
A Formal Model For Architecture-Independent

Parallel Software Engineering

David C. DiNucci
B.S., Portland State University, 1983

A dissertation submitted to the faculty
of the Oregon Graduate Institute

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

March, 1990

The dissertation "A Formal Model for Architecture-Independent Parallel Software Engineer-

ing" by David Carl DiNucci has been examined and approved by the following Examination

Committee:

Robert G. Babb II
Thesis Advisor
Associate Professor

Richard B. Kieburtz
Professor, Department Head

/ i/ -
~.,

Michael Wolfe
Associate Professor

Harry S. Jordan
Professor
University of Colorado at Boulder

Dedication

To Tamae, who did not deny her faith

in the most difficult of times

To my father, who demonstrated how to get the job done

To my mother, who showed me what it means to never quit

Acknowledgements

I would like to acknowledge the students, staff, and faculty of Oregon Graduate

Institute for their support. In attempting to keep one foot in theory and another in

practice, I have relied on their expertise and experience in both camps. I would especially

like to thank Robbie Babb for keeping me apprised of the needs of the parallel processing

community and Michael Wolfe for his support and example. I would also like to thank the

other members of my committee for their assistance, Dick Hamlet for his excellent guidance

in the early stages of this work, Steve Otto and Doug Pase for inspiring discussions, and the

many others (including "the gang") whose friendship helped to make my stay at OGI an

enjoyable experience.

11

Table of Contents

1. Algorithms for Parallel Architectures 2

2. Related Work .. 15

2.1. Introduc tion 15

2.2. Shared Memory and Message Passing 16

2.3. Parallelizing Compilers 17

2.4. Linda 18

2.5. Unity 19

2.6. Reactive Kernel 20

2.7. Specification Languages 21

2.8 . Dataflow Languages 21

2.9. Coarse Grain Data Flow 22

2.10. Actors ... 22

2.11. Strand 23

2.12. Paralation 24

2.13. Sync hronous Models 24

2.14. Historical Perspective 25

3. F-Nets 26

3.1. Introduction 26

3.2. Building the Model 27

3.2.1. Architecture-Independent Ether Model 27

III

3.2.2. Separa bili ty 32

3.2.3. Independence of Number of Processors .. 34

3.2.4. Sample Problem ... 36

3.3. Higher Level Characterization .. 38

3.3.1. Instruction Specifications .. 38

3.3.2. Ensuring That Signatures are Correct 40

3.3.3. Multiple Readers and Buffering in Ether 41

3.3.4. Instructions Performing the Same Operation' ... 42

3.3.5. Final Version of Sample Problem .. 43

3.4. Final Notes 46

4. Axiomatic Semantics and Formal Results 47

4.1. Introduction 47

4.2. Syntax 48

4.3. Semantics .. 51

4.3.1. Form of an Execution Graph 52

4.3.2. Axioms Constraining Execution Graphs .. 53

4.4. Execution Graphs as Partial Orders .. 56

4.5. Execution Graphs as Computations ... 58

4.6. Tracing an Execution 60

4.7. Execution Graphs with Identical Logs are Isomorphic ... 64

4.8. Toward Proving lx =lx' ... 67

4.9. Conclusions .. 70

4.10. Final Note on the Effects of Order (Size of Control Domain) 70

IV

5. Comparison with Other Models 73

5.1. Unity 73

5.2. Petri Nets 74

5.3. CCS 76

5.4. Functional Models e... 77

5.5. Guarded Commands 77

5.6. Graphical Specification Languages 78

5.7. Imperative Sequential Programs 78

5.8. Conclusion 79

6. Implemen ta tion 80

6.1. Introduction 80

6.2. Definition of a Valid Implementation 80

6.3. A Generic Implementation 82

6.3.1. ConcreteF-Nets . 83

6.3.2. Abstraction of Concrete F-Nets 84

6.3.3. Concrete Execution Graphs and Their Abstraction 87

6.3.4. Concrete Implementation 87

6.3.4.1. Strategy 88

6.3.4.2. Validity of Implementation Strategy 91

6.3.4.3. Pseudo-code for the Generic Implementation 93

6.4. Optimizing Concrete Execution for Differing Architectures 98

6.4.1. Shared Memory 98

6.4.2. Message-Passing 100

v

6.4.3. Final Implementation Notes 103

7. Future Directions and Conclusions 105

7.1. Introduction .. 105

7.2. Extensions to F-Nets 105

7.3. Software Tools .. 107

7.3.1. DebuggingfMonitoring Tools 107

7.3.2. Parallel Restructuring Tools 109

7.3.3. Real-time Programming ... 110

7.4. Parallel Arc hitect ure 111

7.5. Conclusion 113

VI

Table of Illustrations

Figure 3.1 First Attempt at the Sample Problem 31

Figure 3.2 Second Attempt at Sample Problem 37

Figure 3.3 Final Diagram of Sample Problem 40

Figure 4.1 Node Labels for Execution Graph 53

Figure 4.2 One Execution Graph for the Sample F-Net 54

Figure 4.3 A New Sample F-Net 62

Figure 4.4. An Execution Graph for F-Net in Figure 4.3 63

Figure 4.5. Comparable Order-4 and Order-2 F-Nets 71

Figure 5.1. F-Nets Modeled as Petri Nets 75

Vll

Abstract

A Formal Model For Architecture-Independent

Parallel Software Engineering

David C. DiNucci, Ph. D.

Oregon Graduate Institute, 1991

Supervising Professor: Robert G. Babb II

In the absence of a unifying model to describe parallel algorithms, existing architectures

have served as the models. The resulting algorithms, expressed as sets of sequential

processes which communicate via shared memory or message passing, are non-portable, and

the component processes cannot be implemented according to an input-output specification

alone. Determining the set of computations represented by such an algorithm often requires

no less than simulating their execution. This dissertation develops a model, F-Nets, for

expressmg parallel algorithms in a manner which avoids many of these difficulties. Both

high- and low-latency communication are efficiently accomodated, and processes can be

implemented in any deterministic language. The possible effects of each process is

completely determined by the input-output mapping it implements. Computations are

defined as partial orderings of these process executions, and algorithms are represented

graphically as folded computations. A formal axiomatic semantics is provided for unfolding

algorithms into computations, as is an operational semantics which is used to describe

efficient implementations of the model on various architectures. Some final observations

and predictions are made for future work based on the model.

Vlll

1

CHAPTER 1

Algorithms for Parallel Architectures

1.1. Introduction

What is a parallel algorithm? Decades after the advent of parallel processors, this is

still not a simple question to answer, or even understand. The question is usually not put so

bluntly, or is accompanied by information about the intended target architecture: whether

the target is shared-memory or message-passing or SIMD, the number of processors that it

contains, specifics about the interconnection topology or memory hierarchy, and the cost of

communication.

Yet, algorithms have traditionally been considered as being independent of architec-

ture. The same algorithm can be considered as instructions to a human solving a problem

on a scratch pad or black board, a Turing Machine accessing a tape and performing state

transitions, or a uniprocessor accessing memory and executing instructions. The fact that a

computation for all of these devices has the same form-a sequence-unifies the concept of

algorithm and provides for them to be written and analyzed (to some extent) without know-

ing their target.

The goal of this work is to define a model of computation which can be efficiently

implemented on different MIMI) architectures, and one which provides a natural setting in

which to describe parallel algorithms. In order to capture the generality of the word "algo-

rithm", the programs expressed within this model should serve equally well as instructions to

a room full of humans, a set of Turing Machines, or a parallel processor. The remainder of

this chapter will further definethe goalsof this modelby first describingthe similaritiesand

2

differences between MIMD architectures, then the requirements of a parallel algorithm and

the factors which might make one representation better than another, and finally the role

that sequential languages might play in a parallel setting.

1.2. MJMD Parallel Architectures

In this section, we provide a very simple formalism by which parallel architectures can

be compared and contrasted. The terminology used is by no means standard: each term is

defined as it is used. We then describe the differences in various architectures in terms of

architectural implementation, physical characteristics, semantics, and number of processors.

1.2.1. Formalism

An MIMD parallel architecture consists of some number of sequential processors and a

communication medium, called ether. Each sequential processor has the use of a computa-

tional unit capable of executing one instruction at a time, and each instruction terminates

in finite time. Each processor possesses some amount of local state (e.g. registers and local

memory) which is inaccessible by other processors and which can affect the behavior of

instructions executing on it. Processors do not necessarily perform instructions at the same

rate, nor do they have access to synchronized clocks. Each processor will be live-i.e. it will

be ready to execute another instruction within a finite time after the last has completed.

Processors share access to the ether. In addition to the standard instructions per-

formed by sequential processors, which only affect and are affected by the local state of the

processor, each processor is capable of posting (performing) events. An event consists of a

type, an address1, and an optional data item. Event types are divided into primary-

lIn a message-passing system, this address is oCtencalled a channel.

3

secondary pairs. Common event type pairs for current architectures are (wr 1 te, read),

(send, recelve),and (unlock, lock).

When a processor posts a primary event, that event is copied to the ether. When a

processor posts a secondary event, the processor stalls until an associated primary event is

found in the ether with the same address; if the primary event has an associated data item,

that data is copied to the processor posting the secondary event. We call this pairing of

primary and secondary events event matching.

1.2.2. Number of Computational Units

The number of computational units in MIMD parallel architectures vary widely. The

definition given above does not preclude the use of a single computational unit by several

processors2. In the general case, in order to preserve the liveness of each processor, the

usage of the computational unit must be shared by interleaving groups of instruction execu-

tions from each processor. This requires that the computational unit switch contexts

regularly-Leo that the state of one processor be saved from the computational unit's state

(e.g. registers, program counter, pointers to address space), and that the computational unit

adopt the state of another processor. In general, an algorithm which is encoded to use

many more processors than there are computational units will consume more time for con-

text switching than one which is encoded to use approximately the same number of proces-

sors as computational units. An algorithm which uses fewer processors than there are com-

putational units will use those units ineffectively.

This work will address this problem by presenting a program as a fairly large collec-

tion of fairly small segments. When a segment begins execution, it will have no state, nor

21n common usage, these processors would be called processesor virtual processors.

4

will it have state when it has completed. A segment will not begin execution until all of the

resources that it needs are available to it, so a segment will never need to pause during its

execution. In this way, a program execution consists of packing (Le. scheduling) these seg-

ment executions onto the computational units at hand, with little or no need to switch con-

texts during segment executions, and no need to save or restore state between segment exe-

cutions.

1.2.3. Architectural Implementation ot Ether

Current architectural implementations of ether can be broadly categorized by the sca-

lability of the pending event store and of the communication bandwidth required to match

pending primary events with secondary events, where scalability refers to the ability of the

architecture to accommodate more processors. Non-scalable communication is often imple-

mented with a small number of fixed-bandwidth busses used for communication by all pro-

cessing units, while scalable communication is implemented using a network of communica-

tion channels which grows with the number of processors. A non-scalable event store is

oft:en implemented by memory units which share common access paths, while a scalable

event store is often implemented with several memory units, each with one or more auto-

nomous access paths. Non-scalable event stores are often augmented with scalable caches.

1.2.4. Physical Characteristics at Ether

The physical characteristics of ether can be analyzed in terms of bandwidth, latency,

and overhead. Bandwidth is the number of events and/or size of events that can be under

transport at anyone time. Latency is the time required to communicate (the news of) an

event from one arbitrary processor to another. Overhead is the amount of processor time

required to post an event.

- .. - . - - - - .. .-.

5

These physical characteristics are related to architectural characteristics. Scalable

communication is usually accompanied by relatively high latency, due in part to the fact

that the larger number of processors accommodated requires longer communication dis-

tances. More significantly, the higher latency can be attributed to the techniques used to

implement scalable communication. Since implementing a unique communication path from

every processor to every part of the event store would be prohibitive, some paths are shared

and/or pass through intervening processors, and routing data through these paths takes

time. Scalable communication is also usually accompanied by high overhead: High latency

makes it advantageous to associate a large amount of data with each data event, so the

communication system must be prepared to handle these large, variable-length events.

1.2.5. Semantics of Ether

The semantic characteristics of the ether can be categorized into buffering, destruc-

tiveness, data (and granularity), and partitioning. An event pair is buffered if the ether can

accommodate multiple primary events for a given address, unbuffered if it keeps only the

latest. Even ether which supports buffered events is not infinite, and may lose events or fail

catastrophically if too many unmatched primary events are posted. For buffered event

pairs, if multiple primary events are found which match a secondary event, the oldest pri-

mary event is usually used for the match. An event pair is destructive if the secondary

event removes the matched primary event from the ether, non-destructive if the primary

event is not removed. An event pair is a data pair if the primary event contains a data field

which is copied to the processor posting the secondary event when a match occurs. A data

pair will be said to have large granularity if the data associated with the event can be large

and variable-sized, fine granularity if the data is small and fixed size. An event pair is par-

titioned if the address associated with the primary event uniquely identifies the processor

6

which will post the secondary event.

These semantic characteristics are traditionally a result of physical characteristics.

As already mentioned, in a high-latency ether, it is advantageous to use large-granularity

events. The use of partitioning can reduce the effect of latency by allowing the primary

event to be forwarded directly to the processor which will post the secondary event, thereby

avoiding the latency when the secondary event is posted. Buffering allows latency to be hid-

den through pipelining, and allows multiple primary events to be posted to a given address

without waiting for verification through the ether (i.e. handshaking) that the previous pri-

mary events have been matched each time. For these reasons, a popular semantic combina-

tion for high-latency ether consists of a (send, receive) large-granularity event pair

which is buffered, destructive, and partitioned. We call this combination of semantics

message-passing.

When the latency of the ether is low, the amount of data passed in a data event can

be small, and to keep overhead low, a fixed size datum is usually used. Partitioning is not

needed, and is restrictive: if the processor which will post the secondary event is determined

without knowledge of the processor which will post the primary event, partitioning adds

extra overhead by requiring an extra event match to communicate this "demand" to the pri-

mary event poster. Buffering is also not needed, and imposes extra overhead. For these rea-

sons, a popular semantics for low-latency ether consists of a (write, read) fine-

granularity event pair which is unbuffered, non-destructive, and non-partitioned, and a

(relinquish,acquire)no-data event pair which is unbuffered, destructive, and non-

partitioned. We call this combination of semantics shared-memory.

The use of destructiveness to block a processor from taking action until it is safe (i.e.

to achieve synchronization) is independent of latency, and 50 is present in both shared-

7

memory and message-passing semantics. It plays the additional role of removing events

from the ether in message-passing semantics.

The two event pairs of shared memory are often used in tandem. Ether addresses are

logically organized into structures, and each structure has another address designated as a

lock. A processor posts an acquireevent for the lock of a structure before posting any

read or write events for addresses within a structure, and follows reads and writes with a

relinquish event for the lock. This protocol ensures that at a write event will not be

posted concurrently with an other event to the same address, and allows all events between

the acquire and relinquish to be considered as an atomic event. The protocol is

relaxed when other aspects of the algorithm ensure that reads and writes to the same

address are correctly ordered-e.g. when all further accesses to a given address are reads.

The protected data structure has some similarity to a large-granularity event, but is

different than message passing in that it is non-buffered, the lock events are not partitioned,

and when the locking mechanism is not used, multiple processors can post concurrent read

events to the structure elements.

There are some existing MIMD architectures which do not fit our ether model. Some

examples are those which perform synchronous message passing, in which the processor post-

ing the primary event also stalls until the event is matched, and architectures which have

"full/empty" bits associated with their addresses that do not have fixed semantics-i.e. a

primary event may set either set or clear the bit, a secondary event may wait for the bit to

either be set or cleared.

Although the semantic combinations described here are, to some extent, driven by

physical characteristics, and therefore by architecture, portability is rapidly becoming an

important factor. Implementations of shared-memory semantics on high-latency ether [291

8

and message-passing semantics on low-latency ether are growing more popular. Usually,

caching is used to compensate for high-latency ether.

This work will attempt to develop an ether semantics which addresses the needs of

both high- and low-latency ether. To accomplish this, we keep overhead low by supporting

small, fixed-size data events while providing high-level destructive event pairs for acquiring

ownership of a large number of ether addresses at one time, allowing them to be transported

when ownership is established in a high-latency environment. We support a more relaxed

version of partitioning which allows a single address to be associated with a subset of pro-

cessors, thereby allowing complete partitioning to address latency issues on those occasions

when the processor posting the secondary event is known in advance, but do not require

partitioning for the other occasions. We provide enough information for an implementation

of the model to optionally provide buffering when it will not affect the semantics, but the

semantics do not include buffering.

1.3. Parallel Algorithms

According to Knuth [281, an algorithm is a set of rules which gives a sequence of

operations for solving a specific type of problem. Even if we avoid questions of how a set

can "give" a sequence, and whether the rules of an algorithm truly form a set, this definition

states that an algorithm is a means of expressing a sequence of operations. By this

definition, a parallel algorithm is not an algorithm at all. We therefore weaken this

definition somewhat, defining an algorithm as a means of expressing a set of computations

for solving a specific type of problem. A computation will be the representation of a func-

tion which maps some input and initial state into some output and final state. If the set of

computations produced by an algorithm always contains exactly one element, we call the

algo.rithm deterministic, otherwise we call it non-deterministic.

10

sequences of operations which become the computation. The semantics of the language in

which the algorithm is expressed provide the rules for unfolding the algorithm into a compu-

tation. This similarity of algorithm and computation aids in understanding their correspon-

dence. It is our thesis that parallel algorithms can be made easier to understand if their

representation more closely resembles a folded partial-ordering of operations. To allow an

algorithm to be nondeterministic, the semantics of our method will allow some algorithms to

be unfolded in more than one way.

Applicative (functional) and data flow languages provide one starting point for this

work, in that they also express computations which are partial orderings of operations, and

resemble their computations mathematically. Unfortunately, these languages have some

characteristics which make them poor choices for representing parallel algorithms:

(1) The operations (primitive functions) in these languages are small (i.e. execute in a

very short time). Cues for determining how these operations should be scheduled on

processors for maximum efficiency are not apparent from the partial ordering alone.

(2) The languages use single-assignment (or no-assignment) variables to signify data

dependences. This paradigm provides few cues as to how memory can be used and

re-used efficiently.

(3) They are deterministic.

The first problem can be addressed by simply increasing the size of the operations.

But as the operations get larger, the amount of data that they consume and produce also

gets larger. This aggravates the second problem, since an operation updating a small part

of a large data structure needs to create a new copy of the data structure as a result to

preserve referential transparency.

11

As operations become larger, they also consume more inputs and produce more results.

Although some applicative languages allow an operation (i.e. function) to return several

results, the textual (linear) form of these languages does not provide for a natural represen-

tation for composing these functions.

These drawbacks to large operations will be addressed here by allowing an operation

to return several results3, and by allowing a single variable to serve as both an argument

and a result to an operation. Even so, an operation will specify a function from its inputs

before evaluation to its outputs upon completion. Traditional functional composition is no

longer suitable for operations of this form, so an alternate form will be introduced.

The ability to use a single variable as both the input and output of an operation rules

out the use of single-assignment variables to coordinate operation executions. One possible

alternative method is to assign each operation application (called an instruction) a condi-

tion, or guard, which must be satisfied for the instruction to execute. Unfortunately, the

generality of guards obscures the possible affects that the execution of one instruction can

have on the ability of others to execute. The partial ordering defined by the parallel algo-

rithm becomes obscured by the multitude of possible combinations of values of variables.

