graph reduction, the function symbol in the graph representing an

applicative expression can be any defined function, and the number of arguments accepted

by the function is not limited. Other graph reduction systems restrict the function symbol

to be one of a predefined set, such as the S, K, and I combinators, with fixed numbers of

arguments. T o reduce the application of a function, a programmed graph reducer executes

the program generated when the function definition was compiled. Thus, there may be con-

siderable work involved in a single programmed reduction step.

Reduction systems (and functional language systems in general) have been criticized

for their lack of array-like shared da ta structures. For distributed evaluation, however, we

consider this t o be an advantage, because there are no synchronization problems such as

those found in dataflow. I t has also been pointed out (e.g., by Treleaven (TBH821) tha t

normal-order reduction is wasteful for operators tha t are stn'ct in all arguments. Strictness

is the property of an operation tha t requires tha t an argument expression be in normal form

before the operation can be performed; arithmetic operations, for example, have this pro-

perty. On the other hand, applicative-order evaluation of non-strict arguments can lead t o

non-termination, as in the case of eagerly evaluating a function tha t will generate an

infinite list. Computations which fail t o terminate for this reason are referred t o as diver-

gent, because the reduction does not converge on a normal form.

Advances in strictness analysis [BHA86,HuY86,WaH87] have made it possible t o

extract additional parallelism without giving up the termination properties of normal-order

evaluation. This is called conservative evaluation, because it identifies and evaluates subex-

pressions whose values are certain t o be needed. These techniques, however, still fall short

of finding a11 the parallel opportunities exploited by applicative-order evaluation. Further-

more, some language constructs provide for parallel evaluation of a set of alternatives, only

some of which a re eventually used. The use of controlled speculative evaluation offers a solu-

tion t o both of these difficulties. Techniques for this style of evaluation are a subject of the

research presented in this thesis.

1.3. Combinator Reduction

This section provides a brief summary of the concepts of the combinatory calculus and

its uses in graph reduction computation. I t is intended t o be a basis for concepts and termi-

nology used in later discussions, rather than a tutorial. A more complete introduction t o

combinators is presented by Stenlund (Ste721.

The combinatory calculus is a calculus of intcneional functions. This means tha t the

functions are defined in terms of rewrite rules such that , when given an object as an argu-

ment, they produce another object a s a value. The only primitive operation in such a cal-

culus is application of a function t o its argument, usually written f z . Application associ-

ates t o the left, so j zl z2 means t o apply j to z , and then t o apply the result t o z2.

One purpose of the development of the combinatory calculus was t o avoid the use of

variables when expressing logical properties. All the formulas of the calculus can be defined

in terms of two primitive functions, S and K :

S / o z = f z (g z)

K z y = z

S is thus a "composition function" and K is a "constant function." The calculus explicitly

permits self-application, tha t is, expressions of the form f f , so S and K can be applied t o

each other and t o themselves in arbitrary ways t o describe other functions. The identity

combinator I is frequently added t o the set of primitive functions; i t is most simply defined

in terms of S and K by:

Z = S K K

I z = S K K z = K z (K z) = z

Other combinators can also be defined, including structure constructors and even arithmetic

operations. The set used in this research defines eighteen primitive operations, including S,

K, and I. Most are defined a t a more abstract level for reasons of efficiency and ease of

notation, but i t is important t o remember tha t all could be defined in terms of combinations

of S and K . This set will be presented in a later chapter.

The usual method for evaluating expressions in the combinatory calculus is by term

rewriting. Function definitions can be treated as reduction rules if read from left t o right.

For this reason, the definitions are often written with an arrow,

S f g --+ f (9 2)

t o show the "direction" of rewriting. Any expression tha t contains a term matching the left

side of the definition of a primitive function is a redez. Any expression that does not con-

tain such a term is a normal form.

Expressions are reduced, or evaluated, by repeatedly replacing terms tha t match the

left side of a primitive definition with the right side of tha t definition, until the expression is

in normal form. The normal form of any combinatory expression is provably unique (see

Stenlund [Ste72]), and the calculus thus satisfies the requirements for use in evaluation of

functional programs.

A combinator-based system for the implementation of functional languages was first

proposed by Turner [Tur79]. He first described how variables could be removed by abstrac-

tion from a program written in a functional language t o produce an equivalent combinatory

expression. Turner then described a graphical da ta structure t o represent the combinatory

expression, and proposed a model of computation based on manipulations of the graph.

In Turner's da t a structure, every node of the graph represents an application in the

combinatory calculus. Each node contains two cells, the left cell representing the function

and the right cell representing its argument. The contents of a cell may be either a value or

a pointer t o another node. Reduction is performed by walking the graph in a left preorder

fashion, using a stack t o store pointers t o the expression currently being evaluated. As long

as the top of the stack points to a n application, i ts left subtree is pushed. When a combina-

tor reaches the top of the stack, the reduction rule for the combinator is applied, using the

pointers in the stack t o access the arguments. If the stack depth is less than the number of

arguments the combinator requires, then the expression graph is in normal form and no

reduction takes place. An example of this type of stack-based graph reduction is shown in

Figure 1.1. This model can be extended t o include basic values other than combinators

Stack __.-. ._ ..-.- - _____._
.... -.._.

Before .-..
1.

-..__ .._.

Stack
After

Stack
After

Figure 1.1 - One step of reduction of the graph of S I (K 2) (K I), resulting in the graph
of I (K 1) ((K 2) (K I)). The upper diagram shows the state before reduction, with dashed
lines t o indicate new nodes and updated nodes following the reduction. This diagram is
adapted from Tur79. The lower diagram shows the s tate after reduction with nodes rear-
ranged t o make relationship t o the expression more obvious. The I node after reduction is
a n indirection.

(e.g., integers in machine representation) and operations on those values (e.g., machine

arithmetic).

Whenever a reduction rule is used, the application node t o which the rule is applied is

overwritten with the result. This is referred t o in more recent literature as an update of the

node. This has the desirable effect of preserving sharing, which means tha t all other nodes

tha t contain pointers t o the original application will contain pointers t o the result. The

same application never needs t o be evaluated more than once.

Occasionally, i t is necessary t o update a node with a single pointer or value, as in the

K reduction K z y -+ 2. In this case, a n indirection is created by introducing an I combi-

nator as the left cell of the node, and placing the actual value in the right cell. In effect,

the reduction becomes K z y -+ I z . The term boxed value has been used to differentiate

a n "indirection" node whose right cell is a value from a "real" indirection, whose right cell

is a pointer t o a subtree.

Combinator graphs provide many opportunities for concurrent evaluation. Many

applications will form redices because of the simplicity of the functions. As mentioned in

the more general discussion of graph reduction, the properties of the reduction system allow

redices t o be evaluated in any order, or simultaneously. The simplicity of combinator

reduction and its great opportunities for parallelism were primary reasons for its use in the

experimental system described in this thesis.

1.4. Plan of Thesie

This chapter has presented a n introduction t o the goals of this research and has given

some background on the techniques employed t o meet those goals. Chapter 2 establishes a

conceptual framework for this work by describing other systems tha t have explored similar

problems. The relationships among these systems are presented as a taxonomy, and the

position of the Massively Parallel Combinator Reducer in this taxonomy is discussed.

Chapter 3 presents a n abstract model for conservative message-driven graph reduc-

tion. Several theorems are proven t o demonstrate the completeness and correctness of the

model. The chapter concludes with a discussion of some implementation ideas and proves

tha t these ideas are faithful t o the model. The addition of speculative computation is then

discussed in Chapter 4, including proofs tha t the speculative model remains correct.

Techniques for mapping the abstract model t o a physical machine are covered in

Chapter 5. Two aspects of the mapping are discussed. One is the assignment of tasks to

processors by dynamic diffusion scheduling. Chapter 6 presents preliminary research related

t o this technique. The second aspect discussed in Chapter 5 is estimation of processor

activity t o decide whether t o create speculative tasks.

Experiments performed t o evaluate the techniques for speculative parallelism are

presented in Chapter 7. The programs run in simulation are described and results of the

runs are discussed. Chapter 8 provides additional details of the simulator used t o perform

the experiments. Finally, conclusions and some ideas for future research in this area are

given in Chapter 9.

CHAPTER 2

Taxonomy of Parallel Reduction Systems

Since the introduction of combinatory graph reduction as a technique for functional

language evaluation, a variety of parallel reduction systems have been designed. To provide

a context for the discussion of the system described in this thesis, i t is useful t o examine a

taxonomy of other parallel reduction systems. Such systems generally fall into one of two

broad categories, although there is some overlap. The categories are packet-based reduction

and pure-graph reduction. Pure-graph here refers t o the representation of the graph, not the

derivation of control, and should be distinguished from pure reduction, which was introduced

earlier. It is possible for a pure-graph system t o use programmed reduction, or for a

packet-based system t o use pure reduction.

Packet-based systems are mainly derived from standard sequential reduction models.

These sequential models include Turner's combinator model [Tur79] and its auper-combinator

variation [Hug82], and also more modern models such as the G-machine [Kie85] and its

enhancements [Pey88]. The modern models employ programmed reduction and therefore

have a larger average task size. Pure-graph systems are much less numerous and have been

derived either from Turner's model or from a data-parallel combinator reduction algorithm

[HiS86, HiS87j.

In packetbased reduction, a reducible subgraph is collected into a da t a structure

called a packet before i t is evaluated. Each packet thus represents a task, a sequential unit

of work which can be executed concurrently with other tasks. Packetization has the advan-

tage t ha t most of the da t a tha t will be referenced by the evaluation is immediately

available t o the processor t o which the task is assigned, but pays a price in overhead for

formation and, depending on the execution model, disassembly of the packet. Pure-graph

reducers, by contrast, manipulate the graph directly, often by use of a stack as described in

Tur79. This has the advantage tha t there is no delay in making available the result of an

evaluated subexpression, but as will be seen, i t may involve other overheads. Not surpris-

ingly, pure-graph reducers are designed with abstract models tha t have a globally-

addressable memory space, whereas packet-based reducers usually assume either distributed,

locally-addressable memories or a combination of locally and globally addressable spaces.

Variations among the abstract models of the packet-based systems are reflected in

their representations of task packets, program graph, and program code. Packets may be

either fixed or variable in size, depending on the extent t o which nested subgraphs are con-

sidered part of a larger expression. Individual nodes of the program graph may also be vari-

able in size. Some models store the packets as nodes of the program graph a t least par t of

the time, but others make a strong distinction between graph nodes and packets. Most of

the systems tha t will be discussed here chose variably-sized packets t ha t can be stored as

graph nodes. The program code referenced by a packet may also be stored with the packet,

but more commonly is available t o all processors either through shared code space or by dis-

tributing the code before computation begins. The complexity of the functions represented

by the code for each task also varies, and is the primary determinant of task granularity.

Granularity refers t o the size of each task in terms of its resource requirements. Tasks

which represent complete programs or large parts of a program are usually referred t o as

large-grained. Medium-grained tasks are those representing a single function on the source

Ianguage level. Super-combinators are compiled from source functions, and are thus

medium-grained tasks. Finally, fine-grained tasks a re those representing simple components

of functions, down t o the level of machine instructions. Obviously, these categories are

rather vague, especially the medium-grained classification. However, none of the systems

tha t will be discussed here, whether packet-based or pure-graph, is designed to employ

large-grained tasks.

An important characteristic shared by all packet-based reduction systems is their

model of communication among tasks. They all employ what could be termed Demand-

Reaponae communication. Communication among tasks is always initiated by a demand for

da t a (usually the value of a subexpression), and is completed by the response tha t carries

the required data . Sometimes the demand will trigger creation of a new task, rather than

requesting information from an existing task, but the effect is the same. Demand-Response

communication is common because i t is the natural way to express, in parallel terms, the

operations of the sequential models from which packet-based systems are derived.

A very different approach is taken in pure-graph reducers derived from Hillis and

Steele's data-parallel reduction algorithm. These systems are based on an architectural

model similar t o the Connection Machine (Hi1851, having a large number of small, simple

processors. The only variation is tha t a single instruction stream is not always assumed.

There is no conventional memory in this model; processors are the only available resource.

For this reason, fixed-sized graph nodes are allocated one per processor, and packets are not

used. Communication in this model must therefore include not only queries and responses,

but also information about how t o manipulate the graph. The complete information needed

to perform a graph transformation is never collected in a single processor as i t is in a

packet-based system. Each processor knows only what i t must do with its own graph node.

Pure-graph systems not based on the data-parallel algorithm access a globally

addressable memory, so inter-task communication is limited t o synchronization of access t o

the graph. This fits loosely into the Demand-Response communication model.

The remainder of this chapter will discuss several reduction systems in each of the

pure-graph and packet-based categories. Systems tha t have characteristics of both

categories have been classified with those they most closely resemble. Within each category,

particular attention should be paid t o the approach each system has taken t o answering

three crucial design questions:

How are tasks t o be identified?

Which of the possible tasks are useful?

How are resources t o be managed?

Identifying a task can be as simple as recognizing a reducible expression, and in most paral-

lel reduction systems tha t is the only determination. However, tasks can also be formed

from collections of subexpressions, more than one of which may be reducible. Even a non-

reducible subexpression can be a task, though such a task doesn't do much work.

Once a potential task has been identified, its usefulness must be determined. A t one

extreme, a task could be deemed useful only if its result has been demanded by some other

task. This is the conaeruatiue evaluation model tha t has already been discussed. I t guaran-

tees t ha t no work will be done tha t does not contribute t o the final result of the whole com-

putation, but i t may not take full advantage of opportunities for parallelism. A t the other

extreme, any task tha t is able t o run could be considered useful and given an equal chance

t o execute. Such uncontrolled speculatiuc evaluation will often result in the consumption of

resources by tasks whose results are not required. Most systems employ techniques tha t aim

for a point somewhere between the two extremes. The choice of useful tasks has a

significant effect on resource management.

Processor time is the most important resource in any computer system, with memory

space a close second. Few of the issues of resource management are specific t o reduction

systems, but there are special factors t o consider. In particular, the recovery of resources

from tasks tha t are no longer useful can be more important in speculative reduction systems

than in other computation models.

The chapter concludes by examining how the work described in this thesis fits into this

taxonomy, with attention t o how these questions are answered.

2.1. Pure-graph Systems

Pure-graph systems are less common than packet-based systems, but a few examples

have been designed. The most recent pure-graph systems have been derived from a data-

parallel algorithm described by Hillis and Steele (His861 and implemented by Kuszmaul

[Kus86]. This is a combinator reducer designed for the Connection Machine. As mentioned

above, the program graph is distributed one node per processor, and is the "multiple data"

on which the instruction stream acts. The instructions cycle through reductions of each of a

small set of fixed combinators, first performing all possible S reductions, then all K, all I,

and so on.

Processors t o which application nodes have been assigned perform the manipulations

tha t reduce the graph. Each queries the processor referenced on the left of its application

t o determine what function the application represents and the position of the application in

the graph spine. This information is used t o transform the graph during the appropriate

phase of the instruction cycle. Other processors only report the values of their graph nodes,

and are inactive during most of the cycle. As graph nodes are created, processors are allo-

cated from a pool, t o which they return when the nodes are no longer needed.

This model has the potential for tremendous parallelism because all redices present in

the graph at the beginning of an instruction cycle are evaluated during tha t cycle. This

generates new redices tha t will be evaluated on the next cycle. Every graph node is a task,

and no decision is attempted regarding usefulness. This may result in quite a few unneces-

sary reductions being performed. The rationale is tha t a s long a s every node has t o be allo-

cated t o a processor anyway, tha t processor might a s well be doing something. This only

becomes a problem if the graph grows so large t ha t all the available processors are con-

sumed.

Hudak and Mohr [HuMSS] note tha t the set of combinators chosen in such a system

limits i t in two ways:

1. A small set of combinators leads t o a large, inefficient graph. In terms of the design

questions, this means tha t task identification is suboptimal.

2. A large set of combinators requires a long instruction cycle. This is poor resource

management, because each processor is idle during the parts of the cycle tha t do not

apply t o the node it represents.

Hudak and Mohr propose graphinators as a solution t o both of these problems. Graphina-

tors describe graph transformations a t an even lower level than Turner's combinators. Pro-

grams can thus be compiled into relatively small graphs using a more extensive combinator

set, and the combinators then can be executed via a small set of graphinators t o keep the

instruction cycle short.

In addition, Hudak and Mohr propose switching from completely eager reduction t o a

policy called prudent evaluation. This scheme evaluates anything tha t is not a recursive call

in the eager fashion of the combinator system, but evaluates recursion only when it is

demanded. This significantly reduces the number of unnecessary reductions, but also limits

parallelism in programs tha t depend heavily on recursion.

Even a t the graphinator level, SIMD parallelism is limited because the phases of the

reduction cycle must proceed in sequential order. Truve [Tru89] proposes to avoid this

problem by using MIMD evaluation in the MPG-machine. This system uses the same overall

model as the SIMD systems, allocating one processor per graph node. However, the proces-

sors operate independently, rather than working from a single instruction cycle. This allows

evaluation of any compiled super-combinator, rather than a restricted set. The MPG-

machine system is still in the design phase, and several problems are unsolved. Most

significantly, the system is designed t o use controlled speculative parallelism, rather than

evaluating all possible redices, but currently lacks any means t o delete speculative tasks if

resources begin t o run out.

The most recent example of a pure-graph system not based on data parallelism is the

Distributed Applicative Processing System (DAPS) [HuG84]. Functions in DAPS are simple

fixed combinators, but applications of these combinators tha t do not form reducible expres-

sions (partial applications) are noted during compilation and formed into immutable vertices.

These nonreducible subgraphs represent functions larger than the combinators from which

they are composed. The graph is represented by a combination of these immutable vertices,

copied into the local store of every procesior, and of the remaining mutable part of the

graph. The mutable graph is placed in a globally addressable memory and manipulated

there.

Evaluation in DAPS is demand-driven, so no unnecessary work is done. Tasks are

application nodes in the mutable graph, which reference the immutable vertices as func-

tions. There is no notion of a packet, but DAPS represents an interesting halfway point, its

immutable vertices reflecting something of the way packets are stored in the graph in other

systems. This scheme also combines features of both programmed and pure control, though

primarily the latter.

DAPS shares another characteristic with several packet-based systems, that is, its use

of diffusion scheduling to assign tasks to processors. Diffusion scheduling will be discussed in

detail in Chapters 5 and 6. One of the interesting results of the DAPS experiments was

that a simple diffusion heuristic based only on the length of the task queue a t each processor

performs nearly as well as a more complex heuristic that takes data locality into account.

2.2. PacketiBased Reduction Systems

Most of the parallel reduction systems designed to date are packet-based. All are

derived by some path from Turner's combinator reduction model, with the main difference

being how far they followed the path of sequential reduction technology before branching

into parallelism. Although the boundaries are not well defined, for convenience this discus-

sion will classify the systems as either traditional eombinator style or G-machine atyle reduc-

ers. "Traditional" here means that the system closely follows Turner's model, except that

the combinators used may be derived by compilation. Some control is still determined

dynamically by the form of the expression. In contrast, G-machine style systems derive con-

trol entirely by compilation, and often use additional optimizations such as avoiding

unnecessary updates or condensing the left "spine" of the application tree.

2.2.1. Traditional Combinator Style Systems

The first system designed to employ packetbased reduction was ALICE [DaR81]. In

this system, the program graph is represented a s a pool of variably-sized packets. ALICE is

unique among the packetbased systems in that i t stores the entire graph as packets in this

pool. Space in the pool is managed by reference-counting the packets, and processor alloca-

tion is managed by having available processors take ready packets from the pool.

A packet consists of a (pointer t o a) function, which represents a super-combinator,

plus an argument list. A packet is ready for execution when the function and all necessary

arguments are present. I t is otherwise tagged as suspended. The primary evaluation stra-

tegy is thus data-driven and eager, but some decisions are made regarding the usefulness of

tasks. In cases in which i t is not possible t o determine the usefulness of a task, as in select-

ing the correct branch of a conditional, all of the alternatives are tagged as suspended even

if all their arguments are present. When the outcome of the conditional is known, the task

representing the conditional removes the suspended tag from the chosen alternative. This is

referred to by the ALICE designers a s constrained eager evaluation.

Another system that employs a data-driven evaluation strategy is Flagship

[WWW86,WaW87b], which is a descendant of the ALICE system. The program graph in

Flagship is a collection of variably-sized nodes. As in ALICE, no distinction is made

between graph nodes and packets in terms of form or content, but in this case the graph is

not explicitly stored in a task pool. Packets contain a pointer t o code for a super-

combinator function, and a list of arguments. Elements of the argument list may be tagged

as strict, requiring that they be fully evaluated before the function is applied. A feature

unique to Flagship is that i t stores the code referenced by each packet directly in the graph,

rather than in a separate code store. It is thus the only system that dynamically distributes

code as well as data.

Flagship improves on the ALICE model by avoiding the creation of tasks that will be

suspended awaiting arguments. A packet that has all arguments available, though not

necessarily fully evaluated, is examined and any strict arguments are demanded. (The sys-

tem is thus not completely data-driven.) When all strict arguments are evaluated, the

packet is activated and its super-combinator code is executed. If, in the course of executing

the code, further evaluation of a nonstrict argument is required, t ha t evaluation is

demanded and the packet suspends until the result is returned. Rather than feeding proces-

sors from a pool, packets in Flagship are distributed by a dynamic load-balancing scheme

similar t o t ha t devised for the Rediflow system (KeL84,KLT84].

Rediflow was the first system to employ diffusion scheduling for dynamic load balanc-

ing?, and is the only system tha t uses fixed-sized packets. Packets in Rediflow contain a

pointer t o function code and either a single argument or a pointer t o a structure of argu-

ments. They are distributed as they are created, but may not lodge permanently a t the

first processor t o accept them. Each processor has a queue of migrable [sic] tasks, which

may be moved t o another processor, and a queue of local tasks. Migrable tasks may be

moved when the load changes, but if the load at all processors exceeds a certain level, no

migration occurs. The local tasks represent work tha t is considered inappropriate for execu-

tion elsewhere because of da t a locality or similar considerations.

Both data-driven and demand-driven computation are supported by Rediflow, but the

distinction is much clearer than in Flagship. Subsets of the Rediflow system support

dataflow or reduction processing and can be used together or independently.

The three systems discussed so far use super-combinator tasks with code compiled

from source-language functions. The Alfalfa system [GoH87,Go188] is slightly different in

t ha t i t relies on compilation t o identify serial eombinatora [HuG85a,HuG85b]. Serial combi-

nators represent the largest functions within which no opportunities for parallelism exist.

This is theoretically advantageous because no parallelism is lost as long as processors are

Note that diffusion scheduling is not restricted t o graph reduction. A general discussion of diffusion
scheduling can be found in Chspter 5.

available t o execute new serial combinator tasks. The granularity of a serial combinator

may range from slightly larger than a source function down t o tha t of a complex machine

instruction, and is thus a mixture of fine and medium granularities.

Alfalfa is a direct descendant of DAPS, and continues t o employ diffusion scheduling

t o allocate tasks t o processors in a balanced manner. However, new source language nota-

tions and compiler techniques have permitted Alfalfa t o take better advantage of parallel-

ism. For example, Alfalfa programs can create vectors and select their elements a t the

language level rather than constructing and traversing lists. Evaluation is still conserva-

tive, but better use can be made of strict operations.

2.2.2. G-machine Style Systems

Several parallel reduction systems have been based on the G-machine sequential model

or its more efficient derivatives. These systems share the medium-grain parallelism provided

by programmed reduction, but differ widely in their approaches t o parallelizing the model.

All seek to combine the most efficient aspects-of sequential evaluation with the benefits of

concurrent execution.

The Shared Memory Parallel G-machine /Bur881 and the HDG-machine [KLB89] are

shared and distributed memory variations of the same system. In these two systems, based

on the spineless G-machine [BPR88], tasks are represented by variably-sized graph nodes

which in turn represent the entire left spine of a subgrapht. Packets and graph nodes share

this representation, but not every graph node is a packet. The distributed memory HDG-

machine adds a special case for non-local pointers, which are accessed through an extra

level of indirection. Remote processors are given a pointer t o the indirection, which has a

t The term "spineless" comer from the replacement of the spine with these variably-sized nodes.

fixed address in the local store. The indirection then points t o the actual node, which can

be relocated. This permits memory t o be managed through a combination of reference

counting for non-local pointers with semi-space allocation and copying garbage collection for

local storage.

Although evaluation in these systems is conservative (demand-driven), a model of com-

putation called evaluation transformers is used t o improve parallelism. In effect, the amount

of evaluation required for each argument t o a function is encoded a t the time of its compila-

tion. This allows some subexpressions whose value will eventually be required t o be eparked

for parallel evaluation. Two types of sparking are employed, one of which demands tha t

evaluation occur immediately. The other type of spark may be ignored if resources for the

evaluation are not available.

In the HDG-machine, tasks are maintained in both local and migratable pools. This is

similar t o the Rediflow organization. Instead of relying on diffusion scheduling, however,

processors with no work t o do must request tasks from other processors. Tasks are taken

first from the local pool, then from the migratable pool, and finally are requested from other

processors' migratable pools. The Shared Memory G-machine uses a single shared pool, with

synchronization t o assure tha t two processors do not attempt t o evaluate the same subex-

pression.

The GRIP machine [Pey89] is also based on the spineless G-machine but has incor-

porated ideas from the tagless variant [Pey88]. Packets in GRIP are variably-sized graph

nodes, similar t o those in the HDG-machine. However, GRIP currently supports only con-

servative demand-driven evaluation. The program graph is initially loaded into the local

store of one processor, where evaluation begins. The local store serves both a s a heap and

as a local task pool. Tasks are exported from the local pool only when the system load is

low. Whenever a processor decides t o offload a task, the entire subgraph accessible from the

packet is shifted from the local memory of the processor tha t created the task into a glo-

bally addressable store. GRIP thus maintains both local and global task pools, but does not

explicitly classify tasks as migratable or otherwise. Processors keep themselves busy by

drawing tasks first from their local pools and then, if the local pool is empty, from the glo-

bal pool. When a task is taken from the global store t o begin executing, the necessary parts

of the graph are fetched t o the local memory of the processor. GRIP also imposes the

requirement tha t a completed task must return the entire subgraph representing its results

t o global memory. There, the results can be accessed by any task tha t needs them. These

two restrictions allow garbage collection of local and global stores t o be performed indepen-

dently.

The reduction system of the Parallel Graph Reduction project a t the Oregon Gradu-

a t e Institute shares some aspects of both the HDG-machine and GRIP, although i t was

developed independently. I t is also similar t o Alfalfa and Rediflow in tha t i t employs

diffusion scheduling to balance processor loads. No other G-machine based system does so.

The P G R system has a number of other unique characteristics.

Execution in the PGR system begins in the local store of a single processor, as in

GRIP. However, no global store is provided in the PGR model. Instead, when a subexpres-

sion is demanded, the complete subgraph below the application is Battened into a contiguous

space. Such a flattened graph forms a packet, which is passed t o the diffusion scheduler t o

be assigned t o a processor. The diffusion scheduling algorithm will be discussed in detail in

the next chapter. Once a processor has been selected, the packet is unfiottened into a

workspace reserved for tha t evaluation task in the processor's local memory.

The workspace contains both heap and stack memory for the task. Non-local pointers

are managed with extra indirections within workspaces in the same way tha t the HDG-

machine manages non-local pointers. Within its workspace, a task proceeds as a sequential

process until another subexpression is demanded. The system is thus a hybrid of packet-

based and pure-graph reduction, using packets t o distribute work but pure-graph methods

for evaluation. This arrangement serves several purposes. First, the tasks can be compiled

almost exactly as they would be for a sequential machine, and then embedded in a run-time

system tha t handles the remote da ta accesses and task distribution. The system can thus

be recreated easily on any network of general-purpose processors. Second, the size of any

individual task does not affect the efficiency of a context switch when a task must wait for a

remote da t a access or evaluation. Currently, the PGR system uses program notations t o

control which subexpressions are t o be evaluated as parallel tasks, so large tasks with many

sequentiaIIy-executed subexpressions are possible. Third, improvements of the sequential

reduction process can be made easily without affecting the distributed run-time system.

The P G R system model will be discussed in more detail in Chapter 6.

2.3. How the MPCR Fits In

The Massively Parallel Combinator Reducer model developed in this thesis is a

packet-based, fine-grained system. Although i t is designed t o be executed in an asynchr*

nous MIMD fashion, its implementation was inspired by Hillis and Steele's data-parallel

reduction algorithm. The MPCR thus places much greater significance on speculative

evaluation than do most of the other MIMD systems tha t have been discussed here. Despite

the packet-based evaluation strategy, speculative evaluations are dynamically selected

based on the form of the graph. Some pure-graph features are therefore present.

A packet in the MPCR is a fragment of the stack described in the discussion of

Turner's combinator graph reduction model. These packets can be stored directly in the

program graph, as in the HDG-machine, but the MPCR model is not completely spineless.

Only the combinator a t the "top" of the stack and the arguments required by tha t function

are placed in the packet. This design is intended t o keep packets small, reducing message

size and permitting evaluation t o occur on simple processors with little local memory. How-

ever, the size of a packet is not significant t o the abstract model. As long as the combina-

tor correctly handles all arguments stored in the packet, any portion of the spine could be

packetized.