Values become overloaded, being used for both the data being transformed by computations

and as a direct means of controlling the execution.

Single-assignment variables and guards are similar in that they both rely on the state

of some set of variables to determine whether an instruction can execute; either the

"defined-undefined" state of single-assignment variables, which we will term control state, or

the values within variables, which we will term data state. The excessive power of guards

3 This is a.n entirely different ta.ck tha.n is ta.ken with curried functions, where ea.chfunction ta.kes one a.rgu-
ment a.nd produces one result (which ma.y be a.nother function).

12

comes from their ability to depend on so many more possible states per variable, and to

depend on variables that are not used by the instruction being guarded. The restrictiveness

of single-assignment variables results from the small number of possible states (i.e. two) and

from the specific semantic meanings assigned to those states which is not under the

algorithm's control. A middle ground can be achieved by extending variables to have more

possible control states, allowing control state to serve as a simplified form of guard.

Removing the fixed "defined-undefined" usage of control states requires that we

manage the control states explicitly. An instruction in our model will specify the control

state which each of its variables must have to enable execution, and will determine the final

control state that those variables will be left with after execution. Non-determinism is

introduced as it would be with guards, by allowing different instructions to access the same

set of variables under similar conditions (identical control states). To preserve as much

information as possible about the effects of each instruction on the control state of its vari-

ables, the range of possible final control states for each instruction will be made explicit.

Another cost of removing the special semantics of the "defined-undefined" control

states is efficiency. When a single-assignment variable has been defined, it can be read by

many functions concurrently with impunity, and the next version of the variable can be

pre-calculated. We will provide techniques that allow buffering and multiple-readers in an

implementation, even while the model presented to the user provides atomic access to vari-

abIes.

These extensions to functional languages remove some of the mathematical resem-

blance of algorithms to their computations. In its place, we look toward a topological

resemblance. If a parallel computation is a partial ordering and thus two-dimensional, it is

reasonable to assume that a folded computation would also be two-dimensional (i.e. a

13

graph). It is this syntax which gives our model its name: Function Networks, or F-Nets.

The exact form of a computation and the semantics for unfolding an F-Net into a computa-

tion will be described. A textual syntax will also be provided, where each instruction resem-

bles a subroutine call.

1.4. Preserving Sequential Semantics

The most important part of the specification for a stand-alone sequential algorithm is

the input-output mapping that it implements. Provided that the algorithm is not real-time

or interactive, factors such as the speed with which it performs that mapping, or the order

in which inputs are accepted from different sources or outputs are produced to different

sites, do not alter the correctness of the algorithm, though they may affect its intrinsic value

in comparison with other algorithms which implement the same input-output mapping. We.
call a model seperable if the input-output mapping expressed by each sequential process is

the only characteristic which affects its behavior within a concurrent model. A direct result

of this property is that the implementation of that mapping has no effect on the overall

semantics, so each sequential algorithm can be implemented separately, using only its par-

tial function as a specification. Another is that all the existing technology, methods, and

languages which exist for developing, expressing, and analyzing sequential algorithms can be

utilized.

Separability infers other properties. Since the input-output mapping enforced by each

sequential algorithm could conceivably be implemented by first reading all inputs then pro-

dueing all outputs, a separable model cannot depend on concurrent execution of the sequen-

tial algorithms: There must be a serial schedule in which the algorithms could be executed.

In addition, if an algorithm has multiple input sources, they simply represent multiple argu-

mel)ts to the function expressed by the algorithm. Since neither the order in which these

14

arguments will be "read" nor the time that it will take the algorithm to evaluate is part of

the description of the partial function, the execution of the algorithm must be considered to

be atomic: it either evaluates completely, or does not evaluate at all.

Separability, and therefore serializability, has an important implication with regards

to portability. Ir the functions expressed by the sequential algorithms are total4, each algo-

rithm will necessarily complete in a finite amount of time, so the parallel program can be

executed without context switching, no matter how many or how few processors are avail-

able in a target architecture, increasing portability. Since it is undesirable to restrict

sequential algorithms to express total functions, and nearly always impossible to show that

they are, this finding is of limited utility, but if it is assumed that algorithms are in fact

total in most practical cases, they can be executed without context switching by default,

invoking context switching only if available processors are monopolized by long-running

algorithms.

1.5. Conclusion

A description and rationale for the F-Net model of computation is presented in the

remaining chapters. F-Nets are designed to function well with either high- or low-latency

ether. The model is separable, so traditional sequential languages can be used for the bulk

of the code. Algorithms in the model can be expressed in a graphical form resembling the

folded partial orderings of their computations.

Chapter 2 describes related work which addresses many of the same goals. Chapter 3

builds the F-Net model from scratch, with design decisions driven by the above goals.

4 The1 also need to be continuous, in the denotational semantics sense. This is assured by the fact that
they are expressed in a language with continuous semantics.

-
15

Chapter 4 provides a formal semantics for the model, expressed mathematically as a set of

axioms. This includes defining the form of a computation in the model. Chapter 5 relates

the F-Net model to other formal models of concurrent computation. Chapter 6 develops

efficient and correct implementations of the model to run on top of ether with shared-

memory and message-passing semantics. Chapter 7 addresses some of the shortcomings of

the model, proposes how the model could be extended used as the basis for new tools and

architectures for parallel processing.

16

CHAPTER 2

Related Work

2.1. Introduction

The first chapter provided an overview of the goals of this work. This chapter will

describe other models which have been developed to address some of the same goals. Unfor-

tunately, this includes virtually all work performed in the field of parallel processing. We

attempt here to sample many of the techniques and relate them to those goals, concentrat-

ing on those that have the most similar set of goals to F-Nets.

The difference between a model and a language is not clear. A language can be con-

sidered as a user-oriented model, and the role of a language processor is to convert a user-

oriented model to an architecture-oriented model. Judging whether a model is

architecture-independent therefore requires knowledge of the language processor, the

characteristics of programs which it processes, and the similarity of the user model to an

architecture model. This chapter will make no attempt to address the first two of these

three factors.

The models discussed here will each be broken into their process models and their

ether models. A common process model consists of sequential processes which post events to

the ether. The method of initiating processes may vary, but there are commonly no restric-

tions on the events that a process may post nor on the persistence of the process. The

processes are typically expressed in a traditional sequential language, though these

languages sometimes require minor extensions to provide the capability to post events. We

call sucha processmodelthe traditionalpr~essmodel,

17

If a parallel computation model provides a traditional process model and unrestricted

access to the ether, the model will not demonstrate separability. This can be seen from the

fact that deadlock is possible between processes, since each may post primary events and

each may post secondary events in reverse orders. Thus, the behavior oC a process depends

on the implementation of its input-output mapping-Leo the order in which it posts events.

2.2. Shared Memory and Message Passing

Most current parallel computer architectures are designed to support an ether with

one oC the semantic combinations described in the first chapter: shared-memory or message-

passing. These architectures are usually supplied with multitasking tools to facilitate a

tra.ditional process model Cor posting events to this native ether. Message-passing events

and relinquishand acquire events Cor shared memory are oCten implemented by sub-

routines, while read and write events Corshared memory are usually implemented by

utilizing a loader to map some portion oCthe ether addresses into the process address space,

at which time ordinary memory operations on those addresses are used.

When architecture-independence is not an issue, multitasking provides low-level con-

trol over the native ether. Because this approach is so popular, several tools have been

developed with the goal of standardizing the interCace to these native ethers and providing

some more complex ether events, such as barrier and broadcast, which can be built directly

from the low-level ether events. These tools are meant to ease programming and address

independence oC number or processors, but are not meant to be ether-independent. For

shared-memory ethers, these tools include The Force [241, the monitors package from

Argonne National Laboratories [8], Large-Grain Data Flow [6], and Schedule [16]. Packages

Cor message-passing ethers include the messages package from Argonne. A restricted Corm oC

Schedule [7] has also beenimplementedfor me55age-pa~ingether.

~-. .

18

An ether with message-passing semantics can be implemented relatively easily on top

of an ether with shared-memory semantics by using a subroutine library to manage the

ether, and to match and copy events. However, the overhead required to copy events to

and from ether, the large granularity of events, and the required partitioning of the address

space make this an ineffective programming environment for low-latency ether. To update

a small portion of a large event in the ether, the entire event must be copied to the process,

altered, then copied back to the ether. If multiple processes wish to read the same large

event concurrently, two events must be posted and matched. We will refer to these draw-

backs as the update-in-place and multiple readers problems, respectively.

An ether with shared-memory semantics, often called Shared Virtual Memory (or Vir-

tual Shared Memory) [29], can be implemented on top of an ether with message-passing

semantics by passing messages whenever an attempt is detected to access a shared-memory

ether address which is not currently local to the posting processor. To provide sufficient

granularity of events, implementations rely on passing and caching several sequential

shared-memory ether addresses at one time as a page. The number of page transfers can be

minimized by implementing a causal ordering [21which respects shared-memory semantics

but has the effect of arbitrarily postponing some processes. In some implementations, these

postponements can be indefinitely long. The efficiency of these methods depends a great

deal on the locality of access within the virtual shared-memory address space.

2.3. P8l'allelizing Compilers

A parallelizing compiler takes a standard sequential program and produces a parallel

program with identical input-output behavior. By definition, this approach demonstrates

separability but limits expressibility: e.g. non-deterministic programs cannot be expressed.

Efficientuse or processorsand ether is completelydetermined by the capabilities or the

19

compiler. Currently, efficient mapping can only be performed for loops, and only for

shared-memory ether [4].

Some compilers accept a slightly extended version of a sequential language (usually

Fortran) in order to allow the programmer greater expressiveness. Adding these special con-

structs to a program orten does not alter its semantics in any way, but informs the compiler

of locations in the program where opportunities for parallelism might be found. In some

cases, these extensions add small amounts or non-determinism to the program in order to

increase parallelism. In most cases, these microta8king extensions apply only to Fortran DO

loops and produce object programs for shared-memory ether [27]. Similar extensions for

message-passing ether are still in the experimental stages [10].

Another method for the programmer to augment the information present in the source

code is through the use of interactive parallelizing tools such as R n [3] and Faust [21].

2.4. Linda

Linda [11] presents a traditional process model, and an ether model called tuple space.

In this ether, events do not include addresses per se-the secondary event matches a pri-

mary event based on characteristics of the data value in the event. There are two event

pairs defined for the ether, (out, 1n) and (out, rd), which share the same primary

event. These pairs have large granularity, are buffered, and are non-partitioned. The first

pair is destructive, the second is not.

The lack of addresses in the ether model does not correspond to any common

hardware implementation or ether. To compensate, the designers of the model propose

methods for determining an address or partial address (Le. hash table bin) for some events

based on a global analysis of all event postings within the algorithm. The same analysis

:r ,..
..,

20

can sometimes yield a partitioning for these addresses. In cases where a complete address

cannot be determined in this way, a look-up must be performed (at run-time) to match

events.

Tuple space offers benefits over message passing by avoiding explicit partitioning, pro-

viding a more natural interface to high-latency ether on demand-driven applications. When

partitioning is beneficial, it can sometimes be computed without user involvement. How-

ever, the associative matching of events incurs overhead in both low-latency and high-

latency implementations, and the multiple-readers and update-in-place problems are not

addressed for low-latency environments. The fact that the events cannot be partitioned in

some cases magnifies the effect of latency in high-latency environments.

2.5. Unity

Unity [12] provides only a process model: The ether model is identical to memory (Le.

shared-memory minus the (relinquish,acquire)event pair). Each process consists of

an optional guard and a deterministic calculation. There is no synchronization: a program

execution consists of attempting to execute each process infinitely many times, in no partic-

ular order. A process execution will succeed, reading some ether addresses and writing some

other (not necessarily disjoint) ether addresses, if and only if the guard is satisfied. The

result of a computation is defined as a fixpoint of this computation-Leo the state of the

ether when no further changes can occur through further computation.

The execution of each process is atomic by definition, so this model demonstrates

separability. The model was originally presented as a teaching tool, and presents a compu-

tation as a non-deterministic sequence of operations rather than as a partial ordering. The

role of a language processor will be to determine efficient partial orderings from this

21

specification, and to use high-latency ether effectively. There is little in the model itself to

ensure that these will be possible.

2.8. Reactive Kernel

The Reactive Kernel [5] implements a traditional process model, and an ether model

which consists of a memory semantics plus a (xsend, xrecv) event pair which is

buffered, partitioned, and destructive, similar to a message-passing semantics. The latter

event pair is used to transfer a capability, which can be considered as a "key" which

"unlocks" some range of ether addresses. A given capability can be held by only one process

at a time. There also exists an ether server which dispenses and collects capabilities.

A process cannot post read or wr i te events for an ether address unless it holds a

capability which includes that address. The intent is that when a process wishes to pass

some state to another process, it acquires a capability from the server, posts data events,

then passes the capability to another process by posting an xsend event containing the

capability. When a process wishes to acquire state from another process, it acquires a capa-

bility by posting a xrecv event, then performs data events before passing the capability

back to the server or on to another process.

In a high-latency environment, all of the data events described by a capability can be

transported through the ether with the capability. In a low-latency ether, all data events

can be left stationary. The update-in-place problem is addressed by this model, but the

multiple-readers problem is not.

22
,~"

2.7. Specification Languages

Petri nets [36] are a prime example of a model which has partial orders as computa-

tions and in which "algorithms" are the folding of those computations. Simple Petri nets do

not provide any notion of data, and therefore do not present an ether model, but the do

provide a natural representation of concurrency. They are used primarily as a specification

language for concurrent processes.

Some data extensions to Petri nets which have retained many of the Petri Net seman-

tics are Macro E-nets [34], which support high-level Petri-net-like constructs designed to

model computer architectures, and VLP [19], which is presented as a method for introducing

synchronization into specification-level dataflow diagrams.

CODE [39] is a high-level specification language for parallel processing, allowing the

user to specify dependences and exclusion between abstract processes.

2.8. Dataflow Languages

Dataflow is a general term used to refer to networks of processes connected by buffered

streams. In terms of the ether model we have discussed, the semantics of a stream ether

consists of a (define, use) event pair which is buffered and destructive. Unlike that

ether model, both the define and use events are partitioned: i.e. a stream can be written by

only one process and read by only one process. This provides for demand-driven semantics,

and always results in deterministic programs (providing the composite processes are deter-

ministic) [25]. A primary selling point of dataflow languages (e.g. SISAL [3D]and Id) is the

fact that they demonstrate separability.

The processes in a dataflow model traditionally consist of elementary arithmetic

operations. Dataflow languages provide the ability to compose functions using standard

~.

t.~
23

functional composition and single-assignment variables. The (de flne, use) event pair is

not efficiently implement able in high-latency ether because of its fine granularity. In low-

latency ether, the destructiveness of the event pair causes undue copying. In either case,

the fine granularity of the processes causes excessive overhead due to scheduling. Special

architectures [35] are being constructed to minimize process scheduling overhead and over-

lap computation with communication latency. More practical approaches for low-latency

ether involve compiler technology to increase the granularity of operations and re-use

memory efficiently [20].

2.9. Coarse Grain Data Flow

The efficiency and use of ether can also be increa.sed by allowing the user to create

larger processes explicitly, often in a traditional imperative language, thereby increasing the

granul~rity of ether events. Examples include MUPPET [33], Loral DGL [26], and TDFL

[40]. These models retain the problems intrinsic to message-passing on both high- and low-

latency ethers. Non-determinism is introduced in some of these by allowing some operators

to execute when only some subset of their arguments are present, thereby allowing streams

to be arbitrarily merged.

2.10. Actors

Actors [1] is a theoretical model of processes (actors) which correspond via messages in

a very restricted framework. In this model, each actor receives messages through a single

message queue. As a result of reading a message, an actor can create other actors, send

messages to other actors, and define a new behavior for itself (i.e. to process its next mes-

sage). The resultant actor program is constantly evolving, with new actors being created

and old actors changing behavior. A primary strength of the actor model is in its formal

24

treatment oCmessage-passing.

2.11. Strand

Strand [181programs resemble logic programs, consisting of a set of clauses, each con-

sisting of a head, a guard, and a body. All data is passed using single-assignment variables.

During execution, process calls are deposited to a "process ether", with parameters

consisting of addresses in the data ether. IT a call matches the head of a clause, the vari-

abIes of the clause head are bound to the same ether addresses as the arguments of the pro-

cess call, all other variables in the clause are bound to new data ether addresses, and the

guard of the process is checked. If the guard is satisfied (which requires that all variables in

the guard have been defined), the process call is removed from the process ether, and the

process calls declared in the process body are deposited. This continues until primitive

proc~sses are called. A primitive process has well-defined in and out arguments, and exe-

cutes atomically to define the out arguments based on the in arguments. Primitive

processes are supplied as part of the model, though some implementations allow the user to

introduce tailored primitive processes implemented in a sequential language.

All three steps-head matching, clause checking, and reduction-are defined to occur

as a single atomic action. Thus, Strand demonstrates separability. Strand is essentially a

data.flow language in which functions can have multiple results as well as non-determinism

(since the heads and guards of many process definitions may allow many different reductions

to occur). Because of the single-assignment paradigm, this model retains the update-in-

place problem of traditional dataflow.

25

2.12. Par alation

Paralation [38], like Linda, relies on copying and associative lookup for its

architecture-independence. The model actually consists only of a few general data-

reduction operators, which are targeted for implementing algorithms based on data parallel-

ism (SPMD and SIMD), but are specifically not designed to aid communication between

non-homogeneous processes, which is central to MIMD computing.

2.13. Synchronous Models

Synchronous models such as Occam [23],esp [22],and ees [321,provide an ether with

message-passing semantics, but one in which a primary event will stall if there is no match-

ing secondary event in the ether. Thus, the ether is never required to store unmatched

events: it serves only as a means of communicating from the poster of the primary event to

the poster of the secondary event. The increased likelihood of a stall in this ether is

addressed in esp and Occam by accompanying it with a fine-grained process model which

allows the programmer to offer alternate work whenever a process stalls.

Synchronous communication is not a real-world phenomenon, and must be built from

asynchronous communication. If processors consume space and each processor can post at

most one event at a time, then the posting of events by different processes must occur in a

different space or at a different time. Thus, for the sender to obtain the message and for

the receiver to be informed that it has been received requires two communications.

Any process which contains a send or receive can stall indefinitely depending on the

behavior of other processes. This could be considered as violating separability. It is the role

of ees to define the behavior of each process in its environment.

26

2.14. Historical Perspective

The next section will present the F-Net model as though its features were derived

directly from the goals set forth in chapter 1. In fact, the model was derived as an attempt

to formalize the semantics of Babb's LGDF technique, modifying or removing those portions

of the model which made its implementation difficult using shared-memory or message-

passing semantics. This led to the LGDF2 [15] technique and the F-Net model. The LGDF./

work, in turn, was developed to provide execution semantics for Data Flow Diagrams such

as those used in Structured Analysis techniques [13], for the dual purposes of providing a

smooth transition from design to implementation and of developing a parallel programming

method for shared-memory MIMD computers. This work was also influenced by the work of

Browne. The SCHEDULE model has similar lineage. The VLP model, which is similar to

F-Nets, was developed independently, also with the goal of providing semantics to high-level

data flow diagrams.

27

CHAPTER 3

F-Nets

3.1. Introduction

The first chapter presented some of the goals of this thesis: to define a model for

parallel computation which is architecture independent, provides separability, and expresses

an algorithm as a folded partial ordering of operations. This chapter will build the model,

called F-Nets, providing some justification for each step in terms of those goals.