A significant feature of the MPCR model is tha t i t can be implemented in a com-

pletely message-driven manner. Rather than employing a globally addressable memory

space, the MPCR represents a reference by identifying a computing module and a local

address a t tha t module. Packets and nodes in the graph are treated as virtual processors

which respond t o messages. The simulations described later in this thesis have used a mix-

ture of message-driven and traditional computation. However, both messages and ready

packets are placed in the same task queue, so tha t each entry in the queue represents one

operation of a virtual processor.

Graph nodes tha t do not form ready packets, or packets representing strict functions

tha t must await evaluation of an argument, are assigned t o a processor but are not placed

in the task queue. Messages must be directed t o a specific graph node and hence must be

placed in the queue a t the processor where tha t node is assigned. T o maintain relatively

balanced Ioads, ready packets are distributed t o task queues by diffusion scheduling. A p r e

cessor t ha t handles many messages will thus be assigned fewer packets. This will be

described further in Chapter 5.

Another feature of the MPCR is tha t i t uses priority scheduling t o ensure t ha t conser-

vative tasks will be evaluated before speculative ones. The task queue at each processor is

maintained in priority order, with conservative tasks having the highest priority. The

assignment of priorities t o speculative tasks is detailed in Chapter 4. After the reduction

rule for the function part of a packet is applied, the packet it8elf is updated (overwritten)

with the result of the reduction. If the updated packet represents a normal form, i t is

returned t o the graph as the value of the application. If the updated packet represents a

new application node, i t will be repacketized and scheduled a s a new task.

Multiplexing among virtual processors in the MPCR therefore consists of returning a

previously executed packet t o the task queue in priority order and removing the next task

from tha t queue. Maintenance of the priority queue is the only context switch overhead,

and efficient algorithms for this purpose are well known [AHU74]. In future implementa-

tions, hardware support for message-driven computation [Da186] could reduce or even elim-

inate context switches, in addition t o reducing other message processing overheads.

CHAPTER 3

A Message-Driven Abstract Model

This chapter presents the basic abstract machine tha t describes the Massively Parallel

Combinator Reducer. As defined here, the model supports only conservative parallelism.

This simplifies the presentation of the model, as well as reducing the complexity of some

proofs of i ts properties. The next chapter expands the abstract machine t o include specula-

tive computation.

Computation in the MPCR abstract machine is message-driven. The connectivity of

the program graph determines how messages are sent. Conceptually, messages are sent by

the nodes of the graph, and travel along the arcs. When computation begins, messages can

be sent only downwards, from expressions t o their subexpressions. However, almost all mes-

sages carry information t o allow a reply t o be sent upwards, thus introducing additional

arcs.

When a node receives a message, i t reacts t o the message. The reacting node may

transform itself, produce new nodes, and/or produce new messages. The transition is thus

described by Node x Message -., Node List x Message List. Once the reaction triggered

by receipt of a message is begun, i t cannot be interrupted. New messages are therefore

queued at the receiving node and delivered one a t a time. Computation is initiated by send-

ing a Demand message, as described below, t o the node representing the leftmost outermost

reducible application of the graph.

The first section of this chapter will describe the nodes and messages tha t fully define

the abstract machine. The second section covers proofs of theorems concerning the

correctness of the machine. Garbage collection is not explicitly considered in these sections;

for the base model, it is assumed that the machine "knows" when a node has no arcs

incident upon it , and re-uses the resources committed to tha t node. A garbage collector

suitable for use with the abstract model is described in the third section, and the chapter

concludes with a discussion of some other implementation considerations.

3.1. Nodes and Messages

A program graph consists of five types of nodes: Application, Marker, Combinator,

Packet, and Indirection. Application and Indirection nodes correspond to those in Turner's

model. The purposes of the other nodes will be explained when each type is described.

Each node in a program graph is assigned to a virtual proeesaor which will receive messages

directed to the node. Virtual processors implement a logical sharing of the computing

resources in a system, in the same way that virtual memory locations implement sharing of

the storage resources. Each virtual processor could be mapped onto a single physical p r e

cessor, but there will often be many virtual processors assigned to each real processor.

There are four message types: Delete, Demand, Combinator, and Packet. Delete and

Demand messages are primarily for control, whereas Combinator and Packet messages

transmit data. All nodes react in the same way to Delete messages. A node tha t receives a

Delete message removes itself from the graph and frees its virtual processor for use by the

next new node. Combinator and Packet messages have exactly the same structure as that of

the corresponding nodes, and are always sent in response t o a Demand message. However,

there may be several intervening messages between the demand and the response.

A Demand message contains only a redez address. The redex address of a Demand

message is a reference to which the value of the demanded node should be sent. Every node

type also has a redex address field, in addition to the formats described below. The field is

called a redcz address because by chaining together a series of references through this field,

i t is possible t o trace the paths of successive Demand messages backward t o the root of the

original reducible expression of the graph. The term is also used t o differentiate from return

address, which has the connotation of a n instruction location rather than a da ta location.

The redex address of the initial Demand message is undefined. Unless otherwise specified in

the descriptions below, any other Demand message carries a redex address referring t o the

node tha t sent the message. The redex address of a node is usually undefined, but may be

set during the reaction t o a Demand message.

The format of each of the node types is detailed in the following paragraphs. Follow-

ing these descriptions, the reactions of each node type to the various message types are

explained. The reaction of each type of node t o each type of message (except Delete mes-

sages) is also summarized in Table 3.1. Any message reaction not described in the table is

considered a run-time error and should never occur during evaluation, unless the combinator

program being evaluated contains an error.

3.1.1. Node Formats

Application Node

Application nodes have two fields, both of which are references t o other nodes: a left

function and a right argument. As the name implies, the node represents the application of

the function t o the argument. The initial graph representing any combinator program con-

sists entirely of Application nodes and Combinator nodes.

Table 3.1, Reactions of Nodes to Messages. Node types are listed along the left side of the
table, message types across the top. The body of the table lists for each type of node the
change in redex address, node type, and other fields, upon receipt of each type of message.

ment t o argument ment t o argument

of message to

of message t o

Combinator Node

Combinator nodes have a single field which is the name of one of the built-in functions

of the machine. Although i t is not essential t o the model, for purposes of this discussion

these built-in functions are assumed t o implement the rewrite rules of a simple combinator

Combinator,
Part ial Packet

Complete Packet

Redex
Address

TY pe

Other

Redex
Addreas

Type

Other

notifier list
Ignored

Unchanged

Send self to redex
address of demand
Set t o t h a t of mes-
sage

Unchanged
--

Evaluate function,
r t s t n d Demand t o
self

list entrv

No reaction deRned

No reaction defined

set. I t would be possible with some minor modifications t o employ compiled super-

combinators instead. These nodes react only t o Demand messages, by sending copies of

themselves as messages t o the redex address of the Demand.

In Turner's reduction model, combinators are stored directly in Application nodes.

However, for clarity in describing the reactions of Application nodes t o the various message

types, i t is helpful if the fields of Application nodes always contain references. Combinator

nodes are therefore introduced t o serve as the leaf nodes of the tree of Applications tha t

make up the graph. However, there is no reason tha t an implementation of this model

could not make use of Turner's representation t o avoid a special Combinator node type.

Marker Node

Marker nodes have two fields, a task field and a notifier list. The term task indicates a

node which has been sent a Demand message, but which has not yet sent a response to the

redex address of tha t message. The notifier list may have several subfields, each of which is

a reference t o a node.

A Marker node serves as a synchronization point between the tasks tha t need t o

obtain the value of a subexpression and the task tha t is producing tha t value. T o the con-

sumer tasks, a Marker indicates tha t evaluation is in progress so tha t the consumers must

wait. T o the producer, i t represents a location where the value can be delivered, and from

which i t will be redistributed t o all the consumers.

Packet Node

Packet nodes have two fields, the first of which is the descriptor, which must contain

the name of a built-in function. As mentioned above, the function is assumed t o implement

any one of a set of combinators. The other argument list field of a Packet node will have

one or more subfields, which are filled in with the arguments to the function. The number

of entries in the list can never be greater than the number of arguments accepted by the

function. This number is called the arity of the function.

If the length of the argument list is less than the arity of the function, the Packet is

said to be incomplete or partial. Such a Packet represents a weak head normal form [Pey87].

A combinator expression f 2, z2 - - - x,, where n 2 0, is in weak head normal form

(WHNF) if and only if:

Either f is a data object (not a combinator)

or j is a combinator and j zl z2 . . . x, is not a redex for any m < n.

The latter condition can be understood to state that the arity of j is a t least n + l . Thus,

S g is a weak head normal form, because the expression has only one argument (g) , and S

forms a redex only when applied to three arguments.

If the arity is equal t o the length of the argument list, the Packet is said to be com-

plete. A complete packet represents a redex, and is able to invoke the rewrite rules for its

function. When this function is invoked, the packet undergoes an evaluation transformation,

described below.

Packet nodes may be thought of a s variably-sized Applications, representing the appli-

cation of a function t o more than a single argument. In terms of Turner's reduction model,

they encapsulate a portion of the stack. The purpose of a Packet node is to collect the

essential elements of a reduction ao that they may be transmitted as a unit t o another pro-

cessor for evaluation.

Indirection Node

Indirection nodes have a single field which is a reference t o another node. Indirection

nodes may be introduced during the evaluation transformation, described below.

The following sections will describe the reactions of nodes t o messages. Symbols used

t o diagram the reactions are summarized in Figure 3.1.

3.1.2. Application Node Reactions

Application nodes recognize only Demand, Combinator, and Packet messages. Other

messages received by Application nodes generate run-time errors.

Demand message

Demand messages direct an Application node t o begin the process of evaluating the

reduction represented by the node. The Application is transformed into a Marker, t o

manage the receipt of additional Demands during the evaluation. However, the original

s ta te of the graph must be preserved so tha t the argument stored in the right field of the

Application

Indirection

Marker

Packet

- - - -
/

/

/ *
Message Send

Figure 3.1 -Symbols for Node Types and Reactions.

Application can be accessed. Therefore, the Application is copied before i t is transformed

(see Figure 3.2).

1. The Application node makes a new node which is a copy of itself.

2. The redex address of the copy is set to a reference to the original Application node.

3. A new Demand message is sent t o the left function of the Application node. The redex

address of this message is a reference to the new Application.

4. The Application node transforms itself into a Marker node. This is referred to as the

marking tranajormation. Its task field is a reference to the new copy of the Application

node, and its notifier list contains the redex address from the Demand message. If the

new Marker node's redex address is a valid reference (not undefined), i t is added to the

notifier list, and the Marker's redex address field is erased.

list

Figure 3.2 - Reaction of Application node to Demand message. This is called the marking
tranajormation. Uppercase letters (A, B, C, . . .) are used as node identifiers. The prime
symbol (e.g., A') is used to denote nodes that are created by copying other nodes.

Note t ha t following the transformation from Application t o Marker in step (4), the only arc

(reference) in the graph which is incident on the new Application node is the task field of

the Marker. This guarantees t ha t additional Demand messages will be received only by the

Marker, not by the Application.

Combinator or Packet message

Combinator or Packet messages transmit data. Receipt of such a message means tha t

evaluation of the subexpression referenced through the Application's left function field has

been completed. A Combinator message is the function itself, and a Packet message is the

function encapsulated with a subset of its arguments. The Application node responds by

forming new Packet, adding its right argument field t o the list of arguments of the function

(see Figure 3.3).

(Demand I
A

Figure 3.3 - Reaction of Application node t o Packet message. The reaction to a Combina-
tor message is the same. This is called the packetitation transformation.

1. The Application transforms itself into a Packet node. This is called the packetiration

transformation. The redex address of the node is not changed by this transformation,

but the left function reference is implicitly released.

2a. If the message is a Combinator message, the descriptor field of the new Packet is the

name of the function specified by the Combinator message. The new Packet has one

subfield in its argument list field, containing the right argument field of the Applica-

tion.

2b. If the message is a Packet message, the descriptor and argument list of the new

Packet are identical t o those of the message, with the addition of one new argument

list subfield. This additional subfield contains the right argument field of the Applica-

tion.

3. The redex address of the newly transformed Packet node is copied t o the redex

address of a new Demand message. The redex address of the new Packet is then

erased, and the Packet sends the Demand message t o itself.

3.1.3. Marker Node Reactions

Demand mesaage

The Marker node adds the redex address of the Demand message t o its notifier list (see

Figure 3.4). Recall tha t several expressions may share references t o the same subexpression.

This operation synchronizes multiple demands for the subexpression, and arranges for later

distribution of its value t o all expressions t ha t require it.

Figure 3.4 - Reaction of Marker node to Demand message.

-
notifier list

Combinator and Packet messages

These messages represent normal forms (data), and cause the Marker t o undergo a n

update transformation (see Figure 3.5). Receipt of such a message means t ha t evaluation of

the expression referenced through the Marker's task field has been completed. The

corresponding operation in Turner's model is update of the redex with the value computed

by applying the function at the top of the stack.

1. A Delete message is sent t o the node referenced by the Marker's task field.

2. For each reference in the Marker's notifier list, a Demand message is generated whose

redex address is tha t reference. These messages are not immediately sent.

3. The Marker node transforms itself into a node whose type is the same a s the type of

the message. The redex address of the transformed Marker remains unchanged. All

other fields of the message are transferred from the message t o the node.

4. The Demand messages generated in step (2) are sent by the transformed node, t o

itself.

4'
Delete I

A' f

Figure 3.5 - Reaction of Marker node to Packet message. The reaction t o a Combinator
message is the same. This is called the update transformation.

3.1.4. Packet Node Reactiona

Demand message

As always, receipt of a Demand message is a request for a value. The Packet node

must either evaluate its function, when all arguments are present, or return as data the

function and arguments that have been encapsulated so far, so that additional arguments

can be added to the list.

la. The Packet node checks the number of entries in its argument list against the arity of

the function in its descriptor field. If the Packet is partial, the Packet sends a copy of

itself as a message to the redex address of the Demand message. Steps (2) and (3) are

skipped in this case.

Demand L

Figure 3.6 - Reaction of complete Packet node t o Demand message. This is called the
evaluation transformation. The evaluation of the S combinator is shown as an example; the
actual reaction depends on the specific combinator in the Packet's descriptor field. During
evaluation of the combinator, the redex address of the Demand message is stored in the
redex address of the Packet, then used t o generate a new Demand when the transformation
is complete.

lb. If the Packet is complete, the redex address of the Demand message is transferred t o

the redex address of the Packet. This is done t o save the redex address until evalua-

tion has completed.

2. The node invokes the function named in its descriptor field, providing i t the arguments

in the subfields of its argument list. The result of this function overwrites (updates)

the Packet node. This is called an evaluation transformation (see Figure 3.6). The

function may transform the node into either a new Application node or a Combinator

node, as determined by the rewrite rule for the combinator the function represents.

The function may remove arcs (references) or create new arcs and nodes, also as deter-

mined by its definition.

3. The redex address field is copied into the redex address of a newly generated Demand

message. The redex address of the evaluated Packet is then erased. This Demand

message is sent by the transformed node, t o itself.

3.1.6. Combinator Node Reactions

Combinator nodes react only t o Demand messages. The reaction is tha t the combina-

tor sends itself as a message t o the redex address of the Demand.

3.1.6. Indirection Node Reactions

Indirection nodes react t o all messages by forwarding the same message t o their refer-

ence field. In the case of a Delete message, the indirection removes itself from the graph

after forwarding the message.

3.2. Proofs for the Abstract Model

This section presents proofs of several theorems tha t assert the completeness and

correctness of the abstract model.

The following theorem guarantees tha t nontermination occurs only as a result of the

combinator program represented by the graph, not as a result of the message-driven

abstract model.

Theorem 3.1

In the absence of evaluation transformations, a Marker node will receive at least one

message representing either a Combinator or a partial Packet.

Proof

Recall tha t when an Application node A receives a Demand, i t creates a new Applica-

tion A' as a copy of itself, and sets the redex address of A' t o refer back to A . A then

sends a Demand to its left function F, where the redex address of the Demand refers

t o A'. Finally, A transforms t o a Marker node whose task field refers t o A'. This is

the only way in which a Marker node is created. Recall also tha t redex addresses are

initialized only by this process or by transfer of the redex address of a Demand mes-

sage.

Proceed by induction on the structure of the message-driven computation. Let

A be an Application node t ha t has received a Demand message. A copies itself and

transforms t o a Marker. Let A' be the copy of Application A , referred t o by the task

field of Marker A .

It is helpful t o first state the following Lemma:

Lemma 9.2

Upon receiving a Combinator or Packet message, A' will either:

1. send a Combinator or a partial Packet t o A , or

2. send a Demand message t o a complete Packet, resulting in a n evaluation

transformation.

Proof of Lemma 3.2 is trivial from the definition of the abstract machine.

Proof (Theorem 3.1)

Consider cases for each of the node types for the left function F of A

Combinator node:

Combinator nodes are already in normal form. When sent a Demand message by

A , F will send a Cornbinator message t o A'. By Lemma 3.2, this either sends

the required message t o A or results in an evaluation transformation.

Packet node:

If F is a partial Packet, i t will send a Packet message t o A'. Again, the theorem

holds by Lemma 3.2. If F is a complete packet, an evaluation transformation

immediately occurs.

Application node:

Upon receiving the Demand, F will transform to a Marker. By the inductive

hypothesis, either F is replaced by a normal form, or an evaluation transforma-

tion occurs. If F is replaced by a normal form, the theorem holds by Lemma 3.2.

Theorem 3.1 asserts the completeness of the model under the assumption tha t the

evaluation transformations correctly implement the rewrite rules of the combinators. The

following theorems assert the correctness of the model by showing tha t i t fulfills these

requirements:

1. Marker nodes are updated only by the normal forms of the subgraph they represent.

2. Marker nodes are always updated if the program graph represents a combinator

expression having a normal form.

Theorem 3.3

A Marker is updated only by a message representing the node referenced by tha t

Marker's task field.

Pro 0 j

Let A be a Marker node. A is therefore a transformed Application. Let FA be the

node referenced by the left function of tha t Application, before the marking transfor-

mation. Let A' be the node referenced by the task field of A .

A can be updated only by a Combinator or Packet message. Let N be the node

which sends the Combinator or Packet message to A . By the definition of the

abstract model, N must be of the same type as the message, and must have received a

Demand message whose redex address refers t o A . Consider the cases in which such a

Demand could be sent.

I. A sent the Demand to N. By definition, A sends Demands only to A' and to FA.

If N=FA, the Combinator or Packet message will be sent t o A', not A . If N=Ar,

the theorem holds trivially.

2. Another node B sent a Demand with a redex address that refers t o A . There

are four cases in which the redex address of a Demand does not refer t o the node

that sent the message.

a. B is undergoing the marking transformation. In this case, the Demand is

sent t o FB, the left function of B . The redex address of the Demand is

defined to refer t o B', the task field of B following the transformation. B'

must therefore be an Application node. A is a Marker, so B' # A , and

therefore FB # N.

b. B sent the demand to itself, transferring its own redex address t o the

Demand. By definition of the initialization of redex addresses, one of the

following must hold:

1. N=B=A', so the theorem holds trivially.

2. Node A originally sent the demand to B , so the theorem holds by

induction.

c. B is undergoing the update transformation. In this case, B sent the

demand t o itself, transferring a redex address from its notifier list t o the

Demand. By definition of the marking transformation and Theorem 3.1, if

3 is referenced by the task field of any Marker M , then one of the entries

in the notifier list of B must refer t o M. Furthermore, by definition such a

B can receive Demand messages only from M or from itself. There must

therefore be ezactly one entry M in its notifier list. If M=A, then B=A1

and Theorem 3.3 holds.

Jf B is not referred t o by the task field of any M, then B must be the

left function of one or more other Application nodes. This is true by

definition of the cases in which Demand messages are sent. If B is a left

function, then the entries in its notifier list must refer t o Application nodes,

not Markers. Therefore B # N, so A is not updated.

Theorem 3.4

Under the assumption tha t the evaluation transformation correctly implements the

rewrite rules for the combinator set, the execution of the abstract model will reduce a

program graph t o normal form if the combinator expression represented by the graph

has a normal form.

Proof

By Theorem 3.1 and Theorem 3.3, Marker nodes are correctly updated if no evaluation

transformations occur. If an evaluation transformation does occur, i t overwrites a

node with either an Application or a normal form, which then Demands itself.

Proceed by induction on the two cases:

1. If the transformation results in a normal form, Theorem 3.1 and the definition of

the evaluation transformation guarantees tha t the Marker created by the initial

Demand will be updated.

2. If the transformation results in an Application, the Demand will transform it t o

a Marker. By the inductive hypothesis, this Marker must also be updated by a

normal form if the combinator expression i t represents has one.

5.3. Garbage Collection

The Delete message handles explicit deletion of graph nodes during update transforma-

tions. However, arcs can also be removed during the evaluation and packetization transfor-

mations. For example, recall the rewrite rule for the K combinator:

K z y + z

An arc (reference) t o subexpression y is removed in this evaluation. In the packetization

transformation, the arc t o the left function is implicitly removed. Garbage collection must

be done t o recover subgraphs when the last arc incident upon tha t graph is removed.

Collection in a distributed-memory MIMD environment is a difficult problem.

Although the specific garbage collection algorithm used is not significant t o the abstract

model, i t is desirable t o select a strategy tha t can be implemented in a message-driven

manner. Furthermore, for purposes of simulating the machine, a straightforward technique

t ha t could be quickly implemented was sought. A reference counting scheme devised by

Watsont, which has been used in other research a t OGI, was the most appropriate choice.

The count associated with each pointer in this scheme is referred t o as the reference rights

held by the reference.

f Probable reference is WaW87a. The technique used in the MPCR is based on an informal discussion which
preceded publication of that paper, and may not be identical.

When a graph node is allocated, a predefined count of rights is assigned t o the pointer.

This value is also stored in the new node as the node's reference count. If a t any time such

a pointer is t o be duplicated, the original rights are reduced by some amount, and tha t

amount is assigned t o the new reference as its initial rights value. This is called sharing the

rights. For purposes of this discussion, i t will be assumed tha t rights are shared by dividing

the amount evenly between the new reference and the original. In the abstract model,

whenever a node makes a copy of itself, rights t o all references t ha t i t holds are shared

between the original and the copy.

The initial reference count of a node-and hence the total rights held by all pointers

t o it-never increases. Instead, if a pointer tha t holds the minimum allowable number of

Figure 3.7 - Sharing of Reference Rights. Assume the original count of rights is 16, and
the minimum is 2. Application A wishes t o make a copy of itself. The right argument of A
contains a reference with the minimum number of rights, too few to share. Therefore A
creates a n indirection with the original 2 rights, and divides the 16 rights t o the Indirection
when creating the copy. The other reference held by A (arrow not shown) has enough rights
t o be divided without creating an indirection.

rights must be shared, a new Indirection node is allocated, and the original pointer is copied

into the Indirection. The rights t o the Indirection are then divided between the original

task and the new reference it wishes t o create. This avoids race conditions among incre-

ments and decrements of reference counts, which is important in a distributed concurrent

system.

Whenever a pointer is deleted, the reference rights i t holds are deducted from the

node's reference count. When a node's count reaches zero, i t is deallocated. This is added

t o the MPCR abstract model by extending the Delete message t o include a count of the

rights released. Receipt of a Delete message thus need not result in the immediate removal

of the node from the graph. Several Deletes may be required.

Other message types also carry references. Rights are traneferred from a message t o a

node when the entire message is copied or when a reference carried in a message is copied.

For example, rights are transferred in the update transformation of a Marker. Reference

rights sent in a message are therefore given up by the sending node. Creating a message

must involve either a transfer or a division (sharing) of rights. Furthermore, every message

must carry a reference and rights t o its target node, so tha t the node cannot be collected

before the message is delivered.

Rights carried by any message are released when tha t message is delivered, except for

Demand messages received by Marker nodes. Rights carried by these messages are released

only when the response is sent, following a n update transformation. This means that the

notifier list of a Marker must actually store the entire Demand message, and these messages

therefore need not be recreated during the update transformation. If a Demand message is

not entered in the notifier list because its redex address already appears, rights are immedi-

ately released because no response is needed.

Forwarding of messages by Indirection nodes is a special case, because the rights held

by an Indirection can be divided only a finite number of times. Delete messages are not a

problem, because they are not forwarded until the last rights t o the Indirection itself are

released. In t ha t event, all of the Indirection's rights are sent in a Delete message, so no

division is necessary. Combinator and Packet messages will never be sent through Indirec-

tions, because they are always sent directly t o the demanding node through the redex

address of the Demand message. Forwarding of Demand messages still poses a problem, but

this can be remedied by a remote reference scheme. This is discussed in the next section.

Other specific cases where rights are shared are:

o Initialization of the redex address of a n Application node, in step (2) of the

marking transformation.

o Creation of the Demand message in step (3) of the marking transformation.

o Initialization of the task field of the Marker node in step (4) of marking transfor-

mation.

o Creation of the Demand message in step (1) of a Marker node's reaction t o a

Demand message.

Specific cases where rights are transferred are:

o Inclusion of a redex address in a notifier list, in step (4) of the marking transfor-

mation, and in step (2) of the reaction of a Marker t o a Demand.

o Initialization of a subfield of an argument list, in the packetization transforma-

tion.

o Creation of a Delete message sent t o the task field reference during the update

transformation.

o Creation of a Demand message, as the final step of the evaluation transforma-

tion.

Like any reference counting collector, the reference rights algorithm is sufficient pro-

vided tha t no cyclic structures are introduced. The rewrite rules implemented by the

evaluation transformation are assumed t o comply with this restriction. However, the refer-

ences supplied as redex addresses are by definition cyclic. They point t o a node which must

have a reference t o the node it has demanded. Thus a true cycle is introduced in the mark-

ing transformation, from the task field of the Marker to the copy of the Application and

back through the redex address of the copy. A similar cycle is created whenever a Demand

message is stored in the notifier list of a Marker. These cycles are not a problem because

they are always broken by the update transformation.

3.4. Implementation Considerations

3.6. Remote References

An important consideration when using recursion t o descend the left spine is the need

t o differentiate local references from remote references. A local reference is one t ha t can be

followed within memory tha t is directly addressable by the local processor. A remote refer-

ence is one t ha t can be accessed only indirectly, i.e. one t ha t is local t o some other proces-

sor. Remote references force the machine t o revert in par t t o the message-driven model.

Remote references can be treated as Application nodes whose left function knows how

t o retrieve the node referenced by its right argument. In the pure message-driven model, if

such a node received a Demand message, the series of messages triggered by reaction to the

Demand would transform the Application into a Marker and evaluate the function t o

retrieve the reference. In the recursive variant, the processor can be made to recognize the

reference as remote, create the Marker, and send a request for the referenced node (see Fig-

ure 3.8). I t then continues a s if a complete Packet had been formed, leaving a Demand mes-

sage in the notifier list of the new Marker. This is discussed in detail in the chapter that

describes the simulator.

Another application of this technique is in dealing with Indirection nodes whose rights

have been reduced to the minimum allowable value. If such an Indirection receives a

Demand message, it can be treated a s a remote reference as follows:

1. The Indirection is transformed to a Marker, with an empty task field, and with the

Demand tha t i t received stored in its notifier list.

2. The new Marker sends a Demand to the reference i t held as an Indirection. All

remaining rights of the reference are carried by this message.

Demand P T i I

remote C
remote C

1 /

list

+
,- A

Figure 3.8 - Demanding a Remote Reference. The indirection representing the remote
reference is transformed into a Marker. This is necessary only when the indirection has run
out of reference rights to share or when the remote reference is found in the argument list of
a strict function (see below).

1 *** I /

I
I &'-,--'
I notifier
I

When the response t o the "forwarded" Demand is returned, i t updates the Marker. The ori-

ginal Demand is then re-sent.

3.6. Pre-Formed Packets

One additional simplification tha t does not directly affect the model is the formation

of all possible complete or partial Packets a t compile time. This reduces the number of

Demand messages tha t must be sent early in the computation. In a system tha t is simulat-

ing many virtual processors on each real processor, this pre-Packetization also makes it

easier t o distribute the graph and encourages locality of reference. This simplification has

been adopted for the MPCR simulator, described in Chapter 8.

3.7. Constructor Nodes and Bseic Values

Most reduction systems support several primitive da ta types, such as integers, and

constructed da t a types, such as lists. In the combinatory calculus, such da t a types are

represented by application expressions tha t cannot be reduced, i.e. by the application of a

combinator t o too few arguments. This corresponds precisely t o partial Packet nodes in the

MPCR abstract model. I t is therefore possible t o implement da t a structures directly as

Conatruetor nodes. A constructor node is a WHNF.

If Constructor nodes are included, they must either be introduced before computation

begins or be introduced during evaluation transformations. Constructors are treated as par-

tial Packets for purposes of the message-driven computation. However, a Constructor can

never be the left function of a n Application, in a correct program. Instead, other functions

must be provided t ha t implement the interface to each type of Constructor. These func-

tions employ a set of Selector messages tha t can be sent t o the Constructor.

For example, the implementation of a List node might include the functions (combina-

tors) head and tail. When the evaluation transformation invokes these functions, a

corresponding Selector message is sent t o the List node. The List node reacts by returning

the appropriate par t of its structure. Of course, i t is also possible t o allow the evaluation

transformations for head and tail t o access the List node directly, if the nodes reside on the

same physical processor.