The chapter consists of two major sections. In the first, the basic constructs of the

model are developed by addressing the goals listed above. In the second, methods of includ-

ing more high-level information in the F-Net are examined, both in terms of how this infor-

mation provides the programmer with a more abstract view of the F-Net's behavior, and in

terms of how a scheduler can take advantage of the information to optimize performance.

To give some grounding to the points made in this chapter, a sample problem will be

presented-to compute

The computation will proceed by initializing a shared variable, i, to 51 and a shared run-

ning sum to 0, then having two worker processes repeatedly decrement i, square the new

value, and add the result to the running sum. When all is finished, another process will take

the square root of sum to produce the final answer.

28

3.2. Building the Model

In this section, we construct the major components of the F-Net model.

3.2.1. Architecture-Independent Ether Model

We begin by defining an ether model which addresses two of the three latency~related

semantic differences presented in the first chapter: granularity and partitioning. Buffering

will be addressed later.

High-latency ether benefits from large-granularity events so that more data is

transferred each time the latency of the ether is experienced, while low-latency ether

benefits from fine-granularity events to keep overhead low. We can accommodate both of

these requirements by presenting the ether at two levels of granularity. The fine-grained

data addresses are grouped into collections which we will call m-variables (or simply vari-

ables, when no confusion will result). For the time being, assume that each m-variable has

an associated address designated as a lock. There are two event pairs defined for this ether:

a non-data event pair, (orphan, adopt), which is unbuffered, non-partitioned, and des-

tructive and operates on a lock address, and a fine-granularity event pair, (r i te,

read), which is unbuffered, non-partitioned, and non-destructive and operates on a data

address. A process cannot post any data events for an m-variable address until after it has

posted an adopt event for the lock.1 When a process is finished posting data events, it may

release the m-variable by posting an orphan event for the lock.

This very closely models the way that shared-memory semantics are often utilized. In

this low-latency environment, the m-variable as a whole can remain stationary in the ether,

and all events can be implemented with fine granularity. In a high-latency environment,

1 Whether this protocol is enforced by the ether itself or by the processes independently is unimportant, as
long as it is enforced.

29

the adopt event can be used to move the data (i.e. pending data events) associated with the

m-variable as a whole through the ether, with fine-grain data events occurring local to the

processor which successfully adopts the variable.

Partitioning can be added by extending the lock associated with an m-variable to a

set of locks, only one of which can be orphaned at anyone time, and partitioning the

(orphan, adopt) event pair. Thus, when an orphan event is posted, the process which

can perform the adopt event will be known.

For the F-Net model, we consider partitioning too restrictive for reasons mentioned

earlier. Instead of mapping each lock address to a unique process, we map each to a set of

processes. In those cases where this set contains but one element, this scheme is identical to

conventional partitioning. In other cases, some transport of the m-variable may still be pos-

sible in a high-latency environment to a point closer to all possible adopters. In either case,

the scheme has software-engineering benefits over a non-partitioned scheme, since inap-

propriate processes are not able to adopt the variable.

We also require that sets of processes to which the locks of an m-variable are mapped

must be disjoint-i.e. that each process has at most one lock of an m-variable mapped to it.

This simplifies the protocol required for a process to adopt a particular m-variable, thus

reducing overhead. When the model has been completely described, it can be seen that this

restriction does not restrict expressiveness.

The data associated with an m-variable (i.e. the pending fine-granularity data events)

will be called its data state. The set of lock addresses associated with an m-variable will be

called its control doma£n, and the element of that domain which was last orphaned, if any,

will be called the control state of the variable.

30

An m-variable can be considered less formally as a bin which can contain a data

structure (its data state) and which carries a flag which lists the processes which can adopt

it (its control state). An adoption request for the variable will block until the control state

of that variable contains the name of the adopting process. On successful adoption, the

control state of the variable will be atomically cleared, which will keep any other process

from adopting it, and the data state will be made accessible to the process. When finished

accessing the data state, the process may relinquish access to the variable by orphaning it,

at which time the process must also specify a new control state.

To demonstrate the use of m-variables, we give a first approximation of a solution to

the sample problem. i and sum must be represented within m-variables, since they are

communicated among several processes. Although both could be kept in the same m-

variable, contention can be decreased by putting them in separate m-variables, since they

will be needed by both workers in different phases of their execution.

We will write the processes in a C-like sequential pseudo-code, augmented with two

special statements:

adopt x

which will post an adoption request for the appropriate lock of m-variable x, and

orphanx as y

which will orphan m-variable z with a new control state of y. When an m-variable is other-

wise mentioned within the pseudo-code, it will play the role of a variable which refers to the

data state of the m-variable. We name the m-variables i and sum to reflect the data

stored there. The final answer will be deposited into an m-variable named ans.

The processes will be named init, orkerl, orker2, and finish. We use a

fictional process, therest, to symbolize the destination of the answer after finish

31

produces it, so the end of the program will be signified when the m-variable ans obtains a

control state corresponding to this process.

An attempt at the problem solution follows. This is not a legal F-Net, but illustrates

the use of m-variables.

Variables
int i
int sum
float ans

uninit = {init}, valid =
uninit = {init}, valid =
empty = {finish}, full =

Processes
init

{
adopt i;
i = 51;
orphan i as valid;

adopt sum;
sum =0;
orphan sum as valid;

}

worker1
{

int temp;

adopt i;
i = i - 1;

temp = i;
orphan i as valid;

temp = temp * temp;

adopt sum;

sum = sum + temp;

orphan sum as valid;

}

worker2

(Same a8workerl)

finish

{
adopt sum;

adopt ans;

ans = sqrt

orphan sum

orphan ans

(sum);
as valid;

as valid;

}

{workerl, worker2});

{worker1, worker2});

{therest});

32

The m-variable declarations at the beginning list the type of the data state and the control

domain for each m-variable. The processes which correspond to each element of the control

domain are also listed. The first declared element of the control domain is the initial con-

trol state.

The problem with this code is that the workers do not stop working when i reaches 1,

and the finishroutine cannot ever adopt sum. It is tempting to change the last line in

the workers to

if temp == 1 then
orphan sum as done

else

orphan sum as valid

where done corresponds to the finish process, but the order in which the workers adopt

i is not necessarily the same as the order in which they adopt sum. The solution to this

problem will be dealt with later.

ans

?

Figure 3.1 First Attempt at the Sample Problem

33

An F-Net is illustrated graphically by showing each process as a circle, and each m-

variable as a polygon, as shown in Figure 3.1. The sides of an m-variable polygon represent

the elements of the control domain. (Variables with a control domain of only one element

are shown as a line, those of only two as a rectangle.) The side representing the initial con-

trol state of the m-variable is identified by using a thicker line. An arc connects each pro-

cess to the m-variables which it can possibly adopt: The polygon side to which it is con-

nected corresponds to the element of the control domain containing that process. This

notation makes the control domain of each variable apparent from the diagram.

Note that for maximum parallelism, the workers must maintain access to their m-

variables Cor as little time as possible. To facilitate this in the example, a copy of 1 is kept

in temp. If i contained a large data structure to be accessed, it might have been more

favorable to retain access to the m-variable, decreasing copying time at the expense of
.

decreasing parallelism.2

3.2.2. Separability

We attain the goal of separability by breaking a process into segments, each of which

has the same semantics and halting behavior as it would if it were executing alone. In other

terms, we wish the computations described by the segments to be atomic transactions-Leo

computations that can be serialized (since the executions are independent) and either never

begin or complete (since their halting behavior is independent of other transactions). A set

of transactions is assured to be serializable if and only if each transaction is two-phase [171.

Two-phase, in the case of F-Nets, means that each transaction can be divided into a grow-

ing phase containing no orphan events, followed by a shrinking phase where all m-variables

2 Other approaches which do not incur copying or decreased parallelism will also be made possible when
buffering is introduced.

34

which were adopted in the growing phase are orphaned.

The bijection above requires that segment executions have this form if they are to

have the desired properties. A segment which posts an event stream which is not of this

form can always be modified to be of this form: If additional m-variables are needed after

orphaning some but not all of those that it owns, the transaction can terminate by orphan-

ing all of the rest of its m-variables and initiating a new segment which begins by re-

adopting these variables as well as the newly-needed variables.

By definition, an atomic transa.ction must complete if it shows any evidence of begin-

ning execution, but we do not wish to restrict our segments to express terminating computa-

tions. We can consider non-termina.ting computations as atomic transactions by asserting

that each m-variable has an additional element of its control domain called 1 which does

not correspond to any process. In terms of the interactions of other processes with the

ether, there is no difference between a segment which orphans an m-variable with a control

state of 1 and one which does not orphan the m-variable at all: In either case, no process

can adopt the m-variable. A non-terminating segment (i.e. one which does not orphan some

of its m-variables) can therefore be modeled as one which orphans some of its variables with

a control state of 1 (pronounced "bottom"). The 1 control state will be represented in our

system as the absence of any other control state.

Atomicity guarantees that a transaction will not partially complete, but it does not

guarantee that it will ever begin, even if there is nothing to stop it from doing so. If the

model is to provide the power to demonstrate that programs will execute and produce

results (liveness) as opposed to simply limiting the possible results (safety), the conditions

under which transactions will execute must be made explicit. We do so here:

35

A transaction will not be indefinitely postponed if the conditions required for its execu-

tion (i.e. the proper control state of the m-variables which it adopts) will be met con-

tinuously until it executes.

This rule has the effect of ensuring that a transaction will not be postponed indefinitely due

to deadlock.

Liveness (and specifically absence of deadlock) is related to separability, though it is

not usually regarded as such. If the issue of deadlock is avoided at the level of the model,

to be addressed at the algorithm level, the correctness of any new segment (in the sense that

it preserves liveness of the program as a whole) could depend upon the order in which vari-

abies are adopted with respect to other segments. Specifying liveness at the level of the

model itself avoids this problem.

The model will not strand the implementor with the very difficult problem of deadlock

avoidance. We will require that each segment adopt all of its m-variables in one atomic

action. In this way, an implementation can ensure that all m-variables have the correct

control state before a segment adopts any of them.

3.2.3. Independenee ot Number ot Proeessors

The liveness rule in the previous section ensures that segments which can execute will

eventually be executed, regardless of the number of physical processors in the architecture,

or the number of transactions to execute on those processors. The ability to adopt all m-

variables in one atomic action aids an implementation in efficiently sharing physical proces-

sors among processes, since each segment can be made to block exactly once, then execute

to completion, minimizing the need for context switching.

The overhead required by a context switch can be reduced even further by forbidding

the passage of any persistent local state (i.e. program store, registers, and program counter)

36

from one transaction in a process to the next. Explicit passage of persistent local state

between transactions can be handled the same way as the passage of any other data state;

via an m-variable. The data state of an m-variable is persistent by definition, and 'local'

means only that the control domain of the m-variable contains only one control state, which

is mapped to a single process.

The program counter can also be mapped to the control state of an m-variable. To

illustrate this, consider the code of a process which has n statements which mark the begin-

nings of segments-Leo where all of the m-variables for the transaction are atomically

adopted. If n different processes are constructed, each identical to the first except for an

initial branch to one of the segment beginnings and the additional adoption of a common

m-variable (say, STATE), each transaction can select the next process (and therefore seg-

ment) to execute by orphaning STATE with that next process as the new control state.

The control state of STATE is now effectively the persistent program counter for the origi-

nal process between transactions.

When persistent local state is ruled out, a process per se has no role. All state and

control is managed explicitly by the segments. If more state is carried between segments of

different processes than is carried between segments of the same process, the concept of pro-

cess becomes somewhat confusing. The F-Net model will therefore not include the concept

of a process: an algorithm will consist of a set of these segments, called instructions. Since

an instruction is deterministic, has no state before adopting its variables, and adopts all of

its variables in one atomic action, it must adopt the same set of variables on each execu-

tion. By making this set of variables part of the specification of the instruction, the adopt

construct can (and will) be omitted from the model.

37

3.2.4. Sample Problem

In the sample problem, each worker consists of two transactions. It would be possible

to unite those two into one by adopting both m-variables first, but this would counteract

the parallelism achieved by having two separate m-variables. Since the. ini t process is

only executed once, it will simplify its execution to merge its two transactions. We present

the sample problem again below and in Figure 3.2. This time, the code is correct, and is

structured just as it will be in the final model.

Variables

sum
ans

uninit inrange outrange):

empty full):
empty full):
uninit valid):
empty full):

int
int
int
int
float

i
hold!
hold2

Instructions

in it [uninit i, uninit sum]:
i = 5!:

orphan i as inrange:
sum =0:
orphan sum to valid:

part! [inrange i, empty hold!]:
i = i - !:
temp = i:
if (i > !)

orphan i to inrange:
else

orphan i to outrange:

hold! = temp * temp:

orphan hold! as full:

part2 [inrange i, empty hold2]:

hold2 = temp * temp:

orphan hold2 as full;

red! [full hold!, valid sum]:
sum = sum + hold!:

orphan sum as valid;

orphan hold! as empty;

38

red2 (full hold2, valid sum]:
sum = sum + hold2;

orphan sum as valid;
orphan hold2 as empty;

finish (outrange i, empty hold!, empty hold2, valid sum, empty an

orphan i as outrange:

orphan hold! as empty;

orphan hold2 as empty;

ans = sqrt ((float) sum);

orphan ans as full;

orphan sum as valid;

Note that the two transactions in each worker have become two separate instructions,

called part and red (for reduce). Since data must be carried between these instructions,

additional m-variables hold! and hold2 have been introduced. Also note that each

instruction has been given a heading declaring the variables it will adopt and the control

state Qf each variable which correspond to the instruction. As a result, the variable

hold!

hold2

Figure 3.2 Second Attempt at Sample Problem

39

declaration lists only the control states of each variable, and adopt statements have been

omitted from the languages.

There is now a very precise way of specifying when the finish instruction should

execute: when a part process has taken the last value from i, and when no more tem-

porary values (from the hold m-variables) are waiting to be added into the sum m-

variable. Note that the finish instruction does not need to access the data states of i,

hold!, or hold2, but needs to adopt them anyway as a condition that it can execute.

The final control states left by the F-Net are similar to the initial control states so

that only minor modifications would be required to make the F-Net restartable.

3.3. Higher Level Characterization

In this section, we look at ways of separating high-level information about the

behavior of each instruction from its implementation. This information will provide an

abstract view of an F-Net that can be utilized for documentation and automated error-

checking (if the low-level code is already written) or specification (if the low-level code is

not). A scheduler can also use the abstract view to optimize execution.

3.3.1. Instruction Specifications

Since an instruction is deterministic and has no persistent local state before it begins

executing, its behavior during execution must depend only on the data states of its m-

variables when they were adopted. This behavior consists of reading and writing the data

state of the m-variables, and possibly orphaning some of them with new control states.

(Even if it does not orphan some of the m-variables, it will be as though it has orphaned

them with a lcontrol state.)

i

40

Thus, an instruction can be Cully characterized by the set oC m-variables that it will

adopt, and a Cunction (called the firing function) describing the new data and control states

oC these m-variables based on their data states when they were adopted. This specification

is complete: it describes precisely the effect of the instruction on the F-Net's state. Put

another way, iC instructions in an F-Net execute according to the rules already given, then

any instruction implementation which Culfills this specification will exhibit exactly the same

possible effects as any other.

Although such a specification is complete, some important inCormation about how each

m-variable will be used is leCt hidden within the firing Cunction. Specifically,

Read usage:

Is the result oCthe firing Cunction ever dependent on the data state oCthe m-variable?

Write usage:

Does the firing Cunction ever speciCy a different new data state Corthe m-variable than

that with which it began? (Le. does the data state ever change as a result of execut-

ing the instruction?)

Possible new control states:

Which new control states might the firing function assign to the ~-variable?

We will require that this inCormation be specified separately, and will be called the

instruction's &ignature Cor its arguments. It is shown in the graphical representation by

introducing arrowheads on the arcs (toward the instruction Cor read usage, away Crom the

instruction Cor write usage) and "fingers" (short arcs) within the m-variables at the end oC

the arcs to point to the possible new control states. See Figure 3.3. By including this inCor-

mation as part oC the F-Net, much oC the overall data and control flow can be determined

without examining the implementation or firing function associated with each instruction.

41

hold!

hold2

emptll full

uninit volid

emptll full

Figure 3.3 Final Diagram or Sample Problem

3.3.2. Ensuring That Signatures are Correct

The signature will be used as more than just a way of describing what an instruction

does-it will be taken as the programmer's specification of restrictions on what the instruc-

tion should (and should not) do. This allows some programming errors within the implemen-

tation to be caught (e.g. the alteration of the data state of a m-variable without write

usage), but also informs the run-time system, in some cases, as to how the implementation

should be interpreted. For example, if an instruction implementation does not assign values

to (part of) a m-variable's data state, this could be interpreted as either leaving the old

values or as reinitializing the data state to some "empty" value. If the m-variable is

identified in the signature as having only write usage (no read usage), then the latter

interpretation must be taken, since the new contents of the m-variable cannot depend on its

previous contents.

-'C.
42

t.

There is one case, however, where it cannot be determined whether an implementation

matches its signature. If a signature declares that the 1 control state is not a possible new

control state for a given m-variable, this is equivalent to declaring that the part of the

implementation which orphans the m-variable will be executed. Determining whether this is.

true would require careful analysis of the user's code at best, and is intractable at worst.

To circumvent these problems, the 1 control state will alwaY3be assumed to be a possible

new control state for every m-variable for every instruction-with one exception, described

in the next section.

3.3.3. Multiple Readers and Buffering in Ether

The semantics of the model ensure that only one instruction can adopt an m-variable

at anyone time. Even so, if the instruction which currently owns the m-variable will not

write it (as per its signature), and another instruction which will not write it becomes ready

except for the fact that the m-variable has not been orphaned by the first instruction, a

scheduler could optimistically begin the second instruction, and both could read the m-

variable concurrently. But if the first instruction never orphans the m-variable with the

proper control state, the optimistic transaction would have to be backed out-an action

which we would prefer to avoid.3

But if the first instruction can promi3e that it will eventually orphan the m-variable

with the proper control state, the second (concurrent) instruction will no longer be optimis-

tic. That is, even though the model logically allows only one instruction to adopt a m-

variable at a time, in this circumstance an implementation could allow multiple instructions

to read the m-variable concurrently with no risk of lost work.

3 "Backing out" means to nulliry any effects that a transaction has had on the state or the system, essential-
ly "undoing" it.

43

This is exactly the approach we will take. If the signature of an instruction states

that a m-variable will not be written, and if exactly one new control state for that m-

variable is listed, the m-variable will be called non-volatile, and the signature will be taken

as a promise that the instruction will eventually orphan the m-variable with that control

state. This is the condition alluded to at the end of the last subsection where a new control

state of 1 is not assumed as part of the signature. If a scheduler suspects that an instruc-

tion will attempt to break its promise by never orphaning the m-variable, the scheduler may

give the instruction a copy of the data state on the m-variable and assign the new Control

state to the m-variable itself.

This same solution also provides for buffering, even without altering the semantics of

the ether to include buffering. Suppose the contents of some m-variable (e.g. holdl in the

sample problem) is written by one instruction (e.g. partl), and read by another (e.g.

redl) which has non-volatile access to the m-variable and always passes the m-variable

back to the writer. As soon as redl begins execution the first time, the scheduler knows

that it will eventually finish, so execution of partl can be initiated again, even before

redl has finished, provided that the new data state which it writes to the m-variable is

buffered long enough to avoid conflicting with the version being concurrently read. Thus,

some amount of buffering can be implemented by a scheduler in this case, even though

buffering is not explicitly present in the model.

3.3.4. Instructions Performing the Same Operation

Different instructions may be alike in the transformations they perform to the data

(i.e. their operation), but differ only in the m-variables and the control states of those m-

variables to which they refer (i.e. their binding). Cases in point are the partl and part2

instructions or the redl and red2 instructions in the sample program. Entering and

44

maintaining both instruction implementations seperately, in spite of the fact that they con-

sist of almost identical code, is impractical. From another standpoint, the information that

they are identical in some sense is missing from the F-Net, and could be used to advantage,

both in reasoning about the F-Net and in implementing an efficient scheduler for the F-Net.

To facilitate reusing a single operation for multiple instructions, we decompose an

instruction specification into its operation and its binding as follows:

Operation

An operation is an instruction (together with its signature) which has had its m-

variable references replaced by formal parameters called arguments, and its control

state references (in orphan statements) replaced by formal parameters called transi-

tions. (Each transition will in some sense belong to one of the arguments.)

Binding

A binding is a means of creating an instruction from an operation by providing an

actual-to-formal mapping. For each argument, the binding consists of three parts: (1)

an argument binding, which specifies the actual m-variable to be used for the argu-

mentj (2) a transition binding, which specifies the actual elements of the control

domain of that m-variable to use for the transitions of the argumentj and (3) a firing

constraint, which names the element of the control domain which corresponds to this

instruction.

3.3.5. Final Version or Sample Problem

Now for the final version of the sample problem. It does not differ significantly from

the previous version. The graphical version was presented in Figure 3.3.

Variables
int i

int holdl
(uninit inrange outrange):

(empty full):
...

lnt holdl
lnt sum
float ans

empty full):

unlnlt valid);

empty full);

Ops
lnlt [out

out
lnt toO

lnt to51

to51 =
<lnlt
toO = 0;
<lnlt
endop

51;
to51>;

toO>;

part [lnout lnt n

out lnt n_sqd

lnt temp;

i

n = n - 1;
temp = n;
lf (n == 1)

<takelast n>;
else

<take1 n>;

n_sqd = temp * temp;

<put n_sqd>;

endop

Ii
...

red [In lnt n
lnout lnt add_n

add_n = add_n + n;

<take n>;

<lne add_n>;

endop

fin [nodata
nodata
nodata
In lnt
out float

snsr1
snsr2
snsr3
n
sqrt_n

r

float temp;

<sense snsr1>;
<sense snsr2>;
<sense snsr3>;

temp = ni

--

45

(lnlt)
lnlt)]

takelast take1)

put)]

(take)

(lne)]

(sense)

(sense)

(sense)

(take)
(put)]

The F-Net is now presented in three parts: M-variable declarations, operation

declarations, and instruction declarations.

The operations resemble the instructions in the previous example. Each is now pre-

ceded by its signature for each argument, which liststhe data usage and type, the argument

name, and the listof transition names. (Usages in and inout signifyread usage, out

and inout signifywrite usage, nodata signifiesneither read nor write usage.)The syntax

of the

orphan x as y

has been changed to

<y x>

where y isnow a transitionand x isnow an argument. Note that the arguments are nouns,

the transitions verbs.

't'
.:,0.',
r:;

46),

;'
,/,'

<take n>;

sqrt_n = sqrt(temp);
<put sqrt_n>:
endop

Instrs
init [to5! : uninit i (init .

inrange)
.

toO : uninit sum (init : valid)]
part [n : inrange i (takelast : outrange,

take! : inrange)
n_sqd : empty hold! (put : full)]

red [n . full hold! (take : empty).

add_n : valid sum (inc : valid)]
part [n . inrange i (takelast : outrange,.

take! : inrange)
n_sqd : empty hold2 (put : full)]

red [n : full hold2 (take : empty)
add_n : valid sum (inc : valid)]

fin [snsr! : outrange i (sense : outrange)
snsr2 . empty hold! (sense . empty). .

snsr3 : empty hold2 (sense . empty).

n : valid sum
(take : valid)

sqrt_n : empty ans (put : full)]

. .
47

The instructions now list the operation followed by the argument bindings (in brack-

ets). The binding for each argument consists of the name of the argument, the m-variable

and control state to which it is bound (i.e. the argument binding and firing constraint), and

the transition bindings in parentheses.

It should be noted that although the sample problem adequately demonstrates the

concepts, its small size does not provide a good justification of their utility.

3.4. Final Notes

The restriction that the elements of the control domain of an m-variable must be

independent is not a restriction because of the functional nature of operations. Instead of

using two different elements of a control domain as a firing constraint for an instruction,

two different instructions representing the same operation can be used, each having all of

the same bindings except that each uses only one of the elements of the control domain as

its firing constraint. Since the fact that the two instructions exhibit the same behavior is

maintained within the model (by virtue of their having the same operation), no information

is lost in this reconstruction. As mentioned earlier, this restriction reduces overhead by sim-

plifying the locking protocol for each instruction required to avoid deadlock.

In addition to the static representation of an F-Net shown in Figure 3.3, dynamic

information relating to execution semantics can also be shown. By highlighting the side of

the m-variable corresponding to the m-variable's control state (with no side highlighted if

the control state is 1.), the execution rules can be stated as follows: an instruction can fire

(i.e. execute) when it is connected only to highlighted m-variable sides. Execution of an

instruction consists of evaluating the firing function corresponding to its operation, using the

data states corresponding to its "read" m-variables (i.e. those with arrows toward the

instruction circle) as arguments.

~..

48

CHAPTER 4

Axiomatic Semantics and Formal Results

4.1. Introduction

Previous chapters have attempted to give a "Ceel" Cor the Corm (i.e. syntax) and

behavior (Le. semantics) oC an F-Net, but Cormal reasoning requires more. This chapter

begins by restating this syntax and semantics using the mathematical language oCsets and

Cunctions.

Earlier, we defined a non-deterministic algorithm as one which describes a set oC com-

putations, and a computation as a Cunctional mapping Crom input to output. We also

stated that a reasonable representation Cor a parallel computation is a partial order oC

operations. In this section, we describe the execution oC an F-Net as an Execution Graph.

The set oCExecution Graphs achievable by any particular F-Net is defined by a set oC con-

straints in the Corm oC axioms. These axioms are Collowed by theorems which show that

Execution Graphs are indeed partial orderings and computations.

The constructs within an F-Net which introduce non-determinacy are then identified.

With this in mind, a choice log is defined which captures the non-deterministic choices made

during a computation. We then prove that such a choice log, together with the F-Net and

its input, completely characterizes a computation. This is valuable inCormation, since a

choice log can be created during an execution with very little space or time overhead, and

can be used to re-execute an F-Net, perhaps within a debugger, with the same results.

49

The notation used early in this chapter is shown in Table 4.1. The final entry may

require further explanation. ~ a tuple is defined, its elements (fields) are named. Later

reference to an element of a tuple may require identifying its parent. Since the use of sub-

scripting for this purpose becomes confusing when tuples are heavily nested, as they are

here, the alternate notation shown is used. It is intended to be reminiscent of record selec-

tion notation in the C computer language.

4.2. Syntax

Before presenting the formal definition of an F-Net in purely mathematical terms, we

will first provide an outline in English. An F-Net of order p with alphabet E is a set of

variables V, operations 0, and instructions (which use those operations) I.

. A variable is a repository for data state, a data value being passed from one computa-

tion (i.e. instruction execution) to the next, and control state, an indicator of the set

of instructions which can next access the variable. The data state of a variable will

be drawn from its data domain and the control state will be drawn from its control

domain. To avoid the complexities of type mismatches within the abstract model, all

Table 4.1. Notation

Notation Meaninll

A ,B, . . . Z ,E Sets of various kinds.often of tuples
a, b, . . . ,Z Scalars or tuples

a,B, '""f,h,. . . ,(' Functions
N The set of natural numbers

P(L) The Powerset of L
Z The set of intel1:ers

fn m 1 {ia;ln<i<m}

81 The set 8 augmented with a bottom element 1
to create a flat domain.

x.w Field W of tuple X

..-
t

50

variables will have the same data domain, E, and the same control domain, [l,p 11,

where lcan be taken to represents the absence of control state.

. Operations denote atomic, deterministic computations. An operation possesses argu-

~ent8 which formally represent variables and each argument possesses tran8ition"

which formally represent some members of that variable's control domain. An argu-

ment is classified as being a read (written) argument, or having read (write) usage, if

its data state! is ever used in (produced as a result of) the execution of the operation.

A single argument can be read, written, both, or neither.

The computation performed by an operation is described by a firing function, <p,which

functionally maps the data state of its read arguments to new data state for its write

arguments and transitions for. all of its arguments. For any argument with write

usage or multiple transitions, one possible transition for that argument is 1. which can

be interpreted as the absence of a transition.

. Instructions are instantiations of operations. In addition to specifying the operation

to be instantiated, the instruction contains an argument binding, {3, which associates

each argument of the operation with variables of the F-Net, and a tran8ition binding,

8, which associates the transitions for each argument and the control domain of the

corresponding variable. An additional firing con8traint, ,/, denotes the control state

which each argument must have in order for the instruction to fire (Le. execute, per-

forming the mapping specified by its operation).

An F-Net of order p EN is a 4-tuple f =(E, V,O,I) where

E is the Data Alphabet

lWhen we rerer to the data state or control state or an argument, we are actually rererring to that or the
variable which the argument represents.

51

V is the set of Variables

o is the set of Operations, ° EO={a,R, W,T,</»where

a EN is the Arity (i.e. # of arguments)

R C[l,a] is the set of Read Arguments

WC[l,a] is the set of Written Arguments

r.[l,a]-+[l,p] is the Transition Signature (i.e. # of transitionsjarg)

</>is the Firing Function

. XTa

if 1{k)=1 and k~W
otherwise

I is the set of Instructions, iEI={0,/3,/,8) where

°EO is the Opcode2

/3:[l,o.a] -+ V is the Argument Binding
1-1

1:[l,o.a]-+[l,p] is the Firing Constraint

stnct

8:[l,o.a]-+{[l,p h -+ [l,p lv is the TransitionBinding.1-1

(Notes: 8(n) needs only to be defined over [1,1{n)lv

Example: The sample F-Net from the last chapter can be represented formally as an order

4 (or greater) F-Net, f ezamplel={"E,V,O ,I), where

V={i,holdl,hold2,sum,ans}

o ={ oinit,opart,ored,ofin} where

oinit=(2,{},{1,2},{(1,1)},</>init) where </>initO=(O,51,1,1)

opart=(2,{ 1},{ 1,2},((1,2),(2,1)}, </>part)

2 In ract, a cleaner but more verbose definition would make 0 a sequence rather than a set, and the opcode
an index into it. The existing definition will work under the assumption that firing runctions are actually
representations or runctions.

r
.

.'

f
t
,

52

{

lifn=2

}
where<Ppart(n)=(n-I,(n-I)2, 2 otherwise ,1)

ored=(2,{ 1,2},{2},{(I,I),(2,1)}'<Pred)

where <Pred(n,m)=(n +m ,1,1)

ofin=(5,{ 4},{5 },{(I,1),(2,1),(3,1),(4,1),(5,1)},<pfin)

where <Pfin(n)=(\1';; ,1,1,1,1,1)

I ={init,partl,part2,redl,red2,fin} where

init=(oinit, {(I,sum),(2,i)},

{(I,1),(2,1)}, {(I ,{(I,2)}),(2,{(I,2)))})

partl=(opar,{ (1,i),(2,holdl)},

{(I ,2),(2,1)}, {(I,{(I ,3),(2,2)}),(2,{(I,2)})})

part2=(opar ,{(I ,i),(2,hold2)},

{(I ,2),(2,1)},{(1,{(1 ,3),(2,2)}),(2,{(I,2)})})

redl= (ored,{ (I ,holdl),(2,sum)},

{(I ,2),(2,2)},{(1,{(I ,{(I,I)}),(2,{(I,2)})})

red2= (ored, {(1,hold2),(2,sum)},

{(I ,2),(2,2)},{(I,{(I,{(I,I)}),(2,{(I,2)})})

fin=(ofin,{(I,i),(2,holdl),(3,hold2),(4,sum),(5,ans)},

{(I ,3),(2,1 },(3,1),(4,2),(5,1)},

{(I ,{(1,3)}),(2,{(1,1))),(3,{(1,1)}),(4,{(1,2)}),(5,{(I ,2)})})

4.3. Semantics

An F-Net computation will be described as a partial ordering, called an Execution

Graph, containing two kinds of nodes: Event (E) nodes, which represent instruction firings

(i.e. executions), and Variable Content (C) nodes, which represent the control and data

.
53

state associated with a variable between instruction accesses. Arcs connect each C node to

the E node representing the instruction firing which accesses the variable in that state, and

connect each E node to a set of C nodes representing those same variables in their new (pos-

sibly un-modified) state. Since each C node will have at most one in-arc and one out-arc,

the graph obtained by deleting all C nodes will also be a partial ordering. An execution

graph illustrates how each instruction execution maps the old data states of each of its

associated variables to new data and control states, or alternately, how each variable pro-

vides a means of communication and control between instructions, and is similar to the

unrolling of a Petri net.

The set of possible execution graphs which correspond to a particular F-Net is

presented by characterizing its members in two stages. First, the general form of an execu-

tion graph is given, then a set of axioms is provided which constrains the elements to execu-

tion graphs corresponding to the particular F-Net.

4.3.1. Form of an Execution Graph

Define an executiongraphfor an F-Net I={'r., V,a,I) with input 1,:1.V-+I.E as"a 6-

tuple xf,£=(E,e,B,A ,a-,o-}where

E is a set of firing event"

e is a set of variable contenu

BceXE is a set of before arc"

A CEXe is a set of after arC8

6:E -+1 .I is an instruction name labeling

0: e -+1' V is a variable name labeling

such that functions

54

(r, C -.[1,p 11is a control state labeling

a:c-.j .E1 called a datastate labeling

exist, and Semantic Axioms 1 through 6, described below, hold.

An execution is represented graphically with vertices EUC and edges BUA. The ver- .

tices are labeled according to the values of their (j functions as follows:

(j (j o
C Node E Node

Figure 4.1 Node Labels for Execution Graph

See Figure 4.2 for parts of a possible execution graph for the sample F-Net.

4.3.2. Axioms Constraining Execution Graphs

In addition to Table 4.2, the following shorthand will be used in this section:

Define the initial elements of 0, Co, as those elements which precede all elements of C hav-

ing the same name, i.e.

Axiom 1: Initial Conditions

Each variable has an initial C node named for it, which has a control state labeling of

1 and a data state labeling of t.

Axiom 2: Atomicity

A C node has at most one predecessor and one successor, signifying that it can be the

result of at most one instruction execution and can be sensed by at most one instruc-

55

2 51 2 50 2 49 2 48

ans

(a) Possible beginning

2 3 2 2 3 1 3 1

1

I a.ns1- _ I

(b) Possible Ending

Figure 4.2 One Execution Graph Cor the Sample F-Net

Table 4.2. Additional Notation

Notation DescriDtion Meaninl!:

ff Instruction Label O1e
c Variable label O1c
C Control state 01 c)..

Data state 01c)c
QIL Imall:eof set L {a(l).lEL}

aC(y. I) Image of Seq. (z;) where z;=a(y;)
m

X++Y m bijectively maps X to Y m(X)=Y 1\ m-1\Y) X wherem:X --..Y'. XCX. YCY'
x* Successors y x,y EBt JA
*y Predecessors X x,y EBI JA

x-->z Precedes (3y.(x,y)EBUA 1\ y-->z) V x=z
wherex,zECt JE

L> Set L as ascendingsequence (Ij) where
l;EL 1\ j <k==>l;<l"

L-> Set L ordered by -->
X I--- 11 X determines 11 The axioms and X uniquely determine 'IJ

56

tion execution.

VcEC. Ic* 1<1 /\ I *c 1<1

Axiom 3: Firing

Structure: An E node for an instruct.ion has predecessor and successor C nodes which

correspond exactly to the variables to which the arguments of the instruction are

bound.

(1

Ve EE. *e+-+i.(3([l,i. o. a j)
(1

/\ e*+-+i.(3([1,i.o.a])

Condition: The control states for the predecessors of an E node must correspond

exactly to the firing constraint of the instruction represented by the E node.

Result: The firing function dictates the new data state of each of the instruction's

written arguments and a transition for each of the instruction's arguments, based only

on the old data state of the read arguments. The control state of each new variable

content node is obtained by mapping its transition through its corresponding transi-

tion binding.

(VkE[1,i. o.a j.g}:=i .8(k)(t}:))

where rjE*e, wj,gjEe*, (rj)=i.(3(eA,o.R<),

(gj)=i.(3([1,i.o.a j<),

(Wj)=i.(3(i.o. w<)

Note: The sequences (rj), (Wj), and (gj) defined in the where clause are the prede-

cessor nodes corresponding to read arguments, the successor nodes corresponding to

write arguments, and all of the successor nodes, respectively. Axiom 3-structure

57

ensures that there is exactly one sequence (Cj) of predecessor (or successor) nodes such

that (Cj)=l...8([lJ.o.a]<). The three sequences in the where clause are subse-

quences of such a sequence, and so are well defined.

Axiom 4: Non-interference

If a variable is not a write variable for an instruction, then an execution of that

instruction will not affect the data state of the variable.

VeEE, mE[l,l.o.a]\l.o. W.

eE*e A e'Ee* A c=c'=l...8(m) =? c'=c"

Axiom 5: Liveness

If an instruction can fire, it (or another instruction connected to some of its variables)

must fire.

~

(3iEI,C'CC. C' i...8([l,i.o.a]) A (VeEC'. c=i'i(i.,s-l(c))))

=? U{ e * I C EC'}+0

Axiom 6: Time Consistency

The execution graph will be acyclic:

In general, several execution graphs will satisfy the axioms for a particular F-Net and input.

4.4. Execution Graphs 88 Partial Orders

The theorems in this section will demonstrate that an execution graph is a partial ord-

ering, that each variable is represented by exactly one bottom element within the partial

ordering, and that the C nodes representing any variable are totally ordered within the

partial order.

58

Theorem 1:

""'-'> partially orders the elements of E UC.

Proof of Theorem 1:

Reflexivity and transitivity are obvious from the definition of ""'-'>. Axiom 6 gIves

asymmetry..

Theorem 2:

There is exactly one element of Co representing each variable in the F-Net-Le.

Proof of Theorem 2:

Axiom 1 gives Vo=V. Let 3c,c'ECo.c=c'. By definition of C 01

c""'-'>c' /\ c'"",-,>c, but by Axiom 6, ""'-'> is asymmetric. So c=c'~o:Co~V is

1-1..

Define Cv=={c'EC.c=v}.

Le. Cv is the set of all C nodes labeled v.

Define age:C~N as age (c) == I{c'ECc'c'"",-,>c }I

i.e. age (c) is the number of C nodes with the same name preceding C (including C itself).

Theorem 3:

All variable content nodes with a given name labeling are totally ordered by ""'-'>(Le.

form a chain in the partial ordering):

VvEV,c ,c'ECv .not(c""'-'>c') ~c'"",-,>c

Proof of Theorem 3:

The proof will consist of showing that

59

from which the proof of the theorem is obvious.