A complication of the inclusion of functions t o manipulate Constructor nodes is tha t

those functions must be strict. Tha t is, the argument of such a function must be evaluated

t o Constructor form before the function can be applied. Selector messages must therefore

include an implicit Demand, so tha t , if they are received by an Application or Marker node

rather than by a Constructor, appropriate action can be taken. It is thus possible for the

evaluation transformation t o become blocked until the response to a Selector message

arrives.

When a Selector message is received by an Application or Marker, i t is treated as a

Demand and placed in the notifier list. The type of the Selector is included in the notifier

entry, so tha t when the message is re-sent a t the end of the update transformation, the

correct response is made. An evaluating Packet tha t has sent a Selector message becomes

suspended until i t receives a response. I t will receive no other messages during this time,

because i t is "protected" from Demands by its Marker.

3.8. Shortening Marker Chains

I t is clear tha t the Application node t o Marker node transformation tha t follows

receipt of a Demand message could result in chains of Marker nodes. As each Marker in the

chain is updated by a Combinator or Packet message, i t re-sends a t least one Demand t o

itself. This Demand then results in the update in the next Marker in the chain, and so on.

The topmost Marker of any such chain represents the demanded subexpression, as seen

by any tasks evaluating the surrounding expression. The lowest Marker in the chain

represents the currently-evaluating redex. At any time, then, these two Markers suffice to

represent the chain from the viewpoint of the rest of the graph, and the intermediate Mark-

ers need not be created. It would be sufficient t o introduce Markers only for the topmost

Application, and for any Application that will be transformed into a complete Packet.

T o permit two Markers to represent the chain, a few modifications are made to the

abstract model. First, the reaction of Application and Marker nodes to Demand messages is

altered, and a Query message is introduced. When an Application node receives a Demand

message, it sends a Query message to its left function, rather than another Demand. It then

transforms to a Marker a s usual. Similarly, when in the original model a Marker node

would send a Demand to the node referenced in its task field, in this altered model i t

instead sends a Query. The redex address of a Query is always a reference to the node that

sends it.

A Query message is treated identically t o a Demand message by all nodes except

Application nodes. An Application node reacts by copying the redex address of the Query

message into its own redex address. A run-time error occurs if the Application's redex is

already defined and is not the same a s the redex address of the Query. (For garbage collec-

tion purposes, if the redex addresses are duplicates, their reference rights are combined in

the redex address of the Application,) The Application then sends a Query message to its

left function, and transforms itself into a new node type called a Marked Application node.

Marked Application nodes are identical t o Application nodes in all respects but one.

Upon receiving a Packet message which requires only one more argument t o complete the

argument list field, the Marked Application node reacts as follows:

Figure 3.9 - Substituting Marked Applications (right graph) for Application-Marker chains
(left graph). Instead of a chain that looks like

Packet 4 Markero + Applicationl -+ Markerl 4 Applicationz + . . - -+ Marker,

the chain is

Packet + Markero -, Marked Applicationl 4 . . . -+ Application, + Marker,

1. The Marked Application node makes a copy of itself. This copy is transformed into a

new Application node whose redex address is a reference to the Marked Application.

2. The Marked Application forwards the Packet message to the new Application.

3. The Marked Application transforms itself into a Marker node. The task field of the

new Marker is set to a reference to the new Application created in step (1). The redex

address of the Marked Application is transferred to the notifier list and the redex

address is erased.

The effect of this is t o remove one level of indirection for every Application in the chain (see

Figure 3.9).

An obvious drawback of this scheme is tha t i t introduces a number of cyclic refer-

ences. These references will all be removed by successive update and packetization transfor-

mations, but i t would be preferable t o avoid them entirely. If a purely message-driven

implementation is not required, a recursive packet formation algorithm can produce the

same effect without introducing as many cycles.

3.9. Recursive Formation of Packet Nod-

Combinator and Packet messages and their handling by Application (or Marked

Application) nodes are essential t o the fully message-driven abstract model. However, in a n

implementation where the number of processors is too few t o allocate a real processor to

each node, the entire left spine of a subexpression may be available t o a single processor. In

this case i t is simpler to let the processor descend the spine recursively until i t encounters a

Combinator node, and then build a Packet as i t returns towards the upper application.

This is essentially the same as performing a stack-based evaluation.

Such a recursive technique eliminates the need for a number of node type transforma-

tions, and also replaces some Evaluate and Demand messages sent as the result of Packet

messages. Aside from efficiency issues, elimination of these messages is useful for garbage

collection purposes. Reference rights would normally need t o be shared in order t o send the

messages. The drawback is tha t the recursive examination must be suspended whenever

there a re more Application nodes in the spine than are needed to fill the argument list of

one Packet.

Fortunately, in such a case the processor has references both to the topmost Applica-

tion and t o the Marker representing the completed packet. Rather than construct the chain

of Marked Application nodes described above, the topmost Marker can be formed and a

Demand message for that Marker can be placed in the notifier list of the Marker represent-

ing the Packet. Then, when the lower Marker is updated, the Demand message is sent and

the recursive Packet formation will be restarted from the top. The following recursive a l p

rithm describes this process more formally.

Algorithm 3.5

Input:

References to the demanded node T, the root node R, and the demanding node N. For

the first call t o the algorithm, T=R.

Output:

One of:

MESSAGE(Z)

The node z in message form, where z must be a Combinator or partial Packet.

SUSPENDED(Z)

A reference to node z, tagged so i t can be identified as a Marker node where

Packet formation suspended.

DEMANDED(Z)

A reference to node z, tagged so i t can be identified as a Packet node that has

been demanded.

Algorithm:

Apply the function paeketize as defined in Figure 3.10. If the return is MESSAGE,

deliver the message to N. Otherwise, computation is in progress and R will send a

message to IV a t some later time. The following theorem asserts the correctness of this

algorithm.

Theorem 3.6: Extension of Theorem 3.4

The recursive Packet formation algorithm demands the subexpression rooted a t R in a

manner equivalent t o sending a Demand message t o R in the pure message-driven

abstract model.

Proof

The proof will make use of the following lemma:

L e m m a 3.7

If packetize returns SUSPENDED(z), then either z must be a Marker whose notifier list

contains a Demand for R, o r z=R.

Proof (3.7)

By induction on the recursive definition of paeketize. The returns on lines (7), (14) and

(19) satisfy the condition trivially. On lines (8) and (16) the value of a recursive call

t o paeketize is being returned, so if tha t value is SUSPENDED i t must refer t o such a

Marker.

0

P r o o j (Theorem 3.6)

Assume tha t the combinator program represented by the graph has a normal form.

Let D, R, and N be defined as in Figure 3.10.

Base case:

Lines (I?), (21) and (23) are equivalent t o direct delivery of a Demand message.

Case 1:

On line (13), a Demand for the root R is placed in the notifier list of D. By

definition of the DEMANDED return, on line (14), and the inductive hypothesis, D

will be updated. This will send the Demand from the notifier list t o R.

Case 2:

Again, on line (18) a Demand for the root R is placed in the notifier list of D.

By the inductive hypothesis and Theorem 3.4, the task field of D has been

demanded, so i t will update D. R will therefore be sent the Demand from the

notifier list.

Case 3:

By the inductive hypothesis, if the recursive calls on line (1) returns MESSAGE,

then delivery of tha t messages on line (15) will correctly update D. The recur-

sive calls on line (16), whose value is being returned, must therefore produce

either MESSAGE or DEMANDED, correct by another appeal t o induction.

Case 4:

By 3.7, if the call on line (1) returned SUSPEIVDED(z), then z must have a

Demand for R in its notifier list. By the inductive hypothesis and Theorem 3.4,

z will be updated, so R will receive a Demand.

packetize(D, R, N)
CASE D .type IN
Application:

(I) CASE packetfro (D . function, R, N) IN
SUSPENDED (2) :

IF D-R THEN
(2) copy D to Dt
(3) sot Dt . redex-D
(4) change D .typo to Marker
(5) set D . task-D'
(6) set D .count-1
[TI return SUSPENDED (D)

ELSE
(8) return SUSPENDED (2)

FI
DEMANDED (2) :

(9) lot f =D . function
(10) change type of D to Marker
(11) set D.task-f
(12) set D . count-1
(13) place DM.nd(R for N) in D .notifier-list
(14) roturn SUSPENDED (D)

XESSACE (2) :
(15) deliver MESSAGE (2) to D
(16) return packetize(D, R, h')

ESAC
Combinator :

(17) return MESSAGE (D)
Marker :

(18) place Demand (R for N) in D .notifier-list
(19) return SUSPENDED (D)

Packet :

(20) IF D.argum8nt-list is complete T W N
(21) deliver Demand(D for N) to D
(22) return DEMANDED (D)

ELSE
(23) rmturn XESSACE (D)

PI
ESAC

END (packetire)

Figure 3.10 - Pseudecode detailing the recursive packet formation algorithm. D is the
demanded node, R is the root of the expression, and N is the node that demanded the ex-
pression. The initial call is packetize (D, D , N).

CHAPTER 4

Speculative Computation and Priorities

An important goal of this research is t o explore ways to automatically discover paral-

lelism in programs, without introducing explicit parallel constructs into the source language.

Parallel constructs are useful, but are difficult t o apply to programs that will run in a mas-

sively parallel environment because the number of tasks is very large and the execution

dynamics may be uncertain. To discover parallelism, the MPCR execution mechanism per-

forms speculative evaluation, that is, attempts evaluation of subexpressions without knowing

whether the values are needed.

Other techniques to detect parallelism, such as strictness analysis [BHASG], depend on

static analysis of programs. These techniques are improving, but are still unable t o detect

all available concurrency in the general case. Speculative evaluation is able t o uncover this

parallelism automatically and dynamically, allowing the system t o adapt to run-time varia-

tions in program behavior. A drawback to this approach, however, is tha t a speculatively

evaluated subexpression may represent a nonterminating, or divergent, computation. Some

mechanism is therefore required to control these computations.

4.1. Creating and Controlling Speculative Tasks

The MPCR controls divergence by a combination of two methods. The first is an

adaptation of the dataflow iteration level tagging scheme, and the second is based on known

properties of combinators. For purposes of the discussion which follows, we will consider

only the S, K, and I combinators, but these techniques can be generalized to any fixed

combinator. t

The problem with beginning computations tha t may diverge is that they steal CPU

cycles and memory from more useful work. I t is the goal of the first method t o control com-

putational divergence by limiting the CPU resources applied t o tasks whose results are not

immediately required. An effect of this limitation is to control memory divergence, tha t is,

divergent computations tha t consume memory needed for useful work. Computational and

memory divergence are closely linked in combinator reduction, because the only source of

nonterminating computation is recursion.

The first strategy is t o tag redices with an evaluation priority, and t o schedule reduc-

tions according t o this priority. Sub-expressions whose values are known t o be required are

given higher priority than those whose value may not be needed. Using priorities to control

speculative evaluation was first proposed by Burton [Bur85]. Burton's scheme assigns priori-

ties explicitly, by program annotation. However, it is possible t o automatically derive prior-

ities for speculative evaluations from the forms of combinator expressions.

Priorities are assigned t o subexpressions by comparison with the priority of the outer

expression. For example, the usual reduction rule for the S combinator is

S f g z -+ f z (g z)

Representing priorities by superscripts, reduction of an S combinator expression with priori-

t y i follows the transformation

(s j j g k zl)i (f m u (i , j) (g m u (i - l , k) 2) 1 i-1 1 i

Note t ha t this transformation does not change the priority of subexpression z, and as-

signs new priority i-1 t o the new subexpression g z . Such priority assignments are a p

t Compiled super-combinatora alr the Gmachine (Kie8S) are another matter. It is possible that a compiler
might be able t o classify them, in which case this technique could be extended t o programmed graph reduction.

propriate for normal-order reduction of the expression. To approximate applicative-order

(eager) reduction, the transformation might become

(s j j gk z l) i + (j m u (i , j) zmaz(i, l) mm(i,k) zmaz(i, l) i i
(0 1)

Here, the priorities of j and z would be increased if necessary, and the new subexpression

g z given a priority a t least equal t o that of the application in which it is used.

Eager evaluation and lazy evaluation are equivalent for K and 1, so in either case

their transformations would be

(K zi y k) i .-+ z m u (i 9 i)

(I % j) i + zm- (i , j)

It should be noted that the priority of subexpression f in the S reduction and z in the

K and I reductions may increase even in the normal-order priority formulation. When f is

a weak head normal form this priority change has no effect. The subexpressions of WHNFs

are given a priority only when they are accessed, for example by supplying additional argu-

ments t o make the expression reducible or by using a special combinator t o select an ele-

ment of a Constructor node. If f is a redex and has not yet been evaluated, the new priori-

ty is assigned before evaluation beginst. However, if j has already begun evaluating specu-

latively and the result of that evaluation has not yet been returned, the priority of the task

representing j must be increased. If priority is not increased, the task tha t originally

demanded evaluation of the subexpression will be delayed, perhaps indefinitely. The tech-

nique used to increase priorities will be described completely in the next section.

The second technique also addresses the problem of memory-divergent computations.

We classify all combinators as either c z p a n s i v c or c o n t r a c t i v e depending upon the effects of

t A remote reference may be considered an unevaluated redex for purposes o f assigning new priorities.

their application. Ezpansive combinators cause additional nodes t o be added t o the p r e

gram graph, and an ezpansivc rcdcz is an expression whose reduction involves application of

a n expansive combinator. Contractive combinators remove nodes, and are applied when

evaluating a contractive redcz. Neutral combinators, which do not change the number of

nodes in the graph, may be considered contractive for purposes of this discussion. When

eagerly evaluated, expansive redices provide new opportunities for parallelism, whereas con-

tractive redices normally do not. (However, strict combinators, which require their argu-

ments t o be fully evaluated, can be contractive and still provide opportunities for parallel-

ism.)

The reduction of too many expansive combinators leads t o memory divergence.

Evaluation of contractive redices, however, a t worst maintains the current memory usage

and generally will decrease memory occupancy. When high memory occupancy is detected,

the run-time system attempts t o reduce only contractive combinators until a sufficient

amount of memory has been made available. Even if some expansive combinators must be

reduced, new speculative evaluations can be avoided, thus greatly slowing the expansion.

Another possible use of the expansive/contractive classification strategy is t o speed the

creation of new work. When too little work is available, the system could eagerly reduce ex-

pansive combinators t o increase the number of tasks. This is impractical for simple, fine-

grained combinators, because contractive combinators appear too frequently. This strategy

has therefore not been used in the MPCR simulations. However, i t may be useful for super-

combinator reduction.

When the resources a t any node begin t o near saturation, speculative evaluations

must be sacrificed. The details of task deletion in the abstract model a re discussed below.

The technique is simply t o select a low-priority speculative task and terminate it. A mes-

sage is sent t o the task's redex address so that other tasks awaiting the deleted task can be

dealt with. Other reference rights held by the task are then released, and the task is deall-

cated.

4.2. Speculation in the Abstract Model

The abstract model a s described in the previous chapter supports only eonee rvative

evaluation. Speculative evaluation can be added to the model with a few changes. One im-

portant modification is to record the priorities of each evaluation. In addition to the for-

mats already described, every node type is given a priority field. Demand messages are also

supplied with a priority field. The priority of any node is initially undefined, but will record

the priority at which i t was demanded. The priority field of a Demand message gives the

priority a t which the demand is t o be satisfied. The initial Demand message therefore car-

ries the highest possible priority. Unless otherwise noted, any other Demand message carries

the priority of the node which sent it . No node may ever send a Demand with higher priori-

t y than its own.

Priorities assigned to subexpressions by the method described above can never increase

above tha t of the outermost expression. For simplicity, then, zero (0) will be used as the

highest priority, and all lower priorities will be represented by negative integers.

4.2.1. Creation of Speculative Taaka

Speculative tasks are created only during the evaluation transformation. When a

function evaluating a complete Packet wishes to create a speculative task, i t sends to the

selected subexpression a Demand message with priority one less than than that of the Pack-

et i t is evaluating. The redex address of this Demand message is undefined, because it is not

yet known which node is interested in the value of the subexpression. In fact, i t is inherent

in the definition of speculative evaluation that no node may be interested in the value.

These reduced-priority Demand messages, having no redex address, will be referred to as

Speculate messages. If a Demand message has either a redex address or a priority of zero, it

is not a Speculate message.

Speculate messages are normally sent only t o Application nodes, but as they are for

all other purposes Demand messages, they can be sent to any node type. Combinator nodes

and partial Packet nodes ignore Speculate messages, because they are already in normal

form. An Application, Marker, or complete Packet node either may react to a Speculate

message as if i t were a regular Demand message, or may ignore the message. The decision

to ignore the message is implementation specific, but in principle, i t is made when no virtual

processors are available to handle the new nodes that the marking or evaluation transfor-

mations may create.

The lack of a redex address in a Speculate message means tha t a t least one "real"

Demand message must be sent t o obtain the value of a speculative evaluation. Further-

more, the priority of a speculative subexpression may need to be increased. This is handled

by sending either a Demand or another Speculate message with higher priority than the ori-

ginal message. Any speculatively evaluated subexpression will thus receive two or more

Demand messages.

One final change is necessary to support multiple Demands. Combinator and partial

Packet nodes must react t o messages representing normal forms. In the conservative model,

such messages would be a run-time error. However, the speculative model may evaluate any

subexpression several times. Combinator and partial Packet nodes therefore ignore mes-

sages tha t have identical type and content t o the node that receives them.

4.2.1.1. Changing the Priority of a Task

Fortunately, the abstract model already supports delivery of multiple Demand mes-

sages through the introduction of Marker nodes. New nodes created during the marking

transformation are referenced only through the task field of the Marker. The Marker thus

receives each Demand or Speculate message, and may determine whether i t is necessary to

increase the priority of the task node. In addition, t o support task deletion, a task count is

added to each Marker to record the number of evaluations represented by that Marker

node. This will be explained more fully in the next sections. The Marker's task count is ini-

tially one (1).

When a Marker node receives a Demand message, it checks its task count and com-

pares its priority to that of the message. If the Demand priority is lower than the Marker's

priority and the task count is greater than zero, nothing needs t o be done. Otherwise, the

priority of both the Marker node and the task node must be increased. The Marker node

also checks the references in its notifier list. If none of them is the same as the redex ad-

dress of the Demand message, that redex address is added to the list. If any one of them is

the same, the one with higher priority is retained in the notifier list, and the other is re-

turned t o its redex address as an Exited message. This new message type will be described

later. With the exception of this new first step, the reaction of a Marker t o a Demand mes-

sage remains unchanged.

The most straightforward way to increase the priority of the task node would be to

send i t a message informing i t of its new priority. This introduces a few complications:

1. If the task node is an Application, i t must propagate the increased priority t o its left

function node.

2. If the task node is a Marker, the increase in priority must be treated as a new

Demand.

3. If the task node is a complete Packet and an evaluation transformation is in progress,

its priority must be increased immediately.

4. Any subexpression demanded during an evaluation in progress should also have its

priority increased. To accomplish this, the evaluation might have to be restarted, a t

least from the point where i t issued the Demands to its subexpression(s).

The fourth complication is quite serious. For a strict combinator, i t may not be possible to

complete the evaluation without obtaining the value of a subexpression. If the priorities of

subexpressions are not increased, an evaluation which should have high priority may instead

be delayed indefinitely.

Direct increase of priorities requires that a Marker node must be able t o communicate

directly with the task node. In a system with no global address space, such a reference can

be provided in any of several ways. The task node may be allocated to the same physical

processor as the Marker, but this permits no concurrent evaluation, defeating the purpose in

creating a new task. It could be allocated to a specific processor (as in Alfalfa), but selec-

tion of the processor may be limited by the global scheduling algorithm, causing a poor

choice to be made. Or the task could be tracked by use of messages, either by leaving for-

warding pointers or by returning an extra message when a processor is selected. The latter

requires additional space or message-passing overhead and may introduce still other delays

for high-priority tasks. For these reasons, a different tactic was adopted.

The task node created during the marking transformation is required to be allocated

on the same physical processor as the Marker, but that node is never evaluated directly. In-

stead, the reaction of a Packet to a Demand message is altered, and a new message type is

introduced. The new message is the Evaluate message, which carries no other information

than its type. These messages are understood only by Packet nodes. The evaluation

transformation, t ha t is, steps (2) and (3) of the reaction of a Packet t o a Demand, is now

assigned as the reaction t o the Evaluate message.

The reaction of a Packet t o a Demand is unchanged if the Packet is partial, lacking

one or more argument list subfieIds. In this case, the Packet returns itself as usual. Every

complete Packet t ha t receives a Demand message reacts by creating a new copy of itself.

The redex address of the Demand is transferred t o the new copy, not t o the original Packet.

The new copy of the Packet is then sent an Evaluate message, t o complete the evaluation

transformation. This revised transformation is shown in Figure 4.1.

If a Marker needs t o increase the priority of i ts task, a new Demand message is sent t o

the Marker's task field reference. The redex address of the new Demand message is a refer-

ence t o the Marker. This may result in nodes other than Markers receiving multiple

Demand &I

Figure 4.1 - Reaction of complete Packet node t o Demand message. This is the initializa-
tion step of the evaluation transformation. In the conservative model, the Packet is not
copied before evaluation.

Demands, but, with the exception of Markers, all Demands to the same node will have the

same redex address. If the task field refers to a complete Packet, each such Demand will

create a new task with a new priority. In order t o count the number of tasks its Demands

have created, a Marker node must "know" whether its task field refers t o a complete Pack-

et. In a purely message-driven model, this information is not available. However, with the

restriction tha t the task field must refer t o a node on the same physical processor, a com-

plete Packet may use its redex address reference to increment the task count of its Marker

whenever a new evaluation is begun.

From this point forward, the term task will be redefined t o refer t o a complete Packet

which has received an Evaluate message. Evaluate messages are a special case for garbage

collection, because they carry aN rights t o the node to which they are sent. The original

Packet does not maintain a copy of the reference (in fact, it cannot, having no field in

which t o store it). For this reason, rights carried by an Evaluate message are not released

immediately when i t is received. Instead, they are transferred to the Demand message in

the final step of the evaluation transformation. The independence of these new tasks from

the rest of the graph has two important side-effects:

1. A new task need not retain any specific spatial relationship to the node which created

it. This is important for processor mappings. If the global load distribution in the

system has changed, the new task has a chance to migrate to a less-loaded processor.

2. Speculative computation can be controlled simply by deleting Packets with priority

less than zero. Another copy of the task will be created if i t is ever demanded again.

The price paid for restarting work in this way is some duplication of effort. However, res-

tarting the task does not cause a loss of sharing. Any work tha t has already been complet-

ed by a previously created task will be accessible t o the new task. In the worst case, the en-

tire subexpression could be recomputed once for each priority a t which i t is (re)scheduled.

The worst case occurs when values are demanded more quickly than they can be com-

puted. In this case, a higher-priority task will be created before a previously created,

lower-priority task is able to return its results. If there are sufficient processor cycles avail-

able, two or more tasks may be created for every component of the expression, and every set

of these tasks may successfully compute and return a value. This multiplication of efiort

can only occur when there is not enough highest-priority work t o keep all processors busy.

However, if processors would have been idle without the lower-priority work, the evaluation

would have completed no more quickly even if the duplicate effort had been avoided. This

technique trades the overhead of performing duplicate work for the overhead of tracing

each task in order t o be able t o increase its priority.

A consequence of starting duplicate tasks to increase priorities is t ha t multiple copies

may be simultaneously active. This does not pose a problem for updates, because a t most

one Combinator or Packet message can update a given Marker. Once the update transfor-

mation has occurred, the node simply ignores any Combinator or Packet messages tha t the

extra copies may send. However, for purposes of cleaning up these multiple copies should

the speculative evaluations prove unnecessary, i t is useful t o maintain a count of the dupli-

cate tasks. The count is also necessary for making the decision t o s tar t another new copy.

4.2.1.2. Proofs

This section presents theorems to show tha t the addition of speculative computation,

by the changes described here, does not affect the correctness and completeness results of

the previous chapter.

Lemma 4.8

Copying a Packet node and evaluating the copy is equivalent t o evaluating the origi-

nal Packet directly.

Proof

Let A be a Packet node. When A receives a Demand message, i t creates new node A'

as a copy of itself. A then transfers the redex address of the message to the redex ad-

dress of A', and sends an Evaluate message t o A'. This Evaluate message represents

the only reference t o A', so A' will not receive any Demand messages (except those

sent t o itself). As the final step of the evaluation transformation, A' sends itself a

Demand message, using its own redex address as tha t of the Demand message. This

redex address is the same as tha t of the original Demand message, sent t o A . There-

fore any response made by A' t o this Demand will be returned t o the node t ha t sent

the original Demand.

QED.

Lemma 4.9

Multiple Demand messages sent t o the task field of a Marker will not cause the Mark-

er to be incorrectly updated.

Proof

Let A be the Marker and A' be the node referenced by the task field of A . Consider

cases on the type of A' when A receives a Demand:

Combinator or partial Packet:

The first Demand will result in the update of A . By definition, normal forms ig-

nore subsequent, equivalent messages. By Theorem 3.3, only the node referenced

in the task field or an equivalent node can send such a message, so the computa-

tion is unaffected.

Application:

The first Demand will transform A' t o a Marker. By the inductive hypothesis,

A' will be correctly updated. Therefore A will be correctly updated.

Marker:

Demands of increasing priority will cause new Demands to be sent t o the task

field of A'. By the inductive hypothesis, this has no effect on correctness.

Demands of equal or lesser priority will be ignored.

Complete Packet:

By Lemma 4.8, all copies will send equivalent Combinator or Packet messages to

the Marker. By definition, only the first of these is recognized, and will update

the Marker. Correctness is not affected.

0

Theorem 4.10

A Demand message sent to any node always creates a node which has priority equal to

the Demand and which is not also a Marker, or a node that has equal or greater prior-

ity and is not a Marker must already exist.

Proof

The only case in which a Demand message does not immediately create such a node is

when tha t Demand is received by a Marker. Let the Demand have priority P, and the

Marker have priority PM.

1 If M is a Marker with priority PM 2 P, then by definition the task field M' of M

also refers t o a node with priority PM 2 M. If M' is not a Marker, the theorem

holds trivially. If MI is a Marker, the theorem holds by induction.

2. If M is a Marker with priority PM < P, M must by definition send a Demand to

its task field MI. By Lemma 4.9, this does not affect the correctness of the com-

putation. Again, if M' is not a Marker, the priorities of M and M' will be set t o

P and the theorem holds. If MI is a Marker, the theorem hoIds by induction.

4.2.2. Deletion of Speculative Tasks

Certain tasks (demanded subexpressions) that have priority less than zero may be

deleted to make a virtual processor available t o a higher-priority task. For purposes of this

discussion, i t is assumed that a task whose priority is equal t o the lowest of any task in the

machine can be selected. As long as the priority of the deleted task is less than zero, how-

ever, the absolute priority is not significant. The selected task is terminated, in effect by

obtaining the reference rights from its Evaluate message and sending them in a Delete mes-

sage instead.

Only complete Packet nodes that have a valid redex address field and tha t have re-

ceived an Evaluate message are candidates for this type of deletion. This may seem t o be a

rather small subset of all nodes, but remember that every reducible expression in the graph

must a t some time have this form. When the correspondence of real to virtual processors is

not one-teone, low priority evaluations may spend considerable time in this state.

When a Packet of this type is terminated, i t first sends an Ezited message to its redex

address, and erases the redex address field. If the node receiving this Exited message is an

Application, the message is forwarded through the redex address of tha t node. Combinator

and Packet nodes ignore Exited messages. When a Marker receives an Exited message, it

decrements its task count by one. If the task count is zero, Exited messages are also sent t o

every reference in the Marker's notifier list, and the list is emptied. In this way, every

Marker affected by the deletion of the task is notified.

The behavior already described for Marker nodes that receive Demand messages

guarantees that priority zero computations will continue in spite of such deletions.

Theorem 4.11

Deletion of Packets whose priority is less than zero (the highest) does not affect

correctness of a computation.

Proof

Recall that only Packets which have received an Evaluate message can be deleted.

Such Packets by definition must be copies of another Packet.

Speculate messages are sent only during the evaluation transformation.

Demands sent in all other cases carry both a redex address and a priority. By

definition, the priority of the Demand is the same as that of the node tha t sent the

demand. Also by definition, an evaluation transformation can occur only after a com-

plete Packet has been formed. Since the initial Demand has priority 0, either no com-

plete Packet is ever formed or the first complete Packet formed must be a node with

priority 0. Call this node T. For purposes of this proof, the equivalence from Lemma

4.8 is used to ignore the fact that T is copied before evaluation.

By definition of the evaluation transformation, a Demand is sent by T to itself.

If T is an Application, another priority 0 Demand is sent t o its left function FT. By

Theorem 4.10, this must result in another non-Marker with priority 0. By consequence

of Theorem 3.1, and the definition of Demand messages, this non-Marker with priority

0 must update a Marker. By Lemma 4.9 and consequence of Theorem 3.4, the compu-

tation must be correct.

4.2.3. Summary of Changes to the Absfract Model

Priority Fields

Nodes and messages have an additional field for priorities. Priorities are initially

undefined, and are propagated by Demand messages. The initial Demand has highest priori-

ty. All other Demands have priority equal t o or less than that of the node which sent the

Demand. In particular, note that remote reference requests are also Demand messages, and

are given the same priority as the node which originated the request.