That is, B(c) is the set of "closest" members of Cc which precede c, so

age(c)=l+ E age(c').
c'EB(c)

Let c',c"EB(c). Then fromdefinitionof B(c) and Axiom2,

c'-->c ~lc'*I=FO~lc'*I=l,

and for c". c ' * ={ e '}, c" *={ e "}.Letthe IS truesame

Ie' *nCcI = Ie" *nCcI =1 from Axiom 3-structure. In each case, that element

must be c. From Axiom 2, e'=e", and since l*e'nCcl=l, c'=c". Thus,

B (c)={ c'}, and age (c')=age (c)-1, so in general,

'v'vEV,n>1.1 {cECv.age(c)=n }I<I {cECv.age(c)=n-1 }I.

~he proof is finished by observing that

I{c ECv.age (c)=1} 1=1

by Axiom 1 and definition of Co. .

4.5. Execution Graphs as Computations

Define c_>={c'EC.c'-->c 1\ c'=/=c}

Theorem 4:

The control state and data state labelings (functions aand 0-) for an execution graph

are umque: I.e.

t- a,o-

Proof of Theorem 4:

Induction over partial order C->.

Base Case: cECot- c,c'

60

From axiom 1, C=1 !\ c'=l.(c)

Inductive Case: VeEC.((e'Ec_>t- c")t- c,c").

e 'Ec _> ~ I *e I =1 from axiom 2. Let *c={e}, and let (ri) be the sequence

of e's predecessors corresponding to its read arguments, i.e.

(r;.)=i.,B(i. 0 .R <) where riE *e.

By construction, Vi.rjEc_>, so by the inductive assumption, t- 'i' Let

(n,.)=i.o '</>(/1"2' . . . ,ri) (i.e. the result vector from the instruction)

and m =i.jJl(c) (i.e. the argument represented by c).

Axioms 3-result and 4 dictate

and

.._
{

nk if m=(i.o. W<h
e-.." .f dA WC 1 m ~e .0 .

where e" is the member of *e such that C=c". .

The fact that (j and a are completely determined by an execution graph explains why

they are not taken to be part of the definition of the graph, but it also illustrates that each

C node represents the results of a function evaluation, perhaps on its way to be used as an

argument to another function. To get a better feeling for the function evaluation taking

place, the 0-labeling can be interpreted slightly differently, as the function evaluation

represented by the node rather than the result of that evaluation, simply by leaving the <p

functions unreduced while following the procedure used in the proof of Theorem 4.

Define the output of a execution graph Xf ,£ relative to variable VE V and control state

nE[1,p], denoted output(xf,£,v,n), as the sequence

61

(Corollary 3.1 and Theorem 4 prove that this is well defined.)

Define an F-Net as being determinate with respect to variable vEV and control state

nE[l,p), if and only if

'r/t.output(xf,pv,n)=output(x'f,"v,n)

(i.e. if the output sequence for control state n of variable V is dependent only on the input

for a given F-Net).

4.6. Tracing an Execution

How much (or little) information is required, in addition to the F-Net itself, to com-

pletely determine an execution graph for that F-Net (up to an isomorphism)? This question

is important for debugging non-deterministic programs, for it determines the amount of

data that must be logged during an execution in order to reconstruct "what happened" dur-

ing that execution.

Define, for i ,i'EI,

shared (i ,i')=i. ,B([l,i .0 .a Dni'. ,B([l,i'. 0 .a D

(i.e. the set of variables to which both i and i' are bound).

Define the contend~ relation <> as

i<>i'=i+i'/\ shared(i,i')+0

1\ 'r/vEshared(i ,i'). i. b(i .,e-l(V))=i'. b(i'.,e-l(v))}

i.e. two instructions contend whenever they have at least one variable in common, and for

all variables which they have in common, their firing is constrained to the same control

state of that variable.

\

62

Put another way, two instructions contend if the states of the variables which they

share do not dictate which should execute next. Since they do share variables, the E nodes

representing their executions will be related by ->, so the order in which they execute will

affect the topology of the execution graph. This suggests (and the remainder of this chapter

will prove) that contending instructions are the only source of non-determinism in an F-Net.

We now add instrumentation to an F-Net to capture the order in which contending instruc-

tions fire, and thus the non-deterministic choices made during an F-Net execution. This is

accomplished by coloring the instructions of the F-Net such that contending instructions

always have differing colors, then recording the color of each contending instruction every

time it fires. This log of colors does not need to be global-it is only necessary that any two

instructions which contend use a common log. Since contending instructions already have

some common variables by definition, these variables provide a handy (and local) site to

store the logs. It is not necessary to assign a log to each shared variable, but to at least

one variable shared by the contending instructions.

Define an Instrumented F-Net as a 6-tuple f = {~, V,0 ,I ,color,logsel}where

f ={~, V,0 ,I} is an F-Net

color:I ~N is an Instruction Goloring

logsel:I ~P(V) is a Log Selector

such that

(i<>i') ~color(i)+color(i') 1\ logsel(i)nlogsel(i')nshared(i ,i')+0

not(i<>i') ~logsel(i)=0

I.e. for any two instructions which contend, the colors assigned to the instructions are

different, and at least one of their shared variables belongs to the log selector of each

instruction.

63

Example:

To better convey the points of this section, we now leave the previous example behind

and refer to the F-Net shown in Figure 4.3. It will not be necessary to detail the firing

functions for the individual instructions. In this F-net, B<> C and B<> D are the

only instructions which contend. One possible instrumentation for that F-Net is

color={(A ,O),(B,0),(C ,1),(D ,1),(F ,On and

logsel={(A ,{}),(B,{L ,M}),(C,{M}),(D ,{L }),(F,n n

--

Define a Traced Execution Graph of instrumented F-Net f=('E, V,O,I,color,logset}

with input L as a 7-tuple X ~ = (E ,C,B,A ,6,u,logent) where
f,£

3

2

2

L

2

Figure 4.3 A New Sample F-Net

....

64

XI ,£=(E ,C,B ,A ,a-,o-}is an executiongraph for F-Net f =('E, V, O,l) with input t

logent: C -+>N is the Log Entry

such that

YeEEYc E*e.cElogsel(l) ~logent(c)=color(l)

i.e. each time a contending instruction fires, the color of the instruction is logged to all of its

predecessor nodes which correspond to its log selectors.

Define the Log of traced execution graph X- for variable v E V, denoted log(x - ,v), as
1,£ 1.£

logent({cECv.c*={e} 1\ vElogsel(l)}-»

where

f =(E, V, 0,1 ,coLor ,logseL)

x: - =(E ,C ,B ,A ,a-,o-,logent)
1,£

i.e. the log for a variable is the sequence of log entries assigned to the C nodes named for

the variable, omitting those that do not immediately precede contending instructions.

Figure 4.4. An Execution Graph for F-Net in Figure 4.3

.
i1

65

Example:

If the execution graph in Figure 4.4 is a traced execution graph of the instrumented

F-Net given in the last example, then

log(£.., ,L)=0,1
J,t

log(£.., ,M)=O
J,t

All other logs are empty 8

Minimizing the range of color will therefore minimize the size (i.e. number of bits) for

a log entry, and minimizing the range of logsel will minimize the number of logs to which

each log entry is recorded.

4.7.. Execution Graphs with Identical Logs are Isomorphic

Definition: Prefix subgraph

Let x be an execution graph. y is a prefix 8ubgraph of x if Y is a subgraph of x, if

every predecessor in x of an element of y is also in y (as is the arc between them),

and if every successor to an E node in y is also in y-Le. the following conditions

hold:

(1) cEy .C => cEx. C

(2) eEy.E =>eEx.E

(3)(cEy.C 1\ (e,c)Ex.A)~(eEy.E 1\ (e,c)Ey.A)

(4)(eEy.E 1\ (c,e)Ex.B)~(cEy.C 1\ (c,e)Ey.B)

(5)(eEy.E 1\ (e,c)Ex.A =>cEy.C

Note that a prefix sub graph is often not a legal execution graph because it does not adhere

to Axiom 5-liveness.

,~

.,;

66

Definition: Graph Isomorphism

Execution graphs (or prefix subgraphs) X and x' are isomorphic (denoted x ,x') iff

there exist bijections c-:x.e x'. e and i:x. E x'. E such that

(c,e)Ex.B~(c-(e),i(e))Ex'.B

(e,e)Ex.A ~(i(e),c-(e))Ex'.A

0(e)-0(e-(e))

6(e)=6(e-(e))

From the proof of Theorem 4, it also follows that

0(e)=0(e-(e))

0(e)=0(c-(c))

The rest of the chapter wiJI be devoted to proving the following theorem:

Theorem 5:

If X- =\E,e,B,A,a-,a-,logent) and x' - =\E',e',B',A ',O',O',logent')are
~£ ~£

,..."

traced execution graphs of instrumented F-Net f=\~,V,O,I,eolor,logsel) with

input /, such that Vs ES.log(X- ,v)=log(x'- ,v) then execution graphs
f.£ f.£

xf ,£=\E,C,B,A ,a-,a-)and x'f ,£=\E',C',B',A ',0',0') of f =\~, V,O ,I) are iso-

morphic.

That is, in addition to the original input and instrumented F-Net, only the log associated

with each variable is needed to uniquely determine the execution graph. The proof wiJI be

presented "top-down" to give the reader a better bearing on where it is all leading, and is

based on an induction over the partial ordering represented by the execution graphs.

Proof of Theorem 5

67

Base case:

The prefix subgraph consisting only oCthe Co elements oCX is isomorphic to the prefix

subgraph consisting only of the Co elements of x'. This Collows immediately from the

definition of Co, Axiom I, and the definition oCa prefix subgraph.

Inductive step:

Suppose that there is a prefix subgraph oCx/,t (call it y) which is isomorphic to a

prefix subgraph of x' f ,t (call it y'). If either execution graph (say x, WLOG) has an

element not in its prefix subgraph (y), then pick a least such element by partial order-

ing >, and call it ez. (It must be a member oCE Cromthe definition oCprefix sub-

graph.) We will show that the other execution graph (x') has an element ex' not in its

prefix subgraph (y') such that adding ex' its beCore arcs, after arcs, and successors to

Y is a prefix subgraph which is isomorphic to that obtained by adding ex', its before

arcs, aCter arcs, and successors to y'.

The result of this induction is that given any two traced execution graphs with identical

logs Corall variables, all of both graphs can be pulled into y and y', so the execution

graphs themselves must be isomorphic.

Proof of the inductive step:

Construct y, y', and ex as indicated in the above proof statement.

Define

All members oCPx must be members oCy, so by the inductive assumption, there exists a set

Px' in y' such that

1.

Consider the successors of Px':

E'x'= U cx,*
e.tEP.,

68

E' x' cannot be empty, since we know from execution graph x that there exists an instruc-

tion (ix) which can fire based on the control states of the elements of Px, so by Axiom 5-

Liveness and isomorphism, one of the elements oCPx' must have a successor.

Pick a least element of E'x' and call it ex" In the next section, Lemma 5.5 will show that

eAx,=ix, and Crom Lemma 5.2 it will follow that *ei:::"*ex, so E'={ ez'}. Axiom 3-

Structure then gives that ex' * and ex * have the same names, control states, and data

states.

4.8. Toward Proving ix =iX'

Proof':

*ex=Px

~O(*ex) O(Px)

*ex/npx4:0

~O(*ex')nO(Px')+0

~O(*exl)nO(*ex)+0

~ix .,8([l,ix.o.a])nix,.,8([l,ix,.o.a])+0

~shared (ix, iX,)+0

(By construction)

(Mapping over like sets)

(By construction)

(Mapping over like sets)

(By construction)

(Substitution)

(Axiom 3-struct)

(DeC. of shared)

I
',.;'
.

'

.

' 69
.: }
t~i!.U
I<j~
.~ * /\ * /\

- - ""'
,~-! Lemma 5.2: CxE ex cx/E ex' Cx=CX' ~ Cx=CX'I\

..

'~
".

'

..

'

.

'

t~
:~,' Proof:
r.f
~~

E *' E* - -, . EP,;i'\:l Let Cx ex and C x' ex' such that Cx=c x'. Smce Cx x' there must be a

~ cx/EPx' such that Cx""' CX',and therefore Cx=CX'. We will prove that CX'=C' x', thus
~

!~ proving the Lemma.

Suppose that c' X4~CX"

From Theorem 3, all elements of C with the same name form a chain in the partial

order, so either (a) c'X''''''>CX'' or (b) CX''''''>C'X'

(a) c'x/E*ex" so by Axiom 2-Atomicity, c'x,*={ex/}' From this, the definition of

""'>, and the fact that c' XI""'> CxI, we get ex''''''>cx'' But CX' is a member of y',

so by the definition of prefix subgraph, ex' must also be. ~~.

(b) Let CX'={ e'x/}' (It must have exactly one element, from Axiom 2-Atomicity and

the fact that it precedes other elements.) But from CxI""'> C'x' and the construc-

tion of c' x', it follows that cx,""'>e' XI""'> C'x,""'>ex" Thus, ex' is not a least ele-

ment having a predecessorin PX" ~~.

So C'X'=CX', and therefore c'x'""'cX' .

Lemma 5.3

Proof:

(Axiom 3-structure).

Lemma 5.4

70

Proof of Lemma 5.4

(Lemma 5.2)

(Lemma 5.3)

(Substitution)

(Axiom 3-cond)

(Lemma 5.1)

(Def of <».

Lemma 5.5

Proof:

Suppose false: I.e.

After adding the results of Lemma 5.4, the definition of an instrumented F-Net gives

Let V be a member of that set. Then it must be a member of shared (lz ,lZ/), so by

lemma 5.3,

From this, and the fact that vElogsel(lz/)nlogsel(lz)' and the definition of a

traced execution graph,

logent (cz)=color (lz)

logent(cz/)=color(lZ/)

Since Cz and CZI are corresponding elements from isomorphic prefix subgraphs, and

since the logs for the execution graphs are identical,

71

logent (cx,)=logent (cx)

so

color(ix,)=color(e"x)

But the definition of an instrumented F-Net expressly requires that

Thus the contradiction, so iX,=ix.8

4.9. Conclusions

The previous two sections showed that, in general, only a small amount of information

needs to be recorded during an execution to allow for the reconstruction of that execution,

and that this information only needs to be recorded for instructions which contend. In the

example given, this consisted of recording one bit of information whenever instructions C or

D fired, and two bits whenever B fired. In addition, the recording is always performed to

an uncontested site, namely a variable which is already accessed by the instruction perform-

ing the recording. It seems plausible that the space and time overhead for this recording

will be small enough in the general case that the benefit gained by instrumenting every F-

Net will not be negated by any significant loss in performance during its execution.

The fact that only the firings of contending instructions need to be recorded directly

implies that if an F-Net has no such instructions, all executions of that F-Net will be deter-

ministic: i.e. given the same input, all execution graphs will be isomorphic.

4.10. Final Note on the Effects of Order (Size of Control Domain)

An order-p F-Net is one in which each of its variables has a control domain of (at

most) p elements (plus 1). Variables in an order-1 F-Net can therefore provide no means to

control the order in which instructions fire and thus no means to enforce communication

72

between instructions. A legal execution for any order-! F-Net could consist of a single

instruction associated with each variable firing repeatedly forever (or until variables attain

a control state of.1). Order-! F-Nets are therefore clearly of little use.

An F-Net of order 2 or higher can always be expressed as an F-Net of order 2 with the

same number of instructions by modeling each n-control-state variable with 19(n) 2-

control-state variables. This provides n different ways of constraining the firing of the

instruction. See Figure 4.5. By selectively producing transitions to these variables, any of

these instructions can arbitrarily determine the next control state for each of the variables,

thereby dictating which connectivity will be enabled next. This is exactly the behavior

required for an n-control-state variable.

"Non-volatility" is preserved by this transformation. If an instruction in a high-order

F-Net has non-volatile access to a variable, the instruction can always be modeled as per-

forming a single transition to each of that variable's representatives in the order-2 F-Net

with no write usage to any of them. If the high-order instruction does have write usage to

o 1

Order 4 F-Net Comparable Order 2 F-Net

Figure 4.5. Comparable Order-4 and Order-2 F-Nets

73

the variable, or performs multiple transitions, it must have write usage to, or perform multi-

pIe transitions to, at least one of the representative variables in the order-2 F-Net.

Even though an order 2 F-Net can always be constructed to have the same behavior

as a higher-order F-Net, the amount of high-level information about that behavior is

greater in the higher-order F-Net.

(1) Two different instructions in a high-order F-Net which represent the same mapping

from read arguments to write arguments and which perform the same number of

transition to each argument can use the same operation. After translating to an

order-2 F-Net, it may not be possible to use the same operation for both because the

transitions performed by the operation may depend on the encoding of the variable's

control domain.

(2) It is not possible to represent as many transition bindings in a low-order F-Net as in

a higher-order one. For example, in Figure 4.5, it is apparent that instruction D will

only make transitions to control states 01 or 10, enabling instructions B or C, but

this is not apparent at all in the order-2 F-Net. The possible combinations of transi-

tions have been hidden inside of the firing function of D'.

Additional justification for having nets of order higher than 2 will become clear when the

model is extended to include hierarchy. For these reasons, low-order F-Nets will not be

further considered in this thesis, and the term "F-Net" will subsequently refer to an order

infinity F-Net-Le. one in which the variables have as large of a control domain as needed.

This is possible because control states to which there are no transitions or bindings have no

effect on the semantics and are not shown in the graphical representation.

74

CHAPTER 5

Comparison with Other Models

Now that F-Nets have been formally defined, some comparisons can be made between

F-Nets and some of the other models mentioned in Chapter 2.

5.1. Unity

Unity programs are very similar to order 1 F-Nets1-i.e. F-Nets with a control

domain capable only of ensuring the atomicity of execution. Unity provides two extensions

over these nets, however: (1) a strong notion of fairness, ensuring that no instruction firing

will be delayed for more than a finite number of other instruction firings, and (2) an
.

optional guard for each instruction which prevents it from having an effect when not

satisfied. Unity-like guards could be simulated in order-l F-Nets by including conditionals

within operations and requiring arguments to have read usage whenever they have write

usage. This latter restriction is necessary because every firing would be required to produce

a new data state for these arguments, whether or not the simulated guard was satisfied.

On a more practical level, a Unity program, as presented by the authors, has rela-

tively fine-grained processes and ether. The ability to collect ether addresses into larger

structures is important to achieve the granularity in high-latency environments needed for

portable parallel programs.

1Recall that the order or an F-Net is the maximum size or the control domains ror its variables.

75

5.2. Petri Nets

An operation which has no arguments having read or write usage must have a firing

function which returns constant transitions. An F-Net containing only operations of this

kind can be modeled directly as a Petri net. Each element (other than .1) of the control

domain of each variable in the F-Net becomes a place in the Petri Net, and each instruction

becomes a Petri-Net transition. Each argument in the F-Net becomes two arcs in the Petri

Net-an input arc representing the firing constraint and an output arc representing the

transition binding. The initial marking for the Petri Net consists of one token on each

place which corresponds to an initial control state; see Figure 5.l.a.

To model F-Nets more generally requires that Petri Net semantics be extended. In

addition to the above translation (now with multiple output arcs for each argument, one for

each transition binding), the following additions are required (see Figure 5.l.b for an exam-

pIe):

(1) The input arcs to the transitions in the Petri Net are colored (with chalk) red, white,

or both, depending on whether the associated argument has read usage, write usage,

or both. Arcs having neither are left uncolored.