Application and Marker nodes reset their priority t o the highest received via Demand

messages so far. Complete Packets set their priority t o that of the most recently received

Demand. Note that this will never result in a decrease in priority unless all other copies of

the Packet have been terminated, because by definition a Marker will never send a new

Demand to its task field unless the priority has increased or the Marker's task count is zero.

Normal forms (Combinators and partial Packets) do not change their priority when they re-

ceive a Demand, because they respond immediately regardless of priority.

Speculate Messages

Demand messages with reduced priority and undefined redex address are called Specu-

late messages. They are sent during the evaluation transformation to s tar t a speculative

evaluation. They are treated as Demand messages, except that they may be ignored if the

receiving node so chooses.

Marker nodes cooperate with the nodes referenced through their task field to maintain

task counts. If the task field refers t o a complete Packet, the task count is incremented

each time a new copy of the Packet is created. The task count is decremented each time an

Exited message is received by the Marker.

Evaluate Metmag-

T o support multiple Demands for the same complete Packet at different priorities, the

evaluation transformation has been split into two parts. Upon receiving a Demand, a com-

plete Packet makes a copy of itself and sends the copy an Evaluate message. The copy

then undergoes the evaluation transformation.

Exited Messages

The creation of tasks that may or may not be needed, or of multiple copies of the

same task, may eventually strain the limits of various resources. To free these resources for

more important tasks, low-priority tasks may be deleted. When a task is deleted, it sends

an Exited message to its redex address.

Exited messages are also sent t o every redex address in the notifier list of a Marker,

when tha t Marker's task count reaches zero. This propagates the information tha t a task

has been terminated t o all the other tasks awaiting it. It also permits garbage collection of

Marker nodes that represent useless work.

CHAPTER 5

Mapping Virtual Processors to Physical Processors

Up t o this point, the discussion of massively parallel reduction has remained on a

mostly abstract level. Implementation considerations have been mentioned only in passing.

One important par t of the implementation of an abstract model tha t allocates large

numbers of virtual processors is the mapping of those virtual processors t o the physical pro-

cessors tha t are available in a real machine.

For the case of the MPCR, there are two decisions t o be made in making the virtual-

t-physical mapping. The first, common t o all multitasking systems, is the choice of the

best processor on which to execute a given task. A wide variety of techniques exist for mak-

ing this choice. Rather than attempt t o detail the possibilities, the first section of this

chapter will introduce the technique tha t was chosen for the simulations described in later

chapters. The reasons for this choice will also be discussed.

The second decision is related t o the model of speculative computations, and is the

choice of whether t o s tar t a given speculative task a t all. The most naive answer is t o con-

tinue creating speculative tasks until some resource is exhausted. This leaves the question

of which resource t o monitor and how t o determine tha t i t is used up. Full memory occu-

pancy can easily be determined, but in a system employing extremely fine-grained tasks,

processor cycles are a n equally important resource.

One measure of the availability of processor cycles is t o keep track of the processor

idle time. However, this measure may be inaccurate in the presence of speculative tasks.

The processor may be busy, but i t may be performing useless speculative work. The priority

scheme already described will limit this effect, but there may not be enough high-priority

work to keep the processor active. The goal is t o create enough speculative work t o occupy

otherwise idle cycles, without allowing the overheads of maintaining the priority queue t o

become excessive. The second section of this chapter presents a technique t o estimate the

number of tasks tha t will acheive this goal.

6.1. Distributing Workload

The goal of any scheduling algorithm is t o distribute tasks among processors in a

manner tha t will produce the best performance, though the notion of what is "best" depends

on the nature of the tasks and the processors. In heterogeneous systems, wherein different

processors may have different characteristics, some tasks may need t o be assigned t o a par-

ticular processor. If tasks have known time limits within which they must complete, as in

real-time systems, a task may be assigned t o any processor tha t is able t o guarantee its

completion before the deadline, even if the task might finish slightly sooner elsewhere. For

this research, however, a homogeneous system with no deadlines is assumed, so an algorithm

which produces balanced workloads among the processors is sufficient. Remember tha t in

the fine-grained model, all operations including memory accesses are treated as par t of the

workload. Load-balancing cannot entirely compensate for nonuniform accesses, but should

perform as well as any other scheme in terms of directing other work away from processors

tha t must sewice many da t a requests.

Diflusion scheduling is a n heuristic method for dynamic distribution of workload in a

multiprocessor system, with the goal of achieving nearly equal loads at all processor nodes.

I t differs from other distributed scheduling algorithms in tha t communication takes place

only between directly connected processing nodes in a network with less than complete con-

nectivity. Diffusion scheduling thus scales well a s the number of processors increases, which

is important in a system with potentially thousands of processors.

The name difluaion scheduling is drawn from an analogy t o gas diffusion physics,

which describes the tendency of molecules to migrate from areas of greater density or pres-

sure to areas of lesser density. This flow across a pressure gradient is modeled by computing

workloads a t each processor and sharing this information with neighboring processors.

Tasks are then transferred from processors with high loads to those with lower loads. This

method was introduced in the Rediflow system [KeL84] and DAPS [HuG84]. A summary of

other dynamic scheduling techniques can be found in WaM85.

Control of scheduling is distributed among all the participating nodes, rather than

residing a t some central location. This is advantageous because the overheads of the

scheduling process are divided among the processors. In any load-balancing scheme with

distributed control, each node periodically examines its workload and decides whether some

portion of the work should be offloaded to another processor. How often this examination is

undertaken depends on the particular scheduling algorithm. The decision of when to offload

work is called the tranafer policy VLZ86). I t is usually based on some measure of the

current workload a t a subset of the processors [GoH87, Go188, HuG84,LiK86, LiK87, Sta84].

However, other system state information may be used. Systems with several different pr+

cessor types or nonuniform connectivity [LiK87] may scale loads for more powerful proces-

sors or use a cost function for communications. Systems executing several different types of

tasks [NiH85] may vary the perceived pressure depending on the task type.

If the decision to shift workload is to be based on information about other processors,

then this information must somehow be communicated to each node. The information policy

[BaS85,LiM82] determines which processors will share information, how often, and what in-

formation they will share. In a completely connected system, each node may receive infor-

mation about the load from every other node, and may send work to any other node. How-

ever, in a system with lesser connectivity, such as a hypercube or a mesh, i t is often far

more efficient t o have each node communicate only with its directly-connected (nearest)

neighbors. Distribution decisions are thus based on regional, or neighborhood, load informa-

tion. This avoids the potential bottleneck of maintaining all load information in a central

location. To overcome local load maxima or minima, the information provided by each

node to its nearest neighbors can be modified in some way to reflect its knowledge of the

neighborhood load [LiK86,LiK87]. The experiments described in this thesis have used an

average of the local load plus the load values received from all neighbors t o compute the

load value that is exchanged.

Once a decision to offload work has been made, the location policy [ELZ86] determines

where the work will be sent. This determination may employ much of the same information

as the transfer policy, but may also use additional information such as locality of references

[GoH87,Go188,HuG84]. Some algorithms use predetermined criteria such as round-robin

selection [GoH87,Go188] or a set of probabilities [ChA82,HsL86]. The latter are usually

used when no state information is exchanged among nodes. In diffusion scheduling, tasks are

always sent t o nearest neighbors first. Depending on the particular algorithm, those tasks

may or may not later be allowed to move to a more distant node. The algorithm used in

this thesis research permits tasks to migrate until they are accepted by a processor, but

once accepted, tasks do not migrate further.

One difficulty with dinusion scheduling is the possibility of processor thrashing

prF81,ELZ86,NXG85]. This refers t o a state in which all nodes spend all their time

transferring tasks. Conditions under which this occurs are algorithm dependent, but i t is

usually associated with uniformly high loads. The research described in Chapter 6 has given

some insights on controlling processor thrashing, and has also provided a great deal of

understanding about the dynamic interactions among the information, location, and

transfer policies.

There are two other advantages of diffusion scheduling tha t have particular

significance for implementation of the MPCR model. First, the amount of information tha t

is carried a s a single load message is quite small. In a message-driven system such as the

MPCR, processors exchange messages frequently in the course of a computation. I t is there-

fore possible t o "piggyback" the load information on other messages, without greatly in-

creasing the size of any individual message. This avoids the need for neighborhood-wide

broadcasts and reduces scheduling overheads. Second, the neighborhood load information

tha t is exchanged can be used in determining whether speculative evaluation is appropriate.

This is described in the next two sections.

5.2. Deciding to Speculate

The decision t o create speculative work should depend on the s tate of both the

memory and processor resources of the machine. Free memory space can be measured

directly, but measuring processor availability is a more difficult question. In a system with

fine-grained tasks, a measure of current processor utilization may almost immediately be-

come inaccurate, because each task completes very quickly. An estimate of current and fu-

ture processor utilization is needed.

Three factors contribute t o the time required t o perform a computation: task execu-

tion, overhead, and latency. Task execution represents work t ha t contributes directly t o

completing the computation, and overhead includes all other work t ha t utilizes the same

processor. Conversely, latency refers t o the time required t o perform some operation tha t

does not directly involve the processor, such as accessing a disk drive or exchanging mes-

sages with another processor. Thus, the processor is active when dealing with tasks and

overhead, but is idle during latency. The goal is t o minimize the time spent in overheads

and t o eliminate idle cycles caused by latency.

Overhead has the effect of "slowing downn each processor. Each can spend only a por-

tion of its time executing tasks, so the result is the same as if the time required t o execute a

task were increased. In a parallel system, overhead includes context switching, local and

global task scheduling, and possibly some message pre- and post-processing. The reason

t ha t the diffusion scheduler is designed t o make decisions at each processor, using a subset

of the complete system load information, is tha t we desire t o distribute this overhead equit-

ably among all processors, as well as distributing the computation tasks. Use of fine-grained

tasks also minimizes the overhead of context switches.

Latency, on the other hand, has the effect of "slowing down" taaka, rather than proces-

sors. For example, a task which requires data from another processor must wait for mes-

sages to be exchanged, and possibly for the time t o compute the da ta as well. Multiprocess-

ing, in the sense of executing one task on each of many processors, cannot directly compen-

sate for latency. However, the basis for speedup in multiprogramming is interleaving execu-

tion of tasks which do not depend on one another in this way. When dependencies exist, the

processor executing the dependent task should not be allowed t o become idle. If the proces-

sor is quickly provided with another task tha t can execute while the dependent task is wait-

ing, the latency of the dependent task has been masked, and has not slowed down the sys-

tem. The combination of multiprocessing and multiprogramming permits some overheads,

which cannot be masked, t o be replaced with latency tha t can be. I t is therefore important

to generate enough work t o mask latency, without generating so much work tha t the over-

head of multiprogramming itself becomes unmanageable.

In addition t o reducing the overhead of individual context switches, one goal in choos-

ing a fine task granularity is t o use multiplexing t o mask latency. This idea is borrowed

from dataflow, in which many small operations keep the processor(s) busy during memory

accesses and other delays. Local task scheduling is viewed as an instruction pipeline. Some

tasks may be waiting for communications t o complete, but these tasks are not allowed to

block the pipeline. Instead, they are placed in a pool, returning t o the queue of ready tasks

only when they have received the awaited communication. In a system where the same pro-

cessor responsible for task execution is also responsible for some message processing, i t is not

possible t o absorb the entire communication latency. However, as long a s a significant par t

of the communication can occur concurrently with task execution, and there are sufficiently

many ready tasks t o keep the pipeline full, performance will not suffer a s a result of com-

munication delays.

In larger-grained parallel systems, the size and complexity of a task is used t o mask

latency. The complexity of the task contributes t o masking because any task usually needs

t o wait for only part of the complete result computed by another task. Tha t is, two larger

tasks may need t o synchronize a t certain points in the course of their computations, but

otherwise can continue independently. The latency of such tasks is reduced a s compared t o

their execution time. The size of the task also contributes t o masking because the run time

of any task is a significant portion of the message transmission time. Only one or a few

tasks need t o be ready t o run t o keep the processor busy throughout a communication.

In fine-grained systems, two tasks with a direct dependency are rarely ready simul-

taneously, because the operations are so simple tha t the dependent task cannot even begin

t o execute before receiving da ta from the depended-upon task. Furthermore, the run time

of a fine-grained task is a smaller fraction of the communication time, and context switches

are more frequent, so more tasks must be available t o mask latency. Estimating this

number of tasks and comparing the result t o the current number of ready tasks provides the

information on future processor utilization. If the current number of ready tasks appears

too low, speculative work can be created t o supply additional tasks.

If T, is the time required t o reduce a single combinator expression, and L is the laten-

L cy, a given processor needs to perform - reductions t o absorb tha t latency. Computing
T,

accurate values of T, for various combinators is not difficult, because each reduction step is

very simple. The value of L is more difficult t o determine, because i t must account for de-

lays occurring because da t a requested from another node may not be available, a s well as

for two-way transfer time, but a reasonable approximation can be made. Let

T,,, be the average message transfer time between any two nodes;

T, be the execution time for a task when i t has all its data , as adjusted for over-

head;

N,(z)be the length of the ready queue at processor z;

Pjj be the probability tha t i requires da t a produced by another task j-that is, tha t

i will demand a n unresolved reference (either a remote reference or a reference

t o an unevaluated subexpression).

We want t o compute L , the average latency of any task from the time tha t i t is demanded

t o the time i t completes execution. For simplicity, we assume tha t no task i depends on

more than one other task, though in reality this is determined by the strictness of each com-

binator. We also assume tha t task i does not execute on the same processor where i t was

demanded, because there is no maskable latency in the latter case. This also represents a

worst-case scenario, in tha t both communication and evaluation time are included. First,

define T,(z), the time for a task t o reach the front of the ready queue a t processor 2, as

T,(z) = Nr(z). T, +Pij) (1)

This represents the time for all tasks in the queue a t z tha t do not depend on other tasks t o

complete, and assumes tha t each task enters the queue a t the rear. Equivalently, this is the

time for a task i scheduled a t processor z t o reach the front of the ready queue.

Upon reaching the front of the queue, task i may (with probability Pii) demand

evaluation of another task j. If some j is demanded, i will wait for j t o run on processor

y, then return t o the ready queue and eventually execute. Otherwise i t will execute im-

mediately. To account for this, the latency equation for a task a t processor z can be writ-

ten as

L(z) = Pij . (Tr(z)+L(y)+Pij ' Tr(z)+ Te +2Tm) (2)

T, is of course the time for i t o execute. The addition of 2Tm accounts for the message

transfer time for task i t o reach processor z and for the result t o be returned. All of this is

multiplied by PG, the probability tha t the task will be demanded a t all.

T o get a perfect picture of the latency, i t would be necessary t o consider fluctuations

of T, with changes in overhead and fluctuations of Nr(z) for all z over changes in time.

However, all tha t is needed is an approximation of the latency, so several simplifying as-

sumptions can be made.

The first assumption is tha t the global scheduling process is in equilibrium. This

should be the case except in the very early or very late stages of the entire computation.

Under this assumption, the overhead at all processors will be nearly equal, so (given a h o m e

geneous processor network) T, can be taken as constant. This assumption also allows N, to

be treated as a constant independent of z and of time, because fluctuations in the lengths of

the ready queues will be evenly distributed about the mean length, and the mean lengths of

the queues will be nearly the same a t all processors. I t is then reasonable to take L t o be

the same for any two processors, and solve for L:

P i i . ((l + P i j) . T r + Te + 2 T m)
L =

1-Pij (3)

The subexpression (1 + Pij) - T, + Te can be viewed as the time t o complete this task, includ-

ing the time t o bring i through the queue a second time if i t had to wait while j was

demanded. 1-Pij in the denominator is the fraction of tasks tha t do not depend on any

other task. The latency thus increases as the proportion of dependencies increases. The

message transfer time also increases as the proportion of dependencies increases, t o account

for the possibility tha t j depends on another task, which may depend on yet another, and so

on. Thus, as expected, the total time from the demand for an expression t o the return of its

value depends on the time to complete tasks for i t and for all its subexpressions. Note tha t

a s the proportion of dependencies goes t o zero, the time to complete a task becomes only the

time t o schedule and run tha t single task; and as the proportion of dependencies goes to

one, the time to complete becomes infinite. This corresponds precisely t o intuition about

terminating and divergent computations.

L
Recalling tha t the number of reductions needed t o mask this latency is given by -,

Te

we want t o solve

Which gives

The intuition about this equation is less clear. T, +2T, represents the average time for a

single task with no dependencies t o execute on a remote processor. If every task on the lo-

cal processor were guaranteed t o have no dependencies, (T, +2T,,,)/T, tasks would mask

t ha t time. However, this guarantee cannot be made, so the estimate is adjusted by a factor

of Pij. Equation (5) still has the expected behaviors a s Pij varies from zero t o one, i.e.,

when Pii = 0 no tasks are required (there is no latency t o mask), and when Pij = 1 infinitely

many tasks are required (no task ever completes).

Another interesting thing t o note about Equation (5) is tha t i t has reasonable values

when Pij ranges as high a s approximately 50% t o 58%, independent of T,,, and T, (see Fig-

ure 5.1). From 58% to 61%, N, rapidly becomes unmanageably large, and if Pij reaches

62%, the result is ncgative-eflectively infinite, since negative values are meaningless in this

case. This does not mean tha t i t is impossible t o get parallel speedup when the proportion

of dependencies exceeds e l%, but i t does indicate tha t this level of dependencies represents

a threshold of diminishing returns, beyond which latency cannot be entirely masked.

All of these equations have explicitly ignored the possibility tha t a task may depend

on more than one other task. However, this corresponds t o the situation in a large-grain

system wherein two tasks with a dependency relation a re able to be ready at the same time,

because the dependent task incrementally consumes a stream of results produced by the

depended-on task. For example, suppose tha t task i depends on two tasks j and k. If j

and k can run concurrently, i will be delayed only by the longer of T,(j) and T,(k). Thus,

i actually depends on only one of j and k, the one tha t takes longer t o complete. Further-

more, unless there is a dependency relation between j and k, the effect is as if i depended

on only part of the longer-running task, because the shorter-running task will "stand in" for

i during part of the delay. Therefore, multiple dependencies can be modeled by reducing Pij

Figure 5.1 - The effect of dependencies on attempts t o mask latency. As the proportion of
dependencies increases, i t becomes impossible t o mask latency completely, regardless of the
speed of processors or of communications.

as the proportion of tasks with multiple dependencies increases.

Other factors not considered here are speculative computation and priority; i t has al-

ways been assumed tha t a task is unconditionally demanded and enters the ready queue at

the rear. The most direct way t o model these factors would be t o compute L(p) for each

priority p, where N,(p) depends on the proportion of all tasks tha t have priority p or

higher, and also on the proportion of tasks a t each priority t ha t are uaeleaa (never demand-

ed). N, is then the sum of all the N,(p). It is easy t o see t ha t these equations quickly be-

come too complex t o be readily usable. As with multiple dependencies, however, speculative

computation can be modeled indirectly. Note tha t each useful speculative task tha t com-

pletes has the effect of eliminating a dependency. AIso, each useful speculative task in the

queue reduces the number of nonspeculative tasks needed t o mask latency. Both of these

effects can be simulated by reducing Pij in Equations (1) and (2). Priorities serve only to

ensure that the latency of nonspeculative tasks will be small when compared t o speculative

tasks, and can be ignored in computing the overall average latency.

Unfortunately, this still leaves the problem of determining the value of Pi, for any

given program. This could probably be accomplished by applying standard complexity

analysis t o each operation within a program, combined with analysis of the behavior of the

combinators in the expression compiled from the operation. Such analysis is a possible topic

of future research, but for purposes of this research a more general estimate, likely to be ap-

plicable t o a range of programs, is desired. Estimating Pii for the experiments in this thesis

is discussed in Chapter 7.

6.3. Combining the Strategies

Although the heuristic described in the previous section can give clues about when i t is

desirable t o speculate, a given processor may find itself unable t o create speculative tasks.

This can occur because only a subset of the combinators used in the system will have

definitions suitable for speculative evaluation of subexpressions. A processor in this situa-

tion must depend on other processors to supply i t with work.

Fortunately, in a system that employs diffusion scheduling, a processor need not rely

only on its own load t o decide whether speculation is worthwhile. The processor can exam-

ine the neighborhood load average compiled from the reports of its neighboring processors. If

the neighborhood load is less than N,, then some processors nearby must be in need of addi-

tional work, even if no more tasks are needed locally. On the other hand, if the neighbor-

hood load is greater than N,, then nearby processors will be attempting to offload work. In

the former case, the processor can create speculative tasks to send to its needy neighbors.

In the latter, new speculative work can be avoided because additional tasks are expected to

arrive from other processors.

I t is also possible for the diffusion scheduler t o make use of the estimated optimal

queue length in its decision t o accept or reject a task. If T,,, is considered t o be long rela-

tive t o T,, high priority tasks will sufler greater delay when rejected by a processor than

they would in executing a t a slightly more loaded processor. Furthermore, since a processor

may become idle if its queue has fewer than N, tasks, i t is advantageous t o accept tasks un-

til tha t optimum is reached.

A consideration in using this strategy is tha t the equations for N, include only non-

speculative tasks. More accurately, the best case is for every one of the N, tasks in a given

ready queue t o be uaeful, whether speculative or not. The approach needed in addressing

this problem is t o increase the proportion of useful tasks in each ready queue. The greater

this proportion, the better the processor is able t o mask latency. Increasing the estimate of

N, would increase the number of useful tasks, but not necessarily in proportion to the in-

crease in queue length. Lengthening the queue would only overload each processor with no

clear gain in terms of the amount of useful work performed.

T o increase the proportion of highest-priority tasks a t a given processor, the diffusion

scheduler might be told t o accept highest-priority packets preferentially. Only highest-

priority tasks are known to be useful, so the best way to increase the proportion of useful

tasks is t o increase the proportion of highest-priority tasks. However, building up a queue

of entirely highest-priority tasks may reduce parallelism. Several tasks of the same priority

queued a t the same processor have an artificially-introduced dependency on the tasks ahead

of them in the queue, in the sense tha t tasks later in the queue do not execute until those

earlier in the queue have completed.

The experiments described in Chapter 7 use a technique which attempts to balance

these concerns. Optimal queue length is considered by the diffusion scheduler only if the

priority of the task for which the decision is being made is greater than t ha t of the highest

priority task in the queue. This gives preference t o highest-priority tasks without needlessly

scheduling same-priority tasks on the same processor.

The combination of speculation heuristics and shared load information makes task

creation, distribution and control very flexible. The techniques can be adapted t o a variety

of hardware architectures because they account for both message transfer and processing

time in determining the number of tasks needed t o mask latency. Furthermore, the amount

of speculative work attempted will scale with the number of processors available. This per-

mits a system employing these techniques t o be used with little change as the size of MIMD

computers continues t o increase.

CHAPTER 6

Preliminary Research in Diffusion Scheduling

This chapter discusses simulated diffusion scheduling experiments performed prior t o

the development of the MPCR simulation. These experiments provided experience in design-

ing and evaluating diffusion scheduling algorithms. Also, t o make practical use of the

results, the experiments evaluated a diffusion scheduler tha t is designed t o be used in the

Parallel Graph Reduction system, another research project a t OGI. The PGR system is a

parallel implementation of the G-machine (Kie851 tha t will run on the Intel iPSCI2, a

hypercube-connected multiprocessor.

The goals of these experiments were:

1. T o explore general considerations for the location policy for assigning tasks t o proces-

sors.

2. T o determine the effects of a specific architecture on the information policy for ex-

changing pressure da ta , and t o tune the policy for tha t architecture.

3. T o estimate the performance of a real architecture using a diffusion scheduling alg*

rithm derived from the location and information policies.

The experiments were performed in simulation rather than on the real architecture because

of the additional control tha t could be maintained. Coarse tuning of the scheduling alg*

rithm proved as expected t o be easier under simulation, because the behavior of the system

could be observed and controlled while "computations" were in progress.

6.1. System Modeled

The run-time system for each processor node, shown in Figure 6.1, consists of two

processes: the Task Scheduler, which provides the environment for the execution of tasks,

and the Task Distributor, which is responsible for implementation of the diffusion scheduling

algorithm. This division is intended to allow a high volume of inter-processor communica-

tion for dynamic scheduling, without requiring the task execution system to support inter-

1 Pressure Manager I
....................

Load Info +

Load Eutimafe Table

Rejected Packets +

Ready Queue

[I I I
Wail Queue

....................

--.-__._.-.
Load Info 1

Memory Manager rn
Statistics <-.-.-.-.-.-.-.-.-.-.

Figure 6.1 - Run-time System Design. The upper block is the Task Distributor, the lower
block is the Task Scheduler.

ruptions for messages. These processes run in alternation via the processor operating

system's time-sharing mechanism, and each is conceptually divided into a number of sub-

processes.

8.1.1. Taek Distributor

The Task Distributor is divided into the Pressure Manager and the Packet Handler. A

packet is the encapsulated form of a task, constructed by a Task Scheduler and sent first t o

the local Task Distributor; from there, a packet may be sent t o the Task Distributor of any

neighboring node. The Packet Handler receives incoming packets and decides whether their

tasks should be executed locally or on another node. If the decision is for remote execution,

the Packet Handler forwards the packet t o the Task Distributor on t ha t node for further

distribution, otherwise i t sends i t t o the local Task Scheduler.

The Pressure Manager maintains estimates of load for the local node and its immedi-

a te neighbors by processing load messages from the local Task Scheduler and from neighbor

Task Distributors. This load information is used by the Packet Handler t o make distribu-

tion decisions. The Pressure Manager is also responsible for periodically sending local load

information t o neighbor Task Distributors, so tha t neighborhood load information is kept

reasonably current. Load information consists of two values, the pressure, based on the

number of ready and waiting tasks, and the memory occupancy, the percentage of total

available memory tha t is currently in use.

6.1.2. T d Scheduler

Components of the Task Scheduler are the Task Manager, the Memory Manager, and

the Performance Monitor. The Task Manager controls the execution of tasks, including

management of READY and WAIT queues; sends and receives da t a messages on behalf of

tasks; constructs new packets and sends them to the local Task Distributor; receives packets

from the local Task Distributor; and sends local load information t o the Task Distributor.

Packets are unpacked as they are received and the tasks are added t o the READY queue.

Tasks are run in a non-preemptive manner, so no other Task Scheduler functions are per-

formed while a task is running.

Although task workspaces a re allocated, initialized, and reference-counted from within

the Task Manager, they are considered part of the Memory Manager. Similarly, much of

the collection of various statistics is incorporated in the Task Manager and in the system

calls available t o tasks, but is considered part of the Performance Monitor, which periodi-

cally summarizes and reports this data . Collection of statistics can be controlled for each

task by a profiling flag. If no statistics have been collected for any task, no performance re-

port is made.

6.2. Diffiion Scheduling Task Simulator

The simulator is structured t o match the assumed architecture as nearly as possible.

All components of the architecture are present in the simulation, although the "memory

manager" consists only of a counter. A simulation run consists of the simulated execution

of a number of packets, starting with a single "seed" packet and expanding into a tree

structure. Each simulated packet may cause a number of new packets t o be created. In

order t o simulate completion of a computation, packet creation is bounded by limiting the

depth of the tree, but this limitation is not inherent in the computation model.

Each packet is assigned a size, an evaluation time, and a branching factor. When a

packet is accepted a t a simulated processor, the memory manager increments its counter by

the size of the packet, and the packet is placed in the READY queue as a task. Upon

reaching the front of the queue, a task first creates as many child packets as indicated by

its branching factor. I t then "executes" for its evaluation time. A t the end of t ha t time, if

the task has no children, a dummy da ta message is sent t o its parent. If the simulated task

has children and has not received da ta messages from all of them, i t will become inactive

(move t o the WAIT queue). No simulated task sends its own da t a message until i t has re-

ceived messages from all its children. After a task sends its da t a massage, the memory

counter is decremented by its size and the task is discarded.

< Interwork Scheduler Queue ,) - - - - -
. - .\

\ \
I \
/ I

Node OS Task , < y o d e 0s Task , I
I I I

Task Distributor Task Distributor

Figure 6.2 - Simulator Design. Node OS routines enter context-switch delay when both the
Task Scheduler and the Task Distributor for tha t node have entered the local time-slice
queue. When awakened by the Interwork scheduler, the NOS routine unblocks the next rou-
tine from its time-slice queue.

The simulator is written in C using Block Island Technologies' ~ntertuork~ [BaiSG]

Concurrent Programming Toolkit. Interwork routines are created t o represent the node

operating system (NOS) on each processor node, the Task Scheduler on each node, and the

Task Distributor on each node (see Figure 6.2). These routines are lightweight tasks, imple-

mented as coroutines. An additional Interwork routine can be scheduled t o run a t regular

intervals, t o extract and report general performance statistics.

Time in the simulation is kept in internal units which do not correspond directly to

real time. The Interwork scheduler maintains a global "clock," which is used t o maintain

local clocks at each NOS routine in approximate synchronization. Interwork routines are

scheduled in order of increasing "wake-up" time, and the global clock is advanced only

when all routines are "sleeping." Time required for various Scheduler and Distributor opera-

tions, context switching, and execution of tasks is simulated by causing the Interwork rou-

tines t o sleep for an appropriate interval. The local clock is updated at this point, so that

local and global clocks synchronize a t the wake-up time, but the local clocks a re rarely in

sync with one another.

The experiments performed assumed a hypercube connectivity among processors.

Parameters of the simulation were taken from the Intel iPSC/l hypercube multiprocessor.

The iPSC communication network is duplicated as nearly a s possible in the simulator, in-

cluding the routing algorithm used t o determine the path tha t a message traverses from one

node t o another. Times t o perform various functions such as message passing and context

switching are also proportional t o estimates of actual times for the same operations on the

iPSC/l.

6.2.1. Decision Algorithm

Before discussing results, a description of the decision algorithm used at each node t o

accept or reject packets may be helpful. The information policy used is t o exchange pres-

sure information among directly connected neighbors only. Two pieces of information are

sent t o each neighbor by a Task Distributor: an average of the pressures i t receives from all

its neighbors and from the local Task Scheduler, and a memory usage indication expressed

as a percentage of its total memory size. Pressure is a measure of workload, and in these

experiments is defined t o be the number of ready tasks a t a given Task Scheduler plus a

fraction of the number of waiting tasks a t tha t Scheduler. Waiting tasks are included t o

account for the memory they occupy, as explained below. The location and transfer policies

are implemented by the decision algorithm; the discussion which follows describes the

development and refinement of this algorithm.

Each time a new packet is received by the Packet Handler, a decision must be made

t o accept tha t packet, tha t is, t o execute i t locally, or t o reject t ha t packet and send i t t o

another processor node. The decision t o accept or reject is based on a weight computed for

the local node and each of its neighbor. The weight is computed from the perceived pres-

sure for the node and the distance (in hops) between the node and the origin of the packet.

Distance is included because each packet is assumed t o represent a large task, which will

transmit a significant amount of da t a back t o its origin processor.

Also added for the neighbor nodes is a constant hop weight multiplied by the number

of Task Distributors the packet has visited, including the current one. If the local node is

the same as the origin of the packet, the hop weight is balanced by the addition of a con-

s tant launch weight to the weight of the local node. The launch weight is a tunable parame-

ter designed t o encourage parallel execution. If one of the neighbor nodes is the same as the

origin of the packet, a constant home weight is added t o the weight for t h a t node t o

discourage packets from returning t o a node tha t has already rejected them. For the same

reason, the neighbor from which the packet was received is never considered.

Memory usage information is considered indirectly in two ways. The first is the inclu-

sion in the pressure value of a fraction of the number of waiting tasks at a node. That

fraction was chosen as 0.5 based on early observations. This is sufficient t o prevent nodes

with many waiting tasks but few ready ones from sending work t o nodes with few waiting

tasks and many ready ones. However, a node with many waiting tasks cannot continue t o

accept work if its memory is full. Therefore, a very high weight is assigned t o any node at

which the memory usage exceeds a threshold fraction. This weight is computed by multiply-

ing a large overflow pressure value by the fraction of memory used. If memory occupancy is

above the threshold a t all nodes, this will cause the node with the least memory occupancy

t o have the lowest weight.

Once all computations have been done, the node with the lowest weight is selected. If

this is the local node, the packet is accepted; otherwise, i t is rejected and sent on t o the in-

dicated node. The weight comparison cycles through the list of neighbors, always beginning

with the neighbor after the last neighbor t o have been sent a packet; in case of equivalent

weights, the first node encountered having tha t weight is selected. The reason for this cyclic

search will be explained in the discussion of the simulation results. The complete algorithm

is given in Figure 6.3.

6.3. Evaluation and Tuning of Scheduler Policies

The goals of these first experiments were to study the interactions of the diffusion

scheduling policies and the simulated architecture, and to adjust the algorithm as necessary

to distribute tasks in a uniform manner. Delay (latency) in exchanging load information

IF memory percentage < maximum amwry parcentage THEN
local weight = local pressure + distance(loca1 node, packet origin)
IF local node = packet origin THEN

local weight = local weight + home weight + launch weight
F I

ELSE
local weight r overflow pressurr 4 fraction of memory used

F I

FOR each neighbor node DO
IF neighbor memory percentage < maximum memory percentage THEN

neighbor weight = neighbor pressure +

diatance(neighbor node, packet origin) +

hop weight
IF neighbor node == packet origin THEN

neighbor weight = neighbor weight + home weight
F I

ELSE
neighbor weight = overflow pressure neighbor memory percentage

F I
DONE

Figure 6.3 - Pseudecode showing weight computations of the decision algorithm for local
and neighbor nodes.

among different processor nodes was expected to produce some imbalance, though how that

imbalance would appear was a subject of study. However, what had not been anticipated

was the significant effect of latency in exchanging information between the components of

the architecture within the same processor node. This proved serious enough that the archi-

tecture was modified slightly to relieve the problem.

The experiments simulated the architecture components as loaded on each node of a

four-dimensional hypercube (16 nodes). Simulations were performed using packets with a

range of sizes, evaluation times and branching factors. Certain simulations were also exam-

ined via the monitor task to observe distribution of load and performance of individual

nodes over the course of the simulation.

6.3.1. Initial Behavioral Anomalies

The first simulations were run with a very simple decision algorithm tha t considered

only the numbers of ready and waiting tasks, and which did not use the cyclic search of

neighbors' weights. Load messages were sent by the Task Scheduler once per time slice, and

were broadcast by the Task Distributor at most once per slice and a t least whenever a

change was detected. Furthermore, only the Task Distributor would surrender the processor

if i t ran out of work before the end of its time slice. The Task Scheduler would busy-wait,

checking for messages or for tasks t o become ready a s the result of receiving a da t a mes-

sage. These simulations used a small number of packets (tasks) with fixed evaluation times

and fixed numbers of child tasks, and analysis of the da t a concentrated on studying the load

in the early stages of distribution.

The results showed a tendency for a few nodes three t o four hops from the root (node

zero) t o accept a disproportionate number of packets. Closer examination of the pattern in

which packets were sent out and accepted revealed two unexpected behaviors:

1) each node sent several packets in succession t o a particular neighbor, and

2) when these "bursts" of packets arrived a t the neighbor, all packets were accepted.

The expanding tree structure of the computation graph and the connectivity of the

hypercube combined with these behaviors t o "focus" packets from many nodes on a few oth-

ers, which then accepted most of those packets. An example of focusing in shown in Figure

6.4. Both behaviors are related t o latency in transmission of load information; the first is

due t o latency in communicating load among nodes, and the second is due t o latency in

communicating load between the Task Scheduler and the Task Distributor on the same

node.

Figure 6.4 - Focusing of packets after introduction of cyclic selection, for a binary process
tree on an &node cube. Each dot represents a packet, and arrows are numbered with the
depth of the process tree a t the time the packet is created. Without cyclic selection, this
effect is magnified, because each processor directs both branches at each level of the process
tree t o the dame neighbor processor.

Three changes were made to correct this problem. The first was t o add the cyclic

search of neighbors t o the decision algorithm (see Figure 6.5). This causes packets to be dis-

tributed more evenly in the beginning of the computation, when little or no load informa-

tion is available and the rate of change in load is greatest.

Load - 1 Load = i Load = 1

-
Task -- Distributor

B 1 3 2

...................... w v
Task

Load - 1 Load = d Load = 1

Load - 1 Load = i Load - 1

Figure 6.5 - Distribution before and after cyclic selection. Diagram A shows four packets
being passed from the Scheduler t o the Distributor a t processor 3, with neighboring procer
sors 1 and 2 having equal loads. Diagram B shows the distribution of those packets without
cyclic selection. Diagram C shows the more balanced distribution with cyclic selection.

The second and third changes were an attempt t o reduce latency in packet processing

and in load communications. Communication between processes on the same node is limited

mainly by the time tha t each process is allocated as its share of the processor, whereas com-

munication among nodes is limited primarily by message transfer time. Before enough pack-

ets have been generated t o provide work for all nodes, the Task Schedulers have nothing t o

do, and are essentially busy-waiting for their entire time slice. This contributes t o mass ac-

ceptance by increasing the delay between runs of the Task Distributor, allowing more

unprocessed packets t o accumulate. T o reduce local communication latency (in this case,

latency in processing and delivering packets), the Task Scheduler was caused t o surrender

the processor when it had nothing t o do, rather than busy-waiting. The Task Distributor

also was modified t o make a load broadcast whenever a significant number of packets had

been accepted, thus reducing communication latency among Task Distributors on different

nodes.

These changes did not entirely solve the "burst acceptance" problem, but reduced i t so

much tha t we a t first felt them to be sufficient. Later, however, simulations using packets

with variable run times and variable numbers of children revealed t ha t certain tree struc-

tures could still produce large jumps in acceptances (and correspondingly, in load) a t some

nodes. Again, the problem was local communication latency. Several packets could arrive

during the Task Distributor time slice, when the Task Scheduler was unable t o send upto-

date load information. The Task Distributor used the same information for each accep

tance decision, even though tha t information became increasingly inaccurate with each ac-

ceptance. Therefore, the Task Distributor was modified t o estimate the increase in local

pressure when a packet was accepted, anticipating the consequent increase in load tha t

would be reported by the Task Scheduler. Figure 6.6 shows the effects of this change. Each

ready task is represented as one unit of pressure, so the Task Distributor increments its

record of the local pressure each time i t accepts a task.

Load = 5

B

..................... ,
--*i Task j
6-- iDistr~butori

Load - I Load - 3

a

1 3
w v

Task i Task i
Scheduler i Scheduler i

m

2
w

Task
Scheduler

u -
-*

1
w

Figure 6.6 - Mass Acceptance. Diagram A shows the Distributor a t lightly loaded proces-
sor 3 receiving six packets. Diagram B shows the mass acceptance problem, as Distributor 3
accepts all the packets. Diagram C shows a possible distribution if Distributor 3 estimates
the load change from each acceptance (actual distribution depends on the order in which
packets from each source are received).

Task
Distributor

A

2
w

*

6.3.2. Evolution of the Decision Algorithm

......................
i Task j Task
i Scheduler i , '" , Scheduler u

Task
Distributor

With initial distribution problems a t least partially solved, simulations were run with

a significantly greater number of packets. Additional packets are generated by increasing

A

1

u

i

Task
Scheduler

3 2

either of the depth of the simulated process tree, the number of child packets created by

each task, or both. Data from experiments with short packet evaluation times relative to

the time slice of the run-time system processes showed that, although the load was reason-

ably well distributed among the nodes, packets were being rejected by an average of more

than three Task Distributors before finally being accepted. At least one rejection per pack-

et was expected, because the Task Distributors were given the launch and home weight

biases against local packets, but three seemed excessive. Also, the packets were lodging a t

nodes only one or two hops away from the nodes which created them.

This seemed to indicate that the packets were "orbiting" their origin node, failing to

move to more distant, possibly less loaded nodes because of the "pull" exerted by the dis-

tance factor in the decision algorithm (see Figure 6.7). However, experiments using packets

with longer evaluation times did not show multiple rejections of packets. This leads us to

believe that in computations where tasks have short individual run times, the repeated re-

jections are a result of the high rate of new packet creation, which greatly exceeds the rate

a t which load broadcasts can be made.

Interestingly, multiple rejections are related to the mass acceptance problem discussed

in the last section. A t the beginning of the computation, a Task Distributor tends to accept

too many packets because the local Task Scheduler cannot send load updates during the

Task Distributor's time slice. Later in the computation, when local load messages have been

transmitted, communication latency among nodes becomes dominant. Every Task Distribu-

tor perceives the local load to be higher than that a t neighbor nodes, so most packets are

rejected. The orbiting effect is secondary, though the distance factor can have an effect

when loads at different nodes are nearly identical.

Figure 6.7 - Orbit of radius < 2 around Node 0 in an %node cube. Distributors a t proces-
sors 3 and 5 may never send the packet to processor 7, even if i t has a load lighter than
processors 1 and 2, because the distance from origin processor 0 is greatest a t processor 7.
The home weight bias will discourage the return of the packet t o processor 0, so i t orbits un-
til the hop weight becomes excessive.

A t present, there seems to be no way t o avoid multiple rejections except t o ensure

that the packet creation rate is kept low relative to the rate of load broadcasts. In an ac-

tual computation, the creation rate is dependent on the structure of the compiled program,

so i t may be necessary to adjust the run-time system to improve the performance of some

programs. Nevertheless, t o ensure that packets were not being rejected solely on the basis

of distance from their origin node, the hop weight penalty was increased considerably, and

the simulations rerun. The hop weight represents the time and effort required t o send a

packet t o another node and t o make the acceptance decision there, which is several times as

great as the effort required t o send a da ta message one additional hop. For the packets

with short run times, the average number of rejections fell t o just over two when the hop

weight was increased, but the number of rejections was essentially unchanged for packets

with long evaluation times. This is consistent with our hypothesis tha t a high rate of new

packet creation is the primary cause of multiple rejections.

6.3.3. Final Refinement8

The difficulties encountered in balancing the load in the early and middle stages of the

computation stem from delays in the exchange of load information. As the computation

nears completion, new tasks are no longer being created. A t this stage, i t is less important

t o balance the load than i t is t o complete the existing tasks. Recall t ha t in our early simu-

lations, only the Task Distributor was programmed t o surrender the processor if there was

no work t o be done in its time slice; the Task Scheduler would use its entire slice whether or

not i t had any ready tasks t o run. The better load distribution t ha t resulted from correc-

tion of the mass acceptance and multiple rejection problems, which included the elimination

of busy-waiting from the Task Scheduler, was expected t o improve the overall performance

of the system; instead, we saw a slight degradation.

Examination of the da ta for individual nodes indicated tha t the performance loss was

due to a few nodes tha t took significantly longer t o complete their work than did the rest of

the system. A comparison of the change in load over time for one such "slow" node with a

'Lnormal" node showed that , as the computation neared completion, the loads fell quickly

and a t very nearly the same rate for both ezeep t tha t the normal node finished its last

Load in
40

Packets

Total Time in Clock Ticks
Fi y r e 6.8 - Load ru. Time for a "slow" Node (Node 14)

ready task when the slow node still had a few tasks to run. Both nodes still had a number

of tasks waiting for data. Those last few ready tasks on the slow node todr considerably

longer to complete than an average task, i c . , a t tha t point the rate of change h load for

the slow node dropped sharply (Figure 6.8).

Messages
Per

1000 Ticks

0 50 100 150 200

Clock Ticks (in thousands)

Figure 6.9 - Messages Received va. Time a t "slow" Node 14, with communications expen-
sive in comparison to task evaluation time. Communication time for this figure is compar-
able to iPSC/l timings.

The only reasonable explanation for this behavior was an unexpected increase in over-

head a t the slow nodes. Message processing is the primary source of overhead in the system,

so we looked for an increase in message traffic. As was to be expected, there was a slight in-

crease in the number of data messages from the completing tasks to their parents, but the

timing of this increase did not correspond to that of the change in task run times. Instead,

we found an increase in the number of load messages from neighboring nodes being received

at the slow nodes, which corresponded precisely to the slowdown in task completions (Figure

6.9). An increase from 6 to 8.4 messages per 1000 clock ticks does not seem significant, but

a single node represents only one-sixteenth of the total message traffic in the system. Each

load message received by a Distributor could result in that Distributor making a broadcast

of its own. Furthermore, the increase in load messages appeared to be bounded only by the

Messages 10 -
Per

1000 Ticks

5 -

0 50 100 150
Clock Ticks (in thousands)

Figure 6.10 - Messages Received va. Time at "slow" Node 14, with communications less
costly in comparison t o task evaluation time. Communication time in this figure is approxi-
mately half tha t of Figure 6.9, with average task evaluation time unchanged.

relatively slow communication network. A much greater increase was seen in tests where

the communication time was less (Figure 6.10).

The increase in load messages was a result of the policy, implemented in the Task Dis-

tributor, of making a load broadcast whenever a change in the local load was perceived. A t

the normal nodes, the Task Schedulers received da ta messages which allowed them t o com-

plete some waiting tasks; this resulted in a small change in load, which was immediately

communicated t o the Task Distributors. Then, finding no ready tasks, the Task Schedulers

surrendered the processor; the Task Distributors, taking over, would detect the change in

load, make a broadcast, and immediately switch back t o the Task Schedulers. This cycle

repeated so rapidly tha t the slow nodes, where work was still being done by the Task

Schedulers, were flooded with load messages. Their overhead soared, and the performance

of the whole system was affected.

This situation presented an interesting problem. I t is obviously necessary t o restrict

the rate of load broadcasts in the later portion of the computation t o avoid flooding nodes

tha t still have work t o do. However, as the mass acceptance problem demonstrated, i t is

also necessary t o make broadcasts fairly frequently in the early stages. Furthermore, since

there is no way to determine, a t the individual nodes, how far the computation has pro-

gressed, any scheme used t o regulate broadcasts must be independent of the general state of

the computation, though i t can be modified t o respond t o short-term and local variations.

To find an answer, we considered the maximum rate of load broadcasts in t ha t par t of

the computation when all nodes still have ready tasks t o run, but the overall load is de-

creasing and very few new packets are being created. There, load broadcasts are limited

because the Task Schedulers are using their full time slices; only when some Schedulers ran

out of ready tasks did the number of load broadcasts become excessive. The length of the

time slice thus seems to be a natural bound on the frequency of load broadcasts when the

overall load is decreasing, although more frequent load broadcasts are needed when the load

is increasing.

The solution we adopted is t o record the time tha t a load broadcast is made, and not

t o send another until a full time slice has expired (regardless of how many context switches

occur in t ha t period). However, if a Task Distributor receives several packets in quick suc-

cession, i t can override the time limit and make load broadcasts more often. This provides

the higher frequency of broadcasts needed as the computation s tar ts up, but controls the

rate of broadcasts when quick completion of existing tasks becomes more important than

scheduling new work. Once these changes had been made, message traffic became uniform

(Figure 6.11) and the "tailing off' a t slow nodes disappeared (Figure 6.12).

Messages
Per

1000 Ticks

0 50 100 150 200
Clock Ticks (in thousands)

Total
Messages
Received 500 -

0 50 100 150 200
Clock Ticks (in thousands)

Figure 6.11 - Messages Received us. Time a t formerly "slow" Node 14 after broadcast lim-
it. The dotted lines show the previous behavior.

Also note tha t if the Task Distributor is to estimate load changes based on accepted

packets, as described earlier, some form of broadcast limitation must be in effect. Other-

wise, the same explosion of load messages will occur a t the beginning of the computation

and continue until enough packets have been generated for nearly all wda to have some

work.

Load in
40

Packets

Total Time in Clock Ticks
Figure 6.12 - Load vr. Time at formerly "slow'' Node 14 after broadcast limit. The dotted
line shows previous behavior. The last ready task is completed 6.5% faster.

6.4. Resulfe of Performance Evaluations

Simulations discussed in this section were run with fixed packet memory usage, and

with the number of subtasks per packet determined by its level in the computation tree.

The only variable was the evaluation time of a packet, which was fixed for a given simula-

tion but varied among simulations. The length of the time-slice for the Task Scheduler and

Task Distributor on each node was set a t 500 internal clock ticks, corresponding t o a 50

millisecond time-slice on the iPSC, so one tick is approximately equivalent t o 100 mi-

croseconds.

Performance of the system as a whole was evaluated in terms of speedup as compared

t o a uniprocessor system (both with and without considering overheads for communication

and task scheduling). Figure 6.13 shows speedups from a series of simulations using a four-

dimensional hypercube, with per-packet evaluation time varying from 25 to 2000 clock ticks.

Evaluation time here refers t o the minimum time to complete a task, not including over-

head. Speedup is computed by

Sequential ezecution time
Paralfel ezecution time

which is represented here in two ways. The first is

Sum of task evaluation times
Time to complete seed iaak

where the time t o complete the seed task is the time from the s ta r t of the simulation until

the final "result" da t a message is received by the root task. The second representation

defines the sequential time a s the time t o complete the seed task on a one-node (ze r e

dimension) network. The latter includes all overheads of the run-time system and diffusion

scheduling.

Figure 6.13 - Speedup us. Per-Packet Evaluation Time for a kdimensional (16 node) hyper-
cube.

For computations in which individual tasks have evaluation times of 1500 ticks or

more, speedup averages 11 times the minimum sequential evaluation time, which translates

fo an efficiency of 68 percent of the maximum possible speedup. Efficiency is computed by

Obrewed Speedup
Number oj Proeersors

Speedup averages just over 14 when compared t o the time t o complete on a one-node net-

work, which thus includes wait time and Scheduler overheads in the sequential time, for 88

percent efficiency. This suggests tha t the system is spending about 12 percent of its time in

the Task Distributor, and about 20 percent in other overheads or waiting.

Figure 6.14 shows fractional overhead a s a function of per-packet evaluation time.

Fractional overhead is computed by

Observed time - Optimal time
Obaerved time

where the optimal time is given by

Sum oj taak evaluation times
Number of proeeasors

and the observed time is the time t o complete the seed task, as before. The significantly

greater speedups with longer per-packet evaluation times are a result of reduced overhead.

Message processing is the only major source of overhead, and several factors contribute t o a

larger message workload (relative t o the packet evaluation time) when evaluation times are

short. The most obvious of these is tha t the message transfer time is a larger fraction of

the evaluation time, but the number of messages tha t must be handled per unit time is also

greater.

Short evaluation times allow more tasks t o be started and completed per time slice of

each Task Scheduler, which in turn produces more new packets and more da ta messages per

time slice. A high rate of packet creation, a s noted earlier, results in multiple rejections of

packets; this increases the number of messages tha t must be handled t o get each task start-

ed. Furthermore, in response t o the rapid arrival of new work, the Task Distributors make

load broadcasts more frequently t o keep load information as current a s possible, and the

Task Schedulers send more local load messages as well.

Figure 6.14 - Overhead as Fraction of Per-Packet Evaluation Time for ddimensional (16
node) Hypercube

As evaluation times lengthen, all of these effects begin to disappear. One packet is

enough to keep a Task Scheduler busy for one or more time alices, so new packets, data, and

local load mesaages are sent a t a more leisurely rate. The Task Distributors respond by

making fewer broadcasts, and multiple rejections are no longer a problem. However, over-

head for context switches (from the Task Scheduler to the Task Distributor and back) may

actually increase slightly, because there are more Scheduler/Distributor alternations during

the execution of each task.

6.4.1. Comparison with Alfalfa Results

Diffusion scheduling experiments performed by Goldberg [GoH87,Go188] for the Alfalfa

system also show encouraging results for this type of parallel evaluation. A direct comparis-

on t o Goldberg's results is impossible, due both t o differences in the form of the experiments

and t o differences in the diffusion models used, but a number of similarities can be pointed

out.

The Alfalfa system was tested on an iPSC/l hypercube, the same type of machine as

tha t from which our simulation parameters were drawn. Goldberg studied several informa-

tion and transfer policies, including non-communicating algorithms. We studied only a com-

municating policy, so this comparison will focus on the communicating algorithms.

One significant difference between the diffusion model in this research and tha t of the

Alfalfa system is in restrictions placed on the location policy. In the Alfalfa diffusion model,

the processor at which a task will execute is determined solely by application of the algo-

rithm a t the processor where the task originates. Once a processor has been selected, tha t

processor is required t o accept the task. By contrast, the model used in our research applies

the decision algorithm a t each node visited by a task. The Alfalfa model avoids the prob-

lems of multiple rejections we have described, but i t severely limits the system's ability t o

react t o rapid creation of tasks.

Goldberg studied two communicating algorithms, referred t o as Simple Communicating

DiDaion and Dependent Communicating Diflusion. Both use measures of the change in load

t o determine frequency of load broadcasts, and both select a neighbor processor to receive

work if its load is less than the local load by some constant amount. They differ primarily

in that the Dependent algorithm factors the dimension of the network into the decisions.

The information policy used in our experiments is most similar t o Goldberg's Simple

algorithm. However, our practice of exchanging average load values for the neighborhood

accounts for network dimension in a way that neither of Goldberg's policies can. Goldberg's

policies do not include information from neighbors in the pressure reported by each proces

sor node, so local maxima or minima can have a greater effect on the distribution of tasks.

The Simple algorithm limits load broadcasts by establishing a threshold M which the load

must exceed before broadcasts are considered. This appears t o have an effect similar t o our

time-based broadcast limits. The threshold has the advantage of being independent of im-

plementation considerations such as the Distributor/Scheduler dichotomy that led to our

choice. However, i t would appear t o have the effect of sequentializing the final stages of

any computation, by concealing load changes.

Both the Simple and Dependent algorithms avoid load broadcasts unless the local load

changes by more than a factor of two. This understandably dominates the M threshold

most of the time, because the total load is much higher than M for most of the run time of

a computation. Our experiments also require a minimum percentage change before a broad-

cast is made, but percentages higher than 10% were not considered. This is because the

possibility of multiple rejections makes our system much more sensitive to inaccurate pres-

sure information.

The transfer policies in all of the Alfalfa experiments differ from ours in one very im-

portant respect. The Alfalfa algorithms tend to prefer t o retain tasks locally until the local

pressure is fairly high. Our algorithm prefers t o move work to other processors as quickly as

possible. This difference may mean tha t Alfalfa will perform better for small programs be-

cause the expenses of communication will not be incurred until the number of concurrent

tasks exceeds the M threshold. Our experiments with this model have assumed tha t the

complexity of each task is always sufficient t o justify the communication required for paral-

lel execution, so we have not simulated the small process trees where this would become nc+

ticeable.

Five sample programs were used in the Alfalfa experiments: Parallel Factorial, Eight

Queens (actually seven queens due t o memory limitations), Adaptive Quadrature, Matriz

Multiplication, and Quicksort. Of these, only the first three decompose in a tree structure

comparable t o our simulated process trees. Evaluation times for tasks in these programs

are unavailable, but Parallel Factorial and Adaptive Quadrature have relatively small tasks

as compared t o Queens. Factorial generated 3,998 tasks, Quadrature 5,567 tasks, and

Queens 29,682 tasks. Our final experiments used randomly branching trees of on the order

of 2,000 tasks, so a comparison with these programs is reasonable.

Although Goldberg's results varied widely for suboptimal parameter choices of each of

the communicating algorithms, the best-case results for each sample program were very

similar. The communicating algorithms also performed a t least as well a s the non-

communicating algorithms in the best cases for all the programs. For 16 processors, Alfalfa

achieved speedups of approximately 4 t o 4.5 for Parallel Factorial, 3.5 t o 4 for Adaptive Qua-

drature, and 7 t o 7.5 for Queens. These figures are based on analysis of graphs presented in

Goldberg's thesis [Go188]; exact da t a are unavailable. The sequential time used t o compute

speedup is the completion time on a one-node network.

The observed speedups for the Alfalfa system correspond t o our results for tasks with

less than 50 milliseconds (500 ticks) execution time. This seems reasonable for Parallel Fac-

torial and Adaptive Quadrature, because those are tree-structured problems in which each

task performs only a few arithmetic operations. However, the granularity of Queens is more

difficult t o determine. The parallel formulation of the Queens algorithm uses a number of

Alfalfa operations not used in either of the other programs, so a n estimate based on code

comparisons is not sufficient. It may be the case tha t tasks in Queens are not large enough

to reach the 100 or more millisecond times tha t showed the best speedups in our experi-

ments. It is also possible tha t the very large number of tasks generated by Queens intro-

duces overhead tha t our simulations did not duplicate.

6.6. Summary

These experiments have provided insight into the problems encountered in developing

an effective diffusion scheduling algorithm. Related but subtly different scheduling problems

were found in different stages of a computation, and in each case reasons were suggested for

the problem behavior and solutions were explored. Finally, results in terms of speedups

were presented for a set of simulations with varying task evaluation times, and sources of

overhead were identified t o explain the increasing efficiency of the system as task evaluation

times lengthen.

The problems identified include "burst acceptances" of packets (tasks) in the early

stages of computation, "multiple rejections" in the middle stages, and "slow nodes" a t the

end. The first two are related to communication delays, and the third is caused by too

much communication. Solutions include cyclic search of neighbors, t o more evenly distribute

load; early context switches, or flicking, in the Task Scheduler and Task Distributor, t o

reduce communication delay; estimation of load changes, t o compensate for remaining de-

lays; and limitations on load broadcast frequency, t o prevent excessive communications

when they are not needed.

The performance results confirm our expectations tha t a system using fine-grained

tasks will not produce linear speedups. However, some speedup was obtained even for tasks

with short evaluation times. For the architecture studied in these simulations, i t is irnpor-

tant to keep the unit of work large enough that its run time exceeds the interval between

load communications. Small units of work do not produce significant load imbalances, but

do result in greater per-task overhead and, therefore, reduced performance. With longer-

running tasks these overheads are amortized sufficiently that considerable speedup can be

attained, even in a system with relatively slow message processing.

CHAPTER 7

Experiments in Speculative Evaluation with Priority Scheduling

7.1. The MPCR Simulator

The Massively Parallel Combinator Reducer simulator emulates the mapping onto a

parallel machine of the abstract model of Chapters 3 and 4. Most of the implenientation

techniques discussed in those chapters were used, including reference rights garbage collec-

tion and recursive packet formation. Diffusion scheduling and the speculation heuristics

described in Chapter 5 were also used.

The simulator differs in a number of ways from the diffusion scheduling simulation pro-

totype, most of them related t o the design differences in the simulated machine models.

Both are designed t o support multiple simulated processors for each real processor of the

machine on which they are run. One difference is tha t the MPCR simulator implements a

complete combinator reduction engine, capable of running real programs. The diffusion

simulator used a randomly generated, simulated program. In addition, although the organi-

zation on a per-processor basis is very similar t o the diffusion simulator, the MPCR simula-

tor utilizes a true multiprocessor machine. Each real processor runs independently, syn-

chronized only by the constraints of message-passing among the simulated processors. This

introduces nondeterminacy not present in any of the earlier diffusion scheduling simulations,

and therefore provides a more accurate picture of the true behavior of the simulated

machine.