(2) Places are labeled for the variable which they represent.

(3) Each token is extended to carry a data value, and is labeled indelibly with the name

of the variable to which it belongs.

(4) When a transition fires, it takes one token from each input place. As it is taken,

some of the chalk from the arc will smudge onto the token. (If the arc has both red

and white, both colors will smudge.) Based only on the data associated with tokens

which are smudged with red chalk, the transition determines new data values for

tokens smudged with white, then determines an output arc for all tokens. The

76

F-Net

Corresponding Petri Net

A

a. No read-write usage
R

b. With read-write usages

Figure 5.1. F-Nets Modeled as Petri Nets

output arc chosen must be connected to the appropriate variable (i.e. that for which

the token is labeled), and the transition may determine that it will not replace the

token at all if the token is smudged white or if there is more than one output place

corresponding to its variable.2 As a token is put on an output place, all smudges are

cleaned off the token. Note that unlike conventional Petri Nets, a token is not

added to each output place, but to at most one output place corresponding to each

2 This latter case represents the lcontrolstate.

....

77

m-variable.

Other extended versions of Petri Nets which include data transformations and timing

of transitions have been proposed by other researchers, primarily to simulate hardware sys-

terns. While the F-Net model has intentionally avoided addressing timing constraints, we

believe that it can address all other aspects of these models.

5.3. CCS

F-Nets and Milner's CCS have a great deal of similarity. Both use, as a basis, finite

state machines. Events can occur only when the states of different machines occur in stated

combinations. These events are atomic, and when they occur, they cause (or allow) a tran-

sition to the state of each of the machines involved.

The specifics of the models are different, however. In CCS, the events are communica-

tion, where no data transformation takes place, while in F-Nets, the events are instruction

firings, which do transform data. In CCS, a state transition may involve a data transfor-

mation, and may be non-deterministic, while in F-Nets, the state transition itself does not

transform data, and is deterministic. However, the state transition and data transforma-

tion in F-Nets depends on the event which causes the transformation and the data which

that event accesses (unlike CCS where the transformation depends only upon the previous

state of the machine plus non-determinism), and that event can be non-deterministically

chosen in some cases.

From these comparisons, it seems clear that an F-Net can be constructed with identi-

cal behavior to any CCS program, by representing each CCS communication link with one

or more F-Net instructions, as necessary to provide the required non-determinism. The pas-

sibility that some aspects CCS and F-Net theories could be merged could provide fertile

ground for future research.

78

5.4. Functional Models

A primary difference between F-Nets and traditional functional models is its lack of

single-assignment variables, and therefore lack of referential transparency in the general

case. A limited amount of referential transparency can be obtained within an F-Net by

considering each m-variable to be a set of functional variables, one for each element of the

control domain, and ensuring that each instruction with write usage makes a transition to a

"new" (say, numerically higher) control state. But any usable functional model must be able

to create new contexts with new versions of single-assignment variables to avoid using up

the supply. These contexts are typically created for each iteration of a loop, each invoca-

tion of a function, or by using a local assignment (let ... in) facility. In the absence of

these contexts, the control state of an m-variable provides a method for explicitly managing

the reuse of control states, rather than relegating the analysis of re-use to a smart compiler.

5.5. Guarded Commands

Assuming that each element of the control domain of each m-variable represents a

predicate over the data state of that m-variable, and the control state represents one of

those predicates which is asserted to be true, the firing constraint of each instruction can be

regarded as a guard formed by the conjunction of these predicates. Any guarded command

can therefore be modeled by expressing its guard in disjunctive normal form and creating a

separate instruction (with the same operation) for each disjunct. This F-Net form of

guarded commands clearly shows the relationships between the guards of different com-

mands, both to the human in terms of the graphical form of the F-Net and to a scheduler

when determining when a guard must be re-evaluated. A compiler for Unity could very well

use such an F-Net as an intermediate form.

79

Similarly, the control states for a variable can be regarded as exception conditions,

with the instructions constrained by each control state being the exception handlers.

6.6. Graphical Specification Languages

Common graphical specification languages either detail the possible data relationships

between modules without defining the control relationships (e.g. dataflow diagrams or

Entity-Relation diagrams), or they detail the control relationships without detailing the

data relationships (e.g. Petri Nets). In F-Nets, all of the information about each

instruction's behavior other than the actual mathematical transformation between input

and output is shown in the graphical version of the F-Net. The fact that the graphical

form does not express the mathematical transformation itself leaves it free of much of the

complexity to which Brooks refers in his refutation of the possibility of workable, graphical

langua$es [9].

6.7. Imperative Sequential Programs

An imperative sequential unstructured program can be converted to an F-Net by mak-

ing each statement into an instruction, each variable into an m-vari'able having a single-

element control domain, and the instruction counter into a variable with no data state but

a very large control domain, with each possible control state representing the location of a

statement. Each instruction would be bound to the appropriate data variables and to the

proper control state of the instruction counter. The resultant F-Net would contain no con-

currency aside from some possible optimistic butTering due to non-volatile arguments, and

the graphical representation would resemble a rat's nest of arcs to m-variables, and a too-

detailed depiction of control by the fingers within the instruction counter variable.

80

Instead of this fine-grained approach, an instruction in an F-Net typically consists of a

group of logically-related statements, and m-variables contain logically-related groups of

v.ariables. The control state is moved away from the central program counter, instead being

distributed among the "states of completion" (control states) of the program's variables (m-

variables), enforcing only the order in which they are accessed by different instructions.

In this form, each instruction resembles a block in a structured language, and transi-

tions are transfers among blocks. This transfer of control is looser than that employed in

structured-programming practices, but the graphical F-Net provides a flowchart for these

branches, uncluttered with the statement-by-statement control and data management that

is better shown in the text of the program. Unlike traditional process models where control

structures hide within the communicating processes, control state puts it between processes

(instructions) so that decisions affecting subsequent process execution are made explicit in

the model.

5.8. Conclusion

The comparisons here have regarded control state in a variety of different ways: as a

predicate for a guard, as a means of ensuring atomic execution, as part of the name of a

variable, and as a program counter. In addition, the elements of a variable's control

domain can be considered the states of a finite state machine, which watches over access to

the variable. We believe these examples illustrate the power present in the simple concept

of control state.

81

CHAPTER 6

Implementation

6.1. Introduction

The axioms defining the semantics oC F-Nets in Chapter 4 provide a basis Cor deter-

mining whether a specific implementation oCthe model is correct-Leo whether the execution

graphs produced by an F-Net in the implementation obey the axioms. However, the axioms

were chosen with the additional goal oCCacilitating efficient implementations on a variety oC

architectures. This chapter will prove (by example) that this is indeed possible. First, a

generic implementation will be developed and shown to obey the axioms. Then, this imple-

mentation will be optimized separately Cor shared-memory and message-passing architec-

tures.

6.2. Definition or a Valid Implementation

Let F be the set oCall legal F-Nets (minus isomorphisms), and X be the set oCall legal

execution graphs (minus isomorphisms). Then the semantics oCF-Nets given in Chapter 4

can be considered as a Cunction

p:F-P(X)

which maps each F-Net to the set oC all legal execution graphs Cor that F-Net. The F-Nets

and execution graphs described in Chapter 4 will be called abstract, and p will be called the

interpretation Cunction.

A specific host environment CorF-Nets, which includes language processors, a run-time

environment, and the host computer's architecture, can also be considered as the definition

r
~:

83

p

Figure 8.1 Relationship of Mappings for a Hypothetical F-Net

implementation to produce its concrete execution graph in a finite amount of time. In light

of the fairness rule discussed in chapter 3, we instead require that any finite prefix subgraph

of the execution graph be computed in a finite time. (We specifically do not require that

this amount of time be predictable, nor even that it be possible to tell when the time has

elapsed.) This means that an implementation must enlarge the graph evenly in some sense.

6.3. A Generic Implementation

In this section, a generic implementation will be proposed and argued to be valid. The

first two subsections will define the forms for the concrete F-Net and concrete execution

graphs in the generic implementation, and will describe the 1rF and 1rx mappings which

interpret these as abstract F-Nets and execution graphs. The third subsection will concen-

trate on defining the /l. function which executes the concrete F-Net on an actual architecture

to produce the concrete execution graph.

84

6.3.1. Concrete F-Nets (11",)

The concrete C-based textual syntax that was presented inCormally in the Chapter 3

"sum oC squares" example will be used for the generic implementation. A more formal

description of the syntax Collows:

fnet:= Vars var+ Ops op+ Instrs in&tr+

var:= type varname (cstatename +)
op := opname [arg+] opbody

arg:= rwperms argname (transname +)
rwperms := in type: out type: inout type: nodata
instr := opname [binding+]

binding := argname : cstatename varname (transbdg +)
transbdg := transname : cstatename

where

varname, c&tatename, opname, and transname

are legal C identifiers

type is a legal C type expression (possibly a structured type)

opbody

is a legal C program block with the following caveats:

(1) Statements which could facilitate communication with other programs are disal-

lowed. This includes I/O. (Chapter 7 will address how I/O can be built into the

model.)

(2) Arguments declared in the arg section which have rwperm& other than nodata can

be accessed within the program as though they were variables with the associated

type, except that they cannot be aliased. in arguments cannot be used in any con-

text in which their contents could be modified.

(3) Transition statements, of the Corm

< transname argname >

are included, where argname is an argument of the operation and transname is a

legal transition of that argument, as identified in the operation signature.

6.3.2. Abstraction of Concrete F-Nets (7rp)

The concrete F-Net is abstracted in a fairly obvious way.2 The declarations in /..

represent the following mappings:

Variable Declarations

The var productions represent a mapping:

Vacdec: Varname -(Ct/Dom-IN')

i.e. each variable name is associated with a mapping from the declared control domain

of that variable to the natural numbers. The Ct/Dom-~ mapping is sequential

within the variable (i.e. the first-mentioned control state to 1, the second to 2, etc.).

Operation Declarations

The op productions represent a mapping:

Op_dec:Opname-(Argname -(NXR WpermX(Transname -~))X Opbody)

i.e. each operation name is associated with an argname mapping (corresponding to the

arg productions), and an operation body. The argname mapping associates each argu-

ment name with (1) an element of 1'1, (2) a read-write permission (a member of {in,

out, inout, nodata}), and (3) a mapping which associates each transition name with

an element of~. The Argname-I'l mapping is sequential within the operation, the

Transname-I'l mapping is sequential within the argument.

Instruction Declarations

The instr productions represent a mapping

2fr a. rorma.lizedview or this "obvious" interpretation is not helprul, the reader can sarely skip all but the
discussion or t/Jin the last few paragraphs or this subsection.

r
85

J,

r
86

(Opname x(Argname - Ct/Dom xV arname X(Transname - CtlDom)))

Based on these mappings, the F-Net 7rF(J.)=(E,S,O,I) is defined. Since the abstract model

does not address the issue of types, E will be taken to be the set of strings of bits, and types

will be mapped onto this set as appropriate. S will be the domain of Var_dec (i.e. the set of

all variable names). 0 and I will be the range of the mappings Ops:Opname-O and

Instrs:lnstr-I which are defined below. (In these definitions, lower case names are free

variables.)

Ops:Opname-O

Ops(opn) is defined as (a,R, W,</»where Op_dec(opn)= (sig ,opbody) and

a= IDomain(sig) I

R={arg Isig(argn)=(arg ,rwp ,transs) /\ (rwp=in V rwp=inout)}

W={ arg Isig(argn)= (arg ,rwp ,transs) 1\ (rwp =out V rwp =inout)}

</>is defined via the behavior of the opbody program, as described shortly.

/nstrs :/nstr-/

/nstrs(instr) is defined as (o,{3,"1,o)where /nstr_dec(instr)=(opn,args) and

Op_dec (opn)= (sig ,opbody) and

o=Ops(opn)

{3=((arg ,sw) Isig(argn)= (arg ,rwp ,transs)

I\args(argn)= (pbnd ,sw ,tbnd)}

"1={(arg ,cstate) Isig(argn)= (arg ,rwp ,transs)

/\args(argn)= (pbnd ,8W ,tbnd)/\ Vacdec(sw)(pbnd)=cstate}

o={(arg ,(trans ,cstate nlsig(argn)= (arg ,rwp ,transs)I\transs(transn)=trans

/\args(argn)= (pbnd ,sw ,tbnd)/\ Var_dec (sw)(cstate)=cstate I\tbnd(transn)=cstate}

r

87

In the definition of Ops, the result of t/J(argilarg2' . . . ,argIRI) is defined by the opbody

program's behavior when it is executed after initializing (a) the argument variables

corresponding to the opbody's in and inout arguments with the values argl . . . arglRI,

and (b) the argument variables corresponding to the operation's out ~rguments with pre-

determined constant initialization values (e.g. zeroes). A transition statement has no effect

on the execution except that any further reference to that argument, either within a transi-

tion statement or as a reference to the data values associated with it, will cause the pro-

gram to halt. The result of the firing function,

is the following interpretation of that execution:

If a transition statement executes for argument arg, then tarl1=trans, where trans is the

transition field from the first such statement executed. If arg is non-volatile, tarl1=1. If

neither of the above is true, tarl1=l.

res/: where arg is the kth write (out or inout) argument:

If a transition statement executes for argument arg, then res/: is the value assigned to

the argument variables associated with arg when the first such statement executed. If

a transition statement does not execute for arg, res..=l.

Although determining the result of evaluating t/Jwith some arguments may be undecidable

in some cases, it is nonetheless well-defined and meets the requirements for a firing function

for an operation with that signature. Note that the initialization of out arguments to a

constant is necessary; if they were not initialized, and the argument variables (or portions

thereof) were not assigned new values during execution of the opbody program, then the

remaining data values when a transition was performed would not necessarily be a function

of the values present on the readable arguments when the execution began. This

88

initialization also allows the program to read the values associated with an out argument

without disturbing the functional nature of the required mapping, since the values read will

either be the original constant values or new values which must already be a function of the

values originally on the read arguments.

6.3.3. Concrete Execution Graphs and Their Abstraction (7rx)

A concrete execution graph will be of the form

z=(C,E,B,A,ti,u,£,fair)

where

C,E,B,A,tf, and u are identical in form to an abstract execution graph

£:E-ContxStore is the Execution State of e

fair is the Fairness State

£ and fair will be described in more detail later. Their role is to help determine the next

action to perform on the concrete execution graph. The abstract interpretation of a con-

crete execution graph will be obtained by omitting £ and fair-i.e.

7rx((C,E,B,A ,tf,u,£,fair))=(C,E,B,A ,tf,u)

6.3.4. Concrete Implementation (Il)

This section will describe a concrete implementation p. First, a strategy will be

presented, then this strategy will be shown to meet the requirements for p: i.e. any finite

prefix subgraph of the resulting concrete execution graph will obey the semantic axioms

within a finite amount of time. Then, an implementation based on that strategy will be

presented and shown to correctly implement the strategy.

89

6.3.4.1. Strategy

The strategy of the concrete implementation will be to define a mapping tl:x-x

which takes a concrete execution graph and returns one which is somehow more well

defined: i.e. is closer to obeying the semantic axioms than its predecessor. A partial ordering

on execution graphs will be defined to formalize exactly what this means. /l. is then defined

as the result of calling tl recursively on the empty execution graph, Ix (i.e.

p.'(tl(. . . tl(lx) . . .))) an infinitenumberof times.

To avoid referring back to concrete syntax, the abstract F-Net corresponding to the

concrete F-Net (obtained by 1rF described above) will be used as a precise notation for

describing the implementation. The abstract definition of the firing function, t/J,is not useful

for implementation, however, since it was not defined in terms of the syntax of the opbody

program, but its behavior.

To address this, we describe here, for each opbody, a continuation which maps an ini-

tial program store to a final program store, by treating the opbody as a C program, but

augmenting the traditional store used by C, which we will call cstore, with four other kinds

of store which will be acted upon by transitions and data state references. The overall store

operated on by the opbody will be a tuple store=:(cstore ,tstore ,fstore ,sstore ,estore).

tstore: A set containing the arguments for which transition statements have been per-

formed by the current execution.

fstore: A set containing the non-volatile arguments for which a transition has been

automatically performed (by the Finishing step, defined below).

sstore: A vector of segments, indexed by argument, which contains the values for the

operation's argument variables.

90

estore: A vector of :IN'.1indexed by argument, which contains the transition performed to

each of the operation's arguments.

The argument references in the opbody are now converted to executable code as follows.

Each reference to an argument variable for argument arg causes check_arg(arg) to be

executed before the appropriate access to sstore [arg] is performed, where

check_arg(arg) ~

If argEtstore
halt

Each transition statement <trans arg> in the opbody becomes perf_trans (trans, arg)

where

perf_trans (trans, arg) _
check_arg (arg)

tstore -tstore U{ arg}
if argrl./store

estore [arg]-trans

With these translations, the opbody defines a continuation which maps an initial store to a

final store. i. 0 .4i will refer to that continuation.

The iT and;; mappings are defined for concrete execution graphs as follows: (Elements

of store should be prefixed by £(e).store.)

.

{

I if *c={}

c= l.8(arg)(estore[arg]) if *c={e} (where arg=l..a-1(c))

{

t(c) if *c={}

co= sstore[arg] if *c={e}/\ argE(tstoreUfstore)\l.o. W (where arg=l..a-1(c))
1 otherwise

Define p.'(.z)=.z', where .z' is identical to .z except that one or more of the alterations

described in the following four steps have been applied:

91

Initialization: Create a new initial c node

If 3vE V Vc EG. c rf:s then create a new c node and define c=s.

Extension: Create new e node and successor c nodes

If 3iEI VargE[I,i.o.aJ3cEG.c*=O /\ c=i'~(arg) /\ c=i.')'(arg) then

(a) Create a new e node, make it the successor for all the c nodes instantiated in the

condition, define i=i, and define l(e)= (i. 0'<,6',(cstore ,0,0 ,sstore ,estore)), where

catore is the initial store as defined by the C implementation, all elements of

estore are .1. and

{

o if argEi.o. W\i.o.R

sstore[argJ= c' otherwise (where c:t=e/\c=i'~(arg))

(b) For all argE[I,i.o.a], create a c node, make it a successor to e, and define

Execution: Advance the execution state of an e node

If 3e EE.l(e)= (cont ,store) /\ contrf:halt,

then evaluate cont(store) for a finite amount of time, yielding a new continuation

cont' and store store'. Define l(e)= (cont',store').

Finishing: Perform transition to a non-volatile argument

If 3eEE, argE[l,i'o.a].arg~i.o. W/\i.o.1{arg)=1

/\l(e)= (cont, (cstore ,tstore ,/store ,sstore ,estore))/\arg ~tstore Ufstore

then define l(e)= (cont, (cstore ,tstore ,/store',sstore ,estore')) where

fstore'= fstore U{ arg} and estore '=estore except that estore'[arg]=1

The frequency in which these steps will be executed in subsequent iterations of p.' will be

constrained by the following fairness criterion:

92

For some set of free variable instantiations, the condition for a step will not remain

true for more than a finite number of applications of p.'before the step is executed.

The role of fair is to record enough history of which steps have been applied to guarantee

the fairness constraint. For example, fair could be implemented as a simple vector of the

number of applications of /1.'that have occurred that have not executed a particular step.