Mapping of simulated processors t o real processors is done statically, because the

number of simulated processors is known in advance. The overhead of supporting these

simulated processors is considerable, but is intended t o allow simulation of massively paral-

lel machines on the somewhat less parallel architectures tha t are currently available. Un-

fortunately, memory limitations and the time required for each run made i t impossible t o

perform simulations on the scale tha t was originally anticipated. Experiments using 1024 or

2048 processors were planned, but the largest network tha t i t was possible t o simulate was

256 processors.

Each simulated processor is represented by a da t a structure and a set of coroutines.

The da t a structure for each simulated processor contains:

A local copy of a system-wide clock used t o synchronize operations among the simulat-

ed processors.

A counter to track the memory usage of the simulated processor.

A table of channel identifier8 describing the connections of the simulated processor t o

its neighbors.

The message buffers used t o pass messages between the primary CPU and the com-

munication channels.

m The statically allocated structures used by the run-time system, such as the ready

queue and pressure tables.

The operation counts and timings collected in the course of the simulation.

One coroutine simulates the primary CPU, which runs the MPCR run-time system. This

run-time system is described in more detail in Chapter 8. The other coroutines act as m e s

sage transmitters t o simulate the communication channels linking the CPU with its neigh-

_ _ - - - _ _ - - - - _ - - _ _ - - - -

- -

- . .
\

.

To Obher Sim. Pr-n From Other Sim. Procarsors

iPSCI2 Processor Node

Figure 7.1 - MPCR Simulator Design. Each simulated processor consists of several Inter-
work XI coroutines, representing the primary CPU and message passing coprocessors.

boring processors. These channels are assumed to operate independently of the primary

CPU when handling messages that neither originate from the CPU nor are destined for it.

Figure 7.1 summarizes this design.

Messages transmitted from (or through) a simulated processor A t o a specific neighbor

B always use the same receiving channel a t B. However, any of the channels at A may con-

nect t o t ha t channel. The channel used is determined by a deadlock-free routing algorithm

(DaS871. The simulator is designed t o accommodate different communication network

configurations by replacing the module tha t implements the routing functions. However,

due t o time constraints, all experiments described in this chapter were run using binary hy-

percubes of varying sizes. The routing module therefore implements e-cube routing [SuB77],

as shown in Figure 7.2.

Contention in passing messages through the transmitter coroutines is mediated by

cut-through routing (I(eK791. That is, the entire message may be buffered a t each simulated

processor before transmission t o the next is begun. This is reasonable because all messages

in the MPCR model are very small. A channel is active from the time i t makes a connec-

tion with a sending transmitter until transmission of the message to the next simulated pro-

cessor in the e-cube route is completed. Until its channel becomes inactive, a transmitter

will not accept a connection from a second sending transmitter. If two different

transmitters a t some simulated processor A simultaneously attempt t o transmit messages t o

neighbor B, one of the A transmitters will be blocked until the other finishes communicating

with B.

The MPCR simulator is implemented in C, using Block Island Technologies' Interwork

11 parallel programming toolkit [Bai88]. Intework II provides coroutines, queuing mechan-

isms, automated distribution of da t a structures among physical processors, and a global

namespace. This makes the MPCR simulation portable t o uniprocessor machines and t o

both shared and distributed memory multiprocessors. Initial implementation work was done

on a DEC VAX 11/780 and later on a Sequent Symmetry S81. A t the time the simulation

Figure 7.2 - e-cube Routing. The route is generated by toggling the bits in the binary
representation of the processor number, one by one, from right t o left. Only the bits tha t
differ between the source and destination numbers are toggled. The solid lines show the
route from processor 4 (100) through processors 5 (101) and 7 (111) to processor 3 (011).
Note tha t the "return" route from 3 t o 4 is not the same; i t passes through 2 (010) and 0.

In the simulator, each of the neighbors of a processor uses a different message
transmitter (channel) to pass messages t o or through tha t processor. The transmitter used
is always the same and is determined by the bit position of the sender's number tha t must
be toggled t o generate the receiver's number. For example, processors 1, 2, and 7 can each
connect t o a transmitter a t processor 3. Processor 1 uses transmitter 1, processor 2 uses
transmitter 0, and processor 7 uses transmitter 2 (shown in the diagram at right).

Any transmitter a t the sending processor can connect t o the transmitter at the receiv-
ing processor, but only one such connection can be made a t a time. For example, if proces-
sors 5 and 6 simultaneously send messages t o 3, one of the two messages will be temporarily
blocked, because the ecube routes t o 3 for both of these senders pass through 7.

Each simulated processor has one additional transmitter (shown in Figure 7.1) t o han-
dle messages originating from tha t processor.

was designed, Interwork I1 did not yet support use of more than one processor on the

Sequent. Tha t version was therefore used for development, .because the determinacy of

sequential execution simplifies debugging (errors are repeatable). The program was then

ported unchanged (except for removal of some debugging code via the C preprocessor) t o the

Intel iPSC/2 hypercube multiprocessor t o collect data.

7.2. Diffusion Scheduling Policies

7.2.1. Information Policy

As in the diffusion scheduling experiments, information is exchanged only among

directly connected processors. The pressures received from neighbors are averaged with the

pressure computed locally to obtain the value broadcast to the neighborhood. The pressure

value for each processor is the length of its ready queue. Most tasks pass through the ready

queue very quickly, but speculative tasks executing a t very low priority may remain either

in the queue or in a suspended (waiting) state for a long time. In contrast t o our assump-

tions in the diffusion scheduling simulation, MPCR tasks occupy very little memory when

suspended because of their extremely small size, and speculative tasks can be garbage-

collected whenever memory usage becomes excessive. For these reasons, no direct account-

ing for the number of suspended tasks is included in the pressure value. Including suspended

tasks in the base pressure computation would misrepresent the resources available for

higher-priority work.

To simplify weight computations and reduce load message size, memory usage infor-

mation is not treated as a separate component of the pressure. A fixed, very high pressure

is still used t o represent memory approaching its maximum capacity, but processors do not

store memory statistics for their neighbors. When memory a t a processor is nearly full, i t

broadcasts the "memory full" pressure value and begins deleting speculative tasks from its

ready queue. If i t is unable to delete a sufficient number of tasks t o reduce its memory

usage, i t will execute higher-priority tasks normally until the memory usage declines. No

new load broadcast is made until memory occupancy has been reduced.

The most recently computed pressure is "piggybacked" on a reduction packet when

one is sent t o a neighbor processor. The load value most recently sent t o a neighbor by this

method is stored. When a new pressure is computed, the percentage change between the

new pressure and the last pressure sent t o each node is compared t o a threshold value. Ad-

ditional load messages are sent only t o those neighbors for which the difference exceeds the

threshold. A load broadcast therefore need not include all neighbors. Pressure is not pig-

gybacked on da t a messages. Although a da t a message must pass through the message

coprocessors on one neighbor node, such a message is not examined by the run-time system.

Unless otherwise noted, the load broadcast threshold was fixed a t a 15% change in

load for all the experiments described in this chapter. This value was determined empirical-

ly from several early tests of the simulator and may not be optimal for all combinations of

programs and numbers of processors used. In particular, programs which generate fewer

tasks compared t o the number of processors make more load broadcasts, because the aver-

age loads from which the change is computed are small.

7.2.2. Transfer Policy

The decision t o transfer is made for each complete reduction packet as i t is formed. If

any neighboring processor has a lower pressure than the local processor, the packet is

transferred. Otherwise the packet is placed in the local ready queue. The determination of

whether a neighbor has lower pressure is made by the same method a s is used in the loca-

tion policy, discussed below. Once a packet has entered the ready queue of a processor, i t

remains a t t ha t processor until i t has completed its evaluation transformation. Tha t is, a

processor tha t accepts a packet commits itself to performing one combinator step of the

reduction of the subexpression represented by tha t packet. If tha t reduction step introduces

a new redex, the subgraph is repacketized and the new packet may a t t ha t time be

transferred t o another processor.

7.2.3. Location Policy

The fine granularity of MPCR tasks also makes a significant difference with respect t o

the location policy of the diffusion scheduler. Small tasks require tha t diffusion scheduling

decisions be made a s quickly as possible. The weight computation described in Chapter 6 is

complex enough tha t the execution time of the average MPCR task would be much less than

tha t t o decide where t o schedule it. The decision is therefore reduced t o three comparisons.

A task may be accepted if any of the following conditions hold:

1. The local pressure is less than the lowest neighbor pressure.

2. The task has been rejected too often by other processors. This controls "thrashing,"

tha t is, tasks are never delayed indefinitely by the diffusion scheduler.

3. The current number of ready tasks s less than the optimal queue length.

Condition (3) is tested only for tasks tha t have higher priority than the highest currently

ready at the local processor, and have been rejected a t least once by other processors. In

the simulations described in Chapter 6, i t is assumed tha t task size is sufficient t o always

make parallel evaluation worthwhile. With very small tasks, the expenses of parallel

evaluation are worthwhile only if there is already other work ready t o execute locally. The

optimal queue length for each processor is therefore estimated as described in Chapter 5. As

long as the ready queue length remains below this value, high-priority tasks arriving from

other nodes are automatically accepted. However, high-priority tasks tha t have not yet

been sent to a t least one other processor are always allowed t o migrate, t o prevent the com-

putation from becoming sequential.

If none of the criteria require that the packet be accepted, the task is rejected and

sent t o the neighbor with the lowest pressure. The Rome and launch weights described in

Chapter 6 are not used when determining the leastloaded neighbor. In addition to speeding

up decision-making by simplifying the weight computation, the goal of achieving optimal

ready queue length makes use of a launch weight inappropriate. Transferring a task is ac-

ceptable if a neighbor has a lower load, but there is no need to "encourage" parallel evalua-

tion when the local processor has available resources.

The distance from the origin processor is not considered when placing a packet. Each

packet returns only a single value to its origin node, so repeated communication between

specific parent and child tasks does not occur. Furthermore, packets that represent subex-

pressions requiring several reductions to reach normal form may migrate repeatedly. The

notion of an "origin" of the computation becomes unclear in such an environment. Over-

coming a distance bias is the purpose of the home weight, so i t is not useful if distances are

not computed. Eliminating distance from the computation will also prevent the orbiting

effect described in Chapter 6.

For similar reasons, the number of rejections of (hops traveled by) the packet is not in-

cluded in the computation. Instead, the hop count is given an upper bound, and if that

bound is exceeded then the processor currently considering the packet must accept it. This

controls thrashing by forcing tasks to eventually stop their migration.

7.3. Optimal Queue Length

Computation of an optimal ready queue length requires an estimate of the number of

tasks which have dependencies on other tasks. This estimate is expressed as a probability

Pij, the probability that a task i depends on some other task j. Considering only reduction

packets a s tasks, strict combinators form packets with dependencies, and nonstrict combina-

tors form packets with no dependencies. Test runs of several different programs, with specu-

lative evaluation disabled, show tha t strict combinators are the functors in about 15% of

the total useful reductions performed. However, the true situation is more complex, because

the formation of each packet from its corresponding application graph must also be con-

sidered.

In the test cases, approximately 5Wo to 75% of the useful reductions involve combina-

tors tha t introduce a new application (expansive combinators). Forming a reduction packet

from a n application node involves an implicit dependency on the left function of the appli-

cation. Considering packet formation t o be a task, this indicates tha t Pij for many prob-

lems may be over 50%. This is discouraging, because it means tha t dependencies are ap-

proaching the range in which it is impossible to mask latency. However, preliminary runs

on small numbers of processors showed reduced performance when Pij was less than 50%, so

i t was set a t 50% for the experiments described here.

Recall tha t estimating the optimal queue length requires an estimate of the average

message-passing time between any two processors, called T,,, . In the experiments described

here, the time for a message t o travel between adjacent nodes, assuming t ha t no collisions

delay the message, is approximately the same a s the time t o form and execute a reduction

packet. This means tha t remote execution takes a t least three times as long as local execu-

tion, because messages must be sent in each direction. The estimate of average message-

passing time is made by multiplying the one-hop transfer time by the average diameter of

the communication network. This is based on the characteristics of the MPCR simulator's

message-passing system, with the assumption tha t every node exchanges messages with

every other node with equal probability. Although processors are in direct communication

only with their nearest neighbors, outgoing reduction packets may be considered and reject-

ed several times. Also, the initial graph is distributed t o a s many nodes a s possible, so re-

mote dereferences frequently must travel several hops. For a hypercube configuration, the

d average diameter is - where d is the dimension of the hypercube [Da186].
2

This scaling model is pessimistic; real systems such a s the iPSC/2 can exchange mes-

sages between distant processors nearly as quickly as between adjacent ones [Ar188]. Furth-

ermore, the simulator imposes delays on the primary CPU t o transfer messages t o the (simu-

lated) transmitter coprocessors. Providing the coprocessors with direct memory access, as in

the Transputer [Whi85], would eliminate this overhead.

The estimate of T,, the average execution time, is based on the implementations of

the combinators. Re-packetizing the result of an evaluation transformation when a n appli-

Estimated
Optimal
Queue
Length

2 4 6 8
Hypercube Dimension

Figure 7.3 - Estimated Optimal Queue Lengths.

cation node is created is treated as a separate task for purposes of making this estimate.

Fortunately, the average time t o assemble a packet is approximately the same as the aver-

age time t o evaluate one. The time spent in suspending tasks and returning them t o the

ready queue is not included in the estimate, because suspension is inexpensive (it requires

only placing an entry in a notifier list) and affects only a subset of all tasks. This means

tha t the estimate used for T, is slightly less than the actual execution time for those tasks

tha t suspend.

Estimated queue lengths for the network sizes tested are shown in Figure 7.3.

7.4. Combinators

This section describes the set of combinators implemented by the simulation. The

code for the graph manipulations corresponding t o these combinators is built into the run-

time system, so any expression can be executed a t any processor. Turner's basic set of com-

binators [Tur79], extended by some arithmetic and comparisons, was chosen primarily be-

cause of the fine granularity of its operations. However, this set also has the advantage of

being very straightforward t o implement, which allowed simulator design and implementa-

tion t o concentrate on the mechanisms to support distributed speculative evaluation. Final-

ly, Turner's set has a well-defined abstraction algorithm which simplified development of the

Lambda compiler described in Appendix B. This compiler was used t o produce combinator

expressions from programs written in a simple lambda-calculus language.

The reduction system implemented in the simulator uses the outermost-first reduction

rule t o avoid nonterminating computations. However, certain combinators were selected to

be sources of speculative evaluation. The speculative subexpressions created by these com-

binators are scheduled at reduced priority as described in Chapter 5. Like all reduction

tasks, speculative evaluations are distributed by the diffusion scheduler to the heuristically

most appropriate processor.

A listing of the set of combinators follows. The classification of each as expansive,

contractive, neutral or strict is noted, and the reduction rule for each is described. If a

combinator causes a subexpression to be evaluated speculatively, this is also described. Fig-

ure 7.4 shows the compilation of a simple program into this combinator set, and the

corresponding program graph.

C (C (C I 3) 4) 5 (B (B Add) Add)

Figure 7.4 - Program graph for the compilation of the program
sum 3 4 5 where sum = Xx.Xy.Xz. x + y + z

B (expansive)

B f g z -+ f (g z). The evaluation of g z is begun speculatively.

C (neutral, considered expansive)

C j g z .-, j z g. This combinator is treated as expansive because it does not

reduce the number of applications in the program graph and may initiate evaluation

of the subexpression j.

I (contractive)

Identity: I z -+ z .

K (contractive)

K z y --+ z.

P (neutral, considered contractive)

Construct cons/pair: P z y --, (z,y). This is implemented as actual formation of a

pair-tagged node, for ease of manipulation. Lists and pairs are not distinguished from

one another, except tha t the special element nil (or [I) is provided as a canonical for

lists. Note tha t pair formation is fully lazy, i.e. the components of a pair are not

evaluated unless demanded.

S (expansive)

S f g z -+ f z (g 2). As with B, the subexpression g z is evaluated speculatively.

U (expansive)

Disassemble conslpair: U f (z,y) --, f z y

Y (expansive)

The standard fixpoint combinator for compiling recursive functions. Implemented as

Y h -+ h (Y h) because of difficulties with reference counting cyclic structures.

Turner presents an optimized Y reduction which introduces a cycle, but the tradition-

a1 equation introduces none, a t the cost of some loss of sharing. Also, Turner's Y op-

timization cannot be directly applied because of the way subexpressions are evaluated

a s new, independent tasks.

Cond

(strict contractive)

A conditional test:

Cond b z y -+ z when b is true;
Cond b z y y when b is jalae

The strict evaluation required of the first argument of Cond makes it difficult t o classi-

fy as contractive, because additional evaluation may be necessary before the contrac-

tive effect occurs. It would be possible t o speculatively evaluate z and y while await-

ing the result of b, but in practice the boolean test b is usually a very simple opera-

tion, so little is gained by speculating on both of the cases.

Add, Sub, Mult, Div, Mod

(strict contractive)

Perform (integer) arithmetic operations. Again, strictness prevents these from being

considered truly contractive. These operations, along with the boolean comparisons,

are the only source of nonspeculative parallelism in the combinator set. Both argu-

ments of an arithmetic combinator can be evaluated simultaneously at the same prior-

ity as the application of the combinator itself.

Es, ' 3 1 L t

(strict contractive)

Boolean comparisons (on integers). Both arguments of a boolean combinator can be

evaluated simultaneously a t the same priority as the application of the combinator it-

self.

Nil (strict contractive)

Test whether a cons/pair structure is the nil list. This combinator is strict only up t o

WHNF, t ha t is, i t does not force evaluation of the head or tail of the list.

7.5. Description of Experiments

The initial graph for each program is distributed across the simulated processor net-

work before computation begins. For simplicity, this distribution is done in a round-robin

fashion by increasing processor number, with no consideration of referential locality. The

structure of each program graph is different, and implementing a generalized static mapper

t o match graphs t o networks is beyond the scope of this research. However, the initial

graph is pre-processed t o form all possible reduction packets, complete or partial, before the

program is loaded. This preserves some locality, and assures t ha t at least a few steps of

computation can be performed without waiting for remote requests. Distributing the graph

reduces the severity of "hot spots" pfN85] but can not entirely eliminate them. As used

here, the term "hot spots" refers t o processors which receive a large number of requests for

da t a and must therefore process many more messages than other processors in the network.

Although the graph is distributed, execution is defined to begin a t simulated processor

number 0. T o detect completion of the program, a finished normal form of the result is col-

lected a t tha t processor. This means tha t there may be a slight delay between actually

finishing the computation (printing the last par t of the result) and detecting t ha t comple-

tion. When processor 0 has received the entire normal form, i t signals all other simulated

processors t o send their final statistics and shut down. The collected statistics are then out-

put. Similar statistics are collected by a checkpointing process (an Interwork I1 task) tha t

runs a t regular intervals throughout the course of the simulation.

Values of Pij , T,, and T, are held constant across all programs. As has been noted,

this probably leads t o less than ideal behavior, but time constraints limited the number of

trials tha t could be made for each program. The available memory at each simulated pro-

cessor and the ready queue length considered t o constitute overflow is also fixed. The only

variables are the input programs themselves and the dimension of the hypercube network of

simulated processors.

Simulated time does not have a direct relationship t o real time, so the experimental

runs can only be considered in comparison t o one another. As base cases for the specula-

tive, parallel runs, each program was also run with no speculative evaluation on a single

simulated processor (a zero-dimensional network). These base runs were used t o determine

the minimum number of reductions required t o complete each program, and the sequential

time required t o perform those reductions.

I t should be noted tha t this testing method fails t o exploit speedups predicted by

Guatajaon's Law [Gus88a,Gus88b] (also called Molerla Law). This law states tha t large

numbers of processors achieve greater speedups when they are used t o perform larger com-

putations. For purposes of comparing the same programs across different network sizes, the

experiments described here do not scale problem size as the number of processors increases.

Speedups are therefore likely t o be less than could be expected for larger problems.

7.6. Programs Tested

This section presents the results of running three simple programs on various sizes of

simulated processor networks. Before the individual programs are described, however, some

general comments should be made. First, although the simulator is designed t o switch t o

evaluation of contractive combinators when memory nears capacity, none of the programs

tested generated sufficient work t o evaluate the usefulness of this strategy. Experiments us-

ing larger programs were planned t o evaluate this, but were dropped due to time con-

straints.

Second, the selection of the S and B combinators as the source of speculative evalua-

tions makes the potential for speculation dependent on the form of the source program.

This is because these two combinators perform the function of rearranging the graph so that

function arguments are supplied to the correct subexpressions. It is therefore possible t o tell

which types of programs have a chance of speedup, but difficult to tell exactly how well they

will do.

This program was the simplest one tested. It generates a list of integers and squares

each of the integers t o generate an output list. Although the mapping operation has much

potential parallelism if implemented eagerly, list construction is fully lazy as defined in our

test combinator set. Furthermore, the computation is limited by generation of the list.

Each element is created by adding one t o the preceding element. Therefore, even with an

eager mapping (that is, processing of the tail of the list begun concurrently with processing

of the head), maximum speedup from function-level parallelism is approximately a factor of

2. This would represent the squaring of one element happening concurrently with genera-

tion of the next element.

Throughout this chapter, test programs will be expressed in a simple lambda-calculus

language, called Lambda. The syntax of this language is summarized in Appendix B.

mapsq = An. map (Xx.x x) (to n)
where rec

map = Xf .Ax.
if null x
then nil
else f (fst x) , map f (snd x)

where
to = Ax.

(range 1 x
where rec

range = Xb.Xe.
i f b > e
then nil
else b, range (b+l) e

The results summarized here show representative runs of mapsq 100 (generating and

mapping over a IWelement list), on hypercubes of dimensions 4, 6, and 8. There were two

reasons tha t this experiment was performed. First, t o determine whether the speculative

evaluation mechanism could compensate for a sequential algorithm. Second, i t was hoped

tha t the fine-grained evaluation strategy might uncover parallelism tha t was not obvious

from the definition of the program. However, mapaq does not show parallel speedup for any

of the network sizes tested. In fact, there is a slight slowdown, as shown in Figure 7.5. The

sequentiality imposed by lazy list construction is probably the major factor here.

None of the network sizes is able t o achieve the loads approaching the estimated op-

timal level, so speculative work is never curtailed. In the case of the &dimensional network,

the computation is 60% complete before all processors in the network are simultaneously ac-

tive. Before tha t point, some processor is always idle. However, by the time the computa-

tion completes, the total work performed by the busiest processor is not more than double

tha t done by the least-utilized one.

These results show tha t the heuristics for creating speculative work are working prop-

erly, although for mapaq much of the effort is misguided. The extra work done does not ap-

pear to interfere significantly with useful computation. Note t ha t the number of remote

Completion
Time 50

0 4 6 8

Hypercube Dimension

75 -
Total

Elements
Printed 50'

Figure 7.5 - Completion Times for Mapsquares. The dashed lines in the bar graph a t di-
mensions 6 and 8 show the earliest checkpoint a t which all elements of the list had been
printed. The apparently sharp "tailing off' in the rate of printing the final few elements is
an artifact of the checkpointing process and the method used to detect program completion.

0 -

dereferences is approximately equal t o the total number of reductions performed. This is

I I I I I

shown in the second graph of Figure 7.6, and in more detail in Figure 7.7. This indicates

0 25 50 75 100
Elapsed Time (Thousands of Ticks)

tha t some useful speculative work is successfully being used to mask latency. Recall that

Total
Reductions

(Thousands)

300

250] Bars are labeled
with total reductions
per useful reduction

200 n
0 4 6 8

Hypercube Dimension

Total
Reductions

plus
Remote
Requests

(Thousands)

0 50 100
Elapsed Time (Thousands of Ticks)

Figure 7.6 - Reductions Performed for Mapsquares. Total reductions counts only those
reduction packets tha t completed their evaluation transformation.

the introduction of a remote request a t least triples the expected evaluation time of a

reduction packet. If speculation were not masking the extra latency of exchanging mes-

sages, the slowdowns would be much more pronounced. Further evidence of this is discussed

in relation to the puum program.

0 25 50 75 100
Elapsed Time (Thousands of Ticks)

400 -

300 -
Total

Remote
200 - Requests

(Thousands)

383107 (d8)

:.' 145607 (d6)
I

Figure 7.7 - Reductions Compared to Remote Dereferences for Map-Squares. The count of
remote requests includes automatic elimination of indirections before returning the normal
form of a reduction packet to a remote processor. Indirections are introduced by the I and
K reductions. This pattern of remote requests approximately equaling all other reductions
combined is consistent for all three test programs and all network sizes.

100 -
47425 (d4) -

o 7 - 4

I I I I

300 -
Total

Reductions
200 - Completed

(Thousands)

100 -

0 -

308087 (d8)

.:" 116741 (d6)
I

0°
:. @ /-

...:/ 40141 (d4)
.ss-

& *

I I I I
0 25 50 7 5 100

Elapsed Time (Thousands of Ticks)

7.6.2. Parallel Sum

This is the well known divide-and-conquer algorithm for generating the sum of n con-

secutive integers in a given range. sequentially, this requires O(n) time, but in parallel i t

can potentially be done in O(log, n) time. This computation is actually better suited to a

data-parallel SIMD decomposition, where the n integers are multiple data. The algorithm

used here generates the integers as i t adds them, which introduces additional work propor-

tional t o the number of integers summed.

psum = Xlow.Xhigh. dsum low high
where rec

dsum = hlow.Xhigh.
(if (low = high)
then high
else dsum low mid + dsum (mid+l) high
where

mid = (low+high)/2
1

This algorithm has the best potential for nonspeculative parallelism of the three pro-

grams tested. It also has the least potential for useless speculative computation. Not

surprisingly, i t shows the best speedups. The computation is tree-structured, very similar t o

the simulated process trees used in the diffusion scheduling experiments described in Chapter

6. I t is encouraging to note that the speedup of paum on the 4dimensional (16-processor)

hypercube corresponds t o the results of Chapter 6 for test cases with a similar ratio of exe-

cution time to message passing time.

Figure 7.8 summarizes completion times and speedups for runs of paum 1 1000 (sum in-

tegers from 1 t o 1000) on 4 , &, and &dimensional hypercubes. The 4dimensional network

quickly reached optimal queue lengths at all nodes, and spent the majority of the computa-

tion time with loads considerably above optimal a t all nodes. This is reflected in the rela-

tively small number of excess reductions performed, as shown in Figure 7.9 and Table 7.1.

Completion 400
Time

0 4 6 8
Hypercube Dimension

-

-

-

Figure 7.8 - Completion Times for Parallel Sum.

In contrast, the two larger networks never achieve a balanced, near-optimal load. Concen-

tration of the work in a few nodes is probably the result of a combination of factors. In the

Cdimensional network, all nodes have a portion of the initial graph, so remote reference re-

quests help t o distribute the work. Only a fraction of the nodes in the &dimensional net-

work have parts of the initial graph. In addition, the diffusion criterion of accepting

higher-priority tasks until the local queue is a t optimal length may be concentrating work

a t a few nodes early in the computation. The latter is unlikely, however, because those

queues tha t exceed the optimal length grow very rapidly t o the maximum, a s shown in Fig-

ure 7.10.

-

A more likely explanation is tha t the queues are filling with remote reference requests.

Recall tha t these requests are not handled by the diffusion scheduler, but instead must be

scheduled at the node which holds the reference. As speculative work is created to try t o fill

Bars are labeled
with speedup

4.94 - 6.87 7.55

Total
Reductions

(Thousands)

0 4 6 8
Hypercube Dimension

0 25 50 75 100 125
Elapsed Time (Thousands of Ticks)

250 -
Total 200 -

Reductions
150 - plus

Remote
Requests 100 -

(Thousands)
50 -
0 -

Figure 7.9 - Reductions Performed for Parallel Sum. See also Table 7.1.

...Jy d6
8

/
/

/
/

/
/

_________I4

.' 8

:./
.i

,'
I I I 1 I I

the large processor network, important subexpressions or "hot spots7' in the initial graph be-

come the target of large numbers of low-priority remote requests. The scheduling of higher-

priority tasks prevents many of these requests from ever reaching the front of the ready

queue, and so the queue fills with them. This in turn causes the local n d e to send any oth-

The summary lists the number of packets tha t were deleted, tha t were left incomplete a t
program termination, or tha t returned a duplicate result. Deleted and unfinished tasks are
not included in the bar graph in Figure 7.9, but duplicate work is included in tha t graph.
The percentage wasted reflects the sum of the first three columns as compared t o the total
reductions completed.

Table 7.1 - Summary of Other Excess Work
Parallel Sum

er reduction packets i t generates t o neighboring nodes. Those packets may in turn send re-

mote requests, forcing still more work into the already overloaded queue.

T o make certain tha t speculative computation was not unreasonably limiting speedups

for the larger hypercubes, an additional test was run. Using an &dimensional network, and

with speculative computation disabled, psum 1 1000 was run again. If nonspeculative paral-

lelism in the arithmetic operations was entirely responsible for the speedups, the nonspecula-

tive test should perform a t least as well as the previous tests. Instead, i t performs much

worse, running about 3 times dower than single-processor nonspeculative execution. Not

surprisingly, this is exactly the slowdown anticipated due t o the speed (or rather, the lack of

speed) of the message-passing system. The system's reliance on the outermost-first (lazy)

reduction rule is the most likely reason tha t more parallelism is not discovered. Recall tha t

this reduction rule avoids following non-terminating paths, by stipulating t ha t subexpres-

sions (i.e., the arguments of a function application) are not evaluated until after the appli-

cation itself has been evaluated. Thus, even though nonspeculative parallelism is present in

the tree of additions, the evaluation order prevents the system from discovering it. This

% Wasted
1.7

34.9
39.8

.Dim
4
6
8

Deleted
665

71895
85959

Left
517
972

9

Duplicate
942

14437
15834

Average
Pressure
(Tasks)

Maximum
Pressure
(Tasks)

I I I I I
I

0 25 50 75 100 125
Elapsed Time (Thousands of Ticks)

200 - 7 'r-------
I .. \

.. A 1 .. \

: I \ I 150 - : I \ I I ', d6

I I I 1 I I
0 25 50 75 100 125

Elapsed Time (Thousands of Ticks)

Figure 7.10 - Average and Maximum Per-Processor Pressure for Parallel Sum. The max-
imum pressure is that for any processor, not necessarily the same one each time. However,
note the apparent 'Lhot-spot" behavior for the 6- and &dimensional networks. The flat area
a t the top of the graphs is the maximum queue length, a t which a processor begins to delete
speculative tasks.

In the &dimensional network, minimum pressure is never found to be above zero, but
every processor perform at least a few reductions. The total work done a t each processor
in the &dimensional hypercube is much more even, although the load at any given check-
point is not balanced.

suggests tha t speculative computation is essential in a concurrent evaluator t ha t wishes t o

take advantage outermost-first semantics, a t least to stimulate parallelism, if not to mask

message latency.

7.8.3. Towers of Hanoi

This algorithm produces a list of twedigit integers. The digits represent one move of

a disk from the tower numbered by the first digit t o the tower numbered by the second.

This is quite similar to parallel sum, except that each branch of the recursion performs

O(n) operations where n is the height of the towers. Note tha t the operations in the

branches of the tree are completely independent, so the only limitation on parallelism in this

algorithm is the construction of the process tree. However, the process tree is joined by list

construction, so this parallelism is uncovered only by speculative evaluation originating in

other parts of the program.

rec
hanoi = if .Xs.Xt.Xn.Xr.

i f n < t
then move f s, r
else hanoi f t s (n-1) (move f s, hanoi t s f (n-1) r)

where
move = Ax. Ay. 10 x + y

Although this program shows only modest speedups, a s seen in Figure 7.11, i t provides

the most insights of any of the tests. The load balancing behavior of the Cdimensional net-

work is particularly satisfying (see Figure 7.12). The average pressure a t each processor is

maintained consistently near the optimal queue length throughout the computation. In con-

trast, the average load varies widely when tested on a &dimensional hypercube, and the &

dimensional case never manages to utilize all processors.

As seen in Figure 7.13, a t the &dimensional network size the system begins t o com-

plete reductions at a slightly higher rate than for the &dimensional hypercube, then experi-

Completion
Time

(Thousands
of Ticks)

0 4 6 8

Hypercube Dimension

Total
Moves

Printed

0 50 100 150 200
Elapsed Time (Thousands of Ticks)

Figure 7.11 - Completion Times for Towers of Hanoi. Dashed lines in bars show the earli-
est checkpoint a t which the full list of moves had been printed. Dotted lines show the earli-
est checkpoint at which all moves had been computed. The "tail" artifacts mentioned in
Figure 7.5 were so pronounced in this case that they have been cut from the graph of total
moves printed.

ences a sharp drop in the rate of completions. This is so different from the linear behavior

of the other two cases that the experiment was repeated t o be sure tha t no transient error

Average
Pressure 20

Per
Processor

10

0

0 50 100 150 200
Elapsed Time (Thousands of Ticks)

Figure 7.12 - Average Per-Processor Pressure for Towers of Hanoi.

was responsible. A comparison of two runs is shown in Figure 7.14. Although the second

run shows considerably different behavior during the course of the computation, the comple-

tion times of the two differ by only a few clocks. Also interesting was the series of jumps in

the packet completion rate for the second test, corresponding to large variations in the total

pressure.

This is most likely explained as an indirect effect of the "hot spot" behavior observed

earlier for parallel sum. As the system attempts to generate enough work to load all proces-

sors, a large number of speculative tasks are created. Most of these tasks are completed

very quickly, but eventually the queues a t a few processors fill up with remote requests. At

this point those processors begin deleting speculative tasks, including some of those requests,

t o reduce their queue lengths to a manageable level. In the case of psum (Figure 7.9 and

Figure 7.10), there is plenty of nonspeculative parallelism t o take up the slack as speculative

0 4 6 8
Hypercube Dimension

150 -
125 -

Total 100 -
Reductions
(Thousands) 75 -

50 -
25 -

0 50 100 150 200
Elapsed Time (Thousands of Ticks)

0 I I I I

11.14

400 -

Total 300 -
Reductions

plus
Remote 200-

Figure 7.13 - Reductions Performed for Towers of Hanoi. Note the sharp drop-off in rate
of completions for the %dimensional network. A similar effect is seen in Figure 7.9, but it is
much clearer here. The behavior was considered odd enough that a second run was made
for comparison. The dotted portion of the bar graph shows results of that test.

d6
/'

/
/

/
/

/
/

/
/ d8

tasks disappear, so no drop in the pressure is ever detected by the checkpointing process.

8.26

; 4.94 -

Bars are labeled
with total reductions
per useful reduction

4.34 -

Requests d4
(Thousands)

100 -

0 -
I I 1 I

However, a drop in the rate of completions appears as processors begin to spend more time

-

cleaning excess tasks out of their queues.

Total
Reductions

plus
Remote

Requests
(Thousands)

Total
Moves

Printed

600-

Total
400 - Active

Tasks
(Pressure)

200 -

o-,
I I I I
0 50 100 150

Elapsed Time (Thousands of Ticks)

Figure 7.14 - Comparison of Two Runs, Towers of Hanoi, &Dimensional Hypercube.

By contrast, hanoi has almost exclusively speculative parallelism. When a ready queue

a t a "hot spot" processor fills up and tasks are deleted, parallel evaluation is sharply re-

duced. The system then resumes creating speculative tasks, attempting t o load all proces-

sors. The result is a repeated rise and fall in the number of active tasks, as seen in Figure

7.14.

If the nondeterministic effects of dynamic scheduling are considered, this hypothesis

can also explain the behavior of the first test. In order for speculative computation t o build

t o its former level after the first drop in pressure, high-priority tasks must take long enough

to complete that some useful speculative tasks return their results first. The first test has a

slightly higher rate of completion of nonspeculative work, as seen by the rate a t which

moves are printed. This may be enough to prevent a resurgence of speculative work until

late in the computation.

Despite the presence of some differences, the general similarity in the rate of printing

moves for both cases and their nearly identical completion times are encouraging. The

steady increase in the printing rate in the second test, in spite of wide fluctuations in the

pressure, shows tha t the priority system is successful in reducing or preventing interference

from speculative tasks. Furthermore, this suggests tha t elimination of "hot spots" may al-

low much greater speedups even without improving the speed of message transmission.

7.7. Summary

These experiments indicate that , in general, reduced-priority speculative parallelism

cannot completely replace strict parallelism. Slowing of computation in the mopaq test and

only moderate speedups in hanoi demonstrate t ha t speculation is insufficient to overcome a

strongly sequentializing factor (c.g., lazy constructors). The most successful application of

speculative computation appears t o be in combination with a few operators t ha t exhibit

strict parallelism.

However, even when a reasonable degree of strict parallelism is present, speculative

computation was important to overcome latencies. In the absence of strictness analysis,

speculation appears to be necessary in order for the outermost-first reduction rule t o be ap-

plied successfully in a parallel environment. Speculating within the S and B reductions,

which implement function composition, causes speculation on the arguments of functions.

This can t o some extent take the place of pre-evaluating arguments tha t are known t o be

required.

The mast significant drawback of speculative evaluation is tha t known problems of

parallel computation are magnified. In particular, nondeterministic effects can significantly

alter the behavior of the program, and "hot spots" tend to become much hotter. Fortunate-

ly, the priority scheme is generally successful in preventing this from interfering with impor-

t an t work, a t least until resources begin t o overflow.

Although techniques such as copying heavily-referenced parts of the initial graph t o all

processors could reduce or eliminate the effects of hot spots, further investigation is needed

t o discover ways t o control nondeterminism. It is probable tha t the strategy of restarting

tasks t o increase priorities contributes t o nondeterminism, as well as t o hot spots. A stra-

tegy tha t allows deleted tasks to be restarted but also allows task priorities t o be increased

directly, might be worth the added complexity involved.

CHAPTER 8

MPCR Simulator Reduction System

This chapter describes those mechanics of the parallel reduction system tha t are not a

direct implementation of the abstract model of Chapters 3 and 4. The graph manipulations

needed t o perform individual combinator reductions are not included, because they are obvi-

ous from the evaluation rules for each combinator, and follow very closely the diagrams in

Tur79. As implied by the re-sending of Demand messages in the abstract model, when a

reduction is performed the reduction packet describing the reduction is updated with the

result. The updated packet is then re-evaluated until i t is found to be in weak-head normal

form (WHNF). These forms are then sent back t o the origin processor of the packet, which

is determined from the redex address. When the WHNF reaches the origin processor, the I*

cal access pointer in the redex address is consulted, and the indicated marker is updated,

completing evaluation of the subexpression.

Figure 8.1 summarizes the symbols used in the diagrams in the remainder of this

chapter. References are represented as either solid or dotted arrows, depending on whether

the object pointed t o is significant t o the diagram. Solid arrows tha t do not point t o graph

node symbols indicate references tha t are significant but tha t may be non-local (remote).

The current pointer indicates a reference which was taken either from the local ready queue

or from a message, and which therefore is not contained within the expression graph itself.

All operations of the reduction system begin by dereferencing such a pointer; the initial

current pointer is supplied by the run-time system of the root processor node, and is ob-

tained by loading a program graph from external storage. All applications in this initial

1 L_l
..........

application conslpair boxed value

indirection weak head normal form packet
(contents unspecified)

marker

4
current pointer

marked packet
(copy of active packet)

null pointer

Figure 8.1 - Symbols

program graph are assigned the minimum poaaibic priority; higher priorities are assigned as

the graph is evaluated (see Packet Formation). Evaluation of the root of the graph then be-

gins a t the mazimum possible priority, and priorities propagate downward.

8.1. Packet Formation

Before any evaluation can occur, a reducible subexpression must be collapsed into a

task description called a reduction packet. Packet formation is summarired in Figure 8.2.

This corresponds t o the recursive packetire algorithm given in Figure 3.10. The right cell of

the marker is initially empty, but will be used t o keep track of the notificr list of tasks tha t

\
1

'd
0

7 4
C

I.. Y! . . 'd F
a

E B i i
A

f
E

'a '-4 '.&

E F C

Figure 8.2 - Formation of a reduction packet. The large dark arrows show progression of
the subexpression graph through each of the four stages; two repetitions of step 3 are omit-
ted.

1. The left spine of application nodes in the subexpression is recursively descended until a
combinator is found (node A). The combinator may be in the left cell of an applica-
tion node, as a boxed value, or in a partially filled template; see step 2.

2. The application node immediately above the combinator (node B) is overwritten by a
reduction packet template. This template contains the combinator from the left cell of
the application, the reference (or canonical value) from the right cell, and empty slots
for the remaining arguments of the combinator (if any). Templates represent partial
Packets from the abstract model.

3. The application node immediately above the template (node C) is overwritten by a
new copy of the template, with the next argument slot filled in by the right cell of the
application. This step is repeated as the recursion unwinds, until a template has been
constructed with all argument slots filled (node D).

4. A completed template is copied into a finished reduction packet (node Dl), and the
template node is replaced by a marker. A specially tagged copy of the packet, called a
marked packet, is made (node D2).

should be resumed (in terms of the abstract model, sent a Demand) when the marker is up-

dated. The marker also keeps track of the task count for the redex, which is initially set to

one. Formation of a packet from a sample program graph is shown in Figure 8.3.

Although it is not necessary for implementation of the abstract model, both the task

field of the marker and the unevaluated copy of the packet are tagged for error-checking.

The task field tag differentiates an updatable marker from those used t o implement the

Figure 8.3 - First reduction packet of the sample sum program.

notifier list, as described in the next section. The marked packet tag, or more accurately, its

absence, is used t o check tha t only correctly copied packets are scheduled for evaluation.

After the reduction packet has been formed, i t is passed t o the diffusion scheduler for

assignment t o a processor. This corresponds t o sending an Evaluate message t o the packet.

The marker node remains in the expression graph until one of its associated reduction pack-

ets has been fully evaluated, a t which time the marker is updated by a weak-head normal

form.

Packets can be formed either a t the priority of the task demanding the value or a t

speculative priority. As explained in Chapter 4, speculative evaluation occurs during the

evaluation transformation of certain expansive combinators. Application nodes along the

left spine which are folded into templates (partial packets) are not increased in priority un-

til the template is filled. When the packet is complete, i t is assigned the greater of the

priority a t which i t was requested or the priority already recorded at t ha t application node.

This is the maz computation used in the prioritized reduction rules (Chapter 4). If packet

formation does not consume the entire left spine of a redex, this maz priority assignment is

also applied t o all application nodes in the spine above the completed packet. This assures

tha t any future evaluations of the redex will take place a t the highest priority ever assigned

t o the subexpression.

8.2. Suspension

The template created in the packet formation process has in its argument list one slot

for each argument of the combinator in its descriptor field. If the left spine of the expression

graph contains more than this number of arguments, packet formation will not consume the

entire spine. When this occurs, a recursive call t o paeketire returns DEMANDED. In this

event, the current evaluation must suspend t o await the return of the evaluated subexpres-

sion. I t is also possible for another evaluation, going on concurrently, t o encounter a mark-

er when descending the left spine of a subgraph.

Figure 8.4 - Suspension of a n Application Graph (Marking Tranaformation). T o suspend an
evaluation, a new graph node D l is first created, into which the application D is copied. D l
represents the continuation of the packet formation process and will be resumed when the
marker A is updated (that is, when the demanded value is returned). A reference t o D l is
placed in the task field of D. Finally, a reference t o D l is added t o the notificr fiat of A.
This reference represents the Demand message used in the packetire algorithm. Although
the algorithm of Figure 3.10 would indicate tha t the Demand message be sent t o node Dl
the reaction of D would be t o propagate the Demand t o Dl . Since the redex address of D l
already refers t o D, an additional Demand message from D would carry no useful informa-
tion. I t is therefore slightly more efficient t o resume packetization at Dl .

The notifier list is implemented in the simulation a s a linked list of marker nodes. The

right cell of each marker in the list holds a reference t o the next marker in the list; no such

Figure 8.5 - Optimization: Suspension of a Partially Evaluated Task. An opportunity for
optimization arises when the root application of the expression t o be suspended is the result
of evaluating a reduction packet. (Recall tha t when a reduction packet executes, i t is
transformed into a graph and then re-demanded until the expression is in weak-head normal
form.) In this case, there is known to be exactly one reference t o the root application, so it
is not necessary t o replace tha t application with a marker. Instead, the nonshared reference
is placed directly in the notifier list.

marker can ever hold a remote reference. Instead of placing a Demand message in the list,

the left cell of each marker in the list holds the reference t o the task t o be notified. This is

because all Demands are handled through packetize. I t is sufficient t o know the node at

Figure 8.6 - Suspension of Additional Demands for a Subexpression. Task E is the first t o
suspend after demanding redex D. Dl is suspended on A by the packetize algorithm, as ex-
plained in Figure 8.4. Later, task F suspends upon demanding redex A, and is inserted into
the notifier list of A.

The dashed arrows from E t o D and from F t o A indicate tha t such a path must exist
in the graph, although it may pass through the left cells of one or more intervening applica-
tion nodes.

which the next call t o tha t algorithm should begin. Suspension of a task and several optim-

ized special cases are shown in Figures 8.4 through 8.8.

As a detail, i t should be mentioned how additional tasks are added t o the notifier lists

of markers. Concurrently executing evaluations which attempt t o access existing markers

are inserted into the linked list of notifiers stackwise, at the front. Figure 8.6 shows such an

insertion. The rightmost reference in the notifier list is always null.

Figure 8.7 - Repeated Suspension of Application Graph. Another case of some interest oc-
curs when two or more repeats of packet formation, evaluation, update, and re-packetizing
a re necessary in order t o consume the entire left spine of a reducible graph. Here, the
marking transformation has already been performed for node Dl and i t is therefore unneces-
sary t o repeat i t for Dl . Note tha t the end result is equivalent t o tha t of Figure 8.4.

Figure 8.8 - Suspensions of Markers. The abstract model specifies tha t the marking
transformation should move the redex address of an application into its notifier list. By
definition, however, an application must never have more than one redex address. The
marking transformation can thus be optimized by leaving the redex address unchanged.
The update transformation is then responsible for reactivating the evaluation (see below).

If instead the redex address is found a t an indirection t o the marker, as in node B, this
optimization is not possible. In this case a reference t o the indirection B must be placed in
the notifier list of the marker A. If this were not done, the update transformation would
not have enough information t o reactivate the task.

8.3. Update and Awakening

When an evaluation task has reduced t o a weak-head normal form, i t is returned t o

its processor of origin, where the marker node left a s a place-holder for the value is updated.

The several possible alternatives for performing this operation are shown in Figures 8.9

through 8.12.

Figure 8.9 - Update Transformation, General Case. The most common update situation,
task A1 returning a value to update marker A. Five steps are followed to update a marker:

1. The task field reference to marked packet A2 is released. The reference to the notifier
list, in A's right cell, is saved for future use.

2. The weak-head normal form in A1 is transferred into A. This transfer erases the con-
tents of Al, except for the redex address, which is not transferred because the redex
address of A must not be overwritten.

. The updated node A is checked for the presence of a redex address. If no redex ad-
dress is found, the reference to A (that is, the redex address of Al) is released. The
case when a redex address is present is described below.

4. All useful information has now been removed from Al , so the current reference to it is
released.

The final step is shown in Figure 8.10.

Figure 8.10 - Awakening Tasks from Notifier List (update transformation, continued).

5. The notifier list saved in step 2 is traversed. References found in the left cells of the
linked markers in the list are placed in the ready queue a t the local node, in priority
order. This is referred t o as awakening the suspended evaluations. References to the
markers in the notifier list are released as the tasks they point to are awakened. This
frees the linked markers, because they can have no references from outside the list.

Figure 8.11 - Awakened Tasks Enqueued (update transformation). The completion of the
update transformation when updated node A had no redex address is shown.

Figure 8.12 - Awakening the Updated Node (update transformation). When the updated
marker A contains a redex address, A represents a suspended task which must be awakened.
Recall tha t the redex address of A represents a Demand message, which as an optimization
was not moved to the notifier list. The abstract model specifies tha t A should send this
Demand t o itself. T o accomplish this, instead of releasing Al's redex address reference in
step 3 of Figure 8.9, tha t reference is placed in the ready queue. Other tasks (such as E) in
the notifier list of A are awakened as usual. If A does not contain a redex address, it must
represent either a speculative evaluation or a strict parallel evaluation (such as the second
argument t o a n arithmetic combinator).

8.4. Rescheduling Tasks

As has been described, when a reducible graph is converted t o a reduction packet for

scheduling, a copy of the packet is left behind, referenced by the task field of the marker

node. Each time a task is started t o evaluate a particular redex, the priority of tha t task is

recorded and the task count is incremented. The priority information is stored in the copy

of the packet. The counter is kept in the marker node where the value will return. New

demands on the marker do not s ta r t new tasks unless either (a) their priority is higher than

tha t stored in the copy, or (b) the count of tasks associated with the marker is zero. The

counter value may be zero because it is decremented whenever one of the speculative tasks

evaluating tha t redex is deleted.

However, the most common case of rescheduling occurs when the task field of the

marker refers t o an application node. In this case, rescheduling must use the packetize func-

tion t o demand tha t the subgraph be evaluated. This traverses the left spine of the sub-

graph until i t encounters a marker whose task field refers t o a complete packet. A new

copy of tha t packet is then scheduled. Figure 8.13 details this operation.

8.5. Forced Task Exit

Another situation in which the notifier list must be traversed is when a speculative

task has been terminated without being fully evaluated, as described in Chapter 4. When

the run-time system a t some processor detects that its resources are nearing their limits, i t

examines the queue of ready tasks t o find the Iowestpriority speculative task not already in

normal form. When a suitable task has been selected, the processor forces the task t o exit

by first sending a n Ezitcd message, containing the redex address from the killed task, t o the

processor where the reduction packet originated. This message carries the reference rights

held by the deleted task t o its marker. Once the En'tcd message has been sent, the rest of

Demand I

Figure 8.13 - Rescheduling a Speculative Task. Packet E, which is strict in its first argu-
ment D, demands the evaluation of D. D was previously begun as a speculative computa-
tion, resulting in reduced-priority packet A1 (not shown) and its copy A2. When demanded
again at higher priority, D invokes paeketire on its task field reference. This recursively des-
cends the graph t o marker A, which schedules a new copy A 3 of the packet A2. The same
procedure is followed if A1 has ezi ied (see below) and the priority of E is equal t o or less
than tha t previously assigned t o A and D.

Note t ha t packet E will suspend on node D, a s shown in Figure 8.6. The task count of
marker A is incremented. The task count of D is incremented only if i t was previously zero,
because there is only a single application node whose redex address refers to D. The task
count of each marker thus reflects the number of other nodes tha t have the potential t o up-
date t ha t marker.

the task's references are released, and the task is deleted. The rescheduling mechanism al-

ready described guarantees tha t if the task is ever again demanded, a higher-priority task

can be scheduled t o perform the computation.

Figure 8.14 - Notification of Task Exit. The task count stored in the marker A is decre-
mented, and if i t has reached zero, the notifier list is traversed. All tasks in the list are
forced t o exit, because there is no way t o guarantee tha t the da t a for which they are wait-
ing will ever become available. Note tha t the task count cannot reach zero if there is any
nonspeculative (highest priority) task associated with the marker. As with any deleted
speculative task, the rescheduling mechanism ensures tha t the results of any of these tasks
can still be obtained.

Figure 8.14 shows a graph a t the time an Ezi ted message is received a t the origin p r e

cessor, and Figures 8.15 and 8.16 show propagation of the exit notification.

Figure 8.15 - Notification of Exit: Suspended Tasks Discarded. To discard a task from the
notifier list, after an Ezi ted message is sent t o its redex address, the reference t o the node is
released and the linked marker which previously held that reference is retagged as an in-
direction. Task E of Figure 8.14 has been discarded, and application Dl is receiving an Ez-
i ted message. Once the notifier list has been emptied, the marker A is examined to see if it
contains a redex address. If i t does, i t is also forced to exit.

Figure 8.16 - Propagating Exit Through an Application. Applications referenced by a
marker's task field require some special handling. The redex address of the application must
be shared (its reference rights divided) t o create the Ezitcd message. This is due t o the op-
timizations described in Figure 8.4 and Figure 8.8, which require tha t the redex address of
such an application is not released or transferred until the task field of the associated mark-
er is released. This does not introduce difficulties, because implementation of task counting
requires the redex address of such an application t o be a local reference.

The termination of a speculative evaluation may be propagated all the way back t o the ori-

ginal node tha t received the Speculate message. If no other references t o the speculative

task's marker remain, the entire speculative subexpression is deleted. Useless speculative

computations can thus be completely removed. They are not eliminated a s soon as they be-

come useless, but their reduced priority prevents them from delaying essential work in the

meantime.

8.6. Remote Reference Requests

When the value of a remote reference is demanded, a remote reference request is gen-

erated and sent t o the processor where the referenced node is t o be found. Generation of a

remote request is shown in Figure 8.17. A t the origin processor, the request packet is treat-

ed as a strict I combinator reduction. If the argument reference has not been evaluated, i t

is demanded, and the request task suspends t o await it. In the case tha t the argument

reference points t o yet another remote reference, the evaluation is simplified whenever possi-

ble by forwarding the original request packet without changing its redex address. The final

value is thus returned directly t o the marker a t the processor where the reference was origi-

nally demanded.

Unlike other evaluation tasks, request packets cannot always be rescheduled. When

the number of rights held by the argument reference reaches the minimum, no new copies of

the request packet can be generated. This is because any attempt t o share the argument

reference would result in the introduction of a n indirection, which is a local reference. Only

when the demanding task has the highest priority is no new copy needed. This is therefore

the only case in which remote requests are guaranteed t o be sent. If i t is not possible t o

send a request, the demanding task is forced to exit, and notification is sent t o i ts redex ad-

dress, as has been described. This does not affect the completeness of the computation, be-

cause normal-order tasks always have highest priority, but i t may limit some speculative

computations.

Figure 8.17 - Remote Reference Request. This involves five steps:

1. A request packet is created (At?), and the remote reference is transferred into its argu-
ment vector. Request packets are scheduled like any other packet except tha t the
diffusion scheduler is not used t o choose a processor. Instead, the request packet will
be sent t o the processor indicated by the remote reference, and tha t processor is re-
quired t o accept and schedule it.

2 A marker node t o reserve space for Local A is created, and the memory cell originally
containing the remote reference is updated with a reference t o Local A.

3. The reference t o the marker is shared (copied with sharing of reference rights) into the
redex address of the request packet.

4. As with other evaluation tasks, a copy of the request packet is made and stored in the
task field of the marker.

5. The task count of the marker is initialized t o one, and the request packet is sent.

Once the remote reference request has been sent, the originally demanded application D is
suspended in the usual way.

CHAPTER 9

Conclusions and Directions for Future Research

9.1. Summary and Conclusions

This thesis has explored some specific techniques for scheduling location and processor

allocation t o tasks in order t o achieve massively parallel, asynchronous computation on

MIMD computers. I t emphasizes automatic, dynamic decomposition of a program into con-

current tasks, in order t o reduce the complexity of programming and t o find parallelism

tha t static techniques overlook. Techniques for control of dynamic task generation were

also investigated. Some control is necessary in order t o assure tha t important work is com-

pleted first and tha t resources are not swamped. Throughout these investigations i t was

crucial t o understand the design and implementation considerations of a model tha t would

scale well with increasing machine size.

Evaluation of expressions by concurrent graph reduction was chosen a s the basic

model of computation. Graph reduction has several characteristics t ha t make i t attractive

for parallel evaluation.

Opportunities for parallel evaluation can be discovered by direct examination of the

form of the graph representing an expression.

The results of an evaluation are deterministic, regardless of the order in which subex-

pressions are evaluated.

Synchronization is simplified, both because of the deterministic property and because

the functions which operate on the graph make manifest their accesses t o data .

The granularity of reduction operations can be chosen t o match the requirements of

an evaluation model and architecture.

The experiments described in this thesis have focused on fine-grained combinator

operations. Combinator graphs contain numerous, potentially concurrent subexpressions

tha t can provide work for the large number of processors available in a massively parallel

machine. In addition, the individual tasks are small; tha t is, they can be compactly

represented a s da ta objects. This means tha t their images are easily transmitted and col-

lected into pools of work tha t will keep processors busy while other tasks are suspended,

awaiting data .

The thesis makes contributions on three distinct topics.

1. A detailed meehaniam for distributed graph reduction. A message-driven protocol

for task distribution and scheduling on a non-shared memory multiprocessor has

been described and correctness proofs given for its principal functions. This in-

cludes a task deletion and garbage collection subsystem. The model treats the

nodes of a program graph a s virtual processors t ha t exchange messages. This

defines units of work tha t may be mapped onto a physical machine of any size.

2. Ezperimental evaluation of a difluaion scheduling algorithm. To map a program

onto a network of processor modules, a dynamic scheduling algorithm called

diffusion scheduling has been suggested. I t uses a measure of workload as the

analog of pressure t o direct tasks t o modules where they are most likely t o re-

ceive prompt service. collection of workload information and control of task dis-

tribution are both managed in a decentralized manner, by exchange of messages.

This makes diffusion scheduling a good match for the message-driven evaluation

model, in terms of both operation and scalability. Experimental studies of this

algorithm extend the existing body of work on distributed scheduling, and expose

some of the pitfalls and dynamic behavior of these techniques. The simulation

results indicate tha t a diffusion scheduling algorithm, properly tuned t o the ar-

chitectural parameters of a system, can find placements for dynamically created

tasks tha t will effectively balance workload among multiple processing nodes.

3. Analysis and experimental evaluation of apeculative evaluation. Speculative

evaluation attempts the reduction of subexpressions whose values cannot be

guaranteed t o be useful, in order t o stimulate concurrent activity. To provide

control, a priority scheme was used t o schedule speculative tasks and t o aid in

garbage collection of excess tasks. Performance of a multiprocessor using specu-

lative evaluation was measured by simulation, which allowed a significantly wid-

er range of variation of the multiprocessor network size than was available in a

physical system.

This work has been concerned with studying the dynamics of the parallel evaluation

model. This aspect of parallel systems has frequently been overlooked by other researchers.

The experiments performed have provided insights into the behaviors of diffusion scheduling

and speculative evaluation, and into the ways in which these two techniques can interact.

By presenting a detailed model for massively parallel reduction, and by exploring the

behaviors of this model and its attendant problems, this thesis has provided a basis on

which future investigation in this area can be built.