6.3.4.2. Validity at Implementation Strategy

Define the following partial order over concrete execution graphs X:

z ~z'=(VcEz.G,c'Ez'.G.c~c'..c ~c'/\ c'~c")/\ z is a prefixsubgraph of z'

I.e. execution graph z is less well defined than z' if z is a prefix subgraph of z' and the con-

trol and data states of all of the c nodes in z are less well defined than those in z'. The

bottom element of this partial order is the empty execution graph.

By this definition, z ~p.'(z). That the z is a prefix subgraph of p.'(z) follows directly

from the Initialization and Extension steps. That the new graph has more well defined a

and 'iTfunctions is shown as follows. If a c node is introduced without predecessors (in the

Introduction step), c and c' are well-defined, and since no step gives predecessors to a

previously-existing c node, remains well defined, If a c node is introduced with a predeces-

sor e (in the Extension step), cwill have a non-1 value precisely when the argument of i

bound to c is a member of t&toreUf&tore, and this condition cannot be made false nor can

the value estore [arg] be redefined once this condition is true. c' is defined only under the

same condition or when argft.i.o. W. In the former case, the value &store[arg]cannot be

redefined for the same reasons as C, and it cannot be redefined in the latter case due to the

syntactic restriction that such argument variables cannot be used within the opbody in a

context where their contents can be altered.

,
~.'

93

Thus, p.' is monotonic in the sense that it does not move down or across the partial

order. The remainder of this section shows that it not only moves up the partial order, but

that the semantic axioms will hold for any finite prefix subgraph of the concrete execution

graph within a finite number of recur~ive applications of p!. (Clearly, each application takes

a finite time.)

Axiom 1; The property that

is ensured by fairness of Initialization and the definition of iTand u. That these Crf5

are members of 00 (i.e. precede all members of 0 having the same name) follows

from the fact that all other c'EO.c=s are created in the Extension step, and each

such node can be inductively shown to be preceded by a c node with the same name

created in the Initialization step.

Axiom 2: A c node is given a successor only in the Extension step and only under the condi-

tion that it does not already have successors, and is given a predecessor only in the

Extension step, and only under the condition that it is newly created (i.e. has no

predecessors).

Axiom 3-Structure and Axiom 3-Condition: Only the Extension step creates e nodes or

gives them predecessors or successors, and it obeys these axioms by definition.

Axiom 3-Result: The fairness constraint ensures that the Execution step will be repeatedly

applied to every execution state until it halts. The continuous semantics of sequen-

tial computer languages ensures that if the sequential computation denoted by the

concrete operation includes perf_trans,then it will be executed in a finite number

of applications of p!. The fairness constraint also ensures that the Finishing step will

be executed for all non-volatile arguments for which perf_trans has not executed

within a finite number of calls. Axiom 3-Result follows directly from these and the

94

definition of the;' and q labelings.

Axiom 4-Non-interference: Ensured by the initialization of sstare in the Extension step, and

by the definition of q.

Axiom 5-Liveness: Ensured by the fairness constraint applied to the Extension step.

Axiom 6-Time: No step gives a predecessor to an already existing node, and no step creates

a cycle.

6.3.4.3. Pseudo-code for the Generic Implementation

This section presents an efficient implementation of the above strategy. First, it will

be assumed that S is finite, so all applications of Il' which perform the Initialization step can

be performed first. Second, the Extension condition can be checked, and the Extension step

executed, immediately whenever the control state of a "terminal" c node (i.e. one without

successprs) becomes defined within the Initialization or Finishing steps. The Execution step

can be made efficient by keeping all (cont ,store) pairs on a "run" queue, which is serviced in

a fair, round-robin fashion. Entries need not remain on the queue for instructions which

have halted or performed transitions to all of their arguments, since further advancement of

execution will not affect any aspect of the execution graph other than the continuation or

store itself. The precise time and method of invoking the Finishing step will not be detailed

until later sections on implementations for specific architectures.

To facilitate efficient checking of the Extension condition and performance of the Exe-

cution step, the;' and q labelings will be maintained explicitly, and only for the terminal c

nodes. The data state for the terminal c node for which c=s will be called dstate [8]. The

control of these terminal c nodes state will not be maintained directly, but will be reflected

in an vector called reasons, indexed by instruction: reasons [;] will equal n if the c nodes

for n of its argument bindingseither do not existor the terminal nodeshave a control state

95

other than that of the instruction's firing constraint. Thus, the condition in the Extension

step will reduce to testing whether the reasons count for that instruction is O.

With these changes, estore becomes redundant-all assignments estore[arg]-trans

will be replaced with calls to dec_count (i ..B(arg),i .8(arg)(trans)), which will decrement

the reasons for all instructions bound to the variable and constrained by the control state

mentioned in the arguments, and. check whether the execution condition has been met for

those instructions. This requires that perf_trans has access to i (the instruction on

whose behalf the operation is executing), so we augment the store with istore which con-

tains the current instruction. The store now consists of (cstore ,istore ,tstore ,Jstore ,sstore)

Portions of the execution graph which will no longer be used in performing the steps

will simply be discarded. All side-effects of graph creation will be present even though the

graph itself will not be maintained. Annotations will relate each portion of the code to the

steps above so that code to keep the graph can be added if desired, say Cor debugging pur-

poses.

perf_trans (trans, arg) now becomes

perf_trans (tran", arg) _
check_arg (arg)

tstore -tstore U{ arg}

* **De fine c=istore .8(arg)(trans) where c
*** is the oldest node such that c=istore..B(arg)
***If arg has write usage, define c'=sstore[arg]

if argEistore. o. W
dstate [istore..B(arg)]-sstore [arg]

if argrlfstore
dec_count (istore..B(arg), istore .8(arg)(trans»

if tstoreUfstore=[I,istore.o.a]
halt

96

Since we assume that fstore is lost when an evaluation finishes, the "normal halt"

(executed after the last line of code in an operation) must now ensure that all non-volatile

arguments are finished:

normal_halt -
for argE[I,istore.o.a].arg~iatore.o. W /\ istore.1(arg)=1

if arg~fstore
fin_trans (arg)

The concrete implementation (minus invocation of the finishing step) is conc_imp, where:

conc_imp ~

initO

initl I serve_q I serve_q I serve_q I

initO =

***Initialize the execution graph to be empty

for iEI

reasons [i]-i.o.a

in1 tl -
for sES

*** INITIALIZATION: Create c node, define c=s, ':=1,c.=t(s)

dstate [sl-t(s)
dec_count (s, 1)

serve_q =
repeat

(cont ,store)- dequeue

*** EXECUTION

(cont',store')- ts I ice (cont ,store)
if cont'~halt

enqueue «(cont',store'})
forever

dec_count (a, n) =

***For each instruction which benefits from new control state
*** of c node...

97

aO: for ief. 3arge[1,i.o.a]. i.p(arg)=8 1\ i.')'(arg)=n

*** Decrement number of reasons it cannot fire

al: reasons[i]-reasons! i]-1

If no more reasons (i.e. Extension condition true) ...

a2: if reasons[i]=O

*** EXTENSION:
*** Create new successor c nodes with 1 control state

a3: inc_counts (i)

*** Create new e node, define i:i, initiate associated
opbody

ini tiate (i)

inc_counts (i) :

***For each argument of new e node...

for argE[1,i.o.a]

*** Let c' be oldest c node such that c'=i.p(arg)
*** Create new c node, define c:i.p(arg),c:l
*** If arg has no writeusage, define c': c"

*** For each instruction which benefited from control state
*** of c' ...

a4: for i2El. 3arg2E!1,i2,o'a]. i2,p(arg2)=i,p(arg) /\ i2.')'(arg2)=i.')'(arg)

*** Incrementnumber of reasons it cannot fire

initiate (i) :
for argEi.o.R

88tore [arg]-dstate! i 'P(arg)]
for argei.o. W\i.o.R

s8tore far?]-0
enqueue (~i. 0 .<p',(cstore,i ,n,n ,88tore)))

The Finishing step will consist of performing fin_trans (arg) for non-volatile argu-

ment arg I where

98

fin_trans(arg) ::
if argrtt8tore

/store +-f8tore U{ arg}

*** FINISHING: Define c::i8tore.c5(arg)(1), here c
*** is oldest node such that c=i8tore,p(arg)

dec_count (i8tore.p(arg), i"tore.c5(arg)(l)

if t8toreUf8tore::[1,i8tore.o.a]
halt

The optimal time and method of invoking fin_trans (other than that in normal_halt)

will depend upon the specific architecture.

In order to ensure that the Extension step executes only when the condition is true,

the test at a2 and the execution of inc_counts at a3 must together occur atomically.

In addition, the decrement at al must occur as an atomic step to avoid "ead-write

conflicts. These atomicity constraints could be ensured by providing that only one instruc-

tion perform dec_counts at a time (perhaps by funneling all executions through a com-

mon monitor or acquiring a global lock) or by separately assigning each rea"on" count its

own lock and locking all that could be accessed by inc_counts before a2, but the former

solution creates a global bottleneck while the latter creates significant overhead in dealing

with each instruction separately and avoiding deadlock. A middle ground can be reached

by defining a rival" relation «» as

i«»i'::3"E"hared(i ,i').i. b(i .p-l(s))=i'. b(i'.p-l(s))}

(i.e. two instructions are rivals whenever their firing constraint uses the same control state

at least one variable) and a r i val ry as the transitive closure of «». By this definition,

all instructions referenced in the for at aO plus all instructions referenced in the for at

a4 will belong to the same rivalry. We will enforce the atomicity constraints by restricting

execution of dec_counts to one instruction per rivalry at a time. (Note that the call to

initiate does not need to be protected, but moving it outside of the dec_counts logic

99

requires additional bookkeeping overhead.)

6.4. Optimizing Concrete Execution for Differing Architectures

Both a shared-memory and message-passing implementation will be presented. Both

will be based on the generic implementation described in the last section, but will differ in

the details of copying and maintaining dstate and sstore, and deciding when to invoke

6.4.1. Shared Memory

The primary focus behind the shared memory implementation will be to reduce or

eliminate copying of dstate to sstore in initiate. For the most part, this is accomplished

by using the dstate directly in place of the sstore (i.e. replacing the sstore[arg]-dstate[8]

statements with sstore [arg]= dstate [sD.

The flaw with this simple implementation is that an instruction may continue to

access dstate after fin_transhas been performed, and fin_trans may allow another

instruction to begin execution and access the same dstate concurrently with the current

instruction. If the subsequent instruction does not have write usage to the variable, or the

current instruction does not have read usage, no harm is done-the memory can be shared

by both instructions. It, however, an instruction with write usage to the variable is ini-

tiated while an instruction is still reading the variable, they clearly cannot access the same

dstate buffer without disastrous consequences. In this case, a new version of the dstate for

that variable must be allocated and used by the new instruction, leaving the old version to

be deallocated when the last reader has finished with it. If the new instruction has read

usage to the variable (in addition to its write usage), the contents of the old version must be

copied to the new one.

100

The following replacements of initiateand perCtrans are based on the above

descriptions. Instead of containing data state, dstate, and sstate (and m) now contain

pointers to a tuple of (readers,version,data), where readers contains the number of instruc-

tions reading the data state, version is the version number of the data state, and data is

the actual data state. An auxiliary vector, version, contains the number of the latest ver-

sion for each variable. alloc allocates a data state tuple and returns a pointer to it,

dealloc deallocates the data state associated with such a pointer. Indirection is

represented by *

initiate (i) ==

s==i.p(arg)

for argEi.o.W

if *dstate[sl.readerB;CO
m- alloc ()
if argEi.o.R

*m. data - *dBtate [" I. data
ddate-m
*dstate ["I.readers-O
version [sl-version [sl+1
*dstate [s].version -version [,,]

if arg~i.o.R
*dstate ["].data-O

for argEi.o. WUi.o.R

sstore far?]-dstate [s]
enqueue (\i.o .4l,(cstore ,i ,{},{},sstore)))

perf_trans (tran", arg) -
check_a rg (arg)
t"tore -tstore U{ arg}
"==i,,tore .P(arg)
if argEiBtore.o.R

*"store ["].readers- *sstore ["I.reader"-l
if *"store ["].readers=O!\"store ["].version ;cver"ion [s]

dispose ("store [,,])
i f arg~/store

dec_count (", istore .c5(arg)(tran,,)

if tstoreU/"tore=[l,istore.o.a]
halt

In addition, all other references to sstore [arg] must be replaced by *s"tore [arg]. data. To

101

ensure that only one instruction per rivalry performs the dec_count code, each rivalry

must be assigned a lock which dec_countmust acquire to execute.

There are other ways to optimize this implementation. The above tricks with pointers

(and thus the extra indirection) can be avoided completely for variables with no non-volatile

readers, or where it can be statically determined that a non-volatile reader will never relin-

quish the variable to a writer. Also, fin_transcan be delayed for any finite amount of

time, and doing so may allow a reader to finish before a writer to the same variable is ini-

tiated, avoiding the need for making a copy. In fact, each time another reader of the vari-

able is initiated, this time starts over, so if reader initiations progress continuously, a writ-

ing instruction may be postponed indefinitely without violating the fairness in the model. In

the general case, however, parallelism can be maximized by performing fin_transas soon

as possible after the e node is created. The conflict between parallelism and copying over-

head can be addressed directly by allowing the F-Net programmer to include hints within

the concrete F-Net code.

6.4.2. Message-Passing

The message-passing based implementation described here will assume that the

instructions are statically assigned to processors. This assignment can be performed ran-

domly, or based on a static analysis of the F-Net together with a knowledge of the intercon-

nect network present in the hardware.

The functionality of the implementation is distributed among processes, both by repli-

eating some of the procedures (such as dec_count)and by splitting single procedures (such

as initO and initiate).

Initialization Process

An initialization process will contain the code for the main process:

102

init_process ==
for iEI

spawn instruct_process[i]
for rE set of rivalries

spawn rivalry_process[r]
initl

The code for ini to is distributed among the rivalry processes.

Rivalry Processes (One per Rivalry)

A rivalry process will perform the ini to code for its rivalry, then will await messages

requesting that dec_count be invoked for an instruction in the rivalry. The process

will contain the code for dec_count and the procedures called by it (inc_counts

and initiate) and will locally maintain all reasons counts associated with the

rivalry, as well as all dstate entries during the time that they might be needed by an

instruction in the rivalry (i.e. while the control state of that variable corresponds to a

control state belonging to the rivalry).

rivalry_process [r] _
for iE rivalry r

reasons[i]-i.o.a
repeat

await message (i ,arg ,trans ,newdstate)
s==i.o.p(arg)
n==i.o .6(arg)(trans)

dstate [s]==newdstate
dec_count (s , n)

forever

initiate will be replaced by

initiate (i) ==

for argEli.o.a]\i.o. W
sstore [arg]== dstate Ii 'P(arg)]

send (sstore) to instruct_process [i)

The missing sstore initialization code is performed within the instruction process.

Note that even the sstore for arguments which are not read nor written is sent to the

103

instruction process, since the sstore must be forwarded to the new rivalry when a

transition is performed.

Instruction Processes (One per Instruction)

An instruction process contains the code corresponding to the opbody corresponding to

the instruction's operation.

instruct_process [i] _
repeat

await message (sstore)
for argEi.o. W\i.o.R

sstore [arg1-0
tstore-O
fstore-{}
for argE[I,i.o.aJ.arg is non-volatile

fin_trans (arg)
enqueue (i.0-4", (cstore,i,{},O,sstore)

forever

The calls to dec_count(s, n) within perf_transand fin_transare replaced

by

send (istore,arg,trans,sstore[arg]) to rivalry_process [r]

where r is the rivalry corresponding to the new control state. The

if. . . dstate[sl= . code should also be removed from perf_trans,since the

instruction process no longer maintains dstate.

In cases where a rivalry contains exactly one instruction, the functionality of the

rivalry process can be combined with that of the instruction process. Further optimizations

based on the F-Net topology and read-write usages of arguments can minimize the number

of times a dstate must be passed by bypassing the rivalry process in some circumstances.

Shared memory techniques can also be used to avoid messages when multiple instructions

reside on the same processor.

104

6.4.3. Final Implementation Notes

It has been noted that parallelism is increased by performing the fin_transopera-

tion as soon as possible after initiation of the instruction. Taking this to its natural

extreme, fin_transcan be called as part of the initiate code so that the results can

be felt even before the execution of the opbody has begun. If this is done, a safeguard must

be taken to ensure that looping does not occur within initiatewhen a uule88 subgraph

is entered. This is a subgraph of an F-Net where the semantics dictate that each instruc-

tion in the sub-graph can fire again if it fires once, due to all of the instruction's arguments

being non-volatile and always allowing another instruction (perhaps itself) with the same

characteristics to fire. To prevent this, useless subgraphs can be detected syntactically

before execution and handled specially.

The data flow nature of the model suggests an alternate implementation for message-

passing architectures. In it, the instruction processes do not pass data state to the rivalry

process on each transition, but instead report the location (processor and address) of the

data state. The rivalry process now has three jobs: (a) to determine when an instruction

can fire (as before), (b) to determine the optimal processor on which to execute that instruc-

tion (based on the locations of all of the variables and the required opbody program, as well

as the load on each processor) and (c) to direct message traffic to move the code and data

to the optimal processor. Such an implementation would benefit from an architecture in

which one processor (i.e. the rivalry's) could initiate messages from a second processor (i.e.

that containing the data state or opbody) to a third processor (i.e. the optimal processor).

Under some circumstances, data state and/or opbody code could be preemptively sent to a

probable optimal processor before the instruction is ready to fire, or even replicated onto

several possibly-optimal processors. Unlike other process-migration techniques, no run-time

stat~ would need to accompany the opbody, and unlike standard dataflow techniques, data

would not move to a "waiting-matching" store before moving to its final destination.

105

106

CHAPTER 7

Future Directions and Conclusions

7.1. Introduction

This work has presented F-Nets primarily as a theoretical model, although an imple-

mentation has been outlined to demonstrate its portability. This chapter will speculate on

uses that might be made of the model, and on how it might be made more usable. The first

section will propose some extensions to the model that could make it amenable to building

large software systems. We then outline how F-Nets could provide leverage in developing

software-engineering tools. Finally, we propose an architecture to efficiently execute F-Net

programs.

7.2. Extensions to F-Nets

The F-Net model provides a framework for building operations which are atomic,

deterministic, and stateless, and then for constructing a concurrent program from these

operations. In practice, programs are not built or analyzed in this monolithic fashion: they

consist of fragments, or modules, which are built separately and then composed. This abil-

ity to compose modules is a primary selling point of object-oriented programming, for exam-

pIe.

F-Nets can be modified to accommodate a very simple form of composition by aug-

menting F-Net fragments, or modules, with arguments similar to operations. This allows an

F-Net instruction to bind either an operation or an F-Net module into another F-Net. The

arguments are represented within the module implementation as formal m-variables, to

107

which instructions within the implementation can be bound. This same extension can allow

an F-net to bind to other "outside-world" objects, such as the input and output streams pro-

vided by an operating system. In itself, this extension does not make F-Nets more powerful,

simply decomposable.

An extension which does add power is the treatment of modules and operations as

first-class objects. In other words, an m-variable can contain the description of an opera-

tion or module as its data state, and a special bind operation is provided which takes such

a description as an argument and "becomes" that operation or module when it fires. By

allowing bindings to also be first class objects, also to be fed to the bind instruction,

dynamic binding becomes possible.