Although graph reduction provides a conceptual framework for the model, its imple-

mentation required considerably more mechanism than was expected a t the outset. New

node types had t o be added t o the graph structures in order t o account for s ta te transitions

induced by the receipt of messages. Priority scheduling required methods t o modify priori-

ties, so t ha t a high-priority task would not be forced t o wait should it be found to depend

on the result of a lower-priority task. Furthermore, the use of priority a s a criterion for

deleting excess tasks required a means of propagating the deletion notice t o dependent

tasks. It also required the system to be made robust under uncertainty t ha t a previously re-

quested task would ever complete. Success in meeting these challenges has been demon-

strated by informal but rigorous proofs that the model behaves correctly.

A new result of this research is an analytic estimate of the number of tasks required to

successfully mask communication latency. This analysis reveals that latency cannot be

masked completely when the proportion of tasks that are themselves dependent on commun-

icated parameters is greater than 60 percent. This is an important result, because i t pro-

vides a measure tha t can be used to determine whether a given program or even a given

computation model is appropriate for massively parallel asynchronous computation. Clear-

ly, asynchronous parallelism thrives on independent tasks. Program analysis should seek to

discover independent tasks and should report an estimate of the dependency parameter for

the program. If a program shows a high degree of intertask dependency, i t may require syn-

chronous or systolic parallel evaluation t o achieve speedup.

Experiments investigating the effectiveness of the speculative evaluation strategies in-

dicate tha t progress has been made towards the goal of automatically discovering parallel-

ism. Speculation is essential to achieve speedups by parallel evaluation of lazy functional

programs if strictness analysis is not performed. This is the case even when the function-

level parallelism of a program is high. However, the anticipated discovery of fine-grained

parallelism within a program having little coarser-grained concurrency was not realized.

The system also failed t o produce significant speedups in programs whose parallelism lay

primarily in speculative operations.

Much of the failure t o see better speedups is probably due t o sequentiality imposed by

the lazy list construction operation. Furthermore, use of Turner's combinator set imposes

artificial dependencies in accessing the arguments of multi-argument functions. Architectur-

al aspects of the simulated system, such a s a relatively inefficient message-passing system,

may also be a factor in limiting speedups, but the da t a do not clearly indicate whether this

is the case.

Efforts t o control speculative computation have had mixed success with respect t o per-

formance. The priority scheme accomplishes the goal of completing useful work quickly,

even when a large amount of useless speculation has been attempted. Throttling of specula-

tion also prevents the overuse of system resources, but has a number of disadvantages.

"Hot spot" behavior seems to be exaggerated by speculative computation, especially when

the number of processors begins t o exceed the number of nodes in the initial program graph.

Task deletion t o eliminate excess work causes eccentric performance in some cases. How ra-

pidly tasks should be allowed t o spread across the network has also not been determined.

The optimal solution depends upon characteristics specific t o each program, and it is

difficult t o find a policy tha t behaves equally well in all cases.

9.2. Directions for Future Work

Although the results of speculative evaluation presented in Chapter 7 show some

promise, i t is clear tha t the system is still greatly a t the mercy of dynamic variations. Ex-

cess speculative work, multiple evaluations, and especially task deletion, all add complexity

and uncertainty of performance t o the distributed evaluation model. Further work is neces

sary t o explore ways of reducing the occurrence of "hot spots" and t o control nondeterminis

tic performance. The few test cases tha t i t was possible t o study do not provide a complete

picture of the range of behaviors. More experimental da t a is needed, especially for larger

problem sizes.

The drastic reduction in parallelism seen in the hanoi example suggests t ha t task dele-

tion may not be the best way to control flooding of resources. Although the capability is

useful in extreme situations, some programs perform badly under the deletion of speculative

tasks. Alternatives tha t avoid task deletion should also be explored. One possibility is to

allow low-priority reduction packets t o migrate again if high-priority work pushes them to

the back of the ready queue. However, this may only flood the communication network in-

stead of flooding processor resources.

9.3. Other Applications

This research has considered the application of speculative evaluation with priority

scheduling t o parallel execution of a single program. However, the use of global diffusion

scheduling and local priority scheduling are not dependent on the evaluation of one graph

at a time. Multiprogramming is used in the MPCR a t the combinator level t o supply each

processor with a pool of tasks. The global system could be multiprogrammed as well,

evaluating several disjoint graphs simultaneously. This would be best utilized when none of

the programs being evaluated were of sufficient size t o occupy the entire processor network.

Associating a tag with the priority field of each node or message would also provide for a

different "highest" priority within each graph. This would allow different programs t o be

assigned different starting priorities, as is common in multiprogramming operating systems.

The tag would be used t o determine which "low priority" tasks are eligible for deletion, be-

cause the speculative tasks of one graph might have the same priority as nonspeculative

tasks of another.

Finally, i t should be noted tha t these techniques are not restricted t o graph reduction

computations. Although graph reduction provides a convenient framework for identifying

concurrent tasks and assigning priorities to them, another method could easily be applied.

The property of uniqueness of normal forms is also helpful when using speculative evalua-

tion, because it means tha t all copies of a task will produce the same results. However, this

property is not required if tasks that produce side-effects, such as performing 110 or updat-

ing a database, are never allowed t o execute speculatively. That is, such a task must not

be started by another task unless tha t task already has highest priority. Executing a task

at highest priority is then equivalent t o committing to the operation. Any synchronization

required to order the side-effects can be built into the functions tha t implement them. The

MPCR simulator, in fact, makes use of this technique to guarantee output ordering when

printing lists.

References

[AHU74] Aho, A. V., Hopcroft, J. E. and Ullman, J. D., The Design and Analysis of

Computer Algorithma, Addison-Wesley, Menlo Park, California, 1974.

[Ar188] Arlauskas, R., "iPSC/2 System: A Second Generation Hypercube," 3rd

Conference on Hypercube Concurrent Computers and Applications, vol. I,

Architecture, Software, Computer Systems and General Issues, January 1988, pp.

38-42, ACM.

[ArI85] Arvind and Iannuci, R. A., "Two Fundamental Issues in Multiprocessing: The

Dataflow Solution," Computation Structures Group Memo 226-3, Massachusettes

Institute of Technology, Cambridge, Massachusettes, August 7, 1985.

[Arc861 Arvind and Culler, D. E., "Dataflow Architectures," in Annual Reviews of

Computer Science I, 1986, pp. 225-253.

[AuJSS] Augustsson, L. and Johnsson, T., Lazy ML user's manual, Chalmers University of

Technology, Gothenburg, Sweden, May 1988.

[Bai86] Bain, W. L., The Interwork Programmer'e Reference Manual, Block Island

Technologies, Beaverton, Oregon, 1986.

[Bai88] Bain, W. L., The Interwork 11 Programmer's Reference Manual, Block Island

Technologies, Beaverton, Oregon, 1988.

[Bas851 Barak, A. and Shiloh, A., "A Distributed Load-balancing Policy for a

Multicomputer," Software-Practice and Ezperience, vol. 15, 9, September 1985,

pp. 902-913.

Bryant, R. M. and Finkel, R. A., "A stable distributed scheduling algorithm,"

Proceedinge of the 2nd International Conference on Distributed Computing

Systems, 1981, pp. 314-323. Discussed in NXG85.

Burn, G. L., Hankin, C. L. and Abrarnsky, S., "Strictness analysis for higher

order functions," Science of Computer Programming, vol. 7, 1986, pp. 249-278.

Burn, G. L., "A shared memory parallel G-machine based on the evaluation

transformer model of computation," in Proceedings of the Workshop on the

Implementation of Lazy Functional Languages, Aspenas, Goteborg, Sweden,

September 1988.

Burn, G. L., Peyton-Jones, S. L. and Robson, J. D., "The spineless G-machine,"

in Proceedings o j the 1988 ACM Symposium on Lisp and Functional Programming,

Snowbird, Utah, 1988.

Burton, F. W., "Controlling Speculative Computation in a Parallel Functional

Programming Language," Proceedinge of the 5th International Conference on

Distributed Computing Systems, Denver, Colorado, May 1985, pp. 453-458.

Chou, T. C. K. and Abraham, J. A., "Load Balancing in Distributed Systems,"

IEEE Transactions on Software Engineering, vol. S E 8 , 4, July 1982, pp. 401-412.

Church, A., The calculi of lambda-conversion, Princeton University Press,

Princeton, New Jersey, 1941.

Curry, H. B. and Feys, R., Combinatory Logic, vol. I, North-Holland, 1958.

Dally, W. J., "A VLSI Architecture for Concurrent Data Structures," Ph.D.

Thesis, California Institute of Technology, 1986.

pas871 Dally, W. J. and Seitz, C. L., "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Transactions on Computers, vol. C-36, 5, May

1987, pp. 547-553, IEEE.

[DaR81] Darlington, J. and Reeve, M., L'ALICE--A Multi-Processor Reduction Machine

for the Parallel Evaluation of Applicative Languages," Proceedings of the A C M

Conference on Functional Programming Languages and Computer Architecture,

1981, pp. 65-75.

[EL2861 Eager, D. L., Lazowska, E. D. and Zahorjan, J., "Adaptive Load Sharing in

Homogeneous Distributed Systems," IEEE Transactions on Software Engineering,

vol. SE12, 5, May 1986, pp. 662-675.

[GoH87] Goldberg, B. and Hudak, P., "Alfalfa: Distributed Graph Reduction on a

Hypercube Multiprocessor," in Proceedings of the Los A / a m o s / M C C Graph

Reduction Workshop, Lecture Notes in Computer Science, Springer-Verlag, 1987.

From a draft dated November 1986.

(Go1881 Goldberg, B. F., 'Multiprocessor execution of functional programs,"

YALEU/DCS/FtR-618, Department of Computer Science, Yale University, April

1988. Pre-publication version of chapters 7 and 8.

[GKW85] Gurd, J. R., Kirkham, C. C. and Watson, I., "The Manchester Prototype

Dataflow Computer," Communications of the A C M , vol. 28, 1, January 1985, pp.

3452.

[Gus88a] Gustafson, J. L., "Reevaluating Amdahl's Law," Communications of the ACM,

vol. 31, 5, May 1988, pp. 532-533.

[Gus88b] Gustafson, J. L., "The Scaled-Sized Model: A Revision of Amdahl's Law," in

Proceedings of the Third International Conference on Supercomputing 1988:

Technology Assessment, Industrial Supercomputer Outlooks, European

Supercomputing Accomplishments, and Performance d Computations, vol. 2, ICS

88, St. Petersberg, FL, 1988, pp. 13G133.

[Hi1811 Hillis, W. D., "The Connection Machine," Technical Report 646, Massachusettes

Institute of Technology AI Laboratory, September 1981.

[Hi1851 Hillis, W. D., The Connection Machine, MIT Press, Cambridge, MA, 1985.

[His861 Hillis, W. D. and Steele, G. L., "Data Parallel Algorithms," Communications of

the ACM, vol. 29, 12, December 1986, pp. 1170-1183.

[His871 Hillis, W. D. and Steele, G. L., "Update to 'Data Parallel Algorithms'," Comm.

ACM, vol. 30, 1, January 1987, pp. 78. Half page letter..

[HsL86] Hsu, C. H. and Liu, J. W., "Dynamic Load Balancing Algorithms in

Homogeneous Distributed Systems," 6th International Conference on Distributed

Computing Systerna, Cambridge, Massachusetts, May 1986, pp. 216-223.

[HuG84] Hudak, P. and Goldberg, B., "Experiments in Diffused Combinator Reduction,"

Proceedings of the 1984 ACM Conference on LISP and Functional Programming,

August 1984, pp. 167-176.

[HuG85a] Hudak, P. and Goldberg, B., "Distributed Execution of Functional Programs

Using Serial Combinators," IEEE Transactions on Computer6, vol. G34, 10,

October 1985, pp. 881-891.

[HuG85b] Hudak, P. and Goldberg, B., "Serial Combinators: 'Optimal' Grains of

Parallelism," in Proceedings of the Conference on Functional Programming

Languages and Computer Architecture (Nancy, France, September 1985), J.

Jouannaud (ed.), Lecture Notes in Computer Science, vol. 201, Springer-Verlag,

New York, 1985, pp. 382-399.

[KeL 841

[KLT84]

peK79]

Hudak, P. and Young, J., "Higher-order strictness analysis for untyped lambda

calculus," in Proeeedings of the 12th ACM Symposium on Principles of

Programming Languages, ACM, 1986, pp. 97-109.

Hudak, P. and Mohr, E., "Graphinators and the Duality of SIMD and MIMD," in

Proeeedings of the ACM Conference on Lisp and Functional Programming, ACM,

August 1988, pp. 224-234.

Hughes, R. J . M., "Super-combinators: A new implementation method for

applicative languages," Proceedings of the ACM Symposium on LISP and

Functional Programming, Pittsburgh, August 1982, pp. 1-10.

Jefferson, D. R., 'Virtual Time," ACM Transactions on Programming Languages

and Systems, vol. 7, 3, July 1985, pp. 404-425.

Jefferson, D. R., Beckman, B., Wieland, F., Blume, L., DiLoreto, M., Hontalas, P.,

Laroche, P., Sturdevant, K., Tupman, J., Warren, V., Wedel, J., Younger, H. and

Bellenot, S., "Distributed Simulation and the Time Warp Operating System,"

Operating System Reviews, vol. 21, 5, 1987. Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles.

Keller, R. M. and Lin, F. C. H., "Simulated Performance of a Reduction-Based

Multiprocessor," IEEE Computer, vol. 17, 7, July 1984, pp. 70.82.

Keller, R., Lin, F. C. H. and Tanaka, J., "Rediflow Multiprocessing," Proceedings

of Compcon Spring 84, February 1984, pp. 410-417.

Kermani, P. and Kleinrock, L., "Virtial Cut-Through: A New Computer

Communication Switching Technique," Computer Networks, vol. 3, 1979, pp.

267-286.

pie851 Kieburtz, R. B., "The G-machine: A fast, graph-reduction evaluator," in

Proceedings of the Conjerence on Functional Programming Language8 and

Computer Architecture (Nancy, France, September 1985), J. Jouannaud (ed.),

Lecture Notes in Computer Science, vol. 201, Springer-Verlag, New York, 1985,

pp. 400-413.

[KLB89] Kingdon, H., Lester, D. R. and Burn, G. L., "The HDG-Machine: A Highly

Distributed Graph Reducer for a Transputer Network," Draft submitted to FPCA

89, Middlesex, UK, March 7, 1989.

[Kus86] Kuszmaul, B. C., "Simulating Applicative Architectures on the Connection

Machine," Masters Thesis, Massachusetts Institute of Techonology, May 1986.

[LiK86] Lin, F. C. H. and Keller, R. M., "Gradient Model: A Demand-Driven Load

Balancing Scheme," 6th International Conjerence on Diatributed Computing

Systems, Cambridge, Massachusetts, May 1986, pp. 324336.

[LiK87] Lin, F. C. H. and Keller, R. M., "The Gradient Model Load Balancing Method,"

IEEE Transactions on Software Engineering, vol. SE13, 1, January 1987, pp. 32-

38.

(LiM821 Livny, M. and Melman, M., "Load balancing in homogenous broadcast

distributed systems," Proceedings of the ACM Computer Network Performance

Sgmposiurn, 1982, pp. 47-55. Discussed in Go188.

[NXG85] Ni, L. M., Xu, C. and Gendreau, T. B., "Distributed Drafting Algorithm for Load

Balancing," IEEE Transactions on Software Engineering, vol. SE11, 10, October

1985, pp. 1153-1161.

Ni, L. M. and Hwang,. K., "Optimal Load Balancing in a Multiple Processor

System with Many Job Classes," IEEE Transactions on Software Engineering,

vol. S E l 1 , 5, May 1985, pp. 491-496.

Papadopoulos, G. M., "Implementation of a General Purpose Dataflow

Multiprocessor," Ph.D. Thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, Cambridge, 1987.

Papadopoulos, G. M. and Culler, D. E., "Monsoon: an Explicit Token-Store

Architecture," in Proceedinga of the 1990 Conference on Computer Architecture,

IEEE, May 1990, pp. 82-91.

Peyton-Jones, S. L., The Implementation of Functional Programming Languages,

Prentice-Hall International, Englewood Cliffs, NJ, 1987.

Peyton- Jones, S. L., "The Spineless Tagless G-Machine," Proceedings of the

Workahop on Graph Reduction, Aapenaa, Switzerland, Sweden, September 1988.

Peyton-Jones, S. L., "Parallel Implementation of Functional Programming

Langauges," The Computer Journal, vol. 32, 2, October, 1989, pp. 175-186.

Pfister, G. F. and Norton, V. A., "'Hot Spot' Contention and Combining in

Multistage Interconnection Networks," IEEE Tranaactiona on Computers, vol. G

34, 10, October 1985.

Stankovic, J. A., "Simulations of Three Adaptive, Decentralized Controlled, Job

Scheduling Algorithms," Computer Networks, vol. 8, 3, June 1984, pp. 199-217,

North-Holland.

Stenlund, S., Combinators, A-Terms, and Proof Theory, D. Reidel Publishing

Company, Dordrecht, Holland, 1972.

[SuB77] Sullivan, H. and Bradshaw, T. R., "A large scale homogenous machine," in

Proceedings of the 4th Annual Symposium on Computer Archifecture, 1977, pp.

105-124.

[TBH82] Treleaven, P. C., Brownbridge, D. R. and Hopkins, R. P., "Data-Driven and

Demand-Driven Computer Architecture," Computing Surveys, vol. 14, 1, March

1982, pp. 94-143.

(Tru891 Truve, S., "The Massively Parallel G-Machine," Draft submitted to FPCA 89,

Gotebog, Sweden, March 10, 1989.

[Tur79] Turner, D. A., "New implementation techniques for applicative languages,"

Software-Practice and Ezperience, vol. 9, 1, January 1979, pp. 31-49.

[WaH87] Wadler, P. and Hughes, J., "Projections for strictness analysis," in Functional

Programming Languages and Computer Architecture, G. Kahn (ed.), Lecture

Notes in Computer Science, vol. 274, Springer-Verlag, New York, 1987, pp. 385-

407.

(WaM85) Wang, Y. and Morris, R. J. T., "Load Sharing in Distributed Systems," IEEE

Transactions on Computers, vol. (3-34, 3, March 1985, pp. 204-217.

[WWW86] Watson, I., Watson, P. and Woods, V., "Parallel Data-Driven Graph Reduction,"

in Fifth Generation Computer Architectures, J. V. Woods (ed.), North-Holland,

1986.

[WaW87a] Watson, P. and Watson, I., "An Efficient Garbage Collection Scheme for Parallel

Computer Architectures," Proceedings of the European Conference on Parallel

Architectures and Languages, Eindhoven, The Netherlands, June 1987.

[WaW87b] Watson, P. and Watson, I., "Evaluating Functional Programs on the FLAGSHIP

Machine," in Proceedings of the Conference on Functional Programming

Languages and Computer Architecture (Portland, Oregon, September 1987), G.

Kahn (ed.), Lecture Notes in Computer Science, vol. 274, Springer-Verlag, New

York, 1987, pp. 8&97.

[Whi85] Whitby-Strevens, C., "The Transputer," Proceedings of the 12th International

Symposium on Computer Architecture, Boston, MA, June 1985, pp. 292-300.

IEEE, 1986, pp. 326328."" Reproduced in Dharma P. Agrawal's (ed.) "Advanced

Computer Architecture," IEEE, 1986, pp. 320-328..

APPENDIX A

Simulation Parameters

Table A.l summarizes the important parameters used in the MPCR simulator t o

perform the experiments described in Chapter 7. Times were assigned based on a

correspondence of one time unit (one Interwork II clock tick) t o one reduction operation,

where a reduction operation is a simple calculation plus an update of one graph node. The

simplest combinators thus execute in unit time. More complex combinators were assigned

times based on the number of computations and updates they required. Time for other

operations was then set by comparing the complexity of their implementations t o those of

the various combinators.

Notes:

Table A.l - Simulation Parameters
Operation

Perform reductions:
B
C
I
K
P
S
U
Y
Cond
Nil
Arithmetic
Comparison
Remote Request

Process messages:
Pressure
Data (Update)
Evaluate (Packet)
Delete

Pass message between
CPU and transmitter
Pass message between
adjacent transmitters

1. Time for reduction of each combinator is based on the number of allocations and
updates required t o perform the graph manipulation.

2. Arithmetic combinators are Add, Sub, Div, and Mult.

3. Comparison combinators are Eq, Gt, and Lt.

4. Time shown is for a simple remote request, where the requested graph node is already
evaluated. Time varies if evaluation must be demanded (in which case the request
suspends until i t completes) or if the request must be forwarded t o another processor.

Time

3
3
1
1
1
5
3
2
1
1
1
1
2

1
2
1
1
1

2

5. Base time for processing a da t a message does not include awakening tasks from the
notifier list.

Notes
1

2
3
4

5
6

7

6. Evaluate messages are complete packets being distributed for execution. The time
shown represents only the time to accept or reject the packet, and t o add i t to the
ready queue if i t is accepted. Additional overhead is required if the packet is rejected,
because i t must be reprocessed as a n outgoing message.

7. This does not include block time caused by message routing collisions.

APPENDIX B

The Lambda Compiler

Programs used in the experiments described in Chapter 7 were written in a simple

untyped lambda calculus language. The syntax of this language is summarized in Figure

B.1. A yacc-generated parser, called lamb, reads the Lambda program and translates i t

into an intermediate expression language having only abstractions and applications. Each

subexpression in this form is explicitly tagged as either application or abstraction. The

transformations given by Turner [Tur79] are used to perform this translation.

The intermediate form can be defined directly in LML [AuJ88] as a recursive data

structure. An LML program, called ebe, creates such a structure from the yacc output,

then translates the data structure into combinator expressions, again following Turner. The

resulting expressions are loaded into C data structures by another yacc parser, and finally

distributed to the simulated processors for execution.

As a check on the correctness of compilation and of the program output produced by

the simulator, a different LML program, lbev, can replace ebe. This program performs the

same translation as ebe, but instead of printing the finished combinator expression, i t

transforms i t into an LML application graph using functions defined for each of the

combinators. The application graph is then executed directly a s LML code to produce the

output specified by the original Lambda program.

where-ezpr -+ where-ezpr where id = application-ezpr
I where-ezpr where rec id = application-ezpr
I application-ezpr

application-ezpr -+ function-application
I - application-ezpr
I application-ezpr arithmetic-op application-ezpr
I application-ezpr comparison-op application-ezpr
I application-ezpr , application-ezpr

arithmetic-op -+ I / I % I + I -

comparison-op + = I < I >

function-application -+ function-application simple-ezpr
I simple-ezpr

simple-ezpr -+ lambda-abstraction
I conditional-ezpr
I (where-ezpr)
I identifier
I integer
I n i l 1 [I
I n u l l
I fst
I snd

conditional-ezpr -+ i f application-ezpr then application-ezpr else application-ezpr

lambda-abstraction + X identifier. application-ezpr

Figure B.l - Syntax of the Lambda Language. Where the grammar is ambiguous, alterna-
tives are given in order of decreasing precedence. Function application by juxtaposition of
expressions has highest precedence. Arithmetic operators have the usual algebraic pre-
cedence.

The canonical empty list is named n i 1 (also []). The function nu1 1 tests whether
its argument is an empty list. Lambda programs are not type-checked, so the operator ", "
(comma) is used for both list and pair construction.

APPENDIX C

Simulator Data Structures

The first operation performed by the simulation is to construct an initial graph from

the input combinator expression. This initial graph consists entirely of application nodes.

Some cons/pair nodes could have been constructed a t compile time, but our objective is to

study the behavior of the simulation, not t o produce an optimally compiled graph. The

basic structure of application nodes, which is shared by cons/pair nodes, is shown in Figure

C.1. The node types are differentiated by their Toga.

Each Memory Cell contains either a canonical, a combinator name (deecriptor), or a

reference to a graph node. Additional tags associated with each cell are used t o identify the

contents. The format of a memory cell is shown in Figure C.2.

The Redez Addresa field of the application node is initially unused, and is in fact

required only for a subset of node types. For simulation purposes, however, all nodes are

given a redex address field so they may be handled orthogonally. The redex address is a

Application, Cons, or Pair Node

Figure C.l - Format of a Basic Graph Node

Priority 1 Redex Address
Memory Cell

Reference Count I Tags

Memory Cell

Memory Cell

I Tags 1 Reference, Canonical, Descriptor, or Special 1

Figure C.2 - Format of a Memory Cell

reference t o a place-holder node which is t o be updated when the node containing the

address has been evaluated t o weak-head normal form. Normally, this place-holder (or

marker) represents the root of a reducible expression; hence the term redez address. Due to

the nature of reduction task distribution, redex addresses are always remote references.

The Reference Count field records the total number of reference righta held for the

graph node, and is used in garbage collection.

The Priori ty of each node is also recorded. Priority is meaningless for nodes in weak-

head normal form (boxed values or cons/pair nodes) but is required for application nodes.

Reference

Remote Reference
A

/ \

Origin ID I Rights Held I Local Access Pointer Current Access Pointer
\ A /

V V

Local Reference Simulation Bookkeeping

Figure C.3 - Format of a Reference

The format of a reference is shown in Figure C.3. References contain a t minimum a

count of the rejerence rights they hold and a pointer for local access. Remote references

must also contain a field tha t identifies the processor node where the value of the referred-to

graph node can be obtained. The Local Access Pointer of a reference is valid only a t the

origin processor node of the reference. For purposes of the simulation, a Current Access

Pointer is also maintained; this is actually an address descriptor in the global namespace

provided by Interwork 11, and must be used t o obtain the local pointer. Also for simulation

purposes, all references are treated as remote, and the Origin ID field is checked on each

reference t o the current access pointer to be sure tha t the global namespace is not misused.

Two additional node types can be formed during expression evaluation. These are

boxed values and indirections. Indirections can also be formed t o provide additional

reference rights, as described in the discussion of the reference rights garbage collector. The

formats of boxed value and indirection nodes are similar t o the basic graph node format,

and are summarized in Figure C.4 and Figure C.5.

One additional type of graph node is created by the reduction system. This node type

is called a reduction packet and represents the basic unit of work in the reduction engine. A

reduction packet consists of a combinator name (descriptor), an argument count, and a

Boxed Value

Figure C.4 - Format of a Boxed Value

Priority 1 Redex Address
Unused

Reference Count I Tags

Canonical or Descriptor

Indirection

Figure C.5 - Format of a n Indirection Node

Priority I Redex Address
Unused

variable-sized argument list. The argument list is made up of memory cells and may be of

Reference Count I Tags
Reference

any size, but for ease of manipulation and update the simulation limits i t t o a t most three

cells, the maximum number of arguments required by any of the chosen set of combinators.

This limitation is also desirable because i t keeps messages small. A packet thus contains

exactly the information needed t o perform a single reduction step.

A reduction packet muat contain a redex address and a priority, but i ts reference

rights may be omittedt, since there is guaranteed t o be only a single reference t o any

reduction packet (see the discussion of packet formation, below). One bit in the reference

rights field of the reference t o a reduction packet is used t o record the information t ha t this

is an exclusive, nonshared reference; i t cannot be shared until the packet has executed and

thereby been transformed back into an expression graph, a t which time the reference count

information can be extracted from the reference itself and stored in the expression graph.

Instead of a reference count, then, a reduction packet carries information t ha t is examined

and modified by the diffusion scheduler a t each processor visited by the packet. This

difiaion data is used by the heuristic algorithm tha t decides whether the packet will be

t The simulation actually does record the reference rights of reduction packets, and examines them for error
detection.

accepted at any given node (see Chapter 5). The format of a reduction packet is shown in

Figure C.6.

Reduction Packet

Figure C.6 - Format of a Reduction Packet

Priority
Descriptor

Redex Address 1 Distribution Data I Arg Count
Argument Vector (variable size)

Biographical Note

The author was born and raised in Iowa, making his entrance in Ames on January 3,

1962, and spending most of his life in Des Moines and Urbandale. The author has never

lived on a farm, and potatoes are not a major crop in his home state. Immediately after his

graduation from Valley High School of West Des Moines, he was awarded the William

Fletcher King Scholarship by Cornell College of Mt. Vernon, Iowa. He began studies a t "the

one that's n o t in Ithaca" in 1980.

During his time a t Cornell, the author received the Chandler Award, the Norton

Award, and the Barton Award. The latter has nothing to do with the author's first name.

In 1984, he received the Degree of Bachelor of Special Studies in Computer Science.

The author began his studies a t the Oregon Graduate Center in the fall of 1984, and

saw the Pacific Ocean for the first time shortly thereafter. He was a Clark Foundation

Fellow in 1985. The highlight of 1988 was the author's June marriage to the former Maija

Kuhlman, a t the Living History Farms in Des Moines. So perhaps he has lived on a farm

after all. The Graduate Center renamed itself as the Oregon Graduate Institute in 1989,

and the author completed the requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering a t OGI in 1990.

Interests of the author include, in no particular order, distributed operating systems,

science fantasy novels, parallel algorithms and languages, long walks on the beach,

functional programming, fantasy role-playing games, and computer graphics and graphical

interface systems. He is leaving the Graduate Institute to try his hand a t entrepreneurial

enterprise, as a drastic change from ten years of higher education.

	199009.schaefer.barton to p. 60.pdf
	199009.schaefer.barton to p. 130.pdf
	199009.schaefer.barton to p. 210.pdf