With these extensions, the primary difference between F-Nets and object-oriented pro-

gramming is persistence. This can be added by providing another operation, called

instantiate,which takes a module description and returns another module description

which is equivalent to the first except that the m-variables within are instantiated: i.e.

whenever and wherever the module is bound, it will use the same copies of the m-variables

with the same control and data states. An instantiated module can therefore be passed

around as an object. When there is a need to access the object, it can be bound with a

bind operation, allowing some of the instructions within to fire and access or alter the m-

variables ("instance variables").

To provide a method of passing arguments through multiple levels of binding, argu-

ments (arcs) can be extended to represent a bundle of arguments, called a cabLe. These

cables can be nested hierarchically, allowing entire contexts of variables to be brought into

out of, or through a level of module hierarchy. This allows for a very precise, controlled,

yet flexible management of scope, foreign to most object-oriented languages.

108

A much more basic extension that must be provided to F-Nets before they are usable

in an applications environment is the ability to partition m-variables. With the semantics

outlined in this dissertation, if an entire array is present on a single m-variable, it is only

accessible to one instruction at a time, regardless of whether other instructions would

attempt to access the same elements. By creating arrays of m-variables and methods to

bind arguments to portions of these arrays, this access contention can be addressed within

the semantics of the model and handled properly by a scheduler, though perhaps at the cost

of higher overhead per element.

7.3. Software Tools

Four inter-related features of F-Nets make them particularly suitable as a basis for

tools:

(1) The parallel and sequential aspects of a program are specified separately, each in a

form best suited to its function, so tools do not need to combine their approach to

these very different aspects of syntax and execution.

(2) The uniform graphical representation for parallel aspects of the program, across

tools and architectures, facilitates tool integration and similarity of user interface.

(3) The use of traditional sequential languages for implementing operations provides for

the use or adaptation of existing sequential tools.

(4) The model seen by the user is very similar to the model used during execution, facili-

tating a "What you see is what you get" approach for execution-based tools.

7.3.1. Debugging,IMonitoring Tools

Parallel debugging is regarded as a very difficult problem for several reasons. Sequen-

tial debugging techniques are not easily adapted to parallel programs, due to the lack of

109

global program state or a single program counter. Non-deterministic execution makes re-

creation of errors difficult, and this can be complicated even more when program execution

timings are affected by the debugging process. Tracing the flow of control and data, or just

deter~ining what the correct flows should be, is difficult. If the program was created by a

parallelizing compiler or tool, the user may not be familiar with the relationship between

the source program and the program being debugged.

F-Nets address each of these problems. Because an F-Net consists of a graphical net-

work, with each node representing a sequential program which exhibits sequential behavior,

these aspects of the program can be approached separately. A high-level graphical interface

[14] could be used to visualize and control the parallel behavior of the F-Net, and a tradi-

tional sequential debugger could be invoked for the low-level operation executions when

needed. The desired flow of control and data is apparent in the static F-Net, and the

actuat" flows could be easily represented by highlighting various portions of the graphical

representation during an execution. If the software-engineering features of F-Nets lure users

to create programs using the model, the execution behavior of the program during debug-

ging will not be surprising or unfamiliar. Finally, the logging techniques described in

Chapter 4 may well be non-intrusive enough so that every execution could be logged. If this

is the case, any execution could be re-played within a debugger with exactly the same

behavior as the original.

Perhaps the most important debugging feature provided by F-Nets is the likelihood

that they would not need to be debugged at all. In traditional process models, the user

strategically places synchronization and communication primitives in the program in order

to obtain the desired execution behavior, while with F-Nets, the user explicitly specifies the

desired execution behavior, decreasing the chances for accidental communication or syn-

chronization.

110

7.3.2. Parallel Restructuring Tools

Parallel restructuring tools take a sequential program and produce a parallel program.

Taking a simplistic view, the resulting program is to have identical input/output behavior

as the original sequential program-Leo it is to represent the same function from input his-

tory to output history, but optimized to run well on some specific parallel architecture.

This view is too simplistic. To hold to a rigid semantic mapping thwarts much of the

possible optimization which could occur for almost any parallel or vector architecture. A

simple example of a slight alteration in semantics is the order in which a floating point sum

reduction is performed. Since round-off errors will occur in different ways depending upon

the order in which elements are summed, altering this order can change the behavior of the

program.

The programmer has no way of specifying, in a purely sequential language, whether

the order of the reduction is or is not important. If this information is conveyed to an

interactive parallelizing tool, it is typically captured in a form which is unique to a particu-

lar architecture: restructuring the same program for another architecture would require the

information to be specified again.

The problem above is a result of the fact that both the source and the result of res-

tructuring or parallelizing is a specific implementation, rather than a description of the

variety of implementations acceptable to the programmer. A more productive approach

might be to view restructuring in two-steps:

(1) Converting a program into a more general version-i.e. providing non-deterministic

choices for implementation of various constructs-such that the input program is one

instance of the output program. This process will not be automatic, since the more

general program can be regarded as the specific program plus human knowledge ot

111

the specification. This generalization process could be iterative, with the more gen-

eral program serving as input later to create an even more general program.

(2) Targeting a general program for a specific architecture. This could be done

automatically or with user interaction. The resulting program should always match

the specification of the general program, and mayor may not be more specific (i.e. it

may preserve the generality of the specification in the form of non-determinism, or it

may "hard-wire" non-deterministic choices to some specific implementation).

For this approach to succeed, the programmer must be able to understand the output

program from step 1 and to accept it as the program to replace the original. The F-Net

model may be able to aid in this. The implementations described in Chapter 6 are examples

of automatic targeting for parallel architectures.

7.3.3. Real-time Programming

F-Nets do not contain timing information only because this would clearly violate their

architecture-independent qualities. Even on a given architecture, timing can change

significantly depending upon the policy used by the scheduler. However, if these factors are

known, the structure and simple semantics provided by F-Nets could help in addressing

real-time programming problems. By approximating the time that each argument of each

operation would take to produce a transition after the operation fired, then utilizing infor-

mation about the architecture and scheduling policy to determine appropriate compositions

for these timings, best- and worst-case scenarios could be computed to determine the

effectiveness of the design or to alter scheduling decisions.

Non-determinism could also play an important role in real-time programming by serv-

ing as a means of specifying alternate actions in emergency (near-deadline) situations. This

would require additional F-Net notation to specify when such an emergency action should

112

occur, but it would not violate the F-Net semantics in any case: whether or not the emer-

gency occurred, one of the non-deterministic actions would be taken, so the execution graph

would still be valid.

7.4. Parallel Architecture

Although F-Nets have been proposed as an architecture-independent programming

solution, specially developed architectures could take maximum advantage of the con-

currency expressed in the model. The division between the traditional sequential nature of

the operations and the control/communication nature of the rest of the F-net could be

reflected in the architecture design, even without using special-purpose hardware, and the

fact that F-Nets are designed to work in both high- and low-latency ether could allow for

both low-latency shared-memory within clusters of processors and a high-latency scalable

interconnect between clusters.

We propose an architecture consisting of clusters of processors, with each cluster con-

sisting of one or more operation processors (OP) to execute operation programs, and a net

processor (NP) to execute the net (i.e. perform scheduling decisions) and feed ready F-Net

instructions to the OPs. Both the NP and OPs read and write a common Node Memory,

with OP accesses mapped through an MMU. Two short queues are kept in Node Memory

for fast communication between the NP and OPs: a queue of operations which are ready to

execute on this cluster, written by the NP, and an event queue written by the OPs. The

NPs in different clusters can communicate with each other via an interconnection network.

Since the OPs execute all user code, they should consist of very powerful processors.

An OP repeatedly accesses the ready queue, obtaining pointers to an operation (Le. a pro-

gram implementing an operation) and to each the data states for its arguments, then ini-

tializes the MMU ror these segments and begins executing the program. When the operation

113

performs a transition, the corresponding segment is removed from the memory map, and a

transition event is enqueued containing the argument and transition. If the program halts

or a memory protection violation occurs, all segments are removed from the memory map, a

halt event is enqueued, and the ready queue is read again.

The NP executes no user code, so it does not need excessive computation power or

floating point capability. The NP serves four roles: (1) a "manager" for some set of rival-

ries in a net (2) a slave to the OP, (3) a slave to the interconnect (or more properly, to

rivalry managers on other NPs), and (4) a stopwatch for the OP.

(1) As manager for some rivalries, it keeps the current reasons counts for all instructions

within those rivalries, and keeps track of the locations of the program segment and

data segments needed to execute those instructions. When an instruction's reasons

count reaches zero, it is charged with the responsibility of determining the best node

to execute the instruction on, based upon each node's current load and locality to

these segments, and directing communication to unify these segments on that node.

It may direct extra copies of data and program segments to several nodes to provide

maximum flexibility in choosing a node to schedule an instruction.

(2) As slave to the OP, it monitors the event queue and relays the effects of events to

the rivalry manager which is affected.

(3) As slave to the interconnect, it receives commands from other rivalry managers

which direct it to send and receive program and data segments and to report on

current load information. When a complete instruction (the program and all data

segments) has been received, it enqueues this information in the ready queue Cor the

OP.

114

(4) A1sstopwatch for the OP, it monitors the amount of time that the OP has been exe-

cuting the current instruction. If there are more instructions in the ready queue, it

interrupts the OP causing it to perform a context switch (i.e. go back to the ready

queue). The assumption is that the OP will not need to timeslice between instruc-

tions in the general case.

More study would certainly need to be performed beCore pinning down the parameters

for this architecture, but the Cogent XTM [31] offers one interesting possibility Coran inter-

connect: both a high-speed bus Cor load status updates and data transfer commands, and a

separate set of reconfigurable channels to handle the actual transfer of data and program

segments between node processors.

Adding disks to each NP could make this architecture effective at handling database

applications while also allowing little-used segments to be stored on disk rather than in node

memory. Fault tolerance over single-OP or single-cluster failures could be implemented by

having NPs create additional copies of data segments aCter each transition as well as keep-

ing track of transitions which had not been relayed to other NPs.

7.5. Conclusion

F-Nets have been shown to be based on rational motivations: architecture indepen-

dence, similarity of algorithm to computation, and the preservation of sequential semantics

where possible. A construction has been proposed based on only these factors, and the

result has been demonstrated to fulfill its goals. Architecture-independence has been shown

through actual implementation techniques, in Chapter 6. Similarity of algorithm to compu-

tation has been shown formally, in Chapter 4. The preservation of sequential semantics of

each operation implementation was built into the model during its construction in Chapter

3, a.nd ha.s been demonstrated in other chapters. In addition to achieving these goals, F-

115

Nets have been shown to be general enough to apply to a number oCareas, providing a com-

mon ground on which to compare and contrast other Cormalmodels and establishing a basis

Cor new tools and programming techniques.

116

References

[1] Agha, G. and Hewitt, C., "Concurrent Programming Using Actors," in Object-

Oriented Concurrent Programming, A. Yonezawa and M. Tokoro (ed.), Cambridge,

MA, MIT Press, 1987, pp. 37-53.

[2] Ahamad, M., Hutto, P. W. and John, R., "Implementing and Programming Causal

Distributed Shared Memory," GIT-CC-90-49, College of Computing, Georgia

Institute of Technology, 1990.

[3] Allen, J. R. and Kennedy, K., "A Parallel Programming Environment," IEEE

Software, vol. 2, 4 (July 1985), pp.21-29.

[4] Allen, R. and Kennedy, K., "Automatic Translation of FORTRAN Programs to

Vector Form," ACM Transactions on Programming Languages and Systems, vol. 9,4

(October 1987), pp.491-542.

[5] Athas, W. C. and Seitz, C. L., "Multicomputers: Message-Passing Concurrent

Computers," Computer, vol. 21, 8 (August 1988), pp. 9-24.

[6] Babb, R. G. and DiNucci, D. C., "Design and implementation of parallel algorithms

with Large-Grain Data Flow," in The Characteristics of Parallel Algorithms, L. H.

Jamieson, D. B. Gannon and R. J. Douglass (ed.), Cambridge, MA, MIT Press,

1987, pp. 335-349.

[7] Beguelin, A. L., "SCHEDULE: A Hypercube Implementation," 9rd Conference on

Hypercube Concurrent Computers and Applications, vol. I, Architecture, Software,

Computer Systems and General Issues(January 1988), pp.468-471.

117

[8] Boyle, J., Butler, R., Glickfeld, B., Disz, T., Lusk, E., Overbeek, R., Patterson, J.

and Stevens, R., Portable Programs for Parallel Processors, New York, NY, Holt,

Rinehart and Winston, 1987.

[9] Brooks, F. P., "No Silver Bullet:. Essence and Accidents of Software Engineering,"

Computer, vol. 20, 4 (April 1987), pp. 10-19.

[10] Callahan, D. and Kennedy, K., "Compiling Programs for Distributed-Memory

Multiprocessors," Journal of Supercomputing, vol. 2(1988), pp. 151-169.

[11] Carriero, N. and Gelernter, D., "Linda in Context," Communications of the ACM,

vol. 32, 4 (April 1989), pp. 444-458.

[12) Chandy, K. M. and Misra, J., Parallel Program Design: A Foundation, Reading,

MA, Addison-Wesley, 1988.

[13] DeMarco, T., Structures Analysis and System Specification, New York, NY,

Your don Press, 1978.

[14] DiNucci, D. C., "Design of a debugger for large-grain dataflow programs,"

Technical Report CSE-88-005, Oregon Graduate Center, 1988.

[15] DiNucci, D. C. and Babb, R. G., "Design and implementation of parallel programs

with LGDF2," COMPCON'89, San Francisco, 1989, pp. 102-107.

[161 Dongarra, J. J. and Sorensen, D. C., "A portable environment for developing

parallel FORTRAN programs," Parallel Computing, vol. 5, 1&2 (July 1987), pp.

175-186.

[171 Eswaran, K. P., Gray, J. N., Lorie, R. A. and Traiger, I. L., "The notions of

consistency and predicate locks in a database system," Communications of the

ACM, vol. 19, 11 (November 1976), pp. 624-633.

118

118] Foster, I. and Taylor, S., Strand: New Concept& in Parallel Programming,

Englewood Cliffs, NJ, Prentice-Hall, 1989.

119] Fuggetta, A., Ghezzi, C., Mandrioli, D. and Morzenti, A., "VLP: A Visual

Language for Prototyping," IEEE Workshop on Language&for Automation, August

1988.

[201 Gopinath, K. and Hennessy, J. L., "Copy Elimination in Functional Languages,"

Proceedings of the Conference on Programming Languages (ACM Symp. on Prin. of

Programming Language&), 1989.

[21] Guarna, V. A., Gannon, D., Gaur, Y. and Jablonowski, D., "FAUST: An

Environment for Programming Parallel Scientific Applications," Proceedings

Supercomputing '88, Orlando, FL, November 1988, pp. 3-10.

1221 Hoare, C. A. R., Communicating Sequential Processes, Englewood Cliffs, NJ,

Prentice-Hall, 1985.

1231 Jones, G. and Goldsmith, M., Programming in occam 2, Prentice-Hall, 1988.

[241 Jordan, H. F., Benten, M. S., Alaghband, G. and Jakob, R., "The Force: A Highly

Portable Parallel Programming Language," Proceedings of the 1989 International

Conference on Parallel Proce&sing, vol. II - Software(August 1989), pp. 112-117.

125] Kahn, G. and Macqueen, D. B., "Coroutines and Networks of Parallel Processes,"

Proc. IFfP 77,August 1977, pp. 993-998.

1261 Kaplan, I., "Programming the Loral LDF 100 Dataflow Machine," ACM SIGPLAN

Notices Notices, vol. 22, 5 (May 1987), pp.47-57.

1271 Karp, A. H. and Babb, R. G., "A comparison of 12 parallel fortran dialects," IEEE

Software, 1988, pp. 52-67.

119

[281 Knuth, D. E., The Art of Computer Programming: Volume 1/ Fundamental

Algorithms, Reading, MA, Addison-Wesley, 1975.

[29] Li, K. and Hudak, P., "Memory Coherence in Shared Virtual Memory Systems,"

Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed

Computing, Calgary, Alberta, Canada, August 1986, pp. 229-239.

[30] McGraw, J., Skedzielewski, S., Allan, S., OldehoeCt, R., Glauert, J., Kirkham, C.,

Noyce, B. and Thomas, R., "SISAL: Streams and Iteration in a Single Assignment

Language: Language Reference Manual, Version 1.2," M-146, Rev. 1, Livermore,

CA, Lawrence Livermore National Laboratory, March 1985.

[31] Merrow, T. and Henson, N., "System Design for Parallel Computing," High

Performance Systems, January 1989, pp. 36-44.

[32] . Milner, R., A Calculus of Communicating Systems, vol. 92, Berlin, Springer-Verlag,

1980.

[331 Muhlenbein, H., Kramer, 0., Limburger, F., Mevenkamp, M. and Streitz, S.,

"11UPPET: A Programming Environment for Message-Based Multiprocessors,"

Parallel Computing, vol. 8, 1-3 (October 1988), pp. 201-221.

[34] Noe, J. D. and Nutt, G. J., "Macro E-Nets CorRepresentation of Parallel Systems,"

IEEE Transactions on Computers, vol. 0-22, 8 (August 1973), pp.718-727.

[35] Papadopoulos, G. M. and Culler, D. E., "Monsoon: An Explicit Token-Store

Architecture," Proc. 17th Annual Symposium on Computer Architecture, Computer

Architecture News, vol. 18, 2 (June 1990), pp. 82-91.

[361 Peterson, J., Petri Net Theory and the Modeling of Systems, Englewood Cliffs, NJ,

Prentice-Hall, 1981.

120

[37] Pratt, V. R., "Modeling Concurrency with Partial Orders," International Journal of

Parallel Programming, vol. 15, 1 (February 1986), pp. 33-71.

[38] Sabot, G. W., The Paralation Model: Architecture-Independent Parallel

Programming, Cambridge, MA, MIT Press, 1988.

[39] Sobek, S., Azam, M. and Browne, J. C., "Architectural and Language Independent

Parallel Programming: A Feasibility Demonstration," ProCt:edings of the 1988

International Conference on Parallel Processing, vol. II, Software(August 1988), pp.

80-83.

[40] Suhler, P. A., Biswas, J. and Korner, K. M., "TDFL: A Task-Level Data Flow

Language," Tech. Rep.-87-44, Austin, TX, University of Texas, CS Dept., November

1987.

- - - - - .- - - - - .. --.- --. ... -.--

121

Biographical Note

David DiNucci was born in Portland, Oregon on January 13, 1957. He attended Centennial

High School in Gresham, Oregon, graduating in 1975. He then attended Portland State

University until 1981, receiving a Bachelor of Science Degree in Computer Science. During

his stay at PSU, he worked in the computer center as student consultant, computer

operator, and programmer. He also worked for one summer at the Harris Corporation in

Fort Lauderdale, Florida.

Mter leaving PSU and spending 4-months in Japan, he took a position with the Portland

School District's Research and Evaluation Department, and shortly thereafter married

Tamae Sawano. In 1985, after advancing to the position of Data Systems Coordinator, he

left the School District to attend Oregon Graduate Institute (then Oregon Graduate Center)

full time.

The author is leaving Oregon Graduate Institute to take a summer Post-Doctoral

appointment at Lawrence Livermore National Laboratories.

	199003.dinucci.david to p. 82.pdf
	199003.dinucci.david to p. 121.pdf

